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4.1 Introduction 

Imagine you are sitting in a bar and your favourite song is played on the 
jukebox. It is quite possible that you might start tapping your foot in time 
to the music. This is the essence of beat tracking and it is a quite automatic 
and subconscious task for most humans. Unfortunately, the same is not true 
for computers; replicating this process algorithmically has been an active area 
of research for well over twenty years, with reasonable success achieved only 
recently. 

Before progressing further, it would be useful to define beat tracking 
clearly. This involves estimating the possibly time-varying tempo and the 
locations of each beat. In engineering terms, this is the frequency and phase 
of a time-varying signal, the phase of which is zero at a beat location (i.e., 
where one would tap one's foot). When musical audio signals are used as an 
input, the aim of 'beat-tracking' algorithms is to estimate a set of beat times 
from this audio which would match those given by a trained human musician. 
In the case where a notated score of the music exists, the musician is used as 
a proxy for it (hopefully the musician's set of beats would align with those in 
the score). Where no score exists, the musician's training must be accepted 
to return a metre equivalent to how the music would be notated. Note that 
this implies that it is the intended rather than the percieved beat structure 
that is the focus here. 

Beat tracking as just described is not the only task possible. Some algo­
rithms attempt only tempo analysis—finding the average tempo of the sam­
ple; others attempt to find the phase of the beat process and hence produce a 
'tapping signal'. Meanwhile, some methods also attempt a full rhythmic tran­
scription and attempt to assign detected note onsets to musically relevant 
locations in a temporally quantized representation. This is often considered 
in terms of the score which a musician would be able to read in order to 
recreate the musical example [352]. MIDI signals are also commonly used as 
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inputs and, assuming that the signal is of an expressive performance, all of 
the above tasks are again possible aims. 

This chapter is organized as follows. Section 4.2 gives an overview of meth­
ods and approaches to beat tracking. However, as with any engineering system 
which is trying to replicate a real-world process, it is useful to examine the 
actual process before trying to build a model. Section 4.3 of this chapter 
briefly discusses some of the musical background behind beat tracking. Next, 
detection of onsets in musical audio signals is discussed in Section 4.4 be­
fore some of the more influential approaches to beat tracking are presented in 
Sections 4.5 to 4.9. Probabilistic models are examined in more detail in Sec­
tion 4.10. Section 4.11 presents trials of various algorithms on a comprehensive 
test database and conclusions will be drawn in Section 4.12. 

There are many immediate and commercial applications of a successful 
beat tracking program which have perhaps motivated some of the research. 
Some of these are: automatic accompaniment of a solo performance [538], 
synchronization of two music streams (e.g. for DJing [94]), correctly timed 
recovery from CD skipping (see [660] for a similar application), intelligent 
time stretching of musical samples [151], determination of good points for 
looping algorithms (useful for studio samplers which are heavily utiHzed in the 
creation of dance music) and adding tempo synchronous eff'ects. Other uses 
include database retrieval [633] and metadata generation [566], provision of a 
'rhythmic similarity' function to listeners (either in playback or for purchase 
recommendation) and rhythmic expressiveness transformations (e.g. adding 
swing to a musical example [244]). In addition, beat tracking can form a good 
basis for any automated transcription program (e.g. [126], [231], [353], [611]) 
from which to begin its analysis. 

4.2 Summary of Beat-Tracking Approaches 

Beat tracking with computers has been an active area of research since the 
early 1980s, though psychological models of human rhythmic perception pre­
date this. The early work was undertaken in the fields of music perception 
and computer science, though the emphasis shifted towards engineering and 
statistics as computing power increased. 

As a result of this paradigm shift, the aims and approaches of the methods 
described below vary considerably. It would hence be useful to categorize 
them. The first and most important distinction is by type of input; most of 
the earlier algorithms for beat tracking used a symbolic^ or MIDI input while 
audio signals have been used more recently. This is at least partly because 
the signal processing required to extract rhythmic cues from the audio was 
beyond the power of early computers. It should be noted, however, that many 
of the more recent methods implicitly convert an audio stream to a set of 
MIDI-type inputs via the use of a pre-processing onset-detection algorithm. 

^Symbolic data usually consists of a quantized set of note start times. 
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The second important differentiation between approaches is the intended 
purpose of the algorithm. Much of the early work was conducted with the 
music psychology goal of understanding how humans perceive music and at­
tempting to model this. Other approaches have goals based more in engineer­
ing and attempt to capture information in the signal without direct reference 
to human perception. Specifically, those studies undertaken within the frame­
work of automated transcription attempt to return to the underlying score 
rather than any human perception of the performance. 

The next major distinction between the algorithms is the broad approach 
used. Categorizations here could include 

• rule-based; 
• autocor relative; 
• oscillating filters; 
• histogramming; 
• multiple agent; 
• probabilistic; 

though there are methods which do not fall neatly into any of these classes. 
Descriptions of these six broad approaches can be found later in Sections 4.5 
to 4.10. 

Another, more subtle method of classifying algorithms is by causal [572] 
operation. In a causal model, the estimate of the metre at a given time depends 
only on past and present data. A non-causal model allows the use of future 
data and backward decoding. Another way to consider it is that a causal 
algorithm attempts to mimic human tapping and uses data only up to the 
current time to decide whether a beat should be marked or not. Semi-causal 
algorithms have also been produced where the estimate is made after a short 
time-lag, typically around 20 ms. These can often give a 'strict' causal estimate 
but at the cost of optimality. 

Finally, the algorithms can be grouped by their intended output; some 
only produce a best estimate of tempo while others evaluate phase as well, 
therefore giving the beat. Gouyon [242] separates these into tempo induc­
tion, the estimation of the most likely tempo given a segment of data, and 
beat tracking, which is the following of the beat through an extended ex­
ample. Some methods also extract the super-beat and/or sub-beat structure 
(that is, slower and faster pulses than the beat, respectively), while some 
only attempt estimation of either the super- or sub-beat and not the actual 
beat. 

Table 4.1 summarizes some methods found in the literature, indicating 
the type of input used and any causal nature. Others which do not fall into 
any particular category are Sethares and Staley [578], Smith [601], Miller 
et al. [464], and Bilmes [37]. Two other studies which present surveys or re­
views of beat tracking are [243], [249]. 
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Table 4.1. Summary of beat-tracking methods. Key for Input column: A = audio, 
M = MIDI, and S = symboUc. 

Approach Author and year [Ref] Input Causal 
1) rule-based 

2) autocorrelative 

3) oscillating filters 

4) histogramming 

5) multiple agent 

6) probabilistic 

Steedman 1977 [607] 
Longuet-Higgins & Lee 1982 [418] 
Povel & Essens 1985 [529] 
Parncutt 1994 [497] 
Temperley & Sleator 1999 [622] 
Eck 2000 [165] 
Brown 1993 [55] 
Tzanetakis et al. 2001 [632] 
Foote 2001 k Uchihashi [194] 
Mayor 2001 [445] 
Paulus k Klapuri 2002 [503] 
Alonso et al. 2003 [15] 
Davies & Plumbley 2004 [118] 
Large 1994 [390] 
McAuley 1995 [450] 
Scheirer 1998 [564] 
Toiviainen 1998 [626] 
Eck 2001 [166] 
Gouyon et al. 2001 [245] 
Seppanen 2001 [573] 
Wang & Vilermo 2001 [661] 
Uhle & Herre 2003 [635] 
Jensen & Andersen 2003 [318] 
Allen k Dannenberg 1990 [14] 
Rosenthal 1992 [546] 
Goto et al. 1994 [221] 
Dixon 2001 [148] 
Laroche 2001 [392] 
Cemgil et al. 2000 [75], [76] 
Raphael 2001 [537] 
Sethares et al. 2004 [577] 
Hainsworth k Macleod 2003 [266] 
Klapuri 2003 [349] 
Lam k Godsill 2003 [386] 
Takeda et al. 2004 [617] 
Lang k de Freitas 2004 [387] 
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4.3 Musical Background to Rhythmic Structure 

Typically, music consists of sounds generated concurrently by a number of 
different sources (usually musical instruments of varying kinds). These are 
organized in a temporal manner, the structure of which forms the 'rhythm' of 
the piece. Most music has a coherent temporal structure, as this is pleasing to 
most listeners. Thus the rhythm of a piece more readily lends itself to analysis 
than the harmonic structure, which can often be much more complex. 

At the top level, the rhythm describes the timing relationships between 
musical events within a piece. The Oxford English Dictionary [624] gives the 
definition of rhythm as 

a. The aspect of musical composition concerned with periodical accent and the 
duration of notes. 

b. A particular type of pattern formed by this. 

Cooper and Meyer [102] define it as the way in which one or more unaccented 
beats are grouped in relation to an accented one. The term metre is sometimes 
used in an equivalent manner to rhythm, though in music psychology it takes 
on a different meaning. Here, metre is the number of pulses between the more 
or less regularly recurring accents in a piece of music [102]. Thus, the metre 
is a constituent of the rhythm of a piece of music; however, the grouping of 
accents into patterns and the interaction of this process and the metre are 
closer to describing the rhythm of a piece. 

Some further analysis can be made; Bilmes [37] breaks down musical timing 
into four subdivisions. The first is the hierarchical metrical structure, which re­
lates the idealized timing relationships as they would exist in a musical score, 
i.e., quantized to a grid.^ Next is tempo variation, which gives the possibly 
time-varying speed at which the events are sounded. Another level of abstrac­
tion gives timing deviations, which are individual timing discrepancies around 
the time-varying metrical grid (e.g. 'playing ahead of the beat'; swing^ can 
also be considered a timing deviation). Finally there are arrhythmic sections, 
where there is no established rhythm. These will be ignored from now on as 
fundamentally impossible to analyse rhythmically, except as a collection of 
unrelated note start times. 

The metrical structure can also be broken down into a set of three hi­
erarchical levels. Klapuri [349] describes the beat or tactus as the preferred 
(trained) human tapping tempo and is what most of the beat-tracking algo­
rithms attempt to extract at a minimum. This usually corresponds to the 1/4 
note or crotchet when written out in common notation, though this is not 
always the case: in fast jazz music, the pulse is often felt at half this rate (1/2 
note or minim), while hymns are often notated with the beat given in minims. 

^Dixon [148] uses the term 'scoretime', measured in beats since the start of the 
sample to describe this representation. 

^Swing is a style where the second l/8th note of every beat is slightly delayed; 
it is a characteristic of jazz and some rock music. 
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Fig. 4.1. Diagram of relationships between metrical levels. 

However it is notated, the rate at which beats occur defines the tempo of the 
music [404]. 

At a lower level than the beat is the tatum, which is defined to be the 
shortest commonly occurring time interval. This is often defined by the l /8th 
notes (quavers) or l/16th notes (semiquavers). Conversely, the main metrical 
level above the beat is that of the bar or measure. This is related to the rate of 
harmonic change within the piece, usually to a repeated pattern of emphasis 
and also notational convention. Fig. 4.1 gives a diagrammatic representation 
of the above discussion. Included is a set of expressive timings for the score 
given. While obvious, it should also be noted that onsets do not necessarily 
fall on beats and that beats do not necessarily have onsets associated with 
them. 

From here, metrical levels below the beat, including the tatum level, will 
be termed the sub-beat structure, while the converse—bar levels, etc.—will be 
labelled the super-beat structure. In between the tatum and beat, there may 
be intermediary levels, usually related by multiples of two or three (compound 
time divides the beat into three sub-beats, for instance). The same applies be­
tween the beat and bar levels. Gouyon [242] gives a comprehensive discussion 
of the semantics behind the words used to describe rhythm, pointing out many 
of the dualities and discrepancies of terminology. One point he raises is that 
the terms beat or pulse are commonly used to describe both an individual 
element in a series and the series as a whole. 

An interesting point is raised by Honing [294], who discusses the duality 
between tempo variations and timing: the crux of the problem is that a series of 
expressively timed notes can be represented either as timing deviations around 
a fixed tempo, as a rapidly varying tempo, or as any intermediate pairing. This 
is a fundamental problem in rhythm perception and most algorithms arrive at 
an answer which lies between the extremes by applying a degree of smoothing 
to the processes—this usually means that estimated tempo change over an 
analysis segment is constrained by the algorithm and any additional error in 
expected timing of onsets is modelled as a timing deviation. 

This leads to the concept of quantization, which is the process of assess­
ing with which score location an expressively timed onset should be associ­
ated. Here, score location refers to the timing position the onset would take 
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when notated upon a traditional Western musical score or other equivalent 
representation. However, for most purposes, it can be reduced to the num­
ber of beats (and sub-beats) since the start of the sample. Quantization is 
an important problem and other specific studies on this topic include Cemgil 
et al. [75] and Desain and Honing [142]. 

The phase of the beat is determined by a series of stresses or accents, 
termed phenomenal accents [404], [497] or salience [148], [529]. These usually 
correspond to note starts, though not uniquely—it is possible that note ends 
or changes in intensity can indicate beat, too. It is generally assumed that 
stresses fall on the beat more often than not and that significant chordal 
changes also do so. While this is not always the case, and indeed many musical 
styles exhibit syncopation^ where there are off"-beat stresses, Steedman notes, 
'No event inconsistent with either key or metre will occur in a piece until 
sufficient framework (of key or time signature) has been established for it to 
be obvious that it is inconsistent' [607]. There are counter-examples to this 
statement, but it holds in the main. 

There is a large body of literature in the music psychology and neuro-
science fields on how humans perceive rhythm. In particular, there is some 
literature on human tapping processes and the behaviour of musicians versus 
non-musicians (e.g. [155]). However, as the aim of most audio beat trackers 
is to return to the underlying score or performance intentions rather than 
replicate the perceptions of a listener, the general psychology literature will 
not be discussed in detail here. 

4.4 Onset Detection 

While the metre and tempo of a piece of music can be thought of as a con­
stantly evolving signals, the musical events which underpin this are the starts 
of notes, and these are discrete events. Many methods for beat tracking deal 
with symbolic or MIDI data which represent these note start (onset) times. 
It is highly possible, and indeed common, to simply attach an onset detector 
to find the note starts in an audio signal and then track the resulting set of 
discrete impulses. When this approach is used, the success of any beat tracker 
is dependent upon the reliability of the data which is provided as an input. 
Thus, detecting note starts in the audio can be as important as the actual 
beat-tracking algorithm. 

Note ends, even when played exactly as written in the score, can be ig­
nored as unreliable indications of beat due to reverberation, sustain or at the 
opposite extreme, staccato events, where the note is cut short. 

Note sources generally fall into two categories: harmonic and percussive. 
The former produce sounds which would be regarded as notes, have an identi­
fiable pitch and harmonically related partials. Percussive sounds, in compari­
son, are more analogous to noise clouds. Drums and cymbals are the obvious 
examples of this class. It should be noted that many (indeed most) pitched 
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instruments have a transient onset which has much in common with percussive 
sounds. Percussive sounds are usually characterized by significant increases in 
signal energy (a 'transient') and methods for detecting this type of musical 
sound are relatively well developed. Harmonic change with httle associated 
energy variation is much harder to reliably detect and has received less atten­
tion in the literature. Two recent studies of onset detection are Bello et al. [30] 
and Collins [95]. 

While the discussion below assumes that a hard detection decision is made 
as to whether an onset is present at a given location, the beat trackers dis­
cussed below which work on continuous detection functions also need to trans­
form the raw audio into something more amenable. They also process the 
signal in ways similar to those described below but do not perform the step 
of making hard onset detection decisions, instead leaving this to the later 
beat-tracking process. The hard-decision onset detection method yields a set 
of discrete onset times, whereas the latter method results in a continuous 
function from which beat tracking is performed. 

4.4.1 Transient Event Detection 

Transient events, such as drum sounds or the start of notes with a signifi­
cant energy change (e.g. piano, guitar), are easily detected by examining the 
signal envelope. A typical approach, which is an adaptation of methods used 
by a variety of other researchers [148], [392], [564], proceeds as follows: An 
energy envelope function E^ (t) is formed by summing the power of frequency 
components in the spectrogram for each time slice over the range required: 

E,(n)=5]|STFT-(n,A:)p, (4.1) 
kGKj 

where STFT^(A:,n) is the short-time Fourier transform (STFT) of the signal 
x{n) with rectangular window w centred at time n; fc is the frequency index 
(see Chapter 2 for details). Usually analysis frames of about 20 ms are used 
in computing the energy envelope, with 50-75% overlap between successive 
frames. Different bands j can be used; for instance, low frequency information 
covering the range 20-200 Hz is useful to separate. Setting KJ to the middle 
range of 200 Hz to 15 kHz covers the majority of the harmonic information; 
meanwhile, extending over 15-22.05 kHz (assuming a sample rate of 44.1 kHz), 
the upper band is often generally free from harmonic content but contains a 
clear indication of any strong transient information [444]. This is contrary to 
the opinion of Duxbury [164], who claimed that there is no useful information 
in this range. Many other ways to split the frequency spectrum have also been 
proposed. One common approach is to use 5-10 sub-bands that are distributed 
uniformly on a logarithmic frequency scale. 

Ej{n) is not an ideal signal representation for detecting onsets. A potential 
approach for improving it uses a three-point linear regression to find Dj(n), 



4 Beat Tracking and Musical Metre Analysis 109 

the gradient of Ej(n), and peaks in this function are detected. The linear 
regression fits a fine Yi = a -\- hXi + ê  to a set of N data pairs; we are 
only interested in the estimate of h which is given by 6 = (^2=1 ^i^i — 
^ ^ ^ ) / ( E i I i ^i - NX'^), where X and Y denote the average of X and F , 
respectively. In the case here, X is the equi-spaced set of time indices n in 
Ej(n) and Y is the corresponding Ej . In the case where N = 3, this reduces 
to 

D,(n) = E > + 1 ) - E , ( n - 1 ) _ ^^_2^ 
O 

It should be noted that the commonly used technique of differencing the signal, 
where T)j{n) = Ej{n) — Ej(n — 1), is simply linear regression with Â  set to 2. 
The linear regression approach, like that of Klapuri [347], aims to detect the 
start of the transient, rather than the moment it reaches its peak power. 

Dj(n) is often called a detection function [30] and is a transformed and 
reduced signal representation. Subsequent processing needs to detect the on­
sets contained within this. This is usually done by simply selecting maxima 
in Dj(n) and discarding peaks which do not pass a series of tests. Low-energy 
peaks should be ignored (for instance by testing if they are less than two times 
the local 1.5-second average of Ej) and peaks can also be ignored if there is 
a higher-energy peak in the local vicinity'^ by using Dixon's timing criterion 
[148]. Thresholds and constants are usually heuristically determined and de­
signed to give reasonable performance with a large range of styles. Figure 4.2 
shows an example of a peak extraction method. When several sub-bands j 
are involved, the functions Dj(n) can be combined by half-wave rectifying 
and across-band summing before the peak-picking process [37], [347]. 

4.4.2 Pitched Event Detection 

Detection of note starts where there is no associated energy transient (e.g. 
violins, choral music) has received less attention than the easier problem ad­
dressed above. Notable recent exceptions are Klapuri [349], who used very 
narrow frequency bands to detect changes in frequency; Laurent et al. [395], 
who used wavelets; Davy and Godsill [123], who took a support vector ma­
chine approach; Desobry et al. [143], who furthered Davy's research and also 
used kernel methods; and Abdallah and Plumbley [1], who used independent 
component analysis (ICA) to generate a 'surprise' measure followed by an 
HMM to perform reliable detection. Also, Bello et al. [31] utilized phase in­
consistencies in a manner very similar to time reassignment and Duxbury 
et al. [164] proposed a spectral change distance measure adapted from the 
Euclidean measure which was then applied to adjacent spectrogram frames. 
Recently, Duxbury, Bello et al. [162], [163] have combined the previous two 
approaches into a single measure for detection of harmonic changes via either 

^This is similar to the psychoacoustic masking thresholds found for humans [475], 
[694]. 
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Fig. 4.2. Example of onset detection for transient events. The upper plot shows the 
energy-based detection function, Ej(n); also shown are horizontal lines giving the 
1.5 s local average of the energy function and x's showing the detected onsets. The 
lower plot shows the gradient function Dj (n) from which peaks are found. 

or both of phase inconsistency or spectral change. This method shows im­
provements over both individual approaches. 

An alternative proposed by Hainsworth and Macleod [265] is the so-called 
modified KuUback-Leibler distance measure given by 

^ /M , f |STFT:(n,fc)| ^ 

fcG/C,d(fc)>0 

(4.3) 

(4.4) 

where STFT^(n, k) is the STFT computed with window w. The measure em­
phasizes positive energy change between successive frames and /C defines the 
spectral range over which the distance is evaluated (30 Hz to 5 kHz is sug­
gested as it represents the majority of clear harmonic information in the spec­
trum). Another advantage of this method is that it also takes into account 
any transient energy which happens to be present as a useful aid. 

A window length of about 90 ms is sufficient to give good spectral reso­
lution. To overcome frame to frame variation, histogramming of five frames 
(weighted backwards and forwards with a triangular function) before and after 
the potential change point was used and also a very short frame hop length 
(namely, 87.5% overlap) was chosen to increase time resolution. 
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Detection of the peaks in this measure is a separate problem and is dis­
cussed more fully in [265]. Figure 4.3 gives an example of detection using this 
method. 
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Fig. 4.3. Example of the output from the MKL harmonic change detection measure 
for an excerpt of Byrd's 4-Part Mass. Onsets were missed at 1 s and 5.9 s while the 
onset at 8.1 s is mis-estimated and should occur about 0.1 s later. 

4.5 Rule-Based Approaches 

We shall now discuss a number of broad methodologies for beat tracking in 
turn. Rule-based approaches were among the earliest used when computers 
were not capable of running complex algorithms. They tend to be simple and 
encode sensible music-theoretic rules. Tests were often done by hand and were 
limited to short examples. Often these did not even have expressive timing 
added to them and only aimed to extract the most likely pulse given the 
rhythmic pattern and tempo. 

Steedman [607] produced one of the earliest computational models for 
rhythmic analysis of music. His input was symbolic and with a combination 
of musical structure recognition (especially melodic repetition) and psycho­
logically motivated processing, he attempted to parse the rhythmic structure 
of Bach's 'Well Tempered Clavier' set of melodies. Similarly, Longuet-Higgins 
and Lee [418] proposed a series of psychologically motivated rules for finding 
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the beat and higher metrical levels from lists of onset times in a monophonic 
melody. The rules were never implemented by the authors in the original pa­
per for more than five-bar examples, though there have since been several 
papers by Lee which are summarized by Desain and Honing [141]. 

Parncutt [497] developed a detailed model for salience or phenomenal ac­
cent, as he termed it, and used this to inform a beat induction algorithm. Also, 
he modelled medium tempo preference explicitly and combined these two in 
a model to predict the tactus for a series of repeated rhythms played at dif­
ferent speeds. Comparison to human preferences was good. Parncutt's focus 
was similar to that of Povel and Essens [529], while Eck [165] also produced 
a rule-based model which he compared to Povel and Essens and others. 

Temperley and Sleator [622] also used a series of rules to parse MIDI 
streams for beat structure. They quoted Lerdahl and Jackendoff's generative 
theory of tonal music (GTTM) [404] as the starting point of their analysis, 
using the GTTM event rule (align beats with event onsets) and length rule 
(longer notes ahgned with strong beats). Other rules such as regularity and a 
number based on harmonic content were also bought into play. The aim was 
to produce a full beat structure from the expressive MIDI input, and a good 
amount of success was achieved.^ 

4.6 Autocorrelation Methods 

Autocorrelation is a method for finding periodicities in data and has hence 
been used in several studies. Without subsequent processing, it can only find 
tempo and not the beat phase. 

The basic approach is to define an energy function E(n) to which local 
autocorrelation is then applied (in frames of length Tw, centred at time n): 

Tw/2 

r ( n , i ) = ^ E{n-\-u)E{n + u-i). (4.5) 
n=-(Tw/2) + l 

The value of i which maximizes r(n, i) should correspond to the period-length 
of a metrical level. This will often be the beat, but it is possible that if the 
tatum is strong that autocorrelation will pick this instead. 

Tzanetakis et al. [631], [633] included a series of rhythmic features in their 
algorithm for classification of musical genre. While not specifically extracting 
a beat, it performs a function similar to beat analysis. Their method was 
based upon the wavelet transform, followed by rectification, normalization, 
and summation over different bands before using autocorrelation to extract 
periodicity. Local autocorrelation functions were then histogrammed over the 
entire piece to extract a set of features for further use; these tend to show 
more coherence for rock pieces than for classical music. 

^Source code for Temperley's method is available in [596]. 
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Foote and Uchihashi [194] used the principle of audio self-similarity to 
examine rhythmic structure. The assumption was that within the space of a 
single sub-beat, the sound is approximately constant and therefore the spec­
trum will have high similarity. They therefore defined a similarity measure 
as the normalized scalar product (computed over the frequencies k) of the 
magnitude spectra of frames at times Ui and rij 

where w is some window. This produced a two-dimensional plot of similarity 
between any two frames of the audio signal, which was then autocorrelatively 
analysed for tempo hypotheses using 

B{ni,nj) = ^dpooteirii' ,nf)dpooteini + Hi' ,nj +n j / ) . (4.7) 

This was extended to be time varying, hence producing their 'beat spectro­
gram', which was a plot of the local tempo hypothesis versus time. 

Other autocorrelation approaches include Mayor [445], who presented a 
somewhat heuristic approach to audio beat tracking: a simple multiple hy­
pothesis algorithm was maintained which operated on his so-called BPM 
spectrogram, BPM referring to beats per minute. Also Paulus and Klapuri's 
method [503] for audio beat analysis utilized an autocorrelation-like function 
(based on de Cheveigne's fundamental frequency estimation algorithm [135]), 
which was then Fourier transformed to find the tatum. Higher-level metri­
cal structures were inferred with probability distributions based on accent 
information derived using the tatum level. This was then used as part of an 
algorithm to measure the similarity of acoustic rhythmic patterns. Brown [55] 
used her narrowed autocorrelation method to examine the pulse in musical 
scores. Davies and Plumbley [118] and Alonso et al. [15], [16] have also pro­
duced autocorrelation-based beat trackers. 

4.7 Oscillating Filter Approaches 

There are two distinct approaches using oscillating filters: In the first, an 
adaptive oscillator is excited by an input signal and, hopefully, the oscillator 
will resonate at the frequency of the beat. The second method uses a bank of 
resonators at fixed frequencies which are exposed to the signal and the filter 
with the maximum response is picked for the tempo. Beat location can be cal­
culated by examining the phase of the oscillator. This method is particularly 
suited to causal analysis. 

The first, single-filter approach is typified by Large [389], [390], who used a 
single non-linear oscillator with adaptive parameters for the phase, frequency, 
and update rate, though these were initialized to the correct settings by hand. 
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The observed signal is a set of impulses s{n) = 1 when there is an onset event 
and s{n) = 0 otherwise. The oscillator is given by 

o(n) = 1 -h tanha(cos27r(/>(n) — 1), (4.8) 

where o{n) defines an output waveform with pulses at beat locations with 
width tuned by a; see Fig. 4.4. The phase is given by 

4>{n) = n — rii 
P 

(4.9) 

where rii is the location of the previous beat and p is the period of oscillation 
(tempo). Crucially, the single oscillator in (4.8) is assumed not to have a 
fixed period or phase and updates are calculated every time an onset event is 
observed in s{n) using 

Arii = r]is{n)^sech^{a{cos27r(j){n) - I)}sin27r0(n), (4.10) 

Ap = rj2s{n)^sech^{a{cos27r(l){n) — I)}sin27r0(n), (4.11) 

where rji and r]2 are 'coupling strength' parameters. The update equations 
enable the estimation of the unknown parameters p and rii. Marolt [433], 
however, points out that oscillators can be relatively slow to converge because 
they adapt only once per observation. 

a = 1 , p = 10 a=10,p = 10 a= 1, p = 5 
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Fig. 4.4. Example output signals o{t) generated using (4.8) for various values of a 
and p. 

Large's test data was a series of impulses derived from expressive MIDI 
performances and the aim was to track the pulse through the example. An 
extra level of complexity which allowed the system to continue following the 
beat was to have a second oscillator 180° out of phase which could take over 
control from the first if confidence dropped below a certain threshold. 

McAuley [450] presented a similar adaptive oscillator model to that of 
Large and indeed compared and contrasted the two models. Similarly, Toivi-
ainen [626] extended Large's model to have short- and long-term adaption 
mechanisms. The former was designed to cope with local timing deviations 
while the latter followed tempo changes. It was tested on expressive MIDI 
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performances. Another variation is that of Eck [166], who used Fitzhugh-
Nagumo oscillators (models of neural action) linked by Heaviside coupling 
functions into networks. His focus was to reproduce the downbeat extraction 
of Povel and Essens [529] from synthetic onset data. Various authors [166], 
[389] have also suggested that adaptive filters have neurological plausibihty 
and this is their motivation for its use. 

The second approach is typified by Scheirer [564], who produced one of the 
first systems for beat tracking of musical audio. The difference compared with 
Large's method is that Scheirer's method implemented a bank of comb filters 
at different fixed feedback delays and searched for the one which resonated 
best with the input signal at any given time. It should be noted that the 
bank responds in a comb-like manner with multiples and subdivisions of the 
tempo also showing resonation to the signal. Scheirer implemented 150 filters 
logarithmically spaced between 60 bpm and 240 bpm, where bpm stands for 
'beats per minute'. The input audio signal was treated in six sub-bands to find 
rectified power envelopes as a function of time. Each sub-band was processed 
by a separate comb-filter bank before the outputs were summed and the oscil­
lator with the greatest response picked as the current tempo. Phase was also 
considered so as to generate a tapping signal corresponding to the tactus. 

The model worked with considerable success, although there remained the 
problem of a 2-3 second burn-in period needed to stabilize the filters, and also 
a propensity for the algorithm to switch between tracking the tactus and its 
subdivisions/multiples since Scheirer did not explicitly address the stability 
of the beat estimate. Klapuri [349] (see below) capitalized on the latter ob­
servation in his method, using a bank of comb-filter resonators as the initial 
processing method for his system. McKinney and Moelants [452] also found 
a resonator method for tempo extraction to outperform histogramming and 
autocorrelation approaches. 

4.8 Histogramming Methods 

Several approaches have focused on audio beat tracking using histogram­
ming of inter-onset intervals. First, the signal is analysed to extract onsets 
before the subsequent processing takes place. This was discussed above in 
Section 4.4. Differences between successive onsets can be used (first-order 
intervals), though it is more productive to also use the differences between 
onsets that are further apart (all-order intervals). The motivation for this is 
that often the successive onsets define the tatum pulse rather than the tactus, 
which can be better found using onsets spaced further apart. Histogramming 
has similarities to the autocorrelation approaches of Section 4.6, though with 
a discrete input rather than the continuous signal used for autocorrelation. 

There are various methods of performing the histogramming operation; 
defining the set of calculated inter-onset intervals (lOIs), denoted Oi, i = 
1,2,..., one can follow Seppanen [572] and divide the lOI time axis into J 
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bins and count the number of lOIs which fall in each: h{j) = count(i, \oi — 
u{j-\-0.5)\ < O.bu) where u is the width of a bin. In contrast, Gouyon 
et al. [247] and Hainsworth [263] treat the lOI data as a set of Dirac delta 
functions and convolve this with a suitable shape function (e.g. a Gaussian). 
The resulting function generates a smoothly varying histogram. This is defined 
as h{j) = Xli^i *-^(i)5 where * denotes convolution and Af{j) is a suitable 
Gaussian function (low variance is desirable). Peaks can then be identified and 
the maximum taken as the tempo. Alternatively, Dixon [148] gives pseudocode 
for an lOI histogram clustering scheme. 

Seppanen [572] produced an archetypal histogramming method. After an 
onset detection stage, he first extracted tatums via an inter-onset interval his­
togramming method. He then extracted a large number of features (intended 
to measure the musical onset salience) with the tatum signal informing the 
locations for analysis. These features were then used as the input to an al­
gorithm based on pattern recognition techniques to derive higher metrical 
levels including the pulse and bar lines. Seppanen [573] gives further details 
of the tatum analysis part of the algorithm. The final thing to note is that 
the method was the first to be tested on a statistically significant audio data­
base (around three hundred examples, with an average length of about one 
minute). 

Gouyon et al. [247] applied a process of onset detection to musical audio 
followed by inter-onset interval histogramming to produce a beat spectrum. 
The highest peak (which invariably corresponded to the tatum) was then 
chosen as the 'tick'. This was then used to attempt drum sound labelling 
in audio signals consisting solely of drums [245], to modify the amount of 
swing in audio samples [244], and to investigate reliable measures for higher 
beat level discrimination (i.e., to determine whether the beat divided into 
groups of two or three) [246]. Other histogramming methods include Wang 
and Vilermo [661], Uhle and Herre [635], and Jensen and Andersen [318], all 
of which present variations on the general approach and use the results for 
different applications. 

4.9 Multiple Agent Approaches 

Multiple agent methods are a computer science architecture. While there is 
a great deal of variation in the actual implementation and often the finer 
details are left unreported, the basic philosophy is to have a number of agents 
or hypotheses which track independently; these maintain an expectation of 
the underlying beat process and are scored with their match to the data. 
Low-scoring agents are killed while high-scoring ones may be branched to 
cover differing local hypotheses. At the end of the signal, the agent with the 
highest score wins and is chosen. Older multiple agent architectures include 
the influential model of Allen and Dannenberg [14] and Rosenthal [547]. The 
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two most notable multiple agent architectures are those of Goto and that of 
Dixon. 

Goto has produced a number of papers on audio beat tracking of which 
[221], [238], [240] are a good summary. His first method centred on a multi­
ple agent architecture where there were fourteen transient onset finders with 
slightly varying parameters, each of which fed a pair of tempo hypothesis 
agents (one of which was at double the tempo of the other). A manager 
then selected the most reliable pulse hypothesis as the tempo at that in­
stant, thereby making the algorithm causal. Expected drum patterns as a 
strong prior source of information were used and tempo was tracked at one 
sub-beat level (twice the speed) as well as the pulse in order to increase 
robustness. 

This method worked well for audio signals with drums but failed on other 
types of music. Thus, he expanded the original scheme to include chord change 
detection [240], each hypothesis maintaining a separate segmentation scheme 
and comparing chords before and after a beat boundary. 

Dixon [148] has also investigated beat tracking both for MIDI and audio, 
with the aim of out putting a sequence of beat times. The algorithm performed 
well with a MIDI input, and with the addition of an energy envelope onset 
detection algorithm, it could also be used for audio (though with lower perfor­
mance). The approach was based upon maintaining a number of hypotheses 
which extended themselves by predicting beat times using the past tempo tra­
jectory, scored themselves on musical salience, and updated the (local) tempo 
estimate given the latest observation. The tempo update was a function of 
the time coherence of the onset, while the salience measure included pitch 
and chord functions where the MIDI data was available. Hypotheses could be 
branched if onsets fell inside an outer window of tolerance, the new hypothesis 
assuming that the onset was erroneous and maintaining an unadjusted tempo. 
Initialization was by analysis of the inter-onset interval histogram. Dixon has 
also used his beat tracker to aid the classification of ballroom dance samples 
by extracting rhythmic profiles [149]. 

4.10 Probabilistic Models 

Probabilistic approaches can have similarities to multiple agent architectures 
in that the models underlying each can be very similar. However, while the 
latter use a number of discrete agents which assess themselves in isolation, 
probabihstic models maintain distributions of all parameters and use these 
to arrive at the best hypothesis. Thus, there is an explicit, underlying model 
specified for the rhythm process, the parameters of which are then estimated 
by the algorithm. This allows the use of standard estimation procedures such 
as the Kalman filter [41], Markov chain Monte Carlo (MCMC) methods [208], 
or sequential Monte Carlo (particle filtering) algorithms [22] (see Chapter 2 
for an overview of these methods). 
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This section will concentrate on some of the models developed rather than 
details of the estimation procedures which are used to evaluate the final an­
swer, as these can often be interchangeable (a point made by Cemgil, who 
used a variety of estimation algorithms with the same model [77]). 

Again, the various methods can be broken down into two general groups: 
those that work with a set of MIDI onsets (or equivalently a set of onsets 
extracted from an audio sample) and those that work to directly model a 
continuous detection function^ computed from the original signal. 

4.10.1 Discrete Onset Models 

Those who have worked on the problem include Cemgil et al. [77], who worked 
with MIDI signals, and Hainsworth [263], who used Cemgil's algorithm as a 
starting point for use with audio signals. 

The crux of the method is to define a model for the sequential update of 
a tempo process. This is evaluated at discrete intervals which correspond to 
note onsets. The tempo process has two elements: the first defines the tempo 
and phase of the beat process. The second is a random process which proposes 
notations for the rhythm given the tempo and phase. A simple example of this 
is that, given a tempo, the time between onsets could either be notated as a 
quaver or a crotchet, one speeding the tempo up and the other requiring it to 
slow down. The probabilistic model will propose both and see which is more 
hkely, given the past data (and future if allowed). 

The model naturally falls into the framework for jump-Markov linear sys­
tems where the basic equations for update of the beat process are given 
by 

(7n)^n- l+V„, (4.12) 

S„ = UnOn + e„. (4.13) 

{s„} is the set of observed onset times, while On is the tempo process at 
iteration (observed onset) n and can be expanded as 

On 
Pn 

An 
(4.14) 

Pn is the predicted time of the n^^ observation Sn, and A^ is the beat period in 
seconds, i.e. A^ — 60/pri where p^ is the tempo in beats per minute. ^^(Tn) 
is the state update matrix, H^ = [ 1 0 ] is the observation model matrix, and 
Vn and Cn are noise terms; these will be described in turn. 

The principal problem is one of quantization—deciding to which beat or 
sub-beat in the score an onset should be assigned. To solve this, the idealized 

Strictly speaking, it will be pseudo-continuous due to sampling. 
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Fig. 4.5. Figure showing two identical isochronous rhythms. The top rhythm is 
much more likely in a musical notation context than the lower. 

(quantized) number of beats between onsets is encoded as the random jump 
parameter, 7^, in <Pn(7n), 

^ n ( 7 n ) 

In 

1 In 
0 1 

Cn-l' 

(4.15) 

(4.16) 

While the state transition matrix is dependent upon 7^, this is a differ­
ence term between two absolute locations, Cn and Cn-i- Cn is the unknown 
quantized number of beats between the start of the sample and the n*^ ob­
served onset. It is this absolute location which is important and the prior on 
Cn becomes critical in determining the performance characteristics. This can 
be elucidated by considering a simple isochronous set of onsets—if absolute 
score location is unimportant, then the model has no way of preferring aligning 
them to be on the beat over placing them on, say, the first semiquaver of each 
beat. This is demonstrated in Fig. 4.5. Cemgil [77] broke a single beat into 
subdivisions of two and used a prior related to the number of significant digits 
in the binary expansion of the quantized location. In MIDI signals there are no 
spurious onset observations and the onset times are accurate. In audio signals, 
however, the event detection process introduces errors both in localization ac­
curacy and in generating completely spurious events. Thus, Cemgil's prior is 
not rich enough; also, it cannot cope with compound time, triplet figures, or 
swing. To overcome this, Hainsworth [263] broke down notated beats into 24 
sub-beat locations, c^ = {1/24, 2 /24 , . . . , 24/24, 25/24, . . .} , and a prior was 
assigned to the fractional part of c^, 

p{cn) ocexp(-Alog2{c^}), (4.17) 

where c^ is the denominator of the fraction of Cn when expressed in its most 
reduced form; i.e., (i(3/24) = 8, d(36/24) = 2, etc. A is a scale parameter 
determining the sensitivity of the prior. This is shown graphically in Fig. 4.6. 
The prior is improper (i.e., it does not sum to unity), which is why p{cn) is 
only expressed as a proportionality. The integer part of Cn increases as the 
number of beats processed increases. As a result of this, jn is always strictly 
positive; it will be less than 1 if a sub-beat interval is observed, but if there 
is more than one beat between observed, onsets, 7n will be greater than 1. 
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Fig. 4.6. Graphical description of the prior upon Cn- The horizontal axis is the 
sub-beat location from 1 to 24, while the associated probability p(cn) is shown on 
the vertical axis. 
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observations 

Fig. 4.7. Directed acyclic graph of the jump-Markov linear system beat model. 
The dependence between Cn and jn is deterministic, while other dependencies are 
stochastic. 

The tempo process has an initial prior, p{6o), associated with it. For the 
purposes of a general beat-tracking algorithm, it is assumed that the likely 
tempo range is 60 bpm to 200 bpm and that the prior is uniform within this 
range. 

So far, the model for tempo evolution and proposing a set of onset times 
has been considered. Finally, the observation model must be specified. Sn is 
the n^^ observed onset time and therefore corresponds to the pn in On- Thus, 
Hn = [ l O]- The state evolution error, v^, and observation error, e^, are 
given suitable distributions—usually for mathematical convenience, these are 
zero-mean Gaussians with appropriate covariances [26]. The overall model can 
be summarized by a directed acyclic graph (DAG) as shown in Fig. 4.7. It 
should be noted that even spurious onsets are assigned a score location. 
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When working with real-world audio signals, more information than just 
the onset times can be extracted from the signal, and this can aid the analysis 
of the rhythm. The most obvious example is the amplitude of onsets while 
others include a measure of chordal change and other 'salience' features as 
postulated by Parncutt [497] and Lerdahl and Jackendoff [404]. Hainsworth 
[263] utilized these in his model as a separate jump-Markov linear system for 
amplitude and a zero-order Markov model for salience (here, the salience is 
only a function of the current state and has no sequential dependency). There 
has been little research into appropriate measures of salience for extracting 
accents in music; other than the papers mentioned above, Seppanen [573] and 
Klapuri [349] also proposed features which perform this function. 

Given the above system, various estimation procedures exist. Cemgil [77] 
described the implementation of MCMC methods as well as particle filters to 
estimate the maximum a posteriori (MAP) estimate for the rhythm process, 
while Hainsworth [263] utilized particle filters to find the MAP estimate for the 
posterior of interest given hy p{ci:m Oi:n, (^i:n\si:m CLi-.m Si.n)^ where ai:n was 
the underlying amplitude process observed as ai:n, and Si.n was the observed 
set of saliences. Full details can be found in either of the publications. 

Other similar methods include an earlier approach of Cemgil's [79] where 
what he termed the 'tempogram' (which convolved a Gaussian function with 
the onset time vector and then used a localized tempo basis-function*^ to 
extract a measure of tempo strength over time) was tracked with a Kalman 
filter [41] to find the path of maximum tempo smoothness. 

Raphael's methods [537] were based around hidden Markov models where 
a triple-layered dependency structure was used: quantized beat locations in­
formed a tempo process which in turn informed an observation layer. The 
Markov transitions were learned between states from training data, and then 
the rhythmic parse evaluated in a sequential manner to decide which was the 
most likely tempo/beat hypothesis. This was tested on both MIDI and au­
dio (after onset detection) and success was good on the limited number of 
examples, though manual correction from time to time was permitted. 

Laroche [392], [393] used a maximum likelihood framework to search for 
the set of tempo parameters which best fit an audio data sample. The in­
put was processed by typical energy envelope difference methods to extract 
a list of onset times. Inter-onset times (which are phase independent) were 
then used to provide likelihoods for the 2-D search space with discretized 
tempo and swing as the two axes. This algorithm has been included in com­
mercially available Creative sound modules for several years. Lang and de 
Preitas [387] presented a very similar algorithm to that of Laroche but used 
a continuous signal representation and a slightly more complex estimation 
procedure. 

^The tempo basis function was defined as a set of weighted Dirac functions 
V^(t;r, a;) = SJ^_oo ^*^^+*2'^(^) ^^ ^ delay of r and spaced with frequency (and 
hence tempo) given by uj. 
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Hainsworth also presented a second algorithm which is essentially a refor­
mulation of the above but using Brownian motion relations as a base [266]. It 
was not as successful as the above model. Others include Takeda et al. [617] 
and Lam and Godsill [386]. 

4.10.2 Continuous Signal Representations 

The second approach to tracking the beat with stochastic models uses a detec­
tion function and attempts to model this directly instead of extracting onsets 
first. As such it must have all the elements of the above models, including a 
tempo process and a model for the likelihood of an onset being present at any 
given beat or sub-beat location; however, it must also have a model for the 
signal itself and what is expected at an onset and between these. 

Hainsworth [263] proposed a method using particle filters whereby the 
tempo was modelled as a constant velocity process similar to the one described 
above and which proposed onsets in a generative manner at likely sub-beat 
locations. The signal detection function modelled was a differenced energy 
waveform, utilizing high-frequency information, very similar to T)j{t) shown 
in the lower plot of Fig. 4.2. 

Onset locations can clearly be seen in this signal representation, and on 
close examination all onsets have a very similar evolution in time which can 
be well modelled by a hidden Markov model (HMM; see Chapter 2 for a 
definition). This is performing the task of onset detection. The model used is 
shown in Fig. 4.8 with each state having a different output distribution (also 
termed likelihood). For mathematical convenience, these are Gaussians with 
differing means and variances but sufficiently separated so that the output 
distribution of state ^i does not significantly overlap with that of ^o or 5*2, 
etc. This defines a generative model for the signal—by generative, it is meant 
that by using a random number generator and the specified distributions, 
a process with the same statistical properties as the original signal can be 
generated. 

A naive scheme simply generates proposals from the prior distributions, 
but the Viterbi algorithm (see [654] and Chapter 2) can be used to find the 
best path through the HMM and also its probability, which simplifies the 
calculation needed once an onset is hypothesized. The model worked well 
on the small number of examples tried but required the expected sub-beat 
structure to be specified by hand for robust performance. 

In comparison, Sethares et al. [577] proposed four filtered signals (time do­
main energy, spectral centroid, spectral dispersion, and one looking at group 
delay) which were then simply modelled as Gaussian noise with a higher vari­
ance at beat locations compared to between them. Looking back at Fig. 4.2, 
it can clearly be seen where the variance of the generative noise process used 
to model the signal would be higher. A model similar to those above was used 
and a particle filter environment chosen for the estimation procedure. The 
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(a) Data with states superimposed. 

(b) Directed acyclic graph of HMM model. 

Fig. 4.8. HMM for beat-tracking algorithm with Viterbi decoding included. States 
55, 56, and 5? are functionally equivalent to 54, and 58 is equivalent to So- The 
null state, 59, has no observation associated with it, therefore making transition to 
it highly unattractive. 

model did not explicitly include a model for sub-beats but seemed to function 
well on the data presented. 

A somewhat different method for tracking the beat through music was 
presented by Klapuri et al. [348], [349]. A four-dimensional observation vector 
(as a function of time) was generated by applying a similar method to that 
of Scheirer [564] to generate resonator outputs but using different frequency 
bands and a different method for extracting the energy signal which also cap­
tures harmonic onsets. A measure of salience, dependent upon the normalized 
instantaneous energies of the comb-filter resonators, was also attached to this. 

A problem with Scheirer's method was that it was prone to switch be­
tween different tempo hypotheses (usually doubling or halving), and Klapuri 
addressed this using an HMM to impose some smoothness to the tempo evo­
lution. He proposed a joint density for the estimation of the period-lengths 
of the tatum, tactus, and measure level processes, applying a combination of 
sensible priors and dependencies learned from data. The phase of the tatum 
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and tact us pulse were estimated to maximize the observed salience at beats. In 
estimating the phase of the super-beat (measure) structure, a key assumption 
made was the expectation of two simple beat patterns which occur frequently 
in so-called 4/4 time. While this should considerably aid performance with 
music in this time signature, performance in the super-beat estimation was 
degraded for examples with a ternary metre (e.g. 3/4). Nevertheless, the algo­
rithm was tested on a significant database and was successful. A comparison 
is presented below. 

4.11 Comparison of Algorithms 

If the focus is restricted to beat tracking in musical audio signals, then the 
methods discussed above in Sections 4.5 to 4.10 have various strengths and 
weaknesses. This section will highlight them and then present a comparison 
of several methods. 

Rule-based approaches have never been applied to audio and have solely 
been used to code sensible but simple music theoretic rules in order to model 
music psychology expectations. The reason that they have never been used on 
audio signals is possibly because they are not easily expanded to cope with 
erroneous data and hence would perform poorly on the inexact data produced 
by onset detection algorithms. 

Autocorrelative and histogram methods have much in common; they are 
both methods of obtaining a tempo profile, the difference being that autocor­
relation works with a sampled signal while histogramming works with discrete 
onset times. They are therefore useful for finding the tempo but are not im­
mediately applicable to extracting the beat phase (this is a secondary task). 

Adaptive oscillators are particularly suited to causal operation and have 
some psychoacoustic justification [390]. However, they have not been applied 
to audio signals. This may be because the update routines required on adaptive 
single filters are not easily adaptable to real data or possibly because they are 
not well able to cope with sub-beats. Many of the systems also required manual 
initiation to set the correct tempo and phase. Comb-filters as implemented 
by Scheirer [564] and used by Klapuri et al. [349] have been applied to audio 
signals. 

This leaves multiple agent approaches and probabilistic, model-based 
methods. These two bear some significant similarities, but the latter delim­
its the underlying assumptions from estimation procedures whereas they are 
intermixed by multiple agent methods. This makes the adaption and opti­
mization of the probabilistic models easier, though reasonable success has 
been reported with both approaches. 

4.11.1 Tests 

There has been a move in recent years towards testing algorithms with a large 
database of audio samples collated from all genres and usually from standard, 
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commercially available sources. This was begun with Seppanen [572] with a 
database of 330 audio samples, while Klapuri [349] used 478. A comparison 
was also undertaken by Gouyon et al. [248] into tempo induction from audio 
signals using a large dataset of 3199 examples from three databases and is 
currently the most extensive. 

The comparison below used a hand-labelled database of 222 samples of 
around one minute divided into six categories: rock/pop, dance, jazz, folk, 
classical, and choral. The tempos were limited to the range 60-200 bpm with 
the exception of the choral samples. Several examples exhibited significant ru-
bato, 8 had a rallantando (slowing down), and 4 had a sudden tempo change. 
Forty-two also had varying amounts of swing added. Full details of the data­
base can be found in [263]. 

Another problem is how to evaluate the performance of a beat-tracking 
algorithm. As of this writing, no study has yet made a serious attempt to no-
tate the complete rhythm and idealized score locations of every onset present 
in the audio sample;^ rather the assessment has been limited to 'tapping in 
time' to the sample and producing an output of beat times that agrees with 
those of trained human musicians. 

Klapuri [349] gives two criteria, which are adopted here, to judge the per­
formance of an algorithm on a particular example. The first is 'continuous 
length' (C-L), by which it is meant the longest continually correctly tracked 
segment, expressed as a percentage of the whole. Thus, a single error in the 
middle of a piece gives a C-L result of 50%. Another, looser criterion is sim­
ply the total percentage of the whole which is correctly tracked (defined as 
'TOT' from now on). Here, both are expressed as percentages of the manually 
detected beats which are correctly tracked, rather than of the time stretches 
these represent. Using Klapuri's definitions once again, a beat is determined 
to be correctly tracked if the phase is within ± 15% and the tempo period is 
correct to within ± 10%. 

Here, the trackers^ of Scheirer [564], Klapuri [349], and Hainsworth [263] 
are compared and the results are shown in Table 4.2. The columns under 'Raw' 
are base results according to the above criteria; however, it is sometimes found 
that the beat tracker tracks something which is not the predefined beat but is 
a plausible alternative. Usually, this is half the correct tempo (in the case of 
fast samples) or double (for particularly slow examples). When swing is en­
countered, it is occasionally possible for the trackers to even track at one and a 
half times the tempo (i.e., tracking three to every two correct beats). Doubling 
or halving of tempo is psychologically plausible and hence acceptable; however 
the errors encountered with swing are not. The second set of columns com­
pares results once doubling and halving of tempo are allowed. Performance 
on individual genres is shown graphically in Fig. 4.9 for Hainsworth's and 
Klapuri's algorithms. 

^The closest is probably Goto and Muraoka [234]. 
^The beat trackers tested were all the original authors' own. 
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(b) Klapuri's results 

Fig . 4.9. Graphical display of the results for Hainsworth's (top) and Klapuri's beat 
tracker. The solid line is the raw result while the dashed line is the 'allowed' result. 
Note that ordering is strictly by performance for each genre under any particular 
criteria. 
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Table 4.2. Comparison of results on the database. The three beat trackers use 
audio adata as inputs. 

Raw Allowed 
C-L (%) TOT (%) C-L (%) TOT (%) 

Hainsworth 45.1 52.3 65.5 80.4 
Scheirer 23.8 38.9 29.8 48.5 
Klapuri 55.9 61.4 71.2 80.9 

It can be seen that Klapuri's model performs the best in terms of raw 
results and continuous tracking, while the performance of Hainsworth when 
considering total number of beats with allowed tempo mistakes is about equiv­
alent. Klapuri's method performs better than Hainsworth's with rock/pop and 
dance, though it fails somewhat with jazz. Hainsworth's outperforms Klapuri's 
on choral music, probably because of the onset detection algorithm used by 
Hainsworth (described above in Section 4.4), which gives superior performance 
for these choral samples. 

Both Klapuri's and Hainsworth's models significantly outperform Scheirer's. 
Klapuri [349] compared his model to Scheirer's and also Dixon's [148] mod­
ified MIDI beat-tracker. Seppanen [572] reported that his program was less 
successful than Scheirer's, tested on a large database that was a subset of 
Klapuri's. Also, on the related issue of tempo induction, the comparison by 
Gouyon et al. [243] showed that Klapuri's method performed the best at this 
task. 

Finally, performance of one of the stochastic models which uses a sig­
nal representation is shown on a single example in Fig. 4.10. This shows 
Hainsworth's second stochastic model (described above in Section 4.10.2) with 
a swing example. The model is very successful at extracting onsets and is 
good at tempo tracking. The limitation is that the expected sub-beat struc­
ture has to be specified in advance. Thus, the model cannot be considered 
pan-genre. 

4.12 Conclusions 

This chapter has discussed a number of differing approaches to the generic 
task of 'beat tracking'. Under this catch-all term, there are actually a number 
of possible goals, from replicating human tempo preference to a full labelling 
of every onset as to its correct quantized score location. Recent methods have 
aimed to extract the correct tempo and beat phase from audio signals ('tap­
ping in time to the music'). 

Current methods such as Klapuri's [349] or Hainsworth's [263], [266] are, 
starting to achieve a reasonable level of success over databases of significant 
size and complexity. However, they are less successful on certain genres such 
as jazz (where part of the appeal of the style is its rhythmic complexity) 
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Fig. 4.10. Output of Hainsworth's second stochastic beat tracker (see Sec­
tion 4.10.2) for a swing example, a) shows tracked tempo (dashed) and hand-labelled 
tempo (solid); b) shows the onset detection process for the first 10 seconds with solid 
vertical lines denoting detected beats and dashed vertical lines showing the detected 
swung quavers. 

and classical music (which is prone to radical rhythmic evolution and also 
has fewer easily extractable beat cues). Classical music particularly seems 
to require pitch analysis in order to extract reliable beat cues. Thus, while 
the aim is obviously to have a generic beat tracker which works equally well 
with all genres, it is likely tha t in the short term, style-specific cues will have 
to be added. Klapuri [353] and Goto [221] bo th apply knowledge of typical 
drum pat terns in popular music to their algorithms. Dixon [149] goes a step 
further and uses rhythmic energy pat terns extracted from audio samples to 
aid classification of ballroom dance examples, a process which could easily be 
reversed to aid beat tracking. 

In addition to bet ter modelling specific styles and the rhythmic expecta­
tions therein, the second area for expansion is to look at bet ter signal rep­
resentations for extracting the cues needed to perform beat tracking. Rock 
and pop music with its drum-heavy style is easily processed using energy 
measures; classical music is much harder to process and only relatively re­
cently have methods been applied to extract note changes where there is little 
transient energy. These will need to be improved. 
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In conclusion, the field of beat tracking or rhythmic analysis is one area 
of musical audio processing where some significant success has been achieved 
and there is much to build upon. However, there is also room for improvement 
and further accomplishments. 




