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Abstract: Ant colony optimization (ACO) is a metaheuristic that was originally 
introduced for solving combinatorial optimization problems. In this chapter we 
present the general description of ACO, as well as its adaptation for the 
application to continuous optimization problems. We apply this adaptation of 
ACO to optimize the weights of feed-forward neural networks for the purpose 
of pattern classification. As test problems we choose three data sets from the 
well-known PROBENl medical database. The experimental results show that 
our algorithm is comparable to specialized algorithms for feed-forward neural 
network training. Furthermore, the results compare favourably to the results of 
other general-purpose methods such as genetic algorithms. 
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1. INTRODUCTION 

In the early 90's, ant colony optimization (ACO) (Dorigo, 1992; Dorigo 
et al., 1991; Dorigo et al., 1996) was introduced as a novel nature-inspired 
metaheuristic for solving hard combinatorial optimization (CO) problems. 
According to Papadimitriou and Steiglitz (1982), a CO problem P=(S,f) is an 
optimization problem in which there is given a finite set of solutions S (also 
called search space) and an objective function/; S -^ R^ ^ that assigns a 
positive cost value to each of the solutions. The goal is either to find a 

' R^ denotes the space of nonnegative real values. 
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solution of minimum cost valued or—as in the case of approximate solution 
techniques—a good enough solution in a reasonable amount of time. ACO 
algorithms follow—as do all metaheuristics—the latter goal. 

Examples of metaheuristics other than ACO are tabu search (Glover, 
1989; Glover, 1990; Glover and Laguna, 1997), simulated 
annealing (Kirkpatrick et al., 1983; Cemy, 1985), and evolutionary 
computation (Fogel et al, 1966; Rechenberg, 1973; Holland, 1975; 
Goldberg, 1989). For more general literature on metaheuristics, see (Glover 
and Kochenberger, 2002; Blum and Roll, 2003; Hoos and Stutzle, 2004). 
Some metaheuristics have been designed with continuous optimization in 
mind, e.g. evolutionary strategies (ES). However, most metaheuristics were 
originally introduced to solve CO problems, and only recently their 
adaptation to solve continuous optimization problems enjoys increasing 
attention. In continuous optimization we generally want to find a vector x e 
K (where K is an /^-dimensional subspace ofR") such that/(x ) < f(x), for all 
X e K and f : K —^ R^. Examples of such adapted metaheuristics are 
simulated annealing algorithms (Siarry et al., 1997), or differential 
evolution (Stom and Price, 1997; Chelouah and Siarry, 2000; Chelouah and 
Siarry, 2003) from the evolutionary computation field. Among the CO 
oriented metaheuristics, tabu search algorithms as, for example, (Battiti and 
Tecchioli, 1996) were among the first to be applied to continuous problems. 
Some of the above cited methods are hybrids that make use of the well-
known Nelder-Mead simplex algorithm for continuous optimization (Nelder 
and Mead, 1965). 

Among the most recent applications of metaheuristics to continuous 
problems are ant-related algorithms (Mathur et al., 2000; Dreo and Siarry, 
2002; Socha, 2004). Only the most recent one of these attempts - namely 
(Socha, 2004) - can be labelled ant colony optimization. The other attempts 
rather loosely follow the idea of ant-based algorithms. In this chapter we first 
present the general idea of ACO. Then, we describe the attempts of creating 
ant algorithms for continuous optimization. Finally, we describe our 
approach, which is an extended version of the algorithm proposed by Socha 
(2004). We apply this algorithm to the training of feed-forward neural 
networks (NNs). To test our algorithm we apply it to three benchmark 
classification problems from the medical field: the diagnosis of breast 
cancer, the diagnosis of diabetes, and the diagnosis of heart disease. 

^ Note that minimizing over an objective function / is the same as maximizing over -/ 
Therefore, every CO problem can be described as a minimization problem. 



ANT COLONY OPTIMIZATION 155 

The remaining part of this chapter is organized as follows. Section 2 
presents the ant colony optimization metaheuristic. In particular, subsection 
2.1 gives an overview of the basics of ACO for combinatorial optimization, 
and subsection 2.2 summarizes the existing approaches of applying ant 
algorithms to continuous optimization problems. Section 3 describes our 
ACO algorithm for continuous optimization, henceforth denoted by ACOR. 
Following this. Section 4 presents in detail the specific problem of training 
feed-forward NNs, the experimental setup, and the results obtained. Finally, 
Section 5 concludes the chapter. 

2. ANT COLONY OPTIMIZATION: 
THE GENERAL IDEA 

ACO algorithms have their origins in a field known as swarm 
intelligence (SI) (Bonabeau et aL, 1999). SI algorithms take their inspiration 
from the collective behaviour of, for example, social insects, flocks of birds, 
or fish schools. Examples include algorithms for clustering and data mining 
inspired by ants' cemetery building behaviour, dynamic task allocation 
algorithms inspired by the behaviour of wasp colonies, particle swarm 
optimization (PSO) algorithms, and many more. The inspiring source of 
ACO is the foraging behaviour of real ants. When searching for food, ants 
initially explore the area surrounding their nest in a random manner. As soon 
as an ant finds a food source, it evaluates the quantity and the quality of the 
food and carries some of it back to the nest. During the return trip, the ant 
deposits a chemical pheromone trail on the ground. The quantity of 
pheromone deposited, which may depend on the quantity and quality of the 
food, will guide other ants to the food source. As it has been shown in 
(Deneubourg et al., 1990), indirect communication between the ants via 
pheromone trails enables them to find shortest paths between their nest and 
food sources. This characteristic of real ant colonies is exploited in artificial 
ant colonies in order to solve optimization problems. 

while termination conditions not met do 
ScheduleActivities 

AntBasedSolutionConstructionO 
PheromoneUpdateO 
DaemonActionsO {optional} 

end ScheduleActivities 
end while 

Figure 8-1. Framework of the ant colony optimization (ACO) metaheuristic. 
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2.1 Ant Colony Optimization for CO Problems 

The central component of an ACO algorithm is a parameterized 
probabilistic model, which is called the pheromone model. The pheromone 
model consists of a vector of model parameters T called pheromone trail 
parameters. The pheromone trail parameters TIET, which are usually 
associated with components of solutions, have values % called pheromone 
values. The pheromone model is used to probabilistically generate solutions 
to the problem under consideration by assembling them from a finite set of 
solution components. At run-time, ACO algorithms update the pheromone 
values using previously generated solutions. The update aims to concentrate 
the search in regions of the search space containing high quality solutions. In 
particular, the reinforcement of solution components depending on the 
solution quality is an important ingredient of ACO algorithms. It implicitly 
assumes that good solutions consist of good solution components. To learn 
which components contribute to good solutions can help assembling them 
into better solutions. In general, the ACO approach attempts to solve an 
optimization problem by repeating the following two steps: 

• candidate solutions are constructed using a pheromone model, that is, a 
parameterized probability distribution over the solution space; 

• the candidate solutions are used to modify the pheromone values in a way 
that is deemed to bias future sampling toward high quality solutions. 

The ACO metaheuristic framework is shown in Figure 8-1. It consists of 
three algorithmic components that are gathered in the ScheduleActivities 
construct. The ScheduleActivities construct does not specify how these 
three activities are scheduled and synchronized. This is up to the algorithm 
designer. In the following we explain these three algorithm components in 
more detail. 

ei3 

Figure 8-2. A small TSP problem instance on 4 cities in form of a graph G=(V,E). 
The edges eij that connect the cities have associated distances dij. 
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AntBasedSolutionConstruction(): Artificial ants are constructive 
heuristics that assemble solutions as sequences of solution components taken 
from a finite set of solution components C={ci,.,.,cJ. Solution construction 
starts with an empty partial solution / = < > . Then, at each construction step 
the current partial solution f is extended by adding a feasible solution 
component from the set N(s^) e C\ / , which is defined by the solution 
construction mechanism. The process of constructing solutions can be 
regarded as a walk (or a path) on the so-called construction graph (see 
Figure 8-3 for an example) Gc=(C,L) whose vertices are the solution 
components C and the set L are the connections. The allowed walks on Gc 
are hereby implicitly defined by the solution construction mechanism that 
defines set N(s^) with respect to a partial solution s^. The choice of a solution 
component from N(s^) is at each construction step done probabilistically with 
respect to the pheromone model T, which consists of pheromone trail 
parameters Tt e T that are associated to components c/ e C.^ The values of 
these parameters—the pheromone values—are denoted by z;. In most ACO 
algorithms the probabilities for choosing the next solution component—also 
called the transition probabilities—are defined as follows: 

p{c^sn- J. ;^; . yc,eN{sn , (D 
Cj&N{sP) 

where 7/ is a weighting function, which is a function that, sometimes 
depending on the current partial solution, assigns at each construction step a 
heuristic value ri(ci) to each feasible solution component c/ e N(^). The 
values that are given by the weighting function are commonly called the 
heuristic information. Furthermore, a and /? are positive parameters whose 
values determine the relation between pheromone information and heuristic 
information. In Figure 8-3 is given an example of the solution construction 
for the small travelling salesman (TSP) problem instance that is shown is 
given in Figure 8-2. 

Note that the description of the ACO metaheuristic as given for example in (Dorigo and 
Stutzle, 2004) allows also connections of the construction graph to be associated with a 
pheromone trail parameter. However, for the purpose of this introduction it is sufficient to 
assume that pheromone trail parameters are associated with components. 
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(a) (b) 

Figure 8-3. (a) shows the construction graph Gc=(C,L) with respect to the TSP instance 
shown in Figure 8-2. The set of solution components C consists of a solution component c,y 
for each edge e,y, and the pheromone model consists of a pheromone trail parameter Tij for 
each solution component c,y. As heuristic information we choose the inverse of the distances 
between the cities. Therefore, it holds that rj(cij)=l/dij for all Cy. The construction mechanism 
is as follows. In the first construction step, any solution component can be chosen. For the 
remaining construction steps the set of solution components is restricted so that the sequence 
of solution components always corresponds to a path in G (respectively, to a Hamiltonian 
cycle in G after the last construction step), (b) shows a path on the construction graph that 
corresponds to the construction of solution s=<cj2,C24,C34,ci3>, 

PheromoneUpdate(): Different ACO algorithms—such as, for 
example, Ant Colony System (ACS) (Dorigo and Gambardella, 1997) and 
MAX-MIN Ant System (MMAS) (Stutzle and Hoos, 2000)—mainly differ in 
the update of the pheromone values they apply. In the following, we outline 
a common pheromone update rule in order to provide the general idea. This 
pheromone update consists of two parts. First, a pheromone evaporation, 
which proportionally decreases all the pheromone values, is performed. 
From a practical point of view, pheromone evaporation is needed to avoid an 
overly rapid convergence of the algorithm toward a sub-optimal region. It 
implements a useful form oi forgetting, favouring the exploration of new 
areas in the search space. Second, one or more solutions from the current 
and/or from earlier iterations are used to increase the values of pheromone 
trail parameters on solution components that are part of these solutions: 

T, ̂ ( l - /?)r ,+/? Y.^{s) (2) 
s^S„pj\cies) 

for i=l,...,n. Here, Supd is the set of solutions that are used for the update. 
Furthermore, pe(0,l] is a parameter called evaporation rate, and F: S —>R^ 
is a function such that f(s) < f(s') ^ F(s) > F(s'), Vs ?^ s' e S. F(') is 
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commonly called the quality function. Instantiations of this update rule are 
obtained by different specifications of Supd, which—in many cases—is a 
subset of SiterUfsbs}, where Suer is the set of solutions that were constructed in 
the current iteration, and s^s is the best-so-far solution, that is, the best 
solution found since the first algorithm iteration. A well-known example is 
the AS-update rule, that is, the update rule of Ant System (AS) (Dorigo et 
al., 1996). The AS-update rule is obtained from update rule 2 by setting 

This update rule is well-known due to the fact that AS was the first ACO 
algorithm to be proposed in the literature. An example of a pheromone 
update rule that is more used in practice is the IB-update rule (where IB 
stands for iteration-best). The IB-update rule is given by: 

upd 

The IB-update rule introduces a much stronger bias towards the good 
solutions found than the AS-update rule. However, this increases the danger 
of premature convergence. An even stronger bias is introduced by the BS-
update rule, where BS refers to the use of the best-so-far solution Sbs- In this 
case, Supd is set to {sbj. In practice, ACO algorithms that use variations of 
the IB-update or the BS-update rule include mechanisms to avoid premature 
convergence and tend to achieve better results than algorithms that use the 
AS-update rule. Examples are ACS and MMAS as mentioned above. 

DaemonActions(): Daemon actions can be used to implement 
centralized actions which cannot be performed by single ants. Examples are 
the application of local search methods to the constructed solutions, or the 
collection of global information that can be used to decide whether it is 
useful or not to deposit additional pheromone to bias the search process from 
a non-local perspective. As a practical example, the daemon may decide to 
deposit extra pheromone on the solution components that belong to the best 
solution found so far. 

After the initial proof-of-concept application to the travelling salesman 
problem (TSP) (Dorigo et al., 1991; Dorigo et al., 1996), ACO was apphed 
to many other CO problems. Examples include the applications to 
assignment problems (Costa and Hertz, 1997; Maniezzo and Colomi, 1999; 
Maniezzo, 1999; Socha et al., 2003; Stutzle and Hoos, 2000), scheduling 
problems (Stutzle, 1998; den Besten et al., 2000; Gagne et al., 2002; Merkle 
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et al, 2002; Blum and Sampels, 2004), and vehicle routing 
problems (Gambardella et al., 1999; Reimann et al, 2004). Among other 
applications, AGO algorithms are currently state-of-the-art for solving the 
sequential ordering problem (SOP) (Gambardella and Dorigo, 2000), the 
resource constraint project scheduling (RCPS) problem (Merkle et al, 
2002), and the open shop scheduling (OSS) problem (Blum, 2005). For an 
overview of applications of AGO we refer the interested reader to (Dorigo 
and Stutzle, 2004). 

2.2 Ant-Related Algorithms for Continuous 
Optimization 

As indicated in the previous section, AGO has proven to be an efficient and 
versatile tool for solving various combinatorial optimization problems. In 
recent years some attempts were also made to use them for tackling 
continuous optimization problems. However, a direct application of the AGO 
metaheuristic to continuous domains is not straightforward. Hence, the early 
proposals often drew inspiration from AGO, but they did not follow exactly 
the same methodology. This has changed since the publication of the work 
by Socha (2004), which is the first real AGO algorithm for continuous 
optimization. In the following paragraphs we highlight the main 
characteristics of the various ant algorithms proposed for continuous 
domains. 

One of the first attempts to apply ant-based ideas to continuous 
optimization problems was Gontinuous AGO (GAGO) (Bilchev and Parmee, 
1995). In GAGO the ants start from a nest situated somewhere in the search 
space. The artificial pheromone information is kept as numerical values that 
are each assigned to a vector. At each iteration of the algorithm, the ants 
choose probabilistically the vector from which they then continue the search. 
This is followed by some random moves. The vectors are updated with the 
best results found. Although the authors of GAGO state to have taken the 
inspiration for their algorithm from the original AGO formulation, there are 
some important differences. There is a new notion of the nest introduced, 
which does not exist in the AGO metaheuristic. Also, GAGO does not 
perform an incremental construction of solutions, which is one of the main 
characteristics of the AGO metaheuristic. 

Another ant-related approach to continuous optimization is the API 
algorithm (Monmarche et al., 2000). The API algorithm does not use any 
artificial pheromone information, neither do the authors claim that API is 
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based on the ACO metaheuristic. In API, the ants perform their search 
independently, but starting from the same nest, which is periodically moved 
to other locations. The ants use a mechanism labelled tandem running as a 
type of recruitment strategy. API is the only ant algorithm published so far-
apart from the later work of Socha (2004)—that allows tackling both discrete 
and continuous optimization problems. 

The third ant-based approach to continuous optimization is Continuous 
Interacting Ant Colony (CIAC) (Dreo and Siarry, 2002). In contrast to a 
standard ACO algorithm, CIAC uses two types of communication between 
ants: artificial pheromone information (i.e., spots of pheromone deposited in 
the search space) and direct communication between ants. Furthermore, 
CIAC is not performing an incremental construction of solutions, which is a 
vital part of standard ACO algorithms. 

Finally, Socha (2004) proposed ACO*, an ACO algorithm for continuous 
domains that follows closely the spirit of ACO algorithms for CO problems. 
In particular, ACO* is also based on step-by-step construction of solutions. 
The main idea of this algorithm is as follows. In ACO algorithms for CO 
problems, each solution construction step concerns the (probabilistic) choice 
of a solution component from a set of allowed solution components (see 
Section 2.2). Hereby, each solution component corresponds to the 
assignment of a certain value to one of the decision variables. The choice of 
a solution component is at each step performed probabilistically according to 
Equation 1, which defines a discrete probability distribution. In contrast, in 
ACO* the construction of a solution works by choosing for each of the 
continuous variables a domain value by sampling a so-called probability 
density function. Therefore, the main idea of ACO* is to replace discrete 
distributions with continuous distributions (see Figure 8-4). In that sense, 
ACO* is closely related to so-called estimation of distribution algorithms 
(EDAs). See, for example, (Kern et a l , 2004). 

3. ACO]|̂  FOR CONTINUOUS OPTIMIZATION 

In this section, we present the A C O R algorithm—an extension of the idea 
of ACO* (Socha, 2004). In the following we assume to tackle a continuous 
optimization problem of the following form. Given are n decision variables 
X={Xi,...,Xn} with continuous domains {Di,..,,Dn}. For constructing a 
solution, the algorithm chooses for each of the n decision variables a domain 
value by sampling probability density functions (PDFs). 
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p(c\/) p(x) 

CJ C^ C^ C^ Cj C ,̂- Cy C.̂ . Cr; Cy 

(a) (b) 

Figure 8-4. (a) The discrete probability distribution that is employed at each construction step 
when combinatorial problems are concerned, and (b) a continuous probability density 
function for continuous problems. Hereby, x,rim and x^ax respresent the minimal, respectively 
the maximal allowed domain values. 

These PDFs are, for each solution construction (and for each decision 
variable), produced from a population P of solutions that the algorithm keeps 
at all times. The management of this population works as follows. Before the 
start of the algorithm, the population—whose size A: is a parameter of the 
algorithm—is filled with randomly generated solutions. At each iteration a 
set of m solutions is generated by m ants and added to P. Then, the solutions 
of this extended population are ranked according to their objective function 
values, and the m worst solutions are removed. This mechanism biases the 
search process towards the best solutions found during the search process, 
and keeps the population size fixed to m at all times. Note that the population 
P of solutions takes over the role of the pheromone information that is used 
in ACO algorithms for CO problems as a storage of search experience. A 
similar approach has been used before by Guntsch and Middendorf (2002) in 
case of Population-Based ACO for CO problems. 

For constructing a solution, an ant acts as follows. First, it transforms the 
original set of decision variables X into a set of temporary variables 
Z={Zi,,,,,Zn}. The purpose of introducing temporary variables is to improve 
the algorithms performance by limiting the correlation between decision 
variables. Note that this transformation also affects the population P of 
solutions: All the solutions are transformed to the new coordinate system as 
well. The method of transforming the set of decision variables is presented 
towards the end of this section. 
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At each of the n construction steps i=l,...,n, the ant chooses a value for 
the corresponding decision variable Z,. For performing this choice it uses a 
so-called Gaussian kernel PDF, which is a weighted superposition of several 
Gaussian functions. For a decision variable Z/ the corresponding Gaussian 
kernel G/ is given as follows: 

k '̂  1 

7=1 y=i aJ^J27^ 

[z-^ 'jf 
2cr/ J o r a l l z e R (3) 

where the y-th Gaussian function gj is derived from the y-th member of 
population P. Remember that k is the number of Gaussian functions 
composing the Gaussian kernel PDF. Note that co, fi, and G are vectors of 
size k. CO is the vector of weights, whereas fi and a are the vectors of means 
and standard deviations respectively. Figure 8-5 presents an example of a 
Gaussian kernel PDF consisting of five separate Gaussian functions. 

Gassian kernel 
individual Gassian functions 

Figure 8-5. An example of a Gaussian kernel PDF consisting of five separate Gaussian 
functions. 

Sampling directly the Gaussian kernel PDF as defined in Equation (3) is 
problematic. It can, however, be accomplished by the following procedure, 
which can be proven to be equivalent to sampling G, directly. 

Before starting the construction of a solution, each ant chooses exactly 
one of the k Gaussian functions, and uses this Gaussian function, henceforth 
denoted by gj*, for all n construction steps. The Gaussian function gj* is 
chosen with following probability distribution: 
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CO. 
Pj=^;j^ , (4) 

where coj is the weight of they-th Gaussian function gj, which is obtained as 
follows. All solutions in P are ranked with respect to their quality; with the 
best solution having rank 1. Assuming the rank of they-th solution in P to be 
r, the weight coj of they-th Gaussian function is calculated according to the 
following formula: 

CO = - e '^ ' ' ' (5) 

which essentially defines the weight to be a value of the Gaussian function 
with the argument r, with mean 1.0 and standard deviation qk, where q is 
also a parameter of the algorithm. When parameter q is small, the best-
ranked solutions are strongly preferred, and when it is larger, the probability 
becomes more uniform. 

The sampling of the chosen Gaussian function gj* may be done using a 
random number generator that is able to generate random numbers according 
to a parameterized normal distribution, or by using a uniform random 
generator in conjunction with (for instance) the Box-MuUer method (Box 
and MuUer, 1958). However, before doing so the mean juj* and the standard 
deviation CTJ* of the chosen Gaussian function gj* have to be determined. As 
mean juj* we choose the value of the /-th decision variable in the j -th 
solution. It remains to specify the standard deviation aj*. In order to establish 
the value of this standard deviation we calculate the average distance of the 
other population members from the J -th solution (in dimension /) and 
multiply it by the parameter/), which determines the speed of convergence: 

1 ^ 
^y*=7—r/^Zl^/-^/*l (6) 

Parameter p has a role similar to the pheromone evaporation rate p in 
AGO for CO problems. The higher the value of p>0, the lower the 
convergence speed of the algorithm, and hence the lower the learning rate. 
Since this whole process is done for each dimension (i.e., each decision 
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variable) in turn, each time the distance is calculated only with the use of one 
single dimension (the rest of them are discarded). This ensures that the 
algorithm is able to adapt convergence, but also allows the handling of 
problems that are scaled differently in different directions. 

Next, we describe how the set of temporary decision variables Z is 
created from the original set X. Note that ACO algorithms in general do not 
exploit con*elation information between different decision variables (or 
components). In ACOR, due to the specific way the pheromone is 
represented (i.e., as the population of solutions), it is in fact possible to take 
into account the correlation between the decision variables. An obvious 
choice for adapting the coordinate system to the distribution of population P 
is the Principal Component Analysis (PCA) (Hastie et al, 2001). Although 
PCA works very well for reasonably regular distributions, its performance is 
no longer that interesting in case of more complex functions. The 
mechanism that we designed instead, is relatively simple. Each ant at each 
step of the construction process chooses a new direction. This direction is 
chosen by randomly selecting a solution Su from P that is reasonably far 
away from they*-th solution chosen for defining the Gaussian function gj*. 
Then, the vector from the w-th solution to they -th solution becomes the new 
direction. The probability of choosing the u-th solution is the following: 

|4 

(7) 

where function d(.,.) returns the distance between two members of the 
population P. Once this new direction is chosen, the new orthogonal basis 
for the ant's coordinate system is created using the Gram-Schmidt process 
(Golub and van Loan, 1989). It takes as input all the (already orthogonal) 
directions chosen in earlier construction steps and the newly chosen vector. 
The remaining missing vectors (for the remaining dimensions) are chosen 
randomly. Then, all the current coordinates of all the solutions in the 
population are rotated and recalculated according to this new orthogonal 
base resulting in the set of new temporary variables Z. Only then is the ant 
able to measure the average distance, and subsequently to sample from the 
PDF (as it can now calculate the mean and standard deviation). At the end of 
the construction process, the chosen values of the temporary variables Z are 
converted back into the original coordinate system X, 

Finally, we deal with the subject of constraint handling. Note that the 
way of generating new solutions as explained above, might lead to 
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unfeasible solutions. In the literature on evolutionary algorithms we find 
several ways to deal with unfeasible solutions, including rejection, repair, or 
penalization. All these methods can also be applied in ACOR. 

4. EXPERIMENTAL SETUP AND RESULTS 

After the presentation of ACOR we will now outline in detail the 
application of ACOR to the training of feed-forward NNs for the purpose of 
pattern classification, as well as the experimental setup and the results that 
we obtained. 

4.1 The Problem 

Due to their practical importance, we chose to evaluate the performance 
of ACOR on classification problems arising in the medical field. More 
specifically, we chose three problems from the well-known PROBENP 
benchmark set (Prechelt, 1994), namely Cancerl, Diabetes 1, and Heart 1. 
Each of these problems consists of a number of patterns together with their 
correct classification, that is, Cancerl consists of 699 patterns from a breast 
cancer database. Diabetes 1 consists of 768 patterns concerning diabetes 
patients, and Heart 1 is the biggest of the three data sets, consisting of 920 
patterns describing a heart condition. Each pattern of the three problems is 
either classified as pathological, or as normal. Furthermore, each pattern 
consists of a number of measurements (i.e., numerical values): 9 
measurements in the case of Cancerl, 8 in the case of Diabetes 1, and 35 in 
the case of Heart 1. The goal consists in generating a classifier that takes the 
measurements of a pattern as input, and provides its correct classification as 
output. 

Feed-forward neural networks (NNs) are popular classification tools. 
Each feed-forward NN consists of an input layer of neurons. In case of the 
classification problem the input layer consists of as many neurons as there 
are measurements in the patterns, that is, for each measurement there exists 
exactly one input neuron. Furthermore, a feed-forward NN consists of an 
arbitrary number of hidden layers of neurons, and an output layer (for an 
example, see Figure 8-6). The output layer consists of as many neurons as 
the data set has classes. In our case, the output layer consists of 2 output 
neurons. Given the weights of all the neuron connections, in order to classify 
a pattern, one provides its measurements as input to the input neurons, 

^ It is available online at: ftp://ftp.ira.uka.de/pub/neuron/probenl.tar.gz. 
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propagates the output signals from layer to layer until the output signals of 
the output neurons are obtained. Each output neuron is identified with one of 
the possible classes. The output neuron that produces the highest output 
signal classifies the respective pattern (winner takes all). 

input 
layer 

^3-^OC 

^2-KlS 

î~^OC 

hidden 
layer 

>\, /y 

output 
layer 

^2) -^ ̂ 2 

^2)-^oi 

n \ 

^ 2 - ^ ^ 

\WUa 

(a) (b) 

Figure 8-6. (a) shows a feed-forward NN with one hidden layer. Note that all the neurons of 
each layer are connected to all the neurons of the next layer, (b) shows one single neuron 
(from either the hidden layer, or the output layer). The neuron receives inputs (i.e., signals //, 
weighted by weights w/) from each neuron of the previous layer. Additionally, it receives a 
so-called bias input ibias with weight Wbtas- The transfer function/(9 of a neuron transforms the 
sum of all the weighted inputs into an output signal, which servers as input for all the neurons 
of the following layer. Input and output signals, biases, and weights are real values. 

The process of generating a NN classifier consists of determining the 
weights of the connections between the neurons such that the NN classifier 
shows a high performance. Since the weights are real-valued, this is a 
continuous optimization problem. 

Concerning the hidden neuron layers of the feed-forward NNs that we 
used, we took inspiration from the literature. More specifically we used the 
same structure of hidden layers that were used in (Alba and Chicano, 2004). 
For an overview of the feed-forward NNs that we used see Table 8-1. The 
number of weights to be optimized is—for each of the three data sets—given 
by the following formula: 

«; ,(«/+l)+«ok+l) (8) 
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where «/, rih, and rio are respectively the numbers of input, hidden, and output 
neurons. Note that the additional input for each neuron of the hidden layer 
and the output layer represents the bias inputs. The last column of Table 8-1 
provides the number of weights to be optimized. 

Table 8-1. Summary of the feed-forward NNs that we used for the three data sets. In the last 
table column is given the number of weights to be optimized for each tackled problem 

Problem Input Layer(nj) Hidden Layer Output Layer 
. (nil M 

Weights 

Cancer 1 
Diabetes 1 
Heart 1 

9 6 2 
8 6 2 

35 6 2 

74 
68 
230 

Note that the training of a feed-forward NN is an unconstrained 
continuous optimization problem (i.e, the domains of the decision variables 
are unconstrained). Remember that at the start of our algorithm, the 
population P of solutions is initialized by uniform random sampling. 
Considering the neuron transfer function that we used (i.e., the sigmoid 
function), the primary influence of a weight comes from its sign rather than 
its value. Hence, we restricted the random sampling for generating the initial 
solution to the interval [-1,1].^ 

4.2 Training and Solution Evaluation 

Neural networks for pattern classification are usually expected to exhibit 
a generalization capability, that is, new patterns that were not used for the 
training of the neural network should also be classified correctly. Having this 
objective in mind, the training of neural network classifiers works generally 
as follows. First, the set of patterns is divided into training set and test set. In 
our case we chose randomly 75% of all available patterns of a problem as 
training set (denoted by P ), and the remaining 25% of the patterns as test set 
(denoted by P'). 

For the training of the weights of a feed-forward NN, a function is needed 
that distinguishes between different solutions. In other words, we need a 
function that measures the classification power of a solution, that is, a weight 
setting, with respect to the training set. For this purpose, we have used the 
function that is routinely used for this purpose, namely the Square Error 
Percentage (SEP): 

^ This restriction applies only to the initial interval used. During the search, the ACOR 
algorithm can sample values outside of this initial interval. 
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SEP = 100 ̂ - ~^;;^ f;X(/f - of )̂  , (9) 

where o^ax and ô /„ are respectively the maximum and minimum values of 
the output signals of the output neurons (depeding on the neuron transfer 
function), no is the number of output neurons, and fi and (fj represent 
respectively the expected and actual values of output neuron / for pattern/?. 

Finally, in order to assess the quality of the final solution found by a 
given algorithm, we used the Classification Error Percentage (CEP) as the 
performance measure. CEP represents the percentage of incorrectly 
classified patterns from the test set. 

4.3 Algorithms Used for Comparison 

The goal of our experimentation was to evaluate whether ACO]̂  may be 
used for training feed-forward NNs, and if so, we were interested in how it 
would compare to other algorithms. In order to be able to draw any 
meaningful conclusions, it is required to have some reference algorithm to 
which to compare the performance of ACOR. In order to ensure a fair 
comparison, we have re-implemented some algorithms traditionally used for 
training NNs—namely the back-propagation (BP) algorithm and the 
Levenberg-Marquardt (LM) algorithm. We used the R programming 
language (a free alternative to S-H) for implementing these algorithms.^ 

Back-Propagation is a gradient-descent algorithm traditionally used for 
training NNs (Rumelhart et ah, 1986). It is a first-order minimization 
algorithm—i.e. it is based on first-order derivatives (i.e., the gradient). It 
uses the estimation of the gradient of the instantaneous sum-squared error for 
each network layer: 

^w = -r]VE{w) , (10) 

where w is the vector of all weights, r} is the learning rate, and E is the 
gradient. The algorithm we have implemented is the basic version of back-
propagation without heuristic improvements that were developed over time. 

Levenberg-Marquardt is a variation of Newton's method that was 
initially designed for minimizing functions that are either sums of squares, 

^ http://www.R-proiect.org 
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or, in general, other non-linear functions (Hagan and Menhaj, 1994; 
Paplihski, 2004). In Newton's method, minimization is based on utihzing the 
second order derivatives as well as on the use of a batch training mode rather 
than the pattern mode (which is used, for example, in back-propagation). 
The batch training mode is based on derivatives of instantaneous errors. The 
LM algorithm uses an approximation of the Hessian matrix by adding a 
small constant ju multiplied by the identity matrix / to the product of the 
transposed Jacobian matrix f and the Jacobian matrix J: 

Aw = - ^ V £ ( w ) [ j ( w ) V ( w ) + / / / ] " ' (11) 

Both algorithms (i.e., BP and LM) require gradient information. Hence, 
they require the neuron transfer function to be differentiable. Consequently, 
these algorithms may not be used in case, when the neuron transfer function 
is not differentiable or is unknown. In contrast, A C O R is a general heuristic 
optimization that can be applied when the neuron transfer function is non-
differentiable. On the other side, in case, when the neuron transfer function 
is differentiable, the drawback of general optimization algorithms such as 
A C O R is that they do not exploit available additional information as, for 
example, gradient information. 

In order to see how the additional gradient information influences the 
performance of ACOR, we have also implemented hybridized versions of 
ACOR, namely A C O R - B P and A C O R - L M , which are hybrids of the A C O R 

algorithm and respectively the BP and LM algorithms. In these hybrids, each 
solution generated by the A C O R algorithm is improved by running a single 
improving iteration of either BP or LM, respectively. 

Finally, we wanted to study how all the algorithms tested compare to a 
simple random restart search method. In order to accomplish that, we have 
implemented random search (RS)—i.e. an algorithm that randomly generates 
a set of values for the weights and then evaluates these solutions. As we used 
a sigmoid function as neuron transfer function, it was sufficient to limit the 
range of weight values to values close to 0. Hence, we arbitrarily chose a 
range of [-5,5]. 

4.4 Parameter Tuning 

All our algorithms (with the exception of RS) require certain parameter 
values to be determined before they can be applied. While algorithms such 
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as BP or LM have very few parameters, ACOR, as well as its hybridized 
versions, have more. In general, in order to ensure a fair comparison of 
algorithms, an equal amount of effort is required in the parameter tuning 
process for each of the algorithms. Also, it has been shown in the literature 
that the stopping condition for the parameter tuning runs should be identical 
to the one used in the actual experiments (be that time, number of iterations, 
etc.), as otherwise the danger of choosing suboptimal parameter values 
increases (Socha, 2003). We have hence used a common parameter tuning 
methodology for all our algorithms, with the same stopping condition that 
we planned to use for the final experiments. The methodology that we used 
is known as F-RACE methodology (Birattari et al., 2002; Birattari, 2004). In 
particular we used the RACE package^ for R. It allows running a race of 
different configurations of algorithms against each other on a set of test 
instances. After each round, the non-parametric Friedman test is used to 
compare the performance of different configurations. Configurations are 
being dropped from the race as soon as sufficient statistical evidence has 
been gathered against them. For more information on the F-RACE 
methodology, we refer the interested reader to (Birattari, 2004). Since for the 
problems we investigated we did not have several instances available (i.e., 
we wanted to tune the algorithms for each of the three considered data sets 
separately), we have created a set of instances for each race by dividing 
randomly (several times) the training set of each problem instance into a 
training set for tuning (two thirds of the training set) and a test set for tuning 
(one third of the training set). Table 8-2 provides details on the number of 
patterns used respectively for learning and validation during the parameter 
tuning runs, as well as for training and testing the chosen configurations. 

Table 8-2. Summary of the number of patterns used for training and testing, both for parameter 
tuning as well as for the final performance evaluation. The patterns used for parameter tuning 
(learning and testing) were randomly chosen from the training set that we used later in the 
performance evaluation 

Algorithm 

Cancer 1 
Diabetes 1 
Heart 1 

Total number 
of patterns 

699 
768 
920 

Parameter 
Training set 
for tuning 

350 
384 
460 

tuning 
Test set for 

tuning 
175 
192 
230 

Performance 
Training Set 

525 
576 
690 

evaluation 
Test Set 

174 
192 
230 

For the tuning, we determined 10 different configurations of parameter 
settings for each of our algorithms. Then, we applied the F-RACE to each 
instance set (i.e., per algorithm, per problem), allowing not more than 100 

^ http://cran.r-project.org/src/contrib/Descriptions/race.html 



172 Chapter 8 

experiments in the race. Each of the parameter tuning races returned one 
configuration that performed best^ The final parameter value settings that 
we used for our final experiments are summarized in Table 8-3. 

Table 8-3. Summary of the parameters chosen for our algorithms. Not included in the table 
are the parameters common to all ACO^ versions, namely q and m. For these parameters we 
used the settings ^=0.01, and m=2 (the number of ants used in each iteration) 

Algorithm 
ACOR 

ACOR -BP 

ACOR -LM 

BP 
LM 

Cancer 1 
k 

148 
148 
148 
-
-

P rj 

0.95 
0.98 0.3 
0.9 
- 0.002 
-

P 

-
10 
-

50 

Diabetes 1 
k 

136 
136 
136 
-
-

P ri 
0.8 
0.7 0.1 
0.1 

0.01 
-

P 

-
10 
-
5 

Heartl 
k 

230 
230 
230 

-
-

P rj 

0.6 
0.98 0.4 
0.1 
- 0.001 
-

P 

-
10 
-

1.5 

4.5 Results 

In order to compare the performance of the algorithms, we applied each 
algorithm 50 times to each of the three test problems. As stopping condition 
we used the number of fitness function evaluations. Following the work of 
Alba and Chicano (2004), we used 1000 function evaluations as the limit. 
We used the training and testing approach—no cross-validation. 

Figures 8-7, 8-8, and 8-9 present respectively the results obtained for the 
cancer, diabetes, and heart test problems in the form of box-plots. Each 
figure contains two graphics; the left one presents the distributions of the 
actual CEP values obtained by the algorithms (over 50 independent runs); 
the right one presents the distributions of rankings achiseved by the 
algorithms. Any solution generated by any of the algorithms is ranked. 
Having 6 algorithms and running 50 trials each, the possible rankings vary 
from 1 to 300. The distribution of those rankings is then plotted per 
algorithm—this allows for a clear identification of those better performing 
ones, regardless of how small the difference may be in terms of objective 
fi^nction value. The boxes are drawn between the first and the third quartile 
of the distribution, while the indentations in the box-plots (or notches) 
indicate the 95% confidence interval for a given distribution (McGill et. al, 
1978). In other words, this means that if the notches of two distributions do 
not overlap, they are significantly different with 95% confidence. 

Due to the limited resources for tuning, the chosen configuration for each race is not 
necessarily significantly better than all the others. The limit of 100 experiments per race 
did sometimes not allow reaching that level of assurance. However, the chosen 
configuration was definitely not significantly worse than any of the others. 
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Cancer (Fig. 8-7) appears to be the easiest problem among the three. Ail 
algorithms obtained reasonably good results, including the RS method (!). 
However, the best performing algorithm is BP. From the fact that the results 
obtained by RS do not differ significantly from the results obtained by 
other—more complex—algorithms, it may be concluded that the problem is 
relatively easy, and that there are a lot of reasonably good solutions scattered 
over the search space. None of the algorithms was able to classify all the test 
patterns correctly. 

Cancer (CEP) Cancer (ranks) 

1 1 

o 1 

1 
1 
1 

1 

r 

] - • • • -

ĝ 1 
"] ' • 

, 

j ' - T " ! 1 

1 X\ ' 
J. ^ ^ .... 

aco acobp acolm bp Im 100 150 200 250 300 

Figure 8-7. Performance comparison of the algorithms on the Cancer 1 problem. 
The graphic on the left represents the actual CEP values, while the right one 
represents the ranks among all the solutions generated. 

Diabetes (Fig. 8-8) is a problem that is more difficult than Cancer. All 
our algorithms clearly outperform RS. However, the overall performance of 
the algorithms is not very good. The best performing is again BP. The less 
good overall performance of the algorithms may again indicate that the 
training set does not represent fully all the possible patterns. 
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Diabetes (CEP) 

I 
aco acobp acoim bp 

Diabetes (ranks) 

150 200 250 300 

Figure 8-8. Performance comparison of the algorithms on the Diabatesl problem. The graphic 
on the left represents the actual CEP values, while the right one represents the ranks among all 
the solutions generated. 

Heart (CEP) Heart (ranks) 

aco acobp acolm bp 

E ••-

Figure 8-9. Performance comparison of the algorithms on the Heart 1 problem. The graphic on 
the left represents the actual CEP values, while the right one represents the ranks among all 
the solutions generated. 

The Heart problem (Fig. 8-9) with 230 weight values is the largest 
problem that we tackled. It is also the one on which the performance of the 
algorithms differed mostly. All tested algorithms clearly outperform RS, but 
there are also significant differences among the more complex algorithms. 
BP, which was performing quite well on the other two test problems, did not 
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do so well on Heart. ACO]R achieves results similar to BP. In turn, LM, 
which was not performing so well on the first two problems, obtains quite 
good results. Very interesting is the performance of the hybridized versions 
of A C O R — A C O R - B P and A C O R -LM. The A C O R - B P hybrid clearly 
outperforms both A C O R and BP. A C O R - L M outperforms respectively A C O R 

and LM. Additionally, A C O R - L M performs best overall. 

Summarizing, we note that the performance of A C O R alone does often 
not quite reach the performance of the derivative based algorithms and the 
A C O R hybrids. Its performance is, however, not much worse. Furthermore, 
the results show that hybridizing A C O R with BP or LM helps to improve the 
results of the pure A C O R algorithm. This was especially the case for Heart, 
where A C O R - L M was the overall winner. We want to remind at this point 
that A C O R is much more general than for example BP and LM, because it 
does not require derivative information. Hence, it may be applied when the 
neuron transfer function of a NN is non-differentiable or unknown, while 
algorithms such as BP or LM could not be used in this case. 

Table 8-4. Pair-wise comparison of the results of ACOR-based algorithms with recent results 
obtained by a set of GA based algorithms (Alba and Chicano, 2004). The results can be 
compared thanks to maintaining the same experimental setup. For each problem-algorithm 
pair we give the mean (over 50 independent runs), and the standard deviation (in brackets). 
The best result of each comparison is indicated in bold 

Cancer 

Diabetes 

Heart 

GA 
16.76 
(6.15) 
36.46 
(0.00) 
41.50 

(14.68) 

ACOR 

2.39 
(1.15) 
25.82 
(2.59) 
21.59 
(1.14) 

GA-BP 
1.43 

(4.87) 
36.46 
(0.00) 
54.30 

(20.03) 

ACOR-BP 

2.14 
(1.09) 
23.80 
(1.73) 
18.29 
(1.00) 

GA-LM 
0.02 

(0.11) 
28.29 
(1.15) 
22.66 
(0.82) 

ACOR-LM 

2.08 
(0.68) 
24.26 
(1.40) 
16.53 
(1.37) 

Finally it is interesting to compare the performance of the A C O R based 
algorithms to some other general optimization algorithms. Alba and Chicano 
(2004) have published the results of a Genetic Algorithm (GA) used for 
tackling exactly the same three problems as we did. They have tested not 
only a stand-alone GA, but also its hybridized versions: GA-BP and GA-
LM. 

Table 8-4 summarizes the results obtained by the A C O R and GA based 
algorithms. Clearly the stand-alone A C O R performs better than the stand
alone GA for all the test problems. A C O R - B P and A C O R - L M perform 
respectively better than GA-BP and GA-LM on both of the more difficult 



176 Chapters 

problems—Diabetes and Heart—and worse on Cancer. For the Heart 
problem the mean performance of any ACOi. based algorithm is significantly 
better than the best GA based algorithm (which was reported as the state-of-
the-art for this problem in 2004). 

5. CONCLUSIONS 

We have presented an ant colony optimization algorithm (i.e., ACOR) 

for the training of feed-forward neural networks in classification 
problems. A C O R is a generic approach that can be flexibly used either as 
a stand-alone method, or hybridized with more problem specific 
algorithms. The performance of the algorithm was evaluated on real-
world test problems and compared to specialized algorithms for feed
forward neural network training (back propagation and Levenberg-
Marquardt), and also to genetic algorithm based algorithms. 

The performance of the stand-alone A C O R was comparable (or at least 
not much worse) than the performance of specialized algorithms for 
neural network training. This result is particularly interesting as A C O R — 
being a much more generic approach—allows also the training of 
networks in which the neuron transfer function is either not differentiable 
or unknown. The hybrid between A C O R and the Levenberg-Marquardt 
algorithm (i.e., A C O R - L M ) was in some cases able to outperform the 
back propagation and the Levenberg-Marquardt algorithms that are 
traditionally used for neural network training. Finally, when compared to 
other general-purpose algorithms, namely genetic algorithm based 
algorithms from the literature, our results showed that the ant colony 
optimization based algorithms may provide superior performance for 
some of the test problems. 
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