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More exercises

I believed myself to be a mathematician.
In these days I discovered that I am not even an amateur.

(R. Queneau, “Odile”)

In this section we collect some more exercises, related to the whole content of
the book.

Exercise 12.1 (About polar cones.) Let X be a reflexive Banach space, let
C ⊂ X be a closed convex cone. Then Coo = C.

Hint. It is obvious that C ⊂ Coo. Suppose now there is x ∈ Coo \ C. Then
there are 0∗ �= y∗ and a ∈ R such that

〈y∗, x〉 > a ≥ 〈y∗, c〉, (12.1)

for all c ∈ C. Show that we can assume a = 0 in (12.1). It follows that y∗ ∈ Co

and thus, since x ∈ Coo, we have that 〈y∗, x〉 ≤ 0.

Exercise 12.2 Let

f(x) =

{
−√x if x ≥ 0,

∞ elsewhere.

Evaluate fk = f∇k‖ · ‖ for all k. Let g(x) = f(−x). Find inf(f + g), inf(fk +
gk) and their minimizers. Compare with the result of next exercise.

Exercise 12.3 With the notation of the previous exercise, suppose f, g ∈
Γ (Rn) and

ri dom f ∩ ri dom g �= ∅.
Then, for all large k, we have

inf(f + g) = inf(fk + gk)

and
Min(f + g) = Min(fk + gk).
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Hint. Prove that inf(f + g) ≤ inf(fk + gk). There is y ∈ R
n such that

− inf(f + g) = f∗(y) + g∗(−y).

Take k > ‖y‖. Then

− inf(f + g) = f∗(y) + g∗(−y) = (f∗ + IkB)(y) + (g∗ + IkB)(−y)
= (fk)∗(y) + (gk)∗(−y) ≥ inf

z∈Rn
((fk)∗(z) + (gk)∗(−z))

= − inf(fk + gk) ≥ − inf(f + g).

Observe that the above calculation also shows that y as above is optimal for
the problem of minimizing (fk)∗( ·) + (gk)∗(− ·) on R

n.
Now, using k > ‖y‖,

x ∈Min(f + g) ⇔ f(x) + g(x) = −f∗(y)− g∗(−y)
⇔ x ∈ ∂f∗(y) ∩ ∂g∗(−y)
⇔ x ∈ ∂(f∗ + IkB)(y) ∩ ∂(g∗ + IkB)(−y)
⇔ x ∈ ∂(fk)∗(y) ∩ ∂(gk)∗(−y)
⇔ x ∈ Min(fk + gk).

Exercise 12.4 Let {xi
n}, i = 1, . . . , k be k sequences in a Euclidean space,

and suppose xi
n → xi for all i. Prove that co

⋃
xi

n converges in the Hausdorff
sense to co

⋃
xi.

Exercise 12.5 Let X be a Banach space and suppose f, g ∈ Γ (X), f ≥ −g,
f(0) = −g(0). Then

{y∗ : f∗(y∗) + g∗(−y∗) ≤ 0} = ∂f(0) ∩ −∂g(0).

Exercise 12.6 Let X be a Banach space, let f ∈ Γ (X) be Fréchet differen-
tiable, and let σ > 0. Set

Sσ := {x ∈ X : f(x) ≤ f(y) + σ‖y − x‖, ∀y ∈ X},

and
Tσ := {x ∈ X : ‖∇f(x)‖∗ ≤ σ}.

Prove that Sσ = Tσ are closed sets. Which relation holds between the two
sets if f is not assumed to be convex?

Exercise 12.7 In the setting of Exercise 12.6, prove that f is Tykhonov well-
posed if and only if Sσ �= ∅ for all σ > 0 and diamSσ → 0 as σ → 0. Deduce an
equivalence when f is also Fréchet differentiable. Is convexity needed in both
implications? Give an example when the equivalence fails if f is not convex.
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Hint. Suppose f is Tykhonov well-posed. Clearly, Sσ �= ∅ for all σ. Without
loss of generality, suppose f(0) = 0 = inf f . Suppose diamSσ ≥ 2a, for some
a > 0, and let 0 < m = inf‖x‖=a f(x). There is xn ∈ S 1

n
such that ‖xn‖ ≥ a.

Show that this leads to a contradiction. Conversely, show that
⋂

σ>0 is a
singleton and the set of the minimizers of f . From the Ekeland variational
principle deduce that

f inf f+a2 ⊂ Ba(Sa)

and use the Furi Vignoli characterization of Tykhonov well-posedness. As an
example, consider f(x) = arctanx2.

Variational convergences are expressed in terms of set convergences of
epigraphs. On the other hand, not only is the behavior of the epigraphs impor-
tant. How the level sets move under convergence of epigraphs is an important
issue. Thus, the next exercises provide gap and excess calculus with level sets
and epigraphs. In the space X × R we shall consider the box norm.

Exercise 12.8 Let X be a metric space, let f : X → (−∞,∞] be lower
semicontinuous, let C ∈ c(X) Prove that
(i) D(C, fa) = d implies D(C × {a− d}, epi f) = d.
(ii) ∀b ∈ R and ∀a ≥ b such that fa �= ∅,

D(C × {b}, epi f) ≥ min{D(C, fa), a− b}.
(iii) ∀b ∈ R and ∀a ≥ b such that fa �= ∅, D(C × {b}, epi f) = d implies

b + d ≥ inf f .
(iv) D(C × {b}, epi f) = d implies D(C, fb+d+ε) ≤ d, for all ε > 0.
(v) D(C × {b}, epi f) = d implies D(C, fb+d−ε) ≥ d, for all ε > 0.

Exercise 12.9 Let X be a metric space, let f : X → (−∞,∞] be lower
semicontinuous, let C ∈ c(X) Prove that
(i) e(C, fa) = d implies e(C × {a− d}, epi f) = d.
(ii) ∀b ∈ R and ∀a ≥ b such that fa �= ∅,

e(C × {b}, epi f) ≤ max{e(C, fa), a− b}.
(iii) ∀b ∈ R and ∀a ≥ b such that fa �= ∅, e(C × {b}, epi f) = d implies

b + d ≥ inf f .
(iv) e(C × {b}, epi f) = d implies e(C, fb+d+ε) ≤ d, for all ε > 0.
(v) e(C × {b}, epi f) = d implies e(C, fb+d−ε) ≥ d, for all ε > 0.

Exercise 12.10 Let X be an E-space and f ∈ Γ (X). Then, setting fn(x) =
f(x)+ 1

n‖x‖2, prove that fn → f for the Attouch–Wets convergence and that
fn( ·)− 〈p, · 〉 is Tykhonov well-posed for all n and for all p ∈ X∗.

Exercise 12.11 Let X be a reflexive Banach space, and f ∈ Γ (X). Find
a sequence {fn} such that fn ∈ Γ (X) are Tykhonov well-posed, everywhere
Fréchet differentiable, and fn → f for the Attouch–Wets convergence.
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Hint. Take an equivalent norm ‖ · ‖ in X such that both X and X∗ are now
E-spaces. From Exercise 12.10 we know that f∗ + 1

n‖ · ‖2∗−〈p, · 〉 is Tykhonov
well-posed for all n. Thus (f∗+ 1

n‖x‖2∗)∗ is everywhere Fréchet differentiable for
all n. It follows that gn(x) = (f∗+ 1

n‖ · ‖2∗)∗(x)+ 1
n‖x‖2 is Fréchet differentiable

and Tykhonov well-posed for all n. Prove that gn → f for the Attouch–Wets
convergence.

Exercise 12.12 Consider the following game. Rosa and Alex must say, at
the same time, a number between 1 and 4 (inclusive). The one saying the
highest number gets from the other what was said. There is one exception for
otherwise the game is silly. If Alex says n and Rosa n− 1, then Rosa wins n,
and conversely. Write down the matrix associated with the game, and find its
value and its saddle points.

Hint. Observe that it is a fair game, and use Exercise 7.2.6.

We make one comment on the previous exercise. The proposed game (or
maybe an equivalent variant of it) was invented by a rather famous person,
with the intention of creating a computer program able to learn from the
behavior of an opponent, in order to be able to understand its psychology
and to beat it after several repetitions of the game. Unfortunately, he had
a student with some knowledge of game theory, proposing to him the use of
the optimal strategy, whose existence is guaranteed by the theorem of von
Neumann. Thus, when telling the computer to play this strategy over and
over, no clever idea could do better than a tie (on average) with resulting
great disappointment for the famous person. I like this story, since it shows
well how challenging game theory can be from the point of view of psychology.

Exercise 12.13 Consider the following game. Emanuele and Alberto must
show each other one or two fingers and say a number, at the same time. If
both are right or wrong, they get zero. If one is wrong and the other one is
right, the one who is right gets the number he said. Determine what they
should play, knowing that both are very smart. Do the same if the winner
always gets 1, instead of the number he said.

Hint. The following matrix should tell you something.⎛
⎜⎜⎝

0 2 −3 0
−2 0 0 3
3 0 0 −4
0 −3 4 0

⎞
⎟⎟⎠ .

Ask yourself if the result of Exercise 7.2.6 can be used. My answer (but you
should check) is that they always say “three” and play 1 with probability x,
2 with probability 1− x, where 4

7 ≤ x ≤ 3
5 .

Exercise 12.14 Let f : R
2 → R be continuous convex, and suppose

lim|x|→∞ f(x, mx) = ∞ for all m ∈ R. Prove that f is Tykhonov well-posed
in the generalized sense. Does the same hold in infinite dimensions?
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Hint. Consider a separable Hilbert space with basis {en : n ∈ N}, and the
function

f(x) =
∞∑

n=1

〈x, en〉2
n2

− 〈x∗, x〉,

where x∗ =
∑

1
nen. Then show f is not even lower bounded.

Exercise 12.15 This is a cute example taken from T. Rockafellar’s book
Convex Analysis, i.e., the example of a function f : R

2 → R continuous convex,
assuming a minimum on each line, and not assuming a minimum on R

2.
Let C be the epigraph of the function g(x) = x2 and consider the function
f(x, y) = d2[(x, y), C]− x. Prove that f fulfills the above property, and prove
also that f is C1(R2).

Exercise 12.16 Let f ∈ Γ (Rn). The following are equivalent:

• f is lower bounded and Min f = ∅;
• 0 ∈ dom f∗ and there is y such that (f∗)′(0, ; y) = −∞.

Hint. Remember that f∗(0) = − inf f and that Min f = ∂f∗(0). Prove that
∂f(x) = ∅ if and only if there exists a direction y such that f ′(x; y) = −∞
(remember that f ′(x; ·) is sublinear).

Exercise 12.17 Prove that cl cone dom f =
(
0+((f∗)a)

)◦, for a > −f(0).

Hint. Observe that (f∗)a �= ∅. (f∗)a = {x∗ : 〈x∗, x〉 − f(x) ≤ a,∀x ∈ dom f}.
Thus z∗ ∈ (0+((f∗)a))◦ if and only if 〈z∗, x〉 ≤ 0 for all x ∈ dom f , if and only
if 〈z∗, y〉 ≤ 0 for all y ∈ cl cone dom f .

Exercise 12.18 This is much more than an exercise. Here I want to introduce
the idea of “minimizing” a function which is not real valued, but rather takes
values in a Euclidean space. This subject is known under the name of vector
optimization (also Pareto optimization, multicriteria optimization) and it is
a very important aspect of the general field of optimization. Minimizing a
function often has the meaning of having to minimize some cost. However,
it can happen that one must take into account several cost functions at the
same time, not just one. Thus it is important to give a meaning to the idea of
minimizing a function f = (f1, . . . , fn), where each fi is a scalar function. And
this can be generalized by assuming that f takes values on a general space,
ordered in some way (to give a meaning to the idea of minimizing). Here I
want to talk a little about this. I will consider very special cases, in order
to avoid any technicalities. What I will say can be deeply generalized. The
interested reader could consult the book by Luc [Luc] to get a more complete
idea of the subject.

So, let P ⊂ R
l be a pointed (i.e., P ∩ −P = {0}) closed and convex cone

with nonempty interior. The cone P induces on R
l the order relation ≤P

defined as follows: for every y1, y2 ∈ R
l,
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y1 ≤P y2
def⇐⇒ y2 ∈ y1 + P.

Here are some examples of cones: in R
n, P = {x = (x1, . . . , xn) : xi ≥ 0, ∀i};

in R
2, P = {x = (x, y) : either x ≥ 0 or x = 0 and y ≥ 0}: this cone,

which is not closed, induces the so called lexicographic order. In l2, let P =
{x = (x1, . . . , xn, . . . ) : xi ≥ 0, ∀i}: this cone has empty interior, in l∞ let
P = {x = (x1, . . . , xn, . . . ) : xi ≥ 0, ∀i}: this cone has nonempty interior.

Given C, a nonempty subset of R
l, we denote by MinC the set

MinC
def= {y ∈ C : C ∩ (y − P ) = {y}} .

The elements of the set Min C are called the minimal points of C (with
respect to the order induced by the cone P ).

This is not the only notion of minimality one can think of. For instance,
the above notion of minimality can be strengthened by introducing the notion
of proper minimality. A point y ∈ C is a properly minimal point of C if there
exists a convex cone P0 such that P\ {0} ⊂ int P0 and y is a minimal point
of C with respect to the order given by the cone P0. We denote the set of the
properly minimal points of C by PrMin C.

The concept of minimal point can also be weakened. Define the set

Wmin C
def= {y ∈ C : C ∩ (y − int P ) = ∅}

of the weakly minimal points of the set C. Clearly

Pr MinC ⊂ MinC ⊂W MinC.

C C

0

C

Efficient points of C. Weakly efficient
points of C.

0 is not properly effi-
cient for C.

Figure 12.1.
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Let us now consider a function f : R
k → R

l. Let A be a subset of R
k. The

set of the efficient points of A is

Eff(A, f) def= {x ∈ A : f(x) ∈ Min f(A)} .

In the same way we can introduce the sets WEff(A, f) and PrEff(A, f).
And it is clearly possible and interesting to define a notion of convexity

for vector valued functions. Here it is.
Let A ⊂ R

k be a convex set, and f : A ⊂ R
k → R

l. Then f is said to be a
P -convex (or simply convex, when it is clear which is the cone P inducing the
order relation) function on A if for every x1, x2 ∈ A and for every λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ∈ λf(x1) + (1− λ)f(x2)− P,

and it is said to be a strictly P -convex function if for every x1, x2 ∈ A, x1 �= x2

and for every λ ∈ (0, 1),

f(λx1 + (1− λ)x2 ∈ λf(x1) + (1− λ)f(x2) \ int P.

Now I only suggest some results, focusing essentially on some aspects of
convexity, and stability. I leave the proofs as exercises, and sometimes outline
the main ideas of the proofs. The first is an existence result, which is stated
in a very particular case.

Proposition 12.19 Under the setting previously described, let A ⊂ R
k be

nonempty, closed and such that there exists x ∈ R
k such that A ⊂ x + P .

Then MinA is nonempty.

Proof. (Outline) Without loss of generality, suppose x = 0. Prove that there
exists x∗ ∈ R

k such that 〈x∗, p〉 > 0 for all p ∈ P , p �= 0 (the origin can
be separated from co(A ∩ ∂B), since the cone P is pointed). Prove that
limc∈C,‖c‖→∞〈x∗, c〉 = ∞ (arguing by contradiction). Then g(a) = 〈x∗, a〉
assumes minimum on A. Prove that if x̄ minimizes g on A then x̄ ∈ MinA.

With a little more effort one could prove that under the previous assump-
tions Pr MinA is actually nonempty. ��

We now see some properties of the convex functions.

Proposition 12.20 Let A ⊂ R
k be a convex set and let f : R

k → R
l be a

P -convex function. Then
(i) f(A) + P is a convex subset of R

l.
(ii) f is continuous.
(iii) If f is strictly P− convex then WEff(A, f) = Eff(A, f).
(iv) Defining in the obvious way the level sets of f , prove that, for all a, b ∈

R
k such that fa �= ∅, f b �= ∅, it holds 0+(fa) = 0+(f b).

(v) Calling H the common recession cone of the level sets of f , show that,
if 0+(A) ∩H = {0}, then f(A) + P is closed.
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We turn now our attention to convergence issues. Prove the following.

Proposition 12.21 Let Cn be closed convex subsets of R
l. Suppose Cn

K→ C.
Then
(i) Li MinCn ⊃ Min C;
(ii) Li Pr MinCn ⊃ Pr MinC;
(iii) LsWminCn ⊂ MinC.

Proof. (Outline) For (i), it is enough to prove that for every c ∈ C and
for every ε > 0 there exists yn ∈ MinCn such that d(yn, c) < ε. There
exists a sequence {cn} such that cn ∈ Cn for all n and cn → c. Show that
Dn := (cn − P ) ∩ Cn ⊂ B(c; ε) eventually. Since MinDn is nonempty and
MinDn ⊂ Min Cn, the conclusion of (i) follows. The proof of (ii) relies on
the fact that the proper minimal points are, under our assumptions, a dense
subset of the minimal points. The proof of (iii) is straightforward. ��

Thus the minimal and properly minimal sets enjoy a property of lower
convergence, while the weakly minimal sets enjoy a property of upper con-
vergence. Easy examples show that opposite relations do not hold in general.
However it should be noticed that, if MinA = W MinA, then actually from
(i) and (iii) above we can trivially conclude that MinCn converges to Min C
in Kuratowski sense.

Theorem 12.22 Let An ⊂ R
k be closed convex sets, let fn and f be P -convex

functions. Suppose
(i) 0+(A) ∩Hf = {0};
(ii) An

K→ A;
(iii) fn → f with respect to the continuous convergence (i.e., xn → x implies

fn(xn)→ f(x)).
Then

fn(An) + P
K→ f(A) + P.

Theorem 12.23 Under the same assumptions as the previous theorem we
have
(i) Min f(A) ⊂ LiMin fn(An).
(ii) If moreover f is strictly convex,

Min fn(An) K→ Min f(A) and Eff(An, fn) K→ Eff(A, f).

If anyone is really interested in having the proofs of the previous exercises,
he can send me an e-mail and I will send back the paper.




