CHAPTER 17

The Fetal Origins of Adult Mental Illness

Laura Bennet* and Alistair J. Gunn

"I am a crooked, twisted piece of bumanity. The sooner I die the better. God will relieve me from my
sufferings, as I really cannos stand it."

—Voices of the mad: Patients letters from the Royal Edinburgh Asylum 1873-1908. Allan
Beveridge.!

Abstract

his chapter critically examines the hypothesis that the origins of some adult mental

illnesses such as schizophrenia, which is the focus of this review, derive from adverse

events in utero, such as maternal nutrition deficiency, infection and hypoxia. The hy-
pothesis was originally derived from neuropathological changes in patients with established
schizophrenia that are highly suggestive of impaired neural development occurring around
mid-gestation. Increasingly it appears that gestational timing and the severity of the insult,
rather than type of insult, plays a critical role in subsequent behavioural outcome. Supporting
the neurodevelopmental hypothesis, recent studies have demonstrated that serious mental ill-
nesses such as schizophrenia and afferent disorders are associated firstly with behavioural ab-
normalities that are present from early childhood, and secondly with ongoing neural injury on
serial magnetic resonance imaging through late childhood and adolescence. These data suggest
that alterations in brain development during fetal life lead to an evolving damage over the
course of childhood before finally being overtly expressed in early adulthood. Current data
suggest that the initial loss of cells in utero leads to a long-term remodelling of the brain that is
mediated by upregulation of physiological apoptosis. That such adult illnesses present with
early behavioural and physiological clues, are progressive and not static in nature, and that the
process is potentially governed by common mechanisms regardless of cause, offers significant
new opportunities for intervention and treatment.

Introduction

Schizophrenia is a surprisingly common disorder, with a lifetime incidence of around 1 in
100 people worldwide. It usually manifests its full form, with deterioration in personality,
hallucinations and delusions, and cognitive impairment, in late adolescence and early adult-
hood.! It represents a major personal, social and medical burden, with costs in the billions of
dollars per year. However, despite more than a hundred years of dedicated research, the aetiol-
ogy of schizophrenia remains elusive. Certainly few subjects in neurobiology have generated as
much fascination, controversy, and utter frustration as the hunt for the “cause” of schizophre-
nia—the Holy Grail of biological psychiatry.? Despite promising anatomical findings in the
late nineteenth and early twentieth century, which suggested a neuropathological origin to the
illness, subsequent research led to inconclusive and conflicting results. By the 1970s research
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on the neuropathology of the illness had come to a near standstill, with the general consensus
on the subject succinctly summarised by Plum’s now somewhat infamous dictum that schizo-
phrenia is the ‘graveyard of neuropathologisss”>

This impasse reflected a number of factors, such as the relative crudeness of the methodol-
ogy available, the belief that the neuropathology of schizophrenia was likely related to a chronic
neurodegenerative process, and the inappropriate expectation of finding large abnormalities
rather than smaller discrete ones.” Recent advances in imaging techniques, such as Magnetic
Resonance Imaging (MRI) and Computerised Tomography scanning (CT), have allowed eat-
lier detection and more precise investigations, which support a close association between schizo-
phrenia and neuroanatomical abnormalities. This neuropathology literature has been exten-
sively reviewed by others, and will only be discussed briefly in this chapter. Current data show
that at the onset of schizophrenia, and thus independent of treatment effects, schizophrenic
patients have enlarged cerebral ventricles with decreased volume of cortex (particulatly in the
prefrontal and temporal lobes) and of subcortical structures (particularly the hippocampus,
amygdala, and dorsal thalamus). Further there is evidence of loss of neuropil (dendkrites, spines
and axons) and of extensive white matter changes which typically involves diffuse loss rather
than active gliosis, as exemplified by the reduced size of the corpus callosum and prefrontal
cortical white matter. There are alterations in normal cerebral asymmetries, and alterations in
neuronal size, number, placement, orientation and clustering, with excessive cortical pruning,
and consequent altered neurotransmitter function and aberrant functional connectivity of spe-
cific cerebral circuits. 2410

Consistent with the well-known variability in the clinical presentation of the illness, the
anatomical changes are also quite variable. However, the overall nature of these neuropatho-
logical changes is consistent with a significant prenatal impairment of development. As will be
discussed below, it is now evident that while there appears to be a genetic component to schizo-
phrenia and other mental illnesses, genetics does not fully account for their development. It
remains controversial whether adverse environmental events act upon a preexisting genetic
predisposition (similarly to e.g., insulin dependent diabetes mellitus),'! or modify the epige-
netic status of genes, or are simply coincidental.!>*?

The History of the Neurodevelopmental Hypothesis

The neurodevelopmental hypothesis proposes that adverse environmental events during
fetal life impairs and subsequently alter neural development, leading to mental illness in adult-
hood.1®*1 Like all good theories, it has a long history. As early as 1891, the founding father
of adolescent psychiatry, Scottish psychiatrist Thomas Storer Clouston, proposed that there
was a developmental component to “adolescent or developmental insanity””° He considered it a
disorder of cortical development; “the last cortical disease”, and that the onset of psychotic
symptoms was due to maturation during adolescence “of certain parts of the brain which bad
Lain dormant before’ 2> This concept was subsequently superseded by the hypothesis pro-
posed by Emil Kraeplin, much influenced by Alzheimer and his study of adult dementia, that
the illness was a neurodegenerative organic brain discase;** a view Clouston “strenuously” ob-
jected t0,2% but one which held sway for a considerable number of years.!”!>?> Even Kraeplin
acknowledged, however, that there might be a developmental origin, at least in some cases
where evidence of the illness existed in childhood,?? as did Eugene Bleuler, who in 1911 coined
the term schizophrenia; a term chosen to express the presence of schisms between thought,
emotion and behaviour which characterises the “schizophrenias”.?® Bleuler reported that
behavioural difficulties could be observed in childhood in more than half the patents who
eventually developed schizophrenia.

This observation is fundamental, since it demonstrates that the underlying disorder that
leads to schizophrenia evolves in some cases at least from early childhood if not before birth. In
subsequent years these childhood clues about the potential developmental origins of schizophre-
nia were forgotten or dismissed, but subsequently rediscovered in the 1980’.2”% Prospective
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follow-up studies of birth cohorts have confirmed that significant impairments in neuromotor,
receptive language, and cognitive development are present among children later diagnosed as
having schizophreniform disorder.?>3 These premorbid behavioural changes can be seen as
early as three years of age.?’ There is also an early childhood onset version of schizophrenia.>¥
Thus, while schizophrenia typically manifests in its full form in adulthood, there is now good
evidence to show that the illness is already in progress much earlier and is progressive in nature.

One key conceptual difficulty is reconciling the timing between origin and onset of the disor-
der: how can it be that an illness which manifests in adolescent or adult life could have its origins
so long ago, in fetal life?>?> This apparent paradox may be resolved by understanding that
neurodevelopment is a continuum started at conception, but not completed until adulthood.
Disturbances in particular critical windows of maturation can thus have very long lasting effects.

Neuropathological Evidence for Neural Injury before Birth
in Schizophrenia

The key neuropathological data for an in utero origin to schizophrenia centre around neu-
ronal migration, and, increasingly, glial proliferation. The presence of neuronal disarray, het-
erotopias and malpositioning are very suggestive since cytoarchitecture is largely determined
during early fetal life, well before the last trimester.>*>* Among the cellular findings are ab-
normal cytoarchitecture of the entorhinal cortex characterized by poorly formed layer II neu-
ron clusters and laminar disorganization, a reduction and displacement of hippocampal and
cortical pyramidal cells, and abnormal development of the subplate.?>*”#! Such studies sug-
gest disturbances of neuronal migration during the late first or early second trimester. An ear-
lier time is excluded since gross abnormalities in the structure and cellular content of the cere-
bral cortex would be expected if neurogenesis were affected.”

However, these data are not conclusive, since some studies have not found evidence for
abnormal migration in schizophrenia, 244 and other, more consistent findings such as alter-
ations to neuronal size and synaptic and dendritic organisation may occur later in life, well
after birth.>3 The differences between studies may reflect the methodological difficulties and
subtle nature of the cytoarchitectural changes.® Alternatively, it could mean that in many cases
the putative in utero insult may occur after mid-gestation, when migration is largely com-
plete.*>%6 At this stage there is a marked increase in glial proliferation and if correct this would
suggest that we should expect to see a consistent reduction in the amount of white matter, 546

Imaging data suggests that this is indeed the case, but it has not been fully appreciated until
recently because of technical difficulties,”” although the consistent presence of ventriculomegaly
in patients strongly suggests diffuse white matter atrophy.*® Instead the focus has been on
whether “lesions” exist. Traditionally, the absence of “gliosis” (.., astrocytic activation or scar-
ring) in histopathological and imaging studies of patients with schizophrenia has been taken to
mean two things: (1) that this must be a neurodevelopmental process and not a neurodegenerative
one (which would leave tell-tale scars), and/or (2) that any changes must have taken place
before the third trimestet, based on the study by Friede, which supposedly showed that gliosis
cannot occur until after the end of the second trimester.” In fact both conclusions are highly
likely to be erroneous. There is evidence that that astrocytic activation can occur as early as 20
weeks of gestation,49 and in anly case a few studies have found periventricular white matter
lesions in region of patients.>®>

Critically, modern imaging data has confirmed that the most common pathological feature
of both schizophrenia and affective disorders is diffuse loss of white matter.!%4828 This loss
appears to be region specific. There is, for example, loss of oligodendrocytes (the myelinating
cells of the central nervous system) and astrocytes and altered oligodendrocyte ultrastructure in
specific layers of the prefrontal cortex.’>*® Consistent with these findings, there is evidence of
impaired and reduced myelination in schizophrenia,”>® and altered expression of myelination
related genes.®! Thus there is impairment of the normal age-related development of the frontal
and temporal lobes in adulthood.®?
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Loss of the supporting glia likely contributes to the atrophy of neurons that has been de-
scribed in the prefrontal cortex.’? Layers Il and V of the dorsolateral prefrontal cortex, which
give rise to glutamatergic projections to neostriatum, demonstrate the most structural pathol-
ogy. The fundamental pathophysiology of schizophrenia remains unclear, but evidence sug-
gests that there is excessive stimulation of striatal dopamine D2 receptors, deficient stimulation
of prefrontal dopamine D1 receptors, and alterations in grefronta] connectivity involving
glutamate transmission at the NMDA subtype of receptor.®

How Good Is the Evidence for Underlying in Utero Events?

A variety of prenatal events can adversely affect neuronal development including hypoxia,
maternal undernutrition, exposure to viruses and infection, maternal stress and maternal lifestyle
and other health problems (key factors are discussed below).!%4%7 Meta-analysis suggests that
schizophrenics are twice as likely to have been exposed to obstetric complications as controls.?”%8
However, most babies with obstetric complications do not develop schizophrenia and most
patients with schizophrenia do not have an apparent history of these complications.®

The significance of these findings is highly debated. They might reflect a genetic predispo-
sition,'#7%7! which might be to obstetric complications rather than directly with mental
illness.”” For example, poor pregnancy outcomes occur more frequently among women with
schizophrenia and they are at greater risk for increased interventions.”>”” Obstetric complica-
tions do not seem to be particularly specific to schizophrenia since there now appears to be an
association with affective disorders as well.”®”? These epidemiological data are, of course, lim-
ited by lack of detail particularly with respect to gestational timing, and by an inappropriate
focus on peripartum events.®® Tt is likely significant that schizophrenia, for example, appears
to be mainly related to events which occur in the first or second trimester.

Since numerous adverse events are apparently equally associated with different types of
mental illness, it maybe speculated that it is not the type of insult (i.e., infection versus hy-
poxia) which is important to outcome, but rather the gestational timing of the initial insult.
Insult severity, duration, and the additive effects of interactions between insults are also likely
to be key factors. The similarity in neuropathology between many illnesses is consistent with
the shared symptomology of these illnesses, which often makes diagnosis difficult. It is also
consistent with the increasingly accepted concept that affective disorders and schizophrenia, at
least, are not distinct illnesses per se, as Kraeplin first proposed, but rather represent a psychiat-
ric continuum rangin§ from unipolar to bipolar disorder to schizoaffective psychosis all the
way to schizophrenia.®? Neural impairment and injury, like psychiatric disorders, may be viewed
as a continuum, with timing and severity of an insult critical factors in outcome.®

Hypoxia

It is increasingly clear that hypoxia can occur in the preterm fetus.’*® Experimentally, we
now understand that despite its immaturity the preterm fetus is physiologically resilient and
has a mature response to severe hypoxia.®>®” Paradoxically, however, the capacity to survive
prolonged asphyxia can place the preterm fetus at greater risk of surviving with injury than is
the case later in gestation.”® Prenatal injury, as shown by severe placental pathology such as
infarction, can occur without detectable clinical signs in infants who go on to develop cerebral
palsy later in childhood.”! Studies in rodents and fetal sheep show that chronic sub-lethal
hypoxia started in mid-gestation is associated with smaller brains, reduced white and grey
matter volumes, ventriculomegaly and disordered neuronal migration and dendritic develop-
ment.”>® Further, acute white matter loss after perinaral hypoxia-ischaemia leads to long-term
reductions in myelination post-natally.”” In preliminary work from our laboratory in the fetal
sheep, we have observed that a sufficiently severe, but acute period of asphyxia in mid-gestation
that causes subcortical injury leads to chronically evolving diffuse white matter loss, (but no
cystic lesions), ventriculomegaly, and long-term, impairment of cortical development.”® These
findings were related to reduced glial proliferation and upregulation of programmed cell death.
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Importantly, white matter injury, while a dominant cause of neural injury in the preterm in-
fant, also occurs later in gestation after severe hypoxia-ischaemia.”®-10!

Clinical data, particularly studies of multiple births, are consistent with these data and
suggest that exposure to hypoxia-ischaemia is a common cause of neurodevelopmental in-
jury. 8781102104 The high concordance reported in monozygotic (MZ) twins is often cited as
irrefutable evidence for the etiological influence of genetics: MZ twins share 100% of their
genes, and mental illness still develops if the twins are adopted. However, it is striking that far
from showing 100% concordance for schizophrenia, MZ twins have reported rates between 26
and 47%, and rates as low as 6% for dizygotic (DZ) twins.!% For schizophrenia, MZ concor-
dance rates are significantly lower when samples are selected from a twin register as opposed to
a psychiatric facility,'% but twin registries typically record zygosity by sex rather than by ex-
plicit genotyping, and thus the real association may be even lower than reported.!”1% The
emphasis on genetics has obscured the fact that twins share a lot more than their genes, they
share an in utero environment where impaired nutrition and oxygenation are common. Thus,
the increased concordance of twins for mental illness might relate to their increased rate of
neural injury as discussed below. Seminal imaging work by Suddath and colleagues supports
this hypothesis. They demonstrated that there were significant neuroanatomical differences,
including smaller anterior hippocampi and enlarged lateral and third ventricles, between twins
discordant for schizophrenia and concluded thar the cause of schizophrenia in those cases was
at least in part not genetic.'”

Infants born as part of multiple births have very high rates of brain injury and
neurodevelopmental handicap compared to singletons.!'%11? Cerebral palsy (CP) is, for ex-
ample, 5-10% more frequent in twins than singletons (1-2%), while triplets have a 47 fold
higher risk."'® The loss of a co-twin in utero is associated with a 13-15 fold higher risk for CP
compared to live-born twins, 1O1ILI4 b an absolute risk of later neurodevelopmental im-
pairment reaching 60%.''? The higher relative risk is not solely due to higher rates of
low-birthweight and prematurity (both of which are predictive for schizophrenia),'"® as nor-
mal birthweight twins also show increased risk of neural injury compared to singletons.! 117

It is likely that it is not zy%osi which underlies this risk, but chorionicity; that is whether
the fetuses shared a placenta.!!®1'® MZ twins share the same chorion in most cases (mono-
chorionic, MC), whereas DZ and around a third of MZ twins are of the dichorionic type
(DC).1% Fetal mortality is siz%niﬁcantly higher and neurologic morbidity is up to 7-fold higher
in MC than DC twins.!'>!*® Monochorionic multirple gestations are frequently complicated
by antenatal necrosis of the cerebral white matter,'?" and by abnormal cortical glate develop-
ment shown by polymicrogyria or microgyric-like pattern, and heterotopias.'*? Discordant
growth, the death of a twin in utero, and twin-twin transfusion are key associations. 12121:122

The apparent damage is typically present by 22 and 32 weeks gestation, in a pattern which
is consistent with that reported in schizophrenia.'?? MZ twin pairs concordant for schizophre-
nia are more likely to have been monochorionic. Pairwise concordances for MZ twins without
monochorionic markers averaged 10.7%, whereas concordance for MZ twins with one or more
monochorionic markers was 60%.'?> These data again strongly suggest that it was sharing a
placenta rather than genes which was most important. A relationship between chorion type
and concordance of abnormal behaviour between MZ and DZ pairs has also been supported
by several other studies, 24125 but not all.!26

Nutrition

Pasamanick first suggested that maternal malnutrition may lead to behavioural abnormali-
ties in childhood.!”” Nutrition and oxygen delivery are often inextricably interlinked and im-
paired fetal and placental growth in both singletons and twins discordant for schizophrenia
may be a function of both factors.’"''>128 Nutritional inadequacy in one form or another is
one of the laréest single nongenetic contributors to mental retardation and aberrant neural
development.'® As discussed elsewhere in this book, the relative imbalance of the current
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western diet may well lead to persistent metabolic and cardiovascular derangements.'*® The
modern desire to be thin, which affects as many as 1% of pregnancies through inappropriate
maternal dieting,'®' may also play a contributory role. Reduced caloric intake, nutritional
imbalance (e.g., increased carbohydrate and reduced protein intake) and micronutrient defi-
ciencies such as folate, homocystein and vitamin D may all impair fetal brain development,
reduce glial proliferation, increase apoptosis, and lead to glutamate, serotonin and GABA neu-
rotransmitter abnormalities.'?'**137 In MC twins, there is a reduction of some essential and
nonessential amino acids in the growth-restricted twin compared to their co-twins, including
glycine.!®® Altered glycine metabolism may be important because of the glycine modulatory
site on the NMDA receptor, which inhibits glutamate function. There is evidence that reduced
glutaminergic activity contributes to the symptoms of schizophrenia.'>

The effects of nutritional defl)rivation before birth persist well into adulthood and are asso-
ciated with behavioural changes,'3>14%14! sych as alterations in sleep-wake cycles and arousal.'42
Similar disturbances in sleep continuity, and in the balance of slow-wave and rapid eye move-
ment sleep are a consistent feature of schizophrenia.'*3 Recent data show that indicators of
intrauterine and childhood undernutrition have a complex association with increased risk of
later schizophrenia,'?® but that it is prenatal not childhood growth which is most important.'#4
For example, there is a reverse J-shaped association between adjusted birth weight and schizo-
phrenia, with mean hazard ratio of 7.0 for males of low birth weight (<2.5 kg) and 3.4 for those
of high birth weight (>4.0 kg). The Dutch Winter Famine studies have demonstrated a strong
link between malnutrition in mid-gestation and later schizophrenia (around a 2 fold increase),
whereas late-gestation undernutrition was associated with affective disorder, with exposure in
the third trimester having a greater effect than exposure in the second trimester.546>104145-147
Taken with the data on injury in twins, these data further suggest that gestational timing rather
than the nature of the event is more important to later behavioural outcomes.

Infection

Fetal infection has been suggested to be a possible etiologic factor based on epidemiological
findings that individuals with schizophrenia and affective disorders tend to be born in winter/
spring when compared to the general population and that there is a strong association between
maternal influenza and mental illness in offspring.**1%® Although schizophrenia has been linked
with multiple infectious agents that differ in their antigenicity, modes of transmission, and
teratogenic potential, it is likely that they share some pathogenic mechanisms.'* Experimen-
tally, potential mechanisms of action include induction of pro-inflammatory cytokines, 41>
endotoxin-induced fever,'*!">® and hypotension and cerebral hypogerfusion/ hypoxia, 3153
Infection may also sensitise the brain to subsequent hypoxic injury.!® In twin studies, there is
evidence that a shared placenta and amniotic sac increases the risk of both fetuses being ex-
posed to infection (choricamnionitis),**'>” whereas a dichorionic placenta helps to limit the
spread of infection.'*®

Clues from the Preterm Infant

Schizophrenia shows a typically remitting and relapsing course.” If the neurodevelopmental
hypothesis is correct, then why should a neurological injury sustained in utero lead to such
variable symptoms in adulthood?

One possible link is that glia continue to be produced and myelination continues to de-
velop well into middle age in key corticolimbic relay areas.!**1! Glia are not simply an impor-
tant but passive matrix for the brain. In addition to their traditional roles in neuronal migra-
tion and inflammatory processes, glia are now known to provide trophic support to neurons, to
regulate local neuronal metabolism and neurotransmission, and the formation of synapses (in-
cluding pruning).'¢*163 The early appearance of ventriculomegaly suggests that there has been
a profound loss of glia in prenatal life, as is seen on in utero imaging,'®* such that there may be
an inadequate number in adulthood to consistently support neuronal function. The loss of glia
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in patients suffering from schizophrenia and affective disorders is further evidence for patho-
logical events in mid-gestation as this is the maximal time of increased glial proliferation and
differentiation.'®® The impact of prenatal loss of glia is perhaps best illustrated by the
neurodevelopmental delay, behavioural abnormalities and increased rate of mental illness in
children who are born prematurely, %618 Pathologically, such infants demonstrate highly se-
lective early white matter damage, which leads to long-term reductions in grey matter volume
and complexity of neuronal structures.'®”:1>170 The neurological sequelae of preterm birth
(including epilepsy, cerebral palsy and attention deficit) associated with these perinatal white
matter lesions seem to be a consequence of the post-injury grey matter transformations.'”!172
This sequence of events is strikingly similar to those in patients with schizophrenia. Disturb-
ingly, there is now evidence to show that preterms are also at greater risk of developing mental
illnesses such as schizophrenia in adulthood.'”?

Importantly, however, infants do not necessarily deliver even after a major insult in utero.
There is now increasing evidence to show that neurodevelopmental delay in term babies is also
associated with white matter loss and subsequentl imépaired neuronal development which
apparently had its origins much earlier in fecal life.!”*”

Other Neuropathological Features

There are a number of other features of the neuropathology of schizophrenia, which suggest
afetal insult around mid-gestation. For example, it is known that normal human brain symme-
try is determined early in development, during the early second trimester of gestation. Studies
have suggested that the left side of the brain is generally more severely affected in schizophrenia
than the right,"”” and thus that some event occurred during this stage. Similarly, gyrification
occurs largely between weeks 16 and 19 weeks of gestation, and sulcal-gyral abnormalities have
been found in imaging MRI studies of schizophrenic patients.'”®!7 Finally, as Clouston him-
self observed, schizophrenia is associated with an increased risk for other congenital and physi-
cal abnormalities, such as cranio-facial abnormalites like cleft palate, which have their origins
in mid-gestation.'80-183

Cerebral Housekeeping or Implementing “Plan B”

The development of the brain is a highly complex coordinated process that can be roughly
divided into neurogenesis, neuronal migration, glial proliferation, and neuronal differentia-
tion. These events occur as part of a specific timetable in discrete critical windows of time,
which is presumed to be largely under genetic control.'®® This unfolding maturational pro-
gram can be derailed by environmental events; cell proliferation, differentiation, and migration
can be slowed or inhibited or cells killed outright. Importantly, because many events only
occur at a particular “critical window of time”,'3*!84 even if the event causing this impairment
is acute (transient hypoxia due to placental infarction for example), the impairment is irrepa-
rable and this has consequences for subsequent neural development. The architectural plan for
brain development started in utero does not, of course, reach completion until early adult-
hood, when final connections are made in the prefrontal and temporal lobes, and corticolimbic
pathways. These are all key regions where aberrant neuronal development may contribute to
the behavioural dysfunction of schizophrenia.

As discussed in relation to premature birth, cell loss may continue long after the acute
injury has finished. Cells, be they neurons or glia, reguire other glia and neurons to provide the
necessary support and signals cues to survive.'®8 This balance is exquisitely fine. During
normal development substantial numbers of initially generated cells do not form appropriate
connections or are in excess of requirements. These cell are removed by physiological apoptosis.
Critically, however, programmed cell death is also triggered when cells lose essential input from
other cells, for example due to injury elsewhere in the brain. In such a pathological situation,
upregulation of apoptosis is a normal part of the complex ‘social’ controls that ensure that
individual cells behave for the good of the whole.'® The brain will thus develop according to
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an alternate architectural plan~—Plan B. Inevitably this leads to a smaller, less complex brain,
but a functional one; in as much as function is defined by the ultimate human prime directive:
the ability to reproduce.

A critical part of this process may not be simply abnormal neuronal connections, but loss of
white matter cells, consistent with the association of mild ventriculomegaly with later impaired
grey matter development and neurodevelopmental delay and behavioural difficulties. The hy-
pothesis that loss of glial support is a major contributor to long-term outcome is consistent
with the pathological profile of patients with schizophrenia of variable neuronal loss, but a
consistent teduction in soma size and abnormal synaptic connections. Oligodenrocytes en-
hance the number of functional synapses that form between neurons, and regulate neuronal
activity. Glia are also a primary source for the growth factors necessary to inhibit apoptosis.'®
Insulin-like growth factor (IGF-I) is a key mediator of normal brain development; regulating
neural stem cell proliferation, differentiation, and maturation, as well as promoting myelina-
tion, neurite outgrowth and synaptogenesis.'”® In recent years it has been proposed that a
derangement of the IGF axis may be involved in the aetiology of schizophrenia,’®" and that the
excessive synaptic pruning which is a feature of the schizophrenic brain, is a function not of late
(post-natal) neurodevelopmental events, but rather occur secondary to diminished trophic cues.

Is there clinical evidence for such increased, on-going apoptosis? Recent imaging data shows
that children who go onto develop schizoIphrenia have accelerated loss of cortical grey matter
compared to controls during adolescence.””? This deficit enveloped increasing amounts of cor-
tex throughout adolescence, starting in parietal regions, and then swept forward into sensory
and motor regions. By 18 years of age this process had moved into the critical areas of the brain
known to be key to schizophrenia; the dorsolateral prefrontal and temporal cortices - areas
which initially were not affected. This aberrant development is also seen in MZ twins discor-
dant for schizophrenia.!®? It is likely that this is an upregulation of the normal remodelling of
the brain is in part mediated by an upregulation of physiological apoptosis.'®¢ Consistent with
this there is some evidence that apoptotic processes are upregulated in the brain of schizo-
phrenic patients at postmortem,'* and that alterations in glutamate receptor activity seem to
be important.!”

Perspective

This chapter has examined the hypothesis that schizophrenia and other mental illnesses
may have at least in part their origin in preceding fetal neurodevelopmental injury. Although
the combined epidemiological, neuroanatomical, behavioural, and imaging evidence is highly
suggestive, the data cannot yet definitively distinguish the roles of inherited predisposition and
environmental triggers. Considerable work remains to propetly understand the impact of tim-
ing and the nature of different adverse events in utero on the brain, and how these relate to the
post-natal development of disease. Such knowledge would offer at the very least, improved
detection of children at risk of later mental illness and thus the potential for earlier interven-
tion. Regardless of the precise origins of the disease, there is now inconvertible proof that
schizophrenia is an evolving disease that involves both significant premorbid developmental
problems and progressive anatomical and cellular deterioration during childhood and adoles-
cence well before the ‘mental illness’ appears fully in adulthood. Current data strongly suggest
that the most likely mechanisms involve upregulation of physiological programmed cell death
and a pathological imbalance in excitatory neurotransmission. This very long-term evolution
offers the tantalising possibility that some intervention, whether pharmacological or behavioural
might be able to arrest the progression of the disease before the florid symptoms appear, or even
to favourably remodel the brain.
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