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Abstract 

H ypertension can be programmed by experimental manipulation of the intrauterine 
environment. Studies to date suggest that, at least in some models, common 
pathways such as glucocorticoids or the renin-angiotensin system cause program

ming of arterial pressure. How mechanisms involved in controlling "normal" arterial pressure 
have been altered, remains a largely unanswered question, though the process may include the 
programming of the major organs and endocrine/neural systems involved in long-term blood 
pressure regulation. Clear evidence demonstrates a prominent role for the programming of the 
kidney in the development of hypertension. The major mechanisms examined to date include 
a reduced nephron endowment and alterations to the function of renal renin-angiotensin sys
tem. These studies do not preclude a role for other major cardiovascular organ systems (brain, 
vasculature, heart) in the programming of hypertension. Several studies have identified 
sex-specific differences in the programming of hypertension, which may relate to fetal sex-specific 
rates of placental gene expression and/or sex-specific timing of fetal development. Future stud
ies should be directed towards examining the integrative control of blood pressure in 
prehypertensive animals to differentiate between the primary initiating programming events 
and events secondary to the development of hypertension. Understanding the mechanisms 
involved will be essential for devising preventative and/or treatment strategies. 

Introduction 
High blood pressure affects 20% of adults and is a major risk factor for cardiovascular 

diseases such as stroke, myocardial infarction, peripheral vascular disease and chronic renal 
failure. ' In the majority of cases, the cause of the hypertension is unknown, with less than 
10% of cases accounted for by secondary (i.e., renal artery stenosis, adrenal tumour) or genetic 
factors. Recendy, attention has shifted to the idea that adult hypertension can be programmed 
in utero.^ It is hypothesised that an adverse intrauterine environment during critical stages of 
development permanently alters, or 'programmes' the development of fetal tissues, which en
ables the fetus to survive, but with adverse consequences in postnatal life.^ The mechanisms by 
which an altered intrauterine environment might exert these effects may involve epigenetic 
effects in the embryo/fetus (discussed elsewhere in this book, Chs. 6, 7). 

Here we will briefly oudine animal models of adverse intrauterine environments that have 
been demonstrated to lead to adult hypertension. However, our primary focus will be to ex
plore, where evidence is available, the organs and physiological systems that may be affected 
and thus underlie the development of hypertension (Fig. 1). A clearer understanding of these 
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Figure 1. Schema suggesting possible targets for the programming of hypertension. 

mechanisms and the delineation of possible common pathways, such as glucocorticoids for 
which there is strong evidence, '̂  may ultimately lead to potential treatments or strategies for 
prevention of programmed hypertension. 

Models of Arterial Pressure Programming 
There is now compelling evidence to support the hypothesis that events occurring during fetal 

life can have life-long consequences for the health of the adult. The first models centred on 
producing low birth weight via maternal nutrient restriction, in line with the original hypothesis 
that low birth weight was associated with high blood pressure. '̂  With an increasing understand
ing of the mechanisms of fetal programming, models have become more specific, examining the 
impact of micro-nutrient deficiencies, hormones, and conditions that are common in human 
pregnancy, such as anaemia and hypertension. Attention has also begun to focus on critical win
dows during development when different organs have a greater susceptibility to programming.^ 

Arterial Blood Pressure 
In considering the topic of programming of blood pressure, it is timely to evaluate the 

methodologies associated with its measurement.^'^^ The most significant factor is whether blood 
pressure is measured direcdy, that is via an indwelling arterial catheter, or indirectly via tail-cuff. 
This is an important consideration for two reasons: (1) the degree of stress associated with each 
method and (2) the length of time over which the measurement is made varies considerably. 
Thus, whilst the tail-cuff method can provide reliable measurements and is the most frequently 
used method in rats (see Table 1), for reasons that will be discussed, direct measurement of 
blood pressure, preferably by telemetry, is the gold standard. 
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Table 1. Different methodologies used to measure blood pressure in models 
of ^^programmed^' hypertension 

Anaesthetised Intra-arterial 

Conscious In-direct Restrained 

Conscious Intra-arterial Restrained 

Conscious Intra-arterial Unrestrained 
(telemetry) 

^Single period 
Intermittent 
2"Awake" 
^Single period 
or intermittent 
(recovered) 
24-hour 
Intermittent 
24-hour 

Rat [20,28,29,31-33,143] 
Sheep [30,143] 
Rat [16-21,24,25,42,43,45,77,78,110] 
Rat [22,23,27,36-38,44,56,60,105,106] 
Rat [35,92,130,131,139,140] 
Rat [74,93,95] 
Rabbit [53] 
Sheep [15,40,80,128,135,144] 
Sheep [76,90,113,129] 

Rat [11-14] 

Conscious unrestrained 24-hour telemetry recording is the gold standard. ^ Single period (tail-cuff)— 
blood pressure measurements taken at a single time-point. ^'Awake"—refers to those studies that did 
not allow the animals to fully recover from the surgical implantation of catheters before blood pressure 
was measured (minimum of 3 days). ^Single period or intermittent (intra-arterial)—blood pressure 
recorded for a short period (hours) on a single day or over days to weeks, (minimum 3 days recovery 
from surgery). The [numbers] are references cited in this review using each method 

Telemetry offers long-term, 24 hour intra-axterial blood pressure recording in conscious 
unrestrained, and dius unstressed, animals. Further, it allows for analysis of day versus night 
pressures and, due to the sensitivity of the technique, small differences in blood pressure can be 
detected (-5 mmHg). Unfortunately, the high cost associated with telemetry means that for 
long-term studies, such measurements are not always practicable. Indeed, whilst telemetry is 
common in the field of hypertension in general, only a handful of studies to date have used 
telemetry to examine the in utero programming of hypertension. ' Chronic indwelling cath
eters in the carotid and femoral arteries also provide quality measures of blood pressure in 
rodents and larger animals. An advantage of this technique is that blood sampling can be 
performed in addition to measurement of blood pressure and supplemented with a venous 
catheter, allows for concomitant infusion of agents such as antihypertensives. However, the 
presence of externalised catheters does add an element of restraint stress. Further, the practical
ity of this technique for long-term studies is limited by the ability to maintain catheter patency 
for longer than a few weeks. Due to the invasive nature of both these techniques it is critical 
that the animals are given the appropriate length of time to recover from surgery before mea
surements of blood pressure begin.^ Unfortunately, studies in animals equipped with indwell
ing catheters often fail to take full advantage of the benefits conferred, still only measuring 
blood pressure for short periods. For example, sheep from undernourished mothers demon
strated elevated morning blood pressure prior to, but not after feeding. The question remains 
as to whether these animals had significant hypertension or not; 24-hour recordings of blood 
pressure would have given a more accurate picture. ̂ ^ 

Tail-cuff plethysmography allows blood pressure of rodents to be followed long-term within 
animal, but only measures single-time point systolic blood pressure accurately and the animals 
are subject to the stress of restraint. The element of restraint stress can be minimised in rats with 
training; however, as mice fail to show significant training, tail-cuff measurements in mice are 
questionable.^^ Another important consideration is that an adverse intrauterine environment 
may not alter blood pressure per se, but rather the blood pressure response to stresses such as 
restraint. Therefore if elevations in blood pressure detected by tail-cuff occur in the absence of 
left ventricular hypertrophy, an indicator of increased after-load with elevated blood pressure, 
blood pressure should be confirmed intra-arterially (preferably by telemetry) before concluding 
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the stimulus has programmed hypertension. There are considerable disadvantages with mea
surements, such as those obtained by tail-cufF, that are of only a single time-point, or collection 
of direct, intra-arterial measurements for only short periods each day. These measurements, 
taken predominandy during the day, can be affected by factors such as feeding, the particular 
time of the day in relation to diurnal rhythm, and presence or absence of other activity in the 
room during recording. This is especially significant for rodents that are nocturnal as blood 
pressure during the day is considerably lower, and thus small differences in blood pressure that 
may be evident during night-time might not be detectable during the day-time. In the clinic it 
is the widely accepted practice not to make judgments about the significance of raised blood 
pressure until at least three measurements have been taken over a period of weeks, since anxiety, 
stress or discomfort can temporarily increase blood pressure of people who do not have signifi
cant hypertension. Yet, the majority of animal studies examining the impact of an adverse in
trauterine environment on adult blood pressure, particularly those in rodent models, utilised 
tail-cuff plethysmography to determine blood pressure often only on a single day (Table 1). 

Tonkiss and colleagues, who used telemetry to measure blood pressure in offspring of dams 
malnourished during pregnancy, presented a telling example of these drawbacks. Previous 
studies in this model, based on indirect tail-cuff blood pressure measurements, demonstrated 
increases in systolic blood pressure of greater than 20 mmHg in the offspring of malnourished 
rats. '̂ '̂  However, Tonkiss et al demonstrated a much more modest increase in blood pressure 
(+4 mmHg in diastolic pressure during the night) and provided evidence that the responsive
ness to stress was augmented in prenatally malnourished rats. Indeed, this study strongly 
suggests that the stress associated with the tail-cuff procedure, contributed to the large eleva
tions in blood pressure seen previously in this model. However, these differences may also 
reflect the importance of protein contect and overall composition of a diet to programming of 
hypertension (see Chapter by Langley-Evans). 

Finally, whilst differences in conscious blood pressure between animal groups can be re
flected in anaesthetised measurements, '̂̂ ^ albeit at lower pressures in general, anaesthetised 
blood pressure is a poor indicator of conscious blood pressure since anaesthetic depth can be 
arbitrarily set. Thus the limitations of each technique with each animal model must be taken 
into consideration to prevent false positives and false negatives in the hypertensive program
ming effect of particular intrauterine stimuli. 

Nutrition 
Maternal dietary manipulation has been demonstrated in many animal studies to programme 

arterial pressure. Perturbations such as maternal under-nutrition (total calorie), restriction in 
specific dietary components (protein, vitamins, minerals), or restricting placental function (de
creased uterine blood flow reducing both nutrient and oxygen availability) lead to elevated 
blood pressure in progeny across many species (see Chapter by Langley-Evans). In models of 
under-nutrition, it has been suggested that the programming of hypertension is mediated by 
glucocorticoid-induced endocrine changes. ' ' Over-nutrition (lard, sodium) has also been 
reported to programme hypertension. ' ' In some cases it is apparent that maternal diets 
both low or high in a particular nutrient (calcium,^^ sodium^^'^^) can programme adult hyper
tension. It is interesting to speculate whether these nutrients act by stimulation or suppression 
of the same pathway or whether they are acting independendy via alternate mechanisms. Im-
portandy, increasing evidence demonstrates that hypertension can occur without impaired fe
tal growth,'̂ '̂̂ ^ conversely intrauterine growth restriction does not always result in high adult 
blood pressure. ^ 

Anaemia during Pregnancy 
Of particular clinical import are studies examining the influence of diets low in iron. A 

physiological drop in haemagloblin (to --100 g/1) occurs in normal pregnancy, due to the in
crease in plasma volume. However, it has been shown that iron deficiency (70-100 g/1) occurs 
in --20% of pregnancies in Tirst-world' countries, and up to 75% of pregnancies in developing 
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countries. ^ Three groups have now demonstrated that iron deficienq/^ induced prior to, and 
continued throughout, pregnancy in rats leads to intrauterine growth restriction and elevated 
arterial pressures in the offspring. ^' ^ By cross-fostering all pups onto to control fed dams at 
birth. Gambling et al confirmed that the elevated blood pressure was the result of the iron 
deficiency in utero and not due to continued iron deficiency during lactation. Interestingly, 
these elevated adult pressures were preceded by relative hypotension in the early post-weaning 
period, particularly in females. ^' The mechanisms by which intrauterine iron deficiency 
translates to adult hypertension are as yet unclear, however a reduced nephron endowment has 
been implicated. It is yet to be determined whether the programming of hypertension by iron 
deficiency in utero is independent of a generalised effect on intrauterine growth retardation. 

Hypertension during Pregnancy 
Another condition common during pregnancy is hypertension. It has been predicted that 

the incidence of chronic hypertension will increase from 1 to 5 in 100 pregnancies over the 
next decade. This is due to the shift to an older child bearing age in women and the increased 
risk of hypertension in this older population. However, few studies have followed the chil
dren of mothers with hypertension into adulthood, '̂̂ ^ though both low-birth weight and 
macrosomic babies have been linked with mild maternal hypertension.^^'^^ Thus, the question 
of whether chronic hypertension during pregnancy exposes the fetus to an increased risk of 
developing hypertension and cardiovascular disease later in life is an important one. 

Several animal studies have examined the influence of chronic hypertension on fetal devel
opment and adult blood pressure. Denton et al^^ published the first study to demonstrate that 
maternal secondary hypertension could programme hypertension in offspring. In a rabbit model 
of chronic maternal hypertension, induced using a two-kidney, one-wrapped model of perine-
phritic hypertension, it was demonstrated that offspring were hypertensive as adults (Fig. 2). 
The increase in blood pressure only occurred in adult female offspring, though the variation in 
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Figure 2. Conscious mean arterial pressure measured at 30 weeks of age in offspring of hypertensive and 
normotensive rabbit mothers. Individual data presented for male (M, circles) and female (F, triangles). 
The bars represent the group average. Hypertensive mothers: open symbols; n = 6 mothers; 14 male, 14 
female offspring. Normotensive mothers: solid symbols; n = 6; mothers; 9 male, 12 female offspring. * 
P < 0.05 compared to normotensive control. 
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Figure 3. Relationship between plasma renin activity at 10 weeks of age (adolescent) and arterial blood 
pressure at 30 weeks of age (adult) measured in conscious individual male and female rabbits born of 
hypertensive (grey) or normotensive (black) mothers. Male offspring R̂  = 0.48, P < 0.001; Female 
offspring R̂  = 0.31, P < 0.005. 

blood pressure in male offspring was increased (Fig. 2). The renin-angiotensin system (RAS) 
was implicated in this model with significantly lower plasma renin activities in the female 
offspring of hypertensive mothers at 10 weeks of age (adolescence), prior to any rise in blood 
pressure. Indeed, plasma renin activity at 10 weeks of age was found to directly correlate with 
adult blood pressure at thirty weeks of age (Fig. 3). It has been suggested that low plasma renin 
activity may reflect a reduction in nephron number, which is linked to the development of 
hypertension.^ '̂ ^ 

In agreement with the study by Denton and coUegues,^^ male offspring of one-kidney, 
one-clip hypertensive dams also showed no rise in arterial pressure.^ Interestingly, these male 
pups were found to be more susceptible to DOCA-salt treatment. These studies suggest that 
chronic hypertension during pregnancy differentially influences programming in the sexes, an 
effect documented previously in other models. ' In contrast, no effect of increased mater
nal blood pressure on offspring was demonstrated when blood pressure was increased by cen
tral administration of aldosterone, leading to the suggestion that it may not be maternal 
arterial pressure per se that is responsible for the programming of hypertension in offspring. 
There is litde doubt that the changes in the maternal environment during hypertension, of 
whatever cause, are complex and thus the stimuli impacting on the fetus may be multifactorial. 

In the rabbit model of maternal hypertension discussed above, there a number of possible 
maternal stimuli that might affect fetal development. Not only was arterial pressure increased 
but plasma renin activity was also elevated,^^ suggesting that both angiotensin II (Angll) and 
aldosterone levels in the mothers were elevated during pregnancy. ' Aldosterone can cross 
the placenta and may possibly have a direct effect on fetal development. Maintenance and 
growth of the placenta is essential for the normal growth and wellbeing of the developing fetus. 
The uteroplacental circulation has a local renin-angiotensin system (RAS) that plays important 
roles in placental angiogenesis and in modulating placental production of cytokines, growth 
factors and vasoactive substances, which also influence fetal development. Chronic infusion 
of Angll to pregnant rabbits and ewes has been shown to decrease uterine blood flow and 
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evidence suggests that uteroplacental perfusion is reduced in humans and animal models with 
chronic hypertension. ' ' Normally, during pregnancy the uterine artery is particularly in
sensitive to Angll due to the predominance of angiotensin type 2 receptors (AT2R), however, 
uterine artery AT2R density decreases with chronic Angll. Thus, uterine blood flow may be 
reduced via this mechanism in pregnancy when maternal plasma Angll levels are increased, af
fecting placental nutrient transfer. In cultured human placental cells Angll has been shown to 
decrease 11 -beta-hydroxysteriod dehydrogenase type-2 (11P-HSD2) /^ If 11 |i-HSD2 is decreased 
in mild chronic hypertension, maternal glucocorticoids may cross the placenta and influence 
organs/systems in the fetus. Another possible contributor to fetal programming of hypertension 
in this model is maternal renal function which may be compromised, ' ' ^^ possibly altering 
maternal plasma levels of sodium, potassium or urea which may influence fetal development.^ 

Glucocorticoids 
Glucocorticoids are potent regulators of fetal growth and development. Mechanisms that 

tightly regulate fetal glucocorticoid exposure are of considerable importance, as certain organs 
(kidney, brain) are adversely affected by excess glucocorticoids. Placental 11P-HSD2 reduces 
trans-placental passage of maternal glucocorticoids to the fetus, thus protecting the fetus from 
the deleterious effects of maternal glucocorticoids. Many studies have observed the effect of 
glucocorticoids to programme high blood pressure in sheep and rat models using either prena
tal exposure to stress (e.g., restraint) or infusions of Cortisol, corticosterone, ACTH or dexam-
ethasone. ' Prenatal glucocorticoid exposure, induced by blocking placental inactivation of 
endogenous glucocorticoids, also leads to high blood pressure in adult rats.^^' Importantly, it 
has been shown reproducibly in sheep, that elevated arterial pressure in adults can be pro
grammed in both female and male adult offspring by as litde as 2 days of exposure to glucocor
ticoids at days 26-28 of the 150 day gestation.^^' A similar critical window, during the earliest 
stages of metanephric development, has also been demonstrated in rats.^ '̂̂ '̂̂ ^ Glucocorticoid 
exposure at this critical stage in kidney development also causes high blood pressure in adult rat 
progeny without affecting birth weight. In contrast, glucocorticoid treatment late in gesta
tion does not result in subsequent hypertension. ' 

Possible Mechanisms Leading to Adult Hypertension 
The cardiovascular system regulates blood pressure to maintain an adequate perfusion to 

meet the needs of each tissue (Figs. 1,4). "Normal" blood pressure is regulated by a number of 
organs and physiological systems, exerting both short (reflex) and long-term effects. Mecha
nisms integrating the control of arterial blood pressure are oudined and possible adaptations in 
the development of components of the cardiovascular system resulting in alterations in func
tion and the programming of hypertension have been summarised in Figure 4. A caveat that 
should be considered when examining the mechanisms underlying the programming of hyper
tension is whether such changes are present before the onset of hypertension or occur as a 
consequence of the hypertension. Thus ideally, the mechanisms controlling blood pressure 
should be examined prior to the establishment of chronic hypertension since compensatory 
mechanisms might confound interpretation of the results once hypertension has developed. 

Long-term blood pressure regulation is inextricably linked to renal excretory function,^ ̂ '̂ '̂  
and there is also strong evidence linking the renal actions of the RAS and the sympathetic 
nervous system to adult hypertension. However, the initial stimulus for hypertension to 
develop need not originate in the kidney. Thus a stimulus from other organs or systems in
volved in cardiovascular homeostasis, such as altered central sympathetic out-flow, myocardial 
function or vascular reactivity, may trigger a shift in renal function and an increase in arterial 
pressure. Thus while the kidney has received the bulk of attention, these other organs and 
systems need also to be considered in the effort to determine the mechanisms behind develop
mental programming of hypertension (Figs. 1,4). 
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Figure 4. Diagram showing the basic mechanisms controlling blood pressure. Arterial pressure is the 
product of cardiac output and total peripheral resistance, changes in blood pressure are sensed primarily 
by the central nervous system and kidneys (red arrows) and mechanisms are activated (grey arrows) that 
restore blood pressure to "normal". Programming in utero may affect blood pressure by altering the 
cardiovascular system at any point in this loop. Possible mechanisms are suggested in italics and studies 
that have examined some of these are cited. 

Kidney 
T h e kidney, as stated above, plays a very important role in the control of blood pressure 

due to its influence on salt and water excretion and thus plasma volume. ̂ '̂̂ ^ Considerable 
attention has therefore been directed towards the kidney to look for changes in fetal kidney 
development and alterations in adult renal structure and function. Disruption of kidney 
development, due to a programming effect, may permanently alter normal function. Com
pensatory mechanisms may ensue resulting in hypertension. Where available, the evidence 
implicating these mechanisms as possible contributors to programming adult hypertension 
are discussed. 

Reduced Nephron Number in Models o f Programmed Hypertension 
Investigations have focused on nephron development due to the hypothesis advanced by 

Brenner and colleagues that nephron endowment at birth is inversely related to the risk of 
developing essential hypertension in later life.^ .55,86,87 j ^ ^ t)i-ief̂  jt jg postulated that a low neph
ron number at birth signifies a reduction in total kidney filtration surface area, which is not 
adequate to meet the demands of the growing animal, with resultant sodium retention. ' 
Further to this, compensatory mechanisms cause arterial and glomerular hypertension leading 
to hyperfiltration, a vicious cycle then ensues as the increased work load placed on each neph
ron causes glomerular sclerosis and further loss of nephron fiinction.^ '̂ ^ Reduced nephron 
number has been documented in a number of animal models of programmed hypertension. 



Programming Hypertension—Animal Models 111 

including food restriction, uterine artery ligation, low protein diet, iron deficiency, and gluco
corticoid treatment (see ref. 86). Glomerular number has yet to be measured in a number of 
models of programmed hypertension (chronic hypertension ) and blood pressure has yet to be 
measured in some models known to programme reduced nephron endowment (vitamin A,̂ ^ 
hyperglycemia^ ). Studies examining the mechanisms whereby a reduction in nephron num
ber may be programmed in utero are discussed elsewhere in greater detail (see Moritz & 
CuUen-McEwen). 

Studies in models with reduced nephron number in which glomerular filtration rate has 
been measured all show evidence that the remaining nephrons are hyperfiltering.^^'^ ' ' '̂  '̂ "̂̂ '̂  
Altered expression of components of the RAS have also been documented in the adult as well 
as the fetus in these models, suggesting that not only has the developmental role of the RAS 
been altered, but that the functionality of the system in the adult may have been reset. ̂ ^''^^'^^'^^ 
It has been speculated that failure to suppress intrarenal Angll activity during chronic salt 
loading may lead to salt-sensitive hypertension. Certainly, salt-sensitive hypertension has been 
demonstrated in offspring of mothers fed a low protein diet, which had previously been shown 
to have reduced renin expression and indeed fewer nephrons.^^'^^ 

As a result of this hypothesis, attention has also centred on alterations in the expression of 
components of the RAS due to this systems prominent role in renal development and its im
portance in regulating blood pressure in the adult.̂ '̂̂ '̂ '̂ ^ Impetus for this direction of research 
has also been fuelled by the clinical correlate that growth retarded infants, which are prone to 
later hypertension, have particularly small kidneys, have elevated cord blood renin and Angll 
concentrations^^^'^^^ as well as elevated renin gene expression in the kidney,̂ "̂̂  suggesting that 
intra-renal RAS activity may be elevated. 

When taken in context with other studies in humans or in experimental animal models, in 
which hypertension resulted when nephrogenesis was impaired, it is highly suggestive that a 
kidney abnormality is an essential part of the etiology of the subsequent hypertension. ̂ ^̂ '̂ ^̂  
However, there is also evidence to suggest that reduced nephron endowment and hypertension 
may be coincident. ̂ '̂̂ '̂̂ ^̂  A study has shown that dietary supplements given in combination 
with a low protein diet can prevent low nephron number without affecting the development of 
hypertension in the adult. ' Furthermore, reduced nephron number has been documented 
in the absence of hypertension and programmed hypertension has been demonstrated in the 
absence of changes in nephron number. Perhaps programmed hypertension is more than 
reduced nephron number, and compensatory changes in tubular function and/or renal hor
monal systems must occur concomitantly for hypertension to develop. These are important 
questions, awaiting confirmation in future studies. 

Tubular Epithelial Sodium Co-Transporters and Hypertension 
Programming of epithelial sodium transporters in the renal tubules offer another mecha

nism by which sodium retention may cause adult hypertension. These transporters are localised 
to specific segments of the nephron and mediate sodium entry across the apical membrane. 
These include the Na/H exchanger of the proximal tubule, the Na/K/2C1 co-transporter of the 
thick ascending limb of Henle, the Na/Cl co-transporter of the distal convoluted tubule, and 
the a, P, y-subunits of the epithelial sodium channel (ENaC) of the distal tubule and the 
collecting duct.^ ^ Whilst the bulk of the reabsorption of sodium is carried out in the proximal 
tubule of the nephron, the fine control of sodium reabsorption is carried out in the distal 
nephron and collecting duct. ' Gene-targeted studies in mice have lead to the suggestion 
that it is in these later segments of the tubule, downstream to the macula densa, in which 
sodium delivery is not monitored, that changes in sodium transport play a key role in control
ling sodium balance and blood pressure. ̂ ^̂ '̂ ^̂  For example, while an increase in the Na/H 
exchanger in the proximal tubule can be compensated for by other later segments of the tubule, 
an increase in ENaC activity in the collecting duct, as found in Liddle's syndrome, results in 
excess sodium reabsorption and hypertension.^^'^'^^^ 
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Few studies have directly examined renal sodium transporters in models of programmed 
hypertension. One study in 4 week old rats exposed to a low protein diet throughout the 
second half of gestation, demonstrated up-regulation (at both the mRNA and protein level) of 
Na/K/2C1 cotransporter of the thick ascending limb of Henle (302% compared to controls) 
and the Na/Cl cotransporter of the distal convoluted tubule (160% compared to controls).^ ̂ ^ 
Thus in this model, before the hypertension becomes manifest, the fetal kidney was programmed 
to inappropriately retain sodium, a finding consistent with the hypothesis that sodium reten
tion might direcdy contribute to the development of hypertension. Subsequendy, the same 
authors showed that sodium transporters were not down-regulated after hypertension became 
manifest at 8 weeks of age.̂ ^^ This finding is particularly important since it is known that 
down-regulation of the Na/Cl cotransporter of the distal convoluted tubule is an important 
component of the pressure-natriuresis response, the crucial mechanism in long-term blood 
pressure control. Another study, examining the effects of maternal hypercholesterolemia on 
offspring, demonstrated an increase in Na^/K^-ATPase activity in the outer medulla associated 
with reduced creatinine clearance (estimate of glomerular filtration rate) but not hypertension, 
though blood pressure was measured in anaesthetised animals and needs to be confirmed.^^ 
Further studies are required to examine the possibility that prenatal programming of renal 
epithelial sodium cotransporters can lead to hypertension in the adult. 

Other Renal Mechanisms 
There are other renal mechanisms controlling blood pressure that should also be considered 

when examining possible mechanisms leading to programming of adult hypertension. For ex
ample, it has been proposed that hypertension may be caused by structural changes that nar
row intrarenal blood vessels, increasing preglomerular vascular resistance and the 
aortic-glomerular capillary pressure gradient.^ Such a situation present in spontaneously hy
pertensive rats, and analogous to renal artery stenosis, would result in a cascade of events, 
including activation of the RAS, leading to hypertension. ̂  ̂  Whilst pro-hypertensive vascular 
structural changes have not been investigated specifically in models of programmed hyperten
sion, in sheep exposed to dexamethasone during early gestation accumulation of collagen in 
the tubular interstitium and peri-adventitia of renal cortical vessels has been demonstrated. 

Programming of the sympathetic nervous system has been demonstrated^ and there is 
strong evidence implicating increased renal sympathetic activity in the pathogenesis of essen
tial hypertension.^ Developmentally, growth of the renal nerves is closely linked to the fetal 
RAS, specifically the timing of renal innervation of the vessels is concomitant with the regres
sion of renin expression along the vasculature. ̂  ̂ ^ Nerve growth factors are expressed in the fetal 
kidney and are inducers of differentiation and survival of nerves, ̂ ^ thus altered expression of 
these factors may lead to hyper-innervation of the renal vasculature, an affect which is 
pro-hypertensive. A few studies have demonstrated alterations in sympathetic function in 
models of sub-optimal maternal environments. In chick embryos, chronic moderate hypoxia 
leads to hyper-innervation of the arterial vasculature. In a model of uterine artery ligation 
increased sympathetic nervous system activity was observed in female rats at 3 months of age, 
though this was not associated with hypertension.^^ In a model of prenatal stress in rats, 
adrenoreceptor responses were altered in renal, but not femoral, mesenteric or saphenous arter
ies. ̂ ^̂  Additional tests led to the conclusion that the enhanced responsiveness to phenyleph
rine was due to alterations in signal transduction not increased nerve or receptor densities. 

No one to date has examined the intrinsic renal mechanisms that maintain glomerular 
filtration rate, the first step in sodium excretion, constant: tubulo-glomerular feedback, the 
myogenic response or the phenomenon of pressure-natriuresis. Resetting of these mecha
nisms due to alterations in hormone sensitivity be it due to increased receptor density, in
creased hormone availability or up-regulation of second messenger systems has yet to be 
studied. Interestingly, however, human data has suggested that the pressure-natriuresis rela
tionship is influenced by birth weight.^^^ In the future, attention should also focus on 
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sex-related programming effects on renal structure and function given the striking differ
ences in renal function previously reported for healthy males and females.̂ '̂̂ "^ '̂̂ ^^ 

Brain 
The central nervous system also plays a major role in maintaining body fluid homeostasis 

via sympathetic stimulation, vasopressin release and increase in salt and water appetite. For 
example, the hypothalamus is involved in fluid balance through salt and water intake and 
control of sympathetic drive, ' while the medulla oblongata affects cardiovascular func
tion, mainly through the control of peripheral sympathetic drive, including baroreflexes. ' 
The lamina terminalis is situated in the anterior wall of the third ventricle and consists of the 
median preoptic nucleus and the circumventricular organs; the subfornical organ and the or-
ganum vasculosum. This region of the brain has a crucial role in osmoregulatory vasopressin 
secretion and thirst. ̂ ^̂  There is a local brain RAS and hyperactivity of this system has been 
implicated in the development and maintenance of hypertension. Confirmation of the role of 
the central RAS and its effects on blood pressure and fluid balance has been obtained using 
transgenic mouse models that selectively over-express components of the RAS within the 
brain.̂ "^ '̂ "̂ ^ Other signalling systems (i.e., noradrenergic or glutaminergic) in brain regions 
involved in cardiovascular control may also be implicated in the fetal programming of adult 
hypertension, but have yet to be considered (see re£ 123). 

Evidence of Altered Brain RAS in Models of Programmed Hypertension 
To date, there are only a few studies in the literature that suggest a link between altered 

brain RAS, as a result of exposure to a sub-optimal intrauterine environment, and adult hyper-
tension.̂ '̂̂ '̂ '̂̂ ^^ Studies have demonstrated an up-regulation of ATi receptors in the medulla 
oblongata and higher expression of angiotensinogen in the hypothalamus of late gestational 
fetuses, previously exposed to dexamethasone at the end of the first month of pregnancy. 
This increase in ATi receptors expression of the medulla oblongata persisted in adult sheep 
measured at 7 years of age, when high blood pressure was clearly evident. ̂ "̂^ A recent study of 
1 year-old lambs exposed to maternal under-nutrition (50% of daily intake) from day 1-30 of 
gestation, demonstrated blunted baroreflex sensitivity during Angll infusion. ̂ "̂^ Similarly, rats 
of low-protein fed mothers had increased blood pressure and demonstrated altered baroreflex 
function.^^^ The hypertension of these offspring was significantly attenuated by 
intracerebroventicular administration of an Angll antagonist. ̂ ^̂  Further, Swenson et al showed 
that the hypertension of 30-day old rats subjected to a high-salt diet throughout gestation and 
the post-natal period, was pardy due to increased brain ATi receptor activation. Taken to
gether, these studies suggest that increased Angll action within cardiovascular control centres 
in the brain contribute to programmed hypertension. ' it is important to bear in mind 
that resetting of the baroreflex is found, commonly, as a consequence of developed hyperten
sion. ̂ ^̂  However, in some strains of rats (spontaneously hypertensive rats, Dahl salt-sensitive 
rats) abnormal baroreflex fiinction precedes the development of hypertension and may very 
well be the cause rather than the consequence of hypertension.^^ ' 

Research also supports the hypothesis that salt appetite and thirst can be programmed in 
utero (see re£ 134). In a study in sheep, maternal dehydration during late gestation, has been 
demonstrated to programme hypertension. ̂ ^̂  Further, this study demonstrated that the off
spring of water-restricted ewes had increased plasma osmolality, hematocrit and threshold for 
AVP secretion. ̂ ^ In another study, in which extracellular dehydration and exaggerated sodium 
appetite was produced in pregnant rats by polyethylene glycol treatment, salt appetite of off
spring was increased. ̂ ^ 

Heart and Vasculature 
Adaptations in the cardiovascular system are linked to the development and maintenance of 

systemic hypertension. Alterations in myocardial, conduit and resistance artery geometry and 
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reactivity will have a direct impact on cardiac output and total peripheral resistance, the pri
mary determinants of arterial pressure (see Fig. 4). However, litde is known of the role of the 
cardiovascular system in the translation of intrautero insults into a chronic elevation of arterial 
pressure in the adult. Of the limited studies available, vascular dysfunction of both the conduit 
and/or resistance vasculature is a common feature, though the responses vary from study to 
study due to differences in vessel size (conduit or resistance), vascular bed, gender, intrauterine 
insult, and age of offspring at time of examination. 

Vasculature 
The primary vascular defect identified in studies to date, appears to be an impaired 

endothelium-dependent relaxation and this has been demonstrated in offspring with hyper
tension induced by various adverse intra-uterine events including undernutrition,^ '̂ ^ pro
tein restriction,"^^ high fat intake^^'^^^ and placental insufficiency.^^ '̂̂  The precise nature 
of the defect underlying the reduced endothelium-dependent dilation is of considerable con
jecture but includes impaired synthesis of NO, ' and/or impaired response of the vascu
lar smooth muscle cells to NO,^^'^^^ Whilst not a consistent finding, some studies have 
demonstrated an increased responsiveness to vasoconstrictors, though the effect is not uni
versal to constrictors in general, even within the same study. '̂"̂  > 15/139 -pĵ ^̂  increased re
sponsiveness is likely the result of impaired buffering by endothelial factors, ̂ ^̂  however the 
contribution of increased numbers of specific receptor types mediating vasoconstriction can
not be rule out (see Poston). 

Heart 
Intrauterine insults such as anaemia and hypoxemia have been shown to have significant 

effects on the fetal heart.^ '̂  '̂̂  ^ However, few studies have examined the consequences of 
these stimuli during fetal life on the adult. In one interesting study, in a model of perinatal 
anaemia, evidence of coronary vascular remodelling has been described in adult sheep, in 
which maximal coronary conductance and reserve increased, providing a physiological ad
vantage.^^'^ ^ Whilst maternal dexamethasone exposure led to hypertension and increased 
cardiac output in 7 year old offspring, associated ventricular hypertrophy and reduced car
diac functional reserve, these changes are likely due to secondary effects of the hyperten
sion.^ ' Further studies performing detailed analysis of the structure and function of 
hearts in juvenile and adult offspring, subjected to an adverse intrauterine environment, are 
required. 

Conclusions 
Strong evidence in both human and in animal studies supports the hypothesis that hyper

tension can be programmed in utero. Future studies should encompass the following: (1) 
Prehypertensive animals should be studied to differentiate between the primary initiating 
programming events and events secondary to the consequent development of hypertension. 
(2) Best practice methods should be employed to determine arterial blood pressure; single 
time-point measures are open to misinterpretation particularly in young restrained animals. 
(3) It is unlikely that the interventions (i.e., under-nutrition, glucocorticoids) used to 
programme hypertension affect single organs but will rather affect multiple organs or sys
tems (i.e., programming of RAS may alter brain, heart and kidney function), unless adverse 
stimuli are restricted to narrow windows in the timing of development. Thus, the reduction
ist approach of examining single organs or systems will not provide a complete picture of the 
physiological adaptations that have taken place. (4) Furthermore, accumulating evidence 
demonstrating sexually dimorphic programming in response to an adverse maternal envi
ronment highlights the need to consider male and female offspring separately. Understand
ing the mechanisms involved in the programming of hypertension will be essential for devis
ing preventative and/or treatment strategies. 
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