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Mathematical Problems from Applied Logic I
New Logics for the XXIst Century

Two volumes of the International Mathematical Series present the most
important thematic topics of logic confronting us in this century, includ-
ing problems arising from successful applications areas such as Computer
Science, AI language, etc. etc.

Invited authors — world-known specialists in the field of logic — were
asked to write a chapter (in the form of a survey, a specific problem, or
a point of view) basically outlining

WHAT IS ON MY MIND AS MOST

STRIKING/IMPORTANT/PRESSING

NEED TO BE DONE?



Main Topics

• Nonstandard inferences in description logics; an overview of the
modern state, open problems, and perspectives for future research

• Logic of provability and a list of open problems in informal concepts
of proof, intuitionistic arithmetic, bounded arithmetic, bimodal and
polymodal logics, Magari algebras and Lindenbaum Heyting alge-
bras, interpretability logic and its kin, graded provability algebras

• Logical dynamics: a survey of conceptual issues and open mathe-
matical problems emanating from the recent development of various
“dynamic-epistemic logics” for information update and belief revi-
sion. These systems put many-agent activities at the center stage of
logic, such as speech acts, communication, and general interaction

• The continuing relevance of Turing’s approach to real-world com-
putability and incomputability, and the mathematical modeling of
emergent phenomena. Related open questions of a research interest
in computability theory.

• Door to open: Mathematical logic and cognitive science

• Door to open: Semantics of medieval Arab linguists

• What logics do we need? What are logical systems and what should
they be? What is a proof? What foundations do we need?

• Applied logic: characterization and relation with other trends in
logic, computer science, and mathematics
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Ralf Küsters
Institut für Informatik
und Praktische Mathematik
Christian-Albrechts-Universität zu Kiel
Kiel, Germany

Description logics (DLs) are a successful family of logic-based
knowledge representation formalisms that can be used to represent
the terminological knowledge of an application domain in a struc-
tured and formally well-founded way. DL systems provide their
users with inference procedures that allow to reason about the
represented knowledge. Standard inference problems (such as the
subsumption and the instance problem) are now well-understood.

Mathematical Problems from Applied Logics. New Logics for the XXIst Century.
Edited by Dov M Gabbay et al ./ International Mathematical Series, Springer, 2005

1



2 Franz Baader and Ralf Küsters

Their computational properties (such as decidability and complex-
ity) have been investigated in detail, and modern DL systems are
equipped with highly optimized implementations of these inference
procedures, which—in spite of their high worst-case complexity—
perform quite well in practice.

In applications of DL systems it has turned out that building
and maintaining large DL knowledge bases can be further facil-
itated by procedures for other, nonstandard inference problem,
such as computing the least common subsumer and the most spe-
cific concept, and rewriting and matching of concepts. While the
research concerning these nonstandard inferences is not as mature
as the one for the standard inferences, it has now reached a point
where it makes sense to motivate these inferences within a uniform
application framework, give an overview of the results obtained so
far, describe the remaining open problems, and give perspectives
for future research in this direction.

1. Introduction

Description logics (DLs) [12] are a family of knowledge represen-
tation languages which can be used to represent the terminological
knowledge of an application domain in a structured and formally
well-understood way. The name description logics is motivated by
the fact that, on the one hand, the important notions of the do-
main are described by concept descriptions, i.e., expressions that
are built from atomic concepts (unary predicates) and atomic roles
(binary predicates) using the concept and role constructors pro-
vided by the particular DL. For example, the concept of “a man
that is married to a doctor, and has only happy children” can be
expressed using the concept description

Man � ∃married.Doctor � ∀child.Happy.

On the other hand, DLs differ from their predecessors, such as
semantic networks and frames [84, 79], in that they are equipped
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with a formal, logic-based semantics, which can, for example, be
given by a translation into first-order predicate logic. For example,
the above concept description can be translated into the following
first-order formula (with one free variable x):

Man(x) ∧ ∃y.(married(x, y) ∧ Doctor(y))

∧ ∀y.(child(x, y) → Happy(y)).

In addition to the formalism for describing concepts, DLs usually
also provide their users with means for describing individuals by
stating to which concepts they belong and in which role relation-
ships they participate. For example, the assertions

Man(JOHN), child(JOHN, MARY), Happy(MARY)

state that the individual John has a child Mary, who is happy.
Knowledge representation systems based on description log-

ics (DL systems or DL reasoners) [95, 81] provide their users
with various inference capabilities that deduce implicit knowledge
from the explicitly represented knowledge. Standard inference ser-
vices are subsumption and instance checking. Subsumption allows
the user to determine subconcept-superconcept relationships, and
hence, compute a subconcept-superconcept hierarchy: C is sub-
sumed by D if and only if all instances of C are also instances
of D, i.e., the first description is always interpreted as a subset
of the second description. Instance checking asks whether a given
individual necessarily belongs to a given concept, i.e., whether this
instance relationship logically follows from the descriptions of the
concept and of the individual.

In order to ensure a reasonable and predictable behavior of
a DL reasoner, these inference problems should at least be de-
cidable for the DL employed by the reasoner, and preferably of
low complexity. Consequently, the expressive power of the DL in
question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions
of the application domain can no longer be expressed. Inves-
tigating this trade-off between the expressivity of DLs and the
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complexity of their inference problems has been one of the most
important issues of DL research in the 1990s. As a consequence
of this research, the complexity of reasoning in various DLs of
different expressive power is now well-investigated (see [49] for an
overview of these complexity results). In addition, there are highly
optimized implementations of reasoners for very expressive DLs
[61, 54, 62], which—despite their high worst-case complexity—
behave very well in practice [60, 53].

DLs have been applied in many domains, such as medical in-
formatics, software engineering, configuration of technical systems,
natural language processing, databases, and web-based informa-
tion systems (see Part III of [12] for details on these and other
applications). A recent success story is the use of DLs as ontology
languages [15, 16] for the Semantic Web [33]. In particular, the
W3C recommended ontology web language OWL [64] is based on
an expressive description logic [67, 66].

Editors—such as OilEd [32] and the OWL plug-in of Protègè
[69]—supporting the design of ontologies in various application
domains usually allow their users to access a DL reasoner, which
realizes the aforementioned standard inferences such as subsump-
tion and instance checking. Reasoning is not only useful when
working with “finished” ontologies, it can also support the ontol-
ogy engineer while building an ontology, by pointing out inconsis-
tencies and unwanted consequences. The ontology engineer can
thus use reasoning to check whether the definition of a concept or
the description of an individual makes sense.

However, these standard DL inferences—subsumption and in-
stance checking—provide only little support for actually coming
up with a first version of the definition of a concept. The non-
standard inferences considered in this paper were introduced to
overcome this deficit, by allowing the user to construct new knowl-
edge from the existing one. Our own motivation for investigat-
ing these novel inferences comes from an application in chemical
process engineering where a knowledge base has been built by
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different knowledge engineers over a rather long period of time
[87, 71, 80, 44, 35, 77, 94].

The goal of this paper is

(i) to motivate nonstandard inferences by means of a simple ap-
plication scenario,

(ii) to provide an overview of the results that have been obtained
for nonstandard inferences so far, and

(iii) to explain the main techniques employed for solving these
novel inference problems.

In order to be able to describe the latter in detail, the ex-
position of the techniques is mainly restricted to the DL ALE .
However, we also provide references to results for other DLs.

Structure of the paper

In Section 2, we introduce typical DL constructors and the most
important standard inference problems. In addition, we give a
brief review of the different approaches for solving these inference
problems, and of their complexity in different DLs. In Section 3,
we first motivate the need for nonstandard inferences in a typical
application scenario, and then formally define the most important
nonstandard inferences in description logics. Then, we briefly in-
troduces the techniques used to solve these problems. Since these
techniques depend on a syntactic characterization of the subsump-
tion problem, Section 3 is followed by a section that describes such
a characterization for the DL ALE , which we use as a prototypical
example (Section 4). The next four sections consider the four most
important nonstandard inference problems: computing the least
common subsumer and the most specific concept, rewriting, and
matching. Related nonstandard inferences are briefly discussed in
the respective sections as well. We explain the results on these
four nonstandard inferences in ALE in detail, whereas results for
other DLs are reviewed only briefly. Finally, Section 9 summarizes
the results on nonstandard inferences obtained so far, and gives
perspectives for further research.
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2. Description Logics and
Standard Inferences

In order to define concepts in a DL knowledge base, one starts with
a set NC of concept names (unary predicates) and a set NR of role
names (binary predicates), and defines more complex concept de-
scriptions using the concept constructors provided by the concept
description language of the particular system. In this paper, we
consider the DL ALCN and some of its sublanguages. Concept
descriptions of ALCN are built using the constructors shown in
the first part of Table 1. In this table, r stands for a role name,
n for a nonnegative integer, A for a concept name, and C, D for
arbitrary concept descriptions.

A concept definition A ≡ C (as shown in the second part
of Table 1) assigns a concept name A to a complex description
C. A finite set of such definitions is called a TBox if and only
if it is unambiguous, i.e., each name has at most one definition.
The concept names occurring on the left-hand side of a concept
definition are called defined concepts, and the others primitive. In
many cases, one restricts the attention to acyclic TBoxes, where
the definition of a defined concept A cannot (directly or indirectly)
refer to A itself.

A (concept or role) assertion is of the form shown in the last
part of Table 1. Here, a, b belong to an additional set NI of indi-
vidual names. A finite set of such assertions is called an ABox.

The sublanguages of ALCN that will be considered in this
paper are shown in Table 2. The first column explains the naming
scheme for the members of the AL-family.

The semantics of concept descriptions is defined in terms of
an interpretation I = (∆I , ·I). The domain ∆I of I is a non-
empty set and the interpretation function ·I maps each concept
name A ∈ NC to a set AI ⊆ ∆I , each role name r ∈ NR to a
binary relation rI ⊆ ∆I ×∆I , and each individual name a ∈ NI

to an element aI ∈ ∆I . The extension of ·I to arbitrary concept
descriptions is inductively defined, as shown in the third column
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Name Syntax Semantics
top-concept 
 ∆I

bottom-concept ⊥ ∅
negation ¬C ∆I \ CI

atomic negation ¬A ∆I \ AI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI}
existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
at-least restriction �n r {x ∈ ∆I | �{y | (x, y) ∈ rI} � n}
at-most restriction �n r {x ∈ ∆I | �{y | (x, y) ∈ rI} � n}
concept definition A ≡ C AI = CI

concept assertion C(a) aI ∈ CI

role assertion r(a, b)) (aI , bI) ∈ rI

Table 1. Syntax and semantics of concept descrip-
tions, definitions, and assertions

of Table 1. In the rows treating at-least and at-most number
restrictions, �M denotes the cardinality of a set M .

The interpretation I is a model of the TBox T if it satisfies all
its concept definitions, i.e., AI = CI for all A ≡ C in T , and it is
a model of the ABox A if it satisfies all its assertions, i.e., aI ∈ CI

for all concept assertions C(a) in A and (aI , bI) ∈ rI for all role
assertions r(a, b) in A.

Based on this semantics, we can now formally introduce the
standard inference problems in description logics.

Definition 2.1. Let A be an ABox, T a TBox, C, D concept
descriptions, and a an individual name.

• C is satisfiable w.r.t. T if there is a model I of T such that
CI �= ∅.

• D subsumes C w.r.t. T (C �T D) if CI ⊆ DI for all models
I of T .
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Symbol Syntax ALC ALEN ALE ALN EL FL0

 x x x x x x
⊥ x x x x

AL � x x x x x x
¬A x x x x
∀r.C x x x x x

C ¬C x
E ∃r.C x x x x
U C � D x
N (�n r), (�n r) x x

Table 2. The relevant sublanguages of ALCN

• A is consistent w.r.t. T if there is a model I of T that is also
a model of A.

• a is an instance of C in A w.r.t. T (A, T |= C(a)) if aI ∈ CI

for all models I of T and A.

In case the TBox T is empty, we omit the appendage “w.r.t.
∅.” In particular, we say that D subsumes C and write this as
C � D. Two concept descriptions are equivalent (C ≡ D) if they
subsume each other (w.r.t. the empty TBox), i.e., if C � D and
D � C. We write C � D to express that C � D but D �� C.

If the DL under consideration allows for full negation (C), then
subsumption and satisfiability are interreducable, and the same
is true for the instance and the consistence problem. In addi-
tion, satisfiability (subsumption) can always be reduced to ABox-
consistency (instance checking). This follows from the following
equivalences:

• C �T D if and only if C � ¬D is unsatisfiable w.r.t. T ;
• C is unsatisfiable w.r.t. T if and only if C �T ⊥;
• A, T |= C(a) if and only if A ∪ {¬C(a)} is inconsistent w.r.t.

T ;
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• A is inconsistent w.r.t. T if and only if A, T |= {⊥(a)} where
a is an arbitrary individual name;

• C is satisfiable w.r.t. T if and only if {C(a)} is consistent
where a is an arbitrary individual name;

• C �T D if and only if {C(a)}, T |= D(a) where a is an arbi-
trary individual name.

If the TBox T is acyclic, then reasoning w.r.t. T can be re-
duced to reasoning w.r.t. the empty TBox by expanding concept
definitions, i.e., by replacing defined concept by their definitions
until all defined concepts have been replaced. This can, however,
result in an exponential blow-up of the problem [82].

Most of the early research on reasoning in DLs concentrated
on the subsumption problem for concept descriptions (i.e., w.r.t.
the empty TBox). For the DLs introduced above, the worst-
case complexity of this problem is well-investigated. Subsump-
tion in ALCN , ALC, and ALEN is PSPACE-complete, whereas
subsumption in ALE is NP-complete. The subsumption problem
for ALN , EL, and FL0 is polynomial (see [49] for references and
additional complexity results for other DLs).

In the presence of an acyclic TBox, the complexity of subsump-
tion may increase, but not in all cases. For example, subsumption
w.r.t. an acyclic TBox in FL0 is coNP-complete [82], but it re-
mains polynomial in EL [8] and PSPACE-complete in ALCN [75].
Cyclic TBoxes may increase the complexity of the subsumption
problem even further (for example, for FL0 to PSPACE [4, 68]),
but again not in all cases (for example, for EL, subsumption w.r.t.
cyclic TBoxes remains polynomial [8]).

In most cases, the complexity of the instance problem is the
same as the complexity of the subsumption problem (for example,
in ALCN [57] and EL [7]), but in some cases it may be harder
(for example, in ALE , where it is PSPACE-complete [51]).

The original KLone system [40] as well as its early succes-
sor systems (such as Back [83], KRep [78], and Loom [76])
employed so-called structural subsumption algorithms, which first



10 Franz Baader and Ralf Küsters

normalize the concept descriptions, and then recursively compare
the syntactic structure of the normalized descriptions. These al-
gorithms are usually very efficient (polynomial), but they have
the disadvantage that they are complete only for very inexpres-
sive DLs, i.e., for more expressive DLs they cannot detect all the
existing subsumption relationships. The DL ALN is an example
of a DL where this structural approach yields a polynomial-time
subsumption algorithm (see [27] for a sketch of such an algorithm
and [38] for a detailed description of a structural subsumption
algorithm for an extension of ALN ).

The syntactic characterization of subsumption in EL and ALE
given in Section 4 can in principle also be used to obtain a struc-
tural subsumption algorithm for these DLs. It should be noted,
however, that in the case of ALE the normalization phase is not
polynomial. For EL, the normalization phase is void, but a naive
top-down structural comparison would not result in a determinis-
tic polynomial-time algorithm. To obtain a polynomial subsump-
tion algorithm, one must use a dynamic programming approach,
i.e., work bottom-up. Overall, structural subsumption does not
seem to be the right tool for solving standard inferences for ex-
pressive DLs. However, as we will see, structural subsumption
plays an important role for solving nonstandard inferences.

For expressive DLs (in particular, DLs allowing for disjunc-
tion and/or negation), for which the structural approach does
not lead to complete subsumption algorithms, tableau algorithms
have turned out to be useful: they are complete and often behave
quite well in practice. The first such algorithm was proposed by
Schmidt-Schauß and Smolka [89] for the DL ALC.1 It quickly
turned out that this approach for deciding subsumption can be
extended to various other DLs [59, 58, 13, 2, 55, 46, 11, 28,
65, 67, 29] and also to other inference problems such as the in-
stance problem [56, 51, 57]. Early on, DL researchers started to

1 Actually, at that time the authors were not aware of the close connection
between their rule-based algorithm working on constraint systems and tableau
procedures for modal and first-order predicate logics.
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call the algorithms obtained this way “tableau-based algorithms”
since they observed that the original algorithm by Schmidt-Schauß
and Smolka for ALC, as well as subsequent algorithms for more
expressive DLs, could be seen as specializations of the tableau cal-
culus for first-order predicate logic (the main problem to solve was
to find a specialization that always terminates, and thus yields a
decision procedure).

After Schild [88] showed that ALC is a syntactic variant of
multi-modal K, it turned out that the algorithm by Schmidt-
Schauß and Smolka was actually a re-invention of the tableau
algorithm for K known from modal logics [34].

The first DL systems employing tableau-based algorithms (Kris
[14] and Crack [45]) demonstrated that (in spite of the high
worst-case complexity of the underlying DL ALCN ) such algo-
rithms can be implemented in a practical way. The complexity
barrier has been pushed even further back by the seminal sys-
tem FaCT [61]. Although FaCT employs the very expressive
DL SHIQ, which has an EXPTIME-complete subsumption prob-
lem, its highly optimized tableau-based subsumption algorithm
outperforms the early systems based on structural subsumption
algorithms and Kris by several orders of magnitude [63]. The
equally well-performing system Racer [54] also provides for a
highly-optimized implementation of the ABox-consistency and in-
stance test for an extension of SHIQ.

3. Nonstandard Inferences—Motivation
and Definitions

In this section, we will first motivate the nonstandard inferences
considered in this paper within a uniform application scenario,
in which these inferences are used to support the design of DL
knowledge bases. Then, we give formal definitions of the relevant
nonstandard inferences, and briefly sketch different techniques for
solving them. Each nonstandard inference will be considered in
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more detail in a separate section, where we concentrate on the DL
ALE .

3.1. Motivation

As mentioned in the introduction, the standard DL inferences in-
troduced in Section 2 can already be employed during the design
phase of a DL knowledge base since they allow the knowledge engi-
neer to check whether the definition of a concept make senses (i.e.,
whether the defined concept is satisfiable) and whether it behaves
as expected (i.e., whether the computed subsumption relationships
are the ones intuitively expected).

However, inferences such as subsumption provide no support
for actually coming up with a first version of the definition of a
concept.

The nonstandard inferences introduced in this section can be
used to overcome this deficit, basically by providing two ways of
re-using “old” knowledge when defining new one:

(i) constructing concepts by generalizing from examples, and
(ii) constructing concepts by modifying “similar” ones.

The first approach was introduced as bottom-up construction
of description logic knowledge bases in [17, 22]. Instead of defining
the relevant concepts of an application domain from scratch, this
methodology allows the user to give typical examples of individuals
belonging to the concept to be defined. These individuals are
then generalized to a concept by first computing the most specific
concept (msc) of each individual (i.e., the least concept description
in the available description language that has this individual as
an instance), and then computing the least common subsumer
(lcs) of these concepts (i.e., the least concept description in the
available description language that subsumes all these concepts).
The knowledge engineer can then use the computed concept as a
starting point for the concept definition.
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As a simple example, assume that the knowledge engineer has
already defined the concept of a man and a woman as

Man ≡ Human � Male and Woman ≡ Human � Female,

and now wants to define the concept of a parent, but does not
know how to do this within the available DL (which we assume to
be EL in this example). However, the available ABox

Man(JACK), child(JACK, CAROLINE), Woman(CAROLINE),
Woman(JACKIE), child(JACKIE, JOHN), Man(JOHN)

contains the individuals JACK and JACKIE, of whom the knowl-
edge engineer knows that they are parents. The most specific
concepts of JACK and JACKIE in the given ABox are

Man � ∃child.Woman and Woman � ∃child.Man

respectively and the least common subsumer (in EL) of these two
concepts w.r.t. the definitions of Man and Woman is

Human � ∃child.Human,

which looks like a good starting point for a definition of parent.
In contrast to standard inferences such as subsumption and in-

stance checking, the output of the nonstandard inferences we have
mentioned until now (computing the msc and the lcs) is a concept
description rather than a yes/no answer. In such a setting, it is
important that the returned descriptions are as readable and com-
prehensible as possible. Unfortunately, the descriptions that are
produced by the known algorithms for computing the lcs and the
msc do not satisfy this requirement. The reason is that—like most
algorithms for the standard inference problems—these algorithms
work on expanded concept descriptions, i.e., concept descriptions
that do not contain names defined in the underlying TBox. Conse-
quently, the descriptions that the algorithms produce also do not
use defined concepts, which makes them in many cases large and
hard to read and comprehend. In the above example, this means
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that the definitions of Man and Woman are expanded before ap-
plying the lcs algorithm. If Human also had a definition, then it
would also be expanded, and instead of the concept description
containing Human shown above, the algorithm would return its
expanded version.

This problem can be overcome by rewriting the resulting con-
cept w.r.t. the given TBox. Informally, the problem of rewriting
a concept given a terminology can be stated as follows: given an
acyclic TBox T and a concept description C that does not contain
concept names defined in T , can this description be rewritten into
an equivalent shorter description E by using (some of) the names
defined in T ?

For example, w.r.t. the TBox

Woman ≡ Human � Female,
Man ≡ Human � Male,

Parent ≡ Human � ∃child.Human,

the concept description

Human � ∀child.Female � ∃child.
 � ∀child.Human

can be rewritten to the equivalent concept

Parent � ∀child.Woman.

In order to apply the second approach of constructing con-
cepts by modifying existing ones, one must first find the right
candidates for modification. One way of doing this is to give a
partial description of the concept to be defined as a concept pat-
tern (i.e., a concept description containing variables), and then
look for concept descriptions that match this pattern.

For example, the pattern

Man � ∃child.(Man � X) � ∃spouse.(Woman � X)

looks for descriptions of classes of men whose wife and son share
some characteristic. An example of a concept description matching
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this pattern is

Man � ∃child.(Man � Tall) � ∃spouse.(Woman � Tall).

We refer the reader to [71, 44, 24] for a description of other
possible applications of nonstandard inferences.

3.2. Definitions

In the following, we formally define the most important nonstan-
dard inferences.

Least Common Subsumer

Intuitively, the least common subsumer of a given collection of
concept descriptions is a description that represents the properties
that all the elements of the collection have in common. More
formally, it is the most specific concept description that subsumes
the given descriptions. How this most specific description looks
like, whether it really captures the intuition of representing the
properties common to the input descriptions, and whether it exists
at all strongly depends on the DL under consideration.

Definition 3.1. Let L be a DL. A concept description E of
L is a least common subsumer (lcs) of the concept descriptions
C1, . . . , Cn in L (lcsL(C1, . . . , Cn) for short) if and only if it satisfies

(1) Ci � E for all i = 1, . . . , n, and
(2) E is the least L concept description with this property,

i.e., if E′ is an L concept description satisfying Ci � E′

for all i = 1, . . . , n, then E � E′.

As an easy consequence of this definition, the lcs is unique up
to equivalence, which justifies talking about the lcs. In addition,
the n-ary lcs as defined above can be reduced to the binary lcs
(the case n = 2 above). Indeed, it is easy to see that

lcsL(C1, . . . , Cn) ≡ lcsL(C1, . . . , lcsL(Cn−1, Cn) · · · ).
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Thus, it is enough to devise algorithms for computing the binary
lcs.

It should be noted, however, that the lcs does not always need
to exist. This can have several reasons:

(a) there may not exist a concept description in L satisfying (1)
of the definition (i.e., subsuming C1, . . . , Cn);

(b) there may be several subsumption incomparable minimal con-
cept descriptions satisfying (1) of the definition;

(c) there may be an infinite chain of more and more specific de-
scriptions satisfying (1) of the definition.

Obviously, (a) cannot occur for DLs containing the top con-
cept. It is easy to see that, for DLs allowing for conjunction,
(b) cannot occur. Case (c) is also rare to occur for DLs allow-
ing for conjunction, but this is less obvious to see. Basically, for
many DLs one can use the role depth of the concepts C1, . . . , Cn

to restrict the role depth of (relevant) common subsumers. The
existence of the lcs then follows from the presence of conjunction
and the fact that, up to equivalence, there are only finitely many
concepts over a finite vocabulary having a fixed role depth (see
[30] for more details). An example where case (c) actually occurs
is the DL EL with cyclic terminologies interpreted with descriptive
semantics [5] (see also Section 5.3).

It is clear that in DLs allowing for disjunction, the lcs of
C1, . . . , Cn is their disjunction C1 � . . . � Cn. In this case, the
lcs is not of interest. In fact, as we have said above, the lcs is
supposed to make explicit the properties that the input concepts
have in common. This is, of course, not achieved by writing down
their disjunction. Hence the lcs appears to be useful only in cases
where the DL does not allow for disjunction.

Definition 3.1 is formulated for concept descriptions, i.e., it
does not take a TBox into account. For acyclic TBoxes, this is
not a real restriction since one can first expand the definitions
before computing the lcs, and then apply rewriting to the lcs to
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obtain an equivalent shorter description containing defined con-
cepts. For cyclic TBoxes, expansion is not possible. In addition,
it may be advantageous to use cycles within the definition of the
lcs, i.e., to allow the TBox to be extended by additional (possibly
cyclic) concept definitions [17, 7]. The use of cyclic TBoxes in
this context is also motivated by the most specific concept (see
below).

Most Specific Concept

The most specific concept of a given ABox individual captures all
the properties of the individual that are expressible by a concept
description of the DL under consideration. Again, the form of the
most specific concept and its existence strongly depend on this
DL.

Definition 3.2. Let L be a DL. The L concept description E
is the most specific concept (msc) in L of the individual a in the
L ABox A (mscL(a) for short) if and only if

(1) A |= E(a), and
(2) E is the least L concept description satisfying (i), i.e., if

E′ is an L concept description satisfying A |= E′(a), then
E � E′.

As with the lcs, the msc is unique up to equivalence, if it exists.
In contrast to the lcs, which always exists for the DLs shown in
Table 2, the msc does not always exist in these DLs. This is due
to the presence of so-called role cycles in the ABox.

For example, w.r.t. the ABox

{loves(NARCIS, NARCIS), Vain(NARCIS)},

the individual NARCIS does not have an msc in EL. In fact, assume
that E is the msc of NARCIS. Then E has a finite role depth, i.e.,
a finite maximal number of nestings of existential restrictions. If
this role depth is smaller than n, then E is not subsumed by the
EL concept description
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E′ := ∃loves.· · · ∃loves.︸ ︷︷ ︸
n times

Vain,

in spite of the fact that NARCIS is an instance of E′.
One way to overcome this problem is to allow for cyclic TBoxes

interpreted with greatest fixpoint semantics. In the above exam-
ple, the defined concept

Narcis ≡ Vain � ∃loves.Narcis

is an msc of the individual NARCIS in EL w.r.t. cyclic TBoxes with
greatest fixpoint semantics. In order to employ this approach in
the bottom-up construction of DL knowledge bases, the impact
of such cyclic definitions on the subsumption problem and the
problem of computing the lcs must also be dealt with. In [17] this
is done for ALN , and in [8, 7] for EL.

Another possibility is to approximate the msc by restricting
the attention to concept descriptions whose role depth is bounded
by a fixed number k [48, 73] (see Section 6 for details).

Rewriting

In [23], a very general framework for rewriting in DLs is intro-
duced, which has several interesting instances. In order to intro-
duce this framework, we fix a set NR of role names and a set NP

of primitive concept names.

Definition 3.3. Let Ls, Ld, and Lt be three DLs (the source-,
destination, and TBox-DL respectively). A rewriting problem is
given by

• an Lt TBox T containing only role names from NR and prim-
itive concepts from NP ; the set of defined concepts occurring
in T is denoted by ND;

• an Ls concept description C using only the names from NR

and NP ;
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• a binary relation ρ between Ls and Ld concept descriptions.

An Ld rewriting of C using T is an Ld concept description E
built using role names from NR and concept names from NP ∪ND

such that CρE.
Given an appropriate ordering � on Ld concept descriptions,

a rewriting E is called �-minimal if and only if there does not
exist a rewriting E′ such that E′ ≺ E.

In this paper, we consider one instances of this general frame-
work in more detail, the minimal rewriting problem [23], and
briefly discuss another instance, the approximation problem [42].
The minimal rewriting problem is the instance of the framework
where

• all three DLs are the same language L;
• the TBox T is acyclic;
• the binary relation ρ corresponds to equivalence modulo the

TBox;
• L concept descriptions are ordered by size, i.e., E � E′ if and

only if |E| � |E′|, where the size |E| of a concept description
E is defined to be the number of occurrences of concept and
role names in E.

The approximation problem is the instance of the framework
where

• T is empty, and thus Lt is irrelevant;
• both ρ and � are the subsumption relation �.

Given two DLs Ls and Ld, an Ld approximation of an Ls

concept description C is thus an Ld concept description D such
that C � D and D is minimal (w.r.t. subsumption) in Ld with
this property. Typically, Ld is a less expressive DL than Ls, and
hence, D is the best approximation from above of C in Ld. One
motivation for approximation is to be able to translate a knowl-
edge base expressed in an expressive DL into a knowledge base
expressed in a less expressive DL [23, 42].
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Matching

Before we can define matching, we must define the notion of a pat-
tern. Concept patterns are concept descriptions in which concept
variables (usually denoted by X, Y , etc.) may occur in place of
concept names. However, concept variables may not occur in the
scope of a negation. The main difference between concept names
and concept variables is that the latter can be replaced by concept
descriptions when applying a substitution.

For example,

D := P � X � ∀r.(Y � ∀r.X)

is a concept pattern containing the concept variables X and Y .
By applying the substitution σ := {X �→ Q, Y �→ ∀r.P} to it, we
obtain the concept description

σ(D) = P � Q � ∀r.(∀r.P � ∀r.Q).

Definition 3.4. Let C be a concept description and D a con-
cept pattern. Then C ≡? D is called a matching problem mod-
ulo equivalence and C �? D is called a matching problem modulo
subsumption. The substitution σ is a matcher of the matching
problem C ≡? D (C �? D) if and only if C ≡ σ(D) (C � σ(D)).

Since C � σ(D) if and only if C � σ(D) ≡ C, the match-
ing problem modulo subsumption C �? D can be reduced to the
following matching problem modulo equivalence: C ≡? C � D.
However, in many cases, matching modulo subsumption is sim-
pler than matching modulo equivalence since it can be reduced to
the subsumption problem. If the DL contains 
 and all its con-
structors are monotonic, then C �? D has a matcher if and only if
the substitution σ� that replaces all variables by 
 is a matcher,
i.e., if C � σ�(D).

However, in the context of matching modulo subsumption, one
is usually not interested in an arbitrary solution, but rather in
certain “interesting” ones. One criterion for being interesting is
that the matcher should bring D as close to C as possible, i.e., an
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interesting matcher σ of C �? D should be minimal in that there
does not exist another substitution δ such that C � δ(D) � σ(D)
[37]. Other criteria for defining interesting matchers are discussed
in Section 8.2.

In Section 8, we will briefly mention an extension of matching
modulo equivalence, namely unification, where besides D also C
may contain variables. Given a unification problem of the form
C ≡? D, a substitution σ is a unifier of this problem if and only
if σ(C) ≡ σ(D).

3.3. Techniques

The approaches for solving nonstandard inferences in DLs devel-
oped so far are based on appropriate structural characterizations
of the subsumption or the instance problem. Based on these char-
acterizations, the nonstandard inferences can be characterized as
well, and from these characterizations, approaches solving these
inferences can be deduced.

In the literature, two different approaches for developing struc-
tural characterizations of subsumption have been considered: the
language-based and the tree-based approach.

In the language based approach, one first computes a normal
form that is based on finite or regular sets of words over the alpha-
bet of role names, and then characterizes subsumption by inclusion
relationships between these languages (see, for example, [3, 70]).
In the tree-based approach, concept descriptions are turned into
so-called description trees, and subsumption is then characterized
via the existence of certain homomorphisms between these trees
(see Section 4).

Since the tree-based approach to characterizing subsumption
and solving nonstandard inferences will be considered in detail in
the next sections, we briefly illustrate the language-based approach
for the simple DL FL0 and the nonstandard inferences lcs and
matching.



22 Franz Baader and Ralf Küsters

Using the equivalence

∀r.(C � D) ≡ ∀r.C � ∀r.D

as a rewrite rule from left to right, any FL0 concept description
can be transformed into an equivalent description that is a con-
junction of descriptions of the form ∀r1.· · · ∀rm.A for m � 0 (not
necessarily distinct) role names r1, . . . , rm and a concept name
A. We abbreviate ∀r1.· · · ∀rm.A by ∀r1 . . . rm.A, where r1 . . . rm

is viewed as a word over the alphabet of all role names. In
addition, instead of ∀w1.A � . . . � ∀w�.A we write ∀L.A where
L := {w1, . . . , w�} is a finite set of words over Σ. The term ∀∅.A is
considered to be equivalent to the top concept 
, which means that
it can be added to a conjunction without changing the meaning of
the concept. Using these abbreviations, any pair of FL0 concept
descriptions C, D containing the concept names A1, . . . , Ak can be
rewritten as

C ≡ ∀U1.A1 � . . . � ∀Uk.Ak and D ≡ ∀V1.A1 � . . . � ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role
names. This normal form provides us with the following charac-
terization of subsumption of FL0 concept descriptions [26]:

C � D iff Ui ⊇ Vi for all i, 1 � i � k.

Since the size of the language-based normal forms is polynomial in
the size of the original descriptions, and since the inclusion tests
Ui ⊇ Vi can also be realized in polynomial time, this yields a
polynomial-time decision procedure for subsumption in FL0.

As an easy consequence of this characterization we find that
the lcs E of C, D is of the form

E ≡ ∀(U1 ∩ V1).A1 � . . . � ∀(Uk ∩ Vk).Ak,

and thus can also be computed in polynomial time.
In order to treat matching in FL0 using the language-based

approach, the language-based normal form of FL0 concept de-
scriptions is extended in the obvious way to patterns. Let C be
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an FL0 concept description and D an FL0 concept pattern. We
can write C, D in the form

C ≡ ∀S0,1.A1 � . . . � ∀S0,k.Ak,

D ≡ ∀T0,1.A1 � . . . � ∀T0,k.Ak � ∀T1.X1 � . . . � ∀Tn.Xn,

where A1, . . . , Ak are the concept names and X1, . . . , Xn the con-
cept variables occurring in C, D, and S0,i, T0,i, Tj with i = 1, . . . , k,
j = 1, . . . , n are finite sets of words over the alphabet of all role
names.

In [26] it is shown that the matching problem modulo equiva-
lence C ≡? D has a matcher if and only if for all i = 1, . . . , k, the
linear language equation

S0,i = T0,i ∪ T1X1,i ∪ · · · ∪ TnXn,i

has a solution, i.e., we can substitute the variables Xj,i by finite
languages such that the equation holds.

Solvability of this linear language equation can be decided in
polynomial time since it is sufficient to check whether the following
substitution θ is a solution:

θ(Xj,i) :=
⋂

u∈Tj

u−1S0,i,

where u−1S0,i = {v | uv ∈ S0,i}.
We have used FL0 to sketch how the language based approach

for characterizing subsumption can be used to solve nonstandard
inferences. In the rest of this paper, we will concentrate on the
tree based approach.

4. A Structural Characterization
of Subsumption

As explained in the previous section, the basis for solving non-
standard inferences is an appropriate structural characterization
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of subsumption. In this section, we present the characterization
for the DL ALE given in [22] in detail. Characterizations for other
DLs are discussed only briefly.

The idea underlying the characterization of subsumption be-
tween ALE concept description is as follows. First, the concept
descriptions are presented as edge- and node-labeled trees—called
description trees—in which certain implicit facts have been made
explicit. Then, we show that subsumption between ALE concept
descriptions corresponds to the existence of homomorphisms be-
tween description trees.

As a warming-up, in Section 4.1, we first present the charac-
terization of subsumption for the sublanguage EL of ALE , with
the extension to ALE presented in Section 4.2. We then briefly
discuss characterizations of subsumption for extensions of ALE
and other families of DLs (Section 4.3).

4.1. Getting started —
The characterization for EL

We first introduce EL description trees, and then present the char-
acterization of subsumption.

Definition 4.1. EL description trees are of the form G =
(V, E, v0, �) where G is a tree with root v0 whose edges vrw ∈ E
are labeled with role names r ∈ NR, and whose nodes v ∈ V are
labeled with sets �(v) of concept names from NC . The empty label
corresponds to the top-concept.

Intuitively, such a tree is merely a graphical representation
of the syntax of the concept description. More formally, every
EL concept description C can be written (modulo equivalence) as
C ≡ P1� . . .�Pn�∃r1.C1� . . .�∃rm.Cm with Pi ∈ NC ∪{
}. This
description can now be translated into an EL description tree GC =
(V, E, v0, �) as follows. The set of all concept names occurring in
the top-level conjunction of C yields the label �(v0) of the root v0,
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Figure 1. Two EL description trees

and each existential restriction ∃ri.Ci in this conjunction yields an
ri-successor that is the root of the tree corresponding to Ci. For
example, the EL concept description

C := P � ∃r.(∃r.(P � Q) � ∃s.Q) � ∃r.(P � ∃s.P )

yields the tree GC depicted on the left-hand side of Figure 1.
Conversely, every EL description tree G = (V, E, v0, �) can be

translated into an EL concept description CG. Intuitively, the
concept names in the label of v0 yield the concept names in the
top-level conjunction of CG, and each r-successor v of v0 yields an
existential restriction ∃r.C where C is the EL concept description
obtained by translating the subtree of G rooted at v. For a leaf
v ∈ V , the empty label is translated into the top-concept. For ex-
ample, the EL description tree G in Figure 1 yields the EL concept
description

CG = ∃r.(∃r.P � ∃s.Q) � ∃r.P.

These translations preserve the semantics of concept descriptions
in the sense that C ≡ CGC

holds for all EL concept descriptions C.

Definition 4.2. A homomorphism from an EL description
tree H = (VH , EH , w0, �H) into an EL description tree G = (VG, EG,
v0, �G) is a mapping ϕ : VH −→ VG such that
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(1) ϕ(w0) = v0,
(2) �H(v) ⊆ �G(ϕ(v)) for all v ∈ VH , and
(3) ϕ(v)rϕ(w) ∈ EG for all vrw ∈ EH .

Subsumption in EL can be characterized in terms of homo-
morphisms between EL description trees.

Theorem 4.3. Let C, D be EL concept descriptions and GC ,GD

be the corresponding EL description trees. Then C � D if and only
if there exists a homomorphism from GD into GC.

In our example (see Figure 1), the EL concept description CG
subsumes C. Indeed, mapping v′

i to vi for all 0 � i � 4 yields a
homomorphism from G = GCG to GC .

Theorem 4.3 may look like a special case of the characterization
of subsumption between simple conceptual graphs [47], and of the
characterization of containment of conjunctive queries [1]. In the
more general setting of simple conceptual graphs and conjunctive
queries, one considers homomorphisms between graphs, and thus
testing for the existence of a homomorphism is an NP-complete
problem [52]. If one restricts the attention to graphs that are trees,
then testing for the existence of a homomorphism can be realized
in polynomial time using dynamic programming techniques [86].
Thus, Theorem 4.3 implies that subsumption between EL concept
descriptions is a tractable problem, as already mentioned in Sec-
tion 2. The fact that both subsumption in EL and subsumption
of conceptual graphs (containment of conjunctive queries) corre-
sponds to the existence of homomorphisms suggests a stronger
connection between these problems than is actually the case. In
fact, the nodes in conceptual graphs (the variables in conjunctive
queries) stand for individuals whereas the nodes of EL description
trees stand for concepts (i.e., sets of individuals). This seman-
tic difference becomes relevant if one considers cyclic EL TBoxes,
which can be represented by description graphs. In this case,
however, subsumption no longer corresponds to the existence of
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a homomorphism, but to the existence of a so-called simulation
relation [8]. Whereas the existence of a homomorphism is an NP-
complete problem, the existence of a simulation relation can still
be checked in polynomial time. It is only for trees that both
problems are identical, i.e., on trees the existence of a simulation
relation implies the existence of a homomorphism and vice versa,
whereas this does not hold on general graphs.

4.2. Extending the characterization to ALE

To obtain a characterization of subsumption for ALE , we must
first extend EL description trees to ALE description trees. Since
ALE concept descriptions may contain value restrictions in ad-
dition to existential restrictions, ALE description trees have two
types of edges, namely those labeled with a role name r ∈ NR,
which correspond to existential restrictions of the form ∃r.C, and
those labeled with ∀r, which correspond to value restrictions of
the form ∀r.C. Also, we have to allow negated concept names ¬P
and the bottom concept ⊥ in the labels of nodes, in addition to
concept names P ∈ NC . As in the case of EL, there is a one-to-
one correspondence between ALE concept descriptions and ALE
description trees.

It might be tempting to think that the notion of a homomor-
phism can also be extended in such a straightforward way to ALE
description trees as well by just adding the following requirement
to Definition 4.2:

4. ϕ(v)∀r ϕ(w) ∈ EG for all v ∀r w ∈ EH .

Now, using this notion of a homomorphism between ALE descrip-
tion trees, one could try to characterize subsumption as before.
However, this fails for several reasons.

First, we need to take into account implicit facts that are im-
plied by interactions among value restrictions and among value
restrictions and existential restrictions. Consider, for instance,
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GD′ , D′ = ∃r.(P � Q)GC′ , C ′ = ∃r.P � ∀r.Q

Figure 2. Examples illustrating that implicit facts in-
duced by value and existential restrictions must be
taken into account

the ALE concept descriptions and their translations into ALE de-
scription trees depicted in Figure 2. It is easy to see that C � D
and C ′ � D′, but that there exist neither a homomorphism from
GD to GC nor one from GD′ to GC′ . The problem is that C and D
are actually equivalent to ∀r.(P � Q) and that C ′ is equivalent to
∃r.(P � Q) � ∀r.Q, but that this is not reflected in the description
trees.

To make such implicit facts explicit, we have to normalize the
ALE concept descriptions before translating them into ALE de-
scription trees. For this purpose, the following normalization rules
are exhaustively applied to the given ALE concept descriptions:

∀r.E � ∀r.F −→ ∀r.(E � F ),
∀r.E � ∃r.F −→ ∀r.E � ∃r.(E � F ),

∀r.
 −→ 
,
E � 
 −→ E.
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Since each normalization rule preserves equivalence, the result-
ing ALE concept descriptions are equivalent to the original ones.
The rules should be read modulo associativity and commutativ-
ity of conjunction. For instance, ∃r.E � ∀r.F is also turned into
∃r.(E � F ) � ∀r.F .

The above normalization rules are, however, not yet sufficient
to make all implicit facts explicit. This is due to the fact that
an ALE concept description may contain unsatisfiable subdescrip-
tions. In addition to the above normalization rules, we need three
more rules to handle this:

P � ¬P −→ ⊥ for each P ∈ NC ,
∃r.⊥ −→ ⊥,

E � ⊥ −→ ⊥.

Starting with an ALE concept description C, the exhaustive appli-
cation of (both groups of) rules yields an equivalent ALE concept
description in normal form. Given such a normal form, the corre-
sponding ALE description tree is obtain as in the case of EL, with
the obvious adaptations due to the existence of two different kinds
of edges and the fact that the label of a node may be ⊥. We refer
to the ALE description tree corresponding to the normal form of
C as GC .

Unfortunately, even after normalization, the straightforward
adaptation of the notion of a homomorphism from EL description
trees to ALE description trees sketched above does not yield a
sound and complete characterization of subsumption in ALE . As
an example, consider the following ALE concept descriptions:

C := (∀r.∃r.(P � ¬P )) � (∃s.(P � ∃r.Q)),
D := (∀r.(∃r.P � ∃r.¬P )) � (∃s.∃r.Q).

The description D is already in normal form, and the normal
form of C is

C ′ := ∀r.⊥ � ∃s.(P � ∃r.Q).

The corresponding ALE description trees GC and GD are depicted
in Figure 3.
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∀r s

w0:∅GD:

w1:∅ w4:∅

w2:{P}
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w3:{¬P} w5:{Q}

r

Figure 3. Example illustrating that the notion of a
homomorphism must be adapted

It is easy to see that there does not exist a homomorphism
in the above sense from GD into GC , although we have C � D.
In particular, the ALE concept description ∃r.P � ∃r.¬P corre-
sponding to the subtree with root w1 of GD subsumes ⊥, which
is the concept description corresponding to the subtree with root
v1 in GC . Therefore, a homomorphism from GD into GC should
be allowed to map the whole tree corresponding to ∃r.P � ∃r.¬P ,
i.e., the nodes w1, w2, w3, onto the tree corresponding to ⊥, i.e.,
onto v1.

The example suggests the following new notion of a homomor-
phism on ALE description trees.

Definition 4.4. A homomorphism from an ALE description
tree H = (VH , EH , w0, �H) into an ALE description tree G =
(VG, EG, v0, �G) is a mapping ϕ : VH −→ VG such that

(1) ϕ(w0) = v0,
(2) �H(v) ⊆ �G(ϕ(v)) or �G(ϕ(v)) = {⊥} for all v ∈ VH ,
(3) for all vrw ∈ EH , either ϕ(v)rϕ(w) ∈ EG, or ϕ(v) = ϕ(w)

and �G(ϕ(v)) = {⊥}, and
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(4) for all v∀rw ∈ EH , either ϕ(v)∀rϕ(w) ∈ EG, or ϕ(v) =
ϕ(w) and �G(ϕ(v)) = {⊥}.

In Figure 3, if we map w0 onto v0; w1, w2, and w3 onto v1;
w4 onto v2; and w5 onto v3, then the above conditions are satis-
fied, i.e., this mapping yields a homomorphism from GD into GC .
With this new notion of a homomorphism between ALE descrip-
tion trees, we can characterize subsumption in ALE in a sound
and complete way.

Theorem 4.5. Let C, D be two ALE concept descriptions and
GC, GD the corresponding ALE description trees. Then C � D if
and only if there exists a homomorphism from GD into GC.

It should be noted that there is a close relationship between
the normalization rules introduced above and some of the rules
employed by tableaux-based subsumption algorithms, as e.g. in-
troduced in [50]. As shown in [50], the propagation of value re-
strictions on existential restrictions may lead to an exponential
blow-up (see the concept descriptions Cn introduced below The-
orem 5.5). Consequently, the size of the normal forms, and thus
also of the description trees, may grow exponentially in the size of
the original ALE concept descriptions. It is easy to see that this
exponential blow-up cannot be avoided: On the one hand, as for
EL, the existence of a homomorphism between ALE description
trees can still be tested in polynomial time. On the other hand,
subsumption in ALE is an NP-complete problem [50].

4.3. Characterization of subsumption
for other DLs

The characterization of subsumption for ALE has been extended
to ALEN in [74]. There, description trees are not used explicitly.
Subsumption is rather characterized directly for the normalized
concept descriptions, by using induction on the role depth of the
descriptions.
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For the sublanguage ALNS of the DL employed by the CLAS-
SIC system [36], which extends ALN by the so-called same-as
operator, subsumption has been characterized in [72]. Due to the
presence of the same-as operator in ALNS, description graphs
instead of description trees are used in this characterization.

For DLs with cyclic TBoxes, subsumption has been charac-
terized for FL0 [4], ALN [70], and EL [8] w.r.t. the three types
of semantics employed for cyclic TBoxes: descriptive semantics,
and greatest and least fixed point semantics. For FL0 and ALN ,
subsumption has been characterized using the language-based ap-
proach (see Section 3.3). For EL, the characterization extends the
approach for EL concept descriptions presented in Section 4.1.
However, instead of homomorphisms between description trees,
simulation relationships on description graphs are employed.

5. The Least Common Subsumer

In this section, we study the existence of the lcs and how it can
be computed (if it exists). Our exposition again concentrates on
ALE . It is based on the results shown in [22]. In addition, we
briefly mention results for other DLs.

As we will see, once the structural characterization of sub-
sumption is in place, it is rather easy to derive algorithms for
computing the lcs. As a warming up exercise, in the following
subsection, we present an lcs algorithm for EL. Its extension to
ALE is described in Section 5.2. An overview of results for other
DLs is provided in Section 5.3.

5.1. The LCS for EL

The characterization of subsumption by homomorphisms allows
us to characterize the lcs by the product of EL description trees.
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Figure 4. The product of EL description trees

Definition 5.1. The product G × H of two EL description
trees G = (VG, EG, v0, �G) and H = (VH , EH , w0, �H) is defined
inductively on the depth of the trees. Let G(v) denote the subtree
of G rooted at v. We define (v0, w0) to be the root of G×H, labeled
with �G(v0) ∩ �H(w0). For each r-successor v of v0 in G and w of
w0 in H, we obtain an r-successor (v, w) of (v0, w0) in G × H that
is the root of the product of G(v) and H(w).

For example, consider the EL description tree GC (Figure 1)
and the EL description tree GD (Figure 4), where GD corresponds
to the EL concept description D := ∃r.(P � ∃r.P � ∃s.Q). The
product GC × GD is depicted on the right-hand side of Figure 4.

Theorem 5.2. Let C, D be two EL concept descriptions and
GC, GD the corresponding EL description trees. Then CGC×GD

is
the lcs of C and D. In particular, the lcs of EL concept descrip-
tions always exists.

In our example, we thus find that the lcs of C = P �∃r.(∃r.(P �
Q) � ∃s.Q) � ∃r.(P � ∃s.P ) and D = ∃r.(P � ∃r.P � ∃s.Q) is

r.(∃r.P � ∃s.Q) � ∃r.(P � ∃s.
).
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The size of the lcs of two EL concept descriptions C, D can be
bounded by the size of GC × GD, which is polynomial in the size
of GC and GD. Since the size of the description tree corresponding
to a given description is linear in the size of the description, we
obtain:

Proposition 5.3. The size of the lcs of two EL concept de-
scriptions C, D is polynomial in the size of C and D, and the lcs
can be computed in polynomial time.

In many applications, however, one is interested in the lcs of
n > 2 concept descriptions C1, . . . , Cn. This lcs can be obtained
from the n-ary product GC1 × · · · × GCn

of their corresponding EL
description trees. Therefore, the size of the lcs can be bounded by
the size of this product. It is not hard to show that in general this
size cannot be polynomially bounded [22, 31].

Proposition 5.4. The size of the lcs of n EL concept descrip-
tions C1, . . . , Cn of size linear in n may grow exponentially in n.

5.2. The LCS for ALE

Just as for EL, the lcs of ALE concept descriptions can be ob-
tain as the product of the corresponding ALE description trees.
However, the definition of the product must be adapted to the
modified notion of a homomorphism. In particular, this definition
must treat leaves with label {⊥} in a special manner. Such a leaf
corresponds to the bottom-concept, and since ⊥ � C for all ALE
concept descriptions C, we have lcs(⊥, C) ≡ C. Thus, our product
operation should be defined such that CG⊥×GC

≡ C.
More precisely, the product G × H of two ALE description

trees G = (VG, EG, v0, �G) and H = (VH , EH , w0, �H) is defined
as follow s. If �G(v0) = {⊥} (�H(w0) = {⊥}), then we define
G×H by replacing each node w in H (v in G) by (v0, w) ( (v, w0) ).
Otherwise, we define G ×H by induction on the depth of the trees
analogously to the definition of the product of ≤ description trees.
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For the ALE description trees depicted in Figure 3, GC × GD

is obtained from GD by replacing w0 by (v0, w0), wi by (v1, wi) for
i = 1, 2, 3, w4 by (v2, w4), and w5 by (v3, w5).2

Theorem 5.5. Let C, D be two ALE concept descriptions and
GC, GD their corresponding ALE description trees. Then CGC×GD

is the lcs of C and D. In particular, the lcs of ALE concept
descriptions always exists.

Unlike EL, the size of the lcs of two ALE concept descriptions
may already grow exponentially. To see this, consider the following
example. Let Cn, n � 1, be defined inductively as

C1 := ∃r.P � ∃r.Q and Cn := ∃r.P � ∃r.Q � ∀r.Cn−1

and let Dn, n � 1, be defined as

D1 := ∃r.(P � Q) and Dn := ∃r.(P � Q � Dn−1).

Note that the size of the normal form of Cn grows exponentially
in n. It is easy to verify that the lcs of Cn and Dn is equivalent to
the concept description En where

E1 := ∃r.P � ∃r.Q and En := ∃r.(P � En−1) � ∃r.(Q � En−1).

The size of En grows exponentially in n. It is not hard to check
that there does not exist a smaller concept description equivalent
to the lcs of Cn and Dn. Hence we obtain:

Proposition 5.6. The size of the lcs of two ALE concept
descriptions C, D may be exponential in the size of C, D.

The above example suggests that, by employing structure shar-
ing, the size of the lcs can be reduced. However, in general this is
not the case. More specifically, it was shown in [31] that even if
equivalent sub-concept descriptions of the lcs can be represented
as defined concepts in an acyclic TBox, the representation of the
lcs may still grow exponentially.

2 Note that this is a somewhat atypical example since in this case C is
subsumed by D, and thus the lcs is equivalent to D.
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5.3. The LCS for other DLs

Based on the structural characterization of subsumption for the
DLs mentioned in Section 4.3, algorithms for computing the lcs
have been employed in a similar manner as illustrated above [74,
72, 17, 7, 5]. Interestingly, for the DL ALNS it has turned out
that the existence of the lcs depends on whether features, i.e., roles
that are restricted to be functional, are interpreted as partial or
total functions. While in the former case, the lcs always exists,
this is not true in the latter case [72]. As mentioned above, for the
DL EL with cyclic TBoxes interpreted with descriptive semantics
the lcs also does not need to exist [5].

6. The Most Specific Concept

As illustrated in Section 3.2, most specific concepts need not exist
for DLs with number restrictions or existential restrictions. There
are two ways to overcome this problem. First, the languages can
be extended to allow for cyclic TBoxes interpreted with the great-
est fixed point semantics. Second, one can resort to approximating
the most specific concept. In the following subsection, we consider
the latter approach in more detail, mainly concentrating on the
simple DL EL. Besides introducing methods for computing ap-
proximations, we will also characterize the existence of the msc.
In Section 6.2, we will summarize results obtained following the
first approach.

6.1. Existence and approximation
of the MSC

The example presented in Section 3.2 illustrates that describing
an msc may require a concept description with infinite role depth.
Such a concept description can be approximated by restricting the
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role depth to a fixed constant k. This leads to the notion of a k-
approximation. In Section 3.3 we have pointed out that the basis
for solving nonstandard inferences is an appropriate characteriza-
tion of the underlying standard inference. For the lcs, this stan-
dard inference is the subsumption problem. In order characterize
the msc and to design algorithms for computing (approximations
of) it, an appropriate characterization of the instance problem is
needed.

After defining k-approximations in Section 6.1.1, we first present
a characterization of the instance problem in Section 6.1.2 and
then, in Section 6.1.3, apply this characterization to compute k-
approximations. All this is done for the simple case that the DL
is EL. Extensions to more expressive DLs are discussed in Sec-
tion 6.1.4. The results presented in this section are mainly based
on [73].

6.1.1. Defining k-Approximations. To give a formal defini-
tion of k-approximations of the msc, we first need to define the
role depth of concept descriptions. The role depth depth(C) of an
EL concept description C is defined as the maximum number of
nested quantifiers in C:

depth(
) = depth(P ) = 0,
depth(C � D) = max(depth(C), depth(D)),

depth(∃r.C) = depth(C) + 1.

Definition 6.1. Let A be an EL-ABox, b an individual in
A, C an EL concept descriptions, and k ∈ N. Then, C is a k-
approximation of b w.r.t. A (msck

EL(b)) if and only if

(1) A |= C(b),
(2) depth(C) � k, and
(3) C � C ′ for all EL concept descriptions C ′ with A |= C ′(b)

and depth(C ′) � k.
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It is an easy consequence of this definition that k-approximations
are unique up to equivalence (if they exist). Thus, we can talk
about the k-approximation of a given individual.

The k-approximation of the individual Narcis in the example
presented in Section 3.2 is the EL concept description

∃loves. . . . .∃loves︸ ︷︷ ︸
k times

.Vain.

6.1.2. Characterizing the instance problem in EL. In or-
der to characterize instance relationships, we need to introduce
description graphs (representing ABoxes) as a generalization of
description trees (representing concept descriptions). An EL de-
scription graph is a labeled graph of the form G = (V, E, �) whose
edges vrw ∈ E are labeled with role names r ∈ NR and whose
nodes v ∈ V are labeled with sets �(v) of concept names from NC .
The empty label corresponds to the top-concept.

Similarly to the translation of EL concept descriptions into EL
description trees, an EL-ABox A is translated into an EL descrip-
tion graph G(A) in the following way. Let Ind(A) denote the set
of all individuals occurring in A. For each a ∈ Ind(A), let

Ca =

⎧⎪⎪⎨
⎪⎪⎩

�
D(a)∈A

D if there exists a concept assertion of the form

D(a) ∈ A,


 otherwise.

Let GCa
= (Va, Ea, a, �a) denote the EL description tree ob-

tained from Ca.3 Without loss of generality we assume that the
sets Va for a ∈ Ind(A) are pairwise disjoint. Then, G(A) =
(V, E, �) is defined as

• V =
⋃

a∈Ind(A) Va,
• E = {arb | r(a, b) ∈ A} ∪

⋃
a∈Ind(A) Ea, and

3 Note that the individual a is defined to be the root of G(Ca); in particular,
this means that a ∈ Va.
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• �(v) = �a(v) for all v ∈ Va.

As an example, consider the EL ABox

A = {(P � ∃s.(Q � ∃r.P � ∃s.
))(a), (P � Q)(b), (∃r.P )(c),
r(a, b), r(a, c), s(b, c)}.

The corresponding EL description graph G(A) is depicted on the
right-hand side of Figure 6.1.2. Later on we will also consider the
EL description tree of

C = ∃s.(Q � ∃r.
) � ∃r.(Q � ∃s.
),

which is depicted on the left-hand side of this figure.
Now, an instance relationship A |= C(a) in EL can be charac-

terized via the existence of a homomorphism from the description
tree of C into the description graph of A, where such homomor-
phisms are defined analogously to the case of homomorphisms be-
tween EL description trees. Given an individual a, we must require
that homomorphism maps the root of the description tree to the
node a in G(A).

Theorem 6.2. Let A be an EL-ABox, a ∈ Ind(A) be an indi-
vidual in A, and C be an EL concept description. Then, A |= C(a)
if and only if there exists a homomorphism ϕ from GC into G(A)
such that ϕ(v0) = a, where v0 is the root of GC.

In our example (Figure 6.1.2), a is an instance of C, since
mapping v0 on a, vi on wi, i = 1, 2, and v3 on b and v4 on c yields
a homomorphism from G(C) into G(A).

As mentioned in Section 4, existence of a homomorphism be-
tween graphs is an NP-complete problem. In the restricted case
of testing for the existence of homomorphisms mapping trees into
graphs, the problem is polynomial [52]. Thus, as a corollary of
Theorem 6.2 , we obtain the following complexity result.

Corollary 6.3. The instance problem for EL can be decided
in polynomial time.
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6.1.3. Computing k-approximations

Our algorithm for computing msck
EL(a) is based on the following

idea. Let T (a,G(A)) denote the tree with root a obtained from
the graph G(A) by unraveling. This tree has a finite branching
factor, but possibly infinitely long paths. Pruning all paths to
length k yields an EL description tree Tk(a,G(A)) of depth � k.
Using Theorem 6.2 and Theorem 4.3, it is easy to show that the
EL concept description CTk(a,G(A)) is equivalent to msck

EL(a). In
addition, we obtain a characterization of the existence of the msc.
The following theorem summarizes the results.

Theorem 6.4. Let A be an EL-ABox, a ∈ Ind(A), and k ∈ N.
Then, CTk(a,G(A)) is the k-approximation of a w.r.t. A. If, starting
from a, no cyclic can be reached in A (i.e., T (a,G(A)) is finite),
then CT (a,G(A)) is the msc of a w.r.t. A; otherwise no msc exists.

As a corollary of this theorem we obtain:

Corollary 6.5. For an EL-ABox A, an individual a ∈ Ind(A),
and k ∈ N, the k-approximation of a w.r.t. A always exists and it
can be computed in time polynomial in the size of A if k is assumed
to be constant, and in exponential time otherwise. The existence
of the msc can be decided in polynomial time. If the msc exists,
then it can be computed in time exponential in the size of A.

Taking the ABox A = {r(a, a), s(a, a)} as an example, it is
easy to see that the size of the k-approximation of A may grow ex-
ponentially in k if no structure sharing is employed. However, this
exponential blow-up can be avoided when the k-approximations
are defined by acyclic TBoxes. The same is true for the msc in
case it exists: Consider, for instance, the ABox which consists of
a sequence a1, . . . , an of n individuals where there is an r and an
s edge from ai to ai+1 for every i.

6.1.4. Extensions to more expressive DLs

So far, not much is known about computing k-approximations of
the msc for DLs more expressible than EL. In [73], the approach
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presented above is extended to the DL EL¬, which extends EL by
the bottom concept ⊥ and primitive negation ¬P . In the following,
we briefly present the ideas behind computing k-approximations
of the msc in EL¬, and discuss the problems that arise when con-
sidering more expressive DLs.

The following example illustrates that a näıve extension of the
approach for EL does not work for EL¬. Consider, for instance,
the following EL¬ concept description C and EL¬ ABox A:

C = P � ∃r.(P � ∃r.¬P )

A = {P (a), P (b1),¬P (b3), r(a, b1), r(a, b2), r(b1, b2), r(b2, b3)}.

The corresponding description tree and graph are depicted in
Figure 6.1.2. Obviously, there does not exist a homomorphism ϕ
from GC into G(A) with ϕ(w0) = a, because neither P ∈ �(b2) nor
¬P ∈ �(b2). For each model I of A, however, either bI

2 ∈ P I or
bI
2 ∈ (¬P )I , and thus aI ∈ CI .

Hence a is an instance of C w.r.t. A even though there does
not exist a homomorphism ϕ from GC into G(A) with ϕ(w0) = a.

The reason for the problem illustrated by the example is that
for the individuals in the ABox it is not always fixed whether they
are instances of a given atomic concept or of its negation. In or-
der to obtain a sound and complete characterization analogous to
Theorem 6.2, we therefore consider all so-called atomic comple-
tions of G(A). An atomic completion of G(A) is obtained from
G(A) by adding, for all concept names P and all nodes whose la-
bel contains neither P nor ¬P , either P or ¬P to the label of this
node.

In [73], it is shown that an individual a of the consistent EL¬-
ABox A is an instance of the EL¬ concept description C if and
only if for every atomic completion G′ of G(A) there exists a ho-
momorphism from GC into G′ that maps the root of GC onto a.

Using this characterization of the instance problem, it is possi-
ble to show that the instance problem for EL¬ is coNP-complete.
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Also, k-approximations can be obtained by unraveling the comple-
tions up to depth k and then taking the lcs of these completions.

Unfortunately, for ALE (or even more expressive DLs), anal-
ogous characterizations of the instance problem are not known.
However, given finite sets of concept and role names, the set of all
ALE concept descriptions of depth � k is finite (up to equivalence)
and can be computed effectively. The fact that ALE allows for
conjunction implies that a k-approximation always exists: it can
be obtained as the conjunction of all concepts (up to equivalence)
of depth � k that have the individual a as an instance. Obviously,
this generic argument also carries over to more expressive DLs,
including ALCN and beyond. However, such an enumeration al-
gorithm is clearly to complex, and thus of no practical use.

6.2. The most specific concept
in the presence of cyclic TBoxes

It has first been shown for cyclic ALN TBoxes [17] and more
recently for cyclic EL TBoxes [7] that the msc always exists if the
TBoxes are interpreted with the greatest fixed point semantics. In
addition, this msc can effectively be computed. In contrast, the
msc need not exist if the TBoxes are interpreted with the least
fixed-point semantics or descriptive semantics. The problem of
computing the msc w.r.t. EL TBoxes interpreted with descriptive
semantics is investigated in interpreted with descriptive semantics,
a polynomial [6, 9].

7. Rewriting

In this section, we review results obtained for computing minimal
rewritings, as defined in Section 3.2. As before, in our exposition
we concentrate on ALE and sublanguages thereof, and comment
on results for other DLs only briefly. As introduced in Section 3.2,
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the minimal rewriting problem is one instance of a more general
rewriting framework. Another instance is approximation, which is
also briefly discussed here.

In the following subsection, we consider the minimal rewrit-
ing decision problem. This will provide us with complexity lower
bounds for the problem of computing minimal rewritings. The
minimal rewriting computation problem itself is covered in Sec-
tion 7.2. Approximation is discussed in Section 7.3. The results
for minimal rewriting presented in this section are based mainly
on the results of [23].

7.1. The minimal rewriting
decision problem

Formulated for ALE , the minimal rewriting decision problem is
concerned with the following question: given an ALE concept de-
scription C, an ALE TBox T , and a nonnegative integer κ, does
there exist an ALE-rewriting E of C using T such that |E| � κ.

Clearly, this problem is decidable in nondeterministic polyno-
mial time using an oracle for deciding equivalence modulo TBoxes
by the following algorithm. First, guess an ALE concept descrip-
tion E of size � κ. Then check whether E is equivalent to C
modulo T .

This simple algorithm yields the following complexity upper
bounds for the minimal rewriting decision problem in ALE . If T
is unfolded, i.e., the right-hand sides of the concept definitions do
not contain defined concepts, we know that equivalence in ALE
is in NP (see Section 2). Otherwise, if we do not assume T to be
unfolded, equivalence is in PSPACE4 since this is even the case for
the larger DL ALC (see Section 2). Hence, for unfolded TBoxes
the minimal rewriting decision problem for ALE is in NP, and
otherwise it is in PSPACE.

4 This is only an upper bound. The exact complexity of the equivalence
problem in ALE with acyclic TBoxes is not known.
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Conversely, it is easy to see that the minimal rewriting decision
problem is at least as hard as deciding subsumption. Let C and
D be ALE concept descriptions, and A, P1, P2 be three different
concept names not occurring in C, D. It is easy to see that C � D
if and only if there exists a minimal rewriting of size � 1 of the
ALE concept description P1 � P1 � C using the TBox T = {A ·=
P1�P2�C�D}. Since subsumption in ALE w.r.t. an (unfolded or
non-unfolded) ALE TBox is NP-hard, it follows that the minimal
rewriting decision problem is NP-hard for ALE .

Theorem 7.1. In ALE, the minimal rewriting decision prob-
lem is NP-complete for unfolded ALE TBoxes. With respect to ar-
bitrary acyclic TBoxes, this problem is NP-hard and in PSPACE.

Clearly, the above arguments also apply to other DLs. For
example, we can use these arguments and the known complexity
results for subsumption and equivalence in ALC to show that the
minimal rewriting decision problem is PSPACE-complete for ALC
(independently of whether the ALC TBox is unfolded or not). It
should be noted, however, that the complexity of the subsump-
tion problem is not the only source of complexity for the minimal
rewriting decision problem. As an optimization problem, the min-
imal rewriting decision problem may also be intractable even if
the subsumption problem is tractable. For example, subsump-
tion w.r.t. unfolded TBoxes in FL0 and ALN is in P, but the
NP-hardness of the minimal rewriting decision problem can nev-
ertheless be shown by a reduction from SETCOVER (see [23] for
details).

7.2. The minimal rewriting
computation problem

Whereas the previous subsection was concerned with deciding
whether there exists a rewriting within a given size bound, this
subsection considers the problem of actually computing minimal
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rewritings. This is called the minimal rewriting computation prob-
lem. Since the minimal rewriting decision problem can obviously
be reduced in polynomial time to the minimal rewriting compu-
tation problem, the lower bounds shown above immediately carry
over to the computation problem.

To be more precise, there are actually two different variants
of the computation problem. For a given instance (C, T ) of the
minimal rewriting computation problem, one can be interested in
computing either (1) one minimal rewriting of C using T , or (2)
all minimal rewritings of C using T .

The hardness results of the previous subsection imply that
even computing one minimal rewriting is in general a hard prob-
lem. In addition, it is easy to see that the number of minimal
rewritings of a concept description C w.r.t. a TBox T can be
exponential in the size of C and T . Consider, for instance, the
concept description

Cn = P1 � . . . � Pn

and the TBox
Tn = {Ai

.= Pi | 1 � i � n}.
The minimal rewritings are of the form

E = Pi1 � · · ·Pik
� Aj1 � · · ·Ajl

,

where l+k = n and {1, . . . , n} = {i1, . . . , ik, j1, . . . , jl}. Obviously,
there are exponentially many such rewritings.

It is very easy to come up with an algorithm for computing
one or all minimal rewritings of a concept description C w.r.t. the
TBox T . Since the size of the minimal rewritings is bounded by
the size of C, one can simply enumerate all concept descriptions
of size less than or equal to the size of C, and check which of
them are equivalent to C w.r.t. T . Those of minimal size are
the minimal rewritings. Clearly, this algorithm works for all DLs
where equivalence w.r.t. a TBox is decidable. However, such a
brute-force enumeration algorithm is clearly too inefficient to be
of any practical interest.
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In what follows, we present a more source-driven algorithm for
ALE which uses the form of C (rather than only the size of C) to
prune the search space.5 The algorithm assumes the concept de-
scription C to be in ∀-normal form. This normal form is obtained
from C (in polynomial time) by exhaustively applying the rule
∀r.E � ∀r.F −→ ∀r.(E � F ) to C. As a result, every conjunction
in C contains at most one value restriction ∀r.D for a given role
r ∈ NR.

Given an ALE concept description C in ∀-normal form and
an ALE TBox T , the algorithm for computing minimal rewritings
works as follows:

(1) Compute an extension C∗ of C w.r.t. T , which adds some
defined concepts to C without changing its meaning.

(2) Compute a reduction Ĉ of C∗ w.r.t. T , which removes
parts of C∗ without changing its meaning.

(3) Return Ĉ.

It remains to give formal definitions of the notions “extension”
and “reduction.”

Definition 7.2. Let C be an ALE concept description and T
be an ALE TBox. An extension C∗ of C w. r.t. T is an ALE
concept description obtained from C by conjoining defined names
at some positions in C such that C∗ is equivalent to C modulo T .

Obviously, there may exist exponentially many different exten-
sions of C∗, which shows that this step may take exponential time.
Alternatively, we could considered this to be a nondeterministic
step, in which an appropriate extension is guessed.

Informally speaking, a reduction Ĉ of C∗ w.r.t. T is an ALE
concept description obtained from C∗ by “eliminating all redun-
dancies in C∗” such that the resulting concept description is still

5 A similar approach works also for the DL ALN [23].
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equivalent to C∗ modulo T . A concept description may have ex-
ponentially many different reductions, and hence computing re-
ductions may also be considered to be a nondeterministic step.

Before defining the notion of a “reduction” formally, we illus-
trate how our algorithm works by a simple example. Consider the
ALE concept description

C = P � Q � ∀r.P � ∃r.(P � ∃r.Q) � ∃r.(P � ∀r.(Q � ¬Q)),

and the ALE TBox T = { A1
.= ∃r.Q, A2

.= P � ∀r.P, A3
.=

∀r.P }.
The concept description

C∗ = A2 � P � Q � ∀r.P �
∃r.(A1 � P � ∃r.Q) � ∃r.(P � ∀r.(Q � ¬Q))

is an extension of C. A reduction of C∗ can be obtained by elimi-
nating

• P and ∀r.P on the top-level of C∗, because they are redundant
w.r.t. A2;

• P in both of the existential restrictions on the top-level of C∗,
because it is redundant due to the value restriction ∀r.P on
the top-level of C;

• the existential restriction ∃r.Q, because it is redundant w.r.t. A1;
and

• replacing Q � ¬Q by ⊥, since ⊥ is the minimal inconsistent
concept description.

The resulting concept description Ĉ = A2 � Q � ∃r.A1 � ∃r.∀r.⊥
is equivalent to C modulo T , i.e., Ĉ is a rewriting of C using T .
Furthermore, it is easy to see that Ĉ is in fact a minimal rewriting
of C using T .

Before we can define the notion of a “reduction” formally, we
must formalize the notion of a “subdescription.”



50 Franz Baader and Ralf Küsters

Definition 7.3. The ALE concept description Ĉ is a subde-
scription of the ALE concept description C if and only if it is
equivalent to

(1) Ĉ = C; or
(2) Ĉ = ⊥; or
(3) Ĉ is obtained from C by

• removing some (negated) primitive concept names, value
restrictions, or existential restrictions on the top-level of
C, and

• for all remaining value/existential restrictions ∀r.D/∃r.D

replacing D by a subdescription D̂ of D.

The subdescription Ĉ of C is a proper subdescription of C if
and only if it is different from C.

Now, reductions can be defined as follows:

Definition 7.4. Let C∗ be an ALE concept description and
T be an ALE TBox. The ALE concept description Ĉ is called
a reduction of C∗ w.r.t. T if and only if Ĉ is equivalent to C∗

w.r.t. T and minimal in the following sense: there does not exist a
proper subdescription of Ĉ that is also equivalent to C∗ w.r.t. T .

Note that, in the definition of a reduction, we do not allow
removal of defined concepts unless they occur within value or ex-
istential restrictions that are removed as a whole. This makes
sense since such defined concepts could have been omitted in the
first place when computing the extension C∗ of C.

From the definition of a reduction, it is not immediately clear
how to actually compute one. Intuitively, a reduction Ĉ of an ALE
concept C∗ in ∀-normal form is computed in a top-down manner.
If C ≡T ⊥, then Ĉ := ⊥. Otherwise, let ∀r.C ′ be the (unique!)
value restriction on the role r and A1 � . . . � An the conjunction
of the names of defined concepts on the top-level of C. Basically,
Ĉ is then obtained from C∗ as follows:
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(1) Remove any (negated) primitive concept Q occurring on
the top-level of C∗, if A1 � . . . � An �T Q.

(2) Remove any existential restriction ∃r.C1 occurring on the
top-level of C∗, if
(a) A1 � . . . � An � ∀r.C ′ �T ∃r.C1, or
(b) there is another existential restriction ∃r.C2 on the

top-level of C∗ such that A1 � . . . � An � ∀r.C ′ �
∃r.C2 �T ∃r.C1.

(3) Remove the value restriction ∀r.C ′ if A1 � . . . � An �T
∀r.C ′.

(4) Finally, all concept descriptions D occurring in the re-
maining value and existential restrictions are reduced re-
cursively.

The formal specification of the reduction algorithm given in [23]
is more complex than the informal description given above mainly
for two reasons. First, in (2b) it could be the case that the sub-
sumption relation also holds if the rôles of ∃r.C1 and ∃r.C2 are
exchanged. In this case, one has a choice of which existential re-
striction to remove. If the (recursive) reduction of C1 and C2 yields
descriptions of different size, then we must remove the existential
restriction for the concept with the larger reduction. If, however,
the reductions are of equal size, then we must make a (don’t know)
nondeterministic choice between removing the one or the other.

Second, in (4) we cannot reduce the descriptions D without
considering the context in which they occur. The reduction of
these concepts must take into account the concept C ′ of the top-
level value restriction of C as well as all concepts D′ occurring in
value restrictions of the form ∀r.D′ on the top-level of the defining
concepts for A1, . . . , An. For instance, in our example the removal
of P within the existential restrictions on the top-level of C∗ was
justified by the presence of ∀r.P on the top-level of C∗. For this
purpose, the algorithm described in [23] employs a third input
parameter that takes care of such contexts.
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Theorem 7.5. The rewriting algorithm for ALE defined in
[23] has the following properties:

(1) Every possible output of the algorithm is a rewriting of
the input concept description C using the input TBox T ,
though it need not always be minimal.

(2) The set of all computed rewritings contains all minimal
rewritings of C using T (modulo associativity, commuta-
tivity and idempotence of conjunction, and the equivalence
C � 
 ≡ C).

(3) One minimal rewriting of C w.r.t. T can be computed
using polynomial space.

(4) The set of all minimal rewritings of C w.r.t. T can be
computed in exponential time.

In practice, it often suffices to compute one (not necessarily
minimal, but “small”) rewriting. The sketch of the rewriting algo-
rithm presented above suggests the following greedy algorithm for
computing such a small rewriting. First, compute the extension
C∗ of C in which at all positions of C all possible defined concepts
are conjoined. Then compute just one reduction Ĉ of C∗. This
yields a polynomial-time algorithm—given an oracle for equiva-
lence testing—which does not always return a minimal rewriting,
but nevertheless behaves well in practice, both in terms of the
quality of the returned rewritings and in terms of runtime (see
[23] for more details).

7.3. Approximation

Given two DLs Ls and Ld, an Ld approximation of an Ls concept
description C is an Ld concept description D such that C � D
and D is minimal (w.r.t. subsumption) in Ld with this property.

In [42] the case where Ls is ALC and Ld is ALE was inves-
tigated in detail. It was shown that for every ALC concept de-
scription there exists a unique (up to equivalence) approximation
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in ALE . The size of the ALE approximation may grow exponen-
tially in the size of the given ALC concept description, and it can
be computed in double exponential time.

To measure the information that is lost by using an approxi-
mation rather than the original concept, in [42] the notion of the
difference between concepts has been refined from an early defini-
tion by Teege [91]. Intuitively, the difference between a concept
description C and its approximation is the concept description
that needs to be conjoined to the approximation to obtain a con-
cept description equivalent to C.

8. Matching

The matching problem has been introduced in Section 3.2. In this
section, we sketch how it can be solved. As usual, our exposition
concentrates on the DL ALE . However, we will also comment on
other DLs and on extensions of the basic matching problem. Most
results presented here are based on [18, 71].

In what follows, we first consider the complexity of deciding
whether a given matching problem has a solution (Section 8.1).
In case a matching problem has a solution, we are also interested
in computing a solution. In general, a solvable matching prob-
lem may have several (even infinitely many) solutions. Thus, the
question arises what solutions are actually interesting ones. We
try to answer this question in Section 8.2, where we define a prece-
dence orderings on matchers. This ordering tells us which match-
ers are more interesting than others. Algorithms for computing
such matchers in ALE are presented in Section 8.3.

EL ALE
subsumption P NP-complete
equivalence NP-complete NP-complete

Table 3. Deciding the solvability of matching problems
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A summary of results for matching in other DLs as well as ex-
tensions of the basic matching problem is provided in Section 8.4.

8.1. Deciding matching problems

We study the question of how to decide whether a given matching
problem has a matcher or not, and investigate the complexity of
this problem. For the DLs EL and ALE we obtain the complexity
results summarized in Table 3. The first and the second row of
the table refer to matching modulo subsumption and matching
modulo equivalence respectively.

These results can be obtained as follows: First, note that pat-
terns are not required to contain variables. Consequently, match-
ing modulo subsumption (equivalence) is at least as hard as sub-
sumption (equivalence). Thus, NP-completeness of subsumption
in ALE [50] yields hardness in the second column of Table 3.
Second, for the languages ALE and EL, as already mentioned in
Section 3.2, matching modulo subsumption can be reduced to sub-
sumption: C �? D has a matcher if and only if the substitution
σ�, which replaces every variable by 
, is a matcher of C �? D.
Thus, the known complexity results for subsumption in ALE and
EL [50, 22] complete the first row of Table 3. Third, NP-hardness
of matching modulo equivalence for EL can be shown by a reduc-
tion from SAT. It remains to show that matching modulo equiv-
alence in EL and ALE can in fact be decided in nondeterministic
polynomial time. This is an easy consequence of the following
(nontrivial) lemma [71].

Lemma 8.1. If an EL or ALE matching problem modulo
equivalence has a matcher, then it has one of size polynomially
bounded in the size of the problem. Furthermore, this matcher
uses only concept and role names already contained in the match-
ing problem.

The lemma (together with the known complexity results for
subsumption) shows that the following can be realized in NP:
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“guess” a substitution satisfying the given size bound, and then
test whether it is a matcher.

8.2. Solutions of matching problems

As mentioned above, solvable matching problems may have infin-
itely many solutions. Hence it is necessary to define a class of
“interesting” matchers to be presented to the user. Such a defi-
nition certainly depends on the specific application in mind. Our
definition is motivated by the application in chemical process engi-
neering mentioned before. However, it is general enough to apply
also to other applications.

We use the EL concept description C1
ex and the pattern D1

ex
shown in Figure 8.2 to illustrate and motivate our definitions.
Along with the concept descriptions, Figure 8.2 also depicts the
description trees corresponding to C1

ex and D1
ex as defined in Sec-

tion 4.1, where concept variables are simply dealt with like concept
names.

It is easy to see that the substitution σ� is a matcher of
C1

ex �? D1
ex, and thus this matching problem modulo subsump-

tion is indeed solvable. However, the matcher σ� is obviously not
an interesting one. We are interested in matchers that bring us as
close as possible to the description C1

ex. In this sense, the matcher

σ1 := {X �→ W � ∃hc.W, Y �→ W}

is better than σ�, but still not optimal. In fact,

σ2 := {X �→ W � ∃hc.W � ∃hc.(W � P), Y �→ W � D}

is better than σ1 since it satisfies C1
ex ≡ σ2(D1

ex) � σ1(D1
ex).

We formalize this intuition with the help of the following prece-
dence ordering on matchers. For a given matching problem C �?

D and two matchers σ, τ we define

σ �i τ iff σ(D) � τ(D).
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Here “i” stands for “instance”. Two matchers σ, τ are i-
equivalent (σ ≡i τ) if and only if σ �i τ and τ �i σ. A matcher σ
is called i-minimal if and only if τ �i σ implies τ ≡i σ for every
matcher τ . We are interested in computing i-minimal matchers.
More precisely, we want to obtain at least one i-minimal matcher
for each of the minimal i-equivalence classes (i.e., i-equivalence
classes of i-minimal matchers). Note that, given an i-minimal
matcher σ of a matching problem C �? D, its equivalence class,
i.e., the set of all matchers that are i-equivalent to σ, consists of
the matchers of the problem σ(D) ≡? D.

The matching problem

∃r.A � ∃r.B �? ∃r.X

illustrates that there may in fact be different minimal i-equivalence
classes: mapping X to A and mapping X to B respectively yields
two i-minimal matchers which, however, do not belong to the same
i-equivalence class.

Since an i-equivalence class usually contains more than one
matcher, the question is which ones to prefer within this class. In
our running example, σ2 is a least and therefore i-minimal matcher.
Nevertheless, it is not the one we really want to compute since it
contains redundancies, i.e., expressions that are not really neces-
sary for obtaining the instance σ2(D1

ex) (modulo equivalence). In
fact, σ2 contains two different kinds of redundancies. First, the ex-
istential restriction ∃hc.W in σ2(X) is redundant since removing it
still yields a concept description equivalent to σ2(X). Second, W
in σ2(Y ) is redundant in that the substitution obtained by delet-
ing W from σ2(Y ) still yields the same instance of D1

ex (although
the resulting concept description is no longer equivalent to σ2(Y )).
In our example, the only i-minimal matcher (modulo associativity
and commutativity of concept conjunction) that is free of redun-
dancies in this sense is

σ3 := {X �→ W � ∃hc.(W � P), Y �→ D}.
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Summing up, we want to compute all i-minimal matchers that are
reduced, i.e., free of redundancies. We use the notion of subde-
scriptions introduced above (Definition 7.3) to capture the notion
“reduced” in a formal way. Given two matchers σ, τ of C �? D,
we say that τ is a submatcher of σ if and only if τ(Y ) is a (not
necessarily strict) subdescription of σ(Y ) for all variables Y . If τ
is a submatcher of σ and there is at least one variable X for which
τ(X) is a strict subdescription of σ(X), then we say that τ is a
strict submatcher of σ.

Definition 8.2. The matcher σ of C �? D is i-minimal and
reduced if and only if

(1) σ is i-minimal,
(2) σ is in ∀-normal form, i.e., σ(X) is in ∀-normal form for all

variables X (see Section 7.2 for the definition of ∀-normal
form), and

(3) there does not exist a matcher τ of C �? D that is both
i-equivalent to σ and a strict submatcher of σ.

8.3. Computing matchers

In the previous section, we have identified the set of all i-minimal
and reduced matchers (in ∀-normal form) as the set of “interest-
ing” matchers. We now show how these matchers can be com-
puted. Given a matching problem C �? D, our algorithm for
computing i-minimal and reduced matchers in principle proceeds
as follows:

(1) Compute the set of all i-minimal matchers of C �? D up to
i-equivalence (i.e., one matcher for each i-equivalence class).

(2) For each i-minimal matcher σ computed in the first step, com-
pute the set of all reduced matchers in ∀-normal form up to
commutativity and associativity of conjunction for the prob-
lem σ(D) ≡? D.

If we are interested in matching modulo equivalence instead of
subsumption, we just apply the second step to C ≡? D.
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In the following two subsections, we illustrate the first step of
the algorithm—computing i-minimal matchers—for EL and ALE .
For the second step, we refer the reader to [18, 71]. In particu-
lar, this step involves to show that every solvable ALE matching
problem has a matcher of size polynomially bounded in the size of
the matching problem.

The main results on computing matchers shown in [18, 71] are
summarized in the following theorem. We call a set containing all
i-minimal matchers up to i-equivalence i-complete. Such a set is
called minimal i-complete if it contains only i-minimal matchers.
Similarly, a set containing all reduced matchers in ∀-normal form
(up to commutativity and associativity of conjunction) is called
complete w.r.t. reduction, and it is called minimal if it contains
only reduced matchers.

Theorem 8.3. (1) For a solvable ALE or EL matching prob-
lem modulo subsumption, the cardinality of a (minimal) i-complete
set can be bounded exponentially in the size of the matching prob-
lem. This upper bounds is tight. Furthermore, minimal i-complete
sets can be computed in exponential time in case of EL and in
exponential space in case of ALE. If minimality is not required,
such a set can be computed in exponential time also for ALE.

(2) For a solvable ALE or EL matching problem modulo equiv-
alence, the cardinality of a (minimal) complete set w.r.t. reduc-
tion may grow exponentially in the size of the matching problem.
However, the size of the matchers in this set can polynomially be
bounded. This immediately implies that there exists an exponential
time algorithm for computing minimal complete sets w.r.t. reduc-
tion (both for ALE and EL).

8.3.1. Computing i-minimal matchers in EL
The algorithm for computing i-minimal matchers in EL is based on
the characterization of subsumption via homomorphisms between
description trees presented in Section 4.1.
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Given a matching problem of the form C �? D, our algo-
rithm computes homomorphisms from the description tree GD cor-
responding to D into the description tree GC corresponding to C.
Concept patters are turned into description trees in the obvious
way, i.e., concept variables are dealt with as concept names (see,
for example, Figure 8.2). When computing the homomorphisms
from GD into GC , the variables in GD are ignored. For instance, in
our example, there are six homomorphisms from GD1

ex into GC1
ex .

We will later consider the ones mapping wi onto vi for i = 0, 1, 2,
and w3 onto v3 or w3 onto v4, which we denote by ϕ1 and ϕ2

respectively.
The complete algorithm is depicted in Figure 8. With Cϕ(v)

we denote the EL concept description that corresponds to the EL
description tree rooted at the node ϕ(v) in GC . The algorithm
constructs substitutions τ such that C � τ(D), i.e., there is a
homomorphism from Gτ(D) into GC . This is achieved by first com-
puting all homomorphisms from GD into GC . Assume that the
node v in GD, whose label contains X, is mapped onto the note
w = ϕ(v) of GC . The idea is then to substitute X with the concept
description corresponding to the subtree of GC starting with the
node w = ϕ(v), i.e., with Cϕ(v). The remaining problem is that a
variable X may occur more than once in D. Thus, we cannot sim-
ply define τ(X) as Cϕ(v) where v is such that X occurs in the label
of v. Since there may exist several nodes v with this property, we
take the least common subsumer of the corresponding parts of C.
The reason for taking the least common subsumer is that we want
to compute substitutions that are as specific as possible.

In our example, the homomorphism ϕ1 yields the substitu-
tion τ1:

τ1(X) := lcs{C1
ex,v1

, C1
ex,v2

} ≡ W � ∃hc.(W � P),
τ1(Y ) := lcs{C1

ex,v2
, C1

ex,v3
} ≡ W � D,

whereas ϕ2 yields the substitution τ2:

τ2(X) := lcs{C1
ex,v1

, C1
ex,v2

} ≡ W � ∃hc.(W � P),
τ2(Y ) := lcs{C1

ex,v2
, C1

ex,v4
} ≡ W.
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Input: EL matching problem C �? D.
Output: i-complete set C for C �? D.

C := ∅;
For all homomorphisms ϕ from

GD = (V, E, v0, �) into GC do
Define τ by τ(X) := lcs{Cϕ(v) | X ∈ �(v)}

for all variables X in D;
C := C ∪ {τ};

Figure 8. The EL matching algorithm

Unlike τ1, the substitution τ2 is not i-minimal. Therefore, τ2

will be removed in a post-processing step, which extracts a min-
imal i-complete set from the i-complete one. By applying Theo-
rem 4.3, the following theorem is easy to show:

Theorem 8.4. The algorithm described in Figure 8 always
computes an i-complete set of matchers for a given EL matching
problem modulo subsumption.

8.3.2. Computing i-minimal matchers in ALE

The idea underlying the algorithm for computing i-minimal match-
ers in ALE is similar to the one for EL. Again, we apply the char-
acterization of subsumption by homomorphisms (Theorem 4.5).
One problem is that this characterization requires the subsuming
description to be normalized.6 However, the pattern D contains
variables, and hence the normalization of σ(D) depends on what
is substituted for these variables by the matcher σ. However, this
matcher is exactly what we want to compute in the first place.

Fortunately, Theorem 4.5 can be relaxed as follows. To char-
acterize the subsumption relation C � D, it is not necessary to

6 Recall that, in the case of ALE , the description tree GC of a concept
description C is obtained from the normal form of C.



62 Franz Baader and Ralf Küsters

normalize D completely. Instead of GD, which is based on the nor-
mal form of D, it suffices to employ the tree G�

D that is obtained
from the so-called 
-normal form of D. This normal form is ob-
tained from D by exhaustively applying the rule ∀r.
 −→ 
. As
an easy consequence of the proof of Theorem 4.5, we obtain the
following corollary:

Corollary 8.5. Let C, D be ALE concept descriptions. Then,
C � D if and only if there exists a homomorphism from G�

D to GC.

Given the ALE matching problem C �? D, the following ex-
ample illustrates that it does not suffice to consider just all homo-
morphisms from G�

D to GC in order to compute an i-complete set.

Example 8.6. Consider the ALE matching problem C2
ex �?

D2
ex, where

C2
ex := (∃r.∀r.Q) � (∃r.∀s.P )

D2
ex := ∃r.(∀r.X � ∀s.Y ).

The description trees corresponding to C2
ex and D2

ex are de-
picted in Figure 8.3. Obviously, σ := {X �→ Q, Y �→ 
} and
τ := {X �→ 
, Y �→ P} are solutions of the matching problem.
However, there is no homomorphism from G�

D2
ex

into GC2
ex . Indeed,

the node w1 can be mapped either to v1 or v2. In the former case,
w2 can be mapped to v3, but then there is no way to map w3. In
the latter case, w3 must be mapped to v4, but then there is no
node w2 can be mapped to.

The problem is that Corollary 8.5 requires the subsumer to be
in 
-normal form. However, the 
-normal form of the instanti-
ated concept pattern depends on the matcher, and thus cannot be
computed in advance. Fortunately, only matchers that substitute
variables by 
 cause problems. Thus, the problem can be fixed by
first guessing which variables are replaced by 
. Replacing these
variables in D by 
 yields a so-called 
-pattern E. Now, instead
of computing all homomorphisms from G�

D into GC , our matching
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algorithm computes for all 
-patterns E of D all homomorphism
from G�

E into GC . With this modification, we obtain:

Theorem 8.7. There is an algorithm that computes an i-
complete set of matchers for a given ALE matching problem mod-
ulo subsumption.

8.4. Matching in other DLs and
extensions of matching

We give only a very brief overview on results for other DLs and on
extensions of matching (see also [71] for a more detailed overview).

Matching has also been considered for the DLs ALN [21],
ALNS [71], and ALN with cyclic TBoxes [71], based on the
characterization of subsumption proved for these DLs.

The basic matching problem, as introduced in Section 3.2, has
been extended in the following two directions. First, matching
where variables are further constrained by side conditions of the
form X � E or X � E (where E is a concept pattern and X is a
concept variable) was first introduced in [37], and further studied
in [21, 10] for the DL ALN .

Second, unification, which extends matching modulo equiva-
lence in that both sides of the equation may contain variables, has
first been introduced in the context of DLs in [25], and studied
there for the DL FL0. It is shown there that unification is consid-
erably more complex than matching: even for the small DL FL0,
deciding whether a given unification problem has a solution or not
is EXPTIME-complete. Later on, these results were extended to
unification in FLtrans, the extension of FL0 by transitive closure of
roles [19], and to the extension of this DL by atomic negation [20].

9. Conclusion and Future Perspectives

Compared to the large body of results for standard inferences in
DLs, the investigation of nonstandard inferences is only at its be-
ginning.
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Nevertheless, for the DLs ALE and ALN and their sublan-
guages, we now have a relatively good understanding of how
to solve nonstandard inferences like computing the least common
subsumer, matching, and rewriting. For these results to be useful
in practice, two more problems must be addressed, though.

First, there is a need for good implementations of the algo-
rithms developed for nonstandard inferences, which must be able
to interact with existing systems implementing standard infer-
ences. The system Sonic [92, 93] is a first step in this direction.
It extends the ontology editor OilEd [32] by implementations of
the nonstandard inferences lcs and approximation, and uses the
system Racer [54] as standard reasoner. There also exist first
implementations of matching algorithms for ALE [41] and ALN
[43].

Second, modern DL systems like FaCT [61] and Racer [54]
are based on very expressive DLs, and there exist large knowl-
edge bases that use this expressive power and can be processed by
these systems [85, 90, 53]. In contrast, results for nonstandard
inferences are currently restricted to rather inexpressive DLs, and
some of these inferences do not even make sense for more expres-
sive DLs.7 In order to allow the user to re-use concepts defined in
such existing expressive knowledge bases and still support the user
with nonstandard inferences, one can either use approximation or
consider nonstandard inferences w.r.t. a background terminology.

To explain these two options in more detail, assume that L2

is an expressive DL, and that L1 is a sublanguage of L2 for which
we know how to compute nonstandard inferences. In the first
case, one first computes the L1 approximation of the concepts ex-
pressed in L2, and then applies the nonstandard inferences in L1.
As mentioned, first results for approximation have been obtained
in [42]. In the second case, one considers a background terminology
T defined in L2. When defining new concepts, the user employs

7 For example, as pointed out before, using the lcs does not make sense in
DLs allowing for disjunction.
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only the sublanguage L1 of L2. However, in addition to primitive
concepts and roles, the concept descriptions written in the DL L1

may also contain names of concepts defined in T . The nonstan-
dard inferences are then defined modulo the TBox T , i.e., instead
of using subsumption between L1 concept descriptions, one uses
subsumption w.r.t. the TBox T . First results for the lcs modulo
background terminologies have been obtained in [30].
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18. F. Baader and R. Küsters, Matching in description logics with ex-
istential restrictions, In: Proceedings of the 7th International Con-
ference on Principles of Knowledge Representation and Reasoning
(KR-2000), 2000, pp. 261–272.
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71. R. Küsters, Non-standard Inferences in Description Logics, Lect.
Notes Artif. Intell. 2100 (2001).
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73. R. Küsters and R. Molitor, Approximating most specific concepts
in description logics with existential restrictions. In: F. Baader,
G. Brewka, and T. Eiter (eds.), Proceedings of the Joint Ger-
man/Austrian Conference on Artificial Intelligence (KI 2001), Lect.
Notes Artif. Intell. 2174 (2001), pp. 33–47.
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1. Introduction

Provability logic was conceived by Kurt Gödel in 1933 [43], but
it really took off in the seventies as a study of modal logics with
provability interpretations. After about thirty years of fruitful
development this area now finds itself in a transitional period. On
the one hand, many of the problems originally perceived by the
founders of the discipline have been successfully solved. On the
other hand, new challenges are coming from the other areas of
Logic and Computer Science. Presently, provability logic starts
crossing the original borders of its domain and expands in several
novel directions.

The original motivation for the study of provability as a modal-
ity was mainly philosophical in nature.1 Provability logic for the
first time provided a mathematically robust intended semantics of
modality. Traditionally, modal logics were used to explicate in-
formal and sometimes inherently vague notions such as necessity,
belief, obligation, etc., often plagued by paradoxes. These logics
were then provided with formal Kripke-style semantics along the
chain

intended semantics – logic axioms – Kripke semantics,

in which only the second link was robust.2

In contrast, provability is a notion for which there is a formal as
well as an informal understanding. Moreover, there is a widely ac-
cepted belief that the formal notion of provability in some respects
adequately represents the informal one.3 Therefore, philosophers
such as Willard Van Orman Quine, Saul Kripke and George Boo-
los were for the first time in a position to study a modality for

1 Therefore, it is not surprising that the axioms of provability logic first
appeared in a treatise on ethics by Smiley [79].

2 Sometimes also a direct link between intended semantics and Kripke se-
mantics was established, but it had to be informal as well.

3 For a more detailed discussion of this claim see below.
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which all the three links above could be subject to a rigorous
mathematical analysis.4

Very soon some mathematical logicians, with their own set of
concerns, working in the USA, the Netherlands, Italy and the So-
viet Union, started to get interested in the topic. They saw the
potential usefulness of provability logic as a tool in the study of
formal axiomatic theories. Perhaps the earliest example of such
an application was the so-called de Jongh–Sambin fixed point the-
orem, which clarified the reason why certain fixed point equations
in arithmetic had explicit and unique solutions. Some other appli-
cations followed (see [4, 82, 46]). However, most of the emphasis
in the study of provability logics from the late 70s until the late
90s was on the arithmetical completeness results.

Solovay proved, in a famous paper from 1976 [83], that the
propositional Gödel–Löb logic GL is complete w.r.t. the prov-
ability semantics. Subsequent research mainly concerned with
the possibility of extending Solovay’s theorems to more expressive
languages, such as the language of predicate logic, propositional
language with several modalities, the language of interpretability
logic, second order propositional logic language, and some others.
In this way, the natural borders of the discipline were roughly
mapped. By now we have a reasonably good idea which of the
above mentioned logics with provability semantics are manage-
able (are decidable, have nice axiomatizations, models, etc.) and
which are not.5 By the late 90s the time for autonomous devel-
opment of provability logic was over. The time has come for new
challenges and search for new applications.

Two such new directions of research emerged in the recent
years. The first one is the so-called logic of proofs initiated by S.
Artemov about 1994 and which since then has grown into a lively
area. It was inspired by foundational concerns and the question of
providing intuitionistic logic with a robust provability semantics in

4 This analysis was particularly important for discussing the semantics of
quantification in modal logic.

5 There are some notable open questions, though, which are discussed below.
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the spirit of Brouwer–Heyting–Kolmogorov interpretation.6 The
logic of proofs also has connections with several important topics
in Computer Science such as lambda calculus, logics of knowledge
and belief, and formal verification. Discussing numerous open
questions in this interesting area would exceed the limits of the
present paper. However, we refer the reader to [3, 6] for a compre-
hensive exposition and a recent survey. A list of current problems
in this field can be found at the homepage of S. Artemov.7

The second new development, the theory of the so-called graded
provability algebras [12], aims to establish links and find applica-
tions of provability logic in the mainstream proof theory tradition.
Graded provability algebras reveal surprising connections between
provability logic and ordinal notation systems and provide a tech-
nically simple and clean treatment of proof-theoretic results such
as consistency proofs, combinatorial independent principles, etc.

In this paper we want to present some open questions in this
new developing area, as well as to record some long standing prob-
lems left in traditional provability logic.

In the first, mainly philosophical, part of the paper we discuss
conceptual problems related to the notion of proof, in particular
the relation between formal and informal proofs. We believe that
these questions are very important and interesting in their own
right, and provability logic may contribute to their study in the
future.

In the second, mathematical, part we formulate five major
open problems left in the area of traditional provability logic and
discuss some related questions. These five problems are:

(i) Provability logic of intuitionistic arithmetic.

(ii) Provability logic of bounded arithmetic.

(iii) Classification of bimodal provability logics.

6 This problem was the main motivation for Gödel in 1933 to introduce a
calculus of provability in the first place.

7 URL http://www.cs.gc.cuny.edu/˜sartemov/.
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(iv) Decidability of the ∀∗∃∗-fragment of the first order theory of
Magari algebra of Peano arithmetic.

(v) Interpretability logic of all reasonable theories.

In the last section of the paper we present current problems in
the area of graded provability algebras.

A compound list of the problems discussed in this paper is
given in the Appendix. An online version with some additional
questions is maintained by the first author.8

The authors would like to thank Sergei Artemov, Yuri Gure-
vich, Joost Joosten, and Rostik Yavorsky for useful discussions
and comments.

2. Informal Concepts of Proof

The role of provability logic and its relationship with the other
parts of proof theory are best to be explained by first discussing
the general relations between formal and informal proofs. Our
discussion will be of necessity one-sided: we concentrate on the
phenomenology (representations) of proofs, but altogether ignore
the questions such as validity (see, for example, [84] for a discus-
sion). We are mainly interested in the aspects where a provability
logic approach could be relevant.

2.1. Formal and informal provability
and the problem of equivalence of proofs

The notion of axiomatic system and the associated formal notion
of proof emerged at the beginning of 20th century in the hands of
G. Frege, G. Peano, and D. Hilbert. Behind these notions there
was an implicitly accepted thesis, emphasized by Hilbert: every
sufficiently developed area of mathematics (and perhaps not only

8 URL http://www.phil.uu.nl/˜lev/.
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of mathematics) can be axiomatized. Hence, every valid mathe-
matical argument can be faithfully represented in a suitable formal
axiomatic system.

The status, as well as the spirit, of this statement is similar to
that of the Church–Turing Thesis in the theory of computation:
it is a conjecture relating a robust mathematical notion (formal
proof) and informal one (informal proof) that can only be veri-
fied by practice. Soon enough universal “in practice” axiomatic
systems, such as Zermelo–Fraenkel set theory, were formulated,
which were apparently sufficient to formalize all current mathe-
matics. Of course, the universality of these axiom systems had to
be later qualified by Gödel: no single axiom system can be uni-
versal, in an absolute sense.9 From this point on, proof theory
developed in the course of the 20th century as a study of suffi-
ciently universal axiomatic systems and the associated concepts
of proof.

What is apparent from the historical perspective is a predom-
inant interest in one particular model of proofs (aka deductive
axiomatic proofs). Of course, this is almost the only model which
had a clear mathematical formulation. However, one should not
forget that deductive axiomatic proofs are not the only kind of
proofs around. Compare, for example, the commonsense notion
of proof in natural sciences, with experiment as a major means of
proof, or a well-developed concept of proof in jurisprudence having
many non-traditional features such as defeasibility (see, for exam-
ple, [66]). In contrast with these important but informal concepts
of proof, probabilistic proof-like concepts encountered, in particu-
lar, in cryptography (see [45, 44]), do have rigorous models.10

9 This contrasts with the existence of truly universal models of computation,
such as Turing machines.

10 There have also been some discussions within the logic community of the
so-called “visual” proofs in geometry. It can be argued that proofs directly
appealing to visual intuition form a separate class of proofs. However, it is
worth remembering that getting rid of such “visual” intuitions was one of the
main purposes of Hilbert’s program of axiomatizing geometry, which made a
strong impression on his contemporaries. There also were various interesting
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On the other hand, even if one restricts attention to standard
deductive axiomatic proofs only, there is a notable discrepancy be-
tween conventional, informal mathematical proofs and their for-
malized representations. Fully formalized proofs have become a
reality with the advent of automatic provers and interactive proof
assistants such as Mizar, NuPrl, and Coq. The difference with
informal proofs becomes evident if one compares, say, a textbook
proof of the fundamental theorem of algebra with its formalization
(proof-object) in Coq. The appearance, as well as the possible uses,
of both proofs are quite different. In what sense are they actually
the same?

The situation is analogous with the one around the Church–
Turing Thesis: there is a difference between the high-level notion
of algorithm and the low-level notion of program code (or Turing
machine). Therefore, both in proof theory and in computer science
the problem of equivalence of proofs (respectively, of programs)
arises:

Problem 1. Which derivations/programs are essentially the
same, that is, represent the same informal proof (respectively, al-
gorithm)?

Needless to say, this question is a notoriously difficult one and
it may not have a unique answer. The problem of equivalence
of proofs is known in proof theory for quite some time, and was
advocated by Kreisel and Prawitz (see [60, 67]). However, re-
markably little has been done on it – partly because it fell, and
still falls, outside the mainstream proof theory, partly because it
is a conceptual rather than a strictly mathematical problem. See
Došen [30] for an interesting recent discussion.

attempts to look at some visual kind of proofs from the point of view of logic,
see, for example, [8, 68].
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We believe that, in the coming years, the importance of this
and related questions will become more obvious to the wider com-
munity of logicians under the influences coming from Computer
Science and the development of the automated deduction systems.

In principle there are two possible approaches to this problem,
which we can call bottom-up and top-down. The bottom-up ap-
proach starts with a low-level notion of proof, tries to obtain more
canonical representation of such proofs and looks for meaningful
equivalence relations.

This is how this problem is usually perceived within the con-
text of structural proof theory and within a related categorial proof
theory approach. Attempts were made to find mathematically
attractive and sufficiently broad equivalence relations on formal
proofs. The first significant contribution to this problem came
from Prawitz [67] who isolated the following notion of equiva-
lence: two (natural deduction style) proofs are equivalent, if they
normalize to the same proof. This equivalence relation is certainly
very interesting, however it behaves well only for rather restricted
kinds of formalisms. Already for classical propositional logic it
does not really work – in fact, it identifies all proofs of a contra-
diction from a given hypothesis (see [30]).

Since the 70’s the structural proof theory underwent a rapid
development with the popularization of proofs-as-programs para-
digm [42], Girard’s linear logic [39], game semantics [2] and cul-
minating in Girard’s ludics [41]. It falls outside the scope of this
paper to discuss possible bearings of these important and broad
doctrines on the problem of equivalence of proofs.

Instead, we would like to concentrate on the opposite, top-
down approach, which is how the question “‘What is an algo-
rithm?” was approached in Computer Science. Following the top-
down methodology, researchers formulated more and more general
models of computational processes, so that to make these abstract
descriptions eventually fit the desired intuitive concept of algo-
rithm.
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2.2. Strengthening Hilbert’s Thesis

It is instructive, from the point of view of the above mentioned
problem in proof theory, to gain some wisdom from the debate
around Church–Turing Thesis in the theory of computation.11

Some relevant issues have been recently raised by Gurevich in con-
nection with his Abstract State Machines (ASM) (see, for example,
[20, 19]) and Moschovakis in connection with general recursive al-
gorithms (see [63]).

Although according to the Church–Turing Thesis every com-
putable function can be represented by a Turing machine, such
a representation will not in general be faithful w.r.t. the algo-
rithm’s data and elementary steps, which, from the point of view
of computational practice, is a major drawback.12 In contrast,
Blass and Gurevich in [20] and elsewhere convincingly argue that
every algorithm can be faithfully represented on its own level of
abstraction by a suitable ASM. Of course, this does not yet settle
the equivalence of programs problem – the question is simply be-
ing translated into a similar one about ASMs. However, it reveals
additional information hidden in the informal notion of algorithm,
such as its “abstraction level,” which narrows the gap between the
algorithm’s formal and informal presentations.13

Gurevich’s Thesis, as opposed to the Church–Turing Thesis,
is noticeably non-uniform: there cannot be a single ASM which
could simulate any algorithm on its own level of abstraction. This
is the price we pay for representing the algorithms more faith-
fully. Again, the situation is parallel to the non-uniform version

11 The fact that there are challenges to the Church–Turing Thesis from
various directions, including, for example, physics, shows a healthy attitude
developed in Computer Science towards these matters.

12 Some early investigations in computation theory dealt with attempts to
challenge the Church–Turing Thesis by inventing computing devices working
with more complex kinds of data such as labeled complexes (Kolmogorov–
Uspensky machines [58], Schönhage storage modification machines [73]).

13 What exactly is a level of abstraction remains a bit unclear. The idea is
intuitive.
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of Hilbert’s Thesis – stating that every proof can be represented
in a suitable axiomatic system – as opposed to a uniform ver-
sion related to, say, a fixed system of set theory ZFC. Uniformity
presupposes some kind of coding.

A close connection between Gurevich strengthening of the
Church–Turing Thesis and what we dubbed Hilbert’s thesis is not
really accidental. They both rely on the same basic presupposition
that the data for algorithms, as well as for mathematical proofs,
are faithfully representable by first order logic structures. Blass
and Gurevich [20] call this claim (for the case of algorithms) the
abstract state postulate.

A further issue addressed by the ASM approach is what kind of
action constitutes a possible computation step (with roughly the
answer: almost anything goes). A parallel question, what consti-
tutes an admissible proof step, received some attention in proof
theory. The initial answer – only logical inference rules modus
ponens and generalization are sufficient – is not really satisfactory
as these steps are too restricted.

One of the reasons for Gentzen to introduce his natural deduc-
tion proof system was to provide a model that better fitted the
actual (“natural”) form of mathematical arguments. However,
despite the fundamental significance and various useful applica-
tions of this approach, that particular goal was not really achieved.
Partly this is due to the fact that notions such as abstraction levels
(of proofs) did not play any role in his analysis. He might have
uncovered a natural form of logical steps for purely propositional
(in a sense, lowest level) proofs, though.

Our next problem asks whether an analog of Gurevich Thesis
holds for proof systems.

Problem 2. Find a reasonable proof system, or a class of
proof systems, such that every (informal) mathematical proof ad-
mits a faithful formalization on its own level of abstraction and
complexity in a suitable system from that class.
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We think that a positive answer to this question would be a
significant step towards a better understanding of the problem of
equivalence of proofs and similar questions relating formal and
informal notions of proof.14

A priori it is not really clear if such a system can be formulated.
The ASM approach showed its practical usefulness for the task
of program specification. Similarly, what we are looking for is a
language suitable for proof specification, with formalized proofs
playing the role of implementations of informal proofs. To have
convenient proof specification tools based on clear principles is of
obvious importance for the development of automated deduction
systems.

Specialists working in the area of automated deduction ap-
proached the problem of proof specification using the notions such
as proof-sketches (see, for example, Barendregt [7]). These sketches
admit more general than the elementary logical proof steps and
provide a better approximation to the kind of proof format used
in ordinary mathematics. At the same time, ideally, a prover must
be able to automatically reconstruct a complete proof from such
a proof-sketch.

2.3. Coordinate-free proof theory

As we have indicated before, standard proof systems formaliz-
ing logic, be it Hilbert-style, Gentzen sequent-style or natural
deduction-style, suffer from the same drawback: they are in a
sense too concrete, that is, they depend on a lot of arbitrary, and
irrelevant – from the point of view of the informal proof – details of
syntax. This makes methods of structural proof theory – the part
of proof theory dealing with the study of concrete proof systems
by essentially syntactical methods – mathematically inelegant and

14 According to R. Thiele (Hilbert’s Twenty-Fourth Problem, Am. Math.
Month. 110, no. 1, 1-24) Hilbert wanted to formulate the following problem as
Problem 24 in his famous list: what is the simplest possible proof of a theorem?
This question was found in his notes but never made it to the final list.
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non-modular (see similar remarks, for example, in [40], although
developments in linear logic, such as proof nets, do offer a real
improvement in terms of elegance).

Modularity in this context means the ability to fruitfully apply
a single proof-theoretic result to various formalisms. De facto,
even such a basic result as the cut-elimination theorem has to be
proved for every formalism anew, even if the modifications are
relatively minor. In this sense, cut-elimination plays the role of
a useful method rather than that of a single important result.
Stating such a general cut-elimination result seems to be quite
difficult, for it presupposes that one is able to formulate some kind
of general conditions under which “cut-elimination” holds. Such
conditions are very elusive: meaningful classifications of syntactic
formalisms have not been really developed.

The problem of non-canonicity of syntax and related non-
modularity problem are major methodological drawbacks of cur-
rent structural proof theory – they make the methods unattrac-
tive which ultimately results in technical difficulties and lack of
progress. It might be the case that these problems are caused
in part by the same phenomenon: having introduced the concept
of formal proof with all the non-canonical and irrelevant for the
content syntactical details we are then no longer able to state
proof-theoretic results in a clear, modular way.

Whatever the cause, a way out is to provide a more general,
or more abstract, notion of proof. In mathematics a way to gen-
eralizations is often pointed out by an axiomatic approach.

The standard notion of formal proof is a genetic one – proofs
are the objects constructed by certain rules from basic symbols.15

Provability logic emerges from the idea of treating the notions of
provability and proof axiomatically rather than genetically.

15 The term “genetic’ as opposed to axiomatic was used by Hilbert in 1899
in his paper On the concept of number.
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The situation when one and the same notion can be defined
genetically as well as axiomatically is quite common in mathemat-
ics. A well-known example is the concept of real number, where
the standard Dedekind definition is, in this sense, genetic. A well-
known axiomatic definition would be the second order categorical
axiomatization of the structure of reals. In an ideal situation, as
in this one, axiomatic description is categorical and one obtains
a perfect match between both approaches. However, this ideal
cannot be always achieved.

The main advantage of axiomatic approach compared to a ge-
netic one is that it allows more easily for generalizations of notions
in question. Hence, it widens the range of applicability of the the-
ory and clarifies its logical structure. On the other hand, genetic
approach is better when it comes to questions of explicit represen-
tation and computation. A good illustration of these two different
roles is the axiomatic treatment of vector algebra versus genetic
matrix calculus.

As far as the study of proofs is concerned, an abstract ax-
iomatic approach has not yet been really developed. Could there
be such a thing as coordinate-free proof theory? We share the spirit
of Hilbertian optimism and formulate a problem, which is in fact
a broad program of research rather than a single question, in the
form of an imperative.

Problem 3. Develop the theory of proofs on a sufficiently
abstract axiomatic basis.

In particular, we hope that such a theory could potentially
help to elucidate the informal notion of deductive proof and the
other, non-deductive notions of proof.

The main line of development of provability logic strived to
characterize axiomatically an already existing (genetically defined)
notion of provability in a sufficiently strong arithmetical theory.
The goal was to obtain a sound and complete system of axioms
for provability. This goal was achieved by Solovay for the case
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of a very weak propositional language with provability modality.
However, the success of propositional provability logic was un-
dermined by non-axiomatizability results by Artemov, Vardanyan
and Boolos–McGee on predicate provability logic (see [21]).

In hindsight it appears that the preoccupation with arithmeti-
cal completeness results in provability logic – which naturally came
from the motivations discussed at the beginning of this paper and
was further enhanced by the fascination with the beauty of Solo-
vay’s theorem – actually lead the researchers away from the other
relevant questions such as those related to the informal concepts of
proof. Hence, the idea of axiomatic reconstruction of proof theory
was never pursued or posed as a problem.

Although from the very beginning there were hopes to find
applications of modal logic methods in the study of formal arith-
metic, yet it was never acknowledged that serious applications
would require to some extent the reconstruction of the standard
proof-theoretic results and that the current modal languages were
way too weak for that task. An abstract approach to proof the-
ory based on provability logic ideas would require a development
of this discipline in a new direction. Of course, technical experi-
ence accumulated in this area for so many years will still be highly
relevant for this program.

From this point of view, both recent developments in prov-
ability logic mentioned before – logic of proofs and provability
algebras – can be seen as attempts to approach various aspects of
this general problem. The logic of proofs made the first steps in
characterizing axiomatically the notion of proof rather than that
of provability. Provability algebraic approach, in contrast, aims
at reconstructing those results in classical proof theory which are
expressible in terms of the more abstract notion of provability and
treating them at the same level of generality.

Having this philosophy in mind we now turn to a different
topic – the long standing problems in traditional provability logic.
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3. Basics of Provability Logic

In this section we briefly formulate the basic facts concerning
provability logic needed to read the rest of the paper. The sec-
tion is more intended to fix the notations than as a real intro-
duction. The reader is referred to one of the introductory texts
[82, 81, 21, 22, 26] and a survey [6].

The basic system of provability logic is the modal propositional
Gödel-Löb logic GL. On top of the classical propositional calculus
the modal axioms and rules of GL are as follows:

L1 � ϕ ⇒ � �ϕ

L2 � �(ϕ → ψ) → (�ϕ → �ψ)

L3 � �ϕ → ��ϕ

L4 � �(�ϕ → ϕ) → �ϕ

The principle L4 (Löb’s Principle) is interderivable with Löb’s
Rule:

LR � �ϕ → ϕ ⇒ � ϕ

Löb’s Rule works too when we add assumptions of the form
�χ, where �χ = (χ ∧ �χ). The principle L3 follows from L1, L2
and L4.

Consider a theory T into which a sufficiently strong arithmeti-
cal theory S is interpretable.16 Specifically, we want S to be an
extension of Buss’s theory S1

2 (see [24] or [48]). We assume that
the axioms of T are given by a ∆b

1-formula. We employ a fixed

16 The formulation employing an interpretation takes care of cases like ZF
which are not “really” about numbers. We need an interpretation like the von
Neumann interpretation to have access to number theory.
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efficient arithmetization of arithmetical concepts like the provabil-
ity predicate ProvT (x). These arithmetizations are employed in T
via the interpreted theory S.17

We define a T -realization fT of the modal language into the
language of T as follows:

• fT (p) is a sentence of the language of T ,

• fT commutes with the propositional connectives,

• fT (�ϕ) := ProvT (�fT (ϕ)�).

We say that a formula ϕ is arithmetically valid in T iff, for all
T -realizations f , T � fT (ϕ). The provability logic of T , denoted
PLT , is the set of all modal propositional formulas arithmetically
valid in T .

It is easy to see that all theorems of GL are arithmetically
valid in T , that is, GL is arithmetically sound. For a wide class
of theories we also have arithmetical completeness as was shown
by Solovay [83].

Let EA denote the Elementary Arithmetic (or I∆0 +exp) [48].

Theorem 1 (Solovay). Suppose that T interprets EA and that
T is Σ1-sound w.r.t. this interpretation. Then, PLT = GL.

The strength of Solovay’s theorem can also be seen as a disad-
vantage: the provability logic of a theory gives very little informa-
tion about a theory. We will see that the situation is different if
we change the underlying logic, for, example, to constructive logic
(see Section 4), or if we extend the modal language, for example, to
the language of interpretability logic (see Section 8). Also we may
build in extra variation in our notion “the logic of.” For example,
we may consider the principles for provability in T verifiable in a
theory U . The appropriate notion here is PLT (U), the set of all

17 Note that, for example, in ZF we could treat syntax directly without the
detour via arithmetic. Our strategy of treating syntax by composing a fixed
arithmetization in a basic arithmetical theory with an interpretation of that
theory is just a convenient design choice that goes back to Feferman’s classical
paper [31].
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ϕ such that, for all T -realizations f , U � fT (ϕ). PLT (U) is called
the provability logic of T relative to a metatheory U .

Solovay has also shown (the so-called Solovay’s Second The-
orem) that PLT (TA) = S, where TA is the set of all true arith-
metical sentences, T is a sound arithmetical theory, and S is the
extension of all theorems of GL by the axiom �ϕ → ϕ and modus
ponens as the sole inference rule. A complete classification of
relative provability logics (for T containing EA) was given by Bek-
lemishev in [9], see also Section 6.

4. Provability Logic for
Intuitionistic Arithmetic

Whereas provability logic for classical arithmetical theories turns
out to be remarkably stable, as long as we restrict ourselves to
the usual unimodal language, the situation for constructive arith-
metical theories is spectacularly different. Different constructive
theories may have different logics. Moreover, many of the princi-
ples of different logics of this kind are mutually incompatible in
the sense that together they imply an iterated inconsistency state-
ment over the minimal constructive provability logic iGL, i.e. the
Gödel–Löb logic over intuitionistic propositional logic instead of
the classical one.

In our exposition we will assume that the reader is familiar to
some extent with constructive logic and constructive arithmetic.
The reader is referred to the excellent textbooks [87, 88].

The main problem we want to describe is the problem of ax-
iomatization and decidability of the provability logic of Heyting
arithmetic HA. The theory HA is defined exactly as the first or-
der Peano arithmetic PA, with its underlying logic changed to the
intuitionistic predicate logic.18

18 The least element principle intuitionistically implies the law of excluded
middle. So, we should employ the standard version of induction.
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Problem 4. Give an axiomatization of PLHA. Is PLHA decid-
able?

To get all the pieces on the board in a systematic way, we will
backtrack a bit, to treat the simpler question: what is the ordinary
propositional logic of an arithmetical theory? The question is, in
the intuitionistic case, not trivial.

4.1. Propositional logics of arithmetical theories

The propositional logic of an arithmetical theory T is, of course,
just the box-free part of PLT .

In 1969, de Jongh shows in an unpublished paper that the
propositional logic of HA is precisely IPC. He uses substitutions of
formulas of a complicated form. See the extended abstract [27].
Subsequently, the same result has been proved for many theories
other than HA, see, for example, [80, 35, 91].

Friedman [33] improves de Jongh’s result for propositional
logic, showing that there is a substitution of Π2-sentences σ such
that, for all propositional formulas ϕ, HA � σ(ϕ) ⇐⇒ IPC � ϕ.
Thus, IPC is uniformly complete for Π2-realizations in HA. From
the algebraic point of view the result tells us that the free Heyting
algebra on countably many generators can be embedded in the
Lindenbaum Algebra of HA. Moreover, we may take as generators
(equivalence classes of) Π2-sentences. Visser [93] improves Fried-
man’s result, employing a realization by Σ1-sentences. The proof
is verifiable in HA+Con(HA). (Note that de Jongh’s theorem im-
plies Con(HA), so the result is, in a sense, optimal.) The proof is
based on the NNIL-algorithm, an algorithm that is used to char-
acterize the admissible rules for Σ1-realizations. This last result
also holds for a number of other theories, see [92, 29].

Let MP be Markov’s Principle. Let ECT0 be extended Church’s
Thesis. Smoryński has shown that the logic of HA+MP is precisely
IPC and Gavrilenko has shown that the logic of HA + ECT0 is
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precisely IPC. Surprisingly, the logic of HA + MP + ECT0 turns
out to be a proper extension of IPC.

Consider the following formulas χ and ρ:

• χ := (¬p ∨ ¬q),

• ρ := [(¬¬χ → χ) → (¬¬χ ∨ ¬χ)] → (¬¬χ ∨ ¬χ)

Clearly, ρ is IPC-invalid. A minor adaptation of the arguments
of Rose (see [70]) shows that ρ is in the logic of HA + MP + ECT0.

Problem 5. What is the propositional logic of

HA + MP + ECT0?

Let ϕ be an arithmetical sentence. We write x r ϕ for “x
realizes ϕ” in the sense of Kleene, see [87, 88]. The formula “x r
ϕ” is itself an arithmetical formula. We write ϕr for ∃x x r ϕ. By a
result of Troelstra, we have that the theorems of HA+MP+ECT0

coincide with the set of ϕ such that HA + MP � ϕr. Thus, our
Problem 5 can be viewed as the question what the propositional
logic of the principles realized in HA+MP is. What happens if we
replace HA + MP in this rephrased question by another theory?

Perhaps the most interesting theory for this question is the full
true arithmetic TA. So, we may ask: what is the propositional logic
of the set of principles realized in TA? The answer is somewhat
disappointing: it is precisely classical propositional logic, since
sentential excluded middle is realized over TA.19 Upon reflection,
the reason of this disappointing outcome is the fact that we did
not demand a sufficiently effective connection between the realiza-
tions of propositional formulas and their realizers. To obtain more
effective connections, we introduce the following notions.

• The propositional logic of a theory T for open realizations is
the set of propositional ϕ such that, for all realizations f in

19 Despite this fact, the set of sentences realized over TA is a constructive
theory inconsistent with classical logic!
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(possibly open) arithmetical formulas, we have T � ∀�x f(ϕ),
where �x consists of the free variables of f(ϕ). Clearly, the
propositional logic for open realizations of a theory is a sublogic
of the propositonal logic of that theory for sentential realiza-
tions.

• IR, the set of identically realizable propositional formulas is the
logic for open realizations of the set of realizable sentences of
TA. I.o.w., it is the set of ϕ such that, for all open f , there is
an n such that n r ∀�x f(ϕ).

• ER, the set of effectively realizable propositional formulas, is
the set of ϕ, such that there is a recursive function F on (finite
representations of) realizations such that, for all f , F (f) r
f(ϕ).

• IER, the set of effectively indentically realizable propositional
formulas, is the set of ϕ, such that there is a recursive function
F on (finite representations of) open realizations such that, for
all open realizations f , F (f) r ∀�x f(ϕ).

• UR, the set of uniformely realizable propositional formulas, is
the set of ϕ, such that there is an n such that, for all f ,
n r f(ϕ).

It is not difficult to show that UR ⊆ IER = ER ⊆ IR. We are led
to the following questions.

Problem 6. (Markov) Give a characterization of UR, ER and
IR. Is UR equal to ER? Is ER equal to IR? Are these logics decid-
able?

We can ask analogous questions as in Problem 6 replacing
Kleene’s realizability by Gödel’s Dialectica interpretation, so we
arrive at the following problem, first formulated by V. Plisko.

Problem 7. (Plisko) Characterize the propositional logics of
Gödel’s Dialectica interpretation.
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It is well known that HA + MP + ECT0 is finitely axiomati-
zable over the theory HA + ECT0, to wit by primitive recursive
Markov’s Principle MPPR (see [87, 88]). By Gavrilenko’s result,
the propositional logic of HA + ECT0 is IPC. By Rose’s result the
propositional logic of HA + MP + ECT0 is not IPC. Thus, consis-
tent addition of one sentence may change the propositional logic
of a theory. This suggest the following problem.

Problem 8. Suppose HA + A is consistent. Is it always the
case that the propositional logic of HA + A is IPC?20

We can ask the same question for a consistent recursively enu-
merable T which extends HA by axioms of restricted complexity.21

The problems concerning the propositional logic of a theory
extend to similar problems concerning the predicate logic of a
theory. We will not pursue that direction of questioning in this
paper.

Another extension of the questions is to ask for a description
of the Lindenbaum algebra of a theory, which in this case will be a
Heyting algebra. We will mention some of these questions in Sec-
tion 7. Notice that a positive answer to Problem 8 implies that
the Lindenbaum algebras of HA and HA + ECT0 are not isomor-
phic. The problem of the admissible rules of a theory, discussed
in the next subsection, is in fact a subproblem of the problem of
characterizing the Lindenbaum algebra, since the admissible rules
of a theory only depend on the Lindenbaum algebra.

4.2. Admissible rules

Recall that a propositional inference rule ϕ/ψ is admissible in a
logic L, if for every substitution σ of formulas of L for propositional

20 In this spirit, Smoryński has shown that excluded middle is not finitely
axiomatizable over HA.

21 See [23] for a treatment of logical complexity measures over HA.
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variables, we have

L � σ(ϕ) ⇒ L � σ(ψ).

Similarly, the rule is admissible in an arithmetical theory T if, for
every realization f ,

T � f(ϕ) ⇒ T � f(ψ).

The simplest example of a (nontrivial) admissible rule in IPC
is the independence of premise rule:

IP: IPC � ¬ϕ → (ψ ∨ θ) ⇒ IPC � (¬ϕ → ψ) ∨ (¬ϕ → θ).

A well-known result obtained by Rybakov [71, 72] is that the
property of a rule being admissible in IPC is decidable. Visser
[97] showed that the propositional admissible rules for HA are the
same as those for IPC.22

It is clear that any admissible propositional inference rule ϕ/ψ
in HA (or, equivalently, IPC) delivers a principle of the provability
logic PLHA(TA) of the form � �ϕ → �ψ. Here TA is true arith-
metic. Is the principle also in PLHA? The answer is yes. Iemhoff
[50] proved, building on work of Ghilardi [38], that the set of
all pairs of propositional formulas ϕ/ψ such that �ϕ → �ψ is in
PLHA is precisely the set of admissible rules of IPC.

Note that it follows that, corresponding to IP, we have the
following principle of the provability logic of HA:

� �(¬ϕ → (ψ ∨ θ)) → �((¬ϕ → ψ) ∨ (¬ϕ → θ)).

22 One can easily show that, if L is the propositional logic of a theory T ,
then the rules admissible in T are a subset of the rules admissible in L. Thus,
Visser’s result shows that the rules admissible for HA are the maximum set
possible, given de Jongh’s theorem. In contrast one can produce an example of
an arithmetical theory for which the logic is IPC and for which the admissible
rules are the derivable rules of IPC (see [29]). Thus, the admissible rules of
theories T with propositional logic IPC can both be the maximal possible set
and the minimal possible one.
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This principle is in GL, but not in iGL, the version of GL
with IPC as underlying logic.

Problem 9. What are the propositional admissible rules of
HA + MP and of HA + ECT0?

For the study of the provability logic of HA it is interesting
to study admissible rules for Σ1-realizations over HA. Specifically
the characterization we give below is a lemma to characterize the
closed fragment of the provability logic of HA. To formulate the
result we need a few preliminaries.

A NNIL-formula is a formula with no nestings of implications
to the left. We take ¬p to be an abbreviation of (p → ⊥). So
(p → (q ∨ ¬q)) and ¬p are NNIL-formulas, and ((p → q) → q)
is not a NNIL-formula. Van Benthem and Visser have shown
(independently) that the NNIL-formulas are precisely the formu-
las preserved under taking sub-Kripke models (modulo provable
equivalence). Here a submodel is a full submodel given by an
arbitrary subset of the nodes, see [93, 98, 100]. Note that the
NNIL-formulas form an analogue of the universal formulas in or-
dinary model theory [100].

The result connecting NNIL-formulas and admissible rules is
as follows (see Visser [98]).

Theorem 2. There is an effectively computable function (.)∗

from propositional formulas to NNIL-formulas such that

(i) (.)∗ is, modulo IPC-provable equivalence, surjective,

(ii) ϕ/ψ is admissible for HA w.r.t. Σ1-realizations if and only if
IPC � ϕ∗ → ψ.

If we write ϕ ∼Σ1

HA ψ, for ϕ/ψ is admissible in HA w.r.t. Σ1-
realizations, the second part of the above result can be symbolized
as follows.

ϕ∗ �IPC ψ ⇔ ϕ ∼Σ1

HA ψ.
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In other words, the embedding �IPC ↪→ ∼Σ1

HA has left adjoint (.)∗.
It follows that ϕ∗ is the best NNIL-approximation from below (in
the preorder of IPC-provability) of ϕ. Thus, admissibility in HA
w.r.t. Σ1-realizations is, in a sense, completely characterized by
the class NNIL.23 It would be interesting to combine the results on
the admissible rules of HA for arbitrary realizations and those on
Σ1-realizations.

Problem 10. Extend the language of propositional logic with
a second sort of propositional variables s1, s2, . . . Realizations will
send ordinary variables to arithmetical sentences and the new vari-
ables to Σ1-sentences. Characterize the rules for this language
admissible in HA.

4.3. The provability logic of HA
and related theories

The usual process of arithmetization of syntax is constructive and
therefore can be carried out in iEA. Here iEA is the intuitionis-
tic counterpart of elementary arithmetic (∆0-induction plus the
axiom stating that the exponentiation function is total). In par-
ticular, the provability predicate for any elementarily presented
theory T can be formulated as a Σ1-formula. Moreover, this for-
mula satisfies the usual Löb’s derivability conditions within iEA.

The definitions of provability interpretation and of provabil-
ity logic of a theory relative to a metatheory carry over without
any change. PLHA will denote the provability logic of Heyting
arithmetic that we are particularly interested in.

It is not difficult to convince oneself that, once we have the
derivability conditions, the proof of the fixed-point lemma, and
therefore that of Löb’s theorem, can be carried out in iEA. Con-
sequently, the logic PLT (iEA) contains the axioms and rules of

23 Ordinary admissibility for HA, and, thus, IPC, also has a left adjoint.
However, we know of no simple formula class characterizing this adjoint.
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GL formulated over the intuitionistic propositional logic IPC. We
denote this basic system by iGL.

It was immediately clear that PLHA satisfies some additional
principles. A number of such independent principles were found
in [91]. For example, HA is closed under the so-called Markov’s
rule (see [87]):

HA � ¬¬π ⇒ HA � π,

where π is a Π2-formula. This can be proved constructively using
the so-called Friedman–Dragalin translation. Thus, a proof of this
fact can be formalized in HA itself, therefore PLHA contains the
principle

�¬¬�ϕ → ��ϕ.

A more general provable form of the same principle is as follows:

Ma: �¬¬(�ψ →
∨n

i=1 �ϕi) → �(�ψ →
∨n

i=1 �ϕi).

The disjunction property for HA is the statement that, when-
ever HA � ϕ ∨ ψ, one has HA � ϕ or HA � ψ. This can be written
down as

Dis: �(ϕ ∨ ψ) → �ϕ ∨ �ψ.

However, Friedman [34] has shown that the proof of disjunc-
tion property cannot be formalized in HA itself.

D. Leivant found a nice weakening of the disjunction property
that is already provable in HA:

Le: �(ϕ ∨ ψ) → �(�ϕ ∨ ψ).

This principle was formulated by Leivant in his PhD. thesis.
For a proof of this fact see [98].

Leivant’s principle is weakly inconsistent with excluded middle
in the sense that these principles combined prove a formula of the
form �n⊥ over iGL. We reason in GL + Le. Clearly, we have
�(�⊥∨¬�⊥). Hence, by Le, we have that �(�⊥∨ �¬�⊥). So,
by Löb’s principle, we obtain �2⊥.
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The validity of Leivant’s principle illustrates that PLT is not
monotonically increasing in T .

These sample principles do not exhaust the list of all principles
valid over HA. For all we know, the PLHA could be complete Π2.
A list of all the principles we know at the moment of writing can
be found in [98] or [51] or [6].

Next to the great open problem of the provability logic of HA,
we may ask after the logic of all extensions of HA.

Problem 11. What is the intersection of all PLT for recur-
sively enumerable extensions T of HA in the language of HA?

We have precise knowledge concerning two fragments of PLHA.
In the first place, as described above, we have a precise description
of all principles of the form �ϕ → �ψ, for box-free ϕ and ψ, in
PLHA. The pairs ϕ, ψ occurring in these principles are precisely
the pairs ϕ/ψ admissible in IPC. Secondly, we have a precise
characterization of the closed, or letterless, fragment of PLHA.
This characterization was given by Visser in [93] (see also [98]).
Visser’s proof uses in an essential way the characterization given
for the admissible rules of HA for Σ1-realizations (and the fact
that this result is HA-verifiable). Not much is known about other
closed fragments – except in the classical case, of course.

Problem 12. What are the closed fragments of the logic
PLHA+MP and of the logic PLHA+MP+ECT0?

5. Provability Logic and
Bounded Arithmetic

Bounded arithmetic theories were introduced and developed by
Sam Buss and others in order to capture the informal notion of
feasible proof and to clarify the relationships between proof theory
and computation complexity theory [24, 48, 59]. The most im-
portant among these theories is the system S1

2, which corresponds
to the class of polytime computable functions, and whose principal



Provability Logic 103

axiom schema is the induction over binary words for Σb
1-formulas.

(Σb
1-formulas in the language of bounded arithmetic naturally rep-

resent NP-predicates.) There were suggestions to identify the no-
tion of provability in S1

2 with feasible provability.
Bounded arithmetic systems are important, because they al-

low to approach such questions as provability or unprovability of
P�= NP conjecture and are related to the study of complexity of
proofs. Questions of separation and axiomatizability of various
bounded arithmetic theories are often highly non-trivial and de-
pend on difficult open problems in complexity theory, for a source
book see [59].

Several questions related to the study of provability principles
in bounded arithmetic are open. The most well-known problem
is whether Solovay’s arithmetical completeness theorem holds for
bounded arithmetic.

Problem 13. Characterize the propositional provability logic
of bounded arithmetic theories such as S1

2 and S2.

It is known that all principles of the modal logic GL are valid
under the arithmetical interpretation w.r.t. bounded arithmetic
theories. Hence, it seems natural to conjecture that the provabil-
ity logic of S1

2 and S2 is precisely GL. However, this conjecture
appears to be difficult to prove.

The reason is that the standard proof of Solovay’s theorem –
and this is essentially the only currently known proof of that re-
sult – relies on the property of, at least sentential, provable ∃Πb

1-
completeness. Given a theory T , this property states that, for
every Πb

1-formula ϕ(x),

T � ∃xϕ(x) → ProvT (�∃xϕ(x)�).

The standard formalization of the proof predicate is Σb
1 in the

bounded arithmetic hierarchy (in fact, it is polytime computable).
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Hence, ProvT (x) is a ∃Σb
1-formula. It is known [24] that S1

2 sat-
isfies provable ∃Σb

1-completeness and, in particular, Löb’s third
derivability condition

T � ProvT (�ϕ�) → ProvT (�ProvT (�ϕ�)�).

With the principle of ∃Πb
1-completeness the situation is dif-

ferent. Theories proving the totality of exponentiation function,
such as the elementary arithmetic EA, do satisfy this property. It
is unknown whether this property holds for bounded arithmetic
theories such as S1

2 and S2. However, there is a reason to believe
that it fails, because according to a result by Razborov and Ver-
brugge [90], if it holds then P = NP∩co-NP. The latter statement
is one of the difficult open questions in complexity theory, but it
is believed to be false.

Thus, the question whether GL is the logic of provability
for S2 may actually depend on complexity-theoretic assumptions.
For one thing, if the answer is no, then S2 does not prove the
Matiyasevich–Davis–Robinson–Putnam (MDRP) theorem, that is,
that every r.e. set is diophantine. This would settle a well-known
difficult problem in bounded arithmetic which is open since the
80s. Indeed, MDRP theorem implies that every ∃Πb

1-sentence is
equivalent to a purely existential one, and for such sentences we
have provable completeness even in S1

2. Of course, we do not really
believe that this is a plausible way to solve the MDRP problem.

A possibility remains that one can give a relatively easy proof
of the arithmetical completeness theorem for GL without using
provable ∃Πb

1-completeness. Berarducci and Verbrugge investi-
gated this option in their paper [17]. Although they involved
some ingenious modifications of Solovay construction, they only
succeeded in embedding very simple kinds of Kripke models into
bounded arithmetic. The main question remains open.

Apart from this intriguing problem, there are some other re-
lated open questions between bounded arithmetic and provability
logic.
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Problem 14. Does the Friedman–Goldfarb–Harrington prin-
ciple hold in S1

2?

The FGH principle for an arithmetical theory T , indepen-
dently proved by Friedman, Harrington and Goldfarb (see [81,
99]), states that for any Σ1-sentence S there is a sentence R such
that ProvT (�R�) is T -equivalent to S ∨ProvT (�0 = 1�). In partic-
ular, for any Σ1-sentence S such that T � ProvT (�0 = 1�) → S, S
is equivalent to ProvT (�R�), for some R.

For T = S1
2 we deal with sentences S of the form ∃Σb

1, be-
cause such is the complexity of the provability predicate, and ask
whether the corresponding statement holds.

The problem arises in S1
2, since the standard proof uses a

Rosser-type fixed point construction of R:

R ↔ “S is witnessed before ProvT (�R�)”

Such an R is ∃Πb
1 and one then would want to apply the fa-

miliar ∃Πb
1-completeness principle, which is not available.

A related argument was used by Friedman to prove the equiva-
lence of the Σ1-disjuction property and the Σ1-reflection principle
(modulo consistency). This yields a similar kind of problem in
bounded arithmetic. Recall that (sentential) Γ-reflection princi-
ple is the schema

RfnΓ(T ): ProvT (�ϕ�) → ϕ,

for all sentences from a class Γ, whereas (sentential) Γ-disjunction
property can be formalized as the schema

DisΓ(T ): ProvT (�ϕ ∨ ψ�) → (ProvT (�ϕ�) ∨ ProvT (�ψ�)),

for all sentences ϕ, ψ from Γ.
By provable ∃Σb

1-completeness, S1
2+Rfn∃Σb

1
(T ) proves Dis∃Σb

1
(T ).

It is also clear that the reflection schema proves Con(T ), the con-
sistency assertion for T . However, the opposite implication relies
on ∃Πb

1-completeness and is, thus, an open question.
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Problem 15. Does ∃Σb
1-disjunction property for a Σb

1-presented
theory T imply its ∃Σb

1-reflection principle in S1
2 + Con(T )?

A similar question also makes sense for natural versions of the
reflection and disjunction principles with free variables.

6. Classification of
Bimodal Provability Logics

An obvious way to increase the expressive power of modal language
is to consider several interacting provability operators, which nat-
urally leads to bi- and polymodal provability logic.

Perhaps, the most natural provability interpretation of the
polymodal language is the understanding of modalities as prov-
ability predicates in some r.e. arithmetical theories containing EA.
A modal description of two such provability predicates is, in gen-
eral, already a considerably more difficult task than a character-
ization of each one’s provability logic. There is no single system
that can be justifiably called the bimodal provability logic – rather,
we know particular systems for different natural pairs of theories,
and none of those systems occupies any privileged place among the
others. The following question is one of the main open problems
in provability logic.

Problem 16. Characterize within the lattice of bimodal log-
ics the propositional provability logics for pairs of r.e. arithmeti-
cal theories containing a sufficiently strong fragment of arithmetic
such as EA.

Although at present this problem appears to be out of reach,
a lot of partial results have been obtained and it seems that a
positive solution of this problem is possible. To present some
details, let us first define the notion of bimodal provability logic
more precisely.
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The language L(�,�) of bimodal provability logic is obtained
from that of propositional calculus by adding two unary modal
operators � and �. Let (T,U) be a pair of sufficiently strong
r.e. arithmetical theories. An arithmetical realization fT,U(ϕ) of a
formula ϕ w.r.t. (T,U) translates � as provability in T and � as
that in U while commuting with all the boolean connectives:

fT,U(�ϕ) = ProvT (�fT,U(ϕ)�),

fT,U(�ϕ) = ProvU(�fT,U(ϕ)�).

The provability logic for (T,U) is the collection of all L(�,�)-
formulas ϕ such that T ∩ U � fT,U(ϕ), for every arithmetical
realization f . It is denoted PLT,U . In general, one can con-
sider bimodal provability logics for (T,U) relative to an arbitrary
metatheory V . PLT,U(V ) is the set of all formulas ϕ such that
V � fT,U(ϕ), for every arithmetical realization f . Thus, PLT,U

corresponds to V = T ∩ U .
Not too much can a priori be said about PLT,U , for arbitrary T

and U . Firstly, PLT,U is closed under modus ponens, substitution,
�- and �-necessitation rules.24 Secondly, PLT,U has to be an
extension of the following bimodal logic CS, whose axioms and
rules (on top of the principles of GL formulated for � and for �)
are as follows:

CS1 � �ϕ → ��ϕ

CS2 � �ϕ → ��ϕ

CS3 � ϕ ⇒ � �ϕ

CS4 � ϕ ⇒ � �ϕ.

24 Notice that neither PLT,U (T ) nor PLT,U (U) will in general be closed
under both necessitation rules.
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In fact, applying the so-called uniform version of Solovay’s
theorem Smoryński showed that CS is the provability logic of a
particular pair of finite extensions of PA (see [82]).

Deeper structural information on bimodal provability logics is
provided by the Classification theorem for arithmetically complete
unimodal logics [9, 14]. With every (normal) bimodal logic L
containing CS we can associate its �-projection or type:

(L)� := {ϕ ∈ L(�) : L � �ϕ}.

Notice that (L)� contains GL and is closed under modus ponens
and substitution rules, but not necessarily under the necessitation.

Under the assumption of Σ1-soundness of V the unimodal
provability logic of T relative to U coincides with the type of
PLT,U(V ):

PLT (U) = (PLT,U(V ))�.

The Classification theorem shows that not every extension of GL
is materialized as the projection of a bimodal provability logic and
gives us a description of all such possible projections: GLα, GL−

β ,
Sβ, Dβ, α, β ⊆ ω, α r.e. and ω \ β finite (see [14]).

This already excludes a lot of bimodal non-provability logics
and provides the first step towards a general classification. Indeed,
now the problem amounts to classifying bimodal provability logics
of each of these types. However, such a classification is only known
for logics of type S: in this case a theorem due to Carlson [25]
tells us that there is only one such provability logic. For types D
and GLω we know that there is more than one logic. Some further
partial results in this direction were obtained by Beklemishev in
[10, 11].

Theorem 119 of [6] due to the authors of this paper character-
izes all possible letterless fragments of bimodal provability logics.
This result is based on a related characterization of r.e. subalge-
bras of Magari algebras of theories due to Shavrukov (see [76] and
[6] for a relationship between these problems).
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Related to the general Classification problem for bimodal prov-
ability logics are the questions of characterizing the bimodal logics
for specific “natural” pairs of theories. A number of results of this
kind have been obtained, see [6] for an overview. However, some
of the more exotic cases found among fragments of PA have not
yet been treated. We mention the following questions.

Problem 17. Characterize the bimodal provability logics of
any natural pair of theories (T,U) such that U is a Π1-conservative
extension of T , but U is not conservative over T w.r.t. boolean
combinations of Σ1-sentences.

An example of such a pair of theories (T,U) is

T = EAω = EA + Con(EA) + Con(EA + Con(EA)) + · · ·
and

U = EA + RFNΣ1(EA) = I∆0 + supexp.

Problem 18. Characterize the bimodal provability logics of
(IΣ1, IΠ−

2 ) and the other natural pairs of incomparable fragments
of PA.

7. Magari Algebras

The notion of Magari algebra was introduced by Magari [62] under
the name diagonalizable algebra. Given an arithmetical theory T
we consider its Lindenbaum boolean algebra BT , that is, the set
of all T -sentences modulo the equivalence relation

ϕ ∼T ψ ⇐⇒ T � ϕ ↔ ψ.

The usual logical operations provide this set with the structure
of a boolean algebra, in particular, the ordering relation can be
defined by:

[ϕ]T � [ψ]T ⇐⇒ T � ϕ → ψ,
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where [ϕ]T denotes the ∼T equivalence class of ϕ.
Gödel’s provability formula ProvT correctly defines an operator

�T : [ϕ]T �−→ [ProvT (�ϕ�)]T

acting on the Lindenbaum algebra BT . Indeed, if T � ϕ ↔ ψ, then
T � ProvT (�ϕ�) ↔ ProvT (�ψ�), by Löb’s derivability conditions.
The enriched structure MT = (BT ,�T ) is called the provability
algebra or the Magari algebra of T .

The language of Magari algebras generalizes that of purely
propositional provability logic. In particular, by Solovay’s theorem
the provability logic GL describes the set of all identities of MT ,
for Σ1-sound T . Solovay’s second theorem implies the decidability
of the purely universal theory of MT , under the assumption of
soundness of T .

Indeed, any quantifier-free formula A(�x) in the language of Ma-
gari algebras can be understood as a propositional modal formula:
One preserves the boolean connectives and translates equalities of
terms s = t as formulas �(ϕs ↔ ϕt), where ϕs denotes a formula
corresponding to the term t. Validity of the universal closure of
A(�x) in MT is, thus, equivalent to the validity of the arithmetical
interpretation of A(�x), under every substitution of T -sentences for
variables �x. Hence, by Solovay’s theorem, the question of validity
of the universal closure of A is reducible to the one whether A is
provable in the logic S.

The problem of decidability of the full first order theory of
Magari algebra of PA stood open for some time, until it was an-
swered negatively in an important paper by Shavrukov [78]. In
fact, for Σ1-sound theories T the first order theory of MT happens
to be mutually interpretable with the theory axiomatized by all
true arithmetical sentences. Hence, it is not even arithmetical.

The question remains, where the border between decidable and
undecidable fragments of that theory exactly goes. The proof of
Shavrukov’s theorem shows that four quantifier alternations are
enough to get undecidability. The most interesting question then
concerns the fragment for which there is still a considerable hope
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for a positive result: the ∀∗∃∗-fragment, in other words, the set of
prenex formulas with a block of universal quantifiers followed by
a block of existential ones.

Problem 19. Is the set of ∀∗∃∗-formulas valid in the Magari
algebra of PA decidable?

Examples of meaningful valid arithmetical principles expressed
by ∀∗∃∗-formulas are plentiful. The two most prominent ones are
Rosser’s theorem and the familiar FGH-principle.

Rosser’s theorem states that for every consistent theory there
is an independent sentence. Applying this to an arbitrary finite
extension of T of the form T + p yields the following principle:

∀p (�p → ∃q (¬�(p → q) ∧ ¬�(p → ¬q))).

The FGH-principle implies that the set of sentences of the form
�T ψ coincides, modulo equivalence in T , with the set of all Σ1-
sentences above �T⊥. Whereas the set of all Σ1-sentences does
not seem to be definable in the language of Magari algebras25, we
can still formally state some nontrivial consequences of the FGH-
principle, for example:

∀p1, p2∃q �(�q ↔ (�p1 ∨ �p2)).

It is worth noticing that neither in this case, nor in the case
of Rosser’s principle, is the Skolem function implicitly defined by
these ∀∗∃∗-formulas expressible by a term in MT . In this sense
these principles are nontrivial, i.e., not expressible by ∀∗-formulas.

As we mentioned before, we really expect a positive solution
of Problem 19. Not much is known towards a possible solution of
this difficult problem. There is an interesting connection, observed
in [6], between this problem and the problem of classification of
the so-called propositional provability logics with constants.

Consider a tuple of arithmetical sentences �A. Provability logic
with the constants for �A is, essentially, the set of all universal

25 In fact, it is an open question.
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formulas ∀�x ϕ(�c, �x) such that MT � ∀�x ϕ( �A, �x), in other words,
the universal type of the tuple �A in MT . A universal type is
realizable in MT , if

MT � ∃�c ∀�x ϕ(�c, �x).

We conjecture that there is an effective description of all universal
types realizable in MT , hence the ∀∗∃∗-fragment of the first order
theory of MT is decidable.

Notice that the classification of universal types is basically the
same kind of problem as the classification of propositional poly-
modal provability logics. In fact, it is very close to the classification
of provability logics for a tuple of finite extensions of T . At the
moment, even the simplest variant of this question – the classifica-
tion of bimodal provability logics for pairs of theories of the form
(T, T + A), for a single sentence A – is wide open. Therefore, we
formulate the following meaningful particular case as a separate
problem.

Problem 20. Give an effective description of all possible prov-
ability logics with a constant for a single sentence over PA.

It is worth mentioning that Shavrukov [76] also essentially
gave a description of all possible closed fragments of provability
logics with constants for an arbitrary tuple of sentences �A (or open
types of elements �A of MT ). They can be viewed as the proposi-
tional theories in the language with variables �c over GL which are
r.e. and satisfy the so-called strong disjunction property, in the
case T is Σ1-sound. It is decidable whether a finitely axiomatized
propositional theory satisfies this property. However, arithmeti-
cally realizable propositional theories may, in general, be infinitely
axiomatized.

Apart from that, a number of particular logics for “natural”
constants have been characterized [10, 11]. For example, if a
constant c corresponds to a true Π1-sentence that implies all finite
iterations of the consistency assertion for T , then the logic of such
a constant has a nice axiomatization and is decidable. Examples
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are the consistency statement Con(ZF) over PA or Con(IΣ1) over
EA.

Additional information on logics with constants can be ex-
tracted from the Classification theorem for unimodal provability
logics [9, 14]. This can be done in a manner similar to our com-
ments on the classification problem for bimodal logics of provabil-
ity.

Apart from the important Problem 19 a number of other nat-
ural questions about Magari algebras remains open.

One group of questions concerns the isomorphism problem for
Magari algebras. Ideally, one would want to have a complete classi-
fication of Magari algebras of theories modulo isomorphism. How-
ever, nobody believes such a sweeping classification to be possible.
Rather, one is looking for interesting criteria of isomorphism and
non-isomorphism of algebras. Some such criteria have been formu-
lated by Shavrukov [75, 77], who has proved, roughly, that MT is
recursively isomorphic to MU , if T and U are (effectively) conser-
vative over each other for boolean combinations of Σ1-sentences
(for example T = IΣ1 and U = PRA). On the other hand, the
algebras will be non-isomorphic, if one of the theories proves the
uniform Σ1-reflection principle for the other (for example, T = PA
and U = ZF). Between these two opposite classes there are still
many meaningful examples of pairs of theories, such as PA and
PA + Con(PA). We formulate the general question and its most
obvious particular case.

Problem 21. (Isomorphism) Give sharp necessary and suf-
ficient conditions for the isomorphism of Magari algebras of rea-
sonable theories. In particular, are the algebras of PA and PA +
Con(PA) isomorphic?

Another group of questions concerns definability in the prov-
ability algebras. Very little is known about it, in particular, about
the definable elements of the algebra. Some non-definability re-
sults have been obtained by Shavrukov [77], however the general
question remains open.
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Problem 22. Characterize the first order definable elements
of MPA.

A natural conjecture is that these are only the elements of
the 0-generated subalgebra of MPA, that is, the elements already
definable by ground (or variable-free) terms of the structure.

As the reader may have noticed, all the questions formulated
in this section, except for Problem 20, come from the deep work
of Shavrukov on the theory of Magari algebras and have been
formulated by him.

8. Interpretability Logic

One of the most interesting extensions of the modal language of
provability logic is the extension with a binary modality which
can be arithmetically interpreted as interpretability or as conser-
vativity. The first one to consider such extensions was Švejdar
in his pioneering paper [85]. In this paper he showed that some
substantial reasoning can be represented in such logics.

The project of interpretability logic was subsequently taken up
by Visser who formulated two conjectures concerning arithmetical
completeness. Visser proposed a system ILM as a candidate for
the interpretability logic of Peano Arithmetic and a system ILP
as a candidate for the interpretability logic of Gödel–Bernays set
theory. Veltman found a Kripke style semantics for these logics,
which was studied in [28].26 Visser’s first conjecture about arith-
metical completeness was proved independently by Shavrukov [74]

26 The history contains an instance of the sometimes almost mystical quality
of mathematico-logical research. The system for which Visser asked Veltman
to produce a semantics was IL(KM1), a system that is weaker than ILM. During
the time Veltman was inventing the semantics, Visser realized the validity of
M, when analysing an argument by Montagna in a letter. (Later it would turn
out that Per Lindström already knew the principle.) The miracle was that the
semantics Veltman found did validate M, even if he didn’t know this principle.
It turned out that F does not imply M, even if both principles correspond
to the same set of Veltman frames – an example of modal incompleteness.
Later Joosten and Goris discovered the principle R when they were looking
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and by Berarducci [16]. Visser himself proved the second conjec-
ture, see [94]. The main open problem (on the arithmetical side)
left open by the work of the 90’s of the previous century is the
question of the interpretability logic of all reasonable arithmeti-
cal theories. For a survey of the status questions, see [56].27 For
surveys of the whole area, the reader might consult [26, 96] and
[55].

Interpretations are ubiquitous in mathematics. To mention
a few examples, think of the Poincaré interpretation of two di-
mensional hyperbolic geometry in two dimensional Euclidean ge-
ometry, the von Neumann interpretation of number theory in set
theory, the Ackermann interpretation of the theory of finite sets
in arithmetic and Tarski’s interpretation of arithmetic in an ex-
tension of the theory of groups with one extra constant.

The interpretations we are interested in are relative interpre-
tations in the sense of Tarski, Mostowski and Robinson (see [86]).
Consider theories U with language LU and T with language LT .
For simplicity, we assume that LU is a relational language. An
interpretation K of U in T is given by a pair 〈δ(x), F 〉. Here δ(x)
is an LT -formula representing the domain of the interpretation.
F is a mapping that associates to each relation symbol R of LU

with arity n an LT -formula F (R)(x1, · · · , xn). Here x1, . . . , xn are
suitably chosen free variables. We translate the formulas of LU to
the formulas of LT as follows:

• K(R(y1, · · · , yn)) := F (R)(y1, · · · , yn)
(we do not demand that identity is translated as identity),

• K commutes with the propositional connectives,

• K(∀y ϕ) := ∀y (δ(y) → K(ϕ)),

at a class of Veltman frames satisfying other principles. R turned out to be
arithmetically valid.

27 The survey is already slightly outdated since Joosten and Goris discovered
new principles in the mean time, see [55].
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• K(∃y ϕ) := ∃y (δ(y) ∧ K(ϕ)),

Finally, we demand that for all sentences ϕ which are universal
closures of axioms of U , we have T � K(ϕ). We will write T �U for
K is an interpretation of U in T . We write T � U , for K : T � U ,
for some K.

Interpretations are used for various purposes: to prove relative
consistency, conservation results and undecidability results. The
syntactical character of interpretations has the obvious advantage
that it allows us to convert proofs of the interpreted theory in an
efficient way into proofs of the interpreting theory.

In order to be able to reason modally about interpretability,
we must “downtune” the notion to relate sentences rather than
theories. This can be realized as follows. We define ϕ �T ψ as:
(T + ϕ) � (T + ψ).

To be able to iterate modalities, we must consider theories with
sufficient coding potential. It is a delicate question to determine
which theories are rich enough. In this section, we will not worry
about finding the sharpest class. We simply will work with recur-
sively enumerable theories which contain EA plus the Σ1-collection
principle (possibly via interpretation) and have a good coding of
sequences of all objects of the domain (sequentiality). We will call
these theories reasonable.

We consider the modal language of provability logic extended
with a binary modality �. Let a reasonable theory T be given. It
is easy to see that interpretability is formalizable in T . We define
ILT , the interpretability logic of T in the same way as we defined
the provability logic of T . The only new feature is the clause:

• fT (ϕ � ψ) := �fT (ϕ)� �T �fT (ψ)�.

The following principles constitute a good starting point for
both the modal and the arithmetical investigation. The logic IL is
given on top of the principles of GL as follows:

J1 � �(ϕ → ψ) → ϕ � ψ
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J2 � (ϕ � ψ ∧ ψ � χ) → ϕ � χ

J3 � (ϕ � χ ∧ ψ � χ) → (ϕ ∨ ψ) � χ

J4 � ϕ � ψ → (�ϕ → �ψ)

J5 � �ϕ � ϕ

The only surprising principle is J5. This principle is a “syntactifi-
cation” of the well-known model existence lemma: if a (first order)
theory is consistent then it has a model. Here “model” is replaced
by “interpretation.”28

We will name further logics by appending the names of the
further principles after IL. The first principle we consider is Mon-
tagna’s principle M.

M � ϕ � ψ → (ϕ ∧ �χ) � (ψ ∧ �χ)

This principle is valid in essentially reflexive theories. For
our purposes we can simply describe these as all theories that
contain Peano Arithmetic, possibly via interpretation, that have
good coding of sequences and that satisfy induction for the full
language. Examples of essentially reflexive theories are PA and ZF.
Visser conjectured that ILT = ILM, for all essentially reflexive Σ1-
sound T . This conjecture was proved independently by Berarducci
[16] and Shavrukov [74].

The second principle we consider is the persistence principle P:

P � ϕ � ψ → �(ϕ � ψ)

The persistence principle is valid for interpretations in finitely
axiomatized reasonable theories T . Examples of such theories are
IΣ1, ACA0 and GB. The conjecture was proved in [94].

28 To be able to verify the desired properties of the Henkin-style construction
of the interpetation one needs the technology of shortening cuts to make up
for possible lack of induction.
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The most salient problem left by the history is the question
concerning the interpretability principles valid in all reasonable
theories.

Problem 23. Let IL all be the intersection of the ILT for all
reasonable T . Characterize IL all.

A number of further principles were discovered valid in all rea-
sonable theories. Here they are.

W � ϕ � ψ → ϕ � (ψ ∧ �¬ϕ)

M0 � ϕ � ψ → (�ϕ ∧ �χ) � (ψ ∧ �χ)

W∗ � ϕ � ψ → (ψ ∧ �χ) � (ψ ∧ �χ ∧ �¬ϕ)

P0 � ϕ � �ψ → �(ϕ � ψ)

R � ϕ � ψ → ¬(ϕ � ¬χ) � ψ ∧ �χ

The principles W, M0, W∗ and P0 were discovered by Visser,
see [95] or [56]. The principle R was recently discovered by Joosten
and Goris [55, 57].

There are many interesting particular theories which are nei-
ther reflexive nor finitely axiomatizable. For all of them the ques-
tion of characterization of their interpretability logic is open. One
such example is the primitive recursive arithmetic PRA.

Problem 24. Characterize the interpretability logic of PRA.

Beklemishev has observed that this logic is strictly stronger
than IL all (see [96]). Joosten [55] found an appropriate frame
condition for the principle found by Beklemishev and studied its
relationship with the other known principles, including the so-
called Zambella principle (see below).
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There are various other interpretations of the � that give us in-
teresting logics. We present two possibilities. First there is the no-
tion of local interpretability. The theory U is locally interpretable
in T , or T �loc U , if every finite subtheory of U is interpretable in
T . Both between finitely axiomatized reasonable theories and be-
tween essentially reflexive reasonable theories interpretability and
local interpretability coincide. However, one may provide exam-
ples where the two kinds differ. We may ask the following question.

Problem 25. Let IL loc
all be the logic of the principles for local

interpretability valid in all reasonable theories. Characterize IL loc
all .

The second notion is Π1-conservativity. U is Π1-conservative
over T , or T �Π1U , if for all Π1-sentences π, U � π ⇒ T � π. Hájek
and Montagna show that ILM is complete for arithmetical inter-
pretations for Π1-conservativity in Σ1-sound extensions of IΣ1, see
their paper [47]. This has been improved in [15] to extensions of
the rather weak parameter-free induction schema IΠ−

1 .
In the case of Primitive Recursive Arithmetic, PRA, we also

get more principles. This insight is due to D. Zambella. G. Mints
proved that Zambella’s principle is verifiable in PRA itself, see
[15]. So, a salient question is the following.

Problem 26. What is the Π1-conservativity logic of PRA?

Ignatiev [52] studied conservativity notions for larger formula
classes Πn and Σn, for n ≥ 1. He characterized the corresponding
logics for almost all classes, with the exception of Σ1 and Σ2.

Problem 27. Characterize the logics of Σ1- and Σ2-conserva-
tivity over a sufficiently strong fragment of arithmetic.
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9. Graded Provability Algebras

Graded provability algebras link provability logic with two other
traditions in proof theory. The first one is the study of transfinite
progressions of axiomatic theories by iterated reflection schemata,
which goes back to Turing [89] and Feferman [32]. The second
one is the ordinal analysis tradition that stems from the work of
Gentzen [36, 37]. The goals are to gain insight into the results
on proof-theoretic analysis and ordinal notation systems from a
more abstract perspective, develop a framework into which dif-
ferent kinds of analyses naturally fit in, and ultimately approach
the fundamental questions such as the problem of natural ordinal
notations.

Main results in this direction achieved so far concern the anal-
ysis of Peano arithmetic and its fragments [12, 13]. In particular,
using provability-algebraic methods a new consistency proof for
Peano arithmetic by transfinite induction à la Gentzen was given.
A characterization of provably total computable functions of PA
and an interesting combinatorial independent principle were also
derived from the graded provability algebra approach.

The main structure one deals with is the Lindenbaum algebra
of a theory T enriched by operators 〈n〉, for each natural number
n, which stand for n-consistency : 〈n〉ϕ is the arithmetization of
the statement that the theory (T + ϕ + all true Πn-sentences) is
consistent. This statement is also equivalent to the uniform Πn+1-
reflection principle for T + ϕ.

The structure M∞
T = (BT , 〈0〉, 〈1〉, . . .) is called the graded

provability algebra of T .29 Its identities constitute a polymodal
provability logic GLP first formulated and studied by Japaridze
[54] (see also [53] and [21]). The 0-generated subalgebra of this
algebra, which can also be seen as the set of letterless formulas of
GLP modulo provability in GLP, provides an ordinal notation

29 For the purpose of the discussion below we ignore the additional sorting
structure of this algebra.
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system up to the ordinal ε0. The associated ordering

ϕ <0 ψ ⇐⇒ GLP � ψ → 〈0〉ϕ

is isomorphic to the standard one for ε0, however it has a different
term representation. This ordinal notation system suggested an
interesting analog of Hercules–Hydra game, the so-called Worm
game, which was studied in [13]. This game provides one of the
simplest examples of combinatorial principles independent from
PA.

Currently the main questions in this area concern possible gen-
eralizations of the notion of graded provability algebra to systems
stronger than PA. Standard examples of such systems are: ATR0,
a fragment of the second order arithmetic with the induction ax-
iom and arithmetical transfinite recursion schema. This system
was formulated by Friedman and its proof-theoretic ordinal is Γ0.
Another prominent example is a mildly impredicative theory KPω,
Kripke–Platek set theory with the infinity axiom. These systems
were important stages in the ongoing proof-theoretic research into
the ever stronger fragments of set theory and analysis currently
culminating in the work of Rathjen and Arai (see [69, 65] for
motivations and an overview).

Problem 28. Develop generalizations of the notion of graded
provability algebra suitable for proof-theoretic ordinal analysis of
ATR0 and KPω.

The recent paper [12] makes the first step towards a suitable
treatment of ATR0 by developing a provability-algebraic ordinal
notation system up to Γ0. Thus, we believe that the treatment
of ATR0 and the other predicative systems by these methods is
within reach.

The treatment of KPω seems to be a bit more problematic.
The success of graded provability algebra approach in the study
of formal arithmetic was based on a well-known correspondence
between induction and reflection schemata in fragments of PA. In
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the case of fragments of KPω some such correspondences hold as
well, however the currently known picture is far from complete. In
fact, the analogy between set-theoretic and arithmetical reflection
principles needs to be clarified. Therefore, as a first stage in solving
Problem 28 one is confronted with the following question.

Problem 29. Develop versions of reflection principles suit-
able for axiomatizing fragments of KPω over some weak basic set
theory. Clarify the analogy between set-theoretic and arithmetical
reflection principles.

The latter statement deserves a comment. The idea of the
analogy can be very simply explained as follows.30 The arith-
metical reflection principle asserts that if a sentence ϕ is provable,
then ϕ is true. This statement could be read dually: if ¬ϕ holds,
then ¬ϕ is consistent, i.e., ¬ϕ has a model. This is the familiar
form of the set-theoretic reflection principle, except for the more
specialized notion of model in set theory. In fact, different kinds
of models (omega-models, beta-models, etc.) yield a much richer
variety of set-theoretic reflection principles. It seems very plau-
sible that the sought generalizations of the arithmetical graded
provability algebras will be obtained by considering these higher
reflection principles as new modal operators.

We note in passing that analogs of Problem 29 also make sense
in two different contexts: intuitionistic arithmetic and bounded
arithmetic. It seems interesting to find versions of reflection prin-
ciple suitable for an axiomatization of, for example, fragments Si

2
and T i

2 of bounded arithmetic S2. Similarly, very little is known
about fragments of Heyting arithmetic HA. Burr [23] suggested
a hierarchy of formula classes and fragments which match classi-
cal fragments IΠn of PA. Can these fragments be axiomatized by
suitable reflection principles over intuitionistic version of EA?

30 Interestingly, Kreisel and Lévy [61] wrote that they could not agree on
whether using the same term “reflection” both for the arithmetical and the set-
theoretical reflection principle was a mere figure of speech and the principles
had anything to do with each other.
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Next we mention a simple modal logic question concerning the
standard notion of (arithmetical) graded provability algebra.

Problem 30. Axiomatize the equational theory of the reduct
of M∞

T in the language with only the following operations: 
, ∧,
〈n〉, for all n.

Before presenting a motivation for this question, let us re-
mark that the equational theory in question deals with formulas
of the form ϕ(�x) = ψ(�x), where ϕ and ψ are terms in the above
language. Hence, the equational theory is equivalent to a frag-
ment of Japaridze logic GLP consisting of formulas of the form
ϕ(�x) ↔ ψ(�x). We already know a lot about GLP, in particular
that it is decidable, thus, we believe the problem to be easy. One
valid principle of the equational theory is

〈n〉(ϕ ∧ 〈m〉ψ) = 〈n〉ϕ ∧ 〈m〉ψ, for n > m,

and we conjecture that it will be its principal modal axiom.
The reason to be interested in that question is twofold. Firstly,

only the formulas of this restricted language seem to play a role in
the provability-algebraic analysis of Peano arithmetic. Thus, using
the language from the outset may further simplify some proofs.

Secondly, this language admits a wider class of arithmetical
interpretations. Propositional variables can now be understood as
possibly infinitely axiomatized (but elementary presented) arith-
metical theories.31 The treatment of infinitely axiomatized the-
ories in the context of graded provability algebras seems to be
useful for possible generalizations to stronger theories. For ex-
ample, PA is naturally represented as a filter generated by the
elements {〈0〉
, 〈1〉
, 〈2〉
, . . .}. However, we cannot naturally
define Con(PA) in the standard graded provability algebra of EA.
To do so, one wants to be able to legally use expressions such as
〈0〉{〈n〉
 : n < ω} or ∀n 〈0〉〈n〉
.

31 In the presence of negation there is a question how to interpret negation
of an infinitely axiomatized theory. However, in the restricted language all
formulas are positive.
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A difficulty with generalizing this basic example is that the
meaning of the 〈n〉 operator applied to an infinite theory depends
on a representation (numeration) of the theory rather than the
theory itself. This is precisely the same problem that lead to se-
rious difficulties with the program of classifying arithmetical sen-
tences by transfinite progressions of iterated reflection principles.
However, the advantage of graded provability algebra is that it
provides numerations to sets of its elements and it has its own
very weak language with particularly simple notion of definability.
Thus, the problem might be resolved by allowing the use of ex-
pressions of the form 〈n〉X, where X is a definable set of elements
of the graded provability algebra. The meaning of the term “defin-
able” has to be made more precise here, but a possible candidate
could be the notion of definability by purely existential formulas
(in the language of graded provability algebra). Thus, we come to
the following challenging question.

Problem 31. Develop a definability theory for graded prov-
ability algebras that would allow the modalities to be applicable
to (definably) infinite sets of elements.

A number of other, more technical, questions concerning graded
provability algebras are known. One such question concerns the
topological semantics for Japaridze logic GLP. A nice topological
semantics for GL was given independently by Abashidze [1] and
Blass [18]. The diamond operator can be interpreted as a derived
set operator in scattered topological spaces. In fact, a complete-
ness theorem for GL was proved w.r.t. the order topology of the
ordinal ωω. In the case of GLP the situation is more difficult, as
this system is not per se Kripke complete. However, there is a
closely related subsystem GLP− which is (see [12]).

Problem 32. Is there a natural topological semantics for
GLP and GLP−?

Another interesting question concerns the decidability of the
elementary theory of the 0-generated subalgebra of the graded
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provability algebra of PA, which is isomorphic to the Lindenbaum
algebra of the letterless fragment of GLP. For the language with
one modality the corresponding theory is mutually interpretable
with the weak monadic second order theory of order (ω, <), com-
monly denoted WS1S, which is decidable by a well-known theorem
of Büchi [5]. In the case of several modal operators the question
becomes more difficult, but also more interesting.

Problem 33. Is the elementary theory of the 0-generated sub-
algebra of the graded provability algebra of PA decidable?

The following list summarizes the problems mentioned in the
paper. Their numeration is slightly different from the one used in
the main text.

10. List of Problems

Informal concepts of proof

P1. (“Hilbert’s 24th”) What is the simplest proof of a given
theorem?

P2. (Kreisel, equivalence of proofs) What proofs are essen-
tially the same, i.e., represent the same informal proof?

P3. Find a proof system, or a class of proof systems, in which
every (informal) mathematical proof can be faithfully rep-
resented on its own level of abstraction and complexity.

P4. (Coordinate-free proof theory) Develop the theory of proofs
on a sufficiently abstract axiomatic basis.

P5. Develop alternative, non-deductive models of provability.

Intuitionistic arithmetic

P6. The provability logic of Heyting arithmetic HA: decid-
ability, axiomatization.
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P7. Characterize the propositional logic of HA + MP + ECT0.

P8. (Markov) Characterize the propositional logics of Kleene
realizability.

P9. (Plisko) Characterize the propositional logics of Gödel’s
Dialectica interpretation.

P10. Suppose HA + A is consistent. Is it always the case that
the propositional logic of HA + A is IPC?

P11. What are the propositional admissible rules of HA + MP
and of HA + ECT0?

P12. Extend the language of propositional logic with a second
sort of propositional variables s1, s2, . . . Realizations send
ordinary variables to arithmetical sentences and the new
variables to Σ1-sentences. Characterize the rules for this
language admissible in HA.

P13. What is the intersection of all provability logics for re-
cursively enumerable extensions of HA in the language of
HA?

P14. What are the closed fragments of the provability logics of
HA + MP and of HA + MP + ECT0?

Bounded arithmetic

P15. The provability logic of bounded arithmetics S1
2 and S2:

decidability, axiomatization.

P16. Does the Friedman–Goldfarb–Harrington principle hold
in S1

2?

P17. Does ∃Σb
1-disjunction property for a Σb

1-presented theory
T imply its ∃Σb

1-reflection principle in S1
2 + Con(T )?



Provability Logic 127

Bimodal and polymodal logics

P18. Classification of bimodal provability logics for pairs of r.e.
theories containing a sufficiently strong fragment of PA.

P19. Characterize the provability logics of any natural pair of
theories (T,U) such that U is a Π1-conservative exten-
sion of T , but U is not conservative over T w.r.t. boolean
combinations of Σ1-sentences.

P20. What are the bimodal provability logics of (IΣ1, IΠ−
2 ) and

other pairs of incomparable fragments of PA?

P21. Give an effective description of all possible provability log-
ics with a constant for a single sentence over PA.

Magari algebras and Lindenbaum Heyting algebras

P22. Is the ∀∗∃∗-fragment of the first order theory of the prov-
ability algebra of PA decidable? The same question for
the ∀∗∃∗∀∗-fragment.

P23. Give sharp necessary and sufficient conditions for the iso-
morphism of Magari algebras of reasonable theories. In
particular, are the algebras of PA and PA + Con(PA) iso-
morphic?

P24. Characterize the first-order definable elements in the Ma-
gari algebra of PA.

P25. Characterize (r.e.) subalgebras of the Lindenbaum Heyt-
ing algebra of HA.

P26. Is the elementary theory of the Lindenbaum Heyting al-
gebra of HA decidable? Which fragments of it are?

P27. Are the Lindenbaum Heyting algebras of HA and HA +
RFN(HA) isomorphic?
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Interpretability logic and its kin

P28. Characterize the interpretability logic of all reasonable
theories.

P29. (Ignatiev) Characterize the logics of Σ1- and Σ2-conserva-
tivity over PA.

P30. Characterize the interpretability logic and the Π1-conserva-
tivity logic for PRA.

P31. Characterize the logic of the principles for local inter-
pretability valid in all reasonable theories.

Graded Provability Algebras

P32. Develop generalizations of the notion of graded provabil-
ity algebra suitable for the proof-theoretic analysis of ATR0

and KPω.

P33. Develop versions of reflection principles suitable for ax-
iomatizing fragments of KPω over some weak basic set
theory. Clarify the analogy between set-theoretic and
arithmetical reflection principles.

P34. The same question for bounded arithmetic theories Si
2 and

T i
2 over PV and for the fragments of Heyting arithmetic

HA.

P35. Axiomatize the equational theory of the reduct of graded
provability algebra in the language with only the following
operations: 
, ∧, 〈n〉, for all n.

P36. Develop a definability theory for graded provability alge-
bras that would allow the modalities to be applicable to
(definably) infinite sets of elements.

P37. Find a new combinatorial independent principle that would
be motivated by Kripke models for GLP.

P38. Is there a natural topological semantics for GLP?
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P39. Is the elementary theory of the 0-generated subalgebra of
the graded provability algebra of PA decidable?
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61. G. Kreisel and A. Lévy, Reflection principles and their use for es-
tablishing the complexity of axiomatic systems, Z. Math. Logik 14
(1968), 97–142.

62. R. Magari, The diagonalizable algebras (the algebraization of the the-
ories which express Theor.:II), Boll. Unione Mat. Ital., Ser. 4, 12
(1975). Suppl. fasc. 3, 117-125.

63. Y. Moschovakis, What is an algorithm? In: B. Engquist and
W. Schmid (eds.), Mathematics Unlimited, Berlin, Springer-Verlag,
2001, pp. 919–936.

64. P. P. Petkov (ed.), Mathematical Logic, Proc. the Heyting 1988 sum-
mer school in Varna, Bulgaria, Plenum Press, 1990.

65. W. Pohlers, Subsystems of set theory and second order number the-
ory, In: S. R. Buss (ed.), Handbook of Proof Theory, Stud. Logic
Found. Math. 137 Amsterdam, Elsevier, 1998, pp. 210–335.

66. H. Prakken, Logical Tools for Modelling Legal Argument, A Study of
Defeasible Reasoning in Law, Dordrecht, 1997.

67. D. Prawitz, Ideas and results in proof theory, In: Proc. 2nd Scandi-
nav. Logic Symposium (Univ. Oslo, Oslo, 1970), Stud. Logic Found.
Math. 63 Amsterdam, Elsevier, 1971, pp. 235–307.



134 Lev Beklemishev and Albert Visser

68. N. Preining, Sketch-as-proof, In: G. Gottlob, A. Leitsch, and D.
Mundici (eds.), Computational Logic and Proof Theory, Lect. Notes
Comput. Sci. 1289 (1997), pp. 264–277.

69. M. Rathjen, Recent advances in ordinal analysis: Π1
2−CA and related

systems, Bull. Symbolic Log. 1 (1995) no. 4, 468–485.

70. G. F. Rose, Propositional calculus and realizability, Trans. Am.
Math. Soc. 61 (1953), 1–19.

71. V. V. Rybakov, A criterion for admissibility of rules in the modal
system S4 and intuitionistic logic, Algebra Logic 23 (1984), 369–384.

72. V. V. Rybakov, Admissibility of Logical Inference Rules, Amsterdam,
Elsevier, 1997.

73. A. Schönhage, Storage modification machines, SIAM J. Comput. 9
(1980), 490–508.

74. V. Yu. Shavrukov, The logic of relative interpretability over Peano
arithmetic [in Russian], Tech. Report No. 5, Steklov Math. Institute,
Moscow, 1988.

75. V. Yu. Shavrukov, A note on the diagonalizable algebras of PA and
ZF, Ann. Pure Appl. Logic 61 (1993), 161-173.

76. V. Yu. Shavrukov, Subalgebras of Diagonalizable Algebras of Theories
Containing Arithmetic, Disser. Math., no. 323, 1993.

77. V. Yu. Shavrukov, Isomorphisms of diagonalizable algebras, Theoria
63 (1997), no. 3, 210–221.

78. V. Yu. Shavrukov, Undecidability in diagonalizable algebras, J. Sym-
bolic Logic 62 (1997), no. 1, 79–116.

79. T. Smiley, The logical basis of ethics, Act. Phil. Fennica 16 (1963),
237–246.
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82. C. Smoryński, Self-Reference and Modal Logic, Berlin, Springer-
Verlag, 1985.

83. R. M. Solovay, Provability interpretations of modal logic, Israel J.
Math. 28 (1976), 33–71.



Provability Logic 135

84. G. Sundholm, Proofs as acts versus proofs as objects: Some questions
for Dag Prawitz, Theoria 64 (1998), 187–216.
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In recent years, a number of “dynamic epistemic logics” have been
developed for dealing with information, communication, and in-
teraction. This paper is a survey of conceptual issues and open
mathematical problems emanating from this development.

1. Logical Dynamics

The traditional paradigm of logic is drawing a conclusion from
some given premises. But derivation from data already at our
disposal is just one way in which information can be obtained.
We can also observe new facts, or just ask some better-informed
person whom we trust. Concomitantly with all this information
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flow, our knowledge and beliefs change, and this adaptation pro-
cess may even be triggered by further cues. Such cognitive actions
are of logical interest per se, and their explicit study and its var-
ious repercussions has been described as a “Dynamic Turn” in
logic [14]. In particular, relevant actions in this broader setting
need not be single-agent tasks such as drawing a conclusion or
observing some fact. After all, perhaps the simplest logical sce-
nario for getting or giving information is asking a question. But
this essentially involves information flow between two agents, and
their mutual epistemic and “social” interactions as the question is
asked and an answer is given.

An excellent framework for multi-agent dynamic behavior in
communication is epistemic logic (introduced in Section 2), suit-
ably “dynamified” by using ideas from the dynamic logic of ac-
tions. Section 3 is about the best-explored system of this kind, viz.
the dynamic logic of public announcements. Section 4 generalizes
this to general dynamic-epistemic logic of actions or events whose
observation conveys information. The resulting technical ques-
tions here blend into issues about more classical logical systems,
which are discussed in Section 5 on first-order and fixed-point log-
ics. But knowledge and ignorance are not the only attitudes of
participants in a conversation. They also have beliefs about their
current situation and expectations about the future. These are
revised as observation and communication take place. Thus, epis-
temic dynamics runs into belief revision. Section 6 is devoted to
links between dynamic-epistemic logic and belief revision theory
as developed in AI and related areas.

Next, there is also a longer term to information flow beyond
individual update or revision steps. For, these do not occur in
isolation. There is a history of past interactions, determining our
trust in our interlocutor, as well as a future of things yet to be said.
Eventually, this calls for a merge of epistemic and a temporal logic
which allows for statements of regularities over time, often in the
form of “protocols” (Section 7). Another longer-term perspective
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concerns the purpose of a question. Behind every ordinary ques-
tion there is a “Why” meta-question: what is the point, and what
are people trying to achieve? This leads to current game logics for
describing strategic behavior in games, of which there exist quite
a few by now. These are just some of the current bridges between
logic and game theory, which deserve a separate treatment. Sec-
tion 8 provides a very brief introduction with pointers. Finally,
Section 9 summarizes a few general issues playing across all of the
above phenomena.

A word of clarification. “Open problems” in new areas like
this may be of several different sorts. Some are clear-cut math-
ematical questions, where all notions have crystallized out, and
what remains to be done is some hard-nosed theorem proving.
But other significant questions concern mathematical modeling,
finding perspicuous formal mechanisms for information update, or
temporal evolution, or say, the logical behavior of different types
of agent. Often, questions like this are triggered by the challenge
of describing some communicative practice, or some given game.
Other questions at this conceptual level have to do with relating
different logical paradigms trying to describe the same phenom-
ena. Third, and finally, there are interesting and highly nontrivial
questions of computational implementation and cognitive realism
in studying the fit between all these logics and actual behavior of
men and machines. In this survey, the main emphasis will be on
the first type of question, but there are a few of the second kind
as well. We only mention issues of the third kind in passing.

Finally, a caveat. This paper is not a self-contained introduc-
tion to logics for epistemic update and games. It is rather intended
for readers with at least some background in the area, who can
then see a coherent panorama of directions to be pursued.

2. Standard Epistemic Logic

The basis for all our further topics is standard epistemic logic,
created originally by Hintikka for analyzing philosophical issues
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in epistemology – but linked more closely with computer science,
and even economics, for a long time now. Excellent introductions
to epistemic logic with a computational slant are [48] and [56].
For modal logic in general, which serves as a sort of mathematical
laboratory, see [35].

2.1. Language

Definition 1 (standard language). The standard syntax of
epistemic logic has a propositional base with modal operators Kiϕ
(“i know that ϕ”), CG (“ϕ is common knowledge in group G”):

p | ¬ϕ |ϕ ∨ ψ |Kiϕ |CGϕ.

We write 〈i〉 for the dual modal existential statement ¬Ki¬ϕ;
which says that agent i considers ϕ possible. The existential dual
of CG is written 〈CG〉ϕ. �

Example 1 (questions and answers). Let Q ask a factual
question “P?”, where A answers truly: “Yes.” A presupposition
for giving a normal truthful answer is that A knows that P : KAP .
The question itself, if it is a normal co-operative one, also conveys
its own presuppositions, such as

(i) ¬KQP ∨ ¬KQ¬P (“Q does not know if P”) and

(ii) 〈Q〉(KAP ∨ KA¬P ) (“Q thinks A may know the answer”).

After the whole two-step communication episode, P has become
common knowledge among Q, A: C{Q,A}P . Note the crucial role
of epistemic iterations: knowledge that agents have about each
others knowledge or ignorance, and also the “group knowledge”
achieved at the end. �

Another group notion is “distributed knowledge”’ DGϕ, which
holds intuitively when agents in G put their information together.
Finally, epistemic logics can be extended by strengthening their
operators in many ways, just as in modal logic in general (cf. [34]).
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2.2. Semantics

Definition 2 (models and truth definition). Models M
for the language are triples (W, {∼ i | i ∈ G}, V ), where W is a
set of worlds, the ∼ i are binary accessibility relations between
worlds, and V is a propositional valuation. The major epistemic
truth conditions are as follows:

M , s |= Kiϕ iff for all t with s ∼ i t : M , t |= ϕ,

M , s |= CGϕ iff for all t reachable from s by some finite

sequence of ∼i steps (i ∈ G) : M , t |= ϕ. �

Example 2. Here is a simple epistemic model:

In the black world, the following are true:

P, KAP, ¬KQP ∧ KQ¬P, KQ(KAP ∨ KA¬P ),

C{Q,A}(¬KQP ∧ ¬KQ¬P ), C{Q,A}(KAP ∨ KA¬P ). �

Common knowledge acts as the dynamic logic modality

[(
∪i∈G ∼i

)∗]
ϕ.

This is a reflexive transitive closure. Finally, distributed knowl-
edge involves intersection of accessibility relations:

M , s |= DGϕ iff for all t with s
⋂
i∈G

∼i t : M , t |= ϕ. �



142 Johan van Benthem

2.3. Basic model theory

A basic notion states when two epistemic models represent the
same informational situation from the viewpoint of our language.

Definition 3 (epistemic bisimulation). A bisimulation be-
tween epistemic models M , N is a binary relation ≡ between
states m, n in M , N such that, whenever m ≡ n, then

(a) m, nsatisfy the same proposition letters,

(b1) if m R m′, then there is a world n′ with nR n′ and m′ ≡ n′,

(b2) the same “zigzag clause” in the opposite direction. �

Every model (M , s) has a smallest bisimilar (N , s), its “bisim-
ulation contraction.” The latter is the simplest representation of
the epistemic information in (M , s).

Fact 1 (invariance for bisimulation). For every bisimula-
tion E between two models M , N with sEt, s, t satisfy the same
formulas in the epistemic language with common knowledge.

Theorem 1 (epistemic definability of models). Each fi-
nite model (M , s) has an epistemic formula δ(M , s) (involving
common knowledge) such that the following assertions are equiva-
lent for all models N , t,

(a) N , t |= δ(M , s),

(b) N , t has a bisimulation ≡ with M , s such that s ≡ t.

For a proof cf. [15] and [10]. Thus, there is a strongest epis-
temic assertion one can make about states in a current model. In
particular, each world in a bisimulation contraction has a unique
epistemic definition inside that model. Also, it follows that, at
least when comparing finite models, epistemic equivalence of worlds
amounts to the existence of a bisimulation connecting them. For
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infinite models, the situation is more complex, but this technical
line of research is not relevant to us here. Bisimulation is the ba-
sic structural equivalence between epistemic models. It plays the
same role as potential isomorphism in first-order logic, and like
the latter, it has Ehrenfeucht-Fräıssé–style game versions. Many
meta-properties of first-order logic, such as interpolation or preser-
vation theorems, transfer to basic epistemic logic without common
knowledge by bisimulation-based arguments. For the complicating
role of common knowledge, cf. Section 4 below.

Remark 1. The language with distributed knowledge is richer.
Standard modal bisimulations do not preserve statements with
intersection modalities, such as 〈R ∩ S〉p. �

2.4. Axiomatics

The complete logics for these models are the usual ones (cf. the
cited references). Minimal modal K arises for knowledge if noth-
ing is required of the accessibility relations. In that case, the K-
operator is better read as belief. But most often in this paper, we
think of accessibilities as equivalence relations, in which case the
complete logic is multi-S5. The axioms for CGϕ resemble those
of dynamic logic, and can be found in the literature. The axioms
for DGϕ also resemble standard modal ones.

2.5. Complexity

Model checking of epistemic formulas in a given finite models takes
polynomial time P , just as for modal formulas in general. The
complexity of the satisfiability problem for epistemic formulas is
NP -complete in the case of a single agent, but with two or more
agents, it becomes Pspace-complete, just like for the minimal
modal logic – and even Exptime-complete when common knowl-
edge is added to the language.
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2.6. Open problems, even here

Static epistemic logic may seem a closed chapter of research. But
there are clear open ends, related to alternatives for the above
semantics. Here are three of many examples.

(a) The universal quantifier truth condition for knowledge has an
existential quantifier competitor, taking knowledge of ϕ as the
existence of compelling evidence for ϕ. Thus, epistemic logic
might include an explicit calculus of evidence and reasons (cf.
[13]). One such system is the “logic of proofs” of [2], while an
account of groups and epistemic actions is in [3].

(b) A second alternative are topological models, where a universal
modality Kϕ describes the interior of the set of points in a
model verifying ϕ. Van Benthem and Sarenac [33] show that
this gives much more freedom of epistemic expression. For
example, unlike relational semantics, topological models can
separate the different intuitions concerning common knowl-
edge distinguished in [8].

(c) Finally, knowledge in natural usage also takes more object-like
arguments, such as “know who did it,” “know his telephone
number” or “know how to do the job.” Such settings are
central to epistemic logic in philosophy. No compact useful
systems of this sort have been developed, though there is, of
course, “epistemic predicate logic” doing part of the job.
But now, let us move to where we really want to go: namely,

the “dynamic turn” putting actions that convey and change infor-
mation at center stage.

3. Public Announcement:
Epistemic Logic Dynamified

The basic paradigm of an information-changing action is saying
something in public. In the simplest case, someone says some-
thing she knows, and this occurs in public, well-understood by all
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members of the relevant group. The resulting epistemic dynam-
ics has been studied since around 1990. It is a surprisingly rich
pilot case for the true realities of everyday communication, where
people say things on weaker grounds, with a certain amount of
hiding and secrecy. In this section, we give basic definitions and
known results, and then discuss a number of interesting questions
that have remained open till to-day. For further background in
dynamic logic of programs, cf. [62]. The specific open questions
discussed here continue an earlier broader survey in [22].

3.1. World elimination: the system PAL

An answer “Yes” to a question “P?” is a public announcement of
the proposition P in the group {Q,A}. Such an announcement
changes the initial model.

Example 3 (answering a question). With the model of
Example 2, announcing P would just leave the black world:

To the right, C{Q,A}P holds. �

Thus, public announcement involves world elimination:

Definition 4. For any model M , world s, and formula P true
at s, (M |P, s) (“M relativized to P at s”) is the submodel of M
whose domain is {t ∈ M |M , t |= P}. �

This simple process describes many epistemic puzzles and sce-
narios in the literature. We have a universe of information states
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(static epistemic models) related by possible transitions: viz. an-
nouncement actions P ! taking models M to submodels M |A.

Definition 5 (PAL language and semantics). The lan-
guage of public announcement logic PAL is the above epistemic
language, with added action expressions

Formulas P : p | ¬ϕ |ϕ ∨ ψ |Kiϕ |CGϕ | [A]ϕ
Action expressions A: P !

The semantic clause for the dynamic modality is as follows:

M , s |= [P !]ϕ iff if M , s |= P, then M |P, s |= ϕ. �

Actually, there are two natural kinds of model here. One is the
universe of all epistemic models. But smaller natural models can
also be “conversation spaces” with just some initial model plus all
its updates by successive “admissible assertions.”

Many notions from standard epistemic model theory apply in
this dynamic setting. For example, public announcement respects
bisimulation in the sense of [14]:

If M , s has a bisimulation with N , t, then, for any epistemic
assertion P , M |P, s has a bisimulation with N |P, t.

Restricting the given bisimulation to these two submodels is a
bisimulation between the updated models. Thus, the language of
PAL is invariant for epistemic bisimulations in the earlier sense.

Statements like [P !]Kiϕ or [P !]CGϕ state what agents know
after announcements. In this manner, the complete logic for PAL
is an exact mathematical calculus of communication.

Theorem 2. PAL without common knowledge is axiomatized
completely by the usual axioms for epistemic logic plus the follow-
ing reduction axioms:

[P !]q ↔ P → q for atomic facts q
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[P !]¬ϕ ↔ P → ¬[P !]ϕ

[P !]ϕ ∧ ψ ↔ [P !]ϕ ∧ [P !]ψ

[P !]Kiϕ ↔ P → Ki[P !]ϕ

These axioms provide an obvious reduction procedure taking
any dynamic PAL formula to an equivalent one in static epistemic
logic. It follows that

Corollary 1. PAL is decidable.

As it stands this translation is exponential, but [65] proposes
a more efficient one for SAT purposes, showing that satisfiability
for PAL remains Pspace-complete. Incidentally, model checking
for PAL is in P – as observed by several people.

The full language of PAL with common knowledge raises some
complications. There is no obvious reduction axiom for assertions
[P !]CGϕ! This issue has been resolved only in [61]. First, an
extension is needed of the basic epistemic language, with a new
modality of relativized common knowledge

M , s |= CG(ϕ, ψ) iff ψ holds after every finite sequence of
accessibility steps for agents going through ϕ-worlds only.

Then we do have a valid equivalence

[P !]CGϕ ↔ CG(P, [P !]ϕ).

Relativized common knowledge is not definable in the basic
epistemic language – but it is bisimulation-invariant, and existing
completeness proofs are easily generalized. On this extended base,
we have the following valid general reduction axiom in PAL:

Theorem 3. PAL with relativized common knowledge is ax-
iomatized completely by adding the reduction law

[P !]CG(ϕ, ψ) ↔ CG(P ∧ [P !]ϕ, [P !]ψ).
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Finally, the dynamic character of PAL can be taken further.
Conversation involves sequences of assertions, governed by regular
program constructions as in dynamic logic. These include

(a) sequential composition ;

(b) guarded choice IF . . . THEN . . . ELSE. . .

(c) guarded iterations WHILE. . . DO. . .

Example 4 (the puzzle of the Muddy Children). Here is
a simple story that occurs in many variants in the literature:

After playing outside, two of three children have mud on
their foreheads. They all see the others, but not them-
selves, so they do not know their own status. Now their Fa-
ther comes along and says: “At least one of you is dirty.”
He then asks: “Does anyone know if he is dirty?” The chil-
dren answer truthfully. As this question–answer episode
repeats, what will happen?

Nobody knows in the first round. But then, the muddy chil-
dren both know their status, as each of them can argue as follows.
“If I were clean, the one dirty child I see would have seen only
clean children around her, and so she would have known that she
was dirty at once. But she did not. So I must be dirty, too!”
This is symmetric for both muddy children – so both know in
the second round. The third child knows it is clean one round
later, after they have announced that. The puzzle easily extends
to more clean and dirty children. Here is the update sequence for
this particular case:

Updates start with the Father’s public announcement that at
least one child is dirty. This is about the simplest communicative
action, and it merely eliminates those worlds from the initial model
where the stated proposition is false, i.e., CCC disappears:
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When no one knows his status, the bottom worlds disappear:

1

2

3

The final update is then to

DDC∗

Clearly, the conversation instructions in this puzzle involve all
three regular program operations. �

It is easy to add such operations to create compound assertions
for more complex conversational instructions. PAL must then be
extended with the usual axioms for PDL. But the combination is
surprising, as has been shown in [68]:
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Theorem 4. PAL with PDL operations is undecidable.

Indeed, Muddy Children involves a form of parallel program
composition as well, since children speak simultaneously in each
round. No canonical PAL system has been proposed yet for deal-
ing with this further complexity of communication.

This ends our lightning tour of PAL. It might seem that we
now know all there is to this system, but this is far from true!
Here are four excursions into the unknown.

3.2. What are the real update laws?

The earlier axiom system leaves many questions unanswered.

Generalized models

Consider restricted families of epistemic models with assertions P
only admissible as long as the new model M |P is still inside the
family – the above “conversation models.” Let some assertion P
be forbidden in such a model. Then the principle P → 〈P !〉
 fails,
though it follows from the above PAL axioms.

What is the complete PAL logic of all generalized models?

There maybe a simple relativization trick at work here. For
example, consider the reduction axiom for knowledge, in its valid
existential form on standard models:

〈P !〉〈i〉ϕ ↔ P ∧ 〈i〉〈P !〉ϕ.

For example, from left to right, this is invalid on our general mod-
els, since the announcement action P ! available in the current
situation (M , s) need not be available at some shifted situation
(M , t) with s ∼i t. But we can put in safeguards, reformulat-
ing the axiom to a valid version which assumes that the relevant
actions are present:

〈P !〉〈i〉ϕ ∧ 〈i〉〈P !〉
 ↔ 〈P !〉
 ∧ 〈i〉〈P !〉ϕ.
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We put 〈P !〉
 for the availability of the announcement action
P !, not just the earlier P . We still have precondition 〈P !〉
 → P –
but as we saw, not its converse.

Structural rules

Here is a more dynamic notion of inference in models with up-
date (cf. [87] and [14]). Conclusion ϕ follows dynamically from
P1, . . . , Pk if, after public announcements of the successive premises,
all worlds in the new information state satisfy ϕ. In terms of PAL,
the following implication must be valid:

[P1!] [. . . ] [Pk!]CGϕ.

This notion behaves differently from standard logic in its struc-
tural rules. Permutation of premises, contraction of the same
premise, or monotonicity adding premises all fail.

Theorem 5. The structural properties of dynamic inference
are axiomatized by:

Left Monotonicity X ⇒ A implies B,X ⇒ A
Cautious Monotonicity X ⇒ A and X, Y ⇒ B

imply X, A, Y ⇒ B
Left Cut X ⇒ A and X, A, Y ⇒ B

imply X, Y ⇒ B

This completeness extends to a modal language of all struc-
tural properties of announcements over the universe of all epis-
temic models (cf. [26]). But it remains to be determined how this
substructural logic of announcement actions relates to substruc-
tural calculi motivated by resource management (cf. [74]).

Schematic validities

Unlike most standard logical calculi, PAL update logic is not
substitution-closed. Most conspicuously, its basic axiom

[P !]q ↔ (P → q)
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for atoms q fails when we substitute arbitrary formulas ϕ for q.
After all, the point of update is that truth values of complex as-
sertions like “I do not know if ψ” can change.

Definition 6 (substitution core). The substitution core of
update logic consists of those schemata in the language of PAL
all of whose substitution instances are valid formulas. �

There are interesting principles valid in this sense, which did
not surface in the earlier “formula by formula” axiom system for
PAL. An example is iterated announcement:

Fact 2. The equivalence [A!] [B!]ϕ ↔ [([A!]B)!]ϕ is a valid
schematic principle of PAL.

Here is a total list of schematically valid principles for public
announcement which covers all cases we have found so far.

[P !]T

[P !] ⊥ ↔ ¬P

[P !]¬ϕ ↔ P → ¬[P !]ϕ

[P !] (ϕ ∧ ψ) ↔ [P !]ϕ ∧ [P !]ψ

[P !]Kiϕ ↔ P → Ki[P !]ϕ

[P !]CG(ϕ, ψ) ↔ CG(P ∧ [P !]ϕ, [P !]ψ)

[A![[B!]ϕ ↔ [A!][B!]ϕ

Question 1. Is the substitution core of PAL decidable; or at
least axiomatizable?
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3.3. Model theory of learning

Understanding the effects of communicative actions can be highly
nontrivial. For example, it might seem “obvious” that any public
announcement of a proposition P in a group results in common
knowledge of P . But there is no axiom [P !]CGP in the complete
list for PAL. And indeed, the intuition fails. Here is a much-cited
counter-example.

Example 5 (self-refuting assertions). Let p be the case,
but I do not know this. If you know both these facts, and announce
truly “You do not know that p, but it is true” (ϕ = ¬Kyoup ∧ p),
the current model gets updated to one with p true throughout,
and p becomes common knowledge between us. But then the
given statement ϕ becomes false by its very announcement. �

Other examples are the ignorance assertions in the puzzle of
the “Muddy Children” whose repeated public announcement even-
tually led to common knowledge in the group. This observation
raises an issue of model-theoretic preservation.

Question 2. Which syntactic shapes of epistemic formulas P
are “self-fulfilling,” i.e.: they guarantee common knowledge of P
after their announcement?

Van Benthem [22] notes that self-fulfillment holds for the epis-
temic equivalent of “universal formulas,” true in any submodel of
models where they hold:

Fact 3. All shapes generated by the following grammar are
self-fulfilling: (¬)p, (¬)q, . . . |ϕ ∧ ψ |ϕ ∨ ψ |Kiϕ |CGϕ.

Here the final clause allows arbitrary common knowledge for-
mulas. But there are other self-fulfilling cases, at least when the
accessibility relations in our models are equivalence relations. An
example guaranteeing common knowledge is then ¬Kip.
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Remark 2 (most general postconditions ). Van Benthem
[22] relates the difficulty of the above preservation question to
the impossibility of defining “most general postconditions,” in the
sense of computer science, for assertions inside PAL. Stating a
fact p! has a most general postcondition CGp, but the argument is
ad-hoc. In general, the generic description of the strongest effect
of P ! is backward-looking: “there was a model from which the
current one arose by announcing P .” This requires temporal past
operators beyond PAL. �

Self-fulfilling propositions arise in many ways.

Example 6 (verificationism and learnability ). Van Ben-
them [28] discusses the Verificationist Thesis in epistemology, which
holds that “all true assertions may be known.” This calls for as-
sertions which make some given truth common knowledge. There
are several relevant versions of self-fulfillment then, ranging from
more local to more global. Validity of [ϕ!]CGϕ means that a true
statement can always be learnt by announcing ϕ itself. But a
statement ϕ is learnable in a weaker sense if there is some asser-
tion ψ such that ϕ → [ψ!]CGϕ is valid. And it is learnable in
a still weaker sense if that trigger ψ may depend on the model
where ϕ is true. These notions form a strict hierarchy in models
for multi-S5, where they are all decidable. It is an open question
whether this decidability of learnability notions extends to other
model classes for epistemic logic, say S4. �

More locally, in a given model, [22] shows that

Fact 4. In finite models, any announcement with a proposition
has an update which can be generated equivalently by a proposition
which becomes common knowledge after its announcement.

No version is known for this local result on infinite models.
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3.4. Communication and planning

PAL is not just a formalism for analyzing given statements or
longer conversations. It can also be used for planning assertions,
just as dynamic logics of programs can be used for both analysis
and design. Here is one obvious issue that arises then.

Maximal communication

Here is what a group can achieve by maximal public announce-
ment. Epistemic agents in a model (M , s) can tell each other
things they know, thereby cutting down the model to smaller sizes,
until nothing changes.

Theorem 6. Each model (M , s) has a unique minimal sub-
model reachable by maximal communication of known propositions
among all agents. Up to bisimulation, its domain is the set

COM(M , s) =
{

t | s
⋂
i∈G

∼i t
}

.

An agent j can even reach COM(M , s) by speaking just once,
if she takes bisimulation contractions of updates all along the way.
For then, the strongest proposition known to j corresponds to the
set {t | s ∼j t}. As this is definable, she can state that definition.
COM(M , s) is related to the earlier notion of distributed knowl-
edge DGϕ. Still, there remains a difference between evaluating the
assertion ϕ in the whole model M , or just within the submodel
COM(M , s). The latter notion seems a better candidate for the
intuitive notion of “implicit group knowledge,” but it has not yet
been axiomatized.

The importance of the operation of relation intersection here
suggests another open problem.

Problem 1. Find a natural extended notion of bisimulation
that is characteristic for epistemic logic enriched with DGϕ.
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Planning and reachability
More delicate planning issues include announcing facts publicly
between some agents while leaving some others in the dark.

Example 7 (“Moscow Puzzle”). 7 cards are distributed
among A, B, C. A gets 3, B gets 3, C gets 1. How should A,
B communicate publicly, in hearing of C, to find out the real
distribution of the cards while C does not? Solutions depend on
the numbers of cards (cf. [43]). �

The logic of hiding in public view has some initial observa-
tions so far, but no general theory. Of course, “public privacy”
goes only so far, and we will look at real hiding phenomena in
communication in Section 4. Generalizing from this example, one
can look at any model (M , s) (perhaps inside some “conversation
model”), and ask which models (N , t) satisfying certain desiderata
are reachable from (M , s) by means of finite sequences of available
assertions. Here is one technical notion related to this.

Definition 7 (learnability). The learnability modality is
defined by a quantification over possible assertions:

M , s |= 〈learn〉ϕ iff there is some assertion P
with M , s |= 〈P !〉ϕ �

Question 3. Is PAL plus the operator 〈learn〉 still decidable?

3.5. Group knowledge

Epistemic logic is mostly about individual agents and their inter-
action. But plural agents can also perform actions, like winning
a soccer match or electing a president – and likewise, it makes
sense to ascribe knowledge to plural subjects, such as groups or
organizations. Common knowledge was one step in this direction,
although its definition is essentially still a reduction to knowledge
for individual group members. Less reductive was the notion of
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implicit group knowledge, which arises only if individuals cooper-
ate and share information. One obvious way of doing this is by
imagining plural epistemic subjects with internal communication
channels, so that subgroups can exchange information (cf. [22]):

Problem 2. Develop a version of dynamic-epistemic logic of
groups with communication channels as primitive entities.

In natural language, we often switch between talk of “indi-
vidual” and “collective” agents – with some predicates applying
only to the former, and others only to the latter. Some group
predicates are straightforward lifts of individual behavior for all
members (“the boys had the flu”), whereas others are not (“the
prisoners liberated each other”). Thus, there are no total reduc-
tions between the two levels, and both seem essential in our way of
describing the world. The same duality might apply to epistemic
agents, and hence, a richer epistemic logic of collective agents and
group-forming operations seems of interest.

4. Dynamic Epistemic Logic

Many forms of communication have private aspects, inadvertently,
or with deliberate hiding. People read cards in public view without
showing them to others, they whisper in crowded lecture theatres,
and they send each other secret messages along a channel they
believe to be safe. Civilized social life is full of procedures where
information flows in restricted ways. Such forms of communication
are high-lighted in parlour games, which have been designed to
manipulate information flow. Cf. [42] for a complete analysis of
informational moves in the popular game Cluedo. Such moves can
be explained to a large extent in dynamic-epistemic logic, which
provides a principled account of update of information models by
“event models.” The main source for this calculus is [6] and a
forthcoming textbook is [45].
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4.1. Information from arbitrary
events: product update

The static information models provided by epistemic logic have a
natural dynamic companion:

Definition 8 (event models). The set of relevant events A
in a communication scenario forms an event model

A = (A, {∼i | i ∈ G}, {PREa | a ∈ A}),
with agents’ uncertainty relations ∼i. The latter encode which
events agents cannot distinguish. For example, when I read my
card, and you know it must be either red or black, you cannot
distinguish the two events of “my reading red” and “my reading
black.” But you can distinguish either from “my reading orange”
or “Mount Etna erupting.” Finally, actions a always have pre-
conditions PREa for their being executable. We will assume that
preconditions are formulated within our language. For example,
“my reading red” presupposes that I hold a red card – or, as in an
earlier example, my asking a question may presuppose that I do
not know the answer, but think that you do. �

Here is our general way of computing a new information state.

Definition 9 (product update). Let models (M , s) and
(A, a) be given. The product model (MxA, (s, a)) has domain

{(s, a) | s a world in M , a an action in A, (M , s) |= PREa},
and the new uncertainties satisfy

(s, a) ∼i (t, b) iff both s ∼i t and a ∼i b.

Thus, new uncertainty can only come from existing uncertainty
via indistinguishable events. Finally, the valuation for atoms p at
(s, a) is copied from that at s in M . The new actual world is the
pair (s, a) of the old actual world and the actual event. �

This mechanism was proposed in [6], building on earlier work
by Gerbrandy, Groeneveld, and Plaza. It can model a wide range
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of phenomena, including games (cf. [42] and [19]). In particu-
lar, it can deal with misleading actions as well as truthful ones –
though this requires leaving the realm of epistemic models with
equivalence relations. As with public announcement, truth values
of propositions can change drastically under product update.

Definition 10 (update language and semantics). The
dynamic-epistemic language for this new setting is:

p | ¬ϕ |ϕ ∨ ψ |Kiϕ |CGϕ | [A, a]ϕ,

where (A , a) is any finite event model with actual event a. Se-
mantic interpretation takes place as in the above, with key clause

M , s |= [A, a]ϕ iff MxA, (s, a) |= ϕ. �

Theorem 7. Dynamic epistemic logic is effectively axiomati-
zable and decidable.

Here is the key reduction axiom extending the earlier one for
public announcement:

PREa → &{Ki(PREb → [A, b]ϕ) | b ∼i a in A}.

As before, a reduction axiom for common knowledge in sub-
groups requires a language extension. Van Benthem, van Eijck,
and Kooi [31] do this in a somewhat baroque (but natural) exten-
sion of epistemic logic, which allows any PDL-style program with
tests and regular operations inside the epistemic language. There
are also quite different reformulations of dynamic-epistemic logic.
For example, [5] provides a very general co-algebraic version, rely-
ing heavily on the bisimulation invariance of the above language.
But in this section, we concentrate on other issues, having to do
more with new features of the product update framework.
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4.2. Update evolution

Unlike updates for public announcement, product update can blow
up the size of the initial input model M . Here is an illustration.

Example 8 (blow-up of information models). Suppose
a public announcement of the true fact P takes place in a group
{1, 2}, but 2 is not sure whether it was an announcement of P , or
just some identity event Id which could happen anywhere. In that
case, a two-world model with worlds for P and ¬P turns into a
three-world model with states (p, “P !′′), (p, Id), and (¬P, Id). �

A typical example of blow-up occurs in games. Players start
from an initial situation M , say a deal of cards, and the event
model A contains all possible moves that they have – with pre-
conditions restricting when these are available at players’ turns.
Then the game tree consists of all possible evolutions through the
nodes in the following tree model:

Definition 11 (update evolution models). Let an initial
epistemic model M be given, and an event model A. Then Tree(M ,
A) is the infinite epistemic model consisting of disjoint copies of
all successive product update layers MxA, (MxA)xA, . . . . �

But this infinity can be spurious – as happens in many games,
where complexity of information can grow, but then decrease again
toward the end game.

Example 9 (stabilization under bisimulation). Consider
a model with two worlds P , ¬P , between which agent 1 is uncer-
tain, though 2 is not. The actual world has P :

M
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Now a true announcement of P takes place, and agent 1 hears this.
But agent 2 thinks the announcement might just be a statement
“True” which could hold anywhere. The event model for this
scenario looks like this:

A

The next two levels of Tree(M ,A) then become as follows:

M × A

2 2 2 1

M × A × A

But note that there is an epistemic bisimulation between these
two levels, connecting the lower three worlds to the left with the
single world (P,P !) in MxA. Thus, MxAxA is bisimilar with
MxA, and the iteration remains finite modulo bisimulation. �

Van Benthem [19] determines the exact conditions under which
an extensive game with imperfect information can be represented
in this tree format. Moreover, [22] stated a “Finite Evolution
Conjecture” saying that, starting from a given finite M and A,
the model Tree(M ,A) always remains finite modulo bisimulation.
This would imply that some horizontal levels MxAk and MxAl

in that tree must be bisimilar, with k < l.
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The Finite Evolution Conjecture was refuted in [81], which
views Tree(M ,A) as a dynamical system – and then shows that
(a) The Conjecture holds in single-agent S5-models.
(b) The Conjecture fails in some models with two S5-agents. But

it holds for many special cases of such models: for example,
when the epistemic accessibility relations for all agents in the
model A are linearly ordered by inclusion.

Sadzik [81] uses finite pebble games over M and A to deter-
mine when Tree(M ,A) is finite modulo bisimulation. This is the
case if an only if the “responding player” in the game has a win-
ning strategy. The computational complexity of this game is still
unknown. Also, the above analysis still leaves open the possibility
that large classes of scenarios fall into the Finite Evolution class –
for example, those corresponding to most parlour games.

Remark 3 (action emulation). Other new questions about
product update focus on the behavior of action models. Van Eijck,
Ruan, and Sadzik [47] introduce a relation of action emulation be-
tween action models A, B which holds if and only if A, B produce
bisimilar results on all bisimilar inputs M , N . This turns out to
be different from a simple notion of bisimulation between action
models, and it has an interesting independent characterization. �

4.3. Questions of language design

It is still somewhat of an open question which language has the
best expressive power for dynamic-epistemic logic. Here we just
state some directions which have not yet been fully explored.

Baltag, Moss, and Solecki [6] use a standard epistemic lan-
guage with a common knowledge modality. But this fails to gen-
erate intuitive reduction axioms for formulas [A, a] CGϕ which are
crucial to understanding group communication. As mentioned be-
fore, van Benthem, van Eijck, and Kooi [31] do find such axioms
in a PDL-style extension of epistemic logic. But are there natu-
ral languages in between “DEL” and their “E-PDL” that do the
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job? Or conversely, going to even richer languages, does the same
“reductive equilibrium” also hold for the full epistemic µ-calculus?

Another potential extension has to do with concurrency in
communication, such as the simultaneous assertion by the Muddy
Children of their status. This might involve the same sort of
process-algebraic calculi for concurrency as those developed in the
1980s in computer science. In fact, product update itself is a typi-
cal graph operation of the sort studied in that area, which respects
modal bisimulation. What is the connection between dynamic-
epistemic logic and process algebra? Cf. [44] for a first approach
to parallel update actions.

Finally, the system still has a glaring asymmetry. Information
models M interpret a language, but event models A do not! In
particular, preconditions PRE are not formulas true at a in A:
they refer to what is to be true in M . But it is easy to intro-
duce a second epistemic language describing properties of actions
or events. It has atomic properties, Boolean combinations, and
epistemic modalities such as “for some action indistinguishable
from the current one.” Van Benthem [16] and ten Cate [39] show
how this simplifies product update in a joint language for informa-
tion and action models. Van Benthem [30] relates this to modal
languages for more general product operations, and reductions of
truth in a product to truth in its components. But a convincing
and usable language of event models per se still has not emerged.

4.4. Extensions of empirical coverage

These were all questions about dynamic epistemic logic and prod-
uct update as they stand. But in studying real communication,
many further issues will come to the fore that might lead to ex-
tensions of the framework. Here are a few examples where no
mathematical theory worth reporting has been developed as yet.

(a) In Section 7, we will look at temporal settings which look at
the past of some current update process, as well as its future.
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(b) Van Benthem and Liu [32] show that different update rules
hold for different types of agents, including those which are
not logically omniscient, because of memory limitations. They
also suggest a general study of heterogeneous groups, whose
members do not all update in the same way. This is like
“bounded agents” in game theory.

(c) Bleeker and van Eijck [36] study security and cryptographic
protocols in a product update model which includes world-
changing actions.

(d) Castelfranchi [38] points out that belief dynamics goes hand
in hand with dynamics of changing goals and intentions. The
latter dimension of update has been left out completely in the
logicians’ systems so far.
Communication is a vast area, with many “thresholds” of com-

plexity, for example, when moving from public to private actions,
or from plain speaking to misleading or lying. The eventual hope
would be that dynamic epistemic logics, of whatever enriched sort,
help in locating and understanding these practices.

5. Background in Standard Logics

Epistemic logic has usually been considered as an applied system,
rather than a vehicle for mathematical research as such. And
indeed, for technical purposes, it is often easy to look at related
systems in which it can be embedded. There are well-known direct
translations from epistemic logics into modal or dynamic logics,
but also into first-order logic, and into fixed-point logics. We men-
tion some open problems in those areas that seem relevant to our
concerns in the preceding sections.
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5.1. Modal logic
Model-changing operators

[P !]ϕ is really an instance of a sort of modal operator that occurs
more often in the recent literature. Its evaluation shifts the cur-
rent model. Other examples of such operators are the “deletion
modality” 〈− 〉ϕ of [20], which states truth in some submodel with
one accessibility link deleted:

M , s |= 〈− 〉ϕ iff for some (s, t) ∈ RM ,
(WM , RM − {(s, t)}, VM), s |= ϕ.

This notion seems simple, but [64] shows that this modal logic has
a Pspace-complete model checking problem, while satisfiability is
undecidable. Another example are the “bisimulation quantifiers”
〈bis-p〉ϕ of [57]:

M , s |= 〈bis-p〉ϕ iff for some model (N , t) with a
bisimulation for the language of ϕ minus p between M ,
N linking s to t, N , t |= ϕ.

This evaluates ϕ in some model bisimilar to the current one,
disregarding truth values for the atom p. As an extension of PDL,
this has equal expressive power with the modal µ-calculus, and
uses of this formalism are still increasing. The modalities 〈A, a〉ϕ
of dynamic epistemic logic belong to the same family, and hence
their expressive power and complexity behavior are of interest.

Generalized consequence

Model-jumping also occurs inside modal logic. In many complete-
ness proofs, one has a modal formula ϕ true in some model (M , s),
and then finds another model (N , t) |= ϕ with nicer structural
properties, bisimilar to (M , s). This suggests two new notions of
modal consequence:

ϕ ⇒ [bis]ψ ψ holds in all models bisimilar to a model for ϕ
ϕ ⇒ 〈bis〉ψ every model for ϕ is bisimilar to one for ψ
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As was shown in [15], the former notion is recursively axiom-
atizable and even decidable. For the second, we have equivalence
to conservativity of ψ over ϕ w.r.t. existential consequences:

for all existential modal formulas α, if ψ |= α, then ϕ |= α.

Question 4. Is the second, existential notion of bisimulation
consequence decidable, too?

5.2. First-order logic

Relativization

Announcing A amounts to the well-known first-order operation of
relativizing a model M , s to a definable submodel M |A, s. This
may also be described via syntactic relativization of formulas ϕ by
the update assertion A:

M |A, s |= ϕ iff M , s |= (ϕ)A.

The reduction axioms of PAL are just the usual inductive
definition of relativization. In this perspective, the point of our
relativized common knowledge was that the epistemic language
with just CGϕ is not closed under relativization, whereas the basic
dynamic logic PDL is. Even so, PAL is a modal axiomatization
of model-theoretic relativization.

Problem 3. Give a complete logic of relativizations (ϕ)A in
first-order logic.

One new valid principle at this level is

((A)B)C is logically equivalent to A((B)C) Associativity

This is the first-order counterpart of the earlier valid principle

[A!][B!]ϕ ↔ [([A!]B)!]ϕ
in the substitution-closed schematic version of PAL.
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Relative interpretability

Relativization often occurs together with other operations on mod-
els, such as translation of predicates and formation of new objects
as pairs, – for example, in the notion of “relative interpretation”
of one theory into another. An example is the way in which the
theory of the rationals is embedded into that of the natural num-
bers. Rationals may be viewed as pairs of natural numbers, and
one then looks at a definable subset of NxN , with some newly
defined predicates. Product update involves exactly the same fea-
tures, and hence dynamic epistemic laws may also be viewed as an
axiomatization of such further model-forming operations. Thus,
DEL might point the way toward a systematic modal meta-theory
of model-theoretic operations.

Interpolation

Update is also related to interpolation. Barwise and van Benthem
[9] define a general notion of “entailment along a relation” R:

ϕ entails ψ along R if, for all models M , N with MRN ,
if M |= ϕ, then N |= ψ.

Reasoning often involves using what we know about one situ-
ation to infer properties of another. Standard logical consequence
is entailment along the identity relation. Of particular interest in
a modal setting is entailment along modal bisimulation. Now we
get interesting combined preservation-interpolation theorems:

Theorem 8. The following are equivalent for all first-order
formulas ϕ, ψ:

(a) ϕ entails ψ along bisimulation,

(b) there exists a modal formula α with ϕ |= α |= ψ.

The modal interpolant α is the “bridge” which allows the jump
from models M where ϕ holds to bisimilar models N where ψ
holds. In the special case where ϕ is invariant for bisimulation (i.e.,
ϕ entails itself along bisimulation), this gives the usual result that
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ϕ must be equivalent to some modal formula. Similar interpolation
results might make sense for dynamic-epistemic logic. Here is a
simple illustration (recall Example 6).

Example 10 (interpolation by self-fulfilling statements?).
Consider a valid PAL statement ϕ → [P !]ψ about the effects of a
P -announcement. Can we always use self-learning statements as
“interpolants” to explain this, in the sense that ϕ → [P !]ψ is valid
iff there exists some self-fulfilling assertion α such that

(i) ϕ |= α, (ii) α |= ψ, (iii) |= [α!]CGα?

The answer seems negative. �

5.3. Fixed-point logics

Fixed-point extensions exist for both modal and first-order lan-
guages (cf. [62], [85] on the µ-calculus, and [46] on LFP (FO)).
These languages contain all predicates which are definable as small-
est or greatest fixed-points of monotone set operations. In partic-
ular, with epistemic logic, common knowledge may be viewed as
a greatest fixed-point

νp • ϕ ∧ &i∈GKip.

Many features of epistemic logic with common knowledge be-
come clearer against this background. For example, the two char-
acteristic principles for the usual complete axiomatization express
the two aspects of this definition: an axiom stating the fixed-
point equation by itself, plus an induction rule stating that this is
a greatest fixed-point.

But there is also a less attractive side to this reduction. For,
the explicit programs of propositional dynamic logic disappear,
and the language becomes “static” again, expressing properties
of worlds. Nevertheless, programs can still be extracted under
certain circumstances. The basic idea of PDL is finite reachability :
each program describes a regular set of traces consisting of basic
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action steps and test for formulas. Here is a relevant fragment of
the µ-calculus which contains PDL, in which all approximation
sequences for smallest or greatest fixed-points stop after ω steps.

Definition 12 (the ω-µ-calculus). The ω-µ-calculus only
allows smallest fixed-point operators in the following existential
format, whose approximation sequences always stabilize by stage
ω:

µp • ϕ(p) with ϕ constructed according to the syntax
p | p-free formulas | ∧ | ∨ | existential modalities.

�

The reason for guaranteed approximation by stage ω is the
special syntax of ϕ(p). Van Benthem [14] proves a preservation
theorem showing the equivalence, for first-order formulas, of this
format with the key semantic property of “Finite Distributivity”
for the approximation maps. The ω-µ-calculus is still too strong,
though, since even a simple ω-µ-formula like

µp • q ∨ (〈1〉p ∧ 〈2〉p)

is not definable in PDL. Still, PDL is closed under simultaneous
fixed-points of a yet more special syntactic type of recursion, with
only disjunctions of existential formulas 〈π〉p where the proposi-
tional recursion variables p occurs only in the end position. We
omit details (cf. the Appendix to [31]) – but this provides one
more format for reduction axioms in dynamic-epistemic logic. The
interesting issue remains which natural fragments of the µ-calculus
suffice for communication events.

Of the many further questions raised by the connection with
fixed-point logics, we point out just one. Evidently, we would like
to have analogues of classical meta-properties like interpolation or
preservation for our static or dynamic epistemic logics including
common knowledge. But it is a bit of a scandal that we do not
know if these hold! For example, interpolation for PDL has been
open for some 30 years now, with several ship-wrecked proofs in
the prestigious published literature. The problem is that the usual
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model-theoretic arguments based on compactness fail for fixed-
point languages. And so do their analogues for infinitary languages
(cf. [7] and [9]) – as fixed-point languages strike out from first-
order logic in a different way, allowing for an explicit definition of
well-foundedness.

Question 5. Do PAL and DEL with common knowledge
inherit nice model-theoretic properties of their finitary modal base
logics, such as interpolation, Los-Tarski, or Lyndon theorems?

We do not know. The languages seem so simple that a posi-
tive answer might be expected, but few proofs of this kind exist.
One exception is the propositional µ-calculus, where d’Agostino
and Hollenberg [1] established uniform interpolation by automata-
theoretic methods. These methods might also work here.

6. From Information Update
to Belief Revision

6.1. From knowledge to belief

Dynamic-epistemic logic as presented so far seems mainly con-
cerned with knowledge – but this is an artefact of our presenta-
tion. One could just as well formulate everything so far in terms of
agents’ beliefs Biϕ, interpreted over models for a minimal modal
logic without special requirements on the now directed accessi-
bility relations. The only technical modification worth pointing
out is the issue of “common belief.” The fixed-point operator for
common knowledge enforced veridicality:

CGϕ ↔ ϕ ∧ &i∈GKiCGϕ.

But the modification is simply this:

CBGϕ ↔ &i∈G(Biϕ ∧ BiCGϕ).



Open Problems in Logical Dynamics 171

Still, there remains a desideratum, since product update does
not do genuine belief revision. Here is a simple illustration.

Example 11 (updating with conflicting information).
Suppose that p is true, but an agent believes that ¬p:

Now an announcement p! occurs. The product update rule
will eliminate the ¬p-world, leading to a one-point p-world with
an empty accessibility relation. Here, the agent believes a contra-
diction, or indeed any formula. �

Now, there is an easy fix in the preceding case: just make the
accessibility relation reflexive in the updated model, and let the
agent believe that p. But the point is that there is no principled
way of doing this in the current framework. And it seems hard
to find a way of modifying accessibility relations dealing with all
more delicate cases that arise with as “strong prior preference for
¬p” versus “strong new evidence for p.”

6.2. Dynamic doxastic logic

An extension of product update to deal with belief revision has
been proposed in [4]. The basic idea is as follows. One first intro-
duces a more refined language for belief, with “graded operators” –
an idea due to [83]:

Bα
i ϕ agent i believes up to plausibility level α.
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This requires enriched epistemic models M , retaining the in-
distinguishability relations ∼i, but expanded with maps κi(s) as-
signing doxastic plausibility values κi(s) for agents to worlds s:

M , s |= Bα
i ϕ iff for all t ∼i s with κi(t) � α : M , t |= ϕ.

This could even be generalized to having world-dependent plausi-
bility values, but there seems to be no need for this in the most
basic cases of belief – if we assume that agents know their own
beliefs and plausibilities. It is easy to axiomatize the combined
epistemic doxastic logic of these models, especially with a trick
from [63]. Just add proposition letters plausi(α) to the language,
and interpret these as true at just those worlds whose plausibility
for agent i is at most α. Then Bα

i ϕ may be defined explicitly as

Ki(plausi(α) → ϕ)

and its special properties follow automatically, such as the two
introspection laws

Bα
i ϕ → KiB

α
i ϕ and Bα

i (Bα
i ϕ → ϕ).

Next, we lift the same way of thinking to event models. These,
too, can be viewed as having plausibility structure. For example,
I may hear you say something, and believe that it is most likely to
be “p,” although it might also be “¬p,” as a negation got lost in
the wind. Say, in fact, you said ¬p:” This would give rise to this
event model, where both actions are epistemic possibilities, and
one is doxastically preferred:

The preconditions may still encode agents’ common knowledge
about these actions, which would work exactly as before. One
could also make them reflect agents’ private beliefs about these
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actions. For example, if you think the speaker is a liar, then you
would believe that “say p” tends to happen when ¬p is in fact the
case. The latter sort of modified precondition has not yet been
studied – and we continue with the former, simpler case. Quite
sophisticated scenarios can occur, even in this idealized format.

In what follows, we omit some complications having to do
with the finite range of plausibility values used in [4], for technical
reasons that are irrelevant here.

Definition 13 (product update for belief). Product mod-
els (M , s) x (A, a) are defined as before for their purely epistemic
part. The crucial additional rule updates plausibility values:

κi((s, a)) = κi(s) + κi(a) − MIN(κi(t) |M , t |= PREa}.
The correction factor MIN(κi(t) |M, t |= PREa} subtracts the
lowest value for worlds in the original model M satisfying the
precondition of the action just performed. �

Some drawing of diagrams for simple scenarios will show how
this stipulation works in practice.

Example 12 (updating beliefs).

(a) Start from uncertainty about p while believing that ¬p,
with values 1 for the p-world, and 0 for the ¬p-one. Now listen to
a true announcement of p, as in the earlier problematic example of
belief collapse after public announcement. Then the plausibility
value of the only remaining world (p, ”say p”) is computed as

κi((p, ”say p”))

= κi(p) + κi(”say p”)) − MIN(κi(t) |M , t |= p}
= 1 + 0 − 1 = 0.

This is as it should be: after the update the agent believes that p.

(b) Next, let the agent hear a statement which she believes to
be a true announcement of “p” (plausibility value 0 in the event
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model), though it might also be one of “¬p” (plausibility value 1).
Then two worlds remain, and their plausibility values become:

κi((p, ”say p”))

= κi(p) + κi(”say p”)) − MIN(κi(t) |M , t |= p}
= 1 + 0 − 1 = 0,

κi((¬p, ”say ¬p”))

= κi(¬p) + κi(”say ¬p”)) − MIN(κi(t) |M , t |= ¬p)
= 0 + 1 − 0 = 1. �

Still, these very precise numerical calculations of plausibility
values may be more specific than what is intuitively supported by
our understanding of belief revision.

Problem 4. Find a more qualitative version of belief revision.

Given this update mechanism for beliefs, it is easy to find
complete axiom systems for dynamic doxastic logic in the earlier
dynamic-epistemic style. In particular, the product update rule for
κi-values turns into a reduction axiom for graded beliefs recording
the same numerical convention. Still, intuitive questions remain:

The net effect of the product update rule is “radical:” the last
observed event largely determines the new beliefs. This is clear
in case (b) of the preceding example, where the belief about the
statement just heard wipes out prior beliefs, whatever plausibility
one had before for ¬p. This is not all we want, however – since
our logic must account for the undeniable phenomenon of different
policies for belief revision: more radical, or more conservative.
Liu [63] studies parametrized variants for different sorts of agent,
giving different weights to the factors in the update rule:

λ • κi(s) + µ • κi(a).
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Problem 5. Axiomatize dynamic belief logic with parametrized
update rules for revision policies.

6.3. Better-known theories of belief revision

Belief revision theory is mostly associated with the “AGM ” par-
adigm (cf. [49]). The core of this is a system of axiomatic pos-
tulates on three operations for changing a current theory T after
some new fact A comes into focus:

update T + A,
revision T ∗ A,
contraction T − A.

The third of these is different from what we have looked at so
far, giving a theory as much like T as possible except for leaving
out A. We will continue with the first two. A semantic account
of belief revision was given in [52]. It has close analogies with
Lewis-style models for conditional logic, which sets

M , s |= A ⇒ B iff B is true in all A-worlds “closest”
to s in some given similarity relation between worlds.

Basically, an update with A moves a current theory T , viewed
as a set of worlds ‖T‖, to the set of most plausible worlds, as seen
from T ’s standpoint, which satisfy A. This connection between
belief revision and conditional logic, suitably dynamified, has been
a persistent intuition in the area – with many different more precise
formulations. The paper [80] is a sophisticated recent example.

Remark 4 (updates for real change). Modern belief re-
vision theories include both belief revision concerning one fixed
situation, and world update in the sense of [58], where incoming
assertions can also report real changes in the world. The latter
moves beyond update and revision in the stricter sense of this pa-
per. Nevertheless, it is quite easy to incorporate these notions in
the framework of this paper – for example, by allowing events in
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action models to change truth values of proposition letters. Cf.
[31] for one particular implementation. �

The setting of AGM is not straightforwardly comparable with
those for dynamic–doxastic update, since it only considers non-
iterated theory change for single agents, and that only on the basis
of non-doxastic factual statements. For instance, AGM starts with
an apparently intuitive “Success Postulate” A ∈ T ∗A. But this
only makes sense for update with non-doxastic factual statements,
witness the earlier discussion of the Learning Problem with public
announcement. Moreover, the repertoire of three operations is
much smaller than that of the above plausibility event models,
which can model infinitely many different action scenarios. And
finally, the AGM postulates do not provide systematic reduction
axioms for beliefs after the update.

But there is an alternative modal-logic based reconstruction
of AGM -style belief revision which does provide some features
closer to this paper. Segerberg [82] (following the abstract “dy-
namic modal logic” of update in [12], [75]) proposes a so-called
“dynamic-doxastic logic” DDL with PDL-style operators

[+A]ϕ, [∗A]ϕ

for update and revision with non-modal statements. These modal
operators satisfy a quite standard modal set of axioms express-
ing, amongst others, the partial functionality of these operations,
and the fact that factual assertions lead to belief. One seman-
tics for this system uses hyper-theories, which are like the models
for “premise semantics” of conditionals in [86] (found also with
Kratzer and Lewis). Hyper-theories H are families of sets of
worlds, pre-encoding the potential revisions an agent is willing
to make. They satisfy some technical mathematical assumptions
which we omit here. Here is just an illustration of how they work.

Example 13 (update and revision of hyper-theories).
+ Update with A takes a hyper-theory H to the union of

(i) H, (ii)
⋂

H
⋂

‖A‖,
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* Revision with A takes H to the union of
(i) cons (H, A), i.e., all sets in H with a nonempty inter-

section with ‖A‖, and (ii)
⋂

(cons (H, A))
⋂

‖A‖. �

With these stipulations, DDL supports valid reduction axioms
in the DEL style like

[+A]Biϕ ↔ Bi(A → ϕ), [∗A]Biϕ ↔ (A ⇒i ϕ),

where A ⇒i ϕ is the earlier conditional assertion, interpreted in
the Lewis style, but now with “closeness” as “relative plausibility”
for the relevant agent i. This is much like the reduction axioms
in [23] for belief after public announcement. Girard [51] explores
further analogies between our brand of dynamic doxastic logic and
that of the Segerberg systems. But much remains to be clarified.

6.4. Probabilistic update

Dynamic-doxastic logic also raises another issue, relating to the
other broad tradition dealing with information update. Belief up-
date is well-known in the much more established Bayesian prob-
abilistic format, where prior probability distributions over propo-
sitions are modified to new ones by giving various weights to the
priors and the new observation. The first systematic connections
with dynamic-epistemic logic have been made in [60]. A full-
fledged product update system for probabilities is found in [24].
Still, this is only the first merge, and this bridge between epistemic
logic and probability could be broadened considerably.

Problem 6. Make a systematic comparison of DEL-style and
Bayesian probabilistic update.

A first critical attempt at this is [76].
Moreover, the connection between plausibility approaches like

that of Spohn–Aucher, and probability approaches to belief needs
to be understood. For example, one difference is that plausibility
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approaches freely combine beliefs, because of the validity of

Bα
i ϕ ∧ Bα

i ψ → Bα
i (ϕ ∧ ψ).

But this principle is typically invalid in probabilistic update, as
probabilities of conjunctions can fall below those of the conjuncts.

7. Temporal Epistemic Logic

7.1. Broader temporal perspectives on update

Product update in DEL modifies knowledge about the present sit-
uation. In particular, all uncertainty relations for agents are “hor-
izontal” inside the current model. But there is a much broader
temporal setting, from past to future. For instance, many epis-
temic puzzles contain dialogues like: “I do not know if P .” “Yes, I
knew that already,” where the latter past tense refers to the initial
state, not to the one updated by the first assertion. A technical
motivation pointing the same way was the need for temporal past
operators when defining strongest postconditions, of communica-
tive actions: cf. Remark 2 above.

Other motivations for looking back at the past of some update
process are when we find out that someone has been lying [89].
This seems to call for some sort of backward temporal update –
which remains to be defined. Of course, all this requires maintain-
ing a record of previous updates. Such a perspective is natural
from many viewpoints. For example, consider the earlier idea of
public announcement as relativization. So far, we discarded old
information states. But now, we can keep the old state, and per-
form “virtual update” via relativized assertions. Thus, the initial
state already contains all possible future communicative develop-
ments. This is more in line with the above update evolution models
Tree(M ,A) which contain all possible conversational trajectories.
Such models obviously support a richer temporal language.

A final motivation for taking a broader temporal perspective
comes from more global information that we may have about some
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communication process. For example, we might know that, how-
ever history unfolds, every question will always be answered. Such
“fairness” or “liveness” properties can be formulated in standard
temporal logics over Tree(M ,A), now viewed as a branching-time
structure. Such systematic informative restrictions on the possible
runs of a system are often called protocols.

7.2. Knowledge and ignorance over time

Epistemic-temporal frameworks have existed since the 1980s. One
famous example is the run-based model for distributed systems
[48], or the epistemic branching temporal logic framework of [70].
Consider models for branching time with nodes s and histories
h representing runs of a game. As a process – say, a game –
proceeds, agents are in a node on some actual history whose past
they know, but whose future is yet to be fully revealed. We will
think of this setting as a tree of finite sequences of events, just
as happens in temporal logics in computer science. Sometimes, a
selection is made among all possible branches in the tree, leaving
just the “legal runs” obeying the relevant protocol.

One convenient basic epistemic-temporal language has propo-
sition letters for local properties of nodes, Boolean operations, as
well as temporal and modal operators.

Definition 14 (branching time semantics). Formulas are
interpreted at nodes s on histories h, in a format with clauses
(a) M , h, s |= Faϕ iff s∩〈a〉 lies on h and M , h, s∩〈a〉 |= ϕ.

The standard operator F (‘’at some point in the future”) is
the transitive closure of this one-step modality, taken over all
possible events a.

(b) M , h, s |= Paϕ iff s = s′∩〈a〉, and M , h, s′ |= ϕ.
Again, P (“at some point in the past”) is the transitive closure.

(c) M , h, s |= ♦ϕ iff M , h′, s |= ϕ for some history h′ which
coincides with h up to stage s.

�
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Remark 5 (simultaneity). Language extensions also make
sense. In particular, enriching this temporal-modal language helps
describe event trees more explicitly. For example, a sideways
modality for “simultaneity” would refer to truth at the end of
sequences of the same length. �

One usually reads the modal operator ♦ as an absolute histor-
ical possibility. But one can also view it as some sort of epistemic
possibility for agents, referring to future continuations which they
think possible. In the latter case, we should enrich the above mod-
els and allow different sets of continuations for different agents.

Zanardo [90] has an extensive discussion of this temporal set-
ting. In particular, protocols generalize models to a more man-
ageable format allowing for an axiomatization in a Henkin “gen-
eral model” style. The book [11] is a more philosophical-logical
analysis of knowledge, belief and conditionals in branching time,
focusing on the action logic STIT (“see to it that”).

Problem 7. Give a systematic comparison of STIT with
DEL and DDL.

If players i also have beliefs about the course of the game, or
some more general process, then we add binary relations �i to the
model of relative plausibility, and we add a doxastic modality.

Definition 14 (continued).

(d) M , h, s |= Biϕ iff M , h′, s |= ϕ for all histories h′ which
coincide with h up to stage s and are most plausible for i
according to the given relation �i.

Here is the existential dual version of this:

(d)′ M , h, s |= 〈B, i〉ϕ iff M , h′, s |= ϕ for some history h′ co-
inciding with h up to stage s and most plausible for i according
to the given relation �i:
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This models different views of players about the future. �

Problem 8. Find a most suitable extension of the DEL-
language that works well computationally on these event trees.

7.3. Representation of update logics

The above branching-time models specialize naturally to the event-
tree semantics that comes with product update. Van Benthem
[19], van Benthem and Liu [32] observe that product update will
produce very special uncertainty patterns in such trees.

Theorem 9. An event tree is isomorphic to Tree(M ,A) for
finite models M , A iff it satisfies suitable properties of “Perfect
Recall” and “Uniform No Learning.”

Similar representation theorems are provable for agents which
have bounded memory to various degrees. Even so, a general up-
date logic of different sorts of agents, and what happens when they
interact, is missing so far. This would be a sort of update coun-
terpart for the many attempts at giving up “logical omniscience”
in static epistemic logic.
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The current 2005 version of [23] reformulates dynamic-epistemic
update logics in this broader setting, replacing the earlier reduc-
tion axioms for update and revision by more standard temporal-
doxastic versions. Cf. also [67] on better-behaved regular subcases
of temporal run models.

Problem 9. Relate DEL to the more general semantics of
messages in the branching-time models of [70].

Problems 8, 9 are part of a more general task – which also came
up in discussions at the “First Indian Congress on Logic and its
Relationship with Other Disciplines,” Mumbai 2005. Epistemic-
temporal logics are used widely in analyzing and designing compu-
tational processes, as well as games in general (cf. [67], [73], and
[88]). One would like to merge the various approaches mentioned
here into one framework, and then explore the fine-structure of
specific types of agent, message, and general action. DEL de-
scribes the simplest setting, while in the general framework ’any-
thing goes’. What lies in between?

Interestingly, the latter paper also connects our qualitative sort
of message update with quantitative information in the sense of
mathematical Information Theory. Van Rooy [77] makes a similar
move in the semantics of natural language.

Once connections like these have been made in some appro-
priate fashion, it will also be clear how to increase the scope of
current update logics to include the earlier-mentioned phenom-
ena of Section 7.1, such as more complex temporal preconditions
for actions – instead of just atemporal epistemic ones,– announce-
ments of temporal assertions, and actions that change truth val-
ues of atomic propositions. Each such step represents an upward
move in expressiveness toward the total system of the two men-
tioned references. Another interesting topic in this setting are the
earlier-mentioned protocols constraining general runs of a commu-
nication sequence. Protocol information is absent from DEL (or
DDL) as such. But, through the use of preconditions in event
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models, DEL does rule out certain runs of subsequent events “lo-
cally,” so to speak. The question is which types of protocol are
needed: these might be classified by syntactic types of definition
in the epistemic-temporal language.

7.4. Connections with other parts of mathematics

The above discussion suggests links between the dynamic logics
of information update over time in this paper and a number of
established areas from mathematics. These connections are still
to be explored in depth. Here are a few examples.

(a) Protocols might be just any set of branches in event trees.
But the latter are like Baire spaces with their natural topol-
ogy. Thus, well-behaved sets of branches lie at various levels of
the topological Borel Hierarchy over our trees. Still, pure tree
topology may not suffice, as the epistemic structure of indis-
tinguishability between tree nodes matters. Then we seem to
need generalized topology, as natural closure conditions w.r.t.
indistinguishability relations might become relevant.

(b) We already mentioned probability theory as a more quantita-
tive account of belief and update, and likewise, information
theory as a quantitative measure of channel transmission. Uni-
fying such viewpoints seems a major undertaking at this stage.

(c) Event trees are also the natural universe for learning theory
[59], whose connections with modal and dynamic approaches
seem obvious – though just a few initial links have been made
so far (cf. [55]).

(d) Van Benthem and Liu [32] suggest connections between the
study of different epistemic agents and automata theory, with
Nerode representations for trees with added uncertainty re-
lations. This is also connected to the use of finite automata
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for agents with “bounded rationality” in game theory. A fi-
nal mathematical connection here is the study of Turing ma-
chines with ignorance for players about what is observed on
input and output tapes, as in Ann Condon’s pioneering work
on such devices in computational complexity theory.

(e) And finally, our long-term temporal perspective suggests a
step from dynamic logic to mathematical dynamical systems
theory. This move has been made in other settings, too – as
one studies long-term bulk behavior of logical inference.

8. Game Logics and Game Theory

As explained in the Introduction to this paper, communication
between agents naturally leads to the topic of strategic interaction
generally. The best current model for such interactions are games.
Thus, we get into connections between logic and game theory.
“Logic and Games” is a fast-developing interface by itself these
days, with many different sub-themes, including strong influences
from computer science. In particular, there are two strands of
research to be distinguished: using ideas from game theory in
logic, and using ideas from logic in game theory in logic.

We are currently preparing a separate companion paper [29]
with a similar list of open questions on Logic and Games, along
both of these lines. Here is a preliminary table of contents, whose
headings form a natural continuation of the topics addressed for
update and communication in this paper:

(a) Dynamic logics and strategy calculus in extensive games

(b) Dynamic logics of players’ powers for determining outcomes

(c) Operations that form new games, and game algebra

(d) Logics of preferences and rational action
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(e) Logics with imperfect information

(f) Infinite games and evolution in linear and temporal logic

(g) Fine-structure of game theory: justifying Nash equilibria in
strategic and extensive games

(h) Logic games with preferences?

(i) Probability, expectations and mixed strategies

(j) Evolutionary games and dynamical systems

Surveys of relevant topics, as well as some concrete results, are
in [17], [19], [21], [25], and [27]. Recent dissertations showing the
interest of the interface are [71], [37], [41], [54]. The final paper
will contain a much more extensive bibliography.

9. Conclusion

This paper is a survey of new themes and questions in the dynamic
logic of communication. In line with the purpose of the present
Volume, most of its open problems concern mathematical system
issues about dynamic epistemic logics – and technical junctions to
be made between different areas of logic and mathematics.

Still, it is worth repeating a point from our Introduction about
other sorts of issues that are of equal importance. In particular, on
the descriptive side, there are valid concerns about the adequacy of
the formalizations proposed here. For example, descriptive frame-
works for rational agents in computer science or cognitive science
tend to view information update in a broader setting of beliefs, de-
sires and intentions (the “BDI” paradigm), with a concomitant
dynamics of preferences, goals, and plans. Similar broad mod-
els have been around in computational linguistics since the 1980s.
Sticking with plain update, or even belief revision, may be a ben-
eficial mathematical idealization – but it may also suffer from the
“Inventor’s Paradox” of attempting too little.
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Another missing aspect is cognitive reality. Update, commu-
nication, and conversation seem typical topics for controlled ex-
periments, but no systematic collaboration between logicians and
cognitive scientists has developed yet along these lines.

Finally, staying with logic itself, putting communication and
many-agent interaction at center stage might have far-reaching
repercussions for the agenda of the field – and even the things we
want to know about its key systems. For example, which meta-
theorems (old, or new) for first-order logic are most relevant to
its communicative, rather than its inferential use? We leave these
larger issues to the philosophers of logic.
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There has been much interest in recent years in the way in which
global relations on structures emerge. The mathematics under-
lying such emergence has intimate connections with iterations of
algorithms and complexity related to simple computer programs.
Examples of the phenomena involved range from the emergence of
natural laws in the physical universe, to patterns governing turbu-
lent environments, to the well-known examples of fractal forma-
tion.

We look at the extent to which mathematical definability over
appropriate structures can provide a key insight into what is hap-
pening. In particular, we examine the extent to which Turing’s
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approach to real-world computability is still relevant today, and
point to some fundamental questions facing those with a research
interest in computability theory.

1. An Emergent World around Us

There have always been two very surprising things about the world
we live in. The first is the observed high level of regularity and
form, on which the success of the scientific enterprise depends.
The surface of the ocean, whatever mysteries it hides, shows us
easily discernible patterns which reassure and lull us with their
familiar motions. Even the complications of human relationships
are navigable working within the social rules and conventions es-
tablished over time.

But — secondly — we are constantly confronted with the un-
predictability, the sheer complexity, with which this regularity and
form appears to be awash. It used to be said that only in math-
ematics could one have absolute certainty, but even here one in-
creasingly has to deal with truth as an emergent phenomenon.

Now there is a third mystery to fathom: There seems to be an
intimate relationship between these first two. Getting a better un-
derstanding of that relationship has already grown to be a massive
project extending over many areas of scientific and human activ-
ity. The logician’s talent for bringing out underlying principles
and universalities promises to be an essential ingredient in this.

For the most part, the emergence of Emergence as something
about which everyone has something to say, has generated more
questions than answers, and more excitement than clarity. There
are numerous popular books on the topic — one of the earliest
being John Holland’s [26] Emergence – From Chaos to Order —
which tend to add to (and recycle) the store of striking exam-
ples of emergence, and expand the range of carefully constrained
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situations amenable to some level of analysis, or computer sim-
ulation. Steve Strogatz’s recent Sync: The Emerging Science of
Spontaneous Order [44] is just one example of how fascinating the
topic can be, even when the focus is very specific. But this leaves
us a long way from an understanding of the emergence of life on
earth, of the formation of extra-galactic structures, of the origins
of the laws of nature, of the relationship between the quantum
and classical worlds, of the evolution of species, of the nature of
consciousness as an emergent phenomenon, and of a whole host of
more modest examples.

As Holland [26] points out:

“Despite its ubiquity and importance, emergence is an
enigmatic, recondite topic, more wondered at than ana-
lyzed.”

This article is an attempt to take an overview of what is hap-
pening, and point to some important mathematical tasks which
follow directly from this.

2. Descriptions, Algorithms, and
the Breakdown of Inductive Structure

What one is typically confronted with is some particular phys-
ical system whose constituents are governed by perfectly well-
understood basic rules. These rules are usually algorithmic, in
that they can be described in terms of functions simulatable on
a computer, and their simplest consequences are mathematically
predictable. But although the global behavior of the system is
determined by this algorithmic content, it may not itself be rec-
ognizably algorithmic. We certainly encounter this in the mathe-
matics, which may be nonlinear and not yield the exact solutions
needed to retain predictive control of the system. We may be able
to come up with a perfectly precise description of the system’s
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development which does not have the predictive — or algorithmic
— ramifications the atomic rules would lead us to expect.

If one is just looking for a broad understanding of the system,
or for a prediction of selected characteristics, the description may
be sufficient. Otherwise, one is faced with the practical problem
of extracting some hidden algorithmic content, perhaps via useful
approximations, special cases, or computer simulations. Geroch
and Hartle [20] discuss this problem in their 1986 paper, in which
they suggest that “quantum gravity does seem to be a serious
candidate for a physical theory for whose application there is no
algorithm.” (Interestingly, Georg Kreisel — see below — is one
of those thanked by the authors for their “helpful advice on a
preliminary version of this paper.”)

For the logician, this is a familiar scenario, for whom something
describable in a structure is said to be definable. The difference
between computability and definability is well-known. For exam-
ple, if you go to any basic computability text (e.g., Cooper [5]) you
will find in the arithmetical hierarchy a usable metaphor for what
is happening here. What the arithmetical hierarchy encapsulates
is the smallness of the computable world in relation to what we
can describe. And Post’s Theorem [38] shows us how language
can be used to progressively describe increasingly incomputable
objects and phenomena within computable structures. An anal-
ysis of lower levels of the hierarchy even gives us a clue to the
formal role of computable approximations in constraining objects
computably beyond our reach.

Of course, there is rather more to it than this extremely sche-
matic picture. Later, we will see how a more detailed analysis of
the system resting on some corresponding infinite mathematical
structure, as is common in the real world, may lead to a relevant
model.

Metaphor or model, we would first like to know in general
terms what relevance the distinction between definability and com-
putability has for the real world. To do this, we need to look more
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closely at what it is, in real situations, gives rise to descriptions
whose information content is so intrinsically global in character.
In the next section I will make more explicit the link between
emergence and definability.

The key ingredients of any chaotic environment displaying the
sort of emergent relations we are talking about are firstly paral-
lelism — involving three or more component participants — and
secondly, interactivity between those participants. Georg Kreisel
was brave enough, back in 1970, to propose ([30, p. 143]) the pos-
sibility of a collision problem related to the 3-body problem which
might give “an analog computation of a non-recursive function
(by repeating collision experiments sufficiently often).” Turbu-
lence of any kind clearly exhibits these ingredients, echoed by the
non-linearity of any mathematical description.

In the biological context, here is how Francisco Varela com-
ments on the significance of his notion of autopoiesis — or self-
organization — in Chapter 12 of John Brockman’s [2] The Third
Culture:

“Regarding the subject of biological identity, the main
point is that there is an explicit transition from local
interactions to the emergence of the ‘global’ property that
is, the virtual self of the cellular whole, in the case of au-
topoiesis. It’s clear that molecules interact in very specific
ways, giving rise to a unity that is the initiation of the
self. There is also the transition from nonlife to life. The
nervous system operates in a similar way. Neurons have
specific interactions through a loop of sensory surfaces and
motor surfaces. This dynamic network is the defining state
of a cognitive perception domain. I claim that one could
apply the same epistemology to thinking about cognitive
phenomena and about the immune system and the body:
an underlying circular process gives rise to an emergent
coherence, and this emergent coherence is what constitutes
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the self at that level. In my epistemology, the virtual self is
evident because it provides a surface for interaction, but
it’s not evident if you try to locate it. It’s completely
delocalized.”

The search for new computational paradigms can help us un-
derstand such phenomena. Peter Wegner has particularly focused
on the apparent non-algorithmic nature of computations involv-
ing these key ingredients — see, for instance, his recent paper [22]
with Dina Goldin, or his forthcoming edited book [21].

It is not at all obvious, however, even in the presence of paral-
lelism and interactivity, that we have something new, something
not simulatable by a linear computation. Martin Davis [13] has
effectively defended the classical model against a number of re-
cently proposed new paradigms (for example, [8], [11], [29]). But
new and increasingly convincing tests for the classical model con-
tinue to accumulate (for example, in a relativistic context, [16]).
We obviously need the implied infinities in the underlying mathe-
matical model, otherwise there can be no talk of incomputability.
But more than that, it seems we really do need it to be like real
science — using real numbers. The model has to be, in some es-
sential way, indiscrete. A well-known feature of the emergence of
attractors is their sensitivity to small changes in initial conditions.
In fact, it is this feature — that of being far from equilibrium —
which becomes itself, for Fritjof Capra in his book [3] The Web of
Life, the third criterion for something new and emergent:

“This point is called a ‘bifurcation point.’ It is a point
of instability at which new forms of order may emerge
spontaneously, resulting in development and evolution.

Mathematically a bifurcation point represents a dra-
matic change of the system’s trajectory in phase space.
A new attractor [fixed point, periodic or strange] may
suddenly appear, so that the system’s behavior as a whole
‘bifurcates,’ or branches off, in a new direction. Prigogine’s
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detailed studies of these bifurcation points have revealed
some fascinating properties of dissipative structures . . . ”

Taking a computability-theoretic perspective, Odifreddi ([34, p.
110]) discusses incomputability arising from discrete systems, and
paraphrases Kreisel from 1965:

“Thesis P (for ‘probabilistic’) (Kreisel [1965]) Any
possible behavior of a discrete physical system (according
to present day physical theory) is recursive.”

As Odifreddi comments, the evidence for or against Thesis P
is inconclusive. It may well be that as we become better at mod-
elling and analysing interactive computation, building a repertoire
of informative theoretical constructs, and hence narrow the gap be-
tween what we observe in nature and what we build in computabil-
ity theory, Kreisel’s thesis will eventually need to be hedged around
with qualifications — qualifications which essentially express a his-
torical view of what comprises a ‘discrete physical system’ (tacit
in the statement of Thesis P, even).

What is clear from the mathematics is the simplicity of how in-
computability arises from computability. We just take an overview
of a sufficiently complex computable function, and what we ob-
serve (the range of the function) happens to be not computable.
Incomputability is what lies ‘at the edge of computability’ as much
as emergence lies ‘at the edge of chaos’ — where the high degree
of interactivity in the physical situation corresponds naturally to
the global observation in the mathematical setting. In both cases,
the new level of information content is achieved via a breakdown
of inductive structure, a kind of phase transition. To pursue this
analogy further one needs to mathematically model the way in
which emergent forms feed back into the system, becoming part
of the process of ‘bootstrapping’ remarked on by Varela and oth-
ers.
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A special interest in emergence dates back to the beginnings of
computability theory. Alan Turing, with his characteristic knack
of fixing on scientific questions with hidden significance, was one
of the first to try to say something mathematical about the emer-
gence of form in nature, and wrote seminal papers on the mor-
phogenesis — for example [49]. According to Odifreddi, ‘[Gerald]
Edelman quotes Turing as a precursor of his work on morphogen-
esis’.

Turing also had an interest in emergence in the mind, where
the emergent forms far outstrip our ability to describe them math-
ematically. In 1939 he published a paper, little understood at the
time, using the constructive ordinals O of Church and Kleene to
inductively extend theories via Gödel-like unprovable sentences.
On these opaque technicalities he was able to base some interest-
ing speculations regarding the non-algorithmic nature of intuition.
Here is what Turing ([47, p. 134–135]) says about the underlying
meaning of his paper:

“Mathematical reasoning may be regarded . . . as the exer-
cise of a combination of . . . intuition and ingenuity. . . . In
pre-Gödel times it was thought by some that all the in-
tuitive judgements of mathematics could be replaced by a
finite number of . . . rules. The necessity for intuition would
then be entirely eliminated. In our discussions, however,
we have gone to the opposite extreme and eliminated not
intuition but ingenuity . . . ”

Here he is addressing the familiar mystery of how we often
arrive at a mathematical result via what seems like a very un-
mechanical process, but then promptly retrieve from this a proof
which is quite standard and communicable to other mathemati-
cians. Poincaré was also interested in the role of intuition in the
mathematician’s thinking. A few years after Turing wrote the
above passage, Jacques Hadamard [24] recounts how Poincaré got
stuck on a problem (the content of which is not important):
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“At first Poincaré attacked [a problem] vainly for a fort-
night, attempting to prove there could not be any such
function . . . [quoting Poincaré:]
Having reached Coutances, we entered an omnibus to go
some place or other. At the moment when I put my foot
on the step, the idea came to me, without anything in my
former thoughts seeming to have paved the way for it . . . I
did not verify the idea . . . I went on with a conversation
already commenced, but I felt a perfect certainty. On my
return to Caen, for conscience sake, I verified the result at
my leisure.”

Just as we have been, Turing and Poincaré are talking about
the apparent breakdown in the algorithmic glue holding our world
together. And what they are pointing to is how this is reflected
in the way we come by the descriptions of what is happening. As
Holland [26, p. 9] comments:

“. . . developing a theoretical construct in science . . . is not
a matter of deduction. The standard deductive presenta-
tion of theoretical constructs in science hides the earlier
metaphor-driven models that lead to the constructs.”

To summarize — what we have noticed so far is the ubiq-
uity of emergent phenomena in nature, and the distance between
mathematically describing them, and between extracting predic-
tions from those descriptions we can find. We have examined the
parallel gap between mathematical definability and computability,
and linked the physical situation to well-known hierarchies of in-
computable objects. This parallel was reinforced when we noticed
the role played by globality — on the one hand via quantification,
on the other as attractors arising from local, but highly interac-
tive, complexity — in the emergence of incomputability and of
new physical relations. If we understand more about definabil-
ity in particular structures, the hope is, we may find general and
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unifying principles governing the way the world works. Mathemat-
ical logic (remembering the seminal [41] of chaos theory innovator
Robert Shaw) may even have something to say about something
as mundane as a dripping tap!

3. Ontology and Mathematical Structure

We have noticed some basic things about how we extract math-
ematical descriptions of emergent phenomena. More dramatic in
some ways is the observation that descriptions arising from phys-
ical structures have themselves a physical reality, whether or not
our senses readily confirm that. It is hard to formalize any cri-
terion for distinguishing one particular contingent description as
being any more real than another. This is nothing to do with old
philosophical questions about the intrinsic reality of mathematics.
I will keep to areas where a philosophically näıve mathematician
can say something useful, and the philosopher can benefit from a
mathematical perspective.

We see around us a level of existence, inhabited by us with a
reasonable level of success. We are all too aware of other levels,
distanced from us by the limitations of reductive science. Our
own activities are complex enough to throw up emergent patterns
which constrain our lives, but of which we can be imperfectly
aware. Here is Hermann Broch, around 1930, on the collective
madness of the First World War, and how uncertain a grip on it
individual rationality provided (from Schlafwandler, translated [1]
by Willa and Edwin Muir, p.374):

“Our common destiny is the sum of our single lives, and
each of these single lives is developing quite normally, in
accordance, as it were, with its private logicality. We feel
the totality to be insane, but for each single life we can eas-
ily discover logical guiding motives. Are we, then, insane
because we have not gone mad?”
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On the other hand, our everyday physical world which we see
around us we now know to be a less-than-solid crust on an ocean
of subatomic particles. It is clear that the emergent shapes we live
amongst would be as elusive to an observer of subatomic propor-
tions, inhabiting quantum reality, as are the patterns we seek to
detect in human history and civilization.

Looking from above, we do believe classical reality to be firmly
based on the underlying quantum level, but know better than to
try and reduce our everyday problems to this substratum. Analy-
sis at one level is in terms of the relations appropriate to that level,
and depends on the algorithmic content of these. We can recognize
entities and laws of behavior at the quantum level. But whatever
descriptions we can identify relevant to the way the different levels
relate, we cannot depend on their predictive content.

Looking from below, even entities and laws are hard to grasp.
We certainly cannot “see” them in the way we see our own world.
Any school student who has to write an essay on the causes of
the First World War is made all too aware of this! The relations
by which higher forms are connected are not of our world, and
observation of them must be indirect. But they would be entirely
real to an inhabitant of that higher world, which is no more sur-
prising than is the sureness with which we move around above
our hypothetical subatomic observer. As Holland [26] describes
it, p. 7:

“Persistent patterns at one level of observation can be-
come building blocks for persistent patterns at still more
complex levels.”

We now see emergence not just as a producer of unexpected
patterns, but as the midwife of different levels of physical reality.
And the resulting ontology can be translated into any context in
which our everyday conceptual framework is stretched or actually
fails us. What happens when the familiar laws of nature become
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invalid, such as near a singularity of a standard model of some
aspect of the Universe? How can we say something about the
nature of existence itself? If we want mathematical models rele-
vant to such questions, we need to think in very basic terms about
existence and its emergent structure.

4. Where Does It All Start?

It is hard to say anything new, unless it comes out of some rela-
tively new piece of knowledge — as in this article, some mathe-
matical notions which have not been widely thought about. Let
us begin with the principle of sufficient reason, which in the words
of Gottfried Wilhelm Leibniz (see [32, Secs. 31, 32]) says that:

“. . . there can be found no fact that is true or existent,
or any true proposition, without there being a sufficient
reason for its being so and not otherwise, although we
cannot know these reasons in most cases.”

The mystery of why anything exists at all is beyond us, of
course. This is the ultimate failure of reductionism, something
which finds its echo in so many aspects of science and human
knowledge in general. Hermann Broch [1] describes the role of
God here in terms of the non-Euclidean point of intersection of
two parallel lines, reducing our changing view to presentational
‘style’ (p. 426):

“. . . the First Cause has been moved beyond the ‘finite’ in-
finity of a God that still remained anthropomorphic, into
a real infinity of abstraction; the lines of inquiry no longer
converge on this idea of God . . . , cosmogony no longer
bases itself on God but on the eternal continuance of in-
quiry, on the consciousness that there is no point at which
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one can stop, that questions can forever be advanced, that
there is neither a First Substance or a First Cause dis-
coverable, that behind every system of logic there is still a
meta-logic, that every solution is merely a temporary solu-
tion, and that nothing remains but the act of questioning
itself . . . ”

But existence itself — of facts or other entities — must take a
form inductively determined by the mathematics of its emerging
specifics. It must materialize according to sufficient reason, and
that mathematics we know tells us that mathematical entities can
exist which are not uniquely determined by their context. From
which observation, we might expect to encounter realities which
are not fully determined, and so materialize according to a range
of possibilities. What happens when a particle’s existence is guar-
anteed by ‘sufficient reason’, but its history is not? Clearly, if there
is no pressing reason for a unique history, but there is a pressing
reason for history, then it must be non-unique history for which
there is sufficient reason. And then, from this perspective, there is
nothing mysterious in itself about the parallelism encountered at
the quantum level, for instance — so long as we have a convinc-
ing mathematical model within which such failures of ‘sufficient
reason’ are expected to occur.

So what do we mean in mathematical terms by ‘sufficient rea-
son’? How does a structure determine facts or entities which are
not obviously part of the basic knowledge we have of that struc-
ture. Clearly, if we can uniquely describe some object or relation
in the structure, then, according to what we said in the previous
section, it has an existence. And again from what we said before,
the corresponding mathematical concept is that of definability in
an appropriate mathematical model. However, in mathematics
language is known to have limited descriptive powers, and our
experience of everyday life suggests a similar situation there. In
mathematics one can expand ones language, but in human com-
munication there are obvious limitations on the usefulness of this.
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This does not stop us seeking out extended notions of ‘description’
to help us make sense of the origins of perceived reality.

There is another way of making mathematically precise what
we mean by an aspect of a structure being determined by suffi-
cient reason. Let us first consider a simple example of an organi-
zation in which the members each fill their own individual roles. It
may be possible to reorganize the membership in such a way that
the organization continues to function just as it did before the
reorganization - a number of people now do different jobs from
previously, but observers of the workings of the organization only
notice that certain operatives have different names. It may be
though that however one reorganizes, certain people necessarily
have to retain their original allocated positions, due to particular
personal qualities or expertise, or because of the relationships of
these to the other members of the organization. These people are
invariant under any such reorganization, so we can reasonably say
that that constitutes sufficient reason for them having their desig-
nated jobs. The mathematician will instantly recognize in such a
reorganization of a structure an automorphism — that is, a one-
to-one mapping of the structure onto itself which retains all the
basic relations between members of the structure. And the notion
of invariance need not only be applied to the individuals of the
structure, but to any relation on it. For instance, there may be an
invariant set of members of the structure, which is not moved by
any automorphism (although there may be movement within the
set). Of course, it may be that a structure has no automorphisms
which move anything (all the automorphisms are trivial), in which
case the structure is said to be rigid . Back in the real world, a
rigid Universe would be one in which there was no quantum ambi-
guity, in which every history was uniquely determined by sufficient
reason of things necessarily being that way. One can see from this
that if we succeed in finding an appropriate mathematical model of
the real world, then an understanding of its automorphism group
might clarify many mysteries facing scientists.
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What we have so far is a mathematical framework within which
to set a basic model, but no model as yet. Given a model, the
framework promises to go some way towards helping it play a
fundamental role in explaining emergence and the familiar frag-
mentation of scientific knowledge. To get any further, we need to
think constructively.

How do we start out from nothing, and end up with a whole
Universe? We cannot escape from the mystery of existence, which
is not in keeping with our broadly interpreted principle of suffi-
cient reason, which underlies most of our thinking so far. We have
to fit our intuitive faith in causality to some assumption about
what is given to us without reason. When we say ‘without rea-
son’ here, we are thinking about immanence, and talking about
phenomena originating not from within the known bounds of our
universe. And when we say ‘given to us without reason’, we must
also include here rules for actions which violate the principle of
sufficient reason.

The pre-scientific scenario was that we were given the world
roughly as we see it now, by some divine intervention. This takes
many different forms, for instance that of Genesis making some
concessions to the modern conception of form created out of form-
lessness. What at first seems a very different view, that of the
quantum theorist who asks us to accept randomness as a given,
actually turns out to have a lot in common with this picture.
The difference is that in Genesis the formlessness derives informa-
tion content, and is turned into our familiar classical reality, by
a god beyond human comprehension: whereas in the latter sce-
nario the classical world emerges according to various unverified
speculations from a quantum world featuring randomness, and an
existing high information content. Of course, what is well-known
is that randomness is as much a symptom of high (if hidden) infor-
mation content as is richness of form. And there is no such thing
as absolute randomness. Mathematically, randomness is defined
relative to the level of information content of those forms it avoids.
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Since there is no ultimate information content, there is no abso-
lute randomness, but the more randomness displayed, the greater
the accompanying information content. You must be very clever
to avoid what people expect of you! This makes randomness as
a given a vague and unsatisfying assumption, and certainly one
which violates our principle of sufficient reason much as Genesis
and other creationist conceptions do.

No, if we are to start with little, we must have regularity, pre-
dictability, algorithmic content. And as we have seen, it can be a
short step from such simple beginnings to complexity and emer-
gent new regularities. And such beginnings are not just capable
of providing a basis for real-world-like complexity — they are in
keeping with our basic quest for manifest and sufficient reason in
all things. Even knowing how far we must be from understand-
ing, or even observing, any ‘First Cause’, this does not stop us
observing the levels of human experience we do have access to,
and trying to find unifying principles behind them.

To summarize again: We saw in Secs. 2 and 3 how one could
get a better understanding of our experience of the real-world by
just looking at the logical framework governing how it is described.
To an extent, such things as emergence and the fragmentation of
science are aspects of the basic structure of information content.
In this section we moved on to attempt to mathematically build a
universe with some relationship to our own by applying sufficient
reason to the germs of an instantiation of such structure.

Of course, underlying this must be some assumptions about
the way in which information content is presented (what is infor-
mation content?) and its relationship to the perceived reality it
seeks to capture. Information is what we extract from our expe-
rience of the world around us. For the scientist it is framed in
terms of real numbers. And it has become increasingly standard
practice to view information and the material universe as essen-
tially interchangeable. This is not to say that energy and matter
are just information — but we find them to be neatly captured in
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informational packages, which as far as we are concerned, corre-
spond with their physical presences. In mathematical terms, we
are talking about the familiar, but far from simple, notion of a
presentation of a structure. This identification of information and
the material universe is a viewpoint that has delivered many valu-
able insights in both directions, both in information theory and
science. The possibility that a true picture of the Universe de-
pends on something that is not describable as ‘information’, that
cannot form part of a model based on information content, cannot
be excluded, of course. And this could well be relevant, just as ad-
mitting many-worlds can be used to construct a (to some people)
satisfying narrative. Or, for that matter, just as the creationist
scenario does. But is it necessary to admit such a possibility? Let
us see if we can run with a mathematical model of an immanently
formative Universe which enables us to avoid this level of meta-
physics. And let us continue to wield Occham’s Razor with gusto,
hoping that no damage is done — and that it will make more
obvious what sort of structure is most appropriate to describe a
germinal version of our universe, and beyond.

5. Towards a Model Based
on Algorithmic Content

We want a model that is truly fundamental, that is not already
built upon specifics of our universe which we aim to understand
better. We want it to capture the essence of how information
content is structured in the real world, without losing its wide
applicability.

Now, it is common in mathematics to de-emphasize the dis-
tinction between object and process. This is seen, for instance,
in the construction of certain programming languages, such as
LISP, Haskell and Erlang, derived from Church’s lambda calcu-
lus. There are parallel fluidities in nature, such as between energy
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and matter, or between waves and particles. However, as partic-
ipants in the world, the distinction between object and process
has an immediacy and qualitative difference which it is not useful
to abstract away from. Our reason for maintaining a distinction
is based on a need to retain some sense of type structure, where
matter is observed, actions need to be predicted. We objectify
matter more easily than actions. Our aim is to get a model closer
to our experience.

For us, objects present observable, sometimes very complex,
information (this is what makes them objects for us), whereas pro-
cesses are received as relations between entities. Objects we are
used to having high information content . They are the subjects
of events (such as being observed). We try to predict processes,
to reduce them to simpler components, and are more disconcerted
by a lack of algorithmic content. One may say, there is no strict
dividing line here, and the differences are ones of degree, but this
does not detract from the usefulness of the distiction. Scientifi-
cally, the dichotomy is an essential one, and can be made precise.
What the working scientist tries to achieve is firstly a presenta-
tion of some physical configuration as a real number, and then
an algorithm for computing its new value displaced (such as in
time or space) by some other appropriate real. In essence, the
scientist aims to make predictions in the form of algorithmic re-
lations or functions between reals. If successful, he or she arrives
at a relationship between reals which can be computably approx-
imated — in that, a close rational approximation to the input to
the algorithm yields a correspondingly close approximation to the
output. Mathematically, we want our algorithmically described
process to be continuous. Of course, many processes in nature
cannot be presented in such a continuous way. But everything we
know (with some notable exceptions at the quantum level, which
we will return to later) tells us that these involve non-linear phe-
nomena describable in terms of more basic processes which are
continuous. What lies behind such phenomena is the infinitary
interactivity discussed earlier, and what comes out of our model is
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a presentation of emergence in terms information-theoretic struc-
ture.

All we are trying to do here is to justify a model which gives
different roles to information content and relations over it. And
which deals with those relations in the first instance in terms of
their algorithmic content. One could say more regarding the fea-
sibility and naturalness of doing this. But for now, it suffices to
notice that for particular applications the discussion becomes vac-
uous, and in very general contexts the usefulness of the model
motivates a necessary search for greater clarity. In any case, it is
useful to have an analysis of the algorithmic content of computa-
tionally complex environments, for which one needs to objectify
that which is not algorithmic. Then the usefulness of the analysis
grows with our conviction of the naturalness of its basis.

We owe to Alan Turing [47], who thought a lot about in-
teractive computing, the precise mathematical ideas on which is
based the standard model of computationally complex environ-
ments. Having described in 1936 [46] a mathematical model of
mechanical computability, which is still the basis of much of com-
putability and complexity theory, his 1939 paper sought to relate
computability and certain describable relations over the natural
numbers. In doing so, he allowed his computing machines to in-
teract with an ‘oracle’, providing an exterior source of informa-
tion, which may or may not be computable information. These
oracle machines, in computing finite pieces of information from
finite pieces of information, can be used to compute from reals
to reals via suitable corresponding rational approximations. The
associated functions are algorithmic, and continuous over the re-
als. They exactly correspond to how our working scientist aims to
capture the algorithmic content of the universe.

Mathematically, Turing’s oracle machines give the real num-
bers an algorithmic infrastructure, which comprises the Turing
universe. Emil Post [39] gathered together the computably equiv-
alent reals of this structure, and called the resulting ordering the
degrees of unsolvability — later called the Turing degrees — and
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this has become the mathematical context for the study of the
Turing universe.

It is not surprising that attention has turned to Turing’s uni-
verse of computably related reals as providing a model for scientific
descriptions of a computationally complex real universe (see [4],
[7], [8], etc.) What is surprising is that it has taken so long to
happen — see [6] for some comments on why this should have
been so. This new interest in the Turing universe is based on a
growing appreciation of how algorithmic content brings with it im-
plicit infinities, and, as we have already mentioned, a science —
increasingly coming to terms with chaotic and non-local phenom-
ena — necessarily framed in terms of reals rather than within some
discrete or even finite mathematical model. However, most of the
research activity concerned with the computational significance of
evolutionary and emergent form, and emergence in more specific
contexts, has inevitably been ad hoc in nature. The potential for
drawing out unities and universalities here is as yet almost un-
tapped. Turing’s work on emergence of form in nature, and his
seminal papers on the topic — for example [49] — rather fit this
pattern. After 1939, Turing the inventor of oracle computing ma-
chines seems to have had no direct impact on his later work on
interactive computing and morphogenesis.

Of course, the relevance of such a model in a particular situ-
ation depends on the relative importance of specific properties of
the algorithmic content present and those common to a wide range
of algorithmic structures. It may be that in certain closely con-
strained situations, the general analysis does little more than pro-
vide a conceptual context for results arrived at by non-computa-
bility theoretic means.

There are other considerations. For instance, do we want a
model which tells us about the local escalation of information con-
tent into the incomputable, or one which tells us something global
about already computationally complex environments? There is a
strand of thought — the hypercomputational, as Jack Copeland
and others term it — concerned with contriving incomputability
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via explicitly physical versions of the Turing universe. What is
common to both the computability-theoretic and hypercomputa-
tional strands is that both the emergence of incomputability, and
the emergence of new relations in a universe which admits incom-
putability, are based on a better understanding of how the local
and the global interact. Whatever the context, the key math-
ematical parallel here is that of definability or invariance, even
if within rather different corresponding frameworks. This is not
very explicit in building hypercomputational models, which en-
ables Martin Davis [13] and others to trivialise what is happening
as being the use of oracles to shuffle around existing incomputabil-
ity.

It is not surprising that the human mind points us in the di-
rection of particular hypercomputational models.

Speculations regarding the potential of new connectionist the-
ories to transcend the classical McCulloch and Pitts [33] artificial
neuron formalism have been around for some time — for instance,
in 1988 Smolensky [42, p. 3] observed:

“There is a reasonable chance that connectionist models
will lead to the development of new somewhat-general-
purpose self-programming, massively parallel analog com-
puters, and a new theory of analog parallel computation:
they may possibly even challenge the strong construal of
Church’s Thesis as the claim that the class of well-defined
computations is exhausted by those of Turing machines.”

Turing himself anticipated the importance now given to con-
nectionist models of computation — see his discussion of “unor-
ganized machines” in [48], and Jack Copeland and Diane Proud-
foot’s article [10] “On Alan Turing’s Anticipation of Connection-
ism.” What we are seeing now for the first time is the adoption
of Turing’s own oracle model of interactive computation in a real
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world setting, and the enlisting of the explanatory power of the
mathematical theory of the Turing universe based on that model.

The fact that the hypercomputational case has brought us
little but confusion so far does not mean that it is a bad project.
What it may mean is that on the one hand the mathematical tools
for analysing hypercomputational proposals are just too crude,
that those who have to evaluate the results of their application
are either lacking mathematical sophistication in some part, or
have less expertise in thinking about the real world than they have
in the rigours of recursion theory — and most importantly, that
there is still thinking to be done before vague intuitions can be con-
vincingly communicated. The picture we carry forward from our
earlier discussions is of processes operating over some raised level
of information content, sufficient to give us a stucture in which
new relations can be described. This picture is hierarchical, infor-
mation defined within structures which can only be fully contained
within new structures. The Turing model may be appropriate for
clarifying some big scientific mysteries, but maybe needs refining
for a better understanding of hypercomputation, perhaps incor-
porating little-world constraints on time and space. And at the
level of human affairs, which can never be successfully captured by
our scientist working over the reals, maybe arguments from anal-
ogy need to be carried forward to a more detailed consideration
of definability over structures based on even higher information
content.

6. Levels of Reality

But let us now return to what the Turing model can do. Let us
try to be more clear about how, from very simple beginnings, we
can get from the basic fact of existence to what is for us an even
greater puzzle — because we have to take what is happening under
the umbrella of sufficient reason — the quite amazing emergence
of individual entities. From this point of view, it is not quantum
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ambiguity which is surprising, but the existence of the well-defined
world of our everyday experience.

More generally, we have the problem that even though we have
natural laws to help us understand much of what happens in the
universe, we have no idea where those laws themselves come from.
Their apparent arbitrariness lies at the root of the present day
confusion of speculative science, verging on the metaphysical.

For Alan Guth [23], the problem is:

“If the creation of the universe can be described as a quan-
tum process, we would be left with one deep mystery of
existence: What is it that determined the laws of physics?”

While Roger Penrose [35] asks for a strong determinism, ac-
cording to which (pp. 106–107):

“. . . all the complication, variety and apparent randomness
that we see all about us, as well as the precise physical
laws, are all exact and unambiguous consequences of one
single coherent mathematical structure.”

Science has come a long way since David Hume first set out to
‘enquire how we arrive at the knowledge of cause and effect’, and
insisted, in An Enquiry Concerning Human Understanding , that:

“I shall venture to affirm, as a general proposition, which
admits of no exception, that the knowledge of this relation
is not, in any instance, attained by reasonings a priori, but
arises entirely from experience, when we find that any par-
ticular objects are constantly conjoined with each other.
Let an object be presented to a man of ever so strong
natural reason and abilities; if that object be entirely
new to him, he will not be able, by the most accurate
examination of its sensible qualities, to discover any of its
causes or effects. Adam, though his rational faculties be
supposed, at the very first, entirely perfect, could not have
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inferred from the fluidity and transparency of water that it
would suffocate him, or from the light and warmth of fire
that it would consume him. No object ever discovers, by
the qualities which appear to the senses, either from the
causes which produced it, or the effects which will arise
from it; nor can our reason, unassisted by experience, ever
draw any inference concerning real existence and matter
of fact.”

Hume may still be right, but the match between mathematics
and experience has become more all-embracing, with string the-
ory perhaps the most ambitious of the attempts to unify the two.
The Turing model may be as yet very far from clarifying the spe-
cific details of relativity or quantum theory, but it does promise a
release from the arbitrariness to which all less basic theories — su-
perstring theory, M-theory, inflation, decoherence, the pilot wave,
gauge theory, etc. — are subject, and is based almost entirely upon
experience.

What is specially relevant here is that, far from Hume’s com-
ments causing problems for us, they can be used to clarify not just
how we ‘draw any inference concerning real existence and matter of
fact’, but, further, how in general entities and relations derive exis-
tence from their global context. Reading Hume, we find a graphic
description of how we derive predictive patterns from observations
of events. We recognize a parallel between how we know things —
a process of definition by accumulated experience, of establishing
an invariance emerging from various possibilities — and in the
way the Universe can ‘know’ itself, and immanently establish its
own structure and relations. Although what the Turing model
primarily tells us about is not an emergence of particular events
from events, but of natural laws from the structure of information
content.

What does the Turing model suggest regarding the basic struc-
ture of matter and the laws governing it? Let us review some of
the ground covered in more detail in [7].
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What we know of the Turing universe is consistent with the
possibility that the information content or level of interactivity of
a given entity may be insufficient to guarantee it a unique rela-
tionship to the global structure. This is what one might expect
to apply at an early stage in the development of the universe, or
at levels where there is not a sufficiently density of interactions
to give information a global role. A number of classic experi-
ments on subatomic particles confirm such a prediction. On the
other hand, mathematically entangling such low level information
content, perhaps with content at levels of the Turing universe at
which rigidity sets in, will inevitably produce new content corre-
sponding to a Turing invariant real. The prediction is that there
is a level of material existence which does not display such ambi-
guity as seen at the quantum level, and whose interactions with
the quantum level have the effect of removing such ambiguity —
confirmed by our everyday experience of a classical level of re-
ality, and by the familiar ‘collapse of the wave function’ associ-
ated with observation of quantum phenomena. Since there is no
obvious mathematical reason why quantum ambiguity should re-
main locally constrained, there may be an apparent non-locality
attached to the collapse. Such a non-locality was first suggested
by the well-known Einstein-Podolsky-Rosen thought experiment,
and, again, has been confirmed by observation. The way in which
definability asserts itself in the Turing universe is not known to
be computable, which would explain the difficulties in predicting
exactly how such a collapse might materialize in practice, and the
apparent randomness involved.

One might hope that in the course of time the theory of Tur-
ing definability might explain aspects of subatomic structure. A
conjecture is that when one observes atomic structure, one is look-
ing at relations defined on some lower level of matter lacking any
sort of observable form, out of which arise peaks of definability
observed by us as subatomic particles. This may even lead to a
theoretical explanation of ‘dark matter’. Until such matter is or-
ganized into relations, of which particles are the instantiations, we
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have no structure capable of being interacted with. It would be
as alien to the world of particle physics as that world is to our
classical level of human existence.

As we have already mentioned, the Turing model may have
implications for how the laws of nature immanently arise. And
also how they collapse near the big bang ‘singularity’, and the
occurrence or otherwise of such a singularity. What we have in
the Turing universe are not just invariant individuals, but a rich
infrastructure of more general Turing definable relations. These
relations grow out of the structure, and constrain it, in much the
same sort of organic way observable in familiar emergent contexts.
These relations operate at a universal level. The prediction is
that a Universe with sufficiently developed information content to
replicate the defining content of the Turing universe will manifest
corresponding material relations. The existence of such relations
one would expect to be susceptible to observation, these obser-
vations in turn suggesting regularities capable of mathematical
description. And this is what the history of science confirms. The
conjecture is that there is a corresponding parallel between natural
laws and relations which are definable in an appropriate fragment
of the Turing universe.

The early Universe one would not expect to replicate such
a fragment. The homogenization and randomization of informa-
tion content consequent on the extreme interconnectivity of matter
would militate against higher order structure. The manifest frag-
ment of the Turing universe, based on random reals, might still
contain high information content, but content dispersed and made
largely inaccessible to the sort of Turing definitions predicted by
the theory. Projected singularities, such as within black holes or
associated with boundary states of the Universe, depend on a con-
stancy of the known laws of physics. But immanently originating
laws must be of global extraction. This means that their detailed
manifestations may vary with global change, and disappear even.

Notice the difference here between what we are saying, and
what the upholders of the various versions of Everett’s many worlds
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scenario are. On the one hand, we have an application of the prin-
ciple of sufficient reason to the world as we know it, which gives
a plausible explanation of quantum ambiguity, the dichotomy be-
tween quantum and classical reality, and promises some sort of rec-
onciliation between science, the humanities, and our post-modern
everyday world. On the other we have something more like meta-
physics.

The Turing model, and its connections with emergence, also
lead us to expect the familiar fragmentation of science, and hu-
man knowledge in general. As we know from computability theory,
a Turing definition of a given relation does not necessarily yield
a computable relationship with the defining information content.
But working within the relations at a given level, there may well be
computable relationships emerging, which may become the basis
for a new area of scientific investigation. For instance research con-
cerning the cells of a living organism may not be usefully reduced
to atomic physics, but deals with a higher level of directly observed
regularities. Sociologically, one studies the interactions governing
groups of people with only an indirect reference to psychological or
biological factors. Entire relations upon cells (humans) defined in
some imperfectly understood way by the evolutionary process pro-
vide the raw material underlying the new discipline, which seeks
to identify a further level of algorithmic content. This algorithmic
content may not be directly expressed in terms of numbers. But
inasmuch as the area in question does have basic notions, corre-
sponding to the new emergent relations, shared by workers in the
field, and descriptions of entities and regularities are formulated
in a shared language, the algorithmic content is not dissimilar in
kind to that at lower levels.

In [4] we mentioned a number of areas in which one can observe
qualitatively similar problems, all connected with parallel issues of
definability and nonrigidity. One example is that of the origin of
life on Earth. Another concerns the exact nature of evolution —
as Stuart Kauffman [28] observes (p. 644):
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“Evolution is not just ‘chance caught on the wing.’ It is not
just a tinkering of the ad hoc, of bricolage, of contraption.
It is emergent order honored and honed by selection.”

There is the mysterious emergence of large scale structure in
the Universe. Also in the 1999 paper is a section on epistemo-
logical relativism. There is a basic intuition that an analysis of
the epistemology derived from our Universe is potentially just as
complex as that of the Universe itself. So it should not be surpris-
ing that emergence and the mathematics of definability should be
relevant here. And there is the whole question of the nature of
human thought processes, touched on earlier.

There are questions about the range of possibilities embodied
in such things as quantum ambiguity: Going from the uniqueness
of a defined phenomenon to — what? Are there any overall con-
straints apart from those imposed by the mathematics specific to
the emergent structures? There seems to be one unavoidable rule
— obvious when it is pointed out — which is that each super-
imposed alternative must be viable by itself. Which, in addition
to the specifics, demands that the information content develops
within the rules experience and the computability theory lead us
to expect. In particular, there can be at most countably many
such alternatives. It is known that there exist at most countably
many Turing automorphisms.

What may be most important of all, though, is the way we get
a new model, replacing the one Laplace’s predictive demon gave
us [31] around 200 years ago:

“Given for one instant an intelligence which could com-
prehend all the forces by which nature is animated and
the respective situations of the beings who compose
it — an intelligence sufficiently vast to submit these
data to analysis — it would embrace in the same for-
mula the movements of the greatest bodies and those of
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the lightest atom; for it, nothing would be uncertain and
the future, as the past, would be present to its eyes.”

We now see not only the bottomless mystery in Broch’s point
at infinity where foundations fail, but a hierarchy of lesser myster-
ies rising through the entire structure. The idea of a controlling
god makes no sense in any context, but, taking god to be the em-
bodiment of an unpredictable creative principle in all things, that
of a ubiquitous god does. And, whether we are religious or not,
man is indeed made in the image of this god, a microcosm of the
wider universe, part of and contributor to its emergent creativity.
The all-understanding humanity of enlightenment science may be
dead, but the vitality of our participation in the world takes on a
new life.

7. Algorithmic Content Revisited

The reader may still be left with some basic objections, not just
to what we have been saying, but to the very advocacy of com-
putability theory as applied science. These basic doubts are not
going to be dissipated by specific examples of the usefulness of the
techniques of computability, such as Robert Soare’s beautifully
presented paper [43] on Computability theory and differential ge-
ometry . One can address particular objectives — in this case a
rebuttal of Simpson’s Thesis, clarified by S. GṠimpson in a Foun-
dations of Mathematics (FOM) Network e-mail communication on
Aug. 4, 1999:

“The concise statement of Simpson’s Thesis is:
Priority methods are almost completely absent from ap-

plied recursion theory.”
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One just ends up like the boy trying to seal the breach in the
dyke with his finger. Paradigm changes depend on a number of
ingredients being in place, including the unifying concept behind
the individual pieces of evidence.

For those with a finitist view of the Universe, almost every-
thing said, right from the beginning, will be at best irrelevant,
including any argument about the role of priority methods. It
is hard to dislodge an outlook traceable back to the beginnings
of science. Here is Archimedes in the introduction to The Sand
Reckoner :

“Many people believe, King Gelon, that the grains of sand
are infinite in multitude; and I mean by the sand not only
that which exists around Syracuse and the rest of Sicily,
but also that which is found in every region, whether in-
habited or unhabited. Others think that although their
number is not without limit, no number can ever be named
which will be greater than the number of grains of sand.
But I shall try to prove to you that among the numbers
which I have named there are those which exceed the num-
ber of grains in a heap of sand the size not only of the earth,
but even of the universe.”

But — despite the fact there are probably less than 1087 parti-
cles in the universe — for most of us, a finite model of the universe
will not do, as the sort of things said in Secs. 2 and 3 should hope-
fully persuade all but the most incorrigible finitists. But will not,
of course, in view of the already extensive literature on the topic!

It is worth trying to be a bit more explicit, though. We argued
that presentations of aspects of the universe lead us to particular
mathematical models. And that if the model fits closely enough,
things describable in terms of that model can be expected to be
aspects of the original physical situation, maybe not visible to
us, but a very real element in us developing an understanding of
that system. How can it be that a structure which masquerades
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as being finite, on closer inspection necessarily needs an infinite
structure to explain it? The key ingredient is algorithmic content,
and this derives from our basic principle of sufficient reason. De-
spite Humean caution, we can go beyond a purely fortuitous link
between experience and form.

How does one envisage a germinal Universe, involving minimal
information content, in which something recognizable as ‘events’
occur — which, we may suppose, also have the most basic infor-
mation content imaginable. In such an impoverished (but very
strange!) environment, there cannot be ‘sufficient reason’ for di-
versity within (or for unique manifestation of) particular modes
of event. In other words, we already find it hard to avoid (there is
just not enough information content) to make particular kinds of
development non-uniform. But our only constraint on the actu-
ality of this nascent structure is its mathematics, a mathematics
which has a general applicability to similar structures, and to this
structure at similar stages of its development. And the mathe-
matics of such structures with such a uniformity of infrastructure
is what we can only characterize as algorithmic. Of course, the
mathematics may not actually give us well-defined events. But
even the ambiguity must be uniformly instantiated.

So the close relationship between the mathematics and its real-
world avatar entails a Universe which is not just hard to under-
stand apart from its algorithmic content, but which actually em-
bodies algorithmic content. As Hume would have us know, the
exact nature of that algorithmic content may be beyond reason
(despite the advances in mathematics and science since his time),
but his vision of how we do know things presages a mathematical
model of how entities develop in more general contexts. By so
closely following his analysis, we come up with a mathematics he
would find hard reject the relevance of.

Why do the laws of physics appear so uniform throughout the
Universe? Why do they appear to be algorithmic in effect? The
more interesting question is: How could they be otherwise?
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So the finite model is not just impractical, it fails to describe
what is happening. Neither, we suspect, can science live with its
close relation, the discrete model. Even if Richard Feynman did
suggest [17], after a scientific lifetime working with mathemat-
ics over the reals, the following radical resolution of the uneasy
relationship between reality and its discrete representations:

“It is really true, somehow, that the physical world is rep-
resentable in a discretized way, and . . . we are going to have
to change the laws of physics.”

But even if Feynman were right applied computability theory
is not affected, at least until we gather more convincing evidence
for Kreisel’s Thesis P.

8. What Is to Be Done?

The theory of Turing definability is a notoriously difficult and dan-
gerous area of research. It is the mathematical equivalent climb-
ing Everest’s Kangshung face or K2’s Magic Line (and you can
fall off). So far, we have only achieved a glimpse of the rich-
ness of structure hidden there, a fitting counterpart to that of the
real world. As we observed in [6], the complexity of the Turing
model was not always seen in this light. In the late twentieth
century, relative computability became area of research known for
its mathematical unlovelyness and forbidding pathology. Its rel-
evance was not at all clear during the recursion theoretic years.
The difficulty of the area may have surrounded researchers of the
1960s — pre-eminently Gerald Sacks — with a vaguely heroic,
even machismatic, aura. But as time went on this had become
a double-edged weapon, and by the 1990s almost no one was im-
pressed by the length and incomprehensibility of groundbreaking
new proofs. “Touching the Void” — and having accidents — was
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all very well for mountaineers but, as the new century approached,
mathematics was very much about deliverables. At times the very
value of research into relative computability was questioned. Im-
ages of such dissent stick in the memory: Sacks himself, lecturing
at Odifreddi’s CIME summer school in Bressanone, Italy in 1979,
illustrating his view of ‘Ordinary Recursion Theory’ with a slide of
the Chinese masses in cultural revolution turmoil — his metaphor
for an activity obsessive, formless, pointless; or, ten years later,
Robin Gandy’s contribution to a discussion on the future of logic,
at a conference in Varna, Bulgaria — communicating an impres-
sion of the structure of the Turing degrees via exaggeratedly des-
perate scribbles on a blackboard.

Things have changed, and we have what we described in [6] as
a ‘Turing renaissance’. What is currently so exciting is that the
sorts of questions which preoccupied Turing, and the very basic
extra-disciplinary thinking which he brought to the area, are be-
ing revisited and renewed by researchers from quite diverse back-
grounds. What we are seeing is an emergent coming together of
logicians, computer scientists, theoretical physicists, people from
the life sciences, and the humanities and beyond, around an in-
tellectually coherent set of computability-related problems. The
recurring and closely linked themes here are the relationship be-
tween the local and the global, the nature of the physical world,
and within that the human mind, as a computing instrument, and
our expanding concept of what may be practically computable.

The specific form in which these themes become manifest are
quite varied. For some there is a direct interest in incomputabil-
ity in Nature, such as that coming out of the n-body problem or
quantum phenomena. For others it is through addressing prob-
lems computing with reals and with scientific computing. The
possibility of computations ‘beyond the Turing barrier’ leads to
the study of analog computers, while theoretical models of hy-
percomputation figure in heated cross-disciplinary controversies.
There is also intensive research going on into a number of practi-
cal models of natural computing, which present new paradigms of
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computing whose exact content is as yet not fully understood. In
many scientific areas it is the emergence of form which is deeply
puzzling, and, as we have described above, there is a key role here
for the sort of mathematical models we have been discussing.

However, what we have described so far has been largely twen-
tieth-century mathematics, even if many of the ingredients only
appeared in the final decade of the last century. Many of the key
ideas were described in the 1999 paper [4], while the joint paper of
Cooper and Odifreddi [7] was largely concerned with clarification
and elaboration, and with reining in the ambition of that earlier
paper. This article is to some extent a further step in that direc-
tion. We have dwelled on some basic issues concerning the link
between definability and emergence, but for the big picture, [4]
is still indispensible, in that it draws together so many strands in
contemporary science.

We will finish with something very new. Not by any means a
retreat, but a making more explicit of some of the limitations of
the classical theory of the Turing universe as a model for emer-
gence. And a pointing to other areas in which computability the-
ory can adapt to once again address basic scientific issues. We have
pointed to important questions regarding computability theoretic
structure and emergence, but not all these relate to standard struc-
tures. There appears to be little alternative to the Turing model
in relation to ontology and other fundamental questions regarding
the origins of the material universe and the emergence of natural
laws. There seems to be a specially fundamental role for this anal-
ysis in throwing new light on basic puzzles concerning the exact
role of entropy, and other areas where thinking is unsatisfyingly
ad hoc and bound by scientific cliché. And it is certainly true
that at one level, substructures of the Turing model can provide
an instantiation of many emergent phenomena. But this is not a
useful model for prediction of detail, any more than classical com-
putability addresses practical computational questions in a direct
way. What we get is a context, a conceptual resource, a formative
influence on the scientific culture, the big picture in the way we
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expect from logic and philosophy, deep and essential insights —
and theoretical foundations on which important practical devel-
opments can be based. Of course, Alan Turing’s 1936 paper [46]
did all that.

In [6], we made some comments on how in the years follow-
ing Turing’s paper, computability theory became dominated by
mathematical concerns which, while stimulating necessary techni-
cal developments, took the area away from its real-world context.
One early decision [39] was to view reducibilities in terms of de-
gree structures. Mathematically, this enabled the new area to be
developed in the context of familiar structures such as partial or-
derings, upper semi-lattices and Boolean algebras. Reducibilities
which were not transitive were ruthlessly discarded, despite the
fact that in real-life computation, transitivity commonly fails. In
fact, part of the puzzling non-locality posed by the EPR thought
experiment of Einstein, Podolsky and Rosen [15] comes from just
such a non-transitivity in relation to events which can be con-
nected in real time and space. The problem is that if one were
to take seriously non-transitive reducibilities which correspond to
what we meet in the real world, we would have to develop not
just new computability-theoretic structures, but new mathemat-
ical abstractions with no existing theory. Our orderings would
be non-transitive, while our metrics would be non-symmetric —
something which physicists, significantly, sometimes talk about.
But the computability theory related to such structures does not
yet exist. This is a major project, but potentially of great impor-
tance. One cannot even begin to imagine how definability in such
structures might turn out, or what automorphisms might look like.
But one can be confident that the classical theory will continue
to play an important role, and to technically underpin new devel-
opments. And one can expect to get an even closer relationship
between the structures of computability and complexity theory,
and their real-life avatars.
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In order to answer the question of what logic may be like in this
twenty-first century we examine the history of logic. One thing
that we see is a recurrence of ideas but the ideas change form,
sometimes quite dramatically. We also see a simple idea getting
developed so much that it becomes very complicated, or at least
the source of very complicated ideas – and then disappears, to
re-emerge, perhaps, as a new idea.

Another aspect is the way the rôle of logic has changed. Logic
was at one time the queen of the (mathematical) sciences. Now
she is definitely not, but she has certainly become the handmaid
of computer science, playing many roles. To assist our enquiry we
address four questions.

† “The endless cycle of death and rebirth to which life in the material
world is bound.” (OED)
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1. What logics do we need?
2. What are logical systems and what should they be?
3. What is a proof? and briefly,
4. What foundations do we need?

We take an historical approach rather than a highly technical one.

1. Introduction

Mathematical logic1 was unknown before about 1850 (but see the
remarks on Leibniz below). It was very lively around 1900–1930
and, in the author’s opinion, reached its zenith with the 1957
Cornell AMS Summer Institute on Symbolic Logic [74] and Paul
Cohen’s proof of the independence of the axiom of choice [14, 15]
in 1963.

In the second half of the twentieth century, logic may no longer
have been the queen of the (mathematical) sciences, but she has
certainly become the handmaid of computer science, playing many
roles. Logic has become essential in laying a theoretical foundation
for computing.

1.1. The structure of the paper

We first give an example, in Section 2, of the way that a part of
a discipline, that has been well studied, may go into decline but
subsequently be resurrected by new, transforming ideas.

In Section 3 we consider the development of logic, particularly
in the last hundred years. Then we go on, in the remaining parts of
Section 3, to consider in some detail, how the move to intuitionist
logic led to the extraction of programs from proofs. The author
does not pretend that this is the most important part of logic.
It is, of course, an area with which he is familiar. Very similar

1 Here the phrase “Mathematical logic” refers to the pure discipline of math-
ematical logic.
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remarks could be made about the development of another part of
the author’s work, that on Recursive Equivalence Types. There
one can also see how the simple ideas of Dekker and Myhill [25]
were developed dramatically by Anil Nerode [65] and subsequently
extended to a whole set of different algebraic structures in [20].
Interest has now substantially waned in this area with only a very
few people still publishing in the area according to Mathematical
Reviews. The message we are trying to convey is that one should
look at how logic has developed in the past in order to determine
how it may develop in the future.

Near the end of this section, in Section 3.5, we see how the
combination of techniques from computer science and logic can be
used together to develop new (kinds of) logics. In Section 3.7 we
compare the two standard ways of obtaining “correct” programs.2

In Section 4 we briefly consider some other logics, or parts
of logic, that have yielded different kinds of systems in which to
do mathematics. Next, in Section 5 we consider a few aspects of
the notion of proof. Perhaps it is slightly ironical that we should
end with foundations. However, the present author finds it hard
to accept that the particular foundations of mathematics that we
use would make much difference to the logic that we presently do.
This is despite his having lived through a period when intuitionist
logic was transformed from a rather odd and idiosyncratic logic to
one which is fundamental to computer science.

Along the way we note a number of conclusions. These are
not ends, but starting points for new discoveries (or inventions) or
even of new modes of discovery and invention.

2. An Example of a Process

Let us first of all not consider logic, but linear algebra (as it is now
called).

2 We use the word “correct” in the sense that the program meets its
specification.
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In the nineteenth century the study of canonical forms of ma-
trices became more and more complicated. Muir’s book [63] is
regarded as leading to the death of determinants. As Carl C.
Cowen put it in [17]:

[Kenneth O.] May [in the MAA film Who Killed Determi-
nants? in the 1960s] documented how determinants flour-
ished in the 19th century with its connections to the study
of invariants and how the study of determinants developed
into the linear algebra we know today, where determinants
are far from central. Linear algebra did not really come
to be recognized as a subject until the 1930s . . . Historian
Jean-Luc Dorier [28] regards Paul Halmos’ book [37] Fi-
nite Dimensional Vector Spaces, first published in 1942, as
the first book about linear algebra written for undergrad-
uates.

The study of vector spaces did indeed transform the subject.
As an undergraduate in the late 1950s, determinants and matrices
were familiar to me, but Halmos’s book opened up a new world. It
transformed the subject from a very complicated, indeed arcane,
one into one where what one wrote down was much simpler. With
this dramatic increase in simplicity 3 – both typographical and
conceptual – the subject became immensely more powerful. How
could one have studied Hilbert spaces without vector spaces?

3. What Logics Do We Need?

Subsidiary to this question we shall also ask:

• How do we find/invent these logics?

In order to attack these questions let us ask

• How has logic developed? How will it develop?

3 Perhaps it might be better to say “dramatic move to the basics,” in the
sense of the basic principles of vector space theory being more fundamental.
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I believe I am following the ancient Greek philosopher Aristotle
when I say that logic is the (correct) rearranging of facts to find
the information that we want. Logic has two aspects: formal and
informal. In a sense logic belongs to everyone although we often
accuse others of being illogical. Informal logic exists whenever we
have a language. In particular Indian logic has been known for a
very long time (see, for example, [62, 61]).

Formal (often called, “mathematical”) logic has its origins in
ancient Greece in the West with Aristotle.4 Mathematical logic
has two sides: syntax and semantics. Syntax is how we say things;
semantics is what we mean. Later I will suggest that we should
perhaps add at least a third element to these two (see Section 3.6
below).

By looking at the way that we behave and the way the world
behaves, Aristotle was able to elicit some basic laws. His style of
categorizing logic led to the notion of the syllogism.

In the seventeenth century Leibniz began the axiomatization
of sets (and also of real numbers, in a manuscript in the Nieder-
sächsische Landesbibliothek, now the Gottfried Wilhelm Leibniz
Bibliothek). The latter was complicated and became, as far as I
can ascertain, essentially lost until the twentieth century.

In the nineteenth century Boole developed his laws of thought
(see [6]). It was natural that he should refer to “thought” since,
at that time, logic was in the domain of psychology. Then Frege
developed his Begriffsschrift [32] whence came Russell and White-
head’s Principia Mathematica [77]. In tandem Dedekind’s axioms
for arithmetic (see [24]) were formalized by Peano (see, for exam-
ple, [66]).

Frege developed a relatively small set of concepts and notations
which were, apparently, 5 adequate to deal with the whole of logic –
and mathematics. Russell – initially – built a seemingly simple

4 There is an interesting, and different, account of this history in [2].
5 Frege’s concepts were adequate but he did not get all the axioms necessary

for a complete system of first order logic.
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system for dealing with all of mathematics and logic. But he
wanted to reduce mathematics to logic. He did not succeed.

The system that Russell developed became more complicated
because of

1) the axiom of infinity 6 and
2) the axiom of reducibility which surely must be a nonlogical

axiom. 7

Thus about the year 1900 there was just “one true logic”: classical
logic. But it is not clear: how do we check an infinite number of
instances? What does it mean to say that there is no largest pair
of twin primes, that is to say that there is an end to such pairs
such as 5 and 7; 11 and 13 or even 202 289 and 202 291?

On the other hand, saying that there are infinitely many pairs
of twin primes does have a clear meaning if we can show that, for
every pair, there is a larger pair. In this context compare the way
that Euclid IX.20 established that there are infinitely many prime
numbers (although he did not phrase it like that) [38]. He gave a
method for constructing a larger prime from a given (finite) set of
prime numbers.

Because of the above style of questioning, led by Brouwer, a
Dutch mathematician, indeed a topologist, “constructive logic” or
“intuitionist logic” arose. 8

For Brouwer, the problem of classical logic is that it is not
evident that a mathematical proof actually gives you the way of
performing the necessary construction. However, that is perhaps

6 See also below Section 5.1.
7 The axiom of reducibility was used by Russell to avoid the paradoxes of set

theory. Its ad hoc nature prevented giving a good philosophical justification
for it.

8 Many people have regarded intuitionist logic as being restrictive because
it eschews the use of the law of the excluded middle, A∨¬A, but this was not
Brouwer’s motivation. Further, intuitionist logic actually includes constructive
logic in that there is a uniform translation (the “negative translation” whereby
any formula, A, of classical logic can be translated into a formula, A¬, of
intuitionistic logic) which is provable in intuitionist logic if, and only if, A is
provable in classical logic. (See Gödel [36].)
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the wrong way to look at it. Brouwer was concerned only with
constructing mathematical objects that were claimed to exist. He
did not like mathematical logic and did not consider it relevant.
However, when his approach was formalized, as it was by Heyting
in 1930 (see [42]), the details are buried inside the proof. Nowa-
days one might say that they are buried in the way that algorithms
are buried inside computer programs.

The actual mechanism of providing proofs in the Russell and
Whitehead system was cumbrous, although the techniques could
be learned. For example, if one wants to prove the formula (p ⊃ p)
(read “p implies p”) then a simple analysis of the axioms reveals
that there are very limited possibilities for producing a proof and
these are quickly exhausted. (Of course, ingenuity and practice
make the task of finding such proofs easier, but Russell, in his
autobiography [72], revealed that it had taken him a very great
deal of time and effort to work out the formal proofs.)

So proving theorems in the way dictated by formal logic, that
is to say, writing out strings of symbols and applying formal (me-
chanical) rules to obtain new formulae, became very tedious.

Here we already see Russell’s system mimicking Aristotle: for
the latter always had two premisses in his syllogisms. From these
premisses he derived the conclusion.

What happened next? People began to say “It can be done,”
rather than going to the trouble of writing out the formal proof.
This was nicely expressed, though not for our specific context, by
Hoare [43, p. 578]:

Once a powerful set of supplementary rules has been de-
veloped, a “formal proof” reduces to little more than an
informal indication of how a formal proof could be con-
structed.

Indeed, the attitude among mathematicians, the present au-
thor included, was often that the approach, of simply showing
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that a proof existed, was accepted as sufficient. (But see below
Section 5.1.)

However the way was already open (though it was not known
immediately) for Gödel’s incompleteness theorem (see [35, 58]).
This theorem showed that the apparatus of formal first order logic
was not sufficient to do all that mathematicians would wish to do.

The first major consequence of Gödel’s incompleteness theo-
rem is that Peano’s axioms, when formalized in first order logic,
are not sufficient to characterize the natural numbers.9 But second
order logic was unacceptable and has only now begun to resurface
(see below Section 4.1).

Other methods for establishing that a proof exists were devel-
oped, based on semantics. Most striking amongst these are those
arising from model theory (see [3, 44, 9]).

Thus the first concern of mathematical logic became the rela-
tion between syntax and semantics.10 Syntax is how we say things;
semantics is what we mean.

The ultimate result in the positive direction is Gödel’s com-
pleteness theorem(see [11] or Gödel’s original [34]) which was ob-
tained long before model theory was invented (by Alfred Tarski).11

Nowadays the formulation of the completeness theorem in-
volves models:

Theorem 1 (Gödel, Henkin). A set of formulae (of first
order logic) is consistent if, and only if, it has a model.

So one needs the notion of model. Henkin’s proof (see [39])
constructs such a model. This involves providing a (syntactic
style) “witness” for the x whenever one wants a formula of the

9 Of course, in second order logic, they are categorical, that is to say, there
is only one model up to isomorphism.

10 It could perhaps be argued that this had always been the first concern of
logic.

11 Tarski’s great contribution was to formalize what seems obvious to most
students – until they are asked to write it down formally: he gave a formal
definition of “model” (see, for example, [58]).
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form ∃xA(x) to be true in a (formal) model that one is construct-
ing.

Henkin originally came upon this idea of giving names to such
witnesses when he was looking at set theory (see his [41]) and he
also applied it to the theory of types [40], see below Section 4.1.

All of this had been predicated on the assumption that there
was just one kind of logic: “one true logic.” The great success
of the Frege/Russell initiative had been that it seemed to cover
everything.

Brouwer’s abrupt departure from the classical world was ulti-
mately to lead to many other kinds of logics. But there were other
influences, coming from philosophy: modal logic has a very long
history. The modalities of necessity and possibility also come from
Aristotle and were introduced into formal logic by C. I. Lewis (see
[55]) in 1932.

However it was not until the work of Saul Kripke [51] that
connexions were established between models of modal logics and
models of first order logic. Surprisingly, taking many Henkin mod-
els, with suitable relations between them, was sufficient to cover
the modal case. They even covered the logic of Brouwer’s thought
[52], although Brouwer did not approve of the formalization of his
logic.

Nowadays there are many different logics that all have their
value and application. These logics include various kinds of modal
logics.

Many of these logics also have completeness theorems anal-
ogous to Theorem 1. The proofs of these have similarities with
the proof of the completeness of intuitionist logic. Indeed, Kripke
proved completeness results for modal logics first [51] and only
subsequently used his ideas there to prove the completeness of
intuitionist logic. Details of such theorems may be found in [18].

Recently category theory and its connexions with computer
science have given a profitable way of generating useful modal
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systems through the connexion between coalgebras 12 and modal
logic (see, for example, [47, 53]).

One original aim of Leibniz was to reduce argumentation to
calculating with symbols, witness his famous remark: “Let us cal-
culate” in Ars Inveniendi (The Art of Discovery) of 1685, reprinted
in [16]. Many people would say that we are well on the way
to that. An extensive discussion of this took place at the re-
cent Royal Society Discussion Meeting on 18–19 October 2004
(see http://www.royalsoc.ac.uk/event.asp?id=1334). At this meet-
ing some people seemed to feel that Leibniz’s Golden Age had
arrived, others that it was unattainable! We shall take up some of
the issues below in Section 5.

However, there are certainly new styles of logic that have de-
veloped in the last fifty years. For example, description logics. As
Nardi and Brachman put it in [64]:

Description Logics in part arose from a need to respond to
the inadequacy – the lack of a formal semantic basis – of
early semantic networks and frame systems.
Description Logics (see [1]) may be regarded as an adaptation

of (first order) logic to databases; databases themselves coming (on
the logical side) from the notion of relational system or model.

I believe this is typical of the way that mathematical logic and
its practitioners have responded to the needs of computing and
computer science. It then follows that

Conclusion 1. We should expect to see many more logics de-
veloping in the twenty-first century.

3.1. Extracting constructions from proofs
What do we want from the logics we create? If we look at the work
of Frege and Russell, I believe it is fair to say that they wished to

12 Algebras are characterized by having a domain and functions on that do-
main. Taking the category-theoretic approach one reverses the arrows to get a
costructure, in this case a coalgebra. In particular this means that coalgebras
can be used to characterize the behavior of machines that change state. The
arrows in the coalgebra are the state transitions.
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clarify how mathematics worked or at least to make a fool-proof
system for mathematics. For Aristotle, as I said above, logic is the
(correct) rearranging of facts to find the information that we want.
In present day computer science we are often trying to understand
the logic of machines.

The first interpretation we shall consider is the logic of how
computers can reliably get results. In this approach one imposes
the logic first of all. One proves, for example, that for every x
there is a y such that A(x, y). Then one can extract a program
from the proof, provided the proof is written in a suitable logic.

When Brouwer’s proofs were formalized the information about
the constructions he was giving became embedded in the proofs.
Therefore, Brouwer’s logic: intuitionist logic, is a suitable logic.
We give the rules for this logic in Fig. 1. However, if we want to
recover the construction we have to do some work.

It was Gentzen [75] in the 1940s who was the first to produce
a formal system of logic where it was readily possible to see the
information being moved around and, as it turned out, to make it
possible to recover information on constructions.

3.2. The Lambda Calculus and
the Curry–Howard correspondence

How do we extract the information from a proof in mathematical
logic? Curry [23] started, and Bill Howard [46] developed, the
basic idea which exploited Gentzen’s achievements.

We use the lambda calculus. This was established by Church
[10]. In ordinary mathematics if we apply the function λx.f to
a then we get f [a/x], which is read “f with a for x.” In the
lambda calculus however this is not the same as the (application)
term λx.fa, i.e., λx.f applied to a. In particular they are syn-
tactically different. We therefore have to introduce the notion of
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Assume that x, y are individual variables, and that t and t′ are individ-
ual terms.

A � A
(Ass-I)

∆, A � B

∆ � (A → B)
(→-I)

∆ � A ∆′ � (A → B)

∆, ∆′ � B
(→-E)

∆ � A

∆ � ∀x.A
(∀-I)

∆ � ∀x.A

∆ � A[t/x]
(∀-E)

x is free in A, not free in ∆

∆ � A[t′/y]
∆ � ∃y.A

(∃-I)
∆1 � ∃y.A ∆2, A[x/y] � C

∆1, ∆2 � C
(∃-E)

where x is not free in C

∆ � A ∆′ � B

∆, ∆′ � (A ∧ B)
(∧-I)

∆ � (A1 ∧ A2)
∆ � A1

(∧-E1)
∆ � (A1 ∧ A2)

∆ � A2
(∧-E2)

∆ � A1

∆ � (A1 ∨ A2)
(∨-I1)

∆ � A2

∆ � (A1 ∨ A2)
(∨-I2)

∆ � A ∨ B ∆1, A � C ∆2, B � C

∆1, ∆2, ∆ � C
(∨-E)

∆ � ⊥
∆ � A

(⊥-E)

A[a/x] is read “A with a for x” and denotes the formula A with a substituted for x.

Figure 1. The basic rules of intuitionistic logic

β-reduction13

λx.fa � f [a/x].

(Here � is read “reduces to.”)

13 α-Reduction refers to the simple renaming of one variable by another (with-
out clashes).
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Now note the similarities between →-introduction, the rule
(→-I), and →-elimination (→-E) (in Fig. 1) on the one hand, and
λ-introduction and λ-elimination on the other, the β-rule.

Next consider a proof of B from A from which we get a proof14

of (A → B) (by the rule (→-I)):

[A]
...

B

(A → B)

(1)

and lambda abstraction (which abstracts a function from the pro-
cess where a ∈ A gives us f(a) ∈ B): that is λx.f . Consider the
figure:

a
...

f [a/x]
λx.f

What is the connexion?
The most obvious thing, I hope, is that the shapes are the

same! If this is difficult to see then replace the bottom line by
x → f(x).

Conclusion 2. Patterns will arise in formal studies that re-
flect each other.

3.3. Proofs as types

Russell, in his Appendix B to [70] introduced the theory of types
in an informal setting, and later in a formal setting in [71]. The
theory of types was invented by Russell (see [77]) to resolve the

14 The square brackets indicate that A can be discharged, i.e., is not needed
for the proof of B, though it is for the proof of B, of course.
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difficulties causes by Russell’s paradox.15 The typed lambda calcu-
lus that we shall consider, that is to say lambda calculus with each
term having a type assigned to it, can be regarded as the amal-
gam of two systems: logic, or more precisely, systems of predicate
calculus, and the lambda calculus.

Originally types were built up from basic types by one simple
operation. The original idea was that they formed a classification
of sets. Sets at a “higher” type contained (in a sense), or reflected,
sets of lower types. In Howard’s system the types were identified
with formulae of (propositional) logic.

A special kind of typed lambda calculus involves taking formu-
lae of logic as the types. Now this is a strange idea to accept but it
is easier to work with if one thinks of a type (i.e., formula) as the
set of proofs of that formula. Instead, therefore, of variables, we
use typed variables of the form a : A where A is the type. Later
one can simply treat the types as labels (see footnote 21 below).

The rule of modus ponens (→-I) of (1) then becomes:

a : A f : (A → B)
(fa) : B

. (2)

If we had a proof of B from A then we would get an expression
λx : A.f : B by the rule of (→-I) and this has type (A → B). If
the f in the expression (2) is actually of the form (λx : A.g : B) :
(A → B), then we get

a : A (λx : a.f : B) : (A → B)
((λx : A.f : B) : (A → B))a : A) : B

which is somewhat hard to read. However the bottom line has the
formula B as its type, and the expression reduces to

f [a/x] : B[a : A/x : A] (3)

15 The set of sets which are not members of themselves yields a contradiction.
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where the substitution of a : A for x : A takes place throughout
the term f : B.

If we translate this back into proofs it means that the corre-
sponding proofs look as follows. On the one hand we have the
complicated proof:

[A]
...

...
A

B

(A → B)

B

(4)

and on the other hand, by putting the proof of A from the left on
top of the proof of B (from the hypothesis A), and not introducing
the →, we no longer need the hypothesis [A] in the proof on the
right in order to get a proof of B.

That is to say, we reduce the proof in (4) to a simple proof of
B of the form

...
A
...
B

This corresponds in the lambda calculus to the reduction16

that resulted in (3). So we have a direct correspondence between
proofs and terms of our typed lambda calculus. This is called the
Curry–Howard correspondence.17

16 This process of reduction is also called cut elimination.
17 Some people use the term isomorphism but there are technical difficulties

involved in making the correspondence one to one, so I prefer the weaker
terminology.
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3.4. Strong normalization
and program extraction

Now it is obvious that a long and complicated formal proof has
an even longer typed lambda calculus expression associated with
it. If, however, all the possible reductions are carried out it may
become considerably simpler. Indeed, in the cases with which we
are concerned we can usually omit all the types. (They will have
served their purpose of ensuring that we get a result of the correct
type when the proof is complete. This is related to the use of types
in computer programming languages.)

The maximum benefit is when we have a Strong Normalization
Theorem for the system. Such a theorem says that, whatever the
order of the reductions – and there may be many possible different
reductions for a long lambda term – the process always stops. (One
reason the process might be expected not to stop is clear when you
look at substituting x+x for x: the number of xs goes up at each
substitution and the expression gets longer!)

The Curry–Howard correspondence can be extended to the
other logical connectives by modifying the lambda calculus. Sur-
prisingly, in addition to the above operations involving lambdas,
we only need the formation of ordered pairs and the projections
onto the first and second elements of those pairs in order to cap-
ture all first order logic.18 We give only a few examples; the full
details can be found in [22]. The Curry–Howard term for a con-
junction (A1 ∧ A2) obtained by the rule of ∧-introduction is the
ordered pair (p : A1, q : A2) of type (A1 ∧ A2) where p : A1 is the
Curry–Howard term for the proof of A1, and similarly q : A2 is
the Curry–Howard term for the proof of A2. Conversely we use
the projections fst and snd for the rules (∧-E1) and (∧-E2). For
the rule (∃-I) we get the term (t′, p : A[t′/y]) where the premise
has the Curry–Howard term p : A[t′/y]. Thus the Curry–Howard
term contains the term t′ that had earlier been proved to exist.

18 The process can also be extended to higher order logic.
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The major consequence of the Strong Normalization theorem
is then that, if we prove a formula of the form ∃xA(x), we can
actually extract, from the normalized proof (i.e., the lambda, or
Curry–Howard, term in which no more reductions are possible),
an x such that A(x). Further, if we can prove ∀x∃yA(x, y) then we
can actually get a program such that, given an x, it will compute
a corresponding y. Moreover, we have a proof of A(x, y) for this
x and y so the program is “correct” in the sense that it meets its
specification.19

Curry–Howard terms are, in general, a generalization of the
idea known variously as formulae-as-types or, better, as proofs-as-
types: the terms code up a whole proof by successively encoding
the applications of the logical rules in a proof.

Not surprisingly, not all rules of logic allow us to prove a strong
normalization theorem. One major obstacle is the law of double
negation: From ¬¬A infer A. If we had a rule that would allow
us to prove ∃xA(x) from ¬¬∃xA(x), how do we obtain such an
x? There is no clear way. So we generally restrict ourselves to
constructive logic and all is well.

Changing to other systems, for example, arithmetic, may bring
in other axioms. Here the most dramatic is the rule of induction.
Fortunately the induction axiom

A(0) ∀x(A(x) → A(x + 1))
∀xA(x)

gives rise to a reduction exactly corresponding to the recursion

f(a, 0) = g(a), (5)

f(a, x + 1) = h(a, x, f(a, x)). (6)

19 Intuitively speaking, the specification is the statement about the result of
the program. See also below Section 3.5.1.
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Happily we can prove a strong normalization theorem for arith-
metic (see [22]). We can therefore extract programs from these
proofs.

Conclusion 3. Analogies and similarities, especially geomet-
ric similarities, can lead to new discoveries and unexpected paral-
lels.20

3.5. Beyond traditional logic
in program extraction

3.5.1. Algebraic specifications

We now turn to an application of the above ideas to software engi-
neering. Producing programs that satisfy their specifications is a
primary goal of software engineering. We start with an algebraic
specification and then construct a program. What is an algebraic
specification? It is a description in formal logic of a structure, for
example, the natural numbers.

As an example we use the Common Algebraic Specification
Language (CASL, see [13]) but the technique could be employed in
other specification languages, indeed originally we ourselves used
a different language.

Structured specifications in CASL are built from basic (or
flat) specifications by means of translation (or renaming), writ-
ten with, taking unions of specifications, written and, hiding sig-
natures, written hide and the extension of specifications, written
then. A typical example of a flat specification, this one is for
natural numbers, is given in Fig. 2.

When we change a specification, then what is true changes –
even if simply because we use new names, for example, “car” in-
stead of“auto,” “boot” instead of “trunk,” etc., but we may also

20 On other occasions they will be at best suggestive, but possibly even mis-
leading, as analogies have been. See [45] for examples of the overuse of analogy.
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add new predicates (relations). We have developed logical sys-
tems to reflect the interaction between such changes and the logic
statements.

spec Nat =
sorts

Nat

ops 0 : Nat; s : Nat → Nat; + : Nat × Nat → Nat

preds
�: Nat × Nat

axioms ∀x : Nat • x + 0 = x %(Nat1)%
∀x; y : Nat • x + s(y) = s(x + y) %(Nat2)%
∀x : Nat • x � 0 %(Nat3)%
∀x; y : Nat • x + y = y + x %(Nat4)%
∀x : Nat • s(x) � x %(Nat5)%
∀x; y; v; w : Nat • x � v ∧ y � w → x + y � v + w %(Nat6)%

end

Figure 2. The specification Nat

Originally Martin Wirsing studied a logical calculus for struc-
tured specifications (see [78]). This was subsequently extended by
Wirsing and his student Peterreins. The system at that stage was
quite complicated. However, by reflecting on the way that logi-
cal rules are developed Wirsing and the present author were able
to reformulate the rules in a way that looked almost traditional
in [79]. Next Wirsing and the present author extended the idea
to algebraic specifications, and then we went further with Iman
Poernomo, to include even the parametrized specifications of the
language CASL.

Abstractly speaking we have an annotated or labelled deduc-
tive system.21 The basic form of a rule in such a logic can be
written in the form

21 The logical system that we then have is therefore related to the labelled
deduction systems of Gabbay [33].
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p : A q : B

s(p, q) : σ(A, B)

It is convenient to use “contexts” also. That is to say, the actual
hypotheses with which we are working. These will be written in
the standard logical style using the “turnstile” symbol �. Thus
one writes Γ � A to indicate that A is provable in the context Γ
(or equivalently, from the hypotheses Γ).

The annotations we use also involve Curry–Howard terms,
specification names and the logical connectives. We have two kinds
of rules: those for the logical connectives, logical rules; and those
for the structural changes in the specifications, structural rules.
Even with the purely logical rules, the specification of the conclu-
sion depends on those in the premises. For the structural rules,
the change in the structure is reflected in the specification of the
conclusion.

The logical rules for our system Structured Specification Logic
are very similar to the standard rules of intuitionist logic. The
complete set of rules, including the structural rules, that we have
for CASL, with their Curry–Howard terms, may be found in [21]
or [67].

When we wish to extract programs from proofs which are de-
rived from algebraic specifications the Curry–Howard terms that
we use are now more complicated for two reasons. In addition
to the information from, for example, the logical rule being used,
the Curry–Howard term also has to “remember” the specification.
We have a similar situation for the structural rules. However,
the message is as before: the Curry–Howard term carries all the
information as to how we have constructed the proof so far.

In this situation we are again able to prove strong normaliza-
tion. From this strong normalization theorem we are then able
to give an extraction map, that is to say, we give a formal process
which, given a Curry–Howard term for a proof of ∀x∃yA(x, y) from
a given specification, the extraction map returns a suitable y for a
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given x. Indeed it gives a program in the programming language
Standard ML. The extraction map works recursively and, in par-
ticular, the cases for →-introduction and elimination correspond
directly to the procedures we have outlined above.

3.5.2. Imperative programming

My recent PhD student, Iman Poernomo, has developed a protocol
for integrating ordinary computer programs into the kind of de-
ductive system we have been discussing. This protocol he calls the
Curry–Howard protocol. The logical system for such a situation
includes the state of the system (i.e., the contents of registers in
the machine) and accounts for the changes that take place when
a program is run. Despite the complications this produces it is
still possible to produce a constructive version of a Hoare logic
(cf. [43]), for reasoning about imperative programs, to which the
Curry–Howard isomorphism may be adapted.

However we are also concerned to use programs already in the
programming language that we regard as “reliable.” We do not
use the word “correct” here, reserving that word for programs
that have been formally proved to meet their specifications. Here
we simply mean that we have programs that we are satisfied will
give the correct answers. Such programs include very simple ones
such as programs for the multiplication of natural numbers. This
achieves a significant saving in the length of the programs ex-
tracted. Otherwise we would have to prove a formula in formal
arithmetic that allows us to extract a program, for example, for
the multiplication function. The proof would be inordinately long,
involving several applications of induction and its corresponding
program would then involve the same number of recursions. This
is obviously very uneconomical because we know it is possible to
write a relatively simple program for multiplication (if one is not
built into the computer already).
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Imperative computer programs have side-effects: they change
the state of the machine and, in particular, the values in var-
ious registers. The presence of side-effects is a principal feature
that distinguishes the imperative programming paradigm from the
functional one. However, side-effect-free functions are also impor-
tant in imperative programs because they enable access to data,
obtaining views of state and producing return values. Imperative
programs involve both side-effects and side-effect-free return val-
ues. Consider, for instance, a program that triples the number in
the register s and returns a value that is twice the value in s. In
Standard ML the program is

s :=! s ∗ 3; ! s ∗ 2.

It has a side-effect producing assignment statement, s :=! s ∗ 3,
followed by the return value ! s ∗ 2. In many popular imperative
languages such as Standard ML (or LISP) such return values are
potentially complex, involving higher order functional aspects that
are difficult to program correctly.

Our goal is to specify, reason about and synthesize both as-
pects of imperative programs – side-effects and functional return
values. Our approach is as follows. We use a version of Hoare
logic to synthesize the side-effect producing aspect of a program,
specified in terms of pre- and post-conditions. Hoare logic [43]
involves considering triples of the form

{pre-condition}program step{post-condition}

The pre-condition is true before the program step commences and
the post-condition is true after the step.

The formula

sf > si

specifies a side-effect where the final value of state s, denoted by
sf , is greater than the initial value, denoted by si. We can use
Hoare logic to synthesize a Standard ML program that satisfies
this specification, by producing, for example, a theorem of the
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form

� s := ! s ∗ 3 • sf > si

where the left-hand-side of the • symbol is the required Standard
ML program (written in teletype font), and the right-hand-side is
a true statement about the program.

To specify and synthesize return values of a program we adapt
realizability and the extraction of programs from proofs. We have
already treated the latter, so now we consider realizability.

When we extract a program we wish to demonstrate that it
is “correct.” This requires the notion of realizing. This is a dif-
ferent way of verifying proofs in intuitionistic logic by means of
computable functions. It was first developed by Kleene. (See the
last chapter of [49].) The basic idea is that we produce a program
for a (partial) recursive function that is a witness to the proof of
an assertion. Such witnesses can be produced recursively by go-
ing down through the proof. Such a program can be regarded as
a number (for example, the binary string that encodes the pro-
gram). For example, if we have partial recursive functions with
programs p, q realizing A, B, respectively, then we take (p, q) as
the realizer of (A ∧ B). The full details may be found in Kleene
[49] for the basic system of intuitionist logic and in our book [67]
for the systems we discuss here.

Here is an example. Given the theorem

s := s ∗ 3 • sf > si ∧ (∃x : int.Even(x) ∧ x > si)

we can synthesize a program of the form

s := s ∗ 3; f

where the function f is a side-effect-free function (such as ! s∗2)
that realizes the existential statement of the post-condition (∃x :
int.Even(x) ∧ x > si), by providing a witness for the x.

When using our program extraction, users will have no need to
manually code the return value, instead they can work within the
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Hoare logic. There they prove a theorem from which the return
value is then synthesized.

Conclusion 4. Techniques developed in one part of a disci-
pline may be applicable in another. One needs to use one’s eyes,
and one’s ingenuity.

3.6. Proofs from programs22

So far we have seen how to obtain programs from proofs in con-
structive systems of logic. Therefore we could conclude that all
proofs are already programs, or at least, that every proof in (con-
structive) logic contains a program.23

What if we were to write the program first? Would we au-
tomatically have a proof? The answer is obviously “No!” if we
simply write computer programs as many people do. However,
a thoughtful computer programmer would wish to know that the
program written would do what it was expected to do, that is to
say, would meet its specification.24 Therefore, as part of the task
of writing the program, a proof should be produced at the same
time.

The approach that we have presented shows how to accomplish
both of these tasks at the same time. It does not require a separate
investigation to produce a proof that the program will be correct.

From a practical point of view it is sometimes obvious how to
write the proof. I studied a program for quicksort.25 Then I wrote
a proof corresponding to the program and extracted a program
from it. The resulting program was essentially the quicksort pro-
gram from which I had started. However I have not yet been able

22 Alternatively this subsection might be labelled Changing direction.
23 The restriction to constructive systems of logic is essential for us.
24 This is a very serious issue when it comes to the control of powerful systems,

in particular, the control of nuclear weapons.
25 This was inspired by looking at work of Helmut Schwichtenberg on program

extraction in [4].
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to formalize the procedure that I used in producing the proof from
the program. It would appear that one needs to know the algo-
rithm, rather than the program, in order to construct the proof.
This in itself indicates that one also needs to know that the pro-
gram is a correct implementation of the algorithm. This is indeed
work for the future.

In addition, perhaps we ought to add to syntax and semantics,
as major concerns of logic, implementation. Consider the process
of writing a computer program, even when a formal specification
is given.

We have to work out the algorithm that will fulfil the specifi-
cation. Then we have to implement that algorithm in a computer
language.26 So if one is going to use computer proofs, then be-
sides the syntax of our formal language, perhaps we ought also to
consider the implementation of our logic in the machine and the
effects that will have.

3.7. Programs then proofs

The second interpretation of the statement at the beginning of
Section 3.1 revolves around the behavior of computing machines.
In this case, instead of starting with a proof in logic we start with
a computer program.

We consider a specification. This may be an informal one but
it seems inevitable that at some stage it will have been turned into
a formal one. The specification is then built up into a program
and, accompanying that, or subsequent to it, a verification is built.

We may contrast the two methods: the first of extracting pro-
grams from proofs, and the second of providing a proof for (or
in the process of writing) a program, that is to say, verifying a
program, in the following table.

26 And some may add, for a particular implementation. On this problem
Hoare’s original paper [43] is still very valuable.
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Extraction Verification

Specification
Proof
Program extraction

Specification
Program
Program verification

This second is the method invented by Tony Hoare [43] men-
tioned above in Section 3.5.2. The problem with this method
is that it gives a necessary condition for correctness and not a
sufficient one. Nevertheless the method is widely used and very
valuable.

Conclusion 5. A logical method is only clearly useful if it is
used.

4. What Are Logical Systems
and What Should They Be?27

We started out with the simple systems of Aristotle. Now we
have progressed to systems where the form of the rules is (essen-
tially) the same: two premisses and a conclusion. However, there
is a great deal more baggage accompanying the traditional logic.
There are labels which may represent a specification of a system,
or a state of a machine.

Thus the techniques we have presented here are based on a
variant of Gabbay’s labelled deductive systems [33]. Our logical
rules are of the form

Logical context, State, Curry–Howard term � Formula
New Logical context, New State, New Curry–Howard term � New Formula

although the actual order may vary. Further, each of the items on
the lower line may depend on, that is to say, be functions of, any

27 This section heading is inspired by Dedekind [24].
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or all of those on the top line, and of course there may be two or
more sequences on the top line.

The semantics of these rules will depend on the structures
that we are using. Also the interpretation of the informal terms:
Logical context, State, etc. will also vary.

What seems to be most important is that we have extended the
notion of logic in two ways. First of all we now have programs or
other constructions (for example, specifications) interacting with
the standard logical connectives. Secondly, the context of the
logic may change in the course of a proof. This certainly happens
in the context of algebraic specifications. In the simplest case we
may just be changing the language, say, from English to American.
Thirdly, we are now discussing logics (plural) and we arrive at such
a logic by an analysis of a technical setting. This seems to me to
be following Aristotle’s approach of looking at the real world, or
a small part of it, and then abstracting the logical principles that
work in that arena. But we have come a long way from the “one
true logic” that I mentioned in Section 3, near the beginning!

But this has only been in a very limited number of contexts, in
particular, algebraic specifications and imperative programming.
The idea of building proofs and programs together has surely much
more potential.

Conclusion 6. The rules that we have in traditional logic rep-
resent the rules of rational thought. There is no reason why we
should not look at the logic of other procedures or constructions.
Logics can reflect the logic of systems other than human thought.

4.1. Higher order logic

Let us now turn to more extensions of logic. It should not be
surprising that the logician Dana Scott should have taken up the
question of the semantics of computer programs and programming
languages when he came in contact with Christopher Strachey in
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the 1960s. (See [73].) However, in this context it is very startling
that the (untyped) lambda calculus, which sits at the base of the
Scott–Strachey semantics, should not admit set-theoretic models
(see [68]).

The models require equating (in some sense) a set A with the
set of all functions from A to A, that is, A → A or AA which is
immediately an uncountable set if A is infinite.

An equally disturbing situation arose when Henkin was estab-
lishing his completeness proofs for the theory of types [40]. In
this theory (even as first devised by Russell [70, 71]), types are
built up from basic types by means of juxtaposition. Given two
types σ and τ one forms the type (στ) which can be regarded as
the collection of all functions from type σ to type τ . In his thesis,
Leon Henkin produced two completeness proofs (see [39, 40]): the
one for first order logic referred to in Theorem 1 above and one for
the theory of types. The models Henkin constructed in his proof
for first order logic gave names to all the elements of the model.
In the theory of types (and the same applies to higher order logic)
there are uncountably many objects and therefore one cannot give
names to all of them (from a countable alphabet/language). Thus
there arose models that were not standard.28 In such models, the
set of all subsets of a given set, for example, was modelled by a set
which did not have the “correct” cardinality: its members were
only ones that had names.

Perhaps because of this, second order logic (and other higher
order logic) fell into disuse. It has recently been resurrected. This
is partly because of a renewed interest in the theory of types and its
applications in computer science (for example, for type-checking)
and partly because it is possible to simulate second (and higher)
order objects by using different sorts of first order ones. Thus one
may distinguish points and lines in a graph by having predicates
P (x) for “x is a point” and L(x) for “x is a line” when dealing

28 These should be distinguished from the nonstandard models of Abraham
Robinson [69].
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with graph theory. To ensure these work together appropriately
one requires extra axioms. An illustration may be found in [48].
Feferman [30] also notes this point.

Conclusion 7. We use an alphabet constructed from a finite
number of symbols to talk about infinite things. Countability is not
an issue for the analysts, why should it be one for logicians?

Another drive for looking at higher order logic has come from
logic programming. Originally logic programming(see, for exam-
ple, [12]) essentially dealt with only a quantifier-free fragment of
first order logic. Over recent years, however, it has been developed
into higher order logic and has embraced the lambda calculus. The
work of Dale Miller has been central in this. (See [60] and more
recently [59] and the links there.) As Miller says: “This program-
ming language incorporates large amounts of logic.” (Downloaded
from http:// www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/cse
360/syllabus.html)

Conclusion 8. Logic can be used not only to analyze but also
to synthesize.

4.2. A note on set theory

There was a dichotomy between set theory and logic existing from
around 1900. Set theory had entirely different origins from logic,
although the elucidations of foundations29 did invigorate both.
Cantor [8] did not reach his paradise from logic but from analysis.
Problems abut Fourier series gave rise to sequences of operations
longer than ω, the first infinite ordinal.

In the middle of last century logic reached a zenith, in the
author’s opinion, with Paul Cohen’s work on the independence of

29 Whatever “foundations” may mean!, cf. Feferman’s book [30] and Bo-
stock’s logistical [7].
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the axiom of choice [14, 15]. Since that time the area of set the-
ory has become more and more complicated.30 The latest moves
in this area, however, seem to be of a different nature. Woodin’s
recent work on the Continuum Hypothesis [80], with his new idea
of Strong Logics takes us to a different approach to set theory.
Whether it will lead to a renaissance by simplifying the area re-
mains to be seen.

4.3. Computation and proof

Algorithms are now today’s lifeblood as functions were in the nine-
teenth and early twentieth centuries. Algorithms make us think
of computations but, as we know to our cost as computer users,
algorithms, implemented in the software that we use everyday, do
not always produce the answer or behavior that they should.31

Along with means of computation one also needs means of
proof and we have shown two approaches to supplying such proofs
above. So computation and proof should be developed together.
Otherwise, how does anyone see the need for a proof that the
computation actually works?

5. The Nature of Proof

There is also the question of why proofs are needed in mathematics
in general. This is sometimes harder to see.

Frank Harary gave a very nice exposition on this topic many
years ago in Malaysia.32 I heard it, and I still remember and heed

30 The same can be said of parts of model theory, thanks to the spectacular
work of Shelah.

31 This is because there are two kinds of problems here. The first is the
obvious one of human error. The second is that the specification for the
computation, while being correct as a specification, may not be a specification
for what was really desired to be computed.

32 This was at a seminar at the University of Malaya associated with the first
bi-annual meeting of the South-East Asian Mathematical Society in 1974.
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his instructions. The essence was as follows. Suppose you want
to present to an audience a theorem that A happens under the
hypothesis H.

1. Give examples where A occurs.
2. Give counterexamples where it does not occur.
3. Prove the theorem under the hypothesis H.
4. Give examples where the hypothesis H does not hold, and A

does not occur.

(The last item may be strengthened. Harary was at pains to
give theorems where the hypothesis was as weak as possible.)

Such a procedure also leads to better understanding, and surely
understanding should accompany doing (in particular, calculating
or computing).

Proofs give understanding, or at least they should; computa-
tions give results. But what is a proof?

In the preceding sections we have restricted ourselves almost
entirely to proofs in formal logical systems, though we have seen
how these systems have been developed far beyond the original
ones of, say, Frege.

We have also noted that mathematicians have often replaced
giving a proof by instead showing that a proof exists.

5.1. The question of scale and
the rôle of technology

At this point in our history we can use mechanical or, more fre-
quently, electronic devices to perform repetitious tasks or to short-
cut them. This has been the case since slide rules were intro-
duced – some might even say, since the abacus was introduced.
What is different now is that a multitude of tasks, identical or
different, can be performed at, so to say, the touch of a button
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and very quickly. This change in quantity brings with it a change
in quality.33

It is easy to deal well with single computations such as finding
an nth root. This is because we can give a clear and explicit
process for finding such a root and a proof that it is correct. On
the other hand we do not seem to be able to deal as well or as
adequately with long sequences of computations or of proofs. The
very complexity of some computations is too much for us to grasp.
Further mechanical aids may give wrong results. For example,
try taking the square root of a number over and over again on
(different) hand-held calculators. Usually twenty or so times will
suffice to illustrate the problem.

We do not seem to be able to handle such long sequences in
a way that is satisfactory enough from a formal point of view (cf.
Devlin’s article [26]).34

Let us also be thoughtful about when it is appropriate to use
computers or calculators. We use them when we do repetitious
work. When we need to do a calculation a thousand times, or
even weekly or daily, it is foolish to use pen and paper: a computer
or calculator is more reliable and less stressful. This is an issue
involving scale, here meaning the number of times we repeat a
calculation.

Note. I have not touched on the subject of complexity although
I believe that it will become very much involved, especially in the
context of computer proofs (see above Section 5.1). This is partly
because I find the notion of complexity ill defined. Recent work on
parametrized (or as they call it “parameterized”) complexity by
Downey and Fellows, see, for example, [29], has helped to make
some improvement so that one can get a more realistic, that is to

33 Compare the music of Philip Glass where repetition gives a different, dis-
tinctive, quality to his music.

34 The way that we (attempt to) cope with this is to take a more macroscopic
view and to look at the structure of the computation in a more coarse-grained
way. Then we may be able to see our way through the various levels of the
computation.
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say, useful, approach to the concept. One of the great virtues of
mathematics is that, since mathematics gives us the logic of the
world, we can use it for any scale of activity. Here “scale” does
not only refer to physical size. It also includes complexity. Thus
in training people to use and understand mathematics we should
show them how we can shift from macrocosm to microcosm or
anywhere in between and still be able to use our mathematical
techniques.35 Likewise we can look at processes and at pieces of
software in the same mathematical way.

To what extent can we formalize this? To what extent should
we formalize proofs? One overriding advantage of formal logic as
practised by Russell was that the proofs obtained were tangible
and could be mechanically checked. However they differ remark-
ably even from proofs in the mid-twentieth century. Consider,
for example, a standard modern algebra text [5]. The treatment
starts off with integral domains (very much modelled on the nat-
ural numbers and then the integers). Induction is introduced but
within a few pages the idea of induction has gone from its use
within the domain to induction about the domain. To be precise:
induction is used to prove, for example, the distributive law

x ∗ (y + z) = x ∗ y + x ∗ z

yet a few pages later it is used to prove the general associative law

(a1 ∗ a2 ∗ · · · ∗ an−1) ∗ an = a1 ∗ (a2 ∗ · · · ∗ an)

In this setting we have a proof in the metalanguage. This is not
remarked on by the authors but is very striking to a logician. This
is by no means an isolated example. So one becomes accustomed to
“layering” as I have referred to it. (See my paper [19].) However,
apart from acknowledging that one has moved to a metalanguage,

35 Of course there are some physical situations, for example in atomic physics,
where the scale means we have to use different mathematics, but we still use
mathematics.
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there seems to be a dearth of formal systems allowing one to make
such moves.

Creating such a system would allow the contracting of proofs
in a very formal way. Nevertheless, the problems of sheer size (as
noted in Barendregt’s [2]) have to be dealt with in some way and,
as Alan Robinson points out (quoted by Donald MacKenzie in
his paper at the same Royal Society Discussion Meeting on 18–19
October 2004, see [57])

You’ve got to prove the theorem-proving correct. You’re
in a regression, aren’t you?

That is to say, if we have a mechanical means of proving a theorem,
we then need a proof that this prover is correct. If we have a
mechanical way of proving that, then we again need a proof of
correctness for this latest device, and so on. So the question of a
final authority emerges.

Despite Lewis Carroll’s salutary paper [27] of 1895, around
1900 there was a general faith that there was such a final author-
ity and people were at pains to provide one. Russell’s system of
logic was intended to do that, and as we have noted, it failed.
Nowadays I believe it would be foolish even to search for such a fi-
nal authority. Nevertheless there is a remarkable robustness about
mathematical proofs as John Shepherdson point out to me many
years ago.36 And this is despite the assaults of Imre Lakatos on
the notion of proof and his beautiful illustration of the evolution
of a specific proof and the mathematical definitions surrounding it
in his [54]. Frank Ramsey’s dictum,37 presumably from the 1920s,
remains a serious question:

Suppose a contradiction were to be found in the axioms of
set theory. Do you seriously believe that a bridge would
fall down?

36 In private conversation, Melbourne 1992.
37 Quoted in [56].
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We shall not pursue the nature of mechanical proof further
here but do commend the papers at the Royal Society Discussion
Meeting on 18–19 October 2004 which we hope will all eventually
appear in print. We simply draw attention to other kinds of proof.

In a footnote on p. 101 in his [50], Kreisel pointed out that
if we had, and accepted, a classical proof that there were indeed
infinitely many twin primes, then we should immediately have an
algorithm: just test pairs of primes bigger than the given pair until
we find the next pair!

The question then arises: what is the appropriate logic?
If one takes intuitionism seriously, as did Brouwer, and es-

pouses its philosophy, then surely only proofs constructed in an
intuitionist fashion are acceptable. In particular, a proof that a
theorem can be proved intuitionistically should be an intuition-
istic proof. For many of us this is too much to ask. We would
rather accept the approach of Kreisel’s footnote. Obviously one
can repeat this argument at any level.

Finally just in case the notion of proof seems purely logical,
consider what I regard as the most astounding proof in all the
mathematics I have ever seen or even heard of. Near the end of
Dedekind’s [24] there is a ( claimed) proof that infinite sets exist.38

It begins: “Consider the realm of my thoughts . . . ” It then goes
on to consider not just thoughts but thoughts of thoughts. In
this way an infinite set is constructed. How psychological and
unmathematical this is! It is so far away from the studious way
that Dedekind has built up the characterization of the natural
numbers. The proof is not very well known. It should be better
known to serve as an object lesson.

Conclusion 9. We should consider not only the logic in which
we do a (logical) proof, but also the logic of the system in which
we do the proof.

38 The assertion of the theorem should be compared with Russell’s axiom of
infinity.
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5.2. Foundations

Which of these logics, or perhaps, rather, combinations of logics,
we should use, seems quite problematic.

It also brings up the question of foundations. The, to the
author’s mind, unsatisfactory debates of the twentieth century on
logicism, formalism and intuitionism seem to have left out the
human dimension and the fact that Mathematics (and with it
Logic) is a human activity. Work such as MacKenzie’s [57] must
surely be taken into account.

Added to this we shall also need to consider the time that it
takes to get a proof. Even if we are producing a mechanical proof
the question will ultimately arise as to deciding at what stage the
computation is satisfactory, cf. Alan Robinson’s remark above.

Finally, there is the question of how deeply we can, or should,
examine what a logical system is. The work of Yesenin-Volpin,
though much neglected, has been mentioned recently in my hear-
ing. There are at least two aspects worthy of consideration. The
first is whether the (logical) universe is finite, and in particular,
whether there is only a finite number of natural numbers. This is
documented in [81]. The second item is his analysis, not recorded
in that work but presented in lectures at SUNY, Buffalo about
1972, which I heard. This concerns his detailed analysis of even
the symbols used in the logical expressions and their repetitions: –
if they are indeed repetitions; in what sense are the symbols “the
same.” At the present time this seems too far-fetched to warrant
further investigation, but what has seemed obvious in earlier cen-
turies has sometimes later turned out to be quite problematical.
The most outstanding example of this is perhaps that of infinite-
simals which were happily used by Leibniz, then came into disre-
pute in the nineteenth century, and finally were resurrected and
justified by Abraham Robinson in the 1960s, see [69]. However, I
do not believe that Abraham Robinson’s infinite-simals are in any
way the same as those of centuries earlier. There is moreover a
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question as to whether Robinson actually defined a unique set of
infinite-simals (even in the context of the real numbers).39

In a different setting, while the proof systems look very similar
(one only has to give up the law of the excluded middle to go from
classical to intuitionist logic) nevertheless the actual working of
the systems of intuitionist logic and classical logic are dramatically
different. In this case as is often the case:

Conclusion 10. We often need to start again each time we
revisit an idea. There is no guarantee that the previously used
techniques will work.

6. Final Remarks

Then conclusions that we have drawn encompass a number of dif-
ferent aspects of the development of logic. First there is the variety
of logics that now exist and can be expected to proliferate (Con-
clusion 1). Then there is the “transfer of technology”: the use
of the same pattern, same idea, or an analogous one in another
context (Conclusions 2, 3, 4). Prejudices should be broken down:
we should look beyond our own narrow horizons (Conclusions 6, 7,
9). I believe we also have a duty to our fellows: a logical method
is only clearly useful if it is used (Conclusion 5). We should think
of our fellows in developing logic. Then there is the fact that logic
can be used not only to analyze but also to synthesize (Conclusion
8). But each time we may need to start again, almost from scratch
at times, but informed by the past (Conclusion 10).

So our conclusions are not endings, but new beginnings.

Samsara.

39 He gives a procedure for getting a model of the real numbers, including
infinite-simals, but any one of a range of models will give the required results.
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Two Doors to Open

Wilfrid Hodges
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London, UK

Mathematicians do not care to speculate in print about the future
of their subject. There are several good reasons for this. One is
that significant advances in mathematics nearly always involve the
injection of unpredictable new ideas. A few rash mathematicians
have published predictions for their own fields; these predictions
were generally based on the stock of ideas already in the field,
and with hindsight they became steadily more embarrassing as
the subject moved onwards to higher things. Nor is it wise to
publish bold speculations until you have checked that they work –
and then they are no longer bold speculations.

For a mathematician, problem lists are a safer bet than pre-
dictions. A description of a problem leaves it open whether one
can solve the problem routinely with known methods, or whether
something radically new is needed. The best problem lists have
come from relatively young researchers working at or near the crest
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of the wave. David Hilbert was not yet forty when he delivered
his famous list of problems at the 1900 Paris Congress.

With these remarks I think I have disqualified myself from
writing anything about the future of my own field, model theory.
I also told the editors that I had misgivings about the phrase “New
Logics” in their title. The phrase suggests that logic consists of
an assembly of “logics.” That view of logic was widely held in
the 1930s, when for example Alfred Tarski thought it was appro-
priate to supply each deductive theory with its own set of logical
axioms and rules of inference. In some applications of logic within
computer science this framework is no doubt still appropriate, for
special reasons. For logic as a whole it seems a bad anachronism.
At present there are no signs that model theory or set theory will
advance in the foreseeable future by taking on board new logics
(unless perhaps the Ω-logic of Woodin [50], but I doubt this is
what the editors had in mind). Nevertheless the editors were kind
enough to answer that they still wanted a contribution from me,
so I gratefully supplied what follows.

I describe two different developments that I would like to see in
logic. The first is a serious interaction between mathematical logic
and cognitive science. The second is the study of the semantic
ideas of medieval Arab linguists, particularly those outside the
Aristotelian tradition. These two areas are very different. On the
one side it seems to me that a closer cooperation between logic
and cognitive science is inevitable, and the most I can hope is
to nudge it along. On the other side, historical work on Arab
semantics is unlikely to have any dramatic impact on present-day
semantic thinking, but I am convinced that the Arabs have things
of value that should be treasured; they represent an unfamiliar
viewpoint, and I hope some future workers will find it a source of
inspiration.

For their kindness in giving me various comments and pieces of
information I thank Salman Al-Saad, Khaled El-Rouayheb, Bren-
dan Gillon, †Jeffrey Gray, Fritz Hamm, Sally Hodges, Juliette
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Kennedy, Michiel van Lambalgen, Dan Osherson, David Over,
John Sowa, Keith Stenning, Sam Tarzi, Tony Street and Kees
Versteegh. They are not responsible for any errors or foolishnesses
below.

1. Logic and Cognitive Science

The body of mathematics, past and present, is an extraordinary
monument to human powers of rationality. Cognitive scientists
inevitably ask: How on earth do mathematicians manage to do the
things that they do? There is already a strong literature on some
aspects of this question, for example on teaching mathematics, or
computer simulation of mathematical reasoning, or scans of brain
activity during mathematical thinking. From the mathematician’s
point of view, there are some obvious limitations visible in nearly
all of this literature. In an MRI scan, for example, one is limited to
studying how a human being works on a problem over the course
of a few minutes, typically a simple multiplication of integers.
Mathematical researchers by contrast are quite used to spending
five years of slow and steady grind on a problem, and the problem
will be conceptually very much more complicated than multiplying
integers.

From their side, mathematicians know that their chief working
tool – their mathematical consciousness – is something that they
barely understand. Ramanujan imagined that his mathematical
results came to him from the goddess Namagiri, and the rest of
us would find it hard to say anything more convincing about our
own mental workings. Imagine painters who could not predict
what colour and stroke their brush would make, or builders who
relied on guesswork to check a vertical line. We mathematicians
need to understand ourselves. The only reason we are not ham-
mering at the door of the cognitive scientists to learn more from
them is that we do not yet believe they know more about our
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mathematical thinking than we know ourselves. But cognitive sci-
ence has advanced dramatically in the last half century, and there
is bound to be a time when collaboration becomes fruitful.

When it comes, the collaboration will be between cognitive
science and logic, because logic is the formal study of sound rea-
soning, and sound mathematical reasoning is what the cognitive
scientists will be telling us about. David Mumford might well
disagree; in his plenary lecture to the Beijing International Con-
gress of Mathematicians in 2002 ([28, p.402]), talking about visual
perception and pattern recognition, he said:

This issue of logic vs. statistics in the modeling of thought
has a long history going back to Aristotle . . . I think it is
fair to say that statistics won.

The history of gas dynamics shows that this is a false dichotomy.
To a very close approximation, gases behave according to laws that
do not mention any statistical notions at all, but we now accept
that any explanation of these laws has to be statistical. How do
theorem-proving humans behave? Given what we know about the
physical construction of the brain, it would be very surprising if
one could account for human reasoning abilities in depth without
invoking statistics. But theorem-proving itself is a logical activity,
not a statistical one. (I should add that the cognitive scientists will
be right to pay just as much attention to reasoning in algebraic
geometry as to reasoning in logic, of course.)

The raw material within mathematics for cognitive scientists
to study is enormous. This material has some distinctive features.

• We did not evolve for mathematics. We did evolve for lan-
guage; there are earmarked language areas in our brains. (At
least there are areas for syntax; Keith Stenning warns me
to be more cautious about semantics.) There are probably
earmarked areas for counting small numbers and estimating
larger ones. But there are certainly no areas for completing
commutative diagrams or extracting cube roots.
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• Mathematical reasoning delivers results of extraordinary pre-
cision. For example the number of discrete subgroups of the
group of isometries of a three-dimensional vector space over
the real numbers, containing three linearly independent trans-
lations, is 230. Everything in this statement is perfectly pre-
cise, given the definitions.

• Mathematical results and proofs are objective and culture-free
to an extraordinary degree. If Archimedes proved a thing, we
do not need to rewrite his proof except perhaps to clear up
points of notation.

• Although in principle all known mathematical theorems can
be stated and proved without any reference to space or the
visual field, many mathematicians rely very heavily on visual
and spatial intuition in their work.

• More generally, mathematicians often solve problems by trans-
lating or reducing them to a different form where the solution
is easier. The translations may be quite elaborate and may
involve new concepts.

In what follows I want to point to some places where reflective
mathematicians themselves have illustrated these points.

1.1. Spatial intuition

Michael Atiyah [4, p. 5f] remarked during the millennium celebra-
tions:

If I look out at the audience in this room I can see
a lot; in one single second or microsecond I can take
in a vast amount of information, and that is of course
not an accident. Our brains have been constructed
in such a way that they are extremely concerned
with vision. . . . Understanding, and making sense of, the
world that we see is a very important part of our evolution.
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Therefore, spatial intuition or spatial perception is an
enormously powerful tool, and that is why geometry is ac-
tually such a powerful part of mathematics – not only for
things that are obviously geometrical, but even for things
that are not. We try to put them into geometrical form
because that enables us to use our intuition. Our intuition
is our most powerful tool.

There are (at least) two different things that people have in mind
when they talk of spatial intuition, namely speed and self-evidence.

I guess that Atiyah is chiefly talking about speed. Here is an
example, from a coursework question I set my engineering stu-
dents earlier this term. The diagram shows a graph with several
connected components superimposed; the problem is to separate
out the connected graphs.

a
b

c

d

e

f

g

h
i

j

k

l

m

n

o

p

(1)
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Programming a computer to solve this problem, we would
probably supply (or program the computer to extract) the ad-
jacency matrix of the graph (1):

a b c d e f g h i j k l m n o p

a 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
b 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
c 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0
d 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
e 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
f 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1
g 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
h 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
i 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
j 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
k 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
l 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
m 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
o 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0
p 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

(2)

Human students can solve the problem from the matrix (2)
too, but they have to be taught an algorithm, they perform it
very slowly and they tend to make errors. By contrast the separate
components in (1) leap out at the eye. Somewhere below the level
of consciousness, some very fast computing is going on.

Another example is finding orientations in tesselations of the
plane. If a tesselation is not isomorphic to its mirror image, then
it must contain some feature whose mirror image never appears
in it. I sometimes ask students to find such features. Again the
mathematician’s eye jumps to the rescue. Most people need a
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few practice runs to train their eye. One interesting feature of
this problem is that there is no particular geometric configuration
that the eye is looking for; any configuration with the appropriate
abstract property will do. The computing power involved must be
gigantic.

Another example is sorting numbers. If I give you thirty num-
bers chosen at random between 0 and 100:

72 93 92 78 21 16 2 70 58 19 27 3 29 76 64
67 32 4 63 37 41 60 61 51 72 33 29 43 35 47

(3)

you can quickly sort them into increasing order. I gave my stu-
dents a table of random numbers and asked them to time how long
it took to sort k numbers for various k, plot the time against k
and then write down how they thought they did the sorting. Some
students produced graphs that were plausibly O(k2) or O(k log k),
with algorithms to match. What I had not expected was a substan-
tial bunch of students who came back with linear graphs. Looking
at their descriptions showed the reason: they had broken up the
set of numbers into blocks within which they could sort almost in-
stantaneously just by looking. They seemed to be able to do this
with blocks of size up to about 10. Next time I give this problem
to a class, I will choose k large enough to frustrate this approach.

Presumably people’s performance on examples like these dif-
fers according to their experience, and some people have natural
aptitudes. Published research suggests that people with autism
might have difficulties with the graph problem because it involves
integrating several lines into a larger shape, and with the orienta-
tion problem because it involves assessing how an oriented feature
sits in the pattern as a whole. (See for example Happé [18].) When
I gave the orientation problem to a class, a student assessed with
Asperger’s found the problem extremely hard. Another student
with an optic nerve disability did noticeably well, and I wondered



Two Doors to Open 285

if he had compensated for poor visual information by developing
his visual mental powers.

1.2. Kurt Gödel and
the choice of representation

No mathematician would accept intuition in Atiyah’s sense as a
guarantor of truth. Atiyah points to our ability to see complicated
facts quickly; but we can still make mistakes and the facts need
to be checked. Quite different from this is what the logician Kurt
Gödel calls “mathematical intuition”: this is our ability to see
with the mind’s eye that certain things are “obviously true.” We
see immediately that if A is to the left of B and B is to the left of
C, then A is to the left of C and B is between A and C. There it
is, right in front of our mind’s eye. People interested in the episte-
mology of mathematics have often appealed to “intuition” in this
sense as a guarantor of truth. (People who take this view have
to account for the fact that in earlier generations, just such intu-
itions were used to demonstrate that space is euclidean, or that if
A is a proper part of B then A must be smaller than B.) I doubt
the wisdom of using the word “intuition” in this sense, except
within strictly philosophical contexts where history has decreed
that “intuition” translates the German “Anschauung.” In collo-
quial English “intuition” too easily suggests “hunch.” So instead
I say “self-evidence” in what follows.

The relevance of self-evidence to cognitive science is a tricky
matter. In the first place, computer simulations of human thinking
are a well-established tool of the subject, and clearly we cannot
attribute self-evidence to the thoughts of the computer. On the
other hand, if the thinking – either human or simulated – is not
guided by rules of truth and rationality, then strictly it will not
be reasoning. Thad Polk did an interesting experiment with Allen
Newell’s cognitive simulation system SOAR: he fed into SOAR
some rules for operating syllogisms, including some invalid rules,
and he showed that SOAR performed on a range of syllogisms with
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an accuracy quite close to that recorded in human populations
studied by Johnson-Laird and Bara [29, pp. 396–410]. These re-
sults may be helpful for understanding how humans behave when
faced with syllogistic problems in psychological tests. But it is
clear that human behavior in these contexts depends on more
than just rationality – it often involves ill-founded and unchecked
guesses made against deadlines. When the mathematicians come
to ask the cognitive scientists how mathematical researchers solve
problems and prove theorems, this will not be what they are ask-
ing for. They will be asking about a kind of reasoning where the
reasoner’s perception of truth provides a constant check on the
accuracy of the workings.

In the rest of this section I discuss some of Gödel’s contribu-
tions. Gödel already has close ties to cognitive science. For ex-
ample he was the first person to illustrate in exact terms how an
appropriate choice of representation can lead to dramatic improve-
ment in our proving abilities: it allows us to prove more things,
and faster. (This is the content of his short paper On the lengths
of proofs [12].) Second, already in 1956 he came close to invent-
ing and applying the notion of a problem with polynomial-time
complexity (in a letter to von Neumann, [16, p. 375]). Third, he
was a pioneer in the use of formal systems to describe and analyse
concepts.

Gödel saw himself as a philosophically-minded mathematician,
not as a cognitive scientist. My contention is that his philosophi-
cal contributions provide a rich collection of tools and problems for
the cognitive study of mathematics. He was obsessively introspec-
tive, and above all he introspected his own mathematical think-
ing. Often he reported what he found in terms of self-evidence (or
“mathematical intuition”). I think cognitive scientists will gener-
ally want to read past what Gödel says about the evidential value
of his intuitions, and concentrate on what he says about the form
of his thinking, and about how to describe it in mathematical
terms.
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Take for example the question how we mentally represent a
problem. It is a familiar fact that we use different types of think-
ing for different problems. One of the central themes of Keith
Stenning’s recent book Seeing Reason [41] is that there are many
different “systems of representation,” some more appropriate for
one task, some for another, and that humans differ considerably in
their ability to use different systems of representation. Stenning’s
approach is mainly empirical, taking systems of representation as
he finds them in the literature; he places them on a scale that
(to oversimplify a little) has visual diagrams at one end and text
at the other. Kurt Gödel thought a great deal about systems of
representation for parts of mathematics, and he classified them in
ways quite different from Stenning’s.

In the first half of the twentieth century it was the custom
for logicians to analyse a branch of mathematics by formulating it
within a fully interpreted formal system. A formal system has a
precisely defined formal language, each sentence of this language
has a precisely specified meaning, certain sentences are claimed to
be true and are labelled “axioms,” and rules are given for deducing
further true sentences from the axioms. Each formalism rests on
a number of basic concepts, called its primitives, and for each
primitive there is a primitive term expressing it in the formal
language.

Gödel did not just accept this style of analysis – he demanded
it, and in particular he demanded that all the expressed concepts
should be absolutely precise, and that there should be no am-
biguity about the syntax or the rules of inference. For example
he criticised “the intuitionists” for being too vague about their
concepts (cf. [15, p. 190]):

. . . the primitive terms of intuitionistic logic lack the com-
plete perspicuity and clarity which should be required for
the primitive terms of an intuitionistic system.
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He criticised Whitehead and Russell for being sloppy with their
syntax (cf. [14, p. 120]):

What is missing [from Principia] is a precise statement
of the syntax of the formalism. Syntactical considerations
are omitted even in cases where they are necessary for the
cogency of the proofs.

Today logicians are usually more relaxed about these things
than Gödel was, but not as relaxed as some cognitive scientists.

In fact Gödel’s requirements for analysing a part of mathemat-
ics as a formal system correspond fairly closely to David Marr’s
second level of description of an information-processing system (cf.
[27, p. 23]):

The second level . . . involves choosing two things: (1) a
representation for the input and for the output of the pro-
cess and (2) an algorithm by which the transformation
may actually be accomplished. . . . For addition, we might
choose Arabic numerals for the representations, and for
the algorithm we could follow the usual rules about adding
the least significant digits first and “carrying” if the sum
exceeds 9.

One can write Marr’s addition representation and algorithm
in a form that Gödel would have regarded (at least after Turing’s
work) as an acceptable formal system. Many cognitive scientists
have accepted Marr’s account of how to describe an information-
processing system, but they do not often come close to Gödel’s
standards of precision. Is it reasonable to expect them to, given
their subject matter? I discuss an example in Section 1.3 below.

When we have the formalism, we can use it in two ways. First,
we can play what Weyl and Hilbert called a “game with formulas:”
the axioms are strings of symbols and the inference rules are rules
for “deriving” new strings of symbols from given ones. The game
with formulas is simply to use the rules to derive new strings.
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Or second, we can reason with the concepts and the necessary
truths. The formalism then serves to describe possible reasonings
and to check the accuracy of reasonings, but it is not strictly part
of the system of concepts that we are reasoning with. Gödel wrote
much (not all of it published in his lifetime) about the differences
between one formalism and another in this second style of use. For
him, the important cognitive differences between one act of rea-
soning and another lie in the concepts and introspected truths that
are used. (At this stage some people find it important to distin-
guish a class of concepts called “logical.” Gödel sees no need to do
this; I doubt that the distinction has any cognitive significance.)
We can contrast sets of concepts in various ways.

(a) Given the concept C of some kind of entity, we can form and
use the concept C ′ of a set of entities of kind C. Some facts
about sets are self-evident, for example that if a is a set and P
a property that all members of a either have or do not have,
then there is a set b consisting of the members of a that have
P . Along with the new concept of a set of entities of kind C,
our formalism should list some facts of this kind. We say that
the new concept is of a higher order than C, and reasoning
with it is said to use a higher-order logic. One can repeat this
extension of the concept system and introduce a concept C ′′

of sets of sets of kind C ′, and so on.
This is the situation of Gödel’s paper [12] mentioned above,

on lengths of proofs. Gödel shows that in general, passing to
a higher order not only allows us to deduce new facts in the
lower level language, it also allows us to give much shorter
proofs of facts that we could already prove in the lower level
language.

(b) A variant of (a) is to introduce new abstract objects, normally
sets, that are not necessarily sets of entities at the lower level.
For example we can introduce the concept “natural number,”
together with the concepts of 0, 1, addition, multiplication
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etc. An important self-evident truth in this case is the axiom
of induction up to ω:

Suppose P is a property that all natural numbers
either have or do not have, and 0 has property P ,
and whenever a natural number n has property P
then so does n+1. Then every natural number has
property P .

Speed-up applies here too, and more things in the original
language become provable. We can improve the improvement
by replacing the set ω of natural numbers by the set of all
ordinals less than some given transfinite ordinal α. Gödel
was interested in the types of reasoning that correspond to
different choices of α.

Of course there is no way we can explicitly use the con-
cepts of all the infinitely many natural numbers when we apply
induction up to ω. But we do not need to; all we need is the
concepts of the set of natural numbers, the number 0 and the
operation of adding 1 (together with the concept answering to
the property P ). Some mathematicians have claimed that we
can handle induction up to ω by spatial intuition, seeing

0, 1, 2, 3, 4, 5, . . . (4)

in our mind’s eye. There is a problem here, discussed for
example by Bernays [7] in 1922: one of the evident facts asso-
ciated with the concept of adding 1 is that for every natural
number there is a greater natural number. In our mind’s eye
we can only see a limited number of numbers; we certainly
cannot see, for each of them, a larger one. So the concept
“add 1” is not really given in spatial intuition. At best one
could put into one’s mind a marker like the “ . . . ” in (4)
above. But this “ . . . ” is a symbol representing a concept; it
belongs to a higher level of abstraction.
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Incidentally the problem of justifying induction up to ω
by spatial intuition is closely related to the problem of rep-
resenting eternity in music, which I discussed in [20, pp. 95f,
105f]. Some composers (for example Haydn, Wagner) express
eternity as a long but finite time; this is a different concept
but the listeners are supposed to use their imagination. Other
composers (Smetana, Britten) use a musical equivalent of the
‘. . . ’

(c) A different way of increasing the reasoning power is to form
concepts about concepts, or in Gödel’s words [14, p. 272f],
concepts

which do not have as their content properties or
relations of concrete objects (such as combinations
of symbols), but rather of thought structures or
thought contents (e.g., proofs, meaningful propo-
sitions, and so on), where in the proofs of propo-
sitions about these mental objects insights are
needed which are not derived from a reflection upon
the combinatorial (space-time) properties of the
symbols representing them, bur rather from a re-
flection upon the meanings involved. [Gödel’s em-
phases]

Gödel believed that there is a level of reasoning about con-
cepts that is still open to the evidence of immediate mental
inspection. He conjectured that this level of reasoning has
a sharp upper boundary (namely that in reasoning power it
corresponds to induction up to any ordinal strictly less than
the first epsilon-number ε0). His conjecture seems to have
some cognitive content, relating to the kinds of infinite tree
structure that we can picture to ourselves. He comments [14,
p. 273f]:
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Whether the necessity of abstract concepts for the
proof of induction [up to ε0 or beyond] is due solely
to the impossibility of grasping intuitively the com-
plicated (though only finitely complicated) combi-
natorial relations involved, or arises for some essen-
tial reason, cannot be decided off hand. [Gödel’s
emphasis. A footnote refers to the “proof-theoretic
characterization of concrete intuition”.]

We can also extend our concept system by forming concepts
of formulas, in other words, passing to a metalanguage. But
there is a catch here. If the concepts are just concepts of par-
ticular symbols or symbol strings appearing in our formulas,
they give us nothing more than we already had in the formu-
las; there is no speed-up except insofar as the concepts act
as labels for large chunks of text. But we do get extra power
by introducing metalevel concepts such as the concept of a
formula being an instance of a schema. Reasoning with such
concepts often uses induction up to ω, and this is the real
source of the extra strength.

(d) In (a)–(c) Gödel is talking about our direct awareness of cer-
tain facts that we can hold in our heads by means appropriate
concepts. He distinguishes this from a different kind of intro-
spective knowledge, which is knowledge about our own mental
capacities – or in his own words [16, p. 187] “insights about
the given operations of our mind.” He is thinking of the intu-
itionist mathematics of Brouwer. He gives no examples, and
there is nothing in this area that I would recommend with any
confidence as worth the attention of a cognitive scientist.

(e) One of Gödel’s abiding interests was the process of “concep-
tual analysis” that takes informal abstract notions and turns
them into tools of mathematical reasoning. In 1947 ([14,
p. 177]) he noted that “the analysis of the phrase “how many”
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leads unambiguously to quite a definite meaning” for a ques-
tion about transfinite cardinalities. In 1964 ([13, p. 369]) he
said that Turing had given “a precise and unquestionably ad-
equate definition” of the concept of a formal system, through
his “analysis of the concept of ‘mechanical procedure’.” Ob-
viously there is a close link between analysing a concept and
finding a fruitful representation for reasoning with it. In an
unpublished note of 1972 ([14, p. 306]) he said

. . . we understand abstract terms more and more
precisely as we go on using them, and [ . . . ] more
and more abstract terms enter the sphere of our un-
derstanding. There may exist systematic methods
of actualizing this development, which could form
part of the procedure.

But Gödel was frustrated by his complete inability to describe
any such systematic methods. The problem remains open.

1.3. A sample cognitive description
of reasoning

Gödel speaks for himself. I could simply commend his ideas to the
attention of the cognitive scientists; in any case I do not have the
expertise to move far into their territory. But I think I need to
say something more about the psychological cash value of Gödel’s
points.

Take for example the following argument from Johnson-Laird
and Byrne [22, p. 9]:

Arthur is in Edinburgh or Betty is in Dundee, or both.
Betty is not in Dundee.
If Arthur is in Edinburgh, then Carol is in Glasgow.

(5)

The authors describe a possible way of deducing logical con-
sequences from these three sentences. I summarise it as follows;
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I apologise if my summary distorts anything. We label the three
propositions “Arthur is in Edinburgh,” “Betty is in Dundee” and
“Carol is in Glasgow” as a, b and c respectively. Then we list “the
set of possibilities” for these propositions as follows:

a b c

i. T T T
ii. T T F
iii. T F T
iv. T F F
v. F T T
vi. F T F
vii. F F T
viii. F F F

(6)

The first premise in (5) rules out lines vii and viii, then the
second premise rules out lines i, ii, v and vi, and finally the third
premise eliminates iv. Only iv remains, and since iv makes c true
we can conclude that Carol is in Glasgow. This concludes the
argument.

I suspect Gödel would comment at once that this description
could fit several different mental procedures. We have not been
told what are the concepts used, or what properties of them are
invoked.

In the first place, what is a “possibility” for a, b and c? In
other words, what mental objects are the rows of the table (6)
reporting? The simplest possibility is that each row stands for
a statement using a, b and c; for example row vii stands for the
statement

Arthur is not in Edinburgh, Betty is not in Dundee and Carol
is in Glasgow.
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In this case the step ruling out line vii is a logical inference:

Arthur is in Edinburgh or Betty is in Dundee, or
both. Therefore it is not the case that: Arthur is
not in Edinburgh, Betty is not in Dundee and Carol
is in Glasgow.

(7)

We are not told how this inference is made. This is a pity,
because the inference is not much more straightforward than the
original deduction from (5).

Two ways of making this inference suggest themselves. The
first is that the inference in (7) is immediate and does not involve
any processing, other than the non-negligible amount of processing
needed to choose mental representations for the sentences involved.
In this particular case this suggestion is not terribly plausible.

A second way is that we read off the falsehood of “Arthur is
in Edinburgh or Betty is in Dundee, or both” from the truth of
“Arthur is not in Edinburgh, Betty is not in Dundee and Carol
is in Glasgow,” and then perform a contraposition. These steps
have a better chance of being immediate, “self-evident” in Gödel’s
view.

A second understanding of “possibilities” is that they are lit-
erally possibilities, i.e., ways the world might have been. Arthur
might have been in Edinburgh, Betty in Dundee and Carol in
Glasgow, as line i records. Here a problem is that these eight
possibilities are not really possible, given the premises (5); in fact
the reported argument establishes just this. We can rescue the
suggestion by revising it: possible relative to a given set of sen-
tences. All of i–viii are possible relative to no premises, but only
i–vi are possible relative to the first premise, and so on. Note that
this reading of Johnson-Laird and Byrne ascribes to the reasoner
a further concept, namely the concept of “possible relative to.”
So we have moved to a higher level in Gödel’s terms, but I think
without any gain in reasoning power. (For a fuller analysis see
Stenning and Yule [42].)
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Johnson-Laird and Byrne themselves describe the reported ar-
gument as “model-theoretic.” This suggests a third and more
set-theoretic notion of “possibility,” for example “function which
assigns a truth value to each of the propositions a, b, c”. My-
self I would be happy describing this as a model-theoretic notion,
even if it is represented as in (6) by a string of T ’s and F ’s. But
now the character of the argument changes. What does it mean
for a premise to “rule out” such a function? Presumably by con-
tradicting vii in the first sense of “possibility” discussed above,
or eliminating vii in the second sense. But then the model theory
here is completely redundant; we never use it except by translating
it away immediately.

There is a fourth option, namely that the “possibilities” are
nothing but rows of symbols, T or F , and the whole argument is
conducted by using the truth table rules. In short, Johnson-Laird
and Byrne are describing an application of a truth-table proof
calculus, which is a good example of a “game with formulas.” As
a working logician I find I do use this kind of reasoning quite often,
because I have learned it and it is efficient on small problems. I
would be amazed to hear that someone hit on it with no training at
all in the subject. Although this is a possible reading of Johnson-
Laird and Byrne’s text, I doubt very much that it is what they
have in mind, because they explicitly distinguish their view from
another approach that they call “proof-theoretic.”

In short, the description that Johnson-Laird and Byrne give
here begs almost every question that Gödel could have asked.
From this description we have no idea what mental operations are
being described; in particular the description as “model-theoretic”
is no help at all. I leave it to the reader to check how far the rest
of their book clarifies these ambiguities.

Logicians do sometimes talk of “model-theoretic arguments” or
“semantic arguments.” They mean arguments that use the notion
of a model of a formal sentence. Models are set-theoretic objects
and the notion of a model of a formal sentence is defined set-
theoretically. The use of this notion is an example of Gödel’s (b)



Two Doors to Open 297

in Section 1.2 above, and it can lead to dramatic improvements in
the efficiency of proofs of first-order theorems. The main reason
for this is that one can exploit set-theoretic principles such as
induction on the ordinals. Dan Osherson called my attention to
a beautiful example due to George Boolos [8]. Boolos gives a
one-page proof of the following inference:

∀n F (n, 1) = S(1).

∀x F (1, S(x)) = S(S(F (1, x))).

∀n ∀x F (S(n), S(x)) = F (n, F (S(n), x)).

D(1).

∀x (D(x) → D(S(x))).

� D(F (S(S(S(S(1)))), S(S(S(S(1)))))).

Boolos’ short proof is in second order logic, written out informally.
However, Boolos also shows (by a cut elimination argument) that
any proof of this entailment in any of the standard proof calculi for
first-order logic would be of astronomical length. One can easily
adjust Boolos’ short proof into a set-theoretic argument, or indeed
a model-theoretic one.

Mike Oaksford and Nick Chater [30, p. 140], responding to a
defence of Johnson-Laird by Alan Garnham, comment:

Semantic methods of proof are simply an alternative way
of passing from premises to conclusions.

Boolos’ example makes this a rather odd statement. But still it is
true in a sense. To the best of my knowledge, Johnson-Laird never
shows any way in which human model-theoretic reasoning could
exploit the extra strength of model theory; his model-theoretic
steps are just standard first-order steps interpreted as reasoning
about models. And though Boolos’ short proof, in model-theoretic
form, certainly does use semantic methods which correspond to
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nothing in natural deduction, Boolos does not propose any general
strategy for logical reasoning that relies on such methods.

1.4. Frege versus Peirce:
comparison of representations

Around 1880, Gottlob Frege and C. S. Peirce independently gave
the earliest logical calculi that are adequate for first-order logic.
There is no evidence that these two logicians exerted any influence
on each other, but their aims had much in common. It was impor-
tant for both of them that each written formula should make its
semantic structure clear, something that natural language often
fails to achieve. In their own words:

(Frege) . . . I called what alone mattered to me the con-
ceptual content [begrifflichen Inhalt ]. Hence this definition
must always be kept in mind if one wishes to gain a proper
understanding of what my formula language is. . . . [My]
deviations from what is traditional find their justification
in the fact that logic has hitherto always followed ordinary
language and grammar too closely. (Trans. [19, p. 6f])

(Peirce) . . . this syntax is truly diagrammatic, that is to
say that its parts are really related to one another in forms
of relation analogous to those of the assertions they rep-
resent, and . . . consequently in studying this syntax we
may be assured that we are studying the real relations
of the parts of the assertions and reasonings; which is by
no means the case with the syntax of English. [33].

Frege’s two-dimensional notation Begriffsschrift appeared in
his book of that name in 1879 [10]. Peirce called his two-dimensional
notation existential graphs; the first order part consists of the beta
graphs. He developed existential graphs over many years and pub-
lished them in a variety of places; Lecture Three of his 1898 Cam-
bridge Conference Lectures [32] is a good reference.
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Here are some typical recent comments on Frege’s Begriffss-
chrift

(a) Begriffsschrift uses up too much space.
(b) Nobody but Frege ever used Begriffsschrift.
(c) Begriffsschrift has a forbidding appearance.

By contrast here are some typical recent comments on Peirce’s
existential graphs:

(e) The graphs are interesting to study because Peirce was an
important logician and he thought they were one of his best
contributions.

(f) Inference in existential graphs is easy.
(g) Existential graphs exploit geometric intuition.

There is a growing literature on applications of Peirce’s exis-
tential graphs in logic teaching, computer science and elsewhere.
(For a sample, see Hammer [17] and Ketner [25]; scholar.google
gives a few hundred further references.) I do not think anybody
has suggested anything similar for Begriffsschrift. Why the differ-
ence?

At face value the distinction is very unfair. On (b) for example,
hardly anybody but Peirce used existential graphs until recently.
Points (e) and (g) apply equally well to Frege. As to (f), Frege
designed Begriffsschrift so as to make modus ponens

Given p and “If p then q,” infer q.

particularly straightforward.
My impression is that nobody has seriously compared the two

notations. In fact people who discuss existential graphs rarely
mention Begriffsschrift at all. Some writers have contrasted Be-
griffsschrift not with existential graphs but with Peirce’s earlier
one-dimensional notation, which is much closer to present-day no-
tations for first-order logic. This is a less interesting comparison.
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There are some obvious questions of cognitive science to ask
here.

• Is Frege’s notation really harder to learn than Peirce’s?

• Is Peirce’s notation really better than Frege’s as a tool of rea-
soning?

Anecdotal evidence is useless; one needs a properly designed ex-
periment in which a number of people are trained in both systems
and then tested for speed, accuracy, comfort etc. Let me conjec-
ture that there is no significant difference between the notations,
at least in point of speed and accuracy. (There is a prior problem
that Peirce’s notation can be read in more than one way; see Shin
[39].)

• If differences do come to light, then what are they?

• Do they apply equally well to all users or do they correspond
to different people’s cognitive styles?

Though the two notations carry the same information, their details
are very different. Peirce came to his graphs through his study of
Kempe’s graph notation, an early contribution to the notation of
chemistry. The source of Frege’s notation is less clear, but since his
diagrams are in fact the stemmata of a dependency grammar for
his language, my guess is that they owe something to the parsing
trees that were in regular use in Germany in the 19th century, as
illustrated in Baum [6]. It is relevant that Frege’s father was a
professional language teacher.

2. Medieval Arabic Semantics

Medieval? Weren’t we supposed to be moving logic forwards, not
backwards?

The history of logic is an honourable and well-established dis-
cipline. In the last fifty years it has made great advances, both
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in the availability of material and in our understanding of the
minds of our predecessors. (For example when I was a student in
the 1960s, the Greek and Latin commentaries on Aristotle were
mentioned only for information about variant readings of Aristo-
tle’s text. Today everyone can look up a mass of information on
these commentators as logicians in their own right, and the Arabic
commentaries are becoming available too.) Probably every logic
teacher will agree that it is helpful to be able to show our students
where their subject came from, and how a later generation man-
aged to climb over the hurdles that defeated an earlier one. Some
good material for teaching the history of logic is already available;
more would be welcome.

On the other hand I tried to draw up a checklist of items
drawn from classical or medieval logic that have been a clear help
to research in logic during the last half century. I do not count
free association here: anybody can get some inspiration by read-
ing anything (just as Alban Berg, seeking ideas for the cadenza of
his Violin Concerto, asked the soloist Louis Krasner to play just
anything for an hour or so, “Bitte nur spielen – unbedingt!”). Per-
haps the fact that there is a programming language called Occam
is a testimony to this. Rather I looked for places where some-
body published something from the history of logic and it directly
affected research in logic.

So far only two examples have come to mind. One is Arthur
Prior’s publicising of the notions of de re and de dicto modality,
which he took from Abelard [35]. Certainly these were useful and
the names are still in regular use, though it is hard to be sure modal
logic would have developed differently without Prior’s paper. The
second is Peter Geach’s donkey sentence “Any man who owns a
donkey beats it,” which he describes as “medieval” [11, p. 117].
Certainly Geach’s example has had a strong influence on research
at the logical end of natural language semantics. Its connection
with the history of logic is less clear. I am guessing Geach took
the idea of the sentence from the early fourteenth century logician
Walter Burley, who discusses the meaning of the sentence “Every
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man who has a donkey sees it” [9, i.4 ]. But Geach’s comments on
it are his own and not Burley’s.

These are small pickings.
Part of the reason is the lack of novelty. The classics and the

western medievals are our own ancestors, and the main features
of the family history were always with us. Historical material is
more likely to be useful to us if it meets two conditions:

(1) it addresses problems that we can recognise and find interest-
ing, and

(2) it comes to these problems from a viewpoint markedly differ-
ent from any that is familiar to us.

I think there is a serious chance that medieval Arabic semantics
contains material meeting both these conditions. If so, then some-
body from the West should study it. We may be unlucky this time
too; but at least it will be a contribution to a seriously neglected
area in the history of semantics.

Because the work is still to do, I cannot go beyond making a
prima facie case. But let me try to do that.

On (1): to indicate that the medieval Arabs faced questions
that interest us today, let me quote from Abu H. ayyān al-Andalus̄ı
(1256–1345). In the West he is best known as one of the first
linguists to write a textbook of one language in another language.
(He wrote in Arabic a textbook of Turkish.) The 15th century
encyclopedist As-Suyūt.i [45, p. 37] quotes the following remark
from him:

al-cajabu mimman yujı̄zu tarkı̄ban fı̄ luġati min al-luġāti min ġayri
’an yasmaca min d

¯
ālika t-tarkı̄bi naz. ā’ir; wa-hal at-tarākı̄bu

l-carabiyyati ’illā ka-l-mufradāti l-luġawiyyati? fa-kamā lā yajūzu
’ih. dāt

¯
u lafz. in mufradin, ka-d

¯
ālika lā yajūzu fı̄ t-tarākı̄bi; li-’anna

jamı̄ca d
¯

ālika ’umūrun wad.
ciyyatun, wa-l-’umūru l-wad.

ciyyatu
tah. tāju ’ilā samācin min ’ahli d

¯
ālika l-lisāni, wa-l-farqu bayna cilmi

n-nah. wi wa-bayna cilmi l-luġati ’anna cilma n-nah. wi mawd. ūcuhu
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’umūrun kulliyyatun, wa-mawd. ūcu cilmi l-luġati ’ašyā’u
juz’iyyatun wa-qad ištarakā macan fı̄ l-wad.

ci.

I find it astonishing that people allow a sentence construction
in a language, even when they have never heard a construction
like it 〈before〉. Are Arabic constructions different from the
words in the dictionary? Just as one cannot use newly-invented
single words, so one cannot use 〈newly-invented〉 constructions.
Hence all these matters are subject to convention, and matters
of convention require one to follow the practice of the speakers
of the relevant language. The difference between syntax and
lexicography is that syntax studies universal 〈rules〉, whereas
lexicography studies items one at a time. These two sciences
interlock in 〈describing〉 the conventions 〈on which language is
based〉.

This passage needs to be put in context. Medieval linguists,
both western and Arab, generally believed that words get their
meaning by an imposed and arbitrary convention; the Arabs called
this convention , and for the Latins it was impositio. If As-
Suyūt.i is right (and there is every reason to think that he is), then
Abu H. ayyān is attacking the view that the lexicon of a language
contains everything necessary for forming and understanding sen-
tences of the language. As-Suyūt.i refers to earlier writers who had
taken this view. One of them is the thirteenth century linguist
Ibn Mālik; As-Suyūt.i quotes a passage in which Ibn Mālik argues
that since the number of sentences of a language is unlimited, the
meanings of sentences could not be fixed by . In the passage
above, Abu H. ayyān is responding that it is the practice ( )
of a language which determines meanings for an unlimited num-
ber of possible complex expressions. From this he infers that the
conventions forming a language must include not just individual
assignments of meanings to words, but also general rules (′umūrun
kulliyyatun) that govern the meanings of complex expressions in
terms of the syntactic constructions giving rise to them.
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All this is familiar today, thanks to Husserl who repeated Abu
H. ayyān’s observations (independently!) in part 4 of his Logische
Untersuchungen ([21], for example, pp. 316–321) in 1900. One
can trace the matter from Husserl into Tarski’s truth definition,
then into the general notion of compositional semantics; but that
is another story. Husserl went on to note that the syntactic rules
must be ones that can be applied recursively. Though I believe
Abu H. ayyān’s full text does survive somewhere, I do not have ac-
cess to it, and so I cannot report how much further he develops
the theme. But I hope this quotation is enough to establish that
he was interested in things that we still debate, and that his con-
tribution still looks penetrating. This is confirms point (1) above.
(My thanks to Brendan Gillon for pointing out to me that the
Sanskrit linguist Patañjali, commenting on Pānini, had reached
some of the same conclusions as Abu H. ayyān some two thousand
years ago.)

The next point to establish is (2), namely that there were
medieval Arab semanticists who came at their subject from an
angle markedly different from those that we are familiar with.
Here my main witness is Abd al-Qāhir al-Jurjān̄ı. His date of
birth is unknown; he spent his whole life in Gorgān, an Iranian
town south-east of the Caspian, and died around 1080. (He should
not be confused with Aš-Šar̄ıf al-Jurjān̄ı.)

Although Arab writers tend to cite him as the high point of
Arab semantics, and his two works Dalā’il and Asrār are still both
readily available in Arabic, his name and works never reached the
West until modern times. By contrast the western scholars of
the 13th century eagerly read the writings of his slightly older
contemporary Ibn S̄ınā (Avicenna). The difference is easy to ex-
plain. The westerners translated from Arabic only what they could
recognise as useful to them: medicine, mathematics, Aristotelian
philosophy. Under the head of Aristotelian philosophy they took
Al-Fārāb̄ı, Ibn S̄ınā and Ibn Rushd (Averroes), all of whom wrote
on logic. But Jurjān̄ı came from an altogether different world.
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In the first place, he trained as a linguist. (Versteegh [47]
writes: “. . . the importance of his insights into the structure of
language for the development of grammatical theory as such has
only now been fully realized.”) There is no evidence – or at least
none known to me – that he knew Aristotelian logic in any detail.
When he mentions logic, he shows no particular hostility to it,
unlike some of his linguist contemporaries. But he does quote
with approval a line of the poet Al-Buh. tur̄ı [24, p. 195]:

kallaftumūnā h. udūda mant.iqikum; fı̄ š-šicri yakfı̄ can s. idqihi
kad

¯
buhu.

You burden us with your logical definitions; but in poetry
the lies make the truth superfluous.

Unlike typical Arabic Aristotelians, he does not define by genus
and differentiae; his natural style is to explain a notion informally
and with examples. I am not aware that he ever mentions Aristo-
tle.

Jurjān̄ı’s fame in the Arab world rests on his two texts Dalā’il
(in full, “Proofs of the miraculous nature of the Quran,” but this
is a misleading description of the contents) and Asrār (in full,
“Secrets of eloquence”).

Strangely only Asrār has been critically edited. Abu Deeb
[1, p. 21ff] reports that these two books are only a small part of
Jurjān̄ı’s output – one of his books runs to thirty volumes – but

The manuscripts of his books on grammar and other sub-
jects are dispersed in various libraries, and despite the
great interest in his work nothing is being done, as far
as I know, to bring them out in reliable critical editions.

We can only hope that some scholarly editor gets to these works
before somebody bombs them in the name of Freedom.
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In the two works Dalā’il and Asrār, Jurjān̄ı’s aim is to col-
lect materials and concepts for a general theory of language as a
means of communication. He works with a corpus consisting of the
Quran and classical Arabic poetry. For him, speakers and writers
communicate their thoughts, and thoughts can consist of anything
from factual information to moral exhortation or an appreciation
of the beauties of nature. He remarks [24, p. 196f] that truth must
take precedence, but that we greatly limit the creative powers of
language if we overlook the ways in which language appeals to the
imagination.

Thoughts themselves are not his concern. Rather he wants
to know what are the mechanisms that allow a thinker to use
this sentence, constructed thus, to express a particular thought.
He works as much as possible with concrete examples from his
corpus, and he analyses them in sometimes painful detail. But
at the same time a systematic theory is constantly present in the
background.

For Jurjān̄ı the basic unit of communication is the sentence.
A typical remark is [23, p. 73]:

yah. tāju fı̄ l-jumlati cilā ’an tad. acahā fı̄ n-nafsi wad.
can wāh. idan.

The need is great for the sentence to be formulated in the
psyche as a single act of formulation. (Trans. [1, p. 36])

The word an (which Abu Deeb renders as “formulation”)
is the same word that we commented on in Abu H. ayyān above.
Jurjān̄ı accepts that the meanings of the separate words of Arabic
are given by a that we have no control over, but he insists
that each whole sentence is new in the hands of its creator. He
goes on to explain, in one of his favourite analogies, that creating
a sentence is like putting bricks together to make a building; the
relationships between the bricks contribute more to the outcome
than the material of each separate brick.
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One reason why Jurjān̄ı stops short at sentences is the limited
nature of his corpus. The Quran seems to have come to Muham-
mad in single verses or small groups of verses, and Muslims com-
monly treat each verse as a separate revelation. The styles of the
classical poets are quite different from the Quran, but there was a
strong convention that each couplet should be self-contained; crit-
ics reprimanded poets who made grammatical links between two
couplets. But Jurjān̄ı does also have a more positive reason for
concentrating on sentences: syntax operates at the level of sen-
tences, and the interaction of syntax and semantics is crucial for
him.

By concentrating on sentences he cuts himself off from con-
sidering the semantics of dialogues. I am not aware that he has
much to say about anaphora between sentences, for example. But
he has a broad notion of the relevant context of utterance, and it
includes the shared beliefs of the speaker and hearer. (Readers of
his western counterparts will recall that in them the context tends
to shrink to a finger pointing at Socrates when the speaker says
“a man.” In matters like this Jurjān̄ı feels like a return to the real
world.)

Jurjān̄ı suggests in one place that the meaning of an utterance
may be determined in two steps: the sentence itself determines a
“meaning,” and then from this meaning we infer a “meaning of
the meaning.” In the example he is discussing, the second step
makes an appeal to the context. ([23, p. 203]).

Jurjān̄ı accepts that a simple word, say “horse,” has a meaning
independent of any context of use, namely that it applies to horses.
He sometimes refers to this as “the meaning of the word,” but for
emphasis let me call it the dictionary meaning of the word. In his
view this dictionary meaning represents only a very small part of
what the word contributes to the meanings of sentences containing
it. Here are some examples of what he has in mind.

(i) The order of words in a sentence serves to emphasise some
words and de-emphasise others. What features of the meaning
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of “kill” come to the foreground when we emphasise “killed”
in “A killed B?” (Much of what he says here may be untrans-
latable. As Badawi et al. [5, p. 326f] note, “ . . . it is important
to emphasize that the topic-comment sentence in Arabic is a
basic structure and not the result of any movement, fronting
or extraction . . . ”)

(ii) More interesting for general theory, the meaning of a word
must include the ways in which it can form grammatical links
with other words. ([23, p. 314])

wa’-clam ’annı̄ lastu ’aqūlu ’inna l-fikra lā yatacallaqu bimacānı̄
l-kalami l-mufradati ’as. lan, wa-lākin ’aqūlu ’innahu lā yatacallaqu
bihā mujarradatan min macānı̄ n-nah. wi.

Understand that I am certainly not saying that the un-
derstanding does not latch onto the meanings of separate
words. What I am saying is that it does not latch onto the
meanings of separate words detached from the meaning of
(their) syntax.

Western medieval semanticists were of course well aware
that a word has possibilities for combining with other words,
but they tended to treat these possibilities as an added ex-
tra that is clamped onto the meaning. (For a typical exam-
ple, “ipse modus significandi aliquo modo est quid additum
significationi rei”: Aegidius Romanus, quoted [34, p. 124].)
Jurjān̄ı’s view is rather that the possible relationships are an
integral part of the meaning. Today we would say that the
meaning includes the argument structure and/or the seman-
tic category. Exactly how Jurjān̄ı’s views of the matter differ
from, say, those of Frege or the protagonists of Head-Driven
Phrase Structure Grammar I cannot say; I hope future gener-
ations will have the chance to decide.

The passage just quoted is one of very many places where
Jurjān̄ı uses the phrase
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“meaning of the syntax” (macnā n-nah. wi ).

The word macnā has broader connotations than “meaning” in
English; in other contexts it translates as “function” or “in-
tention.” So the phrase macnā n-nah. wi is not itself a semantic
term; syntacticians could use it to talk about various syntactic
functions. (I thank Kees Versteegh for alerting me to this.)
But some of the most interesting and perplexing questions
about the interaction of syntax and semantics are associated
with argument structures, theta functions and related items
that presumably come under macnā n-nah. wi , so that Jurjān̄ı’s
use of the phrase in a semantic context may point to deeper
things.

(iii) Jurjān̄ı has a notion of a word being coerced by its context
to stand for different things from what it naturally stands
for. In general he calls this majāz, but when there has to be
some point of similarity between the old and new referents
he talks of isticāra. His notion of isticāra seems to be very
broad. I think it would catch at least the following, besides
the examples of poetic metaphor that are his chief concern:

(a) the device in English (and I am told also in Chinese) that
allows one to use a noun as a verb, as in “She cheesed the
spaghetti”;

(b) the similar device in some programming languages, that
switches a variable from one data type to another when we
apply a function that expects an argument of the second
type;

(c) the ways in which temporal expressions shift the refer-
ences of nouns or verbs within their scope (as in “I met
a child,” where the past tense of the verb allows the ref-
erence of “child” to be the set of children at some past
time);
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(d) the medieval theory of ampliation (which operates like (c)
except that it expands references so as to include possible
entities as well as actual ones).

Jurjān̄ı insists that in isticāra the meaning of the relevant
word remains its dictionary meaning; the reinterpretation through
isticāra acts at sentence level, leaving the dictionary meaning un-
touched. (It follows that the dictionary meaning is not the refer-
ence. As is well known, Frege claimed that in at least some oblique
contexts the reference of a word is replaced by its normal Sinn ;
there seems to be some room for disagreement about what – if
anything – Frege supposed replaces the Sinn in such cases. One
possible reading of Jurjān̄ı is that for him the dictionary meaning
of a word is its Sinn , and this Sinn stays the same in all contexts.
But I think a closer look will show that Jurjān̄ı’s views are more
articulated than this.)

Though most of Jurjān̄ı’s examples of majāz are from poetry,
they are not all. He calls attention to isticāra in the Quran, and the
Quran itself (lxix 41) claims to contain no poetry. Although both
the words majāz and isticāra are possible translations of Aristotle’s
metaphorá (metaphor), Aristotle limited his account of metaphor
to phenomena in poetry. We can read Jurjān̄ı as talking about a
much broader range of semantic phenomena.

Jurjān̄ı has a good deal to say about identity of meanings of
sentences. He believes that replacing a word by another word
with the same dictionary meaning will not alter the meaning of
the sentence, even if the word was used metaphorically; so it seems
to be his view that the metaphorical uses of a word are determined
by its literal uses. On the other hand he believes that replacing a
metaphorical description by a literal description always alters the
meaning, even in translations between languages; the existence of
a metaphor is itself part of the meaning.

He also has a notion of the “form of a meaning” (s. ūratu l-macnā).
Though he says plenty about it in both the Dalā’il and the Asrār,
I have not yet managed to extract a clear idea of what is going
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on. The form of a meaning is something like a criterion for iden-
tifying the meaning; so in particular two meanings with the same
form are equal. In modern Arabic the word s. ūra allows a range
of translations, including “representation” and “photograph.”

The fullest account of Jurjān̄ı available in English is Kamal
Abu Deeb [1], which I have already cited several times above.
Another useful account is Larkin [26]. Abu Deeb treats Jurjān̄ı
mainly as a literary critic; Larkin explores his usefulness for the-
ology (though Jurjān̄ı is clearly not a theologian himself). Briefer
accounts that present him more as a semanticist are in Owens
[31, pp. 249–263] and Versteegh [48, Ch. 9]. The influential Syr-
ian poet Adonis reviews Jurjān̄ı’s place in Arab poetics in Chapter
2 of his [2].

Abu Deeb’s book is lovingly written and has many quotations,
but it is largely devoted to showing that Jurjān̄ı anticipated var-
ious modern western theories. This supports my point (1) but
could damage my point (2). If Jurjān̄ı turns out to be a subset of
I. A. Richards, then there is not much point in reading Jurjān̄ı; we
already have I. A. Richards. But from the relatively small amount
of him that I have read, Jurjān̄ı has the electricity of a robust
original thinker with a novel viewpoint. My strong hope is that
Jurjān̄ı will teach us some new things.

After Jurjān̄ı, semantics became recognised in the Arab world
as a field of study, under the name cilmu l-macānı̄ (science of mean-
ing). A number of people made solid contributions. As-Sakkāk̄ı’s
textbook of semantics, from the early 13th century, is available in
a German edition [40].

Quite independent of Jurjān̄ı, the Arabs contributed a strong
strand of research in semantics under the head of is. ūlu l-fiq. h (ju-
risprudence). I know very little about this, so I will be brief.
According to Islam, the Quran contains guidance for the proper
behaviour of individuals and communities. This guidance needs
to be extracted by interpretation, and interpretation of a text re-
quires an understanding of how a text communicates its author’s
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intentions. For example an interpreter needs to be able to define
the concepts used in the text; to distinguish literal from metaphor-
ical meanings; to distinguish stated meanings from ones that are
implied directly by the writer; or implied by the fact that the
writer said what he did; to identify indexical expressions and de-
termine what they refer to; and so on. Many scholars contributed
to this theory.

This work is religious in just two senses. First, the main in-
tended application is to a religious text (though the theory is devel-
oped more generally than this). Second, the religious importance
explains the diligence and commitment of a large number of schol-
ars. Neither of these should provide any obstacle for a western
secular reader of this literature. Three recent studies are Ali [3],
Ramić [36] and Weiss [49].

What about medieval Arabic logic?
The medieval Arabs started serious work on Aristotelian logic

rather earlier than their western counterparts, and this interest
continued into modern times. Last year the Arabic bookshop in
the Charing Cross Road was selling a recent Iranian edition of
an Arabic text called Methods of Logic, by one S. acin al-Din Ibn
Turka al-Is.fahān̄ı, who died in 1431. It seems to be in no way less
sophisticated than the logic texts that were available in Britain in
the first decades of the nineteenth century.

Nevertheless one has to search hard to find any western litera-
ture on Arabic logic. Nicholas Rescher wrote a number of articles
and books (among them [37, 38]), and more recently Tony Street
[43, 44] has begun work on the logic of Al-Fārāb̄ı and Ibn S̄ınā
Versions of Ibn S̄ınā’s modal logic came to dominate the Arab
scene; they have some differences from Aristotle’s. Paul Thom’s
recent book [46] makes useful comparisons between the Arabic
and the western medieval syllogistic systems.

At the moment it seems unclear that the study of Arabic modal
logic has anything to contribute to modern modal logic, and vice
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versa. But this work of the Arabs clearly deserves to be studied
as a significant chapter in the history of logic.
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14. K. Gödel, Collected Works II, Publications 1938–1974, S. Feferman
(ed.) et al., Oxford–New York, Oxford Univ. Press, 1990.
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vard Univ. Press, 1967.

20. W. Hodges, The geometry of music, In: J. Fauvel, R. Flood, and R.
Wilson (eds.), Music and Mathematics, Oxford, Oxford Univ. Press,
2003, pp. 90–111.

21. E. Husserl, Logische Untersuchungen II/1, Tübingen, Max Niemeyer
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Applied Logic:
A Manifesto

Lawrence S. Moss
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Bloomington, USA

This paper presents applied logic as a general research area, sit-
uating it in the broader intellectual world. It proposes a charac-
terization of applied logic and attempts to say why the subject is
interesting. It discusses the relation of applied logic with other
trends in logic, computer science, and mathematics. Rather than
present any technical results, it aims for a “big picture”’ view of
this emerging subject.

1. What is Applied Logic?

My main purposes in this essay are to introduce applied logic
as a research area, to situate it in a broader context, to make the
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case that it is a significant and worthwhile enterprise, and to detail
some of its research areas. These are my main overt purposes. But
my “covert” purpose is to write something that might open new
doors for young students with interests in logic. In my younger
days I remember the excitement I felt from subjects at the borders
of mathematics, computer science, and linguistics. It was not until
many years later that I began to think more explicitly about the
“politics” of what I and many others have been doing. I think
it would have helped me to ponder a manifesto or two along the
way, even in my high school or college days. So my hope about
this article is that somewhere, sometime, somebody will pick it up
and . . ..

While many people know something about logic, I take it that
the idea of applied logic will be unfamiliar to all readers. This is
because it does not exist in the same institutional sense as other
fields, and only a few books have the words “ applied logic” in their
title. There really is no consensus on what “applied logic” means,
so in effect, I am making a proposal here. To explain matters, I’ll
need to go into a fair amount of detail about logic, and also about
mathematics, computer science, philosophy, and other fields. But
to keep things short, most of my discussion of these matters will
be offered with only minimal support.

The main points

The reader can find most of the main points in the section headings
and boldface lead phrases. Many of these are slogans th at I
present in a deliberately provocative way.

First things first, we should say what the subject is about. It
is always difficult to define fields, but I take applied logic to be
defined and characterized in the following ways:

(1) It is the application of logical and mathematical methods to
foundational matters that go beyond the traditional areas of
mathematical logic. The central domain of application at the
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present time is computer science, but it also has significant
applications in other fields.

(2) It also is extension of the boundaries of logic to include change,
uncertainty, fallibility, and community. Far from being the
study of matters which are absolutely black or white and never
change, and which exist in the mind of a single person, applied
logic aims to study communication via brushstrokes of gray.
In this way, it is a reconstitution of the study of foundations.

(3) Its ultimate interest is a concern with human reasoning, so
it will ultimately lead to a rapprochement with psychology,
artificial intelligence, and cognitive science. But even before
this happens, the development of tractable logical systems are
the most conspicuous applications of logic in many fields.

(4) Applied logic is an interdisciplinary field, and this has its own
set of difficulties and opportunities.

Most of this essay is a discussion of these points. But in the
spirit of a manifesto, I do want to make some grandiose claims:
applied logic is the most vigorous branch of logic. And if one
is interested in current research on the topics that motivate and
animate logic in the first place – the concepts of formal reasoning,
truth, meaning, paradox, proof, and computation – then applied
logic is the place to look.

2. Mathematics and Logic, but
Different from Mathematical Logic

Logic is the study of reasoning; and mathe-
matical logic is the study of the type of rea-
soning done by mathematicians.

Joseph R. Shoenfield

Mathematical Logic, 1967 (cf. [1, p. 1])

I know that most readers will recognize the split in logic between
“mathematical logic” and “philosophical logic.” At the same time,
they may be surprised to hear that the difference is not mainly
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about whether the subject is “mathematical:” philosophical logic
has technical sides that use and inspire mathematics. The dif-
ference has to do more with what the targets of the studies are.
Mathematical logic is a much-better-defined area, and so it makes
sense to discuss it first. The quote above is the first sentence from
one of the standard textbooks on mathematical logic.

I did not re-read Shoenfield’s entire book, but I doubt very
much that the word “reasoning” appears many times after the first
sentence. Going further, I do not think we can take mathematical
logic seriously as a study of mathematical reasoning. There are
numerous reasons, and they all echo broader philosophical claims.
First of all, one would think that in studying “mathematical rea-
soning,” one would be interested in “reasoning” in other areas.
That is, one would expect some sort of engagement with psy-
chology. Yet ever since Frege if not earlier, mathematical logic
has rejected the idea of an engagement with psychology at any
level. Even putting this aside, in examining the considerable body
of work in mathematical logic, we find nothing of key aspects of
“flesh-and-blood” mathematical reasoning, such as the use of sym-
bols, diagrams, formulas; hunches, nothing about evidence, and
mistakes; nothing about why some types of mathematical reason-
ing are more interesting than other types; nothing about different
mathematical fields and what they have or do not have in com-
mon; nothing about how the faculty of mathematical reasoning is
acquired; and again, nothing at all about how it is related to any
other human faculty. One would think that a subject devoted to
mathematical reasoning would in part be interested in all of these
issues.

2.1. Mathematical Logic and Mathematics

If mathematical logic is not the study of mathematical reasoning,
what is it? Mathematical logic has three aspects:
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(1) It is a foundational discipline which studies an idealization of
mathematical reasoning, the reasoning done by perfect beings
with no resource limitations who reason in a way captured by
the axiomatic method. It is mainly concerned with idealiza-
tions of the concepts of truth, proof, computation, and infinity.
It is traditionally divided into four areas that correspond to
these: model theory, proof theory, recursion theory, and set
theory.

(2) It also deals with a host of theory-internal questions. Each
area of mathematical logic is now an active branch of math-
ematics, and like any branch of mathematics, there are many
questions whose primary interest will be to those inside.

(3) Finally, it is concerned with applications to other areas of
mathematics.

I think there are reasons not to be happy with the received
view of mathematical logic as “the foundations” of mathematics,
but I will not go into that here. I think it is fair to say that this
foundational contribution of mathematical logic is what is usu-
ally meant by speaking of mathematical logic as a foundation of
mathematics, and that despite my (and many others’) quibbles on
whether it is the ultimate foundation, the foundational achieve-
ments of logic are of permanent interest.

For many years, the theory-internal questions of mathemat-
ical logic were the most important parts of the subject. There
are whole fields of active study, such as the theory of recursively
enumerable degrees, large cardinals, the fine structure of the con-
structible universe, and infinitary logic, which are mathematically
interesting but really quite far in motivation from any foundational
matters or from the study of mathematical reasoning. These ques-
tions are the real aim of Shoenfield’s book, for example. Theory-
internal questions constitute most of any active field, and indeed
most of the articles in the Journal of Symbolic Logic would fall in
this category.
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The dream of many logicians has been to apply logic to settle
serious questions of mathematics. For many years, this dream
went mostly unrealized. There were some exceptions, such as
Tarski’s work on real closed fields, in some of the celebrated results
of set theory that had implications for the foundational questions
of analysis; and indeed in the whole field of non-standard analysis.
And in very recent times we see significant applications of mathe-
matical logic in mathematics, so much so that perhaps mathemati-
cians outside will get interested in one or another of the branches
of mathematical logic. Two areas where this happens are model-
theoretic algebra, with its connections to areas like arithmetic al-
gebraic geometry; and descriptive set theory, with its connections
to topology, analysis, functional analysis, and other areas.

It seems fair to say that the main thrust of mathematical logic
is not the foundational contribution in point (1): this is saved
for textbooks and introductory courses, or it comes up only when
justifying the subject. The most valued work is in (2) answering
hard technical questions about areas that have arisen because of
the subject itself, and (3) contributions to more central areas of
mathematics. Looking at conference programs and invited lec-
tures, this latter thrust seems on the rise and destined to become
the most important one for mathematical logic. Certainly when
I talk to young people interested in the mathematical logic, I en-
courage them to aim for area (3).

2.2. Where applied logic differs

I think that all of the contributions in (1)–(3) above are interesting
and good. But I do not think that they are the only interesting
things to do in logic. My main purpose in this essay is to present
an alternative agenda. It will extend the foundational impulse
which motivate d mathematical logic in the first place, it will have
its own internal questions, and it will be a field with applications
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– indeed, as the name suggests, the applications are going to be
at the center of the subject.

Once again, the closest direction for applied logic is the one
that mathematical logic seems to be finished with, the founda-
tional contribution clarifying some of the central aspects of rea-
soning in mathematical and formal contexts. But this idealization
is a two-edged sword. Usually it is presented as an advantage,
because negative results about the idealization imply negative re-
sults about the real thing. For example, it was shown early on
that there are natural things that one might want to write a com-
puter program to do which simply cannot be done by an idealized
computer. (One example: write a program which looks at other
programs and tells for sure whether or not the input program will
go into an infinite loop.) Since this cannot be done on even an
idealized computer, it follows that it cannot be done on a real
computer either. This illustrates how when considering negative
results, it might be fine to work with idealizations.

However, the other side of the sword is that sometimes the ide-
alization might be so questionable as to make the inference from
the idealization problematic. An example here concerns the most
celebrated result of mathematical logic, Gödel’s Incompleteness
Theorem. There are many people who believe that this result im-
plies that human beings are not computers. This may or may not
be the case, but I think it is a mistake to think that the Incom-
pleteness Theorem gives us conclusive evidence, or even suggestive
evidence. The inference from the technical result to the philosoph-
ical point is questionable precisely because there is no reason to
take an understanding of the Incompleteness Theorem, to be a
good idealization of intelligence or what it means to be a person.

Returning to my topic, questions about real reasoning, or
about aspects of it that we can model mathematically, are go-
ing to be important for applied logic. In this sense, applied logic
is carrying forward the program of applying mathematics to the
human world. This is the crux of the difference. For applied logic,
mathematics will be a tool to use. And although I think that
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blends of applied logic and cognitive science will ultimately tell us
more about mathematics than mathematical logic has as yet told
us, I do not take this to be the one and only goal of applied logic.

2.3. Applied mathematics is good mathematics

Applied mathematics is bad mathematics.

Paul Halmos

In: Mathematics Tomorrow, 1981 (cf. [2])

This enterprise of applied logic builds on and uses all the re-
sults of mathematical logic, but it is not aimed back at mathemat-
ics the way mathematical logic is. My argument in this section
is that applied logic should be recognized as an area of applied
mathematics.

Halmos’ quote above is the title of his paper on the subject of
the relation of pure and applied mathematics, one of the few pa-
pers devoted exclusively to that topic. He writes, that the concept
of motion “plays the central role in the classical conception of what
applied mathematics is all about.” And in a passage comparing
pure and applied mathematics, he states:

The motivation of the applied mathematician is to
understand the world and perhaps to change it; the
requisite attitude (or, in any event, a customary one) is
sharp focus (keep your eye on the problem); the tech-
niques are chosen for and judged by their effectiveness
(the end is what’s important); and the satisfaction comes
from the way the answers checks against reality and can
be used to make predictions. The motivation of the pure
mathematician is frequently just curiosity; the attitude
is more that of a wide-angle lens than a telescopic
one (is there a more interesting and perhaps deeper
question nearby?); the choice of technique is dictated at
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least in part by its harmony with the context (half the
fun is getting there); and the satisfaction comes from
the way the answer illuminates unsuspected connec-
tions between ideas that had once seemed to be far apart.

P. Halmos [2]

Halmos makes it clear that he values applied mathematics,
but as his overall title indicates, he is partial to pure mathematics
above all else.

I think that applied logic could well be considered as applied
mathematics. It is not based on the concept of motion, but as
I mentioned above regarding change, some evidently related con-
cepts are at the heart of it. Applied logic is about understanding
the world, and to a very limited extent, changing it. On the other
hand, it is more like a wide-angle lens than a telescope, so the
analogy is not perfect. But overall, based on what Halmos writes
(as quoted above and elsewhere in the article), I think it is fair
to say that applied logic is closer in spirit to applied mathematics
than pure mathematics.

I must add that usually applied mathematics is not taken to
include discrete subjects. I say “usually” here; sometimes discrete
math topics are included in applied mathematics. But one need
only look at departments of Applied Mathematics in the USA to
see my point. (Incidentally, it seems clear that theoretical com-
puter science fits Halmos’ criteria for applied mathematics rather
well.) And most applied mathematicians would be surprised, I
think, to consider any branch of logic in the same category. Con-
versely, logic is rarely seen as an applied subject. So my entire
discussion is intended to make a point that is controversial.

2.4. Applied logic is applied mathematics

Throughout the centuries the great themes of pure
mathematics, which were conceived without thought of use-
fulness, have been transformed to essential tools for scientific



326 Lawrence S. Moss

understanding. . . . this transformation is now happening
to mathematical logic, and . . . a subject of applied logic is
emerging akin in its range and power to classical applied
mathematics.

Anil Nerode

In: The Merging of Disciplines: New
Directions in Pure, Applied and

Computational Mathematics, 1986.

(cf. [3])

I believe that Nerode is right: applied topics in logic are in the
process of coalescing around a set of questions and research agen-
das that will constitute a coherent subject matter. I would like
to think of this as applied mathematics in the same kind of way
that other areas are applied mathematics: it certainly involves do-
ing new mathematics, and doing interesting mathematics at that;
but the choice of problems and viewpoints is driven primarily by
modeling phenomena which exist out in the big world.

Nerode’s article is the one of the few I can point to that makes
the case for applied logic. His paper is mostly a compendium of
examples and does not attempt to systematically present applied
logic. He is most interested in applications to computer science,
and I’ll have more to say about this in Section 4 below. But
applied logic is a very interdisciplinary study, with additional con-
tributions and applications from artificial intelligence, cognitive
science, economics, and linguistics, and with fundamental interac-
tions with computer science, mathematics and philosophy. Before
we get to that, it would be good to contrast applied logic with its
much better-known cousin, mathematical logic.

3. Applied Philosophical Logic

Traditionally, logic has been divided into “mathematical logic”
and “philosophical logic.” At most institutions in the US which
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feature significant activity in logic, this division is a useful one.
Few people bridge the gap.

I take philosophical logic to be the continuing foundational
study that I mentioned above in connection with mathematical
logic. In addition, I take it to be the home of formal, mathematical
studies of all of the important concepts which somehow did not
make it into the purview of mathematical logic. E. J. Lowe1 holds
that the subject’s main areas are

(1) theories of reference,
(2) theories of truth,
(3) problems of logical analysis (for example, the problems of an-

alyzing conditional and existential statements),
(4) problems of modality (that is, problems concerned with ne-

cessity, possibility and related notions), and
(5) problems of rational argument.

I contrast philosophical logic with philosophy of logic, and by
this I have in mind more the relation of logic to more central
branches of philosophy such as epistemology and metaphysics. All
of my remarks in this essay are about philosophical logic rather
than philosophy of logic.

My feeling is that the pure/applied continuum and the mathe-
matical/philosophical continuum are somewhat orthogonal. Specif-
ically, there are many applied subjects that are applications of top-
ics originating in philosophical logic. These are mainly in Lowe’s
areas (4) and (5) above. I’ll have more to say about one such
topic from (4), epistemic logic, in Section 5.2 below. Overall,
I think that philosophical logic is the source of many problems
and research connections with applied logic. This is mainly be-
cause whole areas of philosophical logic have been given new life
by connections to computer science. I’ll return to this point after
discussing the relation of computer science with applied logic.

1 Lowe’s survey article is available at
http://www.dur.ac.uk/∼dfl0www/modules/logic/PHILLOG.HTM.
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I also have an overall feeling about the foundational problems
that motivated logic in the last century. To be blunt, we’re were
a different world in 2000 than we were in 1900. Many of the
questions that seemed so pressing back then have lost some of
their appeal. Very few people today want to fight the old fights
about the Axiom of Choice, or about predicativity, or a host of
other is sues. Instead, we have a host of new questions, and new
areas that at this point are in need of mathematical insight: what
would models of computation look like which are appropriate to
the brain as we know it? What is information? What are the best
ways to represent the fallible, uncertain, and sometimes-incorrect
knowledge that we all have? What are the most efficient ways
for a computer to manage large amounts of changing information?
What are we to make of the failure of logic to be a “magic bullet”
in artificial intelligence?

3.1. Applied philosophical logic = theoretical AI

The slogan here is perhaps a bit of an overstatement, but the point
is that work on the theoretical questions in artificial intelligence
often looks back at earlier discussions in philosophical logic. One
area where this happens is in the study of knowledge; I’ll say more
on this below. Another is the study of context : how is it to be
represented, and what role does it play in reasoning? If one wants
to build a robot and make it rational, then the hard problem
of deciding what rationality means will lead back to the parallel
philosophical literature.

4. What Does Computer Science
Have to Do with It?

Applied logic is the most vibrant and relevant form of contempo-
rary logic. It is primarily the study of logic that is relevant to,
and in symbiosis with, computer science. So it is worthwhile at
this point to go into detail about the relation of applied logic to
computer science.
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4.1. Logic is the Calculus of computer science

Logic is a surprisingly prevalent tool in Computer Science. NSF’s
Directorate for Computer and Information Science and Engineer-
ing (CISE) had a workshop2 two years ago called “The Unrea-
sonable Effectiveness of Logic in Computer Science.” The point
is that some areas of logic get used again and again in formulat-
ing the main notions of computer science. Relational databases
are close to first-order relational structures, and model theory is
therefore an appropriate tool. Programming language “types” are
best understood with the help of much older tools from logic like
typed lambda calculi. The study of abstract data types is quite
close to universal algebra, so equational logic is prominent there.
Verifying that a computer program or a piece of hardware does
what it was designed to do requires formalization, and this for-
malization inevitably uses the tools of logic. Interestingly enough,
the tools in verification often come originally from areas of logic
where time and change are studied, so they ultimately derive from
philosophical logic. Turning to artificial intelligence (AI), there
was a time when AI was taken to be one big application of logic.
The celebrated P=NP problem, the problem which has been called
“computer science’s gift to mathematics,” is often cast as a prob-
lem in logic: is there a polynomial time algorithm to determine
whether a boolean formula is satisfiable or not? And all the other
main problems of complexity theory have logical versions.

The widespread use of logic in computer science goes back
about twenty or thirty years. Although logic is not seen as a spe-
cific area of computer science the way it is in mathematics and
philosophy, there are those who believe that logic is even more
important in computer science than it is in mathematics, that
large parts of computer science are applications of two parent dis-
ciplines: electrical engineering and logic. The slogan here is:

2 There is also a nice survey article by essentially the same people as the
presenters of the CISE workshop: Joseph Y. Halpern, Robert Harper, Neil
Immerman, Phokion G. Kolaitis, Moshe Y. Vardi, and Victor Vianu (cf., [4]).
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Logic is the Calculus of computer science

4.2. Computer science motivates logic

Just as physics was a great spur to the development of applied
mathematics, so computer science will be a motivating field for
applied logic. It is not surprising that nearly all of the applica-
tions mentioned above were not applications of existing theory.
For the most part, the applications called out new theory, new
mathematics. And this new theory is developing at a rapid pace.
Here are the examples again, with mention of the new work that
has come up: Database theory has given us finite model theory and
connections of logic and probability theory. The issue of types in
programming languages is now of keen interest in category theory,
and to follow current developments one really needs a good back-
ground in that subject. Programming language semantics has also
been a motivating force in current developments in proof theory
such as linear logic. The universal algebra/computer science bor-
der has given many new questions: for example, the classical ques-
tions of universal algebra usually are asked without reference to
complexity. Verification has given us numerous flavors of dynamic
logic, and I will return to this in Section 5.2 below. It also has
revitalized higher-order logic. AI has lead to non-monotonic logic,
to blends of logic and probability, to automated theorem proving
and knowledge-based programming. And complexity theory has
lead to descriptive complexity theory and to learning theory.

Why has computer science been so powerful of a driving motor
for logical applications and for developments inside of logic? Here
are two related reasons: First, the whole tenor of computer science
is toward applications that actually run. Traditional systems of
logic are the right place to look to find the appropriate theory,
at least at first glance. But at the same time, the main body
of technical work in logic is based on idealizations: complexity
does not matter, mistakes are unimportant, everything is relevant
to everything else, the world may be modeled as an unchanging
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totality of facts, etc. Each of these has to be abandoned or at
least seriously modified to make real progress in the fields I have
mentioned above. The closer we get to the human world, the more
we need to re-think things. And it is this reconsideration of old
idealizations which has lead to many new developments in logic.

4.3. Going beyond the traditional
boundaries of logic

As I mentioned above, there was a time when the logical paradigm
in AI was the leading one. This is no longer the case. In AI itself,
even those who do believe logic has a key role often resort to
new varieties of logic, such as default logic and non-monotonic
logic. These differ from standard logical systems because one can
“take back” parts of arguments, or jump to conclusions (in some
sense). Going further, probabilistic methods are now recognized as
critical, not only in AI but also in fields of interest for applied logic,
such as cognitive science and computational linguistics. There is
a recognition that uncertainty and randomness are not flaws; they
are design tools. So connectionist modeling is now widespread in
cognitive science. Dealing with uncertainty is a major research
area in AI. Statistical methods in natural language processing are
widely believed to outperform deterministic methods.

My point here is to suggest that a coming key area for ap-
plied logic is going to be some sort of rapprochement with all of
the mathematical areas that turn out to be important in model-
ing on the same set of phenomena. This is especially important
for cognitive science, and I am encouraged by some very recent
developments that relate connectionist models to non-monotonic
logics.

A postscript: one of the interesting developments in recent
years is the degree to which the “declarative” and “stochastic”
sides do turn out to talk to each other. Perhaps this is because
both are getting something right. In any case, I take the project for
applied logic not to be the one of defending declarative frameworks
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or making improvements on them, but rather the one of accepting
the points of the “other” side and working towards a stronger
synthesis.

5. Other Case Studies

I have mentioned that the primary application area of applied
logic is to computer science. The applications there are so well-
developed that people who work on them might not even be inter-
ested in the foundational questions that I take to be an important
part of applied logic. In this section, I present case studies and
research questions in applied logic whose main motivation is areas
outside of computer science.

5.1. Neural networks and
non-monotonic logic

People investigating learning, categorization, memory, and other
areas of cognitive science often use neural networks. There are
many different kinds of neural nets, but they share the features
of processing information numerically, and of doing so in a dis-
tributed way. This contrasts with serial, symbolic processing that
is more natural for the computational models like Turing ma-
chines. Those kinds of computational models seem better-suited to
model activities like logical reasoning. The name “neural” comes
from the view that the brain, too, is a neural network. As it hap-
pens, it is much easier to use neural network models to “learn”
than to give an account of learning in general. It is easier to use
the models than it is to understand what they are doing.

The need for some synthesis between the symbolic/serial and
numerical/parallel models has been felt by researchers for quite
a while. Two people who have done work on this include Peter
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Gärdenfors and Reinhard Blutner. Their overall idea is view sym-
bolic computation as a higher-level description of what is going
on in connectionist models. In other words, we would like to ex-
plain emergence of abstract symbols from subsymbolic data such
as weights in a trained neural network. The logical tool employed
is non-monotonic logic, the same subject I mentioned above in
connection with logic in AI.

5.2. Dynamic epistemic logic

Modal logic is the study of logical systems which involve some
qualification of the concept of truth. For examples, one studies
the differences between “true,” “possibly true,” and “necessarily
true.” Epistemic logic is a branch of modal logic that deals par-
ticularly with concepts having to do with knowledge and belief.
Other branches of modal logic study concepts like before and af-
ter (temporal logic), or obligation and permission (deontic logic).
One can sense that the all of these areas are going to be of interest
not only in philosophy but also in cognitive science and artificial
intelligence.

Incidentally, modal logic in general and epistemic logic in par-
ticular are subject conspicuously missing from mathematical logic.
I think this is all unfortunate, because modal logic is one of the
most applicable fields of logic, and also because it has connection
with many areas of mathematics. One can find to papers where
modal logic is mixed with general topology, dynamical systems,
universal algebra, and boolean algebra.

It probably would have surprised the early workers in the sub-
ject that their ideas would be useful in computer science, but this
has indeed happened. Epistemic logic overall is one of the areas of
philosophical logic that has benefited a lot from computer science,
and I will go into this below. Just the same, it might have sur-
prised the computer scientists of a few years back that economists
have become interested in the subject. Overall, it is today a richer
field than ever before.
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The dynamic turn

I mentioned in connection with applied mathematics Halmos’ point
that motion “plays the central role in the classical conception of
what applied mathematics is all about.” Interestingly enough, a
parallel to motion is playing a central role in many areas of ap-
plied logic. This parallel notion is change. Models incorporating
change are prevalent in computer science, since a computational
process is one in which values (of variables, or registers) change.
So the logics of computer science are generally logics of change.
These themselves are modal logics; temporal logics are the most
prevalent kind in applied work, but others are as well. As it hap-
pens, ideas from dynamic logic have made their way back into
epistemic logic. This happens primarily in connection with the
issue of common knowledge, a matter which I would not discuss in
detail.

Some work in natural language semantics now uses game the-
ory as an overall mathematical background. Then one constructs
models for use in pragmatics, for example, essentially following
the slogan going back to Wittgenstein that linguistic activities are
moves in a game. Tools and ideas epistemic logic might therefore
turn out to be useful in modeling and studying a wide range of
phenomena: conversations, buying and selling, and security pro-
tocols.

There are now areas of epistemic logic where one is concerned
with the modeling of epistemic actions and the change of knowl-
edge that comes from them. One proposes and studies models
for notions like public announcements, cheating in games, wire-
tapping, etc. The models use ideas from both epistemic and dy-
namic logic, and their study involves a lot of non-trivial mathe-
matics. The overall idea of dynamic epistemic logic is to get a
good mathematical treatment of all of the notions I mentioned
above. Later, one would like to see how the work plays out in ar-
eas like the modeling of conversation between people, or in models
for computer security.
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Connections with economics/game theory

Another area where logic might shed light on matters in the social
world is in economics and game theory. Here there are basic ques-
tions concerned with how agents interact, what rationality and
belief come to, and how communication and action change the
world. As it happens, the tools of modal logic that I mentioned
above play a role in this work. A further connection to computer
science comes in when one looks at auction theory or mechanism
design. One interesting source to look at “Logic for Mechanism
Design – A Manifesto” by Marc Pauly and Michael Woolridge.3

Their proposal is to use a logic called alternating-time temporal
logic as a language to formally define social procedures such as
voting systems, auctions, and algorithms for fair division. The
parallel is with the uses of logic in defining (specifying) computer
programs; there is also a definite sense in which social algorithms
are a “many-agent” version of computer programs. Perhaps the
fullest expression of work in this direction is Rohit Parikh’s pro-
gram of social software. What all of this suggests to me is that
applied logic is poised to dramatically enlarge the traditional scope
of logic, and that in some sense it is already doing just that.

5.3. Linguistics, logic, and mathematics

Precisely constructed models for linguistic structure can
play an important role, both positive and negative, in
the process of discovery itself. By pushing a precise but
inadequate formulation to an unacceptable conclusion,
we can often expose the exact source of this inadequacy
and, consequently, gain a deeper understanding of the
linguistic data. More positively, a formalized theory may
automatically provide solutions for many problems other
than those for which it was explicitly designed. I think
that some of those linguists who have questioned the value
of precise and technical development of linguistic theory have

3 Cf. www.csc.liv.ac.uk/ mjw/pubs/gtdt2003.pdf
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failed to recognize the productive potential in the method of
rigorously stating a proposed theory and applying it strictly
to linguistic material with no attempt to avoid unaccept-
able conclusions by ad hoc adjustments or loose formulation.

Noam Chomsky

Syntactic Structures, 1957 (cf. [5, p. 5])

For some, mathematics is a fortress that should remain on
guard against contact with the world. For others, it is part of the
light of the mind, the light by which we understand the world. In
this section, I am concerned with the relation of linguistics and
mathematics. The fields of linguistics that I have most contact
with are syntax (the study of phrase structure and sentence struc-
ture) and semantics; these are also the branches of linguistics that
are closest to logic and theoretical computer science.

The most important linguist in modern times is Noam Chom-
sky. The quote above makes the case why mathematics has some-
thing to say to linguistics. This point is immediately appealing
to people like me who value the use of mathematics in the social
sciences, and I remember being inspired in this direction many
years ago.

Unfortunately, the story does not end here. For various rea-
sons, Chomsky in later work has reversed his position. To this
day, he is not in mathematical results concerning the grammars
he proposes; and the majority of syntacticians follow suit. The
set of people interested in the mathematical study of the syntactic
formalisms is fairly small. It almost seems like they are a small
remnant of candle-holders in a crowd that would rather walk in the
dark. However, I am optimistic about the long-term prospects of
formal work in linguistics. This is partly because I am optimistic
about the use of mathematics in all fields, and partly because I
think the results we already have are interesting enough to pursue
further. In any case, the history of the interaction of mathemat-
ics and linguistics is an interesting one, and so I will discuss a
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few aspects of it. As we will see, there are echoes of the pure
math/applied math split here, too.

Remarks on syntax and semantics
in computer science and linguistics

Overall, I think that work on syntax and semantic in linguistics
is harder than parallel work in computer science. The main rea-
son for this is that computer languages are human creations, and
so we know what they are supposed to be like and what things
are supposed to mean. Syntactic problems concerning computer
languages are mostly non-existent. (A partial exception: in typed
languages, users often make type errors that are difficult to trace.
A few people, including a recent IU Ph.D. student, have considered
the problem of getting usable systems to help with type errors, sys-
tems that are based entirely on the syntax.) Semantic problems do
exist and are highly non-trivial. But looking at natural language,
everything is harder. We have no direct evidence for the existence
of any of the traditional syntactic categories (such as noun phrase,
verb phrase, etc.) These are all theoretical constructs that differ
from framework to framework. In a sense, when we look at sen-
tences in a natural language, the structures we posit are our own;
they are not self-evident, or found in a manual, or in any way ob-
vious. With semantics, things are even harder. Psycholinguistic
evidence is hard to come by, and even if we had more of it I am
not sure it would always be useful in semantic theory.

One sees many instances of concepts from theoretical com-
puter science filtering back to linguistics. The main reason for this
is that there is so much more activity in computer science than
linguistics, and so much more sophisticated mathematics. I think
it is fair to say that nearly many of the technical innovations in
linguistics (especially syntax) in the past 25 years are borrowings
from theoretical computer science. (The main exception here is
that the main concepts of formal language theory were formulated
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first by Chomsky for linguistics (where they are today largely for-
gotten), and these quickly became a “classical” area of theoretical
computer science.) This includes all of the interaction of applied
logic and linguistics.

Logic in computational linguistics

Computational linguistics is concerned with all matters related
to the project of getting a computer to process language. This
includes speech recognition, parsing, syntax, semantics, pragmat-
ics. I think computational linguistics bears the same relation to
mainstream linguistics that applied math bears to pure math. In
fact, going back to the quote from Halmos on page 324, it seems
that the description of applied math fits computational linguistics
even better theoretical computer science, and for that matter even
better than applied math itself!

It is no surprise to find logical aspects of computational lin-
guistics: as we have seen, this is bound to happen with all serious
work with computers that requires a theoretical approach. Here
are some of the many ways logic enters in: various proposals for
syntax use systems like linear logic (an outgrowth of proof theory)
or logic programming (coming from Horn clause logic, and now the
basis of the language Prolog). An area common to logic and lin-
guistics is categorial grammar, based on work by Joachim Lambek
from the 1950’s and 60’s. Yet another concerns precisely the latest
work in the Chomskyan tradition, the minimalist program. Here,
despite the fact that Chomsky did not want to consider formal-
ization, people have done exactly that. They’ve characterized the
languages which are generable by “MG grammars” in terms of
classical formal language theory. This interesting result came via
a lot of other work, some of it involved formal language theory, and
some of it involved proof-theoretic grammars related to Lambek’s
categorial grammars.

A potentially far-reaching application of logic in the study of
the syntactic formalisms is the program of model-theoretic syntax
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initiated by James Rogers in the 1980’s. Rogers applied seminal
work in decidability coming from mathematical logic to the syntac-
tic formalisms. (So we see again that applied logic builds on core
areas of mathematical logic.) In more detail, the basic idea here
is to translate syntactic formalisms which are used by linguists
into a single language. That language happens to be a version
of monadic second-order logic. It so happens that Michael Rabin
had shown the decidability of the monadic second order logic on
trees, and others had made the connection between definability
in that logical language and notions coming from formal language
theory. So Rogers’ proposal applies one of the most traditional
measures of complexity coming from logic, that of asking for a
given notion and a given language whether the notion is definable
in the language.

Semantics

Semantics as a formal discipline owes a tremendous amount to
logic. Richard Montague in the 1960’s and 70’s pioneered the
adaptation of semantical methods from logic to fragments of nat-
ural language. This was the first, and therefore the most decisive
development, in the field. Logic is at the heart of the fairly new
discipline of computational semantics, too.

Beyond logic

As it happens, even the best ideas from logic and classical linguis-
tics are not in practice as accurate or as fast for natural language
processing as some very simple heuristics coming from statistics.
One gets even better results with more sophisticated models, and
perhaps the best models to date come from Markov branching
processes and random fields. These models work in the sense of
being, say, 94.54% correct for their tasks. But they work on the
basis of correlations rather than principled explanations. (So again
we have Halmos’ wide-angle and telescopic lenses.) Going further,
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it is quite an interesting matter to mix declarative (logical) and
statistical methods in linguistics (and in vision and planning as
well). This relates to my point earlier that applied logic will need
to go beyond the traditional borders of logic. In this case, what is
needed is a principled blend of logic and statistics.

5.4. But is it dead?

My proposal calls for the extension of logic to incorporate a num-
ber of aspects that traditionally are missing: uncertainty, social
aspects, context, and so on. One reaction to this is that doing
so would lead to the end of logic. I am reminded of Keith De-
vlin’s book Goodbye, Descartes: The End of Logic and the
Search for a New Cosmology of Mind, 1997 (cf. [6]).

Devlin’s book is a popular account of the history of logic and
the related areas that I am dealing with in this essay. His book
closes with the discussion pertinent to the subtitle, that what we
are seeing is an end of logic – especially logic conceived of as
requiring the duality, the divorce of mind and body. It also makes
the case for “soft mathematics” and has proposals on what this
means. Much of the points in the book are consonant with my
message here.

But my feeling is that everything that would lead one to de-
clare a death of logic could just as easily be seen the opposite way:
rather than dead, the subject is rather only in its infancy (strange
as that sounds for one of the most classical subjects). One would
like to think that in a hundred years, or a thousand, that trends
in applied logic will give rise to a subject of permanent human
importance, a revitalization of the classical subject of logic that
takes into account the many things missing from the subject as
we now know it.
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6. Being as catholic as Possible

Main Entry: catholic
Etymology: . . . from Greek katholikos univer-
sal, general, from katholou in general,
. . . 2 : comprehensive, universal; espe-
cially: broad in sympathies, tastes, or interests

Webster’s Collegiate Dictionary

It should be clear that applied logic is multidisciplinary: since
it is outward looking, it thrives on interactions with many other
fields. There are institutional challenges for applied logic, as there
are with any interdisciplinary endeavor. What I want to do here
is to make a few comments on those challenges, and what can be
done to help.

The Pigeonhole principle is for the birds

When mathematicians speak of the Pigeonhole Principle, they
have in mind a fundamental fact: if you have more pigeons than
pigeonholes, then when you put the birds in the holes, at least two
are going to end up in the same place. This is not the principle
that I object to. Instead, I feel hampered by the principle that
people should be pigeonholed according to what they study, or by
their academic departments. For applied logic as I am thinking of
it, departments are really not of great value. We should try to see
beyond the boundaries of disciplines.

One of the success stories in the field has been the European
Summer School in Logic, Language, and Information. This annual
school is the showcase for many areas of work, including those that
I am calling applied logic. Its interdisciplinary spirit is inspiring,
and it would seem to be important to emulate and strengthen it.
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But even with modest successes, we have problematic points.
The biggest paradox with an interdisciplinary field concerns ex-
actly the phrase inter disciplinary field. One must value, on the
one hand, contributions to outside areas, and on the other hand,
solutions to problems that come internally. And the other chal-
lenge with interdisciplinary work concerns the matter of making
connections between fields. In many cases, doing this is not ap-
preciated, and at other times it even feels like a poor use of time
and effort. My feeling here is that these hard “political” problems
will be with us for some time.

Towards a new logic curriculum

Another challenge comes in the matter of training people to do
applied logic. Here I am more conservative than in other sections
of this essay. I do not think there is any substitute for thorough
grounding in more established fields. In fact, to be able to do seri-
ous work in applied logic one would probably have to have a good
grounding in at least two fields. Where I think it makes sense to
think about change is in the logic curriculum itself, specifically in
the second (and further) courses in the subject. In the undergrad-
uate curriculum, these second courses are frequently ones aimed
at set theory or recursion theory. I see no reason why this has
to be the case: after all, subjects can be presented with different
emphases, and so why should we not present a serious, mathemat-
ically engaging treatment of logic that goes in the direction of ap-
plied logic? There are already texts on logic for computer science
that do this. In other directions, one could easily imagine a second
course in logic that emphasized both the challenging mathematics
and the stimulating interest coming from modal logic. Another
alternative would be to teach some of the areas of interaction of
logic and linguistics, and in this way introduce model theory and
proof theory. Surely doing this is not only The graduate logic
curriculum, too, can be reworked. Here I think that all of the
traditional areas of mathematical logic can be presented in ways
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that emphasize the applied side. A course in model theory, for
example, could turn into the study of logical systems: students
would then learn quite a bit more about completeness theorems
for many logical systems (maybe even non-standard ones) than in
the traditional classes. One can imagine other applied logic grad-
uate classes, and surely those of us who are doing this should be
talking to each other.

The price one would pay for a non-traditional curriculum is
that students trained like this would not be trained to do research
in traditional areas. But given that applied logic is likely to be
interesting to a wide range of students, and given that applied
logic stands ready to blossom into an important field, this price is
not too steep.
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