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The derivatives and the subdifferential

Something must still happen, but my strength is over,
my fingers empty gloves,

nothing extraordinary in my eyes,
nothing driving me.

(M. Atwood, Surfacing)

In the previous chapter we have seen that convex functions enjoy nice proper-
ties from the point of view of continuity. Here we see that the same happens
with directional derivatives. The limit involved in the definition of directional
derivative always exists, and thus in order to claim the existence of the direc-
tional derivative at a given point and along a fixed direction, it is enough to
check that such a limit is a real number. Moreover, the directional derivative
at a given point is a sublinear function, i.e., a very particular convex function,
with respect to the direction.

We then introduce and study the very important concept of gradient.
Remember that we are considering extended real valued functions. Thus it
can happen that the interior of the effective domain of a function is empty.
This would mean that a concept of derivative would be useless in this case.
However, we know that a convex function which is differentiable at a given
point enjoys the property that its graph lies above that tangent line at that
point, a remarkable global property. This simple remark led to the very useful
idea of subgradient for a convex function at a given point. The definition
does not require that the function be real valued at a neighborhood of the
point, keeps most of the important properties of the derivative (in particular,
if zero belongs to the subdifferential of f at a given point x, then x is a global
minimizer for f), and if f is smooth, then it reduces to the classical derivative
of f . The subdifferential of f at a given point, i.e., the set of its subgradients
at that point, is also related to its directional derivatives.

Clearly, an object such as the subdifferential is more complicated to handle
than a derivative. For instance, the simple formula that the derivative of the
sum of two functions f and g is the sum of the derivatives of f and g must
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be rewritten here, and its proof is not obvious at all. Moreover, studying
continuity of the derivative here requires concepts of continuity for multivalued
functions, which we briefly introduce. We also briefly analyze concepts of twice
differentiability for convex functions, to see that the theory can be extended
beyond the smooth case. Thus, the subdifferential calculus introduced and
analyzed in this chapter is of the utmost importance in the study of convex
functions.

3.1 Properties of the directional derivatives

We shall now see that the same happens with directional derivatives. In par-
ticular, the limit in the definition of the directional derivative at a given point
and for a fixed direction always exists. Thus, to claim existence of a directional
derivative it is enough to check that such a limit is a real number.

Definition 3.1.1 Let f ∈ Γ (X), x, d ∈ X. The directional derivative of f at
x along the vector d, denoted by f ′(x; d), is the following limit:

f ′(x; d) = lim
t→0+

f(x + td)− f(x)
t

,

whenever it is finite.

Proposition 3.1.2 Let f ∈ Γ (X), x, d ∈ X. The directional derivative of f
at x along the vector d exists if and only if the quotient

f(x + td)− f(x)
t

is finite for some t̄ > 0 and is lower bounded in (0,∞).

Proof. Let x, d ∈ X. We know from Proposition 1.2.11 that the function

0 < t �→ g(t; d) :=
f(x + td)− f(x)

t
,

is increasing. This implies that limt→0+ g(t; d) always exists and

lim
t→0+

g(t; d) = inf
t>0

g(t).

If there is t̄ > 0 such that g(t̄) ∈ R and if g is lower bounded, then the limit
must be finite. ��

Of course, limt→0+
f(x+td)−f(x)

t = ∞ if and only if f(x + td) = ∞ for all
t > 0. Note that we shall use the word directional derivative, even if d is not
a unit vector.

The next estimate for the directional derivative is immediate.
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Proposition 3.1.3 Let f ∈ Γ (X) be Lipschitz with constant k in a neigh-
borhood V of x. Then

|f ′(x; d)| ≤ k, ∀d ∈ X : ‖d‖ = 1.

Proposition 3.1.4 Let f ∈ Γ (X), and let x ∈ dom f . Then X � d �→
limt→0+

f(x+td)−f(x)
t is a sublinear function.

Proof. We shall prove that X � d �→ g(t; d) is convex and positively homoge-
neous.

f(x + t(λd1 + (1− λ)d2)) = f(λ(x + td1) + (1− λ)(x + td2))
≤ λf(x + td1) + (1− λ)f(x + td2),

providing convexity of d �→ limt→0+
f(x+td)−f(x)

t . It is immediate to verify
that it is positively homogeneous. ��

f( )

f (0; )'

Figure 3.1.

The following example shows that the limit in the definition of the direc-
tional derivative can assume value −∞.

f(x) =

{
−√x if x ≥ 0,

∞ elsewhere.

If there exists d such that the limit in the definition is −∞, as f ′(x; 0) =
0, then d �→ limt→0+

f(x+td)−f(x)
t is never lower semicontinuous, because a

convex lower semicontinuous function assuming value −∞ never assumes a
real value (prove it, remembering Remark 1.2.6).

The next theorem provides a condition under which d �→ f ′(x; d) ∈ Γ (X).
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Theorem 3.1.5 Let f ∈ Γ (X). Let x0 ∈ dom f . Suppose moreover,

F := R+(dom f − x0)

is a closed vector space of X. Then d �→ f ′(x0; d) ∈ Γ (X).

Proof. By translation, we can suppose that x0 = 0. It is easy to show that

F =
∞⋃

n=1

nfn.

As nfn is a closed set for each n ∈ R, and since F is a complete metric space,
it follows from Baire’s theorem that there exists n̄ such that int|F n̄f n̄ (hence
int|F f n̄) �= ∅. Thus f , restricted to F , is upper bounded on a neighborhood
of a point x̄. As −tx̄ ∈ dom f for some t > 0, it follows that f|F is upper
bounded on a neighborhood of 0 (see the proof of Theorem 2.1.2), whence
continuous and locally Lipschitz (Corollary 2.2.19) on a neighborhood of 0.
It follows that F � d �→ f ′(0; d) is upper bounded on a neighborhood of zero
and, by Proposition 2.1.5, is everywhere continuous. As f ′(0; d) =∞ if d /∈ F
and F is a closed set, we conclude that d �→ f ′(x0; d) ∈ Γ (X). ��
Corollary 3.1.6 Let f ∈ Γ (X). Let x0 ∈ int dom f . Then d �→ f ′(x0; d) is a
convex, positively homogeneous and everywhere continuous function.

3.2 The subgradient

We now introduce the notion of subgradient of a function at a given point. It
is a generalization of the idea of derivative, and it has several nice properties.
It is a useful notion, both from a theoretical and a computational point of
view.

Definition 3.2.1 Let f : X → (−∞,∞]. x∗ ∈ X∗ is said to be a subgradient
of f at the point x0 if x0 ∈ dom f and ∀x ∈ X,

f(x) ≥ f(x0) + 〈x∗, x− x0〉.

The subdifferential of f at the point x0, denoted by ∂f(x0), is the possibly
empty set of all subgradients of f at the point x0.

The above definition makes sense for any function f . However, a definition
of derivative, as above, requiring a global property, is useful mainly in the
convex case.

Definition 3.2.2 Let A ⊂ X and x ∈ A. We say that 0∗ �= x∗ ∈ X∗ supports
A at x if

〈x∗, x〉 ≥ 〈x∗, a〉, ∀a ∈ A.



3.2 The subgradient 35
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Figure 3.2. x∗ is a subgradient of f at the point x0.

Remark 3.2.3 x∗ ∈ ∂f(x0) if and only if the pair (x∗,−1) supports epi f at
the point (x0, f(x0)). For, ∀x ∈ X

〈x∗, x0〉 − f(x0) ≥ 〈x∗, x〉 − r, ∀r ≥ f(x)⇐⇒ f(x) ≥ f(x0) + 〈x∗, x− x0〉.

Example 3.2.4 Here are some examples of subgradients:

• f(x) = |x|. Then ∂f(x) = { x
|x|} if x �= 0, ∂f(0) = [−1, 1] (try to extend

this result to the function f(x) = ‖x‖ defined on a Hilbert space X);
• f : R → [0,∞], f(x) = I{0}(x). Then ∂f(0) = (−∞,∞);
• Let C be a closed convex set. x∗ ∈ ∂IC(x) ⇐⇒ x ∈ C and 〈x∗, c〉 ≤

〈x∗, x〉, ∀c ∈ C. That is, if x∗ �= 0∗, then x∗ ∈ ∂IC(x) if and only if x∗

supports C at x; ∂IC(x) is said to be the normal cone of C at x and it is
sometimes indicated also by NC(x).

C

x

x+N
C

(x)

Figure 3.3. The normal cone to C at x.
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• Let

f(x) =

{
−√x if x ≥ 0,

∞ otherwise .

Then ∂f(0) = ∅, ∂f(x) = {− 1
2
√

x
} if x > 0.

Exercise 3.2.5 Let f : R
2 → R be the following function: f(x, y) =

max{|x|, |y|}. Find the subdifferential of f at the points (0, 0), (0, 1), (1, 1).

Hint. {(x∗, y∗) : |x∗|+|y∗| ≤ 1},{(0, 1)}, {(x∗, y∗) : x∗ ≥ 0, y∗ ≥ 0, x∗+y∗ = 1}
respectively.

Definition 3.2.6 Given a Banach space X, the duality mapping δ : X → X∗

is defined as

δ(x) := {x∗ ∈ X∗ : ‖x∗‖∗ = 1 and 〈x∗, x〉 = ‖x‖}.

It is well known that δ(x) �= ∅ for all x ∈ X. The proof of this relies on
the fact that the function x∗ �→ 〈x∗, x〉 is weak∗ continuous.

Example 3.2.7 Let X be a Banach space, let f(x) = ‖x‖. Then, for all
x �= 0,

(∂‖ · ‖)(x) = δ(x).

We leave as an exercise the proof that δ(x) ⊂ (∂‖ · ‖)(x). To show the opposite
inclusion, let x∗ ∈ ∂(‖x‖). Then, for all y,

‖y‖ ≥ ‖x‖+ 〈x∗, y − x〉. (3.1)

The choices of y = 0 and y = 2x show that

〈x∗, x〉 = ‖x‖. (3.2)

From (3.1) and (3.2) we get that

‖y‖ ≥ 〈x∗, y〉, ∀y ∈ X.

Combining this with (3.2), we conclude that ‖x∗‖∗ = 1 and so x∗ ∈ δ(x).

Exercise 3.2.5 shows that δ can be multivalued at some point. Those Ba-
nach spaces having a norm which is smooth outside the origin (in this case δ
must be single valued) are important. We shall discuss this later.

Example 3.2.8 Let X = l2, with {en}n∈N the canonical basis, and C = {x ∈
l2, x = (x1, x2, . . . , xn, . . . ) : |xn| ≤ 2−n}. Let

f(x) =

{
−∑∞

n=1

√
2−n + xn if x ∈ C,

∞ elsewhere.



3.2 The subgradient 37

Then f is convex and its restriction to the set C is a continuous function.
An easy calculation shows that f ′(0; en) = −2

n−2
2 . Now suppose x∗ ∈ ∂f(0).

Then
f(2−nen) ≥ f(0) + 〈x∗, 2−nen〉, ∀n ∈ N,

whence
(1−

√
2)2

n
2 ≥ 〈x∗, en〉, ∀n ∈ N.

Thus f has all directional derivatives at 0, but ∂f(0) = ∅. Observe that this
cannot happen in finite dimensions, as Exercise 3.2.13 below shows.

Remark 3.2.9 Let x ∈ dom f , x∗ ∈ ∂f(x), u∗ in the normal cone to dom f
at x (〈u∗, x − u〉 ≤ 0, ∀u ∈ dom f). Then x∗ + u∗ ∈ ∂f(x). This does not
provide any information if x ∈ int dom f , for instance if f is continuous at
x, as the normal cone to dom f at x reduces to 0∗. However this information
is interesting if x /∈ int dom f . In many situations, for instance if X is finite-
dimensional or if dom f has interior points, there exists at least a 0∗ �= u∗

belonging to the normal cone at x, which thus is an unbounded set (the
existence of such a 0∗ �= u∗ in the normal cone follows from the fact that there
is a hyperplane supporting dom f at x. The complete argument is suggested
in Exercise 3.2.10). Hence, in the boundary points of dom f it can happen
that the subdifferential of f is either empty or an unbounded set.

Exercise 3.2.10 Let X be a Banach space and let int dom f �= ∅. Let x ∈
dom f \ int dom f . Prove that the normal cone to dom f at the point x is
unbounded.

Hint. Use Theorem A.1.5 by separating x from int dom f .

We now see how to evaluate the subdifferential of the inf convolution, at
least in a particular case.

Proposition 3.2.11 Let X be a Banach space, let f, g ∈ Γ (X), let x ∈ X
and let u, v be such that

u + v = x and (f∇g)(x) = f(u) + g(v).

Then
∂(f∇g)(x) = ∂f(u) ∩ ∂g(v).

Proof. Let x∗ ∈ ∂f(u) ∩ ∂g(v). Thus, for all y ∈ X and z ∈ X

f(y) ≥ f(u) + 〈x∗, y − u〉, (3.3)

g(z) ≥ g(v) + 〈x∗, z − v〉. (3.4)

Let w ∈ X and let y, z ∈ X be such that y + z = w. Summing up (3.3) and
(3.4) we get

f(y) + g(z) ≥ (f∇g)(x) + 〈x∗, w − x〉. (3.5)
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By taking, in the left side of (3.5), the infimum over all y, z such that y+z = w,
we can conclude that x∗ ∈ ∂(f∇g)(x). Conversely, suppose for all y ∈ X,

(f∇g)(y) ≥ f(u) + g(v) + 〈x∗, y − (u + v)〉. (3.6)

Then, given any z ∈ X, put y = z + v in (3.6). We get

f(z) + g(v) ≥ f(u) + g(v) + 〈x∗, z − v〉,
showing that x∗ ∈ ∂f(u). The same argument applied to y = z+u shows that
x∗ ∈ ∂g(v) and this ends the proof. ��

The above formula applies to points where the inf-convolution is exact. A
much more involved formula, involving approximate subdifferentials, can be
shown to hold at any point. We shall use the above formula to calculate, in
a Euclidean space, the subdifferential of the function d( · , C), where C is a
closed convex set.

In the next few results we investigate the connections between the subdif-
ferential of a function at a given point and its directional derivatives at that
point.

Proposition 3.2.12 Let f ∈ Γ (X) and x ∈ dom f . Then

∂f(x) = {x∗ ∈ X∗ : 〈x∗, d〉 ≤ f ′(x; d), ∀d ∈ X}.
Proof. x∗ ∈ ∂f(x) if and only if

f(x + td)− f(x)
t

≥ 〈x∗, d〉, ∀d ∈ X, ∀t > 0,

if and only if, taking the inf for t > 0 in the left side of the above inequality,

f ′(x; d) ≥ 〈x∗, d〉, ∀d ∈ X.

��
Exercise 3.2.13 If f ∈ Γ (Rn), if f ′(x; d) exists and is finite for all d, then
∂f(x) �= ∅.
Hint. f ′(x; d) is sublinear and continuous. Now apply a corollary to the Hahn–
Banach theorem (Corollary A.1.2) and Proposition 3.2.12.

Theorem 3.2.14 Let f ∈ Γ (X) and x ∈ dom f . If

F := R+(dom f − x)

is a closed vector space, then

d �→ f ′(x; d) = sup{〈x∗, d〉 : x∗ ∈ ∂f(x)}.
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Proof. The function d �→ f ′(x; d) is sublinear (Proposition 3.1.4). From Theo-
rem 3.1.5 d �→ f ′(x; d) ∈ Γ (X). Hence d �→ f ′(x; d) is the pointwise supremum
of all linear functionals minorizing it (Corollary 2.2.22):

d �→ f ′(x; d) = sup{〈x∗, d〉 : 〈x∗, d〉 ≤ f ′(x; d), ∀d ∈ X}.
We conclude by Proposition 3.2.12, since 〈x∗, d〉 ≤ f ′(x; d), ∀d ∈ X if and only
if x∗ ∈ ∂f(x). ��

The next theorem shows that the subdifferential is nonempty at “many”
points.

Theorem 3.2.15 Let f ∈ Γ (X). Then ∂f(x) �= ∅, ∀x ∈ int dom f .

Proof. If x ∈ int dom f , then R+(dom f−x) = X. Now apply Theorem 3.2.14.
��

If X is finite dimensional, the previous result can be refined (same proof)
since ∂f(x) �= ∅ ∀x ∈ ri dom f . In infinite dimensions it can be useless, since
dom f could possibly have no interior points. But we shall show later that
every function f ∈ Γ (X) has a nonempty subdifferential on a dense subset of
dom f (see Corollary 4.2.13).

From Propositions 3.1.3 and 3.2.12 we immediately get the following result
providing an estimate from above of the norm of the elements in ∂f .

Proposition 3.2.16 Let f ∈ Γ (X) be Lipschitz with constant k in an open
set V � x. Then

‖x∗‖ ≤ k, ∀x∗ ∈ ∂f(x).

As a last remark we observe that the subdifferential keeps a fundamental
property of the derivative of a convex function.

Proposition 3.2.17 Let f ∈ Γ (X). Then 0∗ ∈ ∂f(x̄) if and only if x̄ mini-
mizes f on X.

Proof. Obvious from the definition of subdifferential. ��

3.3 Gâteaux and Fréchet derivatives and the
subdifferential

Definition 3.3.1 Let f : X → (−∞,∞] and x ∈ dom f . Then f is said to be
Gâteaux differentiable at x if there exists x∗ ∈ X∗ such that

f ′(x; d) = 〈x∗, d〉, ∀d ∈ X.

And f is said to be Fréchet differentiable at x if there exists x∗ ∈ X∗ such
that

lim
d→0

f(x + d)− f(x)− 〈x∗, d〉
‖d‖ = 0.
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Gâteaux differentiability of f at x implies in particular that all the tangent
lines to the graph of f at the point (x, f(x)), along all directions, lie in the
same plane; Fréchet differentiability means that this plane is “tangent” to the
graph at the point (x, f(x)).

Exercise 3.3.2 Show that if f is Gâteaux differentiable at x, the functional
x∗ ∈ X∗ given by the definition is unique. Show that Fréchet differentiability
of f at x implies Gâteaux differentiability of f at x and that f is continuous
at x. The opposite does not hold in general, as the example below shows.

Example 3.3.3 Let

f(x, y) =

{
1 if y ≥ x2or y = 0,

0 otherwise .

Then all directional derivatives of f vanish at the origin, but f is not contin-
uous at (0, 0), so that it is not Fréchet differentiable at the origin.

However, for convex functions in finite dimensions, the notions of Fréchet
and Gâteaux differentiability agree, as we shall see.

We shall usually denote by ∇f(x) the unique x∗ ∈ X∗ in the definition of
Gâteaux differentiability. If f is Fréchet differentiable at x, we shall preferably
use the symbol f ′(x) to indicate its Fréchet derivative at x.

Now a first result about Gâteaux differentiability in the convex case. Re-
member that the limit defining the directional derivative exists for every di-
rection d; thus, in order to have Gâteaux differentiability, we only need to
show that the limit is finite in any direction, and that there are no “angles”.

Proposition 3.3.4 Let f ∈ Γ (X). Then f is Gâteaux differentiable at x ∈ X
if and only if d �→ f ′(x; d) upper bounded in a neighborhood of the origin and

lim
t→0

f(x + td)− f(x)
t

, ∀d ∈ X,

exists and is finite (as a two-sided limit).

Proof. The “only if” part is obvious. As far as the other one is concerned,
observe that the equality between the right and left limits above means that
f ′(x;−d) = −f ′(x, d). Thus the function d �→ f ′(x; d), which is always sub-
linear, is in this case linear too. Upper boundedness next guarantees that
d �→ f ′(x; d) is also continuous, and we conclude. ��

The next exercise shows that Fréchet and Gâteaux differentiability do not
agree in general for convex functions.

Exercise 3.3.5 Let X = l1 with the canonical norm and let f(x) = ‖x‖.
Then f is Gâteaux differentiable at a point x = (x1, x2, . . . , ) if and only if
xi �= 0 ∀i, and it is never Fréchet differentiable. ∇f(x) = x∗ = (x∗

1, x
∗
2, . . . ),

where x∗
n = xn

|xn| := sgn xn.
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Hint. If, for some i, xi = 0, then the limit

lim
t→0

f(x + tei)− f(x)
t

,

does not exist, since the right limit is different from the left one. If xi �= 0 ∀i,
then for ε > 0, let N be such that

∑
i>N |di| < ε. For every small t,

sgn(xi + tdi) = sgn(xi), ∀i ≤ N.

Then ∣∣∣‖x + td‖ − ‖x‖
t

−
∑
i∈N

di sgn xi

∣∣∣ < 2ε.

On the other hand, let x be such that xi �= 0 for all i and consider dn =
(0, . . . ,−2xn, . . . ). Then dn → 0, while∣∣∣‖x + dn‖ − ‖x‖ −

∑
i∈N

dn
i sgn xi

∣∣∣ = ‖dn‖,

showing that f is not Fréchet differentiable in x.

The concept of subdifferential extends the idea of derivative, in the sense
explained in the following results.

Proposition 3.3.6 Let f ∈ Γ (X). If f is Gâteaux differentiable at x, then
∂f(x) = {∇f(x)}.
Proof. By definition, ∀d ∈ X,

lim
t→0

f(x + td)− f(x)
t

= 〈∇f(x), d〉.

As the function 0 < t �→ f(x+td)−f(x)
t is increasing,

f(x + td)− f(x)
t

≥ 〈∇f(x), d〉,

whence
f(x + td) ≥ f(x) + 〈∇f(x), td〉, ∀td ∈ X,

showing that ∂f(x) � ∇f(x). Now, let x∗ ∈ ∂f(x). Then

f(x + td) ≥ f(x) + 〈x∗, td〉, ∀d ∈ X, ∀t > 0,

hence

lim
t→0+

f(x + td)− f(x)
t

:= 〈∇f(x), d〉 ≥ 〈x∗, d〉, ∀d ∈ X,

whence x∗ = ∇f(x). ��
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Proposition 3.3.7 Let f ∈ Γ (X). If f is continuous at x and if ∂f(x) =
{x∗}, then f is Gâteaux differentiable at x and ∇f(x) = x∗.

Proof. First, observe that d �→ f ′(x; d) is everywhere continuous as x ∈
int dom f . Next, let X � d be a (norm one) fixed direction. Let us consider
the linear functional, defined on span {d},

ld(h) = af ′(x; d) if h = ad.

Then ld(h) ≤ f ′(x; h) for all h in span {d}. The equality holds for h = ad and
a > 0, while ld(−d) = −f ′(x; d) ≤ f ′(x;−d). By the Hahn–Banach theorem
(see Theorem A.1.1), there is a linear functional x∗

d ∈ X∗ agreeing with ld on
span {d}, and such that 〈x∗

d, h〉 ≤ f ′(x; h) ∀h ∈ X. Then x∗
d ∈ ∂f(x), so that

x∗
d = x∗. As by construction 〈x∗, d〉 = f ′(x; d) ∀d ∈ X, it follows that f is

Gâteaux differentiable at x and x∗ = ∇f(x). ��
It may be worth noticing that in the previous result the assumption that f

is continuous at x cannot be dropped. A set A (with empty interior) can have
at a point x the normal cone reduced to the unique element zero (see Exercise
A.1.8). Thus the indicator function of A is not Gâteaux differentiable at x,
but ∂IA(x) = {0}. Observe also that if dom f does have interior points, it is
not possible that at a point x where f is not continuous, ∂f(x) is a singleton
(see Remark 3.2.9).

Recall that, denoting by {e1, . . . , en} the canonical basis in R
n, the partial

derivatives of f at x are defined as follows:

∂f

∂xi
(x) = lim

t→0

f(x + tei)− f(x)
t

,

whenever the limit exists and is finite. Then we have the following proposition.

Proposition 3.3.8 Let f : R
n → R be convex. Then f is (Gâteaux) differ-

entiable at x ∈ R
n if and only if the partial derivatives ∂f

∂xi
(x), i = 1, . . . , n

exist.

Proof. Suppose there exist the partial derivatives of f at x. As f is continuous,
∂f(x) �= ∅. Let x∗ ∈ ∂f(x), and write x∗

i = 〈x∗, ei〉. Then ∀t �= 0, f(x + tei)−
f(x) ≥ tx∗

i , hence

∂f

∂xi
(x) = lim

t→0+

f(x + tei)− f(x)
t

≥ x∗
i ,

∂f

∂xi
(x) = lim

t→0−

f(x + tei)− f(x)
t

≤ x∗
i ,

providing x∗
i = ∂f

∂xi
(x). Thus ∂f(x) is a singleton, and we conclude with the

help of Proposition 3.3.7. The opposite implication is an immediate conse-
quence of Proposition 3.3.4. ��
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We shall see in Corollary 3.5.7 that Fréchet and Gâteaux differentiability
actually agree for a convex function defined in a Euclidean space. The above
proposition in turn shows that differentiability at a point is equivalent to the
existence of the partial derivatives of f at the point.

3.4 The subdifferential of the sum

Let us consider the problem of minimizing a convex function f on a convex set
C. This can be seen as the unconstrained problem of minimizing the function
f +IC . And x̄ ∈ C is a solution of this problem if and only if 0 ∈ ∂(f +IC)(x̄).
Knowing this is not very useful unless ∂(f + IC) ⊂ ∂f + ∂IC . In such a case,
we could claim the existence of a vector x∗ ∈ ∂f(x̄) such that −x∗ belongs
to the normal cone of C at the point x̄, a property that, at least when f is
differentiable at x̄, has a clear geometrical meaning. Unfortunately in general
only the opposite relation holds true:

∂(f + g) ⊃ ∂f + ∂g.

In the next exercise it can be seen that the desired relation need not be true.

Exercise 3.4.1 In R
2 consider

A := {(x, y) : y ≥ x2},
B := {(x, y) : y ≤ 0},

and their indicator functions IA, IB. Evaluate the subdifferential of IA, IB and
of IA + IB at the origin.

However, in some cases we can claim the desired result. Here is a first
example:

Theorem 3.4.2 Let f, g ∈ Γ (X) and let x̄ ∈ int dom f ∩dom g. Then, for all
x ∈ X

∂(f + g)(x) = ∂f(x) + ∂g(x).

Proof. If ∂(f + g)(x) = ∅, there is nothing to prove. Otherwise, let x∗ ∈
∂(f + g)(x). Then

f(y) + g(y) ≥ f(x) + g(x) + 〈x∗, y − x〉, ∀y ∈ X. (3.7)

Writing (3.7) in the form

f(y)− 〈x∗, y − x〉 − f(x) ≥ g(x)− g(y),

we see that
A := {(y, a) : f(y)− 〈x∗, y − x〉 − f(x) ≤ a},
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B := {(y, a) : g(x)− g(y) ≥ a}
are closed convex sets such that int A �= ∅ and int A∩B = ∅. From the Hahn–
Banach theorem A.1.5, int A and B can be separated by a hyperplane that is
not vertical, as is easy to see. Thus, there is an affine function l(y) = 〈y∗, y〉+k
such that

g(x)− g(y) ≤ 〈y∗, y〉+ k ≤ f(y)− 〈x∗, y − x〉 − f(x), ∀y ∈ X.

Setting y = x we see that k = 〈−y∗, x〉, whence ∀y ∈ X,

g(y) ≥ g(x) + 〈−y∗, y − x〉,
which gives −y∗ ∈ ∂g(x). Moreover, ∀y ∈ X,

f(y) ≥ f(x) + 〈x∗ + y∗, y − x〉,
so that x∗+y∗ ∈ ∂f(x). We thus have x∗ = −y∗+(x∗+y∗), with −y∗ ∈ ∂g(x)
and x∗ + y∗ ∈ ∂f(x). ��
Exercise 3.4.3 Let f : X → R be convex and lower semicontinuous and let C
be a closed convex set. Then x̄ ∈ C is a solution of the problem of minimizing
f over C if and only if there is x∗ ∈ ∂f(x̄) such that −x∗ is in the normal
cone to C at x̄.

In the chapter dedicated to duality, the previous result will be specified
when the set C is characterized by means of inequality constraints; see The-
orem 5.4.2.

3.5 The subdifferential multifunction

In this section we shall investigate some properties of the subdifferential of f ,
considered as a multivalued function (multifunction) from X to X∗.

Proposition 3.5.1 Let f ∈ Γ (X) and x ∈ X. Then ∂f(x) is a (possibly
empty) convex and weakly∗ closed subset of X∗. Moreover, if f is continuous
at x, then ∂f is bounded on a neighborhood of x.

Proof. Convexity follows directly from the definition. Now, let x∗ /∈ ∂f(x).
This means that there is y ∈ X such that

f(y)− f(x) < 〈x∗, y − x〉.
By the definition of weak∗ topology, it follows that for each z∗ in a suitable
(weak∗) neighborhood of x∗, the same inequality holds. This shows that ∂f(x)
is weakly∗ closed. Finally, if f is continuous at x, it is upper and lower bounded
around x, and thus it is Lipschitz in a neighborhood of x (Corollary 2.2.19).
From Proposition 3.2.16 we get local boundedness of ∂f . ��
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As a consequence of this, the multifunction x �→ ∂f(x) is convex, weakly∗

closed valued, possibly empty valued at some x and locally bounded around
x if x is a continuity point of f . We investigate now some of its continuity
properties, starting with a definition.

Definition 3.5.2 Let (X, τ ), (Y, σ) be two topological spaces and let F : X →
Y be a given multifunction. Then F is said to be τ − σ upper semicontinuous
at x̄ ∈ X if for each open set V in Y such that V ⊃ F (x̄), there is an open
set I ⊂ X containing x̄ such that, ∀x ∈ I,

F (x) ⊂ V.

F is said to be τ − σ lower semicontinuous at x̄ ∈ X if for each open set V
in Y such that V ∩ F (x̄) �= ∅, there is an open set I ⊂ X containing x̄ such
that, ∀x ∈ I,

F (x) ∩ V �= ∅.

1

-1

An upper semicontinuous multifunc-
tion not lower semicontinuous at 0.

A lower semicontinuous multifunction
not upper semicontinuous at 0.

Figure 3.4.

Remark 3.5.3 The following facts are elementary to prove:

• If F is upper semicontinuous and if F (x) is a singleton, then each selection
of F (namely each function f such that f(x) ∈ F (x), ∀x) is continuous
at x.

• Suppose F (x) is a singleton for all x. Then if F is either upper semicon-
tinuous or lower semicontinuous at a point, then it is continuous at that
point, if it is considered as a function.

Exercise 3.5.4 Let X be a topological space and f : X → R be a given
function. Define the multifunction F on X as
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F (x) = {r ∈ R : r ≥ f(x)},
i.e., the graph of F is the epigraph of f . Then F is upper semicontinuous at
x if and only if f is lower semicontinuous at x.

The easy example of f(x) = |x| shows that we cannot expect, in general,
that ∂f be a lower semicontinuous multifunction. Instead, it enjoys upper
semicontinuity properties, as we shall see in a moment.

Proposition 3.5.5 Let f ∈ Γ (X) be continuous and Gâteaux differentiable
at x. Then the multifunction ∂f is norm-weak∗ upper semicontinuous at x.

Proof. Let V be a weak∗ open set such that V ⊃ ∇f(x) and suppose there
are a sequence {xn} converging to x and x∗

n ∈ ∂f(xn) such that x∗
n /∈ V . As

{x∗
n} is bounded (see Proposition 3.5.1), it has a weak∗ limit x∗ (it should be

noticed that x∗ is not necessarily limit of a subsequence). Now it is easy to
show that x∗ ∈ ∂f(x) ⊂ V , which is impossible. ��
Proposition 3.5.6 Let f ∈ Γ (X) be Fréchet differentiable at x. Then the
multifunction ∂f is norm-norm upper semicontinuous at x.

Proof. Setting

g( ·) = f( · + x)− f(x)− 〈f ′(x), · − x〉,
we have that ∂g( ·) = ∂f( ·+x)−f ′(x). Clearly, ∂g enjoys the same continuity
properties at zero as ∂f at x. Thus we can suppose, without loss of generality,
that x = 0, f(x) = 0, f ′(x) = 0∗. By way of contradiction, suppose there are
ε > 0, {xn} converging to 0, x∗

n ∈ ∂f(xn) for all n, such that {x∗
n} is bounded

and ‖x∗
n‖ > 3ε. Then there are dn ∈ X such that ‖dn‖ = 1 and

〈x∗
n, dn〉 > 3ε.

By definition of Fréchet differentiability, there is δ > 0 such that

|f(x)| ≤ ε‖x‖,
for all x such that ‖x‖ ≤ δ. As x∗

n ∈ ∂f(xn), then

〈x∗
n, x〉 ≤ f(x)− f(xn) + 〈x∗

n, xn〉, ∀x ∈ X.

Set yn = δdn, with n so large that |f(yn)| < εδ, |〈x∗
n, xn〉| < εδ. Then

3εδ < 〈x∗
n, yn〉 ≤ f(yn)− f(xn) + 〈x∗

n, xn〉 ≤ εδ + εδ + εδ,

a contradiction. ��
Corollary 3.5.7 Let f : R

n → R be convex. Then Gâteaux and Fréchet dif-
ferentiability agree at every point.
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Proof. From Propositions 3.5.5 and 3.5.6. ��
The next corollary shows a remarkable regularity property of the convex

functions.

Corollary 3.5.8 Let f ∈ Γ (X) be Fréchet differentiable on an open convex
set C. Then f ∈ C1(C).

Proof. The function f ′( ·) is norm-norm continuous on C, being norm-norm
upper semicontinuous as a multifunction. ��
Corollary 3.5.9 Let f : R

n → R be convex and Gâteaux differentiable. Then
f ∈ C1(Rn).

Proof. From Corollaries 3.5.7 and 3.5.8. ��
Proposition 3.5.10 Let f ∈ Γ (X) be continuous at x ∈ X. If there exists a
selection h of ∂f norm-weak∗ continuous (norm-norm continuous) at x, then
f is Gâteaux (Fréchet) differentiable at x.

Proof. Let us start with Gâteaux differentiability. For every y ∈ Y ,

〈h(x), y − x〉 ≤ f(y)− f(x), 〈h(y), x− y〉 ≤ f(x)− f(y),

from which

0 ≤ f(y)− f(x)− 〈h(x), y − x〉 ≤ 〈h(y)− h(x), y − x〉. (3.8)

Setting y = x + tz, for small t > 0, and dividing by t, we get

0 ≤ f(x + tz)− f(x)
t

− 〈h(x), z〉 ≤ 〈h(x + tz)− h(x), z〉.

Letting t→ 0+, and using the fact that h is norm-weak∗ continuous,

0 ≤ f ′(x; z)− 〈h(x), z〉 ≤ 0.

From (3.8) we also deduce

0 ≤ f(y)− f(x)− 〈h(x), y − x〉 ≤ ‖h(x)− h(y)‖‖x− y‖,

whence f is Fréchet differentiable provided h is norm-norm continuous. ��
The next result extends to the subdifferential a well-known property of

differentiable convex functions.

Definition 3.5.11 An operator F : X → X∗ is said to be monotone if
∀x, y ∈ X, ∀x∗ ∈ F (x), ∀y∗ ∈ F (y),

〈x∗ − y∗, x− y〉 ≥ 0.
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Proposition 3.5.12 Let f ∈ Γ (X). Then ∂f is a monotone operator.

Proof. From

〈x∗, y − x〉 ≤ f(y)− f(x), 〈y∗, x− y〉 ≤ f(x)− f(y),

we get the result by addition. ��
Proposition 3.5.12 can be refined in an interesting way.

Definition 3.5.13 A monotone operator F : X → X∗ is said to be maximal
monotone if ∀y ∈ X, ∀y∗ /∈ F (y) there are x ∈ X, x∗ ∈ F (x) such that

〈y∗ − x∗, y − x〉 < 0.

In other words, the graph of F is maximal in the class of the graph of
monotone operators. We see now that the subdifferential is a maximal mono-
tone operator.

Theorem 3.5.14 Let f : X → R be continuous and convex. Then ∂f is a
maximal monotone operator.

Proof. The geometric property of being maximal monotone does not change
if we make a rotation and a translation of the graph of ∂f in X ×X∗. Thus
we can suppose that 0 /∈ ∂f(0) and we must find x, x∗ ∈ ∂f(x) such that
〈x∗, x〉 < 0. As 0 is not a minimum point for f , there is z ∈ X such that
f(0) > f(z). This implies that there exists t̄ ∈ (0, 1] such that the directional
derivative f ′(t̄z; z) < 0. Setting x = t̄z, then f ′(x; x) < 0. As ∂f(x) �= ∅, if
x∗ ∈ ∂f(x), then by Proposition 3.2.12 we get 〈x∗, x〉 < 0. ��

The above result holds for every function f in Γ (X), but the proof in the
general case is much more delicate. The idea of the proof is the same, but the
nontrivial point, unless f is real valued, is to find, referring to the above proof,
z and t̄ such that f ′(t̄z; z) < 0. One way to prove it relies on a variational
principle, as we shall see later (see Proposition 4.2.14).

3.6 Twice differentiable functions

In the previous section we have considered the subdifferential multifunction
∂f , and its continuity properties, relating them to some regularity of the con-
vex function f . In this section, we define an additional regularity requirement
for a multifunction, when when applied to the subdifferential of f , provides
“second order regularity” for the function f . Let us start with two definitions.

Definition 3.6.1 Let X be a Banach space and f ∈ Γ (X). Suppose x̄ ∈
int dom f . The subdifferential ∂f is said to be Lipschitz stable at x̄ if ∂f(x̄) =
{p̄} and there are ε > 0, K > 0 such that

‖p− p̄‖ ≤ K‖x− x̄‖,
provided ‖x− x̄‖ < ε, p ∈ ∂f(x).
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Definition 3.6.2 Let X be a Banach space and f ∈ Γ (X). Suppose x̄ ∈
int dom f . We say that ∂f is Fréchet differentiable at x̄ if ∂f(x̄) = {p̄} and
there is a linear operator T : X → X∗ such that

lim
x→x̄

‖p− p̄− T (x− x̄)‖
‖x− x̄‖ = 0, (3.9)

provided p ∈ ∂f(x).

Definition 3.6.3 Let X be a Banach space and f ∈ Γ (X). Suppose x̄ ∈
int dom f . We say that f is twice Fréchet differentiable at x̄ if ∂f(x̄) = p̄
and there is a quadratic form Q(x) := 〈Ax, x〉 (A : X → X∗ linear bounded
operator) such that

lim
x→x̄

f(x)− 〈p̄, x− x̄〉 − (1/2)Q(x− x̄)
‖x− x̄‖2 = 0. (3.10)

The following lemma shows that if two convex functions are close on a
given bounded set and one of them is convex and the other is regular, the
subdifferential of the convex function can be controlled (in a smaller set) by
the derivative of the regular one, another nice property of convex functions.

Lemma 3.6.4 Let f : X → (−∞,∞] be convex. Let δ, a > 0, let g : B(0; a)→
R be a Fréchet differentiable function and suppose |f(x) − g(x)| ≤ δ for x ∈
B(0; a). Let 0 < r < R ≤ a, let x be such that ‖x‖ ≤ r and x∗ ∈ ∂f(x). Then

d
(
x∗, co{g′(B(x; R− r))}) ≤ 2δ

R− r
.

If g is convex, we also have

d
(
x∗, co{∂g(B(0; R))}) ≤ 2δ

R− r
.

Proof. Without loss of generality we can suppose x∗ = 0. Let α be such that
α < ‖y∗‖ for all y∗ ∈ co{g′(B(x; R− r))}. Then there exists d, with ‖d‖ = 1,
such that 〈−y∗, d〉 > α for all y∗ ∈ co{g′(B(x, R− r))}. We have

δ ≥ f (x + (R− r)d)− g (x + (R− r)d)
≥ f(x)− g(x)− (g(x + (R− r)d)− g(x)) .

There is an s ∈ (0, R− r) such that

〈(R− r)g′(x + sd), d〉 = g(x + (R− r)d)− g(x).

Thus
2δ ≥ (R− r)〈−g′(x + sd), d〉 ≥ (R− r)α.

Then
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α ≤ 2δ

R− r
,

and this ends the proof of the first claim. About the second one, let d be
such that ‖d‖ = 1 and 〈−y∗, d〉 > α for all y∗ ∈ co{∂g(B(0; R))}. Let z∗ ∈
∂g(x + (R− r)d). Then

2δ ≥ g(x)− g(x + (R− r)d) ≥ (R− r)〈−z∗, d〉 ≥ (R− r)α,

and we conclude as before. ��
Remark 3.6.5 The above result can be refined in a sharp way by using the
Ekeland variational principle, as we shall see in Lemma 4.2.18.

We are ready for our first result, which appears to be very natural, since
it states that the variation of the function minus its linear approximation is
of quadratic order if and only if the variation of its subdifferential is of the
first order (thus extending in a natural way well-known properties of smooth
functions).

Proposition 3.6.6 Let {p̄} = ∂f(x̄). Then the following two statements are
equivalent:
(i) ∂f is Lipschitz stable at x̄;
(ii) There are k > 0 and a neighborhood W � x̄ such that

|f(x)− f(x̄)− 〈p̄, x〉| ≤ k(‖x− x̄‖)2,

for all x ∈ W .

Proof. First, let us observe that we can suppose, without loss of generality,

x̄ = 0, f(x̄) = 0, p̄ = 0,

by possibly considering the function

f̂(x) = f(x + x̄)− f(x̄)− 〈p̄, x〉.

In this case observe that h(x) ≥ 0, ∀x ∈ X. Let us prove that (i) implies (ii).
Let H, K > 0 be such that, if ‖x‖ ≤ H, p ∈ ∂f(x), then

‖p‖ ≤ K‖x‖.

Since
0 = f(0) ≥ f(x) + 〈p,−x〉,

we have
f(x) ≤ ‖p‖‖x‖ ≤ K‖x‖2.

We now prove that (ii) implies (i). Suppose there are a, K > 0 such that
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|f(x)| ≤ K‖x‖2,
if ‖x‖ ≤ a. Now take x with r := ‖x‖ ≤ (a/2). We have then

|f(x)| ≤ Kr2.

We now apply Lemma 3.6.4 to f and to the zero function, with a, r as above,
R = 2r and δ = Kr2. We then get

‖p‖ ≤ 2Kr = 2K‖x‖,
provided ‖x‖ ≤ (a/2). ��

The following result connects Fréchet differentiability of ∂f with twice
Fréchet differentiability of f . This result too is quite natural.

Proposition 3.6.7 Let p̄ ∈ ∂f(x̄). Then the following two statements are
equivalent:
(i) ∂f is Fréchet differentiable at x̄;
(ii) f is twice Fréchet differentiable at x̄.

Proof. As in the previous proposition, we can suppose

x̄ = 0, f(x̄) = 0, p̄ = 0.

Let us show that (i) implies (ii). Assume there is an operator T as in (3.9),
and let Q be the quadratic function associated to it: Q(u) = 1

2 〈Tu, u〉. Setting
h(s) = f(sx) we have that

f(x)(−f(0) = 0) = h(1)− h(0) =
∫ 1

0

h′(s) ds =
∫ 1

0

f ′(sx; x) ds.

Now, remembering that f ′(sx; x) = supp∈∂f(sx)〈p, x〉 (see Theorem 3.2.14),
we then have

f(x)− 1
2
Q(x) =

∫ 1

0

[
sup

p∈∂f(sx)

〈p, x〉 − s〈Tx, x〉
]
ds,

from which we get

|f(x)− 1
2
Q(x)| ≤

∫ 1

0

sup
p∈∂f(sx)

|〈p− Tsx, x〉| ds;

from this, remembering (3.9), we easily get (3.10). The proof that (ii) implies
(i) relies again on Lemma 3.6.4. There is a quadratic function Q of the form
Q(x) = 〈Tx, x〉, such that there are a, ε > 0 with

|f(x)− 1
2
Q(x)| ≤ ε‖x‖2,
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if ‖x‖ ≤ a. Now take x such that r := ‖x‖ ≤ a
2 . We have then

|f(x)− 1
2
Q(x)| ≤ εr2.

We apply Lemma 3.6.4 to f and to the function 1
2Q, with a, r as above,

R = r(1 +
√

ε) and δ = εr2. We then get

d(q, co{T (B(x,
√

εr))} ≤ 2εr2

√
εr

,

provided ‖x‖ ≤ a
2 . But then

‖p− Tx‖ ≤ 2
√

ε‖x‖+ ‖T‖√ε‖x‖,
and from this we easily get (3.10). ��

3.7 The approximate subdifferential

There are both theoretical and practical reasons to define the concept of ap-
proximate subdifferential. On the one hand, the (exact) subdifferential does
not exist at each point of dom f . On the other hand, it is also difficult to
evaluate. To partly overcome these difficulties the notion of approximate sub-
differential is introduced.

Definition 3.7.1 Let ε ≥ 0 and f : X → (−∞,∞]. Then x∗ ∈ X∗ is said to
be an ε-subgradient of f at x0 if

f(x) ≥ f(x0) + 〈x∗, x− x0〉 − ε.

The ε-subdifferential of f at x, denoted by ∂εf(x), is the set of the ε-
subgradients of f at x.

Clearly, the case ε = 0 recovers the definition of the (exact) subdifferential.
Moreover,

∂f(x) =
⋂
ε>0

∂εf(x).

Here is a first result.

Theorem 3.7.2 Let f ∈ Γ (X), x ∈ dom f . Then ∅ �= ∂εf(x) is a weak∗

closed and convex set, ∀ε > 0. Furthermore,

∂λα+(1−λ)βf(x) ⊃ λ∂αf(x) + (1− λ)∂βf(x),

for every α, β > 0, for every λ ∈ [0, 1].

Proof. To prove that ∂εf(x) �= ∅, one exploits the usual separation argument
of Lemma 2.2.16, by separating (x, f(x) − ε) from epi f ; proving the other
claims is straightforward. ��
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We provide two examples.

Example 3.7.3

f(x) =

{
−2
√

x if x ≥ 0,

∞ otherwise.

It is not hard to see that for ε > 0, the ε-subdifferential of f at the origin is
the half line (−∞,−1

ε ], an unbounded set (not surprising, see Remark 3.2.9).
On the other hand, the subdifferential of f at the origin is empty.

Example 3.7.4 Let f(x) = |x|. Then

∂εf(x) =

⎧⎪⎨
⎪⎩

[−1,−1− ε
x ] if x < − ε

2 ,

[−1, 1] if − ε
2 ≤ x ≤ ε

2 ,

[1− ε
x , 1] if x > ε

2 .

1

1

-1

-1 1/2-1/2 1 | |(   )

Figure 3.5. The approximate subdifferential ∂1(| · |)(0).

The following result is easy and provides useful information.

Theorem 3.7.5 Let f ∈ Γ (X). Then 0∗ ∈ ∂εf(x0) if and only if

inf f ≥ f(x0)− ε.

Thus, whenever an algorithm is used to minimize a convex function, if we
look for an ε-solution, it is enough that 0 ∈ ∂εf(x), a much weaker condition
than 0 ∈ ∂f(x).

We now see an important connection between the ε-subdifferential and the
directional derivatives (compare the result with Theorem 3.2.14).
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Proposition 3.7.6 Let f ∈ Γ (X), x ∈ dom f . Then, ∀d ∈ X,

f ′(x; d) = lim
ε→0+

sup{〈x∗, d〉 : x∗ ∈ ∂εf(x)}.

Proof. Observe at first that, for monotonicity reasons, the limit in the above
formula always exists. Now, let ε > 0 and d ∈ X; then, ∀t > 0, ∀x∗ ∈ ∂εf(x),

f(x + td)− f(x) + ε

t
≥ 〈x∗, d〉.

Setting t =
√

ε, we get

f(x +
√

εd)− f(x) + ε√
ε

≥ sup{〈x∗, d〉 : x∗ ∈ ∂εf(x)}.

Taking the limit in the formula above,

f ′(x; d) ≥ lim
ε→0+

sup{〈x∗, d〉 : x∗ ∈ ∂εf(x)},

which shows one inequality. To get the opposite one, it is useful to appeal again
to a separation argument. Let α < f ′(x; d) and observe that for 0 ≤ t ≤ 1,

f(x + td) ≥ f(x) + tα.

Consider the line segment

S = {(x, f(x)− ε) + t(d, α) : 0 ≤ t ≤ 1}.
S is a compact convex set disjoint from epi f . Thus there are y∗ ∈ X∗, r ∈ R

such that
〈y∗, y〉+ rf(y) > 〈y∗, x + td〉+ r(f(x)− ε + tα),

∀y ∈ dom f , ∀t ∈ [0, 1]. As usual, r > 0. Dividing by r and setting x∗ = −y∗

r ,
we get

〈x∗, d〉 ≥ α− ε,

(with the choice of y = x, t = 1), and if v ∈ X is such that x + v ∈ dom f ,
setting y = x + v and t = 0,

f(x + v)− f(x) + ε ≥ 〈x∗, v〉,
which means x∗ ∈ ∂εf(x). The last two facts provide

sup{〈x∗, d〉 : x∗ ∈ ∂εf(x)} ≥ α− ε,

and this ends the proof. ��
We state, without proof, a result on the sum of approximate subdifferen-

tials. To get an equality in the stated formula, one needs to add conditions
as, for instance, int dom f ∩ int dom g �= ∅.
Proposition 3.7.7 Let ε ≥ 0 and x ∈ dom f ∩ dom g. Then

∂ε(f + g)(x) ⊃ ∪{∂σf(x) + ∂δg(x) : 0 ≤ σ, 0 ≤ δ, σ + δ ≤ ε}.




