
Chapter 8

ANT COLONY OPTIMIZATION

Krzysztof Sochâ and Christian Blum^
^IRIDIA, Universite Libre de Bruxelles, Brussels, Belgium;
^ALBCOM, LSI, Universitat Politecnica de Catalunya, Barcelona Spain

Abstract: Ant colony optimization (ACO) is a metaheuristic that was originally
introduced for solving combinatorial optimization problems. In this chapter we
present the general description of ACO, as well as its adaptation for the
application to continuous optimization problems. We apply this adaptation of
ACO to optimize the weights of feed-forward neural networks for the purpose
of pattern classification. As test problems we choose three data sets from the
well-known PROBENl medical database. The experimental results show that
our algorithm is comparable to specialized algorithms for feed-forward neural
network training. Furthermore, the results compare favourably to the results of
other general-purpose methods such as genetic algorithms.

Key words; Ant colony optimization, continuous optimization, pattern classification, feed­
forward neural network training.

1. INTRODUCTION

In the early 90's, ant colony optimization (ACO) (Dorigo, 1992; Dorigo
et al., 1991; Dorigo et al., 1996) was introduced as a novel nature-inspired
metaheuristic for solving hard combinatorial optimization (CO) problems.
According to Papadimitriou and Steiglitz (1982), a CO problem P=(S,f) is an
optimization problem in which there is given a finite set of solutions S (also
called search space) and an objective function/; S -^ R^ ^ that assigns a
positive cost value to each of the solutions. The goal is either to find a

' R^ denotes the space of nonnegative real values.

154 Chapters

solution of minimum cost valued or—as in the case of approximate solution
techniques—a good enough solution in a reasonable amount of time. ACO
algorithms follow—as do all metaheuristics—the latter goal.

Examples of metaheuristics other than ACO are tabu search (Glover,
1989; Glover, 1990; Glover and Laguna, 1997), simulated
annealing (Kirkpatrick et al., 1983; Cemy, 1985), and evolutionary
computation (Fogel et al, 1966; Rechenberg, 1973; Holland, 1975;
Goldberg, 1989). For more general literature on metaheuristics, see (Glover
and Kochenberger, 2002; Blum and Roll, 2003; Hoos and Stutzle, 2004).
Some metaheuristics have been designed with continuous optimization in
mind, e.g. evolutionary strategies (ES). However, most metaheuristics were
originally introduced to solve CO problems, and only recently their
adaptation to solve continuous optimization problems enjoys increasing
attention. In continuous optimization we generally want to find a vector x e
K (where K is an /^-dimensional subspace ofR") such that/(x) < f(x), for all
X e K and f : K —^ R^. Examples of such adapted metaheuristics are
simulated annealing algorithms (Siarry et al., 1997), or differential
evolution (Stom and Price, 1997; Chelouah and Siarry, 2000; Chelouah and
Siarry, 2003) from the evolutionary computation field. Among the CO
oriented metaheuristics, tabu search algorithms as, for example, (Battiti and
Tecchioli, 1996) were among the first to be applied to continuous problems.
Some of the above cited methods are hybrids that make use of the well-
known Nelder-Mead simplex algorithm for continuous optimization (Nelder
and Mead, 1965).

Among the most recent applications of metaheuristics to continuous
problems are ant-related algorithms (Mathur et al., 2000; Dreo and Siarry,
2002; Socha, 2004). Only the most recent one of these attempts - namely
(Socha, 2004) - can be labelled ant colony optimization. The other attempts
rather loosely follow the idea of ant-based algorithms. In this chapter we first
present the general idea of ACO. Then, we describe the attempts of creating
ant algorithms for continuous optimization. Finally, we describe our
approach, which is an extended version of the algorithm proposed by Socha
(2004). We apply this algorithm to the training of feed-forward neural
networks (NNs). To test our algorithm we apply it to three benchmark
classification problems from the medical field: the diagnosis of breast
cancer, the diagnosis of diabetes, and the diagnosis of heart disease.

^ Note that minimizing over an objective function / is the same as maximizing over -/
Therefore, every CO problem can be described as a minimization problem.

ANT COLONY OPTIMIZATION 155

The remaining part of this chapter is organized as follows. Section 2
presents the ant colony optimization metaheuristic. In particular, subsection
2.1 gives an overview of the basics of ACO for combinatorial optimization,
and subsection 2.2 summarizes the existing approaches of applying ant
algorithms to continuous optimization problems. Section 3 describes our
ACO algorithm for continuous optimization, henceforth denoted by ACOR.
Following this. Section 4 presents in detail the specific problem of training
feed-forward NNs, the experimental setup, and the results obtained. Finally,
Section 5 concludes the chapter.

2. ANT COLONY OPTIMIZATION:
THE GENERAL IDEA

ACO algorithms have their origins in a field known as swarm
intelligence (SI) (Bonabeau et aL, 1999). SI algorithms take their inspiration
from the collective behaviour of, for example, social insects, flocks of birds,
or fish schools. Examples include algorithms for clustering and data mining
inspired by ants' cemetery building behaviour, dynamic task allocation
algorithms inspired by the behaviour of wasp colonies, particle swarm
optimization (PSO) algorithms, and many more. The inspiring source of
ACO is the foraging behaviour of real ants. When searching for food, ants
initially explore the area surrounding their nest in a random manner. As soon
as an ant finds a food source, it evaluates the quantity and the quality of the
food and carries some of it back to the nest. During the return trip, the ant
deposits a chemical pheromone trail on the ground. The quantity of
pheromone deposited, which may depend on the quantity and quality of the
food, will guide other ants to the food source. As it has been shown in
(Deneubourg et al., 1990), indirect communication between the ants via
pheromone trails enables them to find shortest paths between their nest and
food sources. This characteristic of real ant colonies is exploited in artificial
ant colonies in order to solve optimization problems.

while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstructionO
PheromoneUpdateO
DaemonActionsO {optional}

end ScheduleActivities
end while

Figure 8-1. Framework of the ant colony optimization (ACO) metaheuristic.

156 Chapters

2.1 Ant Colony Optimization for CO Problems

The central component of an ACO algorithm is a parameterized
probabilistic model, which is called the pheromone model. The pheromone
model consists of a vector of model parameters T called pheromone trail
parameters. The pheromone trail parameters TIET, which are usually
associated with components of solutions, have values % called pheromone
values. The pheromone model is used to probabilistically generate solutions
to the problem under consideration by assembling them from a finite set of
solution components. At run-time, ACO algorithms update the pheromone
values using previously generated solutions. The update aims to concentrate
the search in regions of the search space containing high quality solutions. In
particular, the reinforcement of solution components depending on the
solution quality is an important ingredient of ACO algorithms. It implicitly
assumes that good solutions consist of good solution components. To learn
which components contribute to good solutions can help assembling them
into better solutions. In general, the ACO approach attempts to solve an
optimization problem by repeating the following two steps:

• candidate solutions are constructed using a pheromone model, that is, a
parameterized probability distribution over the solution space;

• the candidate solutions are used to modify the pheromone values in a way
that is deemed to bias future sampling toward high quality solutions.

The ACO metaheuristic framework is shown in Figure 8-1. It consists of
three algorithmic components that are gathered in the ScheduleActivities
construct. The ScheduleActivities construct does not specify how these
three activities are scheduled and synchronized. This is up to the algorithm
designer. In the following we explain these three algorithm components in
more detail.

ei3

Figure 8-2. A small TSP problem instance on 4 cities in form of a graph G=(V,E).
The edges eij that connect the cities have associated distances dij.

ANT COLONY OPTIMIZA TION 157

AntBasedSolutionConstruction(): Artificial ants are constructive
heuristics that assemble solutions as sequences of solution components taken
from a finite set of solution components C={ci,.,.,cJ. Solution construction
starts with an empty partial solution / = < > . Then, at each construction step
the current partial solution f is extended by adding a feasible solution
component from the set N(s^) e C\ / , which is defined by the solution
construction mechanism. The process of constructing solutions can be
regarded as a walk (or a path) on the so-called construction graph (see
Figure 8-3 for an example) Gc=(C,L) whose vertices are the solution
components C and the set L are the connections. The allowed walks on Gc
are hereby implicitly defined by the solution construction mechanism that
defines set N(s^) with respect to a partial solution s^. The choice of a solution
component from N(s^) is at each construction step done probabilistically with
respect to the pheromone model T, which consists of pheromone trail
parameters Tt e T that are associated to components c/ e C.^ The values of
these parameters—the pheromone values—are denoted by z;. In most ACO
algorithms the probabilities for choosing the next solution component—also
called the transition probabilities—are defined as follows:

p{c^sn- J. ;^; . yc,eN{sn , (D
Cj&N{sP)

where 7/ is a weighting function, which is a function that, sometimes
depending on the current partial solution, assigns at each construction step a
heuristic value ri(ci) to each feasible solution component c/ e N(^). The
values that are given by the weighting function are commonly called the
heuristic information. Furthermore, a and /? are positive parameters whose
values determine the relation between pheromone information and heuristic
information. In Figure 8-3 is given an example of the solution construction
for the small travelling salesman (TSP) problem instance that is shown is
given in Figure 8-2.

Note that the description of the ACO metaheuristic as given for example in (Dorigo and
Stutzle, 2004) allows also connections of the construction graph to be associated with a
pheromone trail parameter. However, for the purpose of this introduction it is sufficient to
assume that pheromone trail parameters are associated with components.

158 Chapter 8

(a) (b)

Figure 8-3. (a) shows the construction graph Gc=(C,L) with respect to the TSP instance
shown in Figure 8-2. The set of solution components C consists of a solution component c,y
for each edge e,y, and the pheromone model consists of a pheromone trail parameter Tij for
each solution component c,y. As heuristic information we choose the inverse of the distances
between the cities. Therefore, it holds that rj(cij)=l/dij for all Cy. The construction mechanism
is as follows. In the first construction step, any solution component can be chosen. For the
remaining construction steps the set of solution components is restricted so that the sequence
of solution components always corresponds to a path in G (respectively, to a Hamiltonian
cycle in G after the last construction step), (b) shows a path on the construction graph that
corresponds to the construction of solution s=<cj2,C24,C34,ci3>,

PheromoneUpdate(): Different ACO algorithms—such as, for
example, Ant Colony System (ACS) (Dorigo and Gambardella, 1997) and
MAX-MIN Ant System (MMAS) (Stutzle and Hoos, 2000)—mainly differ in
the update of the pheromone values they apply. In the following, we outline
a common pheromone update rule in order to provide the general idea. This
pheromone update consists of two parts. First, a pheromone evaporation,
which proportionally decreases all the pheromone values, is performed.
From a practical point of view, pheromone evaporation is needed to avoid an
overly rapid convergence of the algorithm toward a sub-optimal region. It
implements a useful form oi forgetting, favouring the exploration of new
areas in the search space. Second, one or more solutions from the current
and/or from earlier iterations are used to increase the values of pheromone
trail parameters on solution components that are part of these solutions:

T, ̂ (l - /?)r ,+/? Y.^{s) (2)
s^S„pj\cies)

for i=l,...,n. Here, Supd is the set of solutions that are used for the update.
Furthermore, pe(0,l] is a parameter called evaporation rate, and F: S —>R^
is a function such that f(s) < f(s') ^ F(s) > F(s'), Vs ?^ s' e S. F(') is

ANT COLONY OPTIMIZA TION 159

commonly called the quality function. Instantiations of this update rule are
obtained by different specifications of Supd, which—in many cases—is a
subset of SiterUfsbs}, where Suer is the set of solutions that were constructed in
the current iteration, and s^s is the best-so-far solution, that is, the best
solution found since the first algorithm iteration. A well-known example is
the AS-update rule, that is, the update rule of Ant System (AS) (Dorigo et
al., 1996). The AS-update rule is obtained from update rule 2 by setting

This update rule is well-known due to the fact that AS was the first ACO
algorithm to be proposed in the literature. An example of a pheromone
update rule that is more used in practice is the IB-update rule (where IB
stands for iteration-best). The IB-update rule is given by:

upd

The IB-update rule introduces a much stronger bias towards the good
solutions found than the AS-update rule. However, this increases the danger
of premature convergence. An even stronger bias is introduced by the BS-
update rule, where BS refers to the use of the best-so-far solution Sbs- In this
case, Supd is set to {sbj. In practice, ACO algorithms that use variations of
the IB-update or the BS-update rule include mechanisms to avoid premature
convergence and tend to achieve better results than algorithms that use the
AS-update rule. Examples are ACS and MMAS as mentioned above.

DaemonActions(): Daemon actions can be used to implement
centralized actions which cannot be performed by single ants. Examples are
the application of local search methods to the constructed solutions, or the
collection of global information that can be used to decide whether it is
useful or not to deposit additional pheromone to bias the search process from
a non-local perspective. As a practical example, the daemon may decide to
deposit extra pheromone on the solution components that belong to the best
solution found so far.

After the initial proof-of-concept application to the travelling salesman
problem (TSP) (Dorigo et al., 1991; Dorigo et al., 1996), ACO was apphed
to many other CO problems. Examples include the applications to
assignment problems (Costa and Hertz, 1997; Maniezzo and Colomi, 1999;
Maniezzo, 1999; Socha et al., 2003; Stutzle and Hoos, 2000), scheduling
problems (Stutzle, 1998; den Besten et al., 2000; Gagne et al., 2002; Merkle

160 Chapters

et al, 2002; Blum and Sampels, 2004), and vehicle routing
problems (Gambardella et al., 1999; Reimann et al, 2004). Among other
applications, AGO algorithms are currently state-of-the-art for solving the
sequential ordering problem (SOP) (Gambardella and Dorigo, 2000), the
resource constraint project scheduling (RCPS) problem (Merkle et al,
2002), and the open shop scheduling (OSS) problem (Blum, 2005). For an
overview of applications of AGO we refer the interested reader to (Dorigo
and Stutzle, 2004).

2.2 Ant-Related Algorithms for Continuous
Optimization

As indicated in the previous section, AGO has proven to be an efficient and
versatile tool for solving various combinatorial optimization problems. In
recent years some attempts were also made to use them for tackling
continuous optimization problems. However, a direct application of the AGO
metaheuristic to continuous domains is not straightforward. Hence, the early
proposals often drew inspiration from AGO, but they did not follow exactly
the same methodology. This has changed since the publication of the work
by Socha (2004), which is the first real AGO algorithm for continuous
optimization. In the following paragraphs we highlight the main
characteristics of the various ant algorithms proposed for continuous
domains.

One of the first attempts to apply ant-based ideas to continuous
optimization problems was Gontinuous AGO (GAGO) (Bilchev and Parmee,
1995). In GAGO the ants start from a nest situated somewhere in the search
space. The artificial pheromone information is kept as numerical values that
are each assigned to a vector. At each iteration of the algorithm, the ants
choose probabilistically the vector from which they then continue the search.
This is followed by some random moves. The vectors are updated with the
best results found. Although the authors of GAGO state to have taken the
inspiration for their algorithm from the original AGO formulation, there are
some important differences. There is a new notion of the nest introduced,
which does not exist in the AGO metaheuristic. Also, GAGO does not
perform an incremental construction of solutions, which is one of the main
characteristics of the AGO metaheuristic.

Another ant-related approach to continuous optimization is the API
algorithm (Monmarche et al., 2000). The API algorithm does not use any
artificial pheromone information, neither do the authors claim that API is

ANT COLONY OPTIMIZA TION 161

based on the ACO metaheuristic. In API, the ants perform their search
independently, but starting from the same nest, which is periodically moved
to other locations. The ants use a mechanism labelled tandem running as a
type of recruitment strategy. API is the only ant algorithm published so far-
apart from the later work of Socha (2004)—that allows tackling both discrete
and continuous optimization problems.

The third ant-based approach to continuous optimization is Continuous
Interacting Ant Colony (CIAC) (Dreo and Siarry, 2002). In contrast to a
standard ACO algorithm, CIAC uses two types of communication between
ants: artificial pheromone information (i.e., spots of pheromone deposited in
the search space) and direct communication between ants. Furthermore,
CIAC is not performing an incremental construction of solutions, which is a
vital part of standard ACO algorithms.

Finally, Socha (2004) proposed ACO*, an ACO algorithm for continuous
domains that follows closely the spirit of ACO algorithms for CO problems.
In particular, ACO* is also based on step-by-step construction of solutions.
The main idea of this algorithm is as follows. In ACO algorithms for CO
problems, each solution construction step concerns the (probabilistic) choice
of a solution component from a set of allowed solution components (see
Section 2.2). Hereby, each solution component corresponds to the
assignment of a certain value to one of the decision variables. The choice of
a solution component is at each step performed probabilistically according to
Equation 1, which defines a discrete probability distribution. In contrast, in
ACO* the construction of a solution works by choosing for each of the
continuous variables a domain value by sampling a so-called probability
density function. Therefore, the main idea of ACO* is to replace discrete
distributions with continuous distributions (see Figure 8-4). In that sense,
ACO* is closely related to so-called estimation of distribution algorithms
(EDAs). See, for example, (Kern et a l , 2004).

3. ACO]|̂ FOR CONTINUOUS OPTIMIZATION

In this section, we present the A C O R algorithm—an extension of the idea
of ACO* (Socha, 2004). In the following we assume to tackle a continuous
optimization problem of the following form. Given are n decision variables
X={Xi,...,Xn} with continuous domains {Di,..,,Dn}. For constructing a
solution, the algorithm chooses for each of the n decision variables a domain
value by sampling probability density functions (PDFs).

162 Chapter 8

p(c\/) p(x)

CJ C^ C^ C^ Cj C ,̂- Cy C.̂ . Cr; Cy

(a) (b)

Figure 8-4. (a) The discrete probability distribution that is employed at each construction step
when combinatorial problems are concerned, and (b) a continuous probability density
function for continuous problems. Hereby, x,rim and x^ax respresent the minimal, respectively
the maximal allowed domain values.

These PDFs are, for each solution construction (and for each decision
variable), produced from a population P of solutions that the algorithm keeps
at all times. The management of this population works as follows. Before the
start of the algorithm, the population—whose size A: is a parameter of the
algorithm—is filled with randomly generated solutions. At each iteration a
set of m solutions is generated by m ants and added to P. Then, the solutions
of this extended population are ranked according to their objective function
values, and the m worst solutions are removed. This mechanism biases the
search process towards the best solutions found during the search process,
and keeps the population size fixed to m at all times. Note that the population
P of solutions takes over the role of the pheromone information that is used
in ACO algorithms for CO problems as a storage of search experience. A
similar approach has been used before by Guntsch and Middendorf (2002) in
case of Population-Based ACO for CO problems.

For constructing a solution, an ant acts as follows. First, it transforms the
original set of decision variables X into a set of temporary variables
Z={Zi,,,,,Zn}. The purpose of introducing temporary variables is to improve
the algorithms performance by limiting the correlation between decision
variables. Note that this transformation also affects the population P of
solutions: All the solutions are transformed to the new coordinate system as
well. The method of transforming the set of decision variables is presented
towards the end of this section.

ANT COLONY OPTIMIZA TION 163

At each of the n construction steps i=l,...,n, the ant chooses a value for
the corresponding decision variable Z,. For performing this choice it uses a
so-called Gaussian kernel PDF, which is a weighted superposition of several
Gaussian functions. For a decision variable Z/ the corresponding Gaussian
kernel G/ is given as follows:

k '̂ 1

7=1 y=i aJ^J27^

[z-^ 'jf
2cr/ J o r a l l z e R (3)

where the y-th Gaussian function gj is derived from the y-th member of
population P. Remember that k is the number of Gaussian functions
composing the Gaussian kernel PDF. Note that co, fi, and G are vectors of
size k. CO is the vector of weights, whereas fi and a are the vectors of means
and standard deviations respectively. Figure 8-5 presents an example of a
Gaussian kernel PDF consisting of five separate Gaussian functions.

Gassian kernel
individual Gassian functions

Figure 8-5. An example of a Gaussian kernel PDF consisting of five separate Gaussian
functions.

Sampling directly the Gaussian kernel PDF as defined in Equation (3) is
problematic. It can, however, be accomplished by the following procedure,
which can be proven to be equivalent to sampling G, directly.

Before starting the construction of a solution, each ant chooses exactly
one of the k Gaussian functions, and uses this Gaussian function, henceforth
denoted by gj*, for all n construction steps. The Gaussian function gj* is
chosen with following probability distribution:

164 Chapters

CO.
Pj=^;j^ , (4)

where coj is the weight of they-th Gaussian function gj, which is obtained as
follows. All solutions in P are ranked with respect to their quality; with the
best solution having rank 1. Assuming the rank of they-th solution in P to be
r, the weight coj of they-th Gaussian function is calculated according to the
following formula:

CO = - e '^ ' ' ' (5)

which essentially defines the weight to be a value of the Gaussian function
with the argument r, with mean 1.0 and standard deviation qk, where q is
also a parameter of the algorithm. When parameter q is small, the best-
ranked solutions are strongly preferred, and when it is larger, the probability
becomes more uniform.

The sampling of the chosen Gaussian function gj* may be done using a
random number generator that is able to generate random numbers according
to a parameterized normal distribution, or by using a uniform random
generator in conjunction with (for instance) the Box-MuUer method (Box
and MuUer, 1958). However, before doing so the mean juj* and the standard
deviation CTJ* of the chosen Gaussian function gj* have to be determined. As
mean juj* we choose the value of the /-th decision variable in the j -th
solution. It remains to specify the standard deviation aj*. In order to establish
the value of this standard deviation we calculate the average distance of the
other population members from the J -th solution (in dimension /) and
multiply it by the parameter/), which determines the speed of convergence:

1 ^
^y*=7—r/^Zl^/-^/*l (6)

Parameter p has a role similar to the pheromone evaporation rate p in
AGO for CO problems. The higher the value of p>0, the lower the
convergence speed of the algorithm, and hence the lower the learning rate.
Since this whole process is done for each dimension (i.e., each decision

ANT COLONY OPTIMIZA TION 165

variable) in turn, each time the distance is calculated only with the use of one
single dimension (the rest of them are discarded). This ensures that the
algorithm is able to adapt convergence, but also allows the handling of
problems that are scaled differently in different directions.

Next, we describe how the set of temporary decision variables Z is
created from the original set X. Note that ACO algorithms in general do not
exploit con*elation information between different decision variables (or
components). In ACOR, due to the specific way the pheromone is
represented (i.e., as the population of solutions), it is in fact possible to take
into account the correlation between the decision variables. An obvious
choice for adapting the coordinate system to the distribution of population P
is the Principal Component Analysis (PCA) (Hastie et al, 2001). Although
PCA works very well for reasonably regular distributions, its performance is
no longer that interesting in case of more complex functions. The
mechanism that we designed instead, is relatively simple. Each ant at each
step of the construction process chooses a new direction. This direction is
chosen by randomly selecting a solution Su from P that is reasonably far
away from they*-th solution chosen for defining the Gaussian function gj*.
Then, the vector from the w-th solution to they -th solution becomes the new
direction. The probability of choosing the u-th solution is the following:

|4

(7)

where function d(.,.) returns the distance between two members of the
population P. Once this new direction is chosen, the new orthogonal basis
for the ant's coordinate system is created using the Gram-Schmidt process
(Golub and van Loan, 1989). It takes as input all the (already orthogonal)
directions chosen in earlier construction steps and the newly chosen vector.
The remaining missing vectors (for the remaining dimensions) are chosen
randomly. Then, all the current coordinates of all the solutions in the
population are rotated and recalculated according to this new orthogonal
base resulting in the set of new temporary variables Z. Only then is the ant
able to measure the average distance, and subsequently to sample from the
PDF (as it can now calculate the mean and standard deviation). At the end of
the construction process, the chosen values of the temporary variables Z are
converted back into the original coordinate system X,

Finally, we deal with the subject of constraint handling. Note that the
way of generating new solutions as explained above, might lead to

166 Chapters

unfeasible solutions. In the literature on evolutionary algorithms we find
several ways to deal with unfeasible solutions, including rejection, repair, or
penalization. All these methods can also be applied in ACOR.

4. EXPERIMENTAL SETUP AND RESULTS

After the presentation of ACOR we will now outline in detail the
application of ACOR to the training of feed-forward NNs for the purpose of
pattern classification, as well as the experimental setup and the results that
we obtained.

4.1 The Problem

Due to their practical importance, we chose to evaluate the performance
of ACOR on classification problems arising in the medical field. More
specifically, we chose three problems from the well-known PROBENP
benchmark set (Prechelt, 1994), namely Cancerl, Diabetes 1, and Heart 1.
Each of these problems consists of a number of patterns together with their
correct classification, that is, Cancerl consists of 699 patterns from a breast
cancer database. Diabetes 1 consists of 768 patterns concerning diabetes
patients, and Heart 1 is the biggest of the three data sets, consisting of 920
patterns describing a heart condition. Each pattern of the three problems is
either classified as pathological, or as normal. Furthermore, each pattern
consists of a number of measurements (i.e., numerical values): 9
measurements in the case of Cancerl, 8 in the case of Diabetes 1, and 35 in
the case of Heart 1. The goal consists in generating a classifier that takes the
measurements of a pattern as input, and provides its correct classification as
output.

Feed-forward neural networks (NNs) are popular classification tools.
Each feed-forward NN consists of an input layer of neurons. In case of the
classification problem the input layer consists of as many neurons as there
are measurements in the patterns, that is, for each measurement there exists
exactly one input neuron. Furthermore, a feed-forward NN consists of an
arbitrary number of hidden layers of neurons, and an output layer (for an
example, see Figure 8-6). The output layer consists of as many neurons as
the data set has classes. In our case, the output layer consists of 2 output
neurons. Given the weights of all the neuron connections, in order to classify
a pattern, one provides its measurements as input to the input neurons,

^ It is available online at: ftp://ftp.ira.uka.de/pub/neuron/probenl.tar.gz.

ANT COLONY OPTIMIZA TION 167

propagates the output signals from layer to layer until the output signals of
the output neurons are obtained. Each output neuron is identified with one of
the possible classes. The output neuron that produces the highest output
signal classifies the respective pattern (winner takes all).

input
layer

^3-^OC

^2-KlS

î~^OC

hidden
layer

>\, /y

output
layer

^2) -^ ̂ 2

^2)-^oi

n \

^ 2 - ^ ^

\WUa

(a) (b)

Figure 8-6. (a) shows a feed-forward NN with one hidden layer. Note that all the neurons of
each layer are connected to all the neurons of the next layer, (b) shows one single neuron
(from either the hidden layer, or the output layer). The neuron receives inputs (i.e., signals //,
weighted by weights w/) from each neuron of the previous layer. Additionally, it receives a
so-called bias input ibias with weight Wbtas- The transfer function/(9 of a neuron transforms the
sum of all the weighted inputs into an output signal, which servers as input for all the neurons
of the following layer. Input and output signals, biases, and weights are real values.

The process of generating a NN classifier consists of determining the
weights of the connections between the neurons such that the NN classifier
shows a high performance. Since the weights are real-valued, this is a
continuous optimization problem.

Concerning the hidden neuron layers of the feed-forward NNs that we
used, we took inspiration from the literature. More specifically we used the
same structure of hidden layers that were used in (Alba and Chicano, 2004).
For an overview of the feed-forward NNs that we used see Table 8-1. The
number of weights to be optimized is—for each of the three data sets—given
by the following formula:

«; ,(«/+l)+«ok+l) (8)

168 Chapters

where «/, rih, and rio are respectively the numbers of input, hidden, and output
neurons. Note that the additional input for each neuron of the hidden layer
and the output layer represents the bias inputs. The last column of Table 8-1
provides the number of weights to be optimized.

Table 8-1. Summary of the feed-forward NNs that we used for the three data sets. In the last
table column is given the number of weights to be optimized for each tackled problem

Problem Input Layer(nj) Hidden Layer Output Layer
. (nil M

Weights

Cancer 1
Diabetes 1
Heart 1

9 6 2
8 6 2

35 6 2

74
68
230

Note that the training of a feed-forward NN is an unconstrained
continuous optimization problem (i.e, the domains of the decision variables
are unconstrained). Remember that at the start of our algorithm, the
population P of solutions is initialized by uniform random sampling.
Considering the neuron transfer function that we used (i.e., the sigmoid
function), the primary influence of a weight comes from its sign rather than
its value. Hence, we restricted the random sampling for generating the initial
solution to the interval [-1,1].^

4.2 Training and Solution Evaluation

Neural networks for pattern classification are usually expected to exhibit
a generalization capability, that is, new patterns that were not used for the
training of the neural network should also be classified correctly. Having this
objective in mind, the training of neural network classifiers works generally
as follows. First, the set of patterns is divided into training set and test set. In
our case we chose randomly 75% of all available patterns of a problem as
training set (denoted by P), and the remaining 25% of the patterns as test set
(denoted by P').

For the training of the weights of a feed-forward NN, a function is needed
that distinguishes between different solutions. In other words, we need a
function that measures the classification power of a solution, that is, a weight
setting, with respect to the training set. For this purpose, we have used the
function that is routinely used for this purpose, namely the Square Error
Percentage (SEP):

^ This restriction applies only to the initial interval used. During the search, the ACOR
algorithm can sample values outside of this initial interval.

ANT COLONY OPTIMIZA TION 169

SEP = 100 ̂ - ~^;;^ f;X(/f - of)̂ , (9)

where o^ax and ô /„ are respectively the maximum and minimum values of
the output signals of the output neurons (depeding on the neuron transfer
function), no is the number of output neurons, and fi and (fj represent
respectively the expected and actual values of output neuron / for pattern/?.

Finally, in order to assess the quality of the final solution found by a
given algorithm, we used the Classification Error Percentage (CEP) as the
performance measure. CEP represents the percentage of incorrectly
classified patterns from the test set.

4.3 Algorithms Used for Comparison

The goal of our experimentation was to evaluate whether ACO]̂ may be
used for training feed-forward NNs, and if so, we were interested in how it
would compare to other algorithms. In order to be able to draw any
meaningful conclusions, it is required to have some reference algorithm to
which to compare the performance of ACOR. In order to ensure a fair
comparison, we have re-implemented some algorithms traditionally used for
training NNs—namely the back-propagation (BP) algorithm and the
Levenberg-Marquardt (LM) algorithm. We used the R programming
language (a free alternative to S-H) for implementing these algorithms.^

Back-Propagation is a gradient-descent algorithm traditionally used for
training NNs (Rumelhart et ah, 1986). It is a first-order minimization
algorithm—i.e. it is based on first-order derivatives (i.e., the gradient). It
uses the estimation of the gradient of the instantaneous sum-squared error for
each network layer:

^w = -r]VE{w) , (10)

where w is the vector of all weights, r} is the learning rate, and E is the
gradient. The algorithm we have implemented is the basic version of back-
propagation without heuristic improvements that were developed over time.

Levenberg-Marquardt is a variation of Newton's method that was
initially designed for minimizing functions that are either sums of squares,

^ http://www.R-proiect.org

170 Chapters

or, in general, other non-linear functions (Hagan and Menhaj, 1994;
Paplihski, 2004). In Newton's method, minimization is based on utihzing the
second order derivatives as well as on the use of a batch training mode rather
than the pattern mode (which is used, for example, in back-propagation).
The batch training mode is based on derivatives of instantaneous errors. The
LM algorithm uses an approximation of the Hessian matrix by adding a
small constant ju multiplied by the identity matrix / to the product of the
transposed Jacobian matrix f and the Jacobian matrix J:

Aw = - ^ V £ (w) [j (w) V (w) + / / /] " ' (11)

Both algorithms (i.e., BP and LM) require gradient information. Hence,
they require the neuron transfer function to be differentiable. Consequently,
these algorithms may not be used in case, when the neuron transfer function
is not differentiable or is unknown. In contrast, A C O R is a general heuristic
optimization that can be applied when the neuron transfer function is non-
differentiable. On the other side, in case, when the neuron transfer function
is differentiable, the drawback of general optimization algorithms such as
A C O R is that they do not exploit available additional information as, for
example, gradient information.

In order to see how the additional gradient information influences the
performance of ACOR, we have also implemented hybridized versions of
ACOR, namely A C O R - B P and A C O R - L M , which are hybrids of the A C O R

algorithm and respectively the BP and LM algorithms. In these hybrids, each
solution generated by the A C O R algorithm is improved by running a single
improving iteration of either BP or LM, respectively.

Finally, we wanted to study how all the algorithms tested compare to a
simple random restart search method. In order to accomplish that, we have
implemented random search (RS)—i.e. an algorithm that randomly generates
a set of values for the weights and then evaluates these solutions. As we used
a sigmoid function as neuron transfer function, it was sufficient to limit the
range of weight values to values close to 0. Hence, we arbitrarily chose a
range of [-5,5].

4.4 Parameter Tuning

All our algorithms (with the exception of RS) require certain parameter
values to be determined before they can be applied. While algorithms such

ANT COLONY OPTIMIZA TION 171

as BP or LM have very few parameters, ACOR, as well as its hybridized
versions, have more. In general, in order to ensure a fair comparison of
algorithms, an equal amount of effort is required in the parameter tuning
process for each of the algorithms. Also, it has been shown in the literature
that the stopping condition for the parameter tuning runs should be identical
to the one used in the actual experiments (be that time, number of iterations,
etc.), as otherwise the danger of choosing suboptimal parameter values
increases (Socha, 2003). We have hence used a common parameter tuning
methodology for all our algorithms, with the same stopping condition that
we planned to use for the final experiments. The methodology that we used
is known as F-RACE methodology (Birattari et al., 2002; Birattari, 2004). In
particular we used the RACE package^ for R. It allows running a race of
different configurations of algorithms against each other on a set of test
instances. After each round, the non-parametric Friedman test is used to
compare the performance of different configurations. Configurations are
being dropped from the race as soon as sufficient statistical evidence has
been gathered against them. For more information on the F-RACE
methodology, we refer the interested reader to (Birattari, 2004). Since for the
problems we investigated we did not have several instances available (i.e.,
we wanted to tune the algorithms for each of the three considered data sets
separately), we have created a set of instances for each race by dividing
randomly (several times) the training set of each problem instance into a
training set for tuning (two thirds of the training set) and a test set for tuning
(one third of the training set). Table 8-2 provides details on the number of
patterns used respectively for learning and validation during the parameter
tuning runs, as well as for training and testing the chosen configurations.

Table 8-2. Summary of the number of patterns used for training and testing, both for parameter
tuning as well as for the final performance evaluation. The patterns used for parameter tuning
(learning and testing) were randomly chosen from the training set that we used later in the
performance evaluation

Algorithm

Cancer 1
Diabetes 1
Heart 1

Total number
of patterns

699
768
920

Parameter
Training set
for tuning

350
384
460

tuning
Test set for

tuning
175
192
230

Performance
Training Set

525
576
690

evaluation
Test Set

174
192
230

For the tuning, we determined 10 different configurations of parameter
settings for each of our algorithms. Then, we applied the F-RACE to each
instance set (i.e., per algorithm, per problem), allowing not more than 100

^ http://cran.r-project.org/src/contrib/Descriptions/race.html

172 Chapter 8

experiments in the race. Each of the parameter tuning races returned one
configuration that performed best^ The final parameter value settings that
we used for our final experiments are summarized in Table 8-3.

Table 8-3. Summary of the parameters chosen for our algorithms. Not included in the table
are the parameters common to all ACO^ versions, namely q and m. For these parameters we
used the settings ^=0.01, and m=2 (the number of ants used in each iteration)

Algorithm
ACOR

ACOR -BP

ACOR -LM

BP
LM

Cancer 1
k

148
148
148
-
-

P rj

0.95
0.98 0.3
0.9
- 0.002
-

P

-
10
-

50

Diabetes 1
k

136
136
136
-
-

P ri
0.8
0.7 0.1
0.1

0.01
-

P

-
10
-
5

Heartl
k

230
230
230

-
-

P rj

0.6
0.98 0.4
0.1
- 0.001
-

P

-
10
-

1.5

4.5 Results

In order to compare the performance of the algorithms, we applied each
algorithm 50 times to each of the three test problems. As stopping condition
we used the number of fitness function evaluations. Following the work of
Alba and Chicano (2004), we used 1000 function evaluations as the limit.
We used the training and testing approach—no cross-validation.

Figures 8-7, 8-8, and 8-9 present respectively the results obtained for the
cancer, diabetes, and heart test problems in the form of box-plots. Each
figure contains two graphics; the left one presents the distributions of the
actual CEP values obtained by the algorithms (over 50 independent runs);
the right one presents the distributions of rankings achiseved by the
algorithms. Any solution generated by any of the algorithms is ranked.
Having 6 algorithms and running 50 trials each, the possible rankings vary
from 1 to 300. The distribution of those rankings is then plotted per
algorithm—this allows for a clear identification of those better performing
ones, regardless of how small the difference may be in terms of objective
fi^nction value. The boxes are drawn between the first and the third quartile
of the distribution, while the indentations in the box-plots (or notches)
indicate the 95% confidence interval for a given distribution (McGill et. al,
1978). In other words, this means that if the notches of two distributions do
not overlap, they are significantly different with 95% confidence.

Due to the limited resources for tuning, the chosen configuration for each race is not
necessarily significantly better than all the others. The limit of 100 experiments per race
did sometimes not allow reaching that level of assurance. However, the chosen
configuration was definitely not significantly worse than any of the others.

ANT COLONY OPTIMIZA TION 173

Cancer (Fig. 8-7) appears to be the easiest problem among the three. Ail
algorithms obtained reasonably good results, including the RS method (!).
However, the best performing algorithm is BP. From the fact that the results
obtained by RS do not differ significantly from the results obtained by
other—more complex—algorithms, it may be concluded that the problem is
relatively easy, and that there are a lot of reasonably good solutions scattered
over the search space. None of the algorithms was able to classify all the test
patterns correctly.

Cancer (CEP) Cancer (ranks)

1 1

o 1

1
1
1

1

r

] - • • • -

ĝ 1
"] ' •

,

j ' - T " ! 1

1 X\ '
J. ^ ^

aco acobp acolm bp Im 100 150 200 250 300

Figure 8-7. Performance comparison of the algorithms on the Cancer 1 problem.
The graphic on the left represents the actual CEP values, while the right one
represents the ranks among all the solutions generated.

Diabetes (Fig. 8-8) is a problem that is more difficult than Cancer. All
our algorithms clearly outperform RS. However, the overall performance of
the algorithms is not very good. The best performing is again BP. The less
good overall performance of the algorithms may again indicate that the
training set does not represent fully all the possible patterns.

174 Chapter 8

Diabetes (CEP)

I
aco acobp acoim bp

Diabetes (ranks)

150 200 250 300

Figure 8-8. Performance comparison of the algorithms on the Diabatesl problem. The graphic
on the left represents the actual CEP values, while the right one represents the ranks among all
the solutions generated.

Heart (CEP) Heart (ranks)

aco acobp acolm bp

E ••-

Figure 8-9. Performance comparison of the algorithms on the Heart 1 problem. The graphic on
the left represents the actual CEP values, while the right one represents the ranks among all
the solutions generated.

The Heart problem (Fig. 8-9) with 230 weight values is the largest
problem that we tackled. It is also the one on which the performance of the
algorithms differed mostly. All tested algorithms clearly outperform RS, but
there are also significant differences among the more complex algorithms.
BP, which was performing quite well on the other two test problems, did not

ANT COLONY OPTIMIZA TION 175

do so well on Heart. ACO]R achieves results similar to BP. In turn, LM,
which was not performing so well on the first two problems, obtains quite
good results. Very interesting is the performance of the hybridized versions
of A C O R — A C O R - B P and A C O R -LM. The A C O R - B P hybrid clearly
outperforms both A C O R and BP. A C O R - L M outperforms respectively A C O R

and LM. Additionally, A C O R - L M performs best overall.

Summarizing, we note that the performance of A C O R alone does often
not quite reach the performance of the derivative based algorithms and the
A C O R hybrids. Its performance is, however, not much worse. Furthermore,
the results show that hybridizing A C O R with BP or LM helps to improve the
results of the pure A C O R algorithm. This was especially the case for Heart,
where A C O R - L M was the overall winner. We want to remind at this point
that A C O R is much more general than for example BP and LM, because it
does not require derivative information. Hence, it may be applied when the
neuron transfer function of a NN is non-differentiable or unknown, while
algorithms such as BP or LM could not be used in this case.

Table 8-4. Pair-wise comparison of the results of ACOR-based algorithms with recent results
obtained by a set of GA based algorithms (Alba and Chicano, 2004). The results can be
compared thanks to maintaining the same experimental setup. For each problem-algorithm
pair we give the mean (over 50 independent runs), and the standard deviation (in brackets).
The best result of each comparison is indicated in bold

Cancer

Diabetes

Heart

GA
16.76
(6.15)
36.46
(0.00)
41.50

(14.68)

ACOR

2.39
(1.15)
25.82
(2.59)
21.59
(1.14)

GA-BP
1.43

(4.87)
36.46
(0.00)
54.30

(20.03)

ACOR-BP

2.14
(1.09)
23.80
(1.73)
18.29
(1.00)

GA-LM
0.02

(0.11)
28.29
(1.15)
22.66
(0.82)

ACOR-LM

2.08
(0.68)
24.26
(1.40)
16.53
(1.37)

Finally it is interesting to compare the performance of the A C O R based
algorithms to some other general optimization algorithms. Alba and Chicano
(2004) have published the results of a Genetic Algorithm (GA) used for
tackling exactly the same three problems as we did. They have tested not
only a stand-alone GA, but also its hybridized versions: GA-BP and GA-
LM.

Table 8-4 summarizes the results obtained by the A C O R and GA based
algorithms. Clearly the stand-alone A C O R performs better than the stand­
alone GA for all the test problems. A C O R - B P and A C O R - L M perform
respectively better than GA-BP and GA-LM on both of the more difficult

176 Chapters

problems—Diabetes and Heart—and worse on Cancer. For the Heart
problem the mean performance of any ACOi. based algorithm is significantly
better than the best GA based algorithm (which was reported as the state-of-
the-art for this problem in 2004).

5. CONCLUSIONS

We have presented an ant colony optimization algorithm (i.e., ACOR)

for the training of feed-forward neural networks in classification
problems. A C O R is a generic approach that can be flexibly used either as
a stand-alone method, or hybridized with more problem specific
algorithms. The performance of the algorithm was evaluated on real-
world test problems and compared to specialized algorithms for feed­
forward neural network training (back propagation and Levenberg-
Marquardt), and also to genetic algorithm based algorithms.

The performance of the stand-alone A C O R was comparable (or at least
not much worse) than the performance of specialized algorithms for
neural network training. This result is particularly interesting as A C O R —
being a much more generic approach—allows also the training of
networks in which the neuron transfer function is either not differentiable
or unknown. The hybrid between A C O R and the Levenberg-Marquardt
algorithm (i.e., A C O R - L M) was in some cases able to outperform the
back propagation and the Levenberg-Marquardt algorithms that are
traditionally used for neural network training. Finally, when compared to
other general-purpose algorithms, namely genetic algorithm based
algorithms from the literature, our results showed that the ant colony
optimization based algorithms may provide superior performance for
some of the test problems.

ACKNOWLEDGEMENTS

This work was supported by the Spanish CICYT project no. TIC-2002-
04498-C05-03 (TRACER), and by the "Juan de la Cierva" program of the
Spanish Ministry of Science and Technology of which Christian Blum is a
post-doctoral research fellow.

This work was also partially supported by the "ANTS" project, an
"Action de Recherche Concertee" funded by the Scientific Research
Directorate of the French Community of Belgium.

ANT COLONY OPTIMIZA TION 177

REFERENCES

Alba, E., and Chicano, J.F, 2004, Training Neural Networks with GA Hybrid Algorithms, in:
Proceedings of Genetic and Evolutionary Computation - GECCO 2004, Part 1, Lecture
Notes in Computer Science, vol. 3102, K. Deb et al, eds., Springer-Verlag, Berlin,
Germany, pp. 852-863.

Battiti, R., and Tecchiolli, G., 1996, The continuous reactive tabu search: Blending
combinatorial optimization and stochastic search for global optimization, Annals of
Operations Research 63:153-188.

Bilchev, G., and Parmee, I. C, 1995, The ant colony metaphor for searching continuous
design spaces, in: Proceedings of the AISB Workshop on Evolutionary Computation,
Lecture Notes in Computer Science, vol. 993, T.~C. Fogarty, ed., Springer-Verlag, Berlin,
Germany, pp. 25-39.

Birattari, M., 2004, The Problem of Tuning Metaheuristics as Seen from a Machine Learning
Perspective, Ph.D. thesis, ULB, Brussels, Belgium.

Birattari, M., Stiitzle, T., Paquete, L., and Varrentrapp, K., 2002, A Racing Algorithm for
Configuring Metaheuristics, in: Proceedings of Genetic and Evolutionary Conference, W.
B. Langdon et al. eds., Morgan Kaufmann, San Francisco, CA, USA, pp. 11-18.

Blum, C, 2005, Beam-ACO—Hybridizing ant colony optimization with beam search: An
appHcation to open shop scheduling. Computers & Operations Research 32(6): 1565-1591.

Blum, C, and Roll, A., 2003, Metaheuristics in combinatorial optimization: Overview and
conceptual comparison, ACM Computing Surveys 35(3):268-308.

Blum, C, and Sampels, M., 2004, An ant colony optimization algorithm for shop scheduling
problems. Journal of Mathematical Modelling and Algorithms 3(3):285-308.

Blum, C, 2005, Beam-ACO—Hybridizing ant colony optimization with beam search: An
application to open shop scheduling. Computers & Operations Research 32(6): 1565-1591.

Bonabeau, E., Dorigo, M., and Theraulaz, G., 1999, Swarm Intelligence: From Natural to
Artificial Systems, Oxford University Press, New York, NY.

Box, G. E. P., and Muller, M. E, 1958, A note on the generation of random normal deviates.
Annals of Mathematical Statistics 29(2):610-611.

Cemy, V., 1985, A thermodynamical approach to the travelling salesman problem: An
efficient simulation algorithm, Optimization Theory and Applications 45:41-51.

Chelouah, R., and Siarry, P., 2000, A continuous genetic algorithm designed for the global
optimization of mulitmodal functions. Journal of Heuristics 6:191-213.

Chelouah, R., and Siarry, P., 2000, Tabu search applied to global optimization, European
Journal of Operational Research 123:256-270.

Chelouah, R., and Siarry, P., 2003, Genetic and Nelder-Mead algorithms hybridized for a
more accurate global optimization of continuous multiminima functions, European
Journal of Operational Research 148:335-348.

Costa, D., and Hertz, A., 1997, Ants can color graphs. Journal of the Operational Research
Society 48:295-305.

den Besten, M. L., Stutzle, T., and Dorigo, M., 2000, Ant colony optimization for the total
weighted tardiness problem, in: Proceedings ofPPSN-VI, Sixth International Conference
on Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 1917,
M.~Schoenauer et al., eds.. Springer Verlag, Berlin, Germany, pp. 611-620.

Deneubourg, J.-L., Aron, S., Goss, S., and Pasteels, J.-M., 1990, The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Behaviour 3:159-168.

Dorigo, M., 1992, Optimization, Learning and Natural Algorithms (in Italian), PhD thesis,
Dipartimento di Elettronica, Politecnico di Milano, Italy.

178 Chapters

Dorigo, M., and Gambardella, L. M., 1997, Ant Colony System: A cooperative learning
approach to the travelling salesman problem, IEEE Transactions on Evolutionary
Computation l(l):53-66.

Dorigo, M., Maniezzo, V., and Colomi, A., 1991, Positive feedback as a search strategy.
Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy.

Dorigo, M., Maniezzo, V., and Colomi, A., 1996, Ant System: Optimization by a colony of
cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics — Part B
26(1):29-41.

Dorigo, M., and Stiitzle, T., 2004, Ant Colony Optimization, MIT Press, Cambridge, MA.
Dreo, J., and Siarry, P., 2002, A new ant colony algorithm using the heterarchical concept

aimed at optimization of multiminima continuous functions, in: Proceedings of ANTS
2002—From Ant Colonies to Artificial Ants: Third International Workshop on Ant
Algorithms, Lecture Notes in Computer Science, vol. 2463 of LNCS, M. Dorigo et al,
eds.. Springer Verlag, Berlin, Germany, pp. 216-221.

Fogel, L. J., Owens, A. J., and Walsh, M. J., 1966, Artificial Intelligence through Simulated
Evolution, Wiley.

Gagne, C, Price, W. L., and Gravel, M., 2002, Comparing an ACO algorithm with other
heuristics for the single machine scheduling problem with sequence-dependent setup
times, Journal of the Operational Research Society 53:895-906.

Gambardella, L. M., and Dorigo, M., 2000, Ant Colony System hybridized with a new local
search for the sequential ordering problem, INFORMS Journal on Computing 12(3):237-
255.

Gambardella, L. M., Taillard, E. D., and Agazzi, G., 1999, MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows, in: New Ideas in
Optimization, D. Come et al., eds., McGraw Hill, London, UK, pp. 63-76.

Glover, F., 1989, Tabu search—Part I, ORSA Journal on Computing 1(3): 190-206.
Glover, F., 1990, Tabu search—Part II, ORSA Journal on Computing 2(l):4-32.
Glover, F., and Kochenberger, G., 2002, Handbook of Metaheuristics, Kluwer Academic

Publishers, Norwell, MA.
Glover, F., and Laguna, M., 1997, Tabu Search, Kluwer Academic Publishers.
Goldberg, D. E., 1989, Genetic algorithms in search, optimization, and machine learning,

Addison Wesley, Reading, MA.
Golub, G. H., and van Loan, C. F., 1989, Matrix Computations, 2nd ed., the John Hopkins

University Press, Baltimore, MD, USA.
Guntsch, M., and Middendorf, M., 2002, A population based approach for ACO, in:

Applications of Evolutionary Computing, Proceedings of Evo Works hops 2002: EvoCOP,
EvoIASP, EvoSTim, vol. 2279, S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G.
Raidl, eds.. Springer-Verlag, Berlin, Germany, pp. 71-80.

Hagan, M. T., and Menhaj, M. B., 1994, Training Feedforward Networks with the Marquardt
Algorithm, IEEE Transactions on Neural Networks 5:989-993.

Hastie, T., Tibshirani, R., and Friedman, J., 2001, The Elements of Statistical Learning,
Springer-Verlag, Berlin, Germany.

Holland, J. H., 1975, Adaption in natural and artificial systems. The University of Michigan
Press, Ann Harbor, MI.

Hoos, H. H., and Stiitzle, T., 2004, Stochastic Local Search: Foundations and Applications,
Elsevier, Amsterdam, The Netherlands.

Kem, S., Muller, S. D., Hansen, N., Buche, D., Ocenasek, J., and Koumoutsakos, P., 2004,
Leaming probability distributions in continuous evolutionary algorithms—A comparative
review. Natural Computing 3(1):77-112.

ANT COLONY OPTIMIZA TION 179

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1983, Optimization by simulated annealing,
5'c/ef7ce220(4598):671-680.

Maniezzo, V., 1999, Exact and Approximate Nondeterministic Tree-Search Procedures for
the Quadratic Assignment Problem, INFORMS Journal on Computing ll(4):358-369.

Maniezzo, V., and Colomi, A., 1999, The Ant System applied to the quadratic assignment
problem, IEEE Transactions on Data and Knowledge Engineering 11 (5): 769-778.

Mathur, M., Karale, S. B., Priye, S., Jyaraman, and V. K., Kulkarni, B. D., 2000, Ant colony
approach to continuous function optimization. Industrial & Engineering Chemistry
Research'i9'3%\A-2>%22,

McGill, R., Tukey, J. W.,Larsen, and W. A., 1978, Variations of box plots, The American
Statisticia 32:\2-\6 .

Merkle, D., Middendorf, M., and Schmeck, H., 2002, Ant Colony Optimization for Resource-
Constrained Project Scheduling, IEEE Transactions on Evolutionary Computation
6(4):333-346.

Monmarche, N., Venturini, and G.,Slimane M., 2000, On how Pachycondyla apicalis ants
suggest a new search algorithm. Future Generation Computer Systems 16:937-946.

Nelder, J. A., and Mead, R., 1965, A simplex method for function minimization. Computer
Journal 7'30S-3\3.

Papadimitriou, C. H., and Steiglitz, K., 1982, Combinatorial Optimization—Algorithms and
Complexity, Dover Publications, Inc., New York.

Paplihski, A.P., 2004, Lecture 7—Advanced Learning Algorithms for Multilayer Perceptrons,
available online at http://w\vw.csse.niQnash.edu.au/courscware/csc5301/04/L07.pdf.

Prechelt, L., 1994, Probenl—A Set of Neural Network Benchmark Problems and
Benchmarking Rules. Technical Report 21, Fakultat fiir Informatik, Universitat Karlsruhe,
Karlsruhe, Germany.

Rechenberg, I., 1973, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution, Frommann-Holzboog.

Reimann, M., Doemer, K., and Hartl, R. F., 2004, D-ants: Savings based ants divide and
conquer the vehicle routing problems. Computers & Operations Research 31(4):563-591.

Rumelhart, D., Hinton, G., and Williams, R., 1986, Learning Representations by
Backpropagation Errors, Nature 323:533-536.

Siarry, P., Berthiau, G., Durbin, F., and Haussy, J., 1997, Enhanced simulated annealing for
globally minimizing functions of many-continuous variables, ACM Transactions on
Mathematical Software 23(2):209.228.

Socha, K., 2003, The Influence of Run-Time Limits on Choosing Ant System Parameters, in
Proceedings of GECCO 2003—Genetic and Evolutionary Computation Conference,
Lecture Notes in Computer Science, vol. 2723, E. Cantu-Paz et a l , eds.. Springer-Verlag,
Berlin, Germany, pp. 49-60.

Socha, K., 2004, Extended ACO for continuous and mixed-variable optimization, in:
Proceedings of ANTS 2004—Fourth International Workshop on Ant Algorithms and
Swarm Intelligence, Lecture Notes in Computer Science, M. Dorigo et a l , eds., Springer
Verlag, Berlin, Germany, pp. 35-46.

Socha, K., Sampels, M., and Manfrin, M., 2003, Ant algorithms for the university course
timetabling problem with regard to the state-of-the-art, in: Applications of Evolutionary
Computing, Proceedings of Evo Works hops 2003, vol. 2611, G. Raidl et al., eds., pp 334-
345.

Stom, R., and Price, K., 1997, Differential evolution—A simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization 11:341-359.

180 Chapters

Stiitzle, T., 1998, An Ant Approach to the Flow Shop Problem, in: Proceedings of the Fifth
European Congress on Intelligent Techniques and Soft Computing, EUFIT'98, pp 1560-
1564.

Stiitzle, T., and Hoos, H. H., 2000, MAX-MIN Ant System, Future Generation Computer
Systems \6{%yM9-9\A.

