
INTRODUCTORY CHAPTER 

CONCUSSION IN ATHLETICS: ONGOING 
CONTROVERSY 

Semyon Slobounov^; Wayne Sebastianelli^ 

^ The Department of Kinesiology, The Pennsylvania State University, 19 Recreation Hall, 
University Park, PA, 16802; smsl8@psu.edu 

^ Department of Orthopaedics and Medical Rehabilitation, Milton Hershey Medical College, 
Sport Medicine Center, The Pennsylvania State University, University Drive, University Park, 
PA, J6802; wsebastianelli@psu.edu 

Abstract: Multiple traumas to the brain are the most common type of catastrophic 
injury and a leading cause of death in athletes. Multiple brain injuries 
may occur as the long-term disabilities resulting from a single mild 
traumatic brain injury (MTBI, generally known as concussion) are often 
overlooked and the most obvious clinical symptoms appear to resolve 
rapidly. One of the reasons of controversy about concussion is that most 
previous research has: a) failed to provide the pre-injury status of MBTI 
subjects which may lead to misdiagnosis following a single brain injury 
of the persistent or new neurological and behavioral deficits; b) focused 
primarily on transient deficits after single MTBI, and failed to examine 
for long-term deficits and multiple MTBI; c) focused primarily on 
cognitive or behavioral sequelae of MTBI in isolation; and d) failed to 
predict athletes at risk for traumatic brain injury. It is necessary to 
examine for both transient and long-term behavioral, sensory-motor, 
cognitive, and underlying neural mechanisms that are interactively 
affected by MTBI. A multidisciplinary approach using advanced 
technologies and assessment tools may dramatically enhance our 
understanding of this most puzzling neurological disorder facing the sport 
medicine world today. This is a major objective of this chapter and the 
whole book at least in part to resolve existing controversies about 
concussion. 
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1. INTRODUCTION 

Over the past decade, the scientific information on traumatic brain injury 
has increased considerably. A number of models, theories and hypotheses of 
traumatic brain injury have been elaborated (see Shaw, 2002 for review). For 
example, using the search engine PubMed (National Library of Medicine) for 
the term "brain injury" there were 1990 articles available between the years 
of 1994-2003, compared to 930 for the years 1966-1993. Despite dramatic 
advances in this field of medicine, traumatic brain injury, including the mild 
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traumatic brain injury (MTBI), commonly known as a concussion, is still one 
of the most puzzling neurological disorders and least understood injuries 
facing the sport medicine world today (Walker, 1994; Cantu, 2003). 
Definitions of concussion are almost always qualified by the statement that 
loss of consciousness can occur in the absence of any gross damage or injury 
visible by light microscopy to the brain (Shaw, 2002). According to a recent 
NIH Consensus Statement, mild traumatic brain injury is an evolving 
dynamic process that involves multiple interrelated components exerting 
primary and secondary effects at the level of individual nerve cells (neuron), 
the level of connected networks of such neurons (neural networks), and the 
level of human thoughts or cognition (NIH, 1998). 

The need for multidisciplinary research on mild brain injury arises from 
recent evidence identifying long-lasting residual disabilities that are often 
overlooked using current research methods. The notion of transient and rapid 
symptoms resolution is misleading since symptoms resolution is not 
indicative of injury resolution. There are no two traumatic brain injuries alike 
in mechanism, symptomology, or symptoms resolution. Most grading scales 
are based on loss of consciousness (LOC), and post-traumatic amnesia, both 
of which occur infrequently in MTBI (Guskiewick et al. 2001, Guskiewick, 
2001). There is still no agreement upon diagnosis (Christopher & Amann, 
2000) and there is no known treatment for this injury besides the passage of 
time. LOC for instance, occurs in only 8% of concussion cases (Oliaro et al., 
2001). Overall, recent research has shown the many shortcomings of current 
MTBI assessments rating scales (Maddocks & Saling, 1996; Wojtys et al., 
1999; Guskiewicz et al., 2001), neuropsychological assessments (Hoffman et 
al., 1995; Randolph, 2001; Shaw, 2002; Warden et al., 2001) and brain 
imaging techniques (CT, conventional MRI and EEG, Thatcher et al., 1989, 
1998, 2001; Barth et al., 2001; Guskiewicz, 2001; Kushner, 1998; Shaw, 
2002). 

The clinical significance for further research on mild traumatic brain 
injury stems from the fact that injuries to the brain are the most common 
cause of death in athletes (Mueller & Cantu, 1990). It has been estimated 
that in high school football alone, there are more than 250,000 incidents of 
mild traumatic brain injury each season, which translates into approximately 
20% of all boys who participate in this sport (LeBlanc, 1994, 1999). It is 
conventional wisdom that athletes with uncomplicated and single mild 
traumatic brain injuries experience rapid resolution of symptoms within 1-6 
weeks after the incident with minimal prolonged sequelae (Echemendia et 
al., 2001; Lowell et al., 2003; Macciocchi et al., 1996; Maddocks & Saling, 
1996). However, there is a growing body of knowledge indicating long-term 
disabilities that may persist up to 10 years post injury. Recent brain imaging 
studies (MRS, magnetic resonance spectroscopy) have clearly demonstrated 
the signs of cellular damage and diffuse axonal injury in subjects suffering 
from MTBI, not previously recognized by conventional imaging (Gamett et 
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al., 2000). It is important to stress that progressive neuronal loss in these 
subjects, as evidenced by abnormal brain metabolites, may persist up to 35 
days post-injury. Therefore, athletes who prematurely return to play are 
highly susceptible to future and often more severe brain injuries. In fact, 
concussed athletes often experience a second TBI within one year post 
injury. Every athlete with a history of a single MTBI who returns to 
competition upon symptoms resolution still has a risk of developing a post-
concussive syndrome (Cantu & Roy, 1995; Cantu, 2003; Kushner, 1998; 
Randolph, 2001), a syndrome with potentially fatal consequences (Earth et 
al.,2001). 

Post-concussive syndrome (PCS) is described as the emergence and 
variable persistence of a cluster of symptoms following an episode of 
concussion, including, but not limited to, impaired cognitive functions such 
as attention, concentration, memory and information processing, irritability, 
depression, headache, disturbance of sleep (Hugenholtz et al., 1988; 
Thatcher et al., 1989; Macciocchi et al., 1996; Wojtys et al, 1999; Earth et 
al., 2001; Powell, 2001), nausea and emotional problems (Wright, 1998). 
Other signs of PCS are disorientation in space, impaired balance and 
postural control (Guskiewicz, 2001), altered sensation, photophobia, lack of 
motor coordination (Slobounov et al., 2002d) and slowed motor responses 
(Goldberg, 1988). It is not known, however, how these symptoms relate to 
damage in specific brain structures or brain pathways (Macciocchi et al., 
1996), thus making accurate diagnosis based on these criteria almost 
impossible. Symptoms may resolve due to the brain's amazing plasticity 
(Hallett,2001). 

Humans are able to compensate for mild neuronal loss because of 
redundancies in the brain structures that allow reallocation of resources such 
that undamaged pathways and neurons are used to perform cognitive and 
motor tasks. This fiinctional reserve gives the appearance that the subject 
has returned to pre-injury health while in actuality the injury is still present 
(Randolph, 2001). In this context, Thatcher (1997, 2001) was able to detect 
EEG residual abnormalities in MTEI patients up to eight years post injury. 
This may also increase the risk of second impact syndrome and multiple 
concussions in athletes who return to play based solely on symptom 
resolution criteria (Earth et al., 2001; Kushner, 2001; Randolph, 2001). 

2. NEURAL BASIS OF COGNITIVE DISABILITIES 
IN MTBI 

There is a considerable debate in the literature regarding the extent to 
which mild traumatic brain injury results in permanent neurological damage 
(Levin et al., 1987; Johnston et al, 2001), psychological distress (Lishman, 
1988) or a combination of both (McClelland et al., 1994; Eryant & Harvey, 
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1999). Lishman's (1988) review of the literature suggested that 
physiological factors contributed mainly to the onset of the MTBI while 
psychological factors contributed to the duration of its symptoms. As a 
result, causation of MTBI remains unclear because objective anatomic 
pathology is rare and the interaction among cognitive, behavioral and 
emotional factors can produce enormous subjective symptoms in an 
unspecified manner (Goldberg, 1988). 

To-date, a growing body of neuroimaging studies in normal subjects has 
documented involvement of the fronto-parietal network in spatial attentional 
modulations during object recognition or discrimination of cognitive tasks 
(Buchel & Friston, 2001; Cabeza et al., 2003). This is consistent with 
previous fMRI research suggesting a supra-modal role of the prefrontal 
cortex in attention selection within both the sensori-motor and mnemonic 
domains (Friston et al., 1996, 1999). Taken together, these neuroimaging 
studies suggest the distributed interaction between modality-specific 
posterior visual and frontal-parietal areas service visual attention and object 
discrimination cognitive tasks (Rees & Lavie, 2001). Research on the 
cognitive aspects in MTBI patients indicates a classic pattern of 
abnormalities in information processing and executive functioning that 
correspond to the frontal lobe damage (Stuss & Knight, 2002). 

The frontal areas of the brain, including prefrontal cortex, are highly 
vulnerable to damage after traumatic brain injury leading to commonly 
observed long-term cognitive impairments (Levin et al., 2002; Echemendia 
et al., 2001; Lowell et al., 2003). A significant percentage of the mild 
traumatic brain injuries will result in structural lesions (Johnston et al., 
2001), mainly due to diffuse axonal injury (DAI), which are not always 
detected by MRI (Gentry et al., 1988; Liu et al., 1999). Recent dynamic 
imaging studies have finally revealed that persistent post-concussive brain 
dysfunction exists even in patients who sustained a relatively mild brain 
injury (Hofman et al, 2002; Umile et al, 2002). 

Striking evidence for DAI most commonly involving the white matter of 
the frontal lobe (Gentry et al., 1998) and cellular damage and after mild TBI 
was revealed by magnetic resonance spectroscopy (MRS). Specifically, 
MRS studies have demonstrated impaired neuronal integrity and associated 
cognitive impairment in patients suffering from mild TBI. For example, a 
number of MRS studies showed reduced NAA/creatine ratio and increased 
choline/creatine ratio in the white matter, which can be observed from 3-39 
days post-injury (Mittl et al., 1994; Gamett et al., 2000; Ross & Bluml, 
2001). The ratios are highly correlated with head injury severity. More 
importantly, abnormal MR spectra were acquired from frontal white matter 
that appeared to be normal on conventional MRI. Predictive values of MRS 
in assessment of a second concussion are high, because of frequent 
occurrence of DAI with second impact syndrome (Ross & Bluml, 2001). 
The language, memory and perceptual tasks sensitive to frontal lobe 
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functions have been developed because a disruption in frontal-limbic-
reticular activation system following closed head injury has been 
hypothesized (Johnston, 2001). Patients with MTBI performed poorly in 
these tasks. Long-term functional abnormalities, as evidenced by flMRI have 
been documented in concussed individuals with normal structural imaging 
results (Schubert & Szameitat, 2003; Chen et al., 2003). Overall, abnormal 
brain metabolism may present between 1.5-3 months post-injury indicating 
continuing neuronal dysfunction and long-term molecular pathology 
following diffuse axonal brain injury. 

3. POSTURAL STABILITY AND MTBI 

Human upright posture is a product of an extremely complex system 
with numerous degrees of freedom; posture, like other physical activities, 
undergoes dramatic changes in organization throughout life. The nature of 
postural dynamics is more complex than a combination of stretch reflexes 
(Shtein, 1903) or voluntary movements aimed at counterbalancing the 
gravitational torque in every joint of the human body (McCoUum & Leen, 
1989). Human posture includes not only the maintenance of certain relative 
positions of the body segments but also fine adjustments associated with 
various environmental and task demands. It follows from this perspective 
that neither accounts of the neural organization of motor contraction synergy 
(Diener, Horak & Nashner, 1988) and feedforward control processes (Riach 
& Hayes, 1990) nor solely somatosensory cues attenuating the body sway 
(Jeka & Lackner, 1994; Barela et al., 2003) can explain the nature of 
postural stability unless we consider the more global effects of the organism-
environment interaction (Gibson, 1966, Riccio & Stoffregen, 1988). 

Traditionally, postural stability has been measured indirectly by 
determining the degree of motion of the center of pressure at the surface of 
support through force platform technology (Nashner, 1977; Goldie et al., 
1989; Nashner et al. 1985; Hu & Woollacott, 1992; Slobounov & Newell, 
1994 a,b; 1995; Slobounov et al, 1998 a,b). The location of the center of 
pressure is generally assumed to be an accommodation to the location of the 
vertical projection of the center of gravity of the body in an upright bipedal 
stance (Winter, 1990). The positive relationship between a measure of 
increased sway and loss of balance was established by Lichtenstein et al. 
(1988). More recently, postural sway, reaction time and the Berg Scale have 
been used to determine reliable predictors of falls (Lajoie et al., 2002). It 
was shown that postural sway values in the lateral direction associated with 
increased reaction time could be used as a predictor of falls. 

However, Patla et al. (1990) have suggested that increased body sway is 
not an indication of a lesser ability to control upright stance and is not 
predictive of falls, because the task of maintaining a static stance is quite 
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different from the requirements needed to recover from postural instability 
due to a trip or slip. This suggestion is consistent with notion that the center 
of pressure sway during quiet stance is a poor operational reflection of 
postural stability (Slobounov et al., 1998a). We have shown that the ratio of 
the area of the center of pressure to the area within the stability boundary, 
defined as stability index, is a strong estimate of postural stability both in 
young, elderly and concussed subjects (Slobounov et al., 1998b; Slobounov 
et al., 2005a). 

Several previous studies have identified a negative effect of MTBI on 
postural stability (Lishman, 1988; Ingelsoll & Armstrong, 1992; Wober et 
al., 1993). Recently, Geurts et al. (1999) showed the increased velocity of 
the center of pressure and the overall weight-shifting speed indicating both 
static and dynamic instability in concussed subjects. Interestingly, this study 
also indicated the association between postural instability and abnormal 
mental functioning after mild traumatic brain injury. It is worth mentioning 
that research on the relationship between cognitive functions and control of 
posture is a new and expanding area in behavioral neuroscience (Woollacott 
& Shumway-Cook, 2002). The use of postural stability testing for the 
management of sport-related concussion is gradually becoming more 
common among sport medicine clinicians. A growing body of controlled 
studies has demonstrated postural stability deficits, as measured by Balance 
Error Scoring System (BESS) on post-injury day 1 (Guskiewicz et al., 1997; 
2001; 2003; Rieman et al., 2002; Volovich et al., 2003; Peterson et al., 
2003). The BESS is a clinical test that uses modified Romberg stances on 
different surfaces to assess postural stability. The recovery of balance 
occurred between day 1 and day 3 post-injury for the most of the brain 
injured subjects (Peterson et al., 2003). It appeared that the initial 2 days 
after MTBI are the most problematic for most subjects standing on the foam 
surfaces, which was attributed to a sensory interaction problem using visual, 
vestibular and somatosensory systems (Valovich et al,, 2003; Guskiewicz, 
2003). Despite the recognition of motor abnormalities (Kushner, 1998; 
Povlishock et al., 1992) and postural instability resulting from neurological 
dysfunction in the concussed brain, no systematic research exists identifying 
how dynamic balance and underlying neural mechanisms are interactively 
affected by single and multiple MTBI. 

Additional evidence supporting the presence of long-term residual 
postural abnormalities was provided in a recent study showing a 
destabilizing effect of visual field motion in concussed athletes (Slobounov 
et al., 2005c). In this study, postural responses to visual field motion were 
recorded using a virtual reality (VR) environment in conjunction with 
balance and motion tracking technologies. When a visual field does not 
match self-motion feedback, young controls are able to adapt via shifting to 
a kinesthetic frame of reference, thus, ignoring the destabilizing visual 
effects (Keshner & Kenyon, 2000-2004). The conflicting visual field motion 
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in concussed athletes within 30 days post-injury produces postural 
instability. Concussed subjects were found to be significantly dependent on 
visual fields to stabilize posture. It was suggested that visual field motion 
produced postural destabilization in MTBI subjects due to trauma induced 
dysfunction between sensory modalities and the fi^ontal cortex. Again, it 
should be noted, the fi-ontal areas of the brain are highly vulnerable to 
damage in subjects after traumatic brain injury, resulting in behavioral 
impairments (Stuss & Knight, 2002). 

4. EEG RESEARCH OF MTBI 

Electroencephalography (EEG) reflecting the extracellular current flow 
associated with summated post-synaptic potentials at the apical dendrites in 
synchronously activated vertically oriented pyramidal neurons (Martin, 1991), 
with sources of either a cortico-cortical or thalamo-cortical origin (Barlow, 
1993), was first developed by Hans Berger in 1925 in attempt to quantify the 
cortical energetics of the brain. Since then there has been a plethora of both 
basic and applied scientific study of the cognitive and motor functions using 
EEG and its related experimental paradigms (see Birbaumer et al., 1990; 
Pfiirtscheller & de Silva, 1999; Nunez, 2000 for reviews). 

EEG, due to its sensitivity to variations in motor and cognitive demands, is 
well suited to monitoring changes in the brain-state that occur when a performer 
comes to develop and adopt an appropriate strategy to efficiently perform a task 
(Gevins et al., 1987; Smith et al., 1999; Slobounov et al., 2000a,b). Sensitivity 
of the EEG in the alpha (8-12Hz), theta (4-7Hz) and beta (14-30Hz) frequency 
bands to variations in motor task demands has been well documented in a 
number of studies (Jasper & Penfield, 1949; Pfiirtscheller, 1981). Moreover, 
the functional correlates of gamma (30-50 Hz) activity, initially defined as a 
sign of focused cortical arousal (Sheer, 1976), which accompany both motor 
and cognitive task, are also now being widely investigated (Basar et al., 1995; 
Tallon-Baudry et al, 1996, 1997; Slobounov et al., 1998c). 

EEG work related to understanding human motor control has a long history. 
With the early work of Komhuber and Deecke (1965) in Europe and Kutas and 
Donchin (1974) in the United States, there have been studies examining human 
cortical patterns associated with movement in both time - movement-related 
cortical potentials, MRCP (Kristeva et al., 1990; Cooper et al., 1989; Lang et 
al, 1989; Slobounov & Ray, 1998; Slobounov et al., 2002a,b,c; Jahanshahi & 
Hallett, 2003, for review) and frequency (Pfurtscheller & da Silva, 1999, for 
review) domains. 

There are numerous EEG studies of MTBI. For instance, early EEG 
research in 300 patients clearly demonstrated slowing of major frequency 
bands and focal abnormalities within 48 hours post-injury (Geets & Louette, 
1985). A more recent study by McClelland et al. (1994) has shown that 
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EEG recordings performed during the immediate post-concussion period 
demonstrated a large amount of "diffusely distributed slow-wave potentials," 
which were markedly reduced when recordings were performed six weeks 
later. A shift in the mean frequency in the alpha (8-10 Hz) band toward 
lower power and overall decrease of beta (14-18Hz) power in patients 
suffering from MTBI was observed by Tebano et al. (1988). In addition, the 
reduction of theta power (Montgomery et al., 1991) accompanying a 
transient increase of alpha-theta ratios (Pratar-Chand, et al, 1988; Watson et 
al., 1995) was identified as residual organic symptomology in MTBI 
patients. 

The most comprehensive EEG study using a database of 608 MTBI 
subjects revealed (a) increased coherence and decreased phase in frontal and 
frontal-temporal regions; (b) decreased power differences between anterior 
and posterior cortical regions; and (c) reduced alpha power in the posterior 
cortical region, which was attributed to mechanical head injury (Thatcher et 
al,, 1988). A more recent study by Thornton (1999) has shown a similar 
data trend in addition to demonstrating the attenuation of EEG within the 
high frequency gamma cluster (32-64 Hz) in MTBI patients. Focal changes 
in EEG records have also been reported by Pointinger et al. (2002) in early 
head trauma research. In our work, significant reduction of the cortical 
potentials amplitude and concomitant alteration of gamma activity (40 Hz) 
was observed in MTBI subjects performing force production tasks 3 years 
post-injury (Slobounov et al.,2002,d). More recently, we showed a 
significant reduction of EEG power within theta and delta frequency bands 
during standing postures in subjects with single and multiple concussions 
within 3 years post-injury (Thompson, et al., 2005). 

Persistent functional deficits revealed by altered movement-related 
cortical potentials (MRCP) preceding whole body postural movements were 
observed in concussed athletes at least 30 days post-injury (Slobounov et al., 
2005b). It should be noted that all subjects in this study were cleared for 
sport participation within 10 days post-injury based upon neurological and 
neuropsychological assessments as well as clinical symptoms resolution. 
Interestingly, the frontal lobe MRCP effects were larger than posterior areas. 
The fact that no behavioral signs of postural abnormality were observed on 
day 30 post-injury despite the persistent presence of cerebral alteration of 
postural control may be explained by the enormous plasticity at different 
levels of the CNS allowing compensation for deficient motor functions. 
Specific mechanisms responsible for this plasticity and compensatory 
postural responses are awaiting future examinations. The results from this 
report support the notion that behavioral symptoms resolution may not be 
indicative of brain injury pathway resolution. As a result, the athletes who 
return to play based solely on clinical symptom resolution criteria may be 
highly susceptible to future and possibly more severe brain injuries. There is 
no universal agreement on concussion grading and retum-to-play criteria. 
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However, recent evidence in clinical practice indicates underestimation of 
the amount of time it takes to recover brain functions from concussion. 
Accordingly, the alteration of brain potentials associated with postural 
movement clearly observed within 30 days post-injury could potentially be 
considered within the scope of existing grading scales and retum-to-play 
criteria. 

CONCLUSION 

There is still considerable debate in the literature whether mild traumatic 
brain injury (MTBI) results in permanent neurological damage or in transient 
behavioral and cognitive malfunctions. We believe that one of the reasons 
for this controversy is that there are several critical weaknesses in the 
existing research on the behavioral, neural and cognitive consequences of 
traumatic brain injury. First, most previous research has failed to provide 
the pre-injury status of MTBI subjects that may lead to misdiagnosis of the 
persistent or new neurological and behavioral deficits that occur after injury. 
Second, previous research has focused selectively on pathophysiology, 
cognitive or behavioral sequelae of MTBI in isolation. Third, previous 
research has focused primarily on single concussion cases and failed to 
examine the subjects who experienced a second concussion at a later time. 
Finally, previous research has failed to provide analyses of biomechanical 
events and the severity of a concussive blow at the moment of the accident. 
Biomechanical events set up by the concussive blow (i.e. amount of head 
movement about the axis of the neck at the time of impact, the site of impact 
etc.) ultimately result in concussion, and their analysis may contribute to a 
more accurate assessment of the degree of damage and potential for 
recovery. Overall, a multidisciplinary approach using advanced 
technologies and assessment tools may dramatically enhance our 
understanding of this puzzling neurological disorder facing the sports 
medicine world today. 

We believe that the currently accepted clinical notion of transient and 
rapid symptoms resolution in athletes suffering from even mild traumatic 
brain injury is misleading. There are obvious short-term and long lasting 
structural and functional abnormalities as a result of mild TBI that may be 
revealed using advanced technologies. There is a need for the development 
of a conceptual framework for examining how behavioral (including 
postural balance), cognitive and underlying neural mechanisms (EEG and 
MRI) are interactively affected by single or multiple MTBI. A set of tools 
and advanced scales for the accurate assessment of mild traumatic brain 
injury must be elaborated including the computer graphics and virtual reality 
(VR) technologies incorporated with modem human movement analysis and 
brain imaging (EEG, fMRI and MRS) techniques. Semi-quantitative 
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estimates of biomechanical events set up by a concussive blow should be 
developed using videotape analysis of the accident, so they may be 
correlated with other assessment tools. Current research studying student-
athletes prior to and after brain injury has provided strong evidence for the 
feasibility of the proposed approach utilizing technologies in examining both 
short-term and long-lasting neurological dysfunction in the brain, as well as 
balance and cognition deterioration as a result of MTBI. 

OUTLINE OF THE BOOK 

We will now provide a few more details on the organization of book's 
content There are five main parts, providing multidisciplinary perspectives 
of sport-related concussions. This book covers conceptual, theoretical and 
clinical issues regarding the mechanisms, neurophysiology, 
pathophysiology, and biomechanics/pathomechanics of traumatic brain 
injuries which constitutes Part 1. 

Numerical scales, categories, and concussion classifications which are 
well-accepted in clinical practice are contained in Part 2 of the book. It is 
important to note that existing limitations, controversy in aforementioned 
scales are discussed within the Part 2 of this book. 

Fundamentals of brain research methodology, in general, and the 
application of various brain imaging techniques such as EEG, MRI, fMRI, 
CT, and MRS, in specific, are developed in Part 3 of the book. 

Part 4 of the book constitutes a number of chapters on experimental 
research in humans along life-span suffering from single and multiple 
concussions. This research is presenting biomechanical, neurophysiological, 
and pathophysiological data obtained from brain injured subjects. 

Finally, Part 5 of the book concentrates on current information 
pertaining to care, clinical coverage and prevention of sport-related 
concussion as well as the medical issues, rehabilitation practitioners' 
responsibilities and psychological aspects of concussion in athletes. This 
part is focused on specialized treatment and rehabilitation of brain injured 
athletes. A special chapter is developed on the perception and concerns of 
coaches in terms of prevention of sport-related concussions. Also, a special 
emphasis within Park 5 of this book is devoted to case studies, current 
practices dealing with concussed athletes and future challenges. 
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