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17.1. INTRODUCTION: DYNAMIC RELIABILITY APPROACH TO THE
EVOLUTION OF SILICA FIBER PERFORMANCE

The widespread application of fiber light-guides in optical communication systems
and in diverse physical field transducers has enhanced interest in their mechanical relia-
bility (see, for instance, [1,28,35,36]). The latter is defined as the probability of the fiber
rupture or cracking under load.

A defect-free silica glass fiber possesses higher strength than even a steel wire of the
same diameter; however, a minimal contact of the silica core surface with a hard object
or even with a dust particle gives rise to microcracks. These begin growing rapidly in the
presence of moisture and on the application of a tensile load. As a result, the tensile strength
of the silica fibers turns out to be much lower than its theoretical strength.

Silica glass is a brittle material, i.e., is a material that does not exhibit any appre-
ciable plasticity under deformation. Reliability prognostication of the mechanical behavior
of such materials causes significant challenges [1,24,29,35]. This is because of the high
strength scatter and the absence of any preliminary “symptom” (such as, say, plastic defor-
mation) preceding rupture.

As the microcracking process is random, the most suitable model for describing the
fiber strength should be statistical [21,22,25,30,34]. The existing fracture mechanics based
predictive models use mathematical/mechanical apparatus without any reference to the sta-
tistics of the crack propagation and statistical characteristics of the time to failure [23,26,27,
32,33]. The traditionally used combinations of two Weibull distributions are essentially sta-
tic and do not account for the dynamic nature of the material strength deterioration, which
is typically inherent to material under an external or an internal load. The equation for the
evolution of the reliability distribution function, described in Section 17.1.1, is applied in
our analysis in conjunction with a proposed new physical model of strength deterioration.
This model is intended to adequately describe the process of damage accumulation.
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The mechanism of the propagation of surface flaws in silica optical fibers is governed
by a combination of stress, moisture, temperature, and time. In Section 17.1.2 we suggest a
predictive model for time-to-failure when the material is subjected to the action of a three-
dimensional mechanical-temperature-humidity load. The model is based on the dynamic
physical damage accumulation model described in Section 17.1.1.

The statistical distribution of the tensile strength of optical silica fibers exhibits bi-
modality. This phenomenon is usually attributed to two different types of flaws in the fiber
material. Section 17.1.3 addresses the effect of the bimodality based on an approach that
uses the suggested model. We introduce a new micromechanical model of damage accu-
mulation. This model is related to the parameters of the damage evolution equation.

17.1.1. Dynamic Physical Model of Damage Accumulation

The recently proposed dynamic reliability theory for the damage accumulation
processes [2,3] is based on the energy aspect of the stress/element interaction. This in-
teraction is reflected in the transitions between the consequent damage states represented
by a Markovian stochastic process. The Markovian process describes the dynamic evolu-
tion of the system in terms of the change in its reliability distribution function over the
range of sequential damage states. The interaction of the loaded specimen with the envi-
ronment is treated in our approach as a combination of two distinct types. The first type
is of a “potential” character determined by the elastic energy of the specimen as a whole,
or, alternatively, by the probability density of the elastic energy distribution in the mater-
ial. This probability is characterized by the likelihood of the material (its ability) to return
to the previous damage state after the removal of the applied stress. The second type is
of a “local” nature, which is characterized by the energy-dissipative mechanisms of mi-
crostructural rearrangement during the deformation process. This type of the interaction
of the loaded specimen with the environment is always accompanied by the energy con-
sumption and local structural changes, such as initiation and propagation of microvoids
and microcracks. The accumulation process is considered as one of transfer by transition.
This process is characterized by elastic potential curves that correspond to different damage
states of the material. The transitions are due to the intrinsically stochastic mechanisms of
formation and growth of micro-cavities and microcracks: vacancy diffusion in dislocation
annihilation, climb-up, etc. Such transitions require local delivery of sufficient energy for
the work of rupture of atomic bonds and separation of the atomic planes.

At each damage state, N , the elastic energy per unit volume for a simple tensile load
is:

UN = EN · ε2

2 · (1 − 2 · νN)
, (17.1)

where EN is Young’s modulus of the material at the state N , ε is the strain and νN is
Poisson’s ratio for state N . Figure 17.1 shows a series of elastic potential curves. Although
the exact shape of a particular curve depends on temperature, the material microstructure,
etc., its general features are assumed to represent a wide range of time-dependent processes
of strength deterioration under stress loading.

Transition to the state N involves dynamic relaxation of the material to the state of
mechanical equilibrium corresponding to this state. The maximum slope of the relevant
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FIGURE 17.1. Elastic energy potential representation of damage accumulation process [1].

curve represents the corresponding maximum material strength ZN , which decreases as
the number N increases. The failure criterion in this model reads:

ZNcr = σ(t). (17.2)

Figure 17.2 illustrates the implementation of this failure criterion through the material’s
stress–strain diagrams.

The state transitions are induced by fluctuations in the local factors of the element-
stress interaction. Since the transition rate function, ω(N ′,N), depends on the onset of local
fluctuations with sufficient amounts of energy, the transition rate function can be written,
according to the theory of statistical fluctuations, as

ω(N ′,N) = ω0(N
′,N) · exp[−�S(N ′,N)]. (17.3)

Here ω0(N
′,N) should be viewed as a (temperature and damage state dependent) material

constant, and �S(N ′,N) is the entropy change associated with the transition between the
states N ′ and N with the corresponding microstructural rearrangement.

The damage accumulation rate, Ṅ , is determined as:

Ṅ = Ṅ+ + Ṅ− = 2ω0 · sinh

(
� · σ

ρ · R · T/A

)
· exp

(
− Q

ρ · R · T/A

)
,

Ṅ+ = ω0 · exp

(
− Q − � · σ

ρ · R · T/A

)
,

Ṅ− = ω0 · exp

(
− Q + � · σ

ρ · R · T/A

)
. (17.4)
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FIGURE 17.2. Stress-strain diagram representation of damage accumulation process [1].

Here Ṅ+ is the damage accumulation rate, Ṅ− is the recovery rate, ρ is the material density;
A is the atomic weight; R is the gas constant, Q is the activation energy represented by the
ordinate increment, and � is the abscissa increment.

17.1.1.1. Reliability Distribution Function The reliability distribution function (RDF) [4]
is defined as the probability density function, r(x, t), for finding an element functioning at
the moment of time t and having strength in the interval (x, x + dx), x being a generalized
strength parameter. The conventional reliability function, R(t), can be expressed through
the RDF as follows:

R(t) =
∫

(x)

r(x, t)dx. (17.5)

The integral of the RDF over the strength space expresses the probability of finding an ele-
ment functioning at time t , while being on a non-failed strength level. The Smoluchowski’s
probability of transition from the strength level, x, to a weaker state, x′, should satisfy the
normalization condition:

∫
x′≤x

P (x → x′)dx′ = 1. (17.6)

The rate of change of the RDF is determined by the rates of three processes:

(1) The failure rate at the strength level x: λ(x, t) · r(x, t), where λ(x, t) is the rate of
events with a stress level above the element strength, x, and leading, therefore, to
the element’s failure;

(2) the rate of the strength deterioration: ω(x, t) · r(x, t), where ω(x, t) is the rate of
events below the element strength at time t ;
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(3) the integral rate of transition to the strength level x from the higher strength state x′:

∫
x′>x

ω(x′, t)p(x′ → x)r(x′, t)dx′. (17.7)

While the first two terms in (17.7) tend to reduce the RDF, the last term tends to
increase it. The transfer equation for the RDF can be written therefore in the following
form:

∂r(x, t)

∂t
= −[λ(x, t) + ω(x, t)] · r(x, t)

+
∫

x′>x

ω(x′, t)p(x′ → x)r(x′, t)dx′ + δ(t) · r(x, t). (17.8)

The function r(x, t) in the last term accounts for the initial values r(x,0), and should
satisfy the requirement:

R(0) =
∫

(x)

r(x,0)dx = 1. (17.9)

The assumption that x0 is the initial strength distribution of the “virgin” undamaged
fiber, so that r(x,0) = δ(x − x0), does not entail any lack of generality, since the solution
obtained on this basis can serve as a Green function for any other initial distribution f (x) =
r(x,0). In such a case, r(x, t) can be found as the following convolution:

r(x, t) =
∫ ∞

0
rx0(x

′,0) · f (x − x′)dx′. (17.10)

The simplified model for the transfer function p(x′ → x) is chosen in the following
form:

p(x′ → x) = β · xβ−1

(x′)β
. (17.11)

17.1.2. Impact of the Three-Dimensional Mechanical-Temperature-Humidity Load
on the Optical Fiber Reliability

As it has been mentioned above, the basic factor of crack propagation in silica glass
is the combination of stress, moisture, temperature, and time [16,18]. The Equation (17.4)
represents the damage accumulation rate as a function of stress and temperature. Accord-
ingly, the time to failure dependence on stress and temperature should be exponential as
well. Assuming that for a relatively high load the recovery part is negligible, time to failure
can be represented as follows:

t = t0 · exp

(
− Q − � · σ

ρ · R · T/A

)
. (17.12)
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TABLE 17.1.
Activation energy (eV) for some type of fibers for 45% and 100% humidity.

Sample 1 Stress, GPa

4.84 5.05 5.28

RH = 45% RH = 100% RH = 45% RH = 100% RH = 45% RH = 100%

3.896 3.88 3.896 3.88 3.891 3.868

Sample 2 Stress, GPa

4.55 4.74 4.94

RH = 45% RH = 100% RH = 45% RH = 100% RH = 45% RH = 100%

3.827 3.721 3.826 3.723 3.826 3.728

Sample 3 Stress, GPa

4.65 4.84

RH = 45% RH = 100% RH = 45% RH = 100%

3.755 3.566 3.755 3.564

Sample 4 Stress, GPa

4.65 4.84

RH = 45% RH = 100% RH = 45% RH = 100%

3.899 3.886 3.899 3.886

We proceed from the idea that the main reason of a slow crack growth is humid
environment. Elevated relative humidity (RH) decreases the activation energy. With this in
mind, Equation (17.12) could be written as:

t = t0 · exp

(
−Q(RH) − � · σ

ρ · R · T/A

)
. (17.13)

Here the function Q(RH) is assumed to be linear, with intercept (0% humidity) equal to
sublimation energy of the material. Table 17.1 shows the levels of the activation energy,
which were evaluated for different fiber types and different loads for 45% and 100% hu-
midity. It is clear that the activation energy does not depend on the applied load, but depends
only on the relative humidity (RH) and the fiber type. Humid environments reduce the ac-
tivation energy and therefore accelerate the crack grows and, consequently, the process of
the damage accumulation.

17.1.3. Effect of Bimodality and Its Explanation Based on the Suggested Model

The standard analysis of the strength data is based on the Weibull distribution:

F(x) = 1 − exp

[
−

(
x

θ

)η]
, (17.14)

where θ is the scaling parameter, η is the shape parameter, and x is strength. The function
ln[− ln(1 −F(x))] is a linear function of x, with η as a slope and −η · ln(θ) as an intercept
of the line [34].

The strength distribution for optical fibers is usually represented on a Weibull scale.
According to most references and the authors’ own experimental data, the obtained slope
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FIGURE 17.3. Examples of optical fiber strength distribution (Weibull Plot).

(the shape parameter in the Weibull distribution) comprises, actually, two different compo-
nents [5]. Some examples of the strength probability distribution (cumulative distribution
function) are shown in Figure 17.3. If the application of the Weibull distribution is justified,
i.e., if this distribution adequately reflects the physics of rupture, then the plots should be
straight lines. Deviations from such straight lines cannot be explained by statistical uncer-
tainties, but clearly indicate a need for corrections in the model itself. The S-shape line
behavior of the test data indicates that the statistical strength distribution could be bi- or
even multimodal.

Most references [6,7] assume that bimodality can be explained from the standpoint
of the interaction of the “low strength” due to the “external” defects (caused by various
mechanical and chemical factors), and “high strength” which is due to various “internal”
defects, such as production process defects, thermal fluctuations etc. Consequently, some
researchers claim that the Weibull distribution is, in general, unsuitable. They suggest a
superposition of two such distributions with two different shape- and scale parameters.
Note that, unlike the “regular” Weibull distribution, the bimodal Weibull model is, actually,
a five-parameter distribution.

In our concept, the two-slope phenomenon in the fiber strength distribution is ex-
plained not as an intrinsic feature of the fibers, but rather as a combination of the orig-
inal strength distribution of the “virgin” (undamaged) material (“strong mode”) and the
secondary distribution (“weak mode”), developed in the process of damage accumulation
under an external and/or internal load. The high-slope portion describes the “original,”
“young,” “non-aged” strength distribution and the low-slope portion of the distribution de-
scribes the performance of the damaged population [8].

The tensile test [9] is viewed as a suitable test valid for comparative analysis of the
initial and the post-loading distributions of the fiber. In these experiments, 5 m long silica
glass fiber specimens of outer diameter 300 μm were divided into five groups. We pre-
pared and tested at least 60 specimens. The first group was subjected to the standard test
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(a) (b)

(c)

FIGURE 17.4. Strength Weibull plot of (a) undamaged fibers; (b) fibers exposed to low load dose; (c) fibers
exposed to high load dose.

(with a constant strain rate), and the other specimens were preliminarily subjected to dif-
ferent “doses” of load, and only after that were subjected to the tensile test. Figure 17.4(a)
shows the Weibull chart of the initial fiber. It is clear that the distribution is unimodal. The
post-loading distributions begin to look like bimodal [Figures 17.4(b), 17.4(c)] and exhibit
several behavioral patterns. Initially, the fiber strength can be described by a homogeneous
high-slope distribution with a small standard deviation [Figure 17.5(a)] and a low-slope
component (if any) is integrated into the high-slope distribution as a part of it. Under the
applied load the high-slope component retains its initial mean and the standard deviation,
but the low-slope component becomes more strongly pronounced [Figure 17.5(b)]. Here is
the explanation of this phenomenon.

The population of fibers with the low strength increases because of the damage ac-
cumulation process. The low-slope part represents the strength distribution of the damaged
parts and their source in the initial fibers (high-slope distribution). Area under the low-
slope distribution increases at the account of the area of the high-slope part as a result of
additional loading [Figures 17.5(b), 17.5(c) and 17.5(d)]. By the end of the process the part
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(a) (b)

(c) (d)

FIGURE 17.5. Strength distribution of (a) undamaged fiber; (b) fibers exposed to low load dose; (c) fibers ex-
posed to medium load dose; (d) fibers exposed to high load dose.

of fibers with the initial strength will vanish (due to the transition to the subpopulation with
lower strength and, less probable, due to failure), and only the low-slope distribution with
a small mean and a large standard deviation will remain.

In characterizing the damage accumulation process in brittle solids, many researchers
agree that such a process starts with the random formation of numerous micron-sized
cracks (microcracks) throughout the solid [10–12,17,20]. The size of these microcracks
is comparable to that of the defects that are initially present in the “virgin” unloaded
material. When the characteristic distance between the adjacent microcracks (correlation
length) reduces to a certain threshold value, the microcracks begin to coalesce, form-
ing microcrack clusters. One of these clusters eventually develops into a macroscopic
crack, which continues growing until the solid ruptures [31]. As to the time scale, the
first stage of the damage accumulation process is, on the average, much longer than
the second stage, while the last (third) stage is usually very short compared to the
previous stages. The strength deterioration at the first stage is mainly determined by
a typical size of the microcrack and is approximately constant (within the statistical
“noise”).
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In the evolution Equation (17.8) it is assumed that the load on the fiber is relatively
small, i.e., x � σ , and, accordingly, the failure rate is negligible. The governing Equa-
tion (17.8) reduces to

dr(x, t)

dt
= −ω(x, t) · r(x, t) +

∫
x′>x

ω(x′, t) · p(x′ → x) · r(x′, t)dx′. (17.15)

The rate, ω(x, t), of the strength deterioration at the first stage of the damage accumu-
lation process (x = x0) is merely the inverse of the mean stage duration and, therefore, may
be by several orders of magnitude lower than that at the second stage (x < x0). The second
stage is generally a time- and strength-dependent process controlled by the frequency of
the microcracks formation in the vicinity of a cluster. In many practical situations, however,
it may be approximated by a constant [10,12,13]. As the third stage is negligibly short in
time, the transition rate may be approximated for our purposes as follows:

ω(x, t) =
{ω, x < x0

�, x = x0
, ω � �. (17.16)

The strength transition probability, P(x → x′), during the second stage of damage
accumulation can be estimated based on the following reasoning. Consider a solid that
comprises both discrete microcracks and microcrack clusters. The strength of such a solid
is defined by the size of the largest cluster. Let us enclose the largest cluster into a 3D
lattice such that its links are small relatively to a typical microcrack [see Figure 17.6]. The
strength of the solid is related to the size of the largest cluster as [12,14]

x = B · N−v, (17.17)

where B and v are positive material constants, and N is the number of the lattice sites
in the cluster. We attribute the growth of a cluster to thermal-fluctuation formation of new
microcracks in the vicinity of the cluster. The probability of nucleation of a new microcrack

FIGURE 17.6. The largest microcracks cluster circumscribed by a percolation lattice. The lattice shown is a 2D
lattice, but generally it can be 3D. The lattice links are small relatively to a typical microcrack size.
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in the vicinity of the cluster, i.e., the probability of N increasing by increment �N , is then
given by

P(N → N + �N) ∼ exp

(
− �S

kB · T
)

, (17.18)

where kB is the Boltzmann’s constant, T is the absolute temperature, and S is the config-
uration entropy. It can be shown that for N � 1 and �N � N , the entropy increment is
approximately�S ≈ �N/N , leading to

P(N → N + �N) ≈ A · exp

(
−C · �N

N · kB · T
)

. (17.19)

From (17.17) and (17.19) we have

P(x → x′) = A · exp

(
−v · B · C

kB · T · x − x′

x

)
. (17.20)

This expression, for x − x′ � x, is identical to the empirical relation (17.11) in Sec-
tion 17.1.1. Indeed,

exp

(
−β · x − x′

x

)
=

[
exp

(
x′ − x

x

)]β

≈
(

1 + x′ − x

x

)β

=
(

x′

x

)β

. (17.21)

Therefore, the empirical parameter β is given by

β = v · B · C
kB · T . (17.22)

The parameter B is proportional to the material’s fracture toughness [12,13,19]: the
tougher the material, the higher the β value and the narrower is the transition probability
distribution. The form (17.11) of the transition probability, although approximate, is never-
theless preferable it since (as is shown in the next section), it enables one to proceed with an
analytical solution to the evolution Equation (17.15). The corresponding single-parameter
transition probability density function can be found as

p(x → x′) = (β + 1) · (x′)β

xβ+1
. (17.23)

17.1.3.1. Time Behavior of the Reliability Distribution Function [8] The Laplace trans-
form

r̃x0(x, s) =
∫ ∞

0
exp(−s · t)rx0(x, t)dt (17.24)

of the solution of Equation (17.8) with the obtained relationships (17.16) and (17.23) has
the following form:

r̃x0(x, s) = (β + 1) · �

(� + s) · (ω + s)
· 1

x
·
(

x

x0

) (β+1)·s
ω+s + δ(x − x0)

� + s
. (17.25)
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In order to obtain the inverse transform in the analytic form, let us consider the first term
of the Equation (17.25) and represent it as follows:

(β + 1) · �
(� + s) · (ω + s)

· 1

x
·
(

x

x0

) (β+1)·s
ω+s

= (β + 1) · �
x · (� + s)

· 1

(ω + s)
· exp

[
log

(
x

x0

)
· (β + 1) ·

(
1 − ω

ω + s

)]
. (17.26)

Expanding the exponent into a series we obtain:

r̃x0(x, s) = � · (β + 1)

x · (� + s)
·
(

x

x0

)β+1

×
∞∑
i=0

(−1)i · ωi · (β + 1)i ·
[

log

(
x

x0

)]i

i! · (ω + s)i+1
+ δ(x − x0)

� + s
. (17.27)

Thus, the inverse transform is the series:

rx0(x, t) = δ(x − x0) · exp(−� · t) + � · (β + 1) · exp(−� · t)
x

(
x

x0

)β+1

×
∞∑
i=0

⎧⎨
⎩

(ω)i · (β + 1)i ·
[

log

(
x0

x

)]i

(i!)2

∫ t

0
(t ′)i · exp(� − ω) · t ′dt ′

⎫⎬
⎭
(17.28)

where∫ t

0
(t ′)i · exp(� − ω) · t ′dt ′

= i!
(ω − �)i+1

− i! · exp(� − ω) · t
(ω − �)i+1

i∑
j=o

(ω − �)j · tj
j ! . (17.29)

The first term in the obtained distribution (17.28) is the contribution of the “virgin”
(original, “undamaged”) material and the second term represents the secondary distribution
caused by the damage accumulation process. The proportion of the original distribution in
the composite structure decreases exponentially with time. Figure 17.7 describes the time
evolution of the secondary distribution for a loaded silica fiber. As the central trend of
the strength distribution decreases with time, the distribution spreads wider. After a time
interval of about 5/�, the original distribution has practically vanished (no undamaged
specimens remain), and the secondary distribution approaches the Weibull curve. The shape
parameter of this distribution is governed by the parameter β(15), i.e., by the fracture
toughness of the material and temperature.

17.1.3.2. Dynamics of the Optical Fiber Strength In order to validate the obtained model
let us return to the experiment described at the beginning of this section.
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FIGURE 17.7. The Daughter Distribution Dynamics as a solution of the evolution equation.

To estimate the parameters of the predicted distribution (17.28) on the basis of the
experimental data, a minimal distance scheme [15] was used. In this scheme, the distance
between the empirical Cumulative Distribution Function (CDF) and the analytical one is
minimized within the parameter space. The only three parameters in the predicted dis-
tribution (17.28) are �t , ω and β . The latter two are not supposed to change during the
process of damage accumulation. The constancy of the parameters ω and β was used as
a convenient condition in the estimation procedure. The delta-function was approximated
by a normal distribution, which had an excellent goodness-of-fit for the first-group sam-
ple.

Figures 17.8 and 17.9 represent the estimation results for low and high doses of
the preliminary stressing, respectively. The agreement between the estimated distributions
and experimental results is satisfactory, especially having in mind that only one estimated
parameter (�t) accounts for the damage dose. For the low preliminary damage the resul-
tant distribution is close to the initial delta-function with a rather small contribution of the
“weak mode.” For the high preliminary damage the resultant strength distribution exhibits
bimodality. Since the initial flaw distribution is apparently the same for all the tested fiber
specimens, this bimodality can be explained by the damage accumulated in the preliminar-
ily stressed specimens.
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FIGURE 17.8. Experimental strength distribution of optical fibers exposed to a relatively low load dose and the
model prediction.

Unlike the traditional approach to statistical modeling of fracture, the present method
describes the phenomenon in its dynamics. The proposed approach links the thermal-
fluctuation damage events with the corresponding strength deterioration, and thereby es-
tablishing an evolution equation of the time-dependent strength distribution whose solution
describes the above pattern, which is confirmed experimentally.

The actual strength of the “virgin” material is by several orders of magnitude
lower than the theoretical strength calculated on the basis of the material intermolecular
forces [10]. This discrepancy is usually attributed to the defects present even in the “vir-
gin” material. Since these defects are not inherent to the material, but formed during the
production process and the subsequent use conditions, the proposed approach is quite gen-
eral and is not limited to the pre-stressed specimens.

The resultant combined distribution has only three parameters, two of which
(� and ω) characterize the strength deterioration dynamics, and the remaining parame-
ter (β) characterizes the “daughter distribution” shape. The two former parameters are
controlled by the rate of the microcrack nucleation, which is governed by the material’s
fracture toughness and the temperature.
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FIGURE 17.9. Experimental strength distribution of optical fibers exposed to a relatively high load dose and the
model prediction.

17.2. RELIABILITY IMPROVEMENT THROUGH NPM-BASED FIBER
STRUCTURES

17.2.1. Environmental Protection by NPM-Based Coating and Overall Self-Curing Effect
of NPM Layers

In a fiber under load, a surface defect acts as a stress concentrator with the maximum
stress at its tip, which is the preferential site of moisture attack and rupture of the silica
bonds. This causes the defect to spread, and, consequently, the stress to increase in magni-
tude until the fiber catastrophically fails [28]. Fibers require long-term protection against
moisture and oxygen, as well as mechanical and thermal protection. Most existing coat-
ings for optical fiber are polymer-based. These are moisture-sensitive (“non-hermetic”).
Although the reliability of polymer coatings has improved considerably during the last
decade, it is not as high as necessary for particular applications.

The surface of most polymers is covered with protrusions, typically 0.1–0.3 micron
high, their density being of the order of 0.25–1 × 108 peaks/cm2 (meaning average spacing
of the peaks about 1–2 microns). Under temperature cycles and deformation of the material
between the peaks, significant stress concentrations are created in the “gullies” resulting in
inter-granular microcracks or pinholes. These defects destroy the continuity of the plastic
coating and seem to be the main reason for its permeability to gases.

Nanoparticle-type coating materials (NPM’s) could be used to fill the gullies, micro-
cracks and other defects in the plastic. The most important physical property of these ma-
terials is their thixotropy, which can be defined as fluidity under stress. This property is
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exhibited by some gels that become fluid when stirred or shaken, and revert to a semi-solid
state, when stirring or shaking ends. Therefore the same stress that creates or aggravates
the defect, makes the NPM less viscous and thus enables it to penetrate (fill in) and “heal”
the defect.

Thanks to this effect, plastics no longer have to be designed for a long lifetime (which
is usually the main problem). The plastic material may deteriorate: the NPM coating will
take care of improving the situation. Another important aspect of the NPM coatings is their
moisture-proofing action. The hydrophobic nanoparticles tend to fill in the spaces between
the peaks, but do not necessarily follow the profile, so that this part of the film is somewhat
flattened. The particles interconnect among themselves and with the coated plastic through
the links of the same or a congeneric polymer, whose presence was predetermined in the
original coating material. The contents of hydrophobic nanoparticles and of the polymer in
the coating material have to correspond to the amounts needed to fill the spaces between
the peaks. The characteristic dimension of the spaces between the peaks is about 3–6 Å in
a well-packed structure. This narrows tremendously the passages for water molecules. The
hydrophilic nanoparticles (one of their functions is to provide the affinity with the coated
molecules) form the outer layer of the coating.

The space between the peaks, which are about 0.15 micron in height, is covered
by the hydrophobic nanoparticles on both sides of the sheet. Their total volume of these
nanoparticles on both sides of the sheet is

Vphob = 2

3
· S · h, (17.30)

where S is the area of the sheet. The coefficient in front of h is based on the simplifying
assumption that the peaks are conical.

Let H be the thickness of the hydrophilic NPM layer. Then,

Vphil = S · H, (17.31)

and, for the same packing density, the concentration ratio between the hydrophilic and
hydrophobic nanoparticles is:

Vphil

Vphob
= 3 · H

2 · h . (17.32)

For S = 1 m2, H = 3 μm and h = 1.5 × 10−7 m, the volumes of the hydrophobic
and hydrophilic parts will be, respectively, Vphob = 10−7 m3 (0.07 grams) and Vphil =
3×10−6 m3 (2 grams). This correspond to the nanoparticle surface of each kind of Sphob =
20 m2 and Sphil ∼ 600 m2. This amount of hydrophilic particles is able to absorb up to
3 grams of water. This means that even in the case of a plastic with water permeability
of 10−2 g/m2/day it will take 300 days for the coating to be completely penetrated, not to
mention the “healing” effect of the NPM, nor the another NPM layer on the other side. Due
to the extremely low modulus of elasticity of these layers, the flexibility of the systems
remains practically unchanged. In some application, it might be a very useful property.

On the other hand, the filling effect of the nanoparticles creates a 3D network of
narrow passages with the characteristic width of 3–10 Å, i.e., the one of molecular size
(the typical size (diameter) of the water molecule is about 3 Å). If we idealize the packing
structure as large balls with the spaces between them filled by smaller balls (Figure 17.10),
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FIGURE 17.10. Packing structure of nanoparticles.

then the smallest remaining spaces between the smallest balls will be about 0.155 of the
smallest ball radius. Assuming the smallest nanoparticles to be in the range of 4–10 nm in
diameter, the above mentioned passages could be readily evaluated.

This dramatic change in the passage pattern has a drastic effect on the diffusion of
oxygen and water molecules through the system. The diffusion coefficient before filling
corresponds to that in gases, while after the filling it is expected to be closer to that of
solids. The molecule free path lengths in gases are on the order of ∼100 nm, while in solids
these lengths are on the order of 3–10 nm. This alone is expected to reduce the diffusion
coefficient by about 3 orders of magnitude. Another physical mechanism, resulting in a
reduced diffusion coefficient is the number of “jumps” per second. In gases, this number
is the ratio of the molecule velocity to its free length, while in our, NPM “filled,” case,
the number of “jumps” per second depends on the activation energy. Our estimation is that
this mechanism can add another order of magnitude to the above effect, so that the total
reduction in permeability thus being improved by about 4 orders of magnitude.

Thus, the combination of the hydrophilic-hydrophobic layers is expected to provide
the necessary protection against the water vapor and oxygen penetrator for an acceptable
lifetime.

17.2.2. Improvement in the Reliability Characteristics by Employing NPM Structures
in Optical Fibers

In order to compare the mechanical and the environmental characteristics of the
NPM-based and “regular” fibers under different loading and environmental conditions, two
experiments described below were carried out.

The specimens were obtained from light guides consisting of silica cores and polymer
coatings, either regular (“reference” fibers) or modified (by adding the NPM to the fiber
coating).

• Time-to-failure (TTF): delayed fracture
In this experiment, we applied mechanical stresses to the fiber specimens (“two-

point bending” condition [36]) and measured the time-to-failure (TTF) for each case
under two relative humidity (RH) conditions—RH = 35% (“normal”) and RH =
100%. All the specimens were subjected to the predetermined humidity for at least
48 hours.
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FIGURE 17.11. Time-to-failure vs. bending stress (35%RH). NPM-based sample (dotted curve) and the reference
samples strength (solid curve).

FIGURE 17.12. Time-to-failure vs. bending stress (100%RH). NPM-based sample (dotted curve) and the refer-
ence samples strength (solid curve).

• Ultimate strength: “immediate” rupture
This experiment was carried out under the same RH and loading conditions as

the previous ones, but the applied stress being such as to cause “immediate” rupture.
The faceplates were brought together at the rate of 50 microns/sec up to the very
moment of rupture.
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FIGURE 17.13. Strength probability for all tested at 35%RH samples.

FIGURE 17.14. Strength PDF for samples tested at 35%RH.

In order to compare the TTF for different specimens, we approximated the relation-
ships between the TTF and the applied stress, x, by a power law:

TTF(x) = τ

xn
,

where τ is an empirical constant, representing the time to failure (rupture) under a unity
stress level, and n is an empirical (material’s)exponent. This relationship is shown for the
two types of specimens in Figures 17.11 (35%RH) and 17.12 (100%RH). The obtained
data clearly demonstrate the favorable effect of the NPM-based coating.
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(a)

(b)

FIGURE 17.15. NPM-based sample (dotted curve) and the reference samples strength (solid curve) distribu-
tions—35%RH. (a) CDF, (b) PDF.

In order to analyze the results of the ultimate strength tests, the strength proba-
bility distributions (cumulative distribution functions, CDF) and their Weibull approxi-
mations [Equation (17.14)] were constructed for all the specimens (Figure 17.13). Fig-
ure 17.14 represents the derivatives of these functions, i.e., the probability density func-
tions (PDF) for the fiber strength. Note that all the plots exhibit the double-slope pattern
mentioned above. It is easy to see two explicit extremes on the strength distributions—
the most deteriorated strength population corresponds to the reference case (no NPM-
based fibers), and the least deteriorated strength has been demonstrated by the sam-
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FIGURE 17.16. Reliability comparison—35%RH. NPM-based sample reliability vs. reference sample reliability.

ple with NPM containing coating. These two extreme cases are shown also in Fig-
ure 17.15.

The plot in Figure 17.16 demonstrates the reliability aspect of the differences in the
strength distributions for the two extreme cases under the action of the same stress. The
reliability range of the reference case is zero up to about 0.55, while the NPM-based case
begins at about 0.7 and ends very close to 1, a fact which speaks for itself. The two cases
demonstrated considerably the different mechanical and environmental performance, al-
though the specimens were taken out of the same preform with the same core material,
manufactured at the same drawing facility under identical conditions, and tested at the
same time and at the same “age,” by the same testing equipment and the same personnel.
The improvements can be explained, first of all, by the “curing” abilities of the thixotropic
NPM compound and the NPM-based coating. In addition, the coating, when subjected to
bending deformations, has the ability to “slide” along the silica surface. This have to a sit-
uation, when the silica fiber and its coating behave (mechanically) “independently”. This
advantage was, in effect, anticipated in the basic considerations underlying the introduction
of the NPM-based coating.

Figure 17.17 shows the strength and the reliability characteristics of the two cases
at 100%RH. Unlike the 35% tests, where the undamaged and damaged subpopulations are
divided almost evenly, the situation here is different. The NPM case exhibits the same pro-
portion between the subpopulations—the point, at which the curve changes its shape, falls
in the vicinity of 6 GPa, corresponding to the 0.5 probability. By contrast, for the reference
case, this point falls at approximately 6.05 GPa, which corresponds to the probability of
almost 90%, indicating that almost 90% of the reference population is damaged. The ref-
erence distribution is shifted considerably to the left (in the direction of lower strengths) in
comparison with the NPM case. The maximum value of the right distribution for the ref-
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(a)

(b)

FIGURE 17.17. NPM-based sample (dotted curve) and the reference samples strength (solid curve) distribu-
tions—100%RH. (a) CDF, (b) PDF.

erence PDF covers a much smaller area than the high CDF values describing the damaged
population.

The NPM sub-populations are separated less than those of the reference case. This
indicates that in the NPM-based case we have both less damaged areas and a lesser damage
(in the damaged specimens) than in the reference case. In the 35%RH test we observe, for
the NPM case, much less damage and almost non-separated subpopulations. This subdivi-
sion most likely characterizes the micro-cracks and micro-damage of the core due to the
manufacturing, winding and other fiber making processes. The healing action of the NPM
slows down further deterioration of the fiber due to these defects, when in contact with wa-
ter OH groups, and keeps the damaged population closer to the strength of the undamaged
one. The reference case, therefore, represents growth of the damaged subpopulation for the
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elevated humidity conditions, as well as the more strongly pronounced impact of damage
on the specimen strength.

17.3. CONCLUSIONS

The following major conclusions can be drawn from the performed analysis:

• Application of the NPM results in substantial slowing-down of fiber aging and in the
rate of damage accumulation;

• NPM is able to “heal” small core-surface defects;
• NPM effectively protects the silica surface from damage by water vapor;
• Application of the NPM improves substantially the fiber strength and reduces its

variability;
• Application of the NPM coating is a promising way to improve optical, mechanical,

environmental, reliability and even economic characteristics of silica light guides.
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