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Minima and quasi minima

Rationality of thought imposes
a limit on a person’s concept
of his relation to the cosmos.
(J. F. Nash, Autobiography)

Convexity plays a key role in minimization. First of all, a local minimum is
automatically a global one. Secondly, for convex functions, the classical Fermat
necessary condition for a local extremum becomes sufficient to characterize a
global minimum.

In this chapter we deal with the problem of existence of a minimum point,
and thus we quite naturally begin with stating and commenting on the Weier-
strass existence theorem. We also show that in reflexive (infinite dimensional)
Banach spaces convexity is a very important property for establishing exis-
tence of a global minimum under reasonable assumptions. There are however
several situations, for example outside reflexivity, where to have a general ex-
istence theorem for a wide class of functions is practically impossible. Thus it
is important to know that at least for “many” functions in a prescribed class,
an existence theorem can be provided. A fundamental tool for getting this
type of result is the Ekeland variational principle, probably one of the most
famous results in modern nonlinear analysis. So, in this chapter we spend
some time in analyzing this variational principle, and deriving some of its
interesting consequences, mainly in the convex setting.

The problem we were alluding to of identifying classes of functions for
which “most” of the problems have solutions will be discussed in detail in
Chapter 11. The chapter ends with the description of some properties of the
level sets of a convex function, and with a taste of the algorithms that can be
used in order to find the minima of a convex function, in a finite dimensional
setting.
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4.1 The Weierstrass theorem

The next result is the fundamental Weierstrass theorem.

Theorem 4.1.1 Let (X, τ ) be a topological space, and assume f : (X, τ ) →
(−∞,∞] is τ -lower semicontinuous. Suppose moreover there is ā > inf f such
that f ā is τ -compact. Then f has absolute minima: Min f := {x̄ : f(x̄) ≤
f(x), ∀x ∈ X} is a nonempty set.

Proof.
Min f =

⋂
ā>a>inf f

fa.

Each fa is nonempty and τ -closed (due to τ -lower semicontinuity of f); hence

{fa : ā > a > inf f}

is a family of nonempty, nested, τ -compact sets, and this entails nonemptiness
of their intersection. ��

The previous theorem is surely a milestone in optimization. Thus, when
we face an optimization problem, the challenge is to see if there is a topology τ
on the set X in order to fulfill its assumptions. Observe that the two requested
conditions, τ -lower semicontinuity of f , and having a τ -compact level set, go
in opposite directions. Given a function f on X, in order to have f τ -lower
semicontinuous we need many closed sets on X (i.e., the finer the topology τ
with which we endow X, the better the situation), but to have a compact level
set we need a topology rich in compact sets, which is the same as saying poor
in open (and so, closed) sets. For instance, think of a continuous function (in
the norm topology) defined on an infinite-dimensional Hilbert space. Clearly,
each level set of f is a closed set. But also, no level set (at height greater
than inf f) is compact! To see this, observe that each fa must contain a ball
around a point x fulfilling f(x) < a. As is well known, compact sets in infinite-
dimensional spaces do have empty interiors. Thus Weierstrass’ theorem can
never be applied in this setting, with the norm topology. Fortunately, we have
other choices for the topology on the space. On the Banach space X, let us
consider the weak topology. This is defined as the weakest topology making
continuous all the elements of X∗, the continuous dual space of X. By the
very definition, this topology is coarser than the norm topology, and strictly
coarser in infinite dimensions, as it is not difficult to show. This implies that
the weak topology will provide us more compact sets, but fewer closed sets.
Thus, the following result is very useful.

Proposition 4.1.2 Let X be a Banach space, and let F ⊂ X be a norm
closed and convex set. Then F is weakly closed.
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Proof. To prove the claim, we show that F c, the complement of F , is weakly
open. Remember that a subbasic family of open sets for the weak topology is
given by

{x ∈ X : 〈x∗, x〉 < a, x∗ ∈ X∗, a ∈ R}.
So, let x ∈ F c. Being F closed and convex, we can strictly separate F from x
(Theorem A.1.6): there are x∗ ∈ X∗ and a ∈ R such that

F ⊂ {x ∈ X : 〈x∗, x〉 > a} and 〈x∗, x〉 < a.

Thus the open set {x ∈ X : 〈x∗, x〉 < a} contains x and does not intersect F .
��

As a consequence of the previous results we can prove, for instance, the
following theorem (some simple variant of it can be formulated as well):

Theorem 4.1.3 Let X be a reflexive Banach space, let f ∈ Γ (X). Suppose
lim‖x‖→∞ f(x) =∞. Then the problem of minimizing f over X has solutions.

Proof. As a consequence of the Banach–Alaoglu theorem, reflexivity guaran-
tees that a weakly closed and bounded set is weakly compact. ��
Exercise 4.1.4 Let us take a nonempty closed convex set C in a Banach
space X, and x ∈ X. The projection of x over C is the (possibly empty) set
pC(x) of the points of C which are nearest to x:

pC(x) = {z ∈ C : ‖z − x‖ ≤ ‖c− x‖, ∀c ∈ C}.

Prove that pC(x) �= ∅, provided X is reflexive, and that it is a singleton if X
is a Hilbert space. In this case, prove also that y = PC(x) if and only if y ∈ C
and

〈x− y, c− y〉 ≤ 0, ∀c ∈ C.

x

y

c

C

Figure 4.1. The projection y of x on the set C.
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The concept of projection allows us to get a formula for the subdifferential
of the distance function d( · , C), where C is a closed convex subset of a Hilbert
space X.

Proposition 4.1.5 Let X be a Hilbert space, C a nonempty closed convex
subset of X, x ∈ X. Then

∂d( · , C)(x) =

⎧⎪⎪⎨
⎪⎪⎩

0∗ if x ∈ int C,

NC(x) ∩B∗ if x ∈ ∂C,
x− PC(x)
‖x− PC(x)‖ if x /∈ C,

where, as usual, NC(x) is the normal cone at x to C and PC(x) is the projec-
tion of x over C.

Proof. To prove the claim, we appeal to the fact that

d(x, C) = (‖ · ‖∇IC)(x),

that the inf-convolution is exact at any point, and to Proposition 3.2.11,
which provides a formula for the subdifferential of the inf-convolution at a
point where it is exact. Let x ∈ int C. Setting u = 0, v = x, we have that
d(x, C) = ‖u‖ + IC(v), ∂‖u‖ = BX∗ , ∂IC(v) = {0∗}, ∂d( · , C)(x) = ∂‖u‖ ∩
∂IC(v) = {0∗}. Now, let us suppose x is in the boundary of C: x ∈ ∂C.
Again take u = 0, v = x. This provides ∂‖u‖ = BX∗ , ∂IC(v) = NC(x), and
thus ∂d( · , C)(x) = ∂‖u‖ ∩ ∂IC(v) = B∗ ∩ NC(x). Finally, let x /∈ C. Then
d(x, C) = ‖x−PC(x)‖+IC(pC(x)), ∂‖x−PC(x)‖ = x−PC(x)

‖x−PC(x)‖ , ∂IC(PC(x)) =

NC(PC(x)). But x−PC(x)
‖x−PC(x)‖ ∈ NC(PC(x)), as it is seen in the Exercise 4.1.4,

and this ends the proof. ��
Exercise 4.1.6 Let X be a reflexive Banach space and let f : X → (−∞,∞]
be a lower semicontinuous, lower bounded function. Let ε > 0, r > 0 and
x̄ ∈ X be such that f(x̄) ≤ infX f + rε. Then, there exists x̂ ∈ X enjoying
the following properties:
(i) ‖x̂− x̄‖ ≤ r;
(ii) f(x̂) ≤ f(x̄);
(iii) f(x̂) ≤ f(x) + ε‖x̂− x‖ ∀x ∈ X.

Hint. The function g(x) = f(x) + ε‖x̄ − x‖ has a minimum point x̂. Check
that x̂ fulfills the required properties.

The following section is dedicated to extending the previous result to com-
plete metric spaces.
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4.2 The Ekeland variational principle

Due to the lack of a suitable topology to exploit the basic Weierstrass exis-
tence theorem, it is quite difficult, except for the reflexive case, to produce
general existence results for minimum problems. So it is important to produce
results guaranteeing existence at least in “many” cases. The word “many” of
course can be given different meanings. The Ekeland variational principle, the
fundamental result we describe in this section, allows us to produce a generic
existence theorem. But its power goes far beyond this fact; its claim for the
existence of a quasi minimum point with particular features has surprisingly
many applications, not only in optimization, but also, for instance, in critical
point and fixed point theory. Let us start by introducing a useful definition.

Definition 4.2.1 Let (X, d) be a metric space, let f : X → R be lower semi-
continuous. The strong slope of f at x, denoted by |∇f |(x) is defined as

|∇f |(x) =

⎧⎨
⎩

lim sup
y→x

f(x)−f(y)
d(x,y) if x is not a local minimum,

0 if x is a local minimum.

The next is an estimation from above of the strong slope.

Proposition 4.2.2 Let X be a metric space, let f : X → R be locally Lips-
chitz at x ∈ X, with Lipschitz constant L. Then |∇f |(x) ≤ L.

For a more regular function f we have:

Proposition 4.2.3 Let X be a Banach space, let f : X → R be Gâteaux
differentiable at x ∈ X. Then |∇f |(x) ≥ ‖∇f(x)‖∗.
Proof. Let u ∈ X be such that ‖u‖ = 1 and 〈∇f(x),−u〉 ≥ ‖∇f(x)‖∗− ε, for
some small ε > 0. Then

lim sup
y→x

f(x)− f(y)
d(x, y)

≥ lim
t→0

f(x)− f(x + tu)
t

= 〈∇f(x),−u〉 ≥ ‖∇f(x)‖∗ − ε.

This allows us to complete the proof. ��
Clearly, every function f which is discontinuous at a point x but Gâteaux

differentiable at the same point, provides an example when the inequality in
the above proposition is strict. But with a bit more regularity we get

Proposition 4.2.4 Let X be a Banach space, let f : X → R be Fréchet dif-
ferentiable at x ∈ X. Then |∇f |(x) = ‖f ′(x)‖∗.
Proof. Write, for y �= x,

f(y) = f(x) + 〈f ′(x), y − x〉+ εy‖y − x‖,
where εy → 0 if y → x. Then we get
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f(x)− f(y)
‖y − x‖ = 〈−f ′(x),

y − x

‖y − x‖〉+ εy ≤ ‖f ′(x)‖∗ + εy.

This shows that |∇f |(x) ≤ ‖f ′(x)‖ and, by means of Proposition 4.2.3, we
can conclude. ��

Propositions 4.2.3 and 4.2.4 explain the importance of the notion of strong
slope (and also the notation used). In particular, for a Fréchet differentiable
function, it generalizes the notion of norm of the derivative, to a purely met-
ric setting. Beyond this, it has also interesting connections with nonsmooth
differentials of nonconvex functions.

We can now introduce the variational principle.

Theorem 4.2.5 Let (X, d) be a complete metric space and let f : X →
(−∞,∞] be a lower semicontinuous, lower bounded function. Let ε > 0, r > 0
and x̄ ∈ X be such that f(x̄) ≤ infX f +rε. Then, there exists x̂ ∈ X enjoying
the following properties:
(i) d(x̂, x̄) ≤ r;
(ii) f(x̂) ≤ f(x̄)− εd(x̄, x̂);
(iii) f(x̂) < f(x) + εd(x̂, x) ∀x �= x̂.

Proof. Let us define the following relation on X ×X:

x � y if f(x) ≤ f(y)− εd(x, y).

It is routine to verify that � is reflexive, antisymmetric and transitive.
Moreover, lower semicontinuity of f guarantees that ∀x0 ∈ X, the set A :=
{x ∈ X : x � x0} is a closed set. Let us now define

x1 = x̄, S1 = {x ∈ X : x � x1},
x2 ∈ S1 such that f(x2) ≤ inf

S1
f +

rε

4
;

and recursively

Sn = {x ∈ X : x � xn},
xn+1 ∈ Sn such that f(xn+1) ≤ inf

Sn

f +
rε

2(n + 1)
.

For all n ≥ 1, Sn is a nonempty closed set, and Sn ⊃ Sn+1. Let us now
evaluate the size of the sets Sn. Let x ∈ Sn, for n > 1. Then x � xn and
x ∈ Sn−1, hence

f(x) ≤ f(xn)− εd(x, xn),

f(xn) ≤ f(x) +
rε

2n
,

giving
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Figure 4.2. The � relation.

d(x, xn) ≤ r

2n
.

In the same way it can be shown that if x ∈ S1, then d(x, x1) = d(x, x̄) ≤ r.
Since X is a complete metric space and the sequence of the diameters of the
sets Sn goes to zero, it follows that

⋂
n≥1 Sn is a singleton (see Exercise 4.2.6).

Let
⋂

n≥1 Sn := {x̂}. Now, it is a pleasure to show that x̂ has the required
properties. The first and the second one immediately follow from the fact that
x̂ ∈ S1, while, to verify the third one, if we suppose the existence of x ∈ X
such that f(x̂) ≥ f(x)+ εd(x, x̂), then x � x̂ � xn, ∀n, implying x ∈ ⋂n≥1 Sn

and so x = x̂. ��
Exercise 4.2.6 Let (X, d) be a complete metric space, let {Sn} be a sequence
of nested closed sets such that diam Sn → 0. Prove that

⋂
Sn is a singleton.

Hint. Take xn ∈ Sn for all n. Then {xn} is a Cauchy sequence. Thus
⋂

Sn is
nonempty. Moreover, it cannot contain more than one point, as diam Sn → 0.

The third condition of the Ekeland principle has many interesting, and
sometimes rather surprising, consequences. At first, it shows that the approx-
imate solution x̂ of the problem of minimizing f is, at the same time, also
the unique exact solution of a minimum problem, close to the original one, in
a sense we shall specify in Chapter 11. Moreover, this approximate solution
enjoys an important property with respect to the strong slope, as we now see.
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Corollary 4.2.7 Let X be a complete metric space. Let f : X → (−∞,∞] be
lower semicontinuous and lower bounded. Let ε, r > 0 and x̄ ∈ X be such that
f(x̄) < infX f + εr. Then there exists x̂ ∈ X with the following properties:
(i) d(x̂, x̄) < r;
(ii) f(x̂) ≤ f(x̄);
(iii) |∇f |(x̂) < ε.

Proof. It is enough to apply the principle, with suitable 0 < ε0 < ε, 0 < r0 <
r. The last condition implies |∇f |(x̂) ≤ ε0, as is easy to see. ��

From the previous results we deduce:

Corollary 4.2.8 Let X be a Banach space, let f : X → R be lower semicon-
tinuous, lower bounded and Gâteaux differentiable. Given ε, r > 0 and x̄ ∈ X
such that f(x̄) < infX f + εr, there exists x̂ ∈ X with the following properties:
(i) d(x̂, x̄) < r;
(ii) f(x̂) ≤ f(x̄);
(iii) ‖∇f(x̂)‖∗ < ε.

Proof. From Proposition 4.2.3 and Corollary 4.2.7. ��
Corollary 4.2.9 Let X be a Banach space, let f : X → R be lower semi-
continuous, lower bounded and Gâteaux differentiable. Then there exists a
sequence {xn} ⊂ X such that
(i) f(xn) → inf f ;
(ii) ∇f(xn)→ 0∗.

Sequences {xn} such that ∇f(xn) → 0∗ are known in the literature as
Palais–Smale sequences, and at level a if it happens that f(xn) → a. A func-
tion f is said to satisfy the Palais–Smale condition (at level a) if every Palais–
Smale sequence with bounded values (at level a) has a limit point. This is a
compactness assumption crucial in every abstract existence theorem in crit-
ical point theory. And the notion of strong slope is the starting point for a
purely metric critical point theory. The above corollary claims the existence
of Palais–Smale sequences at level inf f .

The Ekeland principle has interesting consequences for convex functions
too.

Theorem 4.2.10 Let X be a Banach space, let f ∈ Γ (X). Let x ∈ dom f ,
ε, r, σ > 0, x∗ ∈ ∂εrf(x). Then there are x̂ ∈ dom f and x̂∗ ∈ X∗, such that
(i) x̂∗ ∈ ∂f(x̂);
(ii) ‖x− x̂‖ ≤ r

σ ;
(iii) ‖x̂∗ − x∗‖∗ ≤ εσ;
(iv) |f(x)− f(x̂)| ≤ r(ε + ‖x∗‖∗

σ ).
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Proof. As x∗ ∈ ∂εrf(x), it holds, ∀y ∈ X,

f(y) ≥ f(x) + 〈x∗, y − x〉 − εr.

Setting g(y) = f(y)− 〈x∗, y〉, we get

g(x) ≤ inf
X

g + (εσ)
r

σ
.

Applying the principle to the function g (and replacing r by r
σ , ε by σε), we

have then the existence of an element x̂ ∈ dom f satisfying condition (ii). Let
us find the right element in its subdifferential. Condition (iii) of the principle
says that x̂ minimizes the function g( ·) + εσ‖ · − x̂‖, so that

0∗ ∈ ∂(g( ·) + εσ‖ · − x̂‖)(x̂).

We can use the sum Theorem 3.4.2. We then get

0∗ ∈ ∂g(x̂) + εσBX∗ = ∂f(x̂)− x∗ + εσBX∗ .

This is equivalent to saying that there exists an element x̂∗ ∈ ∂f(x̂) such that
‖x̂∗ − x∗‖∗ ≤ εσ. Finally, condition (iv) routinely follows from (ii), (iii) and
from x∗ ∈ ∂εrf(x), x̂∗ ∈ ∂f(x̂). ��

The introduction of a constant σ in the above result is not made with
the intention of creating more entropy. For instance, the choice of σ =
max{‖x∗‖∗, 1} allows controlling the variation of the function f , at the ex-
pense, of course, of controlling of the norm of x̂∗. Thus the following useful
result can be easily proved.

Corollary 4.2.11 Let X be a Banach space, let f ∈ Γ (X). Let x ∈ dom f .
Then there is a sequence {xn} ⊂ dom ∂f such that

xn → x and f(xn) → f(x).

Proof. This follows from (ii) and (iv) of Theorem 4.2.10, with the above choice
of σ, ε = 1, and r = 1

n . ��
Corollary 4.2.12 Let X be a Banach space, let f ∈ Γ (X) be lower bounded,
let ε, r > 0 and x̄ ∈ dom f be such that f(x̄) < inf f + εr. Then there exist
x̂ ∈ dom f and x̂∗ ∈ ∂f(x̂), such that
(i) ‖x̄− x̂‖ < r;
(ii) ‖x̂∗‖∗ < ε.

Proof. We apply Theorem 4.2.10 to the point x = x̄, and with σ = 1. Observe
that 0∗ ∈ ∂ε0r0f(x̄), with suitable ε0 < ε and r0 < r. ��

Another very interesting consequence of the previous theorem is the fol-
lowing fact.
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Corollary 4.2.13 Let X be a Banach space and f ∈ Γ (X). Then there exists
a dense subset D of dom f such that ∂f(x) �= ∅ for all x ∈ D.

Proof. Fix any r > 0 and x ∈ dom f . Find x∗ in ∂r/2f(x). Apply Theorem
4.2.10 to x, x∗, with the choice of ε = 1/2, σ = 1. We get x̂ such that ∂f(x̂) �= ∅
and such that ‖x− x̂‖ < r, and this finishes the proof. ��

The following proposition, beyond being interesting in itself, is useful in
proving that the subdifferential of a function in Γ (X) is a maximal monotone
operator. Remember that in Theorem 3.5.14 we have already shown this result
for a narrower class of functions. To prove it, we follow an idea of S. Simmons
(see [Si]).

Proposition 4.2.14 Let X be a Banach space, let f ∈ Γ (X), and suppose
f(0) > inf f . Then there are z ∈ dom f , z∗ ∈ ∂f(z) with the following prop-
erties:
(i) f(z) < f(0);
(ii) 〈z∗, z〉 < 0.

Proof. Observe at first that (i) is an immediate consequence of (ii) and of
the definition of subdifferential. So, let us establish the second property. Let
f(0) > a > inf f , and set

2k := sup
x�=0

a− f(x)
‖x‖ .

It is obvious that k > 0. We shall prove later that k < ∞. By definition of k,

f(x) + 2k‖x‖ ≥ a, ∀x ∈ X.

Moreover, there exists x̄ such that

k <
a− f(x̄)
‖x̄‖ ,

providing

f(x̄) + 2k‖x̄‖ < a + k‖x̄‖ ≤ inf{f(x) + 2k‖x‖ : x ∈ X}+ k‖x̄‖.
We can then apply Corollary 4.2.12 with ε = k ed r = ‖x̄‖. Hence there are
z ∈ dom f and w∗ ∈ ∂(f( ·) + k‖ · ‖)(z) such that

‖z − x̄‖ < ‖x̄‖ and ‖w∗‖ < k.

The first condition implies z �= 0. By the sum Theorem 3.4.2 we also have

w∗ = z∗ + y∗,

with
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z∗ ∈ ∂f(z) and y∗ ∈ ∂(k‖ · ‖)(z).

The last condition, by applying the definition of subdifferential, implies

0 ≥ k‖z‖ − 〈y∗, z〉,
whence

〈y∗, z〉 ≥ k‖z‖.
We then get

〈z∗, z〉 = 〈w∗, z〉 − 〈y∗, z〉 < k‖z‖ − k‖z‖ ≤ 0.

To conclude, we must verify that k < ∞. It is enough to consider the case
when f(x) < a. Let x∗ ∈ X∗, α ∈ R be such that f(y) ≥ 〈x∗, y〉 − α, ∀y ∈ X.
The existence of such an affine function minorizing f relies on the fact that
f ∈ Γ (X) (Corollary 2.2.17). We then have

a− f(x) ≤ |a|+ |α|+ ‖x∗‖∗‖x‖,
whence

a− f(x)
‖x‖ ≤ |a|+ |α|

d(0, fa)
+ ‖x∗‖∗,

and this ends the proof. ��
Exercise 4.2.15 Prove the following generalization of Theorem 4.4.1. Let
f ∈ Γ (X). Then ∂f is a maximal monotone operator.

Hint. Use the proof of Theorem 4.1.1 and the previous proposition.

To conclude this section, we want to get a result on the characterization
of the epigraph of f ∈ Γ (X), which improves upon Theorem 2.2.21. There, it
was proved that the epigraph can be characterized as the intersection of the
epigraphs of all the affine functions minorizing f . Here we prove that we can
just consider very particular affine functions minorizing f , in order to have
the same characterization.

To prove our result, we first must show the following lemma.

Lemma 4.2.16 Let C be a closed convex set, and x /∈ C. Then, for every
k > 0, there exist c ∈ C, c∗ ∈ ∂IC(c) such that

〈c∗, x− c〉 ≥ k.

Proof. Let d = d(x, C), let α > k + d + 2 and let x̄ ∈ C be such that
‖x̄− x‖ < d(1 + 1

α ). Let

S = {(tx + (1− t)x̄, tα + (1− t)(−1)) : 0 ≤ t ≤ 1}.
Then S ∩ epi IC = ∅ and they can be strictly separated. Thus there exist
x∗ ∈ X∗, r∗ ∈ R and h ∈ R such that (x∗, r∗) �= (0∗, 0) and
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〈(x∗, r∗), (c, r)〉 ≥ h > 〈(x∗, r∗), (u, β)〉,

for all c ∈ C, r ≥ 0, (u, β) ∈ S. Taking any c ∈ C and r > 0 big enough in
the above inequalities shows that r∗ ≥ 0. And taking c = x̄ = u shows that
actually r∗ > 0. Setting y∗ = −x∗

r∗ , and putting at first (u, β) = (x̄,−1) and
then (u, β) = (x, α) in the above inequalities, we finally get

y∗ ∈ ∂1IC(x̄) and 〈y∗, x− c〉 > α, ∀c ∈ C.

Thanks to Theorem 4.2.10 (ε, r, σ = 1), we have the existence of c ∈ C,
c∗ ∈ ∂IC(c) such that

‖c− x̄‖ ≤ 1 and ‖c∗ − y∗‖∗ ≤ 1.

Thus

〈c∗, x− c〉 = 〈c∗ − y∗, x− c〉+ 〈y∗, x− c〉 > α− (‖x− x̄‖+ ‖x̄− c‖)
≥ α− (d(1 +

1
α

) + 1) > k.

��
Theorem 4.2.17 Let f ∈ Γ (X). Then, for all x ∈ X,

f(x) = sup{f(y) + 〈y∗, x− y〉 : (y, y∗) ∈ ∂f}.

Proof. Observe at first that from the previous lemma the conclusion easily
follows for the indicator function of a given closed convex set. Next, let us
divide the proof into two parts. At first we prove the claim for x̄ ∈ dom f ,
then for x̄ such that f(x̄) = ∞, which looks a bit more complicated. Thus,
given x̄ ∈ dom f and η > 0, we need to find (y, y∗) ∈ ∂f such that

f(y) + 〈y∗, x̄− y〉 ≥ f(x̄)− η.

Fix ε such that 2ε2 < η and separate epi f from (x̄, f(x̄)− ε2). We then find
x∗ ∈ ∂ε2f(x̄) (using the standard separation argument seen for the first time in
Lemma 2.2.16). From Theorem 4.2.10 we have the existence of y, y∗ ∈ ∂f(y),
such that

‖x∗ − y∗‖ ≤ ε and ‖x̄− y‖ ≤ ε.

Thus

f(y) + 〈y∗, x̄− y〉 ≥ f(x̄) + 〈x∗ − y∗, y − x̄〉 − ε2 ≥ f(x̄)− η.

This shows the first part of the claim. Suppose now f(x̄) =∞, and fix k > 0.
We need to find (y, y∗) ∈ ∂f such that

f(y) + 〈y∗, x̄− y〉 ≥ k.
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We shall apply Lemma 4.2.16 to C = epi f and to x = (x̄, k). We then see
that there exist (x, r) ∈ epi f , (x∗, r∗) ∈ ∂Iepi f (x, r) such that

〈(x∗, r∗), (x̄, k)− (x, r)〉 ≥ 2. (4.1)

Moreover, the condition (x∗, r∗) ∈ ∂Iepi f (x, r) amounts to saying that

〈(x∗, r∗), (y, β)− (x, r)〉 ≤ 0, (4.2)

for all (y, β) ∈ epi f . From (4.2) it is easy to see that r∗ ≤ 0 and, with the
choice of (y, β) = (x, f(x)), we see that r = f(x). Suppose now r∗ < 0.
Then we can suppose, without loss of generality, that r∗ = −1. Thus (x∗,−1)
supports epi f at (x, f(x)) and this means that x∗ ∈ ∂f(x). Moreover, from
(4.1) we get

〈x∗, x̄− x〉+ (−1)(k − f(x)) ≥ 2,

i.e.,
f(x) + 〈x∗, x̄− x〉 ≥ k + 2 > k,

so that we have shown the claim in the case r∗ < 0. It remains to see the
annoying case when r∗ = 0. In such a case (4.1) and (4.2) become

〈x∗, x̄− x〉 ≥ 2, 〈x∗, y − x〉 ≤ 0, ∀y ∈ dom f. (4.3)

Set d = ‖x− x̄‖ and a = 1
‖x∗‖∗

. Let y∗ ∈ ∂af(x), and observe that from (4.3)
we have that for all t > 0, z∗t := y∗ + tx∗ ∈ ∂af(x). From Theorem 4.2.10
there exist yt, y∗

t ∈ ∂f(yt) such that

‖x− yt‖ ≤ a, and ‖z∗t − y∗
t ‖∗ ≤ 1.

As {yt : t > 0} is a bounded set, there exists b such that f(yt) ≥ b for all
t > 0. We then get

f(yt) + 〈y∗
t , x̄− yt〉 = f(yt) + 〈y∗

t − z∗t , x̄− yt〉+ 〈z∗t , x̄− yt〉
≥ b− (d + a)− ‖y∗‖(d + a) + t(〈x∗, x̄− x〉+ 〈x∗, x− yt〉)
≥ b− (d + a)− ‖y∗‖(d + a) + t.

Then we can choose t big enough to make the following inequality be true:

b− (1 + ‖y∗‖)(d + a) + t ≥ k,

and this ends the proof. ��
We conclude by improving the result of the Lemma 3.6.4, once again with

a beautiful argument following from the Ekeland variational principle.

Lemma 4.2.18 Let f : X → (−∞,∞] be convex. Let δ, a > 0, g : B(0, a) →
R a Gâteaux function and suppose |f(x) − g(x)| ≤ δ for x ∈ B(0; a). Let
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0 < r < R ≤ a, let x be such that ‖x‖ ≤ r and x∗ ∈ ∂f(x). Then both the
following estimates hold:

d(x∗,∇g(B(x; R− r))) ≤ 2δ

R− r
,

d(x∗,∇g(RB) ≤ 2δ

R− r
.

The same holds if g is convex and real valued, provided we replace ∇g with
∂g.

Proof. Without loss of generality we can suppose f(x) = 0 and x∗ = 0∗. Then
g(x) < δ and, if ‖u‖ ≤ R, g(u) > −δ (since f is nonnegative). It follows that

g(x) < inf g +
2δ

R − r
(R− r),

on the ball rB. To conclude, it is enough to use Corollary 4.2.8 (or Corollary
4.2.12 for the convex case). ��

4.3 Minimizing a convex function

In this section we want to analyze some properties of the level sets of a convex
function, and to give a flavor of how one can proceed in looking for a minimum
of a convex function defined on a Euclidean space. We do not go into the details
of this topic; the interested reader is directed to excellent books treating this
important problem in a systematic way, such as the one by Hiriart-Urruty–
Lemaréchal [HUL]. We start by considering the level sets.

4.3.1 Level sets

We begin by establishing a result which actually could be derived by subse-
quent, more general statements, but which we prefer to present here, and to
prove it with an elementary argument.

Proposition 4.3.1 Let f : R
n → (−∞,∞] be a convex, lower semicontinuous

function. Suppose Min f is nonempty and compact. Then fa is bounded for
all a > inf f and ∀ε > 0 there exists a > inf f such that fa ⊂ Bε[Min f ].
Moreover, if {xn} is such that f(xn) → inf f , then {xn} has a limit point
which minimizes f . And if Min f is a singleton x, then xn → x.

Proof. Let r > 0 be such that Min f ⊂ (r−1)B and, without loss of generality,
suppose 0 ∈ Min f and f(0) = 0. By contradiction, suppose there are a > inf f
and {xn} such that f(xn) ≤ a and ‖xn‖ → ∞. It is an easy matter to verify
that the sequence { rxn

‖xn‖} is such that f( rxn

‖xn‖ ) → 0, as a consequence of
convexity of f . Then { rxn

‖xn‖} has a subsequence converging to a point x̄ of norm
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r, and x̄ minimizes f , by lower semicontinuity of f . But this is impossible. Now
suppose there is ε > 0 such that for all n there is xn such that f(xn) ≤ inf f+ 1

n
and d(xn, Min f) > ε for all n. Then {xn} is bounded, thus it has a cluster
point which minimizes f , against the fact that d(xn, Min f) > ε) for all n. To
conclude, we must show that if Min f is a singleton, say x and f(xn) → inf f ,
then {xn} converges to x. This is a purely topological argument. Suppose not;
then there are a > 0 and a subsequence {yn} of {xn} such that ‖yn − x‖ ≥ a
for all n. As {yn} is bounded, it has a limit point which minimizes f , so that
this limit point must be x, against the assumption ‖yn − x‖ ≥ a for all n. ��

The first result we present shows that the level sets of a convex lower
semicontinuous function “cannot be too different”. Next, we inquire about
the connections between the local shape of the boundary of a level set, at a
point x, the descent directions at the point x, and the subdifferential of f at
x. For the first result, recall the definition of recession cone given in Definition
1.1.15.

Proposition 4.3.2 Let f ∈ Γ (X) and suppose fa, f b �= ∅. Then 0+(fa) =
0+(f b).

Proof. Let z ∈ fa, x ∈ 0+(fa) and fix y ∈ f b. We must show that f(x+y) ≤ b.
As (1− 1

n )y + 1
n (z + nx)→ y + x, we have

f(y + x) ≤ lim inf f
((

1− 1
n

)
y +

1
n

(z + nx)
)
≤ lim inf

((
1− 1

n

)
b +

1
n

a
)

= b,

and this ends the proof. ��
Remark 4.3.3 Consider a separable Hilbert space with basis {en : n ∈ N},
and the function

f(x) =
∞∑

n=1

〈x, en〉2
n4

.

From the previous proposition (but it is easily seen directly, too), 0+(fa) =
{0} ∀a > 0, as 0+(f0) = {0}. However fa is unbounded for all a > 0, and this
shows that Proposition 4.3.1 and Proposition 1.1.16 fail in infinite dimensions.

Proposition 4.3.4 Let f : X → (−∞,∞] be convex and lower semicontinu-
ous. Suppose there is b > inf f such that f b is bounded. Then fa is bounded
for all a > inf f .

Proof. In the finite dimensional case the result is an immediate consequence
of Proposition 4.3.2, since 0+(fa) = 0+(f b) = {0} and this is equivalent to
saying that fa is bounded (moreover, the condition b > inf f can be weakened
to f b �= ∅). In the general case, let a > b, let r be such that f b ⊂ (r − 1)B
and take a point x̄ such that f(x̄) < b. With the usual translation of the axes
we can suppose, without loss of generality, x̄ = 0, f(0) = 0 and consequently
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b > 0. This clearly does not affect boundedness of the level sets. Let y be such
that ‖y‖ = r(a+1)

b . Then z = b
a+1y has norm r. It follows that

b < f(z) ≤ b

a + 1
f(y),

whence f(y) ≥ a + 1. This shows that fa ⊂ r(a+1)
b B. ��

The next proposition is quite simple.

Proposition 4.3.5 Let f : X → (−∞,∞] be convex, lower semicontinuous.
Let b > inf f be such that f b is bounded. Then, for every r > 0 there exists
c > b such that fc ⊂ Br[f b].

Proof. Without loss of generality, suppose f(0) = 0. Let k > 0 be such that
f b+1 ⊂ kB, and k > r(b+1). The choice of c = b+ rb

k−r works since, if x ∈ fc,
then b

cx ∈ f b. Moreover,

‖x− b

c
x‖ ≤ k

c− b

c
= r.

��
Exercise 4.3.6 Let f : X → R be convex and continuous, where X is a
Euclidean space. Let C be a closed convex subset of X. Let a ∈ R be such
that fa �= ∅ and suppose 0+(C) ∩ 0+(fa) = {0}. Then f(C) is closed.

Hint. Suppose {yn} ⊂ f(C) and yn → y. Let cn ∈ C be such that yn = f(cn).
Show that {cn} must be bounded.

Exercise 4.3.7 Let f ∈ Γ (X), X a Banach space. Suppose a > inf f . Then
fa = cl{x : f(x) < a}.
Hint. Let x be such that f(x) = a and let z be such that f(z) < a. Look at
f on the segment [x, z].

We now see that, given a point x, the directions y such that f ′(x; y) < 0
are those for which the vector goes “into” the level set relative to x.

Proposition 4.3.8 Let f : X → (−∞,∞] be convex and lower semicontinu-
ous. Let x be a point where f is (finite and) continuous. Then

{y : f ′(x; y) < 0} = {y : ∃λ > 0, z, f(z) < f(x) and y = λ(z − x)}.
Proof. Let A = {y : f ′(x; y) < 0} and let B = {y : ∃λ > 0, z, f(z) <
f(x) and y = λ(z − x)}. Observe that both A and B are cones. Now, let
y ∈ B. Then there are λ > 0 and z such that y = λ(z − x) and f(z) < f(x).
Since A is a cone we can suppose, without loss of generality, λ < 1. We have
that f(λz+(1−λ)x) < f(x) for all λ. Thus f(x+y)−f(x) < 0, which implies
f ′(x; y) < 0 so that y ∈ A. Now, let y ∈ A. Then f(x + ty) − f(x) < 0 for
small t > 0. The conclusion follows. ��
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We now want to say something on the following topic. As is well known, if
a function f is smooth, and one considers a point x where ∇f does not vanish,
then ∇f(x) is perpendicular to the tangent plane to the level set at height
f(x). In the convex case, this means that the gradient is a vector in the normal
cone at x to the level set at height f(x). Moreover the direction of ∇f(x) is
a descent direction. At least for small t > 0 we have f(x − t∇f(x)) < f(x).
But what happens in the nonsmooth case? The following example shows that
things can be different.

Example 4.3.9 This is an example showing that in the nonsmooth case a
direction opposite to one subgradient at a point of a given function is not
necessarily a descent direction for the function itself, not even locally. Let

f(x, y) = 2|x|+ |y|,
let p = (0, 2), and let the direction v be v = (1, 1). It is straightforward to
see that v ∈ ∂f(p) and that for no t > 0 does p − tv belong to the level set
relative to p.

x = (0,2)

A

1

-2 2

f(x)

A = f2 Descent directions

Figure 4.3.

Also in the nonsmooth case, however, it is true that, if x∗ ∈ ∂f(x), then
x∗ is in the normal cone at x to the level set at height f(x), as is easy to see.
But actually it is possible to provide much more precise information, and this
is what we are going to do now.

The result of the next exercise will be used in the proposition following it.

Exercise 4.3.10 Let X be a Banach space, x ∈ X, 0∗ �= x∗. Set H = {z :
〈x∗, z〉 ≥ 〈x∗, x〉}. Prove that

NH(x) = R−{x∗}.
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Hint. Let z∗ ∈ NH(x). Then 〈z∗, u〉 = 〈z∗, x + u− x〉 ≤ 0, for all u such that
〈x∗, u〉 = 0. It follows that 〈z∗, u〉 = 0, for all u such that 〈x∗, u〉 = 0. Derive
the conclusion.

Theorem 4.3.11 Let X be a Banach space, let f : X → (−∞,∞] be convex
and lower semicontinuous. Let x be a point where f is (finite and) continuous
and suppose f(x) = a > inf f . Then

Nfa(x) = cone{∂f(x)}.
Proof. The fact that Nfa(x) contains the cone generated by the subdifferential
of f on x is easy to see and is true also if f(x) = inf f . To see the opposite
inclusion, let 0∗ �= x∗ ∈ Nfa(x). Since 〈x∗, z − x〉 ≤ 0 for all z ∈ fa, it follows
that 〈x∗, z−x〉 < 0 for all z ∈ int fa. Otherwise, for some z ∈ int fa we would
have 〈x∗, z − x〉 = 0. This would imply that x∗ has a local maximum at z,
but in this case it would be x∗ = 0∗. From this we have that f(z) < f(x)
implies 〈x∗, z〉 < 〈x∗, x〉 and this in turn implies that if 〈x∗, z〉 ≥ 〈x∗, x〉, then
f(z) ≥ f(x). In other words, f has a minimum on x over the set H = {z :
〈x∗, z〉 ≥ 〈x∗, x〉}. It follows, by using the sum theorem (since f is continuous
at x) that

0∗ ∈ ∂(f + IH)(x) = ∂f(x) + NH(x).

Now, as suggested by Exercise 4.3.10, NH(x) = R−{x∗}. Thus there are t ≥ 0
and z∗ ∈ ∂f(x) such that x∗ = tz∗, and this ends the proof. ��

If X is finite dimensional, it is enough to assume that ∂f(x) �= ∅, but in
this case one must take the closure of the cone generated by ∂f(x) (see [Ro,
Theorem 23.7]).

4.3.2 Algorithms

Usually, even if we know that the set of the minima of a (convex) function is
nonempty, it is not easy or even possible to directly find a minimum point (for
instance by solving the problem 0∗ ∈ ∂f(x).) For this reason, several algo-
rithms were developed in order to build up sequences of points approximating
a solution (in some sense). In this section we shall consider some of these pro-
cedures. We are then given a convex function f : R

n → R with a nonempty set
of minimizers, and we try to construct sequences {xk} approximating Min f .
The sequences {xk} will be built up in the following fashion:

x0 arbitrary, xk+1 = xk − λkdk.

The vector dk is assumed to be of norm one, so that λk is the length of the
step at time k. Of course, both the choices of λk and dk are crucial for good
behavior of the algorithm. As far as λk is concerned, it is clear that it must not
be too small, as in such a case the sequence {xk} could converge to something
not minimizing the function. And if it converges to a solution, its convergence
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could be much too slow. On the other hand, it should not be too big, as in this
case the algorithm need not converge. On the other side, −dk represents the
direction along which we build up the element xk+1, starting from xk. Usually,
it is a vector dk such that −dk has the same direction as a vector vk ∈ ∂f(xk).
In the smooth case, this choice guarantees that the function decreases at each
step, at least if λ is sufficiently small. In the nonsmooth case, we have seen in
Example 4.3.9 that this does not always happen.

Theorem 4.3.12 Let {λk} be such that

λk �→ 0, (4.4)
∞∑

k=0

λk = ∞. (4.5)

Let
vk ∈ ∂f(xk),

and let

dk =

{
vk

‖vk‖ if vk �= 0,

0 if vk = 0.

Moreover, suppose Min f is a nonempty bounded set. Then

lim
k→+∞

d(xk, Min f) = 0 and lim
k→+∞

f(xk) = inf f.

Proof. First, observe that if for some k it is dk = 0, then we have reached
a minimum point. In this case the sequence could possibly become constant,
but it is not necessary to assume this. The result holds also in the case the
algorithm does not stop. Simply observe that if dk = 0, then xk+1 = xk. Thus,
we can assume, without loss of generality, that dk �= 0 for all k. Moreover,
observe that the equality limk→+∞ f(xk) = inf f is an easy consequence of
the first part of the claim.

Now, suppose there are a > 0 and k such that

d(xk, Min f) ≥ a > 0. (4.6)

This implies, in view of Proposition 4.3.1, that there exists c > 0 such that
f(xk) ≥ inf f + c. Since, for all x,

f(x) ≥ f(xk) + 〈vk, x− xk〉,
we have that

〈vk, x− xk〉 ≤ 0, ∀x ∈ f inf f+c.

Since f is continuous and Min f is compact, there exists r > 0 such that
Br[Min f ] ⊂ f inf f+c. Take x̄ ∈ Min f and consider the point x̄ + rdk ∈
Br[Min f ]. Then
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〈vk, x̄ + rdk − xk〉 ≤ 0,

and also
〈dk, x̄ + rdk − xk〉 ≤ 0,

providing
〈dk, x̄− xk〉 ≤ −r.

Thus (4.6) implies

‖x̄− xk+1‖2 = ‖x̄− xk‖2 + 2λk〈dk, x̄− xk〉+ λ2
k

≤ ‖x̄− xk‖2 − 2rλk + λ2
k

≤ ‖x̄− xk‖2 − rλk,

(4.7)

eventually. From this we obtain in particular that, if (4.6) holds and k is large
enough,

d(xk+1, Min f) ≤ d(xk, Min f). (4.8)

Now suppose, by contradiction, there is a > 0 such that, for all large k,

d(xk, Min f) ≥ a > 0. (4.9)

From (4.7) we then get

‖x̄− xk+i‖2 ≤ ‖x̄− xk‖2 − r

k+i−1∑
j=k

λj → −∞,

which is impossible. It follows that lim inf d(xk, Min f) = 0. Now, fix a > 0 and
K such that λk < a for k ≥ K. There is k > K such that d(xk, Min f) < a.
This implies

d(xk+1, Min f) < 2a.

Now, two cases can occur:
(i) d(xk+2, Min f) < a;
(ii) d(xk+2, Min f) ≥ a.
In the second case, from (4.8) we can conclude that

d(xk+2, Min f) ≤ d(xk+1, Min f) < 2a.

Thus, in any case, we have that

d(xk+2, Min f) < 2a.

By induction, we conclude that d(xn, Min f) ≤ 2a for all large n, and this
ends the proof. ��
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With some changes in the above proof, it can be seen that the same result
holds if we take vk ∈ ∂εk

f(xk), for any sequence {εk} converging to zero.

The above result can be refined if Min f has interior points.

Corollary 4.3.13 With the assumptions of Theorem 4.3.12, if moreover
int Min f �= ∅, then vk = 0 for some k.

Proof. Suppose, by way of contradiction, vk �= 0 for all k. Let x̄ ∈ int Min f .
Then there is r > 0 such that B[x̄; r] ⊂ Min f . Let x̃k = x̄ + rdk. Then
x̃k ∈ B[x̄; r] ⊂ Min f , hence f(x̃k) = inf f . Moreover,

f(y) ≥ f(xk) + 〈vk, y − xk〉 ∀y ∈ R
n,

providing
f(x̃k) ≥ f(xk) + 〈vk, x̃k − xk〉.

Moreover, f(xk) ≥ inf f = f(x̃k), hence

〈vk, x̃k − xk〉 ≤ 0.

We repeat what we did in the first part of Theorem 4.3.12 to get that

‖xk+s − x̄‖2 ≤ ‖xk − x̄‖2 − r

k+s−1∑
i=k

λi → −∞,

which provides the desired contradiction. ��
The results above concern the case when f has a nonempty and bounded

set of minimizers. The next result instead takes into account the case when
the set of the minimizers of f in unbounded. As we shall see, we must put an
extra condition on the size of the length steps λk. Thus, we shall suppose as
before

λk → 0,

+∞∑
k=0

λk =∞,

vk ∈ ∂f(xk),

dk =

{
0 if vk = 0,

vk

‖vk‖ if vk �= 0.

Moreover, suppose

∞∑
k=0

λk
2 < ∞. (4.10)

Then, the following result holds:
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Theorem 4.3.14 If Min f is nonempty, then the sequence {xk} converges to
an element belonging to the set Min f .

Proof. As in Theorem 4.3.12, we consider the case when dk �= 0 for all k. Let
x̄ ∈ Min f . Then

‖xk+1 − x̄‖2 = ‖xk − x̄− λkdk‖2

= ‖xk − x̄‖2 + 2〈xk − x̄,−λkdk〉+ λk
2

≤ ‖xk − x̄‖2 + 2
λk

‖vk‖〈vk, x̄− xk〉+ λk
2.

(4.11)

Moreover,
f(y)− f(xk) ≥ 〈vk, y − xk〉 ∀y ∈ R

n ∀k,

whence

0 ≥ inf f − f(xk) ≥ 〈vk, x̄− xk〉 ∀k. (4.12)

From (4.11) we get

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + λk
2

≤ ‖x0 − x̄‖2 +
k∑

i=0

λi
2. (4.13)

From (4.13) and (4.10) we see that the sequence {xk} is bounded. This implies
that the sequence {vk} is also bounded, as f is Lipschitz on a ball containing
{xk}. We see now that there is a subsequence {xkj

} such that

akj
:= 〈vks

, x̄− xks
〉 → 0. (4.14)

Otherwise, from (4.12) there would be b > 0 and K ∈ R such that

ak ≤ −b ∀k > K.

From (4.11) we get

‖xk+1 − x̄‖2 ≤ ‖x0 − x̄‖2 + 2
k∑

i=0

λi

‖vi‖〈vi, x̄− xi〉+
k∑

i=0

λi
2,

implying
lim

k→∞
‖xk+1 − x̄‖2 = −∞,

which is impossible. Thus, from (4.14) and (4.12) we get that

f(xksj) → f(x̄).

As {xkj
} is bounded, it has a subsequence (still labeled by kj) converging to

some element x∗. Hence
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lim
j→∞

f(xkj
) = f(x∗)

implying x∗ ∈ Min f . It remains to prove that the whole sequence {xk} con-
verges to x∗. From the fact that x̄ is arbitrary in (4.11) and (4.12), we can put
x∗ there instead of x̄. Given ε > 0, there exists K1 ∈ R such that, if kj > K1,

∥∥xkj
− x∗∥∥2 <

ε

2
, and

∞∑
i=kj

λi
2 <

ε

2
.

Then, from (4.11) and (4.12) we get that

∥∥xkj+n − x∗∥∥2 ≤ ∥∥xkj
− x∗∥∥2 +

kj+n−1∑
i=kj

λi
2 < ε ∀n ≥ 1.

This implies xk → x∗. ��




