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Implementation of any picture archiving and communication system (PACS)
requires a discussion of how to deal with the large quantities of data that

must be transmitted and stored. Even before PACS, clever engineers devised
encoding schemes that reduced the apparent size of images to reduce the
demands placed on transmission and storage devices. Encoding images in
order to reduce storage and transmission demands is called “image com-
pression.” Compression of medical images is controversial—some argue that
it should not be used, because soon storage and networks will be cheap
enough that compression is not necessary. This argument has been made
from the early days of PACS and continues to be made. I suspect this issue
will continue to be controversial until humans no longer view images.

Those faced with the need to implement systems in the present point
to the benefits that can be achieved. Sometimes the argument for using 
compression is purely financial: using compression tips the scale from a
losing proposition to a winning one. It can allow one to use less expensive
networking technologies and requires less (potentially much less) storage.
These can be major components of the capital acquisition as well as operat-
ing costs.
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In other cases, compression can make the difference between a project
that is feasible and one that cannot work. When a specific turnaround time
is required to achieve satisfactory service and the network capacity is limited,
compression can be the only solution. This is most often the case when
remote facilities are an integral part of the PACS equation.

Whether cost savings or turnaround time is the issue, the counter-
argument is frequently made that if one delays the project, the advance of
technology can obviate the need for compression. This is an appealing argu-
ment, for Moore’s law seems to apply not only to processor speed but also
to network and storage devices. Unfortunately, this oversimplifies the situa-
tion. The primary reason this argument fails is that the demands on the
imaging system are not static. The standards for PACS performance con-
tinue to rise in step with Moore’s law. That is because the same advances in
processing power that make a PACS cheaper are also making imaging devices
that produce higher image data volumes. A few years back, we reported that
over a long period of time, the daily image data volume for computed tomog-
raphy (CT) and magnetic resonance (MR) scanners was paralleling the in-
creases in network speed and storage density. Figure 12.1 shows that the
relationship has held true for 30 years. The conclusion is that one should
not delay a project in expectation that technology advances will eliminate
the need for compression. If a PACS implementation is not viable without com-
pression today, it likely will not be viable in the future. Similarly, if compression is
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Graph of network speed, storage density, and daily CT and MR data
volumes from 1974 to 2004. * = projected.
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necessary at the start of a project, one should plan that it will continue to be neces-
sary for its lifetime.

IMAGE COMPRESSION TECHNOLOGIES

There are two main categories of image compression: reversible, or lossless,
and irreversible, or lossy. Reversible compression will exactly reproduce the
original image after compression and decompression. There is little contro-
versy surrounding the use of lossless compression—the major question is
whether the computational effort is worth the modest gain. For most medical
images, the gain is on the order of 2 :1 to 3 :1. A 2 :1 ratio means that the
storage or network demands are 50% of what the original image would
require; 3 :1 would require just 33%. Many systems implement this type of
image compression because the computation cost is small compared to the
cost savings in storage and networking. In some cases, this compression
occurs only when the image is saved to the long-term archive, saving only
storage costs. Some storage devices actually have hardware that performs this
type of compression.

There are 2 main ways that lossless compression algorithms work. The
first type is the group that utilizes repetition within an image to compress
the image. For instance, if there were several consecutive pixels with the
same value, it is faster to say “5 pixels of value 312” than to say “312 312
312 312 312.” Other than some outer regions of images (e.g., the pixels that
fill the circle of a CT to make a square) or three-dimensional (3-D) render-
ings, exact repetition of pixel values is rather rare for medical images.
However, an adaptation is to use the prior value as a starting point and just
send the difference. Other than where there are strong edges, small numbers
(which take less space) added to the prior value will correctly represent the
pixel value.

An alternative to this strategy is to look for patterns within the image.
If one were to look through this text, there would be a fairly high frequency
of “the” and “to,” and one would find that “q” was always followed by “u.”
If a single-letter code were substituted for these patterns, the storage space
required for the text could be significantly reduced. This is a dictionary-style
compression method and is commonly used for highly structured informa-
tion, such as text. It is used in most of the “zip” programs that are available
to compress files.

The lines that follow this paragraph show examples of lossless com-
pression methods. The original pixel values are shown in [a]. A run-length
encoding of the pixels could be that shown in [b]. Note that there are more
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values sent in line [b] than line [a], though the value encoding how many of
a kind may not take as much space as the value. Line [c] shows a differen-
tial encoding of the pixels. The number of values is the same, but if the
change values are small, they will take less space to transmit. The next line,
[d], has two parts: a dictionary and the data. The data values are used to look
up the actual pixel values for the output. The first entry in the dictionary is
the most common pattern and uses the fewest bits possible, with less fre-
quently used patterns consuming more bits. Note that in all of these exam-
ples, the compressed data is larger than the original. This is because in such
a small dataset there is little redundancy to take advantage of and because
different data sizes (bits) are not represented.

[a] 1  4  4  4  5  6  7  8  8  4  5  4  5  1  4

[b] 1  1)(3  4)(1  5)(1  6)(1  7)(2  8)(1  4)
(1  5) (1  4)(1  5)(1  1) (1  4)

[c] 1  3  0  0  1  1  1  1  0 -4  1 -1  1 -4  3

[d] dictionary:  
(4  5) (4  4) (1) (6) (7) (8  8) (4)
data:    
3  2  1  4  5  6  1  1  3  7

While there is some structure to medical images, the gain achieved by
compression of images is not as great as that achieved by compression of
text. Compared with the repetition strategy described above, pattern-based
compression typically will achieve higher compression ratios but requires
more central processing unit (CPU) power and memory to compress and
decompress. However, one can devise methods in which most of the CPU
power is used for the compression task (which is done just once) and less for
decompression (which is done every time the image is viewed). Unlike loss-
less compression, where the compression ratio is the same for a given image,
the implementation of lossy compression requires decisions about how much
compression to apply. Depending on the algorithm, one may specify a
“quality factor,” which roughly correlates with perceived image quality after
compression, or the algorithm may require a specific compression ratio. It
would seem that the quality factor approach is more desirable, as each image
would then be optimally compressed. In practice, however, the correlation
with perceived image quality is variable. This will be discussed in greater
depth later in this chapter.

Lossy compression begins with a very different step from lossless com-
pression that is not very intuitive. That first step is a transformation, and the
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type of transformation is often used to characterize the type of compression.
An early popular transformation was the discrete cosine transform (DCT).
In some cases, the entire image had this transform applied. However, this is
computationally intensive, particularly for the computers of the 1980s, when
the technique gained popularity. Therefore, an industry group known as the
Joint Photographic Experts Group ( JPEG) created a processing algorithm
for images that would break the image into 8 ¥ 8 pixel blocks and apply the
DCT to each block. These smaller blocks were more amenable to computers
of the day and permitted dedicated hardware to be built for this task. In
either case, the DCT would create an image (with the same matrix size as
the original image/block) in which the low-frequency components were con-
centrated in the lower left corner, with the highest-frequency elements in
the upper right. The values in this transformed image matrix are sometimes
referred to as coefficients because they are coefficients for a mathematical
formula that can re-create the image. More recently, the various forms of
the wavelet transformation have been applied for image compression. Such
wavelet transforms produce multiple images at different scales, where the
next-higher-resolution image has the higher-frequency changes from its
lower-resolution predecessor. Figure 12.2 shows an example of a 4-level
wavelet transformed image.

After the transformation of choice has been performed, the image has
been altered, but there has been no loss of information—one could invert
the transformation and exactly reproduce the original image. The next 
step after transformation is quantization, which is the step of deciding 
which parts of the transformed image are important and which are not. One
could select a low-frequency rectangle and compute the inverse transform
of it to re-create an image that would be somewhat blurrier than the origi-
nal. How blurry the resulting image is depends on how effectively the trans-
formation concentrated information into the selected parts of the
transformed image.

There are 2 primary ways one can save storage/transmission space: by
assuming that coefficients not sent are 0 (zero-filling) or by reducing the
accuracy of the coefficients that are sent (e.g., converting from 80-bit float-
ing point values to 20-bit scaled integers). In some schemes, including JPEG,
one can also preferentially save accuracy on those coefficients that represent
frequencies that the human eye is sensitive to, while saving bits on those
components to which the eye is not sensitive. The multiresolution nature 
of wavelets also permits more sophisticated selection of parts of the image
than just a rectangle. Some algorithms, such as Set Partitioning in Hierar-
chical Trees (SPIHT), efficiently represent areas of images that have much
activity while saving bits in uninteresting areas. This is complementary to
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preferring spatial frequencies to which the eye is sensitive, as described
above.

In some cases, it is also desirable to sequence the coefficients so that
those that are most important to recreating a faithful image are first in the
stream of data, rather than ordered by an X, Y position. This can allow the
user to get a quick view while the image continues to improve as more infor-
mation is sent. This is called progressive streaming (referring to the order
of data transmission) or successive refinement (referring to the actual dis-
playing of improved images).

After the coefficients have been quantized, there is often still some
redundancy, and so the third step in lossy compression is to use one of the
lossless techniques described above (typically a dictionary-type method) to
further compress the quantized coefficients.

Unlike lossless methods, in which the compression ratio is fully deter-
mined by the algorithm selected, lossy methods allow the user to select either
the compression ratio or a quality factor. In either case, the user’s choice
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FIGURE 12.2

Example of a wavelet transformed image. The lowest-frequency
components are in the upper left corner. The original image can be
exactly reconstructed from this image.
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affects how much the coefficients are quantized, meaning that a judgment is
made about acceptable compression level. Unfortunately, in most cases it 
is not feasible for the user to interactively select the appropriate compres-
sion for each and every image, and so general rules for compression must be
used.

APPLICATION TO MEDICAL IMAGING

The description of image compression provided above is not unique to
medical images—these image compression algorithms are used for images
on the Internet or from your digital camera. However, some unique aspects
of medical images deserve comment. The first is that most medical images
are grayscale, with more gray levels than most commercial/consumer images.
Radiographic images are 10 to 12 bits, while CT and MR images are 12 to
16 bits. Since computers prefer to deal with pixels that are multiples of 8
bits, most medical images are stored using 16 bits per pixel. One exception
is ultrasound. In some cases (particularly Doppler), ultrasound images use
24-bit color, which is like that used in commercial/consumer imaging.
Grayscale ultrasound images are variable and may be either 8-bit or 16-bit.
The significance is that JPEG was created without attention to medical
imaging, and the extensions to JPEG to allow it to support 12 or 16 bits are
not always compatible.

Another difference is that CT and MR images are often from spatially
adjacent locations, meaning there is significant redundancy between 2 or
more images. This is not considered in any of the (two-dimensional [2-D])
algorithms described above. However, an update of the JPEG standard
(referred to as JPEG2000) does have components that support the notion of
a 3-D stack of slices. While the JPEG2000 standard is still advancing, the
basic 2-D methods have been ratified, and there are implementations that
have been tested on medical images. Some of those results will be discussed
later in this chapter. Because compression has been considered important to
the success of PACS by many of its leaders, there was a concerted effort to
participate in the JPEG2000 standard in order to make it better support
medical images—in particular, by addressing the 16-bit issue. The Digital
Imaging and Communications in Medicine (DICOM) standard has included
JPEG-based compression in its transfer syntaxes for some time. The ap-
proved part of JPEG2000, which focuses on 2-D image compression using
a wavelet transformation, has already been adopted as a DICOM standard
(Supplement 61, November 2001). It includes support for 16-bit images,
progressive encoding, and region-of-interest functions (improved quality 
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in specific regions of the image). It is expected that as other parts of
JPEG2000 are ratified, such as the volumetric image functions ( JP3D or
JPEG2000 Part 10) and Motion JPEG for endoscopy, DICOM will add
them to its standard.

EVALUATION IN MEDICAL IMAGING

IS IT  WORTH IT?

There is controversy over whether there is any acceptable level of lossy com-
pression for medical images or if there should be no allowance for alteration
of pixel data. I believe that lossy compression can be acceptable and justi-
fied. Many major medical centers have come to the same conclusion. There
are several bases for this conclusion.

First, as with nearly all parts of medical practice, one must exercise
judgment about the trade-off of benefits and risks. Higher-quality radi-
ographs can be obtained if higher-exposure images are obtained. Whether
this would improve diagnosis or simply reduce quantum noise is the judg-
ment we make when an exposure/dosage decision is made. In the case of 
MR and CT, one could reconstruct many more images than is typically
required using interpolation. In the case of MR, one could use many more
signal averages to reduce noise. But in order to conserve resources (reduce
MR examination time or reduce total images per examination) we make judg-
ments about how much is enough to be diagnostic. The same is true with
image compression. As long as there is a thorough understanding of the
trade-offs, and confidence that diagnostic accuracy is not significantly
impacted, compression is no more “dangerous” than other decisions in
medical imaging.

Second, the pixel data altered by compression has nearly always been
altered even before it is compressed. CT uses reconstruction filters that may
blur to reduce noise. Computed radiographs have lookup tables applied to
emphasize certain regions of the histogram, while suppressing others, and
may also have spatial filtering. These are also carefully considered alterations
of pixel data in order to improve radiologist efficiency. Perhaps the greatest
loss of data occurs in fluoroscopy, in which only a few spot images are taken
from several minutes of an examination.

Third, it has been shown that at modest levels, lossy compression actu-
ally improves diagnostic performance because it preferentially loses the
noise. This has been shown to improve detection of breast cancers as well
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as lung pathologies. From this perspective, compression could be viewed as
a valuable processing step. This also raises issues about implementation. If
lossy compression makes a lesion more conspicuous, compressing an image
only after interpretation could cause one to miss a lesion that is more appar-
ent with compression. If the lossy compressed version is the only version
archived, it also could lead to greater difficulties if there should be any
medico-legal issues about lesion perception/diagnosis. For this reason, when
our department had the opportunity to implement lossy compression prior
to diagnostic review, we did so. In that case, no one ever saw the original
images—the same lossy compressed image is interpreted by the radiologist,
distributed to the referring physician, and archived for any later review. Of
course, this was done only after a large-scale review of the compression algo-
rithm that was implemented.

In these days when containment of medical costs is receiving much
attention, we should not be reluctant to make a carefully considered, thor-
oughly studied decision to reduce costs by implementing lossy compression.

SETTING THE STANDARD

If one agrees that using lossy compression can be an acceptable decision, the
next question is how to determine what is good enough. As noted in the
technical description of lossy algorithms, nearly all allow the user to select
at least the range of compression that is achieved. That is really the chal-
lenge of compression: how to maximize the compression ratio without
degrading the image. At least 4 methodologies have been used to answer this
question.

The first method is to use human visual ratings. In this case, one simply
asks radiologists either: (1) Are the compressed images good enough? or (2)
Is there any difference between compressed and uncompressed images? The
first question is a bit more difficult to justify, as it involves a judgment about
what is required for diagnosis. In many cases, the abnormalities are so
obvious that even marked image degradation could still permit a diagnosis.
This is usually how x-ray exposure is selected. An alternative that seems more
acceptable is to see whether there is any perceptible difference between com-
pressed and uncompressed images. If one cannot tell the difference, it is
unlikely to make a diagnostic difference. This type of study is easy to execute,
since one can select randomly from all images and then present pairs of
images (the original and the compressed/decompressed) to a blinded rater.
If the rater prefers the compressed images at the same rate (or higher rate
due to de-noising effect), then the compression ratio is acceptable.

IMAGE COMPRESSION 237

DRE12  11/16/2005  9:44 AM  Page 237



The second method seeks to prove that compressed images are diag-
nostically equivalent to uncompressed. To do this, one must have proof of
what the diagnosis is for each case. Furthermore, one should really have a
range of diseases that would be expected to be diagnosed with that type of
image. Ideally, the gold standard for knowing that disease is present should
be established by an independent method, since we know that compression
can improve performance. If an independent standard were not used, all 
the correct diagnoses made possible by improved signal-to-noise ratio would
be counted as misses. And finally, you must have enough of each type of
disease to prove a difference. Note that failing to find a difference is not the
same as proving equivalence. The latter is much more demanding statisti-
cally, while failing to find a difference is a certainty if you have only a few
cases.

One example of this methodology is a study we did with chest radi-
ographs, in which we selected 2 common pathologies: nodules and fibrosis.
We selected only 2 diseases to keep the receiver operating characteristic
(ROC) design simple. We also selected them because they had very differ-
ent properties—uncalcified nodules are low-frequency findings, while fibro-
sis is a high-frequency finding. Chest CT was used as the gold standard.
Mammography can employ the same technique—masses versus microcalci-
fications, with biopsy or clinical follow-up being the gold standard.

The third method is to use computer-aided diagnosis (CAD) output as
a detector for diagnostic degradation. This has the advantage of allowing
many cases to be assessed with less effort. In addition, the variability of a
human observer is removed. The major concern is that the features impor-
tant to a CAD algorithm may not be the same for a human. Furthermore,
CAD algorithms are generally focused on detecting a single disease (e.g.,
cancer). In cases like mammography, where cancer is nearly the entire disease
range, this is not a problem, but for nearly all other modalities, preservation
of CAD performance ensures only that features important to that CAD algo-
rithm are preserved, not necessarily all the features necessary for a radiologic
interpretation.

The fourth evaluation method is also computer-based but uses a model
of the human visual system to predict when lossy compression has produced
alterations that would be visible to a human. Like method 3, this method
has the advantage of allowing many cases to be evaluated with little human
effort. It has the additional advantage over the CAD method in that it should
be valid for any type of image or disease. However, this method is complex
to implement—one must have a valid model of the human visual system,
which, in turn, requires knowledge of the output device. The computations
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for this are also nontrivial. Nevertheless, there are now some reports that
are using this method.

COMPRESSION APPLICATIONS IN 
MEDICAL IMAGING

Clearly, the goal of medical image compression is to reduce the amount of
data that must be stored or transmitted. Depending on the application, either
lossy or lossless compression may be the best choice. Rather than review
applications using this division, it is probably more appropriate to evaluate
compression for each modality. This is because the compressibility of images
is best correlated with modality.

MAMMOGRAPHY

Mammography is an area that has received much attention from the com-
pression industry. That is because the data sets are large (40 megabytes [MB]
per image ¥ 4 images per screening exam), there is a large exam volume
because mammography is used for screening a large at-risk population, and
expertise is often not distributed to areas that acquire the images. This com-
bination of factors means that moving the images from the acquisition 
location to a distant location where there is expertise in interpreting mam-
mograms is often necessary.

One factor that has made analysis of mammogram compression easier
is that there is really only one disease process of interest: breast cancer.
However, breast cancer can have any of 3 types of appearance. The first is
that of a small area of tiny calcifications, also known as microcalcifications.
The second appearance is of a mass, which will often have irregular borders.
The third is distortion of the architecture of the tissue within the breast.
Because these 3 appearances can be fairly easily characterized, the analysis
of compression effects is simpler than for other image types.

Early mammography compression studies used digitized films and
either JPEG or a wavelet variant. Because early algorithms tended to lose
high-frequency information first, most attention was paid to the effect on
microcalcifications. Studies from the 1990s showed that JPEG compression
could be applied at levels up to 15 :1 without producing perceptible changes
in the images, as assessed by image-processing experts. One should note that
this study did not use radiologists to evaluate the images. This is often a
problem—to do a good study, one must have many cases with subtle disease
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with an independent gold standard, and these many cases should be evalu-
ated by radiologists. Just compiling a large set of subtle cases with proof of
diagnosis is difficult. Getting several experts to review these cases is more
difficult. And since the cases selected are subtle, there will be significant vari-
ability in the ratings—variability that will obscure any subtle difference
caused by compression.

For these reasons, some have begun using computer-aided diagnosis
(CAD) as a measure of acceptable compression. This is an elegant way to
avoid the variability inherent in human observers, and to evaluate the large
number of cases required to detect small differences.

Early studies, of necessity, used digitized film mammograms. Digital
detectors are beginning to appear on the market. It is possible that the image
properties are different, and so it is necessary to perform separate studies on
these images to determine the correct compression ratio. But at the same
time, compression algorithms, such as JPEG2000, are advancing. JPEG2000
is receiving much attention because it has been adopted into the DICOM
standard and because it holds promise for better compression performance
than standard JPEG. One recent study using an alternative forced-choice
method found that digital mammograms compressed with JPEG2000 at
ratios up to 20 :1 were indistinguishable from the originals, which is similar
to results for digitized films.

COMPUTED RADIOGRAPHY/DIGITAL RADIOGRAPHY

Compression of radiographic images also has a long history, beginning with
study of digitized radiographs but now focusing on computed radiography
(CR) and digital radiography (DR) images. It is encouraging that the results
seem similar: digitized radiographs seem to be about as compressible as CR
and DR. For chest radiographs, ratios in the range of 20 :1 seem to produce
no visible or diagnostic degradation. Slone found that with very close inspec-
tion/magnification, images compressed at 10 :1 using JPEG are still indis-
tinguishable from originals, and at normal viewing conditions, 20 :1 is
equivalent. Compression at ratios of up to 32 :1 (either JPEG or wavelet) did
not degrade detection of simulated nodules on chest phantom images. We
found that for either nodule diagnosis or interstitial disease detection,
wavelet compression of digitized chest X-rays (CXRs) at up to 40 :1 was not
significantly different for nodules and for interstitial disease, and perform-
ance at 10 :1 showed a trend to be superior to original images. There are
fewer studies of musculoskeletal radiographs, but those that exist also show
that compression in the range of 20 :1 does not alter visual appearance.
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COMPUTED TOMOGRAPHY AND MAGNETIC 
RESONANCE IMAGES

Images with a smaller matrix, such as CT and MRI, might be expected to
be less compressible because there is less potential for redundancy; this seems
to be the case. Whereas radiography seems to tolerate ratios in the 20 :1
range, acceptable compression ratios for CT and MR seem to be closer to
10 :1. There is also very little difference between compression methods,
likely because there is less redundancy for full-frame methods such as
JPEG2000 and wavelet to leverage. In a study of wavelet compression, ratios
of 8 :1 did not affect accuracy of diagnosis of acute appendicitis, but 16 :1
and 24 :1 did show decreased sensitivity. Another study showed no change
in nodule detection on low-dose chest CT at 10 :1 utilizing wavelet com-
pression; 10 :1 was also found equivalent for both JPEG and wavelet for
detection rate for lung cancers on low-dose chest CT. Brain MRIs com-
pressed using a wavelet algorithm at up to 20 :1 showed no difference 
in ROC value for variety of lesions for a 512 ¥ 256 matrix and 10 :1 for a
256 ¥ 256 matrix. This reflects rather nicely that the higher matrix had little
additional information. JPEG compression of head CTs at up to 20 :1 did
not degrade ROC performance for detecting infarction, though infarction is
a low-frequency finding that may be more compression tolerant.

While it would be nice to have a single ratio for a modality, this is not
the case. Conventional chest CTs compressed at 6 :1 ( JPEG) were consid-
ered acceptable, but only 4 :1 was acceptable for thin section (2mm) CT.
This is an interesting finding that despite the fact that compression seems
to discard noise preferentially, noisy images are less compressible. It demon-
strates the importance of redundancy and texture versus information in visual
appearance. This is an important problem because of the rapid expansion of
multidetector CT. It is fairly simple to create very thin images as well as
thicker images for a given body part. Studies comprising thousands of images
could become routine. The fact that the greater noise in these thin sections
dominates the redundancy is significant—not only are there more slices to
store and transmit, but they are also less compressible. Since potentially mul-
tiple datasets are derived from the same projection data, some have proposed
that it may be more efficient to compress the projection images than to com-
press the reconstructed sections.

FLUOROSCOPY

The largest systematic study of fluoroscopic compression, and probably of
any medical imaging modality, is for cardiac angiograms. This large, multi-
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site trial, which focused on the visibility and appearance of coronary artery
stenosis, showed that JPEG compression at 6 :1 was equivalent to the orig-
inal images, with some degradation of quality and performance at 10 :1. It
is reasonable to expect that other fluoroscopic images will exhibit similar
compressibility.

NUCLEAR MEDICINE

Nuclear medicine images also comprise a wide range of image types. Some
are very low resolution (64 ¥ 64), while others are similar to CT. We have
found the small matrix images to be rather incompressible, and in those
cases, we simply use lossless compression. It is similar to the text example
above—there are so few samples to work with that finding redundancy is dif-
ficult. For 256 and up matrix images, we have found compression ratios
similar to CT and MRI (10 :1) to be acceptable.

ULTRASOUND (STATIC AND VIDEO)

Diagnostic ultrasound actually produces images of several types: static
grayscale images that may be captured video with 256 gray levels, static
grayscale images with 1000 to 4000 gray levels, static color images with 24
bits of color, and real-time or video signals. Despite this wide variety of
image types, all seem to allow compression on the order of 10 :1, and this
also seems to transcend compression algorithm. Some have also demon-
strated no alteration in automated intimal wall thickness from ultrasound
images after compression.

THE FUTURE

Information theory can measure how much unique information is present in
an image. That should be the upper limit on lossless image compression
ratios. However, there are (fortunately) many clever people who find that
those limits can be broken by using additional information about the images
to cheat the limits. One familiar example from CT is that the reconstruc-
tion typically is circular, while the image is square. Rather than encoding the
information outside the circle, one could (and some scanner manufacturers
did) never send any information for pixels outside the circle, thus improv-
ing the compression ratio. This is obviously an extreme case, but other infor-
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mation can be used to effectively reduce the data size without altering pixels
of interest. For instance, CT data is viewed at narrow window widths over
only a limited range of window levels. By altering the histogram, one can
improve compression ratios without producing any perceptible image degra-
dation as normally viewed.

THREE-DIMENSIONAL (3-D)  IMAGING

Three-dimensional imaging modalities, such as helical CT, MR, and ultra-
sound (US), are those that are experiencing the greatest growth in data
volumes. Since they can also produce 3-D data, improved compression rates
may be achievable by utilizing methods that take advantage of the coherence
that is through-plane, as well as in-plane. While early results with 3-D com-
pression were disappointing, more recent attempts with thinner section data
show more promise. Figure 12.3 shows a comparison of 2-D versus a 
videolike 3-D compressor versus a true 3-D spatial compressor. It is likely
that this improved performance for 3-D in the later study is because the
thinner sections possible with multidetector computed tomography
(MDCT) allow more coherence of data between slices. However, the results
continue to fall below expectations, likely because these thinner slices also
have more noise, which decreases compressibility.
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FIGURE 12.3

Comparison of JPEG2000 compression methods. The original image
is the left-most panel. The next image is after 2-D JPEG2000 com-
pression has been applied. The third uses a videolike compressor,
and the fourth is 3-D JPEG2000 compression. All compressed
images have a final compression ratio of 100 :1. Note the marked
degradation of the 2-D compressed image and the near-perfect 
3-D compressed image. (Images courtesy of Michael Marcellin, 
University of Arizona.)
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RAW DATA COMPRESSION

For modalities like CT and MR, the images that are reconstructed are only
a small subset of the possible images that could be produced. Given this flex-
ibility and the different personal preferences in how to view these increas-
ingly complex image sets, it may be most effective simply to compress and
store the raw data and the reconstruction parameters than to compress and
store all the image products derived from the raw data. In the case of CT,
this would mean compressing the projection data, while in MRI, it would
mean compressing the k-space data. While there was some early investiga-
tion of these methods, recent trends may revive these techniques. While
these examples are for CT and MRI, it is possible and even likely that 
multiple-image products will be created from a single source/raw dataset.
For that reason, being able to compress the raw data, and describe (com-
pactly) how the derivatives were made, will likely be more effective than
storing all the derivatives.

HUMAN VISUAL SYSTEM–BASED COMPRESSION

A crucial element in the decision to use lossy compression is that there are
no perceptible changes in the image, or that the changes are so small that
they are of no diagnostic significance. Several studies have been done using
the latter criteria, but they are somewhat less satisfying because there is
always the nagging doubt of whether a particularly challenging case just
might be compromised by compression. So-called visually lossless compres-
sion is more appealing—if the radiologist cannot see the difference, it is hard
to imagine that a difference in diagnostic performance could exist. Operat-
ing on that assumption, there are some efforts under way to use models of
the human visual system (HVS) to determine the threshold at which com-
pression-related image alterations become perceptible. This means that each
image is examined and its optimal compression ratio is computed and
applied. This is probably more valid than general modality rules for accept-
able compression ratios. Anyone who has applied lossy compression knows
that there are always exceptional images that are very incompressible, for
which general rules do not apply. These exceptional images would not be
overcompressed with an HVS-based compression system. While an HVS
system would be more expensive because of the need to compute the optimal
ratio for each image, it might also save money by allowing a higher average
compression ratio. Today, conservative ratios are applied to make sure most
images are good enough. With HVS, every image would be good enough,
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and those that are very compressible would not be undercompressed. Work
on HVS-based compression is still preliminary, but such a system is a rea-
sonable possibility and might address concerns that exist within the imaging
community.

This chapter introduced compression by pointing out that it was con-
troversial. But once computer algorithms are used to interpret images, there
will be a quantitative measure of required image characteristics that will
permit precise optimization of compression. This is directly analogous to
modeling the HVS to determine acceptable compression. The difference is
that HVS models are based on estimates of humans and specific viewing con-
ditions—these may not match actual viewers and viewing conditions. With
CAD, such variability is not present, enabling more confident statements
that compression is not affecting image interpretation. Some may still argue
that at some point, computers and networks will be inexpensive enough to
render compression needless. The fact that this argument has been made for
decades, and since Moore’s law specifies an 18-month doubling time, I doubt
this will be true in the foreseeable future. Indeed, the forces driving com-
puter technology also drive medical imaging devices. Compression is a tech-
nology that we will have to grapple with for the foreseeable future. Much
like x-rays themselves, compression can be applied to advantage as long as
those employing it understand its strengths and weaknesses.
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