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Abstract In this work we consider the molecular distance geometry problem, which can 
be defined as the determination of the three-dimensional structure of a molecule 
based on distances between some pairs of atoms. We address the problem as a 
nonconvex least-squares problem. We apply three global optimization algorithms 
(spatial Branch-and-Bound, Variable Neighbourhood Search, Multi Level Single 
Linkage) to two sets of instances, one taken from the literature and the other new. 
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1. Introduction 

The Molecular Distance Geometry Problem (MDGP) is the problem of de­
termining the three-dimensional structure of a molecule where a subset of the 
atomic distances is known. Formally, we need to find vectors xi, ...,Xn € M ,̂ 
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which describe the three-dimensional position of each atom in the molecule, 
such that: 

y{iJ}eS {\\xi-xj\\ = dij), 

where S is the subset of pairs of atoms {i, j } whose distances dij are known. 
We address the problem in terms of finding the global minimizer of the function 

It is easy to verify that xi,... ,Xn E M̂  solve the problem if and only if 
f{xi,...,Xn) =0. 

The MDGP is an important problem in molecular biology. The objective 
is to find a molecular conformation satisfying all the constraints imposed by 
the known distances (i.e., that \\xi — Xj\\ = dij for all {i^j} G S). For some 
references, see [Crippen and Havel, 1988, Hendrickson, 1995, More and Wu, 
1997, More and Wu, 1999, An, 2003]. 

The aim of this work is twofold. On the one hand, we present two differ­
ent methods of generating MDGP instances, and we wish to test which of the 
methods generates the hardest instances. On the other hand, we want to assess 
the solution quality and efficiency of three well-known global optimization al­
gorithms applied to the MDGP. The algorithms are: spatial Branch-and-Bound 
(sBB) [Ryoo and Sahinidis, 1995, Tawarmalani and Sahinidis, 2002, Adji-
man et al., 1998, Smith and Pantelides, 1999, Hansen, 1992], Variable Neigh­
bourhood Search (VNS) [Hansen and Mladenovic, 2001, Mladenovic et al., 
2003], and Multi Level Single Linkage (MLSL) [Rinnooy-Kan and Timmer, 
1987a, Rinnooy-Kan and Timmer, 1987b, Locatelli and Schoen, 1996, Schoen, 
1998, Schoen, 1999, Locatelli and Schoen, 1999, Schoen, 2002, Kucherenko 
and Sytsko, 2005]. We test each of these algorithms on instances of varying 
sizes generated with the two generating methods, one taken from the literature 
[More and Wu, 1997] and the other new [Lavor]. 

Our computational results show that, in terms of user CPU time, VNS is the 
most efficient of the methods we tested. As the size of the instance grows, how­
ever, the performance difference between VNS and MLSL decreases. Whilst 
VNS and MLSL are stochastic algorithms, sBB is a deterministic algorithm. 
As such, it provides a guarantee of e-global optimality, but at a practically high 
computational cost on most global optimization problems. With MDGP in­
stances, however, sBB was found to be competitive with VNS and MLSL at 
least for small and medium-sized instances. 

It is worth mentioning explicitly that, somewhat unusually for this type of 
problems, we included no smoothing techniques in our algorithms, as the aim of 
this test was to verify the applicability of general-purpose global optimization 
algorithms to the problems in original form. Similar tests, but with smoothing 
techniques included, are currently work in progress. 
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The rest of this paper is organized as follows: Section 2 describes the global 
optimization algorithms used; Section 3 describes the two sets of instances used 
to generate the experiments and discusses the computational results. 

2. Global optimization methods 
In this section, we shall briefly describe the three algorithms we used to solve 

the MDGP. All these methods are general-purpose, in the sense that they can be 
used without modification to solve all global optimization problems. In other 
words, they do not take into account the structure of the problem. 

2.1 Spatial Branch-and-Bound 
Spatial Branch-and-Bound (sBB) algorithms locate the global optimum by 

generating converging sequences of upper and lower bounds to the objective 
function. The upper bounds are obtained by locally solving the original (non-
convex) problem. The lower bounds are obtained by locally solving a convex 
(in this case, linear) relaxation of the original problem. Since any local solution 
of a convex problem is also global, locally solving the linear relaxation yields 
a valid lower bound to the original problem. The algorithm, first proposed in 
[Smith, 1996, Smith and Pantelides, 1999], is shown in Fig. 1.1. The imple­
mentation details, as well as many refinements and improvements with respect 
to the original algorithm, are given in [Liberti, 2004]. 

The most outstanding feature of sBB algorithm described in this section is 
the automatic construction of the convex relaxation via symbolic reformulation. 
This involves identifying all the nonconvex terms in the problem and replacing 
them with the respective convex relaxations. The algorithm that carries out this 
task is symbolic in nature as it has to recognize the nonconvex operators in any 
given function. The relaxation is built in two stages: first the problem is re­
duced to a standard form where the nonlinear terms are linearized. This means 
that each nonlinear term is replaced by a linearizing variable, and a constraint 
of type "linearizing variable = nonlinear term" is added to the problem formu­
lation. Such constraints are called defining equations, or defining constraints. 
In the second stage of the linear relaxation each nonlinear term is replaced by 
the corresponding linear under- and over-estimators. Note that this process is 
wholly automatic, and part of the implementation software. 

2.2 Variable Neighbourhood Search 
Variable Neighbourhood Search (VNS) is a relatively recent metaheuristic 

which relies on iteratively exploring neighbourhoods of growing size to identify 
better local optima [Hansen and Mladenovic, 2001]. More precisely, VNS 
escapes from the current local minimum x* by initiating other local searches 
from starting points sampled from a neighbourhood of x* which increases its 
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1 (Initialization) Initialize a list of regions to a single region com­
prising the entire set of variable ranges. Set the convergence tol­
erance s > 0, the best objective function value found up to the 
current step as [/ := oo and the corresponding solution point 
as X* := (oo, . . . , cxo). Optionally, perform optimization-based 
bounds tightening. 

2 (Choice of Region) If the list of regions is empty, terminate the 
algorithm with solution x* and objective function value U. Other­
wise, choose a region R (the "current region") from the list. Delete 
R from the list. Optionally, perform feasibility-based bounds tight­
ening on R. 

3 (Lower Bound) Generate a convex relaxation of the original prob­
lem in the selected region R and solve it to obtain an underestima­
tion I of the objective function with corresponding solution x. If 
I > U ov the relaxed problem is infeasible, go back to step 2. 

4 (Upper Bound) Attempt to solve the original (generally noncon-
vex) problem in the selected region to obtain a (locally optimal) so­
lution X with objective function value u. If this fails, set u :— +oo 
and X = (oo, . . . , oo). 

5 (Pruning) If f7 > t̂ , set x* = x and U := u. Delete all regions 
in the list that have lower bounds bigger than U as they cannot 
possibly contain the global minimum. 

6 (Check Region) Ifu — l<e, accept u as the global minimum for 
this region and return to step 2. Otherwise, we may not yet have 
located the region global minimum, so we proceed to the next step. 

7 (Branching) Apply a branching rule to the current region to split 
it into sub-regions. Add these to the list of regions, assigning to 
them an (initial) lower bound of /. Go back to step 2. 

Figure 1.1. The spatial Branch-and-Bound algorithm. 

size iteratively until a local minimum better than the current one is found. These 
steps are repeated until a given termination condition is met. 

VNS has been applied to a wide variety of problems both from combina­
torial and continuous optimization. Its early applications to continuous prob-
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lems were based on a particular problem structure. In the continuous location-
allocation problem the neighbourhoods are defined according to the meaning 
of problem variables (assignments of facilities to customers, positioning of yet 
unassigned facilities and so on) [Brimberg and Mladenovic, 1996]. In the bi-
linearly constrained bilinear problem the neighbourhoods are defined in terms 
of the applicability of the successive linear programming approach, where the 
problem variables can be partitioned so that fixing the variables in either set 
yields a linear problem; more precisely, the neighbourhoods of size k are defined 
as the vertices of the LP polyhedra that are k pivots away from the current vertex 
[Hansen and Mladenovic, 2001]. In summary, none of the early applications 
of VNS to continuous problems solved problems in general form. 

The first VNS algorithm targeted at problems with fewer structural require­
ments, namely, box-constrained NLPs, was given in [Mladenovic et al, 2003] 
(the paper focuses on a particular class of box-constrained NLPs, but the pro­
posed approach is general). The very same code used in [Mladenovic et al., 
2003] (which is different from that used in this paper) has been already applied 
to another molecular conformation problem with considerable success [Drazic 
et al., 2004]. Since the problem is assumed to be box-constrained, the neigh­
bourhoods arise naturally as hyperrectangles of growing size centered at the 
current local minimum x*. In the pseudocode algorithm in Fig. 1.2, the termi-

1 Set A: ^^ 1, pick random point x, perform local descent to find a 
local minimum x*. 

2 Until k > /Cmax repeat the following steps: 

(a) define a neighbourhood A /̂c(x*); 

(b) sample a random point x from Nk{x'^)\ 

(c) perform local descent from x to find a local minimum x'; 

(d) if x' is better than x* set x* <^ x^ and /c —̂ 1; go to step 2; 

(e) SQik^ k + 1 

Figure 1.2. The VNS algorithm. 

nation condition is taken to be A; > fcmax- This is the most common behaviour, 
but not the only one (the termination condition can be based on CPU time or 
other algorithmic parameters). The definition of the neighourhoods may vary. 
If Nk{x) is taken to be a hyperrectangle Hj^{x) of "size" k centered at x, sam­
pling becomes easy; there is a danger, though, that sampled points will actually 
be inside a smaller hyperrectangular neighbourhood. A way to deal with this 
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problem is to take Nk{x) = Hk{x)\Hk-i{x), although this makes it harder to 
sample a point inside the neighbourhood. For each k < k^ax we define Hkix"") 
to be hyper-rectangles similar to x^ < x < x^, all centered at x*, whose sides 
have been scaled by TT-. More formally, let Hkix"") be the hyper-rectangle 

"'max 

y^ < X < y^ where, for all i <n: 

yY = x* + ^{xY-xt). 

This construction forms a set of hyper-rectangular "shells" centered at x*. In 
our computational experiments, we used Nk{x) = Hk{x) for simplicity. 

2.3 Multi-Level Single Linkage 

In this section we shall describe the main features of a Multi-Level Single 
Linkage (MLSL) stochastic algorithm for global optimization. The algorithm 
is called SobolOpt [Kucherenko and Sytsko, 2005]. Its main strength is that it 
employs certain Low-Discrepancy Sequences (LDSs) of sampling points called 
SoboV sequences whose distributions in Euclidean space have very desirable 
uniformity properties. Uniform random distributions where each point is gen­
erated in a time interval (as is the case in practice when generating a sampling 
on a computer) are guaranteed to "fill the space" in infinite time with probability 
1. In fact, these conditions are very far from the normal operating conditions. 
LDSs, and in particular Sobol' sequences, are guaranteed to fill the space as 
uniformly as possible even in finite time. In other words, for any integer N > 0, 
the first Â  terms of a Sobol' sequence does a very good job of filling the space 
evenly. One further very desirable property of Sobol' sequences is that any 
projection on any coordinate hyperplane of the Euclidean space R^ containing 
N n-dimensional points from a Sobol' sequence will still contain N projected 
(n — 1)-dimensional Sobol' points. This clearly does not hold with the uni­
form grid distribution where each point is located at a coordinate lattice point 
(in this case the number of projected points on any coordinate hyperplanes is 

n— 1 

0{N~^), as shown in Fig. L3). The comparison between grid and Sobol' 
points in R^ is shown in Fig. 1.4. 

The regularity and uniformity properties of Sobol' sequences are exploited 
in the following MLSL algorithm. Let Q be the set of pairs of sampled points 
q together with their evaluation f{q) (where / is the objective function). Let S 
be the list of all local minima found up to now. 

The algorithm terminates with a list S of all the local minima found. Finding 
the global minimum is then a trivial matter of identifying the minimum with 
lowest objective function value f(y). Two of the most common termination 
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Figure 1.3. Projecting a grid distribution in R^ on the coordinate axes reduces the number of 
projected points. In this picture, Â  = 12 but the projected points are just 4. 
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Figure 1.4. Comparison between projected distribution of grid points and Sobol' points in '. 

conditions are (a) maximum number of sampled points and (b) maximum time 
limit exceeded. In our tests we accepted a default termination condition based 
on the number of local searches not exceeding 320. 

Sobol' sequences are generated as follows. Let P{x) be a primitive poly­
nomial of degree q in GF{2)[x\, say P{x) = J2l=o^q-i^^ where ao = 
aq = 1. Now for alH > g define Qi recursively as the result of the bit­
wise XOR operation on the following set of numbers: {2^akQi-k \ 1 £ 
k < q — 1} yj {2^Qi^q^ Qi-q} (this is a g-term recurrence relation; the first 
q terms of the sequence can be chosen as arbitrary odd integers respectively 
less than 2 , . . . , 2^). Let Vi = ^ for all i. For each integer j , let Â  = 
{Vi I thei-thbitof j is nonzero}. We define Xj, the j-th element of the SoboF 
sequence, as the result of the bitwise XOR operation on Aj. Multidimensional 
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1 (Initialization) Let Q = 0, 5 = 0, fc == 1 and set £ > 0. 

2 (Termination) If a pre-determined termination condition is veri­
fied, stop. 

3 (Sampling) Sample a point qk from a Sobol' sequence; add 
{QkJ{qk))toQ. 

4 (Clustering distance) Compute a distance rk (which is a function 
of k and n; there are various ways to compute this distance, so this 
is considered as an "implementation detail" — one possibility is 
Tk = /3k~n^ where /? is a known parameter). 

5 (Local phase) If there is no previously sampled point ^j G Q(with 
j < k) such that \\qk - qj\\ < rk and f{qj) < f{qk) - s, solve 
the problem locally with q^ as a starting point to find a solution y 
with value f{y). If y ^ S, add ytoS. Set fc ̂— /c + 1 and repeat 
from step 2. 

Figure 1.5. The SobolOpt algorithm. 

Sobol' sequences are obtained by building each vector out of a different primi­
tive polynomial. For a full discussion on the implementation details, see [Press 
etal , 1997], p. 31L 

3. Computational experiments 
In this section we compare the results of the three global optimization algo­

rithms mentioned in Section 2 on two sets of instances. 

3.1 Instance generation methods 
The first set of instances (More instances) was generated using the first model 

proposed in [More and Wu, 1997]. The model is based on a molecule with s^ 
atoms (5 = 1,2,3,...) located in the three-dimensional lattice defined by 

{(n,^2,^3) eR^ :0<ik<s-l, k = 1,2,3}. 

An order is defined for the atoms of the lattice by letting atom i be the atom at 
position (21,22,^3), where 

i = I + ii + si2 + s'^is, 
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and the set S is defined by 

S={{iJ}:\i-j\<s^}. 

For example, for 5 = 2, the atoms located at (0,0,0), (1,0,0), and (0,1,0), 
are the first (i = 1), second (i = 2), and third (i = 3) atoms. 

The second set of instances (Lavor instances) was generated according to 
another model. This model considers a molecule as a chain of n atoms with 
Cartesian coordinates given by x i , . . . , x^ G R^. For every pair of consecutive 
atoms i,j, let rij be the bond length which is the Euclidean distance between 
them. For every three consecutive atoms i, j , /c, let 9ik be the bond angle corre­
sponding to the relative position of the third bead with respect to the line con­
taining the previous two. Likewise, for every four consecutive atoms i, j , /c, /, 
let ujii be the angle, called the torsion angle, between the normals through the 
planes determined by the atoms i, j , k and j , k, l. The sets Mi, M2 are the sets 
of pairs of atoms separated by one and two covalent bonds, respectively. The 
bond lengths and bond angles are set to rij = 1.526A (for all (i, j) G Mi) and 
6ij = 109.5° (for all (i,j) G M2), respectively. Torsion angles are obtained by 
selecting first one value u from the set {60°, 180°, 300°} and another one from 
the set {cj + z : i = — 5 ° , . . . , 5°}. Both of these selections are random. To 
generate distances, it is necessary to calculate Cartesian coordinates for each 
atom of the chain. This can be done, for example, using the procedure de­
scribed in [Phillips et al., 1996]. For each molecule, described by the selection 
of the torsion angles, we define the set S using a cut-off value of 4A. That is, 
(i, j ) G S if and only if dij < 4. The pairs of atoms (i, j ) selected, associated 
to the distances dij^ constitute an instance for the molecular distance geometry 
problem. For a complete description of this set of instances, see [Lavor]. 

3.2 Numerical results 
All computations were performed on an Intel Xeon 2.8GHz with 2GB RAM 

running Linux. The local NLP optimization code we used to perform the local 
descents is SNOPT v.5 [Gill, 1999], The global optimization algorithms were 
implemented as global solvers in the ooOVS optimization framework [Liberti 
et al., 2001, Liberti]. As such, they are not specially fine-tuned to solve the 
MDGP — this, together with the choice not to employ smoothing methods, 
explains the relatively small size of the largest molecules we can tackle. 

The results are reported in Tables 1.1 (for the More instances) and 1.2 (for 
the new Lavor instances). The global optimum (with value 0) was found in 
all of the tested instances but the Lavor instance with 40 atoms. Three general 
trends emerge: 

1 the Lavor instances, on average, are harder to solve than the More in­
stances. In particular, one of the randomly generated Lavor instance (the 
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Atoms 
8 

27 
64 

Variables 
24 
81 
192 

sBB 
OF Value Time 

0 0.22 
0 30.39 
0 2237.73 

VNS 
OF Value Time 

0 1.21 
0 34.01 
0 398.875 

SobolOpt 1 
OF Value Time 

0 13.56 
0 300.285 
0 2765.13 

Table 1.1. Computational results for the More instances. Timings are in seconds of user CPU 
time. 

Atoms 
5 
10 
20 
30 
40 
50 

Variables 
15 
30 
60 
90 
120 
150 

sBB 
OF Value Time 

0 0.02 
0 1.12 
0 2.25 
0 488.87 
-
-

VNS 
OF Value 

0 
0 
0 
0 

0.09 
0 

Time 
0.48 
7.06 

49.99 
352.06 
1258.13 
673.48 

SobolOpt 1 
OF Value Time 

0 0.57 
0 69.71 
0 411.152 
0 1634.09 

0.547 2376.01 
0 3002.88 

Table 1.2. Computational results for the Lavor instances. Missing values are due to excessive 
computational requirements. Timings are in seconds of user CPU time. 

one with 40 atoms), was so hard to solve that we could not reach the global 
optimum with any of the proposed global optimization algorithms; 

2 the deterministic sBB algorithm is the fastest method for solving small 
to medium-sized instances. This result is rather surprising, as sBB is 
usually slower than heuristic methods; 

3 both VNS and SobolOpt usually manage to find the correct solution, 
but VNS is faster. However, as the size of the molecule grows, the 
performance difference decreases. 

Here are some notes and remarks about these computational experiments. 

• The results obtained by the SobolOpt solver might be improved by careful 
tuning of parameters. Our tests were run with all the default parameter 
values. On the other hand, we did spend some time tuning the parameters 
of the VNS solver. It appears that for very hard instances (like the Lavor 
with 40 atoms), we can get nearer the global optimum by setting a very 
high kmax parameter (possibly in the region of 10*̂ ) and a number of trials 
in each neighbourhood (i.e. maximum number of local searches to carry 
out in each neighbourhood) to something between 5 and 15. This slows 
the search down considerably, but it does produce better results. 

• We also conducted a number of tests using a different VNS neighbour­
hood structure. In practice, we focused the search on the comers of each 
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hyper-rectangle Hkix""): this made it possible to sample starting points 
from disjoint neighbourhoods, but it affected the convergence properties 
of the VNS (certain regions were not sampled extensively). Surprisingly, 
VNS managed to locate the global optimum for all instances but the La-
vor with 40 atoms, where it succeeded in locating a point with extremely 
low (albeit clearly non-zero) objective function value. This constitutes 
numerical evidence that the best minima are to be found near the extreme 
points of the hyper-rectangle. 

• The convergence speed of the sBB solver can be improved by relaxing 
the e tolerance (set by default to 1 x 10~^). 

• One of the reasons why sBB is so effective on this problem is that it has a 
known globally optimal value (0), and that the automatic convexification 
of sBB provides a tight lower bound (namely, 0 itself). Since the lower 
bound is so tight, many regions are discarded very soon in the Branch-
and-Bound tree. 

4. Conclusion 

In this paper we described computational experiments performed in globally 
solving instances of the molecular distance geometry problem. We discussed 
three global optimization methods: a deterministic one (spatial Branch-and-
Bound) and two heuristic ones (Variable Neighbourhood Search and Multi 
Level Single Linkage with deterministic low-discrepancy sampling based on 
Sobol' sequences). We solved instances from two different classes: one taken 
from the literature and the other new. Rather surprisingly, sBB is clearly the 
best choice for small-scale problems, both because it provides a guarantee of 
6:-global optimality and because it is faster than the other methods. SobolOpt 
and VNS perform rather well for medium to large-scale problems, with VNS 
being faster than SobolOpt. 
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