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9.1 Introduction 

Computational analysis of polyphonic musical audio is a challenging problem. 
When several instruments are played simultaneously, their acoustic signals 
mix, and estimation of an individual instrument is disturbed by the other co-
occurring sounds. The analysis task would become much easier if there was 
a way to separate the signals of different instruments from each other. Tech­
niques that implement this are said to perform sound source separation. The 
separation would not be needed if a multi-track studio recording was available 
where the signal of each instrument is on its own channel. Also, recordings 
done with microphone arrays would allow more efficient separation based on 
the spatial location of each source. However, multi-channel recordings are usu­
ally not available; rather, music is distributed in stereo format. This chapter 
discusses sound source separation in monaural music signals, a term which 
refers to a one-channel signal obtained by recording with a single microphone 
or by mixing down several channels. 

There are many signal processing tasks where sound source separation 
could be utilized, but the performance of the existing algorithms is still quite 
limited compared to the human auditory system, for example. Human listeners 
are able to perceive individual sources in complex mixtures with ease, and 
several separation algorithms have been proposed that are based on modelling 
the source segregation ability in humans (see Chapter 10 in this volume). 

Recently, the separation problem has been addressed from a completely 
different point of view. The term unsupervised learning is used here to char­
acterize algorithms which try to separate and learn the structure of sources 
in mixed data based on information-theoretical principles, such as statisti­
cal independence between sources, instead of sophisticated modelling of the 
source characteristics or human auditory perception. Algorithms discussed in 
this chapter are independent component analysis (ICA), sparse coding, and 
non-negative matrix factorization (NMF), which have been recently used in 
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source separation tasks in several application areas. When used for monau­
ral audio source separation, these algorithms usually factor the spectrogram 
or other short-time representation of the input signal into elementary com­
ponents, which are then clustered into sound sources and further analysed to 
obtain musically important information. Although the motivation of unsuper­
vised learning algorithms is not in the human auditory perception, there are 
similarities between them. For example, all the unsupervised learning meth­
ods discussed here are based on reducing redundancy in data, and it has been 
found that redundancy reduction takes place in the auditory pathway, too [85]. 

The focus of this chapter is on unsupervised learning algorithms which 
have proven to produce applicable separation results in the case of music 
signals. There are some other machine learning algorithms which aim at sep­
arating speech signals based on pattern recognition techniques, for example 
[554]. 

All the algorithms mentioned above (ICA, sparse coding, and NMF) can 
be formulated using a linear signal model which is explained in Section 9.2. 
Different data representations are discussed in Section 9.2.2. The estimation 
criteria and algorithms are discussed in Sections 9.3, 9.4, and 9.5. Methods 
for obtaining and utilizing prior information are presented in Section 9.6. 
Once the spectrogram is factored into components, these can be clustered 
into sound sources or further analysed to obtain musical information. The 
post-processing methods are discussed in Section 9.7. Systems extended from 
the linear model are discussed in Section 9.8. 

9.2 Signal Model 

When several sound sources are present simultaneously, the acoustic wave­
forms of the individual sources add linearly. Sound source separation is defined 
as the task of recovering each source signal from the acoustic mixture. A com­
plication is that there is no unique definition for a sound source. One possi­
bility is to consider each vibrating physical entity, for example each musical 
instrument, as a sound source. Another option is to define this according to 
what humans tend to perceive as a single source. For example, if a violin, sec­
tion plays in unison, the violins are perceived as a single source, and usually 
there is no need to separate the signals played by each violin. In Chapter 10, 
these two alternatives are referred to as physical source and perceptual source, 
respectively (see p. 302). Here we do not specifically commit ourselves to either 
of these. The type of the separated sources is determined by the properties 
of the algorithm used, and this can be partly affected by the designer accord­
ing to the application at hand. In music transcription, for example, all the 
equal-pitched notes of an instrument can be considered as a single source. 

Many unsupervised learning algorithms, for example standard ICA, require 
that the number of sensors be larger or equal to the number of sources. In 
multi-channel sound separation, this means that there should be at least as 
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many microphones as there are sources. However, automatic transcription of 
music usually aims at finding the notes in monaural (or stereo) signals, for 
which basic ICA methods cannot be used directly. By using a suitable signal 
representation, the methods become applicable with one-channel data. 

The most common representation of monaural signals is based on short-
time signal processing, in which the input signal is divided into (possibly over­
lapping) frames. Frame sizes between 20 and 100 ms are typical in systems 
designed to separate musical signals. Some systems operate directly on time-
domain signals and some others take a frequency transform, for example 
the discrete Fourier transform (DFT) of each frame. The theory and general 
discussion of time-frequency representations is presented in Chapter 2. 

9.2.1 Basis Functions and Gains 

The representation of the input signal within each frame ^ = 1 . . . T is denoted 
by an observation vector Xt. The methods presented in this chapter model Xt 
as a weighted sum of basis functions b^, TI = 1 . . . AT, so that the signal model 
can be written as 

N 

yit^^gn,thn, t - l , . . . , r , (9.1) 
n=l 

where N <^ T is the number of basis functions, and gn,t is the amount of 
contribution, or gain, of the n*^ basis function in the t*^ frame. Some methods 
estimate both the basis functions and the time-varying gains from a mixed 
input signal, whereas others use pre-trained basis functions or some prior 
information about the gains. 

The term component refers to one basis function together with its time-
varying gain. Each sound source is modelled as a sum of one or more compo­
nents, so that the model for source m in frame t is written as 

ym,t = Yl 9n,thn^ (9.2) 
neSm 

where Sm is the set of components within source m. The sets are disjoint, i.e., 
each component belongs to only one source. 

In (9.1) approximation is used, since the model is not necessarily noise-free. 
The model can also be written with a residual term r̂  as 

N 

^t = Yl ^̂ '*̂ ^ + *̂' t = 1,..., T. (9.3) 
n=l 

By assuming some probability distribution for the residual and a prior distri­
bution for other parameters, a probabilistic framework for the estimation of 
hn and gn,t can be formulated (see e.g. Section 9.4). Here (9.1) without the 
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residual term is preferred for its simplicity. For T frames, the model (9.1) can 
be written in matrix form as 

X « BG, (9.4) 

where X = [x i ,X2 , . . . ,XT] is the observation matrix^ B = [bi, b 2 , . . . , bjv] 
is the mixing matrix, and [G]n,t — 9n,t is the gain matrix. The notation [G]n,t 
is used to denote the (n, t)*^ entry of matrix G. The term mixing matrix is 
typically used in ICA, and here we follow this convention. 

The estimation algorithms can be used with several data representations. 
Often the absolute values of the DFT are used; this is referred to as the mag­
nitude spectrum in the following. In this case, x^ is the magnitude spectrum 
within frame t, and each component n has a fixed magnitude spectrum b^ 
with a time-varying gain gn^t- The observation matrix consisting of framewise 
magnitude spectra is here called a magnitude spectrogram. Other representa­
tions are discussed in Section 9.2.2. 

The model (9.1) is flexible in the sense that it is suitable for represent­
ing both harmonic and percussive sounds. It has been successfully used in 
the transcription of drum patterns [188], [505] (see Chapter 5), in the pitch 
estimation of speech signals [579], and in the analysis of polyphonic music 
signals [73], [600], [403], [650], [634], [648], [43], [5]. 

Figure 9.1 shows an example signal which consists of a diatonic scale and 
a C major chord played by an acoustic guitar. The signal was separated into 
components using the NMF algorithm described in [600], and the resulting 
components are depicted in Fig. 9.2. Each component corresponds roughly to 
one fundamental frequency: the basis functions are approximately harmonic 
and the time-varying gains follow the amplitude envelopes of the notes. The 
separation is not perfect because of estimation inaccuracies. For example, in 
some cases the gain of a decaying note drops to zero when a new note begins. 

Factorization of the spectrogram into components with a fixed spectrum 
and a time-varying gain has been adopted as a part of the MPEG-7 pattern 
recognition framework [72], where the basis functions and the gains are used 
as features for classification. Kim et al. [341] compared these to mel-frequency 
cepstral coefficients which are commonly used features in the classification of 
audio signals. In this study, mel-frequency cepstral coefficients performed bet­
ter in the recognition of sound effects and speech than features based on ICA 
or NMF. However, final conclusions about the apphcability of these methods 
to sound source recognition have yet to be made. The spectral basis decompo­
sition specified in MPEG-7 models the summation of components on a decibel 
scale, which makes it unlikely that the separated components correspond to 
physical sound objects. 

9.2.2 Data Representation 

The model (9.1) presented in the previous section can be used with time-
domain or frequency-domain observations and basis functions. Time-domain 
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Fig. 9.1. Spectrogram of an example signal which consist of a diatonic scale from 
C5 to C6, followed by a C major chord (simultaneous notes C5, E4, and G5), played 
by an acoustic guitar. The notes are not damped, meaning that consecutive notes 
overlap. 

observation vector Xt is the signal within frame t directly, whereas a frequency-
domain observation vector is obtained by applying a chosen transformation to 
this. The representation of the signal and the basis functions have to be the 
same. ICA and sparse coding allow the use of any short-time signal represen­
tation, whereas for NMF, only a frequency-domain representation is appro­
priate. Naturally, the representation has a significant effect on performance. 
The advantages and disadvantages of different representations are considered 
in this section. For a more extensive discussion, see Casey [70] or Smaragdis 
[598]. 

Time-Domain Representation 

Time-domain representations are straightforward to compute, and all the in­
formation is preserved when an input signal is segmented into frames and win­
dowed. However, time-domain basis functions are problematic in the sense that 
a single basis function alone cannot represent a meaningful sound source: the 
phase of the signal within each frame varies depending on the frame position. 
In the case of a short-duration percussive source, for example, a separate basis 
function is needed for every possible position of the sound event within the 
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Fig. 9.2. Components estimated from the example signal in Fig. 9.1. Basis functions 
are plotted on the right and the corresponding time-varying gains on the left. Each 
component except the bottom one corresponds to an individual pitch value and the 
gains follow roughly the amplitude envelope of each note. The bottom component 
models the attack transients of the notes. The components were estimated using the 
NMF algorithm [400], [600] and the divergence objective (explained in Section 9.5). 

frame. A shift-invariant model which is later discussed in Section 9.8 is one 
possible method of overcoming this limitation [43]. 

The time-domain signals of real-world sound sources are generally not 
identical at different occurrences since the phases behave very irregularly. For 
example, the overtones of a pitched musical instrument are not necessarily 
phase-locked, so that the time-domain waveform varies over time. Therefore, 
one has to use multiple components to represent even a single note of a pitched 
instrument. In the case of percussive sound sources, this phenomenon is even 
clearer: the time-domain waveforms vary a lot at different occurrences. 

The larger the number of the components, the more uncertain is their 
estimation and further analysis, and the more observations are needed. If the 
sound event represented by a component occurs only once in the input signal, 
separating it from co-occurring sources is difficult since there is no information 
about the component elsewhere in the signal. Also, clustering the components 
into sources becomes more difficult when there are many of them for each 
source. 
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Separation algorithms which operate on time-domain signals have been 
proposed for example by Dubnov [157], Jang and Lee [314], and Blumensath 
and Davies [43]. Abdallah and Plumbley [3], [2] found that the independent 
components analysed from time-domain music and speech signals were similar 
to a wavelet or short-time DFT basis. They trained the basis functions using 
several days of radio output from BBC Radio 3 and 4 stations. 

Frequency-Domain Representation 

When using a frequency transform such as the DFT, the phases of the 
complex-valued transform can be discarded by considering only the mag­
nitude or power spectrum. Even though some information is lost, this also 
eliminates the phase-related problems of time-domain representations. Unlike 
time-domain basis functions, many real-world sounds can be rather well ap­
proximated with a fixed magnitude spectrum and a time-varying gain, as seen 
in Figs. 9.1 and 9.2, for example. Sustained instruments in particular tend to 
have a stationary spectrum after the attack transient. 

In most systems aimed at the separation of sound sources, DFT and a 
fixed window size is applied, but the estimation algorithms allow the use 
of any time-frequency representation. For example, a logarithmic spacing of 
frequency bins has been used [58], which is perceptually and musically more 
plausible than a constant spectral resolution. 

The linear summation of time-domain signals does not imply the linear 
summation of their magnitude or power spectra, since phases of the source 
signals affect the result. When two signals sum in the time domain, their 
complex-valued DFTs sum Hnearly, X{k) = Yi{k) + Y2{k), but this equality 
does not apply for the magnitude or power spectra. However, provided that 
the phases of Yi{k) and Y2{k) are uniformly distributed and independent of 
each other, we can write 

E{\Xik)f} = \Y^ik)\' + \Y2{k)\\ (9.5) 

where E{'} denotes expectation. This means that in the expectation sense, 
we can approximate time-domain summation in the power spectral domain, a 
result which holds for more than two sources as well. Even though magnitude 
spectrogram representation has been widely used and it often produces good 
results, it does not have similar theoretical justification. Since the summation 
is not exact, use of phaseless basis functions causes an additional source of 
error. Also, a phase generation method has to be implemented if the sources 
are to be synthesized separately. These are discussed in Section 9.7.3. 

The human auditory system has a large dynamic range: the difference 
between the threshold of hearing and the threshold of pain is approximately 
100 dB [550]. Unsupervised learning algorithms tend to be more sensitive to 
high-energy observations. If sources are estimated from the power spectrum, 
some methods fail to separate low-energy sources even though they would be 
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perceptually and musically meaningful. This problem has been noticed, e.g., 
by FitzGerald in the case of percussive source separation [186, pp. 93-100]. 
To overcome the problem, he used an algorithm which processed separately 
high-frequency bands which contain low-energy sources, such as hi-hats and 
cymbals [187]. Vincent and Rodet [648] addressed the same problem. They 
proposed a model in which the noise was additive in the log-spectral domain. 
The numerical range of a logarithmic spectrum is compressed, which increases 
the sensitivity to low-energy sources. Additive noise in the log-spectral domain 
corresponds to multiplicative noise in power spectral domain, which was also 
assumed in the system proposed by Abdallah and Plumbley [5]. Virtanen 
proposed the use of perceptually motivated weights [651]. He used a weighted 
cost function in which the observations were weighted so that the quantitative 
significance of the signal within each critical band was equal to its contribution 
to the total loudness. 

9.3 Independent Component Analysis 

ICA has been successfully used in several 'blind' source separation tasks, where 
very httle or no prior information is available about the source signals. One 
of its original target applications was multi-channel sound source separation, 
but it has also had several other uses. ICA attempts to separate sources by 
identifying latent signals that are maximally independent. In practice, this 
usually leads to the separation of meaningful sound sources. 

Mathematically, statistical independence is defined in terms of probabil­
ity densities: random variables x and y are said to be independent if their 
joint probability distribution function^ ?{x^y) is a product of the marginal 
distribution functions, p{x,y) = p{x)p{y). 

The dependence between two variables can be measured in several ways. 
Mutual information is a measure of the information that given random vari­
ables have on some other random variables [304]. The dependence is also 
closely related to the Gaussianity of the distribution of the variables. Accord­
ing to the central limit theorem, the distribution of the sum of independent 
variables is more Gaussian than their original distributions, under certain con­
ditions. Therefore, some ICA algorithms aim at separating output variables 
whose distributions are as far from Gaussian as possible. 

The signal model in ICA is linear: K observed variables x i , . . . , XK are 
modelled as linear combinations of Â  source variables ^ i , . . . , ^ A T - In a vector-
matrix form, this can be written as 

X - Bg, (9.6) 

where x = [XI,...XK] is an observation vector, [B]fc,n = f̂c,n is a mixing 

matrix, and g = [^ri,..., g^] is a source vector. Both B and g are unknown. 

^The concept of probability distribution function is described in Chapter 2. 
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The standard ICA requires that the number of observed variables K (the 
number of sensors) be equal to the number of sources A .̂ In practice, the num­
ber of sensors can also be larger than the number of sources, because the vari­
ables are typically decorrelated using principal component analysis (PCA; see 
Chapter 2), and if the desired number of sources is less than the number of 
variables, only the principal components corresponding to the largest eigen­
values are selected. 

As another pre-processing step, the observed variables are usually centred 
by subtracting the mean and their variance is normalized to the unity. The 
centred and whitened data observation vector x is obtained from the original 
observation vector x by 

x = V ( x - / i ) , (9.7) 

where fj, is the empirical mean of the observation vector, and V is a whitening 
matrix, which is often obtained from the eigenvalue decomposition of the 
empirical covariance matrix of the observations [304]. The empirical mean 
and covariance matrix are explained in Chapter 2. 

To simplify the notation, it is assumed that the data x in (9.6) is already 
centred and decorrelated, so that K = N. The core ICA algorithm carries 
out the estimation of an unmixing matrix W ~ B~^, assuming that B is 
invertible. Independent components are obtained by multiplying the whitened 
observations by the estimate of the unmixing matrix, to result in the source 
vector estimate g: 

g = Wx. (9.8) 

The matrix W is estimated so that the output variables, i.e., the elements 
of g, become maximally independent. There are several criteria and algo­
rithms for achieving this. The criteria, such as non-Gaussianity and mutual 
information, are usually measured using high-order cumulants such as kurto-
sis, or expectations of other non-quadratic functions [304]. ICA can be also 
viewed as an extension of PCA. The basic PCA decorrelates variables so that 
they are independent up to second-order statistics. It can be shown that if 
the variables are uncorrelated after taking a suitable non-linear function, the 
higher-order statistics of the original variables are independent, too. Thus, 
ICA can be viewed as a non-linear decorrelation method. 

Compared with the previously presented linear model (9.3), the standard 
ICA model (9.6) is exact, i.e., it does not contain the residual term. Some 
special techniques can be used in the case of the noisy signal model (9.3), 
but often noise is just considered as an additional source variable. Because of 
the dimension reduction with PCA, E g gives an exact model for the PCA-
transformed observations but not necessarily for the original ones. 

There are several ICA algorithms, and some implementations are freely 
available, such as FastICA [302], [182] and JADE [65]. Computationally quite 
efficient separation algorithms can be implemented based on FastICA, for 
example. 
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9.3.1 Independent Subspace Analysis 

The idea of independent subspace analysis (ISA) was originally proposed by 
Hyvarinen and Hoyer [303]. It combines the multidimensional ICA with in­
variant feature extraction, which are shortly explained later in this section. 
After the work of Casey and Westner [73], the term ISA has been commonly 
used to denote techniques which apply ICA to factor the spectrogram of a 
monaural audio signal to separate sound sources. ISA provides a theoretical 
framework for the whole separation procedure described in this chapter, in­
cluding spectrogram representation, decomposition by ICA, and clustering. 
Some authors use the term ISA also to refer to methods where some other 
algorithm than ICA is used for the factorization [648]. 

The general ISA procedure consists of the following steps: 

1. Calculate the magnitude spectrogram X (or some other representation) 
of the input signal. 

2. Apply PCA^ on the matrix X of size {K x T) to estimate the number 
of components N and to obtain whitening and dewhitening matrices V 
and V"^, respectively. A centred, decorrelated, and dimensionally reduced 
observation matrix X of size {N X T) is obtained as X = V(X - /xl"^), 
where 1 is a all-ones vector of length T. 

3. Apply ICA to estimate an unmixing matrix W. B and G are obtained as 
B = W - i and G = W X . 

4. Invert the decorrelation operation in Step 2 in order to get the mixing 
matrix B = V"^B and source matrix G — G + WV/LA1^ for the original 
observations X. 

5. Cluster the projected components to sources (see Section 9.7.1). 

The above steps are explained in more detail below. Depending on the appli­
cation, not all of them may be necessary. For example, prior information can 
be used to set the number of components in Step 2. 

The basic ICA is not directly suitable for the separation of one-channel 
signals, since the number of sensors has to be larger than or equal to the 
number of sources. Short-time signal processing can be used in an attempt 
to overcome this limitation. Taking a frequency transform such as DFT, each 
frequency bin can be considered as a sensor which produces an observation in 
each frame. With the standard linear ICA model (9.6), the signal is modelled 
as a sum of components, each of which has a static spectrum (or some other 
basis function) and a time-varying gain. 

The spectrogram factorization has its motivation in invariant feature ex­
traction, which is a technique proposed by Kohonen [356]. The short-time 
spectrum can be viewed as a set of features calculated from the input signal. 
As discussed in Section 9.2.2, it is often desirable to have shift-invariant basis 

^Singular value decomposition can also be used to estimate the number of com­
ponents [73]. 
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functions, such as the magnitude or power spectrum [356], [303]. Multidimen­
sional ICA (explained below) is used to separate phase-invariant features into 
invariant feature subspaces, where each source is modelled as the sum of one 
or more components [303]. 

Multidimensional ICA [64] is based on the same linear generative model 
(9.6) as ICA, but the components are not assumed to be mutually indepen­
dent. Instead, it is assumed that the components can be divided into disjoint 
sets, so that the components within each set may be dependent on each other, 
while dependencies between sets are not allowed. One approach to estimat­
ing multidimensional independent components is to first apply standard ICA 
to estimate the components, and then group them into sets by measuring 
dependencies between them.'^ 

ICA algorithms aim at maximizing the independence of the elements of the 
source vector g = Wx. In ISA, the elements correspond to the time-varying 
gains of each component. However, the objective can also be the independence 
of the spectra of components, since the roles of the mixing matrix and gain 
matrix can be swapped by X = B G <^ X^ = G^B^. The independence 
of both the time-varying gains and basis functions can be obtained by using 
the spatiotemporal ICA algorithm [612]. There are no exhaustive studies re­
garding different independence criteria in monaural audio source separation. 
Smaragdis argued that in the separation of complex sources, the criterion of 
independent time-varying gains is better, because of the absence of consis­
tent spectral characteristics [598]. FitzGerald reported that the spatiotempo­
ral ICA did not produce significantly better results than normal ICA, which 
assumes the independence of gains or spectra [186]. 

The number of frequency channels is usually larger than the number of 
components to be estimated with ICA. PC A or singular value decomposition 
(SVD) of the spectrogram can be used to estimate the number of components 
automatically. SVD decomposes the spectrogram into a sum of components 
with a fixed spectrum and time-varying gain, so that the spectra and gains of 
different components are orthogonal, whereas PCA results in the orthogonality 
of either the spectra or the gains. The components with the largest singular 
values are chosen so that the sum of their singular values is larger than or 
equal to a pre-defined threshold 0 < ^ < 1 [73]. 

ISA has been used for general audio separation by Casey and Westner [73], 
for the analysis of musical trills by Brown and Smaragdis [58], and for per­
cussion transcription by FitzGerald et al. [187], to mention some examples. 

9.3.2 Non-Negativity Restrictions 

When magnitude or power spectrograms are used, the basis functions are 
magnitude or power spectra which are non-negative by definition. Therefore, 

^ICA aims at maximizing the independence of the output variables, but it cannot 
guarantee their complete independence, as this depends also on the input signal. 
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it can be advantageous to restrict the basis functions to be entry-wise non-
negative. Also, it may be useful not to allow negative gains, but to constrain 
the components to be purely additive. Standard ICA is problematic in the 
sense that it does not enable these constraints. In practice, ICA algorithms 
also produce negative values for the basis functions and gains, and often there 
is no physical interpretation for such components. 

ICA with non-negativity restrictions has been studied for example by 
Plumbley and Oja [526], and the topic is currently under active research. 
Existing non-negative ICA algorithms can enforce non-negativity for the gain 
matrix but not for the mixing matrix. They also assume that the probability 
distribution of the source variables gn is non-zero all the way down to zero, 
i.e., the probability Qn < S is non-zero for any ^ > 0. The algorithms are based 
on a noise-free mixing model and in our experiments with audio spectrograms, 
they tended to be rather sensitive to noise. 

It has turned out that the non-negativity restrictions alone are sufficient 
for the separation of the sources, without the expHcit assumption of statistical 
independence. NMF algorithms are discussed in Section 9.5. 

9.4 Sparse Coding 

Sparse coding represents a mixture signal in terms of a small number of active 
elements chosen out of a larger set [486]. This is an efficient approach for learn­
ing structures and separating sources from mixed data. General discussion of 
sparse adaptive representations suitable for the analysis of musical signals is 
given in Chapter 3. In the hnear signal model (9.4), the sparseness restriction 
is usually applied on the gains G, which means that the probability of an 
element of G being zero is high. As a result, only a few components are active 
at a time and each component is active only in a small number of frames. In 
musical signals, a component can represent, e.g., all the equal-pitched notes 
of an instrument. It is likely that only a small number of pitches are played 
simultaneously, so that the physical system behind the observations generates 
sparse components. 

In this section, a probabilistic framework is presented, where the source 
and mixing matrices are estimated by maximizing their posterior distribu­
tions. The framework is similar with the one presented by Olshausen and 
Field [486]. Several assumptions of, e.g., the noise distribution and prior dis­
tribution of the gains are used. Obviously, different results are obtained by 
using different distributions, but the basic idea is the same. The method pre­
sented here is also closely related to the algorithms proposed by Abdallah 
and Plumbley [4] and Virtanen [650], which were used in the analysis of music 
signals. 

The posterior distribution of B and G given an observed spectrogram X 
is denoted by p(B, G|X). The maximization of this can be formulated as [339, 
p. 351] 
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maxp(B, G|X) oc maxp(X|B, G)p(B, G), (9.9) 
B,G B,G 

where p(X|B,G) is the probabihty of observing X given B and G, and 
p(B,G) is the joint prior distribution of B and G. The concepts of proba­
bihty distribution function, conditional probabihty distribution function, and 
maximum a posteriori estimation are described in Chapter 2. 

For mathematical tractability, it is typically assumed that the noise (the 
residual term in (9.3)) is i.i.d.; independent from the model BG, and normally 
distributed with variance cr̂  and zero mean. The likelihood of B and G (see 
Section 2.2.5 for the eplanation of likelihood functions) can be written as 

p(X|B,G) = n ^ - p (^_([X]M-JBG].,)^- | (9 10) 

It is further assumed here that B has a uniform prior, so that p(B, G) (x 
p(G). Each time-varying gain [G]n,t is assumed to have a sparse probability 
distribution function of the exponential form 

P([Gkt) = | e x p ( - / ( [ G ] „ , 0 ) - (9.11) 

A normalization factor Z has to be used so that the density function sums to 
unity. The function / is used to control the shape of the distribution and is 
chosen so that the distribution is uni-modal and peaked at zero with heavy 
tails. Some examples are given later. 

For simplicity, all the entries of G are assumed to be independent from 
each other, so that the probability distribution function of G can be written 
as a product of the marginal densities: 

P(G) = n i e x p ( - / ( [ G W ) ) . (9.12) 
n.t 

It is obvious that in practice the gains are not independent of each other, 
but this approximation is done to simplify the calculations. From the above 
definitions we get 

max p(B, G|X) ex max TT - — = exp ( 
B,<^ B,Lr -̂ f- ay Z7T \ 

{[X]k,t - [BG]k,t)' 
2<T2 

t,k 

n,t 

(9.13) 

By taking a logarithm, the products become summations, and the exp-
operators and scaling terms can be discarded. This can be done since logarithm 
is order preserving and therefore does not affect the maximization. The sign 
is changed to obtain a minimization problem 
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mm 
B,G 

E "̂"̂ '"̂  ~if''̂ '•'̂ ' + E /([G]n.t), (9.14) 
t,k n,t 

which can be written as 

n,t 

where the Frobenius norm of a matrix is defined as 

\nF=l^[Y]i 

(9.15) 

(9.16) 
^,J 

In (9.15), the function / is used to penahze 'active' (non-zero) entries of 
G. For example, Olshausen and Field [486] suggested the functions f{x) = 
log(l -f x^), f{x) = |x|, and f{x) = x^. In audio source separation, Benaroya 
et al. [32] and Virtanen [650] have used f{x) — \x\. The prior distribution 
used by Abdallah and Plumbley [2], [4] corresponds to the function 

f{x) = m^ \x\ > / i , 

I/i(l — a)-f Q;|X|, |X| < / i . 
(9.17) 

where the parameters /i and a control the relative mass of the central peak in 
the prior, and the term fi{l — a) is used to make the function continuous at x = 
±/i. All these functions give a smaller cost and a higher prior probability for 
gains near zero. The cost function f{x) = \x\ and the corresponding Laplacian 
prior p(x) = | e x p ( - | x | ) are illustrated in Fig. 9.3. Systematic large-scale 
evaluations of different sparse priors in audio signals have not been carried 
out. Naturally, the distributions depend on source signals, and also on the 
data representation. 

Fig. 9.3. The cost function f{x) = \x\ (left) and the corresponding Laplacian prior 
distribution p{x) = |exp(—|a::|) (right). Values of G near zero are given a smaller 
cost and a higher probability. 
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Prom (9.15) and the above definitions of / , it can be seen that a sparse 
representation is obtained by minimizing a cost function which is the weighted 
sum of the reconstruction error term ||X — BG||fr and the term which incurs 
a penalty on non-zero elements of G. The variance a^ is used to balance 
between these two. This objective 9.15 can be viewed as a penalized likelihood, 
discussed in the Tools section (see Sections 2.2.9 and 2.3.3). 

Typically, / increases monotonically as a function of the absolute value of 
its argument. The presented objective requires that the scale of either the basis 
functions or the gains is somehow fixed. Otherwise, the second term in (9.15) 
could be minimized without affecting the first term by setting B —̂ B^ and 
G ^ G/^, where the scalar 0 -^ oo. The scale of the basis functions can 
be fixed for example with an additional constraint ||bn|| = 1, as done by 
Hoyer [299], or the variance of the gains can be fixed. 

The minimization problem (9.15) is usually solved using iterative algo­
rithms. If both B and G are unknown, the cost function may have several local 
minima, and in practice reaching the global optimum in a limited time cannot 
be guaranteed. Standard optimization techniques based on steepest descent, 
covariant gradient, quasi-Newton, and active-set methods can be used. Differ­
ent algorithms and objectives are discussed for example by Kreutz-Delgado 
et al. [373]. 

If B is fixed, more efficient optimization algorithms can be used. This 
can be the case for example when B is learned in advance from training 
material where sounds are presented in isolation. These methods are discussed 
in Section 9.6. 

No methods have been proposed for estimating the number of sparse com­
ponents in a monaural audio signal. Therefore, N has to be set either manu­
ally, using some prior information, or to a value which is clearly larger than 
the expected number of sources. It is also possible to try different numbers of 
components and to determine a suitable value of Â  from the outcome of the 
trials. 

As discussed in the previous section, non-negativity restrictions can be 
used for frequency-domain basis functions. With a sparse prior and non-
negativity restrictions, one has to use the projected steepest descent algo­
rithms which are discussed, e.g., by Bertsekas in [35, pp. 203-224]. Hoyer 
[299], [300] proposed a non-negative sparse coding algorithm by combining 
NMF and sparse coding. His algorithm used a multiplicative rule to update 
B, and projected steepest descent to update G. Projected steepest descent 
alone is computationally inefl[icient compared to multiplicative update rules, 
for example. 

In musical signal analysis, sparse coding has been used for example 
by Abdallah and Plumbley [4], [5] to produce an approximate piano-roll 
transcription of synthesized harpsichord music and by Virtanen [650] to tran­
scribe drums in polyphonic music signals synthesized from MIDI. Also, Blu-
mensath and Davies used a sparse prior for the gains, even though their system 
was based on a different signal model [43]. The framework also enables the use 
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of further assumptions. Virtanen used a cost function which included a term 
that favoured the temporal continuity of gains by making large gain changes 
between adjacent frames unlikely [650]. 

9.5 Non-Negative Matrix Factorization 

As discussed in Section 9.3.2 (see p. 277), it is reasonable to restrict frequency-
domain basis functions and their gains to non-negative values. In the signal 
model X ^ BG, the element-wise non-negativity of B and G alone is a 
sufficient condition for the separation of sources in many cases, without an 
explicit assumption of the independence of the sources. 

Paatero and Tatter proposed an NMF algorithm in which the weighted 
energy of the residual matrix X — BG was minimized by using a least-squares 
algorithm where B and G were alternatingly updated under non-negativity 
restrictions [492]. More recently, Lee and Seung [399, 400] proposed NMF 
algorithms which have been used in several machine learning tasks since the 
algorithms are easy to implement and modify. 

Lee and Seung proposed two cost functions and estimation algorithms to 
obtain X ^ B G [400]. The cost functions are the square of the Euclidean 
distance deuc and divergence ddiv, which are defined as 

deuc(B,G) = | | X - B G | | 2 , (9.18) 

and 
ddiv(B, G) = Y1 D([X]fc.t, [BG]k,t), (9.19) 

k,t 

where the function D is defined as 

D{p,q)^p\og^-p + q. (9.20) 

Both cost functions are lower-bounded by zero, which is obtained only 
when X = BG. It can be seen that the Euclidean distance is equal to the first 
term in (9.15). Minimization of the Euclidean distance leads to a maximum 
likelihood estimator for B and G in the presence of Gaussian noise. Similarly, 
minimization of the divergence (9.19) leads to a maximum likelihood estima­
tor, when the observations are generated by a Poisson process with mean value 
[BG]fc,, [399]. When ZkA^Wt = Efc,JBG]fe,t = 1, the divergence (9.19) is 
equal to the Kullback-Leibler divergence, which is widely used as a distance 
measure between probability distributions [400]. 

The estimation algorithms of Lee and Seung minimize the chosen cost 
function by initializing the entries of B and G with random positive values, 
and then by updating them iteratively using multiplicative rules. Each update 
decreases the value of the cost function until the algorithm converges, i.e., 
reaches a local minimum. Usually, B and G are updated alternately. 
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The update rules for the EucHdean distance are given as 

B ^ B.x(XG"^)./(BGG'^) (9.21) 

and 
G ^ G . X ( B " ^ X ) . / ( B ' ^ B G ) , (9.22) 

where .x and ./ denote the element-wise multiplication and division, respec­
tively. The update rules for the divergence are given as 

and 

G^G.^^&^. (9.24) 

where 1 is an all-ones K-hy-T matrix, and ^ denotes the element-wise division 
of matrices X and Y. 

To summarize, the algorithm for NMF is as follows: 

Algorithm 9.1: Non-Negative Matrix Factorization 

1. Initialize each entry of B and G with the absolute values of Gaussian noise. 
2. Update G using either (9.22) or (9.24) depending on the chosen cost function. 
3. Update B using either (9.21) or (9.23) depending on the chosen cost function. 
4. Repeat Steps (2)--(3) until the values converge. 

Methods for the estimation of the number of components have not been 
proposed, but all the methods suggested in Section 9.4 are applicable in NMF, 
too. The multiplicative update rules have proven to be more efficient than for 
example the projected steepest-descent algorithms [400], [299], [5]. 

NMF can be used only for a non-negative observation matrix and therefore 
it is not suitable for the separation of time-domain signals. However, when 
used with the magnitude or power spectrogram, the basic NMF can be used 
to separate components without prior information other than the element-
wise non-negativity. In particular, factorization of the magnitude spectrogram 
using the divergence often produces relatively good results. The divergence 
cost of an individual observation [X.]k,t is linear as a function of the scale of 
the input, since D{ap^aq) = aD(p, g) for any positive scalar a, whereas for 
the Euclidean cost the dependence is quadratic. Therefore, the divergence is 
more sensitive to small-energy observations. 

NMF does not explicitly aim at components which are statistically in­
dependent from each other. However, it has been proved that under certain 
conditions, the non-negativity restrictions are theoretically sufficient for sep­
arating statistically independent sources [525]. It has not been investigated 
whether musical signals fulfill these conditions, and whether NMF implement 
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a suitable estimation algorithm. Currently, there is no comprehensive theo­
retical explanation of why NMF works so well in sound source separation. 
If a mixture spectrogram is a sum of sources which have a static spectrum 
with a time-varying gain, and each of them is active in at least one frame 
and frequency line in which the other components are inactive, the objec­
tive function of NMF is minimized by a decomposition in which the sources 
are separated perfectly. However, real-world music signals rarely fulfill these 
conditions. When two or more more sources are present simultaneously at all 
times, the algorithm is likely to represent them with a single component. 

In the analysis of music signals, the basic NMF has been used by Smaragdis 
and Brown [600], and extended versions of the algorithm have been pro­
posed for example by Virtanen [650] and Smaragdis [599]. The problem of 
the large dynamic range of musical signals has been addressed e.g. by Abdal-
lah and Plumbley [5]. By assuming multiphcative gamma-distributed noise in 
the power spectral domain, they derived the cost function 

D(p,g) = ^ - l + log^, (9.25) 

to be used instead of (9.20). Compared to the Euclidean distance (9.18) and 
divergence (9.20), this distance measure is more sensitive to low-energy ob­
servations. In our simulations, however, it did not produce results as good as 
the EucUdean distance or the divergence did. 

9.6 Prior Information about Sources 

Manual transcription of music requires a lot of prior knowledge and training. 
The described separation algorithms used some general assumptions about 
the sources in the core algorithms, such as independence or non-negativity, 
but also other prior information on the sources is often available. For example 
in the analysis of pitched musical instruments, it is known in advance that 
the spectra of instruments are approximately harmonic. Unfortunately, it is 
difficult to implement harmonicity restrictions in the models discussed earlier. 

Prior knowledge can also be source-specific. The most common approach to 
incorporate prior information about sources in the analysis is to train source-
specific basis functions in advance. Several approaches have been proposed. 
The estimation is usually done in two stages, which are 

1. Learn source-specific basis functions from training material, such as mono-
timbral and monophonic music. Also the characteristics of time-varying 
gains can be stored, for example by modelhng their distribution. 

2. Represent a polyphonic signal as a weighted sum of the basis functions of 
all the instruments. Estimate the gains and keep the basis functions fixed. 

It is not yet known whether automatic music transcription is possible without 
any source-specific prior knowledge, but obviously this has the potential to 
make the task much easier. 
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Several methods have been proposed for training the basis functions in 
advance. The most straightforward choice is to also separate the training 
signal using some of the described methods. For example, Jang and Lee [314] 
used ISA to train basis functions for two sources separately. Benaroya et al. 
[32] suggested the use of non-negative sparse coding, but they also tested using 
the spectra of random frames of the training signal as the basis functions or 
grouping similar frames to obtain the basis functions. They reported that 
non-negative sparse coding and the grouping algorithm produced the best 
results [32]. Gautama and Van Halle compared three different self-organizing 
methods in the training of basis functions [204]. 

The training can be done in a more supervised manner by using a sepa­
rate set of training samples for each basis function. For example in the drum 
transcription systems proposed by FitzGerald et al. [188] and Paulus and 
Virtanen [505], the basis function for each drum instrument was calculated 
from isolated samples of each drum. It is also possible to generate the basis 
functions manually, for example so that each of them corresponds to a single 
pitch. Lepain used frequency-domain harmonic combs as the basis functions, 
and parameterized the rough shape of the spectrum using a slope parameter 
[403]. Sha and Saul trained the basis function for each discrete fundamental 
frequency using a speech database with annotated pitch [579]. 

In practice, it is difficult to train basis functions for all the possible sources 
beforehand. An alternative is to use trained or generated basis functions which 
are then adapted to the observed data. For example, Abdallah and Plumbley 
initialized their non-negative sparse coding algorithm with basis functions that 
consisted of harmonic spectra with a quarter-tone pitch spacing [5]. After the 
initialization, the algorithm was allowed to adapt these. 

Once the basis functions have been trained, the observed input signal is 
represented using them. Sparse coding and non-negative matrix factorization 
techniques are feasible also in this task. Usually the reconstruction error be­
tween the input signal and the model is minimized while using a small number 
of active basis functions (sparseness constraint). For example, Benaroya et al. 
proposed an algorithm which minimizes the energy of the reconstruction error 
while restricting the gains to be non-negative and sparse [32]. 

If the sparseness criterion is not used, a matrix G reaching the global 
minimum of the reconstruction error can be usually found rather easily. If the 
gains are allowed to have negative values and the estimation criterion is the 
energy of the residual, the standard least-squares solution 

G = ( B " ^ B ) - ^ B " ^ X (9.26) 

produces the optimal gains (assuming that the previously trained basis func­
tions are linearly independent) [339, pp. 220-226]. If the gains are restricted 
to non-negative values, the least-squares solution is obtained using the non-
negative least-squares algorithm [397, p. 161]. When the basis functions, 
observations, and gains are restricted to non-negative values, the global min­
imum of the divergence (9.19) between the observations and the model can 
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be computed by applying the multiplicative update (9.24) iteratively [563], 
[505]. Lepain minimized the sum of the absolute value of the error between 
the observations and the model by using linear programming and the Simplex 
algorithm [403]. 

The estimation of the gains can also be done in a framework which in­
creases the probability of basis functions being non-zero in consecutive frames. 
For example, Vincent and Rodet used hidden Markov models (HMMs) to 
model the durations of the notes [648]. 

It is also possible to train prior distributions for the gains. Jang and Lee 
used standard ICA techniques to train time-domain basis functions for each 
source separately, and modelled the probabihty distribution function of the 
component gains with a generalized Gaussian distribution which is a family 
of density functions of the form p(x) oc exp(—|x|^) [314]. For an observed 
mixture signal, the gains were estimated by maximizing their posterior prob­
ability. 

9.7 Further Processing of the Components 

The main motivation for separating an input signal into components is that 
each component usually represents a musically meaningful entity, such as a 
percussive instrument or all the equal-pitched notes of an instrument. Separa­
tion alone does not solve the transcription problem, but has the potential to 
make it much easier. For example, estimation of the fundamental frequency 
of an isolated sound is easier than multiple fundamental frequency estimation 
in a mixture signal. 

9.7.1 Associating Components with Sources 

If the basis functions are estimated from a mixture signal, we do not know 
which component is produced by which source. Since each source is modelled 
as a sum of one or more components, we need to associate the components 
to sources. There are roughly two ways to do this. In the unsupervised classi­
fication framework, component clusters are formed based on some similarity 
measure, and these are interpreted as sources. Alternately, if prior informa­
tion about the sources is available, the components can be classified to sources 
based on their distance to source models. Naturally, if pre-trained basis func­
tions are used for each source, the source of each basis function is known and 
classification is not needed. 

Pairwise dependence between the components can be used as a similarity 
measure for clustering. Even in the case of ICA, which aims at maximizing the 
independence of the components, some dependencies may remain because it 
is possible that the input signal contains fewer independent components than 
are to be separated. 
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Casey and Westner used the symmetric Kullback-Leibler divergence be­
tween the probability distribution functions of basis functions as a distance 
measure, resulting in an independent component cross-entropy matrix (an 'ix-
egram') [73]. Dubnov proposed a distance measure derived from the higher-
order statistics of the basis functions or the gains [157]. Casey and Westner 
[73] and Dubnov [157] also suggested clustering algorithms for grouping the 
components into sources. These try to minimize the inter-cluster dependence 
and maximize the intra-cluster dependence. 

For predefined sound sources, the association can be done using pattern 
recognition methods. Uhle et al. extracted acoustic features from each com­
ponent to classify them either to a drum track or to a harmonic track [634]. 
The features in their system included, for example, the percussiveness of the 
time-varying gain, and the noise-likeness and dissonance of the spectrum. An­
other system for separating drums from polyphonic music was proposed by 
Helen and Virtanen. They trained a support vector machine (SVM) using the 
components extracted from a set of drum tracks and polyphonic music sig­
nals without drums. Different acoustic features were evaluated, including the 
above-mentioned ones, mel-frequency cepstral coefficients, and others [282]. 

9.7.2 Extraction of Musical Information 

The separated components are usually analysed to obtain musically important 
information, such as the onset and offset times and fundamental frequency of 
each component (assuming that they represent individual notes of a pitched 
instrument). Naturally, the analysis can be done by synthesizing the com­
ponents and by using analysis techniques discussed elsewhere in this book. 
However, the synthesis stage is usually not needed, but analysis using the ba­
sis functions and gains directly is likely to be more reliable, since the synthesis 
stage may cause some artifacts. 

The onset and offset times of each component n are measured from the 
time-varying gains gn^ti t — 1 . . .T. Ideally, a component is active when its 
gain is non-zero. In practice, however, the gain may contain interference from 
other sources and the activity detection has to be done with a more robust 
method. 

Paulus and Virtanen [505] proposed an onset detection procedure that was 
derived from the psychoacoustically motivated method of Klapuri [347]. The 
gains of a component were compressed, differentiated, and lowpass filtered. 
In the resulting 'accent curve', all local maxima above a fixed threshold were 
considered as sound onsets. For percussive sources or other instruments with 
a strong attack transient, the detection can be done simply by locating local 
maxima in the gain functions, as done by FitzGerald et al. [188]. 

The detection of sound offsets is a more difficult problem, since the am­
plitude envelope of a note can be exponentially decaying. Methods to be used 
in the presented framework have not been proposed. 
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There are several different possibilities for the estimation of the funda­
mental frequency of a pitched component. For example, prominent peaks can 
be located from the spectrum and the two-way mismatch procedure of Maher 
and Beauchamp [428] can be used, or the fundamental period can be esti­
mated from the autocorrelation function which is obtained by inverse Fourier 
transforming the power spectrum. In our experiments, the enhanced auto­
correlation function proposed by Tolonen and Karjalainen [627] was found to 
produce good results (see p. 253 in this volume). In practice, a component may 
represent more than one pitch. This happens especially when the pitches are 
always present simultaneously, as is the case in a chord, for example. No meth­
ods have been proposed to detect this situation. Whether or not a component 
is pitched can be estimated, e.g., from features based on the component [634], 
[282]. 

Some systems use fixed basis functions which correspond to certain funda­
mental frequency values [403], [579]. In this case, the fundamental frequency 
of each basis function is of course known. 

9.7.3 Synthesis 

Synthesis of the separated components is needed at least when one wants to 
listen to them, which is a convenient way to roughly evaluate the quality of the 
separation. Synthesis from time-domain basis functions is straightforward: the 
signal of component n in frame t is generated by multiplying the basis function 
hn by the corresponding gain gn,t^ and adjacent frames are combined using 
the overlap-add method where frames are multiplied by a suitable window 
function, delayed, and summed. 

Synthesis from frequency-domain basis functions is not as trivial. The syn­
thesis procedure includes calculation of the magnitude spectrum of a compo­
nent in each frame, estimation of the phases to obtain the complex spectrum, 
and an inverse discrete Fourier transform (IDFT) to obtain the time-domain 
signal. Adjacent frames are then combined using overlap-add. When magni­
tude spectra are used as the basis functions, framewise spectra are obtained 
as the product of the basis function with its gain. If power spectra are used, a 
square root has to be taken, and if the frequency resolution is not hnear, 
additional processing has to be done to enable synthesis using the IDFT. 

A few alternative methods have been proposed for the phase generation. 
Using the phases of the original mixture spectrogram produces good syn­
thesis quality when the components do not overlap significantly in time and 
frequency [651]. However, applying the original phases and the IDFT may pro­
duce signals which have unrealistic large values at frame boundaries, resulting 
in perceptually unpleasant discontinuities when the frames are combined us­
ing overlap-add. The phase generation method proposed by Griffin and Lim 
[259] has also been used in synthesis (see for example Casey [70]). The method 
finds phases so that the error between the separated magnitude spectrogram 
and the magnitude spectrogram of the resynthesized time-domain signal is 
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minimized in the least-squares sense. The method can produce good synthesis 
quaUty especially for slowly varying sources with deterministic phase behav­
iour. The least-squares criterion, however, gives less importance to low-energy 
partials and often leads to a degraded high-frequency content. The phase gen­
eration problem has been recently addressed by Achan et ah, who proposed 
a phase generation method based on a pre-trained autoregressive model [9]. 

9.8 Time-Varying Components 

As mentioned above, the linear model (9.1) is efficient in the analysis of music 
signals since many musically meaningful entities can be rather well approxi­
mated with a fixed spectrum and a time-varying gain. However, representation 
of sources with strongly time-varying spectrum requires several components, 
and each fundamental frequency value produced by a pitched instrument has 
to be represented with a different component. Instead of using multiple com­
ponents per source, more complex models can be constructed which allow 
either a time-varying spectrum or a time-varying fundamental frequency for 
each component. These are discussed in the following two subsections. 

9.8.1 Time-Varying Spectra 

Time-varying spectra of components can be obtained by replacing each basis 
function b„ by a sequence of basis functions bn,r, where r = 0 . . . L — 1 is the 
frame index. If a frequency-domain representation is used, this means that a 
static short-time spectrum of a component is replaced by a spectrogram of 
length L frames. 

The signal model for one component can be formulated as a convolution 
between its spectrogram and time-varying gain. The model for a mixture 
spectrum of Â  components is given by 

N L-1 

Xt ^ ^ ^ hn,T9n,t-T' (9.27) 
n=lT=0 

The model can be interpreted so that each component n consists of repetitions 
of an event which has a spectrogram bn,r,7- = 0...L — 1. Each non-zero value 
of the time-varying gain gn,t denotes an onset of the event and the value of 
the gain gives the scaling factor of each repetition. A simple two-note example 
is illustrated in Fig. 9.4. 

The parameters of the convolutive model (9.27) can be estimated using 
methods extended from NMF and sparse coding. In these, the reconstruction 
error between the model and the observations is minimized, while restricting 
the parameters to be entry-wise non-negative. Also favouring sparse gains is 
clearly reasonable, since real-world sound events set on in a small number of 
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Fig. 9.4. An example of the convolutive model (9.27) which allows time-varying 
components. The mixture spectrogram (upper left panel) contains the notes C#6 
and F # 6 of the acoustic guitar, first played separately and then together. The upper 
right panels illustrate the learned note spectrograms and the lower panel shows their 
time-varying gains. In the gains, an impulse corresponds to the onset of a note. The 
components were estimated using a modified version of the algorithm proposed by 
Smaragdis in [599]. In the case of more complex signals, it is difficult to obtain such 
clear impulses. 

frames only. Virtanen [651] proposed an algorithm which is based on non-
negative sparse coding, whereas tha t of Smaragdis [599] aims at minimizing 
the divergence between the observation and the model while constraining non-
negativity. 

Arbitrarily long durations L may not be used if the basis functions are 
estimated from a mixture signal. When NL > T, the input spectrogram can 
be represented perfectly as a sum of concatenated event spectrograms (without 
separation). Meaningful sources are likely to be separated only when NL <C T. 
In other words, estimation of several components with large L requires long 
input signals. 

In addition, the method proposed by Blumensath and Davies [43] can be 
formulated using (9.27). Their objective was to find sparse and shift-invariant 
decompositions of a signal in the time domain. Their model allows an event 
to begin at any time with one sample accuracy which makes the number 
of free parameters in the model large. To reduce the dimensionality of the 
problem, Blumensath and Davies proposed an algorithm which carried out 
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the optimization in a subspace of the parameters. They also included a sparse 
prior for the gains. 

9.8.2 Time-Varying Fundamental Frequencies 

In some cases, it is desirable to use a model which can represent different 
pitch values of an instrument with a single component. For example, in the 
case where a note with a certain pitch is present only during a short time, 
separating it from co-occurring sources is difficult. However, if other notes of 
the source with adjacent pitch values can be utilized, the estimation becomes 
more reliable. 

Varying fundamental frequencies are difficult to model using time-domain 
basis functions or frequency-domain basis functions with linear frequency reso­
lution. This is because changing the fundamental frequency of a basis function 
is a non-linear operation which is difficult to implement in practice: if the fun­
damental frequency is multiplied by a factor 7, the frequencies of the harmonic 
components are also multiplied by 7; this can be viewed as a stretching of the 
spectrum. For an arbitrary value of 7, the stretching is difficult to perform on 
a discrete linear frequency resolution, at least using a simple operator which 
could be used in the unsupervised learning framework. The same holds as well 
for time-domain basis functions. 

A logarithmic spacing of frequency bins makes it easier to represent varying 
fundamental frequencies. A logarithmic scale consists of discrete frequencies 
fref/?'̂ "^, where k = 1... K is the discrete frequency index, /? > 1 is the ratio 
between adjacent frequency bins, and fref is a reference frequency in Hertz 
which can be selected arbitrarily. For example, (3 = v ^ produces a frequency 
scale where the spacing between the frequencies is one semitone. 

On the logarithmic scale, the spacing of the partials of a harmonic sound 
is independent of its fundamental frequency. For fundamental frequency /o, 
the overtone frequencies of a perfectly harmonic sound are m/o, where m > 0 
is an integer. On the logarithmic scale, the corresponding frequency indices 
are k = log^(m) -h log^(/o/fref), and thus the fundamental frequency affects 
only the offset log^(/o/fref), not the intervals between the harmonics. 

Given the spectrum X{k) of a harmonic sound with fundamental frequency 
/o, a fundamental frequency multiplication 7/0 can be implemented simply 
as a translation X{k) = X{k — 6), where S is given by S = log^ 7. Compared 
with the stretching of the spectrum, this is usually easier to implement. 

The estimation of harmonic spectra and their translations can be done 
adaptively by fitting a model onto the observations.'* However, this is diffi­
cult for an unknown number of sounds and fundamental frequencies, since the 
reconstruction error as a function of translation 6 has several local minima 

^This approach is related to the fundamental frequency estimation method of 
Brown, who calculated the cross-correlation between an input spectrum and a single 
harmonic template on the logarithmic frequency scale [54]. 
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at harmonic intervals, which makes the optimization procedure Hkely to be­
come stuck in a local minimum far from the global optimum. A more feasible 
parameterization allows each component to have several active fundamental 
frequencies in each frame, the amount of which is to be estimated. This means 
that each time-varying gain gn^t is replaced by gains gn,t,zi where 2; = 0 , . . . , Z 
is a frequency-shift index and Z is the maximum allowed shift. The gain gn,t,z 
describes the amount of the n^^ component in frame f at a fundamental fre­
quency which is obtained by translating the fundamental frequency of basis 
function b„ by z indices. 

The size of the shift z depends on the frequency resolution. For example, if 
48 frequency lines within each octave are used (/? = ^ 2 ) , z — 4: corresponds to 
a shift of one semitone. For simplicity, the model is formulated to allow shifts 
only to higher frequencies, but it can be formulated to allow both negative 
and positive shifts, too. 

A vector gri,t — [^n,t,0 5' •' 19n,t,z] is used to denote the gains of compo­
nent n in frame t. The model can be formulated as 

N 

x t ^ ^ b n * g ^ , , , t = l...T, (9.28) 

n=l 

where * denotes a convolution operator, defined between vectors as 

z 
y = bn * gn,t ^yk = ^ bn,k-z9n,t,z^ k = l...K. (9.29) 

z=0 

Figure 9.5 shows the basis function and gains estimated from the example 
signal in Fig. 9.1. In general, the parameters can be estimated by fitting 
the model to observations with certain restrictions, such as non-negativity or 
sparseness. Algorithms for this purpose can be derived by extending those 
used in NMF and sparse coding. Here we present an extension of NMF, where 
the parameters are estimated by minimizing the divergence (9.19) between 
the observations X and the model (9.28), while restricting the gains and basis 
functions to be non-negative. 

The elements of gn,t and b^ are initialized with random values and then 
updated iteratively until the values converge. To simplify the notation, let us 
denote the model with current parameter estimates by v^ = J2n=i ^^ * ^^^^^^^ 
t = 1 . . . T. The update rule for the gains is given as 

g n , t - g n , . . X — - ^ , (9.30) 
bn • 1 

where 1 is a ivT-length vector of ones and • denotes the correlation of vec­
tors, defined for real-valued vectors bn and y as g = b^ ^ y <^ Pz = 
Sfc=i n̂,fc2/fc+25 z = 0 , . . . , Z. The update rule for the basis functions is 
given as 
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bn ^ b „ . x (9.31) 

The overall optimization algorithm for non-negative matr ix deconvolution 
is as follows: 

Algorithm 9.2: Non-Negative Matrix Deconvolution 

1. Initialize each gn,t and bn with the absolute values of Gaussian noise. 
2. Calculate v* = ^ ^ ^ ^ bn * gn,t for each t=l...T. 
3. Update each gn,t using (9.30). 
4. Calculate Vt as in Step 2. 
5. Update each bn using (9.31). Repeat Steps (2)-(5) until the values converge. 

The algorithm produces good results if the number of sources is small, but 
for multiple sources and more complex signals, it is difficult to get as good 
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Fig. 9.5. Illustration of the time-varying gains (left) and the basis function (right) 
of a component that was estimated from the example signal in Fig. 9.1 containing 
a diatonic scale and a C major chord. On the left, the intensity of the image rep­
resents the value of the gain at each fundamental frequency shift and frame index. 
Here the fundamental frequencies of the notes can be seen more clearly than from 
the spectrogram of Fig. 9.1. The parameters were estimated using the algorithm 
proposed in this section. 



294 Tuomas Virtanen 

results as those illustrated in Fig. 9.5. The model allows all the fundamental 
frequencies within the range z = 0.. .Z tohe active simultaneously, thus, it is 
not restrictive enough. For example, the algorithm may model a non-harmonic 
drum spectrum by using a harmonic basis function shifted to multiple adjacent 
fundamental frequencies. Ideally, this could be solved by restricting the gains 
to be sparse, but the sparseness criterion complicates the optimization. 

In principle, it is possible to combine time-varying spectra and time-
varying fundamental frequencies into the same model, but this further in­
creases the number of free parameters so that it can be difficult to obtain 
good separation results. 

When shifting the harmonic structure of the spectrum, the formant struc­
ture becomes shifted, too. Therefore, representing time-varying pitch by trans­
lating the basis function is appropriate only for nearby pitch values. It is 
unlikely that the whole fundamental frequency range of an instrument could 
be modelled by shifting a single basis function. 

9.9 Evaluation of the Separation Quality 

A necessary condition for the development of source separation methods is 
the ability to measure the quality of their results. In general, the separation 
quality can be measured by calculating the error between the separated sig­
nals and reference sources, or by listening to the separated signals. In the case 
that separation is used as a pre-processing step for automatic music tran­
scription, the quality should be judged according to the final application, i.e., 
the transcription accuracy. 

Performance measures for audio source separation tasks have been dis­
cussed, e.g., by Gribonval et al. [258]. They proposed measures estimating the 
amount of interference from other sources and the distortion caused by the 
separation algorithm. Many authors have used the signal-to-distortion ratio 
(SDR) as a simple measure to summarize the quality. This is defined in deci­
bels as 

T s(t)'^ SDR[dB] = 1 0 1 o g , ^ ^ j | ^ ^ l _ , (9.32) 

where s{t) is a reference signal of the source before mixing, and s{t) is the sep­
arated signal. In the separation of music signals, Jang and Lee [314] reported 
average SDR of 9.6 dB for an ISA-based algorithm which trains basis func­
tions separately for each source. Helen and Virtanen [282] reported average 
SDR of 6.4 dB for NMF in the separation of drums and polyphonic harmonic 
track, and a clearly lower performance (SDR below 0 dB) for ISA. 

In practice, quantitative evaluation of the separation quality requires that 
reference signals, i.e., the original signals s{t) before mixing, be available. In 
the case of real-world music signals, it is difficult to obtain the tracks of each 
individual source instrument and, therefore, synthesized material is often used. 
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Generating test signals for this purpose is not a trivial task. For example, ma­
terial generated using a software synthesizer may produce misleading results 
for algorithms which learn structures from the data, since many synthesiz­
ers produces notes which are identical at each repetition. In the case that 
source separation is a part of a music transcription system, quality evaluation 
requires that audio signals with an accurate reference notation are available 
(see Chapter 11, p. 355). Large-scale comparisons of different separation al­
gorithms for music transcription have not been made. 

9.10 Summary and Discussion 

The algorithms presented in this chapter show that rather simple principles 
can be used to learn and separate sources from music signals in an unsuper­
vised manner. Individual musical sounds can usually be modelled quite well 
using a fixed spectrum with time-varying gain, which enables the use of ICA, 
sparse coding, and NMF algorithms for their separation. Actually, all the al­
gorithms based on the linear model (9.4) can be viewed as performing matrix 
factorization; the factorization criteria are just different. 

The simplicity of the additive model makes it relatively easy to extend 
and modify it, along with the presented algorithms. However, a challenge 
with the presented methods is that it is difficult to incorporate some types of 
restrictions for the sources. For example, it is difficult to restrict the sources 
to be harmonic if they are learned from the mixture signal. 

Compared to other approaches towards monaural sound source separa­
tion, the unsupervised methods discussed in this chapter enable a relatively 
good separation quality—although it should be noted that the performance 
in general is still very limited. A strength of the presented methods is their 
scalability: the methods can be used for arbitrarily complex material. In the 
case of simple monophonic signals, they can be used to separate individual 
notes, and in complex polyphonic material, the algorithms can extract larger 
repeating entities, such as chords. Some of the algorithms, for example NMF 
using the magnitude spectrogram representation, are quite easy to imple­
ment. The computational complexity of the presented methods may restrict 
their applicability if the number of components is large or the target signal is 
long. 

Large-scale evaluations of the described algorithms on real-world poly­
phonic music recordings have not been presented. Most published results use 
a small set of test material and the results are not comparable with each 
other. Although conclusive evaluation data are not available, a preliminary 
experience from our simulations has been that NMF (or sparse coding with 
non-negativity restrictions) often produces better results than ISA. It was 
also noticed that prior information about sources can improve the separation 
quality significantly. Incorporating higher-level models into the optimization 
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algorithms is a big challenge, but will presumably lead to better results. Con­
trary to the general view held by most researchers less than 10 years ago, 
unsupervised learning has proven to be applicable for the analysis of real-
world music signals, and the area is still developing rapidly. 




