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Preface 

Signal processing techniques, and information technology in general, have un
dergone several scientific advances which permit us to address the very com
plex problem of automatic music transcription (AMT). During the last ten 
years, the interest in AMT has increased rapidly, and the time has come for 
a book-length overview of this subject. 

The purpose of this book is to present signal processing algorithms ded
icated to the various aspects of music transcription. AMT is a multifaceted 
problem, comprising several subtasks: rhythm analysis, multiple fundamental 
frequency analysis, sound source separation, musical instrument classification, 
and integration of all these into entire systems. AMT is, in addition, deeply 
rooted in fundamental signal processing, which this book also covers. As the 
field is quite wide, we have focused mainly on signal processing methods and 
Western polyphonic music. An extensive presentation of the work in musicol-
ogy and music perception is beyond the scope of this book. 

This book is mainly intended for researchers and graduate students in sig
nal processing, computer science, acoustics, and music. We hope that the book 
will make the field easier to approach, providing a good starting point for new
comers, but also a comprehensive reference source for those already working in 
the field. The book is also suitable for use as a textbook for advanced courses 
in music signal processing. The chapters are mostly self-contained, and read
ers may want to read them in any order or jump from one to another at will. 
Whenever an element from another chapter is needed, an explicit reference is 
made to the relevant chapter. Chapters 1 and 2 provide some background of 
AMT and signal processing for the entire book, respectively. Otherwise, only 
a basic knowledge of signal processing is assumed. 

Editing a book is a great deal of work. This volume was made possible 
by those who provided us support and help. We would like to thank VaishaU 
Damle and Ana Bozicevic at Springer for their help and support, and for 
their quick replies to our e-mails. Also thanks to Teemu Karjalainen for his 
practical assistance with WT^K^. 
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- Alain de Cheveigne, Ecole Normale Superieure, Paris, Prance 
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related chapter in the book and provided helpful comments. 

Tampere, Finland Anssi Klapuri 
Lille, France Manuel Davy 
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Foundations 



Introduction to Music Transcription 

Anssi Klapuri 

Institute of Signal Processing, Tampere University of Technology 
Korkeakoulunkatu 1, 33720 Tampere, Finland 
Anssi.KlapuriQtut.fi 

Music transcription refers to the analysis of an acoustic musical signal so as 
to write down the pitch, onset time, duration, and source of each sound that 
occurs in it. In Western tradition, written music uses note symbols to indicate 
these parameters in a piece of music. Figures 1.1 and 1.2 show the notation of 
an example music signal. Omitting the details, the main conventions are that 
time flows from left to right and the pitch of the notes is indicated by their 
vertical position on the staff lines. In the case of drums and percussions, the 
vertical position indicates the instrument and the stroke type. The loudness 
(and the applied instrument in the case of pitched instruments) is normally 
not specified for individual notes but is determined for larger parts. 

Besides the common musical notation, the transcription can take many 
other forms, too. For example, a guitar player may find it convenient to read 
chord symbols which characterize the note combinations to be played in a 
more general manner. In a computational transcription system, a MIDI file^ 
is often an appropriate format for musical notations (Fig. 1.3). Common to 
all these representations is that they capture musically meaningful parameters 
that can be used in performing or synthesizing the piece of music in question. 
From this point of view, music transcription can be seen as discovering the 
'recipe', or reverse-engineering the 'source code' of a music signal. 

A complete transcription would require that the pitch, timing, and instru
ment of all the sound events be resolved. As this can be very hard or even 
theoretically impossible in some cases, the goal is usually redefined as being 
either to notate as many of the constituent sounds as possible (complete tran
scription) or to transcribe only some well-defined part of the music signal, for 
example the dominant melody or the most prominent drum sounds (partial 
transcription). Both of these goals are relevant and are discussed in this book. 

Music transcription is closely related to structured audio coding. A musical 
notation or a MIDI file is an extremely compact representation that retains 

^Musical Instrument Digital Interface (MIDI) is a standard for exchanging per
formance data and parameters between electronic musical devices [462], [571]. 
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t 0-1 

Fig. 1.1. An acoustic musical signal (top) and its time-frequency domain represen
tation (bottom). The excerpt is from Song G034 in the RWC database [230]. 

Fig. 1.2. Musical notation corresponding to the signal in Fig. 1.1. The upper staff 
lines show the notation for pitched musical instruments and the lower staff lines 
show the notation for percussion instruments. 
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Fig. 1.3. A 'piano-roll' illustration of a MIDI file which corresponds to the pitched 
instruments in the signal in Fig. 1.1. Different notes are arranged on the vertical 
axis and time flows from left to right. 
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the characteristics of a piece of music to an important degree. Another related 
area of study is that of music perception [144]. Detecting and recognizing 
individual sounds in music is a big part of its perception, although it should 
be emphasized that musical notation is primarily designed to serve sound 
production and not to model hearing. We do not hear music in terms of note 
symbols but, as described by Bregman [49, pp. 457-460], music often 'fools' 
the auditory system so that we perceive simultaneous sounds as a single entity. 

In addition to audio coding, applications of music transcription comprise 

• Music information retrieval based on the melody of a piece, for example. 
• Music processing^ such as changing the instrumentation, arrangement, or 

the loudness of different parts before resynthesizing a piece from its score. 
• Human-computer interaction in various applications, including score type

setting programs and musically oriented computer games. Singing tran
scription is of particular importance here. 

• Music-related equipment, ranging from music-synchronous light effects to 
highly sophisticated interactive music systems which generate an accom
paniment for a soloist. 

• Musicological analysis of improvised and ethnic music for which musical 
notations do not exist. 

• Transcription tools for amateur musicians who wish to play along with 
their favorite music. 

The purpose of this book is to describe algorithms and models for the dif
ferent subtopics of music transcription, including pitch analysis, metre analysis 
(see Section 1.1 for term definitions), percussion transcription, musical instru
ment classification, and music structure analysis. The main emphasis is laid 
on the low-level signal analysis where sound events are detected and their 
parameters are estimated, and not so much on the subsequent processing of 
the note data to obtain larger musical structures. The theoretical background 
of different signal analysis methods is presented and their application to the 
transcription problem is discussed. 

The primary target material considered in this book is complex music 
signals where several sounds are played simultaneously. These are referred 
to as polyphonic signals, in contrast to monophonic signals where at most 
one note is sounding at a time. For practical reasons, the scope is limited to 
Western music, although not to any particular genre. Many of the analysis 
methods make no assumptions about the larger-scale structure of the signal 
and are thus applicable to the analysis of music from other cultures as well. 

To give a reasonable estimate of the achievable goals in automatic music 
transcription, it is instructive to study what human listeners are able to do in 
this task. An average listener perceives a lot of musically relevant information 
in complex audio signals. He or she can tap along with the rhythm, hum the 
melody (more or less correctly), recognize musical instruments, and locate 
structural parts of the piece, such as the chorus and the verse in popular music. 
Harmonic changes and various details are perceived less consciously. Similarly 
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to natural language, however, reading and writing music requires education. 
Not only the notation needs to be studied, but recognizing different pitch 
intervals and timing relationships is an ability that has to be learned - these 
have to be encoded into a symbolic form in one's mind before writing them 
down. Moreover, an untrained listener is typically not able to hear the inner 
lines in music (sub-melodies other than the dominant one), so musical ear 
training is needed to develop an analytic mode of listening where these can be 
distinguished. The richer the polyphonic complexity of a musical composition, 
the more its transcription requires musical ear training and knowledge of 
the particular musical style and of the playing techniques of the instruments 
involved. 

First attempts towards the automatic transcription of polyphonic music 
were made in the 1970s, when Moorer proposed a system for transcribing two-
voice compositions [477], [478]. His work was followed by that of Chafe et al. 
[81], Piszczalski [520], and Maher [426], [427] in the 1980s. In all these early 
systems, the number of concurrent voices was limited to two and the pitch 
relationships of simultaneous sounds were restricted in various ways. On the 
rhythm analysis side, the first algorithm for beat tracking^ in general au
dio signals was proposed by Goto and Muraoka in the 1990s [235], although 
this was preceded by a considerable amount of work for tracking the beat 
in parametric note data (see [398] for a summary) and by the beat-tracking 
algorithm of Schloss for percussive audio tracks [567]. First attempts to tran
scribe percussive instruments were made in the mid-1980s by Schloss [567] and 
later by Bilmes [37], both of whom classified different types of conga strikes 
in continuous recordings. Transcription of polyphonic percussion tracks was 
later addressed by Goto and Muraoka [236]. A more extensive description of 
the early stages of music transcription has been given by Tanguiane in [619, 
pp. 3-6]. 

Since the beginning of 1990s, the interest in music transcription has grown 
rapidly and it is not possible to make a complete account of the work here. 
However, certain general trends and successful approaches can be discerned. 
One of these has been the use of statistical methods. To mention a few exam
ples, Kashino [332], Goto [223], Davy and Godsill [122], and Ryynanen [559] 
proposed statistical methods for the pitch analysis of polyphonic music; in 
beat tracking, statistical methods were employed by Cemgil and Kappen [77], 
Hainsworth and MacLeod [266], and Klapuri et al. [349]; and in percussive in
strument transcription by Gillet and Richard [209] and Paulus et al. [506]. In 
musical instrument classification, statistical pattern recognition methods pre
vail [286]. Another trend has been the increasing utilization of computational 
models of the human auditory system. These were first used for music tran
scription by Martin [439], and auditorily motivated methods have since been 
proposed for polyphonic pitch analysis by Karjalainen and Tolonen [627] and 

^ Beat tracking refers to the estimation of a rhythmic pulse which corresponds to 
the tempo of a piece and (loosely) to the foot-tapping rate of human listeners. 
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Klapuri [354], and for beat tracking by Scheirer [564], for example. Another 
prominent approach has been to model the human auditory scene analysis 
(ASA) ability. The term ASA refers to the way in which humans organize 
spectral components to their respective sounds sources and recognize simul
taneously occurring sounds [49]. The principles of ASA were brought to the 
pitch analysis of polyphonic music signals by Mellinger [460] and Kashino 
[333], and later by Godsmark and Brown [215] and Sterian [609]. Most re
cently, several unsupervised learning methods have been proposed where a 
minimal number of prior assumptions are made about the analysed signal. 
Methods based on independent component analysis [304] were introduced to 
music transcription by Casey [70], [73], and various other methods were later 
proposed by Lepain [403], Smaragdis [598], [600], Abdallah [2], [5], Virtanen 
(see Chapter 9), FitzGerald [186], [188], and Paulus [505]. Of course, there 
are also methods that do not represent any of the above-mentioned trends, 
and a more comprehensive review of the literature is presented in the coming 
chapters. 

The state-of-the-art music transcription systems are still clearly inferior to 
skilled human musicians in accuracy and flexibility. That is, a reliable general-
purpose transcription system does not exist at the present time. However, 
some degree of success has been achieved for polyphonic music of limited 
complexity. In the transcription of pitched instruments, typical restrictions 
are that the number of concurrent sounds is limited [627], [122], interference of 
drums and percussive sounds is not allowed [324], or only a specific instrument 
is considered [434]. Some promising results for the transcription of real-world 
music on CD recordings has been demonstrated by Goto [223] and Ryynanen 
and Klapuri [559]. In percussion transcription, quite good accuracy has been 
achieved in the transcription of percussive tracks which comprise a limited 
number of instruments (typically bass drum, snare, and hi-hat) and no pitched 
instruments [209], [505]. Also promising results have been reported for the 
transcription of the bass and snare drums on real-world recordings, but this 
is a more open problem (see e.g. Zils et al. [693], FitzGerald et al. [189], 
Yoshii et al. [683]). Beat tracking of complex real-world audio signals can 
be performed quite reliably with the state-of-the-art methods, but difficulties 
remain especially in the analysis of classical music and rhythmically complex 
material. Comparative evaluations of beat-tracking systems can be found in 
[266], [349], [248]. Research on musical instrument classification has mostly 
concentrated on working with isolated sounds, although more recently this 
has been attempted in polyphonic audio signals, too [331], [33], [170], [647]. 

1.1 Terminology and Concepts 

Before turning to a more general discussion of the music transcription problem 
and the contents of this book, it is necessary to introduce some basic terminol
ogy of auditory perception and music. To discuss music signals, we first have 
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to discuss the perceptual attributes of sounds of which they consist. There are 
four subjective quahties that are particularly useful in characterizing sound 
events: pitch, loudness, duration, and timbre [550]. 

Pitch is a perceptual attribute which allows the ordering of sounds on 
a frequency-related scale extending from low to high. More exactly, pitch is 
defined as the frequency of a sine wave that is matched to the target sound 
by human listeners [275]. Fundamental frequency (FO) is the corresponding 
physical term and is defined for periodic or nearly periodic sounds only. For 
these classes of sounds, FO is defined as the inverse of the period and is closely 
related to pitch. In ambiguous situations, the period corresponding to the 
perceived pitch is chosen. 

The perceived loudness of an acoustic signal has a non-trivial connection 
to its physical properties, and computational models of loudness perception 
constitute a fundamental part of psychoacoustics [523].^ In music processing, 
however, it is often more convenient to express the level of sounds with their 
mean-square power and to apply a logarithmic (decibel) scale to deal with the 
wide dynamic range involved. The perceived duration of a sound has more or 
less one-to-one mapping to its physical duration in cases where this can be 
unambiguously determined. 

Timbre is sometimes referred to as sound 'colour' and is closely related to 
the recognition of sound sources [271]. For example, the sounds of the violin 
and the fiute may be identical in their pitch, loudness, and duration, but are 
still easily distinguished by their timbre. The concept is not explained by any 
simple acoustic property but depends mainly on the coarse spectral energy 
distribution of a sound, and the time evolution of this. Whereas pitch, loud
ness, and duration can be quite naturally encoded into a single scalar value, 
timbre is essentially a multidimensional concept and is typically represented 
with a feature vector in musical signal analysis tasks. 

Musical information is generally encoded into the relationships between 
individual sound events and between larger entities composed of these. Pitch 
relationships are utihzed to make up melodies and chords. Timbre and loud
ness relationships are used to create musical form especially in percussive 
music, where pitched musical instruments are not necessarily employed at 
all. Inter-onset interval (lOI) relationships, in turn, largely define the rhyth
mic characteristics of a melody or a percussive sound sequence (the term lOI 
refers to the time interval between the beginnings of two sound events). Al
though durations of the sounds play a role too, the lOIs are more crucial in 
determining the perceived rhythm [93]. Indeed, many rhythmically important 
instruments, such as drums and percussions, produce exponentially decaying 
wave shapes that do not even have a uniquely defined duration. In the case of 

^Psychoacoustics is the science that deals with the perception of sound. In a 
psychoacoustic experiment, the relationships between an acoustic stimulus and the 
resulting subjective sensation are studied by presenting specific teisks or questions 
to human listeners [550]. 
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F# G# A# 

! ! ! ! ! cToL F G A B ! ! ! ! ! 

Fig. 1.4. Illustration of the piano keyboard (only three octaves are shown here). 

sustained musical sounds, however, the durations are used to control articu
lation. The two extremes here are 'staccato', where notes are cut very short, 
and 'legato', where no perceptible gaps are left between successive notes. 

A melody is a series of pitched sounds with musically meaningful pitch 
and lOI relationships. In written music, this corresponds to a sequence of 
single notes. A chord is a combination of two or more simultaneous notes. 
A chord can be harmonious or dissonant, subjective attributes related to the 
specific relationships between the component pitches and their overtone par-
tials. Harmony refers to the part of music theory which studies the formation 
and relationships of chords. 

Western music arranges notes on a quantized logarithmic scale, with 12 
notes in each octave range. The nominal fundamental frequency of note n can 
be calculated as 440 Hz x 2^/^^, where 440 Hz is an agreed-upon anchor point 
for the tuning and n varies from —48 to 39 on a standard piano keyboard, 
for example. According to a musical convention, the notes in each octave are 
lettered as C, C# , D, D # , E, F, . . . (see Fig. 1.4) and the octave is indicated 
with a number following this, for example A4 and A3 referring to the notes 
with fundamental frequencies 440 Hz and 220 Hz, respectively. 

There are of course instruments which produce arbitrary pitch values and 
not just discrete notes like the piano. When playing the violin or singing, for 
example, both intentional and unintentional deviations take place from the 
nominal note pitches. In order to write down the music in a symbolic form, 
it is necessary to perform quantization^ or perceptual categorization [60]: a 
track of pitch values is segmented into notes with discrete pitch labels, note 
timings are quantized to quarter notes, whole notes, and so forth, and timbral 
information is 'quantized' by naming the sound sources involved. In some 
cases this is not necessary but a parametric or semi-symbolic^ representation 
suffices. 

An important property of basically all musical cultures is that correspond
ing notes in different octaves are perceived as having a special kind of sim
ilarity, independent of their separation in frequency. The notes C3, C4, and 
C5, for example, play largely the same harmonic role although they are not 
interchangeable in a melody. Therefore the set of all notes can be described 
as representing only 12 pitch classes. An individual musical piece usually re
cruits only a subset of the 12 pitch classes, depending on the musical key of 

*In a MIDI file, for example, the time values are not quantized. 
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4iit 111̂(II' |i ih'f»t4 
latum 
Tactus (beat); 
Bar lines: 

174 175 176 177 178 179 180 
Time (s) 

Fig. 1.5. A music signal with three metrical levels illustrated. 

the piece. For example, a piece in the C major key tends to employ the white 
keys of the piano, whereas a piece in B major typically employs all the black 
keys but only two white keys in each octave. Usually there are seven pitch 
classes that 'belong' to a given key. These are called scale tones and they pos
sess a varying degree of importance or stability in the key context. The most 
important is the tonic note (for example C in the C major key) and often a 
musical piece starts or ends on the tonic. Perception of pitch along musical 
scales and in relation to the musical key of the piece is characteristic to tonal 
music, to which most of Western music belongs [377]. 

The term musical metre has to do with the rhythmic aspects of music: it 
refers to the regular pattern of strong and weak beats in a piece. Perceiving the 
metre consists of detecting moments of musical emphasis in an acoustic signal 
and filtering them so that the underlying periodicities are discovered [404], 
[93]. The perceived periodicities, pulses, at different time scales (or levels) 
together constitute the metre, as illustrated in Fig. 1.5. Perceptually the most 
salient metrical level is the tactus, which is often referred to as the foot-tapping 
rate or the beat The tactus can be viewed as the temporal 'backbone' of a piece 
of music, making beat tracking an important subtask of music transcription. 
Further metrical analysis aims at identifying the other pulse levels, the periods 
of which are generally integer multiples or submultiples of the tactus pulse. 
For example, detecting the musical measure pulse consists of determining the 
number of tactus beats that elapse within one musical measure (usually 2 
to 8) and aligning the boundaries of the musical measures (bar lines) to the 
music signal. 

Another element of musical rhythms is grouping, which refers to the way in 
which individual sounds are perceived as being grouped into melodic phrases; 
these are further grouped into larger musical entities in a hierarchical manner 
[404]. Important to the rhythmic characteristics of a piece of music is how 
these groups are aligned in time with respect to the metrical system. 

The structure of a musical work refers to the way in which it can be sub
divided into parts and sections at the largest time-scale. In popular music, 
for example, it is usually possible to identify parts that we label as the cho
rus, the verse, an introductory section, and so forth. Structural parts can be 
detected by finding relatively long repeated pitch structures or by observing 
considerable changes in the instrumentation at section boundaries. 
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The forthcoming chapters of this book address the extraction and analysis 
of the above elements in musical audio signals. Fundamental frequency esti
mation is considered in Parts III and IV of this book, with a separate treatise 
on melody transcription in Chapters 11 and 12. Metre analysis is discussed 
in Chapter 4 and percussion transcription in Chapter 5. Chapter 6 discusses 
the measurement of timbre and musical instrument classification. Structure 
analysis is addressed in Chapter 11, and the quantization of time and pitch 
in Chapters 4 and 12, respectively. Before going to a more detailed outline 
of each chapter, however, let us have a look at some general aspects of the 
transcription problem. 

1.2 Perspectives on Music Transcription 

When starting to design a transcription system, certain decisions have to be 
made before the actual algorithm development. Among the questions involved 
are: How should the transcription system be structured into smaller submod-
ules or tasks? What kind of data representations would be the most suitable? 
Should musical information be used as an aid in the analysis? Would it be 
advantageous to analyse larger musical structures before going into note-by-
note transcription? These general and quite 'philosophical' issues are discussed 
from various perspectives in the following. 

1.2.1 Neurophysiological Perspect ive 

First, let us consider a neurophysiological argument about how the music 
transcription problem should be decomposed into smaller subtasks. In human 
auditory cognition, modularity of a certain kind has been observed, mean
ing that certain parts can be functionally and neuro-anatomically isolated 
from the rest [517], [687}̂  [623]. One source of evidence for this are studies 
with brain-damaged patients: an accidental brain damage may selectively af
fect musical abilities but not speech-related abilities, and vice versa [518]. 
Moreover, there are patients who suffer from difficulties dealing with pitch 
variations in music but not with temporal variations. In music performance 
or in perception, either of the two can be selectively lost [29], [517]. 

Peretz has studied brain-damaged patients who suffer from specific music 
impairments and she proposes that the music cognition system comprises at 
least four discernable 'modules' [517], [518]. An acoustic analysis module seg
regates a mixture signal into distinct sound sources and extracts the percep
tual parameters of these (including pitch) in some raw form. This is followed 
by two parallel modules which carry out pitch organization (melodic contour 
analysis and tonal encoding of pitch) and temporal organization (rhythm and 
metre analysis). The fourth module, musical lexicon, contains representations 
of the musical phrases a subject has previously heard. 
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Neuroimaging experiments in healthy subjects are another way of local
izing the cognitive functions in the brain. Speech sounds and higher-level 
speech information are known to be preferentially processed in the left audi
tory cortex, whereas musical sounds are preferentially processed in the right 
auditory cortex [623]. Interestingly, however, when musical tasks specifically 
involve processing of temporal information (temporal synchrony or duration), 
the processing is weighted towards the left hemisphere [687], [517]. The rel
ative (not complete) asymmetry between the two hemispheres seems to be 
related to the acoustic characteristics of the signals: rapid temporal informa
tion is characteristic for speech, whereas accurate processing of spectral and 
pitch information is more important in music [581], [687], [623]. Zatorre et al. 
proposed that the left auditory cortex is relatively specialized to a better time 
resolution and the right auditory cortex to a better frequency resolution [687]. 

In computational transcription systems, rhythm and pitch have often been 
analysed separately and using different data representations (see e.g. [332], 
[439], [237], [223], [350], [122]). Typically, a better time resolution is applied 
in rhythm analysis and a better frequency resolution in pitch analysis. Based 
on the above studies, this seems to be justified to some extent. However, it 
should be kept in mind that studying the human brain is very difficult and the 
reported results are therefore a subject of controversy. Also, the structure of 
transcription systems is often determined by merely pragmatic considerations. 
For example, temporal segmentation is performed prior to pitch analysis in 
order to allow an appropriate positioning of analysis frames in pitch analysis, 
which is typically the most demanding stage computationally. 

1.2.2 Human Transcription 

Another viewpoint to the transcription problem is obtained by studying the 
conscious transcription process of human musicians and by inquiring about 
their transcription strategies. The aim of this is to determine the sequence of 
actions or processing steps that leads to the transcription result. 

As already mentioned above, reading and writing music is an acquired 
ability and therefore the practice of music transcription is of course affected by 
its teaching at musical institutions. In this context, the term musical dictation 
is used to refer to an exercise where a musical excerpt is played and it has to 
be written down as notes [206]. An excellent study on the practice of musical 
dictation and ear training pedagogy can be found in [280]. 

Characteristic to ear training is that the emphasis is not on trying to hear 
more but to recognize what is being heard; to hear relationships accurately 
and with understanding. Students are presented with different pitch intervals, 
rhythms, and chords, and they are trained to name these. Simple examples 
are first presented in isolation and when these become familiar, increasingly 
complex material is considered. Melodies are typically viewed as a synthesis of 
pitch and rhythm. For example, Ghezzo instructs the student first to memorize 
the fragment of music that is to be written down, then to write the pitch of 
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the notes, and finally to apply the rhythm [206, p. 6]. Obviously, ear training 
presumes a normally hearing subject who is able to detect distinct sounds and 
their pitch and timing in the played excerpts—aspects which are very difficult 
to model computationally. 

Recently, Hainsworth conducted a study where he asked trained musicians 
to describe how they transcribe realistic musical material [263]. The subjects 
(19 in total) had transcribed music from various genres and with varying goals, 
but Hainsworth reports that a consistent pattern emerged in the responses. 
Most musicians first write down the structure of the piece, possibly with some 
key phrases marked in an approximate way. Next, the chords of the piece or 
the bass line are notated, and this is followed by the melody. As the last step, 
the inner lines are studied. Many reported that they heard these by repeated 
listening, by using an instrument as an aid, or by making musically educated 
guesses based on the context. 

Hainsworth points out certain characteristics of the above-described pro
cess. First, it is sequential rather than concurrent; quoting the author, 'no-
one transcribes anything but the most simple music in a single pass'. In this 
respect, the process differs from most computational transcription systems. 
Secondly, the process relies on the human ability to attend to certain parts 
of a polyphonic signal while selectively ignoring others.^ Thirdly, some early 
analysis steps appear to be so trivial for humans that they are not even men
tioned. Among these are style detection (causing prior expectations regarding 
the content), instrument identification, and beat tracking. 

1.2.3 Mid-Level Data Representations 

The concept of mid-level data representations provides a convenient way to 
characterize certain aspects of signal analysis systems. The analysis process 
can be viewed as a sequence of representations from an acoustic signal towards 
the analysis result [173], [438]. Usually intermediate abstraction levels are 
needed between these two since musical notes, for example, are not readily 
visible in the raw acoustic signal. An appropriate mid-level representation 
functions as an 'interface' for further analysis and facilitates the design of 
efficient algorithms for this purpose. 

The most-often used representation in acoustic signal analysis is the short-
time Fourier transform of a signal in successive time frames. Time-frequency 
decompositions in general are of fundamental importance in signal processing 
and are introduced in Chapter 2. Chapter 3 discusses these in a more general 
framework of waveform representations where a music signal is represented 
as a linear combination of elementary waveforms from a given dictionary. 
Time-frequency plane representations have been used in many transcription 
systems (see e.g. [223], [351], [5], and Chapter 9), and especially in percussive 

^We may add also that the limitations of human memory and attention affect 
the way in which large amounts of data are written down [602]. 
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Fig. 1.6. Three different mid-level representations for a short trumpet sound (FO 
260 Hz), followed by a snare drum hit. The left panel shows the time-frequency spec
trogram with a logarithmic frequency scale. The middle panel shows the sinusoidal 
model for the same signal, Une width indicating the amplitude of each sinusoid. The 
right panel shows the output of a simple peripheral auditory model for the same 
signal. 

transcription where both linear [188] and logarithmic [505], [209] frequency 
resolution has been used. 

Another common choice for a mid-level representation in music transcrip
tion has been the one based on sinusoid tracks [332], [440], [609], [652]. In 
this parametric representation, an acoustic signal is modelled as a sum of 
sinusoids with time-varying frequencies and amplitudes [449], [575], as illus
trated in Fig. 1.6. Pitched musical instruments can be modelled effectively 
with relatively few sinusoids and, ideally, the representation supports sound 
source separation by classifying the sinusoids to their sources. However, this is 
complicated by the fact that frequency components of co-occurring sounds in 
music often overlap in time and frequency. Also, reliable extraction of the com
ponents in real-world complex music signals can be hard. Sinusoidal models 
are described in Chapter 3 and applied in Chapters 7 and 10. 

In the human auditory system, the signal travelling from the inner ear to 
the brain can be viewed as a mid-level representation. A nice thing about this 
is that the peripheral parts of hearing are quite well known and computational 
models exist which are capable of approximating the signal in the auditory 
nerve to a high accuracy. The right panel of Fig. 1.6 illustrates this repre
sentation. Auditory models have been used for music transcription by several 
authors [439], [627], [434], [354] and these are further discussed in Chapter 8. 

It is natural to ask if a certain mid-level representation is better than 
others in a given task. Ellis and Rosenthal have discussed this question in 
the light of several example representations commonly used in acoustic signal 
analysis [173]. The authors list several desirable qualities for a mid-level rep
resentation. Among these are component reduction^ meaning that the number 
of objects in the representation is smaller and the meaningfulness of each is 
higher compared to the individual samples of the input signal. At the same 
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Musicological models, 
sound source models 

Transcription 

Fig. 1.7. The two main sources of information in music transcription: an acoustic 
input signal and pre-stored musicological and sound source models. 

time, the sound should be decomposed into sufficiently fine-grained elements 
so as to support sound source separation by grouping the elements to their 
sound sources. Other requirements included invertibility, meaning that the 
original sound can be resynthesized from its representation in a perceptually 
accurate way, and psychoacoustic plausibility of the representation. 

1.2.4 Internal Models 

Large-vocabulary speech recognition systems are critically dependent on lan
guage models which represent linguistic knowledge about speech signals [536], 
[316], [321]. The models can be very primitive in nature, for example merely 
tabulating the occurrence frequencies of diff'erent three-word sequences (N-
gram models), or more complex, implementing part-of-speech tagging of words 
and syntactic inference within sentences. 

Musicological information is likely to be equally important for the auto
matic transcription of polyphonically rich musical material. The probabilities 
of different notes occurring concurrently or in sequence can be straightfor
wardly estimated, since large databases of written music exist in an electronic 
format. Also, there are a lot of musical conventions concerning the arrange
ment of notes for a certain instrument within a given genre. In principle, these 
musical constructs can be modelled and learned from data. 

In addition to musicological constraints, internal models may contain in
formation about the physics of musical instruments [193], and heuristic rules, 
for example that a human musician has only ten fingers with limited dimen
sions. These function as a source of information in the transcription process, 
along with the input waveform (see Fig. 1.7). Contrary to an individual music 
signal, however, these characterize musical tradition at large: its composi
tional conventions, selection of musical instruments, and so forth. Although 
these are generally bound to a certain musical tradition, there are also more 
universal constraints that stem from the human perception (see Bregman [49, 
Ch. 5]). For example, perceptually coherent melodies usually advance in rel
atively small pitch transitions and employ a consistent timbre. 

Some transcription systems have applied musicological models or sound 
source models in the analysis [332], [440], [215], [559]. The principles of doing 
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this are discussed in more detail in Part IV of this book. The term top-
down processing is often used to characterize systems where models at a high 
abstraction level impose constraints on the lower levels [592], [172]. In bottom-
up processing, in turn, information flows from the acoustic signal: features 
are extracted, combined into sound sources, and these are further processed 
at higher levels. The 'unsupervised-learning' approach mentioned on p. 7 is 
characterized by bottom-up processing and a minimal use of pre-stored models 
and assumptions. This approach has a certain appeal too, since music signals 
are redundant at many levels and, in theory, it might be possible to resolve this 
'puzzle' in a completely data-driven manner by analysing a huge collection of 
musical pieces in connection and by constructing models automatically from 
the data. For further discussion of this approach, see Chapter 9. 

Utilizing diverse sources of knowledge in the analysis raises the issue of 
integrating the information meaningfully. In automatic speech recognition, 
statistical methods have been very successful in this respect: they allow rep
resenting uncertain knowledge, learning from examples, and combining diverse 
types of information. 

1.2.5 A Comparison with Speech Recognition 

Music transcription is in many ways comparable to automatic speech recog
nition, although the latter has received greater academic and commercial in
terest and has been studied longer. Characteristic to both music and speech 
is that they are generative in nature: a limited number of discrete elements 
are combined to yield larger structures. In speech, phonemes are used to con
struct words and sentences and, in music, individual sounds are combined to 
build up melodies, rhythms, and songs. An important difference between the 
two is that speech is essentially monophonic (one speaker), whereas music 
is usually polyphonic. On the other hand, speech signals vary more rapidly 
and the acoustic features that carry speech information are inherently multi
dimensional, whereas pitch and timing in music are one-dimensional quanti
ties. 

A central problem in the development of speech recognition systems is the 
high dynamic variability of speech sounds in different acoustic and linguistic 
contexts - even in the case of a single speaker. To model this variability 
adequately, large databases of carefully annotated speech are collected and 
used to train statistical models which represent the acoustic characteristics of 
phonemes and words. 

In music transcription, the principal difficulties stem from combinatorics: 
the sounds of different instruments occur in varying combinations and make 
up musical pieces. On the other hand, the dynamic variability and complexity 
of a single sound event is not as high as that of speech sounds. This has 
the consequence that, to some extent, synthetic music signals can be used in 
developing and training a music transcriber. Large amounts of training data 
can be generated since acoustic measurements for isolated musical sounds are 
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available and combinations of these can be generated by mixing. However, it 
should be emphasized that this does not remove the need for more realistic 
acoustic material, too. The issue of obtaining and annotating such databases 
is discussed in [405] and in Chapters 6 and 11. Realistic data are also needed 
for the objective evaluation of music analysis systems [465]. 

1.3 Outline 

This section discusses the different subtopics of music transcription and sum
marizes the contents of each chapter of this book. All the chapters are in
tended to be self-contained entities, and in principle nothing prevents one 
from jumping directly to the beginning of a chapter that is of special interest 
to the reader. Whenever some element from the other parts of the book is 
needed, an explicit reference is made to the chapter in question. 

Part I Foundations 

The first part of this book is dedicated to topics that are more or less related 
to all areas of music trancription discussed in this book. 

Chapter 2 introduces statistical and signal processing techniques that are 
applied to music transcription in the subsequent chapters. First, the Fourier 
transform and concepts related to time-frequency representations are de
scribed. This is followed by a discussion of statistical methods, including 
random variables, probability density functions, probabilistic models, and el
ements of estimation theory. Bayesian estimation methods are separately dis
cussed and numerical computation techniques are described, including Monte 
Carlo methods. The last section introduces the reader to pattern recognition 
methods and various concepts related to these. Widely used techniques such 
as support vector machines and hidden Markov models are included. 

Chapter 3 discusses sparse adaptive representations for musical signals. 
The issue of data representations was already briefly touched in Section 1.2.3 
above. This chapter describes parametric representations (for example the si
nusoidal model) and 'waveform' representations in which a signal is modelled 
as a linear sum of elementary waveforms chosen from a well-defined dictio
nary. In particular, signal-adaptive algorithms are discussed which aim at 
sparse representations, meaning that a small subset of waveforms is chosen 
from a large dictionary so that the sound is represented effectively. This is 
advantageous from the viewpoint of signal analysis and imposes an implicit 
structure to the analysed signal. 

Part II Rhythm and Timbre Analysis 

The second part of this book describes methods for metre analysis, percussion 
transcription, and pitched musical instrument classification. 
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Chapter 4 discusses beat tracking and musical metre analysis^ which con
stitute an important subtask of music transcription. As mentioned on p. 10, 
metre perception consists of detecting moments of musical stress in an audio 
signal, and processing these so that 4;he underlying periodicities are discov
ered. These two steps can also be discerned in the computational methods. 
Measuring the degree of musical emphasis as a function of time is closely re
lated to onset detection^ that is, to the detection of the beginnings of discrete 
sound events in an acoustic signal, a problem which is separately discussed. 
For the estimation of the underlying metrical pulses, a number of different 
approaches are described, putting particular emphasis on statistical methods. 

Chapter 5 discusses unpitched percussion transcription^^ where the aim 
is to write down the timbre class, or the sound source, of each constituent 
sound along with its timing (see Fig. 1.2 above). The methods discussed in 
this chapter represent two main approaches. In one, a percussive track is as
sumed to be performed using a conventional set of drums, such bass drums, 
snares, hi-hats, cymbals, tom-toms, and so forth, and the transcription pro
ceeds by detecting distinct sound events and by classifying them into these 
pre-defined categories. In another approach, no assumptions are made about 
the employed instrumental sounds, but these are learned from the input signal 
in an unsupervised manner, along with their occurrence times and gains. This 
is accomplished by processing a longer portion of the signal in connection and 
by trying to find such source signals that the percussive track can be effec
tively represented as a linear mixture of them. Percussion transcription both 
in the presence and absence of pitched instruments is discussed. 

Chapter 6 is concerned with the classification of pitched musical instru
ment sounds. This is useful for music information retrieval purposes, and in 
music transcription, it is often desirable to assign individual note events into 
'streams' that can be attributed to a certain instrument. The chapter looks at 
the acoustics of musical instruments, timbre perception in humans, and basic 
concepts related to classification in general. A number of acoustic descriptors, 
or features, are described that have been found useful in musical instrument 
classification. Then, different classification methods are described and com
pared, complementing those described in Chapter 2. Classifying individual 
musical sounds in polyphonic music usually requires that they are separated 
from the mixture signal to some degree. Although this is usually seen as a 
separate task from the actual instrument classification, some methods for in
strument classification in complex music signals are reviewed, too. 

Part III Multiple Fundamental Frequency Analysis 

The term multiple FO estimation refers to the estimation of the FOs of several 
concurrent sounds in an acoustic signal. The third part of this book describes 

Many drum instruments can be tuned and their sound evokes a perception of 
pitch. Here 'unpitched' means that the instruments are not used to play melodies. 
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different ways to do this. Harmonic analysis (writing down the chords of a 
piece) can be performed based on the results of the multiple FO analysis, 
but this is beyond the scope of this book and an interested reader is referred 
to [621, Ch. 6] and [553, Ch. 2]. Harmonic analysis can also be attempted 
directly, without note-by-note FO estimation [402], [69], [583]. 

Chapter 7 discusses multiple FO estimation based on generative models. 
Here, the multiple FO estimation problem is expressed in terms of a signal 
model, the parameters of which are being estimated. A particular emphasis of 
this chapter is statistical methods where the FOs and other relevant parameters 
are estimated using the acoustic data and possible prior knowledge about 
the parameter distributions. Various algorithms for on-line (causal) and off
line (non-causal) parameter estimation are described and the computational 
aspects of the methods are discussed. 

Chapter 8 describes auditory model-based methods for multiple FO esti
mation. The reader is first introduced with computational models of human 
pitch perception. Then, transcription systems are described that use an au
ditory model as a pre-processing step, and the advantages and disadvantages 
of auditorily motivated data representations are discussed. The second part 
of the chapter describes multiple FO estimators that are based on an auditory 
model but make significant modifications to it in order to perform robust FO 
estimation in polyphonic music signals. Two different methods are described 
in more detail and evaluated. 

Chapter 9 discusses unsupervised learning methods for source separation in 
monaural music signals. Here the aim is to separate and learn sound sources 
from polyphonic data without sophisticated modelling of the characteristics 
of the sources, or detailed modelling of the human auditory perception. In
stead, the methods utilize general principles, such as statistical independency 
between sources, to perform the separation. Various methods are described 
that are based on independent component analysis, sparse coding, and non-
negative matrix factorization. 

Part IV Entire Systems, Acoustic and Musicological Modelling 

The fourth part of the book discusses entire music content analysis systems 
and the use of musicological and sound source models in these. 

Chapter 10 is concerned with auditory scene analysis (ASA) in music 
signals. As already mentioned above, ASA refers to the perception of distinct 
sources in polyphonic signals. In music, ASA aims at extracting entities like 
notes and chords from an audio signal. The chapter reviews psychophysical 
findings regarding the acoustic 'clues' that humans use to assign spectral 
components to their respective sources, and the role of internal models and 
top-down processing in this. Various computational approaches to ASA are 
described, with a special emphasis on statistical methods and inference in 
Bayesian networks. 
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Chapter 11 discusses a research approach called music scene description^ 
where the aim is to obtain descriptions that are intuitively meaningful to an 
untrained listener, without trying to extract every musical note from musical 
audio. Concretely, this includes the analysis of the melody, bass lines, met
rical structure, rhythm, and chorus and phrase repetition. In particular, two 
research problems are discussed in more detail. Predominant FO estimation 
refers to the estimation of the FO of only the most prominent sound in a poly
phonic mixture. This closely resembles the experience of an average listener 
who catches the melody or the 'theme' of a piece of music even though he 
or she would not be able to distinguish the inner lines. Here, methods for 
extracting the melody and the bass line in music recordings are introduced. 
The other problem addressed is music structure analysis, especially locating 
the chorus section in popular music. 

Chapter 12 addresses singing transcription, which means converting a 
recorded singing performance into a sequence of discrete note pitch labels 
and their starting and ending points in time. The process can be broken into 
two stages, where first a continuous track of pitch estimates (and possibly 
other acoustic features) is extracted from an acoustic signal, and these are 
then converted into a symbolic musical notation. The latter stage involves the 
segmentation of the pitch track into discrete note events and quantizing their 
pitch values—tasks which are particularly difficult for singing signals. The 
chapter reviews state-of-the-art singing transcription methods and discusses 
the use of acoustic and musicological models to tackle the problem. 
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This chapter presents an overview of current signal processing techniques, 
most of which are applied to music transcription in the following chapters. 
The elements provided will hopefully help the reader. Some signal processing 
tools presented here are well known, and readers already familiar with these 
concepts may wish to skip ahead. As we only present an overview of various 
methods, readers interested in more depth may refer to the bibliographical 
references provided throughout the chapter. 

This chapter is organized as follows. Section 2.1 presents the Fourier trans
form and some related tools: time-frequency representations and cepstral coef
ficients. Section 2.2 introduces basic statistical tools such as random variables, 
probability density functions, and likelihood functions. It also introduces es
timation theory. Section 2.3 is about Bayesian estimation methods, including 
Monte Carlo techniques for numerical computations. Finally, Section 2.4 in
troduces pattern recognition methods, including support vector machines and 
hidden Markov models. 

2.1 Frequency, Time-Frequency, and Cepstral 
Representations 

As explained in Chapter 1, the two main domains where musical signals can 
be represented and understood are time and frequency. If time is the domain 
where the music signals are played and recorded (air pressure vs. time data), 
frequency is the domain where they can be represented and understood: in 
Western music, the height of a note in a score represents its fundamental fre
quency. From a mathematics viewpoint, frequency is defined via the Fourier 
transform (FT), which is introduced in Section 2.1.1. However, the Fourier de
finition of frequency is not practical: frequency is well defined only for infinite 
length, stationary, continuous, pure sine waves—these objects do not belong 
to the real world, and non-stationarity is everywhere. The FT nevertheless 
provides a lot of useful information. 
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If time alone or frequency alone are not enough to represent music, then 
we need to think in terms of joint time and frequency representations (TFRs). 
Western musical scores are actually TFRs with a specific encoding. Such rep
resentations are introduced in Section 2.1.2, and rely on the concept of/mme, 
that is, a well time-localized part of the signal. From these frames, we can de
fine a simple TFR, the spectrogram, as well as a time and time-lag represen
tation called cepstral representation; see Section 2.1.3. The following section 
discusses some basic properties of Fourier Transforms. 

2.1.1 The Fourier Transform 

The frequency representation of signals is given by the Fourier transform^ 
(FT). In practical situations we generally have to deal with sampled, real-
valued discrete time signals, denoted x(n), where n denotes discrete time. 
The corresponding discrete FT is defined in (2.1) where k denotes the dis
crete frequency. It is sometimes more convenient to define music transcription 
methods in terms of continuous time signals, denoted x{t), where t denotes 
continuous time. The continuous FT is defined in (2.2), and / denotes con
tinuous frequency. 

oo 

DFT^(A;) = X{k) = ^ x(n)e-J'2'^'=", (2.1) 
n= — oo 

/

oo 

x{t)e-^^^f'dt. (2.2) 
-OO 

The continuous and discrete FTs map the signal from the time domain to the 
frequency domain; X[f) and X{k) are generally complex valued. The inverse 
Fourier transforms (IFTs) are also quite useful for music processing; they are 
defined in (2.3) and (2.4) below. 

oo 

IDFTx(n) = ^ X(fc)e^'2''=" = x{n), (2.3) 
fc= —OO 

/

OO 

X{f)e^^^f'df = x{t). 
-OO 

(2.4) 

An efficient approach to computing DFTs (2.1) and IDFTs (2.3) is the fast 
Fourier transform (FFT) algorithm; see [531]. 

Some properties of the FT/IFT are of importance in music transcription 
applications. In particular, the FT is a linear operation. Moreover, it maps 
the convolution operation into a simple product.^ In other words, considering 

^Readers interested in more advanced topics may refer to a dedicated book; 
see [48] for example. 

^The convolution operation is used for signal filtering: applying a filter with 
time impulse response h{n) to a signal x{n) is done by convolving x with h or, 
equivalently, by multiplying their FTs. 
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for example the discrete time case, DFTa;^*x2(^) = DFTxi(fc) x DFTa;2(^), 
where * denotes the convolution defined as follows: 

oo 

xi(n) * X2{n) = 2_] xi{i)x2{n — i) (discrete time signals), (2.5) 
i = —cx) 

/

oo 

xi{r)x2{t — T)dr (continuous time signals). (2.6) 
-CX) 

This result is also true for the continuous-time FT, as well as for the inverse 
transforms. Another important property, the Shannon theorem, states that 
the range of frequencies where the discrete FT is meaningful has an upper 
limit given by kg/2 (this is the Nyquist frequency, where /cg is the sampling 
frequency). A straightforward consequence of the Shannon theorem is that 
digital signals sampled at the CD rate k^ = 44100 Hz can be analysed up to 
the maximum frequency 22050 Hz. 

2.1.2 Time-Frequency Representations 

There exists only one Fourier transform of a given signal, as defined above. 
However, there is an infinite number of time-frequency representations (TFRs). 
The most popular one is the spectrogram, defined as the Fourier transform of 
successive signal frames.^ 

Frames are widely used in audio processing algorithms. They are portions 
of the signal with given time localizations. More precisely, the frame localized 
at time to, computed with window w and denoted 5j^(r), is 

slit) = x{tMto-t), (2.7) 

where w is a window; see Fig. 2.1. Windows are generally positive and symmet
ric (that is, w(—t) — w(f), for all t) with a limited support (i.e., there exists 
a time ti such that w{t) = 0, for all t > t i ) . Standard window shapes are 
Gaussian, Hamming, Hanning, or rectangular^ and typical frame durations 
are from 20 ms to 100 ms in audio processing. As a rule of thumb, rectangular 
windows should not be used in practice, except under special circumstances. 
From frames, it is easy to build short time Fourier transforms (STFTs) as the 
FT of successive frames: 

/

oo 

-OO 

(2.8) 

^We restrict this discussion to continuous time signals, for the sake of simplicity. 
Discrete time-frequency representations of discrete signals are, in general, more com
plex to write in closed form, and they are obtained by discretizing the continuous 
representations; see [191]. 

^A list of windows and reasons for choosing for their shapes can be found in [244], 
[61]. 
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Signal x(t) 

Window w(̂ Q -1) 

Frame ŝ  (t) 

time t 
Fig. 2.1. The frame SYQ is obtained by multiplying the signal x by a sliding window 
w centred at time t. 

Spectrograms are energy representations and they are defined as the squared 
modulus of the STFT: 

SP:(t,/) = |STFT:(f,/)|^ (2.9) 

Changing the window w defines a different STFT and thus a different spec
trogram. Any spectrogram can also be interpreted as the output of a bank 
of filters: considering a given frequency / , SP^( t , / ) is the instantaneous en
ergy at time t of the output of the filter with frequency response given by 
CFTw(/ — i^), i^ ̂  [—00,00], applied to the signal x. As a consequence, a short 
duration window leads to a spectrogram with good time resolution and bad 
frequency resolution, whereas a longer window leads to the opposite situa
tion.^ Figure 2.2 represents two spectrograms of a piano excerpt, illustrating 
the influence of the window length on the representation. 

Another interpretation of the STFT arises when considering (2.8) as the 
dot product between x(r) and the windowed complex sinusoid w{t—r)e~^'^^^'^: 
under some conditions, the family of elementary time-frequency atoms {w(^ — 
^jg-j27r/T j ^ ^ forms a basis called a Gabor basis. In such cases, STFTJJ" is a 
decomposition of x on this basis, yielding a Gabor representation of x; see 
Chapter 3 and [191], [184]. 

Spectrograms being energy representations, they are quadratic in the sig
nal X. They also have the time-frequency covariance property: Let us shift x in 
time and frequency, defining xi{t) — x{t — to) exp{j27r/o}. The time-frequency 
covariance property ensures that SP^^ (t, / ) = SP^ (t - to, / - /o) • Many other 

^A TFR is said to have good time (frequency) resolution if the signal energy is 
displayed around its true location with small spread along the time (frequency) axis. 
The product of time resolution and frequency resolution is lower bounded via the 
Heisenberg-Gabor inequality [191]. 
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Time (ŝ  -̂̂  Time (s) 

Fig. 2.2. Spectrograms of a piano excerpt computed with Hamming windows with 
length 20ms (left) and 80ms (right). The time-frequency resolution is highly depen
dent on the window length. 

quadratic and covariant time-frequency representations can be defined. They 
are all derived from the Wigner-Ville representation: 

WV,(f,/) = P ^{t+D ^* {t - 0 e-^^'f'dr, (2.10) 

where x^ is the complex conjugate of x, via a time and frequency convolution 
with a time-frequency kernel (/)(t, / ) [191]. In particular, the spectrogram is ob
tained by using ^{t, f) = WVw(^, / ) ; that is, SP:(t , / ) = [WV, * WVw] (t, / ) , 

where * denotes the time-frequency convolution and WVw is the Wigner-Ville 

representation of the window. 

2.1.3 The Cepstrum 

Filtering a signal is actually a convolution operation in the time domain, and 
a product operation in the frequency domain. The aim of cepstral represen
tations was initially to turn filtering into an addition operation by using the 
logarithm of the FT. More precisely, the cepstrum of a continuous signal x(t), 
with FT denoted X ( / ) , is defined as 

Cep,(r) = ICFT log(|X|) (r) 
J —C 

log(|X(/)|)e^^''^^rf/. (2.11) 

and we see that filtering a signal in the frequency domain through the product 
X{f)H{f) becomes, after taking the log, the addition log[X(/)] -f log[if(/)] 
where H{f) is the filter frequency response. When dealing with discrete time 
signals, the cepstrum is also discrete and is generally referred to in terms of 
cepstral coefficients. Cepstral coefficients can be computed from the discrete 
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Fig. 2 .3 . Time evolution of the first cepstral coefficients for the piano signal of 
Fig. 2.2. The coefficient number is written along the vertical axis. For the sake of 
figure clarity, the magnitude of the first cepstral coefficient has been divided by five, 
and an offset has been added to each coefficient to avoid overlap. 

equivalent of (2.11). Figure 2.3 displays the t ime evolution of some of the first 
cepstral coeflficients for a music excerpt. 

In practice, one uses linear prediction cepstral coefficients (LPCCs) or mel 
frequency cepstral coefficients (MFCCs) [536]. LPCCs are computed by ap
plying a linear prediction model (also called an autoregressive model; see Sec
tion 2.2.9, p. 39) to the signal and transforming the resulting coeflBcients into 
LPCCs. MFCCs are used much more in music processing, and the steps of 
their computat ion are plotted in Fig. 2.5. The input signal x{n) is first win
dowed, resulting in frames 5^^ (n) centred at t ime no- The magnitude spectrum 
of each frame, denoted \S^^{k)\, is sent into a bank of K^^i mel frequency fil
ters (typically K^^i = 40). Mel frequency filters have a triangular shape in 
the frequency domain; see Fig. 2.4. The central frequencies of the filters are 
equally spaced in terms of mel frequencies, which relate to the s tandard, linear 
frequency through the relation [297] 

/c^ei = 2595 log 10 700 + 1 (2.12) 

For each mel filter, frequency components within its passband are weighted 
by the magnitude response of the filter, and then squared and summed. The 
resulting filter-related coefl&cient is denoted Xno(^mei)- For the full set of fil
ters, the Xno(^mei)'s are stacked into a vector of size K^^i, whose logarithm 



2 An Introduction to Signal Processing 27 

Frequency 

Fig. 2.4. Mel filter bank. Each filter has a triangular shape, and unity response 
at its centre. Its edges coincide with the adjacent filters' central frequencies. The 
central frequencies are linearly spaced on the mel frequency scale, which results in an 
exponential interval between the filter centres onto the linear scale, through (2.12). 

is transformed back into the t ime lag domain using the discrete cosine t rans
form (DCT), where the D C T of a discrete signal x with length T is defined 
as follows: 

T 
DCT^(i) = ^x{n)cos\-iin--j (2.13) 

In addition to yielding time-domain coefficients, the D C T also decomposes 
the coefficients in a way similar to principal component analysis [417] (see 
p. 54), so tha t each mel cepstral coefficient carries diflFerent information from 
the other MFCCs. In many applications, one is also interested in the t ime 
evolution of MFCCs, which can be given as derivatives. The first and second 
derivatives for each MFCC Cep^^{i) {i = l , . . . , K ^ e i ) at each time no are 
denoted Ano(0 and AAno{i). 

x{n) 
^ 

sliding 

window w(n — no) 

Sno(n) 

Cep„J i )^ 

differentiator 

differentiator 

IDFTI 
\SZ{k)\ mel filter 

bank El 

(/Cmel) 

DCT 
1 0 g ( X n o ( ^ m e l ) ) 

logarithm 

Fig. 2.5. MFCC computation steps. The magnitude spectrum |5no(^)| of each 
frame S^Q (n) is filtered through the mel filter bank. The squared outputs of each 
filter are summed over the filter frequency range, yielding a coefficient Xno(^mei) for 
each filter. The vector made of the logarithm of these coefficients is mapped back 
to the time domain using the discrete cosine transform. 
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2.2 Basic Statistical Methods 

Musical data have some common characteristics, but they may also vary a 
lot from one instrument to another, or because of changing recording condi
tions. Statistical methods are very powerful for modelling sound sources and 
other entities in music because they can handle their variability. Even a single 
sound source produces a great variety of sounds, and it cannot be modelled 
deterministically. The main concept in statistical methods is that of random 
variables which are characterized by a probability density function (pdf). 

2.2.1 Probability Distributions and Density Functions 

Roughly speaking,^ a random variable a is a scalar or a vector in some space 
A which can be continuous (e.g., ^ = R) or discrete (e.g., A = Z). It is 
called random because it can take several values in A which are impossible to 
predict without any errors. If random variables cannot be predicted, they can 
be characterized, since some values of a may be more likely to appear than 
others. In the case where a is a discrete variable, it is characterized by the 
probabilities that each value of a will appear, denoted P(a). For example, in 
the coin tossing problem, A = {tail, head} and the probabilities are P(a = 
head) = P(a = tail) = 1/2. Standard discrete random variables distributions 
are uniform (like in coin tossing), Poisson, binomial, etc. [544]. 

In the continuous case, it may happen that all values of a are equally hkely 
in a part B of the space A, and never appear out of B. In that case, a is a 
continuous random variable with a uniform pdf denoted UB, with 

^^B(a) = ^ ] l B ( a ) , (2.14) 

where /i(S) is called Lebesgue measure of B (it measures the volume of B) and 
Is is the indicator function which satisfies I^(a) = 1 if a G B and I^(a) = 0 
otherwise. Uniform pdfs are often met in audio processing problems, and they 
are used to model the lack of precise information about a parameter. 

Another important pdf in engineering problems is the Gaussian^ also called 
normal pdf. 

M{a;fi,S) = [ d e t ( 2 7 r i : ) ] - i / ' e x p | - i ( a - / x ) T i : - i ( a - ^ ) | , (2. 15) 

where /i is the mean vector^ and U is the covariance matrix, which is sym
metric. The vector /i has the same size as a, and the matrix U is square, its 
size in both dimensions being that of a. An exact definition of /x and U is 
given in (2.19) and (2.20). An important special case is when a is scalar. In 
this case, the Gaussian pdf is written as 

The precise definition of random variables is beyond the scope of this chapter; 
see [548] for a more precise introduction. 
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(2.16) 

where m is the mean and cr̂  is the variance. There exist many other standard 
continuous pdf shapes such as the gamma, inverse gamma, Cauchy, Laplace, 
Dirichlet, etc. [544]. When the random variable a is a vector with dimension 
da, a = [ a i , . . . , adj^, then the pdf p(a) is in fact a joint pdf p ( a i , . . . , ad^)-
This is a function of dimension da and it gives us the probability of observing 
jointly ai , . . . , a^^. 

Two very important properties of pdfs and discrete variable distributions 
are that they are always positive and their sum equals one: 

^ P(a) = 1 (discrete case), (2.17) 

L p(a) da.= 1 (continuous case). (2.18) 

2.2.2 Mean, Covariance, Expectation, Moments, and Modes 

For any continuous pdf p(a), it is generally possible to define the mean vector 
/i and covariance matrix U as follows: 

/x = / a p(a) da, (2.19) 
JA 

E= / (a - /x)(a - M)"^ p(a) da. (2.20) 
JA 

Note that both /x and U cannot be defined whenever the integrals in (2.19) 
and (2.20) do not converge. 

For both discrete and continuous random variables, the mean and covari
ance matrix can be expressed in terms of the expectation E of a function h 
over A, defined as follows: 

Ep(a)[/i(a)] = ^ h{a)P{3i) (discrete case), (2.21) 
aeA 

Ep(a)[/^(a)] = / / i (a)p(a)da (continuous case). (2.22) 
JA 

The expectation can be interpreted as follows: consider for example the con
tinuous case, and assume that a set of random variables {a i , . . . , a iv} are 
identically distributed according to some pdf p(a); then the so-called empiri
cal average 

1 ^ 
Ai^(Mai),...,Maiv)) = ^E'^^^^) (2.23) 

2 = 1 



30 Manuel Davy 

is an approximation of Ep(a)[/i(a)] in the sense tha t Jif^{h{aii)^... ,h{3.N)) 
converges to Ep(a)[ft'(a)] when the number of random variables Â  becomes 
infinite (this is the law of large numbers). It is easy to understand the expec
tat ion as the average of many samples h{a.) where a is distributed according 
to p(a) (this is also t rue for discrete random variables). 

Using the expectation operator for any continuous or discrete random 
variable, the mean vector and covariance matr ix can be writ ten as follows: 

/x = Ep(a)[a] and 27 = Ep(a)[(a - / x ) ( a -/x)"""] (discrete case), (2.24) 

/x = Ep(a) [a] and 27 = Ep(a) [(a - /LA)(a -/x)"*"] (continuous case). (2.25) 

More generally, the order r moment Mr oi di scalar random variable a with 
mean m is given by the expectation 

Mr [P{a)] = Ep(^) [(a - my] (discrete case), (2.26) 

Mr [p(a)] = Ep(a) [{a - my] (continuous case). (2.27) 

In the case where the random variable a is a vector of dimension c?a, its order 
r moment Al^ is an r-dimensional tensor with size ĉ a x da x . . . x da-

Finally, distributions generally have modes^ tha t is, local maxima: their lo
cations indicate in which regions of the space A the random variable a is more 
likely to appear. Figure 2.6 summarizes graphically the concepts introduced 
in this subsection. 

0.4 

3. 

c h-1 a(2) ., 4 : 4 

One-dimensional Gaussian 

1 

a( l ) 

Two-dimensional Gaussian 

Fig. 2.6. Graphical representation of the Gaussian pdf of a scalar (continuous) 
random variable (left) and a two-dimensional Gaussian random variable (right). In 
the scalar case (left), the mean and standard deviation are equal to one. In the two-
dimensional case (right), the mean vector is [-1 1.2]^ and the covariance matrix 
is 27(1,1) = 1, 27(1,2) = 27(2,1) = 0.6 and 27(2,2) = 1.2. The diagonal terms 
of the covariance matrix being non-zero, the pdf is tilted around the mean point 
(-1,1.2). At the back of the right figure, the marginal pdfs (see Section 2.2.3) have 
been plotted. 
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2.2.3 Marginal and Conditional pdfs 

Considering two random variables ai G Ai and a2 G .42, we can define their 
joint pdf p(ai, a2), which informs us about the probability of observing jointly 
(ai,a2). Then we can define the marginal pdfs, 

p(ai) = / p(ai,a2)da2 and p(a2) = / p(ai,a2) c^ai, (2.28) 
JA2 JAI 

which can be interpreted as the pdf of one of the random variable irrespective 
of the value of the other one; see Fig. 2.6, right. Using marginal pdfs, it is 
possible to decompose the joint pdf p(ai,a2) as follows: 

p(ai,a2) = p(ai|a2)p(a2) = p(a2|ai)p(ai), (2.29) 

where p(ai|a2) is the conditional pdf of a i , and should be read as 'the pdf of 
ai conditional on a2'. Its interpretation is simple: Imagine that a2 has some 
fixed, non-random value denoted a2'̂ ''. Then ai is still a random variable, 
and its pdf is p(ai,a2 = a2'̂ '') up to a normalizing constant. This constant is 
necessary because the integral of p(ai,a2 = 2̂'̂ '̂ ) with respect to (w.r.t.) ai 
does not equal one anymore. The notation p(ai|a2) should be understood as 
p(ai|a2'^'^), that is, (1/C)p(ai,a2 = a2'̂ '̂ ) where the normalizing constant C is 
p(â ^̂ )̂ from (2.29). 

Finally, two random variables ai and a2 are independent if and only if 
p(ai,a2) = p(ai) p(a2) or, equivalently, p(ai|a2) = p(ai) or p(a2|ai) = p(a2). 
This means that the knowledge of ai provides no information about a2, and 
vice versa. 

2.2.4 Probabilistic Models 

Random variables are extremely useful in signal processing because they can 
model the lack of certainty about a physical phenomenon. Imagine we have a 
good model for some process: for example, a 'pure sine' acoustic waveform gen
erated by an electronic instrument. A model for the pressure signal recorded 
is given by the following discrete time sine model: 

x{n) = asin(27rA:on-f-(/)o) for n = l , . . . , T , (2.30) 

where /CQ is the unknown sine waveform frequency, 0o is the initial phase, and 
a is the signal amplitude. It is clear that the recorded pressure signal will not 
fit exactly the model (2.30), and that it will deviate from it. As these deviations 
may have various causes (air temperature/pressure inhomogeneity, non purely 
sinusoidal loudspeaker behaviour when emitting the sound, digital to analog 
conversion artifacts, etc.), it is unrealistic to model them deterministically, 
and a random model can be used. A possible such model is 

x(n) = asin(27rfcon + (/>o) + e(n) for n = l , . . . , T , (2.31) 
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where e(n) is a so-called additive random noise with a given pdf. Including 
this noise in the model is aimed at modelling the deviations of the recorded 
data from the model in (2.30). In the general case, it is assumed that e(n) is 
a stationary white noise, or independent identically distributed (i.i.d.) noise-, 
that is, the noise at any time ni is statistically independent of the noise at 
any time n2, and their pdfs are equal. More precisely, the joint pdf of the 
noise samples equals the product of the pdfs of each sample: Writing the 
noise samples as a vector e = [e( l ) , . . . , e(T)]^ for n = 1 , . . . , T, we have 
p(e) = p{eil))p{e{2)).. .p(e(r) ) , with p(e(l)) - p{e{2)) =...= p{e{T)). 
Finally, since the noise is aimed at modelling small deviations around the sine 
model, it is assumed to be zero-mean. Equation (2.31) defines a probabilistic 
signal model and directly yields the likelihood function. 

2.2.5 Likelihood Functions 

In (2.31), it is assumed that the recorded signal x follows a sine model with 
additive zero-mean white noise. In practice, this model is interesting in the 
sense that it relates the recorded signal x(n), n — 1 , . . . , T to the parameters 
fco, 00, and a. In the following, we denote by 6 the set of unknown parameters, 
i.e., 6 = [ko,(l)o,a]. From the probabilistic model defined above, and given a 
recorded signal x, we see that some values of 0 are more likely than others: 
for example, if the sine wave is generated with frequency 440 Hz, finding ko = 
440 Hz is very likely. It is also likely that the loudspeaker which emits the 
sound adds partials (that is, additional sine waves with lower amplitudes) 
at frequencies 880 Hz, 1320 Hz, etc. These are also hkely, to a lower extent 
than 440Hz, though. Conversely, assume 0 is given; then the signal x(n), 
n = 1, . . . ,T can be seen as a random vector denoted by x = [x(l), • • •,x{T)]^. 
It admits a joint pdf p(x|0) = p(x(l) , x (2 ) , . . . , x{T)\6), conditional on 6: by 
changing 0, the signal pdf p(x|^) is changed. In the sine example presented 
above, assuming the noise is Gaussian, the covariance matrix of e is diagonal 
of size T, with the variance a"^ of each e(n), n = 1 , . . . , T on its diagonal. This 
pdf is 

p(x|0) = [ 2 7 r a 2 ] - ^ / 2 e x p | - ^ [ x - f W ] ' ' [ x - f ( 0 ) ] | ^232) 

where f{6) is the model given in (2.30) written in vector form, i.e., f(0) — 
[asin(27rA:ol + (/>o), • •., a sin(27r/coT -j- ^o)]""". 

The mathematical object p(x|^) admits two interpretations: First, when 
read as a pdf of x for a given 6, p(x|0) is called the conditional pdf of x^ 
conditioned on 6. Second, when seen as a function of 6 for given x, p(x|0) 
is called the parameter likelihood function and it is defined over the space of 
all possible values of 9 denoted O. For example O = [0,1/2] x [0,27r] x [0, oc) 
in the sine example (2.30). Note that the function p(x|^) is not a pdf of 6, 
because its integral w.r.t. 0 over 0 may not equal one. 
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In practice, we always refer to p(x|0) as the likelihood function. It should 
be interpreted as a measure of similarity between the model f (0) tuned by 
0 and the signal x: the larger the likelihood, the more likely the parameter 
vector 6. In some problems, it can happen that the likelihood function takes 
infinite values for some values of 6. In this case, it is called degenerate. 

2.2.6 Maximum Likelihood Estimation 

As outlined above, the Hkelihood can be seen as a similarity measure be
tween the signal and the model, via its parameters. In the sine example given 
in (2.30), the parameter vector 0 = [fco, 00, <̂ ] is unknown and it may be useful 
to estimate it. It is quite natural to use as an estimate the value of 6 that 
maximizes the likelihood (assumed non-degenerate): 

0ML = argmax p(x|0), (2.33) 
eee 

where the subscript ML stands for maximum likelihood (ML). Figure 2.7 shows 
the likelihood function corresponding to the model (2.31), and the maximum 
can be seen: it is located at point ^ML- The optimization problem (2.33) is often 
transformed into the equivalent problem of maximizing the log-likelihood^ 
defined as follows: 

Ue) = log[p(x|0)]. (2.34) 

Thanks to their excellent properties (see subsection below), ML estimators 
are often used in signal processing applications. 

2.2.7 Elements of Estimation Theory 

There exist many estimation techniques with possible apphcation to music 
transcription: Aside from maximum likelihood, one can quote minimum mean 
square error (MMSE) estimators;^ they consist of estimating the expecta
tion Ep(^) [h{0)] of some function h of the parameter by using an empiri
cal average (2.23). Estimators are characterized by two important quantities: 
the bias and the estimator covariance. In the sine wave example presented 
above, the sound produced by the electronic instrument through a loudspeaker 
can be recorded several times, resulting in several discrete signal vectors x^, 
i = 1 , . . . , / , all described by the model (2.31) (this is because the signal is 
random). When applying some estimation technique on each of these signals, 
such as ML estimation, we obtain estimates 0^, i = 1 , . . . , / , which all have a 
different value. In other words, the estimate 0 is a random variable with pdf 

^The logarithm function is order preserving, and thus maximizing a function or 
maximizing its logarithm yield the same result. 

^MMSE estimates are further considered in Section 2.3.4, p. 41. 
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From above 3D view 

Fig. 2.7. Likelihood p(x|fco, </)o, Q;) in (2.32) as a function of the frequency ko and 
the amplitude a for a sine wave with frequency ko = 0.3 and amplitude a = 2. The 
sine wave is corrupted with a white Gaussian zero-mean additive noise with variance 
a^ = 4. Both this variance and the initial phase (̂ o are assumed to be known. The 
likelihood shows a very sharp peak, which leaves no doubt about the parameter 
value, but which may be hard to localize. 

Pu t t ing aside estimation issues, and assuming the model (2.31) is correct, 
the recorded signals x^ are all generated by one value of 0, denoted 0gt, 
where the subscript 'gt ' s tands for 'ground t ru th ' : this is the value we want 
to estimate. 

In the^enera l case, we define the bias of the estimator which produces the 
estimate 0 of 0 as follows: 

Bias(§) = E p ( ^ ) ( ^ ) - ^ g t . (2.35) 

Note tha t the bias characterizes the estimator (e.g., the ML estimator applied 

to the model (2.31) in the sine wave example) and not an estimate 0. An 

estimator is said to be unbiased whenever Bias(0) = 0, and this is, of course, 

a very important property. 
The estimator covariance matr ix Var(^) is defined for bo th biased and 

unbiased estimators (in the latter case, it is also referred to as the mean 
square error): 

Var(§) - E[(e -E[d])(e -E[d]y]. (2.36) 

For unbiased estimators, Var(^) is lower bounded by the so-called C r a m e r -
Rao bound.^ When the information about the signal becomes stronger, 

^The definition of a lower bound for scalar numbers has to be adapted to matrices: 
A matrix A is a lower bound for the covariance matrix U if and only if the matrix 
E — A is a, definite non-negative matrix (where A and U have the same size); 
see [295]. 
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typically because we have longer records (T -^ CXD), we can study the estima
tor asymptotic properties. In particular, the estimator is said to be consistent 
whenever the variance Var(0) tends to zero. 

ML estimators are asymptotically unbiased (in some cases, they are even 
unbiased for any number T of data); they are consistent; and they reach 
asymptotically the Cramer-Rao bound. Because of these excellent properties, 
maximum likelihood approaches are widely used in signal processing. When 
a good model is defined, the implementation difficulty consists mainly of the 
optimization problem (2.33), which can usually be solved by the expectation-
maximization algorithm. 

2.2.8 The Expectation-Maximization Algorithm 

The expectation-maximization (EM) algorithm is an optimization algorithm 
specially designed for ML parameter estimation. Before describing it, we em
phasize two of its important characteristics: First, it is 'gradient-based'; that 
is, it does not find the global maximum in the general case, unless conve
niently initialized. Second, it is only applicable to problems with latent vari
ables. There are a great number of problems which can be addressed using 
EM. As an illustration, we consider here the important problem of fitting a 
mixture of Gaussians to some data.^^ 

An Example: Gaussian Mixture Models (GMMs) 

Gaussian mixture models are quite important in audio processing. For ex
ample in speech processing the data considered are generally sets of cepstral 
coefficients. However, this algorithm is not restricted to cepstral data. In gen
eral, GMMs are used to estimate the pdf of a set of data. This is because they 
have two key properties: 1) given that there are enough Gaussians in (2.37), 
GMMs can approximate any pdf (versatility), and 2) finding their parameters 
is easy thanks to the EM algorithm. 

Consider the set of data X = { x i , . . . , Xm}, where each individual datum 
is a vector in R^^. In the speech processing example mentioned above, each 
datum Xi {i = l , . . . , m ) is made of the first dx cepstral coefficients of an 
audio signal frame. Gaussian mixture modelling consists of fitting a mixture 
pdf made of J Gaussians on each datum in X. The mixture pdf is 

J 

p(x,|{/?„M.,i;,},-=i,...,j) - ^ /? ,Ar(x, ;Ax,- ,^ , ) , (2.37) 

where the mixture coefficients /?j, j = 1 , . . . , J are such that Ylj=i 0j = 1. 
The likelihood of the mixture for the complete set X is written as 

^^Further details about the EM algorithm for general purposes may be found 
in [471] and the special case of Gaussian mixtures is addressed in [536], [38]. 
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m 

i=l 

(2.38) 

because the da t a in X are assumed to be independent and identically dis
t r ibuted (thus, the joint dataset pdf is the product of the individual da tum 
pdfs). 
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Fig. 2.8. Mixture of five Gaussians. The five Gaussians composing the mixture 
are represented in dotted Hues, whereas the full mixture pdf is represented in solid 
Hne (with offset -hl.l for better visibility). The mixture coefficients are pi = ... = 
05 = 1/5. The means of the Gaussians are [—6, —3, —0.2, 2, 5] and the variances are 
[1, 0.16, 0.64,1, 3.24]. Any random variable distributed according to this mixture pdf 
may be generated either directly from the mixture pdf, or by first selecting randomly 
one of the five Gaussians, and then generating the variable from it. For example, 
the dot at abscissa 1.8 can either result from direct sampling form the mixture in 
solid fine, or by first selecting randomly one of the Gaussians (here, the Gaussian 
centred which mean equals 2), and samphng from this Gaussian. 

In Gaussian mixture approaches, X is described statistically through the 
mixture parameters {/?j,/x^, 27j}j=i,...^j. This modelling approach is also in
teresting because it compresses the information of m da ta into J parameter 
sets {Pj, fip 17j}, with J <^m. These parameters need to be estimated, how
ever. This is implemented here by the EM algorithm for ML estimation of the 
unknown parameters , denoted for convenience by 0 = { ^ i , - - - , ^ j } , where 

In order to apply the EM algorithm, we note tha t the mixture (2.37) 
admits two interpretations: First, the pdf of x^ is seen as a sum of weighted 
Gaussians, as depicted in Fig. 2.8. Second, with probability (3j ( j = 1 , . . . , J ) , 
the da tum x^ is distributed according to the pdf A/'(xi; /x^, ^j)- In the second 
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interpretation, we can associate the latent variables z ,̂ z = 1 , . . . , m to each 
datum Xi, where zi takes its values in {1 ,2 , . . . , J } . The latent variable zi 
indicates the component N{^i\ /x^, Ej) of the mixture (2.37) that corresponds 
to x^. In other words, when zi is known, the distribution of Xf is 

p{^i\zi^j,Pj,^^,Ej), - A/'(xi;/i^.,^,). (2.39) 

The latent variable Zi probability is P(2:̂  = j ) = /3j. 

Principle of the EM Algorithm 

The general structure of the EM algorithm is presented in Algorithm 2.1 
below. It is assumed that the model involves the data set X and latent variables 
Z = {zi,...,zj}. 

Algorithm 2.1: General EM Algorithm 

1. Initialization: Select the starting point 0^^^ inside O. 
2. Iterations: For j = 1, 2 , . . . , do (until convergence is reached) 

• Set 
(̂̂ •+1) = argmaxQx(^|6/^^^), (2.40) 

e 
where 

Qx{e\0^'^) = Ep(„x,e(.))[logp(X,Z|^)]. (2.41) 

Algorithm 2.1 is quite simple. The two steps used to compute 0^-^'^^^ from 
e^^^ are 

• The expectation step: compute Qx(^|^ ) using (2.41). 
• The maximization step: maximize (5x(^|^ ) with respect to 0. This yields 

00+1). 

The principle of this algorithm [471] is that we want to maximize the log-
likelihood log p(X, Z\6) with respect to 6 without knowing the latent variables 
Z. The expectation in (2.41) permits us to get rid of the latent variables, so 
as to perform the maximization. However, since this expectation is computed 
for the parameter value 6^-^^, which is not the 'true' value, the expectation in 
(2.41) is not the 'true' one. The iterations in Algorithm 2.1 ensure that 0^^^ 
becomes closer to the 'true' value, yielding a better approximation of the true 
expectation in (2.41), and thus a better ML estimate at each iteration. 

Application to the Gaussian Mixture Model 

In the Gaussian mixture case, (2.41) and (2.40) can be calculated analytically. 

m 

log piX,Z\e) = ^ l o g pixi\zi,d) + \og P{zi\e), (2.42) 
2 = 1 
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and, using (2.41) (see [38] for details), 

J m 

Qx{0\e^'^) - 5 ] 5 ^ log [^,p(x,|z, = j ,0 , ) ]P(z , - j | x , , 0 f ) , (2.43) 

where P{zi = j\:s.i,6j) is computed using Bayes's rule; see (2.51) in Sec

tion 2.2.3, p. 31. Moreover, Qx{0\e^^^) in (2.43) can be maximized analyt

ically. Defining S. ^u) = J2^i ^i^i — Jl^i^^j )^ ^^^ ^ ^ update equations 

are [38] 

^(i+i) 1 
^j=7;;^.ov^^ (2-44) 

m 

^r ' ' = ̂ "«o) J2'^Pizi-j\^i,ef), (2.45) 

m 

^r'^ = S'la^ E [̂» - ^r ' ' ] [̂^ - t^^'^V^i^i = il̂ .̂ ̂ ?)- (2-46) 
•' i = l 

An interesting remark is that the likelihood of Gaussian mixture models is 
degenerate. In particular, when there are more components than data points 
(i.e., when J > m)^ the ML estimate includes variances equal to zero. In this 
case, the Gaussians degenerate into Dirac delta functions, and the model is 
exactly equivalent to the dataset X itself: this is a useless solution. A solution 
to avoid this problem consists of maximizing a penalized likelihood instead of 
the likelihood itself; see [91]. 

As mentioned earlier, the EM algorithm is gradient based. In other words, 
its convergence to the global maximum is not ensured in the general case. In 
particular, assume that the likelihood admits several local maxima (that is, 
points where dp{X\6)/dO = 0); then the solution found by the EM algorithm 
is one local maximum, determined by the initialization point. Solutions to 
overcome this problem consist of implementing other optimization methods 
such as simulated annealing or stochastic EM [544], but none of them is simple 
and/or computationally cheap. 

2.2.9 Penalized Likelihood Approaches 

Penalized likelihood approaches are really useful when a parameter estima
tion problem admits many possible solutions, including trivial ones (problems 
which lead to such trivial or useless solutions are said to be ill posed). In 
this case, the ML estimate found is generally not the one sought. This can 
however be avoided by modifying the likelihood into a penalized likelihood^ 
defined as 

L ^ W = Lx(0) + Ar?(0), (2.47) 
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where Lx(^) is defined in (2.34) and f2[6) is aimed at lowering the likelihood 
in parts of the space © which are to be avoided. ̂ ^ In the Gaussian mixture 
example where J > m^ the penalty term can be set so as to disable variance 
parameters that are too small; see [91]. The EM algorithm can be adapted in 
order to address penalized likelihood problems [251]. 

An important application of penalized likelihood concerns the model se
lection problem^ where one tries to estimate the probabilistic model that best 
fits some data. A typical example is that of autoregressive models. 

Autoregressive Models 

Autoregressive models form a major signal processing tool. They are used 
for spectrum estimation, coding, or noise reduction. An autoregressive (AR) 
model (also called a linear prediction model) expresses a signal x{n) at time 
n as a linear combination of its previous values: 

x{n) — aix{n — 1) + a2x{n ~ 2) -\ + apx{n — p) + e(n), (2.48) 

where a = [ a i , . . . , ap]^ is the vector made of the AR coefficients. The order 
of this model is the number p of coefficients. Assuming the noise e(n) is zero-
mean, white and Gaussian with known variance cr̂ , the log-likelihood of the 
AR coefficients and the model order is 

T 

U{a,p) = - - log {27ra^) - y^Yl H^^^) " ^^'^^n-i-.n-pf. (2.49) 
n=l 

where -Kn-i.n-p = [x{n - 1) , . . .x{n - p)]^ and assuming, e.g., Xn-i-.n-p = 
[0 ,0 , . . . , 0]^ for n < ]9. Here, we denote by x the vector made of signal sam
ples x(n), n = 1, . . . ,T. Maximizing Lx(a,p) yields uninteresting solutions, 
typically p becomes very large. This problem can be overcome by maximizing 
instead the penalized log-likelihood (2.47). Choosing Q{a,p) = —p and A = 1 
leads to Akaike's penalized log-likelihood, which leads to reliable model order 
estimation [252]: 

T 

ir{a,p) = - | l o g ( 2 7 r a ) - ^ ^ | | x ( n ) - a T x j ; f - p . (2.50) 
n=l 

The next section presents an estimation framework different from likeli
hood approaches: Bayesian statistical methods. 

2.3 Bayesian Statistical Methods 

In maximum likelihood parameter estimation, it is implicitly assumed that 
there exists a fixed, ground truth parameter value. It can be argued, however, 

^^See [252] for a review of penalized likelihood approaches. 
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that the parameter is well defined insofar as the model is correct, but in real 
cases, the model is always an approximation of the real world. In Bayesian 
approaches, it is assumed instead that the unknown parameter is a random 
variable, characterized by a pdf. This pdf is stated before any data are col
lected and is called the parameter prior distribution, 

2.3.1 Bayes's Rule and Posterior Distributions 

The most important concept of Bayesian statistical theory is the so-called 
Bayes's rule. Consider two random variables ai G Ai and a2 G ̂ 2 , with joint 
pdf p(ai,a2). Recall (2.29): p(ai,a2) = p(ai|a2)p(a2) = p(a2|ai)p(ai). We 
can deduce Bayes's rule 

«^o 1̂  ^ p(ai|a2)p(a2) , . 
p(a2 ai) = J —•——-———, (2.51) 

J^^p(ai|a2)p(a2)(ia2 
which enables us to 'reverse the conditioning'. Note that the denominator in 
(2.51) equals / ^ p(ai, a2), daL2 = p(ai), but we keep the integral form in order 
not to be confused with a possible prior over ai which would also be denoted 
p(ai). Bayes's rule can be applied straightforwardly to Bayesian parameter 
estimation. Assume we want to learn the value of some parameter 0 E 0 from 
a set of data X. We already have the likeUhood p(X|0), and, being Bayesian, 
a parameter prior p(0) is selected. Using Bayes's rule, 

where p{0\X) is called the parameter posterior distribution^ which incorporates 
information from both the data and the parameter prior. Roughly speaking, 
the posterior provides information about the probability of each possible value 
of 0 given the data and some prior knowledge. In practice, it suffices to write 

p{e\X) a p(X|0)p(©), (2.53) 

where (x stands for 'proportional to'. The proportionality constant only de
pends on the data X and it does not give additional information about 6. 
Bayesian statistical methods are concerned with posterior distributions. 

2.3.2 Bayesian Estimation 

Similar to ML estimation, where estimation is performed from the likelihood, 
it is possible to perform Bayesian estimation from the posterior. In particular, 
two estimation methods are generally considered: 

• Maximum a posteriori (MAP). The estimated value maximizes the poste
rior pdf 

0MAP = argmax p(0|X).' (2.54) 
eee 



2 An Introduction to Signal Processing 41 

• Minimum mean square error (MMSE). The estimate is the expectation of 
the posterior pdf 

0MMSE = ^p(0|X)[^]- (2.55) 

An important remark is that Bayesian estimators can be 'biased': for ex
ample, if the likelihood p(X|0) and the prior p(0) are Gaussian, with the prior 
mean /x being different from the 'ground truth' parameter value 0gt, then 
the above Bayes estimates are equal^^ (^MAP = ^MMSE) and their expectation 
differs from Ogt. However, in the Bayesian philosophy, Ogt is meaningless as 
there is no true value of 0 explicitly or implicitly assumed: all values 0 are 
possible true values. 

2.3.3 Bayesian Interpretation of Penalized Likelihood 

In (2.47), the penalty term is introduced in the log likelihood. Going back to 
the likelihood via the exponential function, we can rewrite it as 

exp(LP""(0)) = p(X|^) xexp(Ar2((9)) (2.56) 

and it appears that the likelihood has been multiplied by a term that only 
depends on 6. Assuming that the following integral is finite, 

L exp(AJ?(0)) dO = C, (2.57) 
0 

then we can define the pdf of 6: 

P W = ^ e x p ( A r 2 ( 0 ) ) . (2.58) 

We recognize in (2.58) the prior pdf of 9, and (2.56) can be interpreted 
as the product of the likelihood with the prior, that is, the posterior p(^|X) 
(up to a normalizing constant). Maximizing the penalized likelihood becomes 
equivalent to performing MAP estimation. 

2.3.4 Monte Carlo Methods 

Bayes's theory provides a general framework for statistical inference. The main 
concept is that of posterior distributions, which result from both the likelihood 
and the prior. However, computing estimates such as (2.54) and (2.55) is 
a difficult problem in the general case. For example, MMSE estimates are 
obtained by the following integral: 

0^ / ep{e\x)de. (2.59) 
j0 

^^It is worth mentioning that the product of two Gaussians is Gaussian; thus the 
posterior pdf is also Gaussian in this example, which explains why its mean value 
coincides with its maximum. 
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In statistical inference problems, the dimension of 0 may be very large (some
times, more that 1000). Whenever the closed-form expression of (2.59) cannot 
be found, a numerical integration technique should be implemented. Consider 
the slightly more general integral computation case 

7[h] = / h{e)7r{e)de, (2.6O) 
Je 

where 7T{6) denotes any pdf of 0, such as the posterior p(^|X). When the 
dimension of © is small (typically, smaller than 3), / [h] can be computed 
numerically a la Riemann using a regular grid (provided 0 is a compact set). 
For example, if 6 is one dimensional, and O — [0,1], Riemann integration 
consists of computing 

1 ^ 
[̂h] ^ -J2^{i/N)n{i/N). (2.61) 

The limit of this approach is that the grid size increases exponentially with 
the dimension de of 0 : assuming 100 grid points are used in each dimension 
of © of dimension do = 50, the grid size is 100^^ == 10^^^; this is out of reach 
of today's computers. 

However, another numerical computation technique can be implemented. 
Assume random samples 6^^\ i = 1,...,A^ are available, where each sam
ple 0̂ *̂  is distributed according to 7T{0) (this is denoted ^̂ ^̂  ~ TT{6) in the 
following). Then, from the law of large numbers, 

^̂ t*̂ ] = ^ E h ( 0 ( ' ) ) « J[h]. (2.62) 

The random samples 6^^\ i = 1,...,A^ are generally referred to as Monte 
Carlo samples and IN [h] is the Monte Carlo estimate of / [h]. 

The estimate IN [h] is unbiased for any N, i.e., E^(^(i) 0(N)\(JN [h]) = 
/ [h] and consistent. Finally, the empirical mean square error aj^ [h] provides a 
reliable indication of the variance of IN [h] (in the sense that, asymptotically 
as A/" ^ oo, a'fj [h] tends to the true estimation variance): 

W - ^E[h(^^^V^iv[h] ] ' . (2.63) 
y V 

2 = 1 

Monte Carlo methods may also be used to compute other kinds of esti
mates, inside or outside of the Bayesian framework. For example, Monte Carlo 
optimization methods may be used to compute maximum likelihood of MAP 
estimates; see [544]. 

We have assumed so far that Monte Carlo samples are available. The real 
difficulty is actually in generating these samples. When 7r(0) is a standard pdf 
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(e.g., uniform or Gaussian), it is possible to implement direct sampling using 
a random variable generator. In other cases, typically when n{9) is a posterior 
of large dimension with an unknown normalizing constant, the problem can 
be much harder. Several techniques have been developed for random variable 
generation from any pdf. We present here Monte Carlo Markov chain (MCMC) 
methods and importance sampling. ̂ "̂  

2.3.5 Monte Carlo Markov Chain (MCMC) Methods 

The principle of MCMC algorithms is as follows: Given some pdf 7r{0) we want 
to sample from, a chain of samples is generated iteratively; see Algorithm 2.2. 
The chain is statistically fully determined by the pdf of the initial sample 0^^^ 
denoted 7ro{0) and a so-called Markov kernel IC{6\0'), which is a pdf w.r.t. 6 
(for fixed 6'). Provided the kernel IC{6\0') satisfies some properties [544], the 
pdf of each sample 6^'^^ slowly converges to the target pdf 7T{0) as i increases. In 
particular, the kernel must be built so that 7r{0) is the invariance distribution 
of/C(0|^'), namely. 

L lC{e\e')'K{e') dO' = niO) for all ee0. (2.64) 
0 

Algorithm 2.2: Generic MCMC Algorithm 

1. Initialization: Sample 6^^^ -^ 7ro(^). 
2. Iterations: For i = 1,2, .^., AT, do 

Sample 5̂ )̂ - /C((9|^( ' - '^) . • 

Markov chain algorithms provide a series of samples which are asymptoti
cally distributed according to 7T{0). In practice, it is necessary to run 'burn-in' 
iterations before reaching convergence. Burn-in samples are not kept for the 
computation of Monte Carlo estimates (2.62). Figure 2.9, p. 46, shows typical 
random chains, including the burn-in iterations: the curves show more fiuctu-
ation of the current value in the beginning (during the burn-in) and then the 
value converges. 

In can be hard to design such a kernel from scratch. Fortunately, two sim
ple algorithms enable easy building of such kernels: the Metropolis-Hastings 
algorithm^ based on accept-reject moves, and the Gibbs sampler, based on 
conditional sampling. 

The Gibbs Sampler 

Assume we want to generate Monte Carlo samples from p(^), with 0 = 
[^1, . . . , 6do]^, where do is the dimension of the space 0. Assume moreover 

13 See for example [544] for a complete overview of these techniques. 



44 Manuel Davy 

that we can sample easily from each of the conditional pdfs p(^i |^2, • • • •> ^de)^ 
p(6>2|<9i, (93,..., ^de). • • • ̂  Pi^do|<9i,..., Ode-i)' Typically, this situation hap
pens when some of the conditionals are Gaussian and the others are, for 
example, gamma distributions. The Gibbs sampler consists of samphng one 
component of 0 at a time from the conditional posteriors, as presented in 
Algorithm 2.3. 

Algorithm 2.3: The Gibbs Sampler 

1. Initialization: Sample 6^^^ ~ 7ro(^). 
2. Iterations: For i = 1 ,2 , . . . , AT, and for j = 1,... ,de, do 

. Samples^*'' ^ piOilOfK... ,¥J-'^J. 

. Sample e '̂) ~ p{02\e^\ot'\-••,0^J-'^). 

. Sample?*^ ~ p(^del^i''. • • • >^!i^-i)-

The Gibbs sampler is quite simple; however, it requires the ability to sam
ple from the conditional pdfs. This is sometimes not possible to implement, 
and we can use instead the Metropolis-Hastings (MH) algorithm. 

The Metropolis-Hastings Algorithm 

In addition to the target pdf 7r(0), the MH algorithm requires a proposal pdf 
q(0|©') that we can directly sample from, such that q{0\0') ^ 0 whenever 
7r(0) ^ 0. Algorithm 2.4 presents its structure. 

Algorithm 2.4: The Metropolis-Hastings Algorithm 

1. Initialization: Sample 0^^^ ~ 7ro(^). 
2. Iterations: For i = 1 ,2 , . . . , AT do 

• Sample a candidate parameter value 0* ~ q{6\6^^~^^). 
• Compute 

a^H{e\0'<'-'^) = min 
7r((9(^-i)) g(r|(9(^-i)) 

(2.65) 

• With probability QMHC^*,^^*"^^) , accept the candidate, i.e., set 6^'^ ̂  ^*. 
• Otherwise (that is, with probability 1 - aMH(^*,^^*~^^), reject the candidate, 

i.e., set§(*) ^0^'-^l 

From Algorithm 2.4, it is clear than the MH kernel /C(0|0') is determined 
by the proposal pdf q{O\0^). Note that the pdf 7r{6) appears in a ratio: it can 
be known only up to a normalizing constant (which is often the case for a 
posterior pdf due to Bayes's theorem) because it cancels out. Various choices 
of proposals lead to various MH algorithms. Three important subcases are 
presented below. 
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• Set q{O\0^) = Af{0; 0\ U). This corresponds to a random walk proposal 
It also is a symmetric proposal in the sense that q{0\6') = q{0'\6), and 
the ratio in (2.65) does not depend on q. This kind of proposal is often 
called a local proposal because the chain evolves locally around the last 
accepted point. Such chains have the advantage of not remaining at the 
same point for many iterations: the fraction of accepted candidates can 
be set to about 50% by tuning the covariance matrix U. However, local 
proposals cannot explore the whole space 0 very quickly. 

• Set q{0\O') = q(0), independent of 6'. This proposal is called independent 
or global As opposed to local proposals, it does not consider the last ac
cepted value when building the candidate. This permits large jumps over 
the space 0 , and quick convergence. However, it also causes many steady 
points: the chain may keep at the same value for many iterations (i.e., 
g(i) ^ g(i+i) :=,.., = Qii^i) ^here / typically equals 100 or 1000) because 
all the proposed candidates are rejected. It is thus quite important to build 
global proposals upon heuristics about the regions of 0 where 7r(0) is likely 
to be large. 

• For each component Oj {j = l , . . . , d e ) , use a proposal q{0j\6j) while 
not touching the other components. Overall, this proposal can be written 
qj{e\e') = qiOjie^^) nt=i,i^j ^^;(^^) for any j = 1 , . . . , de^ where Su{v) 
is the Dirac delta function.^^ This is a one-at-a-time proposal pc?/because 
it only updates one component of 0 at each iteration, using a local or a 
global proposal. 

Figure 2.9 displays example outcomes for the proposal distributions listed 
above. These MH kernels can be mixed, yielding another admissible ker
nel: Given a family of MH kernels {ICj{0\0'),j = 1 , . . . , J } that have the 
same invariant pdf 7r(0), and positive coefficients {/?j, j = 1 , . . . , J } such that 
J2j=i 03 — ̂ ^ ih.en the mixture kernel 

K{e\e') = Y^fij^Mo') (2.66) 

also has TT{0) as invariant pdf. In practice, this kernel is implemented as 
follows: At each iteration, sample a discrete variable u in {1 ,2 , . . . , J } with 
discrete distribution P[u = j) = /3j^ and use the kernel with the index j = u 
drawn. This leads to, e.g., kernels that update all components one at a time 
(using a mixture of kernels with one-at-a-time proposals for each component), 
and mix local and global moves for faster convergence; see Fig. 2.9. 

^^The Dirac delta function can be viewed as the derivative of the step function 
at point 0, where the step function equals zero over ] — oo,0[ and one over ]0, oo[. 
An important property is that Su{v) = 0 whenever u ^ v and for a function h(i;), 
we have J \\(v)6u(y)dv = \\{u). When used in a probabilistic context, writing a has 
distribution (5n(a) means that a. = u deterministically. 
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a) Local proposal b) Global proposal c) Mixture proposal 

Fig . 2.9. Typical Markov chains produced by different Markov kernels for the 
Metropolis-Hastings algorithm. The parameter sampled is a frequency having the 
true value 0.25. a) Local, Gaussian random walk proposal pdf. b) Global, indepen
dent proposal pdf. c) Mixture of a local and a global proposal. The local proposal 
fails to explore the frequencies in a short time, whereas the global proposal keeps at 
the same frequency for many iterations. The mixed proposal performs well. 

A n E x a m p l e : B a y e s i a n E s t i m a t i o n of S inuso ids in N o i s e 

In order to examplify the use of MCMC methods, we present here a simplified 
version of the MCMC algorithm of Andrieu and Doucet [21] which is aimed 
at estimating the parameters of an unknown number of sinusoids in noise, 
as well as the number of sinusoids itself. Here, we consider an extension of 
the model (2.31) with M sinusoids in Gaussian noise, with M known. The 
unknown parameters are the frequencies (denoted k = [/ci, . . . , kM])^ the am
plitudes, the initial phases, and the Gaussian noise variance cr^. This model 
can equivalently be writ ten as 

M 

x{n) = ^ a^ cos{27rkmn) + o:^ sin(27rA:mn) + e(n) for n = 1 , . . . , T, 
m=l 

(2.67) 
where the (non-linear) phase parameters have been replaced by an additional 
set of (linear) amplitude parameters . Let us define a = [af, a ^ , . . . , a%j, Q^MI^ 
and 

D ( k ) = 

cos(27rA:i 1), 
sin(27r/ci 1), 

cos(27rA:i 2), 
sin(27r/ci2). 

cos(27rA:i T) 
sin(27rA:i T) 

(2.68) 

cos(27r/cM 1), cos(27rfcM 2), . . . , cos(27r/cM T) 
sm{27TkM 1), sin(27r/cM 2), . . . , sin(27rA:jvf T) 

Then, using the notations introduced in Section 2.2.5, p. 32, (2.67) becomes 

X = D ( k ) a + 6, (2.69) 

corresponding to the Gaussian likelihood p(x|k, a,cr^) = A r ( x ; D ( k ) a , c r ^ l ) . 
In order to est imate the unknown parameters , we can embed this model into 
the Bayesian framework by defining parameter prior pdfs, as follows: 
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• The amplitudes follow a Gaussian prior pdf with mean 0 and covariance 
a'^^cti which is proportional to the additive noise variance (this is to adjust 
the noise 'amplitude' to the sinusoids' average amplitude). 

p(a) - A/'(a;[0,0]T,a2i;«), (2.70) 

where U^ is a covariance matrix chosen as Ea = 7^ [D^(k)D(k)] (this 
is the g-prior, see [21]). The parameter 7^ can be interpreted as an expected 
signal-to-noise ratio, and it is thus quite difficult to set its value a priori. 
Consider now 7^ as a unknown random hyperparameter to be estimated, 
and set its prior p(7^) = ^^(7^ ; 1^2, ^̂ 3); see (2.72). Setting 1^2 = 2 ensures 
that p(7^) has an infinite variance (it is non-informative), and the value 
of u^ has very limited influence (1/3 = 20 is the standard choice). 

• The frequencies may be anywhere in the interval [0; 0.5], and thus we select 
a uniform prior pdf 

M 

p(k) = n ^0,0.5l(fcm)- (2.71) 

• The additive noise variance should be as small as possible, and we select 
its prior as an inverse Gamma distribution 

(2.72) 
where r{-) is the Gamma function [8]. This choice has two main justifi
cations: First, for small i/Q and i/i, this density favors small values of cr̂ . 
Second, this pdf is called a conjugate prior because the posterior distribu
tion can be calculated in closed form. In practice, we may choose î o <^ 1 
and 1/1 <C 1 (e.g., I/Q = ^1 =̂  10~^); the precise selected values have little 
influence on the estimation results. 

Using these priors and the likelihood, it is possible to write the para
meters posterior. Moreover, we can express the two conditional posteriors 
p(k, a , cr^|7^,x) and p(7^|k, a , cr̂ , x). The former can be further decomposed 
into the product p(k|7^,x)p(a^|k, 7^,x)p(a|k, cr^,7^,x), with 

p(k |7^x) = - ^ [̂ o + x T p ( k , 7 > ] ' ^ ^ , (2.73) 

p(<T2|k,7^x) = Xe ( ^ ^ 2 . I + i l ^ ^ ^ + ^ T p ( k , ^ 2 ) ^ ^ ^ (2.74) 

p(a|k,(T2,7',x) = A/-(a;S(k,7 ')D(k) 'rx,a2S(k,7 ')) , (2.75) 

whereP(k ,7 ' ) = l T - D ( k ) S ( k , 7 2 ) D ( k ) T a n d S ( k , 7 2 ) = j ^ [ D ( k ) " r D ( k ) ] - \ 
The hyperparameter conditional posterior is the inverted gamma pdf 

p(7^|k,a,cT^x) = jg(72;^3 + i , ^ ! H ( ^ M ^ + ^ , ^ , (2.76) 
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where the parameters are chosen as z/3 = 2 and z/4 = 20 to ensure tha t the 
prior over 7 has an infinite variance and a vague shape. Following [21], we can 
now write the MCMC algorithm tha t mixes a Gibbs sampler with one local 
and one global MH kernel. 

Algorithm 2.5: A n M C M C Algorithm for Sinusoids in Noise Estimation 

1. Initialization: 

• Sample 7^ °̂̂  ~ Z6?(72; 1/3,̂ ^4). 

• For m = 1 , . . . , M, sample/cm ~ q^(A:m|x). 
2. Iterations: For z = 1, 2 , . . . , AT do 

• For m = 1 , . . . , M do 
- Frequency MH step 

With probability /3, sample a candidate using a local proposal k^ ~ 

^l\'^m\^Cm ) -

Otherwise, sample a candidate frequency using a global proposal k^ ~ 

Compute QMHC^*,^^'"^^) using (2.65) with target pdf p(fcm|7^^*~^\x) 
and with the proposal selected randomly above, ^hen perform the ac
cept/reject step (see Algorithm 2.4). This yields /cm • 

- Noise variance and amplitude direct sampling 

• Sample the noise variance â *̂̂  using p(cr^|k^'\7^^'~^\x) given in (2.74). 

• Sample the amplitudes a *̂̂  using p(a|k^' \a^^' \7^^'~^\x) given in (2.75). 
- Hyperparameter sampling 

• Sample 7̂ ^̂ ^ using p{'y'^\k^'\a'^'\a'^^'\x) given in (2.76). 

In Algorithm 2.5, the frequency parameter is sampled using a mixture of 
two MH kernels tha t rely on either a local proposal, chosen as q/(A:m|^m ) = 
N{krn'-,i^m 5^RW) ' whcrc (j\^ is a user-defined random walk variance, or 
a global pdf chosen proportional to the frequency spectrum^^ of x, i.e., 
q^(fc^|x) oc \X{km)\^- The mixture coefficient is selected as /? = 0.75 (stan
dard choice). After the frequency is sampled, the noise variance parameter and 
amplitudes are sampled directly from the conditional posterior pdfs. These 
three sampling operations produce a sample (k^*\ a^*\ 5^^^ )̂ at each iteration 
i. This is the first step of the overall Gibbs sampler; the second step consists 
of sampling the hyperparameter 7^^*\ Figure 2.10 displays an example chain 
built using this algorithm. This algorithm may be complex for estimating one 
or two sinusoids; however, its settings remain the same for large number of 
sinusoids, which makes it an at tractive solution in such cases; see Chapter 7. 

^^It is easy to build a random variable generator from a stepwise approximation 
of this pdf (onto k{j), j = 1 , . . . , J ) by first sampling a continuous uniform ran
dom variable u on [0,1], then choosing jo such that (1/C) Y.%~i^ l^ (^( i ) )P < '̂  < 
( l / C ) E ^ i i l^iHM'^. where C = S / = i l^ (^ ) l^ and finally sampling k uniformly 
on [k{jo-l),k{jo)]. 
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Fig. 2.10. The frequency k and amplitudes a vectors and the noise variance a^ 
sampled by Algorithm 2.5 for m = 1 and M = 12. As can be seen, convergence 
is reached after 200 iterations. The true parameter values are mi = 0.12, a\ = 1, 
al = 0, and a^ = 2. 

Algorithm 2.5 can be extended to an unknown number of sinusoids in 
noise; see [21]. However, considering the number of sinusoids as a parameter 
to be estimated makes the implementation a bit more complicated, though 
still feasible. In particular, the parameter space dimension changes whenever 
the number of sinusoids changes, and a special algorithmic structure must be 
used, such as the reversible jump MCMC algorithm, which includes sinusoid 
birth and death moves [20]. 

2 .3 .6 I m p o r t a n c e S a m p l i n g a n d S e q u e n t i a l I m p o r t a n c e S a m p l i n g 

Another interesting technique for the computat ion of Monte Carlo integrals 
is importance sampling. Let 7T{6) be some pdf, for example a posterior pdf in 
the Bayesian setting. Let q{0) be another pdf (this is a proposal pdf, called 
here an importance pdf) such tha t q(0) 7̂  0 whenever 7r{G) ^ 0. Moreover, 
q(^) is selected so tha t it is possible to sample directly from it. Then (2.60) 
can be writ ten 

/[h] = l^h{e)7,{e)de = ^ h w ^ q ^ d © . (2.77) 

Now, assume a set of Monte Carlo samples ^^^\ i = 1 , . . . , TV are generated 
using q{6). Then the following Monte Carlo estimate holds: 

N 

/^[h] = ^5(^)h(6l^^)) ^ /[h], with 5 (i) 
i=l 

q(0(^))' 
(2.78) 

where i}(^) is the importance weight of sample ^^^^, and is aimed at correcting 
the discrepancy between q{0) and 7r(0). A key remark is tha t the variance of 
the estimator (2.78) strongly depends on the importance pdf q(^) selected. It 
can be demonstrated tha t , for a given number of Monte Carlo samples, the 
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optimal importance pdf tha t minimizes the variance of the estimate (2.78) 
is q(0) oc \h{6)\7T{6). However, it cannot be applied because it is usually 
impossible to sample directly from it, and the normalizing constant is hard 
to compute. ̂ ^ Nevertheless it provides some hints for the selection of q(0): it 
should be as close as possible to the optimal importance pdf. 

Part i c l e F i l t er ing 

The main application of importance sampling is particle filtering. Assume 
a dynamical system with hidden state parameter On and observation x^ for 
n = 1 ,2 , . . . is governed by the following equations^ "̂  (see also the graphical 
representation in Fig. 2.11): 

On = fn[On-i] + v^ (transition equation), (2.79) 

x^ = 5'n[^n] + ^n (obscrvatiou equation). (2.80) 

/ n+ l [ • J + Vn-f 1 
^^ 

gn-l['] +^n-l \gn[']+^n 

f X n - 1 j 

Fig. 2.11. Graphical illustration of the dynamic model in (2.79) and (2.80). In this 
model, only Xn is observed. The state parameter vector On is hidden for n = 1,2, — 
On follows a Markov evolution, hence the name hidden Markov model. 

Assuming the pdfs of v^ and €n are known, we can express (2.79)-(2.80) as 
the s tate transit ion prior p ( ^ n | ^ n - i ) and the observation likelihood p(xn|^n)-
Together with the initial s tate distribution po{Oo)^ this defines a sequential 
Bayesian model. Such dynamic systems are often met in practice: for example, 
On is a vector composed of the position, speed, and acceleration of a plane at 
t ime n, and Xn is the observation received by radar. The problem is tha t On 
cannot be observed directly; it has to be estimated. 

^^Whenever h is always positive, the normalizing constant is / [h] itself! 
^^For consistency with most works in the field, and for notational simplicity, we 

use subscript time indices in this subsection, e.g., On is the state at time n, instead 
of the usual notation 0{n). 
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The overall objective of filtering is the sequential estimation of the state 
trajectory for times between 0 and n, denoted 9o:n — {^o, ^ i , • • • ? ^n} via the 
posterior p(0o:n|xi:n) at each time n. In the special case where the functions 
fn[-] and gn['] are linear, and the noises v^ and Sn are Gaussian, this can 
be solved analytically: the posterior is Gaussian, and its mean and covariance 
matrix are provided by the Kalman filter [18]. In the general case, the esti
mation of Oo:n relies on intractable integrals computation (such as (2.55) for 
MMSE estimates) at each time n. Particle filtering provides a Monte Carlo 
approximation via sequential importance sampling, where p(0o:n-i|xi:n-i) 
plays the role of 7r(0) in (2.77). In order to make the problem sequential, we 
first write the posterior p(0o:n|xi:n) at time n as a function of p(0o:n-i|xi:n-i) 
at time n — 1: 

rn \ \ (Ck I X P(^n|^n-l)p(Xn|^n) /oo i \ 
P(^0:n|xi:n) = p(^0:n-l |xi:n-l) ^ 1 \ T , (2.81) 

p(Xn|Xi:n-lj 

where p(x^|xi:n-i) is a normalization term which need not be computed. 
Second, we select an importance pdf that can be written sequentially, namely 

n 

( ^ 0 : n - l ) q n ( 6 > n | ^ n - l ) = ^^(0^)^^l{H^l-l)^ (2 .82) 
Z=l 

It is now possible to sample the state at time n using qn(^n|^n — 1) and com
pute sequentially the weight as the ratio p(0o:n|xi:n)/qn(^O:n)- These elements 
lead to the particle filter presented in Algorithm 2.6 below. 

Algorithm 2.6: Particle Filtering Algorithm 

1. Initialization: For each particle z = 1,... ,N, sample independently OQ ~ qo(^o) 

and compute the initial weight UJQ — po(^o )/qo(^o )• 
2. Iterations: Fo rn == 1, 2 , . . . , AT do 

• The particle trajectories are updated using the sequential importance pdf 
- For i = 1,... ,N, sample the new state at time n for particle i, 

0W ~ q n ( 0 n | 0 i ^ l j . (2.83) 

• The weights are computed and normalized 

- For i = 1 , . . . , A^, compute the sequential importance weight ujn as follows: 

qn[tfn \t^n-l) 

- Compute the weight normalization constant Wn = ^i=i <^n (this normal
izes the weights, and avoids computing the term p (xn | x i : n - i ) in (2.77)). 

- For particles i = 1,... ,N, set UJH^ ̂  uJ^n^/Wn-
• The current state in estimated 

- Estimate the state from the weighted particles, e.g., ^nMMSE = = S ^ i ^ n ^ n • 
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• The particles are resampled 

- Compute the efficiency number iVeff = [Y^iLii^^^)^]~ • 
- If ÂefF < Â hreshoid, then resample the particles: duplicate particles with large 

weights, suppress particles with small weights, and set Un <— l/N for 
i = l , . . . , iV . 

At each time n, Algorithm 2.6 produces Monte Carlo samples ©oVn' ^ — 
1 , . . . , A/' (called particles in this context) with weights uJn which approximate 
the posterior p(0o:n|xi:n). However, this simple strategy produces samples 
which degenerate: after a few iterations, the weights of most particles are 
close to zero, whereas the weights of a few particles are significantly non-zero. 
This can be monitored by Â eff' if it becomes too small, then degeneracy has 
occurred and particles are resampled; particles with low weights are moved to 
more accurate points (i.e., to the location of particles with large weights). This 
can be implemented by first setting randomly the number of copies of each 
particles using, e.g., stratified samphng [344], where the expected number of 
copies of each particles equals its weight times A .̂ Particles with 0 copies are 
suppressed. 

Different importance pdfs lead to different algorithms. A simple choice 
consists of using the transition pdf qn(^n|^n — 1) = p(^n|^n — !)• The 
corresponding algorithm is simple but the variance of estimators based on the 
particles generated is large in general. The importance pdf that minimizes 
the variance of the weights (and thus, the variance of estimators) uses the 
new observation. It is written qn{0n\0n — 1) = p(^n|xn,^n-i) , but it is 
often impossible to sample from it. However, it can be approximated locally 
by Gaussians: qn{0n\0n - 1) = A/'(0n;^n|n, ^n |n) where Onin and Un\n are 
the state and state covariance estimates given by the extended Kalman filter 
or by the unscented Kalman filter. ^̂  

2.4 Pattern Recognition Methods 

Pattern recognition algorithms are mainly concerned with data classifica
tion.^^ There are generally two frameworks considered. In the supervised clas
sification framework, a set of labelled training data is provided. A set of pairs 

^^The Kalman filter is devoted to linear and Gaussian dynamic models. When 
the model is non-linear and/or non-Gaussian, the posterior is non-Gaussian but it 
is still possible to approximate it by a Gaussian. This can be implemented by the 
extended Kalman filter, which operates on linearized state equations (2.79)-(2.80) 
with Gaussian noises, or by the unscented Kalman filter, which approximates the 
posterior as a Gaussian, without linearizing (2.79)-(2.80). 

^^Detection is also a pattern recognition problem. However, it can be consid
ered, to some extent, as a subcase of classification. For the sake of simplicity, here 
we mainly cover classification. Some elements about detection theory will also be 
provided when appropriate. 
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(X,Y) = {(xi ,yi) , . . . , (x,n,ym)} is given, where x^ G A* and ŷ  G ^ for 
i = 1 , . . . , m. Example data and label spaces are X = R^^ and 3̂  = {1 ,2 , . . . , }. 
Labels indicate to which class each data belongs. The aim of supervised clas
sification is to predict the class label y G 3̂  of a new datum x G A' which is 
not in (X, Y). This prediction must be elaborated from the sole knowledge of 
X and of the training set (X, Y). In the unsupervised classification framework 
(which is often called clustering), a set of unlabelled data X = { x i , . . . , x ^ } 
is provided, and each datum in X must be assigned a label from 3̂  (i.e, it must 
be assigned to a class). 

In this section, we review classification techniques. One unsupervised clas
sification method has already been presented in Section 2.2.8, p. 35. Indeed, 
Gaussian mixtures models assign a latent variable Zi to each datum x^, which 
indicates to which Gaussian x^ is related, that is, to which Gaussian class it 
is related. The number of classes J need not be known, because a penalized 
likelihood approach [91] or a Bayesian approach [541] could be implemented 
to estimate both the labels and the number J of mixture components (that is, 
the number of classes) found. Another unsupervised classification technique is 
presented in the next subsection, while the remaining subsections are devoted 
to supervised classification. 

2.4.1 K-Means 

The i^T-means algorithm is an unsupervised classification method. The set 
of data X = { x i , . . . ,Xm} in X is provided. Given the number of classes, 
denoted K, the algorithm assigns a label in 3̂  = { 1 , . . . , K} to each x^. The 
algorithm is summarized below, where d(-, •) is a distance measure in X, 

Algorithm 2.7: /C-Means Algorithm 

1. Initiaiization: Set the K Initial means /x^ m X, j = 1,... ,K. For example, an easy 
and robust choice consists of choosing any K (not equal) data in X. This ensures 
that no cluster is empty in the beginning. 

2. Iterations: While the means keep evolving, do 
• For each datum Xi, i = 1 , . . . , m, 

- Compute its distance to each means d(xi , /x^), for j = 1 , . . . , K. 
- Assign to Xj ( i = 1 , . . . ,m) the label ŷ  = argmin d(xi,/x ). 

3 = 1,...,K 
• Update the means by setting 

/x^ ^ mean{xi|yi = j } , j = \,...,K. (2.85) 

This algorithm converges to useful solutions insofar as the data in X form 
separated classes. Of course, the classification results are closely related to 
the distance measure used in Algorithm 2.7. Typical distance measures are 
the Euclidean distance d(xi,X2) = (xi — X2)^(xi — X2) = ||xi — X2||^, the 
Li distance d(xi,X2) = ||xi — X2||A' or the Mahalanobis distance d(xi,X2) = 
(xi — X2)^X'~^(xi — X2), where E is the empirical covariance matrix of the 
set X, computed as in (2.86) below. 



54 Manuel Davy 

2.4.2 Principal Component Analysis 

In front of an unlabelled dataset X in the space X^ one may want to reduce 
the data dimension. This may be because this dimension is too large to en
able the use of a classification technique (e.g., Gaussian mixture model). It 
may also be to enable 2D data visualization of larger dimensional data. Prin
cipal component analysis (PCA) is aimed at reducing the dimension of data 
without losing too much information. The amount of information carried by 
a dimension is summarized in the empirical covariance matrix 

^ r = ^Yl^^i-t^Di-^i-i^rv wither = -E^^' (̂ .se) 
where /x "̂̂ ^ is the empirical mean of X.̂ ^ In addition, S^"^ also informs us 
about the redundancy between the dimensions. In order to reduce the number 
of dimensions of the data, PCA provides us with the most informative linear 
combinations of the dimensions of the data [161]. The steps of PCA are 

1. Compute the empirical covariance matrix S^"^ as in (2.86); 
2. Apply matrix diagonihzation to X'x"^ ,̂ i.e., compute 

i ; ^ ^ = S A S - \ (2.87) 

where A is a diagonal matrix whose diagonal terms are called the eigen
values of E^"^. The eigenvalues are positive, and they are assumed sorted 
in decreasing order along the diagonal. The columns of S are called the 
eigenvectors^^ of X'x"^ ,̂ and the matrix S is orthogonal, meaning that 

3. Keep the dpca columns of S that correspond to the dpca largest eigenvalues 
in A. They are stored in a matrix Spca 

with size dx x dpca and the 
corresponding eigenvalues are in the squared matrix Apca with size dpca-

4. Compute the lower dimensional data for i = 1 , . . . , m: 
C, = Spca(xi - Mx"")- (2-88) 

The matrix diagonalization in (2.87) is almost always possible^^ whenever 
m is larger than dx- The transform in (2.88) reduces the dimension of x^ 

^^The empirical covariance matrix in (2.86) is computed with normalization term 
1/m. The corresponding empirical covariance matrix is known to be a biased esti
mate of the true covariance matrix. The unbiased empirical covariance matrix should 
be computed with normalization term l/(m — 1). 

^̂  Details about eigenvalues, eigenvectors, and matrix diagonalization may be 
found in any textbook about matrices; see, e.g., [295]. 

^̂ A property is said to be almost true (here, the property is 'diagonalizing the 
covariance matrix is possible') if it is true with probability one. Surprisingly, even 
though it is true with probability one, it is still possible that the property is false, 
but this is quite unlikely; see [548] for further details. Here, the property would be 
false if at least one datum was a linear combination of others. 
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{i = l , . . . , m ) , i.e., the dimension of (̂ ^ equals dpca- The variables Ci have 
covariance matrix Apca-

The PCA approach has two major advantages. First, it reduces the dimen
sion of the data to the most informative dimensions. Second, it removes the 
correlations between the initial data dimensions, which removes redundancy. 

2.4.3 Supervised Classification: Cost Function and Risk 

Supervised classification is concerned with the design of a classification func
tion F(x,Y) '• ^ ^^ y which associates a class label y G 3̂  to each datum x G A*, 
and which is designed from the training set (X, Y). In this section, we restrict 
to two-class classification and set 3̂  = {—1; 1}. Multi-class classification algo
rithms can be derived from two-class algorithms; see [568]. 

Loosely speaking, the function F(X,Y) is relevant only if it has the smallest 
possible risk of performing classification errors. Let F be any classification 
function. Errors occur whenever F(x) = y', whereas the true class label of x 
is y, with y' 7̂  y. In practice, the seriousness of errors needs be measured in 
order to design F(X,Y); this is the role of loss functions. Let c(x,y; F(x)) be 
such a loss function for a classification function F. A standard example is the 
0-1 loss c(x, y;F(x)) = 1 — 5y(F(x)). In the two-class classification case, it 
is helpful to assume that F delivers values over R (and not just y ) , and set 
y = sign (F(x)). This enables the use of, e.g., the quadratic loss, the hinge 
loss, etc. (see Fig. 2.12). 

Quadratic 

Hinge (y = + 1 ) ^ 

c(x,y;F(x)) 

y Hinge (y = - 1 ) 

0-1 loss 

F(x)-y 

Fig. 2.12. Standard loss functions to be used in learning problems. The quadratic 
loss c(x,y; F(x)) = (y — F(x)) is used in so-called least square methods, whereas 
the hinge losses are used in support vector machines. The 0-1 loss c(x,y; F(x)) = 
1 — (5y(F(x)) is often used in Bayesian classification problems. 

From loss functions, we can define the risk R [F] of a classification function 
F as the expected loss over all possible pairs (x, y), namely 

R[F] = Ep(,,y)[c(x,y;F(x))], (2.89) 
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where p(x, y) is the 'pdf' of the data and labels. Of course, this 'pdf' is un
known in practice, and the risk cannot be computed directly. Assume however 
that R [F] of any classification function F could be computed: the optimal clas
sification function could be found by minimizing the risk w.r.t. F over a set 
of functions denoted T. This approach is not really possible, but the risk can 
still be estimated from the training set. Define the empirical risk 

R emp 
(X,Y) 

^ m 

[F] = - V c ( x , , y , ; F ( x i ) ) (2.90) 

as an estimate of the true risk R [F], based on the information provided by 
the training set. A well-known problem is that R/xV) I'̂ l ^̂  ^ P^^^ estimator 
of R[F], and there usually exist many functions F such that R(xV) [̂ 1 ~ ^' 
including trivial ones. In Fig. 2.13, a classification function which achieves 
a zero empirical risk is depicted. It fits the training data perfectly, but its 
shape is so complicated that it is likely to make many errors on data which 
are not in the training set. In other words, this function fails at generalizing 
its correct classification ability to new data. Such a solution is said to overfit 
the training set, and over-fitting is often related to generalization issues. As 
explained in the next section, it is necessary to prefer solutions which are 
simple in some sense, so as to limit over-fitting and favour good generaliza
tion. 

/ 

/^^i: 'ix^s^B-fu^.-^^, 
D D 

" 1 / • 

I' 

Fig. 2.13. Supervised classification into two classes with 2-dimensional data. In the 
training set (X, Y), data with label y = — 1 are represented with dots, whereas data 
with label y = 1 are represented with squares. The dotted line is a classification 
function F such that R(x Y) ^\ ~ -̂ Though it achieves zero empirical risk, F is not 
a good classification function, as it makes an error for a new datum which is not in 
the training set (circle at the bottom, with the true label y = —1). 
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2.4.4 Regularization 

Minimizing the empirical risk leads to useless functions F. This problem can be 
overcome by minimizing an objective function that includes both the empirical 
risk R/xV) [̂ ] ^^^ ^ term i? ( F ) that penaUzes unwanted solutions. Define the 
regularized risk 

R^̂ «[F] - R^5 ;̂V)[''] + ^ ^ ( F ) , (2.91) 

where A is the regularization tuning parameter. The optimal classification 
function F(X,Y) is found by solving 

F(x,Y) = argmin R-« [F]. (2.92) 
FGJF 

Given a training set, various supervised classification methods employ dif
ferent loss functions, penalty terms and sets of functions ^ so as to design 
F(x,Y)- Examples are penalized likelihood approaches (see Section 2.2.9, p. 38) 
and Bayesian approaches (see Section 2.3, p. 39). The following subsection 
presents another one: the support vector machine. 

2.4.5 Support Vector Machines 

Support vector machines (SVMs) are specific instances of the above regular
ization scheme. In SVMs, 

jr = {F(.) = f(.) -f b such that f G W and 6 € R}, (2.93) 

where W is a space of functions called a reproducing kernel Hilbert space with 
kernel k(-,-).^^ In practice, the dot product defined over W, denoted (•,-)'H? 
can generally not be written in an explicit form—all we need to know is that 
it has the properties of a dot product, and that it enables the reproducing 
kernel property for some kernel. In (2.93), the set T of possible classification 
functions is specified by selecting the kernel k(-,-). Provided the kernel is 
positive definite,^^ it gives rise to a RKHS. A common choice is the Gaussian 
kernel (for any x and x' in A*) 

^̂ A Hilbert Space 7̂  is a nonempty space such that 1) 7i is a vector (linear) 
space, that is, any linear combinations of elements of 7i are also elements of H; and 
2) A dot product (•, •)n is defined over H. This dot product induces a norm for any 
f e 7i such that ||f(-)ll?t = {H')^^{'))n 3) 7i is complete for this norm. Moreover, 
assuming 7̂  is a Hilbert space of functions f(-) : A' ^- M, it is a reproducing kernel 
Hilbert space (RKHS) if and only if there exists a kernel function k(•,•): A* x A' -^ M 
with the following reproducing property: For any x. e X, k(x, •) is in 7i and for any 
function f G 7 ,̂ we have (k(x, •),f(-))'K = f(x). 

^̂ A kernel k(-, •) is positive definite if and only if for any set {xi , . . . ,Xm} and 
any m > 0, the matrix with entries k(xi,Xj), {i,j) = 1,. . . ,m is a positive definite 
matrix. 
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k ( x , x ' ) = e x p | - 2 i 5 l | x - x ' f } . (2.94) 

In SVMs, the hinge loss Chinge (x,y; F(x)) (see Fig. 2.12) is chosen and 
the penalty term i^ (F) is the squared norm induced by the dot prod
uct in W, i.e., i? (P) = ||f ||f̂ . For any x, from the reproducing property, 
F(x) = (k(x, •),f(-))'^ -f 6, which means that classifying a datum x is an 
affine operation (that is, a linear -h constant operation) in terms of elements 
of 7i, because the dot product (f(*)?f'(*))w is linear w.r.t. both f(-) and f (•), 
and a non-hnear operation in terms of elements of A'. In SVMs, the regularized 
risk (2.92) becomes 

^ m 

f^"[''] = - J ] c , , „ , . ( x„y , ; (k (x , , - ) , f ( - ) )w+b)+A | | f | | 2 , . (2.95) 
2 = 1 

It is possible to modify this regularized risk slightly so as to replace the reg-
ularization tradeoff parameter A by another parameter v G [0,1] that can 
be interpreted more easily. Minimizing this modified regularized risk can be 
equivalently written as the soft margin 5VM optimization: Minimize 

1 \ ^ 
-^¥\\\i-'^p-^ 5Z^i with respect to f,p,^i,b, (2.96a) m . 

1 = 1 

with 

and 

yi((k(xi,.),f(.))7i+&) >p-^i forall i = l , . . . , m , (2.96b) 

Ci > 0, for alH = 1 , . . . , m , p > 0, (2.96c) 

where the slack variables ^i {i = 1 , . . . , m) are used to implement the hinge 
loss [568]: they are non-zero only if ŷ  ((k(x^, ')j{'))n + &) < P and, in this 
case, they induce a linear cost in the objective function ^ ||f ||?{—^P+^ S I ^ i ^i-
Introducing Lagrange multipliers a i , . . . ,am, the optimization in (2.96) can 
be turned into the equivalent quadratic convex problem with linear constraints 
(dual problem): Maximize 

^ m m 

— - 2^ 2^ Oiiajyiyjk{xi,:x.j) with respect to a^ (z = 1 , . . . , m), (2.97a) 
2 = 1 j = l 

with 

0 < Oil < 1 / ^ (i = 1 , . . . , m) , Y^ ^iVi — 0 a^d 2_\ ^^ — •̂ 

(2.97b) 
2 = 1 2 = 1 
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The set of Lagrange multipliers a^, 2 = 1 , . . . , m that solve (2.97) leads to the 
optimal classification function F(X,Y)^ which is written for all x G A' 

771 

F(x,Y)(x) = 5 ] y , a i k ( x , , x ) + 6 . (2.98) 

The classification of a new datum x into one of the two classes {—1;+!} 
is performed by assigning to x the class label y = sign (F(X,Y)(X)) where 
F(X,Y) is given in (2.98). The support vector machine admits a gemoetrical 
interpretation; see Fig. 2.14. 

Fig. 2.14. Geometrical interpretation of the î -soft margin support vector machine 
in the reproducing kernel Hilbert space H. Each element of Ti is a function which 
is plotted here as a point in an infinite-dimensional space (here, 7i is represented 
as a two-dimensional space). The classification function f is the vector othogonal to 
the hyperplane with equation (f, g)?t -\- b = 0. This hyperplane separates the data 
from the two classes with maximum margin, where the dots represent the functions 
k(xi,) with label ŷ  = 1, and the squares represent the functions k(xj, •) with 
label yj = —I. The margin width is p/||f||7^. As this is the soft margin SVM, some 
training vectors are allowed to be located inside the margin. The vectors located on 
the margin hyperplanes (dotted lines) and inside the margin are called the support 
vectors. 

An important property of this SVM is its sparseness: v is an upper bound 
on the fraction of non-zero Lagrange multiphers. In other words, assume for 
example v = 0.2; then at least 80% of the Lagrange multipliers {ai^i = 
1 , . . . , m} equal zero, and computing F(X,Y)(X) requires us to compute k(xi, x) 
for only a small fraction (at most 20%) of the training data x^, i = 1 , . . . , m. 
Training data with non-zero Lagrange multipliers are called support vectors. 
The support vectors such that 0 < a^ < 1/m are called the margin support 
vectors, and we denote them by x^*. The set of margin support vectors is 
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denoted X* and it includes m* vectors. In (2.98), b is computed as the average 
over all the support vectors: 

-. m 

^ = -;;^ E T.^'^yM^J'^i^)- (2-99) 

2.4.6 Nearest Neighbours Classification 

Nearest neighbours classification is a very simple supervised classification tech
nique. Similar to the ii^-means algorithm, nearest neighbours classification re
quires a distance measure d(-, •) to be defined over the data space A'. Let k 
be some non-zero integer; then the /i:-nearest neighbours algorithm classifies 
a new datum x (not in the training set X) as follows: 

Algorithm 2.8: A:-Nearest Neighbours Classification Algorithm 

1. Compute the distance d(x,Xi) between x and every element in the training set Xi, 
2 = 1 , . . . ,?n. 

2. Select the k training data Xj such that the distances d(x,Xi) are the smallest (they 
are called the A:-nearest neighbours of x) . 

3. Assign to x the most represented class label among the fc-nearest neighbours. 

An important example of Algorithm 2.8 is when y — {—1; 1} (two-class 
case), where one generally chooses A: as an odd number so as to ensure that 
one class label is more represented than the other. This case is illustrated 
in Fig. 2.15 with k = 5. Further insight into this method can be found 
in [161]. 

D 
D 

D 
D 

Fig. 2.15. /c-nearest neighbours classification of two-dimensional data in the two-
class case, with k = 5. The new datum x is represented by a non-filled circle. 
Elements of the training set (X, Y) are represented with dots (those with label —1) 
and squares (those with label -hi). The arrow lengths represent the Euclidean dis
tance between x and its 5 nearest neighbours. Three of them are squares, which 
makes x have the label y = -hi. 
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2.4.7 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a supervised classification approach, 
also called Fisher linear discriminant In its simplest form, it is devoted to 
the two-class case where 3̂  = {—1; 1}. This classification technique has some 
connections with principal component analysis (see Section 2.4.2, p. 54) in the 
sense that it reduces the dimension of the data. In two-class linear discriminant 
analysis, the dimensionality of the data is reduced to one: the direction of the 
space that best separates the classes. More formally, we want to transform 
the dataset (X, Y) = {(xi, y i ) , . . . , {yLm^Vm)} into a one-dimensional dataset 
by setting 

Ĉ  = w"^Xi, z = l , . . . , m . (2.100) 

This consists of projecting the data onto a fine with direction given by w. 
In order for w to be effectively the best projection line for class separation, 
we want to make sure that it maximizes the Fisher ratio (also known as the 
Rayleigh quotient) 

where U^^^^ (respectively ^ x ^ ^ - i ) ^̂  defined as in (2.86), by only consid
ering the training data with label y = +1 (respectively y = —1), and similarly 
for Mx^^+i ^nd A*x^=_i- The Fisher ratio is computed as the squared distance 
between the means of the projected data d (̂  = 1 , . . . ,m) divided by their 
variances, and can be understood as a scaled distance between the training 
data classes. The vector that minimizes J(w) can be computed analytically 
as 

WLO. = {s^,Ui+^xr/=-i)"'«Ui - Mxr;=-i)- (2-102) 
In practice, two-class LDA classification is implemented as in Algorithm 2.9 

below. See [161] for additional details. In multi-class classification, LDA can 
be also used to reduce data to C — 1 dimensions, where C is the number of 
classes. 

Algorithm 2.9: Linear Discriminant Analysis 

1. Compute the empirical means Mx'r=+i ^"^ Mx7=- i ^^^^ ^^^ training data, as in 
(2.86). 

2. Compute the empirical covariance matrics U^J!^_^-^ and ^x'|y=-i ^^^^ ^^^ training 
data, as in (2.86). 

3. Compute the optimal projection direction WLDA according to (2.102). 
4. Compute the projected data from the training set by d = WLDA^I , i = 1 , . . . , m 
5. Implement any one-dimensional classification technique in order to classify the 

projection C = WJ'DAX of a new datum x by using the mapped training set 

{ ( C i , y i ) , . - - , ( C m , y m ) } . 
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2.4.8 Bayesian Supervised Clsissification Using Generative Models 

In this subsection, we assume the set of data X = { x i , . . . , x ^ } , as well as 
unobserved data, to be classified following a known probabilistic model. In the 
context of classification, such models are said to be generative because they can 
be used to generate data by changing the parameters and the noise. Assume 
for example that data are sinusoidal signals in noise; see (2.31). Signals with 
label y = 1 have frequency A:(i), and signals with label y == — 1 have frequency 
A:(_i) with A;(_i) ^ A;(i). These models can be turned into likelihood functions 
of the form (2.32) for each class. More generally, to each class with label y €y 
corresponds a likelihood function p(x|^y,y), denoted p(x|0y) for brevity. 

Standard Bayesian classification consists of first learning the class pa
rameters Oy for each class label y using (2.103), and then computing the 
class likelihood of a new datum x using (2.104). In other words, given class-
priors p(0y|y), the posterior p(^y|Xy) is computed using class-training sets 
Xy = {xi € X such that ŷ  = y}, as follows: 

p{dy\Xy) <x p(0y|y) J ] pi^il^v)' (2-103) 
XiGXy 

In the sine signals example, the training set is cut into X(i) and X(̂ _i) 
containing respectively the signals with frequency A:(i) and k(^_iy The posterior 
of A:(i) (respectively A:(_i)) is computed independently for each class. 

Whenever the posterior is computed, it is possible to implement the clas
sification of X via the computation of the class likelihood 

p(x|Xy) = /p(x |0y,y)p(0y |Xy)d0y. (2.104) 
Je 

The integral (2.104) can be computed in analytic closed form in some cases; 
in all other cases, MCMC enable its computation. Finally, assuming the 0-1 
loss function, classification is performed by assigning x to the class for which 
p(x|Xy) is maximum. 

This technique requires some refinements for practical implementation be
cause the parameter to learn may vary from one datum to another inside a 
given class. In this case, it is not possible to learn the value of the parameter 
of each class; we need to learn instead its density function. In this framework, 
Oy becomes a set of pdf parameters, which is now denoted i/jy to distinguish it 
from Oy used in the likelihood function, t/? is called the class hyperparameter 
with prior p(t/?y|y). Consider again the sine signals example and, e.g., the class 
y = 1. This class might include signals with frequencies close to ki. Assum
ing known amplitudes and noise variance, the signal unknown parameter is 
Oy = ki. Choosing a Gaussian distribution A/'(0y;/Xy, 27y) for the parameter 
Oy in each class, the hyperparameter i/̂ y is composed of fiy and Uy (see [121] 
for further details). 
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2.4.9 Hidden Markov Models 

Hidden Markov models (HMMs) are widely used in speech recognition mainly 
because they offer a robust pattern recognition dynamic scheme. HMMs in
clude continuous state space systems such as (2.79)-(2.80): The parameter 
vector On hves in a continuous state space 0; its evolution follows a so-called 
Markov process (in the sense that the pdf of On only depends on the pdf 
of On-i at each time n = 1,2,...); and the state cannot be observed di
rectly (it is hidden). In the speech and audio processing literature, HMMs 
mostly refer to finite, discrete state space dynamic models', that is, On is a dis
crete random variable in a finite space with E possible state values, namely 
0 = {e i , . . . , CE}', see Fig. 2.11. A finite, discrete state space HMM is governed 
by 

• the state transition probabilities P{On = ei\On-i = ej) for (i,j) = 
1 , . . . , E—this is the discrete equivalent of (2.79); 

• the state likelihoods p(xn|0n = e^), i = 1 , . . . , E—equivalent to (2.80); 
• and the initial probabilities P{Oi). 

Similar to the particle filtering problem, the issue is here to estimate the 
sequence of states over time. Typically, in speech recognition the observations 
are MFCCs extracted from frames over the speech signal, and the state is 
the phoneme pronounced by the speaker. Likelihood functions are typically 
Gaussian mixtures over the MFCCs (there is one GMM for each possible 
state). Transition probabilities and GMM parameters are learned from a large 
database and from the speaker's voice.^^ 

The Viterbi Algorithm 

The aim of the Viterbi algorithm is the estimation of the sequence of states 
Oi:T from time 1 to time T by maximum a posteriori. In other words, given 
a sequence of observations Xi:7 ,̂ the Viterbi algorithm finds the sequence of 
states Oi:T such that 

di:T = argmax P ( ^ I : T | X I : T ) , (2.105) 

Oi.T 

where the posterior probability of a sequence of state Oi^ is 

T 

P ( 0 1 : T | X 1 : T ) OC P ( 0 I ) H P(Xn |0n)P(0n |0n- l ) . (2.106) 
n=2 

In this context, estimation of the state is also called sequence decoding. The 
Viterbi algorithm is presented below. 

^̂  Additional details may be found in [534], which proposes a tutorial on HMMs 
and describes several basic algorithms such as the Baum-Welch algorithm for para
meter learning. 
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Algorithm 2.10: Viterbi Algorithm 

1. Initialization: 

• for i = 1,...,E, set wi{ei) = p(xi|^i = ei)P{Oi ~ e^). 
2. Iterations: Forn = 2 , . . . , T , 

• For z = 1 , . . . , £", compute 

Wn{ei) = p ( X n | ^ n == Ci) jnax 'Wn-\{ej)9{Bn = ei|^n-i = e )̂ . (2.107) 

• For z = 1,. . . ,E, set '\\)n{ei) — argmax u;n-i(ej)P(0n = ei|^n-i = e^). 
e j j = l , . . . , £ ; 

3. Termination: 

• Compute OT = max i/;T(et). 

4. State sequence backtracking 

• For n = T — 1 , . . . , 2 ,1 , extract the estimate at time n by 0n = ^n(^n+i) . 

The Viterbi algorithm implements an exhaustive search method along all 
possible paths. Its computational complexity is 0{E^T), which makes it a 
very efficient decoding algorithm, where the notation 0{E^T) means that the 
computation time is proportional to T and to the square of E when other 
factors are kept fixed. Note that Algorithm 2.10 has some similarities with 
particle filtering, in particular in the way the weight Wn{^i) is computed; 
compare (2.107) with (2.81). 
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3.1 Introduction 

Musical signals are, strictly speaking, acoustic signals where some aesthet
ically relevant information is conveyed through propagating pressure waves. 
Although the human auditory system exhibits a remarkable ability to interpret 
and understand these sound waves, these types of signals cannot be processed 
as such by computers. Obviously, the signals have to be converted into digital 
form, and this first implies sampling and quantization. In time-domain dig
ital formats, such as the Pulse Code Modulation (PCM)—or newer formats 
such as one-bit oversampled bitstreams used in the Super Audio CD—audio 
signals can be stored, edited, and played back. However, many current signal 
processing techniques aim at extracting some musically relevant high-level in
formation in (optimally) an unsupervised manner, and most of these are not 
directly applicable in the above-mentioned time domain. Among such seman
tic analysis tasks, let us mention segmentation, where ones wants to break 
down a complex sound into coherent sound objects; classification, where one 
wants to relate these sound objects to putative sound sources; and transcrip
tion, where one wants to retrieve the individual notes and their timings from 
the audio signals. For such algorithms, it is often desirable to transform the 
time-domain signals into other, better suited representations. Indeed, accord
ing to the Merrian-Webster dictionary,^ to 'represent' primarily means 'to 
bring clearly before the mind'. 

Among alternate representations, the most popular is undoubtedly the 
time-frequency representation, whose visual counterpart (usually without 
phase information) is the widely used 'spectrogram' (see Chapter 2). Here, 
at least visually, higher-level features such as note onset, fundamental fre
quency or formants can be distinguished and estimated. However, a major 

^See ht tp: www. m-w. com. 
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consideration for time-frequency representation is that we have to decide on 
a size for the analysis window, and it can be seen (Fig. 3.1) that this choice 
can allow radically different features to be emphasized. Among all possible 
choices for the analysis window, it is generally not possible to find the one 
that is simultaneously optimal for all the features we want to extract. 

0.05 0.1 0.15 0.2 0.25 0.3 

Pure frequency domain 

Time-frequency domain 

Long analysis window 

Time-frequency domain 

Sfiort analysis window 

Pure time domain 

Fig. 3.1. Although equivalent, these four representations of the same signal (impulse 
response of an open tube, kindly provided by M. Castellengo) highlight different 
features of the signal (for the sake of clarity, only the magnitude of complex values 
has been displayed). 

The aim of this chapter is to introduce more advanced techniques, where we 
put in strong assumptions about our signals: better performance is obtained, 
but of course this is at the cost of a loss of generality. However, in many 
applications mentioned above, there is a model for our class of analysed signals. 
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Within this framework, the representation of a sound is simply the set of 
parameters for the model. For a given information extraction task, 'good' 
representations are the ones where the parameters are simply related to the 
desired high-level feature. 

Here, representation methods can be divided into two large classes: 

• Analysis/synthesis methods: from the set of parameters (or coefRcients), 
it is possible to reconstruct the original time-domain signal, either in an 
exact manner or approximately. 

• Pure analysis methods: by focusing on only one type of feature that we 
want to estimate, we allow some (irrelevant in this context) information 
to be lost, and sound reconstruction is not possible anymore. For instance, 
estimation of the fundamental frequency FO can usually be performed 
without phase information. 

In this chapter, we will focus on the former, in a typical analysis-by-
synthesis framework. The next section describes parametric representations 
of signals, from the original McAulay and Quatieri sinusoidal modelling by 
additive synthesis, towards most recent advances that also take into account 
models for transients and noise. These parametric approaches are said to 
be 'deterministic', in the way that the parameters are extracted locally in 
the signal through deterministic algorithms. Alternate approaches tentatively 
embed these parametric expansions into statistical models, where each sound 
is seen as a particular realization of a random process having the hyper-
parameters we want to estimate. Section 3.3 is devoted to so-called waveform 
representations, where the signal is seen as a linear combination of elementary 
waveforms, chosen within a well-defined dictionary. This dictionary is usually 
structured; i.e., its elements can be derived from a few elementary waveforms 
through a number of simple operations such as modulations, translations, and 
dilations. From a practical viewpoint, they are often chosen in such a way that 
fast algorithms are available in order to get the expansion of a given signal. 
After describing the general framework for waveform expansions, we will focus 
on so-called sparse representations, in which the representation is compact: 
few large coefRcients accurately represent the signal, while the vast majority 
of the coefficients are small (hence neglected). Different models for sparsity 
will be discussed, as well as measures for the distortion caused by neglecting a 
large number of (small) coefficients. Within this framework, it is also possible 
to enforce sound models such as { tones -h transients + noise }. In hybrid 
representations, we decompose a sound as a union of orthonormal bases, each 
of them being well suited for a particular type of feature (for instance a basis 
of lapped local cosines for the tonal part, a basis of dyadic wavelets for the 
transients). In such models, sparsity can be further exploited by taking into 
account structures of significant coefficients, locally in the parameter (time-
frequency/time-scale) space. 

Throughout this chapter, we will treat in parallel the discrete time and 
continuous time settings. However, we found it necessary to be more explicit in 
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a few specific situations, and use either the discrete or the continuous setting. 
We use the following notation: we reserve the letter n to denote discrete time 
variables (i.e., we denote discrete time signals as x(n), n G Z), and the letter 
t for continuous time signals x{t), t eR. 

3.2 Parametric Representations 

In this section we discuss some of the most widely used models for parametric 
representations of sounds. Most of these originate from the additive synthe
sis models, originally developed by McAulay and Quatieri [449] for speech 
analysis and synthesis. 

3.2.1 Sinusoidal Models and Relatives 

The sinusoidal additive synthesis model [449] approximates a sound by a sum 
of M sinusoids. In a discrete time setting, 

M 

^ W = 5Z ^ ^ W ^̂ ^ i^rn{n)) + e(n), (3.1) 
7 7 1 = 1 

where the phase (pm of the m-th partial is sometimes written as a primitive 
of a smooth time-dependent frequency fm{t)-

pn/ks 

^m{n)= I 27Tfm{t)dt-^(frn{0), 
Jo 

ks being the sampling frequency and €{n) representing the error of the model. 
Here, it is implicitly assumed that the amplitude and frequency parameters 
(<̂ m? fm) for each partial sinusoid evolve slowly over time, in such a way that 
their values can be estimated frame by frame (a typical frame size is 23 ms, 
representing 1024 samples at a 44.1kHz samphng rate). 

The selection of the partials is made first by peak-picking the magni
tude of the short-time Fourier transform of the signal. Chaining the obtained 
peaks into partials (i.e., curves n —> fm(ji) for all m in a joint time-frequency 
domain) is a non-trivial task which has received significant attention since 
the early contribution of [449], including the hidden Markov chain approach 
of [139], or linear prediction [383]. Whatever the chosen approach and al
gorithm for partial chaining, the underlying idea is to exploit the supposed 
smoothness of the time-dependent frequencies fm {t), and chain the peaks that 
are close to each other in the frequency domain. Note that, for resynthesis us
ing (3.1), the requirement of phase continuity at frame boundaries implies 
some non-trivial interpolation scheme for the partials frequencies /m(0 (̂ ^̂  
instance a cubic spline interpolation). 



3 Sparse Adaptive Representations 69 

Time Time 
Fig. 3.2. Local spectrum peaks, chained into partials (left). Partials grouped into 
locally harmonic structures (right): partials corresponding to two locally harmonic 
sources are represented by full lines and dashed lines respectively. 

The partials may in turn be used for various purposes, including harmonic 
source separation and possibly transcription, as shown in [652]. There, dis
tances between time-dependent amphtudes am{t) and frequencies fmit) are 
proposed, together with a measure of harmonic concordance between partials. 
A perceptual distance between partials involving these three distances is then 
built, and numerically optimized for grouping partials into locally harmonic 
sources. An elementary example of such grouping is presented in Fig. 3.2. 

This model has been refined by Serra in the spectral model synthesis (SMS) 
model [576], where the residual of a sinusoidal model is also taken into account 
as a so-called stochastic part. This modification has made it possible to perform 
high-quality processing of general musical signals [649] (see also [408]) that 
have a more complex behavior than speech signals. AppUcations that make 
use of SMS range from audio effects (morphing, time-scaling, etc.) and source 
separation to sound analysis (transcription). 

One of the main limitations of the SMS approach is the lack of an explicit 
model for the residual part. This results in having to keep this residual in the 
time domain, hence requiring a very large number of parameters. As a first-
order approximation, this residual can be modelled as filtered white noise, the 
parameters of the filter being estimated by the energy in perceptual frequency 
bands [219] or through classical autoregressive (AR) or autoregressive mov
ing average (ARMA) methods [472] (see Chapter 2). This solution is used in 
the Harmonics and Individual Lines plus Noise (HILN) coder [532]. With fur
ther improvements such as grouping harmonically related components, HILN 
achieves fair sound quality at bit rates as low as 6 kbit/s. 

However, in all the above-described modelling of the residual, there is 
always the implicit assumption that the parameters evolve slowly over the 
analysis frame. Obviously, this does not always hold; for instance it does 
not hold at the sharp note attacks of many percussive instruments. These 
fast-varying features are in certain cases characterized by sudden bursts of 
noise, and/or fast changes of the local spectral content. These components 
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are usually referred to in the literature as 'transients'. When further accuracy 
is needed, such as for high-quality coding, or for audio effects such as time-
scaling, an explicit model for transient sounds has to be included. Recently, 
many three-layer models of the type STN { sinusoids -h transients + noise } 
have appeared. For instance, in [269], the residual is transformed in a wavelet 
packet basis that approximates the critical bands of the human auditory sys
tem. In [641], transients are defined as dual components of the sinusoids, 
and therefore modelled by additive synthesis in the DCT domain. More re
cent transients modelling schemes for coding [569] distinguish between short 
bursts of energy and sudden changes of signal level. 

3.2.2 Parametric Random Models 

The deterministic parametric models briefly described above may also be seen 
from a probabilistic point of view. The advantage of such an approach is 
twofold. On the one hand, it provides a way to model the intrinsic variability 
of the phenomena under study. On the other hand, it also allows one to use 
the powerful estimation algorithms that have been developed in the context of 
statistical estimation. The price paid is of course an increased complexity of 
the models. Chapter 7 presents a thorough presentation of the latter models; 
see in particular (7.9) for the explicit several-notes model. 

Remark 1. The model in (7.9) actually expresses the signal as a hnear com
bination of 'elementary waveforms' of the form (/>̂ (n) cos(27r/^(n)n) and 
(/)i(n)sin(27r/m(n)n), with unknown (random) parameters. This model may 
be written in matrix notation; see (7.10) page 210. This creates, in some 
sense, the connection between parametric harmonic models and sparse wave
form models, to be discussed in the next section. 

A nice feature of the approach above is the fact that given estimates for 
parameters of the model, the latter may be used for signal synthesis. When 
synthesis is not necessary, it is no longer necessary to start from the signal 
waveform, and it may be easier to start from other representations of the 
signal, for example a short-time Fourier spectrum. This approach has been 
taken, among others, in [644], [645], where a new stochastic model for musical 
instruments local spectra was introduced. The model parameters are first 
estimated on a training set, and may then be used for transcription. Since only 
spectra (and not signals) are modelled in this approach, separation may only 
be performed by an appropriate post-processing, e.g. local Wiener filtering. 
We refrain from discussing this approach in more details here, and refer to 
Vincent [644] for a thorough description. 

3.3 Waveform Representations 

By waveform representations^ we mean representations of musical signals 
as linear combinations of elementary waveforms^ or time-frequency atoms^ 
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generated using simple construction rules. These include translations (i.e., 
time shifts) and modulations (frequency shifts) of a unique waveform for 
'Gabor-type' waveforms, translations and dilations (rescalings) for 'wavelet-
type' waveforms, or more general transformation rules. Depending on the 
problem at hand, and on the chosen approach, identifying the signal decom
position may be more or less simple. We describe below a number of possible 
approaches of various levels of difficulty. Even though it is difficult to give a 
sensible classification of these approaches, we attempt to class them according 
to two criteria: 

1. Rigid vs. adaptive: Rigid techniques are characterized by the fact that 
the signals under consideration are expanded onto a fixed family of wave
forms (basis or frame of the underlying signal space—these terms will be 
explained below). Conversely, adaptive techniques choose the waveform 
family as a function of the analysed signal, generally using greedy search 
algorithms. 

2. Redundant vs. strict: In 'strict' expansion techniques, the goal is to min
imize the redundancy between the coefficients of the expansion. Strict 
families generally correspond to orthonormal bases of the signal space. 
Being strict often imposes severe constraints on the waveforms, and it is 
sometimes more suitable to turn to redundant families (frames, dictionar
ies, etc.), for which such constraints no longer apply. Redundancy (also 
called overcompleteness since we are in finite dimension, or oversampling 
in engineering terminology) offers a way to 'customize' the waveforms to 
be used for the signal expansion. The price paid for redundancy is an in
creased number of parameters (which can be penalizing for compression 
purposes), and an increase in the complexity both at the analysis and the 
resynthesis stages. 

3.3.1 Rigid Expansions: Waveform Bases and Frames 

We first make the distinction between non-redundant waveform systems (i.e., 
bases) and redundant ones (frames, dictionaries), before moving to distinc
tions of more 'algorithmic' nature (rigid vs. adaptive). 

Waveform representations generally make use of linear algebra language 
and techniques, which we briefly recall here for the sake of completeness. 
The reader can find more detailed descriptions in many classical mathe
matics textbooks. We refer to [642] for a reference in the signal processing 
context. 

Signals are assumed to belong to some underlying vector space W, called 
the signal space. H is generally assumed to be an inner product space which 
is equipped with an inner product (•,•) : x^y £ H -^ {^^y) ^ C The latter 
defines the norm \\x\\ of the signal x G H by ||a:|| = y/{x~x). Commonly used 
signal spaces include 
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• The (infinite-dimensional) L^ spaces of square-integrable functions; 

L^{I) = | x : / -^ C, I |x(t)p dt < ooj , 

(/ being either the real line R or some subset), with inner product 

{x,y) = j x{t)y{ty dt, 

where '*' denotes complex conjugation; 

• The (infinite-dimensional) £̂  spaces of square-summable sequences 

e{Z) - J X : Z ^ C, ^ |x(n)p < oc I , 
I, n = —oo ) 

with inner product 
oo 

{x,y) = Y^ x{n)y{ny ; 
n = —oo 

• The (finite-dimensional) space C^, with inner product 

N-l 

{x,y) = Y^x{n)y{ny . 
n=0 

Notice that in the latter case, signals are finite-dimensional vectors, 
whereas in the first two cases, signals are infinite sequences or functions, which 
may nevertheless be seen as 'vectors with infinitely many components'. 

Waveform Bases 

The simplest example of elementary waveform representations is provided by 
orthonormal bases. There exists already a considerable amount of literature 
dedicated to wavelet and local cosine bases (see e.g. [89], [113], [429], [642], 
[667]), and therefore we do not go into details on the associated theory. 

An orthonormal basis of an inner product space W is a family B = {(pi^ i ^ 
X} of elements of H ( J being an index set whose size equals the dimension of 
the space W), such that 

• The family is complete in H; i.e., any signal x e H admits an expansion 
of the form 

E 
• For all i,i' e X, 

x{t) = }_^aiip^{t) , (3.2) 

{(Pi,(fi') = Sii' , (3.3) 

where Su' is Kronecker's symbol, equal to 1 if i = i' and 0 otherwise. 
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Under such assumptions, it may be proved that the expansion (3.2) is 
unique, and that the coefficients a^ in the expansion are nothing but the 
inner products 

ai = {x,^i), I e l . (3.4) 

Finally, the latter satisfy Parseval's formula (this is an 'energy preservation' 
formula) 

^ K | 2 = | |xf. (3.5) 

As mentioned above, the signal space may be finite dimensional (for exam
ple finite-length discrete signals or finite-length band limited continuous time 
signals), or infinite dimensional (for example finite or infinite support discrete 
or continuous time signals), but the general framework remains the same. We 
shall limit ourselves to spaces of finite-energy signals, i.e., L^ spaces in the 
continuous-time case, and spaces of square-summable sequences in the discrete 
and finite cases, with norms and inner products as above. 

Remark 2. The reader who is not interested in the mathematical details may 
simply remember that in the case of discrete time, finite-length signals (i.e., a 
finite-dimensional signal space), expanding a signal onto an orthonormal basis 
is nothing but applying a unitary matrix to the signal vector (a simple example 
is the DFT matrix). The inverse operation, i.e., reconstructing a signal from 
the coefficients of a basis expansion, is also a matrix-vector multiplication, 
using the Hermitian conjugate (i.e., the complex conjugate of transpose) of 
the transform matrix. 

Among the orthonormal bases, wavelet and local cosine (with extensions 
such as the modified discrete cosine transform, or MDCT) bases have been 
particularly popular. The main difference between these two systems is the fact 
that the time and frequency resolution of local cosine waveforms is uniform 
in the time and the frequency axis, while wavelets offer finer time resolution 
(and thus broader frequency resolution) at high frequencies. 

Wavelets 

Wavelets (see for example [113] and [429] for thorough reviews) are generated 
from a single 'atom' i/; by regular translations and dilations. In the continuous-
time settings, a deep result by Mallat and Meyer states that it is possible to 
construct (continuous-time) functions -0 G I/^(R) such that, introducing the 
corresponding translations and dilations %l)jn of il) defined by 

xjj^^it) = 2-^/2 IIJ{2-H - n) , t G M, 

the family {ipjn, j,n G Z} is an orthonormal basis of L^(R). Therefore, any 
signal X G L^(R) may be expanded in a unique way as 

^(^)= m J2 i^^'^Jn)^Jn{i)-
-oo n= — oo 
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i = 2 

i = 4 
i = 5 

Fig. 3.3. Dyadic tree of scale-time indices for a wavelet basis ^jn-

Here, j is a scale parameter, and n is a time parameter. The scale-time 
index {j,n) is usually represented by a dyadic grid (see Fig. 3.3), which il
lustrates the fact that the time sampling provided by wavelets depends upon 
the value of the scale parameter j : at large scales (bottom of the tree), the 
wavelets have larger support, and are sampled more coarsely than at small 
scales (top of the tree). 

Remarkably enough, such wavelet bases may (in most situations) be 
generated through a mathematical algorithm called multiresolution analy
sis (MRA), which is itself intrinsically connected to the sub-band coding 
techniques of signal and image analysis. More precisely, a wavelet ortho-
normal basis and thus an MRA involve an auxiliary function 0 G I/^(M), 
called the scaling function, such that the coefficients {x,(j)jn) of x G L^(R) 
represent samples of a corresponding low-pass approximation of x at scale 
2^ (the functions (/)jn are defined similarly to the wavelets ipjn)- Given 
some (arbitrary) reference scale jo, it is possible to show that the family 
{0jo,n5 ^ ^ ^} U {i/̂ ĵ n, j < jo,n eZ} is another orthonormal basis of L^(R). 
Therefore, the above wavelet expansion of a signal x may also be replaced 
with another expansion 

oo jo — 1 oo 

n= — oo j= — oo n— — oo 

the basis functions (f^j^k^k G Z collecting the information contained in the 
(doubly labelled) family of wavelets ipjk.k G Z, j > JQ. Given a wavelet basis 
(or an MRA), the computation of the coefficients {x^^/jjn) of the expansion 
of a signal x G L^(M) on the corresponding wavelet basis may be performed 
through a sub-band coding algorithm, i.e., recursive filtering of the scaling 
function coefficients and wavelet coefficients from a fixed pair of digital filters 
(details on sub-band filtering may be found e.g. in [642]). The reconstruction 
of the signal from its wavelet coefficients (x, il^jn) also rests on sub-band cod
ing. The case of discrete signals (the discrete wavelet transform, DWT for 
short) is handled by identifying signal samples x{n) with the scaling func
tion coefficients (x, ^jm) of some 'underlying continuous time' signal, at some 
reference (finest) scale j i . 
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Local cosines 

Local cosine bases arose from an attempt to construct orthonormal bases 
that 'look like' Gabor functions, i.e., waveforms generated by regular trans
lates and modulates of a single waveform (see (3.10) below). For simplicity we 
describe the case of infinite, continuous-time signals first, and then address 
discretization issues. Starting from a family of compactly supported, positive-
valued window functions w^, essentially supported in intervals [an,«n+i] (up 
to rapidly decaying tails) subject to some technical conditions (see for ex
ample [429], [667] for a detailed presentation) it was shown by Coifman and 
Meyer that the corresponding family of functions 

Unk{t) = J Wn(t) cos(7r(A:H-l/2)-^—^^ , n E Z, fc G Z+, 
yttn+l—^n V Cin-\-l—(^nJ 

(3.6) 

forms an orthonormal basis of L^(R). Therefore, any x G L^(R) admits a 
unique expansion of the form 

CO CX) 

n= — oo k=0 

Here, n is a time index and /c is a frequency index. The usual practice^ is to 
choose regularly spaced values of the a^, so that the local cosine atoms Unk 
have constant length. In such cases, one may say that the local cosine atoms 
are labelled by a regular grid in the time-frequency domain. 

Local cosine bases adapted to continuous-time signals defined on finite in
tervals are constructed similarly, modulo a mild 'twist' in (3.6) for treating 
boundaries (essentially, the windows w become square windows at bound
aries). Remarkably enough, a corresponding discrete theory has been devel
oped, mainly based upon appropriate 'smoothing' of the windows used in 
DCT-IV transform (a particular form of discrete cosine transform (DCT); 
see [429] for example), yielding the modified discrete cosine transform (MDCT 
for short). Again, Remark 2 above applies, and it is not necessary to master 
the theory of cosine transforms and corresponding lapped transforms (see [431] 
for a review) to use them practically. 

Remark 3. Comparing wavelets and local cosines: As mentioned above, the 
main difference between these two waveform systems lies in the fact that local 
cosine atoms are constant size, variable shape functions, whereas wavelets 
have constant shape and variable size. This is illustrated in Fig. 3.4, where 
different wavelets and local cosine atoms have been represented, with various 
sizes, frequencies, and locations. The two plots on the left each represent 

^Although there are exceptions; for example, some audio coders use MDCT 
atoms with two different lengths: wide windows w for describing partials, and narrow 
windows in 'transient' regions. 
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Fig. 3.4. Comparing wavelets and local cosines. Daubechies 6 (top left) and 
Vaidyanathan (bottom left) wavelets for three different values of the scale-time in
dex (i, n), and narrow (top right) and wide (bottom right) local cosine atoms for 
two different values of the time-frequency index (n, k). 

three wavelets with different scales and position, using Daubechies wavelets of 
order 6 (top) and Vaidyanathan wavelets (bottom).^ This illustrates a general 
property of wavelet bases: the smoothness of the wavelet increases with the 
size of its support. 

On the right are represented local cosine atoms corresponding to two dif
ferent window sizes (narrow window on the top plot, wide window on the 
bottom plot) for two different locations and frequencies. In both cases, the 
window function is compactly supported, which results in a poor frequency 
localization for its Fourier transform. 

Remark 4- Non-orthonormal bases, multi-bases, . . . : Many variations around 
the theme of orthonormal bases in signal spaces are possible and have been 
considered. One of the most popular is an approach in which the orthogonality 
assumption is relaxed, while the completeness and non-redundancy assump
tions are retained. As is often the case, relaxing one assumption yields more 

^We refer to [113], [667] for detailed discussions of the common choices of wavelet 
bases. 
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freedom in the construction of the basis, and such non-orthonormal bases may 
be constructed from 'nicer' time-frequency atoms (for example, the atoms can 
be made smoother, or more symmetric, or better time locaUzed). Another vari
ant is obtained by assuming that the waveform basis is obtained from two or 
more time-frequency atoms rather than a single one. Again, one obtains in 
such situations 'nicer' time-frequency atoms. Examples of such a strategy are 
provided by the multiwavelets, or the more general multiple bases (see for 
example [17], [545]). 

Frames and Redundant Representations 

A major shortcoming of the (orthonormal or not) bases for application to 
audio signal representation is the fact that orthonormality is often too strong 
a constraint, in the sense that the corresponding waveforms do not have the 
nice shapes one would like to see. They often have either poor time localiza
tion or poor regularity (i.e., poor frequency localization). Even when some 
assumptions are relaxed (for example, requiring biorthogonality rather than 
orthogonality, or using multiwavelets—i.e., wavelet-like bases generated from 
more than one basis function), the corresponding waveforms do not look nat
ural. Also, while bases are clearly adapted for signal compression, representing 
a signal by its coefficients with respect to a basis generally breaks some de
sirable properties such as time-frequency covariance (see Chapter 2), which 
is often useful for other tasks, including all signal analysis problems. Frames^ 
provide a way of introducing waveforms that are more 'natural', by introduc
ing extra redundancy in the waveform system. They may also offer a way to 
preserve the above-mentioned 'nice' properties, in particular time-frequency 
covariance. 

By definition, a family of waveforms {(^i,i € T} is a frame of the signal 
space H if the following weaker form of Parseval's formula holds^: There exist 
positive constants ^ < A< B < oo such that for all x G 7i, 

A\\xf<Y,\{x,'P^)?<B\\xf. (3.7) 
iex 

This imphes in particular that the frame is complete in H (as defined above), 
and therefore that any x eH may be expanded as in (3.2). The main differ
ence is the fact that the frame is generally not exacts which means that the 
waveforms {^i^i G T} form a redundant system in H (one sometimes speaks of 

^Notice that contrary to a common usage in the signal processing literature, the 
term 'frame' does not represent a time interval, but rather a family of vectors in 
a vector space. Since this terminology is also standard in mathematics, we shall 
nevertheless use it here. 

^While Parseval's formula (3.5) expresses energy conservation, such a weak Par
seval's formula expresses energy equivalence, i.e., the fact that the energy of the 
sequence of coefficients is controlled by the energy of the signal. 
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an overcomplete system). In such situations, the expansion (3.2) is not unique, 
as there exists an infinity of choices for the set of coefficients {a^, i G X} yield
ing signal expansions as in (3.2). The bad news is that the inner products 
(x, (fi) can't be used as ai coefficients. Nevertheless, a wide variety of choices 
is obtained by using a so-called dual frame., which is another family of wave
forms {(^i,2 G 1} such that any x e H admits the following expansion with 
respect to the ^i waveforms: 

x{t) = Y,{^.^i)^iit)- (3.8) 
iei 

Notice that in such situations, one also has 

iei 

which may be interpreted as an inversion of the transform 
X -^ {(x,(^i),i G X}. In both situations, the coefficients {x,ipi) or {x,(pi) 
provide an alternate representation of the signal that often proves useful for 
several signal analysis tasks. 

The most classical choices for waveform frames are provided by the so-
called Gabor frames and wavelet frames^ whose basic theory is discussed in 
detail in [113] (see also [184] and [261]). We shall hmit our discussion here to 
Gabor frames and generalizations. The reader more interested in wavelet and 
multiresolution frames is invited to refer to the vast literature on the subject 
(see for example [89], [113] for tutorials). 

Gabor frames, which actually correspond to sampled versions of the short-
time Fourier transform described in Chapter 2, have been fairly popular in the 
musical signal representation community. Gabor frames are generated from a 
unique window function g by time and frequency translations. In the discrete 
time £'^{Z) setting, the corresponding discrete Gabor functions gnk (where n 
and k control time and frequency respectively) read 

9nkil) = e2,.fcfe.(;-n„3)^(; _ ^^^) (3 10) 

Here, rig and ks represent time and frequency sampling rates, respectively. It 
may be shown that under some mild assumptions, for any window g G ^^(Z), 
the family {gnk^ n. A: G Z} is a frame of £^{Z) as soon as the product nsA:s 
is small enough. The latter essentially controls the redundancy of the Gabor 
frame: the smaller ng/cg, the closer the atoms. For example, increasing rig 
reduces time redundancy, which may be compensated for by decreasing kg. 
Many examples of signal processing applications of Gabor frames may be 
found in the literature; see e.g. [185]. 

Gabor frames are often well adapted to musical signal processing, as they 
provide 'direct access' to time and frequency variables simultaneously. Also, 
using Gabor frames rather than the corresponding orthonormal bases^ allows 

^A 'no-go theorem' known as Balian-Low phenomenon states that there cannot 
exist 'nice' orthonormal bases of Gabor functions [113]. 
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one to use 'nicer' (i.e., smoother and better localized) windows, and keep 
translation invariance, which is a very important feature. On the other hand, 
Gabor frames are made out of fixed resolution waveforms, which can therefore 
not be adapted to the features of the signal. Hence, it is difficult to find in 
such schemes a representation that would be well adapted to both transients 
and partials of sound signals. 

A good illustration of this fact is provided by the two images in Fig. 3.5 
below, in which are displayed the Gabor frame expansions of a short piece 
of guitar signal using two different windows. It clearly appears that a Gabor 
frame generated using a narrow window (left image) is able to capture accu
rately the transient parts of the signal, while a Gabor frame generated using 
a wide window is much more precise for capturing partials. Neither of them 
is able to do a good job for both types of components. 

10 

^ 8 

CP 

^ A\ 

I 

Time (s) Time (s) 

0.2 0.4 0.6 0.8 1.2 1.4 0.2 0.4 0.6 0.8 

Fig. 3.5. Grey level images of two different Gabor frame representations of a short 
piece of guitar sound. Left: narrow Hanning window. Right: wide Manning window. 

From the above example, the following question arises naturally: Is there 
a way of decomposing a signal into 'layers' that could be adequately repre
sented by an appropriate waveform system (Gabor frame or other)? A very 
interesting outcome of the frame theory is the fact that given a pair (or a 
larger, finite family) of frames in a given signal space, their union is still a 
frame of the same space, and thus suitable for expanding signals. Frames gen
erated as unions of Gabor frames are called multiple Gabor frames. Multiple 
Gabor frames have been considered in the literature for various purposes, 
including source separation in signals and images, or musical signal process
ing; see for example [150], [312], [690]. Examples discussed in these references 
were generally based on a family of Gabor frames with identical windows at 
different time scales. The goal in such situations is to be able to represent 
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transient components of sound signals using narrow Gabor functions, partials 
using broad Gabor functions, etc.—in a few words, find the best adapted 
waveform for each component of the signal. An example of such a strategy 
may be found in Fig. 3.6, where we displayed such a decomposition performed 
on a harmonic sum of sine waves to which were added spikes with random 
amplitude at random locations. The decomposition of this synthetic signal 
was performed using the 'Time-Frequency Jigsaw Puzzle' method [312], to be 
described below, which only exploits sparsity arguments. Even though the re
sult is not perfect, we can see from the middle and bottom plots that the two 
significantly different components were succesfully separated. The main point 
of this example is the fact that broad Gabor functions were able to select the 
partials of the harmonic components, while the narrow ones estimated almost 
perfectly the transient components. Other illustrations of this technique on 
real sounds may be found in [312] and [311]. 
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Fig. 3.6. Multilayered decomposition of a synthetic signal, obtained using the Time-
Frequency Jigsaw Puzzle technique, described in Section 3.3.2 below. From top to 
bottom: original signal, tonal layer, and transient layer. 

Another illustration of a similar strategy (using Gabor and wavelet fam
ilies) may also be found in Figs. 3.11 and 3.12 below, where the tonal and 
transient components of a vibraphone signal were succesfully separated using 
structured approximation techniques (to be described below). 

Remark 5. The need for adaptivity: In some sense, such multiple Gabor frames 
provide a way to retain the best of the Gabor and multiresolution worlds. How
ever, achieving such a program turns out to be quite difficult for practical 



3 Sparse Adaptive Representations 81 

purposes, mainly because one has to deal with the extra redundancy intro
duced by the use of several frames together. Indeed, given R Gabor frames 
idnk^ (n, /c) G J , r = 1 , . . . , i?}, there is an infinite number of ways to expand 
any x € W as 

^(o = E E "S^i^^'w. (3-11) 

and one is naturally led to ask for the 'best' one, according to some given 
criterion. In such a way, we are naturally led to leave the world of 'rigid 
expansion' techniques, and enter the world of 'adaptive expansions'. To seek 
the 'best' expansion, possible criteria are 

• Optimize the sparsity of the expansion: find a 'minimal set' of non-zero 
coefficients such that (3.11) holds, at least within some prescribed accu
racy. One is then naturally led to consider subsets of the multiple frame 
one started with. These subsets can be frames themselves (the so-called 
'quilted frames' introduced in [150]), or may not even be complete families 
if adaptive methods are considered. 

• Organize the expansion in such a way that 'components' of the signal (for 
example, transients, partials) are represented by large coefficients with 
respect to a given waveform system that suits it. 

In an ideal world, these two requirements would be equivalent, and they are 
in fact nearly so. Unfortunately, coming up with an actual algorithm able to 
perform such a task is far from easy. This again brings us to the problem of 
sparse representations, to be discussed in Section 3.3.2 below. 

Remark 6. We have only described above the multiple Gabor frame construc
tion. Similar developments may be done starting from wavelet frames, the 
union of bases, or the union of Gabor and wavelet systems (bases or frames). 
In such situations, one talks of 'hybrid systems'. 

Dictionaries 

By 'waveform dictionary', one generally means a family of waveforms which 
is more redundant than a frame. By definition, a dictionary in some signal 
space H is a complete family of elements of 7Y, that is, a family such that 
any signal x € H admits an expansion as a linear combination of elements 
of the dictionary. In infinite-dimensional signal spaces, dictionaries may even 
not be frames, as they may contain too many elements for the right-hand side 
inequality of (3.7) to be satisfied. However, when it comes to practical situa
tions, i.e., finite-dimensional signal spaces, the dictionaries which are generally 
considered in the literature are also frames, so that the distinction between 
'frame methods' and 'dictionary methods' refer to the techniques that are used 
to find the expansion of signals with respect to such systems rather than the 
intrinsic properties of these systems. Therefore, we shall address 'dictionary 
techniques' in Section 3.3.2 below. 
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3.3.2 Adaptive Expansions: The Quest for the Sparse Grail 

It is an 'experimental fact' that in the case of audio signals, the expansions 
described above are generally sparse: any signal in the considered class may 
be represented with good accuracy by a truncated expansion of the type (3.2), 
in which only the largest coefficients (in absolute value) are retained: 

J 

x ( t ) ^ ^ a , ^ . ( ^ , ^ ( t ) , (3.12) 
j=i 

where the indices i i , . . . zj have been chosen so that the absolute values of the 
corresponding coefficients ai. are sorted in decreasing order. 

Remark 7. There exist different ways of evaluating the sparsity of an expan
sion. Essentially, any subadditive functional of the coefficients (i.e., giving less 
importance to large values) would do the job. Classical choices are provided 
by entropies, namely the Shannon or Renyi entropies^ 

H = -Y^ |a,|2 log2(|a,|2); R0 = J^^ log2 ( E I"'!"" ) ' (3.13) 
iex ^ Kiel J 

assuming that the sequence of coefficients ai has been normalized so that 
^iei 1̂ *1̂  ~ ^' I^^^yi entropies may be interpreted as sparsity measures for 
0 < ;9 < 1. Moreover, it may be shown that the Shannon entropy is in fact 
equal to the limit of the Renyi entropy as /? —̂  1. 

Unfortunately, these different criteria generally yield different results, as 
noted for instance by Jaillet [311]. Nevertheless, they turn out to essentially 
agree in the case of simple signals, which motivated Jaillet to use them locally 
in the time-frequency domain. 

The fact that a signal admits a sparse expansion with respect to a given 
waveform system also manifests itself by the fact that the histogram of the 
coefficients of the expansion is significantly peaked at the origin (meaning 
that a large number of coefficients are close to zero) and heavy tailed (a 
slower decay of large coefficients). An example is provided in Fig. 3.8, where 
the empirical probability density function (pdf) (computed here by an appro
priate smoothing of the histogram) of the various representation coefficients 
(time samples, Fourier samples, wavelet and MDCT coefficients) of two sig
nificantly different audio signals are displayed. The two signals, a polyphonic 
organ signal which is quite 'tonal', and a Castanet signal which is extremely 
transient, are shown in Fig. 3.7. The pdfs in Fig. 3.8 represent various de
grees of sparsity. As may be expected, the frequency and MDCT represen
tations are better suited for the organ signal: the corresponding pdfs have 

^Notice that Renyi entropies Rp are essentially a logarithmic form of the £ ^ 
norms \\ct\\2p = (X)i l̂ l̂̂ ^) of the normalized coefficient sequences, which have 
also been used as sparsity measures. 
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Fig. 3.7. Two sample musical signals: a castanet signal (top) and an organ signal 
(bottom). 
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Fig. 3.8. pdf of various representations of the two sample signals of Fig. 3.7: ln(P(Q;)) 
vs a. Castanet (solid line) and organ (dashed line): Top: time samples and Fourier 
coefficients; Bottom: wavelet and MDCT coefficients. 

a maximum at the centre which is more sharply peaked, meaning tha t one 
has a large number of very small values, and a smaller number of significant 
values. 
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Exploiting the sparsity of a waveform expansion turns out to become 
tricky in practice if one wants to do it carefully. First, in the simplest 
case of a waveform basis expansion, the selection of the number J of ele
mentary waveforms to retain in (3.12) is not a simple issue. If redundant 
waveform systems are preferred, the non-uniqueness of the representation in
deed introduces more flexibility, but also yields more difficult decision prob
lems. We describe below a few approaches that have been proposed in the 
literature. 

Matching Pursuit and Orthogonal Matching Pursuit 

The Matching pursuit approach [430] (MP) is in the class of so-called 'greedy' 
algorithms, i.e., according to the Wikipedia Encyclopedia,^^ an algorithm 
which follows the problem-solving meta-heuristic of making the locally opti
mum choice at each stage with the hope of finding the global optimum. The 
MP is an iterative procedure that aims at approximating a signal through a 
weighted sum of atoms such as in (3.12), where the atoms belong to a given 
redundant dictionary V. 

The basic principle of MP is as follows: 

Algorithm 3.1: Matching Pursuit Algorithm 

1. Initialization: Compute all the inner products ax = {x,u\). 
Let ro(t) = x{t) and i = {). 

2. Find maximum absolute modulus amongst all inner products: 
\i = argmaxA |aA|. 

3. Update the residual by subtracting the corresponding atom: 
ri+i{t) = ri{t) - ax^uxiit). 

4. Update all the Inner products: 
ax = {ri+i,ux). 

5. If stopping criteria is satisfied, then stop; otherwise update 
i <r— i-^ I and iterate to step 2. 

Depending on the application, many stopping criteria can be used, for 
instance a condition on the total number I of iterations, or on the norm of 
the residual ||ri-fi||. After / iterations, the signal is written as 

/ - I 

x{t) = ^ax,ux,{t)-^ri^i{t), (3.14) 
2=0 

and approximated by the first term of the right-hand side of the above equa
tion, provided the residual rj^i is small enough (in norm). 

10 See http://en.wikipedia.org/wiki. 
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A few important remarks can be made: 

• In very redundant dictionaries, finding the maximum inner product can 
be a lengthy operation, as can be updating of the inner products. Speed-
enhancing tricks can in some cases be implemented, such as storing the 
cross inner products of all elements in the dictionary, or implementing a 
suboptimal search through a hierarchical organization of the parameters. 

• Due to the orthogonality between the residual and the selected atom, 
choosing the atom that maximizes the inner product is equivalent to choos
ing the atom that minimizes the norm of the residual. A further refinement, 
called orthogonal matching pursuit [119], guarantees that the approxima
tion at any i-th iteration is the best (in the L^ sense) on the span Vi of 
the i already selected atoms. This is done by recursively orthogonalizing 
the family of the i previously selected atoms. It is important to keep in 
mind that it is in no way guaranteed that this is the best z-terms approx
imation, except under very stringent conditions on the dictionary and the 
signal, i.e., when the signal is exactly made of a small number of atoms 
from the dictionary, this case being of little relevance for most practical 
audio applications. 

The classical choices for dictionaries include the union of Gabor frames with 
different window sizes, extensions of the latter with 'chirp' waveforms (chirps 
are frequency-modulated waveforms), or the union of several bases such as 
wavelet and MDCT bases. We shall come back to such choices later on, and 
refer the reader to [255], [257] for more details. 

Time-Frequency Jigsaw Puzzles 

The time-frequency jigsaw puzzle (TFJP) algorithm [312] is another way 
of obtaining 'good' multiple Gabor frame expansions (as described above) 
through a greedy approach, but it is simpler than matching pursuit. The 
idea is essentially to partition the time-frequency plane into time-frequency 
'supertiles' i7ri, and to find the optimal Gabor frame within each supertile, 
according to some sparsity criterion (such as the entropies described above). 
Supertiles are rectangular subdomains in the time-frequency plane, whose 
area is significantly larger than the time-frequency area of the windows (typi
cally, 25 times larger). A supertile is said to be of size M x AT if it contains M 
time sampling points of the wide window, and N frequency sampling points 
of the narrow windows. A typical value for M and TV is about 5. 

More precisely, start from a fixed family of Gabor frames (typically, two 
Gabor frames, one with a narrow window function, the other one with a wide 
window function). Given a supertile Qn of the time-frequency index set, the 
corresponding Gabor frame coefficients with respect to all considered Gabor 
frames are computed, normalized locally (so that their absolute moduli sum 
up to unity), and corresponding entropies i?/3 (as in (3.13)) are computed. 
The Gabor frame whose coefficient set is sparsest (within Qn) wins. 
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In such a way a subset of each frame is selected, and the signal may 
be iteratively projected orthogonally onto the corresponding subspace of the 
signal space (as in orthogonal matching pursuit). At each iteration, a residual 
signal is produced, and processed in a similar way. The iteration stops when 
the precision is considered satisfactory. So far, no known proof exists for the 
convergence of this method. However, the convergence is quite fast in practice: 
less than 20 iterations are needed to achieve 300 dB signal-to-noise ratio. 

In addition, TFJP provides decompositions of signals into 'layers' as fol
lows: Assuming that two frames Ĝ ^̂  = {9s } ^^^ ^^^^ ~ idx / ^^^ consid
ered, the algorithms provides an expansion of any signal x in the form 

:{t) = x^'\t) + x('\t), xW{t) = ^f3sgi'\t), x^'^t) = J2<^>^9^x\t) , 
seA xeA 

where x̂ ^̂  (a:̂ ^̂ ) is the 'component' (termed 'layer') of the signal which has 
been 'identified' by the frame Ĝ ^̂  (G^^^), and A and A are (small) subsets of 
the global index set (in general a subset of Z^). 

The simplest instance of this method is based on a pair of two Gabor 
frames, with significantly different window sizes; say, for audio signals, 5 ms 
and 45 ms. The corresponding Gabor atoms, when used in the framework of 
the TFJP method, identify nicely partials and transients. An illustration of 
such a strategy on a simple synthetic signal may be found in Fig. 3.6 above. 
As long as the signal can be correctly modelled as a superposition of partials 
(with slowly varying amplitude and frequency) and transients, TFJP is able 
to identify and separate them. In the presence of more complex phenomena, 
the method should be refined, and should include different types of atoms (for 
example chirps). However, as is well known from matching pursuit approaches, 
enlarging the dictionary of atoms does not necessarily improve the accuracy 
of the identification of signal components: the more redundant the dictionary, 
the larger the ambiguity of the selection. 

The basic principle of TFJP (see [312, variant 2]) is presented in Algo
rithm 3.2 below. 

Algorithm 3.2: Time—frequency Jigsaw Puzzle 
Choose a value for P G (0,1]. Choose two windows g^^\ g^"^^ and corresponding 

sampling lattices; choose supertiles. Define a maximal number of iterations / and a 
precision threshold e. 

1. Initialization: Set ro(t) — x{t) and i = 0. 
2. Main loop: While z < / and \\ri\\ > e, 

• Compute coefficients {ri^g^l) for the two windows j = 1,2. Compute entropies 
Rp for both windows within each supertile. 

• Select supertiles for which window # 1 yields the smallest entropy. Reconstruct 
corresponding contribution x[^^ to layer 1. 

• Setri^i/2(t) = ri(t)-x\^\t). 
• Compute coefficients {ri^i/2,gJk) ^^^ ^^^ ^^^ windows j — 1,2. Compute 

entropies Rp for both windows within each supertile. 
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• Select supertiles for which window # 2 yields the smallest entropy. Reconstruct 
corresponding contribution x] to layer 2. 

• Setn+i(t) = r,^i/2(t)-xf\t). 
3. Reconstruct layers £i and £2 by summing up contributions xi'^ and x^-*, respectively. 

3.3.3 Unstructured and Structured Hybrid Representations 

In the approaches described above, the coefficients of the expansion of the 
signal with respect to the waveform system are treated individually, and only 
their magnitude is taken into account. However, in practice, it rarely happens 
that a signal is characterized by isolated (in the index set) large coefficients, 
with respect to any known waveform system. It could be so if one could use, 
for expanding the signal, dictionaries of waveforms that make sense as ele
mentary sound objects, but such a goal seems quite far away for the moment 
(see nevertheless [43]). Therefore, sensible elementary sounds are rather made 
of several chained elementary time-frequency atoms, forming time-frequency 
molecules. Estimating such time-frequency molecules is the goal of what we 
call structured approximation. Notice that structured sets of waveforms al
ready appeared in Section 3.2, when we discussed the random parametric 
models. 

Structured Bases and Frame Representations 

Structured basis approximation techniques have already been proposed in 
different contexts in the signal processing literature. A good and famous ex
ample is provided by the so-called embedded zero-tree wavelet (EZW) al
gorithm [582] for image coding, which exploits the binary tree structure of 
orthonormal wavelet bases (see Fig. 3.3). This algorithm is based on the fol
lowing 'experimental fact': When a wavelet coefficient corresponding to a node 
of the coefficient tree is zero or very small, then the coefficients attached to 
the corresponding subtree are likely to be zero as well, yielding 'zero trees' of 
wavelet coefficients. 

Fig. 3.9. Subtree (in black) of the dyadic tree of Fig. 3.3 (suppressed edges appear 
as dotted lines). 
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Similarly, structured sets of MDCT functions have also been considered 
in [114], [469] from an audio coding perspective, exploiting the fact that when 
an audio signal is expanded onto a local cosine basis, it often happens that 
large coefficients form 'time-persistent' sets, or ridges (in the same spirit as the 
chained peak sets in the Fourier domain described in Section 3.2; see Fig. 3.2). 
In fact, as a result of the poor frequency localization of MDCT atoms, such a 
localization is not so sharp. It has been shown that sine waves rather manifest 
themselves in the MDCT domain by 'tubes' of three (or fewer) consecutive 
(in frequency) ridges of significant coefiicients (see Fig. 3.10). 

Time 

Fig. 3.10. MDCT coefficient domain, and corresponding tubes of significant MDCT 
coefficients. 

Such 'persistent structures' may be exploited in different ways, in the 
framework of Hybrid waveform audio models. In such contexts, the signal 
is sought in the form 

^(0 = J2 ^̂ ^̂ (̂ ) + Y^ (^xMt) + r{t) , (3.15) 
6eA xeA 

where the atoms I/JX (respectively us) are wavelets (respectively MDCT 
atoms), the set A (respectively A) is a small subset of the wavelet (respec
tively MDCT) coefficient set, and r is a (hopefully small) residual. Notice that 
this model is again of the type 'tonal -\- transient -f noise'. 

Practically, given a signal x, the goal is to estimate the significance maps 
A and A, estimate the corresponding coefficients, and reconstruct the corre
sponding layers of the signal 

M) (t) = Y, ocx^t). x^^\t) = ^ psusit) , 
AGA 5eA 

and the residual signal. 
In the simplest approaches, the significance maps are estimated by thresh

olding the observed wavelet and local cosine coefficients 

ai = {x,2pi) , bj = {x,Uj) , 

the laxter being processed further to get estimates for the coefficients ax 
and f3s' This type of approach, which was taken in Berger et al. [34] and 
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Daudet et al. [115], does not yield structured approximations, the coefficients 
being processed individually. In the above-mentioned references, an iterative 
approach was chosen, in which the MDCT layer was estimated first and re
moved from the signal prior to the estimation of the wavelet layer. The diffi
culty is then to provide a prior estimate for the number of MDCT coefficients 
to retain for estimating the tonal layer. To this end, a transientness index was 
proposed, based on entropic measures [468]. The latter actually provides an 
estimate for the proportion of wavelet versus MDCT coefficients present in 
the signal. Using this ingredient, the (unstructured) hybrid model estimation 
procedure presented in Algorithm 3.3 is obtained. 

Algorithm 3.3: Hybrid Model Estimation Procedure 
Fix an overall number of coefficients J to be retained. Choose a wavelet basis and a 
MDCT basis. 

1. Estimate the number JM of MDCT and Jw of wavelet coefficients to retain. 
2. Compute the MDCT coefficients of the signal as bm = {x,Um)', select the 

JM largest ones (in magnitude) bmi, • • -bmj and construct the tonal estimate 

Xton (t) = ^ brrij Uruj (t) • 

3. Substract the tonal estimate from the signal to get the non-tonal estimate Xnton(^) = 
X{t) - X t o n ( ^ ) . 

4. Compute the wavelet coefficients of the non-tonal estimate an = (xnton, V^n); select 
the Jw largest (in magnitude) ones a m i , , . am j 3"<^ construct the transient 

Jw 

estimate Xtrans(0 = y^^an^Un^jt). 
j=l 

5. Substract the transient estimate from the signal to get the residual estimate 
Xres\t) = 3:^nton(^) ~ ^^transV^j-

Berger et al. [34] also suggested a greedy approach in which several passes 
of this two-step procedure are expected to yield more precise estimates for 
the layers x^^^ and x^^ .̂ More precisely, a first estimate of the tonal layer 
is obtained by peaking the largest coefficients of an MDCT expansion. This 
estimate is substracted from the signal, and a first estimate of the transient 
layer is obtained from the largest wavelet coefficients of this residual. The tonal 
estimate is then updated by peaking the largest coefficients of the MDCT 
expansion of this 'second-order residual', and so on. The difficulty of such 
approaches is mainly in answering the question 'how many large coefficients 
should one keep at each step?' The transientness index alluded to above could 
perhaps be used at this point, but to our knowledge this has not been done 
up to now. 

To estimate structured significance maps, coefficients have to be processed 
jointly rather than individually. In [115], a functional on the space of connected 
subtrees of the wavelet tree is proposed. Numerical optimization of this func
tional yields estimates for significance trees A of wavelet coefficients, and thus 
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for the wavelet layer. Similarly, a functional on the space of time-frequency 
'tubes' is exploited in [114], yielding estimates for the MDCT layer. The corre
sponding algorithm is again a two-step algorithm: A structured tonal estimate 
is first obtained from a MDCT expansion, and substracted from the signal. 
A structured transient estimate is then obtained from the wavelet coefficients 
of the non-tonal signal. Finally the residual is obtained by substracting the 
transient estimate from the non-tonal signal. 

The latter approach has also been modified and refined in [469] to incor
porate a more specific structured waveform model in the expression (3.15). 
The main idea is to introduce a stochastic model for the significance maps A 
and A that implements the desired persistence properties: time persistence 
for A and scale persistence for A. 

Let us first study the tonal layer. For the corresponding tonal significance 
map, a standard first-order Markov chain model is used: For a given value of 
the frequency index k, the membership probability of the index (n, k) to A is 
governed by persistence (conditional) probabilities 

TTk = P[(n,fc) G A|(n - l,fc) G A], ^ = P[{n,k) ^ A | ( n - l,fc) ^ A] . 

The corresponding observed MDCT coefficients of the signal bnk = (x.Unk) 
are distributed following zero-mean normal distributions, with large variance 
CTĵ  when the considered index {n^k) belongs to A, and small variance cr^ 
when (n,/c) does not belong to A. Given the parameters of the model (i.e., 
the variances and the persistence probabilities), the likelihood may be com
puted explicitly. Therefore, parameters of the model may be estimated using 
some training material and maximum likelihood procedures (here, EM algo
rithms perform quite well; see Chapter 2). Once the parameters have been 
estimated, the significance maps can be estimated in turn, using dynamic 
programming procedures or others (see [469]). The tonal layer of the signal is 
then constructed as 

6eA 

and the non-tonal layer reads 

Similarly, using the natural tree structure of wavelet coefficients (see 
Fig. 3.9), the transient significance map (that is, the significance tree) is mod
elled using a Markov tree, following the lines defined in [107]. In a similar 
manner, the distribution of the significance tree is then governed by persis
tence probabilities: at scale j , we denote by 

TTj = P[{j - IJ) e A\{j,n) eA], e = 2n ,2n+ 1, 

the probability that a node of the tree belongs to the significance tree A, 
assuming that its parent belongs to A. The corresponding observed wavelet 
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coefficients of the non-tonal signal (xnton,'0jn) are modelled as random vari
ables, distributed according to a mixture of two Gaussian distributions: large 
variance for the indices belonging to A, and small variance for the other in
dices. Again, the parameters of the transient model may be estimated from 
the observed wavelet coefficients in some training material, and the signifi
cance trees may be estimated as well using the ML approach. From this, the 
estimated transient layer is given by 

xeA 

and the residual reads 

^resv^j ^^ *^nton(,^j ^transV^j-

The actual implementation of such an approach actually involves more com
plicated decisions; for example, parameters feature (slow) time variations, and 
therefore have to be estimated locally, within (large) time frames; the size of 
these frames is one of the important parameters to choose, which is not always 
an easy task (for example, for musical signals it clearly depends on the musi
cal 'style'). We shall not go into details of these aspects, and refer the reader 
to [469] for a more detailed account of the model, and [114] for an application 
to audio coding. 

Remark 8. Such two-step approaches have two major drawbacks: 

• As stressed before, the relative proportion of MDCT and wavelet coeffi
cients to be picked has to be determined prior to the estimation of the 
significance maps and trees. The entropy-based estimate proposed and 
studied in [468] yields satisfactory results as long as the tonal and tran
sient signal representations are sparse enough (i.e., the significance maps 
A and A are small enough). However, a global estimation procedure would 
be far preferable. 

• It is extremely difficult to obtain any error estimate in such schemes. For 
example, the errors in the estimation of proportions of the two layers 
should be taken into account, which does not appear to be easy. 

An example of such multilayered decomposition is given in Fig. 3.11. 
A vibraphone signal (about 6 seconds, sampled at 44.1kHz) has been decom
posed following the lines of the Markov model described above (see [469] for 
details). The original signal is displayed in the top plot, and the tonal and 
transient layers are respectively represented in the middle and bottom plots. 
The spectrograms of these three signals are shown in Fig. 3.12. As appears 
clearly in the latter figure, the algorithm was able to capture the time per
sistence (scale persistence) of the waveform coefficients representing the tonal 
(transient) layer. 
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Fig. 3.11. Multilayered decomposition of a vibraphone signal, obtained using the 
Markov-based structured approximation techniques described in Section 3.3.3. fYom 
top to bottom: original signal, tonal layer, and transient layer. 

Structured Matching Pursuits 

Within the MP framework, it is also possible to design 'structured' versions 
of the basic algorithm presented above. The underlying principle is to select, 
at every iteration, a whole group of atoms that have some relation in the 
parameter space. In the harmonic matching pursuit (HMP) [256], this relation 
is a harmonic frequency relation: ̂ ^ the dictionary is made of a multiscale 
family of Gabor atoms (compare with (3.10)) 

^s,n,fc(/) = e2^'^'^^«(^-""^)^,(/-nns), 

the window QS being a rescaled copy of ^, at scale s, and the indices {s, n, fc} 
belonging to some fixed index set. A 'harmonic atom' is defined as a group of 
M harmonically related atoms: 

HGs,n,k{t) = {9s,n,k{^)}m=l. .M' 

The search is restricted to an interval of fundamental frequencies ki < k < 
fc2 such that all atoms forming a given harmonic atom can be considered to 
be approximately orthogonal. This requirement is crucial since in that case 
the signal energy carried by the harmonic atom—which is now the criterion 

^^The technique may easily be modified to account for any prescribed inharmonic-
ity, as soon as the relationship between partials is known. 
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Fig. 3.12. Time-frequency representation (spectrogram) of the vibraphone signal 
(top) and the two layers: tonal layer (middle) and transient layer (bottom). 



94 Laurent Daudet and Bruno Torresani 

for choosing the best atom at every iteration—is (approximately) the sum of 
the squared inner products of the individual atoms, i.e., 

M 

The rest of the procedure is the same as classical matching pursuit. 
In a similar way, the MP can be used to construct structured decompo

sitions for a sines + transients -f- noise model, in the same spirit as before. 
This is particularly adequate for sounds that are not harmonic and that have 
sharp onset transients, such as percussive sounds. In the molecular matching 
pursuit (MMP) [116], the dictionary is, as in the case of hybrid expansions 
above, the union of a local cosine (MDCT) basis and a discrete dyadic wavelet 
(DWT) basis. Here, one considers two kinds of structures, called 'molecules': 
tonal molecules that are horizontal structures in the MDCT basis, and tran
sient molecules that are local subtrees of the dyadic wavelet tree. At each 
iteration, the algorithm looks for the strongest correlation among neighbour
ing atoms, then identifies and subtracts the corresponding molecule. Again, 
the procedure is iterated until some stopping criterion is met. 

An example of molecular matching pursuit may be found in Fig. 3.13, 
where the locations of selected atoms (wavelets and MDCT atoms) in the 
time-frequency domain are shown. The signal is the vibraphone signal analysed 
in Fig. 3.12, and MP and MMP were required to select the same number of 
atoms. In Fig. 3.13, the first two panels (from top to bottom) correspond to 
the standard MP, and a significant overlap between atoms may be observed. 
The last two images correspond to the 'molecular' version, and the redun
dancy between selected atoms has been greatly reduced. In addition, the time 
(scale) persistence property in the MDCT (wavelet) domain appears much 
more clearly in the bottom figures. 

3.3.4 How Can Waveform Expansions Be Used for Transcription? 

Each of the waveform representations described above can be used as a pre
processing stage for the task of music transcription. However, transcription 
is much more than just looking at an alternate representation of the signal: 
proper transcription algorithms, as can be seen throughout this book, have 
to include a lot of high-level heuristic rules, for instance in the frequency do
main, for lifting the usual transcription ambiguities due to harmonic relations 
between notes (octave 1:2, fifth 2:3, etc.) that have a large number of over
lapping partials; or in the time domain, for making the distinction between 
vibrato and the start of a new note. 

A good representation of the signal is one that facilitates this note iden
tification process, seen here as post-processing. In an ideal world, this would 
be a rather straightforward task: when one projects a signal on a basis of 
tonal atoms, the notes would simply be given by the large tonal atoms, and 
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Fig. 3.13. Localization of selected coefficients in matching pursuit, in a standard 
implementation (MP, top two plots), and in a structured 'Molecular' implementation 
(MMP, bottom two plots), for the same total number of selected atoms. Prom top 
to bottom: MDCT coefficients in MP, discrete wavelets in MP, MDCT coefficients 
in MMP, discrete wavelets in MMP. The signal is the vibraphone excerpt analysed 
in Fig. 3.12. 
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their significance maps would represent 'piano-roll' types of musical scores. 
If one wants a precise description of the attack transients, they are given by 
the large atoms on a transient-like basis (e.g., wavelets). However, practical 
situations are far from being that simple (readers should not stop reading 
this book after this chapter), mainly because atoms of a basis in general do 
not look like musical notes: First, a basis of L^(IR) is not invariant through 
time shifts and has a limited frequency resolution, and therefore cannot in 
general accommodate a pure sine wave with only one atom per time frame. 
This leads to the introduction of frames or redundant dictionaries of atoms, 
therefore losing the uniqueness of the decomposition. Second, typical note du
rations are much longer than the support of atoms, and on these long time 
scales their characteristics vary due to energy decay, vibrato, and so forth; 
therefore atoms have to be chained in some way into coherent structures 
such as the molecules described in the previous subsection. Research is ac
tively being carried out for the construction of 'nice' atoms that resemble 
notes as closely as possible. However, it seems unlikely that significantly bet
ter results could be obtained without being restricted to specific classes of 
instruments. 

Finally, the question that we will leave open is. How much of this empirical 
information (harmonicity, time variations, rules for octave errors, etc.) has to 
be put in the decomposition process itself, and how much is left for the post
processing transcription? Until the last few years, most of the transcription 
methods were based on simple decomposition schemes, such as the short time 
Fourier transform, and the transcription effort was on the post-processing of 
this data. The recent development of methods that provide sparse, overcom-
plete and/or structured decompositions now makes it possible to include a 
lot of information in the decomposition process itself, with the hope that this 
would provide some data that are easier to interpret in terms of musical ob
jects. However, this is a very new field that still requires a lot of investigation. 
In particular, by putting too much prior information on the sought-after ob
jects there is the risk that we might enforce constraints that are too stringent, 
and that do not reflect the variety of musical signals. A typical illustration is 
given in Fig. 3.14, where we have extended the molecular matching pursuit in 
order to look for harmonic groups of molecules, called meta-molecules [376]. 
On this very simple sound file, containing three notes played distinctly on a 
clarinet, the algorithm has made the relevant grouping of partials, and the 
notes can be correctly identified. However, for complex polyphonic mixes, the 
algorithm fails to perform simultaneously a good tracking in time and a rel
evant harmonic grouping. Clearly, this algorithm (which incidentally was not 
designed for transcription) is going too far. 

Finally, it is likely that future transcription systems will go beyond the 
traditional one-way transform —> post-processing^ and try to optimize the 
system globally. For instance when a high-level notes hypothesis is made, 
some further signal-adaptive analysis can be performed to (in)validate the 
hypothesis. 
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Fig. 3.14. Result of the meta-molecular matching pursuit (MSP) algorithm on three 
notes played by a clarinet. The molecules are shown as grey rectangles superimposed 
on the spectrogram. Black boxes show the detected meta-molecules, which in this 
very simple case correspond to the notes. 

3.4 Conclusion 

We have described in this chapter a number of approaches for musical sig
nal representation, emphasizing parametric modelling and waveform expan
sion approaches. Parametric models are intellectually appealing, as they may 
sometimes be interpreted in terms of physical models for instruments, or more 
generally, in terms of sound production. Waveform approaches do not allow 
such easy interpretations, but offer other advantages, such as their flexibility 
and their computational efficiency. 

Interestingly enough, these two competing approaches tend to somewhat 
converge. Indeed, as may be seen from Chapter 7 (see in particular (7.9)), 
expanding the amplitude functions of sinusoidal models onto bases of spline 
functions (for example) generate waveform systems close to Gabor systems. 
Similarly, the introduction of 'structured approximation' techniques in the 
waveform approaches may be understood as an attempt to move waveform 
models in the direction of more physically realistic models, and recover the 
possibility of identifying partials in the signal. In both cases, this convergence 
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may be interpreted as an attempt to keep the best of the two approaches, 
while ehminating their shortcomings. 

Another major separation between the waveform approaches we just re
viewed is between rigid and adaptive approaches. While the first ones are 
more computationally efficient, the latter offer more flexibility, as they exploit 
redundant 'dictionaries' which generally contain more realistic waveforms. Un
fortunately, flexibility has a price: sparse expansions in very redundant dictio
naries are more difficult to identify. However, the introduction of structured 
expansion techniques help to reduce the ambiguity, while being closer to para
metric approaches. 
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4.1 Introduction 

Imagine you are sitting in a bar and your favourite song is played on the 
jukebox. It is quite possible that you might start tapping your foot in time 
to the music. This is the essence of beat tracking and it is a quite automatic 
and subconscious task for most humans. Unfortunately, the same is not true 
for computers; replicating this process algorithmically has been an active area 
of research for well over twenty years, with reasonable success achieved only 
recently. 

Before progressing further, it would be useful to define beat tracking 
clearly. This involves estimating the possibly time-varying tempo and the 
locations of each beat. In engineering terms, this is the frequency and phase 
of a time-varying signal, the phase of which is zero at a beat location (i.e., 
where one would tap one's foot). When musical audio signals are used as an 
input, the aim of 'beat-tracking' algorithms is to estimate a set of beat times 
from this audio which would match those given by a trained human musician. 
In the case where a notated score of the music exists, the musician is used as 
a proxy for it (hopefully the musician's set of beats would align with those in 
the score). Where no score exists, the musician's training must be accepted 
to return a metre equivalent to how the music would be notated. Note that 
this implies that it is the intended rather than the percieved beat structure 
that is the focus here. 

Beat tracking as just described is not the only task possible. Some algo
rithms attempt only tempo analysis—finding the average tempo of the sam
ple; others attempt to find the phase of the beat process and hence produce a 
'tapping signal'. Meanwhile, some methods also attempt a full rhythmic tran
scription and attempt to assign detected note onsets to musically relevant 
locations in a temporally quantized representation. This is often considered 
in terms of the score which a musician would be able to read in order to 
recreate the musical example [352]. MIDI signals are also commonly used as 
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inputs and, assuming that the signal is of an expressive performance, all of 
the above tasks are again possible aims. 

This chapter is organized as follows. Section 4.2 gives an overview of meth
ods and approaches to beat tracking. However, as with any engineering system 
which is trying to replicate a real-world process, it is useful to examine the 
actual process before trying to build a model. Section 4.3 of this chapter 
briefly discusses some of the musical background behind beat tracking. Next, 
detection of onsets in musical audio signals is discussed in Section 4.4 be
fore some of the more influential approaches to beat tracking are presented in 
Sections 4.5 to 4.9. Probabilistic models are examined in more detail in Sec
tion 4.10. Section 4.11 presents trials of various algorithms on a comprehensive 
test database and conclusions will be drawn in Section 4.12. 

There are many immediate and commercial applications of a successful 
beat tracking program which have perhaps motivated some of the research. 
Some of these are: automatic accompaniment of a solo performance [538], 
synchronization of two music streams (e.g. for DJing [94]), correctly timed 
recovery from CD skipping (see [660] for a similar application), intelligent 
time stretching of musical samples [151], determination of good points for 
looping algorithms (useful for studio samplers which are heavily utiHzed in the 
creation of dance music) and adding tempo synchronous eff'ects. Other uses 
include database retrieval [633] and metadata generation [566], provision of a 
'rhythmic similarity' function to listeners (either in playback or for purchase 
recommendation) and rhythmic expressiveness transformations (e.g. adding 
swing to a musical example [244]). In addition, beat tracking can form a good 
basis for any automated transcription program (e.g. [126], [231], [353], [611]) 
from which to begin its analysis. 

4.2 Summary of Beat-Tracking Approaches 

Beat tracking with computers has been an active area of research since the 
early 1980s, though psychological models of human rhythmic perception pre
date this. The early work was undertaken in the fields of music perception 
and computer science, though the emphasis shifted towards engineering and 
statistics as computing power increased. 

As a result of this paradigm shift, the aims and approaches of the methods 
described below vary considerably. It would hence be useful to categorize 
them. The first and most important distinction is by type of input; most of 
the earlier algorithms for beat tracking used a symbolic^ or MIDI input while 
audio signals have been used more recently. This is at least partly because 
the signal processing required to extract rhythmic cues from the audio was 
beyond the power of early computers. It should be noted, however, that many 
of the more recent methods implicitly convert an audio stream to a set of 
MIDI-type inputs via the use of a pre-processing onset-detection algorithm. 

^Symbolic data usually consists of a quantized set of note start times. 
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The second important differentiation between approaches is the intended 
purpose of the algorithm. Much of the early work was conducted with the 
music psychology goal of understanding how humans perceive music and at
tempting to model this. Other approaches have goals based more in engineer
ing and attempt to capture information in the signal without direct reference 
to human perception. Specifically, those studies undertaken within the frame
work of automated transcription attempt to return to the underlying score 
rather than any human perception of the performance. 

The next major distinction between the algorithms is the broad approach 
used. Categorizations here could include 

• rule-based; 
• autocor relative; 
• oscillating filters; 
• histogramming; 
• multiple agent; 
• probabilistic; 

though there are methods which do not fall neatly into any of these classes. 
Descriptions of these six broad approaches can be found later in Sections 4.5 
to 4.10. 

Another, more subtle method of classifying algorithms is by causal [572] 
operation. In a causal model, the estimate of the metre at a given time depends 
only on past and present data. A non-causal model allows the use of future 
data and backward decoding. Another way to consider it is that a causal 
algorithm attempts to mimic human tapping and uses data only up to the 
current time to decide whether a beat should be marked or not. Semi-causal 
algorithms have also been produced where the estimate is made after a short 
time-lag, typically around 20 ms. These can often give a 'strict' causal estimate 
but at the cost of optimality. 

Finally, the algorithms can be grouped by their intended output; some 
only produce a best estimate of tempo while others evaluate phase as well, 
therefore giving the beat. Gouyon [242] separates these into tempo induc
tion, the estimation of the most likely tempo given a segment of data, and 
beat tracking, which is the following of the beat through an extended ex
ample. Some methods also extract the super-beat and/or sub-beat structure 
(that is, slower and faster pulses than the beat, respectively), while some 
only attempt estimation of either the super- or sub-beat and not the actual 
beat. 

Table 4.1 summarizes some methods found in the literature, indicating 
the type of input used and any causal nature. Others which do not fall into 
any particular category are Sethares and Staley [578], Smith [601], Miller 
et al. [464], and Bilmes [37]. Two other studies which present surveys or re
views of beat tracking are [243], [249]. 



104 Stephen Hainsworth 

Table 4.1. Summary of beat-tracking methods. Key for Input column: A = audio, 
M = MIDI, and S = symboUc. 

Approach Author and year [Ref] Input Causal 
1) rule-based 

2) autocorrelative 

3) oscillating filters 

4) histogramming 

5) multiple agent 

6) probabilistic 

Steedman 1977 [607] 
Longuet-Higgins & Lee 1982 [418] 
Povel & Essens 1985 [529] 
Parncutt 1994 [497] 
Temperley & Sleator 1999 [622] 
Eck 2000 [165] 
Brown 1993 [55] 
Tzanetakis et al. 2001 [632] 
Foote 2001 k Uchihashi [194] 
Mayor 2001 [445] 
Paulus k Klapuri 2002 [503] 
Alonso et al. 2003 [15] 
Davies & Plumbley 2004 [118] 
Large 1994 [390] 
McAuley 1995 [450] 
Scheirer 1998 [564] 
Toiviainen 1998 [626] 
Eck 2001 [166] 
Gouyon et al. 2001 [245] 
Seppanen 2001 [573] 
Wang & Vilermo 2001 [661] 
Uhle & Herre 2003 [635] 
Jensen & Andersen 2003 [318] 
Allen k Dannenberg 1990 [14] 
Rosenthal 1992 [546] 
Goto et al. 1994 [221] 
Dixon 2001 [148] 
Laroche 2001 [392] 
Cemgil et al. 2000 [75], [76] 
Raphael 2001 [537] 
Sethares et al. 2004 [577] 
Hainsworth k Macleod 2003 [266] 
Klapuri 2003 [349] 
Lam k Godsill 2003 [386] 
Takeda et al. 2004 [617] 
Lang k de Freitas 2004 [387] 
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4.3 Musical Background to Rhythmic Structure 

Typically, music consists of sounds generated concurrently by a number of 
different sources (usually musical instruments of varying kinds). These are 
organized in a temporal manner, the structure of which forms the 'rhythm' of 
the piece. Most music has a coherent temporal structure, as this is pleasing to 
most listeners. Thus the rhythm of a piece more readily lends itself to analysis 
than the harmonic structure, which can often be much more complex. 

At the top level, the rhythm describes the timing relationships between 
musical events within a piece. The Oxford English Dictionary [624] gives the 
definition of rhythm as 

a. The aspect of musical composition concerned with periodical accent and the 
duration of notes. 

b. A particular type of pattern formed by this. 

Cooper and Meyer [102] define it as the way in which one or more unaccented 
beats are grouped in relation to an accented one. The term metre is sometimes 
used in an equivalent manner to rhythm, though in music psychology it takes 
on a different meaning. Here, metre is the number of pulses between the more 
or less regularly recurring accents in a piece of music [102]. Thus, the metre 
is a constituent of the rhythm of a piece of music; however, the grouping of 
accents into patterns and the interaction of this process and the metre are 
closer to describing the rhythm of a piece. 

Some further analysis can be made; Bilmes [37] breaks down musical timing 
into four subdivisions. The first is the hierarchical metrical structure, which re
lates the idealized timing relationships as they would exist in a musical score, 
i.e., quantized to a grid.^ Next is tempo variation, which gives the possibly 
time-varying speed at which the events are sounded. Another level of abstrac
tion gives timing deviations, which are individual timing discrepancies around 
the time-varying metrical grid (e.g. 'playing ahead of the beat'; swing^ can 
also be considered a timing deviation). Finally there are arrhythmic sections, 
where there is no established rhythm. These will be ignored from now on as 
fundamentally impossible to analyse rhythmically, except as a collection of 
unrelated note start times. 

The metrical structure can also be broken down into a set of three hi
erarchical levels. Klapuri [349] describes the beat or tactus as the preferred 
(trained) human tapping tempo and is what most of the beat-tracking algo
rithms attempt to extract at a minimum. This usually corresponds to the 1/4 
note or crotchet when written out in common notation, though this is not 
always the case: in fast jazz music, the pulse is often felt at half this rate (1/2 
note or minim), while hymns are often notated with the beat given in minims. 

^Dixon [148] uses the term 'scoretime', measured in beats since the start of the 
sample to describe this representation. 

^Swing is a style where the second l/8th note of every beat is slightly delayed; 
it is a characteristic of jazz and some rock music. 
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Fig. 4.1. Diagram of relationships between metrical levels. 

However it is notated, the rate at which beats occur defines the tempo of the 
music [404]. 

At a lower level than the beat is the tatum, which is defined to be the 
shortest commonly occurring time interval. This is often defined by the l /8th 
notes (quavers) or l/16th notes (semiquavers). Conversely, the main metrical 
level above the beat is that of the bar or measure. This is related to the rate of 
harmonic change within the piece, usually to a repeated pattern of emphasis 
and also notational convention. Fig. 4.1 gives a diagrammatic representation 
of the above discussion. Included is a set of expressive timings for the score 
given. While obvious, it should also be noted that onsets do not necessarily 
fall on beats and that beats do not necessarily have onsets associated with 
them. 

From here, metrical levels below the beat, including the tatum level, will 
be termed the sub-beat structure, while the converse—bar levels, etc.—will be 
labelled the super-beat structure. In between the tatum and beat, there may 
be intermediary levels, usually related by multiples of two or three (compound 
time divides the beat into three sub-beats, for instance). The same applies be
tween the beat and bar levels. Gouyon [242] gives a comprehensive discussion 
of the semantics behind the words used to describe rhythm, pointing out many 
of the dualities and discrepancies of terminology. One point he raises is that 
the terms beat or pulse are commonly used to describe both an individual 
element in a series and the series as a whole. 

An interesting point is raised by Honing [294], who discusses the duality 
between tempo variations and timing: the crux of the problem is that a series of 
expressively timed notes can be represented either as timing deviations around 
a fixed tempo, as a rapidly varying tempo, or as any intermediate pairing. This 
is a fundamental problem in rhythm perception and most algorithms arrive at 
an answer which lies between the extremes by applying a degree of smoothing 
to the processes—this usually means that estimated tempo change over an 
analysis segment is constrained by the algorithm and any additional error in 
expected timing of onsets is modelled as a timing deviation. 

This leads to the concept of quantization, which is the process of assess
ing with which score location an expressively timed onset should be associ
ated. Here, score location refers to the timing position the onset would take 
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when notated upon a traditional Western musical score or other equivalent 
representation. However, for most purposes, it can be reduced to the num
ber of beats (and sub-beats) since the start of the sample. Quantization is 
an important problem and other specific studies on this topic include Cemgil 
et al. [75] and Desain and Honing [142]. 

The phase of the beat is determined by a series of stresses or accents, 
termed phenomenal accents [404], [497] or salience [148], [529]. These usually 
correspond to note starts, though not uniquely—it is possible that note ends 
or changes in intensity can indicate beat, too. It is generally assumed that 
stresses fall on the beat more often than not and that significant chordal 
changes also do so. While this is not always the case, and indeed many musical 
styles exhibit syncopation^ where there are off"-beat stresses, Steedman notes, 
'No event inconsistent with either key or metre will occur in a piece until 
sufficient framework (of key or time signature) has been established for it to 
be obvious that it is inconsistent' [607]. There are counter-examples to this 
statement, but it holds in the main. 

There is a large body of literature in the music psychology and neuro-
science fields on how humans perceive rhythm. In particular, there is some 
literature on human tapping processes and the behaviour of musicians versus 
non-musicians (e.g. [155]). However, as the aim of most audio beat trackers 
is to return to the underlying score or performance intentions rather than 
replicate the perceptions of a listener, the general psychology literature will 
not be discussed in detail here. 

4.4 Onset Detection 

While the metre and tempo of a piece of music can be thought of as a con
stantly evolving signals, the musical events which underpin this are the starts 
of notes, and these are discrete events. Many methods for beat tracking deal 
with symbolic or MIDI data which represent these note start (onset) times. 
It is highly possible, and indeed common, to simply attach an onset detector 
to find the note starts in an audio signal and then track the resulting set of 
discrete impulses. When this approach is used, the success of any beat tracker 
is dependent upon the reliability of the data which is provided as an input. 
Thus, detecting note starts in the audio can be as important as the actual 
beat-tracking algorithm. 

Note ends, even when played exactly as written in the score, can be ig
nored as unreliable indications of beat due to reverberation, sustain or at the 
opposite extreme, staccato events, where the note is cut short. 

Note sources generally fall into two categories: harmonic and percussive. 
The former produce sounds which would be regarded as notes, have an identi
fiable pitch and harmonically related partials. Percussive sounds, in compari
son, are more analogous to noise clouds. Drums and cymbals are the obvious 
examples of this class. It should be noted that many (indeed most) pitched 
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instruments have a transient onset which has much in common with percussive 
sounds. Percussive sounds are usually characterized by significant increases in 
signal energy (a 'transient') and methods for detecting this type of musical 
sound are relatively well developed. Harmonic change with httle associated 
energy variation is much harder to reliably detect and has received less atten
tion in the literature. Two recent studies of onset detection are Bello et al. [30] 
and Collins [95]. 

While the discussion below assumes that a hard detection decision is made 
as to whether an onset is present at a given location, the beat trackers dis
cussed below which work on continuous detection functions also need to trans
form the raw audio into something more amenable. They also process the 
signal in ways similar to those described below but do not perform the step 
of making hard onset detection decisions, instead leaving this to the later 
beat-tracking process. The hard-decision onset detection method yields a set 
of discrete onset times, whereas the latter method results in a continuous 
function from which beat tracking is performed. 

4.4.1 Transient Event Detection 

Transient events, such as drum sounds or the start of notes with a signifi
cant energy change (e.g. piano, guitar), are easily detected by examining the 
signal envelope. A typical approach, which is an adaptation of methods used 
by a variety of other researchers [148], [392], [564], proceeds as follows: An 
energy envelope function E^ (t) is formed by summing the power of frequency 
components in the spectrogram for each time slice over the range required: 

E,(n)=5]|STFT-(n,A:)p, (4.1) 
kGKj 

where STFT^(A:,n) is the short-time Fourier transform (STFT) of the signal 
x{n) with rectangular window w centred at time n; fc is the frequency index 
(see Chapter 2 for details). Usually analysis frames of about 20 ms are used 
in computing the energy envelope, with 50-75% overlap between successive 
frames. Different bands j can be used; for instance, low frequency information 
covering the range 20-200 Hz is useful to separate. Setting KJ to the middle 
range of 200 Hz to 15 kHz covers the majority of the harmonic information; 
meanwhile, extending over 15-22.05 kHz (assuming a sample rate of 44.1 kHz), 
the upper band is often generally free from harmonic content but contains a 
clear indication of any strong transient information [444]. This is contrary to 
the opinion of Duxbury [164], who claimed that there is no useful information 
in this range. Many other ways to split the frequency spectrum have also been 
proposed. One common approach is to use 5-10 sub-bands that are distributed 
uniformly on a logarithmic frequency scale. 

Ej{n) is not an ideal signal representation for detecting onsets. A potential 
approach for improving it uses a three-point linear regression to find Dj(n), 
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the gradient of Ej(n), and peaks in this function are detected. The linear 
regression fits a fine Yi = a -\- hXi + ê  to a set of N data pairs; we are 
only interested in the estimate of h which is given by 6 = (^2=1 ^i^i — 
^ ^ ^ ) / ( E i I i ^i - NX'^), where X and Y denote the average of X and F , 
respectively. In the case here, X is the equi-spaced set of time indices n in 
Ej(n) and Y is the corresponding Ej . In the case where N = 3, this reduces 
to 

D,(n) = E > + 1 ) - E , ( n - 1 ) _ ^^_2^ 
O 

It should be noted that the commonly used technique of differencing the signal, 
where T)j{n) = Ej{n) — Ej(n — 1), is simply linear regression with Â  set to 2. 
The linear regression approach, like that of Klapuri [347], aims to detect the 
start of the transient, rather than the moment it reaches its peak power. 

Dj(n) is often called a detection function [30] and is a transformed and 
reduced signal representation. Subsequent processing needs to detect the on
sets contained within this. This is usually done by simply selecting maxima 
in Dj(n) and discarding peaks which do not pass a series of tests. Low-energy 
peaks should be ignored (for instance by testing if they are less than two times 
the local 1.5-second average of Ej) and peaks can also be ignored if there is 
a higher-energy peak in the local vicinity'^ by using Dixon's timing criterion 
[148]. Thresholds and constants are usually heuristically determined and de
signed to give reasonable performance with a large range of styles. Figure 4.2 
shows an example of a peak extraction method. When several sub-bands j 
are involved, the functions Dj(n) can be combined by half-wave rectifying 
and across-band summing before the peak-picking process [37], [347]. 

4.4.2 Pitched Event Detection 

Detection of note starts where there is no associated energy transient (e.g. 
violins, choral music) has received less attention than the easier problem ad
dressed above. Notable recent exceptions are Klapuri [349], who used very 
narrow frequency bands to detect changes in frequency; Laurent et al. [395], 
who used wavelets; Davy and Godsill [123], who took a support vector ma
chine approach; Desobry et al. [143], who furthered Davy's research and also 
used kernel methods; and Abdallah and Plumbley [1], who used independent 
component analysis (ICA) to generate a 'surprise' measure followed by an 
HMM to perform reliable detection. Also, Bello et al. [31] utilized phase in
consistencies in a manner very similar to time reassignment and Duxbury 
et al. [164] proposed a spectral change distance measure adapted from the 
Euclidean measure which was then applied to adjacent spectrogram frames. 
Recently, Duxbury, Bello et al. [162], [163] have combined the previous two 
approaches into a single measure for detection of harmonic changes via either 

^This is similar to the psychoacoustic masking thresholds found for humans [475], 
[694]. 
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Fig. 4.2. Example of onset detection for transient events. The upper plot shows the 
energy-based detection function, Ej(n); also shown are horizontal lines giving the 
1.5 s local average of the energy function and x's showing the detected onsets. The 
lower plot shows the gradient function Dj (n) from which peaks are found. 

or both of phase inconsistency or spectral change. This method shows im
provements over both individual approaches. 

An alternative proposed by Hainsworth and Macleod [265] is the so-called 
modified KuUback-Leibler distance measure given by 

^ /M , f |STFT:(n,fc)| ^ 

fcG/C,d(fc)>0 

(4.3) 

(4.4) 

where STFT^(n, k) is the STFT computed with window w. The measure em
phasizes positive energy change between successive frames and /C defines the 
spectral range over which the distance is evaluated (30 Hz to 5 kHz is sug
gested as it represents the majority of clear harmonic information in the spec
trum). Another advantage of this method is that it also takes into account 
any transient energy which happens to be present as a useful aid. 

A window length of about 90 ms is sufficient to give good spectral reso
lution. To overcome frame to frame variation, histogramming of five frames 
(weighted backwards and forwards with a triangular function) before and after 
the potential change point was used and also a very short frame hop length 
(namely, 87.5% overlap) was chosen to increase time resolution. 
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Detection of the peaks in this measure is a separate problem and is dis
cussed more fully in [265]. Figure 4.3 gives an example of detection using this 
method. 
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Fig. 4.3. Example of the output from the MKL harmonic change detection measure 
for an excerpt of Byrd's 4-Part Mass. Onsets were missed at 1 s and 5.9 s while the 
onset at 8.1 s is mis-estimated and should occur about 0.1 s later. 

4.5 Rule-Based Approaches 

We shall now discuss a number of broad methodologies for beat tracking in 
turn. Rule-based approaches were among the earliest used when computers 
were not capable of running complex algorithms. They tend to be simple and 
encode sensible music-theoretic rules. Tests were often done by hand and were 
limited to short examples. Often these did not even have expressive timing 
added to them and only aimed to extract the most likely pulse given the 
rhythmic pattern and tempo. 

Steedman [607] produced one of the earliest computational models for 
rhythmic analysis of music. His input was symbolic and with a combination 
of musical structure recognition (especially melodic repetition) and psycho
logically motivated processing, he attempted to parse the rhythmic structure 
of Bach's 'Well Tempered Clavier' set of melodies. Similarly, Longuet-Higgins 
and Lee [418] proposed a series of psychologically motivated rules for finding 
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the beat and higher metrical levels from lists of onset times in a monophonic 
melody. The rules were never implemented by the authors in the original pa
per for more than five-bar examples, though there have since been several 
papers by Lee which are summarized by Desain and Honing [141]. 

Parncutt [497] developed a detailed model for salience or phenomenal ac
cent, as he termed it, and used this to inform a beat induction algorithm. Also, 
he modelled medium tempo preference explicitly and combined these two in 
a model to predict the tactus for a series of repeated rhythms played at dif
ferent speeds. Comparison to human preferences was good. Parncutt's focus 
was similar to that of Povel and Essens [529], while Eck [165] also produced 
a rule-based model which he compared to Povel and Essens and others. 

Temperley and Sleator [622] also used a series of rules to parse MIDI 
streams for beat structure. They quoted Lerdahl and Jackendoff's generative 
theory of tonal music (GTTM) [404] as the starting point of their analysis, 
using the GTTM event rule (align beats with event onsets) and length rule 
(longer notes ahgned with strong beats). Other rules such as regularity and a 
number based on harmonic content were also bought into play. The aim was 
to produce a full beat structure from the expressive MIDI input, and a good 
amount of success was achieved.^ 

4.6 Autocorrelation Methods 

Autocorrelation is a method for finding periodicities in data and has hence 
been used in several studies. Without subsequent processing, it can only find 
tempo and not the beat phase. 

The basic approach is to define an energy function E(n) to which local 
autocorrelation is then applied (in frames of length Tw, centred at time n): 

Tw/2 

r ( n , i ) = ^ E{n-\-u)E{n + u-i). (4.5) 
n=-(Tw/2) + l 

The value of i which maximizes r(n, i) should correspond to the period-length 
of a metrical level. This will often be the beat, but it is possible that if the 
tatum is strong that autocorrelation will pick this instead. 

Tzanetakis et al. [631], [633] included a series of rhythmic features in their 
algorithm for classification of musical genre. While not specifically extracting 
a beat, it performs a function similar to beat analysis. Their method was 
based upon the wavelet transform, followed by rectification, normalization, 
and summation over different bands before using autocorrelation to extract 
periodicity. Local autocorrelation functions were then histogrammed over the 
entire piece to extract a set of features for further use; these tend to show 
more coherence for rock pieces than for classical music. 

^Source code for Temperley's method is available in [596]. 
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Foote and Uchihashi [194] used the principle of audio self-similarity to 
examine rhythmic structure. The assumption was that within the space of a 
single sub-beat, the sound is approximately constant and therefore the spec
trum will have high similarity. They therefore defined a similarity measure 
as the normalized scalar product (computed over the frequencies k) of the 
magnitude spectra of frames at times Ui and rij 

where w is some window. This produced a two-dimensional plot of similarity 
between any two frames of the audio signal, which was then autocorrelatively 
analysed for tempo hypotheses using 

B{ni,nj) = ^dpooteirii' ,nf)dpooteini + Hi' ,nj +n j / ) . (4.7) 

This was extended to be time varying, hence producing their 'beat spectro
gram', which was a plot of the local tempo hypothesis versus time. 

Other autocorrelation approaches include Mayor [445], who presented a 
somewhat heuristic approach to audio beat tracking: a simple multiple hy
pothesis algorithm was maintained which operated on his so-called BPM 
spectrogram, BPM referring to beats per minute. Also Paulus and Klapuri's 
method [503] for audio beat analysis utilized an autocorrelation-like function 
(based on de Cheveigne's fundamental frequency estimation algorithm [135]), 
which was then Fourier transformed to find the tatum. Higher-level metri
cal structures were inferred with probability distributions based on accent 
information derived using the tatum level. This was then used as part of an 
algorithm to measure the similarity of acoustic rhythmic patterns. Brown [55] 
used her narrowed autocorrelation method to examine the pulse in musical 
scores. Davies and Plumbley [118] and Alonso et al. [15], [16] have also pro
duced autocorrelation-based beat trackers. 

4.7 Oscillating Filter Approaches 

There are two distinct approaches using oscillating filters: In the first, an 
adaptive oscillator is excited by an input signal and, hopefully, the oscillator 
will resonate at the frequency of the beat. The second method uses a bank of 
resonators at fixed frequencies which are exposed to the signal and the filter 
with the maximum response is picked for the tempo. Beat location can be cal
culated by examining the phase of the oscillator. This method is particularly 
suited to causal analysis. 

The first, single-filter approach is typified by Large [389], [390], who used a 
single non-linear oscillator with adaptive parameters for the phase, frequency, 
and update rate, though these were initialized to the correct settings by hand. 
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The observed signal is a set of impulses s{n) = 1 when there is an onset event 
and s{n) = 0 otherwise. The oscillator is given by 

o(n) = 1 -h tanha(cos27r(/>(n) — 1), (4.8) 

where o{n) defines an output waveform with pulses at beat locations with 
width tuned by a; see Fig. 4.4. The phase is given by 

4>{n) = n — rii 
P 

(4.9) 

where rii is the location of the previous beat and p is the period of oscillation 
(tempo). Crucially, the single oscillator in (4.8) is assumed not to have a 
fixed period or phase and updates are calculated every time an onset event is 
observed in s{n) using 

Arii = r]is{n)^sech^{a{cos27r(j){n) - I)}sin27r0(n), (4.10) 

Ap = rj2s{n)^sech^{a{cos27r(l){n) — I)}sin27r0(n), (4.11) 

where rji and r]2 are 'coupling strength' parameters. The update equations 
enable the estimation of the unknown parameters p and rii. Marolt [433], 
however, points out that oscillators can be relatively slow to converge because 
they adapt only once per observation. 

a = 1 , p = 10 a=10,p = 10 a= 1, p = 5 
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Fig. 4.4. Example output signals o{t) generated using (4.8) for various values of a 
and p. 

Large's test data was a series of impulses derived from expressive MIDI 
performances and the aim was to track the pulse through the example. An 
extra level of complexity which allowed the system to continue following the 
beat was to have a second oscillator 180° out of phase which could take over 
control from the first if confidence dropped below a certain threshold. 

McAuley [450] presented a similar adaptive oscillator model to that of 
Large and indeed compared and contrasted the two models. Similarly, Toivi-
ainen [626] extended Large's model to have short- and long-term adaption 
mechanisms. The former was designed to cope with local timing deviations 
while the latter followed tempo changes. It was tested on expressive MIDI 
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performances. Another variation is that of Eck [166], who used Fitzhugh-
Nagumo oscillators (models of neural action) linked by Heaviside coupling 
functions into networks. His focus was to reproduce the downbeat extraction 
of Povel and Essens [529] from synthetic onset data. Various authors [166], 
[389] have also suggested that adaptive filters have neurological plausibihty 
and this is their motivation for its use. 

The second approach is typified by Scheirer [564], who produced one of the 
first systems for beat tracking of musical audio. The difference compared with 
Large's method is that Scheirer's method implemented a bank of comb filters 
at different fixed feedback delays and searched for the one which resonated 
best with the input signal at any given time. It should be noted that the 
bank responds in a comb-like manner with multiples and subdivisions of the 
tempo also showing resonation to the signal. Scheirer implemented 150 filters 
logarithmically spaced between 60 bpm and 240 bpm, where bpm stands for 
'beats per minute'. The input audio signal was treated in six sub-bands to find 
rectified power envelopes as a function of time. Each sub-band was processed 
by a separate comb-filter bank before the outputs were summed and the oscil
lator with the greatest response picked as the current tempo. Phase was also 
considered so as to generate a tapping signal corresponding to the tactus. 

The model worked with considerable success, although there remained the 
problem of a 2-3 second burn-in period needed to stabilize the filters, and also 
a propensity for the algorithm to switch between tracking the tactus and its 
subdivisions/multiples since Scheirer did not explicitly address the stability 
of the beat estimate. Klapuri [349] (see below) capitalized on the latter ob
servation in his method, using a bank of comb-filter resonators as the initial 
processing method for his system. McKinney and Moelants [452] also found 
a resonator method for tempo extraction to outperform histogramming and 
autocorrelation approaches. 

4.8 Histogramming Methods 

Several approaches have focused on audio beat tracking using histogram
ming of inter-onset intervals. First, the signal is analysed to extract onsets 
before the subsequent processing takes place. This was discussed above in 
Section 4.4. Differences between successive onsets can be used (first-order 
intervals), though it is more productive to also use the differences between 
onsets that are further apart (all-order intervals). The motivation for this is 
that often the successive onsets define the tatum pulse rather than the tactus, 
which can be better found using onsets spaced further apart. Histogramming 
has similarities to the autocorrelation approaches of Section 4.6, though with 
a discrete input rather than the continuous signal used for autocorrelation. 

There are various methods of performing the histogramming operation; 
defining the set of calculated inter-onset intervals (lOIs), denoted Oi, i = 
1,2,..., one can follow Seppanen [572] and divide the lOI time axis into J 
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bins and count the number of lOIs which fall in each: h{j) = count(i, \oi — 
u{j-\-0.5)\ < O.bu) where u is the width of a bin. In contrast, Gouyon 
et al. [247] and Hainsworth [263] treat the lOI data as a set of Dirac delta 
functions and convolve this with a suitable shape function (e.g. a Gaussian). 
The resulting function generates a smoothly varying histogram. This is defined 
as h{j) = Xli^i *-^(i)5 where * denotes convolution and Af{j) is a suitable 
Gaussian function (low variance is desirable). Peaks can then be identified and 
the maximum taken as the tempo. Alternatively, Dixon [148] gives pseudocode 
for an lOI histogram clustering scheme. 

Seppanen [572] produced an archetypal histogramming method. After an 
onset detection stage, he first extracted tatums via an inter-onset interval his
togramming method. He then extracted a large number of features (intended 
to measure the musical onset salience) with the tatum signal informing the 
locations for analysis. These features were then used as the input to an al
gorithm based on pattern recognition techniques to derive higher metrical 
levels including the pulse and bar lines. Seppanen [573] gives further details 
of the tatum analysis part of the algorithm. The final thing to note is that 
the method was the first to be tested on a statistically significant audio data
base (around three hundred examples, with an average length of about one 
minute). 

Gouyon et al. [247] applied a process of onset detection to musical audio 
followed by inter-onset interval histogramming to produce a beat spectrum. 
The highest peak (which invariably corresponded to the tatum) was then 
chosen as the 'tick'. This was then used to attempt drum sound labelling 
in audio signals consisting solely of drums [245], to modify the amount of 
swing in audio samples [244], and to investigate reliable measures for higher 
beat level discrimination (i.e., to determine whether the beat divided into 
groups of two or three) [246]. Other histogramming methods include Wang 
and Vilermo [661], Uhle and Herre [635], and Jensen and Andersen [318], all 
of which present variations on the general approach and use the results for 
different applications. 

4.9 Multiple Agent Approaches 

Multiple agent methods are a computer science architecture. While there is 
a great deal of variation in the actual implementation and often the finer 
details are left unreported, the basic philosophy is to have a number of agents 
or hypotheses which track independently; these maintain an expectation of 
the underlying beat process and are scored with their match to the data. 
Low-scoring agents are killed while high-scoring ones may be branched to 
cover differing local hypotheses. At the end of the signal, the agent with the 
highest score wins and is chosen. Older multiple agent architectures include 
the influential model of Allen and Dannenberg [14] and Rosenthal [547]. The 
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two most notable multiple agent architectures are those of Goto and that of 
Dixon. 

Goto has produced a number of papers on audio beat tracking of which 
[221], [238], [240] are a good summary. His first method centred on a multi
ple agent architecture where there were fourteen transient onset finders with 
slightly varying parameters, each of which fed a pair of tempo hypothesis 
agents (one of which was at double the tempo of the other). A manager 
then selected the most reliable pulse hypothesis as the tempo at that in
stant, thereby making the algorithm causal. Expected drum patterns as a 
strong prior source of information were used and tempo was tracked at one 
sub-beat level (twice the speed) as well as the pulse in order to increase 
robustness. 

This method worked well for audio signals with drums but failed on other 
types of music. Thus, he expanded the original scheme to include chord change 
detection [240], each hypothesis maintaining a separate segmentation scheme 
and comparing chords before and after a beat boundary. 

Dixon [148] has also investigated beat tracking both for MIDI and audio, 
with the aim of out putting a sequence of beat times. The algorithm performed 
well with a MIDI input, and with the addition of an energy envelope onset 
detection algorithm, it could also be used for audio (though with lower perfor
mance). The approach was based upon maintaining a number of hypotheses 
which extended themselves by predicting beat times using the past tempo tra
jectory, scored themselves on musical salience, and updated the (local) tempo 
estimate given the latest observation. The tempo update was a function of 
the time coherence of the onset, while the salience measure included pitch 
and chord functions where the MIDI data was available. Hypotheses could be 
branched if onsets fell inside an outer window of tolerance, the new hypothesis 
assuming that the onset was erroneous and maintaining an unadjusted tempo. 
Initialization was by analysis of the inter-onset interval histogram. Dixon has 
also used his beat tracker to aid the classification of ballroom dance samples 
by extracting rhythmic profiles [149]. 

4.10 Probabilistic Models 

Probabilistic approaches can have similarities to multiple agent architectures 
in that the models underlying each can be very similar. However, while the 
latter use a number of discrete agents which assess themselves in isolation, 
probabihstic models maintain distributions of all parameters and use these 
to arrive at the best hypothesis. Thus, there is an explicit, underlying model 
specified for the rhythm process, the parameters of which are then estimated 
by the algorithm. This allows the use of standard estimation procedures such 
as the Kalman filter [41], Markov chain Monte Carlo (MCMC) methods [208], 
or sequential Monte Carlo (particle filtering) algorithms [22] (see Chapter 2 
for an overview of these methods). 
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This section will concentrate on some of the models developed rather than 
details of the estimation procedures which are used to evaluate the final an
swer, as these can often be interchangeable (a point made by Cemgil, who 
used a variety of estimation algorithms with the same model [77]). 

Again, the various methods can be broken down into two general groups: 
those that work with a set of MIDI onsets (or equivalently a set of onsets 
extracted from an audio sample) and those that work to directly model a 
continuous detection function^ computed from the original signal. 

4.10.1 Discrete Onset Models 

Those who have worked on the problem include Cemgil et al. [77], who worked 
with MIDI signals, and Hainsworth [263], who used Cemgil's algorithm as a 
starting point for use with audio signals. 

The crux of the method is to define a model for the sequential update of 
a tempo process. This is evaluated at discrete intervals which correspond to 
note onsets. The tempo process has two elements: the first defines the tempo 
and phase of the beat process. The second is a random process which proposes 
notations for the rhythm given the tempo and phase. A simple example of this 
is that, given a tempo, the time between onsets could either be notated as a 
quaver or a crotchet, one speeding the tempo up and the other requiring it to 
slow down. The probabilistic model will propose both and see which is more 
hkely, given the past data (and future if allowed). 

The model naturally falls into the framework for jump-Markov linear sys
tems where the basic equations for update of the beat process are given 
by 

(7n)^n- l+V„, (4.12) 

S„ = UnOn + e„. (4.13) 

{s„} is the set of observed onset times, while On is the tempo process at 
iteration (observed onset) n and can be expanded as 

On 
Pn 

An 
(4.14) 

Pn is the predicted time of the n^^ observation Sn, and A^ is the beat period in 
seconds, i.e. A^ — 60/pri where p^ is the tempo in beats per minute. ^^(Tn) 
is the state update matrix, H^ = [ 1 0 ] is the observation model matrix, and 
Vn and Cn are noise terms; these will be described in turn. 

The principal problem is one of quantization—deciding to which beat or 
sub-beat in the score an onset should be assigned. To solve this, the idealized 

Strictly speaking, it will be pseudo-continuous due to sampling. 
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r r r ^ 
^ p 

Fig. 4.5. Figure showing two identical isochronous rhythms. The top rhythm is 
much more likely in a musical notation context than the lower. 

(quantized) number of beats between onsets is encoded as the random jump 
parameter, 7^, in <Pn(7n), 

^ n ( 7 n ) 

In 

1 In 
0 1 

Cn-l' 

(4.15) 

(4.16) 

While the state transition matrix is dependent upon 7^, this is a differ
ence term between two absolute locations, Cn and Cn-i- Cn is the unknown 
quantized number of beats between the start of the sample and the n*^ ob
served onset. It is this absolute location which is important and the prior on 
Cn becomes critical in determining the performance characteristics. This can 
be elucidated by considering a simple isochronous set of onsets—if absolute 
score location is unimportant, then the model has no way of preferring aligning 
them to be on the beat over placing them on, say, the first semiquaver of each 
beat. This is demonstrated in Fig. 4.5. Cemgil [77] broke a single beat into 
subdivisions of two and used a prior related to the number of significant digits 
in the binary expansion of the quantized location. In MIDI signals there are no 
spurious onset observations and the onset times are accurate. In audio signals, 
however, the event detection process introduces errors both in localization ac
curacy and in generating completely spurious events. Thus, Cemgil's prior is 
not rich enough; also, it cannot cope with compound time, triplet figures, or 
swing. To overcome this, Hainsworth [263] broke down notated beats into 24 
sub-beat locations, c^ = {1/24, 2 /24 , . . . , 24/24, 25/24, . . .} , and a prior was 
assigned to the fractional part of c^, 

p{cn) ocexp(-Alog2{c^}), (4.17) 

where c^ is the denominator of the fraction of Cn when expressed in its most 
reduced form; i.e., (i(3/24) = 8, d(36/24) = 2, etc. A is a scale parameter 
determining the sensitivity of the prior. This is shown graphically in Fig. 4.6. 
The prior is improper (i.e., it does not sum to unity), which is why p{cn) is 
only expressed as a proportionality. The integer part of Cn increases as the 
number of beats processed increases. As a result of this, jn is always strictly 
positive; it will be less than 1 if a sub-beat interval is observed, but if there 
is more than one beat between observed, onsets, 7n will be greater than 1. 
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Fig. 4.6. Graphical description of the prior upon Cn- The horizontal axis is the 
sub-beat location from 1 to 24, while the associated probability p(cn) is shown on 
the vertical axis. 
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Fig. 4.7. Directed acyclic graph of the jump-Markov linear system beat model. 
The dependence between Cn and jn is deterministic, while other dependencies are 
stochastic. 

The tempo process has an initial prior, p{6o), associated with it. For the 
purposes of a general beat-tracking algorithm, it is assumed that the likely 
tempo range is 60 bpm to 200 bpm and that the prior is uniform within this 
range. 

So far, the model for tempo evolution and proposing a set of onset times 
has been considered. Finally, the observation model must be specified. Sn is 
the n^^ observed onset time and therefore corresponds to the pn in On- Thus, 
Hn = [ l O]- The state evolution error, v^, and observation error, e^, are 
given suitable distributions—usually for mathematical convenience, these are 
zero-mean Gaussians with appropriate covariances [26]. The overall model can 
be summarized by a directed acyclic graph (DAG) as shown in Fig. 4.7. It 
should be noted that even spurious onsets are assigned a score location. 
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When working with real-world audio signals, more information than just 
the onset times can be extracted from the signal, and this can aid the analysis 
of the rhythm. The most obvious example is the amplitude of onsets while 
others include a measure of chordal change and other 'salience' features as 
postulated by Parncutt [497] and Lerdahl and Jackendoff [404]. Hainsworth 
[263] utilized these in his model as a separate jump-Markov linear system for 
amplitude and a zero-order Markov model for salience (here, the salience is 
only a function of the current state and has no sequential dependency). There 
has been little research into appropriate measures of salience for extracting 
accents in music; other than the papers mentioned above, Seppanen [573] and 
Klapuri [349] also proposed features which perform this function. 

Given the above system, various estimation procedures exist. Cemgil [77] 
described the implementation of MCMC methods as well as particle filters to 
estimate the maximum a posteriori (MAP) estimate for the rhythm process, 
while Hainsworth [263] utilized particle filters to find the MAP estimate for the 
posterior of interest given hy p{ci:m Oi:n, (^i:n\si:m CLi-.m Si.n)^ where ai:n was 
the underlying amplitude process observed as ai:n, and Si.n was the observed 
set of saliences. Full details can be found in either of the publications. 

Other similar methods include an earlier approach of Cemgil's [79] where 
what he termed the 'tempogram' (which convolved a Gaussian function with 
the onset time vector and then used a localized tempo basis-function*^ to 
extract a measure of tempo strength over time) was tracked with a Kalman 
filter [41] to find the path of maximum tempo smoothness. 

Raphael's methods [537] were based around hidden Markov models where 
a triple-layered dependency structure was used: quantized beat locations in
formed a tempo process which in turn informed an observation layer. The 
Markov transitions were learned between states from training data, and then 
the rhythmic parse evaluated in a sequential manner to decide which was the 
most likely tempo/beat hypothesis. This was tested on both MIDI and au
dio (after onset detection) and success was good on the limited number of 
examples, though manual correction from time to time was permitted. 

Laroche [392], [393] used a maximum likelihood framework to search for 
the set of tempo parameters which best fit an audio data sample. The in
put was processed by typical energy envelope difference methods to extract 
a list of onset times. Inter-onset times (which are phase independent) were 
then used to provide likelihoods for the 2-D search space with discretized 
tempo and swing as the two axes. This algorithm has been included in com
mercially available Creative sound modules for several years. Lang and de 
Preitas [387] presented a very similar algorithm to that of Laroche but used 
a continuous signal representation and a slightly more complex estimation 
procedure. 

^The tempo basis function was defined as a set of weighted Dirac functions 
V^(t;r, a;) = SJ^_oo ^*^^+*2'^(^) ^^ ^ delay of r and spaced with frequency (and 
hence tempo) given by uj. 
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Hainsworth also presented a second algorithm which is essentially a refor
mulation of the above but using Brownian motion relations as a base [266]. It 
was not as successful as the above model. Others include Takeda et al. [617] 
and Lam and Godsill [386]. 

4.10.2 Continuous Signal Representations 

The second approach to tracking the beat with stochastic models uses a detec
tion function and attempts to model this directly instead of extracting onsets 
first. As such it must have all the elements of the above models, including a 
tempo process and a model for the likelihood of an onset being present at any 
given beat or sub-beat location; however, it must also have a model for the 
signal itself and what is expected at an onset and between these. 

Hainsworth [263] proposed a method using particle filters whereby the 
tempo was modelled as a constant velocity process similar to the one described 
above and which proposed onsets in a generative manner at likely sub-beat 
locations. The signal detection function modelled was a differenced energy 
waveform, utilizing high-frequency information, very similar to T)j{t) shown 
in the lower plot of Fig. 4.2. 

Onset locations can clearly be seen in this signal representation, and on 
close examination all onsets have a very similar evolution in time which can 
be well modelled by a hidden Markov model (HMM; see Chapter 2 for a 
definition). This is performing the task of onset detection. The model used is 
shown in Fig. 4.8 with each state having a different output distribution (also 
termed likelihood). For mathematical convenience, these are Gaussians with 
differing means and variances but sufficiently separated so that the output 
distribution of state ^i does not significantly overlap with that of ^o or 5*2, 
etc. This defines a generative model for the signal—by generative, it is meant 
that by using a random number generator and the specified distributions, 
a process with the same statistical properties as the original signal can be 
generated. 

A naive scheme simply generates proposals from the prior distributions, 
but the Viterbi algorithm (see [654] and Chapter 2) can be used to find the 
best path through the HMM and also its probability, which simplifies the 
calculation needed once an onset is hypothesized. The model worked well 
on the small number of examples tried but required the expected sub-beat 
structure to be specified by hand for robust performance. 

In comparison, Sethares et al. [577] proposed four filtered signals (time do
main energy, spectral centroid, spectral dispersion, and one looking at group 
delay) which were then simply modelled as Gaussian noise with a higher vari
ance at beat locations compared to between them. Looking back at Fig. 4.2, 
it can clearly be seen where the variance of the generative noise process used 
to model the signal would be higher. A model similar to those above was used 
and a particle filter environment chosen for the estimation procedure. The 



4 Beat Tracking and Musical Metre Analysis 123 

(a) Data with states superimposed. 

(b) Directed acyclic graph of HMM model. 

Fig. 4.8. HMM for beat-tracking algorithm with Viterbi decoding included. States 
55, 56, and 5? are functionally equivalent to 54, and 58 is equivalent to So- The 
null state, 59, has no observation associated with it, therefore making transition to 
it highly unattractive. 

model did not explicitly include a model for sub-beats but seemed to function 
well on the data presented. 

A somewhat different method for tracking the beat through music was 
presented by Klapuri et al. [348], [349]. A four-dimensional observation vector 
(as a function of time) was generated by applying a similar method to that 
of Scheirer [564] to generate resonator outputs but using different frequency 
bands and a different method for extracting the energy signal which also cap
tures harmonic onsets. A measure of salience, dependent upon the normalized 
instantaneous energies of the comb-filter resonators, was also attached to this. 

A problem with Scheirer's method was that it was prone to switch be
tween different tempo hypotheses (usually doubling or halving), and Klapuri 
addressed this using an HMM to impose some smoothness to the tempo evo
lution. He proposed a joint density for the estimation of the period-lengths 
of the tatum, tactus, and measure level processes, applying a combination of 
sensible priors and dependencies learned from data. The phase of the tatum 
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and tact us pulse were estimated to maximize the observed salience at beats. In 
estimating the phase of the super-beat (measure) structure, a key assumption 
made was the expectation of two simple beat patterns which occur frequently 
in so-called 4/4 time. While this should considerably aid performance with 
music in this time signature, performance in the super-beat estimation was 
degraded for examples with a ternary metre (e.g. 3/4). Nevertheless, the algo
rithm was tested on a significant database and was successful. A comparison 
is presented below. 

4.11 Comparison of Algorithms 

If the focus is restricted to beat tracking in musical audio signals, then the 
methods discussed above in Sections 4.5 to 4.10 have various strengths and 
weaknesses. This section will highlight them and then present a comparison 
of several methods. 

Rule-based approaches have never been applied to audio and have solely 
been used to code sensible but simple music theoretic rules in order to model 
music psychology expectations. The reason that they have never been used on 
audio signals is possibly because they are not easily expanded to cope with 
erroneous data and hence would perform poorly on the inexact data produced 
by onset detection algorithms. 

Autocorrelative and histogram methods have much in common; they are 
both methods of obtaining a tempo profile, the difference being that autocor
relation works with a sampled signal while histogramming works with discrete 
onset times. They are therefore useful for finding the tempo but are not im
mediately applicable to extracting the beat phase (this is a secondary task). 

Adaptive oscillators are particularly suited to causal operation and have 
some psychoacoustic justification [390]. However, they have not been applied 
to audio signals. This may be because the update routines required on adaptive 
single filters are not easily adaptable to real data or possibly because they are 
not well able to cope with sub-beats. Many of the systems also required manual 
initiation to set the correct tempo and phase. Comb-filters as implemented 
by Scheirer [564] and used by Klapuri et al. [349] have been applied to audio 
signals. 

This leaves multiple agent approaches and probabilistic, model-based 
methods. These two bear some significant similarities, but the latter delim
its the underlying assumptions from estimation procedures whereas they are 
intermixed by multiple agent methods. This makes the adaption and opti
mization of the probabilistic models easier, though reasonable success has 
been reported with both approaches. 

4.11.1 Tests 

There has been a move in recent years towards testing algorithms with a large 
database of audio samples collated from all genres and usually from standard, 
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commercially available sources. This was begun with Seppanen [572] with a 
database of 330 audio samples, while Klapuri [349] used 478. A comparison 
was also undertaken by Gouyon et al. [248] into tempo induction from audio 
signals using a large dataset of 3199 examples from three databases and is 
currently the most extensive. 

The comparison below used a hand-labelled database of 222 samples of 
around one minute divided into six categories: rock/pop, dance, jazz, folk, 
classical, and choral. The tempos were limited to the range 60-200 bpm with 
the exception of the choral samples. Several examples exhibited significant ru-
bato, 8 had a rallantando (slowing down), and 4 had a sudden tempo change. 
Forty-two also had varying amounts of swing added. Full details of the data
base can be found in [263]. 

Another problem is how to evaluate the performance of a beat-tracking 
algorithm. As of this writing, no study has yet made a serious attempt to no-
tate the complete rhythm and idealized score locations of every onset present 
in the audio sample;^ rather the assessment has been limited to 'tapping in 
time' to the sample and producing an output of beat times that agrees with 
those of trained human musicians. 

Klapuri [349] gives two criteria, which are adopted here, to judge the per
formance of an algorithm on a particular example. The first is 'continuous 
length' (C-L), by which it is meant the longest continually correctly tracked 
segment, expressed as a percentage of the whole. Thus, a single error in the 
middle of a piece gives a C-L result of 50%. Another, looser criterion is sim
ply the total percentage of the whole which is correctly tracked (defined as 
'TOT' from now on). Here, both are expressed as percentages of the manually 
detected beats which are correctly tracked, rather than of the time stretches 
these represent. Using Klapuri's definitions once again, a beat is determined 
to be correctly tracked if the phase is within ± 15% and the tempo period is 
correct to within ± 10%. 

Here, the trackers^ of Scheirer [564], Klapuri [349], and Hainsworth [263] 
are compared and the results are shown in Table 4.2. The columns under 'Raw' 
are base results according to the above criteria; however, it is sometimes found 
that the beat tracker tracks something which is not the predefined beat but is 
a plausible alternative. Usually, this is half the correct tempo (in the case of 
fast samples) or double (for particularly slow examples). When swing is en
countered, it is occasionally possible for the trackers to even track at one and a 
half times the tempo (i.e., tracking three to every two correct beats). Doubling 
or halving of tempo is psychologically plausible and hence acceptable; however 
the errors encountered with swing are not. The second set of columns com
pares results once doubling and halving of tempo are allowed. Performance 
on individual genres is shown graphically in Fig. 4.9 for Hainsworth's and 
Klapuri's algorithms. 

^The closest is probably Goto and Muraoka [234]. 
^The beat trackers tested were all the original authors' own. 
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(b) Klapuri's results 

Fig . 4.9. Graphical display of the results for Hainsworth's (top) and Klapuri's beat 
tracker. The solid line is the raw result while the dashed line is the 'allowed' result. 
Note that ordering is strictly by performance for each genre under any particular 
criteria. 
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Table 4.2. Comparison of results on the database. The three beat trackers use 
audio adata as inputs. 

Raw Allowed 
C-L (%) TOT (%) C-L (%) TOT (%) 

Hainsworth 45.1 52.3 65.5 80.4 
Scheirer 23.8 38.9 29.8 48.5 
Klapuri 55.9 61.4 71.2 80.9 

It can be seen that Klapuri's model performs the best in terms of raw 
results and continuous tracking, while the performance of Hainsworth when 
considering total number of beats with allowed tempo mistakes is about equiv
alent. Klapuri's method performs better than Hainsworth's with rock/pop and 
dance, though it fails somewhat with jazz. Hainsworth's outperforms Klapuri's 
on choral music, probably because of the onset detection algorithm used by 
Hainsworth (described above in Section 4.4), which gives superior performance 
for these choral samples. 

Both Klapuri's and Hainsworth's models significantly outperform Scheirer's. 
Klapuri [349] compared his model to Scheirer's and also Dixon's [148] mod
ified MIDI beat-tracker. Seppanen [572] reported that his program was less 
successful than Scheirer's, tested on a large database that was a subset of 
Klapuri's. Also, on the related issue of tempo induction, the comparison by 
Gouyon et al. [243] showed that Klapuri's method performed the best at this 
task. 

Finally, performance of one of the stochastic models which uses a sig
nal representation is shown on a single example in Fig. 4.10. This shows 
Hainsworth's second stochastic model (described above in Section 4.10.2) with 
a swing example. The model is very successful at extracting onsets and is 
good at tempo tracking. The limitation is that the expected sub-beat struc
ture has to be specified in advance. Thus, the model cannot be considered 
pan-genre. 

4.12 Conclusions 

This chapter has discussed a number of differing approaches to the generic 
task of 'beat tracking'. Under this catch-all term, there are actually a number 
of possible goals, from replicating human tempo preference to a full labelling 
of every onset as to its correct quantized score location. Recent methods have 
aimed to extract the correct tempo and beat phase from audio signals ('tap
ping in time to the music'). 

Current methods such as Klapuri's [349] or Hainsworth's [263], [266] are, 
starting to achieve a reasonable level of success over databases of significant 
size and complexity. However, they are less successful on certain genres such 
as jazz (where part of the appeal of the style is its rhythmic complexity) 
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Fig. 4.10. Output of Hainsworth's second stochastic beat tracker (see Sec
tion 4.10.2) for a swing example, a) shows tracked tempo (dashed) and hand-labelled 
tempo (solid); b) shows the onset detection process for the first 10 seconds with solid 
vertical lines denoting detected beats and dashed vertical lines showing the detected 
swung quavers. 

and classical music (which is prone to radical rhythmic evolution and also 
has fewer easily extractable beat cues). Classical music particularly seems 
to require pitch analysis in order to extract reliable beat cues. Thus, while 
the aim is obviously to have a generic beat tracker which works equally well 
with all genres, it is likely tha t in the short term, style-specific cues will have 
to be added. Klapuri [353] and Goto [221] bo th apply knowledge of typical 
drum pat terns in popular music to their algorithms. Dixon [149] goes a step 
further and uses rhythmic energy pat terns extracted from audio samples to 
aid classification of ballroom dance examples, a process which could easily be 
reversed to aid beat tracking. 

In addition to bet ter modelling specific styles and the rhythmic expecta
tions therein, the second area for expansion is to look at bet ter signal rep
resentations for extracting the cues needed to perform beat tracking. Rock 
and pop music with its drum-heavy style is easily processed using energy 
measures; classical music is much harder to process and only relatively re
cently have methods been applied to extract note changes where there is little 
transient energy. These will need to be improved. 
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In conclusion, the field of beat tracking or rhythmic analysis is one area 
of musical audio processing where some significant success has been achieved 
and there is much to build upon. However, there is also room for improvement 
and further accomplishments. 



Unpitched Percussion Transcription 

Derry FitzGerald^ and Jouni Paulus^ 

^ Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland 
derry.fitzgeraldOcit.ie 

^ Institute of Signal Processing, Tampere University of Technology, 
Korkeakoulunkatu 1, 33720 Tampere, Finland 
j ouni.paulusQtut.f i 

5.1 Introduction 

Up until recently, work on automatic music transcription has concentrated 
mainly on the transcription of pitched instruments, i.e., melodies. However, 
during the past few years there has been a growing interest in the problem of 
transcription of percussive instruments. This chapter aims to give an overview 
of the methods used in this field ranging from the pioneering works of the 1980s 
to more recent systems. 

There currently exists a large family of percussive instruments, many of 
which have been in existence for quite a long time [293]. The work presented in 
this chapter concentrates on the transcription of unpitched^ percussive instru
ments. In particular, the vast majority of research to date has focused on the 
unpitched percussion instruments found in Western popular music, with a par
ticular focus on the drums found in the standard rock/pop drum kit, namely 
snare drum, kick drum (also known as a bass drum), tom-toms, hi-hats, and 
cymbals. A notable exception to this is the work on tabla transcription by 
Gillet and Richard [211]. However, many of these methods could be utiUzed 
for transcribing other percussive sounds if suitable modifications are made. 

The percussion instruments mentioned in this chapter can be divided into 
two main types: membranophones and idiophones. Membranophones, includ
ing drums such as snare drums, kick drums, and tom-toms, typically consist 
of a membrane or skin stretched across a frame. Idiophones, including instru
ments such as hi-hats and cymbals, are typically rigid bodies, such as a metal 
plate. In both cases, sound is produced by striking the membrane or plate. In 
a standard rock/pop drum kit, striking is usually done with a wooden drum
stick, except for the kick drum which is struck using a beater made of epoxy or 
rubber mounted on a foot pedal. The striking of a given drum can be modelled 

"̂ The word 'unpitched' is used here to emphasize the fact that the instruments 
are normally not used to play melodies, even though many drums can be tuned and 
their sound evokes a perception of pitch. 
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Kick drum Snare drum Crash cymbal 
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Time (s) 

1 2 3 
Time (s) 

Fig. 5.1. Example waveforms. The images on the top row are the time domain 
waveforms of a kick drum, a snare drum, and a crash cymbal, from left to right. The 
lower row contains the corresponding spectrograms in the same order. The sound 
samples are from the RWC Musical Instrument Sound Database [230]. 

as an impulse function and so a broad range of frequencies will occur in the im
pact. As a result, all possible modes of vibration of the plate or membrane are 
excited simultaneously, and the narrower the frequency band associated with 
a given mode, the longer it sounds. The interested reader is referred to [193] 
for a mathematical discussion of the properties of ideal membranes and plates. 

Many of the membranophones used in a standard rock/pop drum kit can 
be tuned by adjusting the tension of the membrane. In conjunction with the 
different sizes available for each drum type, this results in considerable varia
tions in the timbre obtained within a given drum type. Nevertheless, it can be 
noted that the membranophones have most of their spectral energy contained 
in the lower regions of the frequency spectrum, typically below 1000 Hz, with 
the snare usually containing more high-frequency energy than other mem
branophones. Also, in the context of a given drum kit, the kick drum will 
have a lower spectral centroid than the other membranophones. It can also 
be noted that idiophones consisting of a metal plate will typically have their 
spectral energy spread out more evenly across the frequency spectrum than 
the membranophones, resulting in more high-frequency content. 

Examples of three different drum instruments' time domain waveforms and 
spectrograms are shown in Fig. 5.1. A kick drum is purely a membranophone, 
containing a lot of low-frequency energy. A snare drum is also a membra
nophone, but it has a snare belt attached below the lower membrane. When 
the drum is hit, the lower membrane interacts with the snare belt, resulting in 
a distinct sound also containing high-frequency energy. This can be observed 
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in the figures. A crash cymbal is a plate-hke idiophone producing wide-band 
energy. It is also worth noticing that the crash cymbal sound rings about ten 
times longer than the example membranophone sounds. 

The systems discussed in this chapter may process either signals that con
sist of percussive instruments only, or complex music signals where the pres
ence of pitched instruments is allowed. In many cases, the input to percussion 
transcription systems will not contain recordings of live drums. Often the in
put will consist of either sampled real drums, drum loops taken from another 
recording, synthetic drums or even mixtures of the above. If a relatively small 
set of drum samples are used, the resulting signal's waveform will exhibit less 
variation between hits, making the signal easier to transcribe for many of the 
presented systems. The same applies to the use of sampled drum loops and 
synthetic drum sounds. Synthetically generated drum sounds tend to mimic 
the overall timbral characteristics of real drums to some extent, but their spec
tral characteristics tend to differ considerably from those of real drums. This 
may cause problems if the transcription system is trained with real drums. 

Approaches to percussion transcription can be roughly divided into two 
categories: pattern recognition applied to sound events and separation-based 
systems. The former segments the signal into meaningful events and recognizes 
the contents of the segments with pattern recognition methods. This approach 
is described in Section 5.2. The latter approach tries to separate the mixture 
containing drum sounds in such a way that each segregated stream contains 
only hits from one given drum type. Onsets are then sought from the streams. 
Methods relying on this approach are described in Section 5.3. In addition, 
a distinction can be made between systems that use a supervised approach, 
through the use of trained classifiers or instrument templates, and systems 
that use an unsupervised approach, such as clustering similar segments fol
lowed by recognition of the clusters. Low-level signal analysis may not always 
yield a satisfying result, so some attempts have been made to utilize musi-
cological modelling to take into account the predictability of drum patterns 
in music. These are described in Section 5.4. Finally, some conclusions about 
the presented methods are given in Section 5.5. 

5.2 Pattern Recognition Approaches 

In general, the percussion transcription problem can be characterized with two 
questions: When did something happen in the music, and what was the event 
that took place? The majority of the drum transcription systems developed 
so far operate by answering these two questions in this same order. Here, such 
systems are referred to as 'event-based' systems, and they tend to operate 
with roughly the following steps: 

1. Segment the input signal into events by 
a) locating potential sound event onsets in the input signal, or 
b) generating a regular temporal grid over the signal. 
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2. Extract a set of features from each segment. 
3. Classify the contents of each segment based on the extracted features. 
4. Combine the segment time stamps with information about their content 

to yield the transcription. 

These steps will be described in more detail in the following sections. 

5.2.1 Temporal Segmentation 

There are two main approaches to segmenting a signal containing percussive 
instruments. The first of these is based on detecting prominent sound event 
onsets in an input signal, which is a difficult task in itself. The detection 
method should be able to identify all the beginnings of meaningful sound 
events and still be robust against noise which might generate extraneous on
sets. This has led to the development of a number of different onset detection 
methods which are detailed in Chapter 4 on p. 107. 

An alternative to the onset detection-based segmentation is to generate 
a temporal grid over the whole signal and to use it for the segmentation, 
as suggested by Gouyon et al. [247]. The grid spacing is determined by the 
fastest rhythmic pulse present in the signal, so that almost all the events in 
the piece coincide with a grid point. A number of different names have been 
given for this rhythmic pulse: Gouyon et al. called it the tick [247], Schloss, the 
attack-point [567], and Bilmes, the tatum [37]. Here we use the term tatum. 

There are several ways for estimating the tatum pulse, and they are dis
cussed in more detail in Chapter 4. Gouyon et al. [247] and Seppanen [573] 
detected onsets in the input signal, calculated time intervals between all onset 
pairs, and determined the period of the tatum as the (approximate) greatest 
common divisor of the time intervals. The phase of the grid was estimated 
by aligning it with the located onsets. Another method of tatum estimation, 
described by Klapuri et al., utilized a bank of comb filter resonators and 
probabilistic modelling to find the tatum period and phase [349]. 

In practice, using a fixed equidistant grid has some problems. Even though 
musical metre analysis procedures have developed considerably in recent years 
and can often produce a reliable estimate of the tactus pulse (a.k.a the beat), 
the tatum estimate tends to be unreliable. In particular, overestimating the 
tatum period causes severe errors in the segmentation. Another drawback is 
that expressive playing causes deviations from the equidistant grid points (see 
for example [37] where Bilmes tried to construct a system capable of creating 
similar expressive deviations to rhythmic patterns). An advantage of the grid 
representation is that it is less prone to errors caused by inserting and deleting 
sound onsets than the onset detection-based approach. 

Before the subsequent feature extraction, meaningful parts of the signal 
need to be segmented. The simplest approach is to take a part of the signal 
starting at the located onset or grid point, and ending at the next located on
set or grid point [245], [209]. However, if the consecutive onsets are far apart 
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or do not have a constant time difference, it is good to limit the minimum and 
maximum length of the segments. This guarantees that each of them contains 
enough information for extracting relevant features. For example, good initial 
guesses for the minimum and maximum lengths could be 50 ms and 200 ms, 
respectively. A window function can be used in connection to this. However, 
a traditional Hamming or Hanning window, for example, is not appropriate 
since it smooths out the informative attack part at the beginning of the seg
ment. A half-Hanning window which starts from a unity value and decays 
to zero at the end of the segment is more suitable, but often windowing is 
omitted completely, assuming that events decay to small amplitude naturally 
and the signal does not contain sustained sounds at all. 

5.2.2 Feature Extraction 

The aim of feature extraction is to obtain numerical values describing the 
segments so that they can be recognized or grouped together, while reducing 
the amount irrelevant information in the time-domain signal. Quite a lot of 
research has been carried out to find good descriptors for percussive instru
ment classification [250], [245], [247], [287], [511]. Many of these features are 
used also in pitched musical instrument recognition and are discussed in more 
detail in Chapter 6. Here we will introduce only the features that are most 
commonly used in percussion transcription. Ideally, the features should be 
such that they are robust in the presence of other simultaneously occurring 
sounds, but in practice this is difficult to achieve. 

Mel-frequency cepstral coefficients (MFCCs) describe the rough shape of 
the signal spectrum and are widely used in speech recognition [536]. Simi
larly, they are often encountered in percussion transcription algorithms. A 
detailed description can be found in Chapter 2, p. 25. Usually the coefficients 
are calculated in short (about 20 ms) partially overlapping frames over the 
analysed segment, and 5 to 15 coefficients are retained in each frame. Instead 
of using these directly as features, typically the mean and variance of each 
coefficient over the segment are used [211], [504], [209], [608]. In addition, the 
first- and second-order temporal differences of the coefficients, and the means 
and variances of these, are commonly used as features. 

Another commonly used set of spectral features are bandwise energy de
scriptors. The energy content of the sound is calculated in a few frequency 
bands and their relations to the total signal energy are used as features. The 
number of bands and their spacing depends greatly on the desired frequency 
resolution, and systems have used from 6 [209] to 24 bands [285]. 

In addition to the rough spectrum described by the MFCCs and bandwise 
energy descriptors, more simple spectral shape features are also useful. These 
include the first four moments of the spectrum, i.e., spectral centroid, spec
tral spread, spectral skewness, and spectral kurtosis [125], [307], [514]. Let us 
denote the normalized magnitude spectrum by 
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where X{k) denotes the discrete Fourier spectrum, /c is a frequency index, 
and the set IC^ contains only non-negative frequency indices. The spectral 
centroid is then defined as 

The bandwidth of the spectrum is described by spectral spread, 

Sf= Y.{k-C,fX{k). (5.3) 

The spectral skewness describes the asymmetry of the frequency distribution 
around the spectral centroid, 

71 = ^3 • (5-4) 

Finally, spectral kurtosis describes the peakiness of the frequency distribution, 

72 = ^—^4 . (5.5) 

The smaller the kurtosis, the flatter the spectrum. The quantities (5.2)-(5.5) 
can also be calculated using a logarithmic frequency scale, as suggested in the 
MPEG-7 standard [307]. 

In comparison with the spectral features, relatively few time-domain fea
tures have been used in percussive sound classification. Instead, temporal 
evolution of the sound is often modelled using differentials of spectral features 
extracted in short frames over the segment. Among the features that can be 
computed in the time domain, the two most commonly used are temporal 
centroid and zero crossing rate. The temporal centroid, a direct analogue to 
the spectral centroid, describes the temporal balancing point of the sound 
event energy by 

where E{t) denotes the root-mean-square (RMS) level of the signal in a frame 
at time t, and the summation is done over a fixed-length segment starting 
at the onset of the sound event. The feature enables discrimination between 
short, transient-like sounds and longer ringing sounds. The zero crossing rate 
describes how frequently the signal changes its sign. It correlates with the 
spectral centroid and the perceived brightness of the signal. Usually, noise
like sounds tend to have a larger zero crossing rate than more clearly pitched 
or periodic sounds [250]. 
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Feature set is generally selected through trial and error, though some au
tomatic feature selection algorithms have also been evaluated by Herrera et 
al. [287]. It was noticed that in most cases, using a feature set that has been 
chosen via some feature selection method yielded better results than using all 
the available features. Also, a dimension reduction method such as principal 
component analysis can be applied to the set of extracted features prior to 
classification. For a more detailed description of feature selection methods and 
possible transformations, refer to Chapter 2 and Chapter 6. 

5.2.3 Segment Recognition 

The extracted features are then used to recognize the percussive sounds in 
each segment. There are at least two different ways to do this. The first is 
to try to detect the presence of a given drum, even if other drums occur at 
the same time, and the other is to attempt to recognize drum combinations 
directly. For example, if an input signal consists of snare and hi-hat sounds, 
the first approach will attempt to recognize the presence of both instruments 
independently from each other, while the latter will attempt to recognize 
whether 'snare', 'hi-hat', or 'snare + hi-hat' has occurred, treating sound 
combinations as unitary entities. 

A problem that arises when recognizing drum combinations instead of 
individual drums is that the number of possible combinations can be very 
large. Given M different drum types which may all occur independently, there 
are 2^ possible combinations of them. That is, the number of combinations 
increases rapidly as a function of M, and it becomes difficult to cover them all. 
In practice, however, only a small subset of these combinations are found in 
real signals. Figure 5.2 illustrates the relative occurrence frequencies of the ten 
most common drum event combinations in a popular music database. These 
contribute 95% of the drum sound events in the analysed data. When focusing 
on the transcription of the drums commonly used in Western popular music, 
the number of possible sound types M has usually been limited to the range 
of two to eight. Some systems have concentrated on transcribing only the 
kick and snare drum occurrences [235], [250], [221], [693], [608], [683], whereas 
some others have extended the instrument set with hi-hats or cymbals [620], 
[505], or added even further classes such as tom-toms and various percussion 
instruments [506], [209]. 

Classification algorithms can be roughly divided into three different cate
gories: 

• decision tree methods, 
• instance-based methods, and 
• statistical modelling methods. 

With the exception of the work by Herrera et al. [287], there has not been an 
extensive comparison of different classification methods as applied on percus
sive sounds. Also, the experiments done in [287] concentrated on the classi-
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H BH HS S B BC BHS C T BCH 
Instrument combination 

Fig. 5.2. The relative frequencies of the ten most frequently occurring drum sound 
combinations in the RWC Popular Music Database [229]. These combinations con
tribute 95% of all drum sound events present in the database. A total of five drum 
classes were used in the calculations, and are denoted as following: H is hi-hat, B is 
kick drum, S is snare drum, C is cymbal, and T is tom-tom. 

fication of isolated drum sounds instead of handling entire percussive sound 
sequences. The results suggest tha t the instance-based algorithms perform 
best among the tested methods, and the decision tree algorithms the worst. 
Here we will or^ly present briefly the methods tha t have been used in unpitched 
percussion transcription. For more detailed descriptions or other possible al
gorithms, refer to Chapter 2 and Chapter 6. 

Decision tree classifiers operate by asking a sequence of questions about 
the sample to be classified. Such a question could be, for example, Ts the 
spectral centroid of the signal above 500 Hz?' Each answer rules out some of 
the possible classification results and defines the next question. Thus, the 
classification process could be writ ten out as a large conditional expression. 
For a more detailed description, see [533], [161]. In addition to the recognition 
of isolated drum sounds by Herrera et al. [287], Sandvold et al. [561] used 
a decision tree classifier for the transcription of continuous percussive tracks 
(see p . 142 below). 

Instance-based methods store the given training samples (or a selected sub
set of them), and determine the label for the analysed sample by comparing 
it to the stored training data . In practical use, the principal weakness of tra
ditional instance-based algorithms (e.g., /c-nearest neighbours) is the memory 
required for storing the example events and the computational load needed 
to compute distances to all the training samples. Support vector machines 
(SVMs) remove these shortcomings by pre-processing the training da ta so as 
to retain only the samples tha t actually have an effect on the classification. 
The basic s tructure of a SVM is to locate a decision surface or a hyperplane 
tha t has the maximal margin with respect to the two classes it is trained 
to separate [59], [568]. The decision surface is parameterized by the sample 
pat terns tha t have the smallest margin, called the support vectors. 

SVMs have been used successfully in a number of classification tasks [568], 
and also in percussion transcription [209], [608], [210]. Originally SVMs were 
binary classifiers, so they have been used to detect whether or not the segment 
contains a percussive sound event [506] and as a detector-like recognizer for 
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individual drums [209], [608]. Subsequent extensions to enable multiple classes 
have been developed; see [629]. Gillet and Richard evaluated the use of both 
M binary SVMs and one 2 ^ class SVM in [209]. The results suggest that the 
multiclass version performs slightly better than several binary classifiers. More 
recently, the system was improved through decorrelating the used features 
with principal component analysis, and adding implicit short-time context 
modelling (see p. 155 for further details) in [210]. 

Gaussian mixture models (GMMs), a member of the statistical modelling 
family, model the distribution of the feature values in each class as a sum 
of Gaussian distributions. GMMs have proven to be a useful tool in pattern 
recognition as they can be used to approximate arbitrary distributions. Fur
ther details on GMMs can be found in Chapter 2 or in [536]. Paulus and 
Klapuri used GMMs in percussion transcription by training a separate GMM 
for each of the 127 non-silent combinations of different drum instruments [506]. 

More commonly, GMMs are used in conjunction with hidden Markov mod
els (HMM) to represent the feature distributions in their states. A basic HMM 
consists of two parallel processes: a hidden state process which is assumed 
to be a Markov chain and cannot be directly observed, and an observation 
process (features). The observed features are conditioned on the hidden state 
by using a GMM in each state and, based on the observations, the hidden 
state sequence can be inferred. Details on HMMs can be found in Chapter 2. 

HMMs have been used in percussion transcription by Gillet and Richard, 
who considered target signals consisting of Indian tablas'^ [211] or Western 
drum sounds [209]. In [211] the different strokes were modelled by GMMs, 
and HMMs were used to model event sequences in the tabla recordings. A 
recognition rate of 94% was achieved on the test database. A similar approach 
was used in [209], where GMMs in conjunction with HMMs were used to 
transcribe drum loops. It was also noted that a SVM classifier without any 
sequence modelling performed better than a HMM-based approach [209]. 

A recognition approach that cannot be put directly into any of the above 
categories is the template matching method proposed by Goto et al. in 
what was the first attempt at transcribing polyphonic drum mixtures [241], 
[236]. The system aimed to identify mixtures of kick drums, snares, tom
toms, hi-hats, and cymbals. The templates for each drum type were obtained 
from an short-time Fourier transform-based power spectrogram of each drum 
type in isolation. The templates were scaled to account for amplitude dif
ferences between the templates and the mixture signal. A distance measure 
was used to detect the presence of the template in the mixture. Detection of 
membranophones was carried out using a logarithmic frequency resolution, 
while idiophones were detected using a linear frequency resolution. 

Later work by Goto identified snare and kick drum events in polyphonic 
music as a means of tracking the beat in a piece of music [235]. This was done 

^Tablas consist of a metallic bass drum and a wooden treble drum. Different 
hand strokes on these drums produce different sounds. 
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by first identifying potential onsets and then creating a histogram of spectral 
peaks at these onset locations. The characteristic frequency of the kick drum 
was identified as the lowest peak of the histogram, while the characteristic 
frequency of the snare was identified as the largest peak in the histogram 
above the characteristic frequency of the kick drum. It was then adjudged 
that a kick drum or snare had sounded at times when an onset was detected 
and the onset's peak frequency coincided with the characteristic frequency of 
the drum in question. This method of detecting the snare was later replaced 
by identifying noise components widely distributed in the frequency range of 
1.4 kHz to 7.5 kHz as the snare drum. Unfortunately, no evaluation of the 
system's performance in identifying the snare and kick drum was carried out 
as it focused on beat tracking, not transcription. 

5.2.4 Instrument Model Adaptation 

Even though isolated percussive sounds can be identified quite reliably [285], 
real-world recordings are not as easy to analyse. This is due to other simul
taneously occurring interfering sounds, both other drums and melodic instru
ments, as well as the fact that drum sounds can vary between occurrences, 
depending on how and where they are struck. As a consequence, it is difficult 
to construct general acoustic models that would be applicable to any data 
and still discriminate reliably between different instruments. 

A way to overcome this problem is to train the models with data that is as 
similar as possible to the target mixture signals. However, this is not possible 
if the exact properties of the target signals are not known in advance or they 
vary within the material. Model adaptation has been proposed to alleviate 
this problem. In this approach, the idea is to adapt general models to the 
mixture signal at hands, instead of using fixed models for each and every 
target signal. To date, only three event-based drum transcription systems 
have been proposed that take this approach [693], [561], [683]. 

The earliest percussion transcription system utilizing model adaptation 
was that of Zils et al. [693], which used an analysis-by-synthesis approach. 
Initially, simple synthetic percussion sounds Zi{n) were generated from low-
pass and bandpass-filtered impulses. These represented very simple approxi
mations to kick drums and snares respectively, and were then adapted to the 
target signal to obtain more accurate models. The algorithm operated with 
the following steps: 

1. Calculate correlation function between a synthetic sound event Zi{n) and 
the polyphonic input signal y{n) 

Ni-l 

îW = XI ^iH2/(^ + r), (5.7) 
n=0 

where Ni is the number of samples in the sound i, and rj(r) is defined for 
r € [0, Ny — Ni], where Â^̂  is the number of samples in y{n). 
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2. Locate occurrences of the sound Zi{n) in y{n) by picking peaks in ri{T) 
and by retaining only the most rehable peaks. 

3. Update the sound Zi{n) with 

Zi{n) ^ 2 
1 ^ 

U 
J 

: 0 , . . . , i V , - l , (5.8) 

where U is the number of rehable peaks detected and TJ contains their 
locations. 

4. Repeat Steps 1 to 3 until convergence. 

The above procedure was applied separately for the snare and kick drum. 
When both drums occurred simultaneously, priority was given to the kick 
drum, thus limiting the system to monophonic transcription of snare and kick 
drum in the presence of pitched instruments. The system was tested on 100 
examples from various music genres, and gave a success rate of over 75% in 
cases where the percussion instruments were louder or as loud as the other 
instruments in the mixture. In cases where the percussion instruments were 
quieter, a 40% success rate was reported. 

The system described by Yoshii et al. transcribed snare and kick drums 
in the presence of pitched instruments by using an analysis-by-synthesis ap
proach in the time-frequency domain [683]. First, onset detection was carried 
out and excerpts Pj{t^k) of the mixture power spectrogram were extracted 
from the positions of the onsets. These were then used to adapt snare and kick 
drum templates (models) which were initialized using the spectrograms of iso
lated examples. The following template-adapt at ion algorithm was repeated for 
both target drum classes: 

1. Calculate the Euclidean distances Fij between a template Ti and the 
spectrogram excerpts Pj with 

T-lK-l 

^h = E E [HMk){Ti{t,k)-P,{t,k))]\ (5-9) 

where T is the number of frames in the template and spectrogram excerpt, 
K is the number of frequency bins, and the response Hi,p{k) is used to 
attenuate high frequencies. 

2. Order the spectrogram excerpts by their distances Fij in ascending order. 
3. Choose a fixed fraction (10%) of the excerpts with the smallest distances, 

and calculate a new template spectrogram with 

Ti{t, k) <~ medid^njes{Pj{t^ A:)}, (5.10) 

where the set «S contains the chosen excerpts. 
4. Repeat Steps 1 to 3 until convergence. 

The median was used in an attempt to suppress the effect of the presence of 
pitched instruments on the drum templates. 
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The actual segment recognition was done with a template-matching method 
stemming from the work of Goto and Muraoka [236] (see p. 139). The system 
was tested on 10 songs from the RWC database [229], and gave a recall rate^ 
of 90% and a precision rate of 90% for the kick drum, and recall and precision 
rates of 83% and 93% for the snare drum. The use of adaption improved the 
results significantly over simple template matching. 

In the system described by Sandvold et al. [561], the adaption took place 
at a higher abstraction level than in the previous systems. Here the models 
used were based on extracted features, rather than a time domain or time-
frequency domain template. After onset detection, segmentation and feature 
extraction, the algorithm consisted of the following steps: 

1. Classify the extracted n segments with a decision tree classifier and general 
instrument models (see Section 5.2.3). 

2. Evaluate the reliability of the classification results, and choose m < n 
most reliable results. 

3. Create signal-specific (localized) models using the chosen m events. 
4. Classify the contents of all the n segments using the localized models. 

The general instrument models were constructed by extracting 115 spectral 
and temporal features from the training data and by choosing the most suit
able subset of them with a correlation-based feature selection algorithm (see 
Chapter 6, p. 182). The reduced feature set consisted on average of less than 
25 features for each class. When constructing the localized models in Step 3, 
all the 115 features were reconsidered and the best subset was again chosen 
with the same method. In this case, nine features per class were sufficient on 
the average. The ranking and selection of the most reliably classified events 
in Step 2 was not done fully automatically. Instead, the result from the clas
sification with general models was corrected and the reliability ranking was 
done manually, thus making the overall system operate semi-automatically. 
The classification algorithm used with the localized models was the A:-nearest 
neighbours algorithm with fc = 1, i.e., a simple instance-based algorithm. 

The method was evaluated with seventeen 20-s excerpts from polyphonic 
audio recordings with manually annotated ground truth. The results suggest 
that the use of localized models reduces the required number of features (the 
average feature set size drops from 25 to 9), and improves the recognition 
result, with the average accuracy improving from 72% to 92%. 

5.3 Separation-Based Approaches 

Having explored event-based approaches for percussion transcription, an al
ternative way of approaching the problem is through the use of source 

^Recall rate is defined as the number of correctly transcribed events divided by 
the number of events in the input. Precision rate is defined as the ratio of correctly 
transcribed events to the total number of events at the output of the system. 
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separation-based techniques. These have some advantages over the event-
based techniques, while at the same time having drawbacks of their own. 
Separation-based techniques can facihtate the analysis of mixtures of drums 
or percussion instruments by separating the instruments into distinct streams, 
which makes the task of transcribing easier. However, a drawback of many 
separation-based methods is that the streams have to be identified after sep
aration. Further, these techniques often have difl^iculties in detecting low-
intensity sounds. Despite these limitations, separation-based methods have 
proven to be a viable way of approaching the problem of percussion 
transcription. 

The most commonly used source separation technique is independent com
ponent analysis (ICA) [96]. Further details on ICA can be found in Chapter 9. 
However, the basic ICA requires as many sensors (microphones) as there are 
sources for separation to occur, whereas in the drum transcription task there 
are usually at most two channels available; in other words, a stereo signal. 
Further, some drums will often be of the same amplitude in both channels, 
particularly snare and kick drums, and so in effect there is only a single channel 
available to separate these drums. As a result, most work using separation-
based approaches has focused on single-channel separation. 

Various methods for separating sound sources from single-channel record
ings have been used, such as independent subspace analysis (ISA) [73], non-
negative sparse coding (NNSC) [299], and non-negative matrix factorization 
(NMF) [400], and all have found uses in the area of percussion transcription. 
ISA has also been used for rhythmic analysis [488]. A detailed description of 
these methods can be found in Chapter 9. Here, discussion of these source 
separation techniques is limited to how they relate to the problem of per
cussion transcription. It is important to note that separation in the context 
of transcription means the separation of frequency and amplitude characteri
stics associated with each source in order to identify and transcribe them, 
as opposed to resynthesis of the separated sources, though resynthesis of the 
separated sources is also possible using these techniques. Methods of source 
resynthesis are presented by FitzGerald in [186]. 

All these techniques assume that the mixture spectrogram matrix X of 
size {K X T), where K is the number of frequency bins and T is the number 
of time frames, results from the superposition of J source spectrograms Y^ 
of the same size. Further, it is assumed that each of the spectrograms Yj 
can be uniquely represented by the outer product of an invariant frequency 
basis function hj of length K and a corresponding invariant amplitude basis 
function (or time-varying gain) gj of length T which describes the gain of the 
frequency basis function over time. This yields 

J J 

x = E Y ; = Eb^gJ- (5.11) 
3 = 1 i = l 
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The above decomposition is typically applied to a magnitude spectrogram, 
though power spectrograms can also be used.^ Where the techniques differ is 
in how the decomposition of the spectrogram X into frequency and ampli
tude basis functions is achieved. The basic ISA method proposed by Casey 
did this by performing principal component analysis (PCA) [320] on the spec
trogram, keeping only a small number of decorrelated frequency lines, and 
then performing ICA on the retained components [73]. Further details on 
PCA can be found in Chapter 2, while details on ISA and ICA can be found 
in Chapter 9. In effect, ISA performs ICA on a low-dimensional representation 
of the original spectrogram. NNSC attempts to balance modelling accuracy 
with the sparseness of the recovered sources while enforcing non-negativity 
on the sources [299], whereas NMF attempts to reconstruct the data using 
non-negative basis functions and a Poisson or Gaussian noise model [400]. 

In practice, the use of invariant frequency basis functions means that no 
pitch changes are allowed over the course of individual spectrograms Yj . How
ever, this is valid for most drum sounds, where the pitch of the drum does not 
change from event to event, making this type of decomposition particularly 
suited for analysing percussive tracks in polyphonic music. 

Figure 5.3 shows the magnitude spectrogram of a drum loop containing 
snare and kick drum hits, while Fig. 5.4 shows the associated amplitude and 
frequency basis functions recovered using NMF. As can be seen from the am
plitude basis functions, the amplitude envelopes of both the snare and the kick 
drum have been well separated, though some evidence of the kick drum is still 
visible in the snare basis function. The frequency basis functions can be seen 
to have captured the overall spectral characteristics of the sources, with the 
kick drum having more low-frequency energy than the snare, and the snare 
having its energy spread over a wider frequency range. This demonstrates 
the usefulness of these techniques for the purposes of drum transcription. 

Nonetheless, from the point of view of percussion transcription, there are 
certain problems with the above-mentioned techniques, regardless of how the 
decomposition is achieved. These can be summarized as follows. 

• Indeterminate source order: sources have to be identified after separation. 
• Estimation of the optimal number of basis functions: keeping a small num

ber of basis functions results in more recognizable features, while recover
ing low-energy sources requires increased numbers of basis functions. 

Further, ISA recovers basis functions which may have negative elements, 
which does not reflect the assumption that the overall magnitude or power 
spectrogram results from the summation of independent spectrograms which 
are non-negative by definition. This can lead to errors in transcription. How
ever, this is not a problem for NNSC and NMF, which constrain non-negativity 
of the sources. FitzGerald discusses these problems in greater detail in [186]. 

^The term 'magnitude spectrogram' refers to a representation which consists of 
the absolute values of the discrete Fourier transform in successive time frames. A 
power spectrogram is obtained as the element-wise square of this. 
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Fig. 5.3. Magnitude spectrogram of a drum loop containing snare and kick drum. 

A number of techniques have been developed in an attempt to overcome the 
above problems, all using prior knowledge about the drums to be transcribed 
[187], [188], [505]. The first of these added sub-band pre-processing to ISA 
[187]. As noted in Section 5.1, the drums in a standard rock kit can be divided 
into membranophones and idiophones. Membranophones have most of their 
energy in the low end of the frequency range, while metal plate idiophones 
have most of their energy spread over the spectrum above 2 kHz. Filtering the 
signal using a lowpass filter with a 1-kHz cut-off frequency and a highpass filter 
with a 2-kHz cut-off frequency allows the membranophones and idiophones to 
be emphasized, respectively. 

This was demonstrated in a system described in [187] that transcribed 
mixtures of snare, kick drum, and hi-hats. Two basis functions were found to 
be sufficient to recover the snare and kick drum from the lowpass-filtered signal 
using ISA, and similarly two basis functions recovered the hi-hats and snare 
from the highpass-filtered signal. To overcome the problem of source ordering, 
it was assumed that the kick drum had a lower spectral centroid than the snare 
drum, and that hi-hats occurred more frequently than the snare drum. 

The system was tested on a set of 15 drum loops consisting of snare, 
kick drum, and hi-hats. The drums were taken from a number of different 
drum sample CDs and were chosen to cover the wide variations in sound 
within each type of drum. A range of different tempos and metres were used 
and the relative amplitudes between the drums varied between 0 dB and 
—24 dB. In total, the test set contained 133 drum events. The success rate was 
evaluated using c = {t — u — i)/t where c is the percentage correct, t is the total 
number of drums, u is the number of undetected drums, and i is the number of 
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Fig. 5.4. Basis functions recovered from the spectrogram in Fig. 5.3. Prom top 
to bottom, they are the kick drum ampUtude basis function, the snare drum am-
phtude basis function, the kick drum frequency basis function, and the snare drum 
frequency basis function. 

incorrectly detected drums. Using this measure, an overall success rate of 90% 
was achieved. However, more effective means of incorporating prior knowledge 
were subsequently developed, and are discussed in the following subsections. 

5.3.1 Prior Subspace Analysis 

Prior subspace analysis was proposed as a means of tackling the problem of 
percussion transcription by combining prior models of drum sounds with the 
source separation techniques mentioned above [188]. PSA uses the same signal 
model as shown in (5.11) earlier. PSA then assumes that there exists known 
frequency subspaces or basis functions bprj that are good initial approxima
tions to the actual subspaces (here the terms subspace and basis function are 
used as synonyms). In other words, it is assumed that frequency basis func
tions such as shown in Fig. 5.4 are available before any analysis of the signal 
takes place, and that these are good approximations to the actual frequency 
basis functions that could be recovered from the signal. Substituting bj with 
these prior subspaces yields 

p r j ^ j • (5.12) 
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In matrix notation, this becomes 

X ^ B p r G , (5.13) 

where Bpr = [bpri,. • •, bpr j] and G = [ g i , . . . , gj] . Estimates of the am-
phtude basis functions can be obtained from 

G = Bpr+X, (5.14) 

where ^ denotes the pseudoinverse. The pseudoinverse of a matrix B can 
here be computed as B+ = (B^B)~^B^, assuming that bprj are hnearly 
independent. The estimated amphtude basis functions gj are not independent, 
and may contain information related to more than one source. This is as 
a result of the broad-band noise-based nature of drum sounds, where the 
occurrence of a given drum will cause a partial match with the prior subspace 
for another drum. 

To overcome this problem and to recover amplitude basis functions which 
are related to only a single source, ICA is carried out on the estimated am
plitude basis functions G to give 

G - W G , (5.15) 

where W is the unmixing matrix obtained from ICA and G contains the inde
pendent amplitude basis functions. This results in amplitude basis functions 
which are generally associated with a single source, though there will still be 
some small traces of the other sources. Improved estimates of the frequency 
basis functions can then be obtained from 

B = XG+. (5.16) 

In this case, the use of the pseudoinverse is justified in that the columns of G"̂  
are orthogonal and do not share any information, and the pseudoinverse can 
be calculated as G"̂  = G^(GG^)~^. The overall procedure can be viewed as 
a form of model adaptation such as is described in Section 5.2.4. 

Figure 5.5 shows a set of priors for snare, kick drum, and hi-hat, respec
tively. These priors were obtained by performing ISA on a large number of 
isolated samples of each drum type and retaining the first frequency basis 
function from each sample. The priors shown then represent the average of 
all the frequency basis functions obtained for a given drum type. Priors could 
be obtained in a similar way using some other matrix-factorization technique 
such as NMF (see Chapter 9 for further details). It can be seen that the priors 
for both kick drum and snare have most of their energy in the lower regions 
of the spectrum, though the snare does contain more high-frequency informa
tion, which is consistent with the properties of membranophones, while the 
hi-hat has its frequency content spread out over a wide range of the spectrum. 

The use of prior subspaces offers several advantages for percussion in
struments. First, the number of basis functions is now set to the number of 
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Fig. 5.5. Prior subspaces for snare, kick drum, and hi-hat. 

prior subspaces used. Second, the use of prior subspaces alleviates the bias 
towards sounds of high energy inherent in blind decomposition methods, al
lowing the recovery of lower-energy sources such as hi-hats. Thus, the use of 
prior subspaces can be seen to go some distance towards overcoming some of 
the problems associated with the use of blind separation techniques, and so 
is more suitable for the purposes of percussion transcription. 

A drum transcription system using PSA was described in [188]. Again, 
the system only transcribed signals containing snare, kick drum, and hi-hats 
without the presence of any other instruments. Prior subspaces were generated 
for each of the three drum types, and PSA performed on the input signals. 
Once good estimates of the amplitude basis functions had been recovered, 
onset detection was carried out on these envelopes to determine when each 
drum type was played. To overcome the source-ordering problem inherent in 
the use of ICA, it was again assumed that the kick drum had a lower spectral 
centroid than the snare, and that hi-hats occurred more frequently than the 
snare. When tested on the same material as used with sub-band ISA (see 
p. 145 for details), a success rate of 93% was achieved. 

5.3.2 Non-Negative Matrix Factorization-Based Prior Subspace 
Analysis 

More recently, an improved formulation of PSA has been proposed for the 
purposes of drum transcription [505], based on using an NMF algorithm with 
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priorly fixed frequency basis functions Bpr- The NMF algorithm estimates 
non-negative amphtude basis functions G so that the reconstruction error of 
the model (5.13) is minimized. 

This offers a number of advantages over the original formulation of PSA. 
First, the non-negative nature of NMF is more in keeping with the data being 
analysed, in that the spectrogram is non-negative, and so a decomposition 
that reflects this is likely to give more realistic results. Second, keeping Bpr 
fixed eliminates the permutation ambiguities inherent in the original PSA 
algorithm. This allows the elimination of the assumptions necessary to identify 
the sources after separation, and permits the algorithm to function in a wider 
range of circumstances. 

The NMF-based algorithm estimates G by first initializing all its elements 
to a unity value and then iteratively updating the matrix using the rule 

G.x B p / ( x . / ( B p r G ) ) ] ./ [ B p / l ] , (5.17) 

where .x and ./ denote elementwise multiplication and division, respectively, 
X is the signal spectrogram, and 1 is an all-ones matrix of size equal to X. 
When tested on the same test material as subband ISA (see p. 145), a success 
rate of 94% was obtained. 

A transcription system using the NMF-based algorithm was presented by 
Paulus and Virtanen [505]. The mid-level signal representation was a mag
nitude spectrogram with only five frequency bands (20-180 Hz, 180-400 Hz, 
400-1000 Hz, 1-10 kHz, and 10-20 kHz), with an analysis frame length of 
24 ms and frame overlap of 75%. The fixed instrument priors were calculated 
from a large set of training samples, by factorizing each sample with NMF 
into an outer product of an amplitude basis function and a frequency basis 
function. The frequency basis functions of all samples of a given individual 
sound type were averaged to yield bpr. The time-varying gains were calcu
lated by iteratively applying (5.17) while the source spectra were kept fixed. 
The onsets were detected from the calculated gains with a variation of the 
onset detection algorithm described in [349]. 

The performance of the transcription system was evaluated with acoustic 
material consisting of different drum kits recorded in different environments, 
in total giving four different recording sets. In each recording set, five different 
sequences were recorded, resulting in a total of 20 signals. The sequences were 
fairly simple patterns containing mostly kick drum, snare drum, and hi-hat. 
Two monophonic mix-downs of the signal were produced: a dry, unprocessed 
mix with only levels adjusted, and a wet, 'production grade' mix with com
pression, reverb and other effects, which attempted to resemble drum tracks 
on commercial recordings. Also evaluated using this material were the SVM 
classifier-based event recognition method [209], as implemented by Paulus, 
and the earlier PSA method [188] as implemented by the original author. 

All three systems were trained with the same material to the extent that 
was possible. The spectral basis functions for the NMF system and PSA were 
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calculated from the same set of unprocessed samples. For the NMF-based 
system, onset-detection thresholds were obtained by analysing a set of training 
signals and setting the threshold to a value minimizing the number of detection 
errors. For PSA, the source-labelling rules and fixed threshold values from the 
original publication were used. The SVM-based classifier was trained so that 
when analysing the dry (wet) signals, the training features were also extracted 
from the dry (wet) signals. This may have given the SVM method a shght 
advantage compared to the other systems. 

The NMF-based system performed best of the methods, with the dry mix 
material having a hit rate of 96% compared to the 87% of the SVM method 
and 67% of PSA. The performance gap became smaller with the production-
grade mixes, but the NMF-based method still had a hit rate of 94% compared 
to the 92% of SVM method and 63% of PSA [505]. 

5.3.3 Prior Subspace Analysis in the Presence of Pitched 
Instruments 

A modified version of the original PSA algorithm was found to be effective 
in transcribing snare, kick drum, and hi-hats/ride cymbals from recordings of 
polyphonic music [189]. The modifications were required because the presence 
of a large number of pitched instruments will cause a partial match with the 
prior subspace used to identify a given drum, which can make detection of 
the drums more difficult. However, it should be noted that pitched instruments 
have harmonic spectra with regions of low intensity between the overtones or 
partials. As a result, when pitched instruments are playing there will be re
gions in the spectrum where little or no energy is present due to pitched 
instruments. It was observed that good frequency resolution reduced the in
terference due to the pitched instruments, and so improved the likelihood of 
recognition of the drums. 

In the case of snare and kick drum, setting all values in the initial estimates 
of the amplitude basis functions G below a fixed threshold to zero was found 
to be sufficient to eliminate the interference. ICA was then performed on these 
thresholded basis functions to obtain better estimates for snare and kick drum. 
In the case of hi-hats/ride cymbals, the interference was often considerably 
worse, and simple thresholding was insufficient. However, most of the energy in 
pop and rock sounds is in the lower region of the spectrum, and, as already 
noted, the energy of the hi-hats is spread across the spectrum. Therefore, the 
average power spectral density (PSD) [639] over the whole duration of each 
excerpt was calculated, and the spectrogram then normalized by it. This is 
equivalent to highpass filtering the signal, but in each case the filter takes 
into account the characteristics of the signal being filtered. The hi-hat prior 
is then multiplied with the PSD-normalized spectrogram to obtain the hi-hat 
subspace. 

The modified algorithm then consisted of carrying out ICA on the thresh
olded snare and kick drum subspaces, followed by onset detection to identify 
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these drums, and then onset detection on the hi-hat subspace recovered from 
the PSD-normahzed spectrogram. As the hi-hat subspace no longer under
goes ICA with the other drums, the algorithm loses the ability to distinguish 
between a snare on its own and a snare and hi-hat occurring simultaneously. 
Fortunately, in many cases these drums do occur simultaneously and so this 
results in only a small reduction in the efficiency of the algorithm. When tested 
on a database of 20 excerpts from pop and rock songs taken from commercial 
CDs, an overall success rate of 83% was achieved. 

Attempts to extend the basic PSA method to include other drums such 
as tom-toms and cymbals met with mixed success. Extensive testing with 
synthetic signals revealed that this was due to the fact that when the main 
regions of energy of different sources overlap, as is often the case with drums 
such as snares and tom-toms, then the sources will not be separated correctly 
[186]. 

5.3.4 Input-Generated Priors 

Attempts have been made to overcome the limitations of PSA by generating 
frequency basis functions from the input signal which can then be used as 
priors in a PS A-type framework, rather than using general priors. These basis 
functions should then be better able to exploit differences in the spectra of the 
drums present. To date, two systems have made use of this approach [190], 
[147]. 

The system described by FitzGerald in [190], which worked on signals con
taining drums only, models each event that occurs in the signal and generates 
similarity measures between each event, which are used to group the events. 
These groups are then used to generate frequency basis functions from the 
input signal which can then be used as priors. 

Membranophone events were identified by onset detection in the amplitude 
envelopes obtained from 

G = Bp/X, (5.18) 

where, in this case, Bpr contains only snare and kick drum priors. This was 
also sufficient to recover tom-tom onsets. Onset times were then determined, 
and the sections of the spectrogram between each event obtained. PCA was 
then used to obtain a frequency basis function to represent each section. The 
resulting frequency basis functions were then clustered and an average fre
quency basis function was obtained for each of the groups. 

To overcome the most commonly occurring membranophone overlap, that 
of snare and kick drum, the groups most likely to correspond to snare and 
kick drum were identified. All tom-tom events in the original spectrogram 
were then masked. PSA was performed on the resulting spectrogram, and the 
snare and kick drum events identified. Other membranophone overlaps were 
assumed not to occur as they are not very common, as can be seen in Fig. 5.2. 

To detect idiophones, (5.18) is applied to a PSD-normalized spectrogram 
using only a hi-hat prior subspace to yield an idiophone amplitude envelope. 
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As traces of both snare and tom-toms will occur in the idiophone envelope, 
an amplitude envelope for snare/tom-toms is obtained by masking kick drum 
events in the original spectrogram, and multiplying the resulting spectrogram 
by a snare frequency subspace, again using (5.18). ICA is then performed to 
separate the snare/tom-tom amplitude envelope and the idiophone amplitude 
envelope. Onset detection on the resulting independent idiophone envelope 
then yields the idiophone events. 

Grouping is then carried out on the idiophones. If two large groups occured 
that did not overlap in time, then both hi-hat and ride cymbal were assumed 
to be present; otherwise all events were allocated to the same drum. The 
justification for this is detailed in [190]. Unfortunately, though the algorithm 
distinguished between ride cymbal and hi-hats, it did not identify which was 
which. When tested on a database of 25 drum loops, a success rate of 90% 
was obtained using the same measure as sub-band ISA. 

Dittmar et al. described a system which attempted to transcribe drums in 
the presence of pitched instruments [147]. To enable recovery of low-energy 
sources such as hi-hats and ride cymbals, the high-frequency content of the 
signal was boosted in energy. A magnitude spectrogram of the processed sig
nal was obtained, and then differentiated in time. This suppressed some of 
the effects of the sustained pitched instruments present in the signal, be
cause their amplitudes are more constant on a frame-by-frame basis than 
that of transient noise, and so when differentiated will have a smaller rate of 
change. 

Onset detection was then carried out and the frame of the difference spec
trogram at each onset time extracted. As the extracted frames contain many 
repeated drum events, PCA was used to create a low-dimensional represen
tation of the events. J frequency components were retained and non-negative 
ICA [526] performed on these components to yield B, a set of independent 
basis functions which characterized the percussion sources present in the 
signal. The amplitude envelopes associated with the sources were obtained 
from 

G - B ' ^ X , (5.19) 

where G are the recovered amplitude envelopes, and X is the original spec
trogram. A set of differentiated amplitude envelopes was then recovered 
from 

G - B ' ^ X ' , (5.20) 

where G are the differentiated amplitude envelopes and X' is the differentiated 
spectrogram. Correlation between G and G was used to eliminate recovered 
sources associated with harmonic sounds, as sustained harmonic sources will 
tend to have lower correlation than percussive sources. 
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The problem of determining the required number of components was ap
proached by retaining a set number of components and then matching the 
recovered components to percussion instrument templates. Drum onsets were 
then identified by onset detection on the recovered amphtude envelopes. 

5.3.5 Non-Negative Sparse Coding 

The system proposed by Virtanen made use of NNSC to transcribe drums 
in the presence of pitched instruments [650]. The NNSC algorithm used was 
similar to that described by Hoyer in [299], with additional constraints to 
encourage temporal continuity of the sources. The optimization was carried 
out to obtain sparse amplitude basis functions, but sparse spectra were not 
assumed. A power spectrogram was used as the input to the system. 

The described transcription system attempted to transcribe snare and kick 
drums in the presence of pitched instruments, and was tested using signals 
synthesized from MIDI files. The system separated a pre-defined number of 
basis functions, and then searched for frequency basis functions that matched 
well with the template spectra of either the snare or kick drum. The goodness 
of fit of a given source to a given template was calculated as 

' [b^]fc-f6 

[^pr i]k + e 
(5.21) 

k=l I 

where hpri denotes the template spectrum of drum z, bj is the frequency 
basis function for source j , /c is the frequency bin index, K is the number of 
frequency bins, and e is a small positive value to ensure that the logarithm is 
robust for small values. 

Once sources associated with both snare and kick drum had been identi
fied, onset detection was done on the amplitude envelopes of these sources. 
An overall success rate of 66% was obtained for this system. The templates 
were obtained by separating a number of sources in training material, and 
averaging the frequency basis functions of the sources whose amplitude ba
sis functions showed temporal correlation with the kick or snare drums in a 
reference annotation. 

As can be seen from the above, the use of source separation methods has 
shown great utility for the purposes of unpitched percussion transcription, 
overcoming some of the disadvantages of event-based systems, but at the cost 
of some other problems. Further, despite the success of such systems to date, 
there still remains much work to be done in improving the performance of 
separation-based percussion transcription systems. 

5.4 Musicological Modelling 

Many of the presented transcription systems concentrate only on low-level 
recognition, without any processing at a higher abstraction level. When 
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compared to methods for automatic speech recognition, this resembles the 
situation where each phoneme is recognized independently of its context. It 
was noted quite early that by utilizing linguistic knowledge, speech recognition 
performance could be improved considerably [321]. It is reasonable to assume 
that incorporating similar ideas in music transcription can result in improved 
performance. Here we use the term 'musicological modelling' to refer to at
tempts to model the statistical dependencies of event sequences. There has 
been relatively little work done utilizing such models in percussion transcrip
tion. However, some methods have been proposed, and these are discussed in 
the following [590], [506], [504], [211], [209]. 

5.4.1 Enabling High-Level Processing 

Usually, high-level processing consists of some sort of probabilistic modelling 
of the temporal relations between sound events. In practice, this requires that 
the low-level recognition results must also be presented as a probability or 
likelihood value. Some classification methods, for example Gaussian mixture 
models, produce probabilities as their output directly, whereas the result of the 
other methods has to be mapped to a probability value. There has not been 
much research on how to do this with different classifiers, with the exception 
of the work done on moderating SVM outputs into probability values [381], 
[524], [423], [424], [156]. The different methods have been evaluated by Riiping 
[556], and the results suggest that Piatt's method [524] performs best. 

The output of a binary SVM classifier is a real number, where the decision 
border between the classes resides at the value zero. Usually, the classification 
is done according to the sign of the output value. Given the SVM output value 
fi of the zth sample, Piatt proposed that the probability of the sample to be 
from the positive class can be calculated with a sigmoid 

where a and /? are sigmoid parameters estimated by Piatt's algorithm. 
Another possible way of estimating likelihood values from the numerical 

result of a non-probabilistic classifier is to utilize a histogramming method 
called binning, described by Zadrozny and Elkan [686]. The output values fi 
of the classifier are analysed for the training data, and a histogram of B bins 
is constructed. At the recognition stage, each output value of the classifier 
can be assigned to one of the bins. The probability of the classified sample to 
belong to class c is then calculated as the fraction of the training samples in 
the assigned bin that actually were from the class c. 

5.4.2 Short-Term Context Modelling 

Contextual information can be represented with a model separate from the 
low-level signal analysis, or it can be taken into account within the low-level 
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recognition algorithm. In the former, the context modelhng is done exphc-
itly, whereas in the latter, it takes place more implicitly. Several methods for 
modelling sequential dependencies are reviewed by Dietterich [146]. Among 
the implicit methods, only the sliding window technique has been used in 
percussion transcription [210]. 

The sliding window method utilizes the feature values of the neighbouring 
segments in the recognition of a given segment. In addition to the feature 
vector Oi of the segment z, the features Oi-^^^..., o^, . . . , O -̂̂ A^̂  of the sur
rounding 2Â w segments are used by concatenating them into one large feature 
vector which is used for the classification. The window of features is slid over 
the whole signal to be analysed. The sliding window method was utilized by 
Gillet and Richard in [210] to improve the performance of their earlier method 
[209]. The applied window was very short, utilizing only the features of one 
preceding event. Combined with decorrelating the features with PC A, the 
gained performance improvement was on average 3 to 4 percentage units. 

The simplest form of explicit musicological modelling is the use of prior 
probabilities for events. Depending on the selected approach, this means either 
the probabilities of individual drum events or different drum combinations to 
be present. Paulus and Klapuri applied the latter type of priors in a system 
which was trained to recognize 127 different drum combinations (see p. 139 
above) [506]. By using prior probabilities that resembled the profile in Fig. 5.2, 
the error rate of the system decreased from 76% to 50%. 

Even though the prior probabilities themselves are helpful in the over
all task, they cannot model the sequential dependencies between consecutive 
events. In percussive sequences, as with natural languages, the preceding con
text makes some continuations more probable than the others. This sequential 
dependence can be modelled with A^-grams. 

The AT-grams rely on the Markov assumption that the event Wk, occur
ring at the time instant k, depends only on the preceding N — 1 events 
Wk-N+ii"' I'^k-i^ instead of the complete history. Using wi:k to denote a 
sequence of events wi,W2^. • - ,Wk^ the Markov assumption can be written as 

p{Wk\wi:k-l) = p{Wk\Wk-N-^l:k-l)' (5 .23) 

To enable the use of A-grams, the concept of an 'event' itself has to be 
defined. For example, Paulus and Klapuri [506] estimated a grid of equidistant 
tatum pulses over the performance and considered the combination of drum 
sounds starting at grid point A: as a mixture-event Wk, for which A'-gram 
models were estimated and used. 

Usually the A'-gram probabilities are estimated from a large body of train
ing material by 

/ I X C{Wk-N-^l:k) /p, r>.x 
p[Wk\Wk-N-\-l:k-l) = -pTi ^ ' (^•24) 

(^{Wk-N+l:k-l) 

where C{wk-N+i\k) is the number of occurrences (count) of the sequence 
Wk-N-\-i:k in the training material [321]. The set of probabilities for all possible 
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sequences of length N is called the A^-gram model. These can be used to assess 
the likelihoods of different event sequences in percussion transcription, or to 
predict the next event. 

If the events in the sequence are drawn from a dictionary of size D, there 
are D^ probabilities that need to be estimated for an TV-gram of length N. 
This imposes requirements on the size of the training data set in order that the 
resulting A/'-grams do not contain too many zero-probability entries. Usually, 
such entries cannot be completely avoided, so methods for reducing their effect 
have been developed. The zero-probabilities can either be smoothed (given a 
non-zero value) with a discounting method like Witten-Bell discounting [673] 
or Good-Turing discounting [218], [90], or the required probability can be 
estimated from lower-order A'-grams with the back-off method suggested by 
Katz [336] or with the deleted interpolation algorithm by Jelinek and Mercer 
[317]. An interested reader is referred to the cited publications for details. 

The sound event A"-grams in music analysis are directly analogous to the 
word A^-grams in speech recognition. Moreover, as the words in speech are con
structed from individual letters or phonemes, the mixture-events in percussive 
tracks may consist of multiple concurrent sounds from different instruments. 
The main difference between these two is that in speech recognition, the order 
of individual letters is important and the letters in consecutive words rarely 
have any direct dependence, whereas in musicological A'-grams, the mixture-
events consist of co-occurring sound events which alone exhibit dependencies 
between the same sound event in the neighbouring mixtures. This observa
tion can be utilized to construct AT-gram models for individual instruments, 
as suggested by Paulus and Klapuri [506]. 

When the set of possible instruments {ui,U2,..., UM} is defined, with the 
restriction that each instrument can only occur once in each mixture-event, 
the problem of estimating mixture-event A^-grams can be converted into the 
problem of estimating A'-grams for individual instruments. In other words, 
at each time instant k the instrument Ui has the possibility of being present 
in the mixture Wk or not. By using this assumption, the probability estimate 
from (5.23) becomes 

p{Wk\Wk-N+l:k-l) = Yl Pi^iM'^hk-N-^l-.k-l) 

Uj ^Wk 

where p{ui^k) is the probability of the instrument Ui to be present at the 
temporal location k. 

Separate A'-grams for individual instruments have a clear advantage over 
the A'-grams for mixture-events when considering the training of the model. 
If there are M different instruments available, then there are 2 ^ different 
mixture-events, requiring a total of 2^^^ probabilities to be estimated for the 
mixture-event A^-grams. When using separate A'-grams for the instruments. 
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each model has only a binary dictionary, leading to a total of M2^ probabili
ties to be estimated. This alleviates the zero-frequency problem significantly: 
the sharply concentrated prior distribution of different mixture-events (see 
Fig. 5.2) means that some of them occur too rarely for reliable probability 
estimation, even in a large training set. 

The main problem with individual instrument A^-grams is that they lack 
information about simultaneously occurring events. Each A^-gram 'observes' 
only the presence of its own instrument without any knowledge of the other 
co-occurring instruments. As a result, the model may give overly optimistic 
or pessimistic probabilities to different mixture-events. One possible way to 
address this problem is to use the prior probabilities of the mixture-events in 
connection with (5.25), as proposed in [506]. 

Musicological prediction can also be done using simpler modelling. For 
example, if two occurrences of the same event type took place with time 
interval t/^, its occurrence can be predicted again after another interval of IA-
A system relying on this type of modelling was proposed by Sillanpaa et al. 
in [590]. 

5.4.3 Modelling of Periodic Dependencies 

The fact that A^-grams only use the directly preceding events to predict the 
next event is a minor drawback, considering their usage in music or percus
sive sound analysis. In particular, the percussive content of music generally 
exhibits repeating patterns. Even though they contain the same sequential 
data within the musical piece, the patterns tend to vary between pieces. As 
a result, temporal prediction operating on immediately preceding events may 
not be the most efficient way to model repeating rhythmical patterns. 

Based on the above observation, Paulus and Klapuri proposed the use of 
periodic A^-grams [506] where, instead of using the directly preceding Â  — 1 
events, the idea is to take the earlier events separated by an interval L. That is, 
when predicting the event at temporal location k. instead of using the events 
at locations k — N + l^k — N-[-2,...,k— 1. use the events at the locations 
k-{N - 1)L, k-{N - 2 )L , . . . , A: - L. The A^-gram model of (5.23) is then 
reformulated as 

p{Wk\wi:k~l) = P(^A;k/c-(;V-l)L^/c-(7V-2)L • • • U)k-L)- (5.26) 

It is easy to see that by assigning L — 1, the model reduces to the standard 
A^-gram of (5.23). The repeating patterns tend to occur at integer multiples 
of the musical-measure length of the the piece. Due to this, it was suggested 
that the interval L should be set to correspond to the measure length A of the 
piece under analysis. 

The idea of the normal and the periodic A^-grams are illustrated in Fig. 5.6. 
The horizontal arrow represents the use of a normal trigram (A^-gram of length 
3) to predict the event at the location of the question mark, whereas the 
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Fig. 5.6. The idea of the normal and periodic A '̂-grams illustrated. Time is quantized 
to a tatum grid, each box representing a segment between two grid points. Time 
flows from left to right continuing on the next row, each row being one musical 
measure. The letters represent the drum instruments played at the corresponding 
time instants (B is kick drum, S is snare drum, H is hi-hat, T is tom-tom, and C 
is cymbal). The horizontal arrow represents a normal trigram prediction, and the 
vertical arrow represents a periodic trigram prediction. The measure length here is 
eight tatum periods and L = 8 is set accordingly. 

vertical arrow illustrates the use of a periodic A '̂-gram. It should be noted 
that both the TV-gram types can be constructed either for mixture events or 
individual instruments. The latter type of models can be visualized by looking 
at only one hit type (letter) at a time. For example, when estimating the 
probability of a hi-hat event occurring at the position of the question mark, 
the model observes only that the two preceding mixtures contain a hi-hat hit. 

Use of different A^-gram models was evaluated in [506]. The low-level analy
sis was done by creating a tatum grid over the signal, based on manually 
annotated information. Then a set of features was extracted at each seg
ment between two grid points, and a combination of GMMs and an SVM was 
used to recognize its contents. A separate GMM was trained for each possible 
mixture-event, and an SVM was used as a silence detector. At each segment, 
the low-level recognition produced likelihoods for diflPerent mixture events. The 
actual transcription was done simply by choosing the mixture having the high
est likelihood at each grid point. The acoustic recognition result was relatively 
poor, with an instrument event error rate of 76%. All the high-level process
ing methods were added on top of this. On adding the mixture-event prior 
probabilities, the error rate dropped to 50%. With mixture-event bigrams 
and trigrams, the periodic version performed slightly better than the stan
dard ones. Also, the longer A^-grams for individual instruments with N = 5 
and Â  = 10 performed better than the shorter mixture-event A''-grams. The 
best result, obtained with traditional non-periodic A/̂ -grams for individual in
struments using N = 10, still had a 46% error rate. This demonstrates that 
musicological models cannot greatly improve the overall result if the low-level 
recognition results are poor to start with. Instead, they require suflSciently 
accurate information to be available from low-level recognition to be able to 
make proper assumptions about the musical structure and improve the overall 
result. 
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5.4.4 Modelling of Compositional Rules 

Musicological models have been most commonly used in connection with su
pervised classification methods, such as GMMs and HMMs, but they can also 
be employed with unsupervised methods, such as event clustering. This was 
done by Paulus and Klapuri, who used a musicological model to label per
cussive sound events with instrument names of the regular rock/pop drum 
kit, even though the input signal was produced using arbitrary sounds [504]. 
In other words, the input signal was a percussive sequence created with non-
drum sounds, like speech sounds or tapping different objects, and the output 
transcription was intended to map these to a normal drum kit. Because the 
labelling or mapping could not be determined from the acoustic properties 
of the sounds, it was done with a simple musicological model of drum loops. 
The model consisted of the probabilities of different percussive instruments to 
be present at different temporal locations within a musical measure. This re
quires that the boundaries of musical measures are located in the input signal, 
which can be done with the methods discussed in Chapter 4. 

The system presented by Paulus and Klapuri [504] operated with the fol
lowing steps. First, temporal segmentation was carried out by onset detection. 
Acoustic features were extracted at each segment and, based on these, the seg
ments were clustered into K categories. The onset times were then quantized 
to an estimated tatum grid. At this point, each tatum grid point contained 
information as to which cluster the sound event at that point belonged to. 
Finally, suitable labels for the clusters were determined so that the generated 
sequence would make sense when performed with a drum kit. 

The above labelling problem was formulated as finding a mapping M from 
the K clusters to the available labels M: {0,1, 2 , . . . , K } -^ {0 ,5 ,5 , i 7} , 
where the labels denote silence, kick drum, snare drum and hi-hats, respec
tively.^ As the total number of different mappings was relatively small, all 
of them could be tested and the best one chosen. The likelihood of a certain 
mapping M was evaluated with 

p{M) = Wp{qi\n,,\),^ (5.27) 
i 

where p{M) is the likelihood of the mapping, and p{q\n^ A) is the probability 
of the label q to be present at the temporal location n G { 0 , . . . , A — 1} when 
the length of the musical measure is A. The total likelihood is calculated over 
the whole signal containing all the events z. 

The system was evaluated with acoustic signals synthesized from a com
mercial MIDI database comprising a wide variety of different percussive tracks 
[305]. The synthesis was done by using sampled speech sounds and the sounds 
of tapping different objects in an ofRce environment. There were fifteen sam
ples for each sound type, and each synthesized hit was randomly selected 

^In the general case, K does not need to be equal to the number of available 
labels. 
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from this set to produce realistic acoustic variation to the synthesis result. 
The overall error rate of the system was 34%. Error analysis revealed that 
there were large differences in performance between different genres, and the 
genres with simpler rhythmic patterns were labelled more accurately. 

It has been established that musicological modelling is useful in the con
text of percussive sound transcription. However, the low-level analysis has to 
be done sufficiently accurately before the musicological modelling can really 
improve the results obtained. Further, the methods required to combine low-
level acoustic recognition with the high-level modelling still need development. 
As percussive patterns tend to be different in different time signatures, styles, 
and genres, specific models for each of these could be developed. 

5.5 Conclusions 

An overview of the current state of the art in unpitched percussion transcrip
tion has been presented. This encompassed both event-based and separation-
based systems, as well as efforts to include high-level language modelling to 
improve system performance. As can be seen, there has been considerable 
effort expended on tackling the problem of percussion transcription in the 
past few years, and a summary of the important systems to date is presented 
in Table 5.1. 

At present, the best performance has been obtained on systems that focus 
on a reduced number of drums: snare, kick drum, and hi-hats in the drums-
only case, and snare and kick drum in the presence of pitched instruments. 
This is unsurprising in that the complexity of the problem is greatly reduced 
by limiting the number of target instruments. Nonetheless, these systems do 
deal with the most commonly occurring drums, and so represent a good start
ing point for further improvements. 

As noted above, many of the systems do not take into account the pre
dictability of percussion patterns within a given piece of music. However, it 
has been established that the use of musicological modelling does consider
ably improve the performance of a system using only low-level processing. In 
particular, it should be feasible to integrate musicological modelling to many 
of the separation-based models. 

There has also been a trend towards adaptive systems that take into 
account the characteristics of the signals being analysed when attempting 
transcription, both in event-based and separation-based systems. This is an 
attempt to overcome the large variances in the sounds obtained from a given 
drum type such as a snare drum. For example, drums in a disco-style genre 
have a totally different sound to those in a heavy metal-style piece. These 
adaptive systems are to be encouraged, as a system that can be tailored to 
suit individual signals is more likely to produce a successful transcription than 
a system which makes use of general models. 
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Table 5.1. Summary of percussion transcription systems. The column Classes con
tains the number of percussion classes covered by the system. Method describes 
the overall approach, E for event-based systems, S for separation-based systems, 
M for systems including musicological modelling, and A for systems using adaptive 
modelling. An X in Drums only indicates that a system operates on signals con
taining drums only. Mono/Poly shows whether the system can detect two or more 
simultaneous sounds 

Authors Classes Drums Mono/ Method Main algorithms 
only Poly 

Dittmar & Uhle [147] 
FitzGerald et al. [187] 
FitzGerald et al. [188] 
FitzGerald et al. [189] 
FitzGerald et al. [190] 
Gillet & Richard [209] 
Goto & Muraoka [235] 
Goto [221] 
Gouyon et al. [250] 
Herrera et al. [287] 
Herrera et al. [285] 
Paulus & Klapuri [506] 
Paulus & Virtanen [505] 
Sand void et al. [561] 
Sillanpaa et al. [590] 
Van Steelant et al. [608] 
Virtanen [650] 
Yoshii et al. [682] 
Zils et al. [693] 

5 
3 
3 
3 
7 
8 
9 
2 
2 
9 
33 
7 
3 
3 
7 
2 
2 
2 
2 

X 
X 

X 
X 
X 

X 
X 
X 
X 
X 

P 
P 
P 
P 
P 
P 
P 
P 
m 
m 
m 

P 
P 
P 
P 
P 
P 
P 
m 

S+A 
S 

S+A 
S 

S-hA 
E+M 

E 
E 
E 
E 
E 

E+M 
S 

E+A 
E+M 

E 
S 

E+A 
E+A 

Non-negative ICA 
Sub-band ISA 
PSA 
PSA 
Adaption & PSA 
HMM, SVM 
Template matching 
Frequency histograms 
Feature extraction 
Various 
Various 
GMMs & A^-grams 
NMF 
Localized models 
Template matching 
SVMs 
Sparse coding 
Template matching 
Template matching 

A problem with the research on percussion transcription to date has been 
the lack of comparability of results. This is due to varying problem formula
tions, and to the use of disparate test sets and evaluation measures. The two 
different comparative evaluations mentioned above (see pp. 148 and 149) are 
among the few tha t have compared different systems on the same test data . 
Recently, however, a number of different transcription systems were evaluated 
in the framework of the Audio Drum Detection contest^ organized in connec
tion with the 6th International Conference on Music Information Retrieval. 
The contest is a clear step towards an extensive and regular comparative 
evaluation of different methods. 

Given the noticeable progress in percussion transcription in the past few 
years, it is hoped tha t the future will see a further improvement in the per
formance of the systems, and, as the performance of the systems improves, 
in the range of percussion instruments covered. The problem is still far from 

^The results are available at www.music-ir.org/mirexwiki. 
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solved, and it is hoped that this chapter reflects only the beginning of the 
study of unpitched percussion transcription. 
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6.1 Introduction 

This chapter discusses the problem of automatically identifying the musical 
instrument played in a given sound excerpt. Most of the research until now 
has been carried out using isolated sounds, but there is also an increasing 
amount of work dealing with instrument-labelling in more complex music sig
nals, such as monotimbral phrases, duets, or even richer polyphonies. We first 
describe basic concepts related to acoustics, musical instruments, and percep
tion, insofar as they are relevant for dealing, with the present problem. Then, 
we present a practical approach to this problem, with a special emphasis on 
methodological issues. Acoustic features, or, descriptors, as will be argued, are 
a keystone for the problem and therefore we devote a long section to some of 
the most useful ones, and we discuss strategies for selecting the best features 
when large sets of them are available. Several techniques for automatic classi
fication, complementing those explained in Chapter 2, are described. Once the 
reader has been introduced to all the necessary tools, a review of the most rele
vant instrument classification systems is presented, including approaches that 
deal with continuous musical recordings. In the closing section, we summarize 
the main conclusions and topics for future research. 

6.1.1 Classification in Humans and Machines 

Classification, in practical terms, refers to the process of assigning a class label 
to a given observation. This observation is typically described as a numerical 
vector that represents some features of the observation. In the case of mu
sic analysis systems, the features are computed from the raw audio signal by 
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means of signal processing techniques. Class labels are by definition categori
cal data types representing some kind of generalization about the observable 
world. They are usually organized by means of structures, such as taxonomies 
and ontologies, that exhibit the following ideal features: (1) consistency in 
the principles of classification, (2) mutual exclusiveness of categories, and (3) 
completeness, i.e., total coverage of the universe that they attempt to describe 
[46]. 

The interest in automatic classification of musical instrument sounds is 
manifold: 

• From the acoustics point of view, to understand what makes the sound of 
a given instrument 'identifiable' among other instruments; 

• From the perceptual perspective, to understand what makes the sounds of 
two different instruments 'similar'; 

• From the sound hbrarian perspective, to automatically provide labels for 
retrieving desired items from sound sample databases or synthesizer li
braries; 

• From the musicological point of view, to locate solo sections or the ap
pearance of a certain instrument in a musical recording. 

Classification learning can proceed in a supervised way, where the system 
is provided with training data and the corresponding labels that should be 
associated with them, or in an unsupervised way, where there is no label to be 
associated with a given example but the system groups objects according to 
some similarity or homogeneity criteria. In the latter case, we are effectively 
doing clustering^ a task that is slightly different from classification [674]. 

The supervised classification procedure can in general be described as fol
lows (see Fig. 6.1): 

1. Acoustic features are selected to describe sound samples. 
2. Values of these features are computed for a labelled training database. 
3. A learning algorithm that uses the selected features to learn to discrimi

nate between instrument classes is applied and fine tuned, exploiting the 
training database. 

4. The generalization capabilities of the learning procedure are evaluated by 
classifying previously unseen sound samples (cross-validation). 

Research on the automatic classification of musical instruments sounds 
has focused, for a long time, on classifying isolated notes from different in
struments. This is an approach that has a very important trade-off: we gain 
simplicity and tractability, as there is no need to first separate the sounds 
from a mixture, but we lose contextual and time-dependent cues that can 
be exploited as relevant features when classifying musical sounds in complex 
mixtures. 

Human discrimination of sound sources is based on spectral and tempo
ral cues that are extracted by the early processing in the cochlea and up 
to the primary auditory cortex, whereas class decisions seem to be made in 
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Fig. 6 .1 . Diagram of the different operations involved in setting up an automatic 
classification system for musical instrument sounds. The training set is described by 
extracting an initial set of features that is refined by means of feature transformation 
and selection algorithms. The resulting set of selected features is used to train and 
validate (i.e., fine-tune) the classifier. Validation can be done using a different set 
of sounds (not shown here) or different partitions of the training set. When fine-
tuning is finished, the classifier is tested with a test set of sounds in order to assess 
its expected performance. At the right side of the diagram, using dotted elements, 
the automatic classification of an unlabelled (i.e., previously unseen) sound file is 
illustrated. 

higher auditory centres [260]. In the case of pitched musical instruments, the 
relative strengths of the overtone partials (see Fig. 6.2) determine, to a cer
tain extent, t imbre sensations and identification. It seems tha t , for sustained 
sounds, the steady segment provides much more information than the attack, 
though the latter cannot be completely neglected [270]. Timbre discrimina
tion experiments, where sounds are altered in subtle or dramatic ways and 
the listeners indicate whether two different versions sound the same, have 
provided cues concerning the relevant features for sound classification. Grey 
and Moorer [254] found tha t microvariations in amplitude and frequency are 
usually of little importance, and tha t the frequency and amplitude envelopes 
can be smoothed and approximated with line segments without being noticed 
by the listeners. Changes in temporal parameters (i.e., a t tack time, modula
tions) may have a dramatic impact on the discrimination of timbres [83], [560], 
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Fig. 6.2. Example spectra from three different instruments. Prom top to bottom: 
a clarinet (playing the note C4), a violin (C6) and a guitar (G5). In the clarinet 
sound, note the predominance of the first even partials. In the guitar sound, note 
the existence of plucking noise as energy unevenly distributed below 700 Hz. 

though probably not in deciding the instrument name. The above facts were 
also supported by McAdams et al. [446], who, additionally, found that the 
spectral envelope shape and the spectral flux (time-variation of the spectrum; 
see Section 6.3.2) were the most salient physical parameters affecting tim
bre discrimination. Also, it has been noticed that the human sensitivity for 
different features depends on the sound source in question. 

Very few studies have investigated the human ability to discriminate be
tween the sounds of different musical instruments. However, some trends can 
be identified based on the reviews and experiments by Martin [442] and 
Srinivasan et al. [606]. First, humans, even those with musical training, rarely 
show performance rates better than 90%. The number of categories in the cited 
experiments varied from 9 to 39, and in the most difficult cases the recognition 
rate dropped to 40%. Second, confusion between certain instruments are quite 
usual, for example, between the French horn and the trombone. Third, the 
discrimination performance can be improved by musical instruction and by 
exposure to the acoustic material, especially to pairs of sounds from different 
instruments. Fourth, instrument families are easier to identify than individ
ual instruments. Finally, contextual information (i.e., listening to instruments 
playing phrases, instead of isolated notes) substantially improves the identifi
cation performance [340], [57]. 
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Table 6.1. A simplified taxonomy of pitched musical instruments that is partially 
based on Hornbostel and Sachs [296]. 

Family Subfamily 
Chordophones 

Aerophones Woodwind 

Brass 

Idiophones 

Membranophones 

Playing mode 
Bowed 
Plucked 
Struck 
Air reed 
Double reed 
Single reed 
With valves 
W/o valves 
Struck 
Plucked 
Struck 

Instrument 
Contrabass, Violoncello, Viola, VioHn 
Guitar, Harp, Ukulele, Harpsichord 
Piano 
Flute 
Oboe, English Horn, Bassoon 
Saxophone, Clarinet 
Tuba, French Horn, Trumpet 
Trombone, Bugle 
Xylophone, Marimba, Celesta, Bell 
KaUmba, Mbira 
Timpani 

6.1.2 Taxonomies of Musical Instruments 

Taxonomies are a way to organize or classify musical instruments from the 
point of view of organology, which is the discipline dealing with the cultural, 
historical, technological, and practical issues of musical instruments [329]. 
When building taxonomies, we generate a tree where each category-branch 
can be broken down into more detailed categories. As we will see below, 
taxonomies are an important tool not only for conceptualizing similarities 
and differences between instruments, but also for helping our algorithms to 
discriminate between classes of sounds based on their acoustic properties. 
Taxonomies can be also termed classification schemes in certain technical 
domains, such as MPEG-7 [432]. 

One of the most extended and exhaustive taxonomies of musical instru
ments is that of Hornbostel and Sachs [296], which considers instruments 
according to how their sound is produced (see Table 6.1). Using this criterion, 
instruments are divided into chordophones (instruments that produce sound 
by acting on strings), aerophones (instruments that produce sound by acting 
on a wind column), idiophones (instruments that produce sound by acting on 
their own bodies), and membranophones (instruments that produce sound by 
acting on an elastic membrane). A recently added category is that of elec
trophones, which includes instruments that produce their sound by electrical 
means, such as electronic organs and synthesizers. 

An additional taxonomic distinction to complement that of Hornbostel and 
Sachs comes from considering pitch: there are instruments that cause a clear 
pitch sensation (chordophones and aerophones), whereas the sounds of some 
other instruments do not have a definite pitch (most of the idiophones and 
membranophones). We denote the former ones as 'pitched', 'tuned', or 'with 
determinate pitch', whereas the latter ones are considered 'unpitched', 'un
tuned', or 'with indeterminate pitch'. Only pitched instruments are shown in 
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Table 6.1. Other criteria for elaborating subclasses can be the playing method, 
the shape of the instrument, the relationships of the exciting element to the 
resonating element, or the method used to put the exciting element into mo
tion. For a detailed account on the acoustics of musical instruments, the reader 
is referred to Fletcher and Rossing [193] and Rossing [551]. 

6.1.3 Timbre Spaces 

The perceived similarity or dissimilarity of the sounds of different musical 
instruments can be characterized with an abstract representation called 'tim
bre space'. Timbre spaces reflect human perception and are not necessarily 
optimal from the viewpoint of partitioning the space into separable classes. 
However, they can reveal the acoustic properties that enable computing per
ceptual similarities between instrument classes. 

In order to derive timbre spaces, we first have to ask human listeners 
to generate similarity judgements by listening to pairs or triads of sounds. 
Similarity is recorded using a continuous or discrete scale that goes from 
'very similar' to 'very dissimilar'. Similarity scores are then processed using 
a data dimensionality reduction technique known as multidimensional scal
ing (MDS). MDS is a method that represents measurements of dissimilarity 
between pairs of objects as distances between points in a space with a small 
number of dimensions (usually two or three), where each object (here, sound) 
corresponds to a point within the space. The MDS algorithm is explained in 
detail in Section 6.3.5. 

When using timbre spaces to represent similarities between sounds, the 
obtained continuous space is delimited by axes that correspond to perceptual 
or acoustic factors having an important role in defining the timbre sensation. 
By looking at the correlations between the axes and the acoustic features 
that are computed from the sounds evaluated by the listeners, meaningful 
interpretations of the space can be derived. 

Grey [253] was one of the pioneers in the elaboration of timbre spaces. He 
used synthetic sounds emulating twelve orchestral instruments from the string 
and the wind families. After requesting twenty listeners to judge the similar
ity between pairs of sounds, he applied MDS to the similarity judgements to 
derive a timbre space with three dimensions. The qualitative description of 
the axes he obtained when looking at their acoustic correlates were: (1) the 
spectral energy distribution, (2) the amount of synchronicity in the begin
ning transients, and (3) the temporal variations in the spectral envelope of a 
sound. 

Further research by Wessel [665], Krumhansl [378], Krimphoff et al. [374], 
McAdams et al. [448], and Lakatos [385] have supported the predominance of 
a 'brightness' dimension (which is related to the first moment of the spectral 
energy distribution) as the main perceptual attribute for organizing sounds 
in a timbre space. Another important attribute seems to be related to the 
attack time, and a third dimension, receiving less clear support, could be the 
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'spectral flux', which is related to the temporal variation of the spectrum. 
These and other related features were included for timbre description in the 
MPEG-7 standard (see Section 6.3) [513]. 

Although most of the research on timbre spaces has been done in order 
to characterize human perception tendencies, it is also possible and useful to 
build them from purely acoustic measures. In this case, they reflect similarities 
inherent to the feature vectors that are used to characterize the sounds [105], 
[285], [510], [419]. 

6.2 Methodology 

In this section, we discuss the methodological issues involved in building and 
evaluating classifiers which learn classes from labelled training data. 

6.2.1 Databases 

Databases are one of the crucial elements needed for developing a successful 
classification system, as they have to include enough 'representative examples' 
in order to grant the generalizability of the models built upon them [112]. 
Proper data modelling requires the careful preparation of up to three different 
and independent data sets (see Fig. 6.1). The first one, usually termed a 
training set^ is used to build the models, whereas the second one, usually 
termed a testing set^ is only used to test the model (or the system using it) 
and to get an estimate of its efficacy when it will be running in a real-world 
system. A third set, usually termed a validation set, is sometimes used during 
the design, improvement, and tweaking of a given model. In that case, the 
model, as it evolves and improves, is tested using the validation set, and only 
when the model preparation phase is finished (i.e., when the performance 
improvement on the training data is no longer matched by the performance 
improvement on the validation set) is it evaluated against the testing set, 
which is kept untouched until then. Of course, the three sets should be sampled 
from the same population of sounds. 

A testing set that could be shared among research teams would help them 
to compare their respective improvements. Unfortunately, most of commer
cial audio files, MIDI files, and digitalized score files cannot be shared. In the 
automatic classification of musical instruments, the commercial McGill Uni
versity Master Samples collection (MUMS) [487] has been frequently used, 
though it has not achieved the status of 'reference test set'. More recently, 
the University of Iowa sample collection^ and, especially, the RWC database 
[230] are attracting the attention of researchers. The latter contains a wide 
variety of music files to be used in several music processing problems, and 

^ht tp: / / theremin.music .uiowa.edu/ index.html 
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it is available to researchers under reasonable restrictions. Also, the Interna
tional Music Information Retrieval Systems Evaluation Laboratory [154] is 
intended to provide remote access to a protected commercial music library 
and to a computational infrastructure that hosts algorithms for music con
tent processing. In this way evaluation and comparison of different algorithms 
is possible, as the data sets and the computer systems are kept invariable. A 
simpler option, though, is now possible, thanks to the Creative Commons^ 
initiative, which is a scheme for licensing and managing intellectual property 
rights. Several music providers are running their businesses partly or entirely 
on Creative Commons and therefore the music they distribute can be 'shared' 
by the scientific community. 

6.2.2 Validation and Generalization 

When we develop a classification system that learns from labelled examples, it 
is necessary to assess its generalization capabilities, i.e., its performance when 
classifying previously unseen instances. This process is called validation, and 
there are different procedures that can be followed: the leave-one-out method, 
the TV-fold cross-validation, and the independent or holdout test set. The first 
one, recommended when we have a small number of instances available, tests a 
system with the same instances that are used to learn the classification model: 
If there are K instances in the data set, then K different models are built, 
each time leaving one instance out from the training and keeping it apart to 
test the model [379]. The results are then averaged over the K tests. In the N-
fold cross-validation, we randomly divide the data set into N subsets or folds 
(usually 10) and then use N — 1 folds for training and one for testing. This is 
repeated Â  times and the final result is again averaged over the N runs (see 
also the alternatives and recommendations issued by Dietterich [145]). When 
a very large set of labelled instances is available, the recommended validation 
procedure consists of using a holdout set that has been kept unused up until 
then. Livshin and Rodet [414] have also presented interesting variations that 
can be used when we have several large sound collections available. 

Another methodological element is the assessment of the statistical signifi
cance of the differences that have been found when comparing different sets 
of features or different classification algorithms. Empirical differences in per
formance can be obtained by chance or, alternatively, can be the consequence 
of true substantial differences in the goodness of the compared methods. The 
Student-Fisher t-test is frequently used to compare the error averages of dif
ferent classification strategies [145]. It can be computed, in the case of A -̂fold 
cross-validation, as 

p^/N 
t= I (6-1) 

^http://creativecommons.org 
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where N is the number of folds, p̂ *̂  is the average at fold i, and p = 
'k 12i=i P^^"^' Under the null hypothesis (i.e., the hypothesis that the aver
age performances of two methods are not different) this statistic has a t-
distribution with n — 1 degrees of freedom. The t-distribution is a symmetric 
bell-shaped distribution with the tails spread wider than those of the normal 
distribution. Its exact shape depends on the degrees of freedom: the greater 
the sample size, the more degrees of freedom and the narrower the bell shape 
(a large sample size makes the ^-distribution resemble the normal distribu
tion). The significance of the value t in (6.1) can be evaluated by looking it 
up in a table of the t-distribution and, based on this, the null hypothesis can 
be either rejected or accepted. 

In spite of the pervasiveness of ^-tests, it is sometimes recommended that 
one use the McNemar's test instead, as it provides a greater chance of ob
taining a statistically significant result when the null hypothesis is false, and 
thus gives more power to our conclusions. The value for McNemar's test is 
computed as 

^ 2 ^ (|moi - m i o | - l ) ^ 
moi -h mio 

where moi is the number of instances misclassified by algorithm A but not by 
algorithm B, and mio is the number of instances misclassified by algorithm B 
but not by algorithm A [145]. Again, the significance of the obtained value has 
to be evaluated by looking at its distribution table, and this tells us whether 
to reject the null hypothesis or not. 

Other methodological issues to be considered are the scalability of the al
gorithms, or their efficiency (i.e., what happens to the computation time when 
we double the number of features or the number of instances to be processed?). 
For methodological issues in computer experiments, the interested reader is 
referred to Santner et al. [562]. 

6.3 Features and Their Selection 

Classification would be not possible without acoustic features that capture 
differences or similarities between two or more objects. In the case of auto
matic classification of instrument sounds, the features are extracted from the 
raw audio signal. As we will see, choosing good features is more crucial than 
the choice of the classification algorithm, and the classification itself becomes 
easier if the features chosen are informative enough [216]. 

The term 'feature' denotes a quantity or a quality describing an object. 
Features are also known as attributes or descriptors. Since the overall goal 
of classification is to distinguish between examples that belong to different 
classes, one of the goals of feature extraction is to reduce the variability of 
feature values for those examples that are associated with the same class, while 
increasing the variability between examples that come from different classes. 
Another informal requirement is to achieve a good capability of predicting the 
class after observing a given value of the feature (i.e., a high 'diagnosticity'). 
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Finally, when using multiple features to predict a class label, it is desirable 
that the features be as little redundant as possible. Knowledge about the 
acoustic and perceptual qualities of the specific classes to be discriminated 
should guide, if possible, the choice of the features to use. Even lacking such 
knowledge, however, powerful feature selection and projection algorithms can 
be used to improve the discrimination capability. 

Acoustic features are usually computed directly from the time-domain sig
nal or, alternatively, from a representation obtained by transformations such 
as the discrete Fourier transform (DFT) or the wavelet transform, which have 
been discussed in Chapters 2 and 3, respectively. In order to grasp the micro-
temporal evolution of the feature values, they are typically calculated every 
few milliseconds, in short analysis windows. Features representing the prop
erties of instrument sounds are typically extracted within frames of length 
20-50 ms, with a 50-75% overlap between successive frames. Macro-temporal 
features, such as attack time or vibrato rate, can be computed by using 
a longer segment of audio or by summarizing micro-temporal features over 
longer segments (for example with averages and variances). 

For the purpose of presentation, in the following we have organized the 
described features under the subtitles of energy features, spectral features, 
temporal features, and harmonicity features (see [286], [511], [406], [694] for 
other feature taxonomies). As more than one hundred different features have 
been tested in the context of our problem, we only present the ones that con
stitute a basic kit to start with (see [363], [511] for more extensive accounts). 
An interesting set of features that has recently received some attention is the 
one included in MPEG-7, an ISO standard for multimedia content description 
(see Table 6.2) [432]. The interested reader is referred to [342] for in-depth 
explanations of the MPEG-7 audio descriptors and applications. These de
scriptors have been tested for the classification of musical instrument sounds 
in [71], [615], [367]. 

6.3.1 Energy Features 

Signal energy or power can be measured at different time scales and used as 
an acoustic descriptor. Although these have not shown a high discriminative 
power when compared to other features used for musical instrument classifi
cation, they provide basic information that can be exploited to derive more 
complex descriptors, or to filter out potential outhers of a sound collection. 

The root mean square (RMS) level of a signal is often used to represent 
the perceptual concept of loudness. The RMS level of a discrete time signal 
x{n) is calculated as 

1 ^ ' ^ 

\ 2 = 0 

where n is a discrete time index and Â  is the size of the analysis frame. 
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Table 6.2. MPEG-7 descriptors, organized according to category. Each of these 
can be used to describe an audio segment with a summary value or with a series 
of sampled values. Timbral spectral descriptors are computed after extracting the 
relevant harmonic peaks from the spectrum of the signal. Spectral basis descriptors 
are a spectral representation of reduced dimensionality. 

Category Descriptors 
signal parameters fundamental frequency, harmonicity 
basic instantaneous waveform, power values 
basic spectral log-frequency power spectrum envelopes, spectral centroid, 

spectral spread, spectral flatness 
timbral spectral harmonic spectral centroid, harmonic spectral deviation, 

harmonic spectral spread, harmonic spectral variation 
timbral temporal log attack time, temporal centroid 
spectral basis spectrum basis, spectrum projection 

6.3.2 Spectra l Features 

Different approaches can be considered in order to measure the shape of the 
spectral envelope or certain characteristics of the spectral fine structure. Spec
tral features can be computed using the D F T spectrum, or by applying a 
mel-scale filterbank and using the RMS levels at the mel bands. In order to 
do the latter, we first construct a bank of about 40 filters tha t are spaced uni
formly on the mel frequency scale and have triangular magnitude responses 
(see Fig. 2.4 on p. 27). RMS levels within each mel band are then calculated 
by multiplying the magnitude spectrum of a given analysis frame with each 
triangular response, by squaring and summing the resulting D F T bin magni
tudes, and by taking the square root of the result. The mel frequency scale 
approximates the way humans perceive pitch, having less resolution at high 
frequencies and a finer resolution at low frequencies. It can be computed as 

/mel = 2595 logio 
700 

(6.4) 

Another psychoacoustically motivated frequency scale is the Bark scale, where 
usually 24 sub-bands are used. 

A selection of the most useful spectral features is presented in the following. 
The spectral centroid, spectral skewness, spectral kurtosis, and spectral spread 
have been described in Chapter 5, p. 136, and are therefore not included here. 
In the presented equations, X{k) may refer to a D F T spectrum or to a vector 
of RMS levels in Mel bands—depending on the pre-processing tha t has been 
adopted—and accordingly, the symbol k may index a frequency bin or a mel 
sub-band, and B denotes the total number of frequency bins or sub-bands 
used. 

Spectral flatness indicates how flat (i.e. 'white-noisy') the spectrum of a 
sound is. A low value indicates a noisy sound, whereas a high value is indicative 
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of tonal sounds. It is computed as the ratio of the geometric mean to the 
arithmetic mean of the spectrum: 

SFM(^) = 101ogio 
(ntil^t(fc)l)" 

(6.5) 

where t is the index of the analysis frame. 
The spectral flux, also known as the delta spectrum magnitude, is a mea

sure of local spectral change. It is defined as the squared l'^ norm of the 
frame-to-frame spectral difference: 

SFX{t) = f2{\Mk)\-\XtMk)\)\ (6.6) 
k=l 

where Xt(A:) and Xt-i{k) are energy-normalized Fourier spectra in the current 
frame and in the previous frame, respectively. 

Spectral irregularity measures the 'jaggedness' of the spectrum [374]. It is 
computed as 

(6.7) 

Spectral roll-off is defined as the frequency index R below which a certain 
fraction 7 of the spectral energy resides: 

£|X(A:)|2>7f^|X(fc)|2 (6.8) 
k=l k=l 

Typically, either 7 = 0.95 or 7 = 0.85 is used. 
The Zero crossing rate (ZCR) measures the number of times that the time-

domain signal changes its sign. Even though it is computed in the time domain, 
it describes the amount of high-frequency energy in the signal (i.e., 'bright
ness') and correlates strongly with the spectral centroid mentioned above. 
ZCR has also proven to be quite discriminative for classes of percussion in
struments [250]. The ZCR of a time-domain signal x{n) is computed as 

1 ^ 
ZCR(n) ^w^J2 Isign[x(n + i)] - sign[a:(n + i - 1)]|, (6.9) 

i=l 

where 

sign(a:) = < 
-hi i f x > 0 

0 if X = 0 . 

- 1 i f x < 0 

(6.10) 
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Mel-frequency cepstral coefficients (MFCC) were introduced in Chapter 2, 
p. 26. To summarize the computational procedure: (1) a pre-emphasis filter is 
applied to flatten the spectrum; (2) audio is windowed and transformed using 
the DFT; (3) a mel-scale filterbank is applied in the frequency domain, as 
explained above; (4) the power within each sub-band is computed by squaring 
and summing frequency bin magnitudes within bands; (5) the dynamic range 
of the spectrum is compressed by taking a logarithm of the bandwise power 
values; and (6) cepstral coefficients are computed by applying, to the log 
filterbank powers, the discrete cosine transform (DCT) which decorrelates 
the coefficients. The dimensionality of the representation can be reduced by 
retaining only approximately 15 lowest-order DCT coefficients, which usually 
carry the relevant timbral information. 

MFCCs have proven to be useful not only in speech processing tasks [536] 
but also in instrument recognition as shown, for example in [675], [56], [437], 
[176], [178]. Sometimes the delta ('velocity') and delta-delta ('acceleration') 
coefficients are also used, in order to capture information about their tem
poral evolution. The delta-MFCCs are usually computed as a least-squares 
approximation to the local slope, or 

^Cep.(,)=^"-ir'^°'""/'°', (6̂ .1) 

where t is the frame index, Cep^(f) is the ith coefficient in frame t, and usually 
M is 1 or 2. The delta-delta, in turn, can be computed by substituting Cep^{t) 
by Z\Cep^(t) in the above equation. 

6.3.3 Harmonic Features 

Pitched instruments usually have harmonic or nearly harmonic spectra. There
fore, it is interesting, as reported in several papers [369], [199], [688], [514], 
[670], [495], to use descriptors that take this property into account. Different 
options exist to extract the harmonic partials from a signal, such as computing 
the autocorrelation of the signal and generating an autoregressive (AR) model, 
selecting prominent peaks at integer multiples of the fundamental frequency 
from a long-term average spectrum, applying pattern-matching techniques to 
the peaks of the DFT spectrum, or estimating a sinusoid plus noise model 
[574] (see also Chapter 3). In this section, we denote the amplitude of the ^th 
partial by a{q), and the number of extracted partials by Q. 

Inharmonicity describes the average deviation of spectral components from 
perfectly harmonic frequency positions. We can compute it as 

IH = -ET X _Q ^7^ , (6.12) 
ZU^'ii) 
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where fq is the frequency of partial g, and FQ is the estimated fundamental 
frequency. An inharmonicity value of zero means that the signal is perfectly 
harmonic, whereas larger values indicate inharmonicity. 

The odd-to-even ratio describes the relationship between odd and even 
partials. Some instruments, such as clarinets, have odd partials that are more 
prominent than the even ones. Other instruments, such as trumpets, have 
more balanced spectra. The odd-to-even ratio is given by 

O E R = § ^ ^ i ^ - ^ ^ . (6.13) 
E g even « ( ^ ) 

Tristimulus consists of three features that describe the relative weights of 
different harmonics [527]. These are computed as follows: 

Tl = -P^^, (6.14) 

^ ^ ^ a ^ ( 2 ) + a ^ ( 3 ) + a-(4) 

By plotting the temporal evolution of T2 (x-axis) against T3 (?/-axis), 
we can visualize the relative strengths of the fundamental and the high- and 
mid-frequency partials, and the evolution of these through time (see Fig. 6.3). 

6.3.4 Temporal Features 

The time dimension is usually less represented in the feature sets proposed for 
the automatic classification of musical sounds. The evolution of a given feature 
over time can be partially characterized by computing its variance, or the first-
and second-order differences. Apart from these, specialized descriptors, such 
as the attack time, the temporal centroid, or the rate and depth of frequency 
modulation have proven to be useful for discriminating between instrument 
sounds [442], [199], [514], [615], [367]. 

The term amplitude envelope is generally used to refer to a temporally 
smoothed version of the signal level as a function of time. In practice, it can 
be calculated by lowpass filtering (with a 30-Hz cut-off frequency) the vector 
of RMS levels E{n) of a signal. In the case of analysing isolated notes, once 
the envelope is computed, it is possible to segment it into attack, sustain, and 
release sections, as shown in Fig. 6.4 (though percussion and plucked string 
sounds do not have the sustain part). Specific descriptors for each of these 
segments can also be computed. 
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Strong 
mid-frequency 

partiais 

Strong 
high-frequency 

partiais 

Fig. 6.3. Geometric interpretation of the tristimulus. The left figure shows the re
gions where, depending on the energy balance, the values of of T2 and T3 will be 
found. The figure on the right illustrates the temporal evolution (in milliseconds) 
of a clarinet note: it starts with a strong fundamental, then high frequency par
tiais progressively dominate the sound, and finally, after 60 milliseconds, the high 
frequencies start to decay until the end of the sound. 

Attack 

Fig. 6.4. SimpHfied amplitude envelopes of a guitar tone (above) and a violin tone 
(below). Different temporal segments of the tones are indicated in the figure. 

The attack time is sometimes also called the 'rise t ime' , and its definition 
varies slightly depending on the author. An often-used definition is the t ime 
interval between the point the audio signal reaches 20% of its maximum value 
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and the point it reaches 80% of its maximum value [511]. Sometimes the 
logarithm of the attack time is used instead of the raw value: 

LAT = logio(^80-^2o), (6.17) 

where t2o and tgo denote the beginning and end of the attack, respectively. 
The temporal centroid measures the balancing point of the amplitude en

velope of a sound, and it is calculated as 

where E{n) denotes the RMS level of the sound at time n, and the summation 
extends over a fixed-length segment starting at the onset of the sound. 

The term vibrato refers to a periodic oscillation of the fundamental fre
quency of a sound. Vibrato has proven to be quite a useful feature for instru
ment discrimination, whereas this does not seem to be the case with tremolo^ 
which refers to a periodic oscillation in amplitude. Vibrato is characteristic 
for string instruments, reeds, and the human singing voice. Vibrato can be 
described by its rate, which is usually between 4 and 8 Hz, and its depth, 
which is usually less than one semitone. Techniques for estimating the rate 
and depth of vibrato are described in Chapter 12, Section 12.4.4. 

6.3.5 Feature Transformation 

Transforming features can enhance classification performance because it helps 
to reshape feature probability distributions or reveal interesting structures 
and, consequently, class boundaries can be more separable. Scale transform 
and feature projection are two strategies to change the features in order to 
get a 'better' feature set, compared to the original one. 

Scale Transformation 

One of the goals of features transformation is to improve their Gaussian-
ity. Many pattern recognition techniques such as linear discriminant analysis 
(see Chapter 2) are optimal whenever the features have been sampled from 
Gaussian distributions. A significant deviation from Gaussianity can increase 
the classifier error rate. Osborne [490] discusses several transforms that change 
the features scale non-linearly and can help in making them more Gaussian: 

• Square root, that is, substituting the original features by their square roots; 
• Logarithm, that is, taking natural logarithm of the original features, and 

sometimes adding 1 before that in order to avoid having to compute log
arithms of 0; 

• Inverse, that is, substituting 1/x for x, where x is the original feature; 
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• Arcsine-root [410], which consists of taking the arcsine of the square root 
of the initial feature value; this transform spreads the feature values to the 
tails of the distribution (that is, preferably away from its central part). 
Therefore, this transform is indicated when the features are proportions 
such as the ratio of band energy to the total spectral energy. 

Apart from these simple transforms, the Box-Cox power transform [47] is 
a standard tool for increasing the features Gaussianity, hence it is especially 
recommended when working with Gaussian mixture classifiers [510]. It can be 
computed as 

where the value of A is chosen in order to maximize the Gaussianity of the 
feature distribution. 

Projection 

Projections aim at reducing the dimensionality of the feature vectors by keep
ing a reduced set of dimensions. In other words, given a feature vector x 
composed of several features, projections only retain a subset of the initial 
features (or linear combinations of them), resulting in a lower-dimensional 
feature vector. When applied in the lower-dimension feature space, the classi
fication algorithms are expected to have improved performance. In addition to 
multidimensional scaling and canonical discriminant analysis, which are pre
sented below, other techniques are principal component analysis (see Chap
ter 2), independent components analysis (see Chapter 9 and [304]), projection 
pursuit [197], and random projection [39]. 

Multidimensional Scaling 

The motivation behind multidimensional scaling (MDS) is to produce a space 
with typically 2 or 3 dimensions where projected, lower-dimensional feature 
vectors are arranged topographically so as to yield a visual represention of 
the similarity or dissimilarity of these feature vectors. Borg and Groenen [45] 
provide a thorough presentation of this technique. 

Multidimensional scaling first requires the definition of similarities, or 
proximities, pij between any two objects—here between two sounds i and 
j (i,j = l , . . . , m ) . These similarities may be obtained by numerical com
putations from the sounds (via the features), or by subjective evaluation by 
listeners. Given these proximities, MDS tries to represent the objects as points 
in a Euclidean space Af with low dimension d^ such that a large distance be
tween any two points in A' represents a small proximity between the sounds, 
and conversely. Of course, this representation is not obtained by an exact 
mapping of the proximities to distances, which generally do not exist since 
the initial space is larger dimensional than A'. In order to implement MDS, we 
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need to select the distance measure to be used in X to represent the inverse 
proximities; usually one selects the Euclidean distance between two objects 
ô  and Oj in X: 

{ dx \ ^̂ ^ 

f ; [ o , ( / ) - o , ( 0 ] ' i . (6.20) 
Given these distances, we need to learn a function h that approximately 

maps the proximities pij to the distances d(oi,Oj), and the location (the 
coordinates) of the objects Oj, z = 1 , . . . , m in A*. This is done by minimizing 
the stress function 

r n n -i 1/2 

i=l j>i 
S(h,oi, . . . , o ^ 

2=1 j>i 

(6.21) 

The minimization is performed numerically with respect to h and to the 
objects o^, i = 1 , . . . ,m, by moving them around iteratively until the stress 
is minimum. The stress function gives the relative error that, on average, 
the distances d(oi,Oj) in X differ from the mapped proximities h{pij). When 
using the Euclidean distance d(-,-), the final coordinates of the o^'s in X 
do represent the principal coordinates which would be obtained when doing 
PC A on the dissimilarity matrix [h(pij)]. ALSCAL and PROXSCAL are two 
iterative algorithms designed to minimize stress when the assumed distances 
are not Euclidean. 

Canonical Discriminant Analysis 

Canonical discriminant analysis (CDA) is a dimension reduction technique re
lated to principal component analysis and canonical correlation. In a canon
ical discriminant analysis, we find linear combinations of the features that 
provide maximal separation between the classes or groups. CD A derives a 
set of canonical variables that are linear combinations of the features, and 
that summarize between-class variation in much the same way that principal 
component analysis summarizes total variation; see Chapter 2. Canonical dis
criminants are computed iteratively: the first canonical discriminant function 
is the best single linear combination of attributes (that is, dimensions in the 
feature vectors) that discriminates between the classes. The second canonical 
discriminant function is the best single linear combination orthogonal to the 
first, and so on. Similar to principal component analysis, each canonical dis
criminant function is associated to an eigenvalue which indicates its relative 
discriminating power. 



6 Automatic Classification of Pitched Musical Instrument Sounds 181 

Canonical discriminants being linear combinations of the original features, 
they are projections, which are computed as follows. First, the between-class 
scatter matrix SB and the within-class scatter matrix Sw are computed as 

1 ^ 
i:B = 7 ^ m , ( M j - M ) ( M ^ - / i r , (6-22) 

1 •̂  

j=l x | y = j 

where J is the number of classes, /x is the mean of all available m observations, 
fij is the mean of the observations in class j , y G {1 ,2 , . . . , J } denotes the 
class label of x, ruj is the number of observations in class j , and x is a 
given feature. Then, the optimal projection W is the projection matrix which 
maximizes the ratio of the determinant of the between-class scatter to the 
determinant of the within-class scatter of the projections (also called Fisher's 
criterion): 

|w"r i :BW| , , , ^ ^ , , 
^ = " ^ ^ r " I W T ^ w W l ^ [ w „ w „ . . . , w , J , (6.24) 

where {w^|2 == 1,2, . . . ,(ix} is the set of generalized eigenvectors of UB 
and X'w, corresponding to the dx largest generalized eigenvalues {Xi\i = 
l , 2 , . . . , dx} [295]. The matrix W can be found by solving the generalized 
eigenvalue problem X 'BA* = AZ'wA* by means of simultaneous diagonal-
ization [202]. To avoid singularities, especially if the features are sparse, one 
can apply principal component analysis first to reduce the dimension of the 
feature space to dx — J, and then use CDA to reduce the dimension to J — 1. 

6.3.6 Feature Selection 

Using very large sets of features for building an automatic classification sys
tem is usually to be discouraged: First, some features can be redundant or 
irrelevant; second, the computational cost for using many of them might be 
high; and third, some features can be misleading or inconsistent regarding 
the task, and consequently the classification errors may increase. In any case, 
interpreting a model containing a large set of features can be very difficult or 
even impossible. In general, the informal recommendation is to use ten times 
fewer features than training instances^ [313]. Selecting features can be done 
on a ranking basis (i.e., evaluating one feature after another) or on a best-set 
basis (i.e., evaluating subsets of features in a global way) [262]. 

We list below three different strategies in order to find a near-optimal 
number of features for a classification task [42]: 

Recent techniques such as support vector machines (see Chapter 2), however, 
are less subject to dimensionality concerns. In any case, including misleading features 
lowers the performance. 
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• Embedding makes the feature selection stage intertwined with the classifi
cation algorithm, as in the case with decision trees, or with discriminant 
analysis. 

• Filtering decouples feature selection from the model learning process by 
first applying a feature selection over the original feature set, and then 
feeding the classification algorithm with the selected features only. 

• Wrapping uses a features evaluation step which is intimately connected 
with the learning process: it uses the prediction performance of a given 
learning algorithm to assess the relative usefulness of subsets of features. 
Theoretically, this strategy should be the best one [42], but the price paid 
is a high computation time (this is an NP-hard problem). 

In addition to selecting the features with respect to a classification algo
rithm, we must decide on an evaluation criterion. The information gain is the 
standard criterion used to build decision trees [467], but it can be also used 
to rank the importance of features, outside of the decision trees framework. 
In order to characterize the amount of information carried by a feature (e.g., 
the zero crossing rate), we study its influence on the entropy of the full set 
of features, via the information gain. Let x denote the vector made of several 
examples of a given feature (e.g., the zero crossing rate over several frames) 
and let X be the set of all the features, each of which being extracted over sev
eral frames. The entropy H(a) of a set of random variables a with probability 
density function p(a) is defined as^ 

H(a) = - y p ( a ) l o g p ( a ) d a , (6.25) 

when a is a continuous random variable; the discrete case is obtained by 
replacing the integral by a sum over all possible values of X. We define the 
information gain of the feature x relative to the set of features X as 

5(X,x) = H(X)-H(X|x), (6.26) 

where H(X|x) is the conditional entropy of X when the value of x is known. In 
other words, the information gain measures the amount of information added 
by considering the full feature set X with entropy H(X), as opposed to the 
reduced set X\x with entropy H(X|x). 

The correlation-based feature selection technique of Hall [268] has pro
vided very good results in selecting features for automatic classification of 
sounds [288], [510]. We define the following merit heuristic of a feature subset 
Xs containing m features, each having several values extracted from various 
frames: 

M(X3) ^ , ^^;^ '^ ^̂  , (6.27) 

^Random variables and probability density functions are introduced in Chapter 2. 
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where Cfc is the average feature-class correlation and Cff is the average feature-
feature intercorrelation.^ We can interpret the numerator of (6.27) as an in
dicator of how a set of features is representative of the class, whereas the 
denominator indicates how much redundancy there is among the features. 
The correlation-based feature selection technique is not a ranking method, 
as it works with subsets of features. In practice, subsets are examined using 
either backward search or forward search of best first search. Backward search 
consists of starting from the full feature set and greedily removing one fea
ture at a time as long as the evaluation does not degrade too much). Forward 
search starts from an empty set of features and greedily adds one feature at 
a time until no possible single feature addition results in a higher evaluation. 
Best first search starts with either no features or all the features and examines 
a given number of consecutive expansions or reductions of the existing subset 
in order to find local improvements over the current best subset [540], [267]. 

In the context of classification, given a training set of features grouped 
in J classes, Peeters [510] has proposed audio feature selection using inertia 
ratio maximization using feature space projection (IRMFSP), which seems to 
compare advantageously with other effective algorithms and has also been 
used by other researchers in sound classification [416], [180]. IRMFSP selects 
first the best features according to the value R[i] for the feature # i (where the 
index i refers to a given type of feature, e.g., the zero crossing rate) defined 
as 

E fnj\\^lj[i] - ix[i]f 

m = '^r , (6-28) N 

Eii^"i ̂ ]-^l[i]f 
n = l 

where Jj is the number of training features in class j ( j= l , . . . ,J), /Li[i] is the 
empirical average of feature # i in the full training set, /x^[i] is the empirical 
average of the feature #2 for features in the training set belonging to class j . 
The ratio in (6.28) is the between-class inertia to the total inertia: the larger 
R[2], the more discriminative is the feature. The feature selection proceeds as 
follows. First, the features are selected from the largest inertia to the small
est inertia. This selection process is intertwined with an orthogonalization of 
the feature space; that is, each new selected feature is made othogonal to 
the previous ones (this is the standard Gram-Schmidt orthogonalization; see 
e.g., [388]). 

The extractor discovery system (EDS) [692] is an interesting tool that 
'creates' new features by means of genetic programming [372] applied to 

^The term 'correlation' was used by Hall in its general sense, without referring 
specifically to the classical correlation [267, p. 51]. However, in his implementation 
in the free software Weka [674] (www.cs.waikato.ac.nz/ml/weka), the author used 
the classical variance-normalized correlation, removing, however, the mean of the 
data before calculating the correlation. 
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the existing features and to a library of mathematical and signal processing 
functions. When used in instrument classification problems (percussion/no-
percussion detection and 4-class string instruments discrimination), the EDS 
increased between 1 percent-units and 9 percent-units the performance com
pared to using the original 'simpler' features [691]. A somewhat similar system 
has also been presented by Mierswa and Morik [463]. 

Other interesting approaches to feature selection, based on genetic algo
rithms (GA) are by Fujinaga et al. [200], [199] and about rough sets [359], 
[360], [367], [669], [671]. The latter have been used to select features for in
strument classifiers. Further details about genetic algorithms and rough sets 
may be found, respectively, in [217] and [508]. 

6.4 Classification Techniques 

When designing a classifier for musical instrument sounds, researchers are 
usually faced with the problem of selecting a single classifier for all the instru
ment sound classes or, conversely, using several 'focused' classifiers. In the first 
case classifiers are termed flat classifiers, whereas the second case classifiers 
may be one of several diS'erent solutions ranging from hierarchical classifiers 
to ensembles of classifiers. 

• In the hierarchical case [443], [176], [515], a classifier is used in each of the 
different decision nodes of a hierarchy that has been created by means of 
knowledge-based decision rules. A hierarchical classifier may decide first if 
the sound belongs to a given broad class (such as impulsive vs. continuous). 
Then, the sound is classified into a finer class that is conditioned by the 
first classification decision (for instance, in the case of a continuous sound, 
the second level of the hierarchy decides if it is from woodwinds, bowed 
strings or brass; in the case of an impulsive sound, the options could be 
plucked strings or percussion). The final level of the hierarchy, depending 
on the previous decisions, assigns the specific instrument class (guitar, 
oboe, etc.). 

• Concerning ensembles of classifiers, different classification techniques may 
be used in parallel or serially, in order to deal with subsets of the original 
data, of the feature set, or with the whole set; see [379]. 

Some of the classification techniques that have been frequently used for the 
automatic classification of musical instrument sounds are explained in Chap
ter 2. This is the case with support vector machines (SVMs), and Gaussian 
mixture models (GMMs), which are therefore not included here. In this sec
tion, we discuss instance-based classifiers, discriminant analysis, decision trees, 
and artificial neural networks. 
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6.4.1 Instance-Based Learning 

Instance-based learning or lazy learning refers to the idea of avoiding the 
computation of any abstract model for a class of objects. Instead, techniques 
under this category assume that instances that are closer to the one we try to 
classify (i.e., they are 'similar' in the feature space) will provide the required 
class label. Instance-based learning is usually the most workable option when 
the number of available classes is extremely large, or cannot be totally antici
pated, as it is the case, for instance, in the domain of classification of sound 
effects [62]. 

The k-nearest neighbours (/c-NN) algorithm is one of the most popular 
algorithms for instance-based learning. It first stores the feature vectors of 
all the training examples and then, for classifying a new instance, it finds 
a set of k nearest training examples in the feature space, and assigns the 
new example to the class that has the largest number of examples in the set 
(see Fig. 6.5). Traditionally, the EucHdean distance measure (6.20) is used to 
determine similarity, and the number of neighbours is determined empirically; 
see the description of /c-NN in Chapter 2. Although the /c-NN technique is easy 
to implement, it has some drawbacks [467]: 

• It requires having all the training instances in memory in order to yield a 
decision for classifying a new instance; 

• It may require a significant computational load each time a new query is 
processed; 

• It is highly sensitive to irrelevant features that can dominate the distance 
metrics; 

• It does not provide a generalization mechanism (because it is only based on 
local information), although several techniques (K-means clustering, linear 
vector quantization) can be used to compute 'prototypes' from several 
nearest neighbours. 

The fc-NN algorithm has probably been the most used in classification 
studies of musical instrument sounds, achieving very high rates of performance 
under most of the tested conditions; see [200], [442], [11], [174], [416], [325]. 
Given its simplicity, it is usual to include it as a kind of 'reference' when 
comparing different classification algorithms. 

6.4.2 Discriminant Analysis 

Discriminant analysis (DA) includes several variants of the generic idea of de
riving a discrimination function (i.e., one that separates two classes of objects) 
that is a weighted combination of a subset of the features used to character
ize a series of observations. As we have seen in previous sections, this idea 
can be also used for selecting and projecting features by minimizing the ra
tio of within-class scatter to the between-class scatter. A thorough formal 
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Fig. 6.5. An illustration of /c-NN classification. The point marked with a star would 
be classified as belonging to category B when /c = 3 (as 2 out of its 3 neighbours are 
from class B; but in case of using k = 5 classification would be A because there are 
3 nearest neighbours belonging to this category and only 2 belonging to B. 

and practical treatment of this techniques can be found in the monograph by 
McLachlan [453]. 

Linear discriminant analysis (LDA) is a minimum-distance classification 
method that uses the empirical mean and covariance matrix of the training set 
classes. The data are projected so as to eliminate inter-feature correlations and 
to standardize the variance of each variable, after which Euclidean distances 
are computed in the standardized space; see Chapter 2 for a presentation. LDA 
assumes that the classes have a common covariance matrix Ci but sometimes 
this cannot be true. In that case the quadratic discriminant analysis (QDA) 
can be applied, where the decision boundary between each pair of classes is 
described by a quadratic equation. These and other variations such as logistic 
or regularized discriminant analysis have been been used in several studies on 
classification of musical instruments [443], [11], [12], [510], [416], [552]. 

6.4.3 Decision Trees 

Decision trees are pervasively used for different machine learning and classifi
cation tasks. One of the main reasons for their popularity may lie in the fact 
that they produce a simple classification procedure which can be interpreted 
and understood as a series of 'if-then' actions. Decision trees are constructed 
top-down, beginning with the feature that seems to be the most informative. 
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that is, the one that maximally reduces entropy according to the information 
gain measure (6.26). For this feature, several branches are created: one for each 
of its possible (discrete) values. In the case of non-discrete valued features, 
a procedure for discretization of the value range must be defined (see, for 
instance, [183]). The training data are assigned to a descendant node^ at the 
bottom of the branch that corresponds their value. This process is repeated 
recursively starting from each descendant node. An in-depth treatment of de
cision trees can be found in Mitchell [467] and Duda et al. [161]. Quinlan's IDS 
and C4'5 [533] are among the most popular algorithms for building decision 
trees. 

Decision trees used for the classification of instrument sounds have usually 
yielded worse results than other classification methods [288], [510]. Otherwise 
they have provided hints on the nature of the features and values that dis
criminate among pitched instrument classes [319], [668]. Recent enhancements 
to basic decision trees such as AdaBoost [196] or Random Forests [51] may 
provide results that are competitive with other cutting-edge classification al
gorithms. 

6.4.4 Artificial Neural Networks 

An artificial neural network (ANN) is an information-processing structure 
that is composed of a large number of highly interconnected elements—called 
neurons or units—working in unison to solve a specific problem. Neurons are 
grouped into layers (which can be input, hidden, and output) to be intercon
nected through different patterns (see Fig. 6.6). Each neuron has an activation 
function. The activation of each neuron depends on the activity coming from 
the other neurons that connect to it, and on the activation function. The full 
neural network learns a complex, non-linear function between input (here, fea
tures extracted from a given sound) and output vectors (here, an instrument 
class) by changing the interconnections between the neurons: a training set 
containing example input and related output vectors is presented to the ANN, 
which learns the non-linear function. This is a regularization problem, as de
scribed on p. 57. The interested reader is referred to the specific monograph 
of Bishop [40] for an in-depth presentation of the subject. 

One of the most popular neural network models is the multilayer perceptron 
(MLP). Usually, the action of each neuron is modelled as a linear function of its 
inputs, and the activation is modelled by a sigmoid function [279]. Structure-
wise, MLP is a spatially iterative neural network with several layers of hidden 
neuron units between the input and output neuron layers. The most commonly 
used learning scheme for the MLP is the back-propagation algorithm [555]. 
The weight updating for the hidden layers adopts the mechanism of back-
propagated corrective signal from the output layer. It was demonstrated that 
perceptrons with one hidden layer are adequate as universal approximators of 
any non-linear function [666], which means that they can theoretically learn 
any non-linear relation between their inputs and outputs. This makes MLPs 
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Input units 

Hidden units 

Output units 

Fig. 6.6. A diagram of an artificial neural network with 8 input units, a hidden 
layer with 3 units, and an output layer with 8 units. 

a good choice when the function to be learned is not known in advance, or it 
is suspected to be non-linear. 

ANNs do have some disadvantages, though: the computation time for 
the learning phase may be very long, adjustment of user-defined parameters 
can be tedious and prohibitively time consuming, and data over-fitting can 
degrade their generalization capabilities. Interest in ANNs appears to have 
declined since the arrival of SVMs. This can be explained because of several 
advantages of the latter over ANNs: SVMs require fewer parameters to be 
tuned and less time to be trained/used, and are able to provide similar or 
greater accuracy than ANNs, with minimal over-fitting. However, when ei
ther ANNs or SVMs are learned, the classification decision is very fast when 
compared to other popular methods such as /c-NN, and they can also learn to 
disregard irrelevant attributes. 

Kostek [360] and Park [495] are probably the most exhaustive studies on 
automatic instrument classification using neural networks. 

6.5 Classification of Isolated Sounds 

In this section, we review research aimed at developing systems for the auto
matic classification of isolated sounds of pitched musical instruments. As we 
will see, for the more complex tasks of recognizing instruments in solo and 
duet phrases or in polyphonic music, the fact that each research team has 
been using a different test database makes it unfair and unreliable to make 
direct comparisons between the reported classification accuracies. The goal of 
this section is, hence, to provide enough information so that the reader can 
understand the work done and to evaluate the main outcomes of the research 
himself. We first examine flat systems, which provide instrument labels in a 
single classification step. Then we will move to systems that, instead of di
rectly deciding the instrumental class, proceed from broader categories to the 
more specific ones, following a hierarchical classification scheme. 
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6.5.1 Flat Classification Systems 

An important distinction to be made first is that between systems that have 
been developed and tested using several different databases—meaning that 
several different 'instances' of each instrument (for example, several pianos), 
different recording conditions, and players are considered—and those using 
only one database (mostly MUMS; see Section 6.2.1). The systems in the 
latter group are only learning to identify a given instrument instance, for 
example a particular violin, and therefore their generalization capabilities are 
suspect. Martin [442] and Eronen [174] observed this fact indirectly, and a 
conclusive demonstration was provided by Livshin and Rodet in [414] (but 
also see [285]), where a classifier trained and tested using the same large 
collection (IRCAM's Studio On-Line) achieved excellent performance rates 
(96% for instrument classes), but when tested using a different collection of 
sounds, performance dropped down to 26%. 

A summary of classification systems for isolated instrument sounds is pre
sented in Table 6.3. It should be noted that only systems dealing with multi
ple instances of each instrument are included in the table. Also, definitions of 
the acoustic features may vary slightly from the formulas given in Section 6.3, 
depending on the authors. The data shown is not repeated below, but instead, 
some general remarks are made in the following. 

Although most of the reviewed systems based their features on a fast 
Fourier transform (FFT) front-end, some studies have reported results on 
wavelets [371], correlograms (see Chapter 8, p. 245) [442], Hough transforms 
[552], linear prediction [174], [682], [87], and constant Q transforms [56], [57], 
[325]. An advantage of FFT-based features over wavelet-based features has 
been reported in [361], and an advantage of linear prediction over cepstral 
analysis has been reported in [375]. It is clear that more comparative research 
is needed to make strong conclusions regarding the time-frequency analysis 
front-ends. 

Fundamental frequency (FO) estimation is an important step as this fea
ture by itself, and harmonic descriptors based on it, may provide substantial 
discriminative information. The dependence of timbre features on FO makes 
it difficult to compare the feature values of two instruments playing different 
notes. Kitahara et al. [345] developed a musical instrument classification sys
tem using an FO-dependent multivariate normal distribution, where the mean 
of the distribution of each feature was represented as a cubic polynomial 
function of the fundamental frequency This FO-dependent mean function was 
used to represent the pitch dependency of each feature, while FO-normalized 
covariances after substracting the pitch contribution were used to represent 
the non-pitch dependence of the features. Musical instrument sounds were first 
analysed by the FO-dependent multivariate distribution, and then identified 
by using a discriminant function based on the Bayes rule. A slight advantage 
of considering the FO-dependence was observed both at the instrument-level 
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Table 6.3. Summary of selected research on automatic classification of isolated 
instrument sounds. Only studies dealing with several different instrument instances 
and recording conditions have been included. The column NC shows the number 
of classes in each system. In the last two columns, the performance of hierarchical 
systems has been indicated with '(H: )'. 

Author , 
year [ref] 

Eronen, 
2001 [174] 

Livshin 
et al., 2003 
[413] 

Peeters , 
2003 [511] 

Eronen, 
2003 [175] 

Ki tahara 
et al., 2003 
[345] 

Kostek 
et al., 2004 
[362] 

Szczuko 
et al., 2004 
[615] 

Park et al., 
2005 [496] 

Chet ry 
et al., 2005 

|[88] 

Total instances'^ 

5286 (MUMS, Iowa, 
SOL, RolandXP30, 
own recordings) 

4381 (SOL, Iowa, 
MUMS, Prosonus, 
Vitous) 

4163 (SOL, Iowa, 
MUMS, Microsoft 
MI, Prosonus, 
Vitous) 

5895 (MUMS, Iowa, 
SOL, Mart in , own 
recordings) 

6247 (RWC) 

n / a (CMIS, MUMS) 

2517 (CMIS, 
MUMS) 

829 (several 
commercial 
ins t rument-sample 
CDs) 

4415 (Iowa, RWC, 
voice) 

NC 

29 

16 

23 

7 

19 

12 

16 

12 

11 

Acoustic features 

MFCC (at tack-s teady) , FO, 
ATT, onset features, SC, 
Crest Factor, AM 

SC, ATT, tempora l 
decrease, TRI , HD, SKW, 
KUR, SV, SS, MFCC, 
noisiness 

same as above 

MFCC, de l ta -MFCC -\- ICA 

SC, OER, FO relative 
energy, KUR, SKW, FM, 
ampl i tude envelope slope, 
onset energy 

Wavelet-based energy 
bands, M P E G - 7 features 

MPEG-7 features, OER, FO 

SS, SC, harmonic slope, 
LPC noise, harmonic 
expansion/contract ion, 
spectral j i t t e r and shimmer, 
spectral flux, T C , ZCR 

Line spec t rum frequencies 

Classifi
cation 
algo
r i thm 

k-NN 

LDA &: 
k-NN 

LDA & 
GMM 
(hierar
chical) 

HMM 

Bayes 
(fc-NN 
after 
P C A & 
LDA) 

M L P 

MLP 
(2-stage 
hierarchi
cal 
MLP) 

MLP 
with el
l ipt ical / 
radial 
basis 
functions 

K-means 
derived 
codebook 

Instru
ment 
perfor
mance 
(%) 

35 
(H: 30) 

47-69 

54 
(H: 64) 

68 

80 

71 

86 
(H: 89) 

71 

95 

Family 
perfor
mance 
(%) 

77 
(H: 75) 

62-92 

81 
(H: 85) 

n / a 

91 

n / a 

n / a 

88 

n / a 

In the Total instances column, the abbreviated sound collections are McGill University 
Master Samples (MUMS), University of Iowa samples ( 'Iowa'), IRCAM's Studio On-Line (SOL), 
Gdansk ' s Catalogue of Musical Ins t rument Sound (CMIS), and Real World Comput ing (RWC). 
Other names refer to commercial sample CD-ROMs. 

In the Acoustic features column, SC denotes spectral centroid, SS is spectral spread, SV 
is spectral variation, SKW is skewness, KUR is kurtosis, SFM is spectral flatness, ZCR is zero 
crossing ra te , TRI is t r is t imulus, O E R is odd-to-even rat io, HD is harmonic deviation, A T T is 
a t t ack t ime, T C is t empora l centroid, FM denotes v ibra to , and AM is ampl i tude modulat ion. 
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and at the family-level classification. A different approach to this problem can 
also be found in [688]. 

Evidence abounds on the positive effect of combining different types of 
features. This has been demonstrated for wavelet-based energy bands plus 
MPEG-7 audio features [362], for spectral plus temporal features [670], and 
for MFCC plus other spectral and temporal features [412], [510], [597]. 

Feature-vector dimensionality reduction by projection is another recom-
mendable option, as the work of Peeters et al. [515], [511], Livshin et al. 
[413], [416], Kitahara et al. [345], and Essid et al. [177] illustrates. In all these 
cases, sets with hundreds of features were reduced by means of discriminant 
analysis (see Section 6.3.5 above) to a fraction of the original dimensionality 
without decreasing, or even effectively increasing, the discrimination rate of 
the system. Another interesting projection approach has been proposed by 
Kaminskyj and Czaszejko [325], who applied PCA to a vector consisting of 
the constant-Q transform frequency bins in the vicinity of the first 20 har
monic overtones. The PCA-transformed feature vectors in successive analysis 
windows formed a multidimensional abstract trajectory space, where sounds 
of different classes showed different trajectories. 

Regarding the classification techniques, /c-NN is the most-often used and 
one of the best performers in the this kind of problem. Being very easy to 
implement, it is a good point of comparison for other classifiers. LDA is some
times suggested as another 'default' method to be included in comparative 
studies but unless prior feature selection and projection is properly done, it 
cannot compete with SVMs or GMMs. We expect to see an increasing number 
of studies using SVMs, as they have theoretical and practical advantages that 
are well understood and clearly demonstrated in other areas of data classifi
cation (see Chapter 2). 

Artificial neural networks have been used almost exclusively by Kostek 
et al. [357], [358], [368], [360], [366], [363], [364], who also reported on perform
ing instrument classification using rough sets. The latter, and other rule-based 
techniques such as decision trees, have not proven to be competitive with other 
classification techniques [597], [515], although some authors have found other 
reasons for adopting them [361], [671]. The ANNs used by Kostek's team were 
standard MLPs with one hidden layer. Explorations of parallel networks can 
be found in [615], and networks with radial and elliptical basis functions have 
been studied by Park et al. [495], [496]. Also, Park proposed a technique called 
nearest centroid error clustering, which he used together with the standard 
back-propagation learning algorithm for training the network. With this new 
technique, the system achieved 71% classification accuracy, 25%-units more 
than without the clustering. 

A surprising observation is that hidden Markov models (HMMs) have not 
been very usual in automatic instrument classification systems, given their 
prevalence in speech recognition and speaker recognition (see Chapter 2). 
Casey [71] provided an interesting classification framework, in connection 
to MPEG-7 spectral bases, but the most advanced HMM-based system for 
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classifying pitched instrument sounds seems to be that of Eronen [175]. He 
proposed to use independent component Analysis for transforming the origi
nal feature vectors (which improved the performance by 6%) and to use a 
discriminative training algorithm for the HMM, which also slightly improved 
the performance. 

To conclude, we have observed that the difficulty of classification is directly 
related to the number of classes [442], [12]. We should then expect very good 
performance for systems dealing with less than 10 classes. On the other hand, 
working with more than 20 classes becomes an extremely difficult problem, not 
only in the case of instrument sounds but also in any other automatic learning 
domain. Hierarchical classifiers have been proposed as a means of maintaining 
the generalization ability of a classifier when the number of classes is increased 
[442]. These are discussed in the next section. 

6.5.2 Classification Based on Hierarchical Decisions 

One of the influential ideas of Martin [441], [442], [443] was to use a hierarchical 
procedure consisting of (1) initial discrimination between pizzicato (plucked) 
and sustained sounds, (2) discrimination between different instrument families 
(e.g., strings, woodwind, and brass), and (3) depending on the previous deci
sions, final classification into specific instrument categories. Other hierarchical 
systems have been developed since then by Eronen et al. [176], [174], Agostini 
et al. [11], Szczuko et al. [615] and finally, Peeters et al. [515], [510], which 
is probably a fair representative of the current state of the art in instrument 
classification. 

Table 6.3 summarizes some facts about the systems mentioned in this 
section. As can be seen, the results using a hierarchical instead of a flat clas-
siflcation scheme have not been conclusive: some authors report moderate 
improvements, whereas others report moderate deterioration in error rates. 
On the other hand, what is consistent is a trend of increasing difficulty when 
the categorization of an instrument goes from the most abstract to the most 
specific: the pizzicato versus sustained decision is very easy, the family classi
fication problem is a bit more difficult, and finally, the specific assignment of 
instrument labels still leaves some room for improvement. 

Although the use of hierarchies is conceptually appealing, it is worth noting 
that errors at each level are 'carried over' in a multiplicative way. Therefore, if 
there is an error at the topmost level, it will be propagated to the lower levels 
of the hierarchy. One rule of thumb for trying a hierarchical system would be to 
look at the between-class confusion matrices and search for a large number of 
confusions between instruments from different families. In this case, provided 
a very efficient family discriminator, these confusions could be reduced by 
means of a series of hierarchical decisions. 

Instead of embedding some taxonomic knowledge into the classifier (i.e. 
hardwiring the family and subfamily taxonomy), Agostini [10] and Kitahara 
et al. [346] have approached the automatic building of instrument taxonomies 
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by means of clustering techniques, although the reported results were worse 
than those using a predefined taxonomy. A more elaborate proposal was 
presented by Essid et al. [179], but the authors did not use their induced 
taxonomy for classification purposes. 

A related and promising thread for future explorations is an approach 
called 'mixtures of experts' [593], where a sound is analysed by a number of 
specialized classifiers, and the results are then combined by a voting mech
anism which attempts to neutralize individual errors made by one of the 
classifiers. For example, if a sound comes from a bowed violin, but the most 
generic classifier erroneously classifies it as 'not-sustained', while the bowed-
string and violin experts assign it to the correct classes, then the sound would 
be correctly labelled provided a conflict resolution mechanism is properly im
plemented. FanelH et al. [181] presented a modular neuro-fuzzy network for 
classifying instrument families, where different submodules operated on dis
tinct subsets of input features. Similarly, Kostek et al. [371] presented a system 
of parallel ANNs, where each network generated a decision based on a single 
energy band and then all decisions were combined to produce a coherent out
put. This idea of combining specially trained subsystems has not been pursued 
so far in any other of the studies we have reviewed here, but it deserves more 
attention (see also Essid et al. [177] in the next section). 

6.6 Classification of Sounds from Music Files 

One of the research trends in the classification of musical sounds is moving 
toward more ecological scenarios, that is, working with real music files, ad
dressing practical applications, and utilizing musicological information in the 
process. Three different classification contexts, in the order of increasing com
plexity, are reviewed here: solo phrases, duets, and complex musical mixtures. 

6.6.1 Classification of Instruments in Solo Phrases 

Detecting the instrument played in a solo phrase should in principle be feasible 
by applying the same algorithms and models that are used when working 
with isolated notes. Even though we know that articulation and expressive 
phrasing elements may convey cues for instrument identification [340], the 
existing research has not exploited these yet. Research has also disregarded, 
up until now, the problem of how to locate the solo sections in an entire 
musical piece, and all the works reviewed here process solo phrases that have 
been manually extracted. 

Table 6.4 summarizes some studies dealing with this problem. The target 
material, features, and other details of the systems are not repeated here; 
instead we highlight other aspects that also deserve attention. 

One important decision in solo instrument identification is how long it 
takes to decide on the instrument label. Using longer time segments and cal
culating averages or choosing the most frequent class decision should provide 
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Table 6.4. Summary of research on instrument classification from solo phrases. 
The column NC shows the number of classes in each system. See the footnotes 
below Table 6.3 for interpreting the abbreviated feature names and sound collections. 

Author , 
year [Ref] 

Mart in , 
1999 [442] 

Marques &: 
Moreno, 
1999 [437] 

Brown 
et al., 2001 
[57] 

Ventura-
Miravet 
et al., 2003 
[640] 

Livshin 
et al., 2003 
[416] 

Vincent & 
Rodet , 
2004 [647] 

Essid 
et al., 2004 
[177] 

Essid 
et al., 2004 
[178] 

Krishna &; 
Sreenivas, 
2004 [375] 

1 Chetry 
et al., 2005 

|[87] 

Acoustic material 

1500 excerpts (MUMS, 
CDs, own recordings) 

1638 (train) + 171 (test) 
seconds from 100 music 
t racks on CDs 

14 commercial CDs 

1800 ( train) + 900 (test) 
seconds per class from CDs 
(7 different players per 
class) 

108 solos (commercial CDs) 

Train: sounds from RWC; 
test : 2 x 5 seconds excerpts 
from 10 solo recordings per 
class 

900 (train) + 90 (test) 
seconds per class from 
MUMS, Iowa, SOL, and 
commercial music CDs 

900 (train) + 150 (test) 
seconds per class from same 
as above (+ ins t rument s 
added) 

Train: Iowa; test: RWC 

300 (train) + 300 (test) 
seconds per class from CDs 

NC 

14 

8 

4 

6 

7 

5 

5 

10 

3 

6 

Acoustic features 

ATT, SC, SI, FM, AM, 
ZCR, onset features 

MFCC 

Cepstral coefficients, 
autocorrelat ion, SC, 
constant -Q band 
differences 

Perceptual linear 
prediction, 
Linear-prediction derived 
cepstral coefficients 

SC, KUR, SKW, SS, 
slope, TRI , MFCC 

non-linear ISA 

MFCC 

MFCC, de l ta -MFCC, SC, 
SS, SKW, KUR, bandwise 
SFM 

Line Spect rum 
Frequencies, MFCC, L P C 

Line Spect rum Frequencies 
plus their velocity and 
acceleration 

Classifi
cation 
algo
r i thm 

Hierarchi
cal 
k-NN 

SVM 

GMM 

HMM 

LDA + 
k-NN 

GMM 

GMM 

SVM 

GMM 

SVM 

Instru
ment 
Perfor
mance 
(%) 
39 

70 

80 

94 

88 (85 
real
t ime) 

90 

67 

77 

74 

78 

better results, even leading to bet ter discrimination rates than those in classi
fying isolated sounds. The optimal reported durations vary between two and 
ten seconds, depending on the authors [437], [640], [178]. As the t ime dimen
sion has a more prominent role here than in identifying isolated sounds, HMMs 
may have some advantage over 's tat ic ' modelling techniques such as those used 
in the previous section. The HMM-based system reported by Ventura-Miravet 
et al. [640] provided impressive evidence on tha t . 

An original proposal tha t goes back to the idea of 'mixture of experts ' is 
using a 'one against one' classification strategy, where a series of classifiers 
are devised tha t only make binary decisions between an instrument A and 
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instrument B, and the decisions are then combined by voting [177]. In addition 
to improving the classification accuracy under certain circumstances, the use 
of pair-wise classifiers makes it possible to find some characteristic features 
that are very useful in a given pair-wise discrimination but remain useless in 
others. 

Exploring new features and increasing their number is another trend ob
served in this research context. The log-energy within octave sub-bands and 
the logarithm of the energy ratio of adjacent sub-bands have been used as 
a way to characterize the spectral energy distribution of a sound [177]. Line 
spectral frequencies have also been incorporated as a way to model the reso
nances and peaks of the power spectrum with higher precision and robustness 
than linear prediction coefficients (LPC) [375], [87]. 

Independent subspace analysis (ISA) has been successfully used for per
cussive sound classification (see Chapter 5) but it has only been tested for 
classifying pitched sounds by Eronen [175] and by Vincent and Rodet [647]. 
The latter represented the short-time spectrum of musical excerpts as a non
linear weighted sum of typical spectra plus noise, which were learned using 
files from a database containing isolated notes and solo recordings. These tem
plates were then used to determine, with a very high accuracy, the instrument 
played in the solos of commercial recordings (even when they were artificially 
distorted with reverberation or noise). The authors showed that their model 
has some theoretical advantages over methods based on GMMs or on linear 
ISA and that it worked successfully even for the classification of instruments 
in duets. 

A surprising observation is that any of the reviewed systems do not seg
ment solo phrases into notes. The addition of a reliable onset detector would 
allow the inclusion of envelope-related temporal features and the reduction 
of computational load by doing the actual classification only once per note 
onset. Onset detection is, however, a hard problem in the case of music signals 
that do not contain percussion instruments [95]. 

6.6.2 Classification of Instruments in Duets 

Classification of instruments in musical duets requires more complex tech
niques than those for isolated samples or solo phrases. The added difficulty 
lies in achieving some kind of sound source separation, or robust extraction 
of the features of a given source in the interference of the other source. As we 
will see, the few existing studies that have been summarized in Table 6.5 are 
still more or less exploratory in nature: in addition to the sound separation 
issue, they use few duet types and a small music collection, so their reported 
high performance estimations should be taken with care. 

Two different approaches have been examined here. In the first one, primi
tive source separation (or source reduction, as Livshin and Rodet [416] termed 
it) is performed by estimating the FO of one or both instruments and then 
substracting the partials associated with the first sound in order to estimate 
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Table 6.5. Summary of research on automatic identification of instruments from 
duets. 

Author , 
year 
[Ref] 

Livshin 
& Rodet , 
2004 
[416] 

Kostek 
et al., 
2004 
[362] 

Eggink Sz 
Brown, 
2004 
[167] 

Acoustic mater ial 

Training: isolated 
sounds and sounds 
from solo phrases. 
Test: 18 music pieces 

Training: 400 sounds, 
plus 400 sounds for 
cross-validation of the 
t imbre model. Test: 
artificial pairs 

Training: isolated 
sounds mixed in pairs 
and artificially mixed 
solo phrases. Test: 
mixed pairs of sounds 

Number 
of pairs 

8 (7 dif
ferent 
instru
ments) 

8 (4 dif
ferent 
instru
ments) 

10 (5 dif
ferent 
instru
ments) 

Acoustic 
features 

SC, ATT, 
tempora l 
decrease, TRIS , 
HD, SKW, 
KUR, SV, SS, 
MFCC, noisiness 

Par t ia ls ' 
ampl i tudes 

Energy within 
120 sub-bands 

Separat
ion 

Source 
reduction 
(spectral 
subtrac
tion) 

Spectral 
subtrac
tion 

Missing 
feature 

Classi
fier 

LDA 
projec
tion -|-
k-NN 

MLP 

GMM 

Performance 

(%) 

40-100, de
pending on 
the pairs 

n / a (only 
average 
activation 
of the MLP 
ou tpu t layer 
reported) 

74 

the spectrum of the second one. Using this approach, harmonic cancellations 
and erroneous enhancement of partials should be expected, depending on the 
degree of overlap between the spectra of the two sounds. 

Livshin and Rodet [416] approached the classification of instruments in 
duets by using their real-time solo recognition system (see Table 6.4). In or
der to detect instruments in duets, the system first estimated the two FOs 
using an algorithm by Yeh and Robel [681], and also computed their corre
sponding harmonic partials. The fundamental frequencies were quantized to 
the nearest musical note, and contiguous frames with the same value were 
chunked together. Each chunk was then used twice in a phase-vocoder fil
tering process of source reduction: in the first pass, all the harmonics of the 
estimated fundamental were kept, whereas in the second pass, the sustained 
note's harmonics were filtered out and the 'residual' partials were kept. Over
lapping harmonics of the two notes were not filtered out. Finally, the partials 
of the fundamental (intended to correspond to one instrument) and the resid
ual partials (intended to correspond to the other instrument) were sent to a 
classifier in order to generate their corresponding labels. 

Kostek et al. [365], [362] proposed the decomposition of duet sounds based 
on the modified frequency envelope distribution (FED) analysis, which was 
originally described in [370]. The FED algorithm decomposes a signal into a 
linear expansions of sinusoids with time-varying amplitudes and phases. The 
first step of the duet analysis method is the estimation of the FO of the lower-
pitched instrument. The input signal is divided into short overlapping blocks, 
and FO is estimated for each block separately to deliver the FO contour. Using 
the FO information and the FED algorithm, the time-varying amplitudes and 
phases of the first ten harmonics of the sound are estimated and cancelled 
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from the signal, in order to obtain a residual where the harmonics of the 
second sound are analysed. The estimated spectra of the two sounds are then 
fed to a neural classifier to recognize the two instruments. 

Another approach to analysing duet signals is based on a so-called missing 
feature theory that was developed for speech processing and speaker identifica
tion. The main idea consists of using only the spectro-temporal regions which 
are dominated by the target sound, and ignoring those that are dominated by 
background noise or interfering tones. This approach is motivated by a model 
of auditory perception, proposed by Cooke et al. [99], which postulates a sim
ilar process in listeners. In polyphonic music, partials of one instrument often 
overlap with those of another one. Consequently, the observed amplitudes of 
these partials no longer correspond to those of any individual instrument. 
Within the missing feature approach, these corrupted or unreliable features 
can be excluded from the recognition process. The remaining information is 
therefore incomplete, but the hope is that it is still sufficient to enable robust 
instrument classification (additionally, it is possible to partially reconstruct 
the missing values by exploiting known correlations between the missing and 
the rehable values). Eggink and Brown [168], [167] used sub-band energies as 
features, although other features could be utilized, too. 

6.6.3 Classification of Instruments in Complex Mixtures 

If classifying instruments in duets is still in its infancy, we should say that 
identifying them in more complex polyphonic mixtures is a kind of newborn 
subject. Recognizing all the instruments that are played at a given time in 
a complex musical mixture is a tough problem. The pioneering proposal by 
Kashino and Murase [331], which is closely related to sound source separation 
(see Chapters 9 and 10), required that a representative waveform of each note 
of each instrument to be identified was stored beforehand in order to per
form a template adaptation and matching process. Once the onsets and FOs 
were estimated (in their original system this was done manually), the most 
prominent instrument tone was determined by comparing the mixture with 
phase-adjusted example waveforms. In an iterative processing cycle, the en
ergy of the corresponding waveform was then subtracted to find the next 
most prominent instrument tone in the residual. The system also successfully 
exploited high-level musical knowledge related to note transitions and voice 
leading. 

A closely related system was presented by Kinoshita et al. [343]. It in
cluded improvements over the spectral template matching method of Kashino 
and Murase [330]. FO estimation was performed prior to the instrument clas
sification process to determine where partials of concurrent sounds overlap. 
Features used for instrument identification were heuristically evaluated ac
cording to their reliability and diagnosticity with relation to the stored tem
plates of each instrument class. The overlapping features (e.g. power in bands) 
were adapted according to the known templates, and those reliable and very 
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characteristic features of an instrument were selected for performing the clas
sification. Both the system of Kinoshita et al. and that of Kashino and Murase 
were evaluated using combinations of three instruments, and it is not clear if 
they could be used with more dense mixtures. 

Approaches other than source separation are feasible by considering some 
simplifications to the problem. One of them consists of focusing on a given in
strument or instrument type only. This is the case, for instance, when we con
centrate on percussion instruments, which include very idiosyncratic sounds 
(i.e., 'noises') that stand apart from the remaining 'harmonic' sounds gener
ated by pitched instruments (see Chapter 5). Also, detecting a singing voice 
above the rest of the instrumentation is an example of this approach [630]. 
Heittola applied a similar detection-without-separation strategy to detect the 
presence of certain instruments (bowed strings, electric guitar, piano, saxo
phone, vocals) in polyphonic music, but found that this straightforward ap
proach did not produce very reliable results [281]. 

Deciding if a musical piece involves certain instruments in a 'predominant' 
role, even though they cannot be accurately located in time, is another way to 
address the identification of instruments in polyphonic music. An instrument 
can be considered as predominant if it is present for a significant part of 
a piece and it is louder than the others most of the time. For instance, in 
popular music the singer's voice is usually louder than most of the other 
instruments. Following this path, the systems proposed by Eggink and Brown 
[170], and by Zhang [688] assume that FO estimation provides a rehable cue for 
identifying a predominant instrument. The most dominant FO is determined 
by a frequency-domain harmonic pattern matching process (see Chapter 8) 
and the spectrum of the predominant instrument is then estimated and used 
to compute discriminative features. Finally, a classifier that has been trained 
using isolated sounds and solo phrases makes the decision on the instrument 
class. It is important to note that in both systems it is required to decide on 
only one instrument at each given time. In Zhang's system, an 'instrument 
profile' was extracted for the whole piece by computing the proportion of notes 
that were played by each instrument (hence, onset detection was performed). 
In the case of Eggink and Brown, their system only attempted to identify 
which instrument was, among 5 classes, the main one played in accompanied 
sonatas and concertos (but not where it was played). 

Identifying combinations of instruments directly (for example piano -h vio
lin)^ instead of separating them, has been addressed by Essid et al. [180]. The 
authors presented a multi-instrument recognition scheme capable of process
ing jazz piano quartets based on prior knowledge of the musical context. Here, 
the number of possible combinations can be reduced by building super-classes 
consisting of unions of classes having similar acoustic features. The classifica
tion can be performed hierarchically in the sense that a given test segment can 
be first classified among the top-level classes, and then more precisely (when 
needed) at a lower level. For example, if a test segment involves double bass, 
drums, and trumpet, then it is first identified as belonging to the combined 
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category 'Bass-Drums-MonoPitchedWind' and subsequently as 'Bass-Drums-
Trumpet'. A substantial amount of data from each of the effective sources 
(i.e., individual instruments but also their usual combinations) is required to 
train the classifier.^ 

6.7 Conclusions 

In this chapter we have provided a review of the theoretical, methodological, 
and practical issues involved in the automatic classification of pitched musical 
instruments. Assigning instrument labels to analysis frames, sounds, or musi
cal segments requires, first, a solid knowledge of the acoustic features of the 
instruments, and of the ways we can exploit signal processing techniques to 
convert them into numerical features. Additionally, a systematic methodology 
comprising the collection of data sets for training and testing, the selection 
and transformation of features, and the comparison of the results obtained 
using different approaches, defines the right path for obtaining a robust clas
sification system. 

In the five years from our first review of the field of automatic classification 
of musical sounds [283] to the present moment, the number of studies exceeded 
twice the number of those published in 1990s. Some general tendencies can be 
noted in these recent works: use of larger and more varied databases, interest 
for unpitched percussion sounds, improvements in the methodological aspects, 
and an increasing concern for practical applications and for dealing with truly 
musical fragments. 

The performance of the systems dealing with a large amount of isolated 
sounds and pitched instrument classes achieves correct decisions nearly 70% 
of the time, whereas a simpler decision on instrument family rises a bit beyond 
80% accuracy. This leaves some room for improvement that could be achieved, 
among other options, by carefully looking at the discriminative acoustic and 
perceptual features that each class of sounds may have and then devising 
feature extractors that capture them properly. 

On the other hand, systems dealing with the classification of instruments 
in musical excerpts are the actual hot-spot of the field even though the achieve
ments are still quite modest. For the classification of solo phrases, the achiev
able performance can be a bit better than that for isolated sounds, but when 
duets or more complex combinations are considered, the performance drops 
substantially. In those cases, systems become more complex as they rely on 
multiple-FO estimation and on incomplete or noisy estimation of spectral and 
temporal information. The current approaches try to avoid 'hard' source sep
aration and exploit contextual or musical knowledge. This makes the problem 
more manageable, even though the provided solutions have still been limited 
in terms of sound combinations or musical styles. 

^See also Chapter 5, p. 137, where the idea of recognizing combinations of sounds 
directly is discussed from the viewpoint of percussion transcription. 
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In this review we have identified several open issues that could provide in
teresting returns when properly addressed: (1) The need of a reference test col
lection, containing enough variability in instruments, recording conditions and 
performers to be considered as an unbiased sample of the real population of 
instrument sounds, and granting that any proposed system can be fairly com
pared to other alternative proposals. Fortunately, RWC is currently a serious 
candidate that should gain wider acceptance among research groups. (2) The 
need to develop better features and instrument-specific features. (3) The need 
to investigate possibilities to embed some general knowledge about the task 
into the classification system, such as the usual frequency ranges of the instru
ments, voice leading rules etc., but also very specific knowledge, for example 
by crafting ensembles of specialized classifiers. (4) The need to evaluate the ro
bustness of a system under reverberant, noisy, or other distortion conditions. 
(5) Incorporating instruments outside the typical orchestral ones: singing voice 
and some electrophones, for instance, the electric guitar, would deserve spe
cific studies by themselves, given their broad timbral registers. (6) The need 
to the develop systems dealing with realistic polyphonic music signals. 

The automatic classification of pitched sounds of musical instrument has 
progressed a lot in the past five years. Even though real time [199], [415] and 
commercial systems for instrument sound classification have been devised, ̂ ^ 
we expect to find more of them soon, in connection with applied problems 
posed by personal digital music players. This means that now is time to ex
ploit the knowledge we have gained working with isolated sounds, in order to 
address the identification of instruments played in polyphonic music. This is, 
without doubt, the challenge for the forthcoming years. 
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Western tonal music is highly structured, both along the time axis and along 
the frequency axis. The time structure is described in other chapters of this 
book (see Chapter 4), and it may be exploited to build efficient beat trackers, 
for example. The frequency structure is also quite strong in tonal music. It 
has been shown since Helmholtz (and probably before) that an individual 
note is composed of one fundamental and several overtone partials [451], [193]. 
Though acoustic waveforms may vary from one musical instrument to another, 
and even from one performance to another with the same instrument, they 
can be modelled accurately using a unique mathematical model, with different 
parameters. 

In addition to a mathematical model that describes the waveform gener
ation, the frequency structure of music can be used to derive priors over the 
model parameter values. Here, we understand frequency structure in terms 
of fundamental and partials structure, pitch/FO structure, etc. For example, 
assume the instrument playing is a piano; then the note frequencies cannot 
be just any frequencies; they have to match the piano key frequencies. Also, 
the piano overtone partial frequencies are slightly inharmonic (that is, they 
are not integer multiples of the fundamental partial frequency), and their fre
quencies are described by a specific model [451], [193] which can be used to 
build parameter priors. More generally, the structure of tonal music may be 
exploited to build a Bayesian models that is, a mathematical model embedded 
into a probabilistic framework that leads to the simplest model that explains 
a given waveform (see Chapter 2 for an introduction). 

The Bayesian setting is quite natural for this problem as it enables 
the use of many heuristics within a rigorous framework. Moreover, acoustic 
waveform models generally have many parameters, which cannot be accu
rately estimated without regularizing assumptions, such as parameter priors. 
Bayesian models for multiple FO estimation have received, however, relatively 
little attention. A possible cause is that such models are complex, and this 
makes their use difficult—though achievable—when confronted with real data. 
Sometimes they are also computationally heavy. However, such models enable 
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much more than multiple FO tracking. They do model the acoustic waveform: 
the parameters which are estimated from real musical records may be used 
for multiple FO estimation, but also for monaural source separation, sound 
compression, pitch correction, etc. 

In this chapter, we present several approaches to multiple FO estimation 
that rely on a generative model of the acoustic waveform. More precisely, 
we present a noisy sum-of-sines models which has been studied by many 
authors in various contexts. This model and some of its variants are pre
sented in Section 7.1. Section 7.2 introduces a Bayesian off-line processing 
method which requires notewise processing (that is, processing is performed 
on a complete waveform section which does not include note changes). In Sec
tion 7.3, we present the on-line processing model of Cemgil et al. [78], Dubois 
and Davy [158], and Vincent and Plumbley [646]. Section 7.4 is devoted to 
other on-hne multiple FO tracking algorithms that rely on incomplete or in
direct acoustic waveform modelling: for example, the approach of Thornburg 
et al. [625] and Sterian et al. [609] models the time evolution of time-frequency 
energy peaks. Dubois and Davy [159] model the signal spectrogram (which 
comes down to estimating on-line the acoustic waveform up to the initial phase 
parameter, though). Section 7.5 presents some conclusions. 

7.1 Noisy Sum-of-Sines Models 

In this section, we first present some simple models which were developed for 
single FO acoustic signals. The earliest noisy sum-of-sines acoustic waveform 
models were developed for speech synthesis; see e.g. [449]. These models did 
not assume, however, frequency relations between the fundamental partial and 
overtone partials. Laroche et al. introduce a harmonic plus noise model [394] 
which assumes such relations. These models were soon used for music process
ing; see [575] for a review of early methods. 

7.1.1 Single FO Stationary Models 

The frequency structure of tonal music acoustic waveforms has been observed 
for many years. As can be seen in Fig. 7.1, these waveforms are almost periodic 
and their Fourier transforms reduce to (approximately) sums of sine waves 
whose frequencies are multiples of a given frequency. For a perfectly periodic 
(infinite length) signal x, with discrete time n = 1, 2 , . . . , 

M 

^(^) ~ / ^ o^sin(27rmA:in) -f a^cos(27rmfein). (7.1) 

In the following, we name the sine + cosine component with frequency ki 
the fundamental and components with harmonic number m = 2 , . . . , M the 
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overtone partials} The model in (7.1) is quite simple, but it is rather theo
retical. Real signals always include components which cannot be modelled as 
individual sines or cosines: for example, a flute player breathing can be heard 
in recorded signals, and this is highly non-periodic [219]. As such components 
are quite diflPerent from one occurence to another, they can be jointly modelled 
in terms of their statistical distribution as a noise component e, yielding the 
model 

M 
x[n) — 2_\ ^^ sin(27rmA:in) -[- a^ cos{27rmkin) + e(n). (7.2) 

7 7 1 = 1 

100 150 

Time (ms) 

Fig. 7.1. Flute acoustic waveform (top) together with its spectrogram (bottom). 

Two noise statistical models have received some attention. The simplest 
assumes e(n) to be a white noise with Gaussian distribution (see for exam
ple [394], [616], [124]). This is the less informative assumption, as in this case. 

^As pointed out in Chapter 1, the frequency of the fundamental partial, denoted 
here by /ci, is different from the fundamental frequency FO, which is the inverse of 
the acoustic waveform period. 
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e(n) is a purely random sequence with a flat power spectrum. Another popu
lar model takes the form of an autoregressive process [576], [575], [292], [609], 
[122] (see Chapter 2 for a presentation of autoregressive models), which also 
corresponds to random sequences, but with non-fiat power spectrum. A review 
of possible choices for e may be found in [310], [308]. 

In addition to non-harmonic components, acoustic waveforms produced 
by real musical instruments also have another important characteristic: they 
are not strictly periodic. This is explained by two phenomena: inharmonicity 
(or partial de-tuning) and partials amplitude nonstationarity. Inharmonicity 
appears whenever the frequency of the partial with harmonic number m is not 
exactly mki. For the example in Fig. 7.2, where several periods of the acoustic 
waveform produced by a piano, a flute, and a clarinet are superimposed, the 
non-periodicity appears clearly. This may be caused by amplitudes decay (for 
all three examples), but also by inharmonicity (piano example). Note that in 
Fig. 7.2, two of the three periods plotted are contiguous, whereas one is taken 
further apart. A more general model enabling inharmonicity is 

M 

x{n) = 2_2 ^^ sin(27rA:mn) -f a^ cos(27rA:mn) + e(n), (7.3) 
m = l 

where the partial frequencies km (m = 2 , . . . , M) are related to ki by a more 
elaborate relation than km = rnki. For example, Fletcher and Rossing [193, 
p. 363] propose the following piano inharmonicity model: 

Kri mki 
1 + B ' 

(7.4) 

with B e [10-^10-2]. For B = 0.0004, this shifts the 17th partial at the 
frequency position of the 18th partial. 

Piano (FO 
3.8 0 

262 Hz) Flute (FO 
2 0 

490 Hz) Clarinet (FO 
7 

135 Hz) 

Fig. 7.2. Three superimposed periods of the acoustic waveforms played by a piano, 
a flute, and a clarinet. The waveforms are not strictly periodic and the three periods 
represented (in solid, dashed, and dashed-dotted lines) are not exactly superimposed. 
The time scale is in milliseconds. 
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Aside from partial frequency models, it may be useful to model the partial-
to-partial amplitude profile (referred to as the spectrum envelope in the follow
ing) . The power spectrum of a note is formed by the instrument body response 
which modulates the partial frequency peaks. Of course, this modulation de
pends on the instrument and it may be characterized by a spectrum envelope 
(see the saxophone family example [193, p. 497] ) which may be modelled. 
Spectrum envelope models need to be quite flexible, though, because some 
instruments have special behavior. For example, clarinets have almost zero 
amplitude for every other low frequency partials (partials with even harmonic 
numbers m); see Fig. 6.2 p. 166. Godsill and Davy [213] propose a statisti
cal model where the amplitudes are assumed to be approximately constant 
below some cut-off frequency /Ccutoff, and decay exponentially for higher fre
quencies. The parameters defining the model (fccutoff and the exponential decay 
rate) are to be estimated from the processed acoustic waveform. Cemgil [78] 
uses an exponential decay where the amplitude a^ of partial m equals [a|] 
(and similarly with a ^ ) . Alternative models may be proposed, based on the 
spectral smoothness principle; see Klapuri [351]. 

7.1.2 Single FO Non-Stationary Models 

The models presented above permit quite good modelling of very short signal 
portions, insofar as the amplitudes and frequencies do not vary too much over 
time. As explained in Chapter 4, however, the amplitudes do vary quickly 
enough so that the above models cannot be used to process musical segments 
longer than 20 to 50 ms. A more general non-stationary model is 

M 

x{n) = ^ c^m(^) sin (27r/Cm(n)n) + a^(n) cos {2TTkm{n)n) + e(n), (7.5) 
7 7 1 = 1 

where the amplitudes c^%j^{n) and a^{n), the frequencies A:m(̂ ) for m = 
1 , . . . ,M, and the noise statistics now depend on the time. This model is 
quite flexible, but it is no more a sine-plus-noise model: to understand this, 
assume km{n) is an independent sequence of random frequencies with M = 1; 
then the wave generated is not a sine wave at all! This shows that the model 
in (7.5) should be constrained so as to be suited to tonal music. This can be 
done in many ways, but the simplest is certainly to assume a smooth time evo
lution of the amplitudes and frequencies, and assume a statistically (almost) 
stationary noise. 

Many amplitude and frequency evolution models may be found. The am
plitude evolution model should mimic the way notes appear and disappear 
in music (onset and decay), whereas the frequency models should adapt to 
stationary cases (for instruments such as the piano where the performer has 
quite limited influence on the note frequencies evolution) or vibrato (e.g., for 
violins). Many such models may be found in the music synthesis literature, 
and they are generally quite instrument specific; see e.g. [543], [628]. These 
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models may be used for musical signal analysis, in particular when the analy
sis conditions are well controlled. Here, we present more general models which 
can adapt to different instruments and different kinds of music. 

Amplitude Evolution Models 

As pointed out above, amplitude evolution models need to allow quick enough 
variations in order to fit note onset and decay. However, amplitudes should not 
vary too quickly: to make this point clearer, assume the acoustic waveform is 
a sine wave and let M = 1 and fci = 0. Then, the only way for the model to fit 
the data is for the amplitude itself to be a sine wave. This illustrates that, given 
an acoustic waveform, there is not a unique frequency/amplitude parameter 
set for the model in (7.5); rather, there are many. It is thus important to 
prevent the time-varying amplitudes from fitting the sine waves. This can 
be easily done by selecting amplitude evolution models that do not permit 
oscillations with frequencies over some 10 Hz, for example. 

A relevant model is that of damped amplitudes^ where the amplitude 
evolves according to a decreasing exponential; that is (where we drop the 
partial index m for notation clarity), 

a^(n) = a^exp(-An) and a^{n) = 5^exp(-An), (7.6) 

where the damping factor A tunes the amplitude decay rate, and a^, 5^ are 
fixed initial amplitudes. When substituted into (7.5), this yields a damped 
sinusoids model, as used by Hilands and Thomopoulos [292] for multiple si
nusoids frequency estimation or by Cemgil et al. [78] for music transcription; 
see Section 7.3 below. Note that such an amplitude time evolution may be 
coupled with a spectrum envelope as described in Section 7.1.1. 

Another amplitude evolution model consists of assuming a random walk 
or an autoregressive process, as proposed in [106] for chirp signals. This re
duces the amplitude parameters to the set of AR coefficients, which may be 
small. These coefficients should be chosen, however, so as to ensure a smooth 
amplitude.'^ 

The last model presented here writes the time-varying amplitude as a sum 
of weighted smooth, time-localized functions with time-domain shape (j){n) 

I I 

a%n) = ^ a ^ 0 [ n - z A n ] and a'^in) = ^5J ( / ) [n - iAn], (7.7) 
7=0 7=0 

where af, a^ are the amplitudes (also called weights) associated to each time-
localized function (f)[n — iAn]- The step A^ sets the spacing between two 
such successive functions. The shape (f) is typically chosen so as to obtain 
smooth amplitude profile; in general it is one of the standard 'shding windows': 

^This can be obtained by choosing the AR coefficients whose corresponding char
acteristic polynomial has zeros with relatively small amplitude [339]. 
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Gaussian, Hamming, Hanning, etc. Here also, the amplitude evolution from 
one frame to another may follow a random walk [159] or may be unrelated 
a priori [616]. An important remark is that the resulting time-varying sum-
of-sines model is closely related to a Gabor representation^ where a signal is 
decomposed into windowed sine/cosine waves whose time-frequency locations 
are determined by a regular lattice [184]. Here, the lattice is regular along 
the time axis and irregular along the frequency axis. Gabor-style amplitude 
models were used by Davy and Godsill [122] (irregular lattice) and Wolfe 
et al. [676] (regular lattice). 

Frequency Evolution Models 

A simple frequency evolution model may assume constant frequencies. This 
is actually quite a realistic assumption insofar as that the instrument player 
has no means of changing note frequencies during their emission. This is the 
case for many instruments, including pianos, flutes, oboes, etc. It can also be 
a sought-after effect to keep it constant in other instruments such as violins, 
cellos, or trumpets. 

Aside this simple model, a possibility is to assume random walk frequency 
evolution, that is 

km(ji) = km{n - 1) + Vm{n) forn = 2 , . . . , r , (7.8) 

where Vm{n) is a Gaussian white random noise with some fixed variance. 
In order to be valid, though, the noises Vm{n), m = 1 , . . . ,M have to be 
correlated so that the frequencies of related partials follow similar evolutions. 

In the case of abrupt frequency changes, the models presented here are 
out of their validity domain. However, a standard assumption is that no note 
changes occur within the acoustic waveform segments processed. 

7.1.3 Multiple FO Non-Stationary Models 

It is straightforward to extend from single to multiple FO models by simply 
adding J single FO models. Equation (7.5) becomes 

J M, 

^(P) = X I X I ^i,m(^) sin {2'Kkj^rn{n)n) -j- Q^j^^{n) cos (27r/c^-,^(n)n) + e(n), 

(7.9) 
where the amplitudes and frequencies are modelled as in the single FO mod
els discussed above. In specific contexts, it may also be useful to model links 
between the frequencies and amplitudes of different notes. For example, the 
sound of an electromechanical organ may be modulated by rotating loud
speakers; the strings of an electric guitar may be jointly tightened by a moving 
bridge. Such links may be either deterministic or probabilistic. 
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The mathematical models described above are characterized by many pa
rameters to be estimated. Depending on the specific model selected, the num
ber of parameters for a 100 ms excerpt with 3 notes may vary from about 50 
to more than 3000. In order to make the estimation feasible and non-trivial, 
it is necessary to define a measure of the fit between the data and the model 
and to favour simple models. This can be easily done with a Bayesian model. 
The following two sections define such probabilistic models first in the off'-line 
case, and then in the on-line case. 

7.2 Off-line Approaches 

The off'-line approaches are characterized by their global viewpoint on the 
parameter estimation problem. In the Bayesian estimation settings, we need 
a likelihood term (which describes the model-to-dat a fit) and priors, because 
the quantity of interest (the posterior) is proportional to the product of the 
former two terms; see Chapter 2. An important assumption is made in this 
section: the processed acoustic waveforms have been segmented so that they 
do not include transitions between the notes. This can be achieved by applying 
some onset detection technique; see Chapter 4. 

7.2.1 Likelihood 

The likelihood term is completely described by the mathematical model se
lected, and by the probability density function of the noise e(n). As an illus
trative example, we assume here that this noise is zero-mean white Gaussian 
with variance cr̂ , and we assume the model of (7.9) with the amplitude 
evolution model of (7.7) and constant frequencies. In order to simplify the 
notation, we write the waveform mathematical model in vector form. Let 
X = [x(l) . . . x{T)]^ and e = [e(l) . . . e{T)]^. Moreover, we define a to be 
the vector of sine/cosine amplitudes. Finally, let D be a matrix with T lines, 
whose rows contain the sine/cosine Gabor atoms for each note partial fre
quency, in the same order as in a (see [122], [124] and (2.68) in Chapter 2 for 
explicit definitions of a and D). With these notations, the acoustic waveform 
model can be written as 

X = D a + 6. (7.10) 

All of the models presented above may be written in this vector form, 
where the basis function matrix D and the amplitude vector a may have 
different structures. In any case, the dimension of D depends on J, on M = 
[Ml , . . . , Mj], and on / , and its rows depend on the frequencies k (where k is 
the vector that contains all the frequency parameters kj^rni'^)^ m = 1, • •., Mj 
and j = 1 , . . . , J ) . 

It is now possible to write the likehhood of this model. Of course, it depends 
on the probabilistic assumptions made about the noise e. Let us define x and 
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D such that x = x and D = D whenever € is a zero-mean white Gaussian 
noise of variance a^ and x == Ax, D = AD if the noise is autoregressive of 
order p and coefficients a = [ a i , . . . , ap], with Gaussian noise of variance a^. 
The matrix A is defined as 

1 0 
—a\ 1 

- f l p . . . 

0 ••• 

0 

-ax 1 0 . 

.. 0 
0 

.. 0 A = 

: • • • ' • . • • . 0 

0 . . . 0 —a^ ... —ai 1 

Using these notations, the likehhood is written 

(7.11) 

p(x|J ,M,a,k,CT^(a)) = {2Tra^)~'^/^ exp 
2a2 Ix - Dal (7.12) 

where the possible AR coefficients a are only included in the likelihood when 
e is autoregressive. In the following, the optional parameter a is omitted for 
the sake of simplicity. 

7.2.2 Prior Distributions Selection 

The next step towards a Bayesian model is that of prior distributions selection. 
Priors are essential in this problem, because they make the estimation of the 
numerous parameters feasible: without priors, many possible solutions would 
be likely, including trivial, meaningless, and over-complex ones. In particular, 
priors are useful to avoid having the model feature too many notes. There are 
many possible priors for J, M, a , k, cr̂  (and possibly a) . However, compu
tational load is reduced when selecting a Gaussian amplitude prior p(a) and 
an inverse gamma prior distribution for the variance parameter cr̂ . Thus, the 
overall prior should be written as 

p ( J , M , a , k , a ^ 1 0 ) = p(a|J,M,k,a2|V^)p(J,M,k|V^)p(a2|V^), (7.13) 

where t/? is called the hyperparameter vector-^ it contains the prior parameters, 
called hyperparameters ([122], [124] and Chapter 2). Similar to (2.74) and 
(2.75) in Chapter 2, we select here 

p(a | J ,M,k ,a2 | '0 ) = A/'(a;0,(j^Z'c), 

P( '̂IV^) 

which enables us to write the posterior as a product of three terms 

p(J,M, a,k,<T2|x,'0) oc 
P(CT2| J, M, k,X, •0) p(a | J, M, k, CT^ X, •0) p(J, M, k|x, tp). 

(7.14) 

(7.15) 

(7.16) 
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The three terms of the posterior distribution are 

p(a2 |J ,M,k,x) = IQ ( . 2 ; ^ , f ^ o ± | _ f H ) , (7.17) 

p(a|J,M,k,(T2,x) =Ar(a;SD"rX,(72S), (7.18) 

T + î i 

p(J ,M,k |x , V;) a i A _ _ _ L _ _ p ( J , M , k | i / > ) , (7.19) 

where the matrices S and P are defined as in Chapter 2, page 47. 
Equations (7.17), (7.18), and (7.19) define the posterior, up to the prior 

p(J, M,k| '0) which still needs to be selected. The parameters v^^ v\ tune the 
prior over the noise variance a^ and they should be set so as to favour small 
values of G^ . This ensures that the residual x - D a is as small as possible. 
This can be achieved by selecting i/g < < 1 and v\ « \ (typically, smaller 
than 10-2). 

The covariance matrix J^ot controls the amplitude coefficients. Standard 
choices are 

• The g-prior^ which consists of setting Ua = 7^(6^13) . This prior has 
two advantages: First, the amplitudes of sinusoids with very close frequen
cies are constrained to small values. This shares the energy between those 
two neighbour components. Second, 201ogiQ(7) can be interpreted as the 
expected signal-to-noise ratio (in dB). Third, the numerical computations 
are even easier because the matrix S becomes really simple. The hyperpa-
rameter 7 should be considered unknown, and might be estimated. Actu
ally, its value may be quite critical for correct estimation of the number of 
notes/partials. A standard choice consists of selecting a prior p(72) as an 
inverse gamma distribution [21], [656], [122]. 

• A block diagonal matrix, made of 2 x 2 blocks. This choice enables the 
implementation of a fast estimation algorithm [127], [124]. Each block 
I7cK[n] located at lines/rows (2n,2n + 1) can be set as, e.g., i7a[n] = 
7^(D^Dn) , where D^ denotes the two rows of D located at indexes 
2n and 2n + 1. The hyperparameter 7^ may be set to the same value for 
all blocks, which assumes the same prior amplitude for all partials and all 
notes. It may also have the same value for all blocks that are related to 
the same note and have different values from one note to another. Finally, 
7^ may also be used to model the amplitude decay from one partial to 
another, according to the given spectrum envelope; see Section 7.1.1. 

• A diagonal matrix, which may be proportional to the identity, i.e., Ua = 
7^1, where 7^ is an unknown hyperparameter with inverse gamma prior, 
or Sot is a diagonal matrix where each diagonal term 7^ is set for each 
partial, according to some spectrum envelope. 
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When additional prior information is available (for example, the instru
ments playing are known), it is possible to design an even more specific prior 
over the amplitudes by setting the 7^'s to some preset values, multiplied by 
a common scale parameter to be estimated. 

The remaining parameters joint prior p( J, M, kit/?) should also be selected. 
This prior may be decomposed into individual terms as 

p(J,M,k|i/.) = p(k | J ,M,V)p(J ,M|V) . (7.20) 

Similar to the amplitude prior, the frequencies prior may have various shapes, 
depending on the level of prior information available. A very general prior is 

p(k|J,M,V^) = l[ 
j=i 

M, 

p{kj^i\Mj,ip) Y[ Pikj^mlkj^i.'ip) 
m=l 

(7.21) 

In (7.21), the fundamental partial frequency prior p{kj^i\Mj,ip) may be in
strument specific. For instruments with keys (pianos, clarinets, etc.) this prior 
may have the shape depicted in Fig. 7.3. In the general case, this kind of prior 
may also be used to perform frequency quantization (see Chapter 12); in this 
case, considering the A4 frequency as an additional unknown parameter to 
be estimated around 440 Hz makes the quantization more robust. Another 

»mHMAAAAAAAAAA 
Al BlCl Dl E l F l Gl A2 B2 C2 D2 

Frequency (note) 

Fig. 7.3. Prior distribution of the fundamental frequencies p(/cj,i|Mj,i/?) in a 'key 
instruments' model. The spread of the Gaussian function increases with frequency, 
i.e., with the note label in {A1,A1#,B1, .. . }. This is aimed at limiting areas where 
the prior is zero, in order to make the numerical estimation easier. 

efficient fundamental partial frequency prior is the uniform distribution over 
the interval [0, ks/2Mj] {j = 1 , . . . , J ) . The upper limit ks/2Mj ensures that 
no overtone partial has a frequency higher than the Nyquist frequency ks/2, 
as this would cause aliasing. 

The overtone partial frequency prior terms p(A:j,m|^j,i,'0) need to take 
possible inharmonicity into account. 

A good, instrument unspecific, partial frequency prior is given by a trun
cated Gaussian distribution 

P(^j,m|A:i,i''0) = ^{^j,m;mkj^i,{mkj^ifal^)lrk^ (7.22) 
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where cr^^ is a small variance parameter (which can be chosen equal for all 
partials and all notes). In (7.22), the indicator function I (see p. 28) restricts 
kj^rn to the range [—-^, - ^ ] to avoid overtone partial frequencies switching. 

The last prior term to be defined, p(J, Mlt/?), is also the most critical. 
This term should be strong enough to avoid models with too many notes and 
too many partials. However, it should not overly penalize models with many 
notes and partials, because some important partial/note components may be 
missed. 

Overall, there are two standard choices for p{J,M\ip) (others may be de
signed, though). The first consists of using the hierarchical structure p( J, M | ^ ) 
= p(J|t/?) n / = i Pi^jW^ where each term p{Mj\xp) is a Poisson distribution 
with parameter Aj 

p{Mj\iP) = P (M, ;A, ) = e - ^ ^ ^ , (7.23) 

and with p(J|'0) = V[J] A). The hyperparameters Kj {j = 1 , . . . , J ) and A 
play a crucial role in the estimation. Indeed, a model with too many allowed 
partials may tend to underestimate the fundamental partial frequency by one 
or several octaves, that is, by setting it to, e.g., half its true value. This 
adds fake partials in between the existing ones. It is thus important to let 
the hyperparameters A j (j = 1 , . . . , J) and A adapt to the analysed acoustic 
waveform. A robust approach consists of defining gamma priors for these 
hyperparameters; see [124]. 

The second approach consists of defining a prior for the model total number 
of partials R = Y,j=i ^j- Here again, a Poisson prior p( J, M|t/?) = p(i?|'0) = 
7^(i?;A) may be used, where the hyperparameter A is considered unknown 
with a gamma prior. 

The probabilistic model being completely defined, the important issue is 
now to design an efficient estimation algorithm. 

7.2.3 Estimation Issues 

Parameter estimation from a Bayesian model may be achieved in many ways. 
The main two approaches are minimum mean squared error (MMSE) and 
maximum a posteriori (MAP) estimators (see Chapter 2, page 41). Here, 
the structure of the posterior distribution p(J, M,a ,k , cr^|x, i/?) is especially 
complex, with discrete parameters ( J and M), positive parameters (k and 
(j^), and real-valued vector parameters ( a and the optional parameter a) . 

A possible solution consists of estimating J and M by marginal MAP, that 
is, by selecting the number of notes JMAP and number of partials MMAP for 
which p(J, M|x,-0) is maximum—this is typically computed by Monte Carlo 
techniques; see Chapter 2. Then, the other parameters may be estimated by 
marginal MMSE, conditional to JMAP and MMAP, that is, 
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[a, k, a%us^ = ^,^^,i,,,2^^j^,,,M^^^,^) ["' k, ^ ' ] • (7.24) 

This kind of estimator requires, however, the computation of marginal distri
bution, of maxima, and of integrals such as the expectation in (7.24). This 
requires dedicated algorithms, as outlined in the next section. 

7.2.4 Computational Issues 

The computation of estimates from the posterior p(J, M , a , k , cr^|x, V̂ ) re
quires the 'exploration' of this multidimensional probability distribution. Sev
eral works address similar problems. Andrieu and Doucet [21] propose a 
Markov chain Monte Carlo (MCMC) algorithm for a simple noisy sum-of-
sines Bayesian model. Walmsley et al. [657], [658], [656], derive an MCMC 
algorithm for single FO Bayesian models. Finally, Davy and Godsill [122], 
[126], [124] propose various MCMC approaches for multiple FO models, with 
a fast implementation [127], [124]. 

As explained in Chapter 2, the aim of MCMC algorithms is to produce 
a chain of samples J^'\M^'\oL^'\k^'\a'^^'\^'<'\ for i = 1,2,3,. . . . These 
samples are used to estimate the various quantities described in Section 7.2.3 
above. The derivation of such algorithms being quite lengthy, the interested 
reader may refer to the publications cited for details. We present below (Al
gorithm 7.1) the general structure of an MCMC algorithm dedicated to a 
multiple FO noisy sum-of-sines model, with a two-level hierarchical structure, 
from the individual partial level up to the multiple-note level. 

Algorithm 7.1: Overall MCMC Algorithm for Multiple FO Models. 

Initialization. 
• Step 7 .1 .1 Initialize the parameters J, M , a , k, a^, and ip. 

- Sample tjA^^ from its prior distribution. 

~ Sample J^^^ according to some initial distribution qinit(-^)-

- For j = 1 , . . . , J^^^ sample Mj according to its Poisson prior distribution. 

~ Sample k̂ ^̂  according to qinit(k|x) where qinit(k|x) is the probability distribution 
proportional to the Fourier spectrum of x (see [21] for a similar implementa
tion). 

-- Sample thejioise variance parameter a^^^^ according to its posterior distribution 
p(a2|/^),M('\k(^\(a(^)),x,'0(^)) given in (7.17). 

-- Sampje tjie amplitudes a^^^ according to their posterior distribution 
p ( a | j ( ^ \ M ( ^ ) , k ( ^ \ a 2 ( i ) ^ ( ~ ( i ) ) ^ ^ ^ ^ ( i ) ) gj^gn j ^ (7;^g)_ 

Fo r i = 1,2, . . . , i V , do ^ _ 
• Step 7 .1 .2 Sample the note parameters J^'\ M^'\ k^'^ . 
- With probability /x j , try to add a new note using a note birth move, which 

consists of generating a set of note parameters (number of partials, frequencies, 
amplitudes), and testing it using a Metropolis-Hastings reversible jump. 
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- Otherwise, with probability i/j, try to remove a note using a note death move, 
which consists of selecting one of the existing notes at iteration i — 1 and testing 
its possible removal using a Metropolis-Hastings reversible jump. 

- Otherwise, with probability 1 — fij — uj, try the note update move as follows: 

• Set/*) ^j^'~y. 
• For j = 1 , . . . , J^*), update the parameters of note # j by possibly changing 

the number of partials or their frequencies and amplitudes, yielding M^, 

k] ^ and a} \ 
• Step 7.1.3 Sample g^ from p(a^| J^*\ M(^^k^*^x); see (7.17). 

• Step 7 .1 .4 Sample -^^'^ from its posterior distribution (either directly, or us
ing a Metropolis-Hastings test). 

- Set 2 ^ z + 1. 

Algorithm 7.1 deserves several comments. First, the hierarchical levels ap
pear clearly. The note death/birth/update moves correspond to the highest 
level (that of notes). The middle level corresponds to adding/removing partials 
inside a given note, or changing its fundamental partial frequency. The lowest 
level is that of individual partials, whose frequencies and amplitudes may be 
updated. Second, the Metropolis-Hastings moves as well as the initialization 
require proposal distributions q(-)- In order for the distribution of the samples 
j(^)^ M^^), a^*\ k^^\ 52(̂ )̂  -0(«) to converge quickly to the posterior distribu
tion, these proposals may be built on heuristics. For example, the spectrum of 
X is used in order to build the frequencies proposal distribution. Other similar 
heuristics may be included in the same way; see [124]. Overall, such MCMC 
algorithms may be seen as a rigorous way to use various heuristics for multiple 
FO estimation. 

7.2.5 Performance 

The above class of Bayesian models being based on a generative model, they 
can be used for many tasks, including multiple FO estimation and signal com
pression. The performance estimation thus depends on the task assigned to 
the algorithm. The computation for the full inference problem reported in 
Davy et al. [124] is about 1.35 seconds per MCMC iteration for 0.5-second 
excerpts, where 800 iterations are necessary on average. 

In terms of FO estimation, Davy et al. [124] report 100% accuracy for 
single FO (that is, for J = 1), about 85% for J = 2, 75% accuracy for J = 3, 
and 71% accuracy for J = 4. The test samples were random mixes of single 
FO acoustic waveforms from Western classical music instruments. In terms 
of residual energy and reconstruction accuracy, all experiments showed very 
good reconstruction,^ in spite of some octave errors. 

"̂ It is much more difficult to evaluate the reconstruction accuracy with a psychoa-
coustically relevant measure. The residual total energy may yield such a performance 
estimator, though. 
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7.2.6 Extensions 

The above models may be extended in many ways. For example, it is possible 
to use binaural (stereophonic) records in order to make the estimation more 
robust [120]. This is implemented by defining two models, one for the left 
channel and one for the right channel. These models are connected through 
their parameters prior. This can be extended to multi-track recordings, as in 
standard source separation approaches; see Chapter 9. 

Another possible extension comes from a sequential view of music process
ing. The off-line approach presented here concerns music waveform segments 
which come from a longer excerpt, though they could be applied framewise. 
It is possible to use the parameter estimation results of previous segments to 
design the prior for the current waveform segment, in terms of instruments 
playing, A4 frequency tuning, etc. 

7.3 On-Line Approaches 

The off-line approaches described above have the major advantage of being 
quite accurate, because they have the full acoustic waveform available for 
processing. The drawback is that the computational requirements may be 
high. On-line approaches, on the other hand, only use the current acoustic 
waveform sample x{n)—or the current frame—at each processing step n. 
They also use information from the past, thanks to sequential priors (also 
termed transition probability distributions) over the model parameters. Fi
nally, it should be noted that sequential models are quite attractive for music 
transcription, because they do not require a separate onset/offset detection 
mechanism, and they provide some flexibility to formulate completely on-line 
inference schemas, such as those presented in this section. 

In this section, we first introduce the approach of Cemgil et al. [78], 
and then we describe two approaches based on an explicit sliding window-
based model, proposed by Dubois and Davy [158], [160] and Vincent and 
Plumbley [646]. Note that Irizarry [308] also proposes such a model, but it is 
restricted to single FO. 

7.3.1 Approach of Cemgil et al. 

The noisy sum-of-sines models presented above are written in a non-sequential 
form. Sequential approaches, however, require the noisy sum-of-sines model 
to be written in a sequential form. 

Sequential Noisy Sum-of-Sines Model 

Cemgil et al. [78] propose to write a sine/cosine wave with frequency k and 
unity amplitude as follows: 
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e{n) = B(fc)6>(n - 1), n=l,...,T, (7.25) 

where 6{n) is a two-dimensional vector and B(/c) is a rotation matrix written 
as 

cos(27rfc) — sin(27rA:) 
sin(27rA:) cos(27rfc) 

B(^) = (7.26) 

which rotates the vector 0{n — 1) by 27rk radians counter-clockwise. The first 
dimension of 6 carries the cosine component, whereas the second carries the 
sine component. 

It is now possible to write many sum-of-sines models in a sequential form, 
including time-varying amplitude/frequency cases. Cemgil et al. [78] focus on 
a damped amplitude, constant frequency model as 

0(n) = X{n)B{k)e{n-l), 
x{n) = [1 0] 0(n), 

(7.27) 

(7.28) 

where A is the damping factor that tunes the amplitude decay rate, with 
0 < A(n) < 1. The vector [1 0] is used to project the vector 0{n) onto one 
axis; see Fig. 7.4. The initial phase is tuned by the initial vector 0(0) at time 
0. In order to model the note partials, and their frequency/amplitude rela-

Rotating vector 0(n) Projection: damped sine x{n) 

Fig. 7.4. The model based on a rotation matrix B(/c) rotates the vector 0{n) by 
27r/t radians counter-clockwise, and applies a damping factor. When projected onto 
one axis (here, the sine axis), this produces a damped sine wave with frequency k 
(adapted from [78]). 

tions, the vector 6 may be extended to M sines/cosines, that is, 9{n)^ = 
[01 (n)^, 02(^)^ • • • 0 M ( ^ ) ^ ] (of dimension 2M), and the sequential model be
comes 

0{n) = A{k)e{n-l), 
x{n) = C0(n), 

(7.29) 

(7.30) 



A(fc) (7.31) 
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where C = [1 0 1 0 . . . 1 0]. The 2M x 2M matrix A(A:) is defined as 

'Xi{n)B{ki) 0 ••• 0 

0 A2(n)B(/c2) : 

: *•. 0 
0 .-. 0 XM{n)B{kM)_ 

Cemgil et al. assume harmonic frequency relationships of the partials and 
exponentially decaying spectrum envelope, from one partial to another. In 
other words, km — '^k\ and A^(n) = A'^(n) for m = 1, •. •, M, where M is 
assumed to be known. 

Prom this sequential setting, Cemgil et al. derive a probabilistic model. 
First, it is assumed that the note frequencies belong to a frequency grid with 
K nodes. The note fundamental partial frequencies are assumed to be one of 
the K predefined frequency positions among, for example, note frequencies of 
the tempered scale over several octaves. Second, each of the grid frequencies is 
assumed to be in one of the two states 'mute' and 'sound' at each time instant. 
In the following, we denote by e/c(^) the state of the frequency grid point with 
index k at time n, and we have either e/e(n) — 'sound' or e/e(n) = 'mute'. 

Coming back to the model in (7.29)-(7.31), the 'sound' case corresponds 
to a damping parameter, denoted Â """"̂ , and the 'mute' case corresponds 
to another damping factor A"""*̂ , with Â """"̂  > A"'"*^ From these damping 
factors, Cemgil et al. define two matrices A(/c,efc(n)) for efc(n) = 'sound' and 
efc(n) = 'mute' by replacing A(n) in (7.31) with either A"̂ "*̂  or A^°""^ The 
probabilistic model is written for each of the K note frequencies in the grid. 
For n = 1 , . . . , T and for a frequency k in the grid, 

efc(n) ~ p(efc(n)|efc(n-l)). (7.32) 

Moreover, if no onset occurs, that is, if ek{n) = efc(n — 1) or if efc(n) = 
'mute' whereas efc(n — 1) — 'sound', then the damped sum-of-sines model 
with damping factor A °̂""̂  or A"""'̂  is active: 

0fc(n) - Ar((9fc(n);A(/c,efc(n-l))0fc(n-l),2;„__t), (7.33) 

or, if an onset occurs, that is, if efc(n) = 'sound' whereas efc(n — 1) = 'mute', 
then the amplitude of the sine wave at this frequency is re-initialized by sam
pling a new initial vector 0fc(n) as follows: 

e^{n) ~ Ar((9fc(n);02M,^onset). (7.34) 

The acoustic waveform is modelled overall as the sum over all the frequencies 
in the grid as 

x{n) = ^ C 0 f c ( n ) + e(n), (7.35) 
k 

where e(n) is a Gaussian white noise with variance cr̂ . Equation (7.35) yields 
the model likelihood at each time n (also termed the observation probability 
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distribution)^ and the sequential priors given in (7.32)-(7.33) enable writing 
of the posterior in a sequential form. The multiple FO model being completely 
defined, we next describe the estimation algorithm. 

Parameter Estimation and Algorithmic Issues 

Cemgil et al. propose to implement MAP estimation, that is, estimate the 
sequence e^ = [e;c(l),..., e/c(T)] for each frequency k in the grid, where ê ^ is 
called a piano roll, as explained in Chapter 1. Note that the piano roll contains 
all the necessary information for multiple FO estimation. Let us denote by 
e^MAP the estimated piano-roll sequence. It is computed as 

efCMAP = argmaxp(eK,'0|x), (7.36) 

where the hyperparameter vector ip includes cr̂ , 27onset, ^no onset, A "̂'"'''̂  and 
^mute rYYie postcrior p(eK|x) is obtained by integrating out the parameters 
6k{n) for all k and all n = 1, • •., T—denoted by the shorthand 6K{^ • T)—as 
follows: 

p(eK,i/^|x) = / p ( e K , 0 K ( l : T ) , V ^ | x ) d ^ x ( l : r ) , (7.37) 
Je 

where the full parameter posterior is given by Bayes's rule 

p(eK,0K(l:T), t / ; |x) ex p(x|eK,^K(l : T) )p(eK,0x( l : T)|V')p(^). 
(7.38) 

The terms p(x |ex,^/^(l : T)) and p(ex ,^K( l • T)\xp) are computed sequen
tially as follows: 

T 

p(x | eK,^K( l :T) ) = l[X{x{n);J2C0k{n).cT^), (7.39) 

p{eK.OKil:T)\xP)=l[ 
k 

X 

n=l k 

T 

p(efc(l), 0^(1)) n P(efc(^)|efc(n - 1), t/?) 

T 1 

n=2 
(7.40) 

In (7.40) above, the transition pdf p[Ok{n)\0kin — 1),'0) niay correspond to 
either the 'onset' given in (7.34) or the 'no onset' pdf, (7.33). The initial pdf 
of the states and state parameters is given by p(e/c(l), 0^(1)) for all k in the 
frequency grid. 

The maximization in (7.36) is made complicated by the 'nuisance' parame
ters OK{^ • T) and t/?, which need to be integrated out. Actually, the piano roll 
contains all the information for multiple FO estimation, though the hyperpara-
meters ip may contain information useful for, e.g., instruments classification. 
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Of course, the integration of the nuisance parameters, as well as the maxi
mization in (7.36), cannot be performed analytically. Cemgil et al. propose an 
algorithm based on message passing, expectation-maximization, and Kalman 
filtering on a sliding window which runs along the whole acoustic waveform. 
This algorithm jointly estimates the piano roll, the parameters, and the hy-
perparameters. In the special case of single FO estimation, a more efficient 
estimation procedure can be implemented. Details about these algorithms 
may be found in [78]. 

7.3.2 Approaches Based on a Sliding Window 

The approaches based on noisy sum-of-sines models and sliding windows 
make the sliding window Wn(i), located at time n, appear explicitly in the 
model. The model in (7.9) becomes, inside the frame located at time n, de
noted sj^(i) where i is the local time index 

J{n) M, 

^ni^) = ^ Y 1 otl^{n)wn{i) sin {27rkj^rn{n)i) .r^ ^^. 
j=l m = l ^ * ^ 

+ <^j,m(^)wn(^)cos(27rA:^-,^(n)z) -h en(i), 

where the statistics of the noise en(i) are defined framewise. The model in 
(7.41) is local in the sense that its parameters have a local interpretation. 
In order to fully define the on-line model from a Bayesian viewpoint, the 
sequential prior has to be designed. 

Approach of Dubois and Davy 

Dubois and Davy [158], [160] propose to use Gaussian random walks for both 
the frequencies and the amplitude, 

k(n) = k ( n - l ) + Vk(n), (7.42) 

oc(n) = ot{n - 1) -h Va(n), (7.43) 

where k(n) (respectively oc{n)) denotes the vector of frequencies (respectively 
amplitudes) for all the partials and notes. The variances of the transition 
noises Vk(n) and Va{n) are also assumed to follow a random walk with 
log-Gaussian distribution (that is, the logarithm of these variances follows 
a Gaussian random walk). The number of partials Mj of note j is set to a 
fixed (large) number, and the amplitudes of highest partials is forced to zero 
whenever they are above the frequency ks/2. The number of notes is assumed 
to be unknown and time varying. A sequential prior is defined as follows: 

-fl with probability 1/10 
J{n) = J{n-l)-\- { 0 with probability 8/10 , (7.44) 

— 1 with probability 1/10 
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which allows the number of notes to increase, decrease, or remain constant.^ 
Equations (7.41) and (7.42)-(7.44) define a j ump Markov system [19]. 

For the sake of simplicity, the frequency evolution model in (7.42) does 
not assume links between the frequencies of a given note 's partials. Such links 
may be built in several ways: 

• Perfect harmonicity is assumed, and the frequency vector only includes 
the fundamental partial frequency. The overtone partial frequencies are 
computed deterministically from the fundamental partial frequency. 

• Inharmonicity is allowed, and each partial frequency evolves according 
to its own scheme. At the creation of a new note ( that is, whenever 
J{n) = J (n—l) - f 1), the new partial frequencies are initialized according to 
some probabilistic technique which includes heuristics from deterministic 
FO estimation methods. 

• An inharmonicity model is assumed, for example the piano model, or the 
model proposed in [213]. The parameters of this model are assumed to 
follow a random walk, for example. The frequency vector only includes 
the fundamental partial frequencies. 

The probabilistic model being defined, parameter estimation can be performed 
from the posterior distribution at time n denoted by 

p(k( l : n ) , a ( l : n ) , J ( l :n),1/^(1 : n ) | x ( l : n ) ) , 

where the notat ion a ( l : n) is used to denote [ a ( l ) , . . . ,a (n)] for any vec
tor /scalar a. The hyperparameter i/? contains all the model hyperparameters, 
such as the time-varying variances of Vk(n) and Vtt(n), the inharmonicity 
model parameters , etc. 

An interesting feature of this model is tha t , conditional on J ( l : n ) , 
k ( l : n ) , and i/?(l : n ) , the model is linear and Gaussian: this is because 
the model in (7.41) defines a linear and Gaussian likelihood (The noise €n{i) 
is assumed to be white and Gaussian). From an algorithmic viewpoint, this 
permits an efficient estimation strategy based on parallel Kalman filters, each 
running with different values of J ( l : n) and '0(1 : n ) . More precisely, it is 
possible to implement a Rao-Blackwellized particle filter^ in order to estimate 
the frequencies, amplitudes, and number of notes from the posterior distribu
tion at t ime n. This algorithm is summarized below, and details may be found 
in [158]. The overall principle of particle filtering is to run N particles side-by-
side at each time, compute their weights (which are related to their likelihood) 
and use these to weight them in the parameter estimation. Particles with low 
weights correspond to low-probability parameter successive values, and thus 
they are deleted. Particles with high weights have high probability parameter 

^The probabilities in (7.44) are indicative, and may be adjusted at will, in par
ticular when J{n) reaches its minimum/maximum value. 

^The reader interested in particle filtering may refer to Chapter 2 for a short 
introduction, and to [152] for a full survey. 
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successive values, and thus they are duplicated in order to better explore the 
parameter space around the most probable values. 

Algorithm 7.2: Harmonic Tracking Rao-Blackwellized Particle Filter 

Initialization 
• Step 7 .2 .1 Initialize the particles at time n = 1. 

- For particles j — 1,... ,N, sample the initial number of notes J^^\l), the initial 
frequency vector k^-^^(l), and the partial amplitudes a^^\l), using some prob
ability density possibly derived from deterministic estimatioji algorithm applied 
to the initial frame 5^. Sample the initial hyperparameter '0^^^(1). 

Iterations, for n = 1, 2 , . . . 
• Step 7 .2 .2 The particles are updated. 
- For particles j = 1,... ,N, sample thenumbet^of notes using the proposal dis

tribution q j as follows: J^^\n) - q j (J^^^(n) | j ( ^ ) ( n - l ) , V^ ( ^^ (n - l ) , x ( l : n ) ) . 
- For j = ] ^ , . . . , A/̂ , sample the frequencies using the proposal distribution qk as 

follows: k^^\n) - qi^{k^^\n)\k^^\n - l),J^^\n),ip^^\n - l),x{l : n)). 

- For particles j — 1 , . . . , TV, update the amplitude vector a^^^ (n) using a Kalman 

filter applied to the amplitude evolution model in (7.43) and the likelihood 

defined in (7.41), where the other parameters are set to J^^\n), k^^^(n) and 

- For j — 1 , . . . , A/", updat^ the hyperparameter vector using the proposal dis

tribution q ^ as follows: \l^^^\n) ~ q^; ('0^"^^(^)|V^^"^H^ ~ 1), a^-^^(n), k^-^^(n), 

- For particles j = 1 , . . . , N , compute the importance weight uj^^\n) according 
to the rules of importance sampling (see (2.84) in Chapter 2). 

• Step 7 .2 .3 The particles are resampled. 
- Duplicate particles with large weights and suppress particles with small weights. 
• Step 7 .2 .4 The parameters are estimated. 
- Use the particles in order to compute estimates of the number of notes, the 

frequencies, and the related amplitudes. 

In Algorithm 7.2, the particles are updated using proposal distributions, 
which are designed so as to favour likely parameter values. For example, the 
frequencies proposal distribution qk may be build on the current frame fre
quency spectrum, or from a randomized deterministic FO estimation proce
dure; see [158]. The performance of the algorithm may also be improved by 
adding, at each time n, a particle update step based on one iteration of the 
MCMC algorithm presented in Section 7.2.4. 

Approach of Vincent and Plumbley 

The approach proposed by Vincent and Plumbley [646] uses a model equiva
lent to that of (7.41), but written in a different form: a cosine and an initial 
phase component are used instead of a sine and a cosine, namely 



224 Manuel Davy 

J{n)M^{n) 

« = E ' ^ aj,m(n)w„(^)cos(27rA;J,m(r^)^ + <^j,m(r^))+e„(i), (7.45) 
j=\ ? n = l 

where harmonicity is assumed in each frame, i.e., the partial frequencies are 
kj^rn{fT^) — mkj^i{n). Similar to the approach by Cemgil et al., it is assumed 
that the fundamental frequency belongs to a fixed grid; here, the MIDI semi
tone scale. The noise probabilistic model is defined in the frequency domain: 
roughly, it is Gaussian where the variance in a given auditory frequency band 
is proportional to the loudness of s^{i) in that frequency band; see [646]. 

The parameter estimation procedure is made of two steps, using the 
Bayesian setting. First, parameter priors are defined in each frame, indepen
dently of neighbouring frames. Unknown parameters are estimated framewise 
using MAP. Then in the second step, the parameters in different frames are 
linked together using sequential priors, and they are re-estimated. 

The framewise local priors are defined as follows. Assume k^'iin) is the 
frequency in the grid corresponding to the fundamental partial of note j , in 
the current frame. The true fundamental partial frequency is assumed to be 
close to kjy{n), namely, 

p(A;„i(n)|fc-r(n)) = CAf{kj.i{ny,k^:['{nlalJ, (7.46) 

where £A/'(-;-,') is the log-Gaussian distribution.^ In each frame, the num
ber of partials is set so that Mj{n)kj'[^{n) is below ks/2. The initial phase 
prior is uniform; that is, p(0j^^(n)) — l^[o,2n]{<Pj,m{'^)) and the ampli
tudes are assumed to follow a given spectrum envelope denoted Xj^rni'^) for 
m = 1 , . . . , Mj{n), Each partial amplitude is assumed to follow a log-Gaussian 
distribution 

PKm(n) |A,-^(n)) = £A/ 'K^(n) ;7 ,^(n)A, ,^(n) ,a ip , ) , (7.47) 

where jj{n) is a scale factor with log-Gaussian prior distribution. This com
pletes the framewise Bayesian model. Such a model is defined for each fre
quency in the grid, though only a small number of these frequencies are 'active' 
in a given frame. Again, similar to Cemgil et al. [78], each grid frequency is 
associated to a state ek{n) which may be either 'sound' or 'mute' according 
to given prior probabilities. The number of notes J{n) is simply the number 
of grid frequencies in the state 'sound'. The framewise Bayesian estimation 
procedure consists of finding the state vector exMAp(^) such that 

epcMApW = argmax p(ex(n)|s^), (7.48) 

where s^ = [5^(1), 5^)^(2),...] and eK{n) is defined as in Section 7.3.1. In 
practice, the MAP estimation in (7.48) is based on the joint posterior proba
bility of the vector e/<:(n) together with the actual frequencies kj^i related to 

'̂£A/^(a; /i, U) is a log-Gaussian distribution' means that log(a) is Gaussian with 
mean log(/i) and covariance matrix U. 
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grid frequencies in the 'sound' state. The other parameters (amplitudes and 
7^ factor) have been integrated out using the Laplace approximation method; 
see [646]. The actual estimation procedure is based on a greedy, local search 
for the states e/c(n), and a gradient-style optimization for the frequencies kj^i. 

The note parameters being estimated independently in each frame, they 
may now be connected across the frames. Vincent and Plumbley define a se
quential prior p(efc(n)|eA:(n-l)), and the Viterbi algorithm is used to estimate 
the sequence e^MApCl • T) from the individual framewise estimates e^MAp(^)* 
In other words, a grid frequency can be in the state 'sound' in exMAp(l • T) at 
time n only if it is already in that state in the local estimate eKMAp(^)- The fi
nal step consists of re-estimating the actual frequencies and amplitudes from 
the posterior p(A:,-i(l : T ) , a , , ^ ( l : ^ ) , 7 , ( 1 : T)\x{l : T) ,e^^^p( l : T)) — 
that is, given the optimal sequence exuApi^ • ^)—where the priors in (7.46) 
and (7.47) and the prior over 7j (n) have been redefined as log-Gaussian ran
dom walks. 

7.4 Other On-Line Bayesian Approaches 

Aside from direct modelling of the acoustic waveform, as presented in the 
previous sections, indirect models have been studied. In this section, we review 
approaches where the signal spectrogram is modelled, and where harmonic 
trajectories are searched. 

7.4.1 Methods Designed for Music and General Audio 

We present four approaches proposed for general audio processing. All of them 
follow harmonic trajectories in the acoustic waveform spectrogram. 

Method of Yeh and Robel 

The method of Yeh and R5bel [681] applies framewise a model similar to that 
of (7.9). This model assumes parallel evolution of the partial amplitudes, 
together with the spectral smoothness principle of Klapuri [351] and the 
inharmonicity model of Davy and Godsill [122]. The parameter estimation 
algorithm is computationally simpler than MCMC, though it is also based on 
the generation of candidate notes. Each candidate is evaluated using a score 
function, and the best candidates are kept in the final list. This method is 
applied framewise. 

Spectrogram ModeUing Method of Dubois and Davy 

Dubois and Davy [159], [158] extend their method presented in the previous 
section to the case where the model is written in the spectrogram domain. 
More precisely, the model in (7.41) is changed into 
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where the noise en{l) is assumed to be zero-mean white Gaussian. The co
sine term, which was previously used to represent the initial phase, would 
be redundant as we consider the power spectrum, and it has been omitted. 
The sequential priors are defined as in (7.42)-(7.44). This model is no longer 
linear in the amplitudes, and a particle filter close to that in Algorithm 7.2 is 
devised; see [158]. 

Method of Thornburg et al. 

Thornburg et al. [625] propose a sequential estimation procedure which uses 
the main energy peaks in the spectrogram as input information. It should 
be noted that this procedure is aimed at melody extraction, and thus it is 
restricted to single FO. The fundamental partial frequency is assumed to be
long to the MIDI semitone scale, with some unknown, possibly time-varying, 
frequency shift from the A4 440 Hz tuning. The amplitudes are also assumed 
to belong to a grid with exponential spacing, and the method is designed so 
as to associate a state e(n) to each frame s^ at a given time, where e(n) 
takes its values in the set {'transient frame onset', 'transient frame contin
uation', 'pitched frame onset', 'pitched frame continuation', 'silent frame'}. 
The transition probability p(e(n)|e(n — 1)) is assumed to be given, and only 
allows some transitions between the five possible state values. Conditional 
on e(n), various transition probabilities are defined for the frequencies, the 
amplitudes, and the MIDI scale frequency shift parameter. The unknown pa
rameters are estimated by MAP Bayesian estimation, using an approximate 
forward-backward Viterbi algorithm. The output also includes the sequence 
of state e(l : T) which may be used for multiple FO estimation, but also music 
segmentation and rhythm quantization. 

Method of Sterian et al. 

An earlier work is that of Sterian et al. [609]. A Kalman filter was used to 
extract sinusoidal partials from the signal. Then, these partials were grouped 
into their sources by implementing the grouping principles of Bregman [49] in 
terms of individual likelihood functions aimed at evaluating, e.g, the harmonic 
concordance. The implementation was based on multiple hypothesis tracking. 

7.4.2 Methods for Multiple-Speakers Pitch Tracking 

In the speech processing literature, several multiple FO tracking algorithms 
have been proposed. A special feature of speech is that the sounds are not 
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always voiced; that is, portions of a speech signal may not be well modelled 
as a noisy sum of sines. Algorithms for multiple-speakers speech tracking take 
this feature into account. Moreover, voiced speech is usually quite harmonic, 
and thus speech partial frequency models do not incorporate inharmonicity. 
Apart from Tabrikian et al. [616] which is for single pitch, Bach and Jordan [25] 
and Wu et al. [677] (see Chapter 8) propose multipitch algorithms for speech 
processing based on the acoustic waveform spectrogram, or correlogram. The 
inference is based on variants of the Viterbi algorithm. 

Though developed for a problem different from multiple FO estimation in 
musical signals, methods developed for speech yield interesting frameworks 
that may be adapted to music. 

7.5 Conclusions 

In this chapter, several methods for multiple FO estimation have been pre
sented. Most of them rely on a generative model of the acoustic waveform, 
and some model the signal spectrogram. Probabilistic models are defined in 
order to make estimation of the generative model parameters feasible. 

These methods are quite powerful in the sense that they capture a large 
fraction of the information from the acoustic waveform, and this information 
may be used for tasks other than multiple FO estimation. Moreover, Bayesian 
approaches clearly distinguish model construction from inference (that is, pa
rameter estimation algorithms). The drawback is that they can be compu
tationally intensive. However, their computational cost may be reduced by 
plugging as many heuristics as possible into the algorithms, for example to 
build the proposal distributions in Monte Carlo algorithms, as this makes the 
convergence faster. Designing a method of this kind can also be viewed as 
a principled way to built algorithms with known theoretical properties (con
vergence speed, estimation error, etc.). Heuristics can be also used to design 
the unknown parameter priors. Finally, generative models may be specifically 
designed for various transcription tasks. Models for melody transcription in 
complex polyphonic music can surely be based on spectrogram modelling (see 
Section 7.4) and are simpler than precise generative models aimed at estimat
ing the subtle expressive controls of a guitar player. 

Work in this vein is in its infancy. More research has to be done to use 
as much prior information as possible, and to define more elaborate models, 
which could also be used for, e.g., percussion transcription. This will probably 
result in quite complex algorithms, but complexity is the main issue in multiple 
FO estimation, and it may not be avoided. 
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8.1 Introduction 

This chapter describes fundamental frequency (FO) estimation methods that 
make use of computational models of human auditory perception and espe
cially pitch perception. At the present time, the most reliable music tran
scription system available is the ears and the brain of a trained musician. 
Compared with any artificial audio processing tool, the analytical ability of 
human hearing is very good for complex mixture signals: in natural acoustic 
environments, we are able to perceive the characteristics of several simulta
neously occurring sounds, including their pitches [49]. It is therefore quite 
natural to pursue automatic music transcription and multiple FO estimation 
by investigating what happens in the human listener. Here the term multiple 
FO estimation means estimating the FOs of several concurrent sounds. 

Fundamental frequency is the measurable physical counterpart of pitch. 
In Chapter 1, pitch was defined as the perceptual attribute of sounds which 
allows them to be ordered on a frequency-related scale extending from low 
to high. More exactly, the pitch of a sound was said to be the frequency 
of a sine wave that is matched to a target sound by human listeners. The 
importance of pitch for hearing in general is indicated by the fact that the 
auditory system tries to assign a pitch firequency to almost all kinds of acoustic 
signals. Not only sinusoids and periodic signals have a pitch, but even noise 
signals of various kinds can be consistently matched with a sinusoid of a certain 
frequency. For a steeply lowpass- or highpass- filtered noise signal, for example, 
a weak pitch is heard around the spectral edge. Amplitude modulating a 
random noise signal causes a pitch perception corresponding to the modulation 
frequency. Also, the sounds of bells and vibrating membranes have a pitch, 
although their waveform is not clearly periodic and their spectrum does not 
have a regular structure. A complete review of this 'zoo of pitch eff̂ ects' can be 
found in [275], [474], [297]. The auditory system seems to be strongly inclined 
towards using a single frequency value to summarize certain aspects of sound 
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events. Computational models of pitch perception attempt to replicate this 
phenomenon. 

Practical multiple FO estimation methods have a shghtly different purpose 
than pitch perception models. The set of acoustic signals of interest is nar
rower since the physical concept of FO is defined only for periodic and nearly 
periodic sounds. Also, the evaluation criteria are different: multiple FO esti
mation methods are judged based on their reliability in the given task, FO 
estimation in a mixture signal, whereas an auditory model should faithfully 
reproduce the mechanisms and the behaviour of the auditory system. 

For musical sounds, the FO and the perceived pitch are practically equiv
alent. However, there are ambiguous situations such as the octave ambiguity, 
where it is not clear if the FO of a sound is x Hz or half or twice that value. 
From the music transcription point of view, it would be desirable to solve 
these ambiguities so that the estimated FO would correspond to the perceived 
pitch. This is one of the reasons why auditory model-based methods have 
been employed. Other reasons include the aim of achieving robustness for 
diverse kinds of musical sounds (these are discussed in Section 8.2) and ob
taining a good time/FO resolution by using a time-frequency decomposition 
similar to that in human hearing. The advantages and disadvantages of audi
tory model-based methods are summarized later in this chapter. In general, 
perceptually motivated methods have been quite successful in audio content 
analysis. 

The primary focus of this chapter is on practical multiple FO estimation 
and not so much on auditory modelling. More comprehensive introductions to 
pitch perception models can be found in [297], [522], [132]. Also, the emphasis 
is laid on multiple FO estimation methods: some perceptually motivated meth
ods are omitted that are purported to be useful for single FO estimation in 
noisy speech signals. The aim of this chapter is twofold: to give a compact de
scription of pitch perception models so that the reader will be able to develop 
auditorily motivated analysis methods of his own and, secondly, to describe 
already-existing multiple FO estimators that are based on and motivated by 
these models. 

This chapter is organized as follows. Section 8.2 discusses the basic acoustic 
characteristics of pitched musical sounds and how these can be used to com
pute the FO of the sounds. Section 8.3 describes computational models of pitch 
perception. Section 8.4 introduces music transcription systems which use an 
auditorily model as a 'front end'. That is, the systems apply a perceptually-
motivated data representation but the emphasis is laid on the inference that 
follows the auditory modelling stage, instead of proposing changes to the 
auditory model itself. Section 8.5 describes multiple FO estimation methods 
which extend or modify pitch perception models in order to make them bet
ter applicable to FO estimation in polyphonic music signals. In the end, two 
algorithms are described which can be directly used for this purpose. Finally, 
Section 8.6 summarizes the main conclusions. 
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Fig. 8.1. A harmonic sound in the time and frequency domains. The example rep
resents a vioUn sound with fundamental frequency 290 Hz and fundamental period 
3.4 ms. 

8.2 Musical Sounds and FO Estimation 

This section discusses the acoustic characteristics of pitched musical sounds 
and FO estimation when the sounds are presented in isolation. This provides 
the background for describing pitch perception models and multiple FO esti
mation methods in the subsequent sections. 

8.2.1 Pitched Musical Sounds 

Musical sounds usually consist of several frequency components. The rela
tive amplitudes of the overtone partials and their time evolution determines 
the timbre of the sound. Here we are primarily interested in the frequen
cies of the partials since FO estimation methods try to normalize away the 
timbre information. From this point of view, pitched musical sounds can be 
divided into two main classes: sounds that are harmonic and sounds that are 
not. The methods to be described in this chapter are concerned with both of 
these. 

Most Western musical instruments produce harmonic sounds.^ These 
sounds have a spectral structure where the dominant frequency components, 
called harmonics^ are approximately regularly spaced. Figure 8.1 illustrates a 
harmonic sound in the time and frequency domains. The FO of the sound is 
the inverse of its time-domain period and the frequency spacing between the 
overtone partials corresponds approximately to the FO. Usually the overtone 
components are not perceived separately but only the pitch and the timbre of 
the entire sound are heard. 

For an ideal harmonic sound, the frequencies of the overtone partials are 
integer multiples of the FO. However, it should be noted that the spectra 
of harmonic sounds are not always perfectly harmonic; the higher-order over
tones of plucked and struck string instruments deviate slightly from their ideal 

^More exactly, all instruments in the chordophone and aerophone families (see 
Table 6.1 on p. 167). 
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Fig. 8.2. A vibraphone sound (FO 330 Hz) illustrated in the time and frequency do
mains. In the right panel, the frequencies of the most dominant spectral components 
are shown in relation to the FO. 

harmonic positions. For these classes of instruments, the partial frequencies 
obey the formula 

fj=jF^l + Bip-l), (8.1) 

where F is the fundamental frequency, j = 1,2,... is the partial index, and 
B is an inharmonicity factor [193, p. 363]. Typical values of B are of the 
order 10~^ or 10~^ for the middle pitch range of the piano, for example. This 
makes the higher-order partials gradually shift upwards in frequency, but the 
structure of the spectrum is in general very similar to that in Fig. 8.1, and 
the sounds can be classified as harmonic. The inharmonicity is due to the 
stiffness of real strings, which contributes a restoring force along with the 
string tension [193], [315]. 

Figure 8.2 shows an example of a sound which does not belong to the class 
of harmonic sounds although it is nearly periodic in the time domain and has 
a clear pitch. In Western music, mallet percussion instruments are a case in 
point: these instruments produce pitched sounds which are not harmonic. The 
most common instruments in this family are the marimba, the vibraphone, the 
xylophone, and the glockenspiel. The sound production mechanism in all of 
these is a vibrating bar. A bar of uniform thickness with free ends has vibration 
modes whose frequencies are not in integral ratios. However, by making the 
bar thinner at the middle of its length, the overtones can be tuned. The first 
overtone of the marimba and the vibraphone is typically tuned to be four 
times the FO and that of the xylophone to be three times the FO. 

8.2.2 Basic Principles of FO Estimation 

There are a large number of different methods for monophonic FO estimation 
[289]. Comparative evaluations of these can be found e.g. in [535], [290], [134]. 
The aim of this section is not to make an exhaustive coverage of these, but 
merely to point out the main acoustic features that different algorithms are 
built upon: time-domain periodicity and frequency-domain periodicity, and to 
provide a few representative examples of each approach. 

The majority of FO estimation methods are based on measuring the pe
riodicity of an acoustic signal in the time domain (see e.g. [618], [135]). This 
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makes sense, since all the pitched musical sounds described above are periodic 
or almost periodic in the time domain. As reported in [134], quite accurate 
single FO estimation can be achieved simply by an appropriate normalization 
of the short-time autocorrelation function (ACF), defined as 

N-l 

n=0 

The FO of the signal x{n) can be computed as the inverse of the lag r that 
corresponds to the maximum of r{r) within a predefined range. To avoid 
detecting an integer multiple of the period, short lags have to be favoured 
over longer ones. 

An implicit way of measuring time-domain periodicity is to match a har
monic pattern to the signal in the frequency domain. According to the Fourier 
theorem, a periodic signal with period r can be represented with a series of 
sinusoidal components at the frequencies j / r , where j is a positive integer. 
This can be observed for the musical sounds in Figs. 8.1 and 8.2. Algorithms 
that are based on frequency-domain harmonic pattern matching have been 
proposed in [153], [54], [428], for example. 

Another class of FO estimators measure the periodicity of the Fourier spec
trum of a sound [384], [380]. These methods are based on the observation that 
a harmonic sound has an approximately periodic magnitude spectrum, the pe
riod of which is the FO. In its simplest form, the autocorrelation function p{m) 
over an A '̂-length magnitude spectrum is calculated as 

N/2-m-l 

P('^)-N ^ \X{k)\\X{k + m)\. (8.3) 
fc=0 

In the above formula, any two frequency components with a certain spectral 
interval m support the corresponding FO. The spectrum can be arbitrarily 
shifted without affecting the output value. An advantage of this is that the 
calculations are somewhat more robust against the imperfect harmonicity of 
plucked and struck string instruments since the intervals between the overtone 
partials do not vary as much as their absolute frequencies deviate from the 
harmonic positions. However, in its pure form this approach has more draw
backs than advantages. In particular, estimating low FOs is not reliable since 
the FO resolution of the method is linear whereas the time-domain ACF leads 
to 1/F resolution. 

An interesting difference between the FO estimators in (8.2) and (8.3) is 
that measuring the periodicity of the time-domain signal is prone to errors 
in FO halving because the signal is periodic at twice the fundamental period 
too, whereas measuring the periodicity of the magnitude spectrum is prone to 
errors in FO doubling because the spectrum is periodic at twice the FO rate, 
too. The two approaches can be combined using an auditory model, as will 
be described in Section 8.3.2. 
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Fig. 8.3. An illustration of the cochlea (left) and its cross-section (middle). The 
right panel shows a rough computational model of the cochlea. 

8.3 Pitch Perception Models 

This section describes computational models of pitch perception and discusses 
the advantages that an auditory model-based method may have in multiple 
FO estimation. 

The human auditory system can be divided into two main parts: peripheral 
hearing and the auditory cortex in the brain. Both of these play an important 
part in pitch perception. The peripheral part consists of the outer ear, the 
middle ear, and the inner ear. The first two of these essentially contribute to 
directional hearing and impedance matching of sound. From the pitch analysis 
point of view, the interesting part starts from the inner ear, where there is an 
organ called the cochlea. 

The cochlea is a sophisticated organ where pressure variations are trans
formed into properly coded neural impulses in the auditory nerve. Physiologi
cally, the cochlea is a long, coiled, tubular structure which is filled with liquid 
and tapers towards its end (see Fig. 8.3). The cochlea is divided into two main 
sections by the basilar membrane that runs its entire length. When the me
chanical vibrations of the eardrum are transmitted via the middle ear to the 
inner ear, hydraulic pressure waves are caused in the cochlea and the basilar 
membrane starts to vibrate. The waves propagate along the basilar membrane 
so that high frequencies peak in amplitude (resonate) near the beginning and 
low frequencies get their largest amplitude at the far end. 

On the basilar membrane, there is the organ of Corti which contains two 
types of hair cells. Outer hair cells are active elements which contribute to the 
resolution of the cochlear frequency analysis, making different places along 
the basilar membrane more sharply tuned to their characteristic frequencies 
than they would be by the acoustic properties of the membrane alone. Inner 
hair cells register the movement of the basilar membrane. They respond to 
mechanical displacement by generating nerve impulses into the auditory nerve 
fibres that are attached to them and lead to the brain [680]. 

Computational models of the cochlea comprise two main parts which can 
be summarized as follows (see Fig. 8.3): 

1. An acoustic input signal is passed though a bank of bandpass filters, called 
auditory filters, which model the frequency selectivity of the inner ear. 
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Typically about 100 filters are used with centre frequencies uniformly dis
tributed on a nearly logarithmic frequency scale (details in Section 8.3.1). 
The outputs of individual filters simulate the mechanical movement of the 
basilar membrane at different points along its length. 

2. The signal at each band, or auditory channel^ is processed to model the 
transform characteristics of the inner hair cells which produce neural im
pulses in the auditory nerve. In signal processing terms, this involves three 
main characteristics: compression and level adaptation, half-wave rectifi
cation, and lowpass filtering (details in Section 8.3.2). 

In the following, the acoustic input signal is denoted by x{n) and the 
impulse response of an auditory filter by gd'f^)^ where c is the channel index. 
The output of the auditory filter at channel c is denoted by Xc{n) and functions 
as an input to the second step. The output of the inner hair cell model is 
denoted by Zc{n) and represents the probability of observing a neural impulse 
at channel c. 

The processing mechanisms in the brain can be studied only indirectly and 
are therefore not as accurately known. Typically the relative merits of differ
ent models are judged according to their ability to predict the perception of 
human listeners for various acoustic stimuli in psychoacoustic tests. Different 
theories and models of the central auditory processing will be summarized in 
Section 8.3.3, but in all of them, the following two processing steps can be 
distinguished: 

3. Periodicity analysis of some form takes place for the signals Zc{n) within 
the auditory channels. Phase differences between channels become mean
ingless. 

4. Information is integrated across channels. 

In the above processing chain, the auditory nerve signal Zc{n) represents 
a nice 'interface' between the Steps 2 and 3 and thus between the peripheral 
and central processes. The signal in the auditory nerve has been directly 
measured in cats and in some other mammals and this is why the stages 1 
and 2 are quite well known. Computational models of the peripheral hearing 
can approximate the auditory-nerve signal quite accurately, which is a great 
advantage since an important part of the processing already takes place at 
these stages. However, central processes and especially Step 3 are (arguably) 
even more crucial in pitch perception. The above four steps are now described 
in more detail. 

8.3.1 Cochlear Filterbank 

Frequency analysis is an essential part of the cochlear processing. Frequency 
components of a complex sound can be perceived separately and are coded 
independently in the auditory nerve (in distinct nerve fibres) provided that 
their frequency separation is sufficiently large [473]. This frequency analysis 
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Fig. 8.4. Frequency responses of a few auditory filters shown on the logarithmic 
{top) and on the linear magnitude scale (bottom). The dashed line in the upper 
panel shows the summary response of the filterbank when 70 auditory filters are 
distributed between 60 Hz and 7 kHz. 

can be modelled with a bank of linear bandpass filters: Figure 8.4 shows an 
example of such a filterbank. 

The bandwidths and the shape of the power response of the auditory filters 
have been studied using the masking phenomenon [192], [499]. Masking refers 
to a situation where an audible sound becomes inaudible in the presence of 
another, louder sound. In particular, if the distance between two spectral com
ponents is less than a so-called critical bandwidth^ one easily masks the other. 
The situation can be thought of as if the components would go to the same 
auditory filter, or to the same channel in the auditory nerve. If the frequency 
separation is larger, the components are coded independently and are both 
audible. 

The bandwidths of the auditory filters can be conveniently expressed us
ing the equivalent rectangular bandwidth (ERB) concept. The ERB of a fil
ter is defined as the bandwidth of a perfectly rectangular filter which has a 
unity magnitude response in its passband and an integral over the squared 
magnitude response which is the same as for the specified filter. The ERB 
bandwidths be of the auditory filters have been found to obey 

6c = 0.108/c + 24.7Hz, (8.4) 

where fc is the centre frequency of the filter at channel c [473]. 
The centre frequencies of the auditory filters are typically assumed to be 

uniformly distributed on a critical-band scale. This frequency-related scale is 
derived by integrating the inverse of (8.4), which yields 

e( / ) = 21.4 logio (0.00437/+ 1). (8.5) 
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In the above expression, / denotes frequency in Hertz and ^(/) gives the 
critical-band scale. When / varies between 0 Hz and 20 kHz, ^(/) varies 
between 0 and 42. Intuitively, this means that approximately 42 critical bands 
(or auditory filters) would fit within the range of hearing if the passbands of 
the filters were non-overlapping and rectangular in shape. Conversion from 
the critical-band scale back to Hertz units is given by 

/ ( O = 229 X (10^/21-^ - 1). (8.6) 

For example, let us distribute 70 filters uniformly on the critical-band 
scale between 100 Hz and 10 kHz. Using (8.5), we find that the corresponding 
frequency boundaries on the critical-band scale are 3.36 and 35.3, respec
tively, and that the distance between each two centre frequencies has to be 
(35.3 — 3.36)/69 = 0.463 on this scale. The centre frequencies on the critical-
band scale can then be converted to Hertz units using (S.^). 

When a lot of auditory filters are uniformly distributed on the scale ^ ( / ) , 
power responses of the filters sum approximately to a flat response, as indi
cated by the dashed line in Fig. 8.4. Typically about 100 filters are used to 
obtain a good sampling of centre frequencies along the cochlea and a suffi
ciently flat summary response. Note that in this case, the passbands of the 
filters overlap considerably. In FO estimation, only the filters up to about 5 
to 8 kHz need to be used, as the most significant harmonic components are 
below this. 

The time-domain impulse responses of the auditory filters have been stud
ied using a so-called reverse correlation method. In the study by de Boer and 
de Jongh [128], the ear of a cat was stimulated with white noise and the 
resulting action potentials of individual auditory nerve fibres were recorded 
simultaneously. Using the input signal and the recorded train of neural im
pulses, the impulse response of the corresponding auditory filter was derived. 
The impulse response relates the input signal to the firing probability of the 
nerve fibre under study, that is, to the probability of an inner hair cell gener
ating an impulse to the fibre. 

A so-called gammatone filter provides an excellent fit to the experimentally 
found impulse responses. The filter is defined by its impulse response as [502] 

gc{t) = ar-^e-2^^* x COS{2TTfct + (9), (8.7) 

where the normalization factor a = (2'Kh)'^/F{n) ensures a unity response at 
the centre frequency, r(n) is the gamma function, and the parameter value 
n = 4 leads to a shape of the power response that matches best with real 
auditory filters. The parameter b = 1.0196c is used to control the bandwidth 
of the filter. 

Figure 8.5 illustrates the impulse responses of two gammatone filters 
with centre frequencies 100 Hz and 1.0 kHz, and with bandwidths obtained 
from (8.4). The impulse response consists of a sinusoidal tone at the centre 
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Fig. 8.5. Impulse responses of two gammatone filters with centre frequencies 100 Hz 
(left) and 1.0 kHz (middle). The frequency response of the latter filter is shown on 
the right. 

frequency of the filter, /c, windowed with a function that is precisely the 
gamma distribution from statistics. Frequency responses of several gamma-
tone filters are shown in Fig. 8.4. 

The gammatone filters can be implemented efficiently using a cascade of 
four second-order IIR filters. A detailed description of the design of the filter-
bank and the corresponding source code can be found in the technical report 
by Slaney [591]. 

8.3.2 Mechanical-to-Neural Transduction 

Inner hair cells (IHC) are the elements which convert the mechanical motion of 
the basilar membrane into firing activity in the auditory nerve. Each IHC rests 
at a certain point along the basilar membrane and thus follows its movement 
at this position. Correspondingly, in the computational models the output of 
each auditory filter is processed by an IHC model. 

The IHCs produce neural impulses, or 'spikes', which are binary events. 
However, since there is a large population of the cells, it is conventional to 
model the firing probability as a function of the basilar membrane movement. 
Thus the input to an IHC model comes from the output of an auditory filter, 
Xc{n), and the output of the IHC model represents the time-varying firing 
probability denoted by Zc{n). 

Several computational models of the IHCs have been proposed. An exten
sive comparison of eight different models was presented by Hewitt and Meddis 
in [291]. In the evaluation, the model of Meddis [456] outperformed the others 
by showing only minor discrepancies with the empirical data and by being 
also one of the most efficient computationally. An implementation of this 
model is available in the AIM [501] and HUTear [273] auditory toolboxes, for 
example. 

A problem with the realistic IHC models is that they depend critically on 
the absolute level of their input signal. The dynamic range of the model of 
Meddis [456], for example, is only 25 dB and the firing rate saturates at the 
60 dB level. This limitation of individual IHCs is real, and it seems that the 
auditory system uses a population of IHCs with different dynamic ranges to 
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achieve the good intensity discrimination performance over a dynamic range 
of about 120 dB [523, pp. 137-142]. This has not been included in the com
putational models of the individual IHCs [291]. 

For the above-described reason and for the sake of simplicity, many prac
tical systems have replaced a realistic IHC model by a cascade of (i) compres
sion, (ii) half-wave rectification, and (iii) lowpass filtering [171], [327], [677], 
[354]. As mentioned in the beginning of this section, these are the main char
acteristics of the IHCs. An advantage of doing this is that the behaviour of 
the overall system becomes easier to analyse and the signal-level dependency 
is removed. As a disadvantage, the longer-term level adaptation properties of 
more realistic IHC models are lost. This is also the approach followed here: 
instead of going into the details of realistic IHC models, we analyse the ba
sic characteristics of the IHC in order to understand their function in pitch 
perception and practical FO estimation. 

(i) The compression step has taken slightly different forms in different 
implementations, but a common theme in all of these has been to scale the 
sub-band signals Xc{n) inversely proportional to their variance. Ellis scaled 
the variances of the sub-band signals to unity [171]. Klapuri generalized this 
approach by scaling the sub-band signals by a factor cr^~^, where ac is the 
standard deviation of Xc (n) and 0 < î  < 1 is a compression coefficient [354]. 
Tolonen and Karjalainen omitted compression at sub-bands but pre-whitened 
the spectrum of an input signal using inverse warped-linear-prediction filter
ing, which leads to a very similar result [627]. 

(ii) Half-wave rectification (HWR) is the clearly non-linear processing step 
in the mechanical-to-neural transduction. It is defined as 

H W R ( x ) - ^ ' - ' (8.8) 

As simple as it seems, rectification within the sub-bands plays an important 
part in pitch perception and in practical FO estimation. In particular, it allows 
a synthesis of the time and the frequency-domain periodicity analysis methods 
introduced in (8.2) and (8.3), respectively. 

Figure 8.6 illustrates the HWR operation for a narrow-band signal which 
consists of five overtones of a harmonic sound. Most importantly, the rec
tification generates spectral components which correspond to the frequency 
intervals between the input partials. The spectral components generated be
low 1 kHz represent the amplitude envelope of the input signal, as shown 
in the lowest panels. A signal that consists of more than one frequency 
component exhibits periodic fluctuations, beating, in its time-domain am
plitude envelope. That is, the partials alternately amplify and cancel each 
other out, depending on their phase. The rate of beating caused by each 
pair of frequency components depends on their frequency difference and, 
for a harmonic sound, the frequency interval corresponding to the FO 
dominates. 
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Fig. 8.6. Upper panels show a signal consisting of the overtone partials 13-17 of a 
sound with FO 200 Hz (fundamental period 5 ms) in the time and frequency domains. 
Middle panels illustrate the signal after half-wave rectification. Lower panels show 
the result of lowpass filtering the rectified signal with a 1 kHz cut-off. 

The complex Fourier spectrum Y{k) of a rectified signal y{n) = HWR(x(n)) 
can be approximated by 

Yik) = ^S{k) + lxik) + -
N/2-k 

J2 X{j)X{k-Jl (8.9) 
j=-N/2+k 

where 5{k) is the unit impulse function, and X{k) and ax are the complex 
Fourier spectrum and the standard deviation of x(n), respectively [353, p. 38], 
[117]. The approximation assumes that x{n) is a zero-mean Gaussian random 
process but it is sufficiently accurate for signals such as that in Fig. 8.6, too. On 
the right-hand side of (8.9), the first term is a dc-component, the second term 
represents the spectrum of the input signal, and the last term, the convolution 
of the spectrum X{k) with itself, represents the beating components of the 
amphtude-envelope spectrum. In addition, the last term generates a harmonic 
distortion spectrum centred on twice the centre frequency of the input narrow
band signal x{n) in Fig. 8.6. Periodicity analysis of the resulting signal in the 
time domain (see the next subsection) leads to a combined use of the time 
and frequency domain periodicity because the rectified signal consists of both 
the input partials and partials that correspond to their diflFerence frequencies. 

Another important property of the HWR is that a series of partials with 
approximately uniform amplitudes cause strong beating. This is because the 
magnitude of beating caused by each two frequency components is deter
mined by the smaller of the two amplitudes. In the spectrum of a harmonic 
sound, each pair of neighbouring harmonics contributes to the beating at the 
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fundamental-frequency rate, but the 'minimum amplitude' property filters 
out individual higher-amplitude partials. This phenomenon is well known in 
hearing: if the amplitude of one of the overtones of a harmonic sound rises 
clearly above the others, it is perceptually segregated and stands out as an 
independent sound [49]. In computational multiple FO estimation, this is a de
sirable characteristic since it makes the FO computations more immune to the 
partials of other, co-occurring sounds. Especially when processing the higher 
overtones of a sound, this partly prevents stealing the energy of the partials 
of other sounds. 

(iii) Lowpass filtering the rectified signal can be used to balance the weight 
between the amplitude envelope versus the input narrow-band signal. Most 
systems have used a fixed low-order lowpass filter with a cut-off frequency 
around 1 kHz at all channels. The sub-band signal after compression, rectifi
cation, and lowpass filtering is denoted by Zc{n). 

8.3.3 Periodicity Analysis at Sub-Bands and Cross-Band 
Integration 

The auditory nerve signal, modelled by Zc{n), c = 1, . . . ,C, is further 
processed in the brain. Although the central processing mechanisms are not 
accurately known, it has been convincingly shown that periodicity analysis of 
some kind takes place within each auditory channel and the results are then 
combined across channels to yield a pitch perception [457], [67]. This amount 
of knowledge is already very useful and almost carries us to a situation where 
only parameter optimization is left in order to process pitch in a way similar 
to that of the human brain. 

The first pitch model of the above-described type was proposed by Lick-
lider [409]. He proposed to computed short-time autocorrelation functions 
'^c{^) within the auditory channels c and to derive pitch from the resulting 
two-dimensional {cxr) representation. This became known as the 'duplex the
ory' of pitch perception because it involved both frequency analysis (by the 
cochlear filterbank) and autocorrelation analysis. Further development with 
this class of models was made by Lyon [422], Weintraub [663], and Slaney and 
Lyon [594]. 

Meddis and Hewitt implemented Licklider's model using a gammatone 
filterbank and a realistic IHC model and carried out extensive simulations to 
investigate if the pitch estimate of the model agreed with human listeners for 
various audio signals [457]. The authors computed ACFs within the auditory 
channels as 

n 

,(n, T) = ^ Zc{n - i)zc{n - i - r)w{i), (8.10) 
i=o 

where Zc{n) is the output of the IHC model in channel c and at time 
n, rdn^r) is the ACF, and an exponentially decaying window function 
w{i) = (l/i7)e~*/^ was applied to give more emphasis to the most recent 
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samples [457], [459].^ It should be noted that the data structure at this stage 
was three dimensional {cxrxn). Across-channel information integration was 
then done simply by summing across channels, resulting in a summary ACF 

c 

Pitch at time n was estimated by searching the highest peak in s{n^ r ) within 
a predefined lag range [457, p. 2884]. 

Meddis and Hewitt demonstrated that the model was able to predict the 
perceived pitch for a large set of test stimuli used previously in psychoa-
coustic tests [457]. Moreover, Meddis and O'Mard later noted that the im
plementation is a special case of a more general model consisting of four 
stages: (i) cochlear bandpass filtering, (ii) half-wave rectification and lowpass 
filtering, (iii) within-channel periodicity extraction, and (iv) across-channel 
aggregation of periodicity estimates [459]. This became known as the unitary 
model of pitch perception because the single model was capable of simulating 
a wide range of pitch perception phenomena. Different variants of the unitary 
model have been used since then in a number of signal analysis systems [171], 
[133], [627], [677]. 

Cariani and Delgutte carried out a direct experiment to find out the char
acteristics in the auditory nerve signals that correlate with the perceived pitch 
[67]. Instead of using a simulated cochlea, the authors studied the signal in 
the auditory nerve of a cat in response to complex acoustic waveforms. They 
found that the time intervals between neural spikes are particularly important 
in encoding pitch. The authors computed histograms of time intervals between 
both successive and non-successive impulses in individual auditory nerve fi
bres, and summed the histograms of 507 fibres to form a pooled histogram. 
What the authors noticed was that, for a diverse set of audio signals, the 
perceived pitch correlated strongly with the most frequent interspike interval 
in the pooled histogram at any given time [67]. This suggests that the pitch of 
these signals could result from central auditory processing mechanisms that 
analyse interspike interval patterns. Computational models of the cochlea do 
not produce discrete neural spikes but rather real-valued signals Zc{n), which 
represent the probability of a neural firing (in diff'erent nerve fibres). How
ever, Cariani and Delgutte noted that the interspike interval codes are closely 
related to autocorrelation operations [67, p. 1712]. For a real-valued signal, 
ACF can replace the interval histogram. 

Despite the above strong evidence, it seems that the ACF is not precisely 
the mechanism used for periodicity estimation in the central auditory system, 
but some experimental and neurophysiological findings contradict the ACF 
(see e.g. [322] and the brief summary in [131, p. 1262]). Meddis and Hewitt, 
for example, used the ACF but wanted to 'remain neutral about the exact 

^In practice, the windowing and summing can be implemented very efficiently 
using a leaky integrator. 
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Fig. 8.7. The impulse response {left) and frequency response (middle) of a comb 
filter with the feedback delay of 10 ms and feedback gain 0.9. For comparison, the 
right panels shows the power response of the ACF for 10 ms lag. 

mechanism by which temporal information is extracted from the activity of 
the auditory nerve fibres' [457, p . 2879]. 

A number of alternative mechanisms to the ACF have been proposed [500], 
[68], [66], [132]. Although none of these really surpass the modelling power 
of the ACF for a large class of signals, comb filter-like solutions have been 
proposed by several authors and are therefore discussed in the following. The 
output of a comb filter for an input signal Zc{n) is given by 

Vein, r) = {1- a)zc{n) + aydn - r , r ) , (8.12) 

where r is the feedback delay and 0 < a < 1 is the feedback gain. 
Figure 8.7 shows the impulse response and the frequency response of a 

comb filter with a feedback delay r = 10 ms. For comparison, the power re-
ponse of the ACF for the corresponding lag r is shown in the rightmost panel."^ 
As can be seen, the comb filter is more sharply tuned to the harmonic frequen
cies of the period candidate and no negative weights are applied between these. 

Periodicity analysis with comb filters can be accomplished by invoking a 
bank of such filters with diflPerent feedback delays r and by computing locally 
time-averaged powers at the outputs of the filters. Figure 8.8 illustrates the 
output powers of a bank of comb filter for a couple of test signals. In the case 
of a periodic signal, all comb filters tha t are in rational-number relations to 
the period of the sound show response to it, as seen in panel (b). 

A bank of comb filters has been proposed for auditory processing e.g. by 
Cariani [66, Eq. (1)], who used the filterbank to separate concurrent vowels 
with different FOs. Cariani also proposed a non-linear mechanism which con
sisted of an array of delay lines, each associated with its characteristic delay 
and a non-linear feedback mechanism instead of the linear one in (8.12). Pe
riodic sounds were reported to be captured by the corresponding delay loop 
and thus became segregated from the mixture signal. The strobed temporal 

^As a non-linear operation, the ACF does not have a frequency response. How
ever, since the ACF of a time-domain signal is the inverse Fourier transform of its 
power spectrum, the power response of the ACF can be depicted for a single period 
value. 
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Fig. 8.8. Normalized output powers of a bank of comb filters for (a) a sinusoidal 
with 24-sample period and (b) an impulse train with the same period. The feedback 
delays of the filters are shown on the x-axis and all the feedback gains were 0.9. The 
panels (c) and (d) show the ACFs of the same signals, respectively. 

integration (STI) mechanism of Patterson [502], [500, p. 186] is closely related 
to comb filters too, although the relation is less direct and full details of the 
method are beyond the scope of this chapter. 

In all the above-described models, the across-band integration has received 
a rather small role. For example, Meddis and Hewitt [457] and Cariani and 
Delgutte [67] suggest simply summing the autocorrelation functions or period
icity histograms across channels (see (8.11)). More complex ways of integrating 
the information across channels have been proposed, though. These will be 
discussed in more detail in Section 8.5.1, in connection with the estimation of 
multiple pitches. In particular, a technique called channel selection will be dis
cussed which attempts to identify the spectro-temporal regions that represent 
the target sound and to reject the channels which contain noise or interfer
ence. Here it suffices to note that the across-channel information integration 
takes place in the central auditory system and may thus employ almost any 
complex technique. One curious consequence of this is that the pitch of a 
sound can be perceived even when two overtone partials of the sound are fed 
to the diflFerent ears of a listener [298]. 

8.4 Using an Auditory Model as a Front End 

This section discusses music transcription systems which use an auditory 
model as a front end. That is, the systems apply a perceptually motivated 
data representation but the emphasis is laid on higher-level processing in
stead of proposing changes to the auditory model itself. Section 8.5 will dis
cuss systems which do the latter and, as will be seen, often some practical 
modifications are needed in order to make the models more robust in poly
phonic music signals. However, putting transcription systems under these two 
sections primarily serves the purpose of presentation instead of representing 
two clear categories. 

The intermediate data representations employed between an input signal 
and the transcription result are of great importance. An appropriate repre
sentation facilitates the design of algorithms that use it and often improves 
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Fig. 8.9. Illustration of the log-lag correlogram of Ellis [171]. Input signal in this case 
was a trumpet sound with FO 260 Hz (fundamental period 3.8 ms). The left panel 
illustrates the three-dimensional correlogram volume. The middle panel shows the 
zero-lag face of the correlogram which is closely related to the power spectrogram. 
The right panel shows one time slice of the volume, from which the summary ACF 
can be obtained by summing over frequency. 

the analysis result in practice. The idea of using the same data representation 
as the human auditory system is therefore very appealing. The aim of this 
section is to investigate the advantages and disadvantages of doing this and 
to introduce a few auditory-model implementations that have been employed. 
For this purpose, three different music transcription systems are briefly intro
duced. A discussion of other mid-level data representations in acoustic signal 
analysis can be found in [173] and in Chapter 3. 

8.4.1 Martin's Transcription System 

Martin proposed a system for transcribing piano performances of four-voice 
Bach chorales [440], [439]. As a front end of his system, Martin used the log-lag 
correlogram model of Ellis [171] which is closely related to the unitary model 
of Meddis and Hewitt described above. A bank of 40 gammatone filters was 
applied, the output of each filter was half-wave rectified and lowpass filtered, 
and then subjected to autocorrelation analysis. Specific to Ellis's model is 
that the within-channel ACFs are computed only for a set of logarithmically 
distributed lag values, 48 lags per an octave. This makes it computationally 
feasible to estimate the ACFs continuously over time and not just in discrete 
frames. For each lag r and channel c, the signal rc{n,T) = Zc{n)zc{n — r) is 
computed and then lowpass filtered in the time dimension, analogous to (8.10). 
Summary ACFs are obtained by normalizing each ACF by the value at lag 
zero and by summing across channels. Figure 8.9 illustrates Ellis's model. 

Martin utilized the good time resolution of Ellis's model by tracking sum
mary ACF peaks through time and by combining temporally continuous peaks 
into musical notes. Simple pruning mechanisms were introduced to eliminate 
spurious subharmonic peaks in the summary ACF. 
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The overall system of Martin's was a complex inference architecture (a 
blackboard) where knowledge about the spectral structure of harmonic sounds 
was combined with rules governing tonal music and with heuristic techniques. 
Support for different FOs was sought for in the summary ACF and then com
bined with the power envelope information to create note hypotheses. Much 
of the innovative work was put into developing an extendable software archi
tecture which allowed the integration of various types of processing modules 
to the system. 

The first version of Martin's system simply used a time-frequency spectro
gram as its input [440], but later the author switched to using the auditory 
model [439]. Interestingly, Martin mentions a specific reason for switching to 
an auditorily motivated data representation: he suspected that the log-lag 
correlogram would facilitate the detection of notes in an octave relationship 
without introducing explicit instrument models. Although some evidence for 
this was presented, no extensive simulations were carried out to support this 
conclusion. Also, Martin reported that the correlogram representation indi
cated chord roots very clearly and that the analysis did not require resolving 
individual higher-order harmonic partials in the spectrum [439, p. 10]. Al
though Martin's transcription system was never formally evaluated, it was 
among the first systems to be able to process signals with more than two 
simultaneous sounds and thus had a strong influence on subsequent research. 

8.4.2 Auditory Scene Analysis Approach of Godsmark and Brown 

Godsmark and Brown proposed a system for modelling the auditory scene 
analysis (ASA) function in humans, that is, our ability to perceive and recog
nize individual sound sources in mixture signals [215]. The authors used music 
signals as their test material. ASA is usually viewed as a two-stage process 
where a mixture signal is first decomposed into time-frequency components 
of some kind, and these are then grouped to their respective sound sources. 
In humans, the grouping stage has been found to depend on various acoustic 
properties of the components, such as their harmonic frequency relationships, 
common onset times, or synchronous frequency modulation [49]. 

Godsmark and Brown used the auditory model of Cooke [100] for the de
composition stage. This auditory model also uses a bank of gammatone filters 
at its first stage. Notable in Cooke's model is that rectification and lowpass 
filtering are not applied at the filterbank outputs but only the compression 
and level adaptation properties of the IHCs are modelled, amounting to an au
ditorily motivated bandwise gain control. Thus the overall model can actually 
be viewed as a sophisticated way of extracting sinusoidal components from an 
input signal, instead of being a complete and realistic model of the auditory 
periphery. The frequency of the most prominent sinusoidal component at the 
output of each auditory filter is tracked through time using median-smoothed 
instantaneous-frequency estimation [100, p. 36] and, in addition, the instan
taneous amplitudes of the components are calculated. Since the passbands of 
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the gammatone filters overlap, usually several adjacent filters show response 
to the same frequency component. This redundancy is removed by combining 
the outputs of adjacent channels so as to form 'synchrony strands' which rep
resent the time-frequency behaviour of dominant spectral components in the 
input signal. 

The main focus in the work of Godsmark and Brown was on developing a 
computational architecture which would facilitate the integration of different 
spectral organization (grouping) principles [215]. The synchrony strands were 
used as the elementary units that were grouped to sound sources. The authors 
reported that these were particularly suitable for modelling the ASA because 
the temporal continuity of the strands is made explicit and they are sufficiently 
few in number to perform the grouping for every strand.^ Godsmark and 
Brown computed various acoustic features for each strand and then performed 
grouping according to onset and offset synchrony, time-frequency proximity, 
harmonicity, and common frequency movement. 

Godsmark and Brown evaluated their model by investigating its ability 
to segregate polyphonic music into its constituent melodic lines. This in
cluded both multiple FO estimation and organization of the resulting notes 
into melodic lines according to the applied musical instruments. The latter 
task was carried out by computing pitch and timbre proximities between suc
cessive sounds. Although transcription accuracy as such was not the main 
goal, promising results were obtained for musical excerpts with polyphonies 
ranging from one to about four simultaneous sounds. 

8.4.3 Marolt's Transcriber for Piano Music 

Marolt proposed a system for the automatic transcription of piano music [434]. 
His system was composed of two main parts: a partial tracking module and a 
note recognition module. Input to the partial tracking part was provided by 
a model of the peripheral hearing where an input signal was passed through 
a bank of 200 gammatone filters and the output of each filter was processed 
by Meddis's IHC model [456]. Adaptive oscillators were then used to track 
partials at the outputs of the IHC models, one oscillator per channel. The 
oscillators employed were similar to those proposed by Large and Kolen in 
[391], locking their period and phase to the incoming signal. In order to track 
harmonically related partials, the oscillators were interconnected to oscillator 
nets^ one per each candidate musical note. 

Time-delay neural networks (NNs) were trained to recognize musical notes 
at the output of the partial tracking module. Each NN was specifically trained 
to recognize a certain piano note in its input. The input to the NNs consisted 
of the outputs of all the oscillator networks in a few recent time frames and of 
the amplitude envelopes at the outputs of the auditory filterbank. Supervised 
learning with a large amount of piano music was used to train the NNs. 

^Cooke designed his model exactly for this purpose: to support the grouping 
activities in ASA [100, p. 14]. 
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Good transcription results were reported for a test set of three real and 
three synthesized piano performances. Concerning the use of the auditory 
model, Marolt reported that the compression and level adaptation properties 
of Meddis's IHC model were important to the system as they reduced the 
dynamic range of the signal and thus enabled the system to track small-
amplitude partials. 

8.4.4 Summary of Using an Auditory Front End 

Specific advantages of using a perceptually motivated data representation were 
reported in the above systems. Martin observed that the log-lag correlogram is 
a good indicator of chord roots and that the analysis with the model does not 
require resolving individual higher-order harmonics, allowing a better time 
resolution. Some evidence for detecting two notes in an octave relationship 
was presented. Godsmark and Brown reported that the model of Cooke was 
particularly suitable for computational ASA since it produced temporally con
tinuous sinusoidal components which were relatively few in number. Marolt 
reported that the dynamic compression and level adaptation properties of 
Meddis's IHC model facilitated the use of small-amplitude partials in the 
analysis. Finally, an important feature of auditory models that is not explic
itly mentioned by any of the above authors is that the compression properties 
of the IHC models remove timbral information efficiently and thus make the 
models more robust for different musical instruments. 

The disadvantages of employing an auditory model were not specifically 
reported. However, compared to the use of the Fourier spectrum, for example, 
it is fair to say that the computational load of an auditory model is signifi
cantly higher and that the output of the model is not as straightforward to 
interpret and understand. 

8.5 Computational Multiple FO Estimation Methods 

The pitch perception models described in Section 8.3 are not sufficient as such 
for accurate multiple FO estimation in real-world music signals. The purpose 
of this section is to describe different approaches to extending the models so 
that they become applicable in the present task. 

The most obvious shortcoming of the pitch perception models is that they 
typically account for a single pitch only. Several pitches in a mixture signal 
cannot be detected simply by picking several local maxima in the summary 
ACF, for example. The models have been tested using very diverse kinds of 
acoustic signals but usually not with sound mixtures. Another shortcoming, 
related to the first one, is that the models are not robust in polyphonic sig
nals. Even the global maximum of the summary ACF does not necessarily 
correspond to any of the actual pitches in a mixture signal; certain pitch rela
tionships can confuse the model. In a typical situation, the constituent notes 
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of a musical chord match the overtones of a non-existing chord root and the 
highest peak in the summary ACF indicates the chord root instead of one 
of the component sounds.^ Further, the pitch models do not address robust
ness against additive noise: drum sounds often accompany the pitched sounds 
in music. Finally, the computational complexity of the models is rather high 
since they involve periodicity analysis at a large number of sub-bands. 

On the other hand, there are several issues that are quite efficiently dealt 
with using a pitch model. These were summarized in Section 8.4.4 above. 

In the following, a number of different methods are described that aim at 
overcoming the above-mentioned shortcomings. Some of these were designed 
for two-speaker speech signals but are included here in order to cover the 
substantial amount of work done in the analysis of multiple-speaker speech 
signals. This is followed by a more detailed description of two multiple FO 
estimation methods for music signals. It should be noted that the main interest 
in this section is not to model hearing but to address the practical task of 
multiple FO estimation. 

8.5.1 Multiple FO Estimation in Speech Signals 

Multiple FO estimation is closely related to sound separation. An algorithm 
that is able to estimate the FO of a sound in the presence of other sounds is, in 
effect, also assigning the respective spectral components to their sound sources 
[49, p. 240]. Separation of speech from interfering speech for the purpose of 
its automatic recognition is an important area of sound separation. Here we 
look at methods that have utilized pitch information to carry out this task. A 
couple of state-of-the-art methods are described, with the aim of discussing 
the basic mechanisms that have been used to extend an auditory model to 
process multiple pitches. 

Multiple FO estimation in speech signals is in many ways a more con
strained task than in music: the FO range is limited to about three octaves 
and the described methods attempt to estimate only two simultaneous FO 
tracks. However, the described basic mechanisms are not restricted to speech 
signals, and many of them can be generalized to the case of more than two 
simultaneous sounds. 

Channel Selection 

Meddis and Hewitt extended their pitch model (see p. 241) to simulate the 
human ability to identify two concurrent vowels with different FOs [458]. The 
proposed method included a template-matching process to recognize the vow
els too, but here only the FO estimation part is summarized. It consists of the 
following steps: 

^Examples of such chords are the major triad and the interval of a perfect fifth. 
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1. The pitch model of Meddis and Hewitt is appUed [457]. This involves 
a bank of gammatone filters, Meddis's IHC simulation, within-channel 
ACF computation, and across-channel summing. The highest peak in the 
summary ACF within a predefined lag range is used to estimate the FO 
of the more dominant sound. 

2. Individual channel ACFs that show a peak at the period of the first de
tected FO are removed. If more than 80% of the channels get removed, 
only one FO is judged to be present and the algorithm terminates. 

3. The ACFs of the remaining channels are combined into a new summary 
ACF from which the FO of the other vowel is derived. 

The authors did not give statistics on the FO estimation accuracy, but 
reported clear improvements in vowel recognition as the FO difference of the 
two sounds was increased from zero to one semitone or beyond. 

Time-Domain Cancellation 

The above channel selection scheme can be seen as an instance of a more 
general iterative approach where FO estimation is followed by the cancellation 
of the detected sound from the mixture, and the estimation is then repeated 
for the residual signal. This generalization was pointed out by de Cheveigne, 
who further proposed that the cancellation can take place in the time domain 
[129], [130]. When the period TQ of one sound in the mixture has been found, 
the sound can be removed by applying a cancellation filter with the impulse 
response 

hroin) = S{n) - S{n - TQ), (8.13) 

where 6{n) is the unit impulse function. Convolving an input signal x(r) with 
hroin) yields hro{n) 0 x{n) = x{n) — x{n — TQ) and, if the detected sound is 
perfectly periodic, the above filter completely removes it from the mixture. As 
a side-effect, however, the filter also removes the partials of other sounds that 
coincide with those of the sound being cancelled. Also, a more sophisticated 
filter is needed to cancel a sound whose period is not precisely a multiple of 
the sampling interval [382]. 

An advantage of the time-domain cancellation is that it is not bound to 
the resolution of the cochlear filterbank and, in principle, it works even when 
all the channels are dominated by a single period. The filtering can be done 
directly for the input signal or within the channels of an auditory model. 
These two are equivalent unless the within-channel filtering is done after the 
non-linear IHC simulation stage. 

De Cheveigne used the cancellation principle for the actual FO estimation, 
too. He proposed to calculate a squared difference function (SDF) which is 
defined for an input signal x{n) as 

N-l 

SDF(n, r)=Y^ {x{n - i) - x{n - i - r ) ) ^ (8.14) 
1=0 
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where N is the analysis frame size [131].^ By expanding the square, it can 
be seen that SDF(n,r) = E{n) -h E{n — r) — 2r(n,T), where E{n) denotes 
the signal power at time n and r(n,T) is the ACF. Thus the SDF and the 
ACF are functionally equivalent, and period estimation can be carried out by 
searching for minima in the SDF instead of maxima in the ACF. De Cheveigne 
also proposed a joint cancellation model, where two cancellation filters with 
periods TA and TB were applied in a cascade so as to cancel two periodic 
sounds. By computing the power of the resulting signal as a function of the two 
periods, the FOs were found by locating the minumum of the two-dimensional 
function [129], [133]. 

De Cheveigne evaluated both the iterative and the joint FO estimation 
method for mixtures of two-voiced speech segments [129]. The iterative algo
rithm was reported to produce estimates which were correct within 3% accu
racy in 86% of the frames and the exhaustive joint estimator produced correct 
estimates in 90% of the frames. Computational complexity is a drawback of 
the joint estimator. 

Channel and Peak Selection 

Wu, Wang, and Brown proposed an algorithm for tracking the FOs of two si
multaneous speakers, taking particular interest in noise robustness [677]. Their 
method employed a computational model of the peripheral auditory system, 
after which the channels significantly corrupted by noise were excluded. From 
the remaining channels, ACF peaks were selected so that peaks judged to 
give misleading information were rejected. This led to an intermediate data 
representation which consisted of only the lag values and channel labels of the 
selected ACF peaks (discarding peak amplitudes). The information was then 
processed using statistical models. 

In more detail, the channel and peak selection process was the follow
ing. First, a gammatone filterbank was applied and the resulting channels 
were classified as 'low-frequency' or 'high-frequency' channels depending 
on whether their centre frequency was below or above 800 Hz. Normalized 
ACFs were then computed for the low-channel signals directly and for the am
plitude envelopes of the high-channel signals. Low channels were selected (i.e., 
included in further computations) if the highest peak of the normalized ACF 
exceeded a given threshold value. High-frequency channels were selected if the 
shapes of the normalized ACFs computed in 16 ms and in 32 ms frames were 
sufficiently similar. Peak selection, in turn, consisted of two main rules. First, 
an acceptable peak (peak not due to noise) was required to show a submulti-
ple peak at twice its lag value. At high-frequency channels, envelope beating 
at the FO rate was assumed and, therefore, subharmonics of any peak higher 
than a threshold value were removed. Full details can be found in [677]. 

^The SDF is closely related to the average magnitude difference function 
(AMDF) that has been used to estimate the FO of speech [549]. The AMDF is 
obtained by summing absolute values instead of their squares in (8.14). 
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Fig. 8.10. Block diagram of the pitch analysis method proposed by Karjalainen 
and Tolonen [627]. ©2005 IEEE, reproduced here by permission. 

The remaining channels and peaks were subjected to statistical modelling. 
Using clean speech as training material, the difference 6c = TC — TQ between a 
true (annotated) fundamental period TQ and the period of the closest selected 
peak Tc at channel c was studied. The statistical distribution of Sc was used to 
determine the likelihood of the observed peaks at channel c given a fundamen
tal period candidate r . Different observation likelihood functions were defined 
for the cases of zero, one, and two FOs (two FOs were jointly estimated). Fi
nally, a hidden Markov model was employed to model the dynamic aspects of 
the FO contours. This included both the continuity of the FO tracks and jump 
probabilities between the state spaces of zero, one, or two FOs. 

In evaluations, Wu et al. used ten voiced utterances to generate mixtures 
of two voices. These were mixed with realistic noise signals, including har
monic interference and interfering speech signals. Five utterances were used 
for training and five for testing. Good results were reported for this database 
and an implementation of the method is publicly available [677]. 

8.5.2 Multiple FO Estimator of Karjalainen and Tolonen 

Karjalainen and Tolonen proposed a computationally efficient version of the 
unitary pitch model (see p. 241) and extended it to the multiple FO estima
tion of musical sounds. [327], [627] Figure 8.10 shows the block diagram of 
their method. The most obvious difference from the original auditory model 
is that the method divides an input signal into two channels only, below 
and above 1 kHz, and then analyses the periodicity of the low-channel signal 
and of the envelope of the high-channel signal. Despite the drastic reduction 
in computation load compared to the unitary pitch model, many important 
characteristics of the model were preserved. 

The method included several features to address practical robustness is
sues. Robustness against timbral variation (different musical instruments for 
example) was achieved by pre-whitening the input signal using inverse warped-
linear-prediction filtering [272]. In essence, this fiattens the spectral energy 
distribution but does not affect the spectral fine structure. 

Periodicity analysis in the method of Karjalainen and Tolonen was carried 
out using a generalized ACF, originally proposed by Indefrey et al. in [306]. 
According to the Wiener-Khintchine theorem, the ACF of a time-domain 
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signal X is the inverse Fourier transform of its power spectrum [276, p. 334]. 
The generalized ACF, then, is defined as 

r{r) = IDFT( |DFT(x)r) , (8.15) 

where DFT and IDFT denote the discrete Fourier transform and its inverse, 
and a is a free parameter which determines the frequency domain compres
sion.^ The standard ACF is obtained by substituting a = 2. Definition of 
the cepstrum of x is analogous to ACF and is obtained by replacing the sec
ond power with the logarithm function. The difference between the ACF and 
cepstrum-based FO estimators is quantitative: raising the magnitude spectrum 
to the second power emphasizes spectral peaks in relation to noise but, on 
the other hand, further aggravates spectral peculiarities of the target sound. 
Applying the logarithm function causes the opposite for both. And indeed, 
ACF-based FO estimators have been reported to be relatively noise immune 
but sensitive to formant structures in speech, and vice versa for cepstrum-
based methods [535]. As a trade-off, Karjalainen and Tolonen suggested using 
the value a = 0.67. 

Extension to multiple FO estimation was achieved by cancelling subhar-
monics in the summary ACF (SACF) by cHpping the SACF to positive values, 
time-scaling it to twice its length, and by subtracting the result from the orig
inal clipped SACF. This cancellation operation was repeated for time-scaling 
factors up to about five. From the resulting enhanced SACF, all FOs were 
picked without iterative estimation and cancellation. In more detail, the en
hancing procedure was as follows: 

Algorithm 8.1: Enhancing Procedure of Karjalainen and Tolonen 

1. The enhanced SACF s{r) Is Initialized to be equal to the SACF S(T). The scaling 
factor m is initialized to value 2. 

2. The original SACF is time-scaled to m times its length and the result is denoted by 
Smir). Using linear Interpolation, 

Sm{T) = S{d) + ^ ^ ^ {S{d + 1) - S{d)) , (8.16) 
m 

where d = [ r / m j and [J denotes rounding towards negative Infinity. 

3. The enhanced SACF is updated as 

s(r) ^ max(0, s{r) - max(0, Sm{r))). (8.17) 

4. Increment m by 1. If m is smaller than 6, return to Step 2. 

The above enhancing procedure is surprisingly efficient in removing spu
rious peaks from the SACF and in reveahng more than one FO in it. Also, 

^In practice, the analysis frame x has to be zero-padded to twice its length before 
the first transform. 
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523 Hz). Middle: SACF and enhanced SACF for the same sound. Right: SACF and 
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and 330 Hz). The circles indicate the correct fundamental periods. 

it partly solves the 'chord root' problem mentioned in the beginning of Sec
tion 8.5 since the enhancing procedure scales the true FO peaks to the position 
of the chord root and, if a note does not truly appear at the root, the spu
rious peak becomes cancelled. The only place where care has to be taken is 
in setting values of the original SACF to zero in the lag range [0, /s/1000 Hz] 
before the enhancing (here /s denotes the sampling rate). This ensures that 
the values on the r = 0 hill do not spread and wipe away important infor
mation. Zeroing the mentioned lags causes no harm for the analysis since the 
algorithm cannot detect FOs above 1 kHz. 

Figure 8.11 illustrates the enhancing procedure for an isolated sound and 
for a musical chord. As mentioned by Martin [439], the SACF indicates the 
non-existing FO of the chord root in the latter case. After enhancing, however, 
the true FOs are revealed. 

Overall, the method of Karjalainen and Tolonen is quite accurate and it 
has been described in sufficient detail to be exactly implementable based on 
[627] and on the Matlab toolbox for frequency-warped signal processing by 
Harma et al. [272]. A drawback of the method as stated by the authors is 
that it is 'not capable of simulating the spectral pitch' [627, p. 713], i.e., the 
pitch of a sound whose first few harmonics are above 1 kHz. In practice, the 
method is most accurate for FOs below about 600 Hz. Later, Karjalainen and 
Tolonen also proposed an iterative approach to multiple FO estimation using 
the described simplified auditory model [328]. 

8.5.3 Multiple FO Estimator of Klapuri 

Klapuri's multiple FO estimator for music signals was originally described 
in [353, Ch. 4] and later improved and simpified in [354]. The method con
sists of a model of the peripheral auditory system followed by a periodic
ity analysis mechanism where FOs are iteratively estimated and cancelled 
(Fig. 8.12). 
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Model of the Peripheral Auditory System 

In the peripheral hearing model, an input signal was first passed through a 
bank of gammatone filters with centre frequencies uniformly distributed on 
the critical-band scale (see (8.5)) between 60 Hz and 5.2 kHz. A total of 72 
filters were employed using the implementation of Slaney [591]. 

Hair cell transduction was modelled by compressing, half-wave rectifying, 
and lowpass filtering the sub-band signals. The compression was implemented 
by simulating the full-wave i/th law compression (FWC), which is defined as 

FWC(x) = 
x^, X > 0, 

-{-xY, x<0. 
(8.18) 

For a narrow-band signal, such as the output of an auditory filter, the effect 
of the FWC within the passband of the filter can be accurately modelled by 
simply scaling the signal with a factor 

7c = a{ac) ly-l (8.19) 

where ac is the standard deviation of the signal at channel c and the scalar 
a depends on u but is common to all channels and can thus be omitted [353, 
p. 37]. In addition to the scaling mentioned, FWC generates small-amplitude 
distortion components at odd multiples of the channel centre frequency. These 
were avoided by using the model (8.19) instead of (8.18) directly. 

The FWC provides a single parameter u which determines the degree of 
spectral whitening applied on an input signal. The scaling factors 7c normalize 
the variances of the sub-band signals towards unity when 0 < i/ < 1. Here, 
the value i/ = 0.33 was applied. 

The compressed sub-band signals were half-wave rectified by constraining 
negative values to zero. As shown in Fig. 8.6, this generates spectral com
ponents near zero frequency and on twice the channel centre frequency. The 
rectified signal at each channel was steeply lowpass filtered with a cut-off 
frequency 1.5 times the channel centre frequency in order to attenuate the 
distortion spectrum at twice the centre frequency but to pass the sub-band 
signal along with its amplitude envelope spectrum. The rectified and lowpass 
filtered signals Zc{n) were then subjected to periodicity analysis. 
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Periodicity Analysis 

The periodicity analysis mechanism proposed by Klapuri is best understood 
by comparing it with the ACF-based method employed by Meddis and Hewitt 
(see p. 241). Short-time ACF estimates within the channels can be efficiently 
computed as Vc^ni^) — IDFT(|Zc,n(^)P), where IDFT denotes the inverse 
Fourier transform and Zc^n{k) is the Fourier transform of Zc{n) computed in 
a time frame that is centred at time n and zero-padded to twice its length 
before the transform. The within-band ACFs are then summed to obtain the 
summary ACF, Sn{r) = Ec^c,n(r). 

Because the IDFT and the summing are linear operations, their order 
can be reversed and we can write Sn{r) = lDFT{Sn{k)), where Sn{k) = 
Ylc l^c,n(^)P- The spectra of real-valued (audio) signals are conjugate sym
metric and the IDFT can therefore be written out as 

K / 2 - 1 . . 

s„(r) = IDFT(5„(fc)) = - | J ] cos ( - ^ J 5„(fc), (8.20) 

where K is the length of the transform frame after the zero-padding. 
Klapuri made three modifications to (8.20). First, as seen in Fig. 8.12, 

magnitude spectra were summed across channels instead of power spectra. 
Analogous to the generahzed ACF in (8.15), it was observed that raising the 
magnitude spectra to the second power accentuates timbral peculiarities that 
cannot be completely removed by band wise compression in polyphonic signals. 
Therefore, within-band magnitude spectra were summed to obtain a summary 
magnitude spectrum (SMS), 

U{k) = Y,\Zc{k)\, (8.21) 
C 

where the time index n has been omitted to simplify the notation in the 
following. The SMS functioned as an intermediate data representation and all 
the subsequent processing took place using it only. 

Figure 8.13 illustrates the bandwise magnitude spectra |Zc(A:)| for a saxo
phone sound. As can be seen, the within-channel rectification maps the contri
bution of higher-order partials to the position of the FO and its few multiples 
in the spectrum. Most importantly, the degree to which an individual overtone 
partial j is mapped to the position of the fundamental increases as a function 
of j . This is because the auditory filters become wider at higher frequencies 
and the partials thus have larger-magnitude neighbours with which to gener
ate the difference frequencies (beating) in the envelope spectrum. Klapuri's 
method was largely based on this observation, as will be explained below. 

The second modification concerned the function cos(-) in (8.20), which can 
be seen as a harmonic template that picks overtone partials of the frequency 
K/T in the spectrum (see the rightmost panel of Fig. 8.7 on p. 243). The func
tion was replaced by a response that is more sharply tuned to the frequencies 



^4982 
:i: 3680 
^2703 
g 1970 
^ 1421 
g' 1009 

' ^ 699 
g 467 
§ 293 
O 163 

65 

8 Auditory Model-Based Methods for Multiple FO Estimation 257 

' ' ' 1 1 ' ' I . . 1 . 1 1 1 1 1 . 1 1 1 
A 1 . ....111. 

A . . . l l . . . . 

A . , . 1 1 . 
A . . 1 1 

. . 1 . 
. 1 

1 . 
1 

1 
ft 

r — = . r—1 1 . , 1 , , , n—1 , r - , -^ , — 1 . . , . l—H . 

100 200 500 1000 
Frequency (Hz) 

2000 5000 

Fig. 8.13. The spectra |-^c(/c)| at a few channels for a tenor saxophone sound (FO 
131 Hz). 

of the harmonic overtones of a FO candidate and employs no negative weights 
between the partials. In practice, the frequency response resembled that of 
a comb filter shown in Fig. 8.7. This modification alleviates the interference 
of other, co-occurring sounds. Moreover, instead of pointwise multiplying the 
complete spectrum U{k) with a comb filter response and then summing, it 
was found sufficient to sum up spectral components near the positions of the 
peaks of the comb-filter response (see (8.22) below). This led to a very effi
cient implementation computationally and is closely related to the harmonic 
selection methods reviewed by de Cheveigne in [129], and to the harmonic 
transform of Walmsley et al. [657]. 

The relative strength, or salience, A(r) of a fundamental period candidate 
r was calculated in Klapuri's system as 

A(r; 
j = i 

md.x[HLp{k)U{k)] (8.22) 

where /s denotes the sampling rate and the factors / s / r and Hi,p{k) are 
related to the third modification to be explained later. The set Kj^r defines a 
narrow range of frequency bins in the vicinity of the jth overtone partial of 
the FO candidate / s / r . More exactly, Kj^r = [k^^l.kj^l], where 

1,(0) 
[jK/{T + AT/2)\+h 

Tn^x{[jK/{T-AT/2)\M,h 

(8.23) 

(8.24) 

In the above formulas, K is the transform length and the scalar AT = 1 
denotes spacing between successive period candidates r . A uniform sampling 
of lag values was used, analogous to the ACF. Equations (8.23)-(8.24) define 
the sets Kj^r so that, for a fixed partial index j , all the spectral components 
belong to the range of at least one period candidate r, and the ranges of 
adjacent period candidates cannot overlap by more than one frequency bin. 
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The third modification in (8.22) compared to (8.20) is that individual 
partials in the sum in (8.22) are weighted by / s / r x Hi,p{k), where the lowpass 
response is 

^ - ( ^ ^ = 0.108/3fe/V + 24.7- ^'-''^ 

By comparison with (8.4), it is easy to notice that this is the reciprocal of 
the bandwidth of an auditory filter centred at frequency bin k. The factor 
/ s / r X Hi,p{k) can therefore be written as F{T)/bc{jF{T)), where F{T) = / s / r 
is the FO of the period candidate r (i.e., the frequency interval between its 
overtones) and bc{jF{r)) is the width of an auditory filter centred at its j th 
overtone. The ratio of these two was interpreted as the resolvability of the 
partial j [353, p. 45]. The lower-order overtones of a harmonic sound are 
resolved into separate auditory channels, whereas the higher-order overtones 
go to the same auditory channel with their neighbours and their frequencies 
cannot be perceived separately (resolved). Actually the lowpass filter Hi,p{k) 
would belong to the within-band IHC modelling stage but, since the filter 
is the same for all channels, it is equivalent to apply it after the channels 
have been combined. The higher the centre frequency of an auditory channel, 
the more the filter attenuates the spectrum at the passband of the auditory 
filter and thus gives it a smaller weight in relation to the envelope spectrum, 
which is around zero frequency and not much affected. This corresponds to 
the fact that, at higher auditory channels, the neural firing activity more 
and more follows the amplitude envelope of the sub-band signal and not its 
fine structure—this is directly related to the concept of resolvability. Discrete 
categorization into 'low' and 'high' channels is not needed. 

The degree of resolvability as modelled above (and thus the weight of a 
partial in the sum in (8.22)) is approximately inversely proportional to the 
harmonic index j when r is fixed. As a consequence, the sum in (8.22) can be 
limited to j « 20 since weights beyond this are relatively small. 

Taken together, the computation of the salience function A(r) can be seen 
as a process where partials are picked from harmonic positions of the spectrum 
U{k), their magnitudes are weighted by the estimated resolvability / s / r x 
-f̂ Lp(fc), and then summed. What makes all the difference is that the within-
channel rectification maps the contribution of higher-order partials to the 
position of the fundamental and its few multiples in the spectra Zc{k), and 
the degree to which an individual overtone partial j is mapped to the position 
of the fundamental increases as a function of j , as explained above. As a 
consequence, the whole harmonic series of a sound contributes to its salience, 
despite the weighting with resolvability. 

The above-described benefit of bandwise rectification cannot be overem
phasized. Assigning the higher-order partials to their respective sound sources 
in polyphonic music signals is a nightmare. The rectification operation ac
complishes this 'automatically' by mapping the support from higher-order 
harmonics to the position of FO and its few multiples in U{k). Figure 8.14 
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Fig. 8.14. The upper panels show the summary magnitude spectrum U{k) for a 
saxophone sound with FO 131 Hz {left) and a violin sound with FO 1050 Hz (right). 
The lower panels show the corresponding salience functions A(r). 

illustrates the calculation of A(r) for the saxophone sound shown in Fig. 8.13, 
and for a violin sound with the FO 1050 Hz. 

Iterative Estimation and Cancellation 

The global maximum of the function A(T) was found to be a robust indicator 
of one of the correct FOs in polyphonic signals. As with most FO estimators, 
however, the next-highest salience was often assigned to half or twice that of 
the first detected FO. Similarly to de Cheveigne (see p. 250), Klapuri employed 
an iterative technique where FO estimation was followed by the cancellation 
of the detected sound from the mixture and the estimation was then repeated 
for the residual signal. Algorithm 8.2 summarizes the applied technique [354]. 

Algorithm 8.2: Multiple FO Estimator of Klapuri 

1. A residual SMS (7R(/C) is initialized to be equal to U{k). A summary spectrum of 
all detected sounds, Uuik), is initialized to zero. 

2. A fundamental period f is estimated using UR{k) and (8.22). 
3. Harmonic selection is carried out for the found period f according to (8.22)-(8.24). 

However, instead of summing up the magnitude values, the precise frequency and 
amplitude of each partial is estimated and used to calculate its magnitude spectrum 
at the few surrounding frequency bins. 

4. The magnitude spectrum of the j t h partial is weighted by fs/TxHhp{kj) and added 
to the corresponding position of UD{k) which represents the cumulative spectrum 
of all the detected sounds. 

5. The residual SMS is recalculated as 

Unik) ^ max(0, U{k) - dUuik)), (8.26) 

where d = 0.5 controls the amount of the subtraction and is a free parameter of 
the algorithm. 

6. Return to Step 2. 
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An important characteristic of the Step 4 is that, before adding the partials 
of a detected sound to C/D(A:), they are weighted by their resolvabihty in the 
same manner as at the FO detection stage. As a consequence, the higher-
order partials are not entirely removed from the mixture spectrum when the 
residual UR{k) is formed. This principle is important in order not to corrupt 
the sounds that remain in the residual and have to be detected at the coming 
iterations. The described weighting limits the effect of the cancellation to the 
lowest harmonics but, as explained above, the higher-order harmonics have 
been mapped to the position of the fundamental by the rectification and 
are thus effectively cancelled, too. 

8.5.4 Results 

Simulation experiments were carried out to evaluate the performance of the 
method of Tolonen and Karjalainen [627] and that of Klapuri [354]. Implemen
tations of the method of Wu et al. [677] and Marolt [434] are publicly available 
too, but these would have required a specific experimental setup since the for
mer was designed to process continuous two-speaker speech signals and the 
latter to transcribe piano music only. 

The acoustic material consisted of samples from the McGill University 
Master Samples collection [487], the University of Iowa website,^ IRC AM 
Studio Onhne,^ and of independent recordings for the acoustic guitar. There 
were altogether 32 different musical instruments, comprising brass and reed 
instruments, strings, flutes, the piano, the guitar, and mallet percussion in
struments. The total number of samples (individual notes) was 2842. 

Semi-random sound mixtures were generated by first allotting an instru
ment and then a random note from its playing range. This was repeated to get 
the desired number of simultaneous sounds, which were then mixed with equal 
mean-square levels. One thousand test cases were generated for mixtures of 
one, two, four, and six sounds. 

One analysis frame immediately after the onset ̂ ° of the sounds was fed to 
the multiple FO method. The number of FOs to extract, i.e., the polyphony, 
was given along with the mixture signal. A correct FO estimate was defined 
to deviate less than 3% from the nominal FO of the sound, making it round 
to a correct note on the Western musical scale. Two different error rates were 
computed. Multiple FO estimation error rate was defined as the percentage of 
all FOs that were not correctly detected in the input signals. In predominant 
FO estimation, only one FO in the mixture was being estimated and it was 
defined to be correct if it matched the correct FO of any of the component 
sounds. 

^University of Iowa samples: theremin.music.uiowa.edu/MIS.html 
^IRCAM Studio Online: soleil.ircam.fr 

^°The onset of the sounds was defined to be at the point where the waveform 
reached one third of its maximum value during the first 200 ms of its playing. 
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Fig. 8.15. FO estimation error rates as a function of the number of concurrent 
sounds (polyphony) for the method of Tolonen and Karjalainen [627], the method 
of Klapuri [354], and the reference method [351]. The black bars and the white bars 
show the multiple FO and the predominant FO estimation error rates, respectively. 
The upper panels show the results for a 46 ms analysis frame and the lower panels 
for a 93 ms frame. 

The left-hand panels of Fig. 8.15 show the error rates for the method of 
Tolonen and Karjalainen in 46 ms and 93 ms analysis frames. The FO range in 
these experiments was limited to the three octaves between 65 Hz and 520 Hz, 
because the accuracy of the method was found to degrade rapidly above 600 Hz 
(see Section 8.5.2). The black bars show the multiple FO estimation error 
rates and the white bars show the predominant FO estimation error rates. 
The global maximum of the enhanced SACF was used for the latter purpose. 
The method performed robustly in polyphonic mixtures, and especially the 
predominant FO estimation error rates remained reasonably low even in short 
time frames and in rich polyphonies. Taking into account the computational 
efficiency (faster than real-time) and conceptual simplicity of the method, the 
results are very good. 

The middle panels of Fig. 8.15 show the error rates for the method of Kla
puri [354]. The first detected FO was used for the predominant FO estimation. 
In these experiments, the pitch range was limited to five octaves between 
65 Hz and 2.1 kHz. The method performs robustly in all cases and is very 
accurate, especially in the 93 ms analysis frame. Computational complexity is 
a drawback of this method. The calculations are clearly slower than real-time 
on a 2-GHz desktop computer, the most intensive part being the cochlear 
filterbank and the within-band DFT calculations. 

The right-hand panels of Fig. 8.15 show the error rates for a state-of-the-
art reference method proposed by Klapuri in [351]. This method is based on 
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Fig. 8.16. Error rates as a function of the interval between the sound onset and 
the beginning of a 46 ms analysis frame. The two panels on the left show results 
for the method of Tolonen and Karjalainen [627] and the two panels on the right 
for the method of Klapuri [354]. The black bars show multiple FO estimation error 
rates and the white bars show predominant FO estimation error rates. 

spectral techniques instead of an auditory model and is therefore a good point 
of comparison. The test cases given to Klapuri 's method [354] and the refer
ence method were identical. It was observed tha t the reference method requires 
quite a long analysis frame to resolve and process the overtones of low-pitched 
sounds, and mallet percussion instruments could not be reliably analysed. In 
addition to the differences in handling the higher-order overtones, a factor 
involved is tha t the frequency resolution of the Fourier spectrum is linear, 
whereas time-domain periodicity analysis within the auditory channels leads 
to 1 / / frequency resolution, which enables more accurate analysis at the lower 
end of the logarithmic scales applied in music. The reference method is con
ceptually (technically) the most complex among the three. 

An important factor in the above results is tha t the analysis frames were 
positioned immediately after the onsets of the sounds. Figure 8.16 shows the 
error rates of the two methods as a function of the time interval between 
the sound onset and the beginning of the analysis frame. As can be seen, 
the error rates improve clearly as the interval increases, and especially the 
predominant FO estimation error rates shrink to about a third of the initial 
values after 80 ms of the onset. This is because the noisy beginning transients 
of many sounds die off rapidly and FO estimation becomes easier thereafter. 
In music signals, however, notes are often short and such an offset cannot 
be applied. In Fig. 8.15, maximally realistic simulations were of interest and 
thus a zero offset was applied. Figure 8.16 shows results only for the 46 ms 
analysis frame, but the general t rend is similar (although less pronounced) for 
the longer frame. 

8.5 .5 S u m m a r y of t h e M u l t i p l e FO E s t i m a t i o n M e t h o d s 

The beginning of this section listed several issues where the pitch perception 
models fall short of being practically applicable multiple FO estimators. This 
section summarizes and discusses the various technical solutions tha t were 
proposed as improvements. 
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Two main approaches can be distinguished among the techniques used to 
extend a single-pitch model to the estimation of multiple pitches: the iterative 
estimation-and-cancellation approach and the joint estimation approach. Most 
methods fall into the former category: FO estimation is done using the sum
mary ACF, for example, and the FO found is then cancelled before deciding 
the next one. Meddis and Hewitt performed the cancellation by removing the 
auditory channels associated with the first detected pitch [458]. De Cheveigne 
employed within-channel cancellation filtering in the time domain [130]. Kla-
puri subtracted the partials of a detected sound in the frequency domain and 
removed only the lower-order partials entirely [354]. 

Joint estimation methods were proposed by de Cheveigne [129], Karjalainen 
and Tolonen [327], and Wu et al. [677]. Among these, the method of de 
Cheveigne was not actually based on an auditory model, but the method 
applied two cancellation filters in a cascade and searched for such cancellation-
filter periods that the output power was minimized. Karjalainen and Tolonen 
enhanced the summary ACF so that all FOs could be directly extracted from 
the result. In the method of Wu et al., the distribution of the peaks in the 
sub-band ACFs was statistically modelled in the cases of zero, one, or two 
pitches. 

The limited robustness of the pitch perception models in polyphonic sig
nals is another important problem addressed by the multiple FO estimation 
methods. The chord-root detection problem was mentioned as an example 
of this. The SACF enhancing technique of Karjalainen and Tolonen [627] is 
rather efficient in this respect, as illustrated in Fig. 8.11. Klapuri addressed 
the problem by applying the lowpass response in (8.25), which suppresses the 
support of higher-order partials to the chord root unless the series of partials 
has sufficiently uniform amplitudes so as to generate strong beating at the 
fundamental rate. This is usually not the case if the partials are due to sev
eral different sounds (component FOs of a chord). Also, the use of harmonic 
selection in the frequency domain alleviated the interference of other sounds 
since the spectrum between the partials was not used in salience calculations. 
Iterative estimation and cancellation methods that estimate the first FO di
rectly from the summary ACF suffer from its robustness limitations [458], 
[130]. 

Robustness for different sound sources (different musical instruments) is a 
very important aspect in FO estimation. Here the pitch perception models are 
readily very efficient. Meddis's hair-cell model compresses the sub-band sig
nals and results in spectral whitening, that is, removal of timbral information 
to some extent [457], [456]. Ellis [171] and Klapuri [354] carried out this func
tion by scaling the sub-band signals inversely proportional to their variance. 
Karjalainen and Tolonen pre-processed the input signals by inverse warped-
hnear-prediction filtering. This had the advantage that a multi-channel fil-
terbank was not needed [327], [272]. An advantage of all these is that they 
fiatten the spectral energy distribution without raising the noise floor in re
lation to spectral peaks. The latter happens for example in cepstrum pitch 
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detection, where the logarithm function is apphed bin-by-bin to the magni
tude spectrum [535]. The system of Wu et al. [677] is interesting, since in this 
method, whitening would not have any effect at all because only the lag-values 
of within-channel ACF peaks are retained and not their amplitudes. 

Noise robustness was not discussed in depth in this chapter. In music, per
cussive instruments and recording imperfections cause noise-like interference 
for the FO estimation. Particular emphasis on this issue was laid by Wu et al., 
who performed channel and peak selection so as to avoid the spectro-temporal 
regions that were severely corrupted by noise. The authors remarked that they 
essentially treated multiple FO tracking and noise robustness as a single prob
lem [677, p. 240]. Karjalainen and Tolonen selected the generalized ACF power 
so as to make a compromise between noise robustness and spectral flattening 
[327]. 

Computational complexity of the pitch models was significantly reduced 
only in the method of Karjalainen and Tolonen [327]. In the other methods, 
the most time-consuming operation is typically the peripheral filterbank and 
the periodicity analysis within channels, usually leading to computation times 
which are 10 to 100 times slower than that of the method of Karjalainen and 
Tolonen. Ellis computed the within-channel ACFs only for a set of logarith
mically distributed lag values, which allowed the use of a very good time 
resolution without causing a prohibit at ive computational load [171]. In the 
iterative methods, the peripheral analysis usually has to be computed only 
once [458], [354]. 

8.6 Conclusions 

Pitch perception models and practical FO estimators address sHghtly different 
tasks and are judged according to different criteria. The former should faith
fully represent the mechanisms of the human auditory system, whereas the 
latter are expected to perform accurate multiple FO estimation by any means 
available. The main focus of this chapter was on the practical side. However, 
the two aspects have significantly influenced and beneflted each other and this 
is one reason to study auditory modelling. 

Many characteristics of human pitch perception can be traced to the pe
ripheral stages of hearing, as discussed in Section 8.3. In this sense, auditory 
models have a lot to say about the intermediate data representations used in 
acoustic signal analysis. A particularly important principle in an auditorily 
motivated analysis is that the higher-order overtones of a sound are processed 
collectively within each auditory channel; estimation and separation of indi
vidual higher-order partials is not attempted. The cochlear filterbank is 'fair' 
for different FO values in this respect since the first few harmonic partials of 
all FOs are resolved into separate auditory channels, whereas the harmonics 
above about 10 go to the same channel along with their neighbours and gen
erate amplitude envelope beating at the fundamental rate. This is an efficient 
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mechanism for dealing with the higher-order overtones in complex polyphonic 
data. The other advantages and disadvantages of a perceptually motivated 
data representation were discussed in Section 8.4.4. 

Compared with the peripheral stages of hearing, at least an equally im
portant part of pitch perception takes place in the brain (Steps 3 and 4 in the 
overview on p. 235). These stages are not yet well understood and thus there 
is a larger variance in the proposed practical techiques as well. The biggest 
defect of the existing pitch perception models from the music transcription 
viewpoint is that they have been designed to process isolated sounds instead of 
polyphonic signals. Different techniques for transforming a pitch model into a 
multiple FO estimator were described in Section 8.5. Both iterative methods 
and joint estimation methods were discussed, and different ways of cancelling 
a detected FO from the mixture signal were described. Periodicity analysis 
techniques were presented that applied the ACF [458], [130], the generalized 
ACF [627], statistical modelling of the ACF peaks [677], adaptive oscillators 
[434], or simulation of comb filters in the frequency domain [354]. For now, 
none of the described methods can claim to be the 'right' or the optimal one, 
but they provide a wealth of technical solutions and approaches to build upon. 



9 

Unsupervised Learning Methods for Source 
Separation in Monaural Music Signals 

Tuomas Virtanen 

Institute of Signal Processing, Tampere University of Technology, 
Korkeakoulunkatu 1, 33720 Tampere, Finland 
Tuomas.VirtanenQtut.fi 

9.1 Introduction 

Computational analysis of polyphonic musical audio is a challenging problem. 
When several instruments are played simultaneously, their acoustic signals 
mix, and estimation of an individual instrument is disturbed by the other co-
occurring sounds. The analysis task would become much easier if there was 
a way to separate the signals of different instruments from each other. Tech
niques that implement this are said to perform sound source separation. The 
separation would not be needed if a multi-track studio recording was available 
where the signal of each instrument is on its own channel. Also, recordings 
done with microphone arrays would allow more efficient separation based on 
the spatial location of each source. However, multi-channel recordings are usu
ally not available; rather, music is distributed in stereo format. This chapter 
discusses sound source separation in monaural music signals, a term which 
refers to a one-channel signal obtained by recording with a single microphone 
or by mixing down several channels. 

There are many signal processing tasks where sound source separation 
could be utilized, but the performance of the existing algorithms is still quite 
limited compared to the human auditory system, for example. Human listeners 
are able to perceive individual sources in complex mixtures with ease, and 
several separation algorithms have been proposed that are based on modelling 
the source segregation ability in humans (see Chapter 10 in this volume). 

Recently, the separation problem has been addressed from a completely 
different point of view. The term unsupervised learning is used here to char
acterize algorithms which try to separate and learn the structure of sources 
in mixed data based on information-theoretical principles, such as statisti
cal independence between sources, instead of sophisticated modelling of the 
source characteristics or human auditory perception. Algorithms discussed in 
this chapter are independent component analysis (ICA), sparse coding, and 
non-negative matrix factorization (NMF), which have been recently used in 
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source separation tasks in several application areas. When used for monau
ral audio source separation, these algorithms usually factor the spectrogram 
or other short-time representation of the input signal into elementary com
ponents, which are then clustered into sound sources and further analysed to 
obtain musically important information. Although the motivation of unsuper
vised learning algorithms is not in the human auditory perception, there are 
similarities between them. For example, all the unsupervised learning meth
ods discussed here are based on reducing redundancy in data, and it has been 
found that redundancy reduction takes place in the auditory pathway, too [85]. 

The focus of this chapter is on unsupervised learning algorithms which 
have proven to produce applicable separation results in the case of music 
signals. There are some other machine learning algorithms which aim at sep
arating speech signals based on pattern recognition techniques, for example 
[554]. 

All the algorithms mentioned above (ICA, sparse coding, and NMF) can 
be formulated using a linear signal model which is explained in Section 9.2. 
Different data representations are discussed in Section 9.2.2. The estimation 
criteria and algorithms are discussed in Sections 9.3, 9.4, and 9.5. Methods 
for obtaining and utilizing prior information are presented in Section 9.6. 
Once the spectrogram is factored into components, these can be clustered 
into sound sources or further analysed to obtain musical information. The 
post-processing methods are discussed in Section 9.7. Systems extended from 
the linear model are discussed in Section 9.8. 

9.2 Signal Model 

When several sound sources are present simultaneously, the acoustic wave
forms of the individual sources add linearly. Sound source separation is defined 
as the task of recovering each source signal from the acoustic mixture. A com
plication is that there is no unique definition for a sound source. One possi
bility is to consider each vibrating physical entity, for example each musical 
instrument, as a sound source. Another option is to define this according to 
what humans tend to perceive as a single source. For example, if a violin, sec
tion plays in unison, the violins are perceived as a single source, and usually 
there is no need to separate the signals played by each violin. In Chapter 10, 
these two alternatives are referred to as physical source and perceptual source, 
respectively (see p. 302). Here we do not specifically commit ourselves to either 
of these. The type of the separated sources is determined by the properties 
of the algorithm used, and this can be partly affected by the designer accord
ing to the application at hand. In music transcription, for example, all the 
equal-pitched notes of an instrument can be considered as a single source. 

Many unsupervised learning algorithms, for example standard ICA, require 
that the number of sensors be larger or equal to the number of sources. In 
multi-channel sound separation, this means that there should be at least as 
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many microphones as there are sources. However, automatic transcription of 
music usually aims at finding the notes in monaural (or stereo) signals, for 
which basic ICA methods cannot be used directly. By using a suitable signal 
representation, the methods become applicable with one-channel data. 

The most common representation of monaural signals is based on short-
time signal processing, in which the input signal is divided into (possibly over
lapping) frames. Frame sizes between 20 and 100 ms are typical in systems 
designed to separate musical signals. Some systems operate directly on time-
domain signals and some others take a frequency transform, for example 
the discrete Fourier transform (DFT) of each frame. The theory and general 
discussion of time-frequency representations is presented in Chapter 2. 

9.2.1 Basis Functions and Gains 

The representation of the input signal within each frame ^ = 1 . . . T is denoted 
by an observation vector Xt. The methods presented in this chapter model Xt 
as a weighted sum of basis functions b^, TI = 1 . . . AT, so that the signal model 
can be written as 

N 

yit^^gn,thn, t - l , . . . , r , (9.1) 
n=l 

where N <^ T is the number of basis functions, and gn,t is the amount of 
contribution, or gain, of the n*^ basis function in the t*^ frame. Some methods 
estimate both the basis functions and the time-varying gains from a mixed 
input signal, whereas others use pre-trained basis functions or some prior 
information about the gains. 

The term component refers to one basis function together with its time-
varying gain. Each sound source is modelled as a sum of one or more compo
nents, so that the model for source m in frame t is written as 

ym,t = Yl 9n,thn^ (9.2) 
neSm 

where Sm is the set of components within source m. The sets are disjoint, i.e., 
each component belongs to only one source. 

In (9.1) approximation is used, since the model is not necessarily noise-free. 
The model can also be written with a residual term r̂  as 

N 

^t = Yl ^̂ '*̂ ^ + *̂' t = 1,..., T. (9.3) 
n=l 

By assuming some probability distribution for the residual and a prior distri
bution for other parameters, a probabilistic framework for the estimation of 
hn and gn,t can be formulated (see e.g. Section 9.4). Here (9.1) without the 
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residual term is preferred for its simplicity. For T frames, the model (9.1) can 
be written in matrix form as 

X « BG, (9.4) 

where X = [x i ,X2 , . . . ,XT] is the observation matrix^ B = [bi, b 2 , . . . , bjv] 
is the mixing matrix, and [G]n,t — 9n,t is the gain matrix. The notation [G]n,t 
is used to denote the (n, t)*^ entry of matrix G. The term mixing matrix is 
typically used in ICA, and here we follow this convention. 

The estimation algorithms can be used with several data representations. 
Often the absolute values of the DFT are used; this is referred to as the mag
nitude spectrum in the following. In this case, x^ is the magnitude spectrum 
within frame t, and each component n has a fixed magnitude spectrum b^ 
with a time-varying gain gn^t- The observation matrix consisting of framewise 
magnitude spectra is here called a magnitude spectrogram. Other representa
tions are discussed in Section 9.2.2. 

The model (9.1) is flexible in the sense that it is suitable for represent
ing both harmonic and percussive sounds. It has been successfully used in 
the transcription of drum patterns [188], [505] (see Chapter 5), in the pitch 
estimation of speech signals [579], and in the analysis of polyphonic music 
signals [73], [600], [403], [650], [634], [648], [43], [5]. 

Figure 9.1 shows an example signal which consists of a diatonic scale and 
a C major chord played by an acoustic guitar. The signal was separated into 
components using the NMF algorithm described in [600], and the resulting 
components are depicted in Fig. 9.2. Each component corresponds roughly to 
one fundamental frequency: the basis functions are approximately harmonic 
and the time-varying gains follow the amplitude envelopes of the notes. The 
separation is not perfect because of estimation inaccuracies. For example, in 
some cases the gain of a decaying note drops to zero when a new note begins. 

Factorization of the spectrogram into components with a fixed spectrum 
and a time-varying gain has been adopted as a part of the MPEG-7 pattern 
recognition framework [72], where the basis functions and the gains are used 
as features for classification. Kim et al. [341] compared these to mel-frequency 
cepstral coefficients which are commonly used features in the classification of 
audio signals. In this study, mel-frequency cepstral coefficients performed bet
ter in the recognition of sound effects and speech than features based on ICA 
or NMF. However, final conclusions about the apphcability of these methods 
to sound source recognition have yet to be made. The spectral basis decompo
sition specified in MPEG-7 models the summation of components on a decibel 
scale, which makes it unlikely that the separated components correspond to 
physical sound objects. 

9.2.2 Data Representation 

The model (9.1) presented in the previous section can be used with time-
domain or frequency-domain observations and basis functions. Time-domain 
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Fig. 9.1. Spectrogram of an example signal which consist of a diatonic scale from 
C5 to C6, followed by a C major chord (simultaneous notes C5, E4, and G5), played 
by an acoustic guitar. The notes are not damped, meaning that consecutive notes 
overlap. 

observation vector Xt is the signal within frame t directly, whereas a frequency-
domain observation vector is obtained by applying a chosen transformation to 
this. The representation of the signal and the basis functions have to be the 
same. ICA and sparse coding allow the use of any short-time signal represen
tation, whereas for NMF, only a frequency-domain representation is appro
priate. Naturally, the representation has a significant effect on performance. 
The advantages and disadvantages of different representations are considered 
in this section. For a more extensive discussion, see Casey [70] or Smaragdis 
[598]. 

Time-Domain Representation 

Time-domain representations are straightforward to compute, and all the in
formation is preserved when an input signal is segmented into frames and win
dowed. However, time-domain basis functions are problematic in the sense that 
a single basis function alone cannot represent a meaningful sound source: the 
phase of the signal within each frame varies depending on the frame position. 
In the case of a short-duration percussive source, for example, a separate basis 
function is needed for every possible position of the sound event within the 
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Fig. 9.2. Components estimated from the example signal in Fig. 9.1. Basis functions 
are plotted on the right and the corresponding time-varying gains on the left. Each 
component except the bottom one corresponds to an individual pitch value and the 
gains follow roughly the amplitude envelope of each note. The bottom component 
models the attack transients of the notes. The components were estimated using the 
NMF algorithm [400], [600] and the divergence objective (explained in Section 9.5). 

frame. A shift-invariant model which is later discussed in Section 9.8 is one 
possible method of overcoming this limitation [43]. 

The time-domain signals of real-world sound sources are generally not 
identical at different occurrences since the phases behave very irregularly. For 
example, the overtones of a pitched musical instrument are not necessarily 
phase-locked, so that the time-domain waveform varies over time. Therefore, 
one has to use multiple components to represent even a single note of a pitched 
instrument. In the case of percussive sound sources, this phenomenon is even 
clearer: the time-domain waveforms vary a lot at different occurrences. 

The larger the number of the components, the more uncertain is their 
estimation and further analysis, and the more observations are needed. If the 
sound event represented by a component occurs only once in the input signal, 
separating it from co-occurring sources is difficult since there is no information 
about the component elsewhere in the signal. Also, clustering the components 
into sources becomes more difficult when there are many of them for each 
source. 
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Separation algorithms which operate on time-domain signals have been 
proposed for example by Dubnov [157], Jang and Lee [314], and Blumensath 
and Davies [43]. Abdallah and Plumbley [3], [2] found that the independent 
components analysed from time-domain music and speech signals were similar 
to a wavelet or short-time DFT basis. They trained the basis functions using 
several days of radio output from BBC Radio 3 and 4 stations. 

Frequency-Domain Representation 

When using a frequency transform such as the DFT, the phases of the 
complex-valued transform can be discarded by considering only the mag
nitude or power spectrum. Even though some information is lost, this also 
eliminates the phase-related problems of time-domain representations. Unlike 
time-domain basis functions, many real-world sounds can be rather well ap
proximated with a fixed magnitude spectrum and a time-varying gain, as seen 
in Figs. 9.1 and 9.2, for example. Sustained instruments in particular tend to 
have a stationary spectrum after the attack transient. 

In most systems aimed at the separation of sound sources, DFT and a 
fixed window size is applied, but the estimation algorithms allow the use 
of any time-frequency representation. For example, a logarithmic spacing of 
frequency bins has been used [58], which is perceptually and musically more 
plausible than a constant spectral resolution. 

The linear summation of time-domain signals does not imply the linear 
summation of their magnitude or power spectra, since phases of the source 
signals affect the result. When two signals sum in the time domain, their 
complex-valued DFTs sum Hnearly, X{k) = Yi{k) + Y2{k), but this equality 
does not apply for the magnitude or power spectra. However, provided that 
the phases of Yi{k) and Y2{k) are uniformly distributed and independent of 
each other, we can write 

E{\Xik)f} = \Y^ik)\' + \Y2{k)\\ (9.5) 

where E{'} denotes expectation. This means that in the expectation sense, 
we can approximate time-domain summation in the power spectral domain, a 
result which holds for more than two sources as well. Even though magnitude 
spectrogram representation has been widely used and it often produces good 
results, it does not have similar theoretical justification. Since the summation 
is not exact, use of phaseless basis functions causes an additional source of 
error. Also, a phase generation method has to be implemented if the sources 
are to be synthesized separately. These are discussed in Section 9.7.3. 

The human auditory system has a large dynamic range: the difference 
between the threshold of hearing and the threshold of pain is approximately 
100 dB [550]. Unsupervised learning algorithms tend to be more sensitive to 
high-energy observations. If sources are estimated from the power spectrum, 
some methods fail to separate low-energy sources even though they would be 
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perceptually and musically meaningful. This problem has been noticed, e.g., 
by FitzGerald in the case of percussive source separation [186, pp. 93-100]. 
To overcome the problem, he used an algorithm which processed separately 
high-frequency bands which contain low-energy sources, such as hi-hats and 
cymbals [187]. Vincent and Rodet [648] addressed the same problem. They 
proposed a model in which the noise was additive in the log-spectral domain. 
The numerical range of a logarithmic spectrum is compressed, which increases 
the sensitivity to low-energy sources. Additive noise in the log-spectral domain 
corresponds to multiplicative noise in power spectral domain, which was also 
assumed in the system proposed by Abdallah and Plumbley [5]. Virtanen 
proposed the use of perceptually motivated weights [651]. He used a weighted 
cost function in which the observations were weighted so that the quantitative 
significance of the signal within each critical band was equal to its contribution 
to the total loudness. 

9.3 Independent Component Analysis 

ICA has been successfully used in several 'blind' source separation tasks, where 
very httle or no prior information is available about the source signals. One 
of its original target applications was multi-channel sound source separation, 
but it has also had several other uses. ICA attempts to separate sources by 
identifying latent signals that are maximally independent. In practice, this 
usually leads to the separation of meaningful sound sources. 

Mathematically, statistical independence is defined in terms of probabil
ity densities: random variables x and y are said to be independent if their 
joint probability distribution function^ ?{x^y) is a product of the marginal 
distribution functions, p{x,y) = p{x)p{y). 

The dependence between two variables can be measured in several ways. 
Mutual information is a measure of the information that given random vari
ables have on some other random variables [304]. The dependence is also 
closely related to the Gaussianity of the distribution of the variables. Accord
ing to the central limit theorem, the distribution of the sum of independent 
variables is more Gaussian than their original distributions, under certain con
ditions. Therefore, some ICA algorithms aim at separating output variables 
whose distributions are as far from Gaussian as possible. 

The signal model in ICA is linear: K observed variables x i , . . . , XK are 
modelled as linear combinations of Â  source variables ^ i , . . . , ^ A T - In a vector-
matrix form, this can be written as 

X - Bg, (9.6) 

where x = [XI,...XK] is an observation vector, [B]fc,n = f̂c,n is a mixing 

matrix, and g = [^ri,..., g^] is a source vector. Both B and g are unknown. 

^The concept of probability distribution function is described in Chapter 2. 
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The standard ICA requires that the number of observed variables K (the 
number of sensors) be equal to the number of sources A .̂ In practice, the num
ber of sensors can also be larger than the number of sources, because the vari
ables are typically decorrelated using principal component analysis (PCA; see 
Chapter 2), and if the desired number of sources is less than the number of 
variables, only the principal components corresponding to the largest eigen
values are selected. 

As another pre-processing step, the observed variables are usually centred 
by subtracting the mean and their variance is normalized to the unity. The 
centred and whitened data observation vector x is obtained from the original 
observation vector x by 

x = V ( x - / i ) , (9.7) 

where fj, is the empirical mean of the observation vector, and V is a whitening 
matrix, which is often obtained from the eigenvalue decomposition of the 
empirical covariance matrix of the observations [304]. The empirical mean 
and covariance matrix are explained in Chapter 2. 

To simplify the notation, it is assumed that the data x in (9.6) is already 
centred and decorrelated, so that K = N. The core ICA algorithm carries 
out the estimation of an unmixing matrix W ~ B~^, assuming that B is 
invertible. Independent components are obtained by multiplying the whitened 
observations by the estimate of the unmixing matrix, to result in the source 
vector estimate g: 

g = Wx. (9.8) 

The matrix W is estimated so that the output variables, i.e., the elements 
of g, become maximally independent. There are several criteria and algo
rithms for achieving this. The criteria, such as non-Gaussianity and mutual 
information, are usually measured using high-order cumulants such as kurto-
sis, or expectations of other non-quadratic functions [304]. ICA can be also 
viewed as an extension of PCA. The basic PCA decorrelates variables so that 
they are independent up to second-order statistics. It can be shown that if 
the variables are uncorrelated after taking a suitable non-linear function, the 
higher-order statistics of the original variables are independent, too. Thus, 
ICA can be viewed as a non-linear decorrelation method. 

Compared with the previously presented linear model (9.3), the standard 
ICA model (9.6) is exact, i.e., it does not contain the residual term. Some 
special techniques can be used in the case of the noisy signal model (9.3), 
but often noise is just considered as an additional source variable. Because of 
the dimension reduction with PCA, E g gives an exact model for the PCA-
transformed observations but not necessarily for the original ones. 

There are several ICA algorithms, and some implementations are freely 
available, such as FastICA [302], [182] and JADE [65]. Computationally quite 
efficient separation algorithms can be implemented based on FastICA, for 
example. 
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9.3.1 Independent Subspace Analysis 

The idea of independent subspace analysis (ISA) was originally proposed by 
Hyvarinen and Hoyer [303]. It combines the multidimensional ICA with in
variant feature extraction, which are shortly explained later in this section. 
After the work of Casey and Westner [73], the term ISA has been commonly 
used to denote techniques which apply ICA to factor the spectrogram of a 
monaural audio signal to separate sound sources. ISA provides a theoretical 
framework for the whole separation procedure described in this chapter, in
cluding spectrogram representation, decomposition by ICA, and clustering. 
Some authors use the term ISA also to refer to methods where some other 
algorithm than ICA is used for the factorization [648]. 

The general ISA procedure consists of the following steps: 

1. Calculate the magnitude spectrogram X (or some other representation) 
of the input signal. 

2. Apply PCA^ on the matrix X of size {K x T) to estimate the number 
of components N and to obtain whitening and dewhitening matrices V 
and V"^, respectively. A centred, decorrelated, and dimensionally reduced 
observation matrix X of size {N X T) is obtained as X = V(X - /xl"^), 
where 1 is a all-ones vector of length T. 

3. Apply ICA to estimate an unmixing matrix W. B and G are obtained as 
B = W - i and G = W X . 

4. Invert the decorrelation operation in Step 2 in order to get the mixing 
matrix B = V"^B and source matrix G — G + WV/LA1^ for the original 
observations X. 

5. Cluster the projected components to sources (see Section 9.7.1). 

The above steps are explained in more detail below. Depending on the appli
cation, not all of them may be necessary. For example, prior information can 
be used to set the number of components in Step 2. 

The basic ICA is not directly suitable for the separation of one-channel 
signals, since the number of sensors has to be larger than or equal to the 
number of sources. Short-time signal processing can be used in an attempt 
to overcome this limitation. Taking a frequency transform such as DFT, each 
frequency bin can be considered as a sensor which produces an observation in 
each frame. With the standard linear ICA model (9.6), the signal is modelled 
as a sum of components, each of which has a static spectrum (or some other 
basis function) and a time-varying gain. 

The spectrogram factorization has its motivation in invariant feature ex
traction, which is a technique proposed by Kohonen [356]. The short-time 
spectrum can be viewed as a set of features calculated from the input signal. 
As discussed in Section 9.2.2, it is often desirable to have shift-invariant basis 

^Singular value decomposition can also be used to estimate the number of com
ponents [73]. 
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functions, such as the magnitude or power spectrum [356], [303]. Multidimen
sional ICA (explained below) is used to separate phase-invariant features into 
invariant feature subspaces, where each source is modelled as the sum of one 
or more components [303]. 

Multidimensional ICA [64] is based on the same linear generative model 
(9.6) as ICA, but the components are not assumed to be mutually indepen
dent. Instead, it is assumed that the components can be divided into disjoint 
sets, so that the components within each set may be dependent on each other, 
while dependencies between sets are not allowed. One approach to estimat
ing multidimensional independent components is to first apply standard ICA 
to estimate the components, and then group them into sets by measuring 
dependencies between them.'^ 

ICA algorithms aim at maximizing the independence of the elements of the 
source vector g = Wx. In ISA, the elements correspond to the time-varying 
gains of each component. However, the objective can also be the independence 
of the spectra of components, since the roles of the mixing matrix and gain 
matrix can be swapped by X = B G <^ X^ = G^B^. The independence 
of both the time-varying gains and basis functions can be obtained by using 
the spatiotemporal ICA algorithm [612]. There are no exhaustive studies re
garding different independence criteria in monaural audio source separation. 
Smaragdis argued that in the separation of complex sources, the criterion of 
independent time-varying gains is better, because of the absence of consis
tent spectral characteristics [598]. FitzGerald reported that the spatiotempo
ral ICA did not produce significantly better results than normal ICA, which 
assumes the independence of gains or spectra [186]. 

The number of frequency channels is usually larger than the number of 
components to be estimated with ICA. PC A or singular value decomposition 
(SVD) of the spectrogram can be used to estimate the number of components 
automatically. SVD decomposes the spectrogram into a sum of components 
with a fixed spectrum and time-varying gain, so that the spectra and gains of 
different components are orthogonal, whereas PCA results in the orthogonality 
of either the spectra or the gains. The components with the largest singular 
values are chosen so that the sum of their singular values is larger than or 
equal to a pre-defined threshold 0 < ^ < 1 [73]. 

ISA has been used for general audio separation by Casey and Westner [73], 
for the analysis of musical trills by Brown and Smaragdis [58], and for per
cussion transcription by FitzGerald et al. [187], to mention some examples. 

9.3.2 Non-Negativity Restrictions 

When magnitude or power spectrograms are used, the basis functions are 
magnitude or power spectra which are non-negative by definition. Therefore, 

^ICA aims at maximizing the independence of the output variables, but it cannot 
guarantee their complete independence, as this depends also on the input signal. 
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it can be advantageous to restrict the basis functions to be entry-wise non-
negative. Also, it may be useful not to allow negative gains, but to constrain 
the components to be purely additive. Standard ICA is problematic in the 
sense that it does not enable these constraints. In practice, ICA algorithms 
also produce negative values for the basis functions and gains, and often there 
is no physical interpretation for such components. 

ICA with non-negativity restrictions has been studied for example by 
Plumbley and Oja [526], and the topic is currently under active research. 
Existing non-negative ICA algorithms can enforce non-negativity for the gain 
matrix but not for the mixing matrix. They also assume that the probability 
distribution of the source variables gn is non-zero all the way down to zero, 
i.e., the probability Qn < S is non-zero for any ^ > 0. The algorithms are based 
on a noise-free mixing model and in our experiments with audio spectrograms, 
they tended to be rather sensitive to noise. 

It has turned out that the non-negativity restrictions alone are sufficient 
for the separation of the sources, without the expHcit assumption of statistical 
independence. NMF algorithms are discussed in Section 9.5. 

9.4 Sparse Coding 

Sparse coding represents a mixture signal in terms of a small number of active 
elements chosen out of a larger set [486]. This is an efficient approach for learn
ing structures and separating sources from mixed data. General discussion of 
sparse adaptive representations suitable for the analysis of musical signals is 
given in Chapter 3. In the hnear signal model (9.4), the sparseness restriction 
is usually applied on the gains G, which means that the probability of an 
element of G being zero is high. As a result, only a few components are active 
at a time and each component is active only in a small number of frames. In 
musical signals, a component can represent, e.g., all the equal-pitched notes 
of an instrument. It is likely that only a small number of pitches are played 
simultaneously, so that the physical system behind the observations generates 
sparse components. 

In this section, a probabilistic framework is presented, where the source 
and mixing matrices are estimated by maximizing their posterior distribu
tions. The framework is similar with the one presented by Olshausen and 
Field [486]. Several assumptions of, e.g., the noise distribution and prior dis
tribution of the gains are used. Obviously, different results are obtained by 
using different distributions, but the basic idea is the same. The method pre
sented here is also closely related to the algorithms proposed by Abdallah 
and Plumbley [4] and Virtanen [650], which were used in the analysis of music 
signals. 

The posterior distribution of B and G given an observed spectrogram X 
is denoted by p(B, G|X). The maximization of this can be formulated as [339, 
p. 351] 
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maxp(B, G|X) oc maxp(X|B, G)p(B, G), (9.9) 
B,G B,G 

where p(X|B,G) is the probabihty of observing X given B and G, and 
p(B,G) is the joint prior distribution of B and G. The concepts of proba
bihty distribution function, conditional probabihty distribution function, and 
maximum a posteriori estimation are described in Chapter 2. 

For mathematical tractability, it is typically assumed that the noise (the 
residual term in (9.3)) is i.i.d.; independent from the model BG, and normally 
distributed with variance cr̂  and zero mean. The likelihood of B and G (see 
Section 2.2.5 for the eplanation of likelihood functions) can be written as 

p(X|B,G) = n ^ - p (^_([X]M-JBG].,)^- | (9 10) 

It is further assumed here that B has a uniform prior, so that p(B, G) (x 
p(G). Each time-varying gain [G]n,t is assumed to have a sparse probability 
distribution function of the exponential form 

P([Gkt) = | e x p ( - / ( [ G ] „ , 0 ) - (9.11) 

A normalization factor Z has to be used so that the density function sums to 
unity. The function / is used to control the shape of the distribution and is 
chosen so that the distribution is uni-modal and peaked at zero with heavy 
tails. Some examples are given later. 

For simplicity, all the entries of G are assumed to be independent from 
each other, so that the probability distribution function of G can be written 
as a product of the marginal densities: 

P(G) = n i e x p ( - / ( [ G W ) ) . (9.12) 
n.t 

It is obvious that in practice the gains are not independent of each other, 
but this approximation is done to simplify the calculations. From the above 
definitions we get 

max p(B, G|X) ex max TT - — = exp ( 
B,<^ B,Lr -̂ f- ay Z7T \ 

{[X]k,t - [BG]k,t)' 
2<T2 

t,k 

n,t 

(9.13) 

By taking a logarithm, the products become summations, and the exp-
operators and scaling terms can be discarded. This can be done since logarithm 
is order preserving and therefore does not affect the maximization. The sign 
is changed to obtain a minimization problem 
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mm 
B,G 

E "̂"̂ '"̂  ~if''̂ '•'̂ ' + E /([G]n.t), (9.14) 
t,k n,t 

which can be written as 

n,t 

where the Frobenius norm of a matrix is defined as 

\nF=l^[Y]i 

(9.15) 

(9.16) 
^,J 

In (9.15), the function / is used to penahze 'active' (non-zero) entries of 
G. For example, Olshausen and Field [486] suggested the functions f{x) = 
log(l -f x^), f{x) = |x|, and f{x) = x^. In audio source separation, Benaroya 
et al. [32] and Virtanen [650] have used f{x) — \x\. The prior distribution 
used by Abdallah and Plumbley [2], [4] corresponds to the function 

f{x) = m^ \x\ > / i , 

I/i(l — a)-f Q;|X|, |X| < / i . 
(9.17) 

where the parameters /i and a control the relative mass of the central peak in 
the prior, and the term fi{l — a) is used to make the function continuous at x = 
±/i. All these functions give a smaller cost and a higher prior probability for 
gains near zero. The cost function f{x) = \x\ and the corresponding Laplacian 
prior p(x) = | e x p ( - | x | ) are illustrated in Fig. 9.3. Systematic large-scale 
evaluations of different sparse priors in audio signals have not been carried 
out. Naturally, the distributions depend on source signals, and also on the 
data representation. 

Fig. 9.3. The cost function f{x) = \x\ (left) and the corresponding Laplacian prior 
distribution p{x) = |exp(—|a::|) (right). Values of G near zero are given a smaller 
cost and a higher probability. 
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Prom (9.15) and the above definitions of / , it can be seen that a sparse 
representation is obtained by minimizing a cost function which is the weighted 
sum of the reconstruction error term ||X — BG||fr and the term which incurs 
a penalty on non-zero elements of G. The variance a^ is used to balance 
between these two. This objective 9.15 can be viewed as a penalized likelihood, 
discussed in the Tools section (see Sections 2.2.9 and 2.3.3). 

Typically, / increases monotonically as a function of the absolute value of 
its argument. The presented objective requires that the scale of either the basis 
functions or the gains is somehow fixed. Otherwise, the second term in (9.15) 
could be minimized without affecting the first term by setting B —̂ B^ and 
G ^ G/^, where the scalar 0 -^ oo. The scale of the basis functions can 
be fixed for example with an additional constraint ||bn|| = 1, as done by 
Hoyer [299], or the variance of the gains can be fixed. 

The minimization problem (9.15) is usually solved using iterative algo
rithms. If both B and G are unknown, the cost function may have several local 
minima, and in practice reaching the global optimum in a limited time cannot 
be guaranteed. Standard optimization techniques based on steepest descent, 
covariant gradient, quasi-Newton, and active-set methods can be used. Differ
ent algorithms and objectives are discussed for example by Kreutz-Delgado 
et al. [373]. 

If B is fixed, more efficient optimization algorithms can be used. This 
can be the case for example when B is learned in advance from training 
material where sounds are presented in isolation. These methods are discussed 
in Section 9.6. 

No methods have been proposed for estimating the number of sparse com
ponents in a monaural audio signal. Therefore, N has to be set either manu
ally, using some prior information, or to a value which is clearly larger than 
the expected number of sources. It is also possible to try different numbers of 
components and to determine a suitable value of Â  from the outcome of the 
trials. 

As discussed in the previous section, non-negativity restrictions can be 
used for frequency-domain basis functions. With a sparse prior and non-
negativity restrictions, one has to use the projected steepest descent algo
rithms which are discussed, e.g., by Bertsekas in [35, pp. 203-224]. Hoyer 
[299], [300] proposed a non-negative sparse coding algorithm by combining 
NMF and sparse coding. His algorithm used a multiplicative rule to update 
B, and projected steepest descent to update G. Projected steepest descent 
alone is computationally inefl[icient compared to multiplicative update rules, 
for example. 

In musical signal analysis, sparse coding has been used for example 
by Abdallah and Plumbley [4], [5] to produce an approximate piano-roll 
transcription of synthesized harpsichord music and by Virtanen [650] to tran
scribe drums in polyphonic music signals synthesized from MIDI. Also, Blu-
mensath and Davies used a sparse prior for the gains, even though their system 
was based on a different signal model [43]. The framework also enables the use 
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of further assumptions. Virtanen used a cost function which included a term 
that favoured the temporal continuity of gains by making large gain changes 
between adjacent frames unlikely [650]. 

9.5 Non-Negative Matrix Factorization 

As discussed in Section 9.3.2 (see p. 277), it is reasonable to restrict frequency-
domain basis functions and their gains to non-negative values. In the signal 
model X ^ BG, the element-wise non-negativity of B and G alone is a 
sufficient condition for the separation of sources in many cases, without an 
explicit assumption of the independence of the sources. 

Paatero and Tatter proposed an NMF algorithm in which the weighted 
energy of the residual matrix X — BG was minimized by using a least-squares 
algorithm where B and G were alternatingly updated under non-negativity 
restrictions [492]. More recently, Lee and Seung [399, 400] proposed NMF 
algorithms which have been used in several machine learning tasks since the 
algorithms are easy to implement and modify. 

Lee and Seung proposed two cost functions and estimation algorithms to 
obtain X ^ B G [400]. The cost functions are the square of the Euclidean 
distance deuc and divergence ddiv, which are defined as 

deuc(B,G) = | | X - B G | | 2 , (9.18) 

and 
ddiv(B, G) = Y1 D([X]fc.t, [BG]k,t), (9.19) 

k,t 

where the function D is defined as 

D{p,q)^p\og^-p + q. (9.20) 

Both cost functions are lower-bounded by zero, which is obtained only 
when X = BG. It can be seen that the Euclidean distance is equal to the first 
term in (9.15). Minimization of the Euclidean distance leads to a maximum 
likelihood estimator for B and G in the presence of Gaussian noise. Similarly, 
minimization of the divergence (9.19) leads to a maximum likelihood estima
tor, when the observations are generated by a Poisson process with mean value 
[BG]fc,, [399]. When ZkA^Wt = Efc,JBG]fe,t = 1, the divergence (9.19) is 
equal to the Kullback-Leibler divergence, which is widely used as a distance 
measure between probability distributions [400]. 

The estimation algorithms of Lee and Seung minimize the chosen cost 
function by initializing the entries of B and G with random positive values, 
and then by updating them iteratively using multiplicative rules. Each update 
decreases the value of the cost function until the algorithm converges, i.e., 
reaches a local minimum. Usually, B and G are updated alternately. 
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The update rules for the EucHdean distance are given as 

B ^ B.x(XG"^)./(BGG'^) (9.21) 

and 
G ^ G . X ( B " ^ X ) . / ( B ' ^ B G ) , (9.22) 

where .x and ./ denote the element-wise multiplication and division, respec
tively. The update rules for the divergence are given as 

and 

G^G.^^&^. (9.24) 

where 1 is an all-ones K-hy-T matrix, and ^ denotes the element-wise division 
of matrices X and Y. 

To summarize, the algorithm for NMF is as follows: 

Algorithm 9.1: Non-Negative Matrix Factorization 

1. Initialize each entry of B and G with the absolute values of Gaussian noise. 
2. Update G using either (9.22) or (9.24) depending on the chosen cost function. 
3. Update B using either (9.21) or (9.23) depending on the chosen cost function. 
4. Repeat Steps (2)--(3) until the values converge. 

Methods for the estimation of the number of components have not been 
proposed, but all the methods suggested in Section 9.4 are applicable in NMF, 
too. The multiplicative update rules have proven to be more efficient than for 
example the projected steepest-descent algorithms [400], [299], [5]. 

NMF can be used only for a non-negative observation matrix and therefore 
it is not suitable for the separation of time-domain signals. However, when 
used with the magnitude or power spectrogram, the basic NMF can be used 
to separate components without prior information other than the element-
wise non-negativity. In particular, factorization of the magnitude spectrogram 
using the divergence often produces relatively good results. The divergence 
cost of an individual observation [X.]k,t is linear as a function of the scale of 
the input, since D{ap^aq) = aD(p, g) for any positive scalar a, whereas for 
the Euclidean cost the dependence is quadratic. Therefore, the divergence is 
more sensitive to small-energy observations. 

NMF does not explicitly aim at components which are statistically in
dependent from each other. However, it has been proved that under certain 
conditions, the non-negativity restrictions are theoretically sufficient for sep
arating statistically independent sources [525]. It has not been investigated 
whether musical signals fulfill these conditions, and whether NMF implement 
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a suitable estimation algorithm. Currently, there is no comprehensive theo
retical explanation of why NMF works so well in sound source separation. 
If a mixture spectrogram is a sum of sources which have a static spectrum 
with a time-varying gain, and each of them is active in at least one frame 
and frequency line in which the other components are inactive, the objec
tive function of NMF is minimized by a decomposition in which the sources 
are separated perfectly. However, real-world music signals rarely fulfill these 
conditions. When two or more more sources are present simultaneously at all 
times, the algorithm is likely to represent them with a single component. 

In the analysis of music signals, the basic NMF has been used by Smaragdis 
and Brown [600], and extended versions of the algorithm have been pro
posed for example by Virtanen [650] and Smaragdis [599]. The problem of 
the large dynamic range of musical signals has been addressed e.g. by Abdal-
lah and Plumbley [5]. By assuming multiphcative gamma-distributed noise in 
the power spectral domain, they derived the cost function 

D(p,g) = ^ - l + log^, (9.25) 

to be used instead of (9.20). Compared to the Euclidean distance (9.18) and 
divergence (9.20), this distance measure is more sensitive to low-energy ob
servations. In our simulations, however, it did not produce results as good as 
the EucUdean distance or the divergence did. 

9.6 Prior Information about Sources 

Manual transcription of music requires a lot of prior knowledge and training. 
The described separation algorithms used some general assumptions about 
the sources in the core algorithms, such as independence or non-negativity, 
but also other prior information on the sources is often available. For example 
in the analysis of pitched musical instruments, it is known in advance that 
the spectra of instruments are approximately harmonic. Unfortunately, it is 
difficult to implement harmonicity restrictions in the models discussed earlier. 

Prior knowledge can also be source-specific. The most common approach to 
incorporate prior information about sources in the analysis is to train source-
specific basis functions in advance. Several approaches have been proposed. 
The estimation is usually done in two stages, which are 

1. Learn source-specific basis functions from training material, such as mono-
timbral and monophonic music. Also the characteristics of time-varying 
gains can be stored, for example by modelhng their distribution. 

2. Represent a polyphonic signal as a weighted sum of the basis functions of 
all the instruments. Estimate the gains and keep the basis functions fixed. 

It is not yet known whether automatic music transcription is possible without 
any source-specific prior knowledge, but obviously this has the potential to 
make the task much easier. 
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Several methods have been proposed for training the basis functions in 
advance. The most straightforward choice is to also separate the training 
signal using some of the described methods. For example, Jang and Lee [314] 
used ISA to train basis functions for two sources separately. Benaroya et al. 
[32] suggested the use of non-negative sparse coding, but they also tested using 
the spectra of random frames of the training signal as the basis functions or 
grouping similar frames to obtain the basis functions. They reported that 
non-negative sparse coding and the grouping algorithm produced the best 
results [32]. Gautama and Van Halle compared three different self-organizing 
methods in the training of basis functions [204]. 

The training can be done in a more supervised manner by using a sepa
rate set of training samples for each basis function. For example in the drum 
transcription systems proposed by FitzGerald et al. [188] and Paulus and 
Virtanen [505], the basis function for each drum instrument was calculated 
from isolated samples of each drum. It is also possible to generate the basis 
functions manually, for example so that each of them corresponds to a single 
pitch. Lepain used frequency-domain harmonic combs as the basis functions, 
and parameterized the rough shape of the spectrum using a slope parameter 
[403]. Sha and Saul trained the basis function for each discrete fundamental 
frequency using a speech database with annotated pitch [579]. 

In practice, it is difficult to train basis functions for all the possible sources 
beforehand. An alternative is to use trained or generated basis functions which 
are then adapted to the observed data. For example, Abdallah and Plumbley 
initialized their non-negative sparse coding algorithm with basis functions that 
consisted of harmonic spectra with a quarter-tone pitch spacing [5]. After the 
initialization, the algorithm was allowed to adapt these. 

Once the basis functions have been trained, the observed input signal is 
represented using them. Sparse coding and non-negative matrix factorization 
techniques are feasible also in this task. Usually the reconstruction error be
tween the input signal and the model is minimized while using a small number 
of active basis functions (sparseness constraint). For example, Benaroya et al. 
proposed an algorithm which minimizes the energy of the reconstruction error 
while restricting the gains to be non-negative and sparse [32]. 

If the sparseness criterion is not used, a matrix G reaching the global 
minimum of the reconstruction error can be usually found rather easily. If the 
gains are allowed to have negative values and the estimation criterion is the 
energy of the residual, the standard least-squares solution 

G = ( B " ^ B ) - ^ B " ^ X (9.26) 

produces the optimal gains (assuming that the previously trained basis func
tions are linearly independent) [339, pp. 220-226]. If the gains are restricted 
to non-negative values, the least-squares solution is obtained using the non-
negative least-squares algorithm [397, p. 161]. When the basis functions, 
observations, and gains are restricted to non-negative values, the global min
imum of the divergence (9.19) between the observations and the model can 
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be computed by applying the multiplicative update (9.24) iteratively [563], 
[505]. Lepain minimized the sum of the absolute value of the error between 
the observations and the model by using linear programming and the Simplex 
algorithm [403]. 

The estimation of the gains can also be done in a framework which in
creases the probability of basis functions being non-zero in consecutive frames. 
For example, Vincent and Rodet used hidden Markov models (HMMs) to 
model the durations of the notes [648]. 

It is also possible to train prior distributions for the gains. Jang and Lee 
used standard ICA techniques to train time-domain basis functions for each 
source separately, and modelled the probabihty distribution function of the 
component gains with a generalized Gaussian distribution which is a family 
of density functions of the form p(x) oc exp(—|x|^) [314]. For an observed 
mixture signal, the gains were estimated by maximizing their posterior prob
ability. 

9.7 Further Processing of the Components 

The main motivation for separating an input signal into components is that 
each component usually represents a musically meaningful entity, such as a 
percussive instrument or all the equal-pitched notes of an instrument. Separa
tion alone does not solve the transcription problem, but has the potential to 
make it much easier. For example, estimation of the fundamental frequency 
of an isolated sound is easier than multiple fundamental frequency estimation 
in a mixture signal. 

9.7.1 Associating Components with Sources 

If the basis functions are estimated from a mixture signal, we do not know 
which component is produced by which source. Since each source is modelled 
as a sum of one or more components, we need to associate the components 
to sources. There are roughly two ways to do this. In the unsupervised classi
fication framework, component clusters are formed based on some similarity 
measure, and these are interpreted as sources. Alternately, if prior informa
tion about the sources is available, the components can be classified to sources 
based on their distance to source models. Naturally, if pre-trained basis func
tions are used for each source, the source of each basis function is known and 
classification is not needed. 

Pairwise dependence between the components can be used as a similarity 
measure for clustering. Even in the case of ICA, which aims at maximizing the 
independence of the components, some dependencies may remain because it 
is possible that the input signal contains fewer independent components than 
are to be separated. 



9 Unsupervised Learning Methods for Source Separation 287 

Casey and Westner used the symmetric Kullback-Leibler divergence be
tween the probability distribution functions of basis functions as a distance 
measure, resulting in an independent component cross-entropy matrix (an 'ix-
egram') [73]. Dubnov proposed a distance measure derived from the higher-
order statistics of the basis functions or the gains [157]. Casey and Westner 
[73] and Dubnov [157] also suggested clustering algorithms for grouping the 
components into sources. These try to minimize the inter-cluster dependence 
and maximize the intra-cluster dependence. 

For predefined sound sources, the association can be done using pattern 
recognition methods. Uhle et al. extracted acoustic features from each com
ponent to classify them either to a drum track or to a harmonic track [634]. 
The features in their system included, for example, the percussiveness of the 
time-varying gain, and the noise-likeness and dissonance of the spectrum. An
other system for separating drums from polyphonic music was proposed by 
Helen and Virtanen. They trained a support vector machine (SVM) using the 
components extracted from a set of drum tracks and polyphonic music sig
nals without drums. Different acoustic features were evaluated, including the 
above-mentioned ones, mel-frequency cepstral coefficients, and others [282]. 

9.7.2 Extraction of Musical Information 

The separated components are usually analysed to obtain musically important 
information, such as the onset and offset times and fundamental frequency of 
each component (assuming that they represent individual notes of a pitched 
instrument). Naturally, the analysis can be done by synthesizing the com
ponents and by using analysis techniques discussed elsewhere in this book. 
However, the synthesis stage is usually not needed, but analysis using the ba
sis functions and gains directly is likely to be more reliable, since the synthesis 
stage may cause some artifacts. 

The onset and offset times of each component n are measured from the 
time-varying gains gn^ti t — 1 . . .T. Ideally, a component is active when its 
gain is non-zero. In practice, however, the gain may contain interference from 
other sources and the activity detection has to be done with a more robust 
method. 

Paulus and Virtanen [505] proposed an onset detection procedure that was 
derived from the psychoacoustically motivated method of Klapuri [347]. The 
gains of a component were compressed, differentiated, and lowpass filtered. 
In the resulting 'accent curve', all local maxima above a fixed threshold were 
considered as sound onsets. For percussive sources or other instruments with 
a strong attack transient, the detection can be done simply by locating local 
maxima in the gain functions, as done by FitzGerald et al. [188]. 

The detection of sound offsets is a more difficult problem, since the am
plitude envelope of a note can be exponentially decaying. Methods to be used 
in the presented framework have not been proposed. 
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There are several different possibilities for the estimation of the funda
mental frequency of a pitched component. For example, prominent peaks can 
be located from the spectrum and the two-way mismatch procedure of Maher 
and Beauchamp [428] can be used, or the fundamental period can be esti
mated from the autocorrelation function which is obtained by inverse Fourier 
transforming the power spectrum. In our experiments, the enhanced auto
correlation function proposed by Tolonen and Karjalainen [627] was found to 
produce good results (see p. 253 in this volume). In practice, a component may 
represent more than one pitch. This happens especially when the pitches are 
always present simultaneously, as is the case in a chord, for example. No meth
ods have been proposed to detect this situation. Whether or not a component 
is pitched can be estimated, e.g., from features based on the component [634], 
[282]. 

Some systems use fixed basis functions which correspond to certain funda
mental frequency values [403], [579]. In this case, the fundamental frequency 
of each basis function is of course known. 

9.7.3 Synthesis 

Synthesis of the separated components is needed at least when one wants to 
listen to them, which is a convenient way to roughly evaluate the quality of the 
separation. Synthesis from time-domain basis functions is straightforward: the 
signal of component n in frame t is generated by multiplying the basis function 
hn by the corresponding gain gn,t^ and adjacent frames are combined using 
the overlap-add method where frames are multiplied by a suitable window 
function, delayed, and summed. 

Synthesis from frequency-domain basis functions is not as trivial. The syn
thesis procedure includes calculation of the magnitude spectrum of a compo
nent in each frame, estimation of the phases to obtain the complex spectrum, 
and an inverse discrete Fourier transform (IDFT) to obtain the time-domain 
signal. Adjacent frames are then combined using overlap-add. When magni
tude spectra are used as the basis functions, framewise spectra are obtained 
as the product of the basis function with its gain. If power spectra are used, a 
square root has to be taken, and if the frequency resolution is not hnear, 
additional processing has to be done to enable synthesis using the IDFT. 

A few alternative methods have been proposed for the phase generation. 
Using the phases of the original mixture spectrogram produces good syn
thesis quality when the components do not overlap significantly in time and 
frequency [651]. However, applying the original phases and the IDFT may pro
duce signals which have unrealistic large values at frame boundaries, resulting 
in perceptually unpleasant discontinuities when the frames are combined us
ing overlap-add. The phase generation method proposed by Griffin and Lim 
[259] has also been used in synthesis (see for example Casey [70]). The method 
finds phases so that the error between the separated magnitude spectrogram 
and the magnitude spectrogram of the resynthesized time-domain signal is 
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minimized in the least-squares sense. The method can produce good synthesis 
quaUty especially for slowly varying sources with deterministic phase behav
iour. The least-squares criterion, however, gives less importance to low-energy 
partials and often leads to a degraded high-frequency content. The phase gen
eration problem has been recently addressed by Achan et ah, who proposed 
a phase generation method based on a pre-trained autoregressive model [9]. 

9.8 Time-Varying Components 

As mentioned above, the linear model (9.1) is efficient in the analysis of music 
signals since many musically meaningful entities can be rather well approxi
mated with a fixed spectrum and a time-varying gain. However, representation 
of sources with strongly time-varying spectrum requires several components, 
and each fundamental frequency value produced by a pitched instrument has 
to be represented with a different component. Instead of using multiple com
ponents per source, more complex models can be constructed which allow 
either a time-varying spectrum or a time-varying fundamental frequency for 
each component. These are discussed in the following two subsections. 

9.8.1 Time-Varying Spectra 

Time-varying spectra of components can be obtained by replacing each basis 
function b„ by a sequence of basis functions bn,r, where r = 0 . . . L — 1 is the 
frame index. If a frequency-domain representation is used, this means that a 
static short-time spectrum of a component is replaced by a spectrogram of 
length L frames. 

The signal model for one component can be formulated as a convolution 
between its spectrogram and time-varying gain. The model for a mixture 
spectrum of Â  components is given by 

N L-1 

Xt ^ ^ ^ hn,T9n,t-T' (9.27) 
n=lT=0 

The model can be interpreted so that each component n consists of repetitions 
of an event which has a spectrogram bn,r,7- = 0...L — 1. Each non-zero value 
of the time-varying gain gn,t denotes an onset of the event and the value of 
the gain gives the scaling factor of each repetition. A simple two-note example 
is illustrated in Fig. 9.4. 

The parameters of the convolutive model (9.27) can be estimated using 
methods extended from NMF and sparse coding. In these, the reconstruction 
error between the model and the observations is minimized, while restricting 
the parameters to be entry-wise non-negative. Also favouring sparse gains is 
clearly reasonable, since real-world sound events set on in a small number of 
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Fig. 9.4. An example of the convolutive model (9.27) which allows time-varying 
components. The mixture spectrogram (upper left panel) contains the notes C#6 
and F # 6 of the acoustic guitar, first played separately and then together. The upper 
right panels illustrate the learned note spectrograms and the lower panel shows their 
time-varying gains. In the gains, an impulse corresponds to the onset of a note. The 
components were estimated using a modified version of the algorithm proposed by 
Smaragdis in [599]. In the case of more complex signals, it is difficult to obtain such 
clear impulses. 

frames only. Virtanen [651] proposed an algorithm which is based on non-
negative sparse coding, whereas tha t of Smaragdis [599] aims at minimizing 
the divergence between the observation and the model while constraining non-
negativity. 

Arbitrarily long durations L may not be used if the basis functions are 
estimated from a mixture signal. When NL > T, the input spectrogram can 
be represented perfectly as a sum of concatenated event spectrograms (without 
separation). Meaningful sources are likely to be separated only when NL <C T. 
In other words, estimation of several components with large L requires long 
input signals. 

In addition, the method proposed by Blumensath and Davies [43] can be 
formulated using (9.27). Their objective was to find sparse and shift-invariant 
decompositions of a signal in the time domain. Their model allows an event 
to begin at any time with one sample accuracy which makes the number 
of free parameters in the model large. To reduce the dimensionality of the 
problem, Blumensath and Davies proposed an algorithm which carried out 
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the optimization in a subspace of the parameters. They also included a sparse 
prior for the gains. 

9.8.2 Time-Varying Fundamental Frequencies 

In some cases, it is desirable to use a model which can represent different 
pitch values of an instrument with a single component. For example, in the 
case where a note with a certain pitch is present only during a short time, 
separating it from co-occurring sources is difficult. However, if other notes of 
the source with adjacent pitch values can be utilized, the estimation becomes 
more reliable. 

Varying fundamental frequencies are difficult to model using time-domain 
basis functions or frequency-domain basis functions with linear frequency reso
lution. This is because changing the fundamental frequency of a basis function 
is a non-linear operation which is difficult to implement in practice: if the fun
damental frequency is multiplied by a factor 7, the frequencies of the harmonic 
components are also multiplied by 7; this can be viewed as a stretching of the 
spectrum. For an arbitrary value of 7, the stretching is difficult to perform on 
a discrete linear frequency resolution, at least using a simple operator which 
could be used in the unsupervised learning framework. The same holds as well 
for time-domain basis functions. 

A logarithmic spacing of frequency bins makes it easier to represent varying 
fundamental frequencies. A logarithmic scale consists of discrete frequencies 
fref/?'̂ "^, where k = 1... K is the discrete frequency index, /? > 1 is the ratio 
between adjacent frequency bins, and fref is a reference frequency in Hertz 
which can be selected arbitrarily. For example, (3 = v ^ produces a frequency 
scale where the spacing between the frequencies is one semitone. 

On the logarithmic scale, the spacing of the partials of a harmonic sound 
is independent of its fundamental frequency. For fundamental frequency /o, 
the overtone frequencies of a perfectly harmonic sound are m/o, where m > 0 
is an integer. On the logarithmic scale, the corresponding frequency indices 
are k = log^(m) -h log^(/o/fref), and thus the fundamental frequency affects 
only the offset log^(/o/fref), not the intervals between the harmonics. 

Given the spectrum X{k) of a harmonic sound with fundamental frequency 
/o, a fundamental frequency multiplication 7/0 can be implemented simply 
as a translation X{k) = X{k — 6), where S is given by S = log^ 7. Compared 
with the stretching of the spectrum, this is usually easier to implement. 

The estimation of harmonic spectra and their translations can be done 
adaptively by fitting a model onto the observations.'* However, this is diffi
cult for an unknown number of sounds and fundamental frequencies, since the 
reconstruction error as a function of translation 6 has several local minima 

^This approach is related to the fundamental frequency estimation method of 
Brown, who calculated the cross-correlation between an input spectrum and a single 
harmonic template on the logarithmic frequency scale [54]. 
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at harmonic intervals, which makes the optimization procedure Hkely to be
come stuck in a local minimum far from the global optimum. A more feasible 
parameterization allows each component to have several active fundamental 
frequencies in each frame, the amount of which is to be estimated. This means 
that each time-varying gain gn^t is replaced by gains gn,t,zi where 2; = 0 , . . . , Z 
is a frequency-shift index and Z is the maximum allowed shift. The gain gn,t,z 
describes the amount of the n^^ component in frame f at a fundamental fre
quency which is obtained by translating the fundamental frequency of basis 
function b„ by z indices. 

The size of the shift z depends on the frequency resolution. For example, if 
48 frequency lines within each octave are used (/? = ^ 2 ) , z — 4: corresponds to 
a shift of one semitone. For simplicity, the model is formulated to allow shifts 
only to higher frequencies, but it can be formulated to allow both negative 
and positive shifts, too. 

A vector gri,t — [^n,t,0 5' •' 19n,t,z] is used to denote the gains of compo
nent n in frame t. The model can be formulated as 

N 

x t ^ ^ b n * g ^ , , , t = l...T, (9.28) 

n=l 

where * denotes a convolution operator, defined between vectors as 

z 
y = bn * gn,t ^yk = ^ bn,k-z9n,t,z^ k = l...K. (9.29) 

z=0 

Figure 9.5 shows the basis function and gains estimated from the example 
signal in Fig. 9.1. In general, the parameters can be estimated by fitting 
the model to observations with certain restrictions, such as non-negativity or 
sparseness. Algorithms for this purpose can be derived by extending those 
used in NMF and sparse coding. Here we present an extension of NMF, where 
the parameters are estimated by minimizing the divergence (9.19) between 
the observations X and the model (9.28), while restricting the gains and basis 
functions to be non-negative. 

The elements of gn,t and b^ are initialized with random values and then 
updated iteratively until the values converge. To simplify the notation, let us 
denote the model with current parameter estimates by v^ = J2n=i ^^ * ^^^^^^^ 
t = 1 . . . T. The update rule for the gains is given as 

g n , t - g n , . . X — - ^ , (9.30) 
bn • 1 

where 1 is a ivT-length vector of ones and • denotes the correlation of vec
tors, defined for real-valued vectors bn and y as g = b^ ^ y <^ Pz = 
Sfc=i n̂,fc2/fc+25 z = 0 , . . . , Z. The update rule for the basis functions is 
given as 
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bn ^ b „ . x (9.31) 

The overall optimization algorithm for non-negative matr ix deconvolution 
is as follows: 

Algorithm 9.2: Non-Negative Matrix Deconvolution 

1. Initialize each gn,t and bn with the absolute values of Gaussian noise. 
2. Calculate v* = ^ ^ ^ ^ bn * gn,t for each t=l...T. 
3. Update each gn,t using (9.30). 
4. Calculate Vt as in Step 2. 
5. Update each bn using (9.31). Repeat Steps (2)-(5) until the values converge. 

The algorithm produces good results if the number of sources is small, but 
for multiple sources and more complex signals, it is difficult to get as good 
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Fig. 9.5. Illustration of the time-varying gains (left) and the basis function (right) 
of a component that was estimated from the example signal in Fig. 9.1 containing 
a diatonic scale and a C major chord. On the left, the intensity of the image rep
resents the value of the gain at each fundamental frequency shift and frame index. 
Here the fundamental frequencies of the notes can be seen more clearly than from 
the spectrogram of Fig. 9.1. The parameters were estimated using the algorithm 
proposed in this section. 



294 Tuomas Virtanen 

results as those illustrated in Fig. 9.5. The model allows all the fundamental 
frequencies within the range z = 0.. .Z tohe active simultaneously, thus, it is 
not restrictive enough. For example, the algorithm may model a non-harmonic 
drum spectrum by using a harmonic basis function shifted to multiple adjacent 
fundamental frequencies. Ideally, this could be solved by restricting the gains 
to be sparse, but the sparseness criterion complicates the optimization. 

In principle, it is possible to combine time-varying spectra and time-
varying fundamental frequencies into the same model, but this further in
creases the number of free parameters so that it can be difficult to obtain 
good separation results. 

When shifting the harmonic structure of the spectrum, the formant struc
ture becomes shifted, too. Therefore, representing time-varying pitch by trans
lating the basis function is appropriate only for nearby pitch values. It is 
unlikely that the whole fundamental frequency range of an instrument could 
be modelled by shifting a single basis function. 

9.9 Evaluation of the Separation Quality 

A necessary condition for the development of source separation methods is 
the ability to measure the quality of their results. In general, the separation 
quality can be measured by calculating the error between the separated sig
nals and reference sources, or by listening to the separated signals. In the case 
that separation is used as a pre-processing step for automatic music tran
scription, the quality should be judged according to the final application, i.e., 
the transcription accuracy. 

Performance measures for audio source separation tasks have been dis
cussed, e.g., by Gribonval et al. [258]. They proposed measures estimating the 
amount of interference from other sources and the distortion caused by the 
separation algorithm. Many authors have used the signal-to-distortion ratio 
(SDR) as a simple measure to summarize the quality. This is defined in deci
bels as 

T s(t)'^ SDR[dB] = 1 0 1 o g , ^ ^ j | ^ ^ l _ , (9.32) 

where s{t) is a reference signal of the source before mixing, and s{t) is the sep
arated signal. In the separation of music signals, Jang and Lee [314] reported 
average SDR of 9.6 dB for an ISA-based algorithm which trains basis func
tions separately for each source. Helen and Virtanen [282] reported average 
SDR of 6.4 dB for NMF in the separation of drums and polyphonic harmonic 
track, and a clearly lower performance (SDR below 0 dB) for ISA. 

In practice, quantitative evaluation of the separation quality requires that 
reference signals, i.e., the original signals s{t) before mixing, be available. In 
the case of real-world music signals, it is difficult to obtain the tracks of each 
individual source instrument and, therefore, synthesized material is often used. 
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Generating test signals for this purpose is not a trivial task. For example, ma
terial generated using a software synthesizer may produce misleading results 
for algorithms which learn structures from the data, since many synthesiz
ers produces notes which are identical at each repetition. In the case that 
source separation is a part of a music transcription system, quality evaluation 
requires that audio signals with an accurate reference notation are available 
(see Chapter 11, p. 355). Large-scale comparisons of different separation al
gorithms for music transcription have not been made. 

9.10 Summary and Discussion 

The algorithms presented in this chapter show that rather simple principles 
can be used to learn and separate sources from music signals in an unsuper
vised manner. Individual musical sounds can usually be modelled quite well 
using a fixed spectrum with time-varying gain, which enables the use of ICA, 
sparse coding, and NMF algorithms for their separation. Actually, all the al
gorithms based on the linear model (9.4) can be viewed as performing matrix 
factorization; the factorization criteria are just different. 

The simplicity of the additive model makes it relatively easy to extend 
and modify it, along with the presented algorithms. However, a challenge 
with the presented methods is that it is difficult to incorporate some types of 
restrictions for the sources. For example, it is difficult to restrict the sources 
to be harmonic if they are learned from the mixture signal. 

Compared to other approaches towards monaural sound source separa
tion, the unsupervised methods discussed in this chapter enable a relatively 
good separation quality—although it should be noted that the performance 
in general is still very limited. A strength of the presented methods is their 
scalability: the methods can be used for arbitrarily complex material. In the 
case of simple monophonic signals, they can be used to separate individual 
notes, and in complex polyphonic material, the algorithms can extract larger 
repeating entities, such as chords. Some of the algorithms, for example NMF 
using the magnitude spectrogram representation, are quite easy to imple
ment. The computational complexity of the presented methods may restrict 
their applicability if the number of components is large or the target signal is 
long. 

Large-scale evaluations of the described algorithms on real-world poly
phonic music recordings have not been presented. Most published results use 
a small set of test material and the results are not comparable with each 
other. Although conclusive evaluation data are not available, a preliminary 
experience from our simulations has been that NMF (or sparse coding with 
non-negativity restrictions) often produces better results than ISA. It was 
also noticed that prior information about sources can improve the separation 
quality significantly. Incorporating higher-level models into the optimization 
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algorithms is a big challenge, but will presumably lead to better results. Con
trary to the general view held by most researchers less than 10 years ago, 
unsupervised learning has proven to be applicable for the analysis of real-
world music signals, and the area is still developing rapidly. 
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10.1 Introduction 

This chapter discusses work done in the area of music scene analysis (MSA). 
Generally, scene analysis is viewed as the transformation of information from 
a sensory input (physical entity) into concepts (psychological or perceptual 
entities). Therefore, MSA is defined as a process that converts an audio signal 
into musical concepts such as notes, chords, beats, and rhythms. Related tasks 
include music transcription, pitch tracking, and beat tracking; however, this 
chapter focuses on the auditory scene analysis (ASA) related aspect of this 
process and does not explore the issues of pitch and beat tracking. An impor
tant idea related to this is the distinction between physical and perceptual 
sounds, as explained in Section 10.1.3 below. 

10.1.1 Scene Analysis 

We are exposed to various physical stimuli in our daily life. Our ears and eyes 
receive acoustic and optical stimuli, respectively. These stimuli originate in 
specific events or states. For example, when a ball hits a wall, vibrations in 
both the ball and the wall resulting from the impact travel through the air, 
and the air vibration arrives at our ears. We then understand that something 
like a ball has hit a hard surface such as a wall. 

Understanding physical stimuli is an everyday experience. However, it 
poses an important question. An event such as a ball hitting a wall and causing 
physical phenomena such as air vibration is a natural process. However, how 
can we determine the events from the received physical phenomena? This is 
an inversion of the natural process, and therefore the solution to this problem 
is non-trivial. 

Generally, a task that consists of recognizing an event or status from phys
ical stimuli is called scene analysis, and scene analysis problems were first 
investigated in the visual domain. 
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In the 1920s, psychology researchers noticed the problem involved in de
termining how humans organize perceptual entities from visual stimuli. Their 
series of studies was referred to as 'Gestalt psychology'. In the 1960s and 
1970s, pioneering work was undertaken on computer vision. For example, the 
problem of describing a simple scene comprising a set of building blocks with 
a simpler set of building blocks such as triangular and rectangular prisms was 
considered. Various operators for feature extraction were also proposed. In the 
1970s and 1980s, many researchers addressed the problem of building generic 
scene analysis systems. In particular, a processing architecture comprising 
multiple processing modules and a common space for exchanging information 
among the modules was applied to scene analysis tasks. Such an architecture 
is called the blackboard architecture. 

In the 1980s, Marr proposed a computational approach. He defined the vi
sion problem in relation to the information processing needed to describe the 
visual world, and distinguished three levels of the task: computational theory, 
representation and algorithm, and hardware implementation [438]. Along with 
this computational approach, many researchers reported physical or mathe
matical formulations. Examples include work on 'shape-from-X' problems that 
address shape recovery by using various clues, denoted by X, such as motion, 
shading, and multiple images. 

There is still a large amount of research being reported that relates to 
visual scene analysis. The amount of work on visual scene analysis from a 
generic perspective has decreased in recent years, and most of this work is 
dedicated to specific targets such as information retrieval, robot navigation, 
motion analysis, and encoding. 

The history of auditory scene analysis is rather short compared with that 
of visual scene analysis, although the 'cocktail party problem'^ was raised as 
early as the 1950s [86], [466]. In auditory psychophysics, various phenomena 
have been found that show that our auditory system has complex, adaptive, 
and active functions [662], [475], [270], [49], and auditory versions of Gestalt 
principles have been accumulated with respect to the way in which humans 
organize complex auditory stimuli into 'auditory streams' that correspond to 
distinct perceptual entities. However, from an engineering point of view, there 
are still many important problems to overcome in the auditory scene analysis 
field. 

10.1.2 Music as an Auditory Scene 

Music is a good domain for considering the auditory scene analysis prob
lem not only from a cognitive perspective [36] but also from an engineering 
viewpoint. We use the term 'music scene analysis' to refer to auditory scene 
analysis for music. 

^The cocktail party problem refers to the task of following the discussion of one's 
neighbours in a situation where lots of other sound sources are present, too. 
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The nature of music provides the first reason for considering it as an audi
tory scene. The overlapping of tones is a fundamental element of music. With 
the exception of a solo performance by a single instrument or voice, music 
usually comprises multiple simultaneous sounds played by single or multiple 
musical instruments. As humans we can appreciate such sound mixtures, im
plying that we recognize what is happening to a certain extent. Only a trained 
person is capable of transcribing music, but ordinary people can recognize a 
vocal line or the principal accompaniment when they listen to pop music. 
When we hear music played by a flute and a piano, it is easy to distinguish 
the two instruments. 

The second reason is the usefulness of the prospective applications. Cur
rently, computers are not as good as humans at recognizing multiple simul
taneous sounds. However, if computers are developed with this capability, 
various useful systems will be realized including automatic music transcrip
tion systems and automatic music indexing systems for unlabelled music 
archives. 

A research topic closely related to music scene analysis is automatic music 
transcription [610] and pitch tracking. As already introduced in Chapter 1, 
an automatic music transcription system was reported as long ago as the mid 
1970s [521]. From then until the mid 1980s, several systems were built that 
mainly targeted the transcription of monophonic melodies such as singing, or 
simple polyphonic music such as guitar duets [483], [542]. The main method
ology employed in such work involved signal processing techniques such as the 
fast Fourier transform (FFT). This period can be considered as the pioneering 
era of music transcription. Although the systems targeted rather simple com
positions, various problems were identified such as frequency and temporal 
fluctuations. 

From the mid 1980s to the mid 1990s, the main target moved from mono-
phonic music to rather complicated polyphonic music, such as piano composi
tions. With such signals, even determining the number of simultaneous notes 
is a hard task let alone extracting fundamental frequencies for each note. To 
overcome this problem, researchers pointed out that knowledge is required 
for such transcription [470], [81], [80]. The main methodology consisted of in
tegrating symbolic knowledge and signal processing. For example, Katayose 
et al. built a rule-based automatic music transcription system for multiple 
simultaneous-note performances by a single instrument [335]. The system com
prises a control module, a processing module, and a music analysis module. 
The control module is an inference engine performing rule-based reasoning 
and invoking the processing module that extracts fundamental frequencies 
and beat times. The music analysis module analyses musical characteristics 
such as melody, rhythm, chord transitions, and keys, and then its results are 
fed back to the control and processing modules. This type of approach to some 
degree parallels the methodology of visual scene analysis in use at that time 
as mentioned above. This period can be viewed as the system-oriented era of 
music transcription. 
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At that time, in the artificial inteUigence field, it was recognized that there 
was a bottleneck as regards knowledge acquisition for rule-based inference 
engines. This means that it was diflicult to prepare all the knowledge required 
for these systems, and the systems tended to fail to work properly when they 
faced a situation not dealt with by the installed knowledge. 

Since the mid 1990s, a lot of research has targeted polyphonic music played 
by multiple musical instruments in, for example, orchestras or commercial pop 
music [611], [350], [353]. Music played on multiple instruments is even harder 
to transcribe than music played on a single instrument, mainly because there 
are fewer constraints on the instruments or because we have less prior knowl
edge. That is, we must estimate the most plausible transcription under highly 
ambiguous and uncertain situations. Researchers noticed that it is hard to 
deal with such problems solely by the rule-based approach, and this require
ment has naturally inspired researchers to apply probabilistic modelling. We 
call this period the model-oriented era of music transcription. 

As is widely recognized, music usually has simultaneous and temporally hi
erarchical structures. For example, multiple simultaneous notes form a chord, 
and a sequence of notes across multiple bars form a phrase. Such structures 
are naturally incorporated in probabilistic models. 

This is the point that distinguishes music transcription from music scene 
analysis. The object of music transcription is to create a score from a musical 
audio signal. On the other hand, the object of music scene analysis is to 
recover hierarchical structures and describe the auditory entities encoded in 
the structures from a musical audio signal. The recognition of structures is 
not a prerequisite for creating a score. However, a score can be produced once 
a complete music structure has been obtained. Prom this viewpoint, music 
transcription can be a specific instance of music scene analysis. 

The present author used the term music scene analysis in this sense, and 
proposed a music scene analysis system based on a probabilistic model in the 
mid 1990s [332]. We defined the problem as the estimation of the posterior 
probability distribution given an input audio signal and a set of prior knowl
edge encoded in internal models. Recently, other probabilistic approaches to
ward music analysis tasks have been emerging. For example. Goto highlighted 
a sub-symbolic^ aspect in music scene analysis and specifically termed it music 
scene description [228]. As discussed in Chapter 11, his descriptions of, for ex
ample, predominant fundamental frequencies and beat times correspond to a 
primal level of a music scene representation structure, which is very important 
to address. 

10.1.3 Perceptual Sounds and Their Structure 

To specify the problem of music scene analysis a little more precisely, here 
we introduce the terms 'physical sound' and 'perceptual sound'. A physical 

^A sub-symbolic description here means description that involves continuous 
quantity. 
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Fig. 10.1. An example snapshot of perceptual sounds in music. 

sound means the vibration of the medium itself. It is a physical entity. On 
the other hand, there is another aspect to sound, namely perceptual sound, 
which is a psychological entity that corresponds to what human ear perceives 
as 'one' sound. 

Suppose we are listening to ensemble music through a monaural speaker. In 
this case, there is one physical sound source. However, we will hear multiple 
perceptual sounds produced by multiple musical instruments. That is, the 
number of perceptual sound sources is greater than one. 

In this sense, the concept of a perceptual sound is similar to that of an 
'auditory stream', as used by Bregman [49]. However, a perceptual sound is 
not necessarily a stream but an entity in an intrinsically hierarchical structure. 
Acoustic energy must be organized in a structure if we are to understand the 
scene. In reality, what humans hear as one sound depends on time, place, 
occasion, and even attention. For example, when we listen to music, we hear 
multiple levels of perceptual sounds; sometimes we hear notes or a melody, 
and at other times we hear chords. As another example, when we are waiting 
for someone on a busy street, we may sometimes hear all the street noises 
as one sound, but sometimes we may hear car noises or people's footsteps as 
one sound. If we are specifically interested, we can focus on an individual car 
noise, and furthermore we may hear the specific car's engine noise, wind noise, 
or road noise individually. 

Figure 10.1 shows an example snapshot of perceptual sounds in a music 
performance. In Fig. 10.1, a (perceptual) component corresponds to a (phys
ical) frequency component, which is a continuous time-frequency region on a 
sound spectrogram. Figure 10.1 only shows a snapshot, but in fact there is 
also a time structure. 

Table 10.1 lists the meanings of the terms used in this chapter. 
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Table 10.1. Terminology 

Term Meaning 
perceptual sound description corresponding to a sound that humans 

perceive as one 
auditory scene analysis construction, restoration, and organization of percep

tual sounds to build a description of the world 
music scene analysis auditory scene analysis for musical audio signals 

10.1.4 Problem Formulation 

For a music scene analysis task, we should use multiple constraints or pieces 
of information stored in advance. For example, in Western tonal music, a 
sequence of chords does not appear at random but exhibits certain statistical 
characteristics, and multiple frequency components whose frequencies have a 
harmonic relationship tend to arise from 'one sound'. 

Thus, the problem can be formulated as an a posteriori estimation. Let 
H he 8i set of random variables corresponding to internal states or perceptual 
sounds to be modelled, and the observation be x. Then, the task is generally 
written as 

H = argmaxP(i7|x) = arg max F(x | if )P(i^). (10.1) 
H H 

This is a Bayesian estimation of posteriors. Since it is very hard to calculate 
this in a general form, we must impose a structure on H. That is, when 
some elements of H can be considered to be independent, the calculations can 
take advantage of that fact. This point will be discussed later in this chapter. 

10.2 Strategy for Music Scene Analysis 

This section discusses the clues that may be used for music scene analysis. 
First, we review work on sound source separation. We then look at cues or 
information sources that have been utilized to associate time-frequency com
ponents to a same or to a different perceptual sound. 

10.2.1 Sound Source Separation 

From an engineering point of view, topics related to auditory scene analysis or 
music scene analysis include sound source separation. Since the aim of sound 
source separation is to separate the source signals, it is clearly a different task 
from auditory or music scene analysis where the goal is to obtain perceptual 
description of the content. However, one of the major difficulties in scene 
analysis is that we have to deal with mixtures of sounds. Therefore, if we can 
separate signals corresponding to the physical sound sources, it may assist 
scene analysis. To clarify the position of the music scene analysis problem, 
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here we look at sound source separation, specifically from the viewpoint of 
applicability to music signals. 

There are two kinds of problems considered in sound source separation: 
one assumes multiple input channels, and the other assumes one input channel 
(monaural). In the former case, it is usually further assumed that no prior 
knowledge is available about the source characteristics or mixing conditions. 
As a result, this is called blind source separation [63]. 

A powerful methodology for dealing with the blind source separation prob
lem is independent component analysis (ICA), as described in Chapter 9. The 
basic idea is as follows. First, it is assumed that we observe linear combinations 
of source waveforms: 

y(n) = Ax(n), (10.2) 

where the vector y(n) consists of the observed signals at time n, A is a time-
invariant mixing matrix, and the vector x(n) represents the source signals at 
time n. Then, the problem is to estimate A~^. ICA is a method for estimat
ing A~^ so that the source signals x(n) become as independent as possible 
from each other. Standard ICA methods require that the number of observed 
signals be larger or equal to the number of sources. In recent years, many re
searchers have been interested in sound source separation by ICA under more 
realistic conditions such as convolutive mixtures or cases where there are fewer 
microphones (i.e., observed signals y(n)) than sound sources [28], [401]. 

For sound source separation with music signals, it is desirable for the 
separation to work even for one-channel or two-channel (monaural or stereo) 
signals [554], [73]. However, these cases require further research, as explored 
in Chapter 9. 

Research on sound source separation for monaural inputs has been con
ducted since the 1970s. The most widely used approach is the selective 
resynthesis of frequency components. Specifically, selection by employing the 
harmonic frequency relationships as proposed by Parsons [498] has been widely 
used. This approach is based on prior knowledge of the sound sources, namely 
that sounds often consist of a fundamental frequency component and its over
tones whose frequencies are integer multiples of the fundamental frequency. In 
reality, sounds such as voiced speech or pitched musical sounds consist of ap
proximately harmonic components and, in such cases, the harmonic selection 
and resynthesis achieves reasonably good separation [482]. 

The selective resynthesis approach was mostly based on harmonic rela
tions until around 1990. However, in the last two decades, rapid progress has 
been made on psychophysical research designed to clarify the mechanisms 
whereby humans recognize sounds. This has encouraged research efforts even 
from an engineering viewpoint. Specifically, a lot of work has tried to incorpo
rate various clues in addition to harmonic relations for component selection, 
i.e., for associating components to a same source. The clues considered in 
such work have included: (1) common onset and offset, (2) common ampli
tude and frequency modulation, (3) estimated spatial locations, and (4) the 
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Table 10.2. Clues for the integration of simultaneous frequency components 

Feature of frequency components Promotes 
harmonicity fusion 
harmonic mistuning segregation 
onset synchrony fusion 
onset asynchrony segregation 
offset synchrony fusion 
offset asynchrony segregation 
common amplitude modulation fusion 
common frequency modulation fusion 
spatial location fusion/segregation 
timbre similarity/dissimilarity fusion/segregation 

temporal and spectral proximity of frequency components. A major impetus 
behind the idea of using such auditory characteristics as clues for component 
selection or grouping was the accumulation of psychological findings, such as 
the ones introduced by Bregman [49]. Based on the title of his book, Auditory 
Scene Analysis, a series of engineering studies in this field was referred to as 
'computational auditory scene analysis' [485].^ 

Here, we briefly introduce the clues that humans use (see also [475], [49], 
[108], [98] for details). It is known that certain types of frequency component 
behaviour can promote the perceptual fusion or segregation of those compo
nents, as listed in Table 10.2. 

Many authors took these clues into account in their attempts to achieve 
toward sound source separation. Cooke [97] and Brown [52] incorporated psy
chophysical and physiological knowledge into their models. An input signal is 
analysed by a gammatone filterbank that simulates the frequency selectivity 
of the inner ear (see Chapter 8 for more details on auditory models). Then, 
the outputs of the filters are processed by Meddis's hair cell model to esti
mate the neural activity in the auditory nerve. Autocorrelation on the model 
output serves as a time-frequency energy representation. The system then ex
tracts frequency components based on the cross-channel correlations in the 
energy representation. Onset and offset synchrony and the harmonic relations 
of the frequency components are used for grouping these components. Each 
of the resulting groups is considered to be a single sound, such as a speech, 
and resynthesized as a separate signal. They also applied their model to music 
signals [53]. 

Mellinger [460] also introduced a physiologically and psychologically mo
tivated model of sound source separation. He extracted and utilized common 

^This terminology is slightly misleading. Originally, scene analysis meant creat
ing a descriptive representation from signals. However, a lot of work on computa
tional auditory scene analysis appears to address signal separation rather than scene 
description. 
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frequency modulations of frequency components and tested the separation 
performance with music signals. 

Nakatani [481], [480] reported a sound stream segregation system based on 
harmonic relations and spatial locations. Their system employs a multi-agent 
architecture and comprises three processing modules, namely a generator, a 
tracer, and a monitor. The generator generates a tracer when harmonically 
related and spatially localized frequency components are detected. The tracer 
tracks the harmonic components as long as they continue. The monitor con
trols the activities of the tracers to maintain global consistency. Then, the 
source-separated signals are presented to an automatic speech recognition 
system. They reported a significant improvement in the recognition accuracy 
compared with using the mixture signal directly. 

In addition, work has also been reported based on mathematical formula
tions of the above-mentioned grouping rules [6], [636]. 

When considering sound source separation for music signals, it is important 
to note that frequency components in music tend to overlap other components. 
This is not limited to cases where the notes are exactly one octave apart in 
frequency. For example. Fig. 10.2 is the beginning part of a piece entitled 
'Drei Duos' composed by Beethoven. The integral multiple of the fundamental 
frequency of the notes marked by x is the same as the fundamental frequency 
of a note existing at the same time in another part. Since music is often 
composed with notes at harmonic intervals, almost complete overlapping of 
frequency components frequently occurs even in a two-part composition as in 
this example. This means that the performance of the frequency component 
selection approach will be limited. 

As described above, sound source separation for music signals will be more 
difScult than for other audio signals because the desired number of input chan
nels is one or two, and the frequency components often overlap completely 
[309], [653]. This makes it hard to decompose the music transcription or the 
scene analysis problem into sound source separation and recognition of the sep
arated signal. Therefore, many researchers have addressed the recognition or 
analysis of a sound mixture as it is, without a prior source separation process. 

10.2.2 Bottom-Up Clues for Music Scene Analysis 

As mentioned above, researchers have tried to incorporate the clues for human 
auditory scene analysis to sound source separation. It is also important to 
consider such psychological findings in music scene analysis tasks, because a 
perceptual sound is a psychological entity rather than a physical entity. 

The bottom-up process of music scene analysis can be considered to be a 
clustering of frequency components. The idea of clustering based on such cues 
as harmonicity and synchrony has been employed by many authors for the 
bottom-up processing of auditory scene analysis methods [53], [460], [171]. 

To formulate the clustering, it is important to explore quantitative dis
tance measures. There are at least two approaches to this problem: one is 
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Fig. 10.2. Overlapping components in a composition: x indicates the notes whose 
fundamental frequencies are an integral fraction of those of the notes in the other 
part. The number shows the ratio of these fundamental frequencies. 
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Fig. 10.3. The evaluation-integration model of sound formation. 

to determine the measure directly from a psychometric function obtained for 
simplified stimuli, and the other is to learn the measure from many realistic 
sound samples. As an example, here we review an attempt using the former 
approach. Kashino et al. proposed the evaluation-integration model for the 
clustering for note formation [334]. Among the clues listed in Table 10.2, it 
focused on the harmonic mistuning and onset asynchrony. 

As shown in Fig. 10.3, the model comprises two sequential steps. The first 
step involves independent evaluations of multiple features, and the second 
step integrates the results of these. Here, the evaluation means determining a 
distance measure between the clusters and the frequency components. 

They determined the model parameters in three kinds of psychoacoustic 
experiments using stimuli comprising two frequency components. The ex
periments involved measuring: (1) the probability of segregation caused by 
harmonic mistuning, (2) the probability of segregation caused by onset 
asynchrony, and (3) the probability of segregation caused by both harmonic 
mistuning and onset asynchrony. 
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Two simultaneous frequency components are heard as one sound when they 
are harmonically related, but they tend to be heard as separate sounds when 
they are mistuned [476], [277]. In the first experiment, three subjects were 
presented with stimuli with various degree of mistuning in a random order 
and asked to choose whether each stimulus was one sound or two sounds. 
Then, a linear model that measures segregation probability was determined 
by the least squares fitting of the experimental results. The probability of 
segregation Ch was given by 

Ch{u) = < 

u, p_ < li < 0 , 
P-
^ n ^ / (10-3) 

1 otherwise. 

Here p+ and p- are parameters and u denotes the degree of mistuning in 
percent. That is, 

w = ( ^ - l ] X 100, (10.4) 

where / i and /2 (/i < /2) are the frequencies of the components. 
An experimental summary is shown in Fig. 10.4. The horizontal axis n in 

Fig. 10.4 is given by 
^ , | l o g / 2 - l o g ( 2 / . ) | 

log 1.005 ^ ^ 

No significant difference was found for p^ and p- and they are therefore not 
distinguished in Fig. 10.4. 

Two harmonic frequency components are heard as one sound when they 
start simultaneously, but they tend to be heard as separate sounds when they 
are asynchronous. In the second experiment, the segregation probability was 
measured as a function of onset time/gradient difference, and a linear model 
was obtained by least squares fitting. The probability of segregation CQ was 
given by the following equation. 

1 

"^ (10.6) 
otherwise. 

5 > 0 . 

Here, S is the area of the region surrounded by the amplitude envelopes of two 
frequency components projected onto the time-amplitude plane, as shown in 
Fig. 10.5. In this experiment, the amplitudes of frequency components after 
the onset part were chosen to be the same. The parameter Sp is given by 

a b 

/ i 9i 
Sp^-^ + - + c , (10.7) 
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Fig. 10.5. An onset asynchrony model. 

where / i and gi are the frequency and the onset gradient of the earlier fre
quency component, respectively. The parameters a, 6, and c were obtained by 
regression analysis, leading to the values a = 250, b = 1.11, and c = 0.317. An 
example of the relation between the model and experimental results is shown 
in Fig. 10.6. 

The two kinds of feature evaluations are then integrated by 

m{u,S) = l-{l-Ch{u)){l-Co{S)). (10.8) 

where m{u,S) represents the probability of segregation. Equation (10.8) was 
obtained using Dempster's rule of combination [580]. 
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In the third experiment, correlations were calculated between m given by 
(10.8) and the experimental results when there was both harmonic mistuning 
and onset asynchrony. The correlation values when the fundamental frequen
cies were 200 Hz (i.e., sounds comprising around 200 Hz and around 400 Hz 
components) and 1000 Hz (i.e., sounds comprising around 1000 Hz and around 
2000 Hz components) were 0.84 and 0.75, respectively. 

Equation (10.8) is the model when there are only two frequency com
ponents. Kashino et al. introduced an approximation, and used m in (10.8) 
as a distance measure for the clustering of frequency components even for 
more realistic conditions [334]. The clustering algorithm, performed for each 
processing window, was as follows. 

1. Find the frequency component Fi that has the lowest frequency and let 
it be the cluster centre Ci. 

2. Scan frequency components from a lower frequency to a higher frequency, 
and let the next unscanned component be Fi. Then, calculate m^j, which 
is the distance between Fi and the existing cluster centre Cj. If rriij is 
greater than me for all j , then the Fi is chosen as a new cluster centre 

3. Repeat Step 2 until all frequency components have been scanned. 
4. For each cluster centre, let all frequency components belong to the cluster 

if the distance between the components and the cluster centre is less than 
me. 
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Here, me is a threshold for sound segregation chosen between 0 and 1. If it is 
close to 0, then many clusters are generated. Note that a frequency component 
can be shared by multiple clusters. 

It is obvious that there are problems and limitations with the above model. 
First, the function is only an approximation of human responses in a specific 
and simplified experimental setting, and is not guaranteed to be sufficiently 
accurate in other, more realistic, situations. Second, with real music signals, it 
is diSicult to determine the onset time and onset gradient for each component 
because frequency components tend to exhibit complex amplitude patterns. 
Third, a sound without a fundamental frequency, such as a percussive sound or 
a missing-fundamental sound, will not form a cluster in the above algorithm. 
Fourth, other cues such as sequential integration and timbre memories [333] 
are not incorporated. 

10.2.3 Top-Down Clues for Music Scene Analysis 

Bregman pointed out that hearing a signal in a mixture of sounds depends 
on conscious eff'ort and prior learning, and called the process behind this 
schema-based segregation and integration [49]. From an engineering viewpoint, 
the schema-based process often corresponds to knowledge-based or top-down 
processing. 

Here, we distinguish between the ideas of knowledge-based and top-down 
processing. The words bottom-up and top-down signify the direction of the 
processing between the levels of abstraction. In bottom-up processing, low-
level features are transformed to a higher level to form larger-scale or more ab
stract entities, whereas in top-down processing, entities at a high-abstraction 
level predict, verify, or control lower-level description. On the other hand, 
knowledge-based means that the process uses some prior information. That 
is, both bottom-up and top-down processes can be knowledge-based in the 
sense that they can use prior information stored in the system. To clarify 
this, in this chapter we will use the term 'internal model' to refer to such 
prior information. 

Many researchers have addressed the integration of bottom-up and top-
down processing modules. Regarding auditory scene analysis tasks, Lesser 
et al. built a sophisticated audio signal understanding system based on the 
blackboard architecture [407]. The blackboard architecture was employed to 
integrate and control the diff'erent processing modules; for example, the system 
creates high-level hypotheses which are then used for tuning the front-end 
signal processing parameters. 

Godsmark et al. proposed a blackboard model for computational auditory 
scene analysis [215]. It was designed to accommodate various grouping cues 
including pitch proximity, timbral similarity, and source-specific knowledge 
such as metre and melodic phrases. The grouping mechanisms interact in a 
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context-sensitive and retroactive^ manner on a blackboard containing eight 
levels of abstraction. For example, the model allows high-level predictions 
about metre and melody to influence the primitive organization at lower levels 
of the blackboard. 

Ellis presented a prediction-driven architecture for computational auditory 
scene analysis [171]. His motivation included the detection of non-tonal events; 
if we use harmonicity to group frequency components as reviewed above, non-
harmonic sounds such as drums, noises, and clicks will not be recognized 
as one sound. His idea was to generate both noise component and periodic 
component hypotheses and then to look at the acoustic features in order 
to either justify or reject the hypotheses. His system was able to simulate 
old-plus-new heuristics [49],^ sequential integration of successive tone events 
into a stream [49], and auditory restoration phenomenon, which means that 
a partially masked sound event tends to be restored based on the elements 
before and after the masking event [662]. Recently, the idea has been further 
extended based on a quantitative formulation [539]. 

For bottom-up and top-down integration it is essential to formulate a quan
titative method that clarifies what is computed or optimized by the algorithm. 
In the following sections in this chapter, we review probabilistic approaches 
that form a quantitative base for integration. It should be noted, however, that 
sometimes the rules can still be effective even in a probabilistic framework. 

10.3 Probabilistic Models for Music Scene Analysis 

Recently, researchers have proposed probabilistic models for music scene 
analysis. This section begins by introducing the Bayesian network, which is 
a flexible tool for obtaining probabilistic inferences. Then, its applications to 
music scene analysis are reviewed. 

10.3.1 Posterior Estimation by the Bayesian Network 

A Bayesian network is a directed acyclic graph (DAG) where the nodes cor
respond to random variables and the links between the nodes encode proba
bilistic dependences between corresponding random variables [509], [205]. 

A random variable corresponds to an event to be modelled. A directed link, 
represented by an arrow, shows the direction of the probabilistic dependency. 
The origin of the arrow is called the parent and the end point is called the child. 
Each link can encode conditional probabilities, which are the probabilities of 

^In a retroactive system, the interpretation of previous material can be affected 
by what happens afterwards. 

^Old-plus-new heuristics loosely refers to the principle that, whenever possible, a 
change in the signal is interpreted as a continuation of the previously played sounds 
plus new sound elements. 
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Fig. 10.7. An example Bayesian network. 

child events given the parent events. The word acyclic means that there is no 
route from any node that returns to the original node as long as the links are 
followed in the designated direction. Such a graph can be singly or multiply 
connected. Singly connected means there is only one path between any two 
nodes in the graph. Otherwise the graph is referred to as multiply connected. 
When a graph is directed and singly connected, it is called a tree if none of 
the nodes has more than one parent. 

The objective of considering such a network is to calculate posteriors effi
ciently after some of the random variables have been fixed or observed. The 
absence of a link between two nodes means that there is no direct relationship 
between the corresponding random variables. Even if these nodes are linked 
indirectly (i.e., via other nodes), they are independent when at least one node 
existing between the two is fixed. Posterior calculation on the Bayesian net
work takes advantage of this property. 

Figure 10.7 shows an example of a Bayesian network. If the network is 
singly connected as in the figure, the posterior calculation is straightforward. 
As an example, assume we wish to find the posterior probabilities induced at 
node B. Letting D^ represent the data contained in the tree rooted at B and 
D^ for the data contained in the rest of the network, we have 

P{B) = PiB\D+,Ds). (10.9) 

Based on the singly connected structure of the Bayesian network, we assume 
the independence of random variables given B, namely 

P{D+,D^\B) = PiD+\B)P{D^\B), 

and then, according to Bayes's theorem, we have 

P{B\D+,D^) = aP{D^\B)P{B\D%), 

(10.10) 

(10.11) 

where the constant a = 1/P{DQ,D^) can be determined so that the left-hand 
side of (10.11) is normalized. 
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Substituting as X{B) = P{D~\B) and 7T{B) = P{B\D^), Equation (10.11) 
can be written as 

P{B) = aX{B)7T{B). (10.12) 

Now we want to obtain X{B) and 7T{B). First, we consider X{B). Denoting 
the data encoded in the tree rooted at the k~th child oi B by D^~, we have 

X{B) = P{D-\B) (10.13) 

= f3Y[P{D^-\B) (10.14) 
k 

= (3l[Xk{B), (10.15) 
k 

where /? is a normalization constant that can be chosen so that the sum 
2 7 H^j) equals 1. Here bj denote the different values of ^ . In the last equa
tion, we defined Xk{B) = P{D^~\B). In a singly connected graph, there is 
no direct link between children, and therefore given a fixed parent node, the 
children are independent. This makes it possible to factor the children. If we 
assume E is the A:-th child and ê  are diff"erent values of E, we have 

P{D''-\B)=Y^P{D-E\B,ei)P{ei\B) (10.16) 
i 

=Y,P{D-E\ei)P{ei\B) (10.17) 
i 

=Y,Kei)P{ei\B), (10.18) 
i 

and therefore, using conditional probabilities of children given the parent such 
as P{ei\hj) and (10.15), we obtain A's node by node. Here, P{ei\hj) is to be 
obtained from a statistical model or data, that is learned by or provided to 
the system. 

Now we consider 7r(5). We have 

i^{B)=P{B\D%) (10.19) 

=Y,P{B\ai,Dl)P{ai\Dl) (10.20) 
i 

=Y,P{B\ai) P{ai\D+) (10.21) 
i 

=Y, P{B\ai) 177r(ai) J ] A«(a,) I , (10.22) 
i \ rn ) 

where m is a suSix enumerating the siblings of B except for B, ai are different 
values of A, and 7 is a normalization constant. The last equation follows from 

P(A|D+) = _ M _ . (10.23) 



316 Kunio Kashino 

The term in parenthesis in (10.22) is already calculated when P{A) is cal
culated. This means that TT can also be calculated node by node, using the 
conditional probabilities of children given the parent such as P{bj\ai). 

Now we have shown that X{X) can be derived from A (children of X) and 
7r(X) from 7r(parent of X), using conditional probabilities P(child[parent) be
tween two adjacent nodes. This allows us to calculate posteriors using (10.12). 
The calculation of A(-) and 7r(-) can be viewed as the propagation of diagnostic 
and causal support for X, respectively. 

In the above discussion, we assumed that the network is singly connected. 
If the network is multiply connected, the algorithm presented above will not 
properly terminate due to the loops of the probability propagation paths. 
Various methods have been developed to obtain the posteriors for such cases, 
including the junction tree algorithm and approximative methods using Monte 
Carlo sampling and variational methods [396]. 

The junction tree algorithm utilizes a tree whose nodes are a group of nodes 
in the original graph. First, the original graph is converted to an undirected 
graph by operations called moralization and triangulation. Then, a junction 
tree is constructed by substituting the cliques^ in the converted graph with a 
node. 

In the junction tree, posterior probabilities can be factored using a func
tion defined for each node called a clique potential, and calculated with the 
probability propagation process designed for undirected trees. 

10.3.2 Bayesian Networks Applied to Music Signals 

Here, we review how the Bayesian networks were applied to a music scene 
analysis task. The first example is a processing model called Organized 
Processing Toward Integrated Music Scene Analysis (OPTIMA) [332]. The 
input of the model is assumed to be monaural music signals. The output is a 
music scene description, that is, a hierarchical representation of musical events 
such as frequency components, notes and chords. As shown in Fig. 10.8, the 
model consists of three blocks: (A) a pre-processing block, (B) a main process
ing block, and (C) internal models. 

In the pre-processing block, frequency analysis is performed and a sound 
spectrogram is obtained. Then, frequency components are extracted. An ex
ample of the power transition of a frequency component is shown in Fig. 10.9. 
With complicated spectrum patterns, it is difficult to recognize the onset and 
offset times solely based on bottom-up information. Thus the system creates 
several terminal point candidates for each extracted component. 

Rosenthal's rhythm recognition method [547] and Desain's time quanti
zation method [140] are used to obtain rhythm information for the precise 
extraction of frequency components and recognition of the onset/offset time. 

^A clique of a graph is its maximal complete subgraph. A complete graph is a 
graph in which each pair of nodes is connected by a link. 
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Fig. 10.9. A frequency component and its terminal point candidates. 

Based on the integration of the beat probabilities and termination probabil
ities of terminal point candidates, the candidates are determined as being 
continuous or terminated, and consequently processing windows are formed. 
Here a processing window is a group of frequency components with similar 
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processing windows 
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Fig. 10.10. A spectrogram of a polyphonic music excerpt and the processing win
dows. 

onset times. The processing window is utilized as a time base for the subse
quent main processes. 

When each processing window is created in the pre-processing block, it 
is passed to the main processing block. The main block involves a Bayesian 
network. Exactly as discussed in the previous section, the Bayesian network 
has three layers: component, note, and chord levels. The chord level nodes 
are connected in time as the time proceeds. Each node in the network is a 
random variable that encodes multiple hypotheses. That is, the model holds 
hypotheses of the external acoustic events as a probability distribution in a 
hierarchical space. 

The Bayesian network is actually built by multiple processing modules. 
The modules are classified into two types: those for creating the nodes and 
providing initial probabilities to the nodes, and those for providing condi
tional probabilities to the links. The former is called creators, and the latter 
predictors. 

There are two creators in OPTIMA: a note hypothesis creator and a chord 
hypothesis creator. As described above, first, frequency component hypothe
ses and processing windows are created. Then the note hypothesis creator 
generates the hypotheses by referring to perceptual rules such as harmonic 
mistuning and onset asynchrony as described in the previous section. The 
creator also consults timbre models for a timbre discrimination analysis to 
identify the sound source of each note. A chord hypothesis creator generates 
the chord hypotheses when note hypotheses are given. This creator refers to 
chord naming rules. 
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Table 10.3. Examples of the chord-note relation knowledge. The conditional prob
abilities P(note|chord) were obtained by statistical analysis of printed music. 

Note 

A 
A # 
B 
C 

c# 
D 
D # 
E 
F 
F # 
G 
G # 

A 

.983 di 

.000 ± 

.150 ± 

.008 ± 

.850 ± 

.025 ± 

.067 lb 

.842 ± 

.017 ± 

.125 ± 

.025 lb 

.075 ± 

.023 

.000 

.064 

.016 

.064 

.028 

.045 

.065 

.023 

.059 

.028 

.047 

A7 

.852 ± 

.023 =b 

.364 ± 

.023 ± 

.818 ± 

.057 ± 

.023 ± 

.545 ± 

.023 ± 

.148 =b 

.773 ± 

.045 lb 

Given chord (5 examples) 

.074 

.031 

.101 

.031 

.081 

.048 

.031 

.104 

.031 

.074 

.088 

.044 

Am 

1.00 ± .000 
.030 ± .058 
.091 ± .098 
.848 zb .122 
.000 ± .000 
.182 ± .132 
.030 ± .058 
.909 ± .098 
.000 ± .000 
.000 ± .000 
.121 ± .111 
.000 lb .000 

Am7 

.933 lb 

.000 ± 

.182 ± 
1.00 ± 
.030 lb 
.394 ± 
.000 ± 
.879 ± 
.030 ± 
.061 ± 
.939 ± 
.000 =b 

.081 

.000 

.132 

.000 

.058 

.167 

.000 

.111 

.058 

.081 

.081 

.000 

Adim 

.781 lb 

.188 d= 

.094 ± 

.656 ± 

.031 lb 

.031 lb 

.406 lb 

.031 ± 

.094 ± 

.469 ± 

.062 ± 

.156 ± 

.143 

.135 

.101 

.165 

.060 

.060 

.170 

.060 

.101 

.173 

.084 

.126 

± : 95% reliable range 

There are three predictors in OPTIMA that provide the conditional 
probabilities of a child, given a parent, to the links. A frequency com
ponent predictor calculates P(component|note). A note predictor evaluates 
P(note|chord). A chord transition predictor provides chord transition prob
abilities P(chord|chord). These processing modules use six types of internal 
models. 

The chord transition model holds statistical information on chord pro
gressions, under the tri-gram assumption (see Chapter 5 for further details 
on A^-gram models). This dictionary is based on a statistical analysis of 206 
traditional songs (all Western tonal music). It is used by a chord transition 
predictor. 

The chord-note relation model is used by a note predictor. The model 
involves a database that stores the probabilities of notes that can be played 
in a given chord. This information is also obtained by a statistical analysis of 
the 206 songs. Part of the stored data is shown in Table 10.3. 

The chord naming rules are based on music theory, and are used by a 
chord hypothesis creator to recognize chords when the hypotheses of played 
notes are given. 

The tone memory stores instances of frequency component data of a single 
note played by various musical instruments such as a clarinet, flute, piano, 
trumpet, or violin at different degrees of loudness (forte, medium, piano), 
frequency range, and durations. This memory is used by a frequency compo
nent predictor. 

The timbre models are formed in the feature space of the timbre. An eleven-
dimensional feature space was created using principal component analysis, and 
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Fig. 10.11. An example of created Bayesian networks. 

each of the above-mentioned musical instruments was modelled by a Gaussian 
distribution in the feature space. This model is used by a note hypothesis 
creator to provide the initial probabilities of sound sources (i.e., instrument 
names). 

Finally, the perceptual rules are used by a note hypothesis creator to create 
note hypotheses from the frequency component hypotheses. The rules involve 
the clustering algorithm described in the previous section [334]. 

Each time a frequency component hypothesis is created in a processing 
window, the hypothesis creators create the node instances and links. When a 
link is created, the predictors provide conditional probabilities. Then, a prob
ability propagation series is automatically performed and posterior probabil
ities at that time are calculated. As shown in Fig. 10.11, multiple successive 
note-level nodes can be linked to a single chord level node based on rhythm in
formation extracted during the pre-processing stage. Thus, the instance of the 
network structure grows dynamically as the input signal arrives. Although the 
higher-level hypotheses (e.g. chords) are created based on lower-level informa
tion (e.g. notes), the higher-level information is still useful for the lower-level 
hypotheses, because it reflects and integrates a larger-scale context and infor
mation from the corresponding internal models. 

In the OPTIMA model, temporal transitions are solely represented at the 
chord level. This simplifies the network structure to a tree, but generally this 
is insufficient because note-level temporal dependency is not considered. 

The second example we review here is a music stream network [331], in 
which note-level temporal transitions were introduced. In this example, the 
Bayesian network was employed for sound source identification for ensemble 
music.'' 

^The work toward a musical sound source identification is discussed in Chapter 6 
in this book. 
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Consider two musical notes n^, Uk-i {k denotes the order of the onset 
times of these notes, Uk-i preceding n^). An 'impedance' measure Z(n/e, n^-i) 
is defined as 

Z{nk,nk-i)^wY,{- ^i logPi(nfc,nfc_i)} , (10.24) 
i 

where i is a suffix that enumerates diflferent terms of Z, Pi is the conditional 
probability of the occurrence of the transition from Uk-i to Uk in a given 
musical context, and Wi {> 0) is the weight for each term. Z can be viewed 
as a weighted sum of the amount of information, — logP^, delivered by the 
transition from rik-i to n^. Thus, Z reflects the infrequency of the transition 
for these two notes. Then, a 'music stream' [447] is formed as a sequence of 
musical notes that gives a local minimum of Z. 

The term VF is a time window that is defined as 

W{6t)=exp(-^ , (10.25) 

where St is the difference between the onset times of these two notes, and r 
is a time constant. Unlike ordinary time windows, W becomes greater as 5t 
increases. This loosely corresponds to the proximity rule of auditory stream 
organization as described in [49]. 

In this example, the following three Z factors are considered: (Pi) the 
transition probabilities of musical intervals, (P2) the transition probabilities 
of timbres, and (P3) the transition probabilities of musical roles. 

The first factor is the musical interval probability. In tonal music, the 
musical intervals of note transitions do not appear equally often; some inter
vals are more frequent than others. Thus the pitch transition probability in a 
melody can be utihzed as Pi in (10.24). The probabilities Pi were obtained 
from 397 melodies extracted from 196 pop scores and 201 jazz scores, where 
the total number of note transitions was 62,689. Figure 10.12 shows the es
timated probabilities. The analysis was made only for the principal melodies 
and may not be precisely valid for the other melodies such as bass lines or 
parts arranged for polyphonic instruments such as the piano. For simplicity, 
however, probabilities shown in Fig. 10.12 for Pi were used for all cases. 

The second factor is the timbre transition probability. It is reasonable to 
suppose that a sequence of notes tends to be composed of notes that have 
similar timbres. To incorporate this tendency, a distance measure was defined 
between the timbres of two notes, so as to estimate the probability that two 
notes a certain distance apart would appear sequentially in a musical stream. 
These probabilities form P2 in (10.24). 

The distance between timbres is defined as the Euclidean distance between 
the timbre vectors in a timbre space. A timbre space can be spanned in several 
ways. In the experiment described in [331], each axis of the space corresponds 
to a musical instrument name, and a timbre vector is composed of correlation 
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Fig. 10.12. Probabilities of musical intervals. 

Probability 

Distance 

Fig. 10.13. Conversion from distance to probability. The calculated distance d 
is converted to Pg, which is the probability of the appearance of the distance in 
a sequence of musical notes, by using a histogram of distances. The histogram is 
normalized so that the histogram values add up to one. 

values between the input signal and each of the template signals of musical 
instruments stored in advance. Then, the distances between the timbre vectors 
of successive notes in a sequence are translated into probabilities using a 
normalized histogram as explained in Fig. 10.13. This histogram models the 
distribution of the timbre vectors for successive notes. 

The third factor is musical role consistency. In ensemble music, a sequence 
of notes can be regarded as carrying a musical role such as a principal melody 
or a bass line. To introduce such musical semantics, the probability P3 is 
introduced: 

Ps = ar-^b, (10.26) 

where a and b are constants, and r is the rate of the highest (or lowest) notes in 
the music stream under consideration. Equation (10.26) represents a musical 
heuristic that the music stream formed by the highest (lowest) notes tends to 
continue to flow to the highest (lowest) note. 
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Fig. 10.14. A procedure for creating music stream networks. See text for details. 

Using (10.24), the networks that correspond to sequences of musical notes 
are built by a procedure that is illustrated in Fig. 10.14: 

1. When a new node Uk has just been created, the system first chooses 
the link that gives the minimum Z value (/i) among the candidate links 

2. The system then evaluates Z values for the link candidates {gir'' ^ds) 
from the selected node {uks), to choose the hnk with the minimum Z 
value (^i). 

3. If ^1 and /i are identical, the link composes a music stream. If a music 
stream from riks has already been formed in a direction other than pi, 
the stream is cut; the direction of the music stream is changed to gi{= h). 

Thus the networks are built by connecting nodes that give the locally mini
mum Z value. 

Once the network has been built, then it can be considered as a Bayesian 
network and the posterior probabilities of sound sources are calculated. An 
example of the system in operation is shown in Figure 10.15. The input here 
is a monaural recording of a real ensemble performance of 'Auld Lang Syne', 
a Scottish folk song, arranged in thee parts and performed by a violin, a flute, 
and a piano. Figure 10.15 displays the recognized music streams as well as 
the status of nodes for the beginning part of the song. The bars in each node 
indicate the probabilities at the node (not normalized). The links between the 
nodes are the extracted music streams. It is shown that each part is correctly 
recognized as the music stream. The thickness of the link line corresponds to 
its Z value given by (10.24); a thick line represents a link with a low Z value. 
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Fig. 10.15. An example of a created music stream network. 

10.4 Conclusion: From Grouping to Generative 
Estimation 

As shown throughout this chapter, early work on computational auditory 
scene analysis was rather directly inspired by psychological and physiological 
findings. In particular, frequency component grouping rules were intensively 
investigated. Various systems have been designed to simulate simultaneous, 
sequential, and schema-based grouping and integration. 

Fortunately, probabilistic approaches have become computationally feasi
ble in recent years [101], [672], [208]. For example, as discussed in Chapter 7, 
the Bayesian approach has been successfully applied to fundamental frequency 
estimation for music signals [212]. Although the first trials of the Bayesian ap
proach for music scene analysis were simplified in terms of model structure 
and parameter exploration [332], the approach has been greatly extended in 
recent years. For example, Sterian developed a music transcription system 
based on a probabilistic framework [611]. The system tracks frequency com
ponents with a Kalman filter, which is equivalent to Bayesian estimation, and 
then it maintains multiple hypotheses for note formation. Cemgil proposed a 
generative model for music transcription [74], as described in Chapter 7. 
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We anticipate that it will be possible to explain certain auditory restora
tion phenomena in terms of Bayesian inference. When this is proven to be 
the case, the probabilistic inference approach to music scene analysis may be 
viewed as a newer version of the ASA-inspired approach. 
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11.1 Introduction 

This chapter introduces a research approach called 'music scene description^ 
[232], [225], [228], where the goal is to build a computer system that can under
stand musical audio signals at the level of untrained human listeners without 
trying to extract every musical note from music. People listening to music can 
easily hum the melody, clap hands in time to the musical beat, notice a phrase 
being repeated, and find chorus sections. The brain mechanisms underlying 
these abilities, however, are not yet well understood. In addition, it has been 
difficult to implement these abilities on a computer system, although a system 
with them is useful in various applications such as music information retrieval, 
music production/editing, and music interfaces. It is therefore an important 
challenge to build a music scene description system that can understand com
plex real-world music signals like those recorded on commercially distributed 
compact discs (CDs). 

Music scene description differs from two popular approaches to deal with 
music signals, sound source separation and traditional automatic music tran
scription (in the narrow sense^). Although these technologies are valuable from 
an engineering viewpoint, neither separation nor transcription is necessary or 
sufficient for understanding music. 

• It is possible to understand music without sound source separation. 
The fact that human listeners understand various properties of audio sig
nals is not necessarily evidence that the human auditory system extracts 
the audio signal of each individual source. Even if a mixture of two compo
nents cannot be separated, it can be understood from their salient features 
that the mixture includes them. In fact, from the viewpoint of auditory 

^The term 'automatic music transcription' in this chapter refers to a traditional 
approach of transcribing all musical notes as a score, while the term 'automatic 
music transcription' in this book has a broader meaning including the music scene 
description as described in Chapter 1 of this volume. 
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Fig. 11.1. Music scene descriptions. 

psychology, it has been pointed out that human hsteners do not perform 
sound source separation: perceptual sound source segregation is differ
ent from signal-level separation. For example, Bregman noted that 'there 
is evidence that the human brain does not completely separate sounds' 
[50]. The approach of developing methods for monaural or binaural sound 
source separation might deal with a hard problem which is not solved by 
any mechanism in this world (not solved even by the human brain). 

• It is possible to understand music without complete music transcription. 
Music transcription, identifying the names (symbols) of musical notes, is a 
difficult skill mastered only by trained musicians. As pointed out by Goto 
[239], [240], [232] and Scheirer [565], untrained listeners understand music 
to some extent without mentally representing audio signals as musical 
scores. For example, as known from the observation that a listener who 
cannot identify the name and constituent notes of a chord can nevertheless 
feel the harmony and chord changes, a chord is perceived as combined 
whole sounds (tone colour) without reducing it to its constituent notes 
(like reductionism). Furthermore, even if it is possible to derive separated 
signals and musical notes, it would still be difficult to obtain high-level 
music descriptions like melody lines and chorus sections. 

The music scene description approach therefore emphasizes methods that 
can obtain a certain description of a music scene from sound mixtures of 
various musical instruments in a musical piece. Here, it is important to discuss 
what constitutes an appropriate description of music signals. Since various 
levels of abstraction for the description are possible, it is necessary to consider 
which level is an appropriate first step towards the ultimate description in 
human brains. Goto [232], [228] proposed the following three viewpoints: 

• An intuitive description that can be easily obtained by untrained listeners. 
• A basic description that trained musicians can use as a basis for higher-

level music understanding. 
• A useful description facilitating the development of various practical ap

plications. 
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According to these viewpoints, the following local and global descriptions 
(Fig. 11.1) have been proposed for Western music: 

1. Melody and bass lines 
Melody and bass hnes represent the temporal trajectory of the melody and 
bass. The melody is a series of single tones and is heard more distinctly 
than the rest. The bass is a series of single tones and is the lowest frequency 
part in polyphonic music. Note that a melody or bass line here is not 
represented as a series of musical notes; it is a continuous representation 
of fundamental frequency (FO, perceived as pitch) and power transitions. 
Only music with distinct melody and bass lines is dealt with for this 
description. 

2. Hierarchical beat structure 
Hierarchical beat structure represents the fundamental temporal structure 
of music and comprises the quarter-note (beat) and measure levels—i.e., 
the positions of quarter-note beats and bar lines (corresponding to the 
metrical levels of 'beat' and 'bar' in Fig. 4.1, p. 106). 

3. Drums 
Drums represent onset times of principal drum sounds, such as bass and 
snare drums. Their temporal patterns form drum patterns. Only music 
with drum sounds is dealt with for this description. 

4. Chorus sections and repeated sections 
Chorus sections represent the most representative, uplifting, and promi
nent thematic sections in the structure of a musical piece (especially in 
popular music). Since chorus sections are usually repeated, they are rep
resented as a list of the start and end points of every chorus section. 
Repeated sections represent the repetition of temporal regions with vari
ous lengths. Only music with distinct repeated choruses, such as popular 
music, is dealt with for the description of chorus sections, while any music 
can be dealt with for the description of repeated sections. 

The idea behind these descriptions came from introspective observation of how 
untrained listeners listen to music. The following sections introduce methods 
for producing these descriptions from music signals such as CD recordings, 
which contain simultaneous sounds of various instruments (with or without 
drum sounds). In general, these methods deal with monaural audio signals 
because stereo signals on CDs can be easily converted to monaural signals by 
averaging the left and right channels. While methods depending on stereo 
information [24] can have better performance than methods dealing with 
monaural signals, such stereo-based methods cannot be applied to monau
ral signals. Methods assuming monaural signals, on the other hand, can be 
applied to stereo signals and be considered essential to music understanding 
since human listeners have no difficulty understanding the above descriptions 
even from monaural signals. 
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11.2 Est imating Melody and Bass Lines 

The estimation of melody and bass lines is important because the melody 
forms the core of Western music and is very influential in the identity of a 
musical piece, while the bass is closely related to the tonality (see Chapter 1). 
These lines are fundamental to the perception of music by both musically 
trained and untrained listeners. They are also useful in various apphcations 
such as automatic music indexing for information retrieval (e.g., search
ing for a song by singing a melody), computer participation in live human 
performances, musical performance analysis of outstanding recorded perfor
mances, and automatic production of accompaniment tracks for karaoke using 
CDs. 

It is difficult to estimate the fundamental frequency (FO) of melody and 
bass lines in monaural sound mixtures from CD recordings. Most previ
ous FO estimation methods cannot be applied to this estimation because 
they require that the input audio signal contain just a single-pitch sound 
with aperiodic noise or that the number of simultaneous sounds be known 
beforehand. The main reason FO estimation in sound mixtures is difficult 
is that, in the time-frequency domain, the frequency components of one 
sound often overlap the frequency components of simultaneous sounds. In 
popular music, for example, part of the voice's harmonic structure is often 
overlapped by harmonics (overtone partials) of the keyboard instrument 
or guitar, by higher harmonics of the bass guitar, and by noisy inhar
monic frequency components of the snare drum. A simple method for lo
cally tracing a frequency component is therefore neither reliable nor stable. 
Moreover, FO estimation methods relying on the existence of the FOs fre
quency component (the frequency component corresponding to the FO) not 
only cannot handle the missing fundamental, but are also unreliable when 
the FOs frequency component is smeared by the harmonics of simultaneous 
sounds. 

FO estimation of melody and bass lines in CD recordings was first achieved 
in 1999 by Goto [232], [222], [228]. Goto proposed a real-time method called 
PreFEst (Predominant-FO Estimation method) which estimates the melody 
and bass lines in monaural sound mixtures. Unlike previous FO estimation 
methods, PreFEst does not assume the number of sound sources, locally trace 
frequency components, or even rely on the existence of the FOs frequency 
component. PreFEst basically estimates the FO of the most predominant har
monic structure—the most predominant FO corresponding to the melody or 
bass line—within an intentionally limited frequency range of the input mix
ture. It simultaneously takes into consideration all possibilities for the FO and 
treats the input mixture as if it contained all possible harmonic structures 
with different weights (amplitudes). To enable the application of statistical 
methods, the input frequency components are represented as a probability 
density function (pdf), called an observed pdf. The point is that the method 
regards the observed pdf as a weighted mixture of harmonic-structure tone 
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Fig. 11.2. Overview of PreFEst (Predominant-FO Estimation method) for estimat
ing melody and bass lines in CD recordings. In this figure, BPF denotes bandpass 
filtering. 

models (represented by pdfs) of all possible FOs. It simultaneously estimates 
both their weights corresponding to the relative dominance of every possible 
harmonic structure and the shape of the tone models by maximum a posteri
ori probability (MAP) estimation (see Chapter 2, p. 40 for an introduction to 
MAP estimation methods) considering their prior distribution. It then consid
ers the maximum-weight model as the most predominant harmonic structure 
and obtains its FO. The method also considers the FOs temporal continuity 
by using a multiple-agent architecture. 

The following sections first explain the PreFEst method in detail and then 
introduce other methods for estimating the melody line developed by Paiva, 
Mendes, and Cardoso [494], [493], Marolt [435], [436], and Eggink and Brown 
[169], and a method for estimating the bass line developed by Hainsworth 
and Macleod [264]. Figure 11.2 shows an overview of PreFEst. PreFEst con
sists of three components, the PreFEst front end for frequency analysis, the 
PreFEst core to estimate the predominant FO, and the PreFEst back end to 
evaluate the temporal continuity of the FO. Since the melody line tends to 
have the most predominant harmonic structure in middle and high-frequency 
regions, and the bass line tends to have the most predominant harmonic struc
ture in a low-frequency region, the FOs of the melody and bass lines can be 
estimated by applying the PreFEst core with appropriate frequency-range 
limitation. 
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11.2.1 PreFEst Front End: Forming the Observed Probability 
Density Functions 

The PreFEst front end first uses a multirate filterbank to obtain adequate 
time-frequency resolution under a real-time constraint. By using an instanta
neous frequency-related measure [84], [7], [338] for the existence of frequency 
components, it then extracts frequency components ^^^^u) from the short-
time Fourier transform (STFT) X{iy,t) of a signal 

T/it)( \ _ / i^(^'OI if ^ ^^^ ^ frequency component, m i^ 
^ ^ " \ 0 otherwise, ^ ' ' 

where t is the time measured in units of frame-shifts (10 ms), and i/ is the log-
scale frequency denoted in units of cents (a musical-interval measurement). 
Frequency /HZ in Hertz is converted to frequency /cent in cents so that there 
are 100 cents to a tempered semitone and 1200 to an octave: 

/cent = 1200 l0g2 ^ ^ / " % , . (11.2) 
440 X 2i2"-^ 

To obtain two sets of bandpass-filtered frequency components, one for the 
melody fine (261.6-4186 Hz) and the other for the bass line (32.7-261.6 Hz) 
[228],^ the PreFEst front end uses bandpass filters (BPFs) whose frequency 
response is BPF î(z/) where u denotes the melody line {u = 'melody') or the 
bass line {u = 'bass line'). Each set of the bandpass-filtered components is 
finally represented as an observed pdf p^ (^) 

(.) BPF„(.) !^W(.) 

11.2.2 PreFEst Core: Estimating the FOs Probability Density 
Function 

For each melody or bass line set of filtered frequency components represented 
as an observed pdf p ^ (^), the PreFEst core forms a probability density func
tion of the FO, called the FOs pdf, p)pQ{iyo), where I/Q is the log-scale funda
mental frequency in cents. The PreFEst core considers each observed pdf to 
have been generated from a weighted-mixture model of the tone models of all 
possible FOs; the tone model is the pdf corresponding to a typical harmonic 
structure and indicates where the harmonics (overtone partials) of the FO 
tend to occur (Fig. 11.3). Because the weights of tone models represent the 
relative dominance of every possible harmonic structure, these weights can be 
regarded as the FOs pdf: the more dominant a tone model is in the mixture, 
the higher the probability of the FO of its model. 

^The method finds the FO whose harmonics are most predominant in those lim
ited frequency ranges. In other words, whether the FO is within each limited range or 
not, PreFEst tries to estimate the FO which is supported by predominant harmonic 
frequency components within that range. 
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Fig. 11.3. Model parameters of multiple adaptive tone models p(î |i/o, i, M (^o, i))-

Weighted-Mixture Model of Adaptive Tone Models 

To deal with diversity of the harmonic structure, the PreFEst core can use 
several types of harmonic-structure tone models. The pdf of the i-th tone 
model for each FO UQ is denoted by p(i/|i/o,^,M^*H^o,0) (̂ ^^ ^ig. 11.3), where 
the model parameter ^^^\VQ^I) represents the shape of the tone model. The 
number of tone models is Î ^ (that is, i = l , . . . , I i t ) , where u denotes the 
melody line {u = 'melody') or the bass line (u = 'bass line'). Each tone model 
is defined by 

Mu 

p(i/|z/o,^,M^*H^o,^)) = 5 Z P(^.^ko,^,M^*H^o,^)), (11.4) 
7 n = l 

p(z/, m|z/o, h M^*^(^0,0) = ĉ *̂ {rn\̂ ô  0 ^ ( ^ 5 ^o + 1200 log2 m, al), (11.5) 

li^'\v^,i) = {c^'\m\uo4) I m - l , . . . , M , } , (11.6) 

where M^ is the number of harmonics considered, cr̂  is the variance of the 
Gaussian distribution A/'(i/; Z/Q^^U) (̂ ^^ (2.16), p. 29 for a definition), and 
c^^\m\vQ^i) determines the relative amplitude of the m-th harmonic compo
nent (the shape of the tone model) and satisfies 

^c(*)(m| i /o , i ) = l. (11-7) 
7 7 1 = 1 

In short, this tone model places a weighted Gaussian distribution at the po
sition of each harmonic component. 

The PreFEst core then considers the observed pdf Px^ {y) to have been 
generated from the following model p(i/|0^*^), which is a weighted mixture of 
all possible tone models p[v\yQ,i^ii^^\vo^i)): 

ph I^ 

p(H0<*)) = I " Vw;«(i/o,i) p{v\v^,i,n^'\uo,i)) di^o, (11-8) 

6>(*'= {wW,M«}, (11.9) 
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i(;W = {w^'Hiyo,i) I F ,̂ < î o < F^,f = 1 , . . . , I„}, (11.10) 

M^ = {/xW(j/o,i) \F',<uo<K,i = 1 , . . . , I«}, (11.11) 

where F\^ and FĴ  denote the lower and upper Hmits of the possible (allowable) 
FO range and w^^\iyo, i) is the weight of a tone model p(i/|z^o, h I^^^H^o^ ^)) that 
satisfies 

^'Tw^'Huo.i)diyo = l- (11.12) 

Because the number of sound sources cannot be known a priori, it is important 
to simultaneously take into consideration all FO possibilities as expressed in 
(11.8). If it is possible to estimate the model parameter 6^^^ such that the 
observed pdf p^ (ly) is likely to have been generated from the model p(i/|0^*^), 
the weight w^*\uo,i) can be interpreted as the FOs pdf pi?o(^o)-

PFO(^O) = J^w^'\iyo.i) (K < ^0 < F^). (11.13) 

In t roducing a Pr io r Dis t r ibut ion 

To use prior knowledge about FO estimates and the tone model shapes, a prior 
distribution pou(^ ) of ̂ ^̂ ^ is defined as follows: 

Po„(0^*') = \>ou{w^'^) Po«(At('>), (11.14) 

Here, poui'w^^^) and pouifi^^^) are unimodal distributions: poit(ty^^^) takes 
its maximum value at K;QJ(Z/O,0 ^^^ POU(M^*^) takes its maximum value 
â  MoLVo,^ (= {col{m\iyo,i) \ m = 1,. . . ,M^}), where i(;^*J(i/o,i) and 
MouC ô̂ O ^^^ ^he most probable parameters. Figure 11.4 shows two exam
ples of the most probable tone model shape parameters, fjLQ^{i/o,i), used in 
Goto's implementation. Z^ and Z^ are normalization factors, and fi^u and 
Pliuii^o, i) are parameters determining how much emphasis is put on the max
imum value. The prior distribution is not informative (i.e., it is uniform) when 
Piuu and PfiuiJ^Oi 0 are 0, corresponding to the case when no prior knowledge 
is available. In practice, however, /?^w(i^o?0 should not be 0 and a prior dis
tribution of the tone model shapes should be provided. This is because if the 
prior distribution of the tone model shapes is not used, there are too many 
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(d) for bass line 
{u = 'bass line', i = 2,1/0 = 2000 

cent) 

Fig. 11.4. Examples of prior distribution of the tone model shapes 

degrees of freedom in their shapes. Without the prior distribution, unrealistic 

tone model shapes, such as a shape having only one salient component at 

frequency of the fourth harmonic component, could be estimated. In (11.15) 

and (11.16), D^{W''QI',W^^^) and D^{fi^Q^{uo,i)',ii^^\i/o,i)) are the following 

KuUback-Leibler information: 

nW/ duo 

Mu 

D^(Mo«('^o,i);M^*'K,i)) = E 4 « ( " ^ k o , i ) log 
m = l 

Col{'m\vo,i) 

c(*)(m|i/Oii) 

(11.17) 

(11.18) 

These prior distributions were originally introduced for the sake of analyt
ical tractabili ty of the expectation maximization (EM) algorithm to obtain 
intuitive (11.25) and (11.26). 

M A P E s t i m a t i o n U s i n g t h e E M A l g o r i t h m 

The problem to be solved is to estimate the model parameter 6^^\ taking into 

account the prior distribution po^i'^ )^ when \y^\u) is observed. The MAP 

estimator of 6^^^ is obtained by maximizing 
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p<*V) (logp(i^|e^*') + logpo„(0(*')) du. (11.19) 
/ 

Because this maximization problem is too difficult to solve analytically, the 
PreFEst core uses the expectation maximization (EM) algorithm (see the 
presentation of the EM algorithm in Chapter 2, p. 35 and [138]), which is an 
algorithm where two steps—the expectation step (E-step) and the maximiza
tion step (M-step)—are iteratively applied to compute MAP estimates from 
incomplete observed data (i.e., from p^(i/)) . With respect to 0^*\ each itera
tion updates the old estimate 6'^^^ — {w'^^\ fi'^^^ to obtain a new (improved) 

estimate 0 = {w^^\Jl^ ^}. For each frame t, it;'̂ *̂  is initialized with the final 
estimate {t;̂ *~̂ ^ after iterations at the previous frame t — 1; ^'^^^ is initialized 
with the most probable parameter /XQJ in the current implementation. 

By introducing the hidden (unobservable) variables Z/Q, ^ and m, which, 
respectively, describe which FO, which tone model, and which harmonic com
ponent were responsible for generating each observed frequency component at 
v^ the two steps can be specified as follows: 

1. E-step: 
Compute the following (5MAP(^^^^|0'^^^) for the MAP estimation: 

QMAP(^^*V'^'^) - Q{e^'^\e'^'^)^\ogpou{e^'^). (11.20) 

/

oo 

-00 

(11.21) 

where Q{6^^^ \0'^^^) is the conditional expectation of the mean log-likelihood 
for the maximum likehhood estimation. Eî Q,i,rn[<̂ |̂ ] denotes the condi
tional expectation of a with respect to the hidden variables Z/Q, h ^^^ ^? 
with the probability distribution determined by condition b. 

2. M-step: 

Maximize QMAP(^ |^ ) as a function of 6^*^ to obtain an updated (im

proved) estimate 9 : 

e^'^ = argmax QMAP(^^*^|0'^*^). (11.22) 

In the E-step, Q(0^*V^*^) is expressed as 

/

oo ft ^u ^y^u 

p(z/o, ,̂ m|z/, '̂(*^) log p(i/, Z/Q, ,̂ m|^^*^) duodu, (11.23) 
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where the complete-data log-hkeUhood is given by 

logp(i/,z/o,i,m|0^*^) =log{w^^\iyo,i) p{iy,m\uo,i, fi^^\uo,i))). (11.24) 

Regarding the M-step, (11.22) is a conditional problem of variation, where 
the conditions are given by (11.7) and (11.12). This problem can be solved by 
using Euler-Lagrange differential equations with Lagrange multipliers [222], 
[228] and the following new parameter estimates are obtained: 

1 1 PlVU 

where Wul{uo^i) and c i i ^^ l ^o , ^ are, when the noninformative prior distrib
ution {pwu = 0 and Pllu{i^o, i) = 0) is given, the following maximum likelihood 
estimates: 

WIL{UQ,1)= / py{jy)—^ \ / ~ du, 

J~^ II: E L I ^'^'^ iv. k) p(̂ |7/. A:, //'(*) (ry, k)) dv 

(11.27) 

- ( * ) / I •̂  ^ 

f"^ it)., w'^*^{iyo,i) p(z/,m|t/o,i,/x^^^)(^o,i)) ^^ 

(11.28) 

After the above iterative computation of (11.25) and (11.26),^ the FOs pdf 
PFO(^O) ^^^ ^^ obtained from w^^\uo^ i) according to (11.13). The tone model 
shape c^^\m\iyo^i), which is the relative amplitude of each harmonic compo
nent of all types of tone models p{iy\iyo,i, fi^^\uo, i)), can also be obtained. 

11.2.3 PreFEst Back End: Sequential FO Tracking by 
Multiple-Agent Architecture 

A simple way to identify the most predominant FO is to find the frequency 
that maximizes the FOs pdf. This result is not always stable, however, because 
peaks corresponding to the FOs of simultaneous sounds sometimes compete in 
the FOs pdf for a moment and are transiently selected, one after another, as 
the maximum. 

^In implementing the PreFEst core, this iterative computation is simple enough 
to perform only (11.25), (11.26), (11.27), and (11.28). 
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(a) Frequency components 
(observed pdf p^^ (u) before 
applying bandpass filters) 

7200 cent 

3600 cent 

Ocent 

melody line g 

bass line. 

^ time [sec] ^ 

(b) Estimated melody and bass lines 
(the most dominant and stable 
FO trajectory in each p}^o(^o)) 

(c) FOs pdf (p^o(^o)) for estimating (d) FOs pdf (pi^o(^o)) ^^^ estimating the 
the melody line in (b) bass line in (b) 

Fig. 11.5. Audio-synchronized real-time graphics output for a popular music ex
cerpt with drum sounds: (a) frequency components, (b) the corresponding melody 
and bass lines estimated (final output), (c) the corresponding FOs pdf obtained when 
estimating the melody line, and (d) the corresponding FOs pdf obtained when es
timating the bass line. These interlocking windows have the same vertical axis of 
log-scale frequency. 

The PreFEs t back end therefore considers the global temporal continuity of 
the FO by using a multiple-agent architecture in which agents track different 
temporal trajectories of the FO [228]. Each agent s tar ts tracking from each 
salient peak in the FOs pdf, keeps tracking as long as it is temporally continued, 
and stops tracking when its next peak cannot be found for a while. The final 
FO output is determined on the basis of the most dominant and stable FO 
trajectory. Figure 11.5 shows an example of the final output . 
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11.2.4 Other M e t h o d s 

While the PreFEst method resulted from pioneering research regarding melody 
and bass estimation and weighted-mixture modelling for FO estimation, many 
issues still need to be resolved. For example, if an application requires MIDI-
level note sequences of the melody line, the FO trajectory should be segmented 
and organized into notes. Note that the PreFEst method does not deal with 
the problem of detecting the absence of melody and bass lines: it simply out
puts the predominant FO for every frame. In addition, since the melody and 
bass lines are generated from a process that is statistically biased rather than 
random—i.e., their transitions are musically appropriate this bias can also be 
incorporated into their estimation. This section introduces other recent ap
proaches [494], [493], [435], [436], [169] that deal with these issues in describing 
polyphonic audio signals. 

Paiva, Mendes, and Cardoso [494], [493] proposed a method of obtaining 
the melody note sequence by using a model of the human auditory system 
[595] as a frequency-analysis front end and applying MIDI-level note track
ing, segmentation, and elimination techniques. Although the techniques used 
differ from the PreFEst method, the basic idea that 'the melody generally 
clearly stands out of the background' is the same as the basic PreFEst con
cept that the FO of the most predominant harmonic structure is considered the 
melody. The advantage of this method is that MIDI-level note sequences of the 
melody line are generated, while the output of PreFEst is a simple temporal 
trajectory of the FO. The method first estimates predominant FO candidates 
by using correlograms (see Chapter 8) that represent the periodicities in a 
cochleagram (auditory nerve responses of an ear model). It then forms the 
temporal trajectories of FO candidates: it quantizes their frequencies to the 
closest MIDI note numbers and then tracks them according to their frequency 
proximity, where only one-semitone transition is considered continuous. After 
this tracking, FO trajectories are segmented into MIDI-level note candidates 
by finding a sufficiently long trajectory having the same note number and by 
dividing it at clear local minima of its amplitude envelope. Because there still 
remain many inappropriate notes, it eliminates notes whose amplitude is too 
low, whose duration is too short, or which have harmonically related FOs and 
almost same onset and offset times. Finally, the melody note sequence is ob
tained by selecting the most predominant notes according to heuristic rules. 
Since simultaneous notes are not allowed, the method eliminates simultaneous 
notes that are less dominant and not in a middle frequency range. 

Marolt [435], [436] proposed a method of estimating the melody line by 
representing it as a set of short vocal fragments of FO trajectories. This method 
is based on the PreFEst method with some modifications: it uses the PreFEst 
core to estimate predominant FO candidates, but uses a spectral modelling 
synthesis (SMS) front end that performs the sinusoidal modelling and analysis 
(see Chapters 1 and 3) instead of the PreFEst front end. The advantage of 
this method is that the FO candidates are tracked and grouped into melodic 
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fragments (reasonably segmented signal regions that exhibit strong and stable 
FO) and these fragments are then clustered into the melody line. The method 
first tracks temporal trajectories of the FO candidates (salient peaks) to form 
the melodic fragments by using a salient peak tracking approach similar to 
the PreFEst back end (though it does not use multiple agents). Because the 
fragments belong to not only the melody (lead vocal), but also to different 
parts of the accompaniment, they are clustered to find the melody cluster by 
using Gaussian mixture models (GMMs) according to their five properties: 

• Dominance (average weight of a tone model estimated by the EM algo
rithm) , 

• Pitch (centroid of the FOs within the fragment), 
• Loudness (average loudness of harmonics belonging to the fragment), 
• Pitch stability (average change of FOs during the fragment), and 
• Onset steepness (steepness of overall loudness change during the first 50 

ms of the fragment). 

Eggink and Brown [169] proposed a method of estimating the melody 
line with the emphasis on using various knowledge sources, such as knowl
edge about instrument pitch ranges and interval transitions, to choose the 
most likely succession of FOs as the melody line. Unlike other methods, this 
method is specialized for a classical sonata or concerto, where a solo melody 
instrument can span the whole pitch range, ranging from the low tones of a 
cello to a high-pitched flute, so the frequency range limitation used in the 
PreFEst method is not feasible. In addition, because the solo instrument does 
not always have the most predominant FO, additional knowledge sources are 
necessary to extract the melody line. The main advantage of this method is the 
leverage provided by knowledge sources, including local knowledge about an 
instrument recognition module and temporal knowledge about tone durations 
and interval transitions, which are integrated in a probabilistic search. Those 
sources can both help to choose the correct FO among multiple concurrent FO 
candidates and to determine sections where the solo instrument is actually 
present. The knowledge sources consist of two categories, local knowledge and 
temporal knowledge. The local knowledge concerning FO candidates obtained 
by picking peaks in the spectrum includes 

• FO strength (the stronger the spectral peak, the higher its likelihood of 
being the melody), 

• Instrument-dependent FO likelihood (the likehhood values of an FO candi
date in terms of its frequency and the pitch range of each solo instrument, 
which are evaluated by counting the frequency of its FO occurrence in 
different standard MIDI files), and 

• Instrument likelihood (the likelihood values of an FO candidate being pro
duced by each solo instrument, which are evaluated by the instrument 
recognition module). 
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The instrument recognition module uses trained Gaussian classifiers of the 
frequency and power of the first ten harmonic components, their deltas, and 
their delta-deltas, which are taken from the spectrum for each FO candidate. 
On the other hand, the temporal knowledge concerning tone candidates ob
tained by connecting FO candidates includes 

• Instrument-dependent interval likelihood (the likelihood values of an inter
val transition between succession tones, which are evaluated by counting 
the frequency of its interval occurrence in different standard MIDI files), 
and 

• Relative tone usage (measures related to tone durations between successive 
tones, which are used to penalize overlapped tones). 

These knowledge sources are combined to find the most likely 'path' of the 
melody through the space of all FO candidates in time. Since the melody path 
occasionally follows the accompaniment, additional postprocessing is done to 
eliminate sections where the solo instrument is actually silent. 

While the above methods deal with the melody line, Hainsworth and 
Macleod [264] proposed a method of obtaining the bass note sequence by 
maintaining multiple hypotheses. The method first extracts the onset times 
of bass notes by picking peaks of a smoothed temporal envelope of a total 
power below 200 Hz. It then generates hypotheses regarding the FO of each 
extracted note; the FO and amplitude of each hypothesis are estimated by 
fitting a quadratic polynomial to a large amplitude peak and subtracting it 
from the spectrum. The first four harmonic components of those hypotheses 
are tracked over time by using a comb-filter-like analysis. Finally, the method 
selects the most likely hypothesis for each onset on the basis of its duration and 
the amplitude of harmonic components and further tidies up these hypotheses 
by removing inappropriate overlaps and relatively low amplitude notes. 

11.3 Estimating Beat Structure 

Beat tracking (including measure or bar line estimation) is defined as the 
process of organizing musical audio signals into a hierarchical beat struc
ture (including beat and measure levels). It is also an important initial step 
in the computational modelling of music understanding because the beat is 
fundamental, for both trained and untrained listeners, to the perception of 
Western music. As described in Section 11.7.2 and Section 4.1, p. 101, there 
are many applications such as music-synchronized computer graphics, stage 
lighting control, video/audio synchronization, and human-computer improvi
sation in live ensembles. 

Various methods for estimating the beat structure are described in detail in 
Chapter 4. Here, the synergy between the estimation of the hierarchical beat 
structure, drum patterns, and chord changes is briefly discussed. This syn
ergy is exploited in a real-time beat-tracking system developed by Goto and 
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Muraoka [235], [220], [221]. The estimation of the hierarchical beat structure, 
especially the measure (bar line) level, requires the use of musical knowledge 
about drum patterns and chord changes; on the other hand, drum patterns and 
chord changes are difficult to estimate without referring to the beat structure 
of the beat level (quarter note level). The system addresses this issue by lever
aging the integration of top-down and bottom-up processes (Fig. 11.6) under 
the assumption that the time signature of an input song is 4/4. The system 
first obtains multiple possible hypotheses of provisional beat times (quarter-
note-level beat structure) on the basis of onset times without using musical 
knowledge about drum patterns and chord changes. Because the onset times 
of the sounds of bass drum and snare drum can be detected by a bottom-up 
frequency analysis described in Section 5.2.3, p. 137, the system makes use 
of the provisional beat times as top-down information to form the detected 
onset times into drum patterns whose grid is aligned with the beat times. The 
system also makes use of the provisional beat times to detect chord changes 
in a frequency spectrum without identifying musical notes or chords by name. 
The frequency spectrum is sliced into strips at the beat times and the domi
nant frequencies of each strip are estimated by using a histogram of frequency 
components in the strip [240]. Chords are considered to be changed when the 
dominant frequencies change between adjacent strips. After the drum patterns 
and chord changes are obtained, the higher-level beat structure, such as the 
measure level, can be estimated by using musical knowledge regarding them. 

11.4 Estimating Drums 

The detection of the onset times of drum sounds is important because the 
basic rhythms of popular music pieces including drum sounds are mainly 
characterized by drum performances. As described in Section 11.7.1, there 
are many applications such as rhythm-based music information retrieval and 
genre classification. 

Various methods for detecting drum sounds are described in detail in 
Chapter 5. 

11.5 Estimating Chorus Sections and Repeated Sections 

Chorus ('hook' or 'refrain') sections of popular music are the most represen
tative, uplifting, and prominent thematic sections in the music structure of 
a song, and human listeners can easily understand where the chorus sections 
are because these sections are the most repeated and memorable portions of a 
song. Automatic detection of chorus sections is essential for the computational 
modelling of music understanding and is useful in various practical applica
tions. In music browsers or music retrieval systems, it enables a listener to 
quickly preview a chorus section as a 'music thumbnail' (a musical equivalent 
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(quarter-note level) 
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Fig. 11.6. Synergy between the estimation of the hierarchical beat structure, drum 
patterns, and chord changes. Drum patterns and chord changes are obtained, at 
'Higher Analysis' in the figure, by using provisional beat times as top-down infor
mation. The hierarchical beat structure is then estimated, at 'Musical Decision' 
in the figure, by using the drum patterns and chord changes. A drum pattern is 
represented by the temporal pattern of a bass drum (BD) and a snare drum (SD). 

of an image thumbnail) to find a desired song. It can also provide novel music 
listening interfaces for end users as described in Section 11.7.3. 

To detect chorus sections, typical approaches do not rely on prior informa
tion regarding acoustic features unique to choruses but focus on the fact that 
chorus sections are usually the most repeated sections of a song. They thus 
adopt the following basic strategy: detect similar sections that repeat within a 
musical piece (such as a repeating phrase) and output those that appear most 
often. On entering the 2000s, this strategy has led to methods for extracting a 
single segment from several chorus sections by detecting a repeated section of 
a designated length as the most representative part of a musical piece [417], 
[27], [103]; methods for segmenting music, discovering repeated structures, 
or summarizing a musical piece through bottom-up analyses without assum
ing the output segment length [110], [111], [512], [516], [23], [195], [104], [82], 
[664], [420]; and a method for exhaustively detecting all chorus sections by 
determining the start and end points of every chorus section [224]. 

Although this basic strategy of finding sections that repeat most often is 
simple and effective, it is diflftcult for a computer to judge repetition because it 
is rare for repeated sections to be exactly the same. The following summarizes 
the main problems that must be addressed in finding music repetition and 
determining chorus sections. 
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Problem 1: Extracting acoustic features and calculating their similarity 
Whether a section is a repetition of another must be judged on the basis 
of the similarity between the acoustic features obtained from each frame 
or section. In this process, the similarity must be high between acoustic 
features even if the accompaniment or melody line changes somewhat in 
the repeated section (e.g., the absence of accompaniment on bass and/or 
drums after repetition). That is, it is necessary to use features that capture 
useful and invariant properties. 

Problem 2: Finding repeated sections 
A pair of repeated sections can be found by detecting contiguous tem
poral regions having high similarity. However, the criterion establishing 
how high similarity must be to indicate repetition depends on the song. 
For a song in which repeated accompaniment phrases appear very often, 
for example, only a section with very high similarity should be considered 
the chorus section repetition. For a song containing a chorus section with 
accompaniments changed after repetition, on the other hand, a section 
with somewhat lower similarity can be considered the chorus section rep
etition. This criterion can be easily set for a small number of specific songs 
by manual means. For a large open song set, however, the criterion should 
be automatically modified based on the song being processed. 

Problem 3: Grouping repeated sections 
Even if many pairs of repeated sections with various lengths are obtained, 
it is not obvious how many times and where a section is repeated. It 
is therefore necessary to organize repeated sections that have common 
sections into a group. Both ends (the start and end points) of repeated 
sections must also be estimated by examining the mutual relationships 
among various repeated sections. For example, given a song having the 
structure (A B C B C C), the long repetition corresponding to (B C) would 
be obtained by a simple repetition search. Both ends of the C section in (B 
C) could be inferred, however, from the information obtained regarding 
the final repetition of C in this structure. 

Problem 4' Detecting modulated repetition 
Because the acoustic features of a section generally undergo a significant 
change after modulation (key change; see Section 1.1, p. 7), similarity 
with the section before modulation is low, making it difficult to judge 
repetition. The detection of modulated repetition is important since mod
ulation sometimes occurs in chorus repetitions, especially in the latter half 
of a song.^ 

Problem 5: Selecting chorus sections 
Because various levels of repetition can be found in a musical piece, it is 
necessary to select a group of repeated sections corresponding to chorus 

^Masataka Goto's survey of Japan's popular music hit chart (top 20 singles 
ranked weekly from 2000 to 2003) showed that modulation occurred in chorus rep
etitions in 152 songs (10.3%) out of 1481. 
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sections. A simple selection of the most repeated sections is not always 
appropriate though. For example, another section such as verse A is oc
casionally repeated more often than chorus sections. 

Regarding the above repetition-based methods, the following sections 
mainly describe a method called RefraiD (Refrain Detection method) [224] 
and briefly introduce techniques used in the other methods in each relevant 
section and Section 11.5.6. Since the RefraiD method addresses all of the above 
problems and detects all chorus sections in a popular music song regardless 
of whether a key change occurs, it is suitable for music scene description. Fig
ure 11.7 shows the process flow of the RefraiD method. First, a 12-dimensional 
feature vector called a chroma vector^ which is robust with respect to changes 
of accompaniments, is extracted from each frame of an input audio signal and 
then the similarity between these vectors is calculated (solution to Problem 
1). Each element of the chroma vector corresponds to one of the 12 pitch 
classes (C, C# , D, . . . , B) and is the sum of the magnitude spectrum at fre
quencies of its pitch class over six octaves. Pairs of repeated sections are then 
listed (found) using an adaptive repetition-judgement criterion which is con
figured by an automatic threshold selection method based on a discriminant 
criterion (solution to Problem 2). To organize common repeated sections into 
groups and to identify both ends of each section, the pairs of repeated sec
tions are integrated (grouped) by analysing their relationships over the whole 
song (solution to Problem 3). Because each element of a chroma vector corre
sponds to a different pitch class, a before-modulation chroma vector is close 
to the after-modulation chorus vector whose elements are shifted (exchanged) 
by the pitch difference of the key change. By considering 12 kinds of shift 
(pitch differences), 12 sets of the similarity between non-shifted and shifted 
chroma vectors are then calculated, pairs of repeated sections from those sets 
are listed, and all of them are integrated (solution to Problem 4)- Finally, 
the chorus measure^ which is the possibility of being chorus sections for each 
group, is evaluated (solution to Problem 5)^ and the group of chorus sections 
with the highest chorus measure as well as other groups of repeated sections 
are output (Fig. 11.8). 

11.5.1 Extracting Acoustic Features and Calculating Their 
Similarity 

The following acoustic features, which capture pitch and timbral features of 
audio signals in different ways, were used in various methods: chroma vectors 
[224], [27], [110], [111], mel-frequency cepstral coefficients (MFCC) [417], [103], 
[23], [195], [104], (dimension-reduced) spectral coefficients [103], [195], [104], 
[82], [664], pitch representations using FO estimation or constant-Q filterbanks 
[110], [111], [82], [420], and dynamic features obtained by supervised learning 
[512], [516]. 
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Fig. 11.7. Overview of RefraiD (Refrain Detection method) for detecting all chorus 
sections with their start and end points while considering modulations (key changes). 

Fig. 11.8. An example of chorus sections and repeated sections detected by the 
RefraiD method. The horizontal axis is the time axis (in seconds) covering the 
entire song. The upper window shows the power. On each row in the lower window, 
coloured sections indicate similar (repeated) sections. The top row shows the list 
of the detected chorus sections, which were correct for this song (RWC-MDB-P-
2001 No. 18 of the RWC Music Database [229], [227]) and the last of which was 
modulated. The bottom five rows show the list of various repeated sections (only 
the five longest repeated sections are shown). For example, the second row from the 
top indicates the structural repetition of 'verse A => verse B => chorus'; the bottom 
row with two short coloured sections indicates the similarity between the 'intro' and 
'ending'. 

P i t c h Feature: C h r o m a Vec tor 

The chroma vector is a perceptually motivated feature vector using the con
cept of chroma in Shepard's helix representation of musical pitch perception 
[584]. According to Shepard [584], the perception of pitch with respect to a 
musical context can be graphically represented by using a continually cyclic 
helix tha t has two dimensions, chroma and height^ as shown at the right of 
Fig. 11.9. Chroma refers to the position of a musical pitch within an octave 
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that corresponds to a cycle of the hehx; i.e., it refers to the position on the 
circumference of the hehx seen from directly above. On the other hand, height 
refers to the vertical position of the helix seen from the side (the position of 
an octave). 

Figure 11.9 shows an overview of calculating the chroma vector used in 
the RefraiD method [224]. This represents magnitude distribution on the 
chroma that is discretized into twelve pitch classes within an octave. The 12-
dimensional chroma vector v{t) is extracted from the magnitude spectrum, 
^p{y^t) at the log-scale frequency v at time t, calculated by using the short-
time Fourier transform (STFT). Each element of v(t) corresponds to a pitch 
class c (c = 1, 2 , . . . , 12) in the equal temperament and is represented as Vc{t)'. 

QctH poo 

^c{t)= Y, / ^PhA^)%{^.t)dv, (11.29) 
/i = OctL * ^ ~ ^ 

The BPFc,/i(z/) is a bandpass filter that passes the signal at the log-scale centre 
frequency Fc^h (in cents) of pitch class c (chroma) in octave position h (height), 
where 

Fc^h = 1200/1 -f 100(c - 1). (11.30) 

The BPFc,/i(z/) is defined using a Manning window as follows: 

BPFe,.(.) = I ( l - COS ? ! f c i | ^ L Z i M ) ) , , e [0,200]. (11.31) 

This filter is applied to octaves from OctL to Octn- In Goto's implementation 
[224], an STFT with a 256 ms Hanning window^ shifted by 80 ms is calculated 
for audio signals sampled at 16 kHz, and the OctL and Octn are respectively 
3 and 8, covering six octaves (130 Hz to 8 kHz). 

There are variations in how the chroma vector is calculated. For example, 
Bartsch and Wakefield [27] developed a technique where each STFT bin of 
the log-magnitude spectrum is mapped directly to the most appropriate pitch 
class, and Dannenberg and Hu [110], [111] also used this technique. A similar 
continuous concept was called the chroma spectrum [655]. 

There are several advantages to using the chroma vector. Because it cap
tures the overall harmony (pitch-class distribution), it can be similar even if 
accompaniments or melody lines are changed to some degree after repetition. 
In fact, the chroma vector is effective for identifying chord names [201], [678], 
[679], [583], [684]. The chroma vector also enables modulated repetition to be 
detected as described in Section 11.5.4. 

Timbral Feature: MFCC and Dynamic Features 

While the chroma vectors capture pitch-related content, the MFCCs (see 
Section 2.1.3, p. 25 for a presentation of MFCCs) typically used in speech 

^The window length is determined to obtain good frequency resolution in a low-
frequency region. 
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Fig. 11.9. Overview of calculating a 12-dimensional chroma vector. The magnitude 
at six different octaves is summed into just one octave which is divided into 12 
log-spaced divisions corresponding to pitch classes. Shepard's helix representation 
of musical pitch perception [584] is shown at the right. 

recognition capture spectral content and general pitch range, and are useful 
for finding timbral or 'texture' repetitions. Dynamic features [512], [516] are 
more adaptive spectral features that are designed for music structure discov
ery through a supervised learning method. Those features are selected from 
the spectral coefiicients of a filterbank output by maximizing the mutual in
formation between the selected features and hand-labelled music structures. 
The dynamic features are beneficial in that they reduce the size of the results 
when calculating similarity (i.e., the size of the similarity matrix described in 
Section 11.5.1) because the frame shift can be longer (e.g., 1 s) than for other 
features. 

Calculating Similarity 

Given a feature vector such as the chroma vector or MFCC at every frame, 
the next step is to calculate the similarity between feature vectors. Various 
distance or similarity measures, such as the Euclidean distance and the cosine 
angle (inner product), can be used for this. Before calculating the similarity, 
feature vectors are usually normalized, for example, to a mean of zero and a 
standard deviation of one or to a maximum element of one. 

In the RefraiD method [224], the similarity r(t, /) between the feature vec
tors (chroma vectors) v(^) and v{t — I) is defined as 

r(t,0 = l -
1 v{t) v{t-l) 

maxc Vc{t) maxc Vc{t — I) 
(11.32) 

where / is the lag and Vc{t) is an element of v(^) (11.29). Since the denominator 
A/12 is the length of the diagonal line of a 12-dimensional hypercube with edge 
length 1, r{tj) satisfies 0 < r{tj) < 1. 
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r(t,l) 

t(time) 
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(b) Time-lag triangle 

Fig. 11.10. An idealized example of a similarity matrix and time-lag triangle drawn 
from the same feature vectors of a musical piece consisting of four 'A' sections and 
two 'B' sections. The diagonal line segments in the similarity matrix or horizontal 
line segments in the time-lag triangle, which represent similar sections, appear when 
short-time pitch features like chroma vectors are used. 

For the given 36-dimensional feature vectors of a constant-Q filterbank 
output with centre frequencies at 36 tempered semitones in 3 octaves, Lu, 
Wang, and Zhang [420] introduced an original distance measure tha t empha
sizes melody similarity and suppresses t imbre similarity. This measure does 
not depend on the norm of the difference between the 36-dimensional fea
ture vectors, but on the structure of it. It considers how the peak intervals 
in the difference conform to harmonic relationships such as perfect fifth and 
octave. 

11.5 .2 F i n d i n g R e p e a t e d S e c t i o n s 

By using the same similarity measure r ( t , / ) , two equivalent representations 
can be obtained: a similarity matrix [103], [110], [HI ] , [195], [104], [664] and 
a time-lag triangle (or time-lag matrix) [224], [27], [516], [420], as shown in 
Fig. 11.10. For the similarity matrix, the similarity s{t,u) between feature 
vectors v{t) and v(w), 

s{t,u)^ r{t,t-u), (11.33) 

is drawn within a square in the two-dimensional {t-u) space.^ For the time-
lag triangle, the similarity r( t , / ) between feature vectors v( t ) and v ( t — /) is 
drawn within a right-angled isosceles triangle in the two-dimensional time-lag 
[t-l) space. If a nearly constant tempo can be assumed, each pair of simi
lar sections is represented by two non-central diagonal line segments in the 

As described in Section 4.6, p. 112, the similarity matrix can also be used to 
examine rhythmic structure. 
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similarity matr ix or a horizontal line segment in the time-lag triangle. Because 
the actual r{tj) obtained from a musical piece is noisy and ambiguous, it is 
not a straightforward task to detect these line segments. 

The RefraiD method [224] finds all horizontal fine segments (contiguous 
regions with high r(t , /)) in the time-lag triangle by evaluating Raii(t,/), the 
possibility of containing line segments at the lag / at the current t ime t (e.g., 
at the end of a song^) as follows (Fig. 11.11):^ 

1 * 

T = l 

Before this calculation, r(f, /) is normalized by subtract ing a local mean value 
while removing noise and emphasizing horizontal lines. In more detail, given 
each point r(t, /) in the time-lag triangle, six-directional local mean values 
along the right, left, upper, lower, upper right, and lower left directions start
ing from the point r(f, /) are calculated, and the maximum and minimum are 
obtained. If the local mean along the right or left direction takes the maximum, 
r(t, /) is considered part of a horizontal line and emphasized by subtract ing 
the minimum from r(t, / ) . Otherwise, r(t, /) is considered noise and suppressed 
by subtracting the maximum from r(t, / ) ; noise tends to appear as fines along 
the upper, lower, upper right, and lower left directions. 

The method then picks up each peak in Raii(^,0 along the lag / after 
smoothing Raii(^, 0 with a moving average filter along the lag and removing 
a global drift (bias) caused by cumulative noise in r( t , / )^ from Raii(t,/). The 
method next selects only high peaks above a threshold to search the line seg
ments. Because this threshold is closely related to the repetition-judgement 
criterion which should be adjusted for each song, an automatic threshold selec
tion method based on a discriminant criterion [491] is used. When dichotomiz
ing the peak heights into two classes by a threshold, the optimal threshold 
is obtained by maximizing the discriminant criterion measure defined by the 
following between-class variance: 

a% = uJiuj2{fii - fi2f, (11.35) 

where ui and LJ2 are the probabilities of class occurrence (number of peaks in 
each class/ total number of peaks), and /ii and /12 are the means of the peak 
heights in each class. 

^ Rail (̂ 5 0 is evaluated along with the real-time audio input for a real-time system 
based on RefraiD. On the other hand, it is evaluated at the end of a song for a non-
real-time off-line analysis. 

^This can be considered the Hough transform where only horizontal lines are 
detected: the parameter (voting) space Rail(^5 0 î  therefore simply one dimensional 
along /. 

^Because the similarity r(T,/) is noisy, its sum Raii(^, 0 tends to be biased: 
the longer the summation period for Rail(̂ 5 05 ^he higher the summation result by 
(11.34). 
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Fig. 11.11. A sketch of line segments, the similarity r(t,/) in the time-lag triangle, 
and the possibility Raii(^, 0 ^^ containing line segments at lag /. 
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Fig. 11.12. Examples of the similarity r[r^ h) at high-peak lags h. The bottom hor
izontal bars indicate the regions above an automatically adjusted threshold, which 
means they correspond to line segments. 

For each picked-up high peak with lag / i , the line segments are finally 
searched on the one-dimensional function r(r, h) [h <T <t). After smoothing 
r(T,/i) using a moving average filter, the method obtains line segments on 
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which the smoothed r(r, Zi) is above a threshold (Fig. 11.12). This threshold 
is also adjusted through the automatic threshold selection method. 

Instead of using the similarity matrix and time-lag triangle, there are other 
approaches that do not explicitly find repeated sections. To segment music, 
represent music as a succession of states (labels), and obtain a music thumbnail 
or summary, these approaches segment and label (i.e., categorize) contiguous 
frames (feature vectors) by using clustering techniques [417] or ergodic hidden 
Markov models (HMMs) [417], [512], [516] (HMMs are introduced on p. 63 of 
this volume). 

11.5.3 Grouping Repeated Sections 

Since each line segment in the time-lag triangle indicates just a pair of re
peated sections, it is necessary to organize into a group the line segments that 
have common sections—i.e., overlap in time. When a section is repeated N 
times {N > 3), the number of line segments to be grouped together should 
theoretically be N{N — l ) /2 if all of them are found in the time-lag triangle. 

Aiming to exhaustively detect all the repeated (chorus) sections appearing 
in a song, the RefraiD method groups line segments having almost the same 
section while redetecting some missing (hidden) line segments not found in the 
bottom-up detection process (described in Section 11.5.2) through top-down 
processing using information on other detected fine segments. In Fig. 11.11, 
for example, two line segments corresponding to the repetition of the first 
and third C and the repetition of the second and fourth C, which overlap 
with the long line segment corresponding to the repetition of ABCC, can be 
found even if they were hard to find in the bottom-up process. The method 
also appropriately adjusts the start and end times of line segments in each 
group because they are sometimes inconsistent in the bottom-up line segment 
detection. 

11.5.4 Detecting Modulated Repetition 

The processes described above do not deal with modulation (key change), but 
they can easily be extended to it. A modulation can be represented by the 
pitch difference of its key change, C (0 - l r - - - . l l ) , which denotes the number 
of tempered semitones. For example, C = 9 means the modulation of nine 
semitones upward or the modulation of three semitones downward. One of the 
advantages of the 12-dimensional chroma vector v{t) is that a transposition 
amount (" of the modulation can naturally correspond to the amount by which 
its 12 elements are shifted (rotated). When v{t) is the chroma vector of a 
certain performance and v(^)' is the chroma vector of the performance that is 
modulated by C semitones upward from the original performance, they tend 
to satisfy 

v(^) ^ S^v(t)"^, (11.36) 
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where S is a 12-by-12 shift matrix defined by 
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0/ 

(11.37) 

To detect modulated repetition by using this feature of chroma vectors 
and considering 12 destination keys, the RefraiD method [224] calculates 12 
kinds of extended similarity as follows: 

r^itj) 1 S«v(i) v ( i - 0 
maxc Vc{t) maxc Vc{t — I) 

(11.38) 

Starting from each r(^{t, /), the processes of finding and grouping the repeated 
sections are performed again. Non-modulated and modulated repeated sec
tions are then grouped if they share the same section. 

11.5.5 Selecting Chorus Sections 

A group corresponding to the chorus sections is finally selected from groups of 
repeated sections (line segments). In general, a group that has many and long 
repeated sections tends to be the chorus sections. In addition to this property, 
the RefraiD method evaluates the chorus measure^ which is the possibility 
of being chorus sections for each group, by considering the following three 
heuristic rules with a focus on popular music: 

1. The length of the chorus has an appropriate, allowed range (7.7 to 40 s in 
Goto's implementation). 

2. When there is a repeated section that is long enough to likely correspond 
to the repetition of a long section like (verse A ^ verse B =^ chorus) x 
2, the chorus section is likely to be at the end of that repeated section. 

3. Because a chorus section tends to have two half-length repeated subsec
tions within its section, a section having those subsections is likely to be 
the chorus section. 

The group that maximizes the chorus measure is finally selected as the chorus 
sections. 

11.5.6 Other Methods 

Since the above sections mainly describe the RefraiD method [224] with the 
focus on detecting all chorus sections, this section briefly introduces other 
methods [417], [27], [103], [110], [111], [512], [516], [23], [195], [104], [82], [664], 
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[420] that aim at music thumbnailing, music segmentation, structure discovery, 
or music summarization. 

Several methods for detecting the most representative part of a song for 
use as a music thumbnail have been studied. Logan and Chu [417] developed 
a method using clustering techniques and hidden Markov models (HMMs) to 
categorize short segments (1 s) in terms of their acoustic features, where the 
most frequent category is then regarded as a chorus. Bartsch and Wakefield 
[27] developed a method that calculates the similarity between acoustic fea
tures of beat-length segments obtained by beat tracking and finds the given-
length segment with the highest similarity averaged over its segment. Cooper 
and Foote [103] developed a method that calculates a similarity matrix of 
acoustic features of short frames (100 ms) and finds the given-length segment 
with the highest similarity between it and the whole song. Note that these 
methods assume that the output segment length is given and do not identify 
both ends of a repeated section. 

Music segmentation or structure discovery methods where the output seg
ment length is not assumed have also been studied. Dannenberg and Hu [110], 
[111] developed a structure discovery method of clustering pairs of similar seg
ments obtained by several techniques such as efficient dynamic programming 
or iterative greedy algorithms. This method finds, groups, and removes sim
ilar pairs from the beginning to group all the pairs. Peeters, La Burthe, and 
Rodet [512], [516] developed a supervised learning method of modelling dy
namic features and studied two structure discovery approaches: the sequence 
approach of obtaining repetitions of patterns and the state approach of ob
taining a succession of states. The dynamic features are selected from the 
spectrum of a filterbank output by maximizing the mutual information be
tween the selected features and hand-labelled music structures. Aucouturier 
and Sandler [23] developed two methods for finding repeated patterns in a 
succession of states (texture labels) obtained by HMMs. They used two image 
processing techniques, the kernel convolution and Hough transform, to detect 
line segments in the similarity matrix between the states. Foote and Cooper 
[195], [104] developed a method of segmenting music by correlating a kernel 
along the diagonal of the similarity matrix, and clustering the obtained seg
ments on the basis of the self-similarity of their statistics. Chai and Vercoe 
[82] developed a method of detecting segment repetitions by using dynamic 
programming, clustering the obtained segments, and labelling the segments 
based on heuristic rules such as the rule of first labelling the most frequent 
segments, removing them, and repeating the labelling process. Wellhausen 
and Crysandt [664] studied the similarity matrix of spectral envelope features 
defined in the MPEG-7 descriptors and a technique of detecting non-central 
diagonal line segments. Lu, Wang, and Zhang [420] developed a method of 
analysing all repeated sections by using a structure-based distance measure 
that emphasizes pitch similarity over timbral similarity. Their method also es
timates the tempo of a song and discriminates between vocal and instrumental 
sections to facilitate music structure analysis. 
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11.6 Evaluation Issues 

To evaluate automatic music scene description methods, it is necessary to 
label musical pieces in an adequate-size music database with their correct 
descriptions (metadata). This labelling task is time consuming and trouble
some. More seriously, there was no available common music database with 
correct metadata since most musical pieces used by researchers are generally 
copyrighted and cannot be shared by other researchers. 

But since 2000, a copyright-cleared music database, called the RWC (Real 
World Computing) Music Database [229], [230], [227], was developed and has 
been available to researchers as a common foundation for research. It contains 
six original collections: the Popular Music Database (100 pieces), Royalty-
Free Music Database (15 pieces). Classical Music Database (50 pieces). Jazz 
Music Database (50 pieces). Music Genre Database (100 pieces), and Musical 
Instrument Sound Database (50 instruments). For all 315 musical pieces, audio 
signals, standard MIDI files, and text files of lyrics were prepared. For the 
50 instruments, individual sounds at half-tone intervals were captured. This 
database has been distributed to researchers around the world and has already 
been widely used. For musical instrument sounds, there are other databases 
released for public use: the McGill University Master Samples [487] and the 
University of Iowa Musical Instrument Samples [198]. Musical pieces licensed 
under a Creative Commons license can also be used for evaluation purposes. 

To establish benchmarks (evaluation frameworks) for music scene descrip
tion by labelling copyright-cleared musical pieces with correct descriptions, a 
multipurpose music-scene labelling editor (metadata editor) was also devel
oped [225]. It enables a user to hand-label a musical piece with music scene 
descriptions shown in Fig. 11.1. The editor can deal with both audio files and 
standard MIDI files and supports interactive audio/MIDI playback while edit
ing. Along a wave or MIDI piano-roll display it shows subwindows in which 
any selected descriptions can be displayed and edited. To facilitate the sup
port of various descriptions, its architecture is based on a plug-in system in 
which an external module for editing each description is installed as plug-
in software. As a first step, the RefraiD method was evaluated by using the 
chorus section metadata for 100 songs of the RWC Music Database: Popular 
Music (80 of the 100 songs were correctly detected) [224]. 

11.7 Applications of Music Scene Description 

Music scene description methods that can deal with real-world audio signals of 
musical pieces sampled from CD recordings have various practical applications 
such as music information retrieval, music-synchronized computer graphics, 
and music listening stations. The following sections introduce these applica
tions. 
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Fig. 11.13. Virtual dancer 'Cindy'. 

11.7.1 Music Information Retrieval 

Music scene description contributes to content-based music information re
trieval since it can provide various acoustical metadata (annotations) of mu
sical pieces. For example, the automatic melody estimation described in Sec
tion 11.2 is useful for query by humming (QBH) [323], [207], [604], [484], [603], 
[507], [605], [585], [301], [109] which enables a user to retrieve a musical piece 
by humming or singing its melody: a QBH database consisting of audio sig
nals of musical pieces can be indexed using their melody lines. Moreover, the 
description of chorus sections (Section 11.5) can increase the efficiency and 
precision of QBH by enabling a QBH system to match a query with only the 
chorus sections. 

Temporal or rhythmic descriptions such as beat structure, tempo, and 
drums (Sections 11.3 and 11.4) are also useful for retrieving musical pieces on 
the basis of rhythm and tempo. Indexing musical pieces using drum descrip
tions, for example, will enable a user to retrieve music by voice percussion or 
beat boxing (verbalized expression of drum sounds by voice) [479], [326]. 

In addition, various music scene descriptions facilitate the computation of 
similarity between musical pieces. Similarity measures based on music scene 
descriptions enable a user to use musical pieces themselves as the search key 
to retrieve a musical piece having a similar feeling. These measures can also 
be used to automatically classify musical pieces into genres or music styles. 

11.7.2 Music-Synchronized Computer Graphics 

Because the beat tracking described in Section 11.3 and Chapter 4 can be 
used to automate the time-consuming tasks that must be done to synchronize 
events with music, there are various applications. In fact, Goto and Muraoka 
[235], [220], [221] developed a real-time system that displays virtual dancers 
and several graphic objects whose motions and positions change in time to 
beats (Fig. 11.13). This system has several dance sequences, each for a different 
mood of dance motions. While a user selects a dance sequence manually, the 
timing of each motion in the selected sequence is determined automatically 
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on the basis of the beat-tracking results. Such a computer graphics system is 
suitable for live stage, TV program, and karaoke uses. 

Beat tracking also facilitates the automatic synchronization of computer-
controlled stage lighting with the beats in a musical performance. Vari
ous properties of lighting—such as colour, brightness, and direction—can be 
changed in time to music. In the above virtual dancer system, this was simu
lated on a computer graphics display with virtual dancers. 

11.7.3 Music Listening Station 

The automatic chorus section detection described in Section 11.5 enables new 
music-playback interfaces that facilitate content-based manual browsing of 
entire songs. As an application of the RefraiD method. Goto [226] developed 
a music Hstening station for trial listening, called SmartMusicKIOSK. Cus
tomers in music stores often search out the chorus or 'hook' of a song by 
repeatedly pressing the fast-forward button, rather than passively listening to 
the music. This activity is not well supported by current technology. SmartMu
sicKIOSK provides the following two functions to facilitate an active listening 
experience by eliminating the hassle of manually searching for the chorus and 
making it easier for a listener to find desired parts of a song: 

1. ^Jump to chorus' function: automatic jumping to the beginning of sections 
relevant to a song's structure 
Functions are provided enabling automatic jumping to sections that will 
be of interest to listeners. These functions are 'jump to chorus (NEXT 
CHORUS button)', 'jump to previous section in song (PREV SECTION 
button)', and 'jump to next section in song (NEXT SECTION button)', 
and they can be invoked by pushing the buttons shown above in paren
theses (in the lower window of Fig. 11.14). With these functions, a listener 
can directly jump to and listen to chorus sections, or jump to the previous 
or next repeated section of the song. 

2. 'Music map' function: visualization of song contents 
A function is provided to enable the contents of a song to be visuahzed 
to help the listener decide where to jump next. Specifically, this function 
provides a visual representation of the song's structure consisting of chorus 
sections and repeated sections, as shown in the upper window of Fig. 11.14. 
While examining this display, the listener can use the automatic jump 
buttons, the usual fast-forward/rewind buttons, or a playback slider to 
move to any point of interest in the song. 

This interface, which enables a listener to look for a section of interest 
by interactively changing the playback position, is useful not only for trial 
listening but also for more general purposes in selecting and using music. 
While entire songs of no interest to a listener can be skipped on conventional 
music-playback interfaces, SmartMusicKIOSK is the first interface that allows 
the listener to easily skip sections of no interest even within a song. 
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Fig. 11.14. SmartMusicKIOSK screen display. The lower window provides content-
based controls allowing a listener to skim rapidly through music as well as common 
playback controls. The upper window provides a graphical overview of the music 
structure (results of automatic chorus section detection using RWC-MDB-P-2001 
No. 18 of the RWC Music Database [229], [227]). The horizontal axis of the upper 
window is the time axis covering the entire song; the top row shows chorus sections, 
the five lower rows show repeated sections, and the bottom horizontal bar is a 
playback slider. 

11.8 Conclusion 

This chapter has described the music scene description research approach to
wards developing a system tha t understands real-world musical audio signals 
without deriving musical scores or separating signals. This approach is im
por tant from an academic viewpoint because it explores what is essential for 
understanding audio signals in a human-like fashion. The ideas and techniques 
are expected to be extended to not only music signals but also general audio 
signals including music, speech, environmental sounds, and mixtures of them. 
Traditional speech recognition frameworks have been developed for dealing 
with only monophonic speech signals or a single-pitch sound with background 
noise, which should be removed or suppressed without considering their rela
tionship. Research on understanding musical audio signals is a good start ing 
point for creating a new framework for understanding general audio signals, 
because music is polyphonic, temporally structured, and complex, yet still 
well organized. In particular, relationships between various simultaneous or 
successive sounds are important and unique to music. This chapter, as well as 
other chapters in this book, will contribute to such a general framework. 

The music scene description approach is also important from industrial or 
application viewpoints since end users can now easily ' r ip ' audio signals from 
CDs, compress and store them on a personal computer, load a huge number of 
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songs onto a portable music player, and listen to them anywhere and anytime. 
These users want to retrieve and listen to their favourite music or a portion 
of a musical piece in a convenient and flexible way. Reflecting these demands, 
the target of processing has expanded from the internal content of individual 
musical pieces to entire musical pieces and even sets of musical pieces [233]. 
While the primary target of music scene description is the internal content of 
a piece, the obtained descriptions are useful for dealing with sets of musical 
pieces as described in Section 11.7.1. The more accurate and detailed we can 
make the obtained music scene descriptions, the more advanced and intelligent 
music applications and interfaces will become. 

Although various methods for detecting melody and bass lines, tracking 
beats, detecting drums, and finding chorus sections have been developed and 
successful results have been achieved to some extent, there is much room for 
improving these methods and developing new ones. For example, in general 
each method has been researched independently and implemented separately. 
An integrated method exploiting the relationships between these descriptions 
will be a promising next step. Other music scene descriptions apart from 
those described in this chapter should also be investigated in the future. Ten 
years ago it was considered too difficult for a computer to obtain most of the 
music scene descriptions described here, but today we can obtain them with a 
certain accuracy. I look forward to experiencing further advances in the next 
ten years. 
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12.1 Introduction 

Singing refers to the act of producing musical sounds with the human voice, 
and singing transcription refers to the automatic conversion of a recorded 
singing signal into a parametric representation (e.g., a MIDI file) by apply
ing signal-processing methods. Singing transcription is an important topic 
in computational music-content analysis since it is the most natural way of 
human-computer interaction in the musical sense: even a musically untrained 
subject is usually able to hum the melody of a piece. This chapter introduces 
the singing transcription problem and presents an overview of the main ap
proaches to solve it, including the current state-of-the-art singing transcription 
systems. 

During the last ten years, the rapid growth of digital music databases has 
challenged researchers to develop natural user interfaces for accessing them 
by using the singing voice. Consequently, most of the research on singing 
transcription has been conducted in the context of query-by-humming systems 
where singing transcription acts as a front end. After converting a singing 
signal into a notated query, music pieces corresponding to the query can be 
retrieved from the database. However, singing transcription enables a wide 
range of other applications as well, including singing-input functionalities in 
applications such as computer games or singing tutors, automatic tools for 
annotating large corpora of singing, audio editor applications for professional 
music production, and naturally, applications that convert singing signals into 
musical scores. 

12.1.1 Problem Formulation and the Scope of This Chapter 

The singing transcription problem is here formulated as follows. 

Given the acoustic waveform of a single-voice singing performance, 
produce a sequence of notes and rests which is melodically and rhyth
mically as close to the performance as possible. 
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The sequence of notes and rests forms a parametric representation that is 
considered as the transcription of the singing signal. A note has an identifi
able pitch, a beginning (onset) and an ending (offset) time, and a duration 
determined by these. Rests are silent moments in music. The fundamental 
frequency (FO) of a note is measured in Hertz (Hz) units and corresponds to 
the pitch of a note (see Chapter 1 for the definitions of pitch and FO). The 
ratio of the fundamental frequencies of two notes is referred to as an interval. 
In particular, an interval with the ratio 1 : 2 is called an octave^ which is di
vided into twelve notes in Western music. This leads to the FO ratio 1 : 2^/^^ 
between adjacent notes, which is called a semitone. 

A note pitch label identifies the standard FO of a note either with a note 
name (e.g., A4) or with an integer MIDI note number. The latter is defined 
for a note with a fundamental frequency FQ by 

MIDI note number = 69 -̂  12 logo ( T T ; ^ ) , (12.1) 
^ V440Hzy ^ ^ 

where 69 and 440 Hz correspond to the MIDI note number and the funda
mental frequency of the note A4, respectively. The term absolute tuning refers 
to a standard tuning where the note A4 has a FO value of 440 Hz, and the 
FOs of all the other notes are related to it. Equation (12.1) provides a musi
cally convenient way of representing an arbitrary FO value in semitone units 
by omitting the rounding to an integer. The term note labelling refers to the 
assignment of a pitch label for a note (e.g., an integer MIDI note number). 
The term note segmentation refers to a process where the onset and offset 
time of a note are determined. 

The biggest difficulty in singing transcription lies in the conversion of a 
continuous FO curve into note pitch labels. Simply rounding FO estimates 
into MIDI note numbers produces poor results since the FO curve may ex
hibit large deviations from the nominal note pitches. Singing performances 
are typically far from perfect and usually there is no straightforward one-to-
one correspondence between a FO curve and a transcribed note. In addition, 
it cannot be assumed that singing is performed in absolute tuning. In this 
respect, singing transcription is particularly challenging as compared to the 
transcription of other musical instruments which usually produce more sta
ble FO curves for each note. The relationship between singing sounds and 
note pitches is discussed in more detail in Section 12.2. 

This chapter concentrates on the quantization of note pitches rather than 
their onset times and durations, although the common musical notation ex
presses also durations with discrete labels. In this sense, the aim here is to 
produce a piano-roll or MIDI-type representation of singing rather than the 
actual score of the performance. There exist algorithms for the time quan
tization of notes for producing score-type representations, such as work by 
Cemgil et al. [75], [77], which can be used to post-process the transcription 
result. See Chapter 4 for a discussion on time quantization. 
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Fig. 12.1. A flow chart of the basic steps in singing transcription. 

The scope of this chapter is restricted to the transcription of monophonic 
singing performances in which only one note is sounding at a time. The pres
ence of other instruments is not allowed. The singing style is not restricted 
but singing with lyrics, syllables, or humming is considered, and the 'quality' 
of the performance or the recorded signal is not limited in any way. It should 
be noticed that we do not try to transcribe lyrics but only the note pitch 
labels and their non-quantized timing information. 

There are some research areas that are closely related to singing transcrip
tion. These include the analysis, synthesis, and transformations of singing 
voice [44], [337], the detection of singing-voice segments in polyphonic music 
[33], melody extraction from polyphonic music [435], [228], and music infor
mation retrieval (MIR) systems in general [455]. 

Currently, some transcription software are available on the Internet which 
are more or less suitable also for singing signals. These include the MAMI C+-|-
library^ for singing transcription [136] and commercial applications such as 
Autoscore, Digital Ear, Solo Explorer, and Akoff Music Composer. Free soft
ware demonstrations can be downloaded to give an idea of the current capa
bilities of software-based singing transcription. Also, there exist auto-tuning 
applications which correct inaccuracies in singing pitch instead of producing 
actual transcriptions. These are widely used in professional music production. 

12.1.2 Organization of This Chapter 

This chapter is organized as follows. Section 12.2 introduces singing-voice 
production by humans and considers the relationship between singing sounds 
and the corresponding musical notations. The rest of the chapter follows the 
basic steps of singing transcription systems shown in Fig. 12.1. 

Section 12.3 discusses the pre-processing of singing signals and the mea
surement of acoustic features (such as the FO) from them. The pre-processing 
aims at making the feature extraction more robust against additive noise and 
the formant structure of singing sounds. Section 12.4 considers the conversion 
of acoustic features into a sequence of notes and rests. This involves the seg
mentation and labelling of notes, for which there exist two main approaches: 
the segmentation and labelling can be performed either jointly or as separate 

^Available at ht tp: //www. ipem. ugent. be/MAMI 
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steps in cascade. Some systems also apply pre-trained acoustic or musicolog-
ical models. The resulting note sequence may be exposed to some additional 
post-processing to improve the transcription quality. Section 12.5 concludes 
the chapter. 

12.2 Singing Signals 

The human vocal organ produces several types of voice sounds, such as speech, 
laughing, or whispering, in addition to singing. In contrast with the other 
voice sounds, singing exhibits musically meaningful information, and here we 
assume that singing sounds can be associated with notes in musical transcrip
tions. 

In this section, we study the act of singing in order to understand the 
target signals of our transcription systems. First, we consider how the vocal 
organ produces singing sounds and controls the acoustical properties of them. 
Second, we discuss how humans associate singing sounds with notes and what 
are the problematic properties of singing signals from the transcription point 
of view. For an extensive study on the singing voice and its properties, the 
reader is referred to the work of Sundberg in [613], [614]. 

The following discussion concentrates on voiced sounds, i.e., sounds with a 
distinguishable pitch, although singing sounds can be considered as 
more or less modified speech sounds and include also unvoiced and transient-
type sounds. These affect the note segmentation in singing. For a more exten
sive review of speech sounds, please refer to [536], [321]. 

12.2.1 Production of Singing Sounds 

Singing sounds are produced by the human vocal organ, which consists of 
three basic units: (i) the respiratory system, (ii) the vocal folds, and (iii) the 
vocal tract [614]. The sound production process is as follows. First, the respi
ratory system creates an overpressure of air in the lungs, called the subglottic 
pressure, which results in an air flow through the vocal folds. The vocal folds 
start to vibrate and chop the air flow into a sequence of quasi-periodic air 
pulses, thus producing a sound with a measurable fundamental frequency. 
The sequence of air pulses is called the voice source and the process of sound 
generation via the vocal fold vibration is referred to as phonation. At the fi
nal stage, the voice source passes through the vocal tract, which modifies the 
spectral shape and determines the timbre of the voice sound. This stage is 
referred to as articulation and it controls the production of different speech 
sounds and lyrics in singing. 

Figure 12.2 shows a block diagram of the singing-sound production process. 
The vocal-organ units control various acoustic properties of singing sounds, 
including their fundamental frequency, timbre, and loudness. These are dis
cussed in more detail in the following. 
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Fig. 12.2. The stages of the singing-sound production. The dashed arrows indicate 
the acoustic properties controlled by the three vocal organ units. (Modified from 
Sundberg [613, p. 10], used by permission.) 

Fundamental frequency 

The fundamental frequency of a singing sound is primarily controlled by the 
vocal folds. The term phonation frequency refers to the vibration frequency of 
the vocal folds and, during singing sounds, this is the fundamental frequency 
of the generated tone. The vibration is mainly controlled with the muscula
ture of the vocal folds and to some extent with the amount of the subglottic 
pressure so that the greater the subglottic pressure, the higher the phona
tion frequency. In addition to the fundamental frequency, the generated tone 
includes frequency components called the overtone partials at the integer mul
tiples of the fundamental frequency. In an idealized case, the amplitudes of 
the overtone partials can be expected to decrease by about 12 dB per octave 
[613, p. 64]. 

The phonation frequencies may range from around 100 Hz for male singers 
to over 1 kHz for female singers. The term register refers to a range of 
phonation frequencies where the singing sounds are produced in a similar 
manner, thus producing similar timbral characteristics. Basically, there ex
ist two registers for male voices (normal and falsetto) and three registers for 
female voices (chest, middle, and head). 

Timbre 

The vocal tract acts as the most important controller of the singing sound 
timbre at the articulation stage. It functions as a resonating filter which em
phasizes certain frequencies called the formant frequencies. These depend on 
the configuration of the articulators, including the jaw, the tongue, and the 
lips. In voiced sounds, the two lowest formants contribute to the identification 
of the vowel and the higher formants to the personal voice timbre. 

In addition, singing sound timbre is affected by the amount of subglot
tic pressure and the tension of the vocal folds, resulting in different types 
of phonation. The phonation types include pressed, normal, flow, breathy, 
and whisper phonation, given in decreasing order of subglottic pressure. In 
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the normal phonation, the vocal folds are not completely closed. When the 
subglottic pressure is high, the vocal folds close more rapidly and produce a 
'pressed' sound. In the breathy and whisper phonations, the amount of sub
glottic pressure is insufficient to properly vibrate the vocal folds and a part of 
the air flow remains unchopped, thus producing a breathy-sounding phona
tion. In the flow phonation, the produced sound is neither pressed nor leaky, 
which is ideal for singing. 

Loudness 

The loudness of singing is influenced at several stages of voice production. 
The loudness is mainly controlled with the amount of subglottic pressure and 
the type of phonation. Although the subglottic pressure is smaller in the flow 
phonation than in the normal phonation, the sound pressure level of the voice 
source is maximal in the flow phonation. 

Trained singers can modify their vocal tract configuration so that the 
phonation frequency and a formant frequency match in order to create a 
louder sound. This is known as the singer^s formant. In the both extremes 
of the register, the control over loudness is more restricted, especially for 
untrained singers. 

12.2.2 Singing Sounds and Notes 

The phonation frequency enables the association of a singing sound with a 
musical note. If a singer could perform each note with a stable phonation fre
quency corresponding to the note pitch, the singing transcription task would 
be readily accomplished. However this is not the case, because singing perfor
mances possess both intentional and unintentional deviations from the nom
inal note pitches. Deliberate phonation-frequency deviations are commonly 
used to enhance the expressiveness of singing performances, whereas the un
intended deviations are mostly due to the lack of voice training. 

Figure 12.3 shows the fundamental frequency curve and the loudness 
curve of the note A4 performed by a female singer. Listening to the note 
performance, one unambiguously associates a note with A4, although the 
phonation-frequency curve is not stable during the note. To address this per
ceptual association of phonation frequencies with notes, the following discus
sion considers issues such as vibrato, tremolo, glissando, legato, and out of tune 
singing. 

Vibrato and tremolo 

The term vibrato refers to the modulation of the phonation frequency during 
a performed note. Vibrato can be characterized with the rate and the depth of 
the modulation. The rate typically varies between 4-7 Hz [425], and the depth 
between 0.3-1 semitones. In [530], the depth of vibrato was measured in ten 
recordings performed by professional singers and was reported to range from 
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Fig. 12.3. A) The fundamental frequency curve and B) the loudness curve mea
sured from a note A4 (440 Hz) performed by a female singer. The FO curve clearly 
shows glissando and vibrato, whereas the loudness curve shows tremolo. Notice the 
correlation between these two. 

0.34 to 1.23 semitones. Experimental results with human listeners indicate 
tha t the mean of the fundamental frequency during a vibrato note is close to 
the perceived pitch of the note [589]. 

The fluctuation of loudness is usually referred to as tremolo. In Fig. 12.3, 
the phonation-frequency and loudness curves imply vibrato and tremolo effect 
during the performed note, respectively. The vibrato rate is approximately 
6.5 Hz and the vibrato depth varies from half a semitone to slightly over 
one semitone. The figure also shows a high correlation between vibrato and 
tremolo. 

Glissando and legato 

The term glissando refers to a phonation frequency slide to the note pitch. 
Glissando is usually employed at the beginning of long notes: these often 
begin flat (too low) and the phonation frequency is matched to the note pitch 
during the first 200 ms of a note [570]. Figure 12.3 shows a clear glissando in 
which the note begins over two semitones flat. Singing in legato means tha t 
consecutive notes are tied together, for example by using glissandi to change 
the note pitch. 

Singing out of tune 

Singing out of tune refers to a situation where a note pitch differs annoy-
ingly from the tuning of the other notes within a performance. Accord
ing to the listening test results reported by Sundberg in [614], the mean 
phonation frequency may deviate ±0.07 semitones from the nominal note 
pitch for notes which were generally judged to be in tune. However, mean 
phonation-frequency deviation larger than ±0.2 semitones can be acceptable 
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at unstressed metrical positions, during tragic song mood, or when the phona-
tion frequency is sharp (too high) rather than flat. It was also observed that 
the direction of the deviation was related to the musical context [614]. 

Other types of tuning problems arise when singing is performed without 
an accompaniment. In general, singers are not able to perform in absolute 
tuning and, moreover, the tuning may drift, meaning that a singer gradually 
changes the baseline tuning over time. 

12.3 Feature Extraction 

The first step in singing transcription is to measure acoustic cues that enable 
the detection of notes in singing signals. The acoustic cues are here referred to 
as features, and the term feature extraction refers to the measurement process. 
The most salient features include the fundamental frequency and features re
lated to note segmentation. Features are commonly extracted frame-by-frame 
from acoustic waveforms and a pre-processing stage may precede this to fa
cilitate the extraction process. 

12.3.1 Pre-Processing 

Pre-processing of the input signals aims at facilitating the feature extraction 
process. If singing has been recorded in a noisy environment or with low-
quality equipment, the signal may include additive background noise which 
needs to be attenuated. The noise reduction problem has been studied for 
decades in speech processing and, to some extent, the same methods can be 
applied in singing transcription. A comprehensive study of noise reduction can 
be found in [638]. An issue related to noise reduction is audio restoration that 
aims at improving the quality of old music recordings, for which an interested 
reader is referred to [214]. 

The two main steps in noise reduction are the estimation of the noise com
ponent in the signal and its subsequent suppression. For example, PoUastri 
estimated the background noise spectrum during the time segments where 
singing activity was not detected [528]. The noise component was then sup
pressed using linear power-spectral subtraction. 

In addition to noise reduction, spectral whitening can be applied at the 
pre-processing stage to flatten strong formants in the signal spectrum. This 
aims at facilitating the measurement of fundamental frequency, since it is most 
salient in the voice source signal before the vocal tract influence. In [627], 
inverse filtering with a warped linear prediction (WLP) model was applied 
to perform spectral whitening. The idea of WLP is the same as for ordinary 
linear prediction, but implemented on a frequency scale resembling that of 
human hearing. 
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12.3.2 Fundamental Frequency Estimation 

Fundamental frequency is the most important feature in singing transcription 
systems. FO estimation has been widely studied in speech processing, and most 
of the state-of-the-art singing transcription systems use algorithms originally 
designed for speech signals. The following survey introduces a few useful FO 
estimation algorithms for singing transcription. For a more thorough review 
of different methods, see [289], [290], [618], [134]. 

Time-Domain Methods 

Autocorrelation-based FO estimators are widely used in singing transcription. 
The idea of these is to measure the amount of correlation between a time-
domain signal and its time-shifted version. For periodic signals, the autocor
relation function has local maxima at time shifts that equal the fundamental 
period and its multiples. 

Given a sampled time-domain signal s{k) and a frame length VF, the short-
time autocorrelation function rt{r) at time t is defined as 

t+w-i 
rt{T)= Yl s{k)s{k^r), (12.2) 

k=t 

where r is called the lag. Figure 12.4 shows rt{T) as calculated for a frame 
of a singing signal. The function rt{r) peaks at lags which correspond to 
the multiples of the fundamental period. A fundamental frequency estimate is 
obtained by dividing the sampling rate of the signal with the smallest non-zero 
lag value for which rt{r) reaches a value above a chosen threshold. 

The autocorrelation method is straightforward to implement and easy to 
use. A drawback is, however, that the method is sensitive to formants in 
signal spectrum and therefore tends to make octave errors. Spectral whitening 
makes the autocorrelation more robust in this respect. Autocorrelation has 
been employed in the singing transcription systems of Ghias et al. [207], Shih 
et al. [587], [586], [588], and Wang et al. [659], for example. 

YIN algorithm 

The YIN algorithm for FO estimation was proposed by de Cheveigne and 
Kawahara [135]. It resembles the idea of autocorrelation but introduces cer
tain improvements that make it more convenient to use. The YIN algorithm 
was successfully used for singing transcription by Viitaniemi et al. [643] and 
Ryynanen and Klapuri [558]. Given that s{k) is a discrete time-domain signal 
with sampling rate /s, the YIN algorithm produces a FO estimate as follows. 

1. Calculate the squared difference function dtir) where r is the lag: 

t-\-w-i 
dt{T)= Yl {s{k)-s{k + T)f. (12.3) 

k=t 
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Fig. 12.4. A) An excerpt of a singing signal with sampling rate 44.1 kHz. B) The 
ACF rtir) calculated using (12.2). C) The cumulative-mean-normalized difference 
function d^r) calculated using (12.4) (YIN algorithm). See text for details. 

2. Derive the cumulative-mean-normalized difference function d[{T) from 
dtir): 

'^'^^^^ = I dtir) I [(1/r) E ; = I dm , otherwise. (^2.4) 

3. Search for the smallest r for which a local minimum of dl^ij) is smaller 
than a given absolute threshold value K. If no such value can be found, 
search for the global minimum of G?J(r) instead. Denote the found lag value 
with T' . 

4. Interpolate the d\{T) function values at abscissas {r' — \,r',T' + 1} with 
a second-order polynomial. 

5. Search for the minimum of the polynomial in the continuous range {r' — 
l , r ' + 1) and denote the corresponding lag value with f. The estimated 
fundamental frequency is then / S / T . 

The normalization in (12.4) makes dj(r) independent of the absolute signal 
level and removes a spurious local minimum around the lag zero, thus making 
the subsequent thresholding in Step 3 more convenient to implement. The 
threshold value K = 0.15 was used in [558]. The interpolation in Step 4 in
creases the numerical accuracy of the FO estimate. 

Panel C in Fig. 12.4 shows the function o?J(r) calculated from the signal 
in panel A, and the dashed line indicates the threshold value K — 0.15. The 
first local minimum below the threshold is found at r' — 92 and then refined 
to f = 92.37 by the interpolation. For sampling rate /s — 44.1 kHz, this 
yields a FO estimate /g/f ?̂  477 Hz. Compared to the ACF in panel B, Vtir) 
and d!^{T) exhibit maxima and minima at the same lag values. To conclude 
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Fig. 12.5. The two-way mismatch error calculation is baised on combining the 
predicted-to-measured and mea^ured-to-predicted errors. The two-way matching 
makes the method robust for both 'too low' and 'too high' octave errors. (After 
Maher and Beauchamp [428].) 

with, normalization and thresholding are important in autocorrelation-based 
methods in general, and the YIN algorithm proposes one useful alternative 
for this. 

Frequency-Domain Methods 

Cepstrum-based FO estimators originated in speech processing (see Chapter 2 
for the definition of the cepstrum). The fundamental period of a signal can 
be found from the cepstrum in a way similar to the ACF-based methods. 
Cepstrum-based FO estimators perform well for speech sounds with strong 
formant structures, and they can also be used for singing transcription. How
ever, these FO estimators are rather sensitive to noise, since the logarithm 
operation involved in the cepstrum calculation raises the level of the noise 
floor in relation to harmonic components in the spectrum. A cepstrum-based 
FO estimator was used in the query-by-humming system of Liu et al. [411], 
for example. 

Maher and Beauchamp proposed a FO estimation method for music signals 
which was based on a two-way mismatch procedure [428]. The method searches 
for the most likely fundamental frequency among a set of trial FO values. 
The amplitudes and the frequencies of prominent sinusoids are first measured 
from the short-time spectrum of a signal frame. Given a trial FO, the measured 
partials are compared to the predicted harmonics of the trial FO (measured-to-
predicted error) and vice versa (predicted-to-measured error), thus producing 
two error measures for the FO estimate in question. Figure 12.5 illustrates 
the matching process. The two error measures are then combined to derive 
a total error measure. The trial FO with the smallest total error is considered 
as the best FO estimate within the frame. Details of the algorithm can be 
found in [428]. The algorithm is relatively straightforward to implement, and 
it has been used to separate duet signals [427] and to analyse the melody line 
in polyphonic recordings [519]. 

Peak-picking FO-estimation algorithms search for peaks in the magnitude 
spectrum and group them to derive an FO estimate. In the systems of Pollastri 
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Fig. 12.6. A block diagram of the auditory model-based FO estimator used by 
Clarisse et al. [92]. 

[528] and Haus and Pollastri [278], an FO estimate was determined by searching 
for the most prominent peak in a spectrum between 80 Hz and 800 Hz for 
which at least two clear harmonics were found. Another peak-detection scheme 
was applied by Zhu and Kankanhalli in [689], where a set of the highest peaks 
in the spectrum were detected and a rule-based peak-grouping algorithm was 
employed to obtain an FO estimate. 

Auditory Model-Based Methods 

Clarisse et al. used an auditory model-based FO estimator in their singing tran
scription system [92]. Figure 12.6 shows the block diagram of the method. The 
algorithm was originally designed for speech signals and its detailed explana
tion can be found in [637]. In brief, the algorithm works as follows. 

An audio file is first bandpass filtered to model the frequency response of 
the outer and the middle ear. The signal is then fed into a cochlear proces
sor, where a filter bank models the frequency selectivity of the inner ear. The 
signal at each band is processed by a hair-cell model in which the signal is 
half-wave rectified (i.e., negative signal-sample values are set to zero) and 
its dynamic range is compressed. The output of each hair-cell model is fol
lowed by a lowpass filter which extracts the envelope of the signal in the 
channel. 

The envelope signals in different channels are processed by a pitch extrac
tion module called AMPEX. It performs pseudo-autocorrelation analysis and 
sums the results across channels to obtain a global pseudo-autocorrelation 
function. The major peaks in the function are searched for to obtain a set of 
pitch candidates and their corresponding strengths. The final pitch estimate 
is chosen by analysing the continuity of the pitch estimates in the analysis 
frame and its surrounding frames. If the strength of the final pitch estimate 
exceeds a threshold value, the frame is considered to be voiced. Later, De Mul
der et al. concluded that the AMPEX algorithm was unsuitable for the FO 
estimation of very high-pitched sounds and proposed another FO estimation 
algorithm working in parallel with AMPEX [137]. 

A drawback of the auditory model-based algorithms is that they are 
computationally quite demanding. As an exception to this, Tolonen and Kar-
jalainen have proposed an auditory model-based FO estimator which is com
putationally efficient [627]. The method is described in Chapter 8 but, to our 
knowledge, it has not yet been applied to singing transcription. 
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12.3.3 Features for Note Segmentation 

Singing transcription requires the temporal segmentation of notes, i.e., the 
determination of where notes begin and end in time. This is usually done 
based on two types of features: those that indicate silence, noisy, or voiced 
segments in audio signals; and those that imply the beginning or the ending of 
a note. The first type of features include signal energy, the degree of voicing, 
and zero crossing rate, and the second type of features include phenomenal 
and metrical accents (to be explained below). 

Energy 

Features related to the signal energy are widely used for note segmentation, 
with the assumption that the signal level reflects the loudness of the target 
singing voice. Segments where the signal energy exceeds a given threshold 
value are often considered to be notes and the other segments are treated as 
silence or background noise. Energy-related measures are straightforward to 
use and work well if the notes are separated with more quiet regions. However, 
this is not the case in most signals; usually there are also legato-type note 
transitions. Therefore, robust note segmentation cannot be based on energy 
measures alone. 

One of the most often used energy measures is the root-mean-square 
(RMS) energy (see Chapter 6 for the RMS definition). This feature has been 
apphed by Haus and Pollastri [278], Pollastri [528], McNab et al. [454], [455], 
and Shih et al. [587], [586], [588], for example. Different variants of energy 
calculations have been applied in note segmentation, including the systems 
by Clarisse et al. [92], Liu et al. [411], and Orio and Sette [489]. 

Voicing 

A more reliable feature for note segmentation is the degree of voicing of a sig
nal frame. Voiced frames possess clear periodicity, whereas unvoiced frames 
can represent transient noise with a great amount of signal energy, or just 
silence. Commonly, the voicing determination is embedded within the FO es
timation algorithms. In autocorrelation-based FO estimators, for example, the 
degree of voicing is straightforwardly given by the ACF function value at the 
lag corresponds to the estimated fundamental period, divided by the value at 
lag zero. If the ratio of these two does not exceed a given threshold, the frame 
is considered to be unvoiced. 

When the YIN algorithm is used for FO estimation, the degree of voic
ing can be directly derived from the value d[{f) of the cumulative-mean-
normalized difference function defined in (12.4). The d[{T) value itself de
scribes the amount of non-periodicity in FO measurement. To obtain a voicing 
value, we have to map the d[{T) value to a voicing feature for example as 

u{f) = 1 - < ( f ) . (12.5) 



374 Matti Ryynanen 

The voiced/unvoiced decision can also be based on the zero crossing rate 
(ZCR) together with an energy measure, as done in [528], [421]. ZCR loosely 
describes the brightness of the sound. High ZCR values imply transient or 
noisy segments since these tend to have lots of energy at high frequencies. 
ZCR is defined in Chapter 6. 

Accents 

Features indicating note beginnings include the degree of phenomenal accent 
and the degree of metrical accent as a function of time. Phenomenal accents 
refer to moments that have perceptual emphasis in music signals, whereas 
the metrical accent corresponds to the underlying pulse of a music perfor
mance [404]. 

Klapuri proposed a method for estimating both of these accents in music 
signals [349]. In his system, a (phenomenal) accent signal is measured based 
on the amount of spectral change as a function of time. Briefly, the signal 
power is first measured at 36 sub-bands. At each band, the power of the sig
nal is computed and then log-compressed and smoothed over time by lowpass 
filtering. The power envelopes are then subjected to time differentiation and 
half-wave rectification to measure changes in intensity. Finally, the resulting 
signals are summed across the bands to produce the accent signal. The met
rical accent signal is constructed by inferring regularities in the accent signal 
and by estimating the temporal pulse of the music performance. The method 
of Klapuri can be used as a tempo estimator and is capable of following the 
tempo changes during music performances. For further discussion on beat-
tracking and musical metre analysis, see Chapter 4. 

Ryynanen and Klapuri used the accent signal and the metrical accent 
signal as features in a singing transcription system [558]. The accent signal 
indicated the singing note beginnings whereas the metrical accent signal was 
used to predict possible note beginnings according to the estimated tempo of 
the performance. 

12.3.4 Summary of the Features and an Example 

Table 12.1 summarizes the features discussed in this section. Figure 12.7 shows 
a selection of features extracted from a short singing excerpt containing five 
notes performed by a professional female singer. From top to bottom, the pan
els in the figure show the recorded singing waveform, fundamental frequency 
estimates, the degree of voicing, RMS energy, the accent signal, and the zero 
crossing rate. The panel with FO estimates also shows a manual transcription 
of the notes in the performance (B4, A4, A4, Ftt4, and A4). The FO estimates 
and the degree of voicing were obtained using the YIN algorithm and (12.5). 

At the beginning of the excerpt there is silence, which can be observed 
from the RMS and the degree of voicing. When the first note begins, the 
accent signal has a clear peak. Interestingly, the second note begins with an 
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Table 12.1. Acoustic features for singing transcription. 

Feature 

FO 

Energy 
Voicing 

Accents 

Usage 

note labelling 

segmentation 
segmentation 

segmentation 

Methods 

autocorrelation 
YIN 
cepstrum 

two-way mismatch 
auditory model-based 
RMS -h variants 
ACF value 
ZCR 
(phenomenal) accent 
metrical accent 

Comments 

well-motivated & understood 
related to the ACF 
robust against formants, sen
sitive to noise 
rather robust, intuitive 
computationally complex 
reflects the loudness 
side-product of FO estimation 
reflects the brightness 
indicates note onsets 
predicts note onsets 

almost two-semitones fiat glissando. Simply by following the FO estimates, the 
beginning of this note would be easily interpreted as note G4 {^ 390 Hz). In 
a manual transcription, however, the choice of a single note A4 is obvious. 
The last note includes strong vibrato and tremolo as well as a glissando in the 
beginning of the note. Although the accent signal indicates note beginnings 
quite reliably, especially strong vibrato causes false peaks to the accent signal, 
as can be seen during the last note. The zero crossing rate has a peak at time 
2.8 seconds caused by the consonant / s / . 

As the example shows, it is not always obvious what notes should be 
transcribed when given the extracted features, and this makes the singing 
transcription task rather difficult. Conversion of the frame-level features into 
note pitch labels is considered in the next section. 

12.4 Converting Features into Note Sequences 

The greatest challenge in singing transcription lies in the conversion of frame-
level features into note sequences. Singing performances exhibit inaccuracies 
both in pitch and timing, usually as a consequence of expressive singing or 
the lack of voice training. Therefore, a singing transcription system may not 
assume that the notes are performed in an absolute tuning, that the phonation 
frequency is stable during the notes, or that the notes are performed in a 
rhythmically accurate manner. 

The features-to-notes conversion involves note segmentation and labelling. 
These two steps can be performed either (i) in a cascade or (ii) jointly. 
The former approach is here referred to as the segment-and-label approach 
where singing recordings are first segmented into notes and rests, and each 
note segment is then assigned a pitch label. The joint segmentation and la
belling of notes usually applies statistical models of note events and is here 
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Fig. 12.7. Selected features extracted from an excerpt performed by a professional 
female singer. The panels show (in top-to-bottom order) the singing recording wave
form FO estimates, the degree of voicing, RMS energy, the accent signal, and the 
zero crossing rate. The excerpt was manually transcribed to contain five notes, B4, 
A4, A4, FtJ4, and A4, and they are shown in the panel of fundamental frequencies. 
See text for details. 

referred to as the statistical modelling approach. Both of these approaches may 
apply musical rules or musical context to obtain a bet ter transcription result. 
At an optional post-processing stage, the transcription can be enhanced, for 
example by adding a parametric representation of an estimated expression to 
the transcription. 
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Fig. 12.8. Note segmentation based on RMS-energy thresholding. 

12.4.1 Segment-and-Label Approach 

As mentioned above, the idea of the segment-and-label approach is to first 
segment an audio signal into notes and rests and then to assign a pitch label to 
each note segment. This approach has been taken in the singing transcription 
systems of McNab et al. [454], [455], Haus and Pollastri [278], Pollastri [528], 
Lu et al. [421], Wang et al. [659], and Clarisse et al. [92]. 

Note Segmentation 

Note segmentation is usually based on features related to the signal energy or 
voicing, or on abrupt changes in fundamental frequency. The methods usually 
apply fixed or adaptive thresholds to decide whether a note boundary has 
occurred or not. 

McNab et al. used the RMS energy for note segmentation [454]. When the 
signal energy exceeded a given threshold, the method interpreted this as a note 
onset, and similarly, when the signal energy dropped below another threshold, 
a note offset was inferred. In addition, the segment had to be at least 100 ms 
long to be accepted. Figure 12.8 shows the measured RMS contour of ten 
singing notes performed with a /da / syllable. The onset and offset thresholds 
are set to 50% and 30% of the overall RMS energy as in [454]. The note offsets 
are accurately found, whereas for example the first note onset is detected at 
1.1s although it should be at 0.5 s. 

As an alternative for the energy-based note segmentation, McNab et al. 
used a scheme where slowly varying regions of FO estimates were grouped. A 
note boundary was detected when an FO estimate deviated more than half a 
semitone from the average of the previous estimates during the segment. 

Pollastri used both the signal energy and FO changes for note segmentation, 
in addition to ZCR, which was used to make voiced/unvoiced decisions [528]. 
Clarisse et al. performed note segmentation based on adaptive adjustment of 
threshold values for signal energy. Later, the system of Clarisse et al. was 
improved by adding a number of decision rules for note segmentation, so as 
to handle notes with legato, vibrato, and tremolo [137]. 
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Note Labelling 

Note labelling follows the note segmentation. At this stage, each note segment 
is assigned a pitch label such as an integer MIDI note number or a note name. 
The most important question here is how to determine a single label for a note 
segment where FO estimates are widely varying and possibly out of absolute 
tuning. The different note-labelling schemes differ from each other mainly 
in terms of how they handle the singer's tuning. This has been addressed 
using three different assumptions: 

1. The singer performs in absolute tuning (note A4 corresponds to 440 Hz); 
2. The singer has a relative tuning in mind and makes consistent deviations 

from the absolute tuning; 
3. The singer allows the baseline tuning to drift during a performance. 

Corresponding to the three assumptions, the transcription systems either per
form no tuning, estimate a constant tuning, or perform time-adaptive tuning, 
respectively. Three systems applying these three approaches are briefly intro
duced in the following. 

No tuning 

The system of Clarisse et al. aimed at transcribing notes as precisely as pos
sible according to singing pitch instead of trying to infer the intention of the 
singer [92]. The FO for a note segment was calculated as the arithmetic mean 
of the FO estimates (Hz) in the central part of the note segment. The FOs 
which differed more than 10% from the mean were discarded and the mean 
was recalculated. The note pitch label was then obtained by rounding the 
resulting mean FO into an integer MIDI note number. 

Constant tuning 

Haus and Pollastri assumed that the performed notes differ a constant amount 
in semitones from the absolute tuning [278]. Figure 12.9 shows a block diagram 
of their pitch-labelling process. Given a note segment, the FO estimates within 
the segment were first 3-point median filtered to remove FO outliers. Then a 
group of four contiguous frames with similar FO values constituted a block. 
At the block level, legato with note pitch change was detected when pitch 
between adjacent blocks had changed more than 0.8 semitones. In the case 
of a detected legato, the note segment was divided into two new segments. 
Otherwise, the adjacent blocks constituted a note event for which the FO was 
calculated as the arithmetic mean of the FO in the blocks and represented as 
an unrounded MIDI note number. This process was repeated for each note 
segment, resulting in note segments with unrounded MIDI note labels. 

To determine the deviation from the absolute tuning, the authors calcu
lated a histogram of distances from the unrounded MIDI note numbers to their 
nearest integer numbers. The highest peak in the histogram then indicated the 
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Fig. 12.9. Pitch-labelling process of Haus and Pollastri [278]. 

most-often occurring offset from the absolute tuning and, subsequently, every 
note segment label was shifted by this offset, thus minimizing the rounding 
error. Finally, the shifted MIDI note labels were rounded to integers, thus 
obtaining the note pitch labels. 

Time-adaptive tuning 

McNab et al. considered a labelling technique which continuously adapted to 
the singer's tuning during a performance [454]. For the first note segment, a 
histogram of the FO estimates in the segment was calculated and the most 
prominent peak in the histogram was rounded to a MIDI note number. For the 
next note segment, however, the histogram was shifted by the amount of the 
rounding done in labelling the previous note. In other words, the tuning was 
constantly adjusted according to the rounding errors made while labelling the 
preceding notes. This approach, however, tends to adjust tuning too much at 
a time. In the worst case, the maximum rounding error in each note labelling 
can be half a semitone. Thus the reference tuning might have changed one 
octave (twelve semitones) after labelling 24 notes. 

12.4.2 Statistical Modelling of Notes 

The statistical approach discussed in this section applies pre-trained acoustic 
models of note events and performs the note segmentation and labelling 
jointly. This has certain advantages in the singing transcription problem in 
particular. First, it is theoretically advantageous to optimize the note segments 
and their labels jointly instead of doing these as two consecutive steps. Sec
ondly, statistical models allow representing uncertain information and learning 
from examples, thus providing a more convenient way to deal with the highly 
varying acoustic data. 

Statistical note models are derived by measuring low-level acoustic features 
during note events and by training a parametric statistical model to describe 
the behaviour of the features during the events. The models can then be used 
to calculate the likelihoods of different notes in previously unseen material. 
The note sequence which maximizes the overall posterior probability according 
to the note models is considered to be the transcribed note sequence. 
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Hidden Markov models 

In practice, all the current singing transcription systems applying statistical 
note modelling have been based on hidden Markov models (HMMs). HMMs 
are widely used to model phonemes and words in automatic speech recognition 
and, therefore, the theory of HMMs is well established. The following presen
tation introduces the basic idea of HMMs and their usage in note modelling. 
For a more formal consideration of HMMs, see Chapter 2. A good tutorial on 
HMMs can be found for example in [534]. 

A hidden Markov model is a state machine which models stochastic signal 
sources. The HMM is mathematically formulated by the following parameters: 

1. A set of states © = {^1,62,... ,e£;} within the model where E is the 
number of states. 

2. State-transition probabilities P{9t = ej \6t-i — e^), i.e., the conditional 
probabilities that state ei is followed by state ej within a random state 
sequence Oi-t- In particular, a direct transition from ê  to ej is not possible 
ifP(^t = e , | ^ t - i - e O = 0. 

3. The observation likelihood distributions p{xt \0t = ej), i.e., the likelihoods 
that an observation vector x is emitted from state ej G 0. Here the 
observation vector consists of the acoustic features extracted in frame t. 

4. The initial probabilities P{6i = ei) and the final state probabilities 
P{6T = ^i), i-e., the probabilities that a state sequence begins or ends 
to state ei. 

The state-transition probabilities, the observation likelihood distributions, 
and the initial and the final state probabilities can be learned from acoustic 
data either with supervised or unsupervised training techniques, depending on 
whether the underlying state sequence 6i:t is known a priori or not. In the case 
of singing transcription, the training data consists of the frame-level features 
extracted from singing recordings, and the training is usually performed in an 
unsupervised manner with the Baum-Welch algorithm, which is described for 
example in [534]. 

Once the HMM parameters have been learned, the state sequence which 
maximizes the posterior probability of the observed data can be estimated 
using the Viterbi algorithm [654]. See Chapter 2 for a description of the 
Viterbi algorithm. An alternative state-sequence estimation scheme is the 
token-passing algorithm, which is designed for finding the most probable path 
through a network of connected HMMs. For the algorithm details, see [685]. 
Briefly, the token-passing algorithm propagates tokens which represent alter
native paths through the network. Inside a HMM, each state contributes to 
the weight of the tokens by the observation likelihoods and the state-transition 
probabilities. When a token is emitted out of an HMM, the algorithm iden
tifies the boundary between the connected HMMs and appends it to a list of 
boundaries for the purpose of backtracking the most probable path after the 
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analysis. The tokens are further weighted with predefined transition probabil
ities between different HMMs. Eventually, the most probable path is defined 
by the token with the maximum posterior probability and the corresponding 
boundaries between different HMMs in the network. 

Note-Event Model of Ryynanen and Klapuri 

Ryynanen and Klapuri proposed a singing transcription system based on mod
elling note events with HMMs [557], [558]. The system performs note segmen
tation and labelling simultaneously and also utilizes the musical context in 
singing performances. The note-event model and its usage are described in 
the following, whereas the use of musical context is considered later in Sec
tion 12.4.3. 

Note-event model 

Note events are described with a three-state left-to-right hidden Markov model 
where P{6t = Cj \ 9t-i = ê ) 7̂  0 only when j = z or j = i -h 1. The state ci in 
the model represents the typical acoustic characteristics of the ith temporal 
segment of a performed singing note. The model uses three features: funda
mental frequency estimates (represented as unrounded MIDI note numbers), 
the degree of voicing, and the accent signal. The features are extracted as ex
plained in Section 12.3. Different notes are represented with a separate HMM 
for each MIDI note n = 36 , . . . , 79. For note n, the features in frame t form 
the observation vector Xt where the difference between the fundamental fre
quency estimate and note n is used instead of the FO estimate directly. This 
is referred to as the pitch difference AFQ: 

AFo = Fo-n. (12.6) 

The use of pitch difference facilitates the training of the model. Usually, there 
is a limited amount of training data available, at least for each possible singing 
note. Due the pitch-difference feature, it is possible to train only one set of 
note HMM parameters with greater amount of data, and the same parameters 
can be used to represent all the different MIDI notes. 

The state-transition probabilities and the observation hkehhood distrib
utions were estimated from an acoustic database containing audio material 
performed by eleven non-professional singers. The singers were accompanied 
by MIDI representations of the melodies which the singers heard through 
headphones while performing. Only the performed melodies were recorded, 
and later, the reference accompaniments were synchronized with the perfor
mances. The reference notes were used to determine note boundaries in the 
training material, and the Baum-Welch algorithm was then used to learn the 
note HMM parameters. 

Figure 12.10 illustrates the trained note HMM. The HMM states are shown 
on top of the figure where the three states are referred to as the attack. 
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Fig. 12.10. A note HMM with three states: an attack, a sustain, and a silence/noise 
state. The arrows show the possible state-transitions. The observation HkeUhood 
distributions are shown below each state for the features used (pitch difference, the 
degree of voicing, and accent). 

the sustain, and the silence/noise state, each of which corresponds to a time 
segment within note events. The arrows show the possible transitions between 
the states. The observation likelihood distributions shown below each state 
express the typical behaviour of these features during the different segments 
within note events. It is a little surprising that unsupervised learning leads to 
such an intuitive interpretation of the three states of the note model: 

Attack: The singing pitch may vary about a few semitones from the actual 
note pitch. Since the mean of the pitch-difference distribution is at —0.5 
semitones, this implies that notes usually begin slightly flat. Accent value 
distribution is widely spread, which indicates the presence of large accent 
values during note attacks. 

Sustain: The variance of pitch difference is much smaller than in the attack 
state. Most of the FO estimates stay within ±0.2 semitone distance from 
the nominal pitch of the note. In addition, the frames during the sustain 
state are mostly voiced (i.e., the FO estimation can be reliably performed) 
and the accent values are small. 
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Fig. 12.11. Combination of the note models and the musicological modeL 

Silence/noise: The FO estimates are almost random valued, since most of the 
frames are unvoiced (notice the high likelihood of voicing values near 0.3). 

The authors did not consider modelling the rests, since the note model 
itself includes a state for silent or noisy segments. Thus the time instants 
where the silent/noise state is visited can be considered as rests. 

Using the note event model 

The HMMs of different MIDI notes are joined into a note model network illus
trated in Figure 12.11. The probability of a transition from one note to another 
is determined by a musicological model (explained in Section 12.4.3). Notice 
that the figure shows the note models at successive time instants although 
there actually exists only one note model per MIDI note. Singing melodies 
can be transcribed by finding the most probable path through the network 
according to the probabilities given by the note HMMs and the musicological 
model. The authors used the token-passing algorithm for this purpose. 

The transcription system of Ryynanen and Klapuri was evaluated using 57 
singing melodies from the same database that was used for training the note 
models (the training signals were not included in the evaluation set). An error 
rate below 10% was achieved when the transcriptions were compared to the 
reference MIDI notes. Simply rounding FO estimates to MIDI note numbers 
produced an error rate of about 20%. The use of note models reduced the 
error rate to 13%, and including also the musicological model decreased the 
error rate below 10%. A similar note model network was later applied by 
the authors to the transcription of polyphonic music from various genres [559]. 
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Other Systems with Note-Event Models 

Orio and Sette used a HMM-based note modelling technique for transcribing 
singing queries [489]. Their approach was similar to the system of Ryynanen 
and Klapuri: each MIDI note was represented by its own HMM, which had 
three states for modelling the attack, sustain, and rest segments in singing 
notes. The used features included the logarithm of signal energy, spectral 
energy on the first harmonics of each modelled note for FO detection, and 
the first derivatives of these. The observation likelihood distributions were 
derived by making statistical analysis of a set of labelled audio examples. 
The HMMs of different notes were joined into a note network, and the Viterbi 
algorithm was used to decide both the note segments and the pitch note labels 
simultaneously, thus producing transcriptions of singing queries. 

Their preliminary results indicated that most of the labelhng errors were 
due to glissandi between notes. Another common error was to insert additional 
note boundaries during note attacks. The authors discussed the interesting 
possibility of using several attack states for modelling different types of note 
beginnings and an enhanced sustain state with two additional states modelling 
slight detunings upwards and downwards from the note pitch. However, these 
ideas were not implemented in the reported system. 

Viitaniemi et al. proposed an HMM for singing transcription, where the 
HMM states corresponded to different notes [643]. The observation likelihood 
distributions consisted of the FO value distributions for each note and the 
state-transitions were controlled with a musicological model. The optimal 
state sequence was found with the Viterbi algorithm in order produce note 
labels at each time instant. In the optimal state sequence, transitions between 
different states were interpreted as note boundaries. The system achieved error 
rates around 13% for the database that was used by Ryynanen and Klapuri 
in [558]. 

Shih et al. used a three-state HMM to model note events [587]. The features 
included mel-frequency cepstral coefficients (MFCC), one energy measure, and 
a pitch ratio. The pitch ratio was calculated as 

log(Fo) - log(FJ^f) , (12.7) 

where FQ (HZ) denotes a fundamental frequency estimate and FQ^^ a refer
ence FO. Two different definitions for the reference FO were tested: FJ^^ was 
defined as the arithmetic mean of the FO values (i) in the first detected note 
segment or, alternatively, (ii) in the immediately preceding note segment. In 
the former case, they trained 15 note models describing one octave of a major 
scale upwards and downwards from the first detected note. In the latter case, 
they trained models for one and two semitone intervals upwards and down
wards with respect to the previous note. In addition, they defined a model for 
segmenting the first note. Once the first note of a performance is segmented, 
the mean FO is calculated as the reference FO. Depending on the selected set 
of HMMs, the reference FO was then either kept fixed or updated after each 
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detected note, leading to the constant and the time-adaptive tuning, respec
tively (see Section 12.4.1). The time-adaptive tuning was reported to work 
better for which approximately 80% of notes were correctly labelled. 

Shih et al. soon modified their system to transcribe singing in two consec
utive stages of note segmentation and labelling [588]. The note segmentation 
was performed with two three-state HMMs, one of which modelled note seg
ments and the other rests. The note and rest segments were then found using 
the Viterbi algorithm. After a note segment was detected, it was labelled with 
respect to its previous note by using pitch interval in semitones and the stan
dard deviation of FO estimates within the note segment. These attribute values 
were modelled with a Gaussian mixture model (GMM) and the interval label 
was decided according to the most likely GMM. Some minor improvements 
in transcription quality were achieved compared to their previous system. In 
addition, the improved system operated in real time. 

12.4.3 Utilizing Musical Context 

So far, we have discussed singing transcription without any prior knowledge 
about the musical relevance of individual notes or their relationships. Musical 
context plays an important role in singing: some notes and note sequences are 
much more probable than others when the whole performance is treated as 
a musical entity. This section considers how to exploit the knowledge about 
musical context in singing transcription. 

Musical Key 

The tonality of a singing performance is largely determined by its musical 
key, which characterizes the basic note scale used within the performance 
(see Chapter 1 for a discussion of tonal music). The first note of the scale is 
called a tonic note, which also gives the name for the key. For example, the 
C major scale consists of the notes C, D, E, F, G, A, and B (the white piano 
keys), where the intervals between the notes in semitones are 2, 2, 1, 2, 2, 
and 1, respectively. The natural A minor scale consists of the notes A, B, C, 
D, E, F, and G, where 2, 1, 2, 2, 1, and 2 are the corresponding intervals. 
Since C major and natural A minor scales actually contain the same notes, 
the corresponding keys (C major and A minor) are referred to as relative keys 
(or the relative-key pair). In general, the keys are relative if they correspond 
to a major and a natural minor scale with the same notes. 

The term pitch class stems from the octave-equivalence of notes. That is, 
notes separated by an octave (or several octaves) belong to the same pitch 
class, so that for example C is the pitch class of C3, C4, and C5. Krumhansl 
reported the occurrence frequencies of different pitch classes with respect to 
the tonic note of a piece, measured from a large amount of classical music 
[377]. The distributions are shown in Fig. 12.12, where the pitch-class names 
are listed for the relative keys C major and A minor. As can be observed. 
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Fig. 12.12. Pitch class occurrence frequencies in major and minor keys with respect 
to the tonic pitch class (after Krumhansl [377, p. 67]). As an example, the pitch class 
names are listed below the figure axes for the relative keys C major and A minor. 

pitch classes such as C, E, and A often occur in both of these keys, and the 
pitch classes which belong to the scale of the key are much more frequent 
than the others. To conclude, given the key of a singing performance, we may 
determine the probabilities of different pitch classes from a musical point of 
view and use this knowledge to solve ambiguous note labellings. 

A musical key estimation method 

Viitaniemi et al. proposed a key estimation method which produces the prob
abilities of different keys given a sequence of FO estimates [643]. The required 
prior knowledge consists of the occurrence probabilities of different notes n 
given a key k, P{n \k). As only the pitch class of a note is assumed to affect 
the mentioned probability, distributions such as those shown in Fig. 12.12 can 
be used. Then the probability of a key given a note is obtained using Bayes's 
formula: 

P{n I k)P{k) P{k I n) -
P{n) 

(12.8) 

Further, the authors used singing performances as training data to estimate 
the probabilities of different FO values given a note n, i.e., P{FQ |n) , which 
was modelled with a GMM. This was to represent singing pitch deviation from 
the nominal note pitch, and the FO estimation errors. Then the probability of 
a key given an FO estimate was calculated as 

P(fc|Fo) 
P ( F o I k)P{k) (assumpt.; E 

all notes n 

P{Fo I n)Pin I k) m_ 
P{Fo) 

where it was assumed that the probability of an FO estimate is independent of 
the key when the note is given, i.e., P{Fo \n,k) = P{Fo \ n). The probability 
of key k given a sequence of FO estimates, O — [FoiX), • • •, F()(T)), was then 
calculated as 
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T 

P{k\0) = \{P{k\F^{t)). (12.9) 

The method was reported to find the correct relative-key pair in 86% of singing 
performances [643]. The estimated key probabihties were appHed as a musi-
cological model to favour certain notes in singing transcription. At time t, the 
probability of note rit given the sequence of FO estimates up to time t was 
defined as 

24 

P{nt \0) = Y. ^(^^ I ^)^(^ I ^) ' (̂ 2-1̂ ) 
k=l 

where the index k sums over all the 24 major and minor keys. It should be 
noted that the above equation gives the probability of note n at time t from 
the viewpoint of the musicological model alone, without any special emphasis 
to the most recent observation Fo(t). 

Note AT-Grams 

Note AT-grams formulate the idea that the probability of a note depends on 
the previous Â— 1 notes. The probability of a note rit given the previous notes 
ni: t- i is here denoted by P{nt | ni:t_i). A^-grams are based on (A^—l)-th order 
Markov assumption which can be written as 

P{nt I ni:t_i) - P{nt \ Ut-N^i-.t-i) • (12.11) 

The note A^-gram probabilities are estimated from databases containing note 
sequences. In practice, the databases do not include all the possible note 
sequences, and therefore a method is usually employed to estimate also 
the probabilities of the non-occurring note sequences. In general, this process 
is called smoothing. For different smoothing methods, see [321]. 

Ryynanen and Klapuri applied note A^-gram probabilities for Â  G {2,3} 
under a given key to control the transitions between different note HMMs 
[558] (see Fig. 12.11). The probability of note rit at time t was defined as 
^(^ t l^prev,^:), where k denotes the key and riprev = '^t-N^i-.t-i is used to 
denote the N — 1 previous notes for convenience. The probabilities were es
timated by counting the occurrences of different note sequences in a large 
database of monophonic MIDI files and by smoothing them with the Witten-
Bell discounting algorithm [673]. 

The estimated note AT-gram probabilities were applied in singing transcrip
tion as follows. First, the major and the minor keys /cmaj, ^min of the most 
probable relative key-pair were determined from the singing performance us
ing the key estimation method of Viitaniemi et al. [643]. Then the probability 
of moving to note rit was obtained by 

P{nt I nprev) = ^ ( ^ ^ I ^P^ev, femaj) + Pjut \ rip.ev, fe^in) ^^^.12) 
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If the key information was not available, the probability was given by 

1 ^̂  
P{nt\nprev) = ^Yl -^Kl^prev, k) , (12.13) 

k=l 

that is, assuming all the major and minor keys equally probable. If the mu-
sicological model was completely disabled, equal transition probabilities were 
used for all note transitions. 

Simulation experiments with the described musicological model showed 
that the use of note A/'-grams without the key information did not improve 
transcription results compared to the situation where the musicological model 
was completely disabled. When using the key information with the note N-
grams, however, the error rate was reduced from 13% to under 10%, where the 
note bigrams {N = 2) worked slightly better than the note trigrams {N = 3) 
[558], [557]. 

Metrical Context 

Metrical context refers to the temporal arrangement of notes with respect to 
the musical tempo of the performance. Both the note beginnings and their 
durations are usually related to the tempo. As an example of the note dura
tions, given a tempo of 100 beats per minute, the duration of quarter notes is 
around 60 s / 100 ^ 0.6 s, a half of this for eighth notes, two times the duration 
of quarter notes for the half notes, and so forth. The note beginnings, on the 
other hand, are usually located at the positions of the beats of an underlying 
pulse of the performance (metrically strong positions). For a further discus
sion on musical metre analysis, see Chapter 4. The singing notes, however, are 
not necessarily performed at a constant tempo due to the expressive nature 
of singing performances. 

Viitaniemi et al. tested the explicit modelling of note durations within 
an HMM [643]. They weighted the transitions between HMM states (corre
sponding to different notes) by note-duration likelihoods estimated from a 
large amount of MIDI files. However, it was reported that the duration mod
elling did not improve transcription results. Ryynanen and Klapuri estimated 
the tempo during singing performances and derived a metrical accent function 
based on the estimated tempo [558]. The metrical accent function was used 
as an acoustic feature in the note event model in order to predict note begin
nings in singing performances. However, the advantage of using the metrical 
accent was found to be insignificant compared to the increased complexity of 
the transcription system. 

Summary 

To conclude, the utilization of musical context can significantly improve the 
accuracy of singing transcription systems, although the techniques for musical 
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context modelling are still under development. If the musical key or the tempo 
of a performance is known in advance, the quality of the transcription is very 
likely to be improved. Use of the tonal context for pitch labelling appears to 
be more important than the use of the metrical context for note segmenta
tion. However, the metrical context becomes essential if in addition the note 
durations are quantized, as described in Chapter 4. 

12.4.4 Post-Processing and Encoding Expression 

Note-sequence post-processing can be used to encode the expressive aspects of 
a singing performance into the transcription, or to perform time quantization. 
The term time quantization refers to the process of associating note onsets 
and durations with a discrete temporal grid. Time quantization is needed, 
for example, in singing-to-score types of applications. A reader interested in 
time quantization is referred to the work of Cemgil et al. [75], [77], and to 
Chapter 4 in this volume. 

The focus in this section is on the expression encoding. Singing perfor
mances are often quite expressive in nature, and note sequences are insufficient 
representations of singing performances in this respect. If singing transcription 
is used in an application where the transcribed note sequence is resynthesized, 
the plain note sequence sounds rather dull. Therefore, the transcriptions for 
this type of applications should contain additional data representing the ex
pressive aspects of singing performances, such as glissandi, vibrato, tremolo, 
and loudness changes during the notes. In addition, traditional music notation 
provides some limited number of expression symbols, such as loudness indica
tors {pp, p, mf, ff). These can be derived from the estimated parameters of 
expression and added to the score. 

Vibrato is a very important characteristic of singing sounds. Research on 
the computational analysis of vibrato has addressed the detection, estimation, 
or synthesis of vibrato in singing signals [284], [461], [337]. Herrera and Bonada 
detected vibrato in the FO trajectory during a note as follows [284]. Given a 
note segment, the global mean of the fundamental frequency trajectory during 
the note is first removed to obtain a zero-mean FO trajectory. The trajectory 
is then analysed in half-overlapping windows of length 0.37 s. For each window, 
the FFT of the windowed FO trajectory is computed and prominent spectral 
peaks are subjected to parabolic interpolation. If a prominent peak around 
5-6 Hz is found in the spectrum, the frequency and the amplitude of the peak 
are interpreted as the vibrato rate and the depth in the analysed window, 
respectively. The method can be straightforwardly used to detect tremolo, too, 
by replacing the fundamental frequencies with framewise energy measures. 
Once the vibrato parameters have been detected during a note, they can 
be encoded as pitch-bend MIDI messages in the MIDI representation of the 
performance. 

The loudness of a note over its duration can be directly measured with 
framewise energies in the note segment. Each MIDI note-on message includes 
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a velocity parameter which indicates the loudness of the note. To decide the 
velocity value of an entire note, the RMS energies of voiced frames can be 
averaged and mapped to a velocity value, for example. 

The note event models which consider different types of time segments 
during the singing notes allow different measurements to be made within 
the different segments of transcribed notes. The amount of glissando can 
be measured during the attack segment, vibrato and tremolo during the 
sustain segment, and so forth. The estimation and encoding of expres
sion parameters improves the quality of resynthesized singing transcrip
tions considerably. Some examples on expression encoding can be found at 
ht tp: / /www.cs. tut . f i /sgn/axg/matt i /demos/monomel. 

12.5 Summary and Discussion 

In this chapter, we have considered the automatic conversion of mono-
phonic singing performances into musical transcriptions and covered the basic 
methodology for solving this problem. In the current singing transcription sys
tems, frame-level features are first extracted from a singing waveform and the 
features are then segmented into note events and assigned pitch labels. In the 
literature, the latter two operations have been performed either consecutively 
(the segment-and-label approach) or jointly with statistical methods. 

In both of these approaches, it is important to also consider the musical 
context, since music transcription in general is based on the perception of 
musical entities at many levels rather than on the local evidence of individual 
notes only. The musicological modelling has been addressed using key esti
mation, note A/'-grams, and metrical context where especially the use of tonal 
context has brought improvements in terms of transcription accuracy. 

Singing transcription can be accomphshed quite satisfactorily with the 
state-of-the-art methods, and these are already applicable in real-world situ
ations. However, the quality of singing transcription is still far from perfect 
as compared to the superior quality of hand-made transcriptions. To design 
better methods, we need a deeper understanding of the perception of singing 
sounds, and of the influence of the musical context on this. Further develop
ment of both the acoustic and the musicological models is likely to improve 
the transcription quality. This inevitably leads to the development of complex 
computational models and provides interesting challenges for the future. 
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Artificial neural network, see Neural 

network 
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autocorrelation function, 233 
calculation via FFT, 256 
enhanced, 288 
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of a frequency-domain signal, 233 
summary ACF, see Summary 

autocorrelation 
use for beat tracking, 112 
use for FO estimation, 232, 369 

Automatic music transcription, see 
Transcription 

Automatic threshold selection, 350 
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BcLsis function, 269 
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time domain, 271 
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classification, 62 
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network, 313 
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Beat induction 

by humans, see Metre perception 
computational, see Beat tracking 
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Binning, 154 
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separation 
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Box-Cox power transform, 179 
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Brain imaging, see Neuroimaging 
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Central auditory processing, see 

Auditory system 
Central limit theorem, 274 
Cepstral coefficients, 25, 26 

MFCC, see Mel-frequency cepstral 
coefficients 
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Cepstrum pitch detection, 253, 264, 371 

Channel selection 
in auditory model, 244, 249, 251 
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notation, 3 
recognition, 319 
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355 
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computational models, 234 

Cocktail party problem, 300 
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Combining classifiers, 193 
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expression symbols, 389 
Complete family, 72 
Complete transcription, 3 
Compression 

in auditory model, 238, 239, 248 
i/th-law compression, 255 

Computational auditory scene analysis, 
see Auditory scene analysis 
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Conditional probability density 

function, 31 
Conjugate prior, 47 
Contextual information, 198 
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Correlogram, 227, 242, 245, 339 
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evolution model 
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Data-driven processing, 16 
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Delta features, 175 
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Deterministic approach to signal 

modelling, 67 
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Dictation, see Human transcription 
Dictionary of waveforms, see Waveform 

dictionary 
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Discrete cosine transform, 75 

Discrete Fourier transform, see Fourier 
transform, 273 

Discrete wavelet transform, see Wavelet 
transform 

Discriminant analysis, 61, 185 
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function 
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Double bass, see Contrabass 
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Duplex theory of pitch perception, 241 
Duration 

of a note, 362 
perceived duration, 8 

Dyadic grid, 74 
Dynamic model 

finite, discrete state space, 63 
Dynamic range 

of hearing, 238, 273 
of inner hair cells, 238 

Ear training, 12 
Eardrum, 234 
Eigenvalue, 54, 180 
Eigenvector, 54 
Electric guitar, see Guitar 
Elementary waveform, 70 
EM algorithm, see Expectation 

maximization 
Empirical average, 29 
Empirical probability density function, 

82 
Empirical risk, 56 
English horn, 167 
Enhanced summary ACF, see Summary 

autocorrelation function 
Ensemble of classifiers, 184 
Equal-tempered scale, 9, 224 
Equivalent rectangular bandwidth, 236 
Estimation, 

bias, 33, 41 
covariance, 33 
unbiased estimator, 34 
see also Fundamental frequency 

estimation, 21 
Estimation theory, 33 
Euclidean distance, 282 
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Evaluation methodology, 170 
Expectation, 29 
Expectation maximization, 35, 221, 336 
Exponential decay, see Amplitude 

evolution model 
Expression, 193 

estimation and encoding, 389 

FastICA algorithm, 275 
Feature extraction, 66, 135, 171, 247, 

270, 287, 307, 344, 345, 368 
delta, 175 
sliding window, 155 

Feature scale transformation, 178 
Feature selection, 137, 181 
Feature transformation, 191 
Fisher ratio, 61 
Flat classifier, 184 
Flute, 205, 206, 209, 319, 323, 340 
Folk music, 125, 323 
Formant, 253, 294, 365 
Fourier transform, 21, 22 

continuous, 22 
discrete, 22 
inverse, 22 

Fractional-delay filter, 250 
Frame, see Analysis frame 
Frame (family of vectors), 77 

dual, 78 
frame inversion, 78 
frame representation, 78 
Gabor frame, 78 
hybrid system, 81 
multiple Gabor frames, 79 
overcomplete system, 78 
quilted frame, 81 

French horn, 166, 167 
Frequency evolution model, 209 
Frequency grid, 219, 224 
Frequency modulation 

as clue for component fusion, 306 
vibrato, see Vibrato 

Frequency proposal distribution, 216 
Frequency warping, 254 
Frobenius norm, 280 
Front end, 244 
Full-wave ^'th-law compression, 255 
Fundamental frequency estimation 

basic principles, 232 

multiple FO estimation, 203, 229, 248, 
287 

of melody and bass fines, 330 
single FO estimation, 232, 369 
typical errors, 233, 253 

Fundamental frequency pdf, 332 
Fundamental frequency, term definition. 

g-prior, 212 
Gabor frame, 78 
Gabor function, 78 
Gabor representation, 24, 209 
Gabor waveforms, 71 
Gain function, 143, 269 
Gamma prior, 211 
Gammatone filter, 237, 241, 247, 255, 

306 
efficient implementation, 238 

Gaussian distribution, 28 
Gaussianity of variable, 274 
generalized, 286 
truncated, 213 

Gaussian mixture model, 35, 37, 139, 
191, 385, 386 

Gaussian noise, 279, 282 
Generalization in classification, 169, 189 
Generalized autocorrelation, see 

Autocorrelation 
Generative model, 62, 112, 122, 204, 

277, 324 
Generative signal, speech and music, 16 
Genre classification, 13, 112, 356 
Gestalt psychology, 300 
Glissando, 389 

in singing, 367 
Glockenspiel, 232 
Greedy algorithm, 84, 89, 225, 354 
Grid, temporal, see Temporal grid 
Grouping, see Rhythmic grouping 
Guitar, 79, 166, 167, 177, 227 

electric, 198, 200, 209 
onset detection, 108 
sound separation, 270, 290 
transcription, 301 

Hair cell, see Inner hair cell. Outer hair 
cell 

Half-wave rectification, 239, 256, 258 
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Harmonic matching pursuit, 92 
Harmonic partial, 107, 231, 291 
Harmonic pattern matching, 233 
Harmonic selection, 257 
Harmonic sound, 231 
Harmonic trajectory, 225 
Harmonicity, as clue for component 

fusion, 306 
Harmonics and Individual Lines plus 

Noise, 69 
Harmony, 9 
Harp, 167 
Harpsichord, 167 

transcription, 282 
Heisenberg-Gabor inequality, 24 
Hidden Markov model, 63, 121, 122, 

139, 191, 286, 380 
Hierarchical beat structure, see Metre 
Hierarchical classifier, 184, 192 
Higher-order statistics, 275, 287 
History of automatic music transcrip

tion, 6, 301 
Human auditory system, see Auditory 

system 
Human transcription, 5, 12 
Human-computer interaction, 341 
Human-computer interaction, 5, 361 
Hybrid representation, 67 
Hybrid system, see Frame (family of 

vectors) 
Hyperparameter, 47, 62 

i.i.d., 32 
Idiophone, 131, 145, 167 
Ill-posed problem, 38 
Importance probability density 

function, 49 
Importance sampling, 49, 223 
Independence, see Statistical indepen

dence 
Independent component analysis, 109, 

143, 274, 305 
multidimensional, 276, 277 
non-negative, 278 
spatiotemporal, 277 

Independent subspace analysis, 144, 
276, 285 

sub-band, 145 

inertia ratio maximization using feature 
space projection, 183 

Information gain, 182 
Information retrieval, see Music 

information retrieval 
Inharmonicity, 175, 206, 222 

in string instruments, 231 
inharmonicity factor, 232 
model for piano, 206, 222, 232 

Inner ear, 234 
Inner hair cell, 234, 235 

models, 238, 241, 246, 247, 255 
Inner lines in music, 6, 13 
Inner product, 71 
Inner product space, 71 
Instance-based classification, 138, 185 

/c-NN, see /c-nearest neighbours 
Instantaneous frequency, 246, 332 
Instrument 

sample databases, see Databases 
sounds, see Musical sounds 

Instrument classification, 7, 65, 163 
in humans, 164 
percussion, see Percussion sound 

recognition 
Instrument families, 167 
Integration of information, 16, 154, 313, 

383 
Inter-onset interval, 8, 115 
Intermediate data representation, see 

Mid-level data representation 
Internal model, 15 
Interval, 12, 321, 340, 341, 362 
Invariant feature extraction, 276, 277 
Inverse Fourier transform, see Fourier 

transform 
Inverse gamma distribution, 47 
Iterative FO estimation and cancellation, 

196, 250, 254, 259, 263 

JADE algorithm, 275 
Jazz music, 105, 125, 127, 321, 355 
Joint estimation of multiple FOs, 214, 

251, 252, 263 
Joint probability density function, 31 
Junction tree algorithm, 316 

Arnearest neighbours, 60, 185, 191 
Kahmba, 167 
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Kalman filter, 51, 52, 117, 121, 221-223, 
226, 324 

Kernel, 57 
Gaussian, 57 
positive definite, 57 

Kullback-Leibler divergence, 282 
symmetric, 287 

Kullback-Leibler information, 335 
Kurtosis, 275 

spectal, 136 

Language model, 15 
Laplace approximation, 225 
Laplacian distribution, 280 
Latent variable, 35 
Law of large numbers, 30 
Lazy learning, 185 
Least-squares, 285 
Leave-one-out cross-validation, 170 
Lebesgue measure, 28 
Legato, 9 

in singing, 367 
Level adaptation in auditory model, 

239, 246 
Level compression, see Compression 
Likelihood, 210, 219, 332 
Likelihood function, 32 

degenerate, 33, 38 
penalized, 38, 41, 57 

Linear discriminant analysis, 186, 191 
Linear interpolation, 253 
Linear prediction, 39 
Linear programming, 286 
Local cosine basis, 73 
Localized source model, 142 
Locally harmonic sources, 69 
Log-Gaussian distribution, 224 
Loss function, 55 
Loudness, 8, 172 

of instrument sounds, 319 
of melody vs. accompaniment, 340 
of singing, 366 

Mallet percussion instrument, 232 
Marginal MMSE, 214 
Marginal probability density function, 

31 
Marimba, 167, 232 
Markov chain, see A^-gram model 

Markov chain Monte Carlo, 43, 117, 
121, 215 

Markov tree, 90 
Masking, 236 
Matching pursuit, 84 
Matrix diagonalization, 54 
Matrix factorization, see Non-negative 

matrix factorization 
Maximum a posteriori estimation, 40, 

121, 214, 279, 331 
Maximum likelihood estimation, 33, 35 
Mbira, 167 
McNemar's test, 171 
Mean, 29, 30 

empirical, 54, 61 
Mean square error of an estimator, 34 
Measure 

musical measure, see Bar line 
musical measure estimation, see Bar 

line estimation 
Mechanical-to-neural transduction, 238 
Mel frequency cepstral coefficients, 26 
Mel frequency scale, 26 
Mel-frequency cepstral coefficients, 63, 

135, 174 
delta-MFCC, 175 

mel-frequency cepstral coefficients, 270 
Mel-frequency scale, 173 
Mel-scale filterbank, 26 
mel-scale filterbank, 173 
Melodic phrase, see Phrase 
Melody, 9, 12, 13, 329 

perceptual coherence, 15 
segregation of melodic lines, 247 
transcription, see Predominant FO 

estimation 
Membranophone, 131, 145, 147, 167 
Memory for music, 11, 13 
Message passing, 221 
Metadata, see Annotation 
Metre, 10, 105, 312, 329, 341 
Metre analysis, 101, 134, 341, 388 
Metre perception, 10, 11, 102 
MFCC, see Mel frequency cepstral 

coefficients 
Mid-level data representation, 12, 13, 

65, 244, 248, 251, 256, 264 
desirable qualities, 14 
hybrid, see Hybrid representation 
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Middle ear, 234 
MIDI, 3, 4, 9, 101, 102 
MIDI note number, 362 
Minimum mean square error estimation, 

41, 214 
Missing feature theory, 197 
Mixing matrix, 270 
Mixture-of-experts approach, 193 
Model adaptation, source, see Source 

model adaptation 
Model selection, 39 
Model, signal, see Signal model 
Modified discrete cosine transform, 75 

MDCT basis, 73 
Modularity, 11 
Modulation, 71 

amplitude, see Amplitude modulation 
frequency, see Frequency modulation 

Modulation (musical key change), 344 
Molecular matching pursuit, 94 
Moment order r, 30 
Monophonic signal, 5 
Monte Carlo, 41 
MPEG-7, 136, 167, 172, 270, 354 
Multi-class classification, 55 
Multi-layer perceptron, 187, 191 
Multidimensional scaling, 168, 179 
Multiple FO (non)stationary model, see 

Signal model 
Multiple FO estimation, see Fundamen

tal frequency estimation 
Multiplicative update rule, 283 
Multiresolution analysis, 74 
Multiwavelet, 77 
Music cognition, 11 

impaired cognition, 11 
Music information retrieval, 5, 102, 170, 

327, 356, 363 
Music listening station, 357 
Music map, 357 
Music perception, 5, 103, 327 
Music scene analysis, 299 
Music scene description, 327, 328 
Music structure, see Structure 
Music structure analysis, see Structure 

analysis 
Music thumbnail, 342 
Music transcription, see Transcription 
Music-playback interface, 357 

Music-synchronized computer graphics, 
356 

Musical context, see Contextual 
information 

Musical instrument, see Instrument 
Musical instrument classification, see 

Instrument classification 
Musical key, 9, 385 

change, 344 
estimation, 386 

Musical metre, see Metre 
Musical scale, see Scale 
Musical sounds 

percussive, 107, 131 
pitched, 107, 167, 231 

Musicological modeUing, 15, 153-155 
melodic continuity, 331 
musical key, 385 
of periodic patterns, 157 
of rhythmic patterns, 159 
short-term context modelling, 154 
with N-grains, see AT-gram model 

Mutual information, 274 

AT-fold cross-validation, 170 
N-gram model, 155 

for chord sequences, 319 
of melody, 321, 387 
of percussion sequences, 155, 156 
periodic iV-gram, 157, 158 

Neural firing probability, 237, 238 
Neural impulse, 234, 238, 242 
Neural network, 187, 191 

MLP, 187, 191 
time-delay neural network, 247 

Neural spike, see Neural impulse 
Neuroimaging, 11 
Neurophysiology of music cognition, 11 
Noise, 32 

autoregressive, 211 
Gaussian, 279, 282 
Poisson, 282 
white, 32, 39 

Noise robustness in FO estimation, 251, 
253, 264 

Noisy sum-of-sines model, see Signal 
model 

Non-negative matrix deconvolution, 293 
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Non-negative matrix factorization, 148, 
282 

Norm, 71 
Normal distribution, see Gaussian 

distribution 
Notation, see Common musical notation 
Note, 3, 362 

MIDI note number, 362 
Note birth move, 216 
Note death move, 216 
Note labelling in singing transcription, 

362, 378 
Note model, see Source model 
Note segmentation, see Temporal 

segmentation 
Note update move, 216 
Nuisance parameters, 220 
Nyquist frequency, 23 

Oboe, 167, 209 
Observation density, see Likelihood 
Octave equivalence, 9 
Odd-to-even ratio, 175 
Offset (a)synchrony, 306 
Onset, 101, 260, 262 

and beat, 106 
of percussive sounds, 108 
of pitched sounds, 108 

Onset (a)synchrony, 306 
Onset detection, 102, 107, 134, 195, 287 
Organ of Corti, 234 
Orthogonal matching pursuit, 85 
Orthonormal basis, 72 
Oscillator, 113 

adaptive, 113, 247 
comb filter, 115, 244, 257 
oscillator net, 247 

Outer ear, 234 
Outer hair cell, 234 
Overcomplete system, see Frame 

(family of vectors) 
Overlap-add, 288 
Overtone partial, see Harmonic partial 

Parametric model of signal, see Signal 
model 

Parseval formula, 73 
Partial de-tuning, 206, 306 
Partial transcription, 3 

Particle filter, 50, 117, 121 
Rao-BlackwelUzed, 222 

Peak selection in autocorrelation 
function, 251 

Penalized likelihood, see Likelihood 
function 

Perception 
of metre, see Metre perception 
of music, see Music perception 
of pitch, see Pitch perception 

Perceptual attributes of sounds, 8 
Perceptual categorization, 9 
Perceptual sound vs. physical sound, 

302 
Percussion notation, 3 
Percussion sound recognition, 133, 137, 

174, 184 
clustering and labelling, 159 

Percussion transcription, 6, 7, 131, 329, 
342 

pattern recognition-based, 133 
separation-based, 142 

Periodicity 
in the frequency domain, 233 
in the time domain, 232 

Peripheral hearing, see Auditory system 
Phase generation, 288 
Phenomenal accent, see Accent 
Phonation, 364 

frequency, 365 
types, 365 

Phoneme, 16 
Phrase, 10 
Phrasing, 193 
Physical sound vs. perceptual sound, 

302 
Piano, 24, 167, 203, 206, 207, 209, 319, 

323 
identification in music, 198 
inharmonicity, see Inharmonicity 
keyboard, 9 
onset detection, 108 
transcription, 245, 247 

Piano roll, 4, 220 
Pitch, 8, 107 

of noise signals, 229 
perception, see Pitch perception 
tonal encoding, see Tonal encoding 
zoo of pitch effects, 229 
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Pitch class, 9, 345, 385 
Pitch label of a note, 362 
Pitch perception, 229, 242 
Pitch perception model, 234, 241 

autocorrelation model, 241, 242 
duplex theory, 241 
shortcomings, 248, 262 
unitary model, 242, 252 

Pitched musical sounds, 107, 167, 231 
Pizzicato, 192 
Poisson noise, 282 
Poisson prior, 214 
Polyphonic signal, 5 
Popular music, 10, 125, 128, 131, 137, 

151, 329, 330, 342, 344, 345, 353, 
355 

Predominant FO estimation, 198, 260, 
330 

PreFEst method, 330 
Principal component analysis, 54, 137, 

139, 144, 151, 152, 155, 179, 181, 
275 

Prior, 40 
conjugate, 47 
sequential, 217, 220, 221, 225 

Prior distribution, 40 
Prior selection, 211 
Prior subspace analysis, 146, 150 

input generated priors, 151 
non-negative, 148 

Probabilistic model, 31 
Probability density function, 28 

conditional, 31 
empirical, 82 
Gaussian, see Gaussian distribution 
importance, 49 
inverse gamma, 47 
joint, 31 
Laplacian, 280 
marginal, 31 
normal, see Gaussian distribution 
prior, 40 
proposal, 44 
uniform, 28 

Projected steepest descent algorithm, 
281 

Proposal distribution, 44 
Pseudoinverse, 147 
Psychoacoustics, 8, 173, 235, 308 

Pulse, see Beat; Metre 
Pulse Code Modulation (PCM), 65 

Quantization, 9 
of FO values, 213, 362 
of onset times, 101, 106, 118, 389 
of signal sample values, 65 

Query by humming, 356, 361 
Quilted frame, see Frame (family of 

vectors) 

Random variable, 28 
expectation, see Expectation 
i.i.d., see i.i.d. 
independent, see Statistical indepen

dence 
Random walk, 208 
Rayleigh quotient, 61 
Recognition 

of percussion sounds, see Percussion 
sound recognition 

of pitched sounds, see Instrument 
classification 

Rectification, see Half-wave rectification 
Redundancy, 78 
Reed instrument, 167 
RefraiD method, 345 
Register (in singing), 365 
Regular grid, 75 
Regularized risk, 57, 58 
Repeated sections, see Structure 
Reproducing kernel Hilbert space, 57 
Resolvability, 258 
Rest (in music), 362 
Rhythm, 10, 105 

analysis, see Metre analysis 
Rhythmic grouping, 10, 105 
Rhythmic pattern modelhng, 159 
Risk, 55 

empirical, 56 
regularized, 57, 58 

Rock music, 105, 112, 125, 131, 151 
Root-mean-square level, 172 
Rotation matrix, 218 
Royalty-free music, 355 
RWC Music Database, 355 

Salience 
of an onset, 107 
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of FO candidate, 257 
Sampling, 65 
Saxophone, 167, 198, 207, 256, 259 
Scale, 10, 385 

equal-tempered, 9, 224 
Scale tone, 10, 385 
Scale transformation, 178 
Scaling function, 74 
Scene analysis, 299, see also Auditory 

scene analysis 
Schema-based segregation, 312 
Score, see Common musical notation 
Scoretime, 105 
Segmentation, see Temporal segmenta

tion 
Semitone, 291, 292, 332, 362 
Sequential dependency, see N-gram 

model 
Sequential Monte Carlo, 117 
Sequential prior, 217, 220, 221, 225 
Shannon theorem, 23 
Short-time Fourier transform, 23 
Signal model, 66, 204 

multiple FO non-stationary, 209 
noisy sum-of-sines, 204 
parametric, 67, 70 
single FO non-stationary, 207 
single FO stationary, 204 
sinusoidal, see Sinusoidal model 
sum-of-sines model, 204 
weighted mixture of tone models, 332 

Signal space, 71 
Significance map, 88 
Significance tree, 89 
Similarity matrix, 349 
Simplex algorithm, 286 
Singer's formant, 366 
Singing 

acoustic characteristics, 364 
production of singing sounds, 364 
singing out of tune, 367 

Singing transcription 
applications, 361 
expression encoding, 389 
problem formulation, 361 
segment-and-label approach, 377 
statistical approach, 379 

Single FO (non)stationary model, see 
Signal model 

Singular value decomposition, 277 
Sinusoidal model, 14, 68, 225, 246 

other variants, see Signal model 
single sinusoid, 31 

Sinusoids -\- transients -h noise model, 
70 

Sliding window method, 155 
SmartMusicKIOSK, 357 
Sound production mechanism 

in musical instruments, 167 
in singing, 364 

Sound source separation, see Source 
separation 

Source model, 15 
percussion sounds, 149 
pitched sounds, 319 
statistical note model, 379 
tone model, 319, 333 

Source model adaptation, 140, 142, 197, 
333 

in time domain, 140 
in time-frequency domain, 141 

Source separation, 15, 65, 142, 143, 195, 
249, 267, 304, 305, 327 

Sparse coding, 143, 278, 285 
non-negative, 153, 281, 285 

Sparse expansion, 82 
Sparse representation, 67 
Spatial information, 267, 306 
Spectral features 

spectral centroid, 136 
spectral flatness, 173 
spectral flux, 174 
spectral irregularity, 174 
spectral kurtosis, 136 
spectral rolloff, 174 
spectral shape, 135 
spectral skewness, 136 
spectral spread, 136 

Spectral model synthesis, 69 
Spectral organization, see Auditory 

scene analysis 
Spectral smoothness, 207, 240 
Spectral whitening, 239, 248, 252, 255, 

263 
Spectrogram, 23, 24, 65 
Spectrogram factorization, 143, 268 
Spectrum envelope, 207 
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Speech 
recognition, 15, 16, 63, 156, 307, 358 
speech separation, 249 
speech signals, 16 

Squared difference function, 250 
Staccato, 9 
Statistical independence, 31, 274 
Statistical significance tests, 170 
Stiffness of vibrating strings, 232 
Stochastic signal components, 69 
Strobed temporal integration, 244 
Structure (of a musical work), 10, 329 
Structure analysis, 10 

by humans, 13 
computational, 342 

Structured approximation, 87 
Structured audio coding, 3 
Student-Fisher t-test, 170 
Style detection, see Genre classification 
Sub-band coding, 74 
Sub-beat structure, 103, 106, 117 
Subglottic pressure, 364 
Sum-of-sines model, 204 
Summary autocorrelation function, 242, 

245, 248 
enhanced summary ACF, 253 

Super-beat structure, 103, 106 
Supervised classification, 55, 164 
Support vector machine, 57, 138, 191 

output moderating, 154 
Swing, 105 
Symbolic representation, 9, 102, 107, 

302 
Synchrony strand, 247 
Synthesis of separated sources, 288 

Tactus, 10, 105 
Tatum, 106, 134 

analysis, 116, 124, 134, 159 
Taxonomy, 164 

of musical instruments, 167 
Template matching, 139 
Tempo, 6, 101, 105 

estimation, 103, 118, 354, 374 
variation, 105, 106, 388 

Tempogram, 121 
Temporal centroid, 136, 178 
Temporal grid, 134 
Temporal segmentation, 12, 134 

of instrument sounds, 177 
of singing notes, 362, 373, 377 

Threshold of hearing, 273 
Thumbnail, 342 
Tick, see Tatum 
Timbre, 8, 231 

acoustic correlates, 168 
acoustic features, see Feature 

extraction 
FO dependency, 189 
of singing sounds, 365 
perceived similarity, 168 
use for auditory organization, 306 

Timbre space, 168 
Time quantization, see Quantization 
Time-frequency molecule, 87 
Time-frequency atom, 70 
Time-frequency covariance, 24 
Time-frequency jigsaw puzzle, 85 
Time-frequency lattice, 209 
Time-frequency representation, 13, 23, 

25, 65 
Time-lag triangle, 349 
Time-persistence, 88 
Timing deviations, 105, 375 
Timpani, 167 
Token-passing algorithm, 380 
Tonal encoding of pitch, 10, 11 
Tonal music, 10, 304, 330, 385 
Tone model, see Source model 
Tonic note, 10 
Top-down processing, 16, 312, 342, 352 
Transcription 

by humans, 5, 12 
complete vs. partial, 3 
designing transcription system, 11 
state of the art, 7 
subtopics, 5, 11 
trends and approaches, 6, 301 

Transient, 70 
Transientness index, 89 
Translation, 71 
Tremolo, 178, 389 

in singing, 367 
Tristimulus, 176 
Trombone, 166, 167 
Trumpet, 167, 176, 198, 209, 245, 254, 

319 
Tuba, 167 
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Tuning, 9 
absolute, 362 
drift of, 368 
in note labelling, 378 
singing out of tune, 367 

Two-way mismatch, 288, 371 

Ukulele, 167 
Unbiased estimator, see Estimation 
Uniform distribution, 28 
Unitary model, see Pitch perception 

model 
Unmixing matrix, 147, 275 
Unsupervised 

classification, 53, 133, 164 
clustering, see Clustering 
learning, 7, 16, 267, 380, 382 

Validation, 169, 170 
Vibraphone, 232 
Vibrating bar, 232 
Vibrato, 178, 389 

in singing, 366 
rate and depth estimation, 389 

Viola, 167 
Violin, 9, 166, 167, 177, 207, 209, 231, 

254, 259, 319, 323 
onset detection, 109 

Viterbi algorithm, 63, 122, 225, 380 

Vocal organ, 364 
Voice source, 364 
Voicing, degree of, 373 

Waveform dictionary, 67, 81 
Waveform representation, 13, 72 
Wavelet, 71 
Wavelet basis, 73 
Wavelet transform, 74 
Weighted-mixture model, see Signal 

model 
Well-tempered scale, see Equal-

tempered scale 
Western music, 3, 5, 9, 10, 231, 304 
White noise, 32, 39 
Whitening, see Spectral whitening 
Wiener-Khintchine theorem, 252 
Wigner-Ville representation, 25 
Window function, 23, 75, 208 
Windowing, 23 
Woodwind instrument, 167 
Written music, see Common musical 

notation 

Xylophone, 167, 232 

Zero crossing rate, 136, 174, 182 
Zero tree, 87 




