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11.1 Introduction 

This chapter introduces a research approach called 'music scene description^ 
[232], [225], [228], where the goal is to build a computer system that can under­
stand musical audio signals at the level of untrained human listeners without 
trying to extract every musical note from music. People listening to music can 
easily hum the melody, clap hands in time to the musical beat, notice a phrase 
being repeated, and find chorus sections. The brain mechanisms underlying 
these abilities, however, are not yet well understood. In addition, it has been 
difficult to implement these abilities on a computer system, although a system 
with them is useful in various applications such as music information retrieval, 
music production/editing, and music interfaces. It is therefore an important 
challenge to build a music scene description system that can understand com­
plex real-world music signals like those recorded on commercially distributed 
compact discs (CDs). 

Music scene description differs from two popular approaches to deal with 
music signals, sound source separation and traditional automatic music tran­
scription (in the narrow sense^). Although these technologies are valuable from 
an engineering viewpoint, neither separation nor transcription is necessary or 
sufficient for understanding music. 

• It is possible to understand music without sound source separation. 
The fact that human listeners understand various properties of audio sig­
nals is not necessarily evidence that the human auditory system extracts 
the audio signal of each individual source. Even if a mixture of two compo­
nents cannot be separated, it can be understood from their salient features 
that the mixture includes them. In fact, from the viewpoint of auditory 

^The term 'automatic music transcription' in this chapter refers to a traditional 
approach of transcribing all musical notes as a score, while the term 'automatic 
music transcription' in this book has a broader meaning including the music scene 
description as described in Chapter 1 of this volume. 
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Fig. 11.1. Music scene descriptions. 

psychology, it has been pointed out that human hsteners do not perform 
sound source separation: perceptual sound source segregation is differ­
ent from signal-level separation. For example, Bregman noted that 'there 
is evidence that the human brain does not completely separate sounds' 
[50]. The approach of developing methods for monaural or binaural sound 
source separation might deal with a hard problem which is not solved by 
any mechanism in this world (not solved even by the human brain). 

• It is possible to understand music without complete music transcription. 
Music transcription, identifying the names (symbols) of musical notes, is a 
difficult skill mastered only by trained musicians. As pointed out by Goto 
[239], [240], [232] and Scheirer [565], untrained listeners understand music 
to some extent without mentally representing audio signals as musical 
scores. For example, as known from the observation that a listener who 
cannot identify the name and constituent notes of a chord can nevertheless 
feel the harmony and chord changes, a chord is perceived as combined 
whole sounds (tone colour) without reducing it to its constituent notes 
(like reductionism). Furthermore, even if it is possible to derive separated 
signals and musical notes, it would still be difficult to obtain high-level 
music descriptions like melody lines and chorus sections. 

The music scene description approach therefore emphasizes methods that 
can obtain a certain description of a music scene from sound mixtures of 
various musical instruments in a musical piece. Here, it is important to discuss 
what constitutes an appropriate description of music signals. Since various 
levels of abstraction for the description are possible, it is necessary to consider 
which level is an appropriate first step towards the ultimate description in 
human brains. Goto [232], [228] proposed the following three viewpoints: 

• An intuitive description that can be easily obtained by untrained listeners. 
• A basic description that trained musicians can use as a basis for higher-

level music understanding. 
• A useful description facilitating the development of various practical ap­

plications. 
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According to these viewpoints, the following local and global descriptions 
(Fig. 11.1) have been proposed for Western music: 

1. Melody and bass lines 
Melody and bass hnes represent the temporal trajectory of the melody and 
bass. The melody is a series of single tones and is heard more distinctly 
than the rest. The bass is a series of single tones and is the lowest frequency 
part in polyphonic music. Note that a melody or bass line here is not 
represented as a series of musical notes; it is a continuous representation 
of fundamental frequency (FO, perceived as pitch) and power transitions. 
Only music with distinct melody and bass lines is dealt with for this 
description. 

2. Hierarchical beat structure 
Hierarchical beat structure represents the fundamental temporal structure 
of music and comprises the quarter-note (beat) and measure levels—i.e., 
the positions of quarter-note beats and bar lines (corresponding to the 
metrical levels of 'beat' and 'bar' in Fig. 4.1, p. 106). 

3. Drums 
Drums represent onset times of principal drum sounds, such as bass and 
snare drums. Their temporal patterns form drum patterns. Only music 
with drum sounds is dealt with for this description. 

4. Chorus sections and repeated sections 
Chorus sections represent the most representative, uplifting, and promi­
nent thematic sections in the structure of a musical piece (especially in 
popular music). Since chorus sections are usually repeated, they are rep­
resented as a list of the start and end points of every chorus section. 
Repeated sections represent the repetition of temporal regions with vari­
ous lengths. Only music with distinct repeated choruses, such as popular 
music, is dealt with for the description of chorus sections, while any music 
can be dealt with for the description of repeated sections. 

The idea behind these descriptions came from introspective observation of how 
untrained listeners listen to music. The following sections introduce methods 
for producing these descriptions from music signals such as CD recordings, 
which contain simultaneous sounds of various instruments (with or without 
drum sounds). In general, these methods deal with monaural audio signals 
because stereo signals on CDs can be easily converted to monaural signals by 
averaging the left and right channels. While methods depending on stereo 
information [24] can have better performance than methods dealing with 
monaural signals, such stereo-based methods cannot be applied to monau­
ral signals. Methods assuming monaural signals, on the other hand, can be 
applied to stereo signals and be considered essential to music understanding 
since human listeners have no difficulty understanding the above descriptions 
even from monaural signals. 
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11.2 Est imating Melody and Bass Lines 

The estimation of melody and bass lines is important because the melody 
forms the core of Western music and is very influential in the identity of a 
musical piece, while the bass is closely related to the tonality (see Chapter 1). 
These lines are fundamental to the perception of music by both musically 
trained and untrained listeners. They are also useful in various apphcations 
such as automatic music indexing for information retrieval (e.g., search­
ing for a song by singing a melody), computer participation in live human 
performances, musical performance analysis of outstanding recorded perfor­
mances, and automatic production of accompaniment tracks for karaoke using 
CDs. 

It is difficult to estimate the fundamental frequency (FO) of melody and 
bass lines in monaural sound mixtures from CD recordings. Most previ­
ous FO estimation methods cannot be applied to this estimation because 
they require that the input audio signal contain just a single-pitch sound 
with aperiodic noise or that the number of simultaneous sounds be known 
beforehand. The main reason FO estimation in sound mixtures is difficult 
is that, in the time-frequency domain, the frequency components of one 
sound often overlap the frequency components of simultaneous sounds. In 
popular music, for example, part of the voice's harmonic structure is often 
overlapped by harmonics (overtone partials) of the keyboard instrument 
or guitar, by higher harmonics of the bass guitar, and by noisy inhar­
monic frequency components of the snare drum. A simple method for lo­
cally tracing a frequency component is therefore neither reliable nor stable. 
Moreover, FO estimation methods relying on the existence of the FOs fre­
quency component (the frequency component corresponding to the FO) not 
only cannot handle the missing fundamental, but are also unreliable when 
the FOs frequency component is smeared by the harmonics of simultaneous 
sounds. 

FO estimation of melody and bass lines in CD recordings was first achieved 
in 1999 by Goto [232], [222], [228]. Goto proposed a real-time method called 
PreFEst (Predominant-FO Estimation method) which estimates the melody 
and bass lines in monaural sound mixtures. Unlike previous FO estimation 
methods, PreFEst does not assume the number of sound sources, locally trace 
frequency components, or even rely on the existence of the FOs frequency 
component. PreFEst basically estimates the FO of the most predominant har­
monic structure—the most predominant FO corresponding to the melody or 
bass line—within an intentionally limited frequency range of the input mix­
ture. It simultaneously takes into consideration all possibilities for the FO and 
treats the input mixture as if it contained all possible harmonic structures 
with different weights (amplitudes). To enable the application of statistical 
methods, the input frequency components are represented as a probability 
density function (pdf), called an observed pdf. The point is that the method 
regards the observed pdf as a weighted mixture of harmonic-structure tone 
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Fig. 11.2. Overview of PreFEst (Predominant-FO Estimation method) for estimat­
ing melody and bass lines in CD recordings. In this figure, BPF denotes bandpass 
filtering. 

models (represented by pdfs) of all possible FOs. It simultaneously estimates 
both their weights corresponding to the relative dominance of every possible 
harmonic structure and the shape of the tone models by maximum a posteri­
ori probability (MAP) estimation (see Chapter 2, p. 40 for an introduction to 
MAP estimation methods) considering their prior distribution. It then consid­
ers the maximum-weight model as the most predominant harmonic structure 
and obtains its FO. The method also considers the FOs temporal continuity 
by using a multiple-agent architecture. 

The following sections first explain the PreFEst method in detail and then 
introduce other methods for estimating the melody line developed by Paiva, 
Mendes, and Cardoso [494], [493], Marolt [435], [436], and Eggink and Brown 
[169], and a method for estimating the bass line developed by Hainsworth 
and Macleod [264]. Figure 11.2 shows an overview of PreFEst. PreFEst con­
sists of three components, the PreFEst front end for frequency analysis, the 
PreFEst core to estimate the predominant FO, and the PreFEst back end to 
evaluate the temporal continuity of the FO. Since the melody line tends to 
have the most predominant harmonic structure in middle and high-frequency 
regions, and the bass line tends to have the most predominant harmonic struc­
ture in a low-frequency region, the FOs of the melody and bass lines can be 
estimated by applying the PreFEst core with appropriate frequency-range 
limitation. 
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11.2.1 PreFEst Front End: Forming the Observed Probability 
Density Functions 

The PreFEst front end first uses a multirate filterbank to obtain adequate 
time-frequency resolution under a real-time constraint. By using an instanta­
neous frequency-related measure [84], [7], [338] for the existence of frequency 
components, it then extracts frequency components ^^^^u) from the short-
time Fourier transform (STFT) X{iy,t) of a signal 

T/it)( \ _ / i^(^'OI if ^ ^^^ ^ frequency component, m i^ 
^ ^ " \ 0 otherwise, ^ ' ' 

where t is the time measured in units of frame-shifts (10 ms), and i/ is the log-
scale frequency denoted in units of cents (a musical-interval measurement). 
Frequency /HZ in Hertz is converted to frequency /cent in cents so that there 
are 100 cents to a tempered semitone and 1200 to an octave: 

/cent = 1200 l0g2 ^ ^ / " % , . (11.2) 
440 X 2i2"-^ 

To obtain two sets of bandpass-filtered frequency components, one for the 
melody fine (261.6-4186 Hz) and the other for the bass line (32.7-261.6 Hz) 
[228],^ the PreFEst front end uses bandpass filters (BPFs) whose frequency 
response is BPF î(z/) where u denotes the melody line {u = 'melody') or the 
bass line {u = 'bass line'). Each set of the bandpass-filtered components is 
finally represented as an observed pdf p^ (^) 

(.) BPF„(.) !^W(.) 

11.2.2 PreFEst Core: Estimating the FOs Probability Density 
Function 

For each melody or bass line set of filtered frequency components represented 
as an observed pdf p ^ (^), the PreFEst core forms a probability density func­
tion of the FO, called the FOs pdf, p)pQ{iyo), where I/Q is the log-scale funda­
mental frequency in cents. The PreFEst core considers each observed pdf to 
have been generated from a weighted-mixture model of the tone models of all 
possible FOs; the tone model is the pdf corresponding to a typical harmonic 
structure and indicates where the harmonics (overtone partials) of the FO 
tend to occur (Fig. 11.3). Because the weights of tone models represent the 
relative dominance of every possible harmonic structure, these weights can be 
regarded as the FOs pdf: the more dominant a tone model is in the mixture, 
the higher the probability of the FO of its model. 

^The method finds the FO whose harmonics are most predominant in those lim­
ited frequency ranges. In other words, whether the FO is within each limited range or 
not, PreFEst tries to estimate the FO which is supported by predominant harmonic 
frequency components within that range. 
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Fig. 11.3. Model parameters of multiple adaptive tone models p(î |i/o, i, M (^o, i))-

Weighted-Mixture Model of Adaptive Tone Models 

To deal with diversity of the harmonic structure, the PreFEst core can use 
several types of harmonic-structure tone models. The pdf of the i-th tone 
model for each FO UQ is denoted by p(i/|i/o,^,M^*H^o,0) (̂ ^^ ^ig. 11.3), where 
the model parameter ^^^\VQ^I) represents the shape of the tone model. The 
number of tone models is Î ^ (that is, i = l , . . . , I i t ) , where u denotes the 
melody line {u = 'melody') or the bass line (u = 'bass line'). Each tone model 
is defined by 

Mu 

p(i/|z/o,^,M^*H^o,^)) = 5 Z P(^.^ko,^,M^*H^o,^)), (11.4) 
7 n = l 

p(z/, m|z/o, h M^*^(^0,0) = ĉ *̂ {rn\̂ ô  0 ^ ( ^ 5 ^o + 1200 log2 m, al), (11.5) 

li^'\v^,i) = {c^'\m\uo4) I m - l , . . . , M , } , (11.6) 

where M^ is the number of harmonics considered, cr̂  is the variance of the 
Gaussian distribution A/'(i/; Z/Q^^U) (̂ ^^ (2.16), p. 29 for a definition), and 
c^^\m\vQ^i) determines the relative amplitude of the m-th harmonic compo­
nent (the shape of the tone model) and satisfies 

^c(*)(m| i /o , i ) = l. (11-7) 
7 7 1 = 1 

In short, this tone model places a weighted Gaussian distribution at the po­
sition of each harmonic component. 

The PreFEst core then considers the observed pdf Px^ {y) to have been 
generated from the following model p(i/|0^*^), which is a weighted mixture of 
all possible tone models p[v\yQ,i^ii^^\vo^i)): 

ph I^ 

p(H0<*)) = I " Vw;«(i/o,i) p{v\v^,i,n^'\uo,i)) di^o, (11-8) 

6>(*'= {wW,M«}, (11.9) 
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i(;W = {w^'Hiyo,i) I F ,̂ < î o < F^,f = 1 , . . . , I„}, (11.10) 

M^ = {/xW(j/o,i) \F',<uo<K,i = 1 , . . . , I«}, (11.11) 

where F\^ and FĴ  denote the lower and upper Hmits of the possible (allowable) 
FO range and w^^\iyo, i) is the weight of a tone model p(i/|z^o, h I^^^H^o^ ^)) that 
satisfies 

^'Tw^'Huo.i)diyo = l- (11.12) 

Because the number of sound sources cannot be known a priori, it is important 
to simultaneously take into consideration all FO possibilities as expressed in 
(11.8). If it is possible to estimate the model parameter 6^^^ such that the 
observed pdf p^ (ly) is likely to have been generated from the model p(i/|0^*^), 
the weight w^*\uo,i) can be interpreted as the FOs pdf pi?o(^o)-

PFO(^O) = J^w^'\iyo.i) (K < ^0 < F^). (11.13) 

In t roducing a Pr io r Dis t r ibut ion 

To use prior knowledge about FO estimates and the tone model shapes, a prior 
distribution pou(^ ) of ̂ ^̂ ^ is defined as follows: 

Po„(0^*') = \>ou{w^'^) Po«(At('>), (11.14) 

Here, poui'w^^^) and pouifi^^^) are unimodal distributions: poit(ty^^^) takes 
its maximum value at K;QJ(Z/O,0 ^^^ POU(M^*^) takes its maximum value 
â  MoLVo,^ (= {col{m\iyo,i) \ m = 1,. . . ,M^}), where i(;^*J(i/o,i) and 
MouC ô̂ O ^^^ ^he most probable parameters. Figure 11.4 shows two exam­
ples of the most probable tone model shape parameters, fjLQ^{i/o,i), used in 
Goto's implementation. Z^ and Z^ are normalization factors, and fi^u and 
Pliuii^o, i) are parameters determining how much emphasis is put on the max­
imum value. The prior distribution is not informative (i.e., it is uniform) when 
Piuu and PfiuiJ^Oi 0 are 0, corresponding to the case when no prior knowledge 
is available. In practice, however, /?^w(i^o?0 should not be 0 and a prior dis­
tribution of the tone model shapes should be provided. This is because if the 
prior distribution of the tone model shapes is not used, there are too many 
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Fig. 11.4. Examples of prior distribution of the tone model shapes 

degrees of freedom in their shapes. Without the prior distribution, unrealistic 

tone model shapes, such as a shape having only one salient component at 

frequency of the fourth harmonic component, could be estimated. In (11.15) 

and (11.16), D^{W''QI',W^^^) and D^{fi^Q^{uo,i)',ii^^\i/o,i)) are the following 

KuUback-Leibler information: 

nW/ duo 

Mu 

D^(Mo«('^o,i);M^*'K,i)) = E 4 « ( " ^ k o , i ) log 
m = l 

Col{'m\vo,i) 

c(*)(m|i/Oii) 

(11.17) 

(11.18) 

These prior distributions were originally introduced for the sake of analyt­
ical tractabili ty of the expectation maximization (EM) algorithm to obtain 
intuitive (11.25) and (11.26). 

M A P E s t i m a t i o n U s i n g t h e E M A l g o r i t h m 

The problem to be solved is to estimate the model parameter 6^^\ taking into 

account the prior distribution po^i'^ )^ when \y^\u) is observed. The MAP 

estimator of 6^^^ is obtained by maximizing 
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p<*V) (logp(i^|e^*') + logpo„(0(*')) du. (11.19) 
/ 

Because this maximization problem is too difficult to solve analytically, the 
PreFEst core uses the expectation maximization (EM) algorithm (see the 
presentation of the EM algorithm in Chapter 2, p. 35 and [138]), which is an 
algorithm where two steps—the expectation step (E-step) and the maximiza­
tion step (M-step)—are iteratively applied to compute MAP estimates from 
incomplete observed data (i.e., from p^(i/)) . With respect to 0^*\ each itera­
tion updates the old estimate 6'^^^ — {w'^^\ fi'^^^ to obtain a new (improved) 

estimate 0 = {w^^\Jl^ ^}. For each frame t, it;'̂ *̂  is initialized with the final 
estimate {t;̂ *~̂ ^ after iterations at the previous frame t — 1; ^'^^^ is initialized 
with the most probable parameter /XQJ in the current implementation. 

By introducing the hidden (unobservable) variables Z/Q, ^ and m, which, 
respectively, describe which FO, which tone model, and which harmonic com­
ponent were responsible for generating each observed frequency component at 
v^ the two steps can be specified as follows: 

1. E-step: 
Compute the following (5MAP(^^^^|0'^^^) for the MAP estimation: 

QMAP(^^*V'^'^) - Q{e^'^\e'^'^)^\ogpou{e^'^). (11.20) 

/

oo 

-00 

(11.21) 

where Q{6^^^ \0'^^^) is the conditional expectation of the mean log-likelihood 
for the maximum likehhood estimation. Eî Q,i,rn[<̂ |̂ ] denotes the condi­
tional expectation of a with respect to the hidden variables Z/Q, h ^^^ ^? 
with the probability distribution determined by condition b. 

2. M-step: 

Maximize QMAP(^ |^ ) as a function of 6^*^ to obtain an updated (im­

proved) estimate 9 : 

e^'^ = argmax QMAP(^^*^|0'^*^). (11.22) 

In the E-step, Q(0^*V^*^) is expressed as 

/

oo ft ^u ^y^u 

p(z/o, ,̂ m|z/, '̂(*^) log p(i/, Z/Q, ,̂ m|^^*^) duodu, (11.23) 
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where the complete-data log-hkeUhood is given by 

logp(i/,z/o,i,m|0^*^) =log{w^^\iyo,i) p{iy,m\uo,i, fi^^\uo,i))). (11.24) 

Regarding the M-step, (11.22) is a conditional problem of variation, where 
the conditions are given by (11.7) and (11.12). This problem can be solved by 
using Euler-Lagrange differential equations with Lagrange multipliers [222], 
[228] and the following new parameter estimates are obtained: 

1 1 PlVU 

where Wul{uo^i) and c i i ^^ l ^o , ^ are, when the noninformative prior distrib­
ution {pwu = 0 and Pllu{i^o, i) = 0) is given, the following maximum likelihood 
estimates: 

WIL{UQ,1)= / py{jy)—^ \ / ~ du, 

J~^ II: E L I ^'^'^ iv. k) p(̂ |7/. A:, //'(*) (ry, k)) dv 

(11.27) 

- ( * ) / I •̂  ^ 

f"^ it)., w'^*^{iyo,i) p(z/,m|t/o,i,/x^^^)(^o,i)) ^^ 

(11.28) 

After the above iterative computation of (11.25) and (11.26),^ the FOs pdf 
PFO(^O) ^^^ ^^ obtained from w^^\uo^ i) according to (11.13). The tone model 
shape c^^\m\iyo^i), which is the relative amplitude of each harmonic compo­
nent of all types of tone models p{iy\iyo,i, fi^^\uo, i)), can also be obtained. 

11.2.3 PreFEst Back End: Sequential FO Tracking by 
Multiple-Agent Architecture 

A simple way to identify the most predominant FO is to find the frequency 
that maximizes the FOs pdf. This result is not always stable, however, because 
peaks corresponding to the FOs of simultaneous sounds sometimes compete in 
the FOs pdf for a moment and are transiently selected, one after another, as 
the maximum. 

^In implementing the PreFEst core, this iterative computation is simple enough 
to perform only (11.25), (11.26), (11.27), and (11.28). 
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Fig. 11.5. Audio-synchronized real-time graphics output for a popular music ex­
cerpt with drum sounds: (a) frequency components, (b) the corresponding melody 
and bass lines estimated (final output), (c) the corresponding FOs pdf obtained when 
estimating the melody line, and (d) the corresponding FOs pdf obtained when es­
timating the bass line. These interlocking windows have the same vertical axis of 
log-scale frequency. 

The PreFEs t back end therefore considers the global temporal continuity of 
the FO by using a multiple-agent architecture in which agents track different 
temporal trajectories of the FO [228]. Each agent s tar ts tracking from each 
salient peak in the FOs pdf, keeps tracking as long as it is temporally continued, 
and stops tracking when its next peak cannot be found for a while. The final 
FO output is determined on the basis of the most dominant and stable FO 
trajectory. Figure 11.5 shows an example of the final output . 
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11.2.4 Other M e t h o d s 

While the PreFEst method resulted from pioneering research regarding melody 
and bass estimation and weighted-mixture modelling for FO estimation, many 
issues still need to be resolved. For example, if an application requires MIDI-
level note sequences of the melody line, the FO trajectory should be segmented 
and organized into notes. Note that the PreFEst method does not deal with 
the problem of detecting the absence of melody and bass lines: it simply out­
puts the predominant FO for every frame. In addition, since the melody and 
bass lines are generated from a process that is statistically biased rather than 
random—i.e., their transitions are musically appropriate this bias can also be 
incorporated into their estimation. This section introduces other recent ap­
proaches [494], [493], [435], [436], [169] that deal with these issues in describing 
polyphonic audio signals. 

Paiva, Mendes, and Cardoso [494], [493] proposed a method of obtaining 
the melody note sequence by using a model of the human auditory system 
[595] as a frequency-analysis front end and applying MIDI-level note track­
ing, segmentation, and elimination techniques. Although the techniques used 
differ from the PreFEst method, the basic idea that 'the melody generally 
clearly stands out of the background' is the same as the basic PreFEst con­
cept that the FO of the most predominant harmonic structure is considered the 
melody. The advantage of this method is that MIDI-level note sequences of the 
melody line are generated, while the output of PreFEst is a simple temporal 
trajectory of the FO. The method first estimates predominant FO candidates 
by using correlograms (see Chapter 8) that represent the periodicities in a 
cochleagram (auditory nerve responses of an ear model). It then forms the 
temporal trajectories of FO candidates: it quantizes their frequencies to the 
closest MIDI note numbers and then tracks them according to their frequency 
proximity, where only one-semitone transition is considered continuous. After 
this tracking, FO trajectories are segmented into MIDI-level note candidates 
by finding a sufficiently long trajectory having the same note number and by 
dividing it at clear local minima of its amplitude envelope. Because there still 
remain many inappropriate notes, it eliminates notes whose amplitude is too 
low, whose duration is too short, or which have harmonically related FOs and 
almost same onset and offset times. Finally, the melody note sequence is ob­
tained by selecting the most predominant notes according to heuristic rules. 
Since simultaneous notes are not allowed, the method eliminates simultaneous 
notes that are less dominant and not in a middle frequency range. 

Marolt [435], [436] proposed a method of estimating the melody line by 
representing it as a set of short vocal fragments of FO trajectories. This method 
is based on the PreFEst method with some modifications: it uses the PreFEst 
core to estimate predominant FO candidates, but uses a spectral modelling 
synthesis (SMS) front end that performs the sinusoidal modelling and analysis 
(see Chapters 1 and 3) instead of the PreFEst front end. The advantage of 
this method is that the FO candidates are tracked and grouped into melodic 
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fragments (reasonably segmented signal regions that exhibit strong and stable 
FO) and these fragments are then clustered into the melody line. The method 
first tracks temporal trajectories of the FO candidates (salient peaks) to form 
the melodic fragments by using a salient peak tracking approach similar to 
the PreFEst back end (though it does not use multiple agents). Because the 
fragments belong to not only the melody (lead vocal), but also to different 
parts of the accompaniment, they are clustered to find the melody cluster by 
using Gaussian mixture models (GMMs) according to their five properties: 

• Dominance (average weight of a tone model estimated by the EM algo­
rithm) , 

• Pitch (centroid of the FOs within the fragment), 
• Loudness (average loudness of harmonics belonging to the fragment), 
• Pitch stability (average change of FOs during the fragment), and 
• Onset steepness (steepness of overall loudness change during the first 50 

ms of the fragment). 

Eggink and Brown [169] proposed a method of estimating the melody 
line with the emphasis on using various knowledge sources, such as knowl­
edge about instrument pitch ranges and interval transitions, to choose the 
most likely succession of FOs as the melody line. Unlike other methods, this 
method is specialized for a classical sonata or concerto, where a solo melody 
instrument can span the whole pitch range, ranging from the low tones of a 
cello to a high-pitched flute, so the frequency range limitation used in the 
PreFEst method is not feasible. In addition, because the solo instrument does 
not always have the most predominant FO, additional knowledge sources are 
necessary to extract the melody line. The main advantage of this method is the 
leverage provided by knowledge sources, including local knowledge about an 
instrument recognition module and temporal knowledge about tone durations 
and interval transitions, which are integrated in a probabilistic search. Those 
sources can both help to choose the correct FO among multiple concurrent FO 
candidates and to determine sections where the solo instrument is actually 
present. The knowledge sources consist of two categories, local knowledge and 
temporal knowledge. The local knowledge concerning FO candidates obtained 
by picking peaks in the spectrum includes 

• FO strength (the stronger the spectral peak, the higher its likelihood of 
being the melody), 

• Instrument-dependent FO likelihood (the likehhood values of an FO candi­
date in terms of its frequency and the pitch range of each solo instrument, 
which are evaluated by counting the frequency of its FO occurrence in 
different standard MIDI files), and 

• Instrument likelihood (the likelihood values of an FO candidate being pro­
duced by each solo instrument, which are evaluated by the instrument 
recognition module). 
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The instrument recognition module uses trained Gaussian classifiers of the 
frequency and power of the first ten harmonic components, their deltas, and 
their delta-deltas, which are taken from the spectrum for each FO candidate. 
On the other hand, the temporal knowledge concerning tone candidates ob­
tained by connecting FO candidates includes 

• Instrument-dependent interval likelihood (the likelihood values of an inter­
val transition between succession tones, which are evaluated by counting 
the frequency of its interval occurrence in different standard MIDI files), 
and 

• Relative tone usage (measures related to tone durations between successive 
tones, which are used to penalize overlapped tones). 

These knowledge sources are combined to find the most likely 'path' of the 
melody through the space of all FO candidates in time. Since the melody path 
occasionally follows the accompaniment, additional postprocessing is done to 
eliminate sections where the solo instrument is actually silent. 

While the above methods deal with the melody line, Hainsworth and 
Macleod [264] proposed a method of obtaining the bass note sequence by 
maintaining multiple hypotheses. The method first extracts the onset times 
of bass notes by picking peaks of a smoothed temporal envelope of a total 
power below 200 Hz. It then generates hypotheses regarding the FO of each 
extracted note; the FO and amplitude of each hypothesis are estimated by 
fitting a quadratic polynomial to a large amplitude peak and subtracting it 
from the spectrum. The first four harmonic components of those hypotheses 
are tracked over time by using a comb-filter-like analysis. Finally, the method 
selects the most likely hypothesis for each onset on the basis of its duration and 
the amplitude of harmonic components and further tidies up these hypotheses 
by removing inappropriate overlaps and relatively low amplitude notes. 

11.3 Estimating Beat Structure 

Beat tracking (including measure or bar line estimation) is defined as the 
process of organizing musical audio signals into a hierarchical beat struc­
ture (including beat and measure levels). It is also an important initial step 
in the computational modelling of music understanding because the beat is 
fundamental, for both trained and untrained listeners, to the perception of 
Western music. As described in Section 11.7.2 and Section 4.1, p. 101, there 
are many applications such as music-synchronized computer graphics, stage 
lighting control, video/audio synchronization, and human-computer improvi­
sation in live ensembles. 

Various methods for estimating the beat structure are described in detail in 
Chapter 4. Here, the synergy between the estimation of the hierarchical beat 
structure, drum patterns, and chord changes is briefly discussed. This syn­
ergy is exploited in a real-time beat-tracking system developed by Goto and 
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Muraoka [235], [220], [221]. The estimation of the hierarchical beat structure, 
especially the measure (bar line) level, requires the use of musical knowledge 
about drum patterns and chord changes; on the other hand, drum patterns and 
chord changes are difficult to estimate without referring to the beat structure 
of the beat level (quarter note level). The system addresses this issue by lever­
aging the integration of top-down and bottom-up processes (Fig. 11.6) under 
the assumption that the time signature of an input song is 4/4. The system 
first obtains multiple possible hypotheses of provisional beat times (quarter-
note-level beat structure) on the basis of onset times without using musical 
knowledge about drum patterns and chord changes. Because the onset times 
of the sounds of bass drum and snare drum can be detected by a bottom-up 
frequency analysis described in Section 5.2.3, p. 137, the system makes use 
of the provisional beat times as top-down information to form the detected 
onset times into drum patterns whose grid is aligned with the beat times. The 
system also makes use of the provisional beat times to detect chord changes 
in a frequency spectrum without identifying musical notes or chords by name. 
The frequency spectrum is sliced into strips at the beat times and the domi­
nant frequencies of each strip are estimated by using a histogram of frequency 
components in the strip [240]. Chords are considered to be changed when the 
dominant frequencies change between adjacent strips. After the drum patterns 
and chord changes are obtained, the higher-level beat structure, such as the 
measure level, can be estimated by using musical knowledge regarding them. 

11.4 Estimating Drums 

The detection of the onset times of drum sounds is important because the 
basic rhythms of popular music pieces including drum sounds are mainly 
characterized by drum performances. As described in Section 11.7.1, there 
are many applications such as rhythm-based music information retrieval and 
genre classification. 

Various methods for detecting drum sounds are described in detail in 
Chapter 5. 

11.5 Estimating Chorus Sections and Repeated Sections 

Chorus ('hook' or 'refrain') sections of popular music are the most represen­
tative, uplifting, and prominent thematic sections in the music structure of 
a song, and human listeners can easily understand where the chorus sections 
are because these sections are the most repeated and memorable portions of a 
song. Automatic detection of chorus sections is essential for the computational 
modelling of music understanding and is useful in various practical applica­
tions. In music browsers or music retrieval systems, it enables a listener to 
quickly preview a chorus section as a 'music thumbnail' (a musical equivalent 
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Fig. 11.6. Synergy between the estimation of the hierarchical beat structure, drum 
patterns, and chord changes. Drum patterns and chord changes are obtained, at 
'Higher Analysis' in the figure, by using provisional beat times as top-down infor­
mation. The hierarchical beat structure is then estimated, at 'Musical Decision' 
in the figure, by using the drum patterns and chord changes. A drum pattern is 
represented by the temporal pattern of a bass drum (BD) and a snare drum (SD). 

of an image thumbnail) to find a desired song. It can also provide novel music 
listening interfaces for end users as described in Section 11.7.3. 

To detect chorus sections, typical approaches do not rely on prior informa­
tion regarding acoustic features unique to choruses but focus on the fact that 
chorus sections are usually the most repeated sections of a song. They thus 
adopt the following basic strategy: detect similar sections that repeat within a 
musical piece (such as a repeating phrase) and output those that appear most 
often. On entering the 2000s, this strategy has led to methods for extracting a 
single segment from several chorus sections by detecting a repeated section of 
a designated length as the most representative part of a musical piece [417], 
[27], [103]; methods for segmenting music, discovering repeated structures, 
or summarizing a musical piece through bottom-up analyses without assum­
ing the output segment length [110], [111], [512], [516], [23], [195], [104], [82], 
[664], [420]; and a method for exhaustively detecting all chorus sections by 
determining the start and end points of every chorus section [224]. 

Although this basic strategy of finding sections that repeat most often is 
simple and effective, it is diflftcult for a computer to judge repetition because it 
is rare for repeated sections to be exactly the same. The following summarizes 
the main problems that must be addressed in finding music repetition and 
determining chorus sections. 
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Problem 1: Extracting acoustic features and calculating their similarity 
Whether a section is a repetition of another must be judged on the basis 
of the similarity between the acoustic features obtained from each frame 
or section. In this process, the similarity must be high between acoustic 
features even if the accompaniment or melody line changes somewhat in 
the repeated section (e.g., the absence of accompaniment on bass and/or 
drums after repetition). That is, it is necessary to use features that capture 
useful and invariant properties. 

Problem 2: Finding repeated sections 
A pair of repeated sections can be found by detecting contiguous tem­
poral regions having high similarity. However, the criterion establishing 
how high similarity must be to indicate repetition depends on the song. 
For a song in which repeated accompaniment phrases appear very often, 
for example, only a section with very high similarity should be considered 
the chorus section repetition. For a song containing a chorus section with 
accompaniments changed after repetition, on the other hand, a section 
with somewhat lower similarity can be considered the chorus section rep­
etition. This criterion can be easily set for a small number of specific songs 
by manual means. For a large open song set, however, the criterion should 
be automatically modified based on the song being processed. 

Problem 3: Grouping repeated sections 
Even if many pairs of repeated sections with various lengths are obtained, 
it is not obvious how many times and where a section is repeated. It 
is therefore necessary to organize repeated sections that have common 
sections into a group. Both ends (the start and end points) of repeated 
sections must also be estimated by examining the mutual relationships 
among various repeated sections. For example, given a song having the 
structure (A B C B C C), the long repetition corresponding to (B C) would 
be obtained by a simple repetition search. Both ends of the C section in (B 
C) could be inferred, however, from the information obtained regarding 
the final repetition of C in this structure. 

Problem 4' Detecting modulated repetition 
Because the acoustic features of a section generally undergo a significant 
change after modulation (key change; see Section 1.1, p. 7), similarity 
with the section before modulation is low, making it difficult to judge 
repetition. The detection of modulated repetition is important since mod­
ulation sometimes occurs in chorus repetitions, especially in the latter half 
of a song.^ 

Problem 5: Selecting chorus sections 
Because various levels of repetition can be found in a musical piece, it is 
necessary to select a group of repeated sections corresponding to chorus 

^Masataka Goto's survey of Japan's popular music hit chart (top 20 singles 
ranked weekly from 2000 to 2003) showed that modulation occurred in chorus rep­
etitions in 152 songs (10.3%) out of 1481. 
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sections. A simple selection of the most repeated sections is not always 
appropriate though. For example, another section such as verse A is oc­
casionally repeated more often than chorus sections. 

Regarding the above repetition-based methods, the following sections 
mainly describe a method called RefraiD (Refrain Detection method) [224] 
and briefly introduce techniques used in the other methods in each relevant 
section and Section 11.5.6. Since the RefraiD method addresses all of the above 
problems and detects all chorus sections in a popular music song regardless 
of whether a key change occurs, it is suitable for music scene description. Fig­
ure 11.7 shows the process flow of the RefraiD method. First, a 12-dimensional 
feature vector called a chroma vector^ which is robust with respect to changes 
of accompaniments, is extracted from each frame of an input audio signal and 
then the similarity between these vectors is calculated (solution to Problem 
1). Each element of the chroma vector corresponds to one of the 12 pitch 
classes (C, C# , D, . . . , B) and is the sum of the magnitude spectrum at fre­
quencies of its pitch class over six octaves. Pairs of repeated sections are then 
listed (found) using an adaptive repetition-judgement criterion which is con­
figured by an automatic threshold selection method based on a discriminant 
criterion (solution to Problem 2). To organize common repeated sections into 
groups and to identify both ends of each section, the pairs of repeated sec­
tions are integrated (grouped) by analysing their relationships over the whole 
song (solution to Problem 3). Because each element of a chroma vector corre­
sponds to a different pitch class, a before-modulation chroma vector is close 
to the after-modulation chorus vector whose elements are shifted (exchanged) 
by the pitch difference of the key change. By considering 12 kinds of shift 
(pitch differences), 12 sets of the similarity between non-shifted and shifted 
chroma vectors are then calculated, pairs of repeated sections from those sets 
are listed, and all of them are integrated (solution to Problem 4)- Finally, 
the chorus measure^ which is the possibility of being chorus sections for each 
group, is evaluated (solution to Problem 5)^ and the group of chorus sections 
with the highest chorus measure as well as other groups of repeated sections 
are output (Fig. 11.8). 

11.5.1 Extracting Acoustic Features and Calculating Their 
Similarity 

The following acoustic features, which capture pitch and timbral features of 
audio signals in different ways, were used in various methods: chroma vectors 
[224], [27], [110], [111], mel-frequency cepstral coefficients (MFCC) [417], [103], 
[23], [195], [104], (dimension-reduced) spectral coefficients [103], [195], [104], 
[82], [664], pitch representations using FO estimation or constant-Q filterbanks 
[110], [111], [82], [420], and dynamic features obtained by supervised learning 
[512], [516]. 
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Fig. 11.7. Overview of RefraiD (Refrain Detection method) for detecting all chorus 
sections with their start and end points while considering modulations (key changes). 

Fig. 11.8. An example of chorus sections and repeated sections detected by the 
RefraiD method. The horizontal axis is the time axis (in seconds) covering the 
entire song. The upper window shows the power. On each row in the lower window, 
coloured sections indicate similar (repeated) sections. The top row shows the list 
of the detected chorus sections, which were correct for this song (RWC-MDB-P-
2001 No. 18 of the RWC Music Database [229], [227]) and the last of which was 
modulated. The bottom five rows show the list of various repeated sections (only 
the five longest repeated sections are shown). For example, the second row from the 
top indicates the structural repetition of 'verse A => verse B => chorus'; the bottom 
row with two short coloured sections indicates the similarity between the 'intro' and 
'ending'. 

P i t c h Feature: C h r o m a Vec tor 

The chroma vector is a perceptually motivated feature vector using the con­
cept of chroma in Shepard's helix representation of musical pitch perception 
[584]. According to Shepard [584], the perception of pitch with respect to a 
musical context can be graphically represented by using a continually cyclic 
helix tha t has two dimensions, chroma and height^ as shown at the right of 
Fig. 11.9. Chroma refers to the position of a musical pitch within an octave 
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that corresponds to a cycle of the hehx; i.e., it refers to the position on the 
circumference of the hehx seen from directly above. On the other hand, height 
refers to the vertical position of the helix seen from the side (the position of 
an octave). 

Figure 11.9 shows an overview of calculating the chroma vector used in 
the RefraiD method [224]. This represents magnitude distribution on the 
chroma that is discretized into twelve pitch classes within an octave. The 12-
dimensional chroma vector v{t) is extracted from the magnitude spectrum, 
^p{y^t) at the log-scale frequency v at time t, calculated by using the short-
time Fourier transform (STFT). Each element of v(t) corresponds to a pitch 
class c (c = 1, 2 , . . . , 12) in the equal temperament and is represented as Vc{t)'. 

QctH poo 

^c{t)= Y, / ^PhA^)%{^.t)dv, (11.29) 
/i = OctL * ^ ~ ^ 

The BPFc,/i(z/) is a bandpass filter that passes the signal at the log-scale centre 
frequency Fc^h (in cents) of pitch class c (chroma) in octave position h (height), 
where 

Fc^h = 1200/1 -f 100(c - 1). (11.30) 

The BPFc,/i(z/) is defined using a Manning window as follows: 

BPFe,.(.) = I ( l - COS ? ! f c i | ^ L Z i M ) ) , , e [0,200]. (11.31) 

This filter is applied to octaves from OctL to Octn- In Goto's implementation 
[224], an STFT with a 256 ms Hanning window^ shifted by 80 ms is calculated 
for audio signals sampled at 16 kHz, and the OctL and Octn are respectively 
3 and 8, covering six octaves (130 Hz to 8 kHz). 

There are variations in how the chroma vector is calculated. For example, 
Bartsch and Wakefield [27] developed a technique where each STFT bin of 
the log-magnitude spectrum is mapped directly to the most appropriate pitch 
class, and Dannenberg and Hu [110], [111] also used this technique. A similar 
continuous concept was called the chroma spectrum [655]. 

There are several advantages to using the chroma vector. Because it cap­
tures the overall harmony (pitch-class distribution), it can be similar even if 
accompaniments or melody lines are changed to some degree after repetition. 
In fact, the chroma vector is effective for identifying chord names [201], [678], 
[679], [583], [684]. The chroma vector also enables modulated repetition to be 
detected as described in Section 11.5.4. 

Timbral Feature: MFCC and Dynamic Features 

While the chroma vectors capture pitch-related content, the MFCCs (see 
Section 2.1.3, p. 25 for a presentation of MFCCs) typically used in speech 

^The window length is determined to obtain good frequency resolution in a low-
frequency region. 
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Fig. 11.9. Overview of calculating a 12-dimensional chroma vector. The magnitude 
at six different octaves is summed into just one octave which is divided into 12 
log-spaced divisions corresponding to pitch classes. Shepard's helix representation 
of musical pitch perception [584] is shown at the right. 

recognition capture spectral content and general pitch range, and are useful 
for finding timbral or 'texture' repetitions. Dynamic features [512], [516] are 
more adaptive spectral features that are designed for music structure discov­
ery through a supervised learning method. Those features are selected from 
the spectral coefiicients of a filterbank output by maximizing the mutual in­
formation between the selected features and hand-labelled music structures. 
The dynamic features are beneficial in that they reduce the size of the results 
when calculating similarity (i.e., the size of the similarity matrix described in 
Section 11.5.1) because the frame shift can be longer (e.g., 1 s) than for other 
features. 

Calculating Similarity 

Given a feature vector such as the chroma vector or MFCC at every frame, 
the next step is to calculate the similarity between feature vectors. Various 
distance or similarity measures, such as the Euclidean distance and the cosine 
angle (inner product), can be used for this. Before calculating the similarity, 
feature vectors are usually normalized, for example, to a mean of zero and a 
standard deviation of one or to a maximum element of one. 

In the RefraiD method [224], the similarity r(t, /) between the feature vec­
tors (chroma vectors) v(^) and v{t — I) is defined as 

r(t,0 = l -
1 v{t) v{t-l) 

maxc Vc{t) maxc Vc{t — I) 
(11.32) 

where / is the lag and Vc{t) is an element of v(^) (11.29). Since the denominator 
A/12 is the length of the diagonal line of a 12-dimensional hypercube with edge 
length 1, r{tj) satisfies 0 < r{tj) < 1. 
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Fig. 11.10. An idealized example of a similarity matrix and time-lag triangle drawn 
from the same feature vectors of a musical piece consisting of four 'A' sections and 
two 'B' sections. The diagonal line segments in the similarity matrix or horizontal 
line segments in the time-lag triangle, which represent similar sections, appear when 
short-time pitch features like chroma vectors are used. 

For the given 36-dimensional feature vectors of a constant-Q filterbank 
output with centre frequencies at 36 tempered semitones in 3 octaves, Lu, 
Wang, and Zhang [420] introduced an original distance measure tha t empha­
sizes melody similarity and suppresses t imbre similarity. This measure does 
not depend on the norm of the difference between the 36-dimensional fea­
ture vectors, but on the structure of it. It considers how the peak intervals 
in the difference conform to harmonic relationships such as perfect fifth and 
octave. 

11.5 .2 F i n d i n g R e p e a t e d S e c t i o n s 

By using the same similarity measure r ( t , / ) , two equivalent representations 
can be obtained: a similarity matrix [103], [110], [HI ] , [195], [104], [664] and 
a time-lag triangle (or time-lag matrix) [224], [27], [516], [420], as shown in 
Fig. 11.10. For the similarity matrix, the similarity s{t,u) between feature 
vectors v{t) and v(w), 

s{t,u)^ r{t,t-u), (11.33) 

is drawn within a square in the two-dimensional {t-u) space.^ For the time-
lag triangle, the similarity r( t , / ) between feature vectors v( t ) and v ( t — /) is 
drawn within a right-angled isosceles triangle in the two-dimensional time-lag 
[t-l) space. If a nearly constant tempo can be assumed, each pair of simi­
lar sections is represented by two non-central diagonal line segments in the 

As described in Section 4.6, p. 112, the similarity matrix can also be used to 
examine rhythmic structure. 



350 Masataka Goto 

similarity matr ix or a horizontal line segment in the time-lag triangle. Because 
the actual r{tj) obtained from a musical piece is noisy and ambiguous, it is 
not a straightforward task to detect these line segments. 

The RefraiD method [224] finds all horizontal fine segments (contiguous 
regions with high r(t , /)) in the time-lag triangle by evaluating Raii(t,/), the 
possibility of containing line segments at the lag / at the current t ime t (e.g., 
at the end of a song^) as follows (Fig. 11.11):^ 

1 * 

T = l 

Before this calculation, r(f, /) is normalized by subtract ing a local mean value 
while removing noise and emphasizing horizontal lines. In more detail, given 
each point r(t, /) in the time-lag triangle, six-directional local mean values 
along the right, left, upper, lower, upper right, and lower left directions start­
ing from the point r(f, /) are calculated, and the maximum and minimum are 
obtained. If the local mean along the right or left direction takes the maximum, 
r(t, /) is considered part of a horizontal line and emphasized by subtract ing 
the minimum from r(t, / ) . Otherwise, r(t, /) is considered noise and suppressed 
by subtracting the maximum from r(t, / ) ; noise tends to appear as fines along 
the upper, lower, upper right, and lower left directions. 

The method then picks up each peak in Raii(^,0 along the lag / after 
smoothing Raii(^, 0 with a moving average filter along the lag and removing 
a global drift (bias) caused by cumulative noise in r( t , / )^ from Raii(t,/). The 
method next selects only high peaks above a threshold to search the line seg­
ments. Because this threshold is closely related to the repetition-judgement 
criterion which should be adjusted for each song, an automatic threshold selec­
tion method based on a discriminant criterion [491] is used. When dichotomiz­
ing the peak heights into two classes by a threshold, the optimal threshold 
is obtained by maximizing the discriminant criterion measure defined by the 
following between-class variance: 

a% = uJiuj2{fii - fi2f, (11.35) 

where ui and LJ2 are the probabilities of class occurrence (number of peaks in 
each class/ total number of peaks), and /ii and /12 are the means of the peak 
heights in each class. 

^ Rail (̂ 5 0 is evaluated along with the real-time audio input for a real-time system 
based on RefraiD. On the other hand, it is evaluated at the end of a song for a non-
real-time off-line analysis. 

^This can be considered the Hough transform where only horizontal lines are 
detected: the parameter (voting) space Rail(^5 0 î  therefore simply one dimensional 
along /. 

^Because the similarity r(T,/) is noisy, its sum Raii(^, 0 tends to be biased: 
the longer the summation period for Rail(̂ 5 05 ^he higher the summation result by 
(11.34). 
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Fig. 11.11. A sketch of line segments, the similarity r(t,/) in the time-lag triangle, 
and the possibility Raii(^, 0 ^^ containing line segments at lag /. 
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Fig. 11.12. Examples of the similarity r[r^ h) at high-peak lags h. The bottom hor­
izontal bars indicate the regions above an automatically adjusted threshold, which 
means they correspond to line segments. 

For each picked-up high peak with lag / i , the line segments are finally 
searched on the one-dimensional function r(r, h) [h <T <t). After smoothing 
r(T,/i) using a moving average filter, the method obtains line segments on 
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which the smoothed r(r, Zi) is above a threshold (Fig. 11.12). This threshold 
is also adjusted through the automatic threshold selection method. 

Instead of using the similarity matrix and time-lag triangle, there are other 
approaches that do not explicitly find repeated sections. To segment music, 
represent music as a succession of states (labels), and obtain a music thumbnail 
or summary, these approaches segment and label (i.e., categorize) contiguous 
frames (feature vectors) by using clustering techniques [417] or ergodic hidden 
Markov models (HMMs) [417], [512], [516] (HMMs are introduced on p. 63 of 
this volume). 

11.5.3 Grouping Repeated Sections 

Since each line segment in the time-lag triangle indicates just a pair of re­
peated sections, it is necessary to organize into a group the line segments that 
have common sections—i.e., overlap in time. When a section is repeated N 
times {N > 3), the number of line segments to be grouped together should 
theoretically be N{N — l ) /2 if all of them are found in the time-lag triangle. 

Aiming to exhaustively detect all the repeated (chorus) sections appearing 
in a song, the RefraiD method groups line segments having almost the same 
section while redetecting some missing (hidden) line segments not found in the 
bottom-up detection process (described in Section 11.5.2) through top-down 
processing using information on other detected fine segments. In Fig. 11.11, 
for example, two line segments corresponding to the repetition of the first 
and third C and the repetition of the second and fourth C, which overlap 
with the long line segment corresponding to the repetition of ABCC, can be 
found even if they were hard to find in the bottom-up process. The method 
also appropriately adjusts the start and end times of line segments in each 
group because they are sometimes inconsistent in the bottom-up line segment 
detection. 

11.5.4 Detecting Modulated Repetition 

The processes described above do not deal with modulation (key change), but 
they can easily be extended to it. A modulation can be represented by the 
pitch difference of its key change, C (0 - l r - - - . l l ) , which denotes the number 
of tempered semitones. For example, C = 9 means the modulation of nine 
semitones upward or the modulation of three semitones downward. One of the 
advantages of the 12-dimensional chroma vector v{t) is that a transposition 
amount (" of the modulation can naturally correspond to the amount by which 
its 12 elements are shifted (rotated). When v{t) is the chroma vector of a 
certain performance and v(^)' is the chroma vector of the performance that is 
modulated by C semitones upward from the original performance, they tend 
to satisfy 

v(^) ^ S^v(t)"^, (11.36) 
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where S is a 12-by-12 shift matrix defined by 
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(11.37) 

To detect modulated repetition by using this feature of chroma vectors 
and considering 12 destination keys, the RefraiD method [224] calculates 12 
kinds of extended similarity as follows: 

r^itj) 1 S«v(i) v ( i - 0 
maxc Vc{t) maxc Vc{t — I) 

(11.38) 

Starting from each r(^{t, /), the processes of finding and grouping the repeated 
sections are performed again. Non-modulated and modulated repeated sec­
tions are then grouped if they share the same section. 

11.5.5 Selecting Chorus Sections 

A group corresponding to the chorus sections is finally selected from groups of 
repeated sections (line segments). In general, a group that has many and long 
repeated sections tends to be the chorus sections. In addition to this property, 
the RefraiD method evaluates the chorus measure^ which is the possibility 
of being chorus sections for each group, by considering the following three 
heuristic rules with a focus on popular music: 

1. The length of the chorus has an appropriate, allowed range (7.7 to 40 s in 
Goto's implementation). 

2. When there is a repeated section that is long enough to likely correspond 
to the repetition of a long section like (verse A ^ verse B =^ chorus) x 
2, the chorus section is likely to be at the end of that repeated section. 

3. Because a chorus section tends to have two half-length repeated subsec­
tions within its section, a section having those subsections is likely to be 
the chorus section. 

The group that maximizes the chorus measure is finally selected as the chorus 
sections. 

11.5.6 Other Methods 

Since the above sections mainly describe the RefraiD method [224] with the 
focus on detecting all chorus sections, this section briefly introduces other 
methods [417], [27], [103], [110], [111], [512], [516], [23], [195], [104], [82], [664], 



354 Masataka Goto 

[420] that aim at music thumbnailing, music segmentation, structure discovery, 
or music summarization. 

Several methods for detecting the most representative part of a song for 
use as a music thumbnail have been studied. Logan and Chu [417] developed 
a method using clustering techniques and hidden Markov models (HMMs) to 
categorize short segments (1 s) in terms of their acoustic features, where the 
most frequent category is then regarded as a chorus. Bartsch and Wakefield 
[27] developed a method that calculates the similarity between acoustic fea­
tures of beat-length segments obtained by beat tracking and finds the given-
length segment with the highest similarity averaged over its segment. Cooper 
and Foote [103] developed a method that calculates a similarity matrix of 
acoustic features of short frames (100 ms) and finds the given-length segment 
with the highest similarity between it and the whole song. Note that these 
methods assume that the output segment length is given and do not identify 
both ends of a repeated section. 

Music segmentation or structure discovery methods where the output seg­
ment length is not assumed have also been studied. Dannenberg and Hu [110], 
[111] developed a structure discovery method of clustering pairs of similar seg­
ments obtained by several techniques such as efficient dynamic programming 
or iterative greedy algorithms. This method finds, groups, and removes sim­
ilar pairs from the beginning to group all the pairs. Peeters, La Burthe, and 
Rodet [512], [516] developed a supervised learning method of modelling dy­
namic features and studied two structure discovery approaches: the sequence 
approach of obtaining repetitions of patterns and the state approach of ob­
taining a succession of states. The dynamic features are selected from the 
spectrum of a filterbank output by maximizing the mutual information be­
tween the selected features and hand-labelled music structures. Aucouturier 
and Sandler [23] developed two methods for finding repeated patterns in a 
succession of states (texture labels) obtained by HMMs. They used two image 
processing techniques, the kernel convolution and Hough transform, to detect 
line segments in the similarity matrix between the states. Foote and Cooper 
[195], [104] developed a method of segmenting music by correlating a kernel 
along the diagonal of the similarity matrix, and clustering the obtained seg­
ments on the basis of the self-similarity of their statistics. Chai and Vercoe 
[82] developed a method of detecting segment repetitions by using dynamic 
programming, clustering the obtained segments, and labelling the segments 
based on heuristic rules such as the rule of first labelling the most frequent 
segments, removing them, and repeating the labelling process. Wellhausen 
and Crysandt [664] studied the similarity matrix of spectral envelope features 
defined in the MPEG-7 descriptors and a technique of detecting non-central 
diagonal line segments. Lu, Wang, and Zhang [420] developed a method of 
analysing all repeated sections by using a structure-based distance measure 
that emphasizes pitch similarity over timbral similarity. Their method also es­
timates the tempo of a song and discriminates between vocal and instrumental 
sections to facilitate music structure analysis. 
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11.6 Evaluation Issues 

To evaluate automatic music scene description methods, it is necessary to 
label musical pieces in an adequate-size music database with their correct 
descriptions (metadata). This labelling task is time consuming and trouble­
some. More seriously, there was no available common music database with 
correct metadata since most musical pieces used by researchers are generally 
copyrighted and cannot be shared by other researchers. 

But since 2000, a copyright-cleared music database, called the RWC (Real 
World Computing) Music Database [229], [230], [227], was developed and has 
been available to researchers as a common foundation for research. It contains 
six original collections: the Popular Music Database (100 pieces), Royalty-
Free Music Database (15 pieces). Classical Music Database (50 pieces). Jazz 
Music Database (50 pieces). Music Genre Database (100 pieces), and Musical 
Instrument Sound Database (50 instruments). For all 315 musical pieces, audio 
signals, standard MIDI files, and text files of lyrics were prepared. For the 
50 instruments, individual sounds at half-tone intervals were captured. This 
database has been distributed to researchers around the world and has already 
been widely used. For musical instrument sounds, there are other databases 
released for public use: the McGill University Master Samples [487] and the 
University of Iowa Musical Instrument Samples [198]. Musical pieces licensed 
under a Creative Commons license can also be used for evaluation purposes. 

To establish benchmarks (evaluation frameworks) for music scene descrip­
tion by labelling copyright-cleared musical pieces with correct descriptions, a 
multipurpose music-scene labelling editor (metadata editor) was also devel­
oped [225]. It enables a user to hand-label a musical piece with music scene 
descriptions shown in Fig. 11.1. The editor can deal with both audio files and 
standard MIDI files and supports interactive audio/MIDI playback while edit­
ing. Along a wave or MIDI piano-roll display it shows subwindows in which 
any selected descriptions can be displayed and edited. To facilitate the sup­
port of various descriptions, its architecture is based on a plug-in system in 
which an external module for editing each description is installed as plug-
in software. As a first step, the RefraiD method was evaluated by using the 
chorus section metadata for 100 songs of the RWC Music Database: Popular 
Music (80 of the 100 songs were correctly detected) [224]. 

11.7 Applications of Music Scene Description 

Music scene description methods that can deal with real-world audio signals of 
musical pieces sampled from CD recordings have various practical applications 
such as music information retrieval, music-synchronized computer graphics, 
and music listening stations. The following sections introduce these applica­
tions. 
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Fig. 11.13. Virtual dancer 'Cindy'. 

11.7.1 Music Information Retrieval 

Music scene description contributes to content-based music information re­
trieval since it can provide various acoustical metadata (annotations) of mu­
sical pieces. For example, the automatic melody estimation described in Sec­
tion 11.2 is useful for query by humming (QBH) [323], [207], [604], [484], [603], 
[507], [605], [585], [301], [109] which enables a user to retrieve a musical piece 
by humming or singing its melody: a QBH database consisting of audio sig­
nals of musical pieces can be indexed using their melody lines. Moreover, the 
description of chorus sections (Section 11.5) can increase the efficiency and 
precision of QBH by enabling a QBH system to match a query with only the 
chorus sections. 

Temporal or rhythmic descriptions such as beat structure, tempo, and 
drums (Sections 11.3 and 11.4) are also useful for retrieving musical pieces on 
the basis of rhythm and tempo. Indexing musical pieces using drum descrip­
tions, for example, will enable a user to retrieve music by voice percussion or 
beat boxing (verbalized expression of drum sounds by voice) [479], [326]. 

In addition, various music scene descriptions facilitate the computation of 
similarity between musical pieces. Similarity measures based on music scene 
descriptions enable a user to use musical pieces themselves as the search key 
to retrieve a musical piece having a similar feeling. These measures can also 
be used to automatically classify musical pieces into genres or music styles. 

11.7.2 Music-Synchronized Computer Graphics 

Because the beat tracking described in Section 11.3 and Chapter 4 can be 
used to automate the time-consuming tasks that must be done to synchronize 
events with music, there are various applications. In fact, Goto and Muraoka 
[235], [220], [221] developed a real-time system that displays virtual dancers 
and several graphic objects whose motions and positions change in time to 
beats (Fig. 11.13). This system has several dance sequences, each for a different 
mood of dance motions. While a user selects a dance sequence manually, the 
timing of each motion in the selected sequence is determined automatically 
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on the basis of the beat-tracking results. Such a computer graphics system is 
suitable for live stage, TV program, and karaoke uses. 

Beat tracking also facilitates the automatic synchronization of computer-
controlled stage lighting with the beats in a musical performance. Vari­
ous properties of lighting—such as colour, brightness, and direction—can be 
changed in time to music. In the above virtual dancer system, this was simu­
lated on a computer graphics display with virtual dancers. 

11.7.3 Music Listening Station 

The automatic chorus section detection described in Section 11.5 enables new 
music-playback interfaces that facilitate content-based manual browsing of 
entire songs. As an application of the RefraiD method. Goto [226] developed 
a music Hstening station for trial listening, called SmartMusicKIOSK. Cus­
tomers in music stores often search out the chorus or 'hook' of a song by 
repeatedly pressing the fast-forward button, rather than passively listening to 
the music. This activity is not well supported by current technology. SmartMu­
sicKIOSK provides the following two functions to facilitate an active listening 
experience by eliminating the hassle of manually searching for the chorus and 
making it easier for a listener to find desired parts of a song: 

1. ^Jump to chorus' function: automatic jumping to the beginning of sections 
relevant to a song's structure 
Functions are provided enabling automatic jumping to sections that will 
be of interest to listeners. These functions are 'jump to chorus (NEXT 
CHORUS button)', 'jump to previous section in song (PREV SECTION 
button)', and 'jump to next section in song (NEXT SECTION button)', 
and they can be invoked by pushing the buttons shown above in paren­
theses (in the lower window of Fig. 11.14). With these functions, a listener 
can directly jump to and listen to chorus sections, or jump to the previous 
or next repeated section of the song. 

2. 'Music map' function: visualization of song contents 
A function is provided to enable the contents of a song to be visuahzed 
to help the listener decide where to jump next. Specifically, this function 
provides a visual representation of the song's structure consisting of chorus 
sections and repeated sections, as shown in the upper window of Fig. 11.14. 
While examining this display, the listener can use the automatic jump 
buttons, the usual fast-forward/rewind buttons, or a playback slider to 
move to any point of interest in the song. 

This interface, which enables a listener to look for a section of interest 
by interactively changing the playback position, is useful not only for trial 
listening but also for more general purposes in selecting and using music. 
While entire songs of no interest to a listener can be skipped on conventional 
music-playback interfaces, SmartMusicKIOSK is the first interface that allows 
the listener to easily skip sections of no interest even within a song. 
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Fig. 11.14. SmartMusicKIOSK screen display. The lower window provides content-
based controls allowing a listener to skim rapidly through music as well as common 
playback controls. The upper window provides a graphical overview of the music 
structure (results of automatic chorus section detection using RWC-MDB-P-2001 
No. 18 of the RWC Music Database [229], [227]). The horizontal axis of the upper 
window is the time axis covering the entire song; the top row shows chorus sections, 
the five lower rows show repeated sections, and the bottom horizontal bar is a 
playback slider. 

11.8 Conclusion 

This chapter has described the music scene description research approach to­
wards developing a system tha t understands real-world musical audio signals 
without deriving musical scores or separating signals. This approach is im­
por tant from an academic viewpoint because it explores what is essential for 
understanding audio signals in a human-like fashion. The ideas and techniques 
are expected to be extended to not only music signals but also general audio 
signals including music, speech, environmental sounds, and mixtures of them. 
Traditional speech recognition frameworks have been developed for dealing 
with only monophonic speech signals or a single-pitch sound with background 
noise, which should be removed or suppressed without considering their rela­
tionship. Research on understanding musical audio signals is a good start ing 
point for creating a new framework for understanding general audio signals, 
because music is polyphonic, temporally structured, and complex, yet still 
well organized. In particular, relationships between various simultaneous or 
successive sounds are important and unique to music. This chapter, as well as 
other chapters in this book, will contribute to such a general framework. 

The music scene description approach is also important from industrial or 
application viewpoints since end users can now easily ' r ip ' audio signals from 
CDs, compress and store them on a personal computer, load a huge number of 
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songs onto a portable music player, and listen to them anywhere and anytime. 
These users want to retrieve and listen to their favourite music or a portion 
of a musical piece in a convenient and flexible way. Reflecting these demands, 
the target of processing has expanded from the internal content of individual 
musical pieces to entire musical pieces and even sets of musical pieces [233]. 
While the primary target of music scene description is the internal content of 
a piece, the obtained descriptions are useful for dealing with sets of musical 
pieces as described in Section 11.7.1. The more accurate and detailed we can 
make the obtained music scene descriptions, the more advanced and intelligent 
music applications and interfaces will become. 

Although various methods for detecting melody and bass lines, tracking 
beats, detecting drums, and finding chorus sections have been developed and 
successful results have been achieved to some extent, there is much room for 
improving these methods and developing new ones. For example, in general 
each method has been researched independently and implemented separately. 
An integrated method exploiting the relationships between these descriptions 
will be a promising next step. Other music scene descriptions apart from 
those described in this chapter should also be investigated in the future. Ten 
years ago it was considered too difficult for a computer to obtain most of the 
music scene descriptions described here, but today we can obtain them with a 
certain accuracy. I look forward to experiencing further advances in the next 
ten years. 




