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Description logics (DLs) are a successful family of logic-based
knowledge representation formalisms that can be used to represent
the terminological knowledge of an application domain in a struc-
tured and formally well-founded way. DL systems provide their
users with inference procedures that allow to reason about the
represented knowledge. Standard inference problems (such as the
subsumption and the instance problem) are now well-understood.
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Their computational properties (such as decidability and complex-
ity) have been investigated in detail, and modern DL systems are
equipped with highly optimized implementations of these inference
procedures, which—in spite of their high worst-case complexity—
perform quite well in practice.

In applications of DL systems it has turned out that building
and maintaining large DL knowledge bases can be further facil-
itated by procedures for other, nonstandard inference problem,
such as computing the least common subsumer and the most spe-
cific concept, and rewriting and matching of concepts. While the
research concerning these nonstandard inferences is not as mature
as the one for the standard inferences, it has now reached a point
where it makes sense to motivate these inferences within a uniform
application framework, give an overview of the results obtained so
far, describe the remaining open problems, and give perspectives
for future research in this direction.

1. Introduction

Description logics (DLs) [12] are a family of knowledge represen-
tation languages which can be used to represent the terminological
knowledge of an application domain in a structured and formally
well-understood way. The name description logics is motivated by
the fact that, on the one hand, the important notions of the do-
main are described by concept descriptions, i.e., expressions that
are built from atomic concepts (unary predicates) and atomic roles
(binary predicates) using the concept and role constructors pro-
vided by the particular DL. For example, the concept of “a man
that is married to a doctor, and has only happy children” can be
expressed using the concept description

Man � ∃married.Doctor � ∀child.Happy.

On the other hand, DLs differ from their predecessors, such as
semantic networks and frames [84, 79], in that they are equipped
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with a formal, logic-based semantics, which can, for example, be
given by a translation into first-order predicate logic. For example,
the above concept description can be translated into the following
first-order formula (with one free variable x):

Man(x) ∧ ∃y.(married(x, y) ∧ Doctor(y))

∧ ∀y.(child(x, y) → Happy(y)).

In addition to the formalism for describing concepts, DLs usually
also provide their users with means for describing individuals by
stating to which concepts they belong and in which role relation-
ships they participate. For example, the assertions

Man(JOHN), child(JOHN, MARY), Happy(MARY)

state that the individual John has a child Mary, who is happy.
Knowledge representation systems based on description log-

ics (DL systems or DL reasoners) [95, 81] provide their users
with various inference capabilities that deduce implicit knowledge
from the explicitly represented knowledge. Standard inference ser-
vices are subsumption and instance checking. Subsumption allows
the user to determine subconcept-superconcept relationships, and
hence, compute a subconcept-superconcept hierarchy: C is sub-
sumed by D if and only if all instances of C are also instances
of D, i.e., the first description is always interpreted as a subset
of the second description. Instance checking asks whether a given
individual necessarily belongs to a given concept, i.e., whether this
instance relationship logically follows from the descriptions of the
concept and of the individual.

In order to ensure a reasonable and predictable behavior of
a DL reasoner, these inference problems should at least be de-
cidable for the DL employed by the reasoner, and preferably of
low complexity. Consequently, the expressive power of the DL in
question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions
of the application domain can no longer be expressed. Inves-
tigating this trade-off between the expressivity of DLs and the
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complexity of their inference problems has been one of the most
important issues of DL research in the 1990s. As a consequence
of this research, the complexity of reasoning in various DLs of
different expressive power is now well-investigated (see [49] for an
overview of these complexity results). In addition, there are highly
optimized implementations of reasoners for very expressive DLs
[61, 54, 62], which—despite their high worst-case complexity—
behave very well in practice [60, 53].

DLs have been applied in many domains, such as medical in-
formatics, software engineering, configuration of technical systems,
natural language processing, databases, and web-based informa-
tion systems (see Part III of [12] for details on these and other
applications). A recent success story is the use of DLs as ontology
languages [15, 16] for the Semantic Web [33]. In particular, the
W3C recommended ontology web language OWL [64] is based on
an expressive description logic [67, 66].

Editors—such as OilEd [32] and the OWL plug-in of Protègè
[69]—supporting the design of ontologies in various application
domains usually allow their users to access a DL reasoner, which
realizes the aforementioned standard inferences such as subsump-
tion and instance checking. Reasoning is not only useful when
working with “finished” ontologies, it can also support the ontol-
ogy engineer while building an ontology, by pointing out inconsis-
tencies and unwanted consequences. The ontology engineer can
thus use reasoning to check whether the definition of a concept or
the description of an individual makes sense.

However, these standard DL inferences—subsumption and in-
stance checking—provide only little support for actually coming
up with a first version of the definition of a concept. The non-
standard inferences considered in this paper were introduced to
overcome this deficit, by allowing the user to construct new knowl-
edge from the existing one. Our own motivation for investigat-
ing these novel inferences comes from an application in chemical
process engineering where a knowledge base has been built by
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different knowledge engineers over a rather long period of time
[87, 71, 80, 44, 35, 77, 94].

The goal of this paper is

(i) to motivate nonstandard inferences by means of a simple ap-
plication scenario,

(ii) to provide an overview of the results that have been obtained
for nonstandard inferences so far, and

(iii) to explain the main techniques employed for solving these
novel inference problems.

In order to be able to describe the latter in detail, the ex-
position of the techniques is mainly restricted to the DL ALE .
However, we also provide references to results for other DLs.

Structure of the paper

In Section 2, we introduce typical DL constructors and the most
important standard inference problems. In addition, we give a
brief review of the different approaches for solving these inference
problems, and of their complexity in different DLs. In Section 3,
we first motivate the need for nonstandard inferences in a typical
application scenario, and then formally define the most important
nonstandard inferences in description logics. Then, we briefly in-
troduces the techniques used to solve these problems. Since these
techniques depend on a syntactic characterization of the subsump-
tion problem, Section 3 is followed by a section that describes such
a characterization for the DL ALE , which we use as a prototypical
example (Section 4). The next four sections consider the four most
important nonstandard inference problems: computing the least
common subsumer and the most specific concept, rewriting, and
matching. Related nonstandard inferences are briefly discussed in
the respective sections as well. We explain the results on these
four nonstandard inferences in ALE in detail, whereas results for
other DLs are reviewed only briefly. Finally, Section 9 summarizes
the results on nonstandard inferences obtained so far, and gives
perspectives for further research.
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2. Description Logics and
Standard Inferences

In order to define concepts in a DL knowledge base, one starts with
a set NC of concept names (unary predicates) and a set NR of role
names (binary predicates), and defines more complex concept de-
scriptions using the concept constructors provided by the concept
description language of the particular system. In this paper, we
consider the DL ALCN and some of its sublanguages. Concept
descriptions of ALCN are built using the constructors shown in
the first part of Table 1. In this table, r stands for a role name,
n for a nonnegative integer, A for a concept name, and C, D for
arbitrary concept descriptions.

A concept definition A ≡ C (as shown in the second part
of Table 1) assigns a concept name A to a complex description
C. A finite set of such definitions is called a TBox if and only
if it is unambiguous, i.e., each name has at most one definition.
The concept names occurring on the left-hand side of a concept
definition are called defined concepts, and the others primitive. In
many cases, one restricts the attention to acyclic TBoxes, where
the definition of a defined concept A cannot (directly or indirectly)
refer to A itself.

A (concept or role) assertion is of the form shown in the last
part of Table 1. Here, a, b belong to an additional set NI of indi-
vidual names. A finite set of such assertions is called an ABox.

The sublanguages of ALCN that will be considered in this
paper are shown in Table 2. The first column explains the naming
scheme for the members of the AL-family.

The semantics of concept descriptions is defined in terms of
an interpretation I = (∆I , ·I). The domain ∆I of I is a non-
empty set and the interpretation function ·I maps each concept
name A ∈ NC to a set AI ⊆ ∆I , each role name r ∈ NR to a
binary relation rI ⊆ ∆I ×∆I , and each individual name a ∈ NI

to an element aI ∈ ∆I . The extension of ·I to arbitrary concept
descriptions is inductively defined, as shown in the third column
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Name Syntax Semantics
top-concept 
 ∆I

bottom-concept ⊥ ∅
negation ¬C ∆I \ CI

atomic negation ¬A ∆I \ AI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI}
existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
at-least restriction �n r {x ∈ ∆I | �{y | (x, y) ∈ rI} � n}
at-most restriction �n r {x ∈ ∆I | �{y | (x, y) ∈ rI} � n}
concept definition A ≡ C AI = CI

concept assertion C(a) aI ∈ CI

role assertion r(a, b)) (aI , bI) ∈ rI

Table 1. Syntax and semantics of concept descrip-
tions, definitions, and assertions

of Table 1. In the rows treating at-least and at-most number
restrictions, �M denotes the cardinality of a set M .

The interpretation I is a model of the TBox T if it satisfies all
its concept definitions, i.e., AI = CI for all A ≡ C in T , and it is
a model of the ABox A if it satisfies all its assertions, i.e., aI ∈ CI

for all concept assertions C(a) in A and (aI , bI) ∈ rI for all role
assertions r(a, b) in A.

Based on this semantics, we can now formally introduce the
standard inference problems in description logics.

Definition 2.1. Let A be an ABox, T a TBox, C, D concept
descriptions, and a an individual name.

• C is satisfiable w.r.t. T if there is a model I of T such that
CI �= ∅.

• D subsumes C w.r.t. T (C �T D) if CI ⊆ DI for all models
I of T .
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Symbol Syntax ALC ALEN ALE ALN EL FL0

 x x x x x x
⊥ x x x x

AL � x x x x x x
¬A x x x x
∀r.C x x x x x

C ¬C x
E ∃r.C x x x x
U C � D x
N (�n r), (�n r) x x

Table 2. The relevant sublanguages of ALCN

• A is consistent w.r.t. T if there is a model I of T that is also
a model of A.

• a is an instance of C in A w.r.t. T (A, T |= C(a)) if aI ∈ CI

for all models I of T and A.

In case the TBox T is empty, we omit the appendage “w.r.t.
∅.” In particular, we say that D subsumes C and write this as
C � D. Two concept descriptions are equivalent (C ≡ D) if they
subsume each other (w.r.t. the empty TBox), i.e., if C � D and
D � C. We write C � D to express that C � D but D �� C.

If the DL under consideration allows for full negation (C), then
subsumption and satisfiability are interreducable, and the same
is true for the instance and the consistence problem. In addi-
tion, satisfiability (subsumption) can always be reduced to ABox-
consistency (instance checking). This follows from the following
equivalences:

• C �T D if and only if C � ¬D is unsatisfiable w.r.t. T ;
• C is unsatisfiable w.r.t. T if and only if C �T ⊥;
• A, T |= C(a) if and only if A ∪ {¬C(a)} is inconsistent w.r.t.

T ;
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• A is inconsistent w.r.t. T if and only if A, T |= {⊥(a)} where
a is an arbitrary individual name;

• C is satisfiable w.r.t. T if and only if {C(a)} is consistent
where a is an arbitrary individual name;

• C �T D if and only if {C(a)}, T |= D(a) where a is an arbi-
trary individual name.

If the TBox T is acyclic, then reasoning w.r.t. T can be re-
duced to reasoning w.r.t. the empty TBox by expanding concept
definitions, i.e., by replacing defined concept by their definitions
until all defined concepts have been replaced. This can, however,
result in an exponential blow-up of the problem [82].

Most of the early research on reasoning in DLs concentrated
on the subsumption problem for concept descriptions (i.e., w.r.t.
the empty TBox). For the DLs introduced above, the worst-
case complexity of this problem is well-investigated. Subsump-
tion in ALCN , ALC, and ALEN is PSPACE-complete, whereas
subsumption in ALE is NP-complete. The subsumption problem
for ALN , EL, and FL0 is polynomial (see [49] for references and
additional complexity results for other DLs).

In the presence of an acyclic TBox, the complexity of subsump-
tion may increase, but not in all cases. For example, subsumption
w.r.t. an acyclic TBox in FL0 is coNP-complete [82], but it re-
mains polynomial in EL [8] and PSPACE-complete in ALCN [75].
Cyclic TBoxes may increase the complexity of the subsumption
problem even further (for example, for FL0 to PSPACE [4, 68]),
but again not in all cases (for example, for EL, subsumption w.r.t.
cyclic TBoxes remains polynomial [8]).

In most cases, the complexity of the instance problem is the
same as the complexity of the subsumption problem (for example,
in ALCN [57] and EL [7]), but in some cases it may be harder
(for example, in ALE , where it is PSPACE-complete [51]).

The original KLone system [40] as well as its early succes-
sor systems (such as Back [83], KRep [78], and Loom [76])
employed so-called structural subsumption algorithms, which first
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normalize the concept descriptions, and then recursively compare
the syntactic structure of the normalized descriptions. These al-
gorithms are usually very efficient (polynomial), but they have
the disadvantage that they are complete only for very inexpres-
sive DLs, i.e., for more expressive DLs they cannot detect all the
existing subsumption relationships. The DL ALN is an example
of a DL where this structural approach yields a polynomial-time
subsumption algorithm (see [27] for a sketch of such an algorithm
and [38] for a detailed description of a structural subsumption
algorithm for an extension of ALN ).

The syntactic characterization of subsumption in EL and ALE
given in Section 4 can in principle also be used to obtain a struc-
tural subsumption algorithm for these DLs. It should be noted,
however, that in the case of ALE the normalization phase is not
polynomial. For EL, the normalization phase is void, but a naive
top-down structural comparison would not result in a determinis-
tic polynomial-time algorithm. To obtain a polynomial subsump-
tion algorithm, one must use a dynamic programming approach,
i.e., work bottom-up. Overall, structural subsumption does not
seem to be the right tool for solving standard inferences for ex-
pressive DLs. However, as we will see, structural subsumption
plays an important role for solving nonstandard inferences.

For expressive DLs (in particular, DLs allowing for disjunc-
tion and/or negation), for which the structural approach does
not lead to complete subsumption algorithms, tableau algorithms
have turned out to be useful: they are complete and often behave
quite well in practice. The first such algorithm was proposed by
Schmidt-Schauß and Smolka [89] for the DL ALC.1 It quickly
turned out that this approach for deciding subsumption can be
extended to various other DLs [59, 58, 13, 2, 55, 46, 11, 28,
65, 67, 29] and also to other inference problems such as the in-
stance problem [56, 51, 57]. Early on, DL researchers started to

1 Actually, at that time the authors were not aware of the close connection
between their rule-based algorithm working on constraint systems and tableau
procedures for modal and first-order predicate logics.
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call the algorithms obtained this way “tableau-based algorithms”
since they observed that the original algorithm by Schmidt-Schauß
and Smolka for ALC, as well as subsequent algorithms for more
expressive DLs, could be seen as specializations of the tableau cal-
culus for first-order predicate logic (the main problem to solve was
to find a specialization that always terminates, and thus yields a
decision procedure).

After Schild [88] showed that ALC is a syntactic variant of
multi-modal K, it turned out that the algorithm by Schmidt-
Schauß and Smolka was actually a re-invention of the tableau
algorithm for K known from modal logics [34].

The first DL systems employing tableau-based algorithms (Kris
[14] and Crack [45]) demonstrated that (in spite of the high
worst-case complexity of the underlying DL ALCN ) such algo-
rithms can be implemented in a practical way. The complexity
barrier has been pushed even further back by the seminal sys-
tem FaCT [61]. Although FaCT employs the very expressive
DL SHIQ, which has an EXPTIME-complete subsumption prob-
lem, its highly optimized tableau-based subsumption algorithm
outperforms the early systems based on structural subsumption
algorithms and Kris by several orders of magnitude [63]. The
equally well-performing system Racer [54] also provides for a
highly-optimized implementation of the ABox-consistency and in-
stance test for an extension of SHIQ.

3. Nonstandard Inferences—Motivation
and Definitions

In this section, we will first motivate the nonstandard inferences
considered in this paper within a uniform application scenario,
in which these inferences are used to support the design of DL
knowledge bases. Then, we give formal definitions of the relevant
nonstandard inferences, and briefly sketch different techniques for
solving them. Each nonstandard inference will be considered in
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more detail in a separate section, where we concentrate on the DL
ALE .

3.1. Motivation

As mentioned in the introduction, the standard DL inferences in-
troduced in Section 2 can already be employed during the design
phase of a DL knowledge base since they allow the knowledge engi-
neer to check whether the definition of a concept make senses (i.e.,
whether the defined concept is satisfiable) and whether it behaves
as expected (i.e., whether the computed subsumption relationships
are the ones intuitively expected).

However, inferences such as subsumption provide no support
for actually coming up with a first version of the definition of a
concept.

The nonstandard inferences introduced in this section can be
used to overcome this deficit, basically by providing two ways of
re-using “old” knowledge when defining new one:

(i) constructing concepts by generalizing from examples, and
(ii) constructing concepts by modifying “similar” ones.

The first approach was introduced as bottom-up construction
of description logic knowledge bases in [17, 22]. Instead of defining
the relevant concepts of an application domain from scratch, this
methodology allows the user to give typical examples of individuals
belonging to the concept to be defined. These individuals are
then generalized to a concept by first computing the most specific
concept (msc) of each individual (i.e., the least concept description
in the available description language that has this individual as
an instance), and then computing the least common subsumer
(lcs) of these concepts (i.e., the least concept description in the
available description language that subsumes all these concepts).
The knowledge engineer can then use the computed concept as a
starting point for the concept definition.
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As a simple example, assume that the knowledge engineer has
already defined the concept of a man and a woman as

Man ≡ Human � Male and Woman ≡ Human � Female,

and now wants to define the concept of a parent, but does not
know how to do this within the available DL (which we assume to
be EL in this example). However, the available ABox

Man(JACK), child(JACK, CAROLINE), Woman(CAROLINE),
Woman(JACKIE), child(JACKIE, JOHN), Man(JOHN)

contains the individuals JACK and JACKIE, of whom the knowl-
edge engineer knows that they are parents. The most specific
concepts of JACK and JACKIE in the given ABox are

Man � ∃child.Woman and Woman � ∃child.Man

respectively and the least common subsumer (in EL) of these two
concepts w.r.t. the definitions of Man and Woman is

Human � ∃child.Human,

which looks like a good starting point for a definition of parent.
In contrast to standard inferences such as subsumption and in-

stance checking, the output of the nonstandard inferences we have
mentioned until now (computing the msc and the lcs) is a concept
description rather than a yes/no answer. In such a setting, it is
important that the returned descriptions are as readable and com-
prehensible as possible. Unfortunately, the descriptions that are
produced by the known algorithms for computing the lcs and the
msc do not satisfy this requirement. The reason is that—like most
algorithms for the standard inference problems—these algorithms
work on expanded concept descriptions, i.e., concept descriptions
that do not contain names defined in the underlying TBox. Conse-
quently, the descriptions that the algorithms produce also do not
use defined concepts, which makes them in many cases large and
hard to read and comprehend. In the above example, this means
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that the definitions of Man and Woman are expanded before ap-
plying the lcs algorithm. If Human also had a definition, then it
would also be expanded, and instead of the concept description
containing Human shown above, the algorithm would return its
expanded version.

This problem can be overcome by rewriting the resulting con-
cept w.r.t. the given TBox. Informally, the problem of rewriting
a concept given a terminology can be stated as follows: given an
acyclic TBox T and a concept description C that does not contain
concept names defined in T , can this description be rewritten into
an equivalent shorter description E by using (some of) the names
defined in T ?

For example, w.r.t. the TBox

Woman ≡ Human � Female,
Man ≡ Human � Male,

Parent ≡ Human � ∃child.Human,

the concept description

Human � ∀child.Female � ∃child.
 � ∀child.Human

can be rewritten to the equivalent concept

Parent � ∀child.Woman.

In order to apply the second approach of constructing con-
cepts by modifying existing ones, one must first find the right
candidates for modification. One way of doing this is to give a
partial description of the concept to be defined as a concept pat-
tern (i.e., a concept description containing variables), and then
look for concept descriptions that match this pattern.

For example, the pattern

Man � ∃child.(Man � X) � ∃spouse.(Woman � X)

looks for descriptions of classes of men whose wife and son share
some characteristic. An example of a concept description matching
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this pattern is

Man � ∃child.(Man � Tall) � ∃spouse.(Woman � Tall).

We refer the reader to [71, 44, 24] for a description of other
possible applications of nonstandard inferences.

3.2. Definitions

In the following, we formally define the most important nonstan-
dard inferences.

Least Common Subsumer

Intuitively, the least common subsumer of a given collection of
concept descriptions is a description that represents the properties
that all the elements of the collection have in common. More
formally, it is the most specific concept description that subsumes
the given descriptions. How this most specific description looks
like, whether it really captures the intuition of representing the
properties common to the input descriptions, and whether it exists
at all strongly depends on the DL under consideration.

Definition 3.1. Let L be a DL. A concept description E of
L is a least common subsumer (lcs) of the concept descriptions
C1, . . . , Cn in L (lcsL(C1, . . . , Cn) for short) if and only if it satisfies

(1) Ci � E for all i = 1, . . . , n, and
(2) E is the least L concept description with this property,

i.e., if E′ is an L concept description satisfying Ci � E′

for all i = 1, . . . , n, then E � E′.

As an easy consequence of this definition, the lcs is unique up
to equivalence, which justifies talking about the lcs. In addition,
the n-ary lcs as defined above can be reduced to the binary lcs
(the case n = 2 above). Indeed, it is easy to see that

lcsL(C1, . . . , Cn) ≡ lcsL(C1, . . . , lcsL(Cn−1, Cn) · · · ).
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Thus, it is enough to devise algorithms for computing the binary
lcs.

It should be noted, however, that the lcs does not always need
to exist. This can have several reasons:

(a) there may not exist a concept description in L satisfying (1)
of the definition (i.e., subsuming C1, . . . , Cn);

(b) there may be several subsumption incomparable minimal con-
cept descriptions satisfying (1) of the definition;

(c) there may be an infinite chain of more and more specific de-
scriptions satisfying (1) of the definition.

Obviously, (a) cannot occur for DLs containing the top con-
cept. It is easy to see that, for DLs allowing for conjunction,
(b) cannot occur. Case (c) is also rare to occur for DLs allow-
ing for conjunction, but this is less obvious to see. Basically, for
many DLs one can use the role depth of the concepts C1, . . . , Cn

to restrict the role depth of (relevant) common subsumers. The
existence of the lcs then follows from the presence of conjunction
and the fact that, up to equivalence, there are only finitely many
concepts over a finite vocabulary having a fixed role depth (see
[30] for more details). An example where case (c) actually occurs
is the DL EL with cyclic terminologies interpreted with descriptive
semantics [5] (see also Section 5.3).

It is clear that in DLs allowing for disjunction, the lcs of
C1, . . . , Cn is their disjunction C1 � . . . � Cn. In this case, the
lcs is not of interest. In fact, as we have said above, the lcs is
supposed to make explicit the properties that the input concepts
have in common. This is, of course, not achieved by writing down
their disjunction. Hence the lcs appears to be useful only in cases
where the DL does not allow for disjunction.

Definition 3.1 is formulated for concept descriptions, i.e., it
does not take a TBox into account. For acyclic TBoxes, this is
not a real restriction since one can first expand the definitions
before computing the lcs, and then apply rewriting to the lcs to
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obtain an equivalent shorter description containing defined con-
cepts. For cyclic TBoxes, expansion is not possible. In addition,
it may be advantageous to use cycles within the definition of the
lcs, i.e., to allow the TBox to be extended by additional (possibly
cyclic) concept definitions [17, 7]. The use of cyclic TBoxes in
this context is also motivated by the most specific concept (see
below).

Most Specific Concept

The most specific concept of a given ABox individual captures all
the properties of the individual that are expressible by a concept
description of the DL under consideration. Again, the form of the
most specific concept and its existence strongly depend on this
DL.

Definition 3.2. Let L be a DL. The L concept description E
is the most specific concept (msc) in L of the individual a in the
L ABox A (mscL(a) for short) if and only if

(1) A |= E(a), and
(2) E is the least L concept description satisfying (i), i.e., if

E′ is an L concept description satisfying A |= E′(a), then
E � E′.

As with the lcs, the msc is unique up to equivalence, if it exists.
In contrast to the lcs, which always exists for the DLs shown in
Table 2, the msc does not always exist in these DLs. This is due
to the presence of so-called role cycles in the ABox.

For example, w.r.t. the ABox

{loves(NARCIS, NARCIS), Vain(NARCIS)},

the individual NARCIS does not have an msc in EL. In fact, assume
that E is the msc of NARCIS. Then E has a finite role depth, i.e.,
a finite maximal number of nestings of existential restrictions. If
this role depth is smaller than n, then E is not subsumed by the
EL concept description
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E′ := ∃loves.· · · ∃loves.︸ ︷︷ ︸
n times

Vain,

in spite of the fact that NARCIS is an instance of E′.
One way to overcome this problem is to allow for cyclic TBoxes

interpreted with greatest fixpoint semantics. In the above exam-
ple, the defined concept

Narcis ≡ Vain � ∃loves.Narcis

is an msc of the individual NARCIS in EL w.r.t. cyclic TBoxes with
greatest fixpoint semantics. In order to employ this approach in
the bottom-up construction of DL knowledge bases, the impact
of such cyclic definitions on the subsumption problem and the
problem of computing the lcs must also be dealt with. In [17] this
is done for ALN , and in [8, 7] for EL.

Another possibility is to approximate the msc by restricting
the attention to concept descriptions whose role depth is bounded
by a fixed number k [48, 73] (see Section 6 for details).

Rewriting

In [23], a very general framework for rewriting in DLs is intro-
duced, which has several interesting instances. In order to intro-
duce this framework, we fix a set NR of role names and a set NP

of primitive concept names.

Definition 3.3. Let Ls, Ld, and Lt be three DLs (the source-,
destination, and TBox-DL respectively). A rewriting problem is
given by

• an Lt TBox T containing only role names from NR and prim-
itive concepts from NP ; the set of defined concepts occurring
in T is denoted by ND;

• an Ls concept description C using only the names from NR

and NP ;
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• a binary relation ρ between Ls and Ld concept descriptions.

An Ld rewriting of C using T is an Ld concept description E
built using role names from NR and concept names from NP ∪ND

such that CρE.
Given an appropriate ordering � on Ld concept descriptions,

a rewriting E is called �-minimal if and only if there does not
exist a rewriting E′ such that E′ ≺ E.

In this paper, we consider one instances of this general frame-
work in more detail, the minimal rewriting problem [23], and
briefly discuss another instance, the approximation problem [42].
The minimal rewriting problem is the instance of the framework
where

• all three DLs are the same language L;
• the TBox T is acyclic;
• the binary relation ρ corresponds to equivalence modulo the

TBox;
• L concept descriptions are ordered by size, i.e., E � E′ if and

only if |E| � |E′|, where the size |E| of a concept description
E is defined to be the number of occurrences of concept and
role names in E.

The approximation problem is the instance of the framework
where

• T is empty, and thus Lt is irrelevant;
• both ρ and � are the subsumption relation �.

Given two DLs Ls and Ld, an Ld approximation of an Ls

concept description C is thus an Ld concept description D such
that C � D and D is minimal (w.r.t. subsumption) in Ld with
this property. Typically, Ld is a less expressive DL than Ls, and
hence, D is the best approximation from above of C in Ld. One
motivation for approximation is to be able to translate a knowl-
edge base expressed in an expressive DL into a knowledge base
expressed in a less expressive DL [23, 42].
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Matching

Before we can define matching, we must define the notion of a pat-
tern. Concept patterns are concept descriptions in which concept
variables (usually denoted by X, Y , etc.) may occur in place of
concept names. However, concept variables may not occur in the
scope of a negation. The main difference between concept names
and concept variables is that the latter can be replaced by concept
descriptions when applying a substitution.

For example,

D := P � X � ∀r.(Y � ∀r.X)

is a concept pattern containing the concept variables X and Y .
By applying the substitution σ := {X �→ Q, Y �→ ∀r.P} to it, we
obtain the concept description

σ(D) = P � Q � ∀r.(∀r.P � ∀r.Q).

Definition 3.4. Let C be a concept description and D a con-
cept pattern. Then C ≡? D is called a matching problem mod-
ulo equivalence and C �? D is called a matching problem modulo
subsumption. The substitution σ is a matcher of the matching
problem C ≡? D (C �? D) if and only if C ≡ σ(D) (C � σ(D)).

Since C � σ(D) if and only if C � σ(D) ≡ C, the match-
ing problem modulo subsumption C �? D can be reduced to the
following matching problem modulo equivalence: C ≡? C � D.
However, in many cases, matching modulo subsumption is sim-
pler than matching modulo equivalence since it can be reduced to
the subsumption problem. If the DL contains 
 and all its con-
structors are monotonic, then C �? D has a matcher if and only if
the substitution σ� that replaces all variables by 
 is a matcher,
i.e., if C � σ�(D).

However, in the context of matching modulo subsumption, one
is usually not interested in an arbitrary solution, but rather in
certain “interesting” ones. One criterion for being interesting is
that the matcher should bring D as close to C as possible, i.e., an
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interesting matcher σ of C �? D should be minimal in that there
does not exist another substitution δ such that C � δ(D) � σ(D)
[37]. Other criteria for defining interesting matchers are discussed
in Section 8.2.

In Section 8, we will briefly mention an extension of matching
modulo equivalence, namely unification, where besides D also C
may contain variables. Given a unification problem of the form
C ≡? D, a substitution σ is a unifier of this problem if and only
if σ(C) ≡ σ(D).

3.3. Techniques

The approaches for solving nonstandard inferences in DLs devel-
oped so far are based on appropriate structural characterizations
of the subsumption or the instance problem. Based on these char-
acterizations, the nonstandard inferences can be characterized as
well, and from these characterizations, approaches solving these
inferences can be deduced.

In the literature, two different approaches for developing struc-
tural characterizations of subsumption have been considered: the
language-based and the tree-based approach.

In the language based approach, one first computes a normal
form that is based on finite or regular sets of words over the alpha-
bet of role names, and then characterizes subsumption by inclusion
relationships between these languages (see, for example, [3, 70]).
In the tree-based approach, concept descriptions are turned into
so-called description trees, and subsumption is then characterized
via the existence of certain homomorphisms between these trees
(see Section 4).

Since the tree-based approach to characterizing subsumption
and solving nonstandard inferences will be considered in detail in
the next sections, we briefly illustrate the language-based approach
for the simple DL FL0 and the nonstandard inferences lcs and
matching.
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Using the equivalence

∀r.(C � D) ≡ ∀r.C � ∀r.D

as a rewrite rule from left to right, any FL0 concept description
can be transformed into an equivalent description that is a con-
junction of descriptions of the form ∀r1.· · · ∀rm.A for m � 0 (not
necessarily distinct) role names r1, . . . , rm and a concept name
A. We abbreviate ∀r1.· · · ∀rm.A by ∀r1 . . . rm.A, where r1 . . . rm

is viewed as a word over the alphabet of all role names. In
addition, instead of ∀w1.A � . . . � ∀w�.A we write ∀L.A where
L := {w1, . . . , w�} is a finite set of words over Σ. The term ∀∅.A is
considered to be equivalent to the top concept 
, which means that
it can be added to a conjunction without changing the meaning of
the concept. Using these abbreviations, any pair of FL0 concept
descriptions C, D containing the concept names A1, . . . , Ak can be
rewritten as

C ≡ ∀U1.A1 � . . . � ∀Uk.Ak and D ≡ ∀V1.A1 � . . . � ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role
names. This normal form provides us with the following charac-
terization of subsumption of FL0 concept descriptions [26]:

C � D iff Ui ⊇ Vi for all i, 1 � i � k.

Since the size of the language-based normal forms is polynomial in
the size of the original descriptions, and since the inclusion tests
Ui ⊇ Vi can also be realized in polynomial time, this yields a
polynomial-time decision procedure for subsumption in FL0.

As an easy consequence of this characterization we find that
the lcs E of C, D is of the form

E ≡ ∀(U1 ∩ V1).A1 � . . . � ∀(Uk ∩ Vk).Ak,

and thus can also be computed in polynomial time.
In order to treat matching in FL0 using the language-based

approach, the language-based normal form of FL0 concept de-
scriptions is extended in the obvious way to patterns. Let C be
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an FL0 concept description and D an FL0 concept pattern. We
can write C, D in the form

C ≡ ∀S0,1.A1 � . . . � ∀S0,k.Ak,

D ≡ ∀T0,1.A1 � . . . � ∀T0,k.Ak � ∀T1.X1 � . . . � ∀Tn.Xn,

where A1, . . . , Ak are the concept names and X1, . . . , Xn the con-
cept variables occurring in C, D, and S0,i, T0,i, Tj with i = 1, . . . , k,
j = 1, . . . , n are finite sets of words over the alphabet of all role
names.

In [26] it is shown that the matching problem modulo equiva-
lence C ≡? D has a matcher if and only if for all i = 1, . . . , k, the
linear language equation

S0,i = T0,i ∪ T1X1,i ∪ · · · ∪ TnXn,i

has a solution, i.e., we can substitute the variables Xj,i by finite
languages such that the equation holds.

Solvability of this linear language equation can be decided in
polynomial time since it is sufficient to check whether the following
substitution θ is a solution:

θ(Xj,i) :=
⋂

u∈Tj

u−1S0,i,

where u−1S0,i = {v | uv ∈ S0,i}.
We have used FL0 to sketch how the language based approach

for characterizing subsumption can be used to solve nonstandard
inferences. In the rest of this paper, we will concentrate on the
tree based approach.

4. A Structural Characterization
of Subsumption

As explained in the previous section, the basis for solving non-
standard inferences is an appropriate structural characterization
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of subsumption. In this section, we present the characterization
for the DL ALE given in [22] in detail. Characterizations for other
DLs are discussed only briefly.

The idea underlying the characterization of subsumption be-
tween ALE concept description is as follows. First, the concept
descriptions are presented as edge- and node-labeled trees—called
description trees—in which certain implicit facts have been made
explicit. Then, we show that subsumption between ALE concept
descriptions corresponds to the existence of homomorphisms be-
tween description trees.

As a warming-up, in Section 4.1, we first present the charac-
terization of subsumption for the sublanguage EL of ALE , with
the extension to ALE presented in Section 4.2. We then briefly
discuss characterizations of subsumption for extensions of ALE
and other families of DLs (Section 4.3).

4.1. Getting started —
The characterization for EL

We first introduce EL description trees, and then present the char-
acterization of subsumption.

Definition 4.1. EL description trees are of the form G =
(V, E, v0, �) where G is a tree with root v0 whose edges vrw ∈ E
are labeled with role names r ∈ NR, and whose nodes v ∈ V are
labeled with sets �(v) of concept names from NC . The empty label
corresponds to the top-concept.

Intuitively, such a tree is merely a graphical representation
of the syntax of the concept description. More formally, every
EL concept description C can be written (modulo equivalence) as
C ≡ P1� . . .�Pn�∃r1.C1� . . .�∃rm.Cm with Pi ∈ NC ∪{
}. This
description can now be translated into an EL description tree GC =
(V, E, v0, �) as follows. The set of all concept names occurring in
the top-level conjunction of C yields the label �(v0) of the root v0,



Nonstandard Inferences in Description Logics 25

r

s

r

r

v′
4:{P}

v′
2:{P} v′

3:{Q}

v′
0:∅

v′
1:∅

G:v0:{P}
r

s

v1:∅

v3:{Q}

s

v5:{P}

r

r

v4:{P}

GC :

v2:{P, Q}

Figure 1. Two EL description trees

and each existential restriction ∃ri.Ci in this conjunction yields an
ri-successor that is the root of the tree corresponding to Ci. For
example, the EL concept description

C := P � ∃r.(∃r.(P � Q) � ∃s.Q) � ∃r.(P � ∃s.P )

yields the tree GC depicted on the left-hand side of Figure 1.
Conversely, every EL description tree G = (V, E, v0, �) can be

translated into an EL concept description CG. Intuitively, the
concept names in the label of v0 yield the concept names in the
top-level conjunction of CG, and each r-successor v of v0 yields an
existential restriction ∃r.C where C is the EL concept description
obtained by translating the subtree of G rooted at v. For a leaf
v ∈ V , the empty label is translated into the top-concept. For ex-
ample, the EL description tree G in Figure 1 yields the EL concept
description

CG = ∃r.(∃r.P � ∃s.Q) � ∃r.P.

These translations preserve the semantics of concept descriptions
in the sense that C ≡ CGC

holds for all EL concept descriptions C.

Definition 4.2. A homomorphism from an EL description
tree H = (VH , EH , w0, �H) into an EL description tree G = (VG, EG,
v0, �G) is a mapping ϕ : VH −→ VG such that
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(1) ϕ(w0) = v0,
(2) �H(v) ⊆ �G(ϕ(v)) for all v ∈ VH , and
(3) ϕ(v)rϕ(w) ∈ EG for all vrw ∈ EH .

Subsumption in EL can be characterized in terms of homo-
morphisms between EL description trees.

Theorem 4.3. Let C, D be EL concept descriptions and GC ,GD

be the corresponding EL description trees. Then C � D if and only
if there exists a homomorphism from GD into GC.

In our example (see Figure 1), the EL concept description CG
subsumes C. Indeed, mapping v′

i to vi for all 0 � i � 4 yields a
homomorphism from G = GCG to GC .

Theorem 4.3 may look like a special case of the characterization
of subsumption between simple conceptual graphs [47], and of the
characterization of containment of conjunctive queries [1]. In the
more general setting of simple conceptual graphs and conjunctive
queries, one considers homomorphisms between graphs, and thus
testing for the existence of a homomorphism is an NP-complete
problem [52]. If one restricts the attention to graphs that are trees,
then testing for the existence of a homomorphism can be realized
in polynomial time using dynamic programming techniques [86].
Thus, Theorem 4.3 implies that subsumption between EL concept
descriptions is a tractable problem, as already mentioned in Sec-
tion 2. The fact that both subsumption in EL and subsumption
of conceptual graphs (containment of conjunctive queries) corre-
sponds to the existence of homomorphisms suggests a stronger
connection between these problems than is actually the case. In
fact, the nodes in conceptual graphs (the variables in conjunctive
queries) stand for individuals whereas the nodes of EL description
trees stand for concepts (i.e., sets of individuals). This seman-
tic difference becomes relevant if one considers cyclic EL TBoxes,
which can be represented by description graphs. In this case,
however, subsumption no longer corresponds to the existence of
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a homomorphism, but to the existence of a so-called simulation
relation [8]. Whereas the existence of a homomorphism is an NP-
complete problem, the existence of a simulation relation can still
be checked in polynomial time. It is only for trees that both
problems are identical, i.e., on trees the existence of a simulation
relation implies the existence of a homomorphism and vice versa,
whereas this does not hold on general graphs.

4.2. Extending the characterization to ALE

To obtain a characterization of subsumption for ALE , we must
first extend EL description trees to ALE description trees. Since
ALE concept descriptions may contain value restrictions in ad-
dition to existential restrictions, ALE description trees have two
types of edges, namely those labeled with a role name r ∈ NR,
which correspond to existential restrictions of the form ∃r.C, and
those labeled with ∀r, which correspond to value restrictions of
the form ∀r.C. Also, we have to allow negated concept names ¬P
and the bottom concept ⊥ in the labels of nodes, in addition to
concept names P ∈ NC . As in the case of EL, there is a one-to-
one correspondence between ALE concept descriptions and ALE
description trees.

It might be tempting to think that the notion of a homomor-
phism can also be extended in such a straightforward way to ALE
description trees as well by just adding the following requirement
to Definition 4.2:

4. ϕ(v)∀r ϕ(w) ∈ EG for all v ∀r w ∈ EH .

Now, using this notion of a homomorphism between ALE descrip-
tion trees, one could try to characterize subsumption as before.
However, this fails for several reasons.

First, we need to take into account implicit facts that are im-
plied by interactions among value restrictions and among value
restrictions and existential restrictions. Consider, for instance,
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Figure 2. Examples illustrating that implicit facts in-
duced by value and existential restrictions must be
taken into account

the ALE concept descriptions and their translations into ALE de-
scription trees depicted in Figure 2. It is easy to see that C � D
and C ′ � D′, but that there exist neither a homomorphism from
GD to GC nor one from GD′ to GC′ . The problem is that C and D
are actually equivalent to ∀r.(P � Q) and that C ′ is equivalent to
∃r.(P � Q) � ∀r.Q, but that this is not reflected in the description
trees.

To make such implicit facts explicit, we have to normalize the
ALE concept descriptions before translating them into ALE de-
scription trees. For this purpose, the following normalization rules
are exhaustively applied to the given ALE concept descriptions:

∀r.E � ∀r.F −→ ∀r.(E � F ),
∀r.E � ∃r.F −→ ∀r.E � ∃r.(E � F ),

∀r.
 −→ 
,
E � 
 −→ E.
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Since each normalization rule preserves equivalence, the result-
ing ALE concept descriptions are equivalent to the original ones.
The rules should be read modulo associativity and commutativ-
ity of conjunction. For instance, ∃r.E � ∀r.F is also turned into
∃r.(E � F ) � ∀r.F .

The above normalization rules are, however, not yet sufficient
to make all implicit facts explicit. This is due to the fact that
an ALE concept description may contain unsatisfiable subdescrip-
tions. In addition to the above normalization rules, we need three
more rules to handle this:

P � ¬P −→ ⊥ for each P ∈ NC ,
∃r.⊥ −→ ⊥,

E � ⊥ −→ ⊥.

Starting with an ALE concept description C, the exhaustive appli-
cation of (both groups of) rules yields an equivalent ALE concept
description in normal form. Given such a normal form, the corre-
sponding ALE description tree is obtain as in the case of EL, with
the obvious adaptations due to the existence of two different kinds
of edges and the fact that the label of a node may be ⊥. We refer
to the ALE description tree corresponding to the normal form of
C as GC .

Unfortunately, even after normalization, the straightforward
adaptation of the notion of a homomorphism from EL description
trees to ALE description trees sketched above does not yield a
sound and complete characterization of subsumption in ALE . As
an example, consider the following ALE concept descriptions:

C := (∀r.∃r.(P � ¬P )) � (∃s.(P � ∃r.Q)),
D := (∀r.(∃r.P � ∃r.¬P )) � (∃s.∃r.Q).

The description D is already in normal form, and the normal
form of C is

C ′ := ∀r.⊥ � ∃s.(P � ∃r.Q).

The corresponding ALE description trees GC and GD are depicted
in Figure 3.
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Figure 3. Example illustrating that the notion of a
homomorphism must be adapted

It is easy to see that there does not exist a homomorphism
in the above sense from GD into GC , although we have C � D.
In particular, the ALE concept description ∃r.P � ∃r.¬P corre-
sponding to the subtree with root w1 of GD subsumes ⊥, which
is the concept description corresponding to the subtree with root
v1 in GC . Therefore, a homomorphism from GD into GC should
be allowed to map the whole tree corresponding to ∃r.P � ∃r.¬P ,
i.e., the nodes w1, w2, w3, onto the tree corresponding to ⊥, i.e.,
onto v1.

The example suggests the following new notion of a homomor-
phism on ALE description trees.

Definition 4.4. A homomorphism from an ALE description
tree H = (VH , EH , w0, �H) into an ALE description tree G =
(VG, EG, v0, �G) is a mapping ϕ : VH −→ VG such that

(1) ϕ(w0) = v0,
(2) �H(v) ⊆ �G(ϕ(v)) or �G(ϕ(v)) = {⊥} for all v ∈ VH ,
(3) for all vrw ∈ EH , either ϕ(v)rϕ(w) ∈ EG, or ϕ(v) = ϕ(w)

and �G(ϕ(v)) = {⊥}, and
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(4) for all v∀rw ∈ EH , either ϕ(v)∀rϕ(w) ∈ EG, or ϕ(v) =
ϕ(w) and �G(ϕ(v)) = {⊥}.

In Figure 3, if we map w0 onto v0; w1, w2, and w3 onto v1;
w4 onto v2; and w5 onto v3, then the above conditions are satis-
fied, i.e., this mapping yields a homomorphism from GD into GC .
With this new notion of a homomorphism between ALE descrip-
tion trees, we can characterize subsumption in ALE in a sound
and complete way.

Theorem 4.5. Let C, D be two ALE concept descriptions and
GC, GD the corresponding ALE description trees. Then C � D if
and only if there exists a homomorphism from GD into GC.

It should be noted that there is a close relationship between
the normalization rules introduced above and some of the rules
employed by tableaux-based subsumption algorithms, as e.g. in-
troduced in [50]. As shown in [50], the propagation of value re-
strictions on existential restrictions may lead to an exponential
blow-up (see the concept descriptions Cn introduced below The-
orem 5.5). Consequently, the size of the normal forms, and thus
also of the description trees, may grow exponentially in the size of
the original ALE concept descriptions. It is easy to see that this
exponential blow-up cannot be avoided: On the one hand, as for
EL, the existence of a homomorphism between ALE description
trees can still be tested in polynomial time. On the other hand,
subsumption in ALE is an NP-complete problem [50].

4.3. Characterization of subsumption
for other DLs

The characterization of subsumption for ALE has been extended
to ALEN in [74]. There, description trees are not used explicitly.
Subsumption is rather characterized directly for the normalized
concept descriptions, by using induction on the role depth of the
descriptions.
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For the sublanguage ALNS of the DL employed by the CLAS-
SIC system [36], which extends ALN by the so-called same-as
operator, subsumption has been characterized in [72]. Due to the
presence of the same-as operator in ALNS, description graphs
instead of description trees are used in this characterization.

For DLs with cyclic TBoxes, subsumption has been charac-
terized for FL0 [4], ALN [70], and EL [8] w.r.t. the three types
of semantics employed for cyclic TBoxes: descriptive semantics,
and greatest and least fixed point semantics. For FL0 and ALN ,
subsumption has been characterized using the language-based ap-
proach (see Section 3.3). For EL, the characterization extends the
approach for EL concept descriptions presented in Section 4.1.
However, instead of homomorphisms between description trees,
simulation relationships on description graphs are employed.

5. The Least Common Subsumer

In this section, we study the existence of the lcs and how it can
be computed (if it exists). Our exposition again concentrates on
ALE . It is based on the results shown in [22]. In addition, we
briefly mention results for other DLs.

As we will see, once the structural characterization of sub-
sumption is in place, it is rather easy to derive algorithms for
computing the lcs. As a warming up exercise, in the following
subsection, we present an lcs algorithm for EL. Its extension to
ALE is described in Section 5.2. An overview of results for other
DLs is provided in Section 5.3.

5.1. The LCS for EL

The characterization of subsumption by homomorphisms allows
us to characterize the lcs by the product of EL description trees.
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Figure 4. The product of EL description trees

Definition 5.1. The product G × H of two EL description
trees G = (VG, EG, v0, �G) and H = (VH , EH , w0, �H) is defined
inductively on the depth of the trees. Let G(v) denote the subtree
of G rooted at v. We define (v0, w0) to be the root of G×H, labeled
with �G(v0) ∩ �H(w0). For each r-successor v of v0 in G and w of
w0 in H, we obtain an r-successor (v, w) of (v0, w0) in G × H that
is the root of the product of G(v) and H(w).

For example, consider the EL description tree GC (Figure 1)
and the EL description tree GD (Figure 4), where GD corresponds
to the EL concept description D := ∃r.(P � ∃r.P � ∃s.Q). The
product GC × GD is depicted on the right-hand side of Figure 4.

Theorem 5.2. Let C, D be two EL concept descriptions and
GC, GD the corresponding EL description trees. Then CGC×GD

is
the lcs of C and D. In particular, the lcs of EL concept descrip-
tions always exists.

In our example, we thus find that the lcs of C = P �∃r.(∃r.(P �
Q) � ∃s.Q) � ∃r.(P � ∃s.P ) and D = ∃r.(P � ∃r.P � ∃s.Q) is

r.(∃r.P � ∃s.Q) � ∃r.(P � ∃s.
).
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The size of the lcs of two EL concept descriptions C, D can be
bounded by the size of GC × GD, which is polynomial in the size
of GC and GD. Since the size of the description tree corresponding
to a given description is linear in the size of the description, we
obtain:

Proposition 5.3. The size of the lcs of two EL concept de-
scriptions C, D is polynomial in the size of C and D, and the lcs
can be computed in polynomial time.

In many applications, however, one is interested in the lcs of
n > 2 concept descriptions C1, . . . , Cn. This lcs can be obtained
from the n-ary product GC1 × · · · × GCn

of their corresponding EL
description trees. Therefore, the size of the lcs can be bounded by
the size of this product. It is not hard to show that in general this
size cannot be polynomially bounded [22, 31].

Proposition 5.4. The size of the lcs of n EL concept descrip-
tions C1, . . . , Cn of size linear in n may grow exponentially in n.

5.2. The LCS for ALE

Just as for EL, the lcs of ALE concept descriptions can be ob-
tain as the product of the corresponding ALE description trees.
However, the definition of the product must be adapted to the
modified notion of a homomorphism. In particular, this definition
must treat leaves with label {⊥} in a special manner. Such a leaf
corresponds to the bottom-concept, and since ⊥ � C for all ALE
concept descriptions C, we have lcs(⊥, C) ≡ C. Thus, our product
operation should be defined such that CG⊥×GC

≡ C.
More precisely, the product G × H of two ALE description

trees G = (VG, EG, v0, �G) and H = (VH , EH , w0, �H) is defined
as follow s. If �G(v0) = {⊥} (�H(w0) = {⊥}), then we define
G×H by replacing each node w in H (v in G) by (v0, w) ( (v, w0) ).
Otherwise, we define G ×H by induction on the depth of the trees
analogously to the definition of the product of ≤ description trees.
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For the ALE description trees depicted in Figure 3, GC × GD

is obtained from GD by replacing w0 by (v0, w0), wi by (v1, wi) for
i = 1, 2, 3, w4 by (v2, w4), and w5 by (v3, w5).2

Theorem 5.5. Let C, D be two ALE concept descriptions and
GC, GD their corresponding ALE description trees. Then CGC×GD

is the lcs of C and D. In particular, the lcs of ALE concept
descriptions always exists.

Unlike EL, the size of the lcs of two ALE concept descriptions
may already grow exponentially. To see this, consider the following
example. Let Cn, n � 1, be defined inductively as

C1 := ∃r.P � ∃r.Q and Cn := ∃r.P � ∃r.Q � ∀r.Cn−1

and let Dn, n � 1, be defined as

D1 := ∃r.(P � Q) and Dn := ∃r.(P � Q � Dn−1).

Note that the size of the normal form of Cn grows exponentially
in n. It is easy to verify that the lcs of Cn and Dn is equivalent to
the concept description En where

E1 := ∃r.P � ∃r.Q and En := ∃r.(P � En−1) � ∃r.(Q � En−1).

The size of En grows exponentially in n. It is not hard to check
that there does not exist a smaller concept description equivalent
to the lcs of Cn and Dn. Hence we obtain:

Proposition 5.6. The size of the lcs of two ALE concept
descriptions C, D may be exponential in the size of C, D.

The above example suggests that, by employing structure shar-
ing, the size of the lcs can be reduced. However, in general this is
not the case. More specifically, it was shown in [31] that even if
equivalent sub-concept descriptions of the lcs can be represented
as defined concepts in an acyclic TBox, the representation of the
lcs may still grow exponentially.

2 Note that this is a somewhat atypical example since in this case C is
subsumed by D, and thus the lcs is equivalent to D.
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5.3. The LCS for other DLs

Based on the structural characterization of subsumption for the
DLs mentioned in Section 4.3, algorithms for computing the lcs
have been employed in a similar manner as illustrated above [74,
72, 17, 7, 5]. Interestingly, for the DL ALNS it has turned out
that the existence of the lcs depends on whether features, i.e., roles
that are restricted to be functional, are interpreted as partial or
total functions. While in the former case, the lcs always exists,
this is not true in the latter case [72]. As mentioned above, for the
DL EL with cyclic TBoxes interpreted with descriptive semantics
the lcs also does not need to exist [5].

6. The Most Specific Concept

As illustrated in Section 3.2, most specific concepts need not exist
for DLs with number restrictions or existential restrictions. There
are two ways to overcome this problem. First, the languages can
be extended to allow for cyclic TBoxes interpreted with the great-
est fixed point semantics. Second, one can resort to approximating
the most specific concept. In the following subsection, we consider
the latter approach in more detail, mainly concentrating on the
simple DL EL. Besides introducing methods for computing ap-
proximations, we will also characterize the existence of the msc.
In Section 6.2, we will summarize results obtained following the
first approach.

6.1. Existence and approximation
of the MSC

The example presented in Section 3.2 illustrates that describing
an msc may require a concept description with infinite role depth.
Such a concept description can be approximated by restricting the
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role depth to a fixed constant k. This leads to the notion of a k-
approximation. In Section 3.3 we have pointed out that the basis
for solving nonstandard inferences is an appropriate characteriza-
tion of the underlying standard inference. For the lcs, this stan-
dard inference is the subsumption problem. In order characterize
the msc and to design algorithms for computing (approximations
of) it, an appropriate characterization of the instance problem is
needed.

After defining k-approximations in Section 6.1.1, we first present
a characterization of the instance problem in Section 6.1.2 and
then, in Section 6.1.3, apply this characterization to compute k-
approximations. All this is done for the simple case that the DL
is EL. Extensions to more expressive DLs are discussed in Sec-
tion 6.1.4. The results presented in this section are mainly based
on [73].

6.1.1. Defining k-Approximations. To give a formal defini-
tion of k-approximations of the msc, we first need to define the
role depth of concept descriptions. The role depth depth(C) of an
EL concept description C is defined as the maximum number of
nested quantifiers in C:

depth(
) = depth(P ) = 0,
depth(C � D) = max(depth(C), depth(D)),

depth(∃r.C) = depth(C) + 1.

Definition 6.1. Let A be an EL-ABox, b an individual in
A, C an EL concept descriptions, and k ∈ N. Then, C is a k-
approximation of b w.r.t. A (msck

EL(b)) if and only if

(1) A |= C(b),
(2) depth(C) � k, and
(3) C � C ′ for all EL concept descriptions C ′ with A |= C ′(b)

and depth(C ′) � k.
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It is an easy consequence of this definition that k-approximations
are unique up to equivalence (if they exist). Thus, we can talk
about the k-approximation of a given individual.

The k-approximation of the individual Narcis in the example
presented in Section 3.2 is the EL concept description

∃loves. . . . .∃loves︸ ︷︷ ︸
k times

.Vain.

6.1.2. Characterizing the instance problem in EL. In or-
der to characterize instance relationships, we need to introduce
description graphs (representing ABoxes) as a generalization of
description trees (representing concept descriptions). An EL de-
scription graph is a labeled graph of the form G = (V, E, �) whose
edges vrw ∈ E are labeled with role names r ∈ NR and whose
nodes v ∈ V are labeled with sets �(v) of concept names from NC .
The empty label corresponds to the top-concept.

Similarly to the translation of EL concept descriptions into EL
description trees, an EL-ABox A is translated into an EL descrip-
tion graph G(A) in the following way. Let Ind(A) denote the set
of all individuals occurring in A. For each a ∈ Ind(A), let

Ca =

⎧⎪⎪⎨
⎪⎪⎩

�
D(a)∈A

D if there exists a concept assertion of the form

D(a) ∈ A,


 otherwise.

Let GCa
= (Va, Ea, a, �a) denote the EL description tree ob-

tained from Ca.3 Without loss of generality we assume that the
sets Va for a ∈ Ind(A) are pairwise disjoint. Then, G(A) =
(V, E, �) is defined as

• V =
⋃

a∈Ind(A) Va,
• E = {arb | r(a, b) ∈ A} ∪

⋃
a∈Ind(A) Ea, and

3 Note that the individual a is defined to be the root of G(Ca); in particular,
this means that a ∈ Va.
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• �(v) = �a(v) for all v ∈ Va.

As an example, consider the EL ABox

A = {(P � ∃s.(Q � ∃r.P � ∃s.
))(a), (P � Q)(b), (∃r.P )(c),
r(a, b), r(a, c), s(b, c)}.

The corresponding EL description graph G(A) is depicted on the
right-hand side of Figure 6.1.2. Later on we will also consider the
EL description tree of

C = ∃s.(Q � ∃r.
) � ∃r.(Q � ∃s.
),

which is depicted on the left-hand side of this figure.
Now, an instance relationship A |= C(a) in EL can be charac-

terized via the existence of a homomorphism from the description
tree of C into the description graph of A, where such homomor-
phisms are defined analogously to the case of homomorphisms be-
tween EL description trees. Given an individual a, we must require
that homomorphism maps the root of the description tree to the
node a in G(A).

Theorem 6.2. Let A be an EL-ABox, a ∈ Ind(A) be an indi-
vidual in A, and C be an EL concept description. Then, A |= C(a)
if and only if there exists a homomorphism ϕ from GC into G(A)
such that ϕ(v0) = a, where v0 is the root of GC.

In our example (Figure 6.1.2), a is an instance of C, since
mapping v0 on a, vi on wi, i = 1, 2, and v3 on b and v4 on c yields
a homomorphism from G(C) into G(A).

As mentioned in Section 4, existence of a homomorphism be-
tween graphs is an NP-complete problem. In the restricted case
of testing for the existence of homomorphisms mapping trees into
graphs, the problem is polynomial [52]. Thus, as a corollary of
Theorem 6.2 , we obtain the following complexity result.

Corollary 6.3. The instance problem for EL can be decided
in polynomial time.
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6.1.3. Computing k-approximations

Our algorithm for computing msck
EL(a) is based on the following

idea. Let T (a,G(A)) denote the tree with root a obtained from
the graph G(A) by unraveling. This tree has a finite branching
factor, but possibly infinitely long paths. Pruning all paths to
length k yields an EL description tree Tk(a,G(A)) of depth � k.
Using Theorem 6.2 and Theorem 4.3, it is easy to show that the
EL concept description CTk(a,G(A)) is equivalent to msck

EL(a). In
addition, we obtain a characterization of the existence of the msc.
The following theorem summarizes the results.

Theorem 6.4. Let A be an EL-ABox, a ∈ Ind(A), and k ∈ N.
Then, CTk(a,G(A)) is the k-approximation of a w.r.t. A. If, starting
from a, no cyclic can be reached in A (i.e., T (a,G(A)) is finite),
then CT (a,G(A)) is the msc of a w.r.t. A; otherwise no msc exists.

As a corollary of this theorem we obtain:

Corollary 6.5. For an EL-ABox A, an individual a ∈ Ind(A),
and k ∈ N, the k-approximation of a w.r.t. A always exists and it
can be computed in time polynomial in the size of A if k is assumed
to be constant, and in exponential time otherwise. The existence
of the msc can be decided in polynomial time. If the msc exists,
then it can be computed in time exponential in the size of A.

Taking the ABox A = {r(a, a), s(a, a)} as an example, it is
easy to see that the size of the k-approximation of A may grow ex-
ponentially in k if no structure sharing is employed. However, this
exponential blow-up can be avoided when the k-approximations
are defined by acyclic TBoxes. The same is true for the msc in
case it exists: Consider, for instance, the ABox which consists of
a sequence a1, . . . , an of n individuals where there is an r and an
s edge from ai to ai+1 for every i.

6.1.4. Extensions to more expressive DLs

So far, not much is known about computing k-approximations of
the msc for DLs more expressible than EL. In [73], the approach
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presented above is extended to the DL EL¬, which extends EL by
the bottom concept ⊥ and primitive negation ¬P . In the following,
we briefly present the ideas behind computing k-approximations
of the msc in EL¬, and discuss the problems that arise when con-
sidering more expressive DLs.

The following example illustrates that a näıve extension of the
approach for EL does not work for EL¬. Consider, for instance,
the following EL¬ concept description C and EL¬ ABox A:

C = P � ∃r.(P � ∃r.¬P )

A = {P (a), P (b1),¬P (b3), r(a, b1), r(a, b2), r(b1, b2), r(b2, b3)}.

The corresponding description tree and graph are depicted in
Figure 6.1.2. Obviously, there does not exist a homomorphism ϕ
from GC into G(A) with ϕ(w0) = a, because neither P ∈ �(b2) nor
¬P ∈ �(b2). For each model I of A, however, either bI

2 ∈ P I or
bI
2 ∈ (¬P )I , and thus aI ∈ CI .

Hence a is an instance of C w.r.t. A even though there does
not exist a homomorphism ϕ from GC into G(A) with ϕ(w0) = a.

The reason for the problem illustrated by the example is that
for the individuals in the ABox it is not always fixed whether they
are instances of a given atomic concept or of its negation. In or-
der to obtain a sound and complete characterization analogous to
Theorem 6.2, we therefore consider all so-called atomic comple-
tions of G(A). An atomic completion of G(A) is obtained from
G(A) by adding, for all concept names P and all nodes whose la-
bel contains neither P nor ¬P , either P or ¬P to the label of this
node.

In [73], it is shown that an individual a of the consistent EL¬-
ABox A is an instance of the EL¬ concept description C if and
only if for every atomic completion G′ of G(A) there exists a ho-
momorphism from GC into G′ that maps the root of GC onto a.

Using this characterization of the instance problem, it is possi-
ble to show that the instance problem for EL¬ is coNP-complete.
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Also, k-approximations can be obtained by unraveling the comple-
tions up to depth k and then taking the lcs of these completions.

Unfortunately, for ALE (or even more expressive DLs), anal-
ogous characterizations of the instance problem are not known.
However, given finite sets of concept and role names, the set of all
ALE concept descriptions of depth � k is finite (up to equivalence)
and can be computed effectively. The fact that ALE allows for
conjunction implies that a k-approximation always exists: it can
be obtained as the conjunction of all concepts (up to equivalence)
of depth � k that have the individual a as an instance. Obviously,
this generic argument also carries over to more expressive DLs,
including ALCN and beyond. However, such an enumeration al-
gorithm is clearly to complex, and thus of no practical use.

6.2. The most specific concept
in the presence of cyclic TBoxes

It has first been shown for cyclic ALN TBoxes [17] and more
recently for cyclic EL TBoxes [7] that the msc always exists if the
TBoxes are interpreted with the greatest fixed point semantics. In
addition, this msc can effectively be computed. In contrast, the
msc need not exist if the TBoxes are interpreted with the least
fixed-point semantics or descriptive semantics. The problem of
computing the msc w.r.t. EL TBoxes interpreted with descriptive
semantics is investigated in interpreted with descriptive semantics,
a polynomial [6, 9].

7. Rewriting

In this section, we review results obtained for computing minimal
rewritings, as defined in Section 3.2. As before, in our exposition
we concentrate on ALE and sublanguages thereof, and comment
on results for other DLs only briefly. As introduced in Section 3.2,
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the minimal rewriting problem is one instance of a more general
rewriting framework. Another instance is approximation, which is
also briefly discussed here.

In the following subsection, we consider the minimal rewrit-
ing decision problem. This will provide us with complexity lower
bounds for the problem of computing minimal rewritings. The
minimal rewriting computation problem itself is covered in Sec-
tion 7.2. Approximation is discussed in Section 7.3. The results
for minimal rewriting presented in this section are based mainly
on the results of [23].

7.1. The minimal rewriting
decision problem

Formulated for ALE , the minimal rewriting decision problem is
concerned with the following question: given an ALE concept de-
scription C, an ALE TBox T , and a nonnegative integer κ, does
there exist an ALE-rewriting E of C using T such that |E| � κ.

Clearly, this problem is decidable in nondeterministic polyno-
mial time using an oracle for deciding equivalence modulo TBoxes
by the following algorithm. First, guess an ALE concept descrip-
tion E of size � κ. Then check whether E is equivalent to C
modulo T .

This simple algorithm yields the following complexity upper
bounds for the minimal rewriting decision problem in ALE . If T
is unfolded, i.e., the right-hand sides of the concept definitions do
not contain defined concepts, we know that equivalence in ALE
is in NP (see Section 2). Otherwise, if we do not assume T to be
unfolded, equivalence is in PSPACE4 since this is even the case for
the larger DL ALC (see Section 2). Hence, for unfolded TBoxes
the minimal rewriting decision problem for ALE is in NP, and
otherwise it is in PSPACE.

4 This is only an upper bound. The exact complexity of the equivalence
problem in ALE with acyclic TBoxes is not known.
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Conversely, it is easy to see that the minimal rewriting decision
problem is at least as hard as deciding subsumption. Let C and
D be ALE concept descriptions, and A, P1, P2 be three different
concept names not occurring in C, D. It is easy to see that C � D
if and only if there exists a minimal rewriting of size � 1 of the
ALE concept description P1 � P1 � C using the TBox T = {A ·=
P1�P2�C�D}. Since subsumption in ALE w.r.t. an (unfolded or
non-unfolded) ALE TBox is NP-hard, it follows that the minimal
rewriting decision problem is NP-hard for ALE .

Theorem 7.1. In ALE, the minimal rewriting decision prob-
lem is NP-complete for unfolded ALE TBoxes. With respect to ar-
bitrary acyclic TBoxes, this problem is NP-hard and in PSPACE.

Clearly, the above arguments also apply to other DLs. For
example, we can use these arguments and the known complexity
results for subsumption and equivalence in ALC to show that the
minimal rewriting decision problem is PSPACE-complete for ALC
(independently of whether the ALC TBox is unfolded or not). It
should be noted, however, that the complexity of the subsump-
tion problem is not the only source of complexity for the minimal
rewriting decision problem. As an optimization problem, the min-
imal rewriting decision problem may also be intractable even if
the subsumption problem is tractable. For example, subsump-
tion w.r.t. unfolded TBoxes in FL0 and ALN is in P, but the
NP-hardness of the minimal rewriting decision problem can nev-
ertheless be shown by a reduction from SETCOVER (see [23] for
details).

7.2. The minimal rewriting
computation problem

Whereas the previous subsection was concerned with deciding
whether there exists a rewriting within a given size bound, this
subsection considers the problem of actually computing minimal
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rewritings. This is called the minimal rewriting computation prob-
lem. Since the minimal rewriting decision problem can obviously
be reduced in polynomial time to the minimal rewriting compu-
tation problem, the lower bounds shown above immediately carry
over to the computation problem.

To be more precise, there are actually two different variants
of the computation problem. For a given instance (C, T ) of the
minimal rewriting computation problem, one can be interested in
computing either (1) one minimal rewriting of C using T , or (2)
all minimal rewritings of C using T .

The hardness results of the previous subsection imply that
even computing one minimal rewriting is in general a hard prob-
lem. In addition, it is easy to see that the number of minimal
rewritings of a concept description C w.r.t. a TBox T can be
exponential in the size of C and T . Consider, for instance, the
concept description

Cn = P1 � . . . � Pn

and the TBox
Tn = {Ai

.= Pi | 1 � i � n}.
The minimal rewritings are of the form

E = Pi1 � · · ·Pik
� Aj1 � · · ·Ajl

,

where l+k = n and {1, . . . , n} = {i1, . . . , ik, j1, . . . , jl}. Obviously,
there are exponentially many such rewritings.

It is very easy to come up with an algorithm for computing
one or all minimal rewritings of a concept description C w.r.t. the
TBox T . Since the size of the minimal rewritings is bounded by
the size of C, one can simply enumerate all concept descriptions
of size less than or equal to the size of C, and check which of
them are equivalent to C w.r.t. T . Those of minimal size are
the minimal rewritings. Clearly, this algorithm works for all DLs
where equivalence w.r.t. a TBox is decidable. However, such a
brute-force enumeration algorithm is clearly too inefficient to be
of any practical interest.
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In what follows, we present a more source-driven algorithm for
ALE which uses the form of C (rather than only the size of C) to
prune the search space.5 The algorithm assumes the concept de-
scription C to be in ∀-normal form. This normal form is obtained
from C (in polynomial time) by exhaustively applying the rule
∀r.E � ∀r.F −→ ∀r.(E � F ) to C. As a result, every conjunction
in C contains at most one value restriction ∀r.D for a given role
r ∈ NR.

Given an ALE concept description C in ∀-normal form and
an ALE TBox T , the algorithm for computing minimal rewritings
works as follows:

(1) Compute an extension C∗ of C w.r.t. T , which adds some
defined concepts to C without changing its meaning.

(2) Compute a reduction Ĉ of C∗ w.r.t. T , which removes
parts of C∗ without changing its meaning.

(3) Return Ĉ.

It remains to give formal definitions of the notions “extension”
and “reduction.”

Definition 7.2. Let C be an ALE concept description and T
be an ALE TBox. An extension C∗ of C w. r.t. T is an ALE
concept description obtained from C by conjoining defined names
at some positions in C such that C∗ is equivalent to C modulo T .

Obviously, there may exist exponentially many different exten-
sions of C∗, which shows that this step may take exponential time.
Alternatively, we could considered this to be a nondeterministic
step, in which an appropriate extension is guessed.

Informally speaking, a reduction Ĉ of C∗ w.r.t. T is an ALE
concept description obtained from C∗ by “eliminating all redun-
dancies in C∗” such that the resulting concept description is still

5 A similar approach works also for the DL ALN [23].
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equivalent to C∗ modulo T . A concept description may have ex-
ponentially many different reductions, and hence computing re-
ductions may also be considered to be a nondeterministic step.

Before defining the notion of a “reduction” formally, we illus-
trate how our algorithm works by a simple example. Consider the
ALE concept description

C = P � Q � ∀r.P � ∃r.(P � ∃r.Q) � ∃r.(P � ∀r.(Q � ¬Q)),

and the ALE TBox T = { A1
.= ∃r.Q, A2

.= P � ∀r.P, A3
.=

∀r.P }.
The concept description

C∗ = A2 � P � Q � ∀r.P �
∃r.(A1 � P � ∃r.Q) � ∃r.(P � ∀r.(Q � ¬Q))

is an extension of C. A reduction of C∗ can be obtained by elimi-
nating

• P and ∀r.P on the top-level of C∗, because they are redundant
w.r.t. A2;

• P in both of the existential restrictions on the top-level of C∗,
because it is redundant due to the value restriction ∀r.P on
the top-level of C;

• the existential restriction ∃r.Q, because it is redundant w.r.t. A1;
and

• replacing Q � ¬Q by ⊥, since ⊥ is the minimal inconsistent
concept description.

The resulting concept description Ĉ = A2 � Q � ∃r.A1 � ∃r.∀r.⊥
is equivalent to C modulo T , i.e., Ĉ is a rewriting of C using T .
Furthermore, it is easy to see that Ĉ is in fact a minimal rewriting
of C using T .

Before we can define the notion of a “reduction” formally, we
must formalize the notion of a “subdescription.”
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Definition 7.3. The ALE concept description Ĉ is a subde-
scription of the ALE concept description C if and only if it is
equivalent to

(1) Ĉ = C; or
(2) Ĉ = ⊥; or
(3) Ĉ is obtained from C by

• removing some (negated) primitive concept names, value
restrictions, or existential restrictions on the top-level of
C, and

• for all remaining value/existential restrictions ∀r.D/∃r.D

replacing D by a subdescription D̂ of D.

The subdescription Ĉ of C is a proper subdescription of C if
and only if it is different from C.

Now, reductions can be defined as follows:

Definition 7.4. Let C∗ be an ALE concept description and
T be an ALE TBox. The ALE concept description Ĉ is called
a reduction of C∗ w.r.t. T if and only if Ĉ is equivalent to C∗

w.r.t. T and minimal in the following sense: there does not exist a
proper subdescription of Ĉ that is also equivalent to C∗ w.r.t. T .

Note that, in the definition of a reduction, we do not allow
removal of defined concepts unless they occur within value or ex-
istential restrictions that are removed as a whole. This makes
sense since such defined concepts could have been omitted in the
first place when computing the extension C∗ of C.

From the definition of a reduction, it is not immediately clear
how to actually compute one. Intuitively, a reduction Ĉ of an ALE
concept C∗ in ∀-normal form is computed in a top-down manner.
If C ≡T ⊥, then Ĉ := ⊥. Otherwise, let ∀r.C ′ be the (unique!)
value restriction on the role r and A1 � . . . � An the conjunction
of the names of defined concepts on the top-level of C. Basically,
Ĉ is then obtained from C∗ as follows:
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(1) Remove any (negated) primitive concept Q occurring on
the top-level of C∗, if A1 � . . . � An �T Q.

(2) Remove any existential restriction ∃r.C1 occurring on the
top-level of C∗, if
(a) A1 � . . . � An � ∀r.C ′ �T ∃r.C1, or
(b) there is another existential restriction ∃r.C2 on the

top-level of C∗ such that A1 � . . . � An � ∀r.C ′ �
∃r.C2 �T ∃r.C1.

(3) Remove the value restriction ∀r.C ′ if A1 � . . . � An �T
∀r.C ′.

(4) Finally, all concept descriptions D occurring in the re-
maining value and existential restrictions are reduced re-
cursively.

The formal specification of the reduction algorithm given in [23]
is more complex than the informal description given above mainly
for two reasons. First, in (2b) it could be the case that the sub-
sumption relation also holds if the rôles of ∃r.C1 and ∃r.C2 are
exchanged. In this case, one has a choice of which existential re-
striction to remove. If the (recursive) reduction of C1 and C2 yields
descriptions of different size, then we must remove the existential
restriction for the concept with the larger reduction. If, however,
the reductions are of equal size, then we must make a (don’t know)
nondeterministic choice between removing the one or the other.

Second, in (4) we cannot reduce the descriptions D without
considering the context in which they occur. The reduction of
these concepts must take into account the concept C ′ of the top-
level value restriction of C as well as all concepts D′ occurring in
value restrictions of the form ∀r.D′ on the top-level of the defining
concepts for A1, . . . , An. For instance, in our example the removal
of P within the existential restrictions on the top-level of C∗ was
justified by the presence of ∀r.P on the top-level of C∗. For this
purpose, the algorithm described in [23] employs a third input
parameter that takes care of such contexts.
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Theorem 7.5. The rewriting algorithm for ALE defined in
[23] has the following properties:

(1) Every possible output of the algorithm is a rewriting of
the input concept description C using the input TBox T ,
though it need not always be minimal.

(2) The set of all computed rewritings contains all minimal
rewritings of C using T (modulo associativity, commuta-
tivity and idempotence of conjunction, and the equivalence
C � 
 ≡ C).

(3) One minimal rewriting of C w.r.t. T can be computed
using polynomial space.

(4) The set of all minimal rewritings of C w.r.t. T can be
computed in exponential time.

In practice, it often suffices to compute one (not necessarily
minimal, but “small”) rewriting. The sketch of the rewriting algo-
rithm presented above suggests the following greedy algorithm for
computing such a small rewriting. First, compute the extension
C∗ of C in which at all positions of C all possible defined concepts
are conjoined. Then compute just one reduction Ĉ of C∗. This
yields a polynomial-time algorithm—given an oracle for equiva-
lence testing—which does not always return a minimal rewriting,
but nevertheless behaves well in practice, both in terms of the
quality of the returned rewritings and in terms of runtime (see
[23] for more details).

7.3. Approximation

Given two DLs Ls and Ld, an Ld approximation of an Ls concept
description C is an Ld concept description D such that C � D
and D is minimal (w.r.t. subsumption) in Ld with this property.

In [42] the case where Ls is ALC and Ld is ALE was inves-
tigated in detail. It was shown that for every ALC concept de-
scription there exists a unique (up to equivalence) approximation
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in ALE . The size of the ALE approximation may grow exponen-
tially in the size of the given ALC concept description, and it can
be computed in double exponential time.

To measure the information that is lost by using an approxi-
mation rather than the original concept, in [42] the notion of the
difference between concepts has been refined from an early defini-
tion by Teege [91]. Intuitively, the difference between a concept
description C and its approximation is the concept description
that needs to be conjoined to the approximation to obtain a con-
cept description equivalent to C.

8. Matching

The matching problem has been introduced in Section 3.2. In this
section, we sketch how it can be solved. As usual, our exposition
concentrates on the DL ALE . However, we will also comment on
other DLs and on extensions of the basic matching problem. Most
results presented here are based on [18, 71].

In what follows, we first consider the complexity of deciding
whether a given matching problem has a solution (Section 8.1).
In case a matching problem has a solution, we are also interested
in computing a solution. In general, a solvable matching prob-
lem may have several (even infinitely many) solutions. Thus, the
question arises what solutions are actually interesting ones. We
try to answer this question in Section 8.2, where we define a prece-
dence orderings on matchers. This ordering tells us which match-
ers are more interesting than others. Algorithms for computing
such matchers in ALE are presented in Section 8.3.

EL ALE
subsumption P NP-complete
equivalence NP-complete NP-complete

Table 3. Deciding the solvability of matching problems
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A summary of results for matching in other DLs as well as ex-
tensions of the basic matching problem is provided in Section 8.4.

8.1. Deciding matching problems

We study the question of how to decide whether a given matching
problem has a matcher or not, and investigate the complexity of
this problem. For the DLs EL and ALE we obtain the complexity
results summarized in Table 3. The first and the second row of
the table refer to matching modulo subsumption and matching
modulo equivalence respectively.

These results can be obtained as follows: First, note that pat-
terns are not required to contain variables. Consequently, match-
ing modulo subsumption (equivalence) is at least as hard as sub-
sumption (equivalence). Thus, NP-completeness of subsumption
in ALE [50] yields hardness in the second column of Table 3.
Second, for the languages ALE and EL, as already mentioned in
Section 3.2, matching modulo subsumption can be reduced to sub-
sumption: C �? D has a matcher if and only if the substitution
σ�, which replaces every variable by 
, is a matcher of C �? D.
Thus, the known complexity results for subsumption in ALE and
EL [50, 22] complete the first row of Table 3. Third, NP-hardness
of matching modulo equivalence for EL can be shown by a reduc-
tion from SAT. It remains to show that matching modulo equiv-
alence in EL and ALE can in fact be decided in nondeterministic
polynomial time. This is an easy consequence of the following
(nontrivial) lemma [71].

Lemma 8.1. If an EL or ALE matching problem modulo
equivalence has a matcher, then it has one of size polynomially
bounded in the size of the problem. Furthermore, this matcher
uses only concept and role names already contained in the match-
ing problem.

The lemma (together with the known complexity results for
subsumption) shows that the following can be realized in NP:
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“guess” a substitution satisfying the given size bound, and then
test whether it is a matcher.

8.2. Solutions of matching problems

As mentioned above, solvable matching problems may have infin-
itely many solutions. Hence it is necessary to define a class of
“interesting” matchers to be presented to the user. Such a defi-
nition certainly depends on the specific application in mind. Our
definition is motivated by the application in chemical process engi-
neering mentioned before. However, it is general enough to apply
also to other applications.

We use the EL concept description C1
ex and the pattern D1

ex
shown in Figure 8.2 to illustrate and motivate our definitions.
Along with the concept descriptions, Figure 8.2 also depicts the
description trees corresponding to C1

ex and D1
ex as defined in Sec-

tion 4.1, where concept variables are simply dealt with like concept
names.

It is easy to see that the substitution σ� is a matcher of
C1

ex �? D1
ex, and thus this matching problem modulo subsump-

tion is indeed solvable. However, the matcher σ� is obviously not
an interesting one. We are interested in matchers that bring us as
close as possible to the description C1

ex. In this sense, the matcher

σ1 := {X �→ W � ∃hc.W, Y �→ W}

is better than σ�, but still not optimal. In fact,

σ2 := {X �→ W � ∃hc.W � ∃hc.(W � P), Y �→ W � D}

is better than σ1 since it satisfies C1
ex ≡ σ2(D1

ex) � σ1(D1
ex).

We formalize this intuition with the help of the following prece-
dence ordering on matchers. For a given matching problem C �?

D and two matchers σ, τ we define

σ �i τ iff σ(D) � τ(D).
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Here “i” stands for “instance”. Two matchers σ, τ are i-
equivalent (σ ≡i τ) if and only if σ �i τ and τ �i σ. A matcher σ
is called i-minimal if and only if τ �i σ implies τ ≡i σ for every
matcher τ . We are interested in computing i-minimal matchers.
More precisely, we want to obtain at least one i-minimal matcher
for each of the minimal i-equivalence classes (i.e., i-equivalence
classes of i-minimal matchers). Note that, given an i-minimal
matcher σ of a matching problem C �? D, its equivalence class,
i.e., the set of all matchers that are i-equivalent to σ, consists of
the matchers of the problem σ(D) ≡? D.

The matching problem

∃r.A � ∃r.B �? ∃r.X

illustrates that there may in fact be different minimal i-equivalence
classes: mapping X to A and mapping X to B respectively yields
two i-minimal matchers which, however, do not belong to the same
i-equivalence class.

Since an i-equivalence class usually contains more than one
matcher, the question is which ones to prefer within this class. In
our running example, σ2 is a least and therefore i-minimal matcher.
Nevertheless, it is not the one we really want to compute since it
contains redundancies, i.e., expressions that are not really neces-
sary for obtaining the instance σ2(D1

ex) (modulo equivalence). In
fact, σ2 contains two different kinds of redundancies. First, the ex-
istential restriction ∃hc.W in σ2(X) is redundant since removing it
still yields a concept description equivalent to σ2(X). Second, W
in σ2(Y ) is redundant in that the substitution obtained by delet-
ing W from σ2(Y ) still yields the same instance of D1

ex (although
the resulting concept description is no longer equivalent to σ2(Y )).
In our example, the only i-minimal matcher (modulo associativity
and commutativity of concept conjunction) that is free of redun-
dancies in this sense is

σ3 := {X �→ W � ∃hc.(W � P), Y �→ D}.



Nonstandard Inferences in Description Logics 57

W
:

W
om

an
P
:

P
ro

fe
ss

or
D

:
D

oc
to

r
h
c:

ha
s-

ch
ild

v
0
:W

v
1
:W

v
2
:W

,D

v
3
:W

,D
v
4
:W

,P
v
5
:W

,P

h
c

h
c

h
c

h
c

h
c

C
1 ex

:=
W

�
∃h

c.
(W

�
∃h

c.
(W

�
D

)
�
∃h

c.
(W

�
P
))
�
∃h

c.
(W

�
D
�
∃h

c.
(W

�
P
))

D
1 ex

:=
W

�
∃h

c.
(X

�
∃h

c.
(W

�
Y

))
�
∃h

c.
(X

�
Y

)

w
2
:X

,Y

w
3
:W

,Y

w
0
:W

h
c

h
c

h
c

w
1
:X

G C
1 ex

:
G D

1 ex
:

F
ig

u
re

7.
EL

co
nc

ep
t

de
sc

ri
pt

io
n

an
d

pa
tt

er
n,

an
d

th
ei

r
EL

de
sc

ri
pt

io
n

tr
ee

s



58 Franz Baader and Ralf Küsters

Summing up, we want to compute all i-minimal matchers that are
reduced, i.e., free of redundancies. We use the notion of subde-
scriptions introduced above (Definition 7.3) to capture the notion
“reduced” in a formal way. Given two matchers σ, τ of C �? D,
we say that τ is a submatcher of σ if and only if τ(Y ) is a (not
necessarily strict) subdescription of σ(Y ) for all variables Y . If τ
is a submatcher of σ and there is at least one variable X for which
τ(X) is a strict subdescription of σ(X), then we say that τ is a
strict submatcher of σ.

Definition 8.2. The matcher σ of C �? D is i-minimal and
reduced if and only if

(1) σ is i-minimal,
(2) σ is in ∀-normal form, i.e., σ(X) is in ∀-normal form for all

variables X (see Section 7.2 for the definition of ∀-normal
form), and

(3) there does not exist a matcher τ of C �? D that is both
i-equivalent to σ and a strict submatcher of σ.

8.3. Computing matchers

In the previous section, we have identified the set of all i-minimal
and reduced matchers (in ∀-normal form) as the set of “interest-
ing” matchers. We now show how these matchers can be com-
puted. Given a matching problem C �? D, our algorithm for
computing i-minimal and reduced matchers in principle proceeds
as follows:

(1) Compute the set of all i-minimal matchers of C �? D up to
i-equivalence (i.e., one matcher for each i-equivalence class).

(2) For each i-minimal matcher σ computed in the first step, com-
pute the set of all reduced matchers in ∀-normal form up to
commutativity and associativity of conjunction for the prob-
lem σ(D) ≡? D.

If we are interested in matching modulo equivalence instead of
subsumption, we just apply the second step to C ≡? D.
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In the following two subsections, we illustrate the first step of
the algorithm—computing i-minimal matchers—for EL and ALE .
For the second step, we refer the reader to [18, 71]. In particu-
lar, this step involves to show that every solvable ALE matching
problem has a matcher of size polynomially bounded in the size of
the matching problem.

The main results on computing matchers shown in [18, 71] are
summarized in the following theorem. We call a set containing all
i-minimal matchers up to i-equivalence i-complete. Such a set is
called minimal i-complete if it contains only i-minimal matchers.
Similarly, a set containing all reduced matchers in ∀-normal form
(up to commutativity and associativity of conjunction) is called
complete w.r.t. reduction, and it is called minimal if it contains
only reduced matchers.

Theorem 8.3. (1) For a solvable ALE or EL matching prob-
lem modulo subsumption, the cardinality of a (minimal) i-complete
set can be bounded exponentially in the size of the matching prob-
lem. This upper bounds is tight. Furthermore, minimal i-complete
sets can be computed in exponential time in case of EL and in
exponential space in case of ALE. If minimality is not required,
such a set can be computed in exponential time also for ALE.

(2) For a solvable ALE or EL matching problem modulo equiv-
alence, the cardinality of a (minimal) complete set w.r.t. reduc-
tion may grow exponentially in the size of the matching problem.
However, the size of the matchers in this set can polynomially be
bounded. This immediately implies that there exists an exponential
time algorithm for computing minimal complete sets w.r.t. reduc-
tion (both for ALE and EL).

8.3.1. Computing i-minimal matchers in EL
The algorithm for computing i-minimal matchers in EL is based on
the characterization of subsumption via homomorphisms between
description trees presented in Section 4.1.
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Given a matching problem of the form C �? D, our algo-
rithm computes homomorphisms from the description tree GD cor-
responding to D into the description tree GC corresponding to C.
Concept patters are turned into description trees in the obvious
way, i.e., concept variables are dealt with as concept names (see,
for example, Figure 8.2). When computing the homomorphisms
from GD into GC , the variables in GD are ignored. For instance, in
our example, there are six homomorphisms from GD1

ex into GC1
ex .

We will later consider the ones mapping wi onto vi for i = 0, 1, 2,
and w3 onto v3 or w3 onto v4, which we denote by ϕ1 and ϕ2

respectively.
The complete algorithm is depicted in Figure 8. With Cϕ(v)

we denote the EL concept description that corresponds to the EL
description tree rooted at the node ϕ(v) in GC . The algorithm
constructs substitutions τ such that C � τ(D), i.e., there is a
homomorphism from Gτ(D) into GC . This is achieved by first com-
puting all homomorphisms from GD into GC . Assume that the
node v in GD, whose label contains X, is mapped onto the note
w = ϕ(v) of GC . The idea is then to substitute X with the concept
description corresponding to the subtree of GC starting with the
node w = ϕ(v), i.e., with Cϕ(v). The remaining problem is that a
variable X may occur more than once in D. Thus, we cannot sim-
ply define τ(X) as Cϕ(v) where v is such that X occurs in the label
of v. Since there may exist several nodes v with this property, we
take the least common subsumer of the corresponding parts of C.
The reason for taking the least common subsumer is that we want
to compute substitutions that are as specific as possible.

In our example, the homomorphism ϕ1 yields the substitu-
tion τ1:

τ1(X) := lcs{C1
ex,v1

, C1
ex,v2

} ≡ W � ∃hc.(W � P),
τ1(Y ) := lcs{C1

ex,v2
, C1

ex,v3
} ≡ W � D,

whereas ϕ2 yields the substitution τ2:

τ2(X) := lcs{C1
ex,v1

, C1
ex,v2

} ≡ W � ∃hc.(W � P),
τ2(Y ) := lcs{C1

ex,v2
, C1

ex,v4
} ≡ W.
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Input: EL matching problem C �? D.
Output: i-complete set C for C �? D.

C := ∅;
For all homomorphisms ϕ from

GD = (V, E, v0, �) into GC do
Define τ by τ(X) := lcs{Cϕ(v) | X ∈ �(v)}

for all variables X in D;
C := C ∪ {τ};

Figure 8. The EL matching algorithm

Unlike τ1, the substitution τ2 is not i-minimal. Therefore, τ2

will be removed in a post-processing step, which extracts a min-
imal i-complete set from the i-complete one. By applying Theo-
rem 4.3, the following theorem is easy to show:

Theorem 8.4. The algorithm described in Figure 8 always
computes an i-complete set of matchers for a given EL matching
problem modulo subsumption.

8.3.2. Computing i-minimal matchers in ALE

The idea underlying the algorithm for computing i-minimal match-
ers in ALE is similar to the one for EL. Again, we apply the char-
acterization of subsumption by homomorphisms (Theorem 4.5).
One problem is that this characterization requires the subsuming
description to be normalized.6 However, the pattern D contains
variables, and hence the normalization of σ(D) depends on what
is substituted for these variables by the matcher σ. However, this
matcher is exactly what we want to compute in the first place.

Fortunately, Theorem 4.5 can be relaxed as follows. To char-
acterize the subsumption relation C � D, it is not necessary to

6 Recall that, in the case of ALE , the description tree GC of a concept
description C is obtained from the normal form of C.
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normalize D completely. Instead of GD, which is based on the nor-
mal form of D, it suffices to employ the tree G�

D that is obtained
from the so-called 
-normal form of D. This normal form is ob-
tained from D by exhaustively applying the rule ∀r.
 −→ 
. As
an easy consequence of the proof of Theorem 4.5, we obtain the
following corollary:

Corollary 8.5. Let C, D be ALE concept descriptions. Then,
C � D if and only if there exists a homomorphism from G�

D to GC.

Given the ALE matching problem C �? D, the following ex-
ample illustrates that it does not suffice to consider just all homo-
morphisms from G�

D to GC in order to compute an i-complete set.

Example 8.6. Consider the ALE matching problem C2
ex �?

D2
ex, where

C2
ex := (∃r.∀r.Q) � (∃r.∀s.P )

D2
ex := ∃r.(∀r.X � ∀s.Y ).

The description trees corresponding to C2
ex and D2

ex are de-
picted in Figure 8.3. Obviously, σ := {X �→ Q, Y �→ 
} and
τ := {X �→ 
, Y �→ P} are solutions of the matching problem.
However, there is no homomorphism from G�

D2
ex

into GC2
ex . Indeed,

the node w1 can be mapped either to v1 or v2. In the former case,
w2 can be mapped to v3, but then there is no way to map w3. In
the latter case, w3 must be mapped to v4, but then there is no
node w2 can be mapped to.

The problem is that Corollary 8.5 requires the subsumer to be
in 
-normal form. However, the 
-normal form of the instanti-
ated concept pattern depends on the matcher, and thus cannot be
computed in advance. Fortunately, only matchers that substitute
variables by 
 cause problems. Thus, the problem can be fixed by
first guessing which variables are replaced by 
. Replacing these
variables in D by 
 yields a so-called 
-pattern E. Now, instead
of computing all homomorphisms from G�

D into GC , our matching
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algorithm computes for all 
-patterns E of D all homomorphism
from G�

E into GC . With this modification, we obtain:

Theorem 8.7. There is an algorithm that computes an i-
complete set of matchers for a given ALE matching problem mod-
ulo subsumption.

8.4. Matching in other DLs and
extensions of matching

We give only a very brief overview on results for other DLs and on
extensions of matching (see also [71] for a more detailed overview).

Matching has also been considered for the DLs ALN [21],
ALNS [71], and ALN with cyclic TBoxes [71], based on the
characterization of subsumption proved for these DLs.

The basic matching problem, as introduced in Section 3.2, has
been extended in the following two directions. First, matching
where variables are further constrained by side conditions of the
form X � E or X � E (where E is a concept pattern and X is a
concept variable) was first introduced in [37], and further studied
in [21, 10] for the DL ALN .

Second, unification, which extends matching modulo equiva-
lence in that both sides of the equation may contain variables, has
first been introduced in the context of DLs in [25], and studied
there for the DL FL0. It is shown there that unification is consid-
erably more complex than matching: even for the small DL FL0,
deciding whether a given unification problem has a solution or not
is EXPTIME-complete. Later on, these results were extended to
unification in FLtrans, the extension of FL0 by transitive closure of
roles [19], and to the extension of this DL by atomic negation [20].

9. Conclusion and Future Perspectives

Compared to the large body of results for standard inferences in
DLs, the investigation of nonstandard inferences is only at its be-
ginning.
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Nevertheless, for the DLs ALE and ALN and their sublan-
guages, we now have a relatively good understanding of how
to solve nonstandard inferences like computing the least common
subsumer, matching, and rewriting. For these results to be useful
in practice, two more problems must be addressed, though.

First, there is a need for good implementations of the algo-
rithms developed for nonstandard inferences, which must be able
to interact with existing systems implementing standard infer-
ences. The system Sonic [92, 93] is a first step in this direction.
It extends the ontology editor OilEd [32] by implementations of
the nonstandard inferences lcs and approximation, and uses the
system Racer [54] as standard reasoner. There also exist first
implementations of matching algorithms for ALE [41] and ALN
[43].

Second, modern DL systems like FaCT [61] and Racer [54]
are based on very expressive DLs, and there exist large knowl-
edge bases that use this expressive power and can be processed by
these systems [85, 90, 53]. In contrast, results for nonstandard
inferences are currently restricted to rather inexpressive DLs, and
some of these inferences do not even make sense for more expres-
sive DLs.7 In order to allow the user to re-use concepts defined in
such existing expressive knowledge bases and still support the user
with nonstandard inferences, one can either use approximation or
consider nonstandard inferences w.r.t. a background terminology.

To explain these two options in more detail, assume that L2

is an expressive DL, and that L1 is a sublanguage of L2 for which
we know how to compute nonstandard inferences. In the first
case, one first computes the L1 approximation of the concepts ex-
pressed in L2, and then applies the nonstandard inferences in L1.
As mentioned, first results for approximation have been obtained
in [42]. In the second case, one considers a background terminology
T defined in L2. When defining new concepts, the user employs

7 For example, as pointed out before, using the lcs does not make sense in
DLs allowing for disjunction.
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only the sublanguage L1 of L2. However, in addition to primitive
concepts and roles, the concept descriptions written in the DL L1

may also contain names of concepts defined in T . The nonstan-
dard inferences are then defined modulo the TBox T , i.e., instead
of using subsumption between L1 concept descriptions, one uses
subsumption w.r.t. the TBox T . First results for the lcs modulo
background terminologies have been obtained in [30].
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23. F. Baader, R. Küsters, and R. Molitor, Rewriting concepts using
terminologies, In: Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning (KR-2000),
2000, pp. 297–308.
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42. S. Brandt, R. Küsters, and A.-Ya. Turhan, Approximation and dif-
ference in description logics, In: D. Fensel, F. Giunchiglia, D. McGui-
ness, and M.-A. Williams (eds.), Proceedings of the 8th International
Conference on Principles of Knowledge Representation and Reason-
ing (KR2002), San Francisco, CA, Morgan Kaufmann, 2002, pp. 203–
214.

43. S. Brandt and H. Liu, Implementing matching in ALN, In: Pro-
ceedings of the KI-2004 Workshop on Applications of Description
Logics (KI-ADL-04). CEUR Electronic Workshop Proceedings, 2004.
[http://CEUR-WS.org/Vol-115/]

44. S. Brandt and A. -Ya. Turhan, Using nonstandard inferences in
description logics – what does it buy me? In: Proceedings of the
KI-2001 Workshop on Applications of Description Logics (ADL-
01). CEUR Electronic Workshop Proceedings, 2001. [http://CEUR-
WS.org/Vol-44/]

45. P. Bresciani, E. Franconi, and S. Tessaris, Implementing and testing
expressive description logics: Preliminary report, In: Proceedings of
the 1995 Description Logic Workshop (DL-95), 1995, pp. 131–139.

46. M. Buchheit, F. M. Donini, and A. Schaerf, Decidable reasoning in
terminological knowledge representation systems, J. Artif. Intell. Res.
1 (1993), 109–138.



Nonstandard Inferences in Description Logics 71

47. M. Chein and M.-L. Mugnier, Conceptual graphs: Fundamental no-
tions, Revue d’Intelligence Artificielle, 6 (1992), no. 4, 365–406.

48. W. W. Cohen and H. Hirsh, Learning the CLASSIC description log-
ics: Theoretical and experimental results, In: J. Doyle, E. Sandewall,
and P. Torasso (eds.), Proceedings of the 4th International Confer-
ence on the Principles of Knowledge Representation and Reasoning
(KR-94), 1994, pp. 121–133.

49. F. Donini, Complexity of reasoning, In: F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. F. Patel-Schneider (eds.), The
Description Logic Handbook: Theory, Implementation, and Appli-
cations, Cambridge, Cambridge Univ. Press, 2003, pp. 96–136.

50. F. M. Donini, B. Hollunder, M. Lenzerini, A. M. Spaccamela,
D. Nardi, and W. Nutt, The complexity of existential quantification
in concept languages, Artif. Intell., (1992), no. 2–3, 309–327.

51. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, Deduction in
concept languages: From subsumption to instance checking, J. Log.
Comput., 4 (1994), no. 4, 423–452.

52. M. R. Garey and D. S. Johnson, Computers and Intractability –
A guide to NP-completeness. W. H. Freeman and Company, San
Francisco (CA, USA), 1979.
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70. R. Küsters, Characterizing the semantics of terminological cycles in
ALN using .nite automata, In: Proceedings of the 6th International
Conference on Principles of Knowledge Representation and Reason-
ing (KR-98), 1998, pp. 499–510.
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