


GLOBAL OPTIMIZATION 

Scientific and Engineering Case Studies 



Nonconvex Optimization and Its Applications 

VOLUME 85 

Managing Editor: 

Panos Pardalos 
University of Florida, U.S.A. 

Advisory Board: 

J. R. Birge 
University of Chicago, U.S.A. 

Ding-Zhu Du 
University of Minnesota, U.S.A. 

C. A. Floudas 
Princeton University, U.S.A. 

J. Mockus 
Lithuanian Academy of Sciences, Lithuania 

H. D. Sherali 
Virginia Polytechnic Institute and State University, U.S.A. 

G. Stavroulakis 
Technical University Braunschweig, Germany 

H.Tuy 
National Centre for Natural Science and Technology, Vietnam 



GLOBAL OPTIMIZATION 

Scientific and Engineering Case Studies 

Edited by 

JANOS D. PINTER 
Pinter Consulting Services Inc., Halifax, Nova Scotia, Canada 

Springer 



Library of Congress Control Number: 2 0 0 5 9 3 7 0 8 2 

ISBN-10: 0-387-30408-8 e-ISBN: 0-387-30927-6 

ISBN-13: 978-0387-30408-3 

Printed on acid-free paper. 

AMS Subject Classifications: 90C26, 65K99> 90C90, 68Uxx, 78A99 

© 2006 Springer Science+Business Media, LLC 

All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed is forbidden. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

Printed in the United States of America. 

9 8 7 6 5 4 3 2 1 

springer.com 



''Far and away the best prize that life offers is 
the chance to work hard at work worth doing. " 

Theodore Roosevelt (1858-1919) 

This volume is dedicated to people around the world 
who need our work - research, models, and techniques 

to help them live, and to live better. 
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Preface 

Man-made systems and controlled procedures can often be described, at least 
to a postulated "reasonable degree of accuracy", by continuous linear functions. 
For prominent instances of such descriptions, one may think of production and 
distribution systems and their basic quantitative models known from the 
operations research, management science, and industrial engineering literature. 
For illustrative purposes, we refer to the 50^^ Anniversary Issue of Operations 
Research (2002), and to the many topical entries of Greenberg's (2005) 
Mathematical Programming Glossary (on the web), and the Handbook of 
Applied Optimization edited by Pardalos and Resende (2002). 

If we attempt to analyze natural - physical, chemical, geological, biological, 
environmental - systems and their governing processes, then nonlinear functions 
will play an essential role in their quantitative description. Of course, there are 
also man-made systems that exhibit pronounced nonlinearities as illustrated by 
various scientific, engineering, econometric and financial studies. From the 
extensive related literature, consult e.g. Aris (1999), Bartholomew-Biggs (2005), 
Bracken and McCormick (1968), Corliss and Kearfott (1999), Diwekar (2003), 
Edgar, Himmelblau and Lasdon (2001), Floudas and Pardalos (2000), 
Gershenfeld (1999), Grossmann (1996), Hansen and J0rgensen (1991), Hendrix 
(1998), Kampas and Pinter (2006), Lopez (2005), Mistakidis and Stavroulakis 
(1997), Murray (1983), Papalambros and Wilde (2000), Pardalos, Shalloway, and 
Xue (1996), Pinter (1996a, 2001, 2006), Schittkowski (2002), Sethi and 
Thompson (2000), Tawarmalani and Sahinidis (2002), Wilson, Turcotte, and 
Halpern (2002), Zabinsky (2003). 

Prescriptive (control, management, optimization) models based on a 
nonlinear systems description often may - or provably do - possess multiple 
local optima. The objective of global optimization (GO) is to find the *'best 
possible" solution of multiextremal problems. Formally, the prototype continuous 
global optimization problem (GOP) can be stated as 

(1) mmf(x) 

subject to 

(2) xeD={l<x<u; fj(x)<0 y=l,...,/}c/^^ 

The relations (l)-(2) describe a very general optimization model type defined 
by the following key ingredients: 

• X real-valued n-vector that describes the decision alternatives 
• f(x) continuous objective function; fo(x):=f(x) 
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• D non-empty set of feasible decisions 
• ^fx)continuous constraint functions, for7=!,...,/ 
• I u explicit, finite (component-wise) bounds of x. 

Applying these basic analytical assumptions, it is easy to verify (by the 
extreme value theorem of classical analysis) that the optimal solution set of the 
GOP is non-empty. We shall denote the set of globally optimal solutions by X*. 

The solution of the GOP theoretically requires the determination of the set 
X*, or at least an exact global solution X*GX* and the corresponding optimum 
value/*=/fjc*). In practice, this is often not possible (not only in the context of 
global optimization, but across the various classes of continuous optimization 
problems). Therefore our standard numerical objective is the sufficiently precise 
approximation of X* or an x*, and of / *, based on a finite number of 
algorithmically chosen search steps. This objective requires the generation of a 
sample point sequence [xk] and corresponding model function evaluations {fj{X]^ 
for 7=0,1,...,/}. The function evaluations optionally may include also the 
calculation or estimation of higher-order or other - local or global - information. 

To illustrate the potential difficulty of the general GOP, consider the 
following (merely two-dimensional, and only box-constrained) model instance. 
(For simplicity, the variables are denoted by x and y, to avoid the use of indices.) 

(3) f(x,y) := {sin{xy) -H sinOy-5x) -f- sin{j^-Ay) - 2f minf(x,y) 

subject to 

(4) -3<;c<3 -2<y<5. 

The surface and contour plots of the function (3) in the region (4) are shown by 
Figures 1 and 2. 

Figure 1. Surface plot of the objective function in the GOP (3)-(4). 
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These figures illustrate two important facts. 

1) Global optimization models can be difficult (perhaps immensely difficult), 
even in very low-dimensions. 
2) The classical repertoire of (local) numerical optimization is not suitable on its 
own to handle this problem and similar multi-extremal models. Indeed, 
depending on the starting point of any given local optimization method, it can 
easily get "trapped" in one of the many valleys (regions of attraction) of the 
objective function surface. 

Figure 2. Contour plot of the objective function in the GOP (3)-(4). 

As a side note for the interested reader, several numerical global solutions of 
the GOP (3)-(4) are listed below: 

-4).4891396742 
-1.1840237053 
-0.4129962319 
-2.8343606253 

y 

-0.2256392574 
2.9661319066 

-0.3441255592 
-0.0078477508 

f{x*,y*) 

1.6537752573033925-10-'^ 
1.369648415423624610-'^ 
4.3970820983759176-10'" 
1.09093197906231210-'' 
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In the case of multiple global optima, it may be of interest to select a specific 
solution such as the one that has a minimal Euclidean norm. The corresponding 
solution is 

x*p^0.4148624957, );*~0.254331095, ||(jc*,};*)||^0.4866160665476753. 

Each of these approximate global solutions have been generated using the 
MathOptimizer Professional software with an external Lipschitz Global 
Optimizer (LGO) solver link (Pinter, 1996a; Pinter, 1996...2005; Pinter and 
Kampas, 2003). The solution times are less than 0.3 second in each case, on a 
desktop PC equipped with an Intel Pentium 4 1.6 GHz processor. 

Proceeding further, let us remark next that even relatively "simple" specific 
instances of the GOP may have an exponentially increasing number of global and 
local solutions. One can imagine a 10- or 100-variable direct extension of the 
model (3)-(4) in which selected two-dimensional search subspaces would show 
similar complexity to Figures 1 and 2. Since there are no universally applicable 
analytical criteria to verify global optimality, the required algorithmic search 
effort could grow exponentially in terms of the model size, since the algorithm 
should have to "visit" around the entire search region in sufficient detail. The 
model size of the GOP is characterized here simply by n and m, without further 
consideration given to the specific form of the model constraint functions. These 
functions could also be complicated: for a visual example, one can think of a 
collection of disjoint subsets ("islands of an archipelago") that together form D. 

The general GO paradigm expressed by the model statement (l)-(2) is in 
contrast to traditional optimization methods. The latter - as a rule - will find only 
local optima of the GOP, based on a user-supplied initial (local) guess of the 
solution. Global optimization encompasses and extends local nonlinear 
optimization. This is certainly valid in a formal theoretical sense, but is pertinent 
also in numerical practice since GO strategies eventually need to have the 
convergence guarantee and precision of local search methodology, at least with 
respect to the global solution(s). 

The field of global optimization has been gaining increasing attention in 
recent decades, and it has reached a certain level of maturity. The number of 
textbooks focused on GO is in the hundreds worldwide. The book series titled 
Nonconvex Optimization and Its Applications in itself includes nearly one 
hundred volumes, as of 2005. From this series, consult e.g. the introductory 
volume by Horst, Pardalos, and Thoai (1995), the two Handbooks edited by 
Horst and Pardalos (1995) and by Pardalos and Romeijn (2002), or the volumes 
by Kearfott (1996), Pinter (1996a), Tawarmalani and Sahinidis (2002), and 
Zabinsky (2003). The recent book chapter by Neumaier (2004) also provides a 
detailed overview of rigorous deterministic GO approaches. 

Algorithmic advances - together with readily accessible and relatively 
inexpensive computational power - have led to a growing range of global 
optimization software implementations. This development has been greatly 
facilitated by significant progress in the areas of core professional (mainly C and 



Xlll 

Fortran) compilers, spreadsheet-based modeling, algebraic modeling languages 
(with a focus on optimization), and integrated scientific-technical computing 
systems. Without going into details on any of these software systems, please 
consult e.g. the following references and the software products discussed therein. 

• Compiler platforms: Lahey Computer Systems (2003), Microsoft (2005) 
• Spreadsheet-based modeling: Frontline Systems (2005), Bertsimas and 

Freund (2000), Winston and Albright (1997) 
• Algebraic modeling languages: 

AIMMS (Paragon Decision Technology, 2005) 
AMPL (Fourer, Gay, and Kemighan, 1993) 
GAMS (Brooke, Kendrick, and Meeraus, 1988) 
LINDO Solver Suite (Schrage, 2001; LINDO Systems, 2005) 
LPL (Virtual Optima, 2005) 
MPL (Maximal Software, 2005) 
TOMLAB for MATLAB (TOMLAB Optimization, 2004) 

• Integrated scientific-technical computing systems: 
Maple (Lopez (2005), Maplesoft (2005), Parlar (2000), Wright (2002)) 
MATLAB (Moler (2004), The MathWorks (2005), Venkatamaran 

(2002), Wilson, Turcotte, and Halpem (2002)) 
Mathematica (Maeder (2000), Trott (2004, 2005), Wolfram (2004), 

Wolfram Research (2005)) 

With respect to modeling environments and GO software implementations, 
see also the edited volumes (Kallrath, 2004), (Liberti and Maculan, 2005), and 
(Pinter, 2005), The websites maintained by Fourer (2005), Mittelmann and 
Spellucci (2005), Neumaier (2005), and by the Optimization Technology Center 
(2005) also offer valuable topical information. 

While most GO software products a decade ago have been arguably more 
''academic" than "professional" (Pinter, 1996b), today a growing number of 
companies offer professionally developed and maintained GO software, often as 
a solver component or option of modeling language and systems. Global 
optimization is also becoming part of the "mainstream" operations research 
curriculum: for instance, the prominent textbook by Hillier and Lieberman 
(2005) now offers also GO demo software (the model size-limited MPL/LGO 
implementation) as part of its electronic supplement. 

The present volume illustrates the applicability of global optimization 
strategies and software to a broadening range of practically important issues. The 
emphasis is on real-world applications - including also open problems - that 
apparently need genuine GO methodology. The contributed chapters cover 
applications from the following areas: 

• agroecosystem management 
• assembly line design 
• bioinformatics 
• biophysics 



XIV 

"black box" systems optimization 
chemical process optimization 
chemical product design 
composite structure design 
computational modeling of atomic and molecular structures 
controller design for induction motors 
electrical engineering design 
feeding strategies in animal husbandry 
inverse position problem in advanced kinematics 
laser design 
learning in neural nets 
mechanical engineering design 
numerical solution of equations 
radiotherapy planning 
robot design 
satellite data analysis 
water resources systems 
wireless communication networks 

These applications can be broadly classified as belonging to the areas of 
natural sciences (agriculture, biology, computational chemistry, environment) 
and engineering (design and process optimization), while mathematical 
modeling, optimization and computer science are the unifying concepts. Let us 
remark here that in addition to engineering and scientific applications 
(represented by the studies of this volume) important areas of GO applications 
emerge also in econometrics and finance. 

Due to the large variety of model types encompassed by the general GO 
paradigm (l)-(2), there is no "universally best" global optimization strategy or 
software that will handle all GO models with theoretical rigor and competitive 
efficiency, within the framework of a prefixed amount of resources (time or 
model function evaluations). This is true even if the size of models (variables, 
functions) is a priori limited: recall Figures 1 and 2, which illustrate the potential 
difficulty of merely two-dimensional, box-constrained models. Of course, this 
does not mean that models of practical relevance can not be tackled successfully; 
however, one may have to (in fact, typically should) rely on modeling insight, 
intelligent - and perhaps model-dependent - combinations and/or adaptations of 
GO approaches. As a general guideline, even a rudimentary global scope search 
can lead to better solutions than the most sophisticated local search method 
started from the "wrong valley"... (Recall again Figures 1 and 2.) 

The solution strategies discussed in this volume illustrate the above points by 
encompassing a range of practically viable methods. The contributing authors 
have made an honest effort to illustrate not only the successes but also the 
difficulties and the current limitations of practical global optimization. 

Specifically, the chapters discuss both rigorous (theoretically globally 
convergent) and heuristic GO approaches such as 
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adaptive random search 
branch-and-bound strategies 
evolutionary search approaches 
flexible simplex search heuristics 
genetic algorithms 
hybrid (stochastic-deterministic) approaches 
mixed integer nonlinear programming methods 
neural networks 
simulated annealing 
stochastic simulation 
"traditional" local nonlinear optimization 

The methods listed above can be broadly categorized as follows: 

• theoretically rigorous with a deterministic guarantee of global convergence 
(branch-and-bound, "exact" mixed integer GO, and other approches) 

• theoretically rigorous with a probabilistic guarantee of global convergence 
(adaptive random search, properly designed combined stochastic-
deterministic approaches, properly implemented simulated annealing, and 
others) 

• "obvious" extensions of traditional local search methodology (such as a 
limited globalized search effort combined with local optimization) 

• heuristic direct search methods (e.g., flexible simplex search) 
• metaheuristics (evolutionary search, genetic algorithms, neural networks) 

Although the last three GO approaches do not have generally valid 
(provable) theoretical convergence properties in the continuous GO context, such 
heuristic methods still can be very useful in practice. Note furthermore that these 
heuristic methods can be adapted to guarantee at least stochastic global 
convergence. In addition to the already mentioned references on rigorous 
deterministic or stochastic global optimization, a few useful references on 
heuristic methods are Glover and Laguna (1997), Goldberg (1989), Michalewicz 
(1996), Osman and Kelly (1996), Rothlauf (2002), Rudolph (1997), Voss, 
Martello, Osman, and Roucairol (1999). It is worthwile pointing out that 
although so far most heuristic approaches have been designed to solve 
combinatorial (discrete) optimization models, such methods can be adapted to 
tackle also continuous models. 

Let us also remark that the GO literature offers a growing number of 
sufficiently detailed comparative numerical studies which shed light on the 
applicability of the most prominent methods and software to models of realistic 
complexity, in addition to "standard" GO test models that have been used for a 
few decades. Consult e.g. the test model library compiled by Floudas, Pardalos, 
Adjiman, Esposito, Gumus, Harding, Klepeis, Meyer, and Schweiger (1999), as 
well as topical expositions by Pinter (2002, 2003), Ali, Khompatrapom, and 
Zabinsky (2005), Khompatrapom, Pinter, and Zabinsky (2005). The websites by 
Fourer (2005), Mittelmann and Spellucci (2005), Neumaier (2005), and the 
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Optimization Technology Center (2005) also offer useful information regarding 
this point. 

The individual chapters of the present volume have been written with the 
objective of addressing both experts and non-experts in the specific application 
area discussed. Therefore the authors attempted to follow a "tutorial" style, 
providing sufficient background to the key issues, model formulation and 
solution approaches presented. Most chapters are strongly application-oriented, 
in accordance with the overall objectives of this book. 

We trust that our work will be of interest to researchers and practitioners in 
academia, research and consulting organizations, and industry. The book presents 
GO challenges and real-world case studies in sufficient detail, to enable graduate 
level classroom discussions and independent studies. The book can also be used 
in the framework of a practically motivated seminar or lecture series on nonlinear 
modeling and optimization. 

The contributing authors and myself welcome your comments and 
suggestions related to this volume. Thanks for your attention, and enjoy the 
book! 

Janos D. Pinter 
PCS Inc. 
Halifax, NS, Canada 
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Chapter 1 

A GLOBAL OPTIMIZATION STRATEGY AND 
ITS USE IN SOLVENT DESIGN 

L. E. K. Achenie, G. M. Ostrovsky and M. Sinha 
University of Connecticut 

Abstract: Solvent design can be modeled as a mixed integer nonlinear programming 
problem (MESFLP) in which discrete variables denote the presence or absence 
of molecular structural entities and to what extent they occur in the pure 
component compound or mixture. On the other hand, continuous variables 
denote process variables such as temperature and flow rates. In the MINLP 
model the number of discrete variables can range from several tens to several 
hundreds. Therefore the use of the standard branch-and-bound method for 
solving the problem can be computationally intensive since all the variables 
(discrete and or continuous) must be used as branching variables. To overcome 
this problem, we have proposed a new strategy in which branching is done 
using branching functions instead of all the search variables. This approach 
results in a decrease in the number of branching variables. During branch and 
bound, the bounding operation is performed in the search variables space, 
while the branching operation is performed in a reduced dimension space 
defined by the branching (or splitting) functions. The branching functions are 
determined from the special tree function representation of both the objective 
function and constraints. The suggested MINLP solution approach is 
demonstrated on a solvent design application. 

Key words: Solvent design, MINLP, branching function, special tree function, branch and 
bound. 



2 Global Optimization: Scientific and Engineering Case Studies 

1. INTRODUCTION 

Chemical product design addresses the design of single component chemical 
compounds and/or mixtures (blends) of compounds with pre-specified 
thermo-physical properties. In recent years, the traditional wet chemistry 
based chemical product design is being supplemented with computer-aided 
approaches, namely computer-aided molecular design (CAMD). The 
CAMD problem can often be posed as a mathematical program in which a 
number of binary and continuous variables define the search space (Duvedi 
and Achenie, 1996; Churi and Achenie, 1996; Maranas, 1997; Odele and 
Machietto, 1993; Pistikopoulos and Stefanis, 1998). A binary variable is an 
integer variable that can have one of two possible values, for example 0 and 
1. This chapter discusses a globally optimal branch and bound approach to 
solving the resulting mathematical program. The approach is more fully 
discussed in a similar chapter in Sinha et al., 2002. 

2. PROBLEM DEFINITION 

A typical molecular design problem may be modeled as a single objective 
minimization or maximization subject to structural and performance 
constraints. Thus a CAMD problem for single component molecular design 
in which thermo-physical property matching is sought may be modeled as 

m i n / ( x , v , ^ ) (1) 

(Pj{x,v,e)<Q, 7 = 1 , . . . , ^ ! (2) 

h.{x,v,e) = 0, i = \,.„,m^ (3) 

where v is a vector of binary variables that define the molecular structure, x 
is a vector of continuous variable such as process variables (pressure, 
temperature, etc.) and ^ is a vector of group contribution parameters. Note 
that additional binary variables may be included in v to indicate additional 
constraints on the kind of molecular structures that can be generated. 
f{x,v,0) is the performance objective function (for example some 
undesirable property such as a compound's ozone depletion potential). The 
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group contribution model is a structure-property correlation that has found 
wide use in the chemical process industry. 

The constraints involve (a) structural feasibility, (b) physical property 
targets, and (c) process constraints. The constraints associated with structural 
feasibility are usually linear. Physical property targets often have the 

formpj^ < Pj^(x,v,d) <p^. If Pj^{x,v,6) is modeled using group 

contribution, then it may have the form 

j j 

Here O^j and O^j are elements in 0 and rij is the number of 0\ or 0^. 

present in the molecule. Transformation of such constraints into a linear 
form is straightforward. The function Pj^ (x, v, 6) can also have the form 

A 
^b 

\ J JI V J 

where f^^ and f^^ are nonlinear functions; in addition ^J and ^j'are 
parameters. Property constraints, which employ the given form, include 
solubility parameter based models often used in solvent design. It is not 
always possible to reformulate these constraints into linear or convex forms. 

The nonlinear mathematical programming model for the CAMD problem 
(PMD) has the following features: (a) it is a nonconvex mixed integer 
nonlinear problem (MINLP) problem involving a large number of binary 
variables, (b) the number of linear constrains is larger than the number of 
nonlinear constraints, and (c) most of the components of the design vector 
(u) participate in the nonlinear terms. Previous attempts using global 
optimization are either geared to small size problems or use soft computing 
approaches (such as simulated annealing and genetic algorithms). The 
approach discussed here is based on the branch and bound (BB) algorithm. 
The basic BB algorithm may encounter a large number of branching 
variables for product design problems. To address this, the branch-and-
bound global optimization algorithm presented here exploits the problem 
structure and allows significant reduction in branching expressions. A 
discussion of the algorithm is based on the papers (Sinha, Achenie and 
Ostrovksy, 1999) and (Ostrovksy, Achenie and Sinha, 2000). 

In group contribution based computer aided single component product 
design, solvents are formed from certain combinations of a set of structural 
groups. The pre-specified set of m structural groups is called the basis set. 
The size and composition of the basis set depends on the intended 
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application, the availability of accurate property prediction models and the 
computational resources available. First, we define a set of variables based 
on an initial set of structural groups as 

1 if the i-th group in the molecule is the /:-th structural 

group in the basis-set 

0 otherwise 

Churi - Achenie model 

u, =< 

1 if the i-th structural group in the basis-set 

is in the molecule 

0 otherwise 

Odele - Machietto model 

(4) 

Odele and Machietto (1993) proposed a formulation that ensured that the 
valence of each structural group was satisfied. This formulation only 
accounts for the presence and absence of structural groups in the molecule. 
However, it does not consider the information that determines how the 
groups are connected to each other in the molecule. To overcome this 
limitation, Churi and Achenie (1996) proposed a model that gives complete 
information with regard to how the groups are connected to each other. 
Presently there is no known group contribution method that takes advantage 
of the connectivity information of the Churi-Achenie model. In the latter 
model, the following variables were introduced 

1 if the /-th group'sy-th site is attached to the;?^^ group 
z.. —' 
'^^ 10 otherwise 

w. -
\\ if the z-th group in a molecule does not have a group attached 

10 otherwise 

(5) 
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For single component solvents structural constraints are imposed for (a) 
limiting the number of structural groups in a molecule; (b) ensuring that the 
number of bonds attached to a group equals the valence of the group; and (c) 
ensuring that each group in a molecule is attached to at least one other group. 
The formulation is effective in specifying whether the molecule is acyclic or 
cyclic. Moreover the maximum number of cycles can also be controlled. 
This representation is also effective in distinguishing between isomers. If the 
chemical process is not accounted for, then the pure component molecular 
design problem involves only binary variables. The maximum number of 
groups in a molecule is rimax', the number of groups in the basis set is m with 
the maximum valence of ^̂ ^̂ c- In this case the search dimension is then given 
by rimaxX^ + nmaxXSmaxXnnjax~^rimax' Hcrc thc numbcr of binary variables is 
equal to the sum of the dimensions of u, z and w, respectively (assuming the 
Churi-Achenie model is used). The number of linear structural constraints 
employed are rifnax^ + n^axX^ + 3«;„ax + Smax + 1. For example, a CAMD 
problem with ritnax = 5, m = 10, and s^ax = 2 results in 93 linear constraints. 
The number of nonlinear constraints is generally small compared to the 
number of linear constraints. Let all the binary variables in the problem be 
assembled in the vector v (q-dimensional). If the Odele-Machietto model is 
employed then v=u; on the other hand if the Churi-Achenie model is 
employed then v =[u,z,w]. Then the solvent design problem (see Eq. (1), 
(2), (3)) can be expressed compactly as a mixed integer nonlinear program in 
the general form 

P : / = min / (x ,v) (6) 
x,veD 

such that 

D = {x,v :c< X < d,(p.(x,v)<0, 

i = l...m, hix,v) = 0,xe X e 9?", v e {0,1}^} 
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3. PROPOSED SOLUTION METHOD 

3.1 Branch-and-Bound Preliminaries 

The branch and bound (BB) method (Horst and Tuy, 1990) has been used for 
solving several problems in chemical engineering (Ostrovsky et. al., 1990, 
Friedler et. al., 1998, Quesada and Grossmann, 1995, Ryoo and Sahinidis, 
1996, Maranas and Floudas 1997, Adjiman et al, 1998). The generic BB 
method looks for a minimum of the objective function f(x,v) by 
partitioning the region D into subregions Dt with respect to the search 
variables. At each iteration, a subregion D^ is further partitioned into Dtp and 
Dig (Di = Dip uDig). The generic BB method consists of the following: 

(i) An algorithm for estimating a lower bound (LB) ju. on the 

objective function f(x,v) in any subregion/)/ eD such that 
//. < / ( x , v ) Vx.veD. 

(ii) An algorithm for estimating an upper bound (UB) Tjj on 

f(x,v) in any Dj GD such that Tjj > f(x, v) Vx, v e Dj 

(iii) An algorithm for partitioning Di 

Designate the set of subregions at the k-th iteration of the BB method as 
L̂ ^ = ( D.J = l,...,Ni^). Let /̂ ^ be the index set of the subregions belonging 
to L^''^. Then the algorithm for the BB method is as follows 

Step 1: Set k=l. Give an initial set L^^^ of the subregions A (i=l,...,No, 
usually No=l). 

Step 2: Calculate an LB for each Di G L^^ 

Step 3: Determine the subregion with the least LB. Let it be the /;„-th 
region then 
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Step 4: Split D^ into two subregions Dp and Dq (Dim = DpUDq) such 

that 

D^ ={x:xeDi^,x^ <C^ID^ = {x:x e D^^.x^ > c J 

The variable, x^, is the branching variable and ĉ  is the branching point. 

Step 5: Determine LB and UB for subregions/? and q. 

Step 6: Determine the least upper bound //̂ ^ at the k-th iteration. 

V'^ = min(Ti'-\r|p,r|q) (8) 

For the first iteration T]^^^ = oo 

Step 7: If 7]^^^ -Mi^^^ then STOP. 

Step 8: If 

jUj > 7^ (9) 

is met fory = p orj = q then the corresponding subregion is eliminated from 
consideration. 

Step 9: Form a new set L^^^ of the remaining subregions as follows 

where 

L = \ 

D^,D^ if Hj<7]^'' j = p,q 

D^, if ju^KTj^'Uju^ 

D , if u<^'''<M, 
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Step 10: Set k-=k-\-l, and go to Step 3 

Each BB method needs to develop algorithms for partitioning and for 
estimating lower and upper bounds. Thus we describe algorithms we have 
developed for estimating lower and upper bounds for the mixed integer 
nonlinear program arising from our formulation of the computer aided 
molecular design problem. Let us consider the partitioning algorithm. At 
each iteration in a standard BB method, the "optimal" subregion Di is 
partitioned into two subregions Dp and Dq using the constraints x. < x^ 
andx. > X* or v. < v̂ . and v. > v. as follows 

D^={x\xeD,^,x^ < CXD^ - {X : X eD^^,x, > c j 

The variable, x̂ , is the branching variable and ĉ  is the branching point. 
Different BB methods have different ways of selecting these. Thus in this 
case n+q branching variables are used. In a reahstic product design problem, 
the number of branching variables can be several hundred. It is known that 
the number of branching nodes grows exponentially. To alleviate this 
problem, we will use the following new partition algorithm. Instead of 
branching on the variables (jc,v), we will use appropriate functions 
y/j(x,v), j = l,...p of the search variables/or branching. Subsequently, A 
will be determined by the set of inequalities 

a) <y/j(x,v)<b]J = l..,p, 

where the lower and upper bounds aj and bj are the dimensions of the 
multidimensional box (subregion) Dt are determined by the branch-and-
bound strategy. Thus Dt has the form 

D,={x,v:x,v^D:a) <y/j(x,v)<b)j = \,„.p,} 

Problem P for subregion Di is written as 

Pi^ /;. = min / (x ,v) (10) 
x,v e D. 

A direct solution of the above problem is very difficult. Instead, the 
approach to be described finds the solution indirectly by successively 
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estimating lower and upper bounds for the performance objective function 
f.. In the Umit, these bounds should collapse into one to give a solution to 
the above problem. Thus it is appropriate to discuss how these bounds are 
obtained. 

3.2 Lower Bound Algorithm 

A lower bound f.^ iorf. on Dt is obtained by solving the following 
problem 

Pi^y; . '= min^ L[f(x.vy,D^] 
x,v e Dj 

where 

D. ={x,v: Lf^j^; DJ <0 k = \,...,m; 

LfvXj;DJ<b);Lf-vXj DJ<-a'; 

v € { 0 , i r ; 

and L[g{x,v);D.]is a convex underestimator for the generic function 

g(x,v). Then it is easy to verify that A a D^. 

Some alternatives for estimating lower bounds are: (a) The use of linear 
or convex nonlinear underestimators; (b) Enforcing the integrality of all the 
binary variables ^ at each iteration (Pantelides, 1996); (c) The variables 

^ are considered as continuous variables such that ^ ^ v < 1 in the latter, 
the variables become binary only at termination of the algorithm. We will 
construct linear underestimators and we will enforce integrality of v at each 
iteration as in (b). The resulting problem (PiL) is a mixed integer linear 
program (MIL?). 

3.3 Upper Bound Algorithm 

The .upper bound _f.^ for f. on Z)/ can be found by computing f^ = 
f(x,v), where [x ,v] is a feasible point for problem (10). The latter can be 
obtained by solving 
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Y* = min / 
x,v,y 

(11) 

^j(x,v)</,j = l...(m-^2p) 

where 

\(Pjj' = l„.m 

This is a nonconvex problem and therefore computationally intensive to 
solve at each iteration. To circumvent this, we obtain an upper estimate y of 
the value y by solving the problem 

y= mm / 
pU. x,v,y 

U[^jix,vy,D,]<r,j = \...{m + 2p) 

where U{(Pj{x,v)\D.^ is a linear overestimator of (pj{x,v) on D^ such 
that 

LetD.={x,w:[/[^^.(x,v);D.]<0}, then A ^ A and;/>x*. Problem 
P^ is an MILP. It should be noted that we could terminate the solution to P'̂  
whenever;^ <0. 

During evaluation of the lower and upper bounds for subregion Z)/, the 
following situations may arise £t the k-th step of the^ branch-and-bound 
algorithm: ( 1 ) 5 . ^ 0 , / <0 , (ii)5.^^ 0 , / >0 , and (iii) A = ^ • I^ OX we 
can calculate both the lower and upper bounds, while in (ii) we can only 
calculate the lower bound since we cannot ensure that the point obtainedJ)y 
solving problem P^ will be feasible for the problem (3). Finally in (iii), D^ 
does not contain solution points and consequently it can be excluded from 
consideration. The branching point ^̂ * =^^(x*,w*)is determined at the 
solution point of the lower bound problem P^. 
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3.4 Linear Estimators and Branching Functions 

The main challenge in a BB based method is the construction of 
underestimators and overestimators. McCormick (1976) suggested the 
factorable programming technique for constructing convex underestimator 
for a function represented in factorable form. Sherali and Alameddine 
(1992) suggested a general approach for constructing underestimators for 
arbitrary polynomial functions. A method for construction of 
underestimators for more general functions is proposed in the a-BB global 
optimization method (Adjiman et al, 1998). The dimension of the lower 
bound problem, in all the above approaches, can be much larger than the 
dimension of the original problem. Here we present an alternative approach 
in which the lower bound problem has dimension not greater than the 
dimension of the original problem. 

Let us consider a class of functions (p. that can be represented as a tree 
graph (Fig. 1). Denote the root node of the graph as Aj^, The set of nodes 
A / ' ^ , which are k branches apart from the root node, are at the N-k^^ level. 
Let the k-th level of the tree graph has pk nodes. Each node Af'^ has q/'^ 
descendants. Assign a differentiable function (p. ~ of many variables and 
qj^^~ continuously differentiable functions fr. ' \y) of one variable;^ to 
each node ^4/"^ of the (N-k)- th level. (k=l,...,N-l), The original function ^. 
corresponds to the root node. Thus the following relations hold 

Here Qj ~ is the set of descendant nodes of Aj . The variable x, 
corresponds to a leaf node. Without loss of generality, we will assume that 
the leaf nodes are associated with the first level. Otherwise we employ 
identical transformations to relate the variable Xj to the first level. Suppose 
for example the variable Xj is associated with the second level. Then we can 
introduce the transformation (p^^^ = x.. In so doing we have related x. to the 
first level as well. 

A function/(3c) is defined as a special tree function (STF) if each node of 
the computational graph corresponding to it is characterized by relation (see 
Eq. (10)) . Thus the STF is a superposition of univariate concave or convex 
functions connected by simple arithmetic operations, namely addition, 
subtraction, multiplication on some constant coefficient and operations 
corresponding to univariate functions f. " (y) in intermediate nodes. 
There exists different ways for transformation of a tree function into an STF. 
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The simplest way consists in the use of the following transformation for 
removing the multiplication operation. 

f{x)g{x) =\{fix) + g ( x ) ) H ( / ( ^ ) - Si^)f 

We propose a strategy for constructing a linear underestimator for the 
function ^j corresponding to the root node Aj . Note that (p^ is a 
complex multilevel function of the variables Xp...,x^ at the first level. We 
will assume that all the coefficients c.. ~ are positive. If a coefficient 

(N-k) . . . i -̂  • — (N-k) (N-k) 

c.. IS negative we can introduce new notations c.. =-c.r 
A 7 (^-^) r{N-k) J 1 {N-k) r (N-k) , - (N-k) > (N-k) ^\j 

y 

(yv-/:) ^(N-k-J) 
<p/-'sSJ 

where 

If we know the bounds for the variables X/ at the first level, we can 
estimate bounds for all functions (pi (at all levels) by using interval arithmetic 
(Moore, 1966). A linear underestimator of the function g?/^'''^ in the region 
Si^'^^ with respect to the functions (pF^'^'^^ j e^[^ will be designated as L[cpr^:sn, 
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One can find a linear relation between L[(Pj ;Sj ] and the linear 
underestimators of cpî '̂ '̂ ^ at the descendant nodes Af^'^'^^ as 

4N-1 

A N~2 

AN-k AN-k 
4w 

Figure 1. A multilevel representation of a tree 
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Now we will construct a linear underestimator for the function 
f/'^~^\(p/^~^~'^) at the f7V-̂ >th level with respect to (p/^~^~'\ Let the 
latter satisfy the Eq. (13). To simpHfy the notation for subsequent 
developments, le t j ; - ^j ^^^ consider the function/(>9 in the region 
•^y ̂  {y'-y -y -y}- ^^f(y) is concave then in Sy the linear underestimator 
has the form 

L[fiy);S^]=f(y)+^^^l~l^^^(y-y) (15) 
y-y 

If instead f(y) is convex then a linear underestimator is given by the 
tangent to f(y) at the point 

= (Z±z) 

In this case the underestimator is given by the following formula 

LU{y);S, ] = f\y„){y-yj+fiyj (16) 

Here f(ym) is the derivative of the function f(y) at the point 7^ 
.Substituting the expressions for linear underestimators of f. in -
(p^ ^ we obtam 

Again we will assume that(i. > 0 ; otherwise we can employ the 
transformation discussed earlier. Hence we finally obtain the following 
expression for the linear underestimator of (p. ~ as, 

At the (N-k-l)-th level, we need to know the sign of dj which is 
determined at the upper level, (N-k). Therefore, starting from the A -̂th level 
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and moving down to the 2-nd level, we obtain all relations as expressed in 
Eq. (18) for k=0,l...,N-L A linear underestimator for the function (p/^^ can 
be represented as a linear function of the variables Xf (associated with the 
first level) as follows 

L[<pr;sr]=tcjXj (19) 
7 = 1 

From the above consideration the following algorithm for construction of 
a linear underestimator for a tree function follows. 

Summarizing, the construction of linear underestimator involves: 

1 ^ ^ bottom to top sweep to obtain all bounds 

2. A top to bottom sweep to obtain the relations (Eq. (18)) for all levels 

3. A bottom to top sweep to obtain L{(p^~ ^\S^~ ] as linear 
functions of x, and u. 

We will refer to this method as the sweep method. A similar procedure 
can be used for construction of linear overestimators. It is important that the 
underestimator is a linear function of the variables x and v. We note the 
following. The dimension of the lower bound problem P^ is the same as 
dimension of the original problem P. 

3.5 Selection of Branching Function 

In a conventional BB method, the branching variables are the search 
variables X/. However, the larger dimensionality of X- (z = l,...,w) can result 
in a rapid growth in the number of branches in the BB tree. To address this 
problem, we consider an alternative selection of the branching expressions: 
we employ the arguments (p . of all the functions f^ as branching 
variables. Branching on cpj " ~ will decrease the intervals described by 
(13). Therefore, a tighter linear underestimators of f^ ~ will be obtained 
since max (yj./^~^^-L[^/^~'^^;5'/^~'^^] ) will tend to zero as the size of 
Cy. si'rives to zero. Only independent functions cpi can be used as 
branching functions. The suggested approach to selection of branching 
expressions will be advantageous if the number of independent functions 
from the functions (pj is less than the number of variables 
x^ (i = l,...,w). In our formulation of the molecular design problem, this is 

indeed the case. 
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4. SOLVENTS BACKGROUND 

Solvents are extensively used as a major component of ink in the printing 
industry. The function of solvents in ink is to act as a vehicle for polymeric 
resins, pigments and dyes. The ink solvent also assists in wetting and 
dispersion of dyes and pigments. In letterpress and offset lithographic 
printing processes, the ink is carried to the plate by means of a train of 
rubber rollers commonly called "blankets" as shown Fig 1. Thus a thin film 
of ink is distributed over a large surface area on the blankets. These ink 
solvents are volatile and evaporate to leave behind the pigments and resins 
on the blanket surface. Cleaning is required whenever the residue build-up 
affects the print quality and between print jobs. Paper fibers, ink residue, 
paper coating and dried ink, are types of material that must be removed from 
the rubber blankets. 

Automatic 
Sprays 

\ CYLINDER 

Figure 2. Schematic of Lithographic Printing 

One of the most used solvents in lithographic printing is the "blanket 
wash" which is specially formulated to clean ink and other residue from 
rubber blankets. Blanket cleaning is accomplished automatically or 
manually. In an automatic blanket wash process, as shown in Fig. 1, the 
blanket wash is jet sprayed onto the blanket. Therefore a large amount of the 
wash is lost by evaporation even before it makes contact with the blanket. 
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Blanket wash solvents are mostly solvent mixtures as opposed to single 
component solvents. As such, next to solvent performance, one of the most 
pressing concerns of the printing industry with regard to the environment is 
the volatile organic component (VOC) level of solvents. At present the 
VOC levels of solvents used in the printing industry are unusually high, well 
over 80% and far beyond the industry target of 30%. For example, a 
commonly used blanket wash, "VM&P naphtha" has a 100% VOC content 
(United States Environmental Protection Agency, 1997a). 

Blanket washes and solvents for "rag and bucket" operations are chosen 
based on their performance and their impact on the environment, health and 
safety. There is a wide variation in the performance attributes of cleaning 
solvents by different vendors. To enhance the cleaning operation, 
companies sometimes mix solvents from different vendors. However, this 
trial and error approach is costly and may not necessarily yield the solvent 
mixture with the desired performance attributes. In addition, the solvent for a 
cleaning operation may not meet safety, health and environmental 
restrictions. 

Another important issue is minimizing the effect of a solvent on the 
surface characteristics of the rubber blanket by inducing swelling. Swelling 
severely affects the print quality in lithographic processes. Thus, there is a 
need to account for this in blanket wash design. 

The goal of this case study is to design globally optimal solvents to be 
used for cleaning in lithographic. These solvents should (i) have a minimal 
drying time, (ii) dissolve residue ink, (iii) not swell the blanket, and (iv) be 
environmentally benign. Drying time is correlated with the heat of 
vaporization of the solvent. The ink residue is assumed to consist of 
phenolic resins. 

5. PROBLEM DEFINITION 

The problem as posed can be modeled as a multicriteria optimization 
problem. However, in the printing industry, there are rather loose and 
minimal requirements on these attributes. Therefore these attributes are 
regarded as constraints with given targets (similar to goal programming, 
Tamiz, 1996). A straightforward approach to modeling the problem as a 
special kind of multicriteria problem is to consider a lumped objective in 
which the different criteria appear as terms with appropriate weights. 
However this approach forces the solvent formulation engineer to think of 
appropriate weights (usually of no physical meaning) to employ, a rather 
non-trivial task. A more meaningful and rigorous approach is to consider the 
problem as a multi-level optimization problem. The latter is rather difficult 
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to solve and has usually been restricted to bi-level optimization problems in 
which the decision variables are continuous. 

We reiterate that the goal of this case study is to design optimal solvents 
to be used as cleaning agents in the printing industry. These solvents should 
(i) have a minimal drying time, (ii) dissolve residue ink, (iii) not swell the 
blanket, and (iv) be environmentally benign. Drying time is correlated with 
the heat of vaporization of the solvent. 

The ink residue is assumed to consist of phenolic resins. Solvents that 
can effectively dissolve the ink residue obey the solute-solvent interaction 

R' =Ai5^ -5if+{5, -5;Y+{S^ -s;y < (R*y 

where S/=23.3, Sp*=6.6, SD=8.3 and (Ry=19.8, and S^,, 5p, So are 
determined from a model, for example a group contribution model (see 
Table 1). 

The heat of vaporization, boiling point and melting point solvent 
properties are calculated using the Constantinou and Gani (1994) method. 
The fragment-based method is used to calculate Ko^; (Lyman et. al., 1981). 
The group contribution parameters for solubility parameter calculation are 
based on van Krevlen and Hoftyzer's method (Barton, 1985). The models 
and their reference are summarized in Table 1. 

Table 1. Property Prediction Models for CAMP 1 and CAMP 2 

Property Reference 
Solubility Parameter Barton, 1985 
Boiling Point Constantinou and Gani, 1994 
Melting Point Constantinou and Gani, 1994 
Heat of Vaporization Constantinou and Gani, 1994 
Partition Coefficient (log Kow) Lyman et al., 1981 

We note that the nonlinear property prediction constraints (^ in PMD) do 
not employ the Zyp and W/ variables from the Churi-Achenie octet rule 
implementation (see Chapter 3). Thus the problem is nonlinear with respect 
to only the Utk variables. In the property prediction models, the nonlinearities 
are present in all the Uik variables. The estimators for the case study are 
constructed in the appendix. These estimators are then used in the proposed 
branch and bound technique to solve the problem. 



Global Optimization in Solvent Design 19 

5.1 Case Study 1 

In this case study, structural feasibility constraints are employed to ensure 
feasible molecular structures. For simplicity introduce the notation 

¥x =¥H^VI =¥P,¥Z =¥V^¥A =¥D 

The resulting molecular design formulation is shown below. 

CAMD_1: 

min X Z " , ( A / / . ) , (20) 

I Z "/;• ^ "™x (21) 
i J 

X Z « , ( 2 - v , ) = 2 (22) 

exp(( X Z Uy(T,)j)/204 .4) > 323 (23) 

exp(( Z Z "</ (̂ "̂  )y) /102 .425 ) < 223 (24) 
i J 

miMzlj + HXM^'h ^ 4.0 (25) 
'• J ' J 

4(So-23.3y +(Sp-6.6y +(S^ -S3y <(19.8)' (26) 
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y/ o - 6.3?^> > 0 (27) 

y/ . <y/. < y/ ., i = 1,2,3,4 (28) 

To solve CAMD__1: we proceed as follows 

Step 1: 

(a) We choose as basis set twelve groups, namely CH3-, CH2-, Ar-, -Ar-, 
-OH, CH3CO-, -CH2CO-, -COOH, CH3COO-, -CH2COO-, -CH3O, and -
CH2O-. 

(b) The design variables are given by the structural variables u.j, which 
determine whether a particular structural group is present in the molecule. 

Step 2: The performance objective is given by the double summation in 
Eq. (1), which gives the heat of vaporization of the compound. 

Step 3: Constraints are employed in order to ensure that the last seven 
groups in the basis set are not allowed to occur more than twice in a 
compound as follows 

Z «,<2. 
y=5,...,12 

The constraint 5? > 6.3, will ensure minimal blanket swelling. The 
environmental impact of solvents is accounted for by requiring that the 
maximum value of the partition coefficient (log Kow) be 4.0. To ensure that 
the solvent is a liquid at ambient temperature, the limits on boiling point (Tb) 
and melting point (Tm) are imposed. The constraints are Eqs. (23) through 
(28). Eqs. (23) to (26) are the property target constraints on blanket swelling, 
and Eq. (27) are constraints imposed by the branching functions. Eq. (28) are 
simple bounds on the branching functions. 

Step 4: Decide whether to use the Odele-Machietto or the Churi-Achenie 
Octet Rule Model. Here we employ the much simpler (although restrictive) 
Odele-Machietto model for acyclic compounds where Vj is the valence of j^^ 
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Structural group. The model is given in Eq. (22). We also include the 
molecular structural constraints (Eqs. (21) and (22)). 

Step 5: Using information from previous steps, assemble the 
mathematical program, i.e. the performance objective, constraints, design 
variables and the Octet Rule Model. Eqs. (20) through (28) make up the 
mathematical program. 

Step 6: Construct linear estimators of the performance objective and the 
constraints. 

Step 7: Enter an iterative loop using the branch and bound (BB) 
procedure in Section 3.3.1. There are two nonconvex constraints. The 
splitting functions employed are y/D, y/p, y/H and y/y. The MILP solver used 
is a public domain code lp_solve by Hartmut Schwab available at 
(ftp.es.ele.tue.nl/pub/lp solve). This solver uses the simplex algorithm, 
lp_solve uses a rather simple depth first strategy. Identify the optimal 
molecule using information from the solution. 

Three different runs were investigated for case study 1. The three runs 
correspond to rimax of 3, 4, 5, 6, 7, and 10 (CAMD_la, CAMD_lb, 
CAMDlc, CAMDld, CAMD_le, and CAMDlf, respectively). The 
corresponding problem dimensions are 36, 48, 60, 72, 84 and 120. For all 
cases the number of constraints are 15. The termination criterion used is an 
absolute tolerance of 10'̂ . The results are shown in Table 2. 

Problem CAMD^la has a very limited search space. A feasible solution 
was found in the first iteration in the branch-and-bound algorithm. In 
CAMD_lc, the algorithm took 31 iterations and 351.4 seconds on a 333-
MHz DELL Pentium II personal computer. The maximum number of sub-
regions constructed is 16. The globally optimal solution corresponded to 
methyl-ethyl ketone (MEK or CH3-CH2-CO-CH3) with objective function 
35.471 kJ/ mole. This compound was found at the 10* iteration with a valid 
upper bound of 35.471 and a lower bound of 33.99. Since the difference 
between the upper and lower bound was more than the tolerance, the 
algorithm continued executing. The algorithm finally converged to MEK as 
the global solution after 21 more iterations. The two other feasible 
compounds found were propanol (CH3-CH2CH2-OH) and diethyl-ketone 
(CH3-CH2-CO-CH2-CH3). The objective function values for propanol and 
diethyl-ketone were 44.77 kJ/mole and 40.12kJ/mole, respectively. 

We note that at any iteration, the solution of the relaxed MILP problem is 
a structurally feasible compound since all the structural constraints are 
linear. During the execution of the algorithm, fifteen different compounds 
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were found. Of these, two other compounds satisfied the specified or 
performance constraints. For case CAMD_le, the number of iterations is 46 
and 3 compounds are designed. The maximum number of subregions 
created is 21. In CAMD__lf, the number of iterations is 67. The maximum 
number of subregions created is 21. Even though the number of iterations 
does not grow very much, the CPU time increases. This is because the CPU 
time associated with each LP solution increases significantly when the 
number of variables increases. Another desirable property of this algorithm 
is that a very small number of subregions are created. 

For the three cases, the number of subregions created are 16, 21 and 21, 
respectively. Thus the algorithm is very efficient in terms of storage 
requirements. It should be noted that as the dimension of the problem 
increases from 60 to 120, the number of iterations only increases from 31 to 
67. This is perhaps the consequence of the fact that the number of branching 
variables, namely 4, is the same in all the cases. 

Table 2. Application of Reduced Space BB algorithm to CAMDl 

Case Umax Var Constr Iter CPU Max # of 
(min) subregions 

CAMD la 
CAMD lb 
CAMD Ic 
CAMD Id 
CAMD le 
CAMD If 

3 
4 
5 
6 
7 
10 

36 
48 
60 
72 
84 
120 

15 
15 
15 
15 
15 
15 

1 
18 
31 
42 
46 
67 

0.045 
0.86 
5.85 
17.21 
48.45 
713.5 

1 
12 
16 
20 
21 
21 

Recall that in all the example problems above, although the number of 
variables Uy increased from 60 to 120, the number of branching functions is 
unchanged at 4. In contrast, if we employ the standard full space BB 
algorithm, we will need to perform branching with respect to all the 
variables W/. Here, the number of branching variables ranges from 60 to 120. 

5.2 Case study 2 

In this case, the same formulation is solved with the Churi-Achenie model 
(see Step 4 above). The connectivity variables z and w are employed in the 
structural representation as described in Section 2. The second constraint in 
CAMD_1 is replaced by the following set of structural constraints. This 
leads to a large increase in the number of linear structural constraints. 
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m Smax m 

p=l j=l k=l 

i-1 smax 

P=i J=i (30) 

rmax m nmax 

Z l.^ik+ Z^i=^max 

(29) 

(31) 

wj=0 (32) 

Wi<Wi-i-i i=l...(nniax-l) (33) 

Z H ^ijp -^^^ik <M i =L..nmax,k =l...,m 
J=Vk+l P=J 

S nux Smax 

H^ijp ^ H^pji ^ ' " l>.(nmax'l),p =(i+l),,.nmax 

(34) 

(35) 

Y, Z^jp <1 i = l,..nmax, J= L..Srmx 

P=^ (36) 

m m 
E^ik-Z^i-l.k ^0 i = 2...nrmx 
k=i k=i (37) 
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This formulation is solved for Umax equal to 3, 4 and 5 (CAMD_2a, 
CAMD_2b, and CAMD_2c). The numbers of search variables are 57, 84 
and 115 respectively. The corresponding numbers of constraints are 67, 84 
and 113. Note that the formulation is nonlinear with respect to only the Uik 
variables. The results are summarized in Table 3. 

The number of variables that participate in the nonlinear term is the 
dimension of Uik variables. The remaining variables determine the 
connectivity information and appear only in the linear terms in CAMD_2. 
The dimensions of the vector of variables Uik in the three runs are 36, 48 and 
60 (CAMD_2a, CAMD_2b and CAMD__2c). 

Table 3. Application of Reduced-Space 

Case 

CAMD 2a 
CAMD 2b 
CAMD 2c 

Ilmax 

3 
4 
5 

#ofVars 

57 
89 
115 

BB algorithm to probh 

# of #of 
Const Iters 

67 1 
89 18 
113 22 

;m CAMD 

CPU 
(min) 

0.1 
3.36 
14.5 

2 
Max # of 
subregions 

1 
9 
11 

CAMD_2a corresponds to a problem with a reduced search space 
restricted by n^ax^ 3. For this case the global optimal solution was found in 
only one iteration. When the search space was increased to 89 and 115 
variables, the number of iterations also increased to 18 and 22. For the run 
CAMD_2c one of the feasible compound found in an intermediate step is -
CH2O-CH2COO-CH2O-CH2-, a cyclic compound. The structural constraints 
used in case study 2 allow design of cyclic compounds. The constraints in 
case study 1 are restricted to only acyclic compounds. 

For about the same number of variables, the number of iterations in case 
study 2 (CAMD__2) is relatively smaller than case study 1. In addition, the 
maximum number of nodes generated in case study 2 is much smaller that in 
case study 1. This can be attributed to the fact that in CAMD_2 the number 
of variables appearing in nonlinear term is much smaller compared to 
problems of similar dimension in CAMD_1. 

5.3 Case Study CAMD_3 

In this case study, solvents are designed with entirely different criteria. Here 
the most desirable attribute of the solvent is recoverability. That is, after the 
blanket wash operation is performed the solvents compounds that evaporate 
are recovered by a solvent recovery system. This case study attempts to find 
a solvent compound that will be least expensive to recover. Many 
competing solvent recovery techniques can be applied, namely condensation. 
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gas adsorption and gas absorption. Here the recovery system is restricted to 
the condensation. 

A typical condensation recovery system consists of a compressor that 
takes in the printing solvent-laden exhaust gases (from the ventilation 
system) and compresses them to a higher pressure. These high-pressure 
gases are passed through a condenser that cools this stream. Next it is 
flashed to recover the solvent. The details of the recovery operation have 
been discussed elsewhere (Sinha, 1999). Here the objective is to find the 
solvent compound that will have minimal total annualized cost (TAC) 
associated with recovery. Here we will use as branching functions (except 
for the functions in (6.4)) the following functions 

i J 

i J 

r 7 comp 

The CAMD_3 case study with recovery considerations is: 

inin TAC = 85675 * (P^^J" -1) + 99.03(298^/^;^ - r,„„,) + 

9.69x10 

ZE«^^4 (38) 
i J 

XZ"(/(2-^y) = 2 (39) 
' J 

l o g , o ( r j - l o g , o ( P ' ) - 2 . 7 ( r , / r _ , ) ' - ^ < - 1 1 . 4 7 (40) 
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exp((XZ"(/Cy)/102.425) < 223 (41) 
^ J 

5 0 0 < r , „ + ^ X " ^ . r , , < 7 0 0 (42) 
' J 

20<//,„+XZ"</^^/^80 (43) 
i J 

ZZ"/,(;^'')y+ZE"i;(;^')y ^4.0 (44) 
^ y I J 

4(^^ - 23.3)' + {5p - 6.6)' + (^^ - 8.3)' < (19.8)' (45) 

y/^-63y/y>0 (46) 

y/,<y/,<y/,, / = 1,...,8 (47) 

Here Eq. (39) is Odele's octet rule implementation, Eqs. (40) to (46) are 
recovery, melting point, boiling point, heat of vaporization, octanol-water 
partition, solvent power and swelling constraints, respectively, Eq. (47) 
represent constraints imposed by the branching functions. 

The following modified basis with 15 groups is used in this study: [CH3-, 
CH2-, -OH, CH3CO-, -CH2CO-, -COOH, CH3COO-, -CH2COO-, -CH3O, -
CH2O-, CH2=CH-, -CH=CH-, -CH2NH2, =CHNH2, CH3NH-]. The aromatic 
groups are removed and some groups with nitrogen are added to include 
amine or other compounds with nitrogen. 

There is a total of 8 splitting functions. The last 4 splitting functions are 
used for construction of linear underestimators for the objective function and 
underestimator and overestimator for the recovery constraint. The 
construction of estimators is discussed in the attached appendix. This case 
study has 60 variables and 3 nonlinear constraints. Moreover, the objective 
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function is nonlinear. The condenser temperature however can range 
between 150 °K and 298 ""K. This results in poor scaling and causes 
difficulty during optimization. To overcome this we have scaled the 
condenser temperature between 0.1 and 0.9 such that T' = 185Tcond + 131.5 
where T^is the scaled condenser temperature. 

The globally optimal compound designed is a diester with the structure 
CH3-(CH2COO)2-CH2NH2. The recovery cost associated with this 
compound is $25,981. The corresponding compressor pressure is 2 atm and 
the condenser temperature is 288.75°K. The algorithm took 56 iterations 
and a CPU time of 41.6 seconds. At termination, the number of nodes (i.e. 
subregions) is 20. 

The above problem was solved again with local optimization software 
DICOPT in GAMS (Brooke, 1996). The optimal compound found by 
DICOPT is HO-CH2COO-CH3NH, an ester. The objective function 
associated with this compound is 106,327, the compressor pressure is 10 
atms and condenser temperature is 298 ^K. We note that the extra effort 
associated with the global optimization is justified and results in almost 4 
times reduction in the recovery cost. 

6. DISCUSSION AND CONCLUSIONS 

The molecular design problem is reduced to solving an MINLP problem in 
which the number of binary variables Uy can range from several tens to 
several hundreds. The use of the standard branch-and-bound method for 
solving the problem can be computationally intensive since all the variables 
Uij must be used as branching variables. To overcome this problem, we have 
proposed a new strategy. The main idea of the method consists in that we do 
branching using branching functions instead of all the search variables. This 
approach results in a decrease in the number of branching variables in our 
molecular design framework. For example, in case study 1, a problem with 
120 nonlinear variables is solved with just 4 splitting variables. This is also 
demonstrated in the case studies. The maximum number of nodes stored in 
memory during the search is 21 for CAMD_le and CAMD_lf and 20 for 
CAMD_3. 

In other words, during branch and bound, the bounding operation is 
performed the search variables space, while the branching operation is 
performed in a reduced dimension space defined by the branching (or 
splitting) functions. 

The branching functions are determined from the special tree function 
representation of both the objective function and constraints. In order to 
construct the corresponding linear underestimators, we employed the sweep 
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method we developed in our research (Sinha, Achenie and Ostrovksy, 1999) 
and (Ostrovsky, Achenie and Sinha, 2000). 

The proposed algorithm scales well. Specifically, as the problem size 
increases, the computational effort increases almost linearly. We anticipate 
that this linear behavior will be exhibited also in large molecular design 
models. 

7. APPENDIX: CONSTRUCTION OF ESTIMATORS 

One very important property for solvent is its ability to dissolve the solute. 
A solute-solvent interaction is often characterized by the Hansen solubility 
parameter ST (Archer 1996). This parameter is characterized by the three 
intermolecular interactions, namely hydrogen bonding interaction {SH), polar 
interactions {Sp) and nonpolar (dispersive) interaction {SD) (Hansen, 1971). 
The mathematical expression for the solvent selection criterion based on the 
Hansen solubility parameter is 

R' =A{5^ -s;y +(s,-s;y+(s„ -s;y<(R*r (48) 

(>D= r(>p= ,dfj= (49) 

¥v ¥v ¥v 

where 

i J i J 

i J i J 

(50) 

Here Fot, Fpi and UHI are the group contribution parameters associated 
with the dispersion, polar and hydrogen bonding solubility parameters 
respectively (Barton 1985). Substituting Eq, (30) into Eq. (39) we obtain 
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Note that the nonconvex Hansen solubihty design criteria make the 
solvent design problem multiextremal. R* is the interaction radius associated 
with the solute. The distance between the solute and solvent solubility 
parameters is K^ and can be computed as shown in Eq. (39). Vj is the molar 
volume of the solvent. We will now construct linear underestimators for this 
important constraint. Eq. (32) is made up of four separable terms. The first 
and the fourth terms are squares of linear equations. The second and the 
third terms are relatively more compHcated. Using Eq. (30) one can obtain 
the STF representation of the third term in the form 

f̂-(̂ ;)̂ ;̂=T [̂fe (̂̂ 27-4^>.̂  (PI = ^l(p^ +^(P2 

<Pi = V^i -V^2 ' ^1 =V^H and ^2 =V^v 

Here the functions ^f, ^ j * , (p^ , ^l, (pf, cp2 concsponds to the fifth, 
third and second levels respectively. 

The first level functions are the variables Uik. The branching set branching 
functions contain(p^,(p\,cp\,{j/ ,y/p,y/y,y/^.lX is easy to see that the first 
three functions are expressed as functions of the variables YH^¥P^¥V^¥D' 

Therefore the functions ¥H^¥P^¥V^¥D ^^^ ^^ ^^^^ ^̂  branching 
functions. Let us consider for illustration construction of an underestimator 
for the third term in Eq. (32). First we need to find bounds 
for^j"^, (p\ ^(p\,(p\^(p\. Since we know the bounds for Uik we can 
determine the bounds for^j^,^2. The ranges of the functions (p\,(p\ are 
used to construct the ranges of q)\ and (p\ at the third level. These are then 
used to construct the range of (p^ , at the fourth level. Thus the bounds are 
estimated in a bottom up sweep. 

The linear underestimators are constructed in a reverse sweep that starts 

at the fifth level and goes down. First, a linear underestimator of (pi is 

constructed in terms of (p\ as follows L[^f; 5"* ] =//i (̂ î )̂ +/ /2 . Here ^ 
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= ((p^,(p^). The sign of juj, which depends on the interval(^j^^,^i^), 

determines whether the flinction jU^((Pi) is convex or concave with respect 

to variables (p^ and ̂ 2 • ^^e underestimator now has the following form 

The signs of (jUs -JU4) and (jUs +JU4) determine if the corresponding 
functions are concave or convex. Subsequently, the underestimator is 
constructed with respect to y/n^nd y/y. After rearranging the terms, the linear 
underestimator is represented asL[(pl,5'^ ] = /u^y/^ + /u^{y/y )f //^Q . 

We reiterate that the subregion is not in terms of search variable utk, but 
rather in terms of functions of Uik. Based on the region S the coefficients ///, 
(jUs '•IU4) and (jUs -^JJ,^ are calculated and a decision about construction of the 
underestimator is made at two levels (Ostrovksy, Achenie and Sinha, 2000). 
This makes the algebraic structure of the underestimator adaptive. 
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Abstract Nonlinear optimisation and a pig growth model are combined with the 
traditional use of linear programming to maximise gross margin per 
pig place per year for the pig producer. Emphasis in this paper is on 
description of the problem and analysis of the objective function. 

Keywords: genetic algorithm, growth model, linear programming, Monte Carlo, 
Nelder-Mead algorithm, simulated annealing 

1. Introduction 
Production of pig meat worldwide exceeds that of any other meat. 

Pigs are generally fed in a controlled environment, with least cost diets 
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determined using linear programming. Of greater importance to the pig 
producer than least cost diets, however, is the maximisation of gross 
margin (per pig place or per pig place per year). Two relatively recent 
developments, pig growth models and efficient methods for optimisation 
of nonlinear functions of high dimension, in conjunction with the tradi
tional use of linear programming, now make gross margin maximisation 
possible. The method of solution involves a synthesis of optimisation 
techniques, linear programming being employed as a sub-routine within 
the framework of a wider search algorithm. The purpose of this paper 
is to describe this problem, together with the solution methodology and 
associated practical outcomes. 

The format of the paper is as follows. In the next section the opti
misation problem is formulated, the domain described and the objective 
function detailed. Successful solution approaches are described in Sec
tion 3. The nature of the objective function is discussed in Section 4. A 
summary then concludes the paper. 

2. The problem 
Pig farmers growing pigs from weaning until slaughter wish to max

imise gross margin, namely 

Gross Return — Total Feed Costs — Weaner Cost, 

per pig place per year. The main area over which the pig producer 
has control is the feeding of the pig. A single feeding regimen can be 
summarised, as described in DeLange, 1995, by three parameters, rf, r 
and p. A feeding strategy F is then a finite sequence of ((i, r, p) triples, 
with each triple describing the diet for a fixed period, say one week. 
Here 

d = digestible energy density, in MegaJoules per kilogram 

r = minimum lysine to digestible energy ratio, in grams per 

MegaJoule 

p — proportion of the ad libitum daily digestible energy intake 

The ad libitum digestible energy intake for the pig at any given liveweight 
is determined on farm using monitor pens of pigs. Feed supplied, feed 
wasted and pig liveweight are recorded in order to determine the volun
tary daily feed intake of the pig. 

For the purposes of this exposition we work with a feeding strategy 
of ten {dj r, p) triples, each fed for one week, so the general point in the 
domain has the form 

F = (di,ri,:pi; d2,r2,P2\ . . . ; G?io,rio,pio) 
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For the particular problem examined here, relevant to the New Zealand 
situation, a growth period of ten weeks is sufficient to include the most 
profitable solutions. 

The energy content of the ingredients in the diet requires that d be at 
least 12 MJ/kg and no more than 16 MJ/kg. A sensible range for r is 
from 0.4 to 1.0 grams of lysine per MegaJoule; values outside this range 
are feasible, but this range has been found wide enough to encompass 
the most profitable diets and is in accordance with the opinion of pig 
nutritionists. Finally, p is allowed to vary between 0.5 and 1.0; nutri
tionists agree that pigs require at least 50% of their maximum voluntary 
digestible energy intake. In summary, the general point in the domain 
lies in the hypercuboid in R^^ given by ([12,16] x [0.4,1] x [0.5,1])^^. 

Thus the objective function of interest is g{F)^ the gross margin per 
pig place per year associated with feeding strategy F. This is calculated 
in two steps: 

1 Calculation of g{F^x)^ the gross margin per pig place per year 
when feeding strategy F is administered for x < 70 days, and then 

2 Calculation of g{F) = max̂ ^ p(F, x) 

We now provide more detail on each of these steps. 
In the first step, the gross margin per pig place per year is calculated 

for a given feeding strategy F and number of days x < 70 for which it 
is fed, as detailed in Figure 1.1. This calculation successively rehes on a 
linear program, the pig growth model and the price schedule. 

A sample linear program is illustrated in Table 1.1. Using this we 
minimise the diet cost per kilogram, subject to the d and r values in the 
(d^r^p) triple. Parameter d is incorporated in an equality constraint for 
the digestible energy total. Together with parameter r it also dictates the 
minimum lysine level in the diet. The other amino acids are constrained 
to be present in at least certain proportions to lysine, to ensure ideal 
protein balance. Parameter p and the ad libitum digestible energy intake 
curve then determine the total feed intake and so the minimum daily feed 
cost. 

The pig growth model used, from DeLange, 1995, requires three pa
rameters particular to the pig genotype: 

PQ = initial mass of protein in the weaner pig 
Pdmo,^ — maximum daily protein deposition 

min LP = minimum allowable lipid to protein ratio 

Given a feeding regimen and initial chemical body composition the pig 
growth model is then capable of "growing" a pig for x days, outputting 
backfat thickness and carcass weight. 
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Feeding schedule F 

{p>] 
Linear program 

Pig genotype parameters 
Number of days, x 

Minimum cost diets 

Growth model 

Final backfat, carcass weight 

Total feed costs 

Weaner cost ( 

Price scliedule 

3ross return per pig 

Calculate g(F, x), the gross margin per pig place per year 

Figure 1.1. The gross margin per pig place per year when feeding strategy F is 
used for x days is calculated as shown in the flow chart. A linear program finds the 
minimum cost diets for the given feeding strategy. The pig growth model and price 
schedule are then used to find the market return per pig, from which the gross margin 
per pig place per year g{F^x) may be calculated. 

Price schedules for pigs at slaughter typically depend on backfat thick
ness and carcass weight. A 1998 New Zealand schedule is reproduced in 
Table 1.2. For pigs in the best categories (backfat thickness from 6mm to 
9mm and carcass weight below 55kg) the producer receives NZ$3.10/kg. 

In the second step, g{F) is easily found as the maximum in the array 

(^(F,l), 5(F,2), . . . , 5(F,70)) 

Figure 1.2 summarises the problem: a linear program and a pig growth 
model allow us to evaluate the objective function, which is then max
imised over a high dimensional hyper cuboid using a nonlinear program. 

3. Solution algorithms 
For this problem the objective function is of the "black box" variety; it 

is not known analytically. Many objective function evaluations are thus 
required by the solution algorithms, involving substantial computation. 
The domain is also of moderately high dimension. Simulated annealing ( 
Metropolis et al., 1953) and genetic algorithms (Holland, 1975) are both 
successful stochastic approaches to the problem, while a satisfactory de-
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Table 1.1. The linear program providing the least cost diet. 

minimise: 
Digestible energy 
Lysine lower bound 
Balanced 
amino 
acid 
lower 
bounds 

Mineral 
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Ingredient 
upper 
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Diet mass 
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Table 1.2. A New Zealand price schedule giving prices in cents per kg for pigs at 
slaughter, as at 24 August 1998. A levy of $9,40 per carcass is deducted. 

Carcass Weight (kg) 

35.0 35.1 40.1 45.1 50.1 55.1 60.1 65.1 70.1 75.1 80.1 
Fat and to to to to to to to to to and 

(mm) under 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 over 

< 6 
6-9 

10-12 
13-15 
16-18 
> 18 

250 
310 
285 
190 
150 
120 

250 
310 
285 
190 
150 
120 

250 
310 
285 
190 
150 
120 

250 
310 
285 
215 
150 
120 

250 
310 
285 
215 
150 
120 

250 
295 
280 
245 
165 
135 

250 
295 
280 
245 
165 
135 

250 
280 
280 
245 
165 
135 

250 
280 
280 
245 
165 
135 

250 
280 
280 
245 
165 
135 

250 
275 
275 
245 
165 
135 
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1 
Linear program 

Objective function g(F) Nonlinear optimisation Optimal feeding strategy 

Pig growth model 

Figure 1.2. The components involved in maximisation of gross margin per pig place 
per year. 

terministic approach is provided by the Nelder-Mead algorithm (Nelder 
and Mead, 1965). They typically yield, for the particular problem used, 
a gross margin of around NZ$280 per pig place per year. Pure random 
search, however, is not successful. Figure 1.3 shows the progress of a 
genetic algorithm on the problem, compared with that of Pure Random 
Search. In 30 seconds a genetic algorithm can find a feeding strategy 
equal to that reached by pure random search in over 100 hours! Pure 
random search, in that time, reaches a solution of approximately NZ$250 
per pig place per year. 

Table 1.3 displays the final results of a successful run. It hsts the val
ues of d, r and p in the best solution; the cost in cents per kilogram of 
each diet is also given. Slaughter date x was selected as 63 days, so the 
parameters for the tenth week were not used and are not shown. The 
linear program then provides the ingredients for each diet in the feed
ing strategy, together with the optimal proportion of each ingredient 
by weight. For example, a kilogram of the first diet in Table 1.3 con
tains 510g barley, 280g soybean and lOOg wheat by-product, with the 
remainder made up of meat and bone meal, soya oil, salt and synthetic 
amino acids. (The unusual diet administered in week 7 allows the pig to 
maintain near maximum protein deposition with virtually zero lipid de
position, permitting continued weight gain but restricting fat content in 
the pig. Not all solutions found by the optimisation techniques contain 
this kind of aberration.) 

4. The nature of the objective function 
A question which always vexes the global optimiser is whether the 

optimum has been reached. In order to investigate this question in this 
context, further information about the nature of the objective function 
is obtained in two ways: 

1 By examining the value of the objective function along randomly 
taken domain cross-sections through the best known solution. This 
provides evidence that the optimum has been reached and suggests 
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Figure 1.3. Comparison of the time in seconds required by a genetic algorithm and 
pure random search to attain certain dollar values of gross margin per pig place per 
year. 

Table 1.3. Weekly values of d, r and p and cost per kilogram of diet for a solution 
found using a genetic algorithm. 

Week 

1 
2 
3 
4 
5 
6 
7 
8 
9 

d 

14.51 
14.57 
14.40 
13.14 
14.34 
14.18 
13.58 
13.14 
14.14 

r 

0.791 
0.627 
0.554 
0.568 
0.493 
0.478 
0.758 
0.550 
0.528 

P 

0.961 
1.000 
1.000 
0.840 
0.873 
0.850 
0.510 
0.670 
0.680 

Cost (c/kg) 

41.24 
35.93 
33.10 
30.61 
31.00 
30.20 
37.55 
30.07 
31.66 

that the objective function takes the form of a single peaked, but 
very craggy, high-dimensional volcano. 
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2 By comparing the performance of pure random search with the 
expected performance if the form was broadly that of this "craggy 
volcano". 

We now report on these two investigations into the nature of the objec
tive function. 

Figure 1.4 shows the typical shape of the objective function along a 
random cross-section through the putative argmax. Overall, the function 
appears to be unimodal. Jumps in the function are caused by the step 
function nature of the price schedule and the fact that the pig must grow 
a whole number of days. 
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Figure I.4. The approximately volcano shape of a section through the objective 
function at the best known solution. 

Through examination of many such cross-sections an average relation
ship is set up between p, the gross margin per pig place per year, and 
l{g)^ the distance between the corresponding place in the domain and the 
best known solution (as illustrated in Figure 1.4). The expected num
ber of iterations until convergence to a particular level for pure random 
search will be the reciprocal of the probability that a given iteration falls 
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in the associated level set. This probability is the relative volume of the 
level set. Assuming roughly hyper-spherical level sets for the objective 
function, the probability is 

15\V 

where V is the volume of the hyper cuboid domain. 
Figure 1.5 compares this theoretical expected number of pure random 

search iterations to reach a given gross margin per pig place per year 
with a step function recording progress of a particular run. Evidently 

500000 

Processor time 
1000000 

Figure 1.5. A comparison of the expected number of iterations to reach a value of 
the objective function (dotted Hne), under the assumption of hyperspherical level sets, 
with the number required in a particular run of pure random search (solid line). 

the forms of the two curves are similar. The actual run is higher than 
the curve based on the estimated relationship between g and l{g) with 
the assumption of hyperspherical level sets. This may well indicate that 
smaller peaks exist. There are also some cross-sections where the objec
tive function does not decrease very rapidly. Overall there is evidence 
that the level sets have slightly greater relative volume than predicted. 
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It's time to ask an important question: Is this a theoretical solution 
with no practical value? In practice, feeding regimens cannot be admin
istered precisely. Allowing for an achievable tolerance in feeding of 0.05 
in each parameter of each diet, however, it is evident that the optimal 
solution is still only one part of the space in 10^^. An intelhgent search 
is needed in order to find solutions approaching this optimum, ats the 
comparison with pure random search has shown. Even with only three 
distinct diets (as is common in practice today), the optimal solution is 
one part in 10^^. A useful, practical solution region remains a needle in 
a high dimensional haystack. As the world moves to continuous feeding, 
the dimension of the problem will increase and the need for intelligent 
optimisation methods will become even more pressing. 

5. Summary 
The development of pig growth models, together with the availability 

of nonlinear optimisation tools on high speed computers, has made it 
possible to extend the traditional use of optimisation in pig nutrition. 
Linear programming to determine least cost diets is now a component of 
a larger optimisation routine, where, for example, the challenge of diet 
formulation to maximise gross return per pig place per year can be an
swered. Optimisation methods show considerable promise for increasing 
the efficiency of the worldwide industry of pig feeding. 

Acknowledgments 
Professor Paul Moughan is thanked for his encouragement and perti

nent questions during the development of this material at Massey Univer
sity. The contributions of Lindsay Alexander in providing programming 
advice and of Christopher Clark in developing relevant software are also 
much appreciated. 

References 
DeLange, C.F.M. (1995). Framework for a simplified model to devfion-

strate principles of nutrient partitioning for growth in the pig^ Mod
elling Growth in the Pig, EAAP PubHcation 78 (Moughan, P.J., Ver-
stegen, M.W.A. and Visser-Reyneveld, M.I. (eds)), 71-85. 

Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann 
Arbor, MI: The University of Michigan Press. 

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and 
E. Teller. (1953). Equations of state calculations by fast computing 
machines. The Journal of Chemical Physics 21 1087-1092. 



Feeding Strategies for Maximising Gross Margin 43 

Nelder, J.A., and R. Mead. (1965). A simplex method for function min
imisation, The Computer Journal 7 308-313. 



Chapter 3 

OPTIMIZED DESIGN 
OF DYNAMIC NETWORKS 
WITH HEURISTIC ALGORITHMS 

Valentin Samko 

Stephen Hurley 

Stuart Allen 

Roger Whitaker 
Centre for Intelligent Network Design 
Cardiff University 
United Kingdom 
steve@cs.cf.ac.uk 

Abstract This research investigates the design of rehable wireless communica
tion networks in which all communication is carried over the wireless 
medium, every node exhibits mobility and is able to establish only a 
limited number of point-to-point links with other nodes in its neigh
bourhood. The design process aims to select a feasible subset of the 
potential links in such a way that both network reliability and network 
performance are maximised. We describe a graph-theoretic model for 
the type of network under consideration, define some graph-theoretic 
measures of network reliability in terms of this model, present meth
ods for the optimisation of these reliability measures, and indicate their 
performance under simulation. 

1. Introduction 
Recently there has been growing interest in the design of backbone 

networks for connecting a number of separate, small-scale, conventional 
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ad-hoc networks into a single large network [9, 14, 19, 20, 23]. Such 
networks can be implemented by locating one or more long-range com
munications devices, which we call nodes, within each of the smaller 
networks. Each backbone node contains one or more high gain (nar
row beam) steerable directional antennae [1, 7, 12]. A multihop wireless 
backbone network can then be constructed by estabhshing point-to-point 
links between these nodes [2-1, 4, 15]. Among the advantages of using 
directional antennas are a higher signal-to-noise ratio, which results in 
longer transmission ranges and/or lower power requirements, and re
duced radio interference, which leads to improved utilisation of the wire
less medium and increased network capacity. In hostile environments, 
further benefits include lower probabilities of detection and greater ro
bustness to jamming. 

So far, most research into ad-hoc networks has focused on routing 
protocols that are robust to changes in network topology resulting from 
mobility, although methods of improving the energy efficiency of mobile 
ad hoc networks have also been investigated. 

The networks we study exhibit mobility in the sense that they can 
move from place to place. At any particular instant, each node is able 
to establish a limited number of point-to-point links to other nodes in 
its neighbourhood. The main function of our network is to facilitate 
communication between its constituent nodes. The primary goal of our 
research is to develop algorithms for the design and maintenance of fea
sible network topologies so that network performance is optimised as far 
as possible. 

One aspect of our research is to identify effective (and efficient) graph-
theoretic measures of network reliability. Since the primary function 
of our network is to facilitate communication, the effectiveness of any 
such measure must ultimately be assessed against network performance. 
In fact, we have implemented several of such measures, and designed 
algorithms to simulate various types of mobility and traffic that are likely 
to occur in dynamic networks. These will be used to investigate the 
correlation between abstract measures of network reliability and various 
empirical measures of network performance. Any reliability measures 
that are found to be highly correlated with good network performance 
will subsequently be exploited in order to develop effective network design 
algorithms. 

It is worth pointing out that topological considerations do not play 
a major role in traditional multihop wireless networks, where each node 
employs an omni-directional antenna to establish broadcast links with 
other nodes in its neighbourhood. The topology of these networks is 
usually assumed to be determined autonomously, and most research in 
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this area [6, 8, 16, 21] has thus focused on developing routing protocols 
that are responsive to changes in network topology, occurring for example 
as a result of node mobility, node failure and link failure. Despite the fact 
that network topology is critical in determining network performance [5], 
the problem of designing and maintaining desirable network topologies 
that allow for effective routing has received little attention. In fact, the 
only method of achieving topology control in this type of network is to 
adjust the transmission power at the network nodes - this is addressed 
in [18, 17]. 

2. Problem setup 
A network management scheme for the type of network under con

sideration must also include algorithms for maintaining the topology of 
the network - such algorithms are often called network design or topol
ogy control algorithms. At any particular instant, a network design al
gorithm must determine which links (among those available) should be 
constructed by the network in order that the performance of the network 
is optimised as far as possible. The basic role of a network design algo
rithm is to provide a network topology that allows the routing algorithms 
to operate effectively. In this context, desirable topological characteris
tics (for both static and dynamic networks) include connectivity so that 
a path exists between every pair of nodes, small diameter so that short 
paths exist between each pair of nodes, and the existence of multiple dis
joint paths between each pair of nodes so that routes continue to exist 
in the presence of link failure. 

We aim to construct a model of dynamic communications networks so 
that many of the known types of dynamic network (e.g ad hoc networks, 
bluetooth networks) can be represented by the model. Another aim of 
our research is to develop a comprehensive simulation environment for 
evaluating the performance of network design algorithms under a wide 
range of conditions. In particular, we consider different types of 

• Scenario: including the number of nodes, terrain characteristics, 
node distribution and hardware specification (e.g. transmission 
range). 

• Mobility: including the node mobility model (e.g. random walk, 
random waypoint, group mobility models), maximum speed and 
the rate of acceleration. 

• Traffic: including the mode of communication (e.g. unicast, multi
cast, broadcast), packet arrival rate and the distribution of inter-
arrival times. 
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We remark that because this evaluation scheme involves a number of 
random quantities (e.g. the initial node distribution, the mobility of the 
nodes and the network traffic), we must ensure that simulation is per
formed sufficiently many times in order that we may draw vahd statistical 
conclusions from the performance data. 

Environment 
The environment is defined by the rectangle region in which all the 

nodes are located. Nodes are assumed not to leave this rectangle. All 
the mobility scenario generators ensure that nodes bounce off the edges 
of this region, i.e. if a node reaches the left or right boundary, then its 
horizontal speed is negated, and the vertical speed is negated if the node 
reaches top or bottom boundary. 

Units of measurement 
The software system (DynaNet) which implements this research is not 

tied to any specific unit measures like seconds, metres, etc. Instead, 
relative units of measurement are used. All the distance units are equal 
and all the time units are equal. Therefore, one could treat time units 
as seconds, or as hours, the result will be still valid (in considered time 
units). 

3. Characteristics of Dynamic Networks 
Although each node is able establish a link with any other node located 

within its transmission range, hardware constraints impose a limit on 
the number of links that can actually be supported by a node at any 
particular instant - we call this the maximum degree constraint of the 
node. A feasible topology or design for the network is then defined 
to be any subset of the potential links for which the maximum degree 
constraint at each node is satisfied. 

Network Characteristics 
Given a set of network parameters, a network generator produces a 

sequence of network instances 

{Ni:l<i< TIN} (1.1) 

A network instance is defined to be a network whose nodes have each 
been assigned a position vector. 
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Node distribution. Network instances are generated in two ways, 
both of which require that a bounded region R is specified. 

1 For the uniform distribution, the position of each node is selected 
uniformly at random from R. 

2 For the clustered distribution, 

(a) The position xc of the centre of each cluster C C Â  is selected 
uniformly at random from R. 

(b) The position Xi of each node n̂  G C is selected uniformly at 
random from the disc of radius re centred at xc (where re is 
the radius of cluster C). 

Node velocity. Since a node trajectory generated according to 
one of the random waypoint mobility models (see below) depends on the 
initial position of the node (i.e. the position at time tgtart)? velocities are 
not assigned by the network generator. Instead, the mobility generator 
is required to specify the velocity of each network node at time tstart-

Mobility 
The trajectory of a node over a time interval [tstavt^tend] will be rep

resented by a sequence of mobility events, defined to be a change in the 
velocity of the node, along with the times at which these events occur. 
The node is assumed to move at constant velocity between successive 
events. Thus the trajectory of a node Ui e N can be represented by the 
set 

{{t,v{t)):t^to,tu,,,,tn} (1.2) 

where to = tgtart? tn = 4nd -̂nd v{tq) is the velocity of n̂  over the interval 
[tq,tq^i)] (see Table 1.1). 

Parameter 
time 
node 
xvel 
yvel 

Description 
The time at which the mobihty event occurs 
The node at which the mobihty event occurs 
The horizontal component of the new velocity 
The vertical component of the new velocity 

Table 1.1. Mobility parameters 

The advantage of this representation over the traditional method of 
recording the position of the node at various times in the interval [tgtart? ênd] 
is that it allows more flexibility regarding the choice of time interval be
tween successive updates of the network state during simulation. 
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Random walk. In the random walk model, the trajectory of a 
node over the time interval [tstart̂ ^end] is generated by first constructing 
an increasing sequence 

^start = to < tl < . . . < ti < tn = tend (1-3) 

according to a Poisson process of intensity A. If we define the inter-
impulse times by 

Ati = ti- ti-i for l<i<n (1.4) 

then each Ati will be identically distributed according to the probability 
distribution 

F{x) - P{At <x) = l-e^^ (1.5) 

In the context of network mobility, the parameter A is called the impulse 
rate since its value determines the average rate at which the velocity of 
a node changes. 

Having generated this sequence, we then generate a velocity for each 
interval [tq^tq^i] by selecting the speed uniformly at random from the 
interval [0, Smax] and a direction uniformly at random from the interval 
[0,27r], where Smax is the maximum speed of the node. In particular, the 
node is assigned an initial velocity (which it maintains for the duration 
of the interval [to^ti)). 

Random way point. The random waypoint mobility model was 
first described in [6] and later refined in [3]. A node randomly selects a 
point in a bounded region R and moves towards that point at a speed 
selected uniformly at random from some bounded range. When the point 
is reached, the node pauses for some pre-defined time, then the procedure 
is repeated. 

In contrast to the random walk model, trajectories generated accord
ing to the random waypoint model 

1 require that a bounded region R is specified, and 

2 depend on the node positions at time tgtart-

Consequently, a mobility instance Mij generated according to the random 
waypoint model depends on the environment E and also on the associated 
network instance Â .̂ 

In [24], it is noted that selecting the speed from the range [0, Smax] for 
some maximum value <Smax) 

results in a steady decrease in the average 
speed of the nodes. The reason for this is that if a node is assigned a 
speed that is close to zero, it will have this small speed for a long time 
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(until it reaches its destination). One solution to this problem, is to 
define some minimum speed Smm > 0 and select the speed the uniformly 
at random from the range [̂ min^̂ max]-

The trajectory of node rii e N over the time interval [tgtart? ̂ end] is gen
erated according to the procedure outlined in Figure 1.1, where Xi(tstart) 
and 2/i(tstart) are respectively the horizontal and vertical coordinates of 
rii at time tgtart? Q'̂ d Ap is the pause time. 

1. b e t t — 6start> ^ — ^i i^s tar t j? V — yiy^start) 

WHILE (t < tend) 
2.1 Select a point {x'^y') uniformly at random within 

the region R. 
2.2 Select a speed s uniformly at random from the 

r a n g e [Smin, SmaxJ-
2.3 Compute the distance d = ((x' —x)^-f 

between (x^y) and {x'^y'). 
2.4 Record the mobility event {t^s{x' — 

y)/d). 
2.5 Compute the time At — d/s to reach 

{x^y) at speed s. 
2.6 Seit=^t + At,x = x', y = y' 
2.7 Record the mobility event (t,0,0). 
2.8 Set t = t + Ap 

END WHILE 

-{y'-y?Y'\ 

x)/d,s{y' -

{x'^y') from 

Figure 1.1. The random waypoint mobility model 

Group mobility. In the case where the nodes are partitioned into 
clusters, we also consider mobility models in which all nodes belonging 
to a particular cluster remain close together. 

Let C C N denote a cluster of nodes, let re denote its radius and let 
xc{t) denote the position of its centre at time t. If the nodes are initially 
distributed according to a clustered distribution, the initial position of 
the cluster centres xc = ^c(^start) îre distributed uniformly within the 
region R, and the position of each node Xi E C (at time tgtart) is uniformly 
distributed within a disc of radius re centred at xc-

We define analogues of the random walk and random waypoint mo
bility models, called group random walk and group random waypoint 
respectively, by first generating trajectories for each cluster centre using 
the (simple) random walk and random waypoint models described above. 
Consider the mobility events that describe the trajectory of the centre 
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of cluster C, 
{{t,v{t)):t = to,ti,,,.,tn} (1.6) 

To generate the trajectory of node n̂  G C, for each mobihty event 
{ti^v{ti)) with z > 0, we 

1 choose a point {x'^ y') uniformly at random within the disc of radius 
re centred at xc(U), where xciU) is the position of the cluster 
centre at time U. 

2 compute the required velocity so that node n̂  reaches the point 
{x'^y') at time U (this depends on the position of ui at time U-i). 

However, we must ensure that the required velocity does not exceed 
the maximum velocity of node n^. To this end, let S'max(C') denote the 
maximum speed of the cluster and let 

Sm^{C) = min{5max(^2) '• Tli E C} (1.7) 

where 5inax(^i) is the maximum speed of node rii E N. Then we require 
a lower bound on the length of the time interval At between successive 
changes in the velocity of the cluster centre, given by 

Ai > 2rc/S,n^{C) (1.8) 

where re is the radius of cluster C. Having selected some At according 
to this constraint, we then define 

Smeo^iC) = min{5n,ax(C), Sm^{C) - 2rc/At} (1.9) 

and choose the speed of the cluster centre for the interval [t, t + At] 
uniformly from the range [0,5^^^]. Note that for this to work we need 
that Smax{C) > Suiax{C) for every cluster C. 

Traffic 

The traffic associated with a given node over some time interval [tgtart? ênd] 
will be represented by a sequence of traffic events, along with the times 
at which these events occur. As illustrated in Table 1.2, a traffic event 
is defined by 

1 the time at which the event occurs 

2 a set of destination nodes 

3 a message size 
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Parameter 
time 
source 
target 
messageSize 

Description 
The time at which the traffic event occurs 
The node at which the traffic event occurs 
The node(s) to which the message is to be delivered 
The size of the message to be delivered 

Table 1.2. Traffic parameters 

The traffic associated with a node over the time interval [tstart̂ ^end] is 
generated by first generating a sequence 

^start — t Q < t l < . , . < t i < t n = tend (1-10) 

according to a Poisson process of intensity A. If we define the inter-arrival 
times by 

Mi = ti-ti-i for l < i < n (1.11) 

then each At^ will be identically distributed according to the probability 
distribution 

F{x) = P{At < x) = 1 - e^^ (1.12) 

In the context of network traffic, the parameter A is called the arrival 
rate since its value determines the average rate at which traffic events 
occur at a node. Having generated this sequence for node n̂  G N, we 
then generate a traffic event for each time ti by 

1 selecting a set of destination nodes. 

• For unicast traffic events, the set of destination nodes contains 
exactly one node, selected uniformly at random from among 
the other nodes in the network. 

• For broadcast traffic events, the set of destination nodes con
tains all other nodes in the network. 

2 selecting a message size according to a hurst distribution. This 
will be either a normal distribution or a uniform distribution. The 
mean of the burst distribution determines the expected size of the 
message. 

4. Initial da t a for network design: network hints 

If we know the future network traffic or mobility in advance, we may 
use this information designing the network. We have implemented two 
design algorithms which exploit such data. One of them assumes knowl
edge of the centre of each node's trajectory, and another requires the 
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knowledge of the maximum distance between this centre and other tra
jectory positions, for each node. These algorithms appear to produce 
better results, than basic greedy algorithms we have described in sec
tion 10.0. This leads to a conclusion, that the quality of the network 
design may significantly depend on whether we have any information 
about future network mobility and traffic. 

In the design algorithms presented later use will be made of so-called 
hints. These simply refer to values or characteristics that could provide 
some knowledge or insight to the optimisation process. 

Mobility hints 
Any node ^ can have a number of parameters associated with it: 

• Maximum range, the node can transmit signal over ^maxrange-

• Initial node position ^p ŝ-

• Initial node velocity ^y^i. 

• Centre of the area where the node is allowed to move ^areacentre-

• Maximum distance between the above mentioned centre and posi
tions in the node trajectory ^arearadius-

• Minimum node speed ^minspeed-

• Maximum node speed ^maxspeed-

• Average turn degrees per time unit (0 - 360) ^avgtmdegr-
For example, if this value is 360, then the node can turn up to 360 
degrees every time unit. If this value is zero, the node never turns. 
If this value is 3, then on average the node turns 3 degrees each 
time unit, i.e., for instance, the node can go straight for 20 time 
units, and then turn 60 degrees. 

Traffic hints 
Traffic hints could include the following: 

• Average number of bytes sent from node per time unit ^avgtrf • 

• Average number of nodes it sends messages to during one time unit 
^avgdest' 
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Environment hints 
We denote the environment by Q. Some characteristics of the envi

ronment could include: 

• Minimum distance between any two nodes ^mindist-

• Average distance between all the pairs of nodes ^avgdist-

5. Mobility, network states 
The network simulator reads all instances from input, where each in

stance consists of the initial network state, mobility model and traffic 
model. It also reads all the corresponding network design from the de
sign input file. Then it executes the mobility loop for each instance. 
During each iteration of the mobility loop it does the following: 

• reconnect failed links (depending on configuration file parameter); 

• update node positions and velocities (according to the mobihty 
model); 

• disconnect failed links; 

• update routing tables; 

• record network state in the output file; 

• flush node buffers (depending on configuration file parameter) i.e. 
discard any message at a node and link 

• run traffic loop. 

Link failure 
The link fails when the distance between two nodes surpasses the 

maximum transmitting range of these nodes. 
There are two modes on how we threat failed links. 

• Once some link fails, it is never considered again, and is never 
reconnected even if the nodes get close enough for the link to be 
estabhshed. 

• If the nodes constituting a failing link move back close enough for 
the link to be established, the link is reestablished and is vahd 
again. 



56 Global Optimization: Scientific and Engineering Case Studies 

6. Routing 
Perhaps the most important aspect of network management is routing. 

Routing algorithms must determine paths (routes) for packets to travel 
across the network so that the packets are delivered quickly and reliably. 
To minimise the delay experienced by a packet, the path is generally 
chosen to be one of the shortest paths between the associated source 
and destination nodes. A simple routing algorithm maintains a routing 
table at each node. For any given destination, the table records the link 
(among the set of links supported by the node) along which a packet 
must be sent in order to reach that destination. 

One attractive feature of implementing hierarchical network architec
tures is that the size of the routing tables maintained at each node can be 
reduced. Each (conventional) node in a cluster maintains a routing table 
only for nodes within its cluster, while all inter-cluster traffic is routed 
through the backbone nodes. In this context, the backbone nodes are 
often called gateway nodes [10, 11]. 

A routing algorithm aims to find a "good" path from a source Ug to 
a destination Ud^ For each link there is an associated cost of sending a 
packet down the link. In particular, the cost could represent a measure 
of the congestion on the hnk (e.g the buffer queue length) and hence the 
expected waiting time for packets wishing to use it. A least cost path 
between Ug and u^ is defined to be a path for which the sum of the costs 
over each link is minimum. If all link costs are equal, this is also called 
the shortest path. 

A dynamic routing algorithm is one that changes routing paths in 
response to changes in traffic patterns and network topology. 

Link state (LS) routing algorithms use variants of Dijkstra's algorithm 
to compute the least cost path from a node to all other nodes (provided 
these exist), and has a worst case running time of 0{n'^). LS algorithms 
are centralised in the sense that they need to know the state (cost) of 
each link. In a distributed setting, each node must therefore broadcast 
the cost of each of its adjacent links to all other nodes in the network 
(resulting in high control traffic overheads). 

We should note that the routing algorithms we use may produce different 
routes if we run it several times for the same network. This happens if 
there are several routes from one node to another with the same minimum 
weight. In such a case, the specific route may be chosen pseudo-randomly, 
depending on the used memory allocation schema, etc. 
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7. Traffic processing 
In each traffic loop we inject packets (corresponding to the traffic 

model), process these packets (a packet can only move from one node to 
the next and only if there is available link capacity between the source 
and target nodes). 

Each node and link have packet buffers, where packets are stored tempo
rary, until transmitted further. The buffers are limited by specified size, 
and packets are dropped if the destination packet buffer is full. 

8. Performance measures 
The performance of any network management algorithm must be mea

sured by the performance of a network under its control. For packet 
switched networks, examples of network performance measures include 
network throughput and network delay^ defined to be the average num
ber of packets delivered successfully per unit time and the average time 
taken for a packet to reach its destination respectively. 

The notion of network reliability corresponds to how well the network 
performs over a given time interval under dynamic conditions. A par
ticular network design may perform well (e.g. has high throughput) at 
time t = 0, but is unable to maintain this performance level throughout 
the time interval [0,r]. Another design having inferior performance at 
t = 0 might be considered to be 'more reliable' if its average performance 
over [0, T] is better than that of the original design. 

A simple indicator of network reliability is provided by the mean link 
duration (taken over all links) over a given time interval. Other measures 
which can be calculated include the following: 

• packetsJnjected - Number of packets injected into the network 
(generated according to the traffic model) during the given time 
interval. 

• packets_dropped - Number of packets dropped during the given 
time interval. Packets are dropped, in the following cases: 

— when the simulator attempts to inject a packet into some node 
input queue, and the node queue is full; 

— when simulator attempts to push the packet to the link buffer, 
but the buffer is full. 

This measure is equivalent to the number of packets which do not 
reach their destinations. 
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• packet_loss_ratio - Ratio of packets_dropped to the total num
ber of generated packets (this number is reset to zero after each 
mobihty step if the node buffers are emptied). 

• packets_arrived - Number of packets which arrived to the desti
nation node during the given time interval. 

• delay - Ratio of packets_arrived to the total time between gen
eration and arrival of all these arrived packets i.e. 

E pdCrhetarrival-time P^^f^^^ generation-time 
arrived-packets 

• throughput - Ratio of packets_arrived to the length of the time 
interval. 

• packets_in_transit - Number of packets in the network, which 
have neither arrived, nor dropped. These are the packets in node 
and link buffers waiting to be sent to the next node according to 
the routing table. 

9. Graph-theoretic reliability measures 
The task of finding good designs based on global information is a dif

ficult one, since the number of candidate designs increases exponentially 
with the number of nodes. This makes an exhaustive search of the design 
space computationally infeasible. Thus we adopt meta-heuristic search 
techniques in an attempt to obtain 'near-optimal' network designs. 

Given that each step of a meta-heuristic search requires a number 
of 'neighbouring solutions' to be evaluated, in order that our search is 
effective we need a method for quickly evaluating candidate designs, a re
quirement that excludes the use of the simulation scheme outlined above. 

This need for rapid evaluation motivates the first objective of our re
search, which is to identify rapidly computable graph-theoretic measures 
of reliability for dynamic networks. For example, we can define a graph to 
represent the network whose edges are weighted according to the robust
ness of the corresponding link. A possible definition of link robustness 
is given by the length of the link relative to the transmission range of 
the node that supports the link. Intuition suggests that the minimum 
edge cut in the graph somehow corresponds to the 'weakest point' of the 
network with regard to node mobility. 

The first step along this line of enquiry has been to propose a number 
of such graph-theoretic measures, evaluate the performance of a set of 
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randomly generated network designs under simulation, and investigate 
whether there exists any correlation between the best network designs (as 
determined by simulation) and the proposed measures. Having identified 
a set of promising graph-theoretic measures in this way, we refine the 
study by actively seeking 'good' network designs corresponding to each 
measure, again using meta-heuristic search. The performance of these 
networks under simulation should then allow us to decide which among 
the set of measures provides the best indicator of network rehability 
under various dynamic conditions. 

Generic measures 
• average_node_degree - Ratio of twice number of edges to the 

number of vertices in the graph. 

• minimum_node_degree - Minimum node degree. This is always 
zero for disconnected graphs. 

• number_of_components - One divided by the number of dis
connected components in the graph. This value is always 1 for 
connected graphs, and it is less then 1 otherwise. 

• number_of_nodes_in_largest_component - Number of nodes in 
the largest graph component. This is equivalent to the number of 
vertices for connected graphs. 

• clustering-CoefRcient - the probability that a path of length 2 is 
part of a triangle (a 3-cycle). That is, if one has edges ab and 6c, the 
probability that a and c are joined by an edge. This is calculated 
by counting the triangles in the graph and also the number of paths 
of length 2. Then the coefficient is the ratio of 3 times the number 
of triangles to the number of paths of length 2. 

Measures for connected graphs 
The following measures return zero for disconnected graphs. 

• diameter - One over the maximum length of the shortest path 
between two vertices, inaxu^vd{u^v) where d{u^v) is the length of 
the shortest path between u and v. 

• diameter_weighted_by.slack - Same as diameter, but d{u^v) 
is the minimum weight path. Edge weight is defined as the ratio 
of distance between nodes u and v to their range. 
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• average-Separation - Same as diameter, but instead of the max
imum length of the shortest path we calculate the average length 
of the shortest path avgu^vd{u^v). 

• average_separation_weighted_by_slack - Same as 
average_separation, but d{u^v) is the minimum weight path. 
Edge weight is defined as the ratio of distance between nodes u 
and V to their range. 

• edge_connectivity - The minimum number of edges one has to 
disconnect to make the graph disconnected. This is equivalent to 
the minimum number of edge disjoint paths among all the pairs of 
vertices, min-^^^p(t/, v) where p(i^, v) is the number of edge disjoint 
paths between u and v. 

• minimum_edge_cut_weighted_by.slack - The minimum sum of 
edge weights, such that disconnecting these edges we make the 
graph disconnected. Edge weight is defined as the ratio of distance 
between nodes u and v to their range. 

• vertex_connectivity - The minimum number of vertex disjoint 
paths among all the pairs of vertices, mmu,yr{u^v) where r{u^v) 
is the number of vertex disjoint paths between u and v. 

10, Network design algorithms 
The primary purpose of a communications network is to facilitate com

munication between its constituent nodes, and the role of a network 
management algorithm is to enable the network to perform this function 
as effectively as possible. We investigate algorithms for the design and 
maintenance of feasible network topologies so that network performance 
is optimised as far as possible. 

Feasible links 
We consider a link as feasible if and only if the minimum transmitting 

range of nodes constituting this link is greater than the distance between 
these nodes. 

All the network design algorithms we provide produce designs which 
only contain hnks, which are feasible at initial network state (time 0). 
Optionally, we could use links which are not feasible at time 0, but there 
is a high probability that they will be feasible at later steps. Experiments 
have indicated that if we assume the former (only using links feasible at 
time 0), then all the measures are very high at time 0, but generally 
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small elsewhere. If we assume the later (using any reasonable links), the 
measure values are not so good at time 0, but are much better elsewhere. 

Minimum spanning tree with maximum node 
degree constraint 

This problem is known to be NP-complete and so we provide a heuris
tic method which produces spanning tree with maximum node degree 
constraint, but this is not always the one with minimum weight. We have 
implemented one design algorithm MinSpanningTreeDesign which 
only builds this minimum spanning tree with maximum node degree 
constraint. 

Heuristic approach. 

1 Build minimum spanning tree using the Kruskal algorithm. 

2 Iterate through nodes with degree higher than the specified maxi
mum. 

3 For each such node, sort links by weight (starting from the greatest 
weight) and iterate through these links. 

4 For each such link, try disconnecting the link (thus separating the 
tree into two clusters) and finding a feasible link (with the smallest 
possible weight) connecting these clusters so that degrees of source 
and target nodes of this link are not higher than the specified max
imum degree. 

5 If such feasible link is not found, connect the link back, and pro
ceed. Otherwise, if such a link is found, use it instead of the dis
connected one. 

Greedy network design 
All the greedy network design algorithms follow the same schema and 

only differ in the link weight assignment procedure. 

1 Assign weights to all the feasible links. 

2 Build minimum weight spanning tree with maximum node degree 
constraint. 

3 Sort feasible links by weight, with minimum weight in the begin
ning. 

4 Iterate through feasible links and add those which do not break the 
maximum node degree constraint. 
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Link weights. We propose several greedy design algorithms, defined 
by their weight assignment procedures. Let / be a link connecting nodes 
X and X, range{x), range{x) be the maximum transmitting ranges of 
these nodes and vel{x)^ vel{x) be their velocity vectors. Then we define 
s{l) by 

s{l) — inm(range{x)^range{x)) — \\x — x\\ (1-13) 

and ss{l) as the positive root of the equation 

\\vel{x) - vel{x)\ft'^ + 2 * (x - x) • {vel{x) - vel{x))t + ||x - x||^ (L14) 

= m.m{range{x)^range{x))'^ (1-15) 

in respect to t. Here ss(l) corresponds to the time that will elapse before 
the link fails under the assumption that the velocity of each node will 
not change over this time period. 

Thus we have the following design algorithms: 

• SlackGDA - links weighted according to s{l)] 

• Super SlackGDA - hnks weighted according to ss{l)] 

• AntiSlackGDA - link weighted by -s{l)\ 

• RandomGDA - link weighted randomly, this is used for tests and 
comparisons; 

• TestDesign - calculates weighted (by time spent at these posi
tions) average positions over the time of each node and then uses 
distances between these positions, instead of initial positions. 

• TestDesign_MaxRad - modification of the TestDesign which 
also exploits more information about node trajectories (maximum 
distance between all the trajectory points and the average posi
tion). 

Heuristic network design 
This method accepts a set of reliability measures on input, which are 

used in this method to compare the effectiveness of the designed network. 
The main idea behind this network design approach is to first define some 
network design algorithm dependent on a set of input parameters (e.g. 
weights assigned to different network characteristics) and then to run a 
multidimensional minimisation routine in order to determine which set 
of parameters corresponds to good values of specified reliability measures 
of the designed network. 
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The base network design algorithm depending on input parameters 
first calculates weights of all the feasible links and builds a minimum 
spanning tree with a maximum node degree constraint. Then it repeat
edly recalculates all the weights and adds feasible links with the minimum 
weight to the network design, while there are any feasible links (i.e. links 
which do not invalidate the maximum node degree constraint). 

Weight construction. Let us define a set of weights Wa ^ W 
dependent on a number (N) of discrete parameters a = {a^j^o ^ ^) 
where â  G A C R. So, we would have a A/'-dimensional discrete space 
of weights. Then we build a set of functions Hk{Wa)^ k = 1^ ...H corre
sponding to H different reliability measures. 

Having this, the next step would be to build heuristic minimisation 
algorithms to find a set of {ai}fLQ such that Hk{vOa) are small. 

One could minimise 
H 

H{Wa) = Y^Hk{Wa) 
k=0 

or 

H{wa) = maxHkiwa) 
k=0 

or some other combination. 

Forming generic weights. Let us assume, we have a set of pa
rameters associated with each node. It would be natural to split them 
into several groups: 

• set Pi of parameters such that a link is generally better when the 
difference between values of these parameters of source and target 
nodes is small; 

• set P2 of parameters such that a link is generally better when the 
difference between values of these parameters of source and target 
nodes is great; 

• set Ps which contains parameters such that the quality of the link 
only depends on the minimum value of this parameter of source 
and target nodes (for example maximum node range). 

• set P4 which includes all the remaining parameters. 

Now, we construct a generic form of weight tc?c(^?0 — 

XI ci,i\Pi-Pi\+ Yl ^2,i| . _ - . ! + Yl C3,imin(pi,p^)+ ^ C44{pi+Pi) 
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where pi and pi are parameters associated with nodes ^ and ^ respectively. 

Adapting generic weights to our parameters. Next, we note 
that we have the following parameters we can consider while forming 
weights for each feasible link: 

• s t a t i c p a r a m e t e r s - C^pos ^ -O? ^maxrange ^ -^3) <,areacentre ^ -O? 

^arearadius ^ -^45 

• v e l o c i t y p a r a m e t e r s - ^yel G P 4 , ^minspeed G P 4 , ^maxspeed G P 4 ; 

• mobility parameters - ^avgtrndegr G P4; 

• traffic parameters - Uvgtrf G P2, Uvgdest G P2; 

So, the final formula would be 

^ c v s ^ s j ^^ ^1 Ispos sposi "r C2\<>areacentre sareacenirel 

+ : ^̂ ^ : + 
\<,avgtrf <,avgtrf\ l^avgdest <>avgdest\ 

I C5 mm^^TT^flicr'an^'e? <,maxrange) 

+ Cei^vel + ^vel) 

"T" (^IxSarearadius i <,arearadius) i Cgv^mmspeed i sminspeed) 

I ^9 Ismaajspeed " ^maxspeed) ' ^lOKsavgtrndegr "r <,avgtrndegr) 

Dynamic weight construction. We use the following approach 
to calculate the link weights. Note that we include the length of the 
minimum path between source and target nodes of the link (if there is 
such a path) and combine this value with Wc{^^^). 

1 Calculate t = '̂ >̂ c(̂ 7 0 f̂^ ^^^^ feasible link. 

2 Iterate through feasible links (only feasible links, ones which are 
not present in the graph). 

3 If source or target node of a feasible link has maximum allowed 
degree, continue iterating. 

4 Calculate "flow" between source and target nodes ("flow" depends 
on the number of disjoint paths between source and target nodes, 
and on the weights of the links in these paths). 
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5 Combine and save "flow" and weight of the feasible hnk. 

6 When the iterations are completed, find the feasible hnk (prefer
ably, one which connects disjoint paths) with the smallest weight 
and establish it in the graph. 

Multidimensional minimisation. Here we present our version of 
a modified simulated anneahng algorithm [13], [22]. 

• 1. start with random ao, set 2 = 0, calculate go = H{a)^ and set 
13 = TT; 

• 2. pick random unit vector Vi in space A such that the angle 
between Vi and Vi-i is not greater than /3; 

• 3. find optimal a > 0 by minimising a one dimensional function 

F{a) ^ H{ai + avi); 

• 4. calculate g^+i = H{a + dvi); 

• 5. if Qi-^i > Qi, increase /? by | and go to 2; 

• 6. decrease /? by ^sign{{qi - g^+i) - (g^_i - g^)); 

• 7. set /? - 27r if /? > 27r 

• 8. increase i by one and set â  = a^-i + avi] 

• 9. go to 2. 

11. Experiments and Comparisons 
We focus our experiments on the heuristic network design algorithms 

(section 10.0), since they are more flexible than the greedy methods 
due to being able to design networks with respect to the given net
work reliability measures. In Figures 1.2 to 1.9 we present graphs which 
demonstrate the effectiveness of proposed heuristic approach. Each fig
ure presents the values of the reliability measures presented in section 
9.0 plotted against simulation time (results are averaged over all mobil
ity models). Each figure corresponds to the heuristic approach (section 
10.0) optimising for one of the rehability measures. The abbreviations 
used indicate the appropriate reliability measure i.e. 

• AND - average node degree 

• AS - average separation 

• ASWBS - average separation weighted by slack 
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• D - diameter 

• DWBS - diameter weighted by slack 

• EC - edge connectivity 

• MECWBS - minimum edge cut weighted by slack 

• VC - vertex connectivity 

• MULTI - a combination of all of the above rehability measures 

The figures demonstrate that the heuristic network design algorithms 
indeed generate network designs that most optimise the specified net
work rehability measures. One can see that in each graph the maximum 
measure value is obtained by the design algorithm optimised for this mea
sure. This is to be expected, however the "MULTI" approach of using 
all the reliability measures produces networks which perform reasonably 
well over all types of reliability measure. 

We have identified a number of issues that need to be considered in 
the design and maintenance of point-to-point multihop wireless networks. 
Although only distributed topology control algorithms based on local in
formation are likely to be useful in practice, we have shown that tailored 
global optimisation algorithms also have a useful role. In obtaining net
work designs based on network-level information, we have also indicated 
the importance of identifying rapidly computable, graph-theoretic indi
cators of topological stability for dynamic networks under simulation. 
Future work will need to consider how network performance (in terms of 
traffic) behaves in relation to the different reliability measures. 
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Abstract To help solve difficult global optimization problems such as those aris
ing in molecular chemistry, smoothing the objective function has been 
used with some efficacy. In this paper we propose a new approach to 
smoothing. First, we propose a simple algebraic way to smooth the 
Lennard-Jones and the electrostatic energy functions. These two terms 
are the main contributors to the energy function in many molecular 
models. The smoothing scheme is much cheaper than the classic spatial 
averaging smoothing technique. In computational tests on the proteins 
polyalanine with up to 58 amino acids and metenkephalin, smoothing 
is very successful in finding the lowest energy structures. The largest 
case of polyalanine is particularly significant because the lowest energy 
structures that are found include ones that exhibit interesting tertiary 
as opposed to just secondary structure. 

Keywords : Global Optimization, Molecular Chemistry, Polyalanine, Smoothing Tech
niques, Protein Folding 
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1. Introduction 
The topic of this paper is the development of new smoothing meth

ods for large-scale global optimization problems which frequently arise 
in molecular chemistry applications. The prediction of molecular con
formation by energy minimization gives rise to very difficult global op
timization problems. To aid in solving these large problems, both the 
chemistry and the optimization communities have relied on different 
techniques, smoothing being one of these techniques. Our overall goal 
is to develop new smoothing techniques that are both inexpensive and 
effective in the molecular context, and to integrate them into sophisti
cated global optimization algorithms. This paper is an extension of an 
earlier work that dealt with smoothing for molecular cluster configura
tion problems [24]. 

The protein folding problem is defined in [2] as the problem of finding 
the native state of a protein in its normal physiological milieu. In other 
words, we want to determine the three dimensional structure of a protein, 
called its "tertiary structure," just from the sequence of amino acids that 
it is composed of (its "primary structure"). Under the assumption that 
in the native state the potential energy of a protein is globally minimized, 
the protein folding problem can be regarded as equivalent to solving the 
problem 

min E{x) (1.1) 

where E{x) is the value of the potential energy function (1.6) for a 
configuration of an n atom protein described by the 3n dimensional 
vector X. 

To handle this problem, an optimization algorithm has to solve prob
lems with many variables, since even the smallest proteins have a large 
number of free variables. Apart from that, the potential energy function 
is known to have many local minimizers. For proteins, it is speculated 
that the potential energy function has at least 3^ local minima, n being 
the number of free variables [15] [28]. Thus, the protein folding problem 
belongs to the class of NP-hard problems. 

A large scale global optimization algorithm that does not utilize the 
solution structure of the cluster has been developed by some of the au
thors in the past few years [8]. It has been successfully used to solve 
Lennard-Jones molecular cluster problems with up to 76 atoms as well 
as more complex water cluster problems of up to 21 molecules. How
ever, in practice, it is expected that it will generally be too expensive -
if not impossible - to solve problems of such size, such as polyalanine, 
by using the same global optimization algorithm directly. In fact [26] 
was unsuccessful in solving for polyalanine Â  > 40 using the global op-
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timization algorithm of [8]. This reahzation motivates approaches that 
seek to improve the effectiveness of global optimization algorithms via 
transformations of the objective function. 

One transformation method is to use a parameterized set of smoothed 
objective functions. The smoothed functions are intended to retain 
coarse structure of the original objective function, but have fewer local 
minima. By selecting different smoothing parameters, objective func
tions with different degrees of smoothness can be derived. However, it is 
quite possible that as we vary smoothing parameters, the trajectory from 
the global minimizer of the smoothed problem will not lead to the global 
minimizer of the original problem. Indeed, the later situation which we 
term order flips appears to be a common and fundamental problem in 
smoothing, and one that we must deal with. The algorithm described in 
this paper handles this problem by applying a global optimization algo
rithm to the smoothed function, and following the trajectories of several 
of the best local minimizers. 

In the rest of this paper we will describe in Section 2 the nature of 
the problem and the structure of the potential energy function. In Sec
tion 3 we will describe our efficient approach for smoothing the energy 
function. How the smoothed function is used as part of a global opti
mization strategy is explained in Section 4. Section 5 will present some 
computational results of this approach for two different proteins. 

2. Protein Structure and Potential Energy 
A naturally occurring protein is a bonded chain of different amino 

acids. All amino acids (except proline) have the same underlying struc
ture. A central carbon atom {Ca), to which are attached: a hydrogen 
atom (H), an amino group {NH2)^ a carboxyl group {COOH) and a 
residue R. Residues are what distinguishes one amino acid from an
other. Figure 1.1 is the primary structure of a protein, the repeating 
chain —NCaC— is known as the backbone. Overall there are twenty 
possible different residues, thus we have that many amino acids. 

H H O H H O 

H- - N — C^—C—N— C — C - - O H 
! • § 

R R , 
1 1+1 

Figure 1.1. The primary structure of a protein. The peptide bond Hnks two amino 
acids. 
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2.1 Protein Geometry 
There are two different but equivalent coordinate systems used to 

describe the conformation of a protein: internal and the external (or 
Cartesian) coordinates. The position of any group of atoms in space can 
be equally specified in either one of these representations. In external 
coordinates, each atom is represented by its x^y and z coordinates. In 
the internal coordinates system, which is more closely related to the 
structure of a protein, we use the bond lengthy bond angle and dihedral 
angle notions to specify the coordinates of the atom. The bond length is 
simply defined as the Euclidean distance between two consecutive atoms 
and bond angle is the angle between three consecutive atoms, assuming 
the atoms are located in a single plane. In the sequence of four atoms, 
the dihedral angle is the angle between the plane defined by the first 
three atoms in sequence and the last three atoms in the sequence. This 
is known as the proper dihedral angle. Ramachandran [20] has showed 
that there isn't a lot of variation in the values of the bond angles and 
the bond lengths. In fact, for many proteins, we have only three free 
variables per amino acid, corresponding to the three dihedral angles in an 
amino acid. Furthermore the peptide bond (Figure 1.1) is very rigid, and 
may be kept fixed. This leaves us with just two free variables per amino 
acid. So for proteins, use of internal coordinates is computationally more 
efficent than the external coordinate system. It is easier to keep bond 
lengths and bond angles fixed in internal coordinates than in external 
coordinates. 

This paper considers the performance of new smoothing methods to 
solve the molecular conformation of two difi'erent proteins: an artificial 
protein known as polyalanine [9] [21], and metenkephalin [17]. Polyala-
nine is a molecular structure consisting of Â  alanine (ALA) amino acids, 
which amounts to lOA^ — 8 atoms. Polyalanine is a good molecular con
formation test problem for two reasons. First, the problem is a diflficult 
global optimization problem due to its sheer size, polyalanine 58 con
sists of 572 atoms. Secondly, some of the larger polyalanine structures 
are known to posses more than a single optimal structure [13]. The 
minimum energy state of polyalanine 58 is known both as straight and 
bent with very close minimum energy values (Figure 1.2). On the other 
hand, metenkephalin is a much smaller naturally occuring protein with 
just 75 atoms. But unlike polyalanine, metenkephalin consists of four 
difi'erent amino acids. The objective function for proteins contains two 
terms common to many molecules, namely the Lennard-Jones potential 
and the electrostatic potential energy function. Thus for this reason, the 
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Figure 1.2. The two minimum energy states of polyalanine 58, straight and bent 
with corresponding energy values (based on CHARMM function) of -1559.494 and 
-1567.240. 

techniques developed in this paper can be extended to cover smoothing 
in a wide range of chemical problems. 

2,2 Modeling the Potential Energy 
As with molecular cluster problems, it is believed that in the native 

state of a protein, the potential energy function of the protein is in 
its global energy minimum [1]. Therefore, we need a potential energy 
function to model the energy of a protein. Several potential energy 
functions have been developed to model proteins. Three of the most 
widely used are ECEPP [16] [18], AMBER [27] and CHARMM [4]. 

For this research we used the CHARMM and later AMBER poten
tial energy functions. Due to differences in constants and other fine 
details, each reports a different energy for the same configuration. The 
CHARMM potential energy function is given by 

ĈHARMM — El) -\- EQ + E^ + E^^ + E'̂ dw + ^ES (1-2) 

in which the first four terms are the separable internal coordinate terms, 
and the last two are the pairwise nonbonded interaction terms. The 
formula for each of these terms, as well as the relevant definitions, are 
given below. 

• Eli is the bond potential, which equals X̂  A;5(r — ro)^, where A;̂  is a 
bond force constant, dependent on the type of the atoms involved 
in the bond. The actual bond length is r, while TQ is the equilib
rium bond length, i.e the ideal bond length for the type of atoms 
involved in the bond. 
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• EQ is the bond angle potential, which equals Y^kQ{9 — OQ)'^^ such 
that ke is an angle force constant which depends on the type of 
the atoms that constitutes the angle. 9 and ô ctre the actual bond 
angle and the equilibrium bond angle respectively. 

• E^ is the proper dihedral angle potential. It is given hy Yl\kip — 
k^ cos(n(y9)|, where k^p is a dihedral angle force constant, dependent 
on the type of the atoms that constitutes the proper dihedral angle, 
n is a multiplication factor that can have the values 2,3,4 or 6, 
and if is the actual proper dihedral angle. 

• E^ is the improper dihedral angle potential, which equals 
^k^jj{w — WQ)'^^ where k^ is an improper dihedral angle force con
stant that depends on the types of the atoms that constitute the 
improper dihedral angle (i.e. dihedral angle involving 3 backbone 
atoms and one residue atom), u and CJQ are the actual and the 
equilibrium improper dihedral angle, respectively. 

• £̂ vdw is the van der Waals potential, which is a repulsive-attractive 
force that is very repulsive at very short distances, most attractive 
at an intermediate distance, and a very weak attractive force at 
longer distances. We represent these pairwise interactions between 
atoms i and j using the Lennard-Jones potential of the form 

12 
a. (1.3) 

where dij is the Euclidean distance between atoms i and j , cr̂ j = 
(7z + crj where a is the van der Waals radius, and Cij = y^e^ej where 
ei is the potential well depth. 

In this formulation, the Lennard-Jones pairwise equilibrium dis
tance (the distance of greatest attraction) is scaled to aij, and its 
minimum energy is scaled to —eij. 

E^s is the (Coulomb-Fekete) electrostatic potential. Two atoms 
with charges of same sign repel, and attract if the charges have 
opposite signs. The pairwise electrostatic energy for atoms i and 
j is given by 

-'^'' (1.4) 
47reo<î  

where eo is the vacuum permitt ivi ty, and qij = qiqj where q is the 
charge. Usually, C is used to denote the constant t e rm l/47reo. 
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Ef) is summed over all pairs of bonded atoms. EQ is summed over all 
bond angles. E^ and E^^ are summed over all proper dihedral angles, 
and all improper dihedral angles respectively. Finally, E'vdw and E^s are 
summed over all pairs of nonbonded atoms. The first four terms force 
the local structures (bond length, bond angle, proper dihedral angle and 
improper dihedral angle) into their ideal values. The last two terms 
account for the long range attractive and repulsive interaction forces. 

Our main objective is to find the minimum energy structure of a 
protein using the CHARMM potential energy function. If we define the 
position of the protein structure by 

X =^ ( x i , X 2 , - " , ^ n ) (1.5) 

where Xi IS a three dimensional vector denoting the coordinates of the 
z'-th atom, then the overall potential energy function is 

E{x) = Ei, + Ee + E^ + E^ + E^,^ + E, 
n 

^+3 

ES 

\ 12 / \ 6 

— ) - 2 i ' + C^ (1.6) 

where dij — \\xi — Xj\\2 is the distance between atoms i and j . The term 
E. denotes the sum of bonded interactions, E^ -i- EQ -\- E^ + E^j-

In equation (1.6) there are two points worth noting. First, the a^j, Cij 
and Qij occur in tuples (Table 2.1 of [3]). These tuples take completely 
difi'erent values depending on whether there is an attractive or a repulsive 
force between atoms i and j . Also, difi'erent proteins will have difi'erent 
entries. Secondly, the total contribution of Ei) + EQ -{- E^-\- E^ does not 
exceed 5-6% of the total potential. 

In Figure 1.3 we show the total pairwise interaction ĵ vdw + E^s for 
two difi'erent pairs with an attractive electrostatic potential. Each of the 
two plots corresponds to one Gij^eij and qij tuple. As we have quite a 
few (Jij^Cij and qij tuples, the pairwise equilibrium distance would vary 
accordingly. 

For the attractive electrostatic, near distance d = 0, the Lennard-
Jones potential and the electrostatic forces are in opposing directions. 
But as we can see from Figure 1.3, the Lennard-Jones is the dominant 
term due to its higher growth rate. For d ;» 0 the situation is reversed; 
the electrostatic potential drops more slowly than the Lennard-Jones 
potential and thus is the dominant force. 

The interaction of Lennard-Jones with a repulsive electrostatic is sim
ple. The sum of the two terms is repulsive for all r so that there is no 
finite stable distance between two such atoms. 
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/ ' E S 

; 

\ L-J+ES _ — — — — — ^ 

Figure 1.3. Pairwise interactions in polyalanine 58. Potential of Lennard-Jones (LJ), 
attractive electrostatic (ES), and the overall potential energy (LJ+ES). Two different 
senarios corresponding to different values of energy constants; see text for details. 

3. A Smoothing Technique and its Behavior 
The basic idea of smoothing a function is to modify it by reducing 

abrupt function value changes and fine grain fluctuations, while retain
ing the large scale structure of the original function. As a result, nearby 
minimizers should merge after sufficient smoothing is applied to remove 
the barriers between them. Therefore, smoothing reduces the total num
ber of minima in the problem. 

The Lennard-Jones and electrostatic potential energy functions for a 
pair of atoms have a pole at distance zero, and thus very large derivative 
values for distances near zero. The poles and large gradient values create 
huge barriers that separate similarly structured minimizers in the overall 
potential energy function (1.6). That is a fundamental reason why this 
and similar problems that include Lennard-Jones potential and/or elec
trostatic potential, have so many minima, and are so difficult to solve. A 
technique that smoothes Lennard-Jones should be able to remove these 
barriers in some effective way. 

Most smoothing techniques generate a family of smoothing functions 
that is parameterized by one or more smoothing parameters. Such a 
family can be represented as 

Es'.V -^ m, 3V C M"" dnidseM'^ (1.7) 

where D is some closed region and d is the number of smoothing param
eters. By varying the smoothing parameters, one can create a series of 
functions that gradually smoothes the original function. In our case, a 
family of smooth problems can be constructed 
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minEsix) (1.8) 

where s is some smoothing parameter set and Es is a smoothed potential 
function (1.6). The number of minima should be reduced gradually as 
the objective function becomes smoother. 

One general smoothing technique is spatial averaging, which has been 
widely studied [10] [11] [12] [14] [23] [29]. The fundamental idea of this 
technique is that the smoothed function value at each point is given 
by a weighted average of the energy function in a neighborhood of the 
point using a distribution function centered at this point. The Gaussian 
distribution function is commonly used to provide the weighting. In this 
case, the smoothing transformation is 

f\,x{x) = | i y ( / ( f ) , 7 ) e - l l ^ - ' l l ' / ' ' dx (1.9) 

where A and 7 are the smoothing parameters. The parameter A deter
mines the scale of the Gaussian distribution, while the parameter 7 is 
used with the function H to transform the original function f{x) into 
a function with no poles. The transformation H{f^^) is necessary to 
make the function integrable, and also further dampens the function. 
This transformation takes on different forms, in the case of [14] it con
sists of approximating f{x) by a sum of Gaussian functions, while in the 
work of [29] the transformation consists of truncating f{x) to some fixed 
maximum value. 

In this section, we will discuss a new family of smoothing functions. 
As opposed to spatial averaging techniques, this family of smoothing 
functions does not involve integration, but makes an explicit algebraic 
modification to the more wildly varying terms of the (1.6) potential 
energy function, and removes poles algebraically. The advantage of this 
algebraic approach compared to spatial averaging is simplicity and low 
evaluation cost. 

3,1 A New Smoothing Scheme 
To algebraically smooth the potential energy function we focus on the 

terms in (1.6) containing poles, and replace the term a/d with an expres
sion that is finite at zero. We also vary the Lennard-Jones exponents. 
As a result (1.6) is changed to the smoothed function 
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Figure I.4. Pairwise smoothed potential energy curves between two atoms of oppo
site charges on different setting of P at 7 — 0.1. Two different vertical scales are 
shown. 

1 + 7 

(1.10) 

where E. is the bonded interaction, 7 and P are two smoothing pa
rameters, and the scaled distance r^j = dij/aij = Xi X n iGi The 
smoothing parameter 7 > 0 crops the poles at r — 0; the larger 7 is, the 
lower the smoothed potential is at distance zero. The other smoothing 
parameter, P , is used to widen (stretch) the minimum's region of attrac
tion. Note that (1.10) reverts to equation (1.6) if we pick 7 = 0, P = 6, in 
other words, we turn off the smoothing. The smoothing of the Lennard-
Jones term is similar to the smoothed Lennard-Jones potential proposed 
in [7], but the algebraic form is different to make it more compatible with 
the electrostatic term here. We also tried a variant of (1.10) where the 
smoothing was applied to the Lennard-Jones term only, and which is 
discussed in the Computational Results section. 

Examples of (1.10) with 7 = 0.1 are shown in Figure 1.4. The curves 
for P = 3,4,5 and 6 show smoother behavior than the unsmoothed func
tion. For P = 2, however, there is a difficulty. The pairwise smoothed 
potential curve for smoothing 7 = 0.1, P = 2 has a local minimum at 
d = 0; thus the pairwise local minimum of this term is for two atoms 
to coincide. This difficulty is due to oversmoothing of the Lennard-
Jones function, and we can avoid such cases by insisting that pairwise 
smoothed curve must have a minimum for (i > 0, which can be assured 
by having a maximum at d == 0. 
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We develop conditions on the smoothing parameters that must be 
satisfied in order to have a maximum at zero. Consider two atoms that 
are distance d apart. Let 

y = (r2 + 7 ) / ( l + 7 ) , (1.11) 

where r = d/a. Then we can re-write a single pairwise interaction of the 
smooth potential in terms of y 

E{r)=e\l/y''-2/y''" + cij'-
a \/ y 

(1.12) 

It is easily shown that at d = 0, dE/dr = Ira/{I + j)dE/dy\r=o = 0. 
Hence we always have a critical point at zero. The second derivative at 
zero is 

d^E 
Q^2 r=0 1 + 7 

2 

as 2r̂  d^E 
dy 1 + 7 dy'^ 

r=0 

dE 

1+jdy 
2 

r=0 
eP 

1 + 7 1,̂ /̂2+1 (1 yo'^') 2^a^o , 

- 2 

1 + 7 
[eP/3y, o""̂ "' + ^C^y, 

1 ^q_^-3/2 

a 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

where yo — y = ( l + 7 ) - i and/3 = -y^/^l-y-""/') =. l - ( l + 7 ) ^ / 2 . 

The possibility of a local minimum at zero is ruled out if this quantity 
is negative, or equivalently if 

r=0 

1 
> 

-Cq 

2aePl3 

l /(P-0.5) 

- 1 . (1.17) 

Since we are considering smoothing parameter values in the range 0 < 
7 < 1 only, then /3 = 1 - (1 + 7)^/^ > ^ _ 2-^/2^ and (1.17) holds if 

1 
- > 
7 2(1 - 2--P/2)P 

l/(P-0.5) -Cq 

ae 

l /(P-0.5) 
(1.18) 

We want (1.18) to hold for q and a corresponding to all atom pairs 
(z, j) for the protein under consideration. This is the case if (1.18) is 
satisfied for the pair (i, j ) for which Qij/icfijCij) is largest, since q < 
0. The values corresponding to the largest ratio, which is 366.703 for 
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polyalanine 58, are: C = 332.167 (a constant), q = -0.1375, a = 1.248 
and e = 0.0998 (Table 2.1 of [3]). Substituting these values into (1.18) 
we get 

j . / 183.3515 
7 ^ V ( l - 2 - P / 2 ) P 

l/(P-0.5) 

- 1 . (1.19) 

The bound (1.19) is specific to polyalanine 58 and may vary for other 
proteins. It is worth noting that we only consider attractive electrostatic 
potentials in deriving the condition (1,18). This should be clear, since 
when the electrostatic force is repulsive the smoothed Lennard-Jones po
tential cannot allow a minimum at zero. In fact max{—Cg/ae} provides 
a guarantee that this is the lowest interception point (with the potential 
energy axis) we can have, and any other pair of attractive atoms will 
have an interception point that is greater or equal to this. Equation 
(1.19) is a sufficient condition for a maximum at distance zero. 

Figure 1.5 plots the maximum 7 for a given P based on (1.19). On the 
other hand, in (1.18) if we take m.m{—Cq/ae} then we have a necessary 
condition for any pair to have a maximum at zero distance. 
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Figure 1.5. Maximum 7 for a given P based on equation (1.19) for pairwise local 
optimization to converge. 7^ and 75 are the maximum value of 7 for sufficient and 
necessary conditions, respectively. 

For example, in Figure 1.4 it is clear that 7 == 0.1, P = 2 is not a good 
choice (since its has a minimum point at zero). In that case, according 
to (1.19) we must have 7 < 0.032 in order to change it to a maximum 
at distance zero. 

For problems with many atoms this type of smoothing also has the 
effect of simplifying the objective function and reducing the number of 
local minimizers. This is demonstrated in [24] and [7], and in Section 5. 
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The smoothing is also simple and inexpensive to perform. However, the 
problem is still not easy, because the global minimum of the smoothed 
function may not correspond to a local minimizer of the original objective 
function that is far from global. Indeed, as the experiments in [24] 
demonstrate, varying the smoothing parameters can cause the order of 
function values of local minimizers to change extensively. There is no 
reason to expect this effect to be different for our smoothing technique 
than for others. Therefore because of these order flips, we still require an 
effective global optimization algorithm to use with the smoothed energy 
function. 

4. Using Smoothing in a Global Optimization 
Algorithm 

In this section, we discuss a new global optimization algorithm that 
incorporates the smoothing function described in Section 3. It is based 
on the global optimization approach proposed in [8], which has been 
successfully tested on other molecular conformation problems, including 
water clusters [5] and proteins [7]. The algorithm described here is a 
modification of that of [8] using smoothing. 

The essential idea of our approach is to use the global optimization 
algorithm of [8] on a smoothed version of the potential energy function 
to find several local minimizers, and then find related minimizers of the 
original function by local optimization. Although it is possible to work 
with several different levels of smoothing, we have found it effective to 
work with simply a single smoothed function, and the original function. 
The global optimization algorithm in [8] consists of two phases. Phase I 
(sample generation phase) uses random sampling and local minimization 
to build an initial conformation of the protein. In phase II we improve 
upon the initial conformation. This phase is where most of the compu
tational effort lies. All the local minimizations were performed using the 
BFGS method in the UNCMIN package [22]. 

As mentioned earlier, we have two different schemes to represent a 
protein, the internal and the Cartesian coordinate systems. In this algo
rithm, we use internal coordinates which simplifies the task of fixing the 
values that are natural to the proteins, such as bond lengths and bond 
angles. Also, we reduce the dimensionality of the problem by about j ^ 
(in case of polyalanine 58) of the original problem^ without limiting the 
folded states a protein can attain. 
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Algorithm 4.1 - Framework of the Large-Scale Global Optimization 
Algorithm for Protein Conformation 

1 Phase I (Sample Generation) 

(a) Protein sample point buildup: Build up k sample configurations 
from one end of the protein to the other by sequentially generating each 
dihedral angle in the protein. Randomly sample the current dihedral 
angle a fixed number of times and select the dihedral angle that gives the 
lowest energy function value (in smooth domain) for the partial protein 
generated so far. 

(b) Start point selection: Select i < k sample points from step la to be 
start points for local minimizations. 

(c) Full-Dimensional local minimizations (smooth): Perform a local 
minimization from each start point selected in step lb. 

2 Desmooth Minimizers: Do a full-dimensional local minimization for each 
generated smooth minimizer in step Ic. Collect m (usually 10) of the best of 
these non-smooth minimizers to initialize a list C for improvement in Phase XL 

3 Phase II (Improvement of Local Minimizers): For some number of iter
ations, do: 

(a) Select a minimizer: Prom list £, select one conformation, and a small 
subset of ~ 5 dihedral angles from that local minimizer to be optimized. 

(b) Global optimization (smooth) on a small subset of variables: 
Apply a fairly exhaustive small-scale global optimization algorithm to the 
smoothed energy of the selected configuration using the selected small 
subset of the dihedral angles as variables, and keeping the remaining 
angles temporarily fixed. 

(c) Full-Dimensional local minimizations (smooth): Apply a local 
minimization procedure, with all dihedral angles as variables, to the low
est m {^ 25) configurations that resulted from the global optimization 
of the step 3b. 

4 Desmooth Minimizers: Do a full-dimensional local minimization for each 
generated smooth minimizer in step Ic. Collect m (usually 10) of the best of 
these non-smooth minimizers to initialize a list C for improvement in Phctse II. 

5 Phase II (Improvement of Local Minimizers): For some number of iter
ations, do: 

(a) Select a minimizer: Prom list £, select one conformation, and a small 
subset of ~ 5 dihedral angles from that local minimizer to be optimized. 

(b) Global optimization (smooth) on a small subset of variables: 
Apply a fairly exhaustive small-scale global optimization algorithm to the 
smoothed energy of the selected configuration using the selected small 
subset of the dihedral angles as variables, and keeping the remaining 
angles temporarily fixed. 
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(c) Full-Dimensional local minimizations (smooth): Apply a local 
minimization procedure, with all dihedral angles as variables, to the low
est rh (~ 25) configurations that resulted from the global optimization 
of the step 3b. 

(d) Merge the new local minimizers: Merge the new lowest configura
tions into the existing list of local minimizers C 

(e) Retire the selected minimizer; Remove the selected conformation 
(the one we picked up at step 3a) from £. 

6 Desmooth Minimizers: Do a full-dimensional local minimization of the 
unsmoothed energy for each generated smooth minimizer in step 3d. 

The first phase of the algorithm starts by generating several initial 
sample conformations, using a smoothed potential energy function with 
a reasonable value of the smoothing parameters. The values used here 
were determined by trial and error, but we have had some success in 
applying the same values to different proteins. The conformation of the 
protein is built up one dihedral angle at a time. Each dihedral angle 
is sampled a number of times, and for every sample the corresponding 
atoms are added to the polymer and the partial (smoothed) energy is 
evaluated. The dihedral angle resulting in the best partial energy is 
chosen. Sampling is then continued with the next dihedral angle. From 
these sample points, start points for local minimizations are selected and 
a local minimization is performed from each selected sample point using 
the smoothed energy. In selecting the start points, we pick the i sample 
points that are lowest in potential energy. All the smooth minimizers 
generated by phase I undergo another local minimization, this time to 
remove the smoothness (desmoothing). The m (~ 10) lowest unsmooth 
local minimizers found are passed on to phase II. 

In the second phase, we use the m initial conformations (out of phase 
I) to initialize a working list, and try to improve them. Note, in this 
phase as in phase I, all function evaluations and local minimizations in
cluding the full-dimensional are done in the smooth domain. A heuristic 
(described shortly) is used to select a configuration for improvement 
from the list. Next, we select a number of dihedral angles. The selec
tion of these dihedral angles is based on another heuristic. Then, rather 
than just sampling on the selected dihedral angles as in the sample point 
improvement procedure in phase I, a complete global optimization algo
rithm is applied to find the best new positions for the selected dihedral 
angles within the selected configuration, with the remainder of the con
figuration temporarily fixed. The global optimization method used is 
the stochastic method of [6] [25], which is a very effective global opti
mization method for problems with small numbers of variables. When 
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doing the global optimization on the selected dihedral angles, the rest 
of the dihedrals are kept fixed. So generally, these best new positions 
found for the selected dihedral angles by the small global optimization 
algorithm lead to configurations in the basin of attraction of new local 
minimizers for the entire problem. Therefore, a full-dimensional local 
minimization algorithm is then applied to "polish" the ifi (~ 25) best 
of these new configurations. The reason for choosing the m best rather 
than just the best is because we have found that sometimes the best pol
ished solution does not come from the best unpolished solution. These 
new full-dimensional local minimizers are then merged into the working 
list and the entire process is repeated a fixed number of times. In our 
experience, this phase is able to identify significantly improved local min
imizers and leads to the success of the method. Finally, all the smooth 
minimizers generated by this phase are passed on for a full-dimensional 
local minimization in the non-smooth domain. 

The heuristic used to determine which configuration to select at each 
iteration of the second phase is the following. We consider an initial con
figuration and any configurations generated from it to be related, such 
that the latter is a "descendent" of the former. For some fixed num
ber of iterations, the work in this phase is balanced over each of the m 
sets of configurations consisting of an initial minimizers and all of that 
minimizer's descendants. In this "balancing phase", the same number 
of minimizers is selected from each set, and within a set we select the 
minimizer with lowest potential energy that has not been selected be
fore. The remaining iterations of the local minimizer improvement phase 
constitute the "non-balancing phase" in which we select the best (lowest 
potential energy) configuration that has not been selected before, regard
less of where it is descended from. We have found that the combination 
of the breadth of search of the configuration space that the balancing 
phase provides with the depth of search that the non-balancing phase 
allows is useful to the success of our method. 

In our experiments we tested several different criteria for selecting 
the dihedral angles to be varied in the small-scale global optimizations 
of Phase II. These criteria are described in [26]. The method described 
below was proven to be the most successful for our target, and is the 
one we ended up using in all of the runs. The main effect of varying 
a given dihedral angle is on the interaction energies between atoms to 
the right and to the left of the given angle. Therefore, in this heuristic 
we compute for each backbone dihedral the total left-right interaction 
energy and normalize this energy value by the product of the number of 
atoms to the left times the number to the right. Some specified number 
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(generally five) of dihedral angles with the highest normalized interaction 
energies are then selected. 

The complete framework for the global optimization algorithm for 
protein conformation is outlined in Algorithm 4.1. For further informa
tion on the algorithm and details on the criteria to select dihedral angles, 
see [26]. 

5. Computational Results 
In this section we report on some of the experiments we conducted as 

a first step in assessing the effectiveness of the new smoothing algorithm 
presented in this paper. These experiments give a preliminary indica
tion of the effectiveness of integrating smoothing techniques within a 
powerful global optimization algorithm. They also provide some insight 
on the choice of the smoothing parameters 7 and P. We will study the 
effect of smoothing in phase I and in phase II of the algorithm. The 
smoothing has been tested on two different proteins: polyalanine and 
metenkephalin. We report the effect of smoothing in terms of individual 
phases for polyalanine. Later we repeat the same for metenkephalin. 

5.1 Smoothing polyalanine in phase I 
Polyalanine-A^ is a molecular structure that consists oi N — 2 alanine 

amino acids, which translates into ION —8 atoms. The phase I algorithm 
was applied to polyalanine of sizes 3, 5, 10, 20, 30, 40 and 58 amino acids. 
We will discuss the smoothing in terms of polyalanine of sizes larger than 
20 amino acids. This is because our global algorithm without smoothing 
[26] was able to find the optimal configuration for polyalanine of sizes 
up to 20 in phase I (albeit not so easily) without employing any of the 
smoothing techniques. 

Our procedure was to generate 1200 sample points and then save 
the 60 configurations with best smoothed energy. Since the ordering 
of smooth energy values differs from that of unsmooth energy values, 
we do a full scale local minimization on the unsmoothed function with 
these smoothed minimizers as starting points. We then pick the best 
m configurations based on the unsmooth values (usually 10) as input to 
phase II algorithm. 

The results for phase I are in Table 1.1. For each of the tabulated 
7, P combinations, the results are based on five runs (300 smooth min
imizations total). The (7,P) combinations shown were chosen based 
on prior experience with smoothing Lennard-Jones clusters [7]. In the 
last column, we consider two unsmooth minimizers to be the same if 
the difference is less than 10~^. This last column indicates that num-
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I N 
1 30 

40 

58 

smooth parameters 

1 P 7 

no smoothing 

5.0 

no i 

5.0 

no J 

5.25 

5.0 

4.75 

4.50 

0.00 

0.05 

0.10 

smoothing 

0.00 

0.05 

0.10 

smoothing 

0.10 

0.20 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.05 

0.10 

0.20 

0.05 

0.10 

0.15 

minimizer value (unsmoo 

min (occurrence) 

-758.046 (3) 

-760.498* (96) 

-760.498* (119) 

-760.498* (165) 

-1040.723 (1) 

-1045.412* (24) 

-1045.412* (47) 

-1045.412* (74) 

-1437.084 (1) 

-1559.494* (9) 

-1559.494* (9) 

-1559.494* (9) 

-1559.494* (14) 

-1559.494* (20) 

-1559.494* (14) 

-1559.494* (11) 

-1559.494* (8) 

-1559.494* (6) 

-1559.494* (26) 

-1559.494* (30) 

-1559.494* (37) 

-1559.494* (57) 

-1559.494* (60) 

-1559.494* (61) 

max 

-619.615 

-659.159 

-672.960 

-680.830 

-841.812 

-885.104 

-889.416 

-848.061 

-1199.966 

-1284.743 

-1267.475 

-1312.634 

-1262.362 

-1214.783 

-1235.224 

-1170.262 

-1232.790 

-1053.287 

-1232.026 

-1288.639 

-1257.514 

-1258.894 

-1282.753 

-1173.177 

th) 

avg 

-686.12 

-737.88 

-740.10 

-747.30 

-925.31 

-986.28 

-997.19 

-1002.20 

-1321.48 

-1414.35 

-1416.20 

-1433.73 

-1435.35 

-1435.93 

-1429.89 

-1412.83 

-1401.75 

-1359.97 

-1455.04 

-1455.48 

-1447.97 

-1476.74 

-1484.21 

-1467.65 

# diff. 
mins 

297 

137 

101 

53 

300 

235 

172 

132 

300 

278 

250 

272 

238 

223 

230 

255 

266 

288 

235 

206 

225 

181 

164 

185 

Table 1.1. Summary of results of phase I for polyalanine-N (Energy is in kcal/mole). 
The results are based on five runs (overall 300 smoothed minimizers out of phase I 
undergoing local minimization in non-smooth surface). The unsmooth values marked 
with '*' are those of the best known straight helical minimizer. 

ber of minimizers found, given 300 starting points, tends to decrease 
as we increase smoothing (although not monotonically in 7. This fact 
would seem to indicate that smoothing does indeed tend to decrease 
the number of local minimizers, as was clearly shown for Lennard-Jones 
clusters in [7]. It is noteworthy that for these values of A ,̂ phase I 
without smoothing is unable to find the best known minimizer, while 
it is found several times using smoothing. For polyalanine size 58, the 
best minimizer found, with unsmooth value of —1559.494 kcal/mole is 
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the best known minimizer with a straight a-hehx configuration (Fig
ure 1.2). but, phase I smoothing failed to discover the lowest energy 
state of polyalanine 58, the bent structure. Interestingly, in one case a 
smoothing scheme with a pole at distance zero (7 = 0), but with P < 6 
fared better than not smoothing. 

We also tried a variation of the smoothing scheme (1.10) where we 
smoothed the Lennard-Jones term but kept the electrostatic term in the 
unsmoothed form (i.e Cqij/dij). A drawback of this smoothing scheme 
is that attractive pairs have a negative pole at zero due to the electro
static term. This can yield local minimizers where two atoms coincide. 
In phase I, this smoothing scheme found the best straight helix more 
often than the one just presented, and it had an even more pronounced 
tendency to reduce the number the number of distinct local minimizers 
found. However, this scheme did poorly in phase II. See [3] for further 
details. 

5.2 Smoothing polyalanine in phase II 
This phase was only applied to polyalanine 58, since phase I was suc

cessful in finding the low energy states of polyalanines up to 40 and one 
of the low energy states of polyalanine 58 (the straight a-helix configu
ration). So our goal in this phase is to find the other low energy state 
of polyalanine 58 (the bent a-helix configuration, Figure 1.2). 

All runs in phase II had the same input. For input to this phase, 
we picked the best 10 configurations (in terms of unsmooth energies) 
from the phase I run with £^<o.25,5>- This set included the -1559.494 
(best straight a-helix) configuration. The phase II parameters were: 4 
balancing and 20 non-balancing iterations. Each phase II small-scale 
minimization generated 50 configurations, from which we selected the 
lowest 25 configurations for full-dimensional local minimization. We 
used the smoothing parameter values that seemed eflFective in Phase I, 
as well as some neighboring values. 

Table 1.2 tabulates the results of phase II on polyalanine 58. To get 
a better overall picture, we did five runs for each smoothing parameter 
combination. These are labeled run 1, run 2, . . . in Table 1.2 and ordered 
with best performance first. For polyalanine 58, the global minimizer is 
— 1567.240. There are two points worth noting. First, for most of the 
smoothing parameters, we were able to reach the global at least 20% of 
the time (a single run out of five). In some cases we have even a better 
chance, for example 7 = 0.10, P — 4.75 (a success ratio of 80%). In some 
cases we have multiple occurrences of the global minimizer in a single 
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parameters 

1 P 7 

no smooth 

5.5 

5.0 

4.75 

4.50 

4.25 

0.20 

0.26 

0.00 

0.05 

0.10 

0.15 

0.16 

0.20 

0.25 

0.10 

0.15 

0.20 

0.05 

0.10 

0.10 1 

run 1 

] -1559.753 

-1567.240* 

-1567.240* (2) 

-1561.944 

-1567.240* 

-1567.240* 

-1567.240* (2) 

-1567.240* (3) 

-1561.536 

0 

-1567.240* (2) 

-1564.817 

-1561.748 

-1561.438 

-1567.240* (3) 

0 

best found 

run 2 

0 

-1567.240* 

-1567.240* (2) 

-1560.066 

-1562.291 

-1561.976 

-1567.240* 

-1567.240* (2) 

-1559.678 

0 

-1567.240* 

-1561.748 

0 

-1560.593 

-1567.240* (3) 

0 

minimizer (unsmooth) 

run 3 

0 

-1561.748 

-1567.240* 

-1560.066 

-1561.645 

-1560.593 

-1567.240* 

-1567.240* 

0 
0 

-1567.240* 

-1561.438 

0 

-1559.986 

-1567.240* (2) 

0 

run 4 

0 

0 
0 
0 
0 

-1559.753 

-1561.944 

-1563.720 (2) 

0 
0 

-1567.240* 

-1559.678 

0 

-1559.678 (2) 

-1567.240* 

0 

run 5 

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
-1561.976 

0 

Table 1.2. Summary of results of phase II on polyalanine 58. The same starting 
configuration was used for all runs. Runs shown are arranged on best, second best, 
. . . . The 0 means we could not improve over the minimum (best) input potential 
energy. Number inside the parenthesis indicate multiple occurance of that particular 
minimizer. Values marked '*' means these are the best known global minimizer. 

run, e.g runs 1-3 in 7 = 0.10, P = 4.5. Second, if we oversmooth then 
the results are inferior to no smoothing, e.g 7 — 0.15, P == 4.5. 

To further understand smoothing, we did extensive testing using the 
single smoothing parameter choice, 7 — 0.15, P = 5. Again, all runs 
had the same input configurations to start with and the same limit on 
balancing/non-balancing iterations. In 30 runs out of a total of 38 runs 
we saw improvement in the minimizer value at end of phase II. In fact 23 
runs out of these 30 runs were successful in finding the global minimizer. 
We kept track of the iteration number when a specific minimizer is first 
found. In one instance, the —1567.240 was found after only 10 iterations 
(4 balancing and 6 non-balancing iterations), on average it was generated 
on the 15-16th iteration. 

It is interesting to trace the chains of minimizers produced by the 
algorithm. Since each minimizer produced by phase II is a 'child' of 
some minimizer found earlier, the local minimizers form a set of trees 
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Figure 1.6. A trimmed tree of the full trace of one of the minimizers throughout the 
life of phase II (7 = 0.15, P = 5) which yielded the global (smoothing minimizers on 
path to the global, —1567.240, are boldfaced). The full tree has 178 nodes (minimiz
ers) and is 6 levels deep. To reduce page cluttering, we only show the non-leaf nodes in 
the full tree. The value at top is the value of smooth minimizer, the number beneath 
(italicized) is that after desmoothing the minimizer. The labels at left and right are 
the ranking of the smooth minimizer within the set of minimizers produced by the 
small-dimensional optimization before and after the polishing (step 3c in Algorithm 
4.1), respectively. 
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Figure 1.7. Another trimmed tree of phase II (7 = 0.16, P = 5). This run found the 
global thrice (minimizers on the path to the global are boldfaced). The full tree has 
149 nodes and is 7 levels deep. 

rooted at the minimizers input to phase II. Although such a tree is quite 
large, we can display the most important part of it by shov^ing only 
those minimizers w^hich generated good minimizers. Recall that at step 
3c of Algorithm 4.1), we perform 25 full dimensional minimizations, 
and thus find up to 25 different minimizers, which can be considered 
children of the minimizer used to begin that step. A new minimizer is 
added to the list if it is among the top 200 found so far. We show in 
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Figure 1.6 a trace of a single starting conformation —1556.95 (a straight 
a-helix). It shows those minimizers in the final list which produced 
children good enough to be added to the list. The full tree has 178 
nodes (minimizers) and is six levels deep. We also show, in figure 1.7 
a trace from a run that resulted in finding the global energy minimum 
configuration three times, interestingly from two different parents and 
from different smoothed minimizers. These trees show the non-monotone 
nature of the algorithm, and the occurence of order flips in smoothing. 

As an estimate for the cost of running the algorithm, we report the 
number of function evaluations of the parallel version of Algorithm 4.1 
for polyalanine 58. The parallel version of phase I is slightly different 
than its sequential counterpart, and so the results will vary. The same 
is true in phase II which is implemented as a three layered structure 
as opposed to two in phase I. For further details, see [3] and [26]. For 
phase I, the average number of function evaluations is 2349 per sample. 
In phase II each iteration requires 21617 function evaluations in addition 
to the gradient evaluations. In terms of time, phase II takes about 3-4 
times as long as phase I to finish^. The final desmoothing phase required 
about 492 function evaluations per smoothed minimizer. 

5.3 Smoothing metenkephalin in phase I 
We also tried Algorithm 4.1 on metenkephalin, a small protein with 75 

atoms and five amino acids (Figure 1.8). Though it is a smaller protein 
than polyalanine, it is heterogeneous (different amino-acids), so it is a 
good test for our smoothing technique. 

Figure 1.8. The tertiary structure of metenkephalin. It has a total of 75 atoms. 

The input parameters to smoothing were as follow: generate 600 sam
ple points, then output the best 80 smoothed configurations. At the end 
of this phase, we desmooth the smoothed minimizers by doing full scale 
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smooth params 

1 P 
n o S] 

5.50 

5.25 

5.00 

4.75 

4.50 

1 7 
noothing 

0.00 

0.05 

0.10 

0.00 

0.05 

0.10 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

overall 

best min 

1 -13.05571 

-11.59565 

-16.90684 

-12.63449 

-15.82020 

-16.90684 

-13.92418 

-11.09422 

-11.02481 

-17.44337 

-17.09287 

-11.05957 

-13.15117 

-15.80765 

-12.87557 

-14.95210 

-15.60696 

-15.38735 

-12.27669 

-13.97437 

-14.89564 

-17.09297 

-15.80756 

-13.22904 

-16.90807 

avg of best 

minima 

-10.67496 

-10.49555 

-13.22026 

-9.63245 

-11.76161 

-13.60065 

-12.51320 

-8.65001 

-8.79110 

-14.33585 

-13.42397 

-9.18396 

-11.82889 

-10.99920 

-10.99422 

-11.61584 

-12.95194 

-11.24722 

-9.59790 

-11.60363 

-9.42210 

-13.10101 

-12.05443 

-11.18331 

-11.17747 

worst 

minimum 

14.17403 

21.73974 

52.96502 

34.17817 

23.03342 

49.39080 

47.20828 

36.35550 

36.98082 

58.78065 

40.46203 

48.71783 

62.58349 

37.74938 

46.34991 

44.97417 

48.13361 

50.50901 

44.89006 

47.81042 

38.91343 

48.14509 

51.10003 

52.99727 

66.32735 

average 

minimum 

0.96144 

1.95112 

3.14996 

3.17763 

2.62739 

3.94882 

4.74853 

4.14277 

4.72494 

4.72565 

4.97514 

5.67317 

6.25258 

4.09213 

4.58853 

5.10956 

6.67790 

6.64184 

6.78987 

4.64018 

4.50206 

5.38676 

6.44918 

7.58794 

8.58450 1 

Table 1.3. Summary of results of phase I on metenkephalin. The results are based 
on five runs. The column overall best min corresponds to the overall best minimum 
among the five runs, while average of best minima is the average of the best in each 
of the five runs. 

local minimization. Afterward, we pick few of the best (usually 10), 
unsmoothed minimizers. These will be used as input to the phase II 
algorithm. 

The results for phase I are shown in Table 1.3. The results for each 
7, P combination are based on five runs, that is 400 smoothed minimiz
ers. Unlike phase I in polyalanine (Table 1.1), which was successful in 
finding the global minimizer for polyalanines up to 40, here it never did 
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find the global minimizer. Considering the fact that metenkephalin has 
fewer atoms than polyalanine 10, this confirms that this protein's hetero
geneity of amino-acids leads to a more challenging problem. From Table 
1.3 we observe two different patterns. In most of the instances, smooth
ing was more likely to find a better best minimum than no smoothing. 
This is clear from the second column in the table. The other pattern is 
that with smoothing we are more likely to generate bad minima. This 
is evident from columns 3 and 4 in the Table 1.3. In other words, with 
smoothing we generated a wider range of minima. The best ones are 
better than those generated without smoothing, and at the same time 
the worst ones are worse than those generated with no smoothing. 

5.4 Smoothing metenkephalin in phase II 
To be consistent throughout, every run in phase II used the same 

initial set of minimizers. The input for this phase was 10 unsmoothed 
minimizers from phase I with smoothing parameters 7 — 0.1, P = 5. 
The best input configuration had energy —17.09286. The run time pa
rameters were: 4 balancing and 20 non-balancing iterations. This is the 
same as we used for phase II in polyalanine. Phase II kept a sorted list of 
the best 250 smoothed minimizers. When a good minimizer is found, it 
is added to the list, and a minimizer from the end of the list is discarded. 

The results for phase II are tabulated in Table 1.4. We did six runs 
for each smooth parameter combination, with the best run labeled run 
1, etc. Since even the algorithm without smoothing was twice successful 
in reaching the global minimum ( — 18.8475), we include more informa
tion to judge between different smoothings. Besides listing the best 
unsmoothed minimizer in each run, we list the iteration in which it was 
first generated, and the number of times it was generated throughout 
phase II. These two values are enclosed in brackets in front of the best 
unsmoothed minimizer (Table 1.4). 

Overall it is clear that most of the smoothing runs did a better job 
than the no smoothing run. For example: all six runs of 7 == 0.04, P — 
4.5 were successful in reaching the global more than once, but these 
runs usually found the global minimizer later than the no-smoothing 
run (when the no-smoothing run actually found it). However, there is 
clearly significant random variation. Some smoothing runs were inferior 
to the no smoothing runs, e.g 7 — 0.10, P — 5.5 and 7 = 0.05, P = 5, 
where none of the runs reached the global. However, using the slightly 
different values, 7 = 0.04, P = 5, resulted in reaching the global in five 
out of six runs. 
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6. Conclusions and Future Research 
The protein conformation problem belongs to the class of NP-hard 

problems. By taking advantage of the internal structure of the protein, 
the algorithm of [8] performs well. However, this algorithm, without 
smoothing, failed to find the minimum energy state of polyalanine larger 
than 20. In the first part of the paper we introduced a new family of 
smoothing functions to use in conjunction with this algorithm. In our 
experiments, this algorithm was able to find the apparent low energy 
state(s) of all sizes of polyalanines we tried. For polyalanine 58 we 
found two diflFerent low energy states, a straight and a bent a-helical 
structure. The algorithm also performed well on a smaller, but more 
complex protein, metenkephalin. 

There are some points worth future consideration. The algorithm we 
present uses smoothing to simplify the energy function, but minimizes 
the harmful eff'ect of order flips by using more computational efi'ort to 
track more local minimizers. An important issue is how this extra eff*ort 
will scale when we tackle larger proteins. It is also desirable to achieve 
a better understanding of the mathematical behavior of the smoothing 
function as smoothing increases, especially in comparison with spatial 
averaging techniques. The smoothing parameter values that worked best 
were somewhat diff'erent for the two proteins we studied; how to estimate 
the best values in advance is another important topic for future work. 
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Abstract In this chapter the physical aspects of the global optimization of the geometry of 
atomic clusters are elucidated. In particular, I examine the structural principles 
that determine the nature of the lowest-energy structure, the physical reasons 
why some clusters are especially difficult to optimize and how the basin-hopping 
transformation of the potential energy surface enables these difficult clusters to 
be optimized. 
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1. INTRODUCTION 
Global optimization (GO) is essentially a mathematical task. Namely, for 

the class of GO problems I will be particularly considering here, it is to find the 
absolute minimum (or maximum) of a cost function, / (x) , where x belongs to 
a subset D of Euclidean n-space, IZ^ [1], i.e. 

findx* such that/(x*) < / (x) ^^^D c TT. (1.1) 

Although the applications of global optimization span a wide range of fields— 
from the economics of business in the travelling salesman problem to biophysics 
in the lowest-energy structure of a protein—this does not take away from the 
essentially mathematical nature of the optimization problem. 

So why do I wish to discuss \ht physical aspects of global optimization? To 
begin with we should realize that even for GO problems that do not correspond 
to a physical system, physical properties can be associated with the system by 
thinking of the cost function as a potential energy function, £^(x). This allows 
the thermodynamics of the system to be defined. When the system is at equi
librium at a temperature T each point x in configuration space will be sampled 
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with a probability proportional to its Boltzmann weight, exp(—J5(x)//cT), 
where k is the Boltzmann constant. Furthermore, for systems with continuous 
coordinates the forces, F{x.), associated with each coordinate can be obtained 
from the gradient of the cost function, i.e. F{x.) = -VE{x). Once masses 
are associated with each coordinate, the dynamics are then defined through 
Newton's equations of motion. If one wishes, the system's dynamics can then 
be simulated by integrating these equations of motion, as in the molecular dy
namics method [2]. Even when the coordinates can only take discrete values, 
Monte Carlo (MC) simulations can still provide a pseudo-dynamics with the 
number of steps taking the role of time. 

Of course, this connection to physics is most transparent, and most natural, 
when the system being optimized is a physical system, which has a real (and 
potentially observable) thermodynamics and dynamics. Furthermore, in those 
cases where the cost function does truly correspond to the potential energy 
of the system, there is another physical dimension to the problem—how is 
the structure of the global minimum determined by the physical interactions 
between the atoms and molecules that make up £^(x)? 

Given that we have established that physical properties can be associated 
with any system being optimized, what relevance does this physics have to 
the task of global optimization? Firstly, many GO algorithm have drawn their 
inspiration from physics. Most famously, simulated annealing is analogous to 
the slow cooling of a melt to allow the formation of a near perfect crystal, the 
idea being that if equilibrium is maintained in the simulation as the system is 
cooled, then at zero temperature it must end up in the global minimum [3]. 
There are many other physically-motivated GO approaches. The extension 
of statistical thermodynamics to systems with non-extensive thermodynamics 
through the use of Tsallis statistics [4, 5] has led to a generalized simulated 
annealing [6, 7] which is no longer tied to the Boltzmann distribution and is 
often more efficient than standard simulated annealing. Genetic algorithms 
imitate the biophysical evolution of the genome [8], And I could go on. 

However, this is not the link between physics and global optimization that 
is my focus here. Rather, I wish to show how the ease or difficulty of global 
optimization is often intimately linked to the physics of the system. The insights 
obtained from understanding the physical basis for the success or failure of an 
algorithm not only provide an understanding of the limitations of the method 
and a basis for assessing the likelihood of success in future applications, but 
also aid the development of new algorithms by identifying the main physical 
challenges that need to be overcome to enable greater efficiency and suggesting 
the type of physical behaviour that would need to be incorporated into an 
improved algorithm. 

I will attempt to achieve this aim by concentrating on one class of problems, 
namely the global minimization of the potential energy of an atomic cluster. 
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Furthermore, I will mainly concentrate on model systems where the cost func
tion is computationally cheap to evaluate, enabling the physical properties of 
these systems to be comprehensively examined and understood. As outlined 
by Hartke elsewhere in this book [9], this class of problems is of great general 
interest to the chemical physics community, because the identification of a 
cluster's structure is often a prerequisite for understanding its other physical 
and chemical properties. 

In this chapter I start at the 'end', first showing the structures of the putative 
global minima^ for a number of cluster systems in order that the reader can 
understand some of the physical principles that determine the structure and how 
these relate to the interatomic interactions. Furthermore, the structure provides 
a basis for understanding a cluster's thermodynamic and dynamic properties, 
especially when, as in some of our examples, the competition between different 
structural types plays an important role. 

I then consider some of the GO algorithms that are most successful for these 
systems focussing on those that use the basin-hopping transformation of E{x.) 
[10] and on how the performance of these algorithms depend on the system 
and the cluster size. I then look at the physical properties of some of the 
clusters, relating these back to the ease or difficulty of global optimization. 
I firstly examine the topography of the multi-dimensional surface defined by 
£^(x) (the so-called potential energy surface (PES) or energy landscape), then 
the thermodynamics and dynamics. Finally, I show why basin-hopping is able 
to locate the global minimum in those clusters where the PES has a multiple-
funnel topography, and make some suggestions as to how further gains in 
efficiency might be secured. 

2. CLUSTER STRUCTURE 

In this section I mainly concentrate on the structures of model clusters, where 
the interactions have simple idealized forms that are isotropic, thus favouring 
compact geometries. The models have been chosen so that they span a wide 
range of structural behaviour that is likely to be relevant to rare gas, metal and 
molecular clusters bound by dispersion forces, but not to clusters with direc
tional covalent bonding or molecular clusters with directional intermolecular 
forces, as with the hydrogen bonding in water clusters. 

Most of the clusters we consider have only pair interactions, i.e. 

Eix) = J2^{rij), (1.2) 
i<j 

where V is the pair potential and rij is the distance between atoms i and j . In 
this case we can partition the energy into three terms [16]: 

E = - r i nne H- £^strain + ^'nnn (1.3) 
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(a) • * _ (b) ^ (c) 

Figure 1,1 Three examples of the structures clusters can adopt: (a) a 38-atom truncated 
octahedron, (b) a 55-atom Mackay icosahedron, and (c) a 75-atom Marks' decahedron. These 
clusters have the optimal shape for the three main types of regular packing seen in clusters: 
close-packed, icosahedral and decahedral, respectively. The Mackay icosahedron is a common 
structure and is observed for rare gas [11] and many metal [ 12] clusters. The truncated octahedron 
has been recently observed for nickel [13] and gold [14] clusters, and the Marks decahedron for 
gold clusters [15]. 

where e is the pair well depth, nnn is the number of nearest neighbours, 

and Teq is the equilibrium pair distance. Two atoms are defined as nearest 
neighbours if rij < TQ. TQ should lie between the first and second coordia-
nation shells and a typical value would be 1.35 req, although the exact value 
is somewhat arbitrary. The first term in Equation 1.3 is the ideal pair energy 
if all rinn nearest-neighbour pairs lie exactly at the equilibrium pair distance, 
the strain energy is the energetic penalty for the deviation of nearest-neighbour 
distances from the equilibrium pair distance and £̂ nnn is the contribution to the 
energy from non-nearest neighbours. 

Ennn IS usually smaller than the other two terms and is relatively independent 
of the detailed structure. Therefore, the global minimum usually represents the 
best balance between maximizing nnn and minimizing £ ŝtrain- For an atom 
in the interior of a cluster this is usually achieved through the atom having a 
coordination number of twelve. This can be achieved as in close-packing, but 
another possibility is an icosahedral coordination shell. Unn is further increased 
through the cluster having a compact spherical shape, and through the surface 
mainly consisting of faces with a high co-ordination number. For example, 
an atom on a face-centred-cubic (fee) {111} face has nine nearest neighbours, 
whereas an atom on a {100} face has eight nearest neighbours.^ 

The three main types of cluster structure found for systems with isotropic 
interactions, namely icosahedral, decahedral and close-packed^ structures, are 
depicted in Figure 1.1. These examples have the optimal shape for each 
structural type, and all have been identified experimentally. 

One of the unusual properties of clusters is that they can exhibit non-
crystallographic symmetries, because there is no requirement for translational 
periodicity. Decahedral clusters have a single five-fold axis and are based on 



Physical Perspectives of Atomic Clusters 107 

Figure 1.2 Examples of the strain involved in packing tetrahedra. (a) Five regular tetrahedra 
around a common edge produce a gap of 7.36°. (b) Twenty regular tetrahedra about a common 
vertex produce gaps equivalent to a solid angle of 1.54 steradians. 

a pentagonal bipyramid that can be thought of as five strained fee tetrahedra 
sharing a common edge. The symmetry axis corresponds to this common edge. 
The Marks decahedron [17], which represents the optimal shape for this struc
tural type, can be formed from a pentagonal bipyramid by exposing {100} faces 
at the equatorial edges then introducing reentrant {111} faces. Mackay icosa-
hedra [18] have six five-fold axes of symmetry and can be thought of as twenty 
strained fee tetrahedra sharing a common edge. The fee cluster represented in 
Figure 1.1a is simply a fragment of the bulk fee lattice. 

Icosahedral structures generally have the largest nnn because of their spher
ical shape and {111} faces, and close-packed clusters the smallest nnn because 
of their higher proportion of {100} faces. By contrast, close-packed clusters 
can be unstrained, whereas, as Figure 1.2 illustrates, decahedra and icosahedra 
are increasingly strained. The strain energy is proportional to the volume of the 
cluster, but differences in nnn are due to surface effects. Therefore, icosahedra 
are likely to be found at small sizes, but at sufficiently large size, the cluster 
must take on the bulk structure. At intermediate sizes decahedra can be most 
stable. The sizes at which the crossovers between structural types occur is 
system dependent. 

The structures illustrated in Figure 1.1 involve exactly the right number of 
atoms to form a cluster of the optimal shape. For example, complete Mackay 
icosahedra can be formed at N = 13, 55,147,309,... At intermediate sizes 
clusters have an incomplete surface layer. Marks decahedra with square {100} 
faces occur at Â  = 75,192,389,.... Other complete Marks decahedra that 
are less spherical can be found in between these sizes, e.g. at ^^=101 and 
146. Fee truncated octahedra with regular hexagonal {111} faces can be 
found at A/' = 38,201,586..., and other less spherical truncated octahedra 
can be found, for example, at N=79, 116, 140 [19]. Furthermore, because 
the energy of a twin plane is often small, close-packed structures with other 
forms can also be particularly stable. Four examples are given in Figure 1.3 
for A" < 100. The 26-atom structure has a hexagonal close-packed (hep) 
structure; the 50-atom structure consists of two fragments of the 38-atom 
structure joined at a twin plane; the 59-atom structure consists of a 31-atom fee 
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Figure 1.3 Four examples of stable close-packed structures for N < 80. The sizes are as 
labelled. The 59-atoms structure has Td point group symmetry, and the rest Dsh-

truncated tetrahedron with each face covered by a 7-atom hexagonal overlayer 
that occupies the hep surface sites; and the 79-atom structure, which is similar 
to the 50-atom structure, is formed by the introduction of a twin plane into the 
79-atom truncated octahedron [20], 

Recently, a new structural type called a Leary tetrahedron [21] has been 
discovered. An example with 98 atoms is illustrated in Figure 1.4. At the 
centre of this structure is an fee tetrahedron. To each of the faces of this 
tetrahedron, further fee tetrahedra (minus an apical atom) are added, to form a 
stellated tetrahedron. Finally, the edges of the original tetrahedron are covered 
by 7-atom hexagonal overlayers. The coordination along the edges of the 
central tetrahedron is the same as along the symmetry axis of the decahedron 
and so the strain energy of this structure is intermediate between icosahedra 
and decahedra. It is not yet clear how general this class of structures is. The 
98-atom example is the global minimum for a model potential [21] and mass 
spectroscopic studies of clusters of Ceo molecules suggest that (C6o)98 has 
this structure [22]. However, it may be that the stability of this structural 
class is restricted to A^=98, because this size results in a particularly spherical 
shape, and that equivalent structures at larger sizes (e.g. A^=159, 195) are never 
competitive. 

2,1 LENNARD-JONES CLUSTERS 
In this section I focus on clusters bound by the Lennard-Jones (LJ) potential 

[23]: 

where e is the pair well depth and 2^/^a is the equilibrium pair separation. The 
potential is illustrated in Figure 1.5a, and provides a reasonable description 
of the interatomic interactions of rare gases, such as argon. LJ clusters have 
become probably the most common test system for GO algorithms for con-
figurational problems. The number of papers with applications to this model 
system is now very large, but unfortunately many are distinctly unimpressive, 
only reporting results for small sizes or failing for relatively simple cases. I 
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Figure 1.4 Front and back views of the 98-atom Leary tetrahedron. 

do not attempt to review this literature, but instead refer the interested reader 
elsewhere [24]. 

At small sizes the LJ potential is able to accommodate the strain associated 
with icosahedral packing relatively easily [25]. Indeed, only for N > 1600 are 
the majority of global minimum expected to be decahedral and the crossover 
to fee clusters has been estimated to occur at N ^ 10^ [20]. This preference 
for icosahedral packing is also evident from Figure 1.6 where I compare the 
energies of icosahedral, decahedral and close-packed clusters. Sizes where 
complete Mackay icosahedra are possible (A^=13, 55) stand out as particularly 
stable. The icosahedra are least stable when the overlayer is roughly half-filled. 
Therefore, when especially stable non-icosahedral clusters coincide with these 
sizes there is a possibility that the global minimum will be non-icosahedral. 
There are eight such cases for N < 147. At A^=38 the global minimum is 
the fee truncated octahedron [16, 26, 27]; at N=15-ll [16] and 102-104 [19] 
the global minima are Marks decahedra; and at N=9% the global minimum is 
a Leary tetrahedron [21]. At these sizes the lines for the decahedral or close-
packed structures in Figure 1.6 dip just below the line for the icosahedra. For 
148 < N < 309 there are a further eight non-icosahedral global minima [9,28], 
all of which are decahedral and which divide into two sets that are based on the 
complete Marks decahedra possible at N=192 and 238. For 310 < Â  < 561 
the global minima are all icosahedral [29], but for 562 < N < 1000 there are 
41 decahedral globlal minima [30]. 

2.2 MORSE CLUSTERS 
In this section I focus on clusters bound by the the Morse potential [31]: 

VM = e^e^d-^^^/'^eqj^gPCi-n./req) _ 2)̂  (i.6) 
i<j 

where e is the pair well depth and rgq is the equilibrium pair separation. In 
reduced units there is a single adjustable parameter, p, which determines the 
range of the interparticle forces. Figure 1.5b shows that decreasing p increases 
the range of the attractive part of the potential and softens the repulsive wall, 
thus widening the potential well. Values of p appropriate to a range of materials 
have been catalogued elsewhere [32]. The LJ potential has the same curvature 
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Figure 1.5 (a) A comparison of the Lennard-Jones (LJ) potential with the Dzugutov potential 
(Dzl) and a modified version of it (Dz2). (b) The Morse potential for several values of the range 
parameter, p. 

at the bottom of the well as the Morse potential when p=6. Girifalco has 
obtained an intermolecular potential for Ceo molecules [33] that is isotropic 
and short-ranged relative to the equilibrium pair separation with an effective 
value of p=13.62 [34], The alkali metals have longer-ranged interactions, for 
example p=3.15 has been suggested for sodium [35]. 

The global minima for this system have been found as a function of p for 
all sizes up to A^=80 [16, 36, 37]. Equation (1.3) enables us to understand 
the effect of p on cluster structure. As p increases and the potential well 
narrows, the energetic penalty for distances deviating from the equilibrium 
pair separation increases. Thus, £̂ strain increases for strained structures, and 
so icosahedral and decahedral structures become disfavoured as p increases. 
This is illustrated in Figure 1.7, which shows how the structure of the global 
minimum depends on N and p. The global minimum generally change from 
icosahedral to decahedral to close-packed as p is increased. It can be seen that 
the value of p appropriate for the LJ potential lies roughly in the middle of the 
icosahedral region of Figure 1.7. 

Alternatively, the effect of p can be thought of in terms of its effect on the 
crossover sizes at which a particular structural type becomes dominant. As p 
increases, the less strained structures become dominant at smaller sizes. These 
effects can also be found in real materials. For example, sodium clusters have 
been shown to exhibit icosahedral structures up to at least 22000 atoms [38], 
whereas the thermodynamically stable structure of clusters of Ceo molecules 
have recently been shown to be non-icosahedral for Â  > 30 [22]. 

As well as these trends. Figure 1.7, of course, also reflects the specifics of the 
structures that are possible at each size, so the boundaries between structural 
types are not smooth lines but show a lot of detailed structure. For example, 
the range of p values for which icosahedral structures are most stable is a local 
maximum at A^=55 because of the complete Mackay icosahedra possible at this 
size. At sizes where close-packed structures have a greater or equal number 
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Figure 1.6 Comparison of the energies of icosahedral (I), decahedral (D) and close-packed (C) 
LJiv clusters. The energy zero is Eui, a function fitted to the energies of the first four Mackay 
icosahedra at iV=13, 55, 147 and 309: 

of nearest neighbours to the best decahedral structure, the global minimum 
changes directly from icosahedral to close-packed. 

A new class of structures appears in the bottom right-hand comer of Figure 
1.7. They are polytetrahedral clusters with disclination lines running through 
them. A polytetrahedral structure can be decomposed into tetrahedra without 
any interstices. The 13-atom icosahedron is an example, and one of the possible 
ways of adding atoms to the surface of the icosahedron—the so-called anti-
Mackay overlayer—continues the polytetrahedral packing. This overlayer does 
not lead to the next Mackay icosahedron but instead to the 45-atom rhombic 
tricontahedron (Figure 1.8a), which can be thought of as an icosahedron of in
terpenetrating icosahedra. If one imagines adding regular tetrahedra to the form 
in Figure 1,2b one soon realizes that the 45-atom structure must be extremely 
strained, and for this reason it is the global minimum only at low /?, where this 
strain can be accommodated. For Â  > 45 similar polytetrahedral clusters can 
be formed but based not on the 13-atom icosahedron but on polyhedra with 
a higher coordination number. The two examples in Figure 1.8a have a 14-
and 16-coordinate central atom. These structures can be described in terms of 
disclination lines, where the lines pass along those nearest-neighbour contacts 
that are the common edge for six tetrahedra [39], These types of structures 
might be thought to be fairly esoteric, but they form the basis for the crystalline 
Frank-Kasper phases [40, 41] where atoms of different size create a preference 
for coordination numbers higher than 12, and so they might be good candidate 
structures for certain mixed metal clusters. Furthermore, they have recently 
been found in models of clusters of heavy metal atoms [42] and aluminium 



112 Global Optimization: Scientific and Engineering Case Studies 

25 

20 

15 

10 -{ 

anti-Xackay V<^ ^ ^^""^^^ 

p̂f 

10 20 30 40 N 50 60 70 80 

Figure 1.7 Zero temperature 'phase diagram' showing the variation of the lowest-energy 
structure with Â  and p. The data points are the values of p at which the global minimum 
changes. The lines joining the data points divide the phase diagram into regions where the 
global minima have similar structures. The solid lines denote the boundaries between the 
four main structural types—icosahedral, decahedral, close-packed and the polytetrahedral (pt) 
structures associated with low p (L)—and the dashed lines are internal boundaries within a 
structural type, e.g. between icosahedra with different overlayers (Mackay and anti-Mackay), 
or between decahedra with different length decahedral axes. There is also a small region where 
structures based on the Leary tetrahedron are most stable. 

clusters [43], and recent experimental diffraction and electron microscopy data 
for small cobalt clusters can best be modelled by a disclinated polytetrahedral 
structure that is a fragment of a Frank-Kasper phase [44]. However, at the size 
corresponding to this experiment (A^ ^ 150) the long-ranged Morse clusters 
have disordered polytetrahedral global minima. 

2,3 DZUGUTOV CLUSTERS 
In contrast to the potentials that we have so far examined, the Dzugutov 

potential [45,46] has a maximum that penalizes distances near to \/2 times the 
equilibrium pair distance (Figure 1.5a), the distance across the diagonal of the 
octahedra in close-packed structures. This maximum loosely resembles the first 
of the Friedel oscillations [47] often found in effective metal potentials. The 
potential was originally designed to suppress crystallization in bulk simulations 
so that the properties of supercooled liquids and glasses could more easily be 
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Figure 1.8 Polytetrahedral structures that are the global minima for the (a) long-ranged Morse 
potential and (b) Dzugutov potential. Sizes as labelled. The point group symmetries of the 
structures in (a) are Ih, Ded and Td and in (b) are D^h, Dsd, DQH and Cs. The disclination 
networks associated with the 53- and 61-atom structures are illustrated next to the clusters. 

Studied in a one-component system [45,48]. However, under certain conditions 
it was found that a dodecagonal quasicrystal could be formed on freezing [49]. 

For clusters the potential will penalize close-packed, decahedral and Mackay 
icosahedral structures (the latter two because octahedra are found within the fee 
tetrahedral units from which the structures are made) and will favour polyte
trahedral clusters. Therefore, one might think that this potential would provide 
a good model for small cobalt clusters. However, as can be seen from Figure 
1.5a the potential is narrower than the LJ potential, and matching the second 
derivative at the equilibrium pair separation to that of the Morse potential gives 
an effective value of p of 7.52. Therefore, the potential cannot accommodate 
the strain in compact polytetrahedral clusters. Instead, the global minima are 
non-compact polytetrahedral structures, such as the needles, disc and torus 
illustrated in Figure 1.8b [50]. These structures are made up of face-sharing or 
interpenetrating 13-atom icosahedral units. In terms of Equation (1.3) they rep
resent the best balance between maximizing nnn whilst minimizing both E'strain 
and £̂ nnn» where the latter now corresponds to the total energetic penalty for 
distances close to V^ req. 

In order to generate a model that exhibits ordered compact polytetrahedral 
clusters a modified Dzugutov potential was constructed with an effective value 
of p of 5.16, allowing it to accommodate more strain (Figure 1.5a). Indeed, the 
global minima do have the desired structural type, and so this system should be 
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useful in generating realistic candidate structures to compare with the cobalt 
experiments [51], 

2.4 COMPARISON WITH EXPERIMENT 
One of the remarkable features of these simple model potentials is that 

the structures they exhibit do provide good candidates for the structures of 
real clusters. Indeed, frequently the structures first identified for these model 
systems are subsequently identified in experiments. For example, the special 
stability of the structures exhibited by the fee Nias [13] and Auag [14], the 
decahedral AU75 [15] and the tetrahedral (C6o)98 [22] were first identified 
through calculations on LJ and Morse clusters [16, 21]. 

Furthermore, as experiments can rarely identify a cluster's structure directly, 
but often have to rely on comparison with properties calculated using candidate 
structures, it is extremely useful to have databases of plausible structures avail
able. This is the philosophy behind internet repositories such at the Cambridge 
Cluster Database (http://www-wales.ch.cam.ac.ulc/CCD.html), which contains 
the global minima for all the potentials described here, and the Birmingham 
Cluster website (http://www.tc.bham.ac.uk/bcweb/). 

In comparisons between experiment and theory the role of temperature 
and kinetics should be remembered. The global minimum is only rigorously 
the equilibrium structure at zero temperature. At higher temperatures other 
structures may become more stable due to entropic effects [52, 53] as we will 
see in Section 4.1. Furthermore, it is not always clear whether equilibrium 
has been achieved under the experimental conditions, especially for clusters 
formed at low temperature [22, 54, 55]. 

3. GLOBAL OPTIMIZATION APPROACHES 
The type of GO algorithms in which I am interested are those that find global 

minima, not those that are also able to prove that the best structure found is in 
fact truly global. Unsurprisingly, the latter is a much more demanding task. For 
example, for LJ clusters good putative global minima have been found up to 
A^=309, but only up to N=l have these structures been proven to be global [56]. 
Of course, the problem with settling for obtaining putative global minima is that 
it is difficult to know when to give up looking for a lower-energy solution. For 
example, to my surprise, at least, a new putative global minimum was recently 
found for LJgs [21], even though powerful GO algorithms had previously been 
applied to this cluster [10, 57, 58, 59]. The failure of these previous attempts 
to locate the global minimum was not because the algorithms are unable to 
locate the Leary tetrahedron, but simply because the computations had been 
terminated too soon. 
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I also wish to concentrate on GO algorithms that are unbiased, i.e. those that 
do not artificially bias the system towards those structures that physical insight 
would suggest are low in energy, for example, by seeding the algorithm with 
fragments of a certain structural type [59] or by searching on a lattice for a 
specified structural type [25]. Of course, such biased algorithms are usually 
more efficient. For example, most of the LJ global minima were first found 
using such methods [25, 28]. However, they cannot cope with 'surprising' 
structures that fall outside the expected categories, and lack transferability to 
other systems, because they have sacrificed generality for greater efficiency 
in the specific problem instances. Furthermore, they require a sufficient prior 
understanding of the structure. This may be possible for the model potentials we 
consider here, but it is a much more difficult task with the complex interactions 
that are often necessary to realistically describe a system. 

Virtually all the global optimization algorithms that are most successful at 
locating the global minima of clusters have a common feature. Namely, they 
make extensive use of local minimization. All GO algorithms require elements 
of both local and global search. The algorithm has both to be able to explore all 
regions of configuration space (overcoming any energy barriers that might hin
der this) whilst also sufficiently sampling the low-energy configurations within 
each region. Performing local minimizations from configurations generated by 
a global search is one way of combining these two elements. 

Simulated annealing provides a perhaps more traditional way of achieving 
this goal. In simulated annealing, by varying a parameter, the temperature, 
the nature of the search is changed from global (at high temperature) to local 
(as T -^ 0). However, this approach has a number of weaknesses. There is 
effectively only one local minimization, so if the configuration does not become 
confined to the basin of attraction of the global minimum as the temperature is 
reduced the algorithm will fail, even if the system had passed through that basin 
of attraction at higher temperature. This condition for success is unnecessarily 
restrictive and leads to inefficiency. 

There is a further element to the most successful algorithms, namely that the 
energies of the local minima, not of the configurations prior to minimization, 
are the basis for comparing and selecting structures. This approach was first 
used in 1987 by Li and Scheraga in the application of their 'Monte Carlo 
plus minimization' to polypeptides [60]. However, despite this approach being 
independently adopted a number of times subsequently [61, 62], it was only 
in 1997 that it was realized that in this approach one is effectively searching 
a transformed PES, £^(x), where the energy associated with each point in 
configuration space is that of the minimum obtained by a local minimization 
from that point [10], i.e. 

£^(x)-:min{S(x)}, (1.7) 
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Figure 1.9 A schematic diagram illustrating the effects of the basin-hopping potential energy 
transformation for a one-dimensional example. The solid line is the potential energy of the 
original surface and the dashed line is the transformed energy, E. 

where 'min' signifies that an energy minimization is carried out starting from 
X. Unlike many PES transformations proposed in the name of global optimiza
tion, this 'basin-hopping' transformation is guaranteed to preserve the identity 
of the global minimum. The transformation maps the PES onto a set of inter
penetrating staircases with plateaus corresponding to the basins of attraction of 
each minimum (i.e. the set of configurations which lead to a given minimum 
after optimization). A schematic view of the staircase topography that results 
from this transformation is given in Figure 1.9. 

The potential advantages of using the basin-hopping transformation become 
clear when we contrast the inter-minimum dynamics on the original and trans
formed PESs. In molecular dynamics simulations on the original PES much 
time is wasted as the system oscillates back and forth within the well surround
ing a minimum, waiting for the kinetic energy to become sufficiently localized 
along the direction of a transition state valley to enable the system to pass into 
an adjacent minimum. A similar dynamical (albeit as a function of steps rather 
than time) picture holds for MC when only local moves are used. The biased 
random walk is confined to the well around a minimum, frequently being re
flected back off the walls of this well, until by chance the system happens to 
wander over a transition valley into a new minimum. However, a completely 
different picture is appropriate to the dynamics in simulations (using MC or 
discontinuous molecular dynamics^ [63]) on the transformed PES. The trans
formation removes vibrational motion (the Hessian has no positive eigenvalues) 
and transitions out of a basin are possible anywhere along the boundary of the 
basin. Therefore, steps in any direction can lead directly to a new minimum. 
Furthermore, downhill transitions are now barrierless. However, as Figure 1.9 
illustrates, significant barriers between low-energy minima can remain if they 
are separated by high-energy intervening minima. 

Consequently, on E{x.) the system can hop directly between basins; hence 
the name of this transformation. Furthermore, much larger MC steps can be 
taken on £^(x); such steps would virtually always be rejected on the original 
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PES because atoms would become too close and an extremely high energy 
would result. After the transformation atoms can even pass through each other. 

The method of searching £'(x) is of secondary importance compared to the 
use of the transformation itself. Indeed, the performance is fairly similar for 
the two main methods used, genetic algorithms and the constant temperature 
MC used in basin-hopping. Here, we mainly concentrate on the basin-hopping 
approach and refer readers to Hartke's chapter for more detail on the genetic 
algorithm methodology [9]. 

In the basin-hopping or Monte Carlo plus minimization method, standard 
Metropolis MC is used, i.e. moves are generated by randomly perturbing the 
coordinates, and are always accepted if E decreases and are accepted with 
a probability exp{—AE/kT) if E increases. Using constant temperature is 
sufficient, since there is no great advantage to using an annealing schedule 
because the aim is not to trap the system in the global minimum, but just 
to visit it at some point in the simulation. One of the advantages of this 
method is its simplicity—there are few parameters to adjust. It is usually 
satisfactory to dynamically adjust the step size to produce a 50% acceptance 
ratio. An appropriate temperature also needs to be chosen, but fortunately 
the temperature window for which the method is effective is usually large, 
and can be quickly found after some experimentation. Furthermore, there 
is a well-defined thermodynamics associated with the method [64] that makes 
understanding the physics behind the approach easier, as we shall see in Section 
4.3. 

Typically, a series of basin-hopping runs of a specified length will be per
formed starting from a random geometry. This is advantageous over a single 
longer run because it can provide a loose gauge of success. If all the runs return 
the same lowest-energy structure one would imagine that the true global min
imum had been found. It can also often prove useful to perform runs starting 
from the best structures at sizes one above and below, with the lowest-energy 
atom removed or an atom added, respectively. 

The local minimization method that we have found to be most efficient 
for clusters is a limited memory BFGS algorithm [65]. The basin-hopping 
approach is also found to be more efficient when the configuration is reset to 
the configuration of the local minimum after each accepted step [66]; this avoids 
problems with evaporation of atoms from the cluster since the basin-hopping 
transformation also reduces the barriers to dissociation. In addition to the usual 
steps, it is advantageous to have occasional angular steps for low-energy surface 
atoms. These have a similar aim to the directed mutations introduced by Hartke 
into his genetic algorithm [58]; they both enable the best arrangement of the 
surface atoms to be found more rapidly. For biopolymers other system-specific 
step types have been introduced to increase efficiency [67]. 
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Figure 1.10 Mean number of steps to reach the LJiv (up to N~1A) global minimum from a 
random starting point with the basin-hopping approach. The average is over a hundred runs at 
T ^ 0.8e/c~^ Reproduced from Ref. [69]. 

One of the main differences between the basin-hopping and genetic algo
rithms is that only local moves are used in basin-hopping, whereas genetic 
algorithms employ co-operative crossover moves in which a new structure is 
formed from fragments of two 'parent' clusters. However, recently non-local 
moves have been introduced into a variant of basin-hopping by rotating or 
reflecting a fragment of the structure [68]. 

Two examples of the performance of basin-hopping algorithms for LJ clus
ters as a function of size are given in Figures 1.10 and 1.11. The basin-hopping 
transformation must lead to a considerable speed-up (in terms of steps) if the 
method is to be cost-effective, because the transformation is computationally 
expensive and requires many evaluations of the energy and the forces at each 
step. Clearly, one would not want to use the many millions of steps and cycles 
that are typically used in molecular dynamics and MC simulations on the orig
inal PES. However, the results in Figure 1.10 show that the number of steps 
required to find the global minimum is remarkably few, only of the order of 
hundreds or thousands of steps. This is even more remarkable when the num
ber of minima on the PES is considered. In line with theoretical expectations 
[70] the number of minima for small LJ clusters increases exponentially with 
size [71]. Extrapolating this trend provides, for example, an estimate of 10^^ 
minima for LJ55. Therefore, a Levinthal-type paradox [72]^ can be formu
lated for locating the global minimum of a cluster: the number of minima of 
an atomic cluster quickly becomes so large that beyond a fairly small size, if 
these minima were randomly searched, even at an extraordinarily fast rate, it 
would take an unfeasibly long time to locate the global minimum—so how is 
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Figure LU Observed probability of hitting the global minimum in a monotonia sequence 
basin-hopping run starting from a random starting point, averaged over 1000 runs. Reproduced 
from Ref. [77]. 

it possible to find the global minimum? Yet the basin-hopping algorithm using 
optimal parameters finds the LJ55 global minimum from a random starting con
figuration on average within 150 steps [69]. The fallacy in Levinthal's paradox 
has long been known to be the assumption of random searching [73, 74, 75, 76] 
however it does emphasize the extremely non-random nature of basin-hopping 
for LJ55—the runs are extremely biased towards the global minimum. 

Figure 1.10 shows some interesting variations in the ease of global optimiza
tion with cluster size. The 38-atom global minimum particularly stands out as 
being difficult to locate, suggesting that competition between different struc
tural types makes global optimization more difficult. Indeed for LJ75, the next 
largest cluster with a non-icosahedral global minimum, the number of steps 
required is so large that it was not possible to obtain good enough statistics to 
be included in Figure 1.10. Subsequent calculations on a super-computer by 
Leary suggest that the mean first passage time is of the order of 10^ steps [77]. 
The other six non-icosahedral global minima for Â  < 150 are of roughly sim
ilar difficulty to locate. It is also noteworthy that the global minimum for LJ31 
is relatively difficult to find. In this case, there is some structural competition 
between the two types of icosahedral overlayer—it is the first size at which the 
overlayer that leads to the next Mackay icosahedron is lowest in energy. 

An alternative perspective on these effects can be obtained from Figure 1.11, 
which shows the probability that a 'monotonic sequence' basin-hopping run 
ends at the global minimum. In this variation of the basin-hopping algorithm 
[77] only downhill steps are accepted (i.e. r=0) and the run is stopped after 
there is no further improvement for a certain number of steps. For those sizes 
with non-icosahedral global minima there is a much smaller probability of the 
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run ending in the global minimum, and so again global optimization is more 
difficult. In these cases the majority of runs end at low-energy icosahedral 
structures. Those examples at larger sizes are again more than an order of 
magnitude more difficult than LJ38, but interestingly the Marks decahedra at 
A7'=102-104 are somewhat more easy to locate than those at N=15~ll. 

These results enable us to comment on the use of LJ clusters as a test system 
for GO methods. They show that the icosahedral global minima are relatively 
easy to locate, and in these cases optimization only starts to become more 
difficult as Â  approaches 100 (Figure 1.11). As for the non-icosahedral global 
minima, the number of unbiased GO methods that have found the LJ38 global 
minimum is now quite large [10,27,57,58,68,77,78,79,80,81,82,83, 84] but 
those that can find the LJ75 global minimum is still small [10, 58, 68, 77, 83]. 
Therefore, a good test for a GO method is to attempt to find all the global 
minima up to N=llO. Any GO method 'worth its salt' for clusters should 
be able find all the icosahedral global minima and the truncated octahedron at 
N=3S . Success for the other non-icosahedral global minima would indicate 
that the method has particular promise. However, far too many GO algorithms 
have only been tested on cluster sizes where global optimization is relatively 
trivial. 

The weakness of LJ clusters as a test system is that they have a relatively 
uniform structural behaviour. Morse clusters could provide a much more varied 
test system, as Figure 1.7 illustrates. A suitable test would be to aim to find all 
the global minima at p=3, 6, 10 and 14 up to A^=80, as putative global minima 
have been tabulated for this size and parameter range [16, 36, 37]. One would 
generally expect the difficulty of global optimization to increase with p because 
the number of minima increases [85, 86] and the energy landscape becomes 
more rough [86, 87]. The system also provides many examples of structural 
competition, particularly for the short-ranged potentials where decahedral and 
close-packed clusters can have similar energies. A number of studies have 
begun to use Morse clusters as a test system [88, 89]. 

4. MULTIPLE-FUNNEL ENERGY LANDSCAPES 
The aim of this section is to provide a physical perspective that can help 

us understand why the global optimization of a system is easy or difficult, for 
example, to explain the size-dependence of Figures 1.10 and 1.11. As men
tioned in Section 3, an equivalent of Levinthal's paradox, which was originally 
formulated to capture the difficulty of a protein folding to its native state, can 
be applied to a cluster locating its global minimum. The flaw in that para
dox is its assumption that conformations will be sampled randomly, i.e. all 
configurations are equally likely, because we know that in an equilibrium phys
ical sampling of the conformation space, say in the canonical ensemble, each 
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point will be sampled with a probability proportional to the Boltzmann weight, 
exp(—£^(x)/A:T). Thus, the Boltzmann factor favours low-energy conforma
tions. Therefore, we can begin to see the vital role played by the potential 
energy surface. This role extends beyond purely thermodynamic considera
tions to the dynamics: does the topography and connectivity [90] of the PES 
naturally lead the system towards or away from the global minimum? 

The Levinthal assumption of random sampling is equivalent to assuming 
that the energy landscape has the topography of a perfectly flat putting green 
with no thermodynamical or dynamical biases towards the global minimum 
at the bottom of the 'hole'. Similarly, the NP-hard character of the global 
optimization of atomic clusters [91], which results in part from the exponential 
increase in the search space with size, considers a general case where no 
assumptions about the topography of the PES can be made. In the protein 
folding community, after the fallacy in the Levinthal paradox was recognized, 
attention focussed on the more important question of how does the topography 
of the PES differ for those polypeptides that are able to find their native states 
from those that cannot [75]. Here, I address similar questions for the global 
optimization of clusters. 

One of the topographical features of the energy landscape that the protein 
folding community has found to be common is, what has been termed, a 'funnel' 
[75,92]. By this they mean a region of configuration space that can be described 
in terms of a set of downhill pathways that converge on a single low-energy 
structure or a set of closely-related low-energy structures. As its name suggest 
a protein PES with a single funnel converging on the native state will be a good 
folder because the topography helps in guiding the protein towards that native 
state. 

If these ideas are to be useful, one needs a way of depicting the physically-
relevant aspects of the topography of a complicated 3A/̂ -dimensional energy 
landscape. One technique that has proven to be helpful in characterizing the 
PESs of proteins [93, 94, 95, 96] and clusters [96, 97, 98] is the disconnectivity 
graph. This graph provides a representation of the connectivity of the multi
dimensional energy landscape and by depicting the effective barriers between 
minima it is especially useful in the interpretation of dynamics. 

To construct a disconnectivity graph, at a series of energy levels the minima 
on the PES are divided into sets which are connected by paths that never 
exceed that energy level. In the graph each set is represented by a node at the 
appropriate energy and lines connect a node to the sets at higher and lower 
energy which contain the minima corresponding to the original node. A line 
always ends at the energy of the minimum it represents. 

Disconnectivity graphs can be understood by analogy to the effects of the 
water level in a geographical landscape. The number of nodes in a graph at 
a given energy is equivalent to the number of distinct seas and lakes for a 
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Figure 1.12 Disconnectivity graphs for (a) LJ13, (b) LJ31, (c) LJ38, (d) LJ55, (e) LJ75 and (f) 
LJ 102. In (a) all the minima are represented. In the other parts only the branches leading to the 
(b) 200, (c) 150, (d) 900, (e) 250 and (f) 200 lowest-energy minima are shown. The numbers 
adjacent to the nodes indicate the number of minima the nodes represent. Pictures of the global 
minimum, and sometimes the second lowest-energy minimum, are adjacent to the corresponding 
branch. The units of the energy axes are e. 
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Figure 1.12 cent. 

given water level. Inspection of actual disconnectivity graphs, e.g. Figure 1.12, 
also helps to clarify these ideas. At sufficiently high energy, all minima are 
mutually accessible and so there is only one node, but as the energy decreases 
sets of minima become disconnected from each other and the graph splits, 
until at sufficiently low energy, again there is only one node left, that of the 
global minimum. The pattern of the graph can reveal particularly interesting 
information about the PES topography. For a PES with a single funnel there 
is a single dominant stem with the other minima branching directly off it as 
the energy is decreased. By contrast for 'multiple-funnel' PESs the graph is 
expected to split at high energy into two or more major stems. 

In Figure 1.12 disconnectivity graphs for a selection of LJ clusters are 
presented, in particular some of those clusters that Figures 1.10 and 1.11 
indicated are more difficult to optimize. In the graph for LJ13 all the minima 
in our near-exhaustive sample are represented. The graph shows the form 
for an ideal single-funnel PES, because the icosahedral global minimum is 
particularly low in energy, and dominates the energy landscape. The PES has 
a remarkable connectivity: 911 distinct transition states are connected to the 
global minimum and all minima are within three rearrangements of the global 
minimum [90]. The disconnectivity graph for LJ55, another 'magic number' 
LJ cluster, also has a single-funnel. Unlike for LJ13, we are unable to represent 
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Figure 1.13 The lowest-energy path from the global minimum to the second lowest-energy 
minimum for (a) LJ38, (b) LJ75 and (c) LJ102. In each case the zero of energy corresponds to 
the energy of the global minimum. 

all the minima that we found on the graph, so instead we concentrate on the 
lower-energy minima in our sample. Indeed, the two bands of minima in the 
graph represent Mackay icosahedra with one or two defects. The graph only 
reveals the bottom of a funnel which extends up into the liquid-like minima 
[98]. 

In contrast to these two clusters, the bottom of the LJ31 PES is much flatter, 
and there are significant barriers between the low-energy minima, in particular 
between the two lowest-energy minima, which are icosahedral structures, but 
with different types of surface overlayer. These effects of structural competition 
are found in more extreme form in the graphs of those clusters with non-
icosahedral global minima. The graphs of LJ38, LJ75 and LJ102 split at high 
energy into stems associated with icosahedral and fee or decahedral structures, 
and so these energy landscapes have two major funnels. This splitting is most 
dramatic for LJ75 and LJ102, where the barrier between the two funnels is much 
greater than between any of the other sets of minima. The barriers between the 
two lowest-energy minima are 4.22e and 3.54e for LJ38, 8.69e and 7.486 for 
LJ75 and 7.44e and 7.366 for LJ102. The corresponding lowest-barrier paths are 
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Figure 1.14 Equilibrium thermodynamic properties of (a) LJ38 and (b) LJ55 in the canonical 
ensemble. Both the probability of the cluster being in the labelled regions of configuration space 
and the heat capacity, Cv are depicted. The label M+nd stands for a Mackay icosahedron with 
n surface defects. 

represented in Figure 1.13. These pathways pass over many transition states— 
13, 65 and 30 for LJ38, LJ75 and LJ102, respectively. There are many other 
pathways connecting the funnels, but they are either longer or involve higher 
effective barriers. For LJ38 the pathway passes through disordered liquid-like 
minima. However, for the two larger clusters all the minima along the pathways 
are ordered and the main structural changes are achieved by rearrangements 
that involve cooperative twists around the five-fold axis of the decahedron— 
the conservation of this axis throughout the structural transformation has also 
been observed in simulations of the decahedral to icosahedral transition in gold 
clusters [15]. For LJ75 the Marks decahedron is oblate whilst the low-energy 
icosahedral minima are prolate, so the pathway involves a greater amount of 
reorganization of the surface layer either side of these cooperative transitions 
than for LJ102. For the latter cluster the decahedral and icosahedral structures 
have fairly similar shapes; hence the shorter pathway for LJ102 (Figure 1.13), 
even though it is larger. 

As expected from the general dominance of icosahedral structures in this 
size range, there are many more low-energy icosahedral minima than low-
energy decahedral or fee minima for these three clusters. There are many 
low-energy arrangements of the incomplete surface layer of the icosahedral 
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Structures, whereas the decahedral or fee structures have especially compact 
structures and so any alteration in structure leads to a significant increase in 
energy. The number of minima in our samples that lie within the respective 
funnels is marked on Figure 1.12 and is indicative of the greater width of the 
icosahedral funnels. 

From characterizing the energy landscapes of these clusters, the physical 
origins of some of the differences in difficulty for GO algorithms should be 
becoming apparent. The single funnels of LJ13 and LJ55 make the global 
minimum particularly accessible, and the system is strongly directed towards 
the global minimum on relaxation down the PES. For LJ31, once the system 
has reached a low-energy structure, the flatness and the barriers at the bottom 
of the PES mean that further optimization is relatively slow compared to LJ13 
and LJ55. For the clusters with non-icosahedral global minima, the icosahedral 
funnel is much more accessible because of its greater width. Furthermore, after 
entering the icosahedral funnel, subsequent escape into the fee or decahedral 
funnel is likely to be very slow because of the large barriers that need to 
be overcome. The icosahedral funnel acts as a kinetic trap hindering global 
optimization. These effects will come out even more clearly in the next two 
sections as we look at the thermodynamics and dynamics associated with these 
clusters. From the disconnectivity graphs one would expect trapping to be 
a significantly greater hindrance to global optimization for LJ75 and LJ102 
than for LJ38, and the longer interfunnel pathway for LJ75 provides a possible 
explanation of why LJ102 seems to be somewhat less difficult to optimize than 
LJ75. 

4.1 THERMODYNAMICS 
The typical thermodynamic properties of a cluster are illustrated in Figure 

1.14b for LJ55. The heat capacity peak is associated with a melting transition 
that is the finite-size analogue of a first-order phase transition [99] and up 
to melting the structure is based on the global minimum, perhaps with some 
surface defects. The thermodynamics of the clusters with non-icosahedral 
structures are significantly different. Now, as well as the melting transition there 
is a further transition associated with a transition from the global minimum to 
the icosahedral structures that gives rise to a second lower-temperature feature 
in the heat capacity (Figure 1.14a and 1.15). For LJ38 the transition occurs 
fairly close to melting,^ however as the size increases the transition temperature 
generally decreases [53]. 

These solid-solid transitions have a number of implications for global op
timization. Firstly, on cooling from the melt it is thermodynamically more 
favourable for the cluster to enter the icosahedral funnel than that associated 
with the global minimum. Secondly, the transitions, particularly those for the 
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Figure 1.15 Canonical heat capacity peaks associated with the structural transitions from the 
global minimum to icosahedral structures for the LJ clusters with non-icosahedral global minima. 
The sizes are as labelled. 

larger clusters, lie below the 'glass transition' temperature where the cluster is 
effectively trapped in the current local minimum. This presents a nightmare 
scenario for simulated annealing. On cooling the cluster would first enter the 
icosahedral funnel, where it would then become trapped, even when the global 
minimum becomes thermodynamically more stable, because of the large free 
energy barriers (relative to kT) for escape from this funnel [100]. 

In the protein folding literature, good folders have been shown to have a large 
value of the ratio of folding temperature to the glass transition temperature, 
Tf/Tg, because this ensures the kinetic accessibility of the native state of the 
protein at temperatures where it is thermodynamically most favoured [75]. 
By contrast, these clusters have effective Tj/Tg values less than one and are 
archetypal 'bad folders'. 

4.2 DYNAMICS 
It is impractical to examine the interfunnel dynamics by standard molecular 

dynamics simulations because of the extremely long time scales involved. 
However, it is possible to calculate the rate of interfunnel passage by applying 
a master equation approach^ to the large samples of minima and transition 
states used to construct the disconnectivity graphs [87, 96]. The rate constants 
for LJ38 have been computed and show that the interfunnel dynamics obeys 
an Arrhenius law (i.e. the rate is proportional to exp{—Ea/kT), where Ea is 
the activation energy) well with the activation energies corresponding to the 
barriers associated with the lowest-energy pathway between the two funnels 
[87, 96]. For LJ38 this gives a value of 43 s~^ for the interfunnel rate constant 
at the centre of the fee to icosahedral transition (using parameters appropriate 
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Figure 1.16 Relaxation of LJss from high-energy minima showing the fast and slow contribu
tions to the final probability of the fee funnel. The time is in units of (ma'^/eY^'^. 

for Ar). As exected, this is beyond the time scales accessible to molecular 
dynamics simulations. The equivalent rate constants for the larger clusters are 
much slower because of the larger activation energies and the lower transition 
temperatures. 

Figure 1.16 illustrates for LJ38 the dynamics of relaxation from high-energy 
states. The initial relaxation is relatively rapid and the majority of the pop
ulation enters the icosahedral funnel (the approximations in this calculation 
actually lead to an overestimation of the probability of initially entering the fee 
funnel). These processes are separated by a couple of decades in time from the 
subsequent equilibration between the two funnels. 

The combined effects of the thermodynamics and dynamics can be illustrated 
by some simulated annealing results. For LJ55 the probability of reaching the 
global minimum in annealing simulations of 10^ and 10^ MC cycles is 29% 
and 94%. The equivalent values for LJ38 are 0% and 2%, and for LJ75 the 
annealing simulations were never able to locate the global minimum. 

4.3 OPTIMIZATION SOLUTIONS 
The previous sections illustrate the difficulty of finding the global minimum 

of the LJ clusters with non-icosahedral global minima if the natural thermo
dynamics and dynamics of the system are followed. However, optimization 
approaches do not have to be restricted to this behaviour. For example, as 
we mentioned in Section 3, the basin-hopping transformation accelerates the 
dynamics, allowing hops directly between basins. However, the transformation 
only reduces the interfunnel energy barriers by 0.68e for LJ38, 0.866 for LJ75 
and 0.896 for LJ102. Therefore, multiple-funnels are still potentially problem
atic. 
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Figure 1.17 Equilibrium thermodynamic properties of LJ38 on the transformed PES in the 
canonical ensemble, (a) The probability of the cluster being in the fee, icosahedral and liquid
like regions of configuration space, (b) The configurational heat capacity, Cv 

Figure 1.17 shows that the thermodynamic properties of LJ38 are dramati
cally changed by the transformation. The transitions have been significantly 
broadened. There is now only a single heat capacity peak and a broad temper
ature range where all states are populated. In particular, the global minimum 
now has a significant probability of occupation at temperatures where the free 
energy barriers between the funnels can be surmounted. This effect is illus
trated by the basin-hopping simulations in Figure 1.18. At low temperature the 
system is localized in one of the funnels with transitions between the two fun
nels only occurring rarely. However, at higher temperatures transitions occur 
much more frequently [64]. As we noted earlier the rate of interfunnel passage 
is proportional to exp(~Ea/kT), Although the transformation only reduces 
Ea by a small amount, the temperature for which the occupation probability 
for the global minimum still has a significant value is now over ten times larger. 
Hence, the increased interfunnel rates. 

The transformation has a second kinetic effect: it increases the width of 
the funnel of the global minimum. On the original LJ38 PES only 2% of the 
long annealing runs entered the icosahedral funnel, whereas 13% of Leary's 
downhill basin-hopping runs ended at the global minimum (Figure 1.11). On 
relaxation down the energy landscape the system is much more likely to enter 
the fee funnel on the transformed PES, thus making global optimization easier. 

These changes to the thermodynamics and dynamics also reduce the diffi
culty of global optimization for the larger non-icosahedral clusters, making it 
possible, if still very difficult, to reach the global minimum. The results of 
Leary indicate that for these clusters the increased accessibility of the funnel 
of the global minimum is the more important effect of the transformation. He 
found that it is more efficient to restart a run when it gets stuck in a funnel (and 
hope that it enters the funnel of the global minimum next time) than to wait for 
the cluster to escape from that funnel [77]. 
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We can understand why the PES transformation so dramatically changes the 
thermodynamics of the system, by examining pi, the occupation probability of 
a minimum i. For the untransformed PES within the harmonic approximation 
Pi oc exp(-/3£'^)/r^^^~^, where Ei is the potential energy of minimum i 
and Vi is the geometric mean vibrational frequency. For the transformed PES 
Pi oc Aiexp{—(3Ei), where Ai is the hyperarea of the basin of attraction 
of minimum i. The differences between these expressions, the vibrational 
frequency and hyperarea terms, have opposite effects on the thermodynamics. 
The higher-energy minima are generally less rigid and so the vibrational term 
entropically stabilizes the icosahedra and, even more so, the liquid-like state, 
pushing the transitions down to lower temperature and sharpening them. By 
contrast the hyperarea of the minima decreases with increasing potential energy, 
thus stabilizing the lower-energy states and broadening the thermodynamics. 

5. CONCLUSIONS 
In this chapter I hope to have shown how physical insight can play an 

important role in understanding the behaviour of global optimization algorithms 
and hope that these insights can help provide a firmer physical (rather than just 
empirical or intuitive) foundation for the design of new improved algorithms. 
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I also hope that it will encourage some to think about the physical aspects of 
other types of GO problems. 

In particular I have highlighted some examples where a multiple-funnel 
energy landscape strongly hinders global optimization. Such challenging cases 
are likely to be a common feature for any cluster system where there is not 
a single strongly dominant structural type. More generally, multiple funnels 
probably represent the most difficult problem for this class of GO problems, 
in which the lowest-energy configuration of a system is sought. For example, 
for this reason, the main criterion in the design of polypeptides that fold well 
is the avoidance of multiple funnels by optimizing the energy gap between the 
native state and competing low-energy structures [101]. 

I have also shown why the basin-hopping transformation of the energy 
landscape makes global optimization for these multiple-funnel cases easier. 
The method's success results from a broadening of the thermodynamics, so that 
the occupation probability of the global minimum is significant at temperatures 
where the interfunnel free energy barriers can be surmounted. This idea should 
act as a design principle in the development of any new GO algorithms that 
hope to overcome the challenge of multiple funnels. 

Although basin-hopping is successful for the LJ multiple-funnel examples, 
further improvements in efficiency are required before one can hope to suc
ceed for similar cases at larger size or for potential energy functions that are 
significantly more computationally intensive to evaluate. A number of avenues 
by which this may be achieved suggest themselves. Firstly, the basin-hopping 
algorithm searches the transformed potential energy surface using simple MC. 
However, there are a whole raft of methods that have been developed in or
der to speed up the rate of rare events in simulations on the untransformed 
PES, which could potentially be applied to the transformed PES. These include 
parallel tempering [102], jump-walking [103], and the use of non-Boltzmann 
ensembles, such as Tsallis statistics [7]. 

Secondly, the basin-hopping transformation can be combined with other 
PES transformations, of which there have been many suggestions [104], to get 
a double transformation (and hopefully a greater simplification) of the PES 
[105]. The potential problem with this type of approach is that as well as 
smoothing the PES, most transformations also change the relative stabilities of 
different structures. This can work in one's favour if the transformation stabi
lizes the global minimum. For example, a recent transformation proposed by 
Locatelli and Schoen, which favours compact spherical clusters, stabilizes the 
non-icosahedral LJ global minima [83]; for the 38-atom cluster the PES, when 
sufficiently deformed, has a single-funnel topography with the truncated octa
hedron at its bottom [105]. But just as often a transformation will destabilize 
the global minimum—this is why the performance of many PES-transformation 
GO methods is erratic, perhaps solving some 'hard' instances while failing for 
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'easier' examples. However, the proposed approach could be run alongside 
standard basin-hopping runs, and so would perhaps succeed in instances where 
the standard algorithm struggles. 

Thirdly, Hartke recently proposed a modification to the genetic algorithm 
approach, in which a diversity of structures is maintained in the population [58]. 
This leads to significant increases in efficiency for the LJ clusters with multiple-
funnels, because it prevents the whole population being confined (and trapped) 
within the icosahedral funnel. Such an approach could also potentially increase 
the efficiency of other algorithms. For example, a diversity of structures could 
be maintained between a set of parallel basin-hopping runs. 
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Notes 

1. As I cannot prove the optimality of the lowest-energy minima that 1 find, I should refer to the lowest 
known structures only as putative global minima, but for convenience I usually drop this adjective. 

2. The fee {111} planes corresponds to the close-packed planes, where the atoms in the planes form 
a grid of equilateral triangles. The atoms in the {100} planes form a square grid. 

3. I use the term close-packed to refer to any structure where all the interior atoms of the cluster have 
a face-centred-cubic or hexagonal close-packed coordination shell. This definition allows for any stacking 
sequence of close-packed planes, but does not admit any configuration of twin planes that must involve 
strain. 

4. The forces are zero except when the system reaches the edge of a basin of attraction at which point 
the cluster receives an impulse. Such force fields can be handled in discontinuous molecular dynamics [63]), 
a method that has often been used in dynamical simulations of systems of hard bodies. 

5. A copy of Levinthal's difficult-to-locate citation classic (Ref [72]) can now be found on the web at 
http://www-wales.ch.cam.ac.uk/~mark/levinthal/levinthal.html. 

6. The thermodynamic properties illustrated in Figures 1.14 and 1.15 have been calculated using a 
method where the thermodynamic properties of the individual minima are summed [96, 106]. However, 
recent simulations using parallel tempering indicate that for LJss the two transitions are slightly closer than 
indicated by Figure 1.14 and so the fee to icosahedral transition results only in a shoulder in the heat capacity 
curve [84]. 

7. In the master equation approach the occupation probabilities of all the minima can be followed as 
a function of time, given a set of rate constants between adjacent minima. These rate constants can be 
approximated using standard rate theories [107]. 
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Â  < 147, J. Chem. Phys. 87, 6166 (1987). 

[26] S. Gomez and D. Romero, Two global methods for molecular geom
etry optimization, in Proceedings of the First European Congress of 
Mathematics, volume III, pp. 503-509 (Birkhauser, Basel, 1994). 

[27] J. Pillardy and L. Piela, Molecular-dynamics on deformed potential-
energy hypersurfaces, J. Phys. Chem. 99, 11805 (1995). 

[28] D. Romero, C. Barron and S. Gomez, The optimal geometry of Lennard-
Jones clusters: 148-309, Comp. Phys. Comm. 123, 87 (1999). 

[29] Y. Xiang, H. Jiang, W. Cai and X. Shao, An efficient method based on 
lattice construction and the genetic algorithm for optimization of large 
Lennard-Jones clusters, J. Phys. Chem. A 108, 3586 (2004). 

[30] Y. Xiang, L. Cheng, W. Cai and X. Shao, Structural distribution of 
Lennard-Jones clusters containing 562 to 1000 atoms, J. Phys. Chem. 
A, in press (2004), 

[31] P. M. Morse, Diatomic molecules according to the wave mechanics. II. 
Vibrational levels, Phys. Rev. 34, 57 (1929). 

[32] D. J. Wales, L, J. Munro and J. P. K. Doye, What can calculations 
employing empirical potentials teach us about bare transition metal 
clusters?, J. Chem. Soc, Dalton Trans, p. 611 (1996). 

[33] L. A, Girifalco, Molecular-properties ofC^o i^ the gas and solid-phases, 
J. Phys. Chem, 96, 858 (1992). 

[34] D. J. Wales and J. Uppenbrink, Rearrangements in model face-centred-
cubic solids, Phys. Rev. B 50, 12342 (1994). 



Physical Perspectives of Atomic Clusters 135 

[35] L, A. Girifalco and V. G. Weizer, Application of the Morse potential 
function to cubic metals, Phys. Rev. 114, 687 (1959). 

[36] J. P. K. Doye and D. J. Wales, Structural consequences of the range of the 
interatomic potential: A menagerie of clusters, J. Chem. Soc, Faraday 
Trans. 93,4233(1997). 

[37] J. P. K. Doye, R. H. Leary, M. Locatelli and F. Scoen, The global 
optimization of Morse clusters by potential energy transformations, IN
FORMS J. Comput. 16, in press (2004). 

[38] T. P. Martin, T. Bergmann, H. Gohlich and T. Lange, Observation of 
electronic shells and shells of atoms in large Na clusters, Chem. Phys. 
Lett. 172,209(1990). 

[39] D. R. Nelson and F. Spaepen, Polytetrahedral order in condensed matter. 
Solid State Phys. 42, 1(1989). 

[40] F. C. Frank and J. S. Kasper, Complex alloy structures regarded as sphere 
packings. I. Definitions and basic principles,. Acta Crystallogr. 11, 184 
(1958). 

[41] F C. FrarJcand J. S. Kasper, Complex alloy structures regarded as sphere 
packings. II. Analysis and classification of representative structures, 
Acta Crystallogr. 12, 483 (1959). 

[42] L. C. Cune and M. Apostol, Ground-state energy and geometric magic 
numbers for homo-atomic metallic clusters, Phys. Lett. A 273, 117 
(2000). 

[43] J. P. K. Doye, A model metal potential exhibiting polytetrahedral clus
ters, J. Chem. Phys. 119, 1136 (2003), 

[44] F. Dassenoy, M.-J. Casanove, P. Lecante, M. Verelst, E. Snoeck, A. Mos-
set, T. Ould Ely, C. Amiens and B. Chaudret, Experimental evidence of 
structural evolution in ultrafine cobalt particles stabilized in different 
polymers—From a polytetrahedral arrangement to the hexagonal struc
ture, J. Chem. Phys. 112, 8137 (2000). 

[45] M. Dzugutov and U. Dahlborg, Molecular-dynamics study of the coher
ent density correlation-function in a supercooled simple one-component 
liquid, J. Non-Cryst. Solids 131-133, 62 (1991). 

[46] M. Dzugutov, Monatomic model of icosahedrally ordered metallic glass 
formers, J. Non-Cryst. Solids 156-158, 173 (1993). 

[47] D. G. Pettifor, Bonding and Structure of Molecules and Solids (Clarendon 
Press, Oxford, 1995). 

[48] M. Dzugutov, Glass-formation in a simple monatomic liquid with icosa-
hedral inherent local order, Phys. Rev. A 46, R2984 (1992). 



136 Global Optimization: Scientific and Engineering Case Studies 

[49] M. Dzugutov, Formation of a dodecagonal quasicrystalline phase in a 
simple monatomic liquid, Phys. Rev. Lett. 70, 2924 (1993). 

[50] J. P. K. Doye, D. J. Wales and S. I. Simdyankin, Global optimization 
and the energy landscapes of Dzugutov clusters, Faraday Discuss. 118, 
159(2001). 

[51] J. P. K. Doye and D. J. Wales, Polytetrahedral clusters, Phys. Rev. Lett. 
86,5719(2001). 

[52] J. P. K. Doye and D. J. Wales, Thermodynamics of global optimization, 
Phys. Rev. Lett. 80, 1357 (1998). 

[53] J. P. K. Doye and F. Calvo, Entropic effects on the size dependence of 
cluster structure, Phys. Rev. Lett. 86, 3570 (2001). 

[54] F. Baletto, C. Mottet and R. Ferrando, Reentrant morphology transition 
in the growth of free silver clusters, Phys. Rev. Lett. 84, 5544 (2000). 

[55] F. Baletto, J. P. K. Doye and R. Ferrando, Evidence of kinetic trapping 
in clusters ofC^o molecules, Phys. Rev. Lett. 88, 075503 (2002). 

[56] C. D. Maranas and C. A. Floudas, A global optimization approach for 
Lennard-Jones microclusters, J. Chem. Phys. 97, 7667 (1992). 

[57] D. M. Deaven, N. Tit, J. R. Morris and K. M. Ho, Structural optimization 
of Lennard-Jones clusters by a genetic algorithm, Chem. Phys. Lett. 256, 
195 (1996). 

[58] B. Hartke, Global cluster geometry optimization by a phenotype algo
rithm with niches: Location of elusive minima, and low-order scaling 
with cluster size, J. Comp. Chem. 20, 1752 (1999). 

[59] M. D. Wolf and U. Landman, Genetic algorithms for structural cluster 
optimization, J, Phys. Chem. A 102, 6129 (1998). 

[60] Z. Li and H. A. Scheraga, Monte-Carlo-minimization approach to the 
multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. USA 
84,6611(1987). 

[61] G. L. Xue, Molecular conformation on the CM-5 by parallel two-level 
simulated annealing, J. Global Optim. 4, 187 (1994). 

[62] D. M. Deaven and K. M. Ho, Molecular-geometry optimization with a 
genetic algorithm, Phys. Rev. Lett. 75, 288 (1995). 

[63] B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. 
General methods, J. Chem. Phys. 31, 459 (1959). 

[64] J. P. K. Doye, D. J. Wales and M. A. Miller, Thermodynamics and the 
global optimization of Lennard-Jones clusters, J. Chem. Phys. 109, 8143 
(1998). 

[65] D. Liu and J. Nocedal, On the limited memory BFGS method for large 
scale optimization. Mathematical Programming B 45, 503 (1989). 



Physical Perspectives of Atomic Clusters 137 

[66] R. R White and H. R. Mayne, An investigation of two approaches to 
basin hopping minimization for atomic and molecular clusters, Chem. 
Phys. Lett. 289,463(1998). 

[67] R Derreumaux, Ab initio polypeptide structure prediction, Theor. Chem. 
Ace. 104, 1 (2000). 

[68] I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W. M. Siu and 
K. A. Jackson, Single-parent evolution algorithm and the optimization 
of Si clusters, Rhys. Rev. Lett. 85, 546 (2000). 

[69] D. J. Wales and H. A. Scheraga, Global optimization of clusters, crystals 
and biomolecules, Science 285, 1368 (1999). 

[70] R H. Stillinger, Exponential multiplicity of inherent structures, Rhys. 
Rev. £59,48(1999). 

[71] C. J. Tsai and K. D. Jordan, Use of an eigenmode method to locate the 
stationary points on the potential energy surfaces of selected argon and 
water clusters, J. Rhys. Chem. 97, 11227 (1993). 

[72] C. Levinthal, How to fold graciously, in Mossbauer Spectroscopy in 
Biological Systems, Proceedings of a Meeting Held at Allerton House, 
Monticello, Illinois, edited by J. T. R DeBrunner and E. Munck, pp. 
22-24 (University of Illinois Rress, Illinois, 1969). 

[73] R. Zwanzig, A. Szabo and B. Bagchi, LevinthaVs paradox, Rroc. Natl. 
Acad. Sci. USA 89, 20 (1992). 

[74] R. Zwanzig, Simple model of protein folding kinetics, Rroc. Natl. Acad. 
Sci. USA 92, 9801 (1995). 

[75] J. D. Bryngelson, J. N. Onuchic, N. D. Socci and R G. Wolynes, Funnels, 
pathways, and the energy landscape of protein folding: A synthesis, 
Rroteins 21, 167(1995). 

[76] J. R K. Doye and D. J. Wales, On potential energy surfaces and relaxation 
to the global minimum, J. Chem. Rhys. 105, 8428 (1996). 

[77] R. H. Leary, Global optimization on funneling landscapes, J. Global 
Optim. 18, 367 (2000). 

[78] J. A. Niesse and H. R. Mayne, Global geometry optimization of atomic 
clusters using a modified genetic algorithm in space-fixed coordinates, 
J. Chem. Rhys. 105, 4700 (1996). 

[79] K. Michaelian, A symbiotic algorithm for finding the lowest energy 
isomers of large clusters and molecules, Chem. Rhys. Lett. 293, 202 
(1998). 

[80] R. V. Rappu, R. K. Hart and J. W. Ronder, Analysis and application of 
potential energy smoothing and search methods for global optimization, 
J. Rhys. Chem. B 102, 9725 (1998). 



138 Global Optimization: Scientific and Engineering Case Studies 

[81] J. Pillardy, A. Liwo and H. A. Scheraga, An efficient deformation-based 
global optimization method (self-consistent basin-to-deformed basin 
mapping). Application to Lennard-Jones atomic clusters, J. Phys. Chem. 
A 103, 9370 (1999). 

[82] D. B. Faken, A. F. Voter, D. L. Freeman and J. D. Doll, Dimensional 
strategies and the minimization problem: Barrier avoiding algorithm, J. 
Phys. Chem. A 103, 9521 (1999). 

[83] M. Locatelli and F. Schoen, Fast global optimization of difficult Lennard-
Jones clusters, Comput. Optim. and Appl. 21, 55 (2001). 

[84] J. P. Neirotti, F Calvo, D. L. Freeman and J. D. Doll, Phase changes 
in 38 atom Lennard-Jones clusters. L' A parallel tempering study in the 
canonical ensemble, J. Chem. Phys. 112, 10340 (2000). 

[85] J. P. K. Doye and D. J. Wales, The effect of the range of the potential on 
the structure and stability of simple liquids: from clusters to bulk, from 
sodium to Ceo, J- Phys. B 29, 4859 (1996). 

[86] M. A. Miller, J. P. K. Doye and D. J. Wales, Structural relaxation in 
Morse clusters: Energy landscapes, J. Chem. Phys. 110, 328 (1999). 

[87] M. A. Miller, J. P. K. Doye and D. J. Wales, Structural relaxation in 
atomic clusters: Master equation dynamics, Phys. Rev. E 60, 3701 
(1999). 

[88] C. Roberts, R. L. Johnston and N. T. Wilson, A genetic algorithm for the 
structural optimization of Morse clusters, Theor. Chem. Ace. 104, 123 
(2000). 

[89] H. Xu and B. J. Berne, Multicanonical jump-walking annealing: An 
efficient method for geometric optimization, J. Chem. Phys. 112, 2701 
(2000). 

[90] J. P. K. Doye, The network topology of a potential energy landscape: A 
static scale-free network, Phys. Rev. Lett. 88, 238701 (2002). 

[91] L. T, Wille and J. Vennik, Computational-complexity of the ground-state 
determination of atomic clusters, J. Phys. A 18, L419 (1985). 

[92] P. E. Leopold, M. Montal and J. N. Onuchic, Protein folding funnels: 
A kinetic approach to the sequence structure relationship, Proc. Natl. 
Acad. Sci. USA 89, 8271 (1992). 

[93] O. M. Becker and M. Karplus, The topology of multidimensional poten
tial energy surfaces: Theory and application to peptide structure and 
kinetics, J. Chem. Phys. 106, 1495 (1997). 

[94] Y. Levy and O. M. Becker, Effect of conformational constraints on the 
topography of complex potential energy surfaces, Phys. Rev. Lett. 81, 
1126(1998). 



Physical Perspectives of Atomic Clusters 139 

[95] M. A. Miller and D. J. Wales, Energy landscape of a model protein, J. 
Chem. Phys. I l l , 6610 (1999). 

[96] D. J. Wales, J. P. K. Doye, M. A. Miller, P N. Mortenson and T. R. 
Walsh, Energy landscapes of clusters, biomolecules and solids, Adv. 
Chem. Phys. 115, 1 (2000). 

[97] D. J. Wales, M. A. Miller and T. R. Walsh, Archetypal energy landscapes. 
Nature 394, 758 (1998). 

[98] J. P. K. Doye, M. A. Miller and D. J. Wales, Evolution of the potential 
energy surface with size for Lennard-Jones clusters, J. Chem. Phys. I l l , 
8417(1999). 

[99] P. Labastie and R. L. Whetten, Statistical thermodynamics of the cluster 
solid-liquid transition, Phys. Rev. Lett. 65, 1567 (1990). 

[100] J. P. K. Doye, M. A. Miller and D. J. Wales, The double-funnel energy 
landscape of the 38-atom Lennard-Jones cluster, J. Chem. Phys. 110, 
6896(1999). 

[101] R. Goldstein, Z. Luthey-Schulten and P. G. Wolynes, Optimal protein-
folding codes from spin-glass theory, Proc. Natl. Acad. Sci. USA 89, 
4918(1992). 

[102] E. Marinari and G. Parisi, Simulated tempering: A new Monte-Carlo 
scheme, Europhys. Lett. 19, 451 (1992). 

[103] D. D. Frantz, D. L. Freeman and J. D. Doll, Reducing quasi-ergodic 
behaviour in Monte Carlo simulations by J-walking: Applications to 
atomic clusters, J. Chem. Phys. 93, 2769 (1990). 

[104] S. Schelstrate, W. Schepens and H. Verschelde, Energy minimization by 
smoothing techniques: a survey, in Molecular Dynamics: From Classical 
to Quantum Mechanics, edited by P. B. Balbuena and J. M. Seminario, 
pp. 129-185 (Elsevier, Amsterdam, 1999). 

[105] J. P. K. Doye, The effect of compression on the global optimization of 
atomic clusters, Phys. Rev. E 62, 8753 (2000). 

[106] J. P. K. Doye and D. J. Wales, Calculation of thermodynamic properties 
of small Lennard-Jones clusters incorporating anharmonicity, J. Chem. 
Phys. 102, 9659(1995). 

[107] W. Forst, Unimolecular Reactions (Cambridge University Press, Cam
bridge, 2003). 



Chapter 6 

EFFICIENT GLOBAL GEOMETRY OPTIMIZATION 
OF ATOMIC AND MOLECULAR CLUSTERS 

Bemd Hartke 
Institutfur Physikalische Chemie 
Christian-Albrechts-Universitdt 
Olshausenstra&e 40 
24098 Kiel 
GERMANY 

hartke@phc.uni-kiel.de 

Abstract After a short survey of the general chemical context of the global cluster geometry 
optimization problem, several of its aspects are discussed, touching upon com
putational complexity, links to ab-initio calculations and experiment, benchmark 
systems, and some of the solution methods applied so far. Our current method, 
a variant of the standard Genetic Algorithms, is presented, discussing several 
aspects crucial for its efficiency. Applications of this method to both benchmark 
and real-life examples of atomic and molecular clusters are shown, including 
Lennard-Jones clusters and pure and mixed water clusters. 

Keywords: global cluster geometry optimization, random search, genetic algorithms 

1. Introduction 
1.1 Computational Complexity in Theoretical Chemistry 

The complexity of many-body systems is one of the main challenges in 
modem science. Due to the interaction between the constituent particles, the 
computational effort has to increase exponentially with system size in complete 
and exact simulations. Even if one is not interested in a dynamical description 
of processes but settles for a search for the optimal configuration (of lowest 
energy) of such a system, arriving at a global optimization task, the same ba
sic problem prevails: The search space typically increases exponentially with 
system size, and an exact treatment of systems with a non-trivial number of 
particles seems to be beyond reach. This problem is ubiquitous also in theoret-
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ical chemistry and molecular physics: The many-electron problem of quantum 
chemistry scales exponentially in a fully correlated, exact treatment (full con
figuration interaction). Drastic approximations had to be introduced to make 
this problem tractable at all for any system of chemical interest: For example, 
the famous Hartree-Fock self-consistent-field method ignores electron correla
tion completely (keeping only Fermi correlation due to electron spin) [1]. Only 
recently it was recognized that a local treatment of electron correlation [2,3] 
could bring down the impracticable Â"̂  to N'^ scaling of usual approximate 
correlation treatments to an ideal linear scaling. As their name implies, all 
these electronic structure methods solve the many-electron problem as a static 
problem, and one might expect the presence of multiple minima - however, 
although this is sometimes acknowledged, it does not appear to be a cause for 
concern in usual computational practice in this field. 

In the usual Bom-Oppenheimer approximation, after solving the electronic 
structure problem (and hence having the forces between atoms and molecules 
at their disposal), theoretical chemists tackle the remaining half of their field: 
the structure and dynamics of atomic and molecular arrangements, including 
simulations of actual chemical reactions. A proper, fully quantum mechanical 
approach to the latter is hit by the curse of dimensionality very soon: Only 
systems involving three to four atoms can be treated exactly even with the best 
methods available today [4-6]. If one largely ignores the quantum aspect of the 
problem and focuses on structural questions, several still unsolved many-body 
problems feature promimently in theoretical chemical physics, constituting true 
challenges for global optimization methods: 

In biochemistry, we have the problem of fitting small molecules to larger 
molecular receptors (molecular docking) and the question of how proteins (and 
similar polymeric macromolecules) fold after their natural synthesis (or after 
denaturation in vitro) into their biologically active, native three-dimensional 
form. The native form is apparently given solely by the sequence of amino 
acids (the primary structure). Nevertheless, for a given primary structure, a 
complete search through configuration space for the native form can be ruled 
out, as simulation procedure (even with the usual restriction of keeping bond 
distances and bond angles fixed and varying only dihedral angles, absence of 
water solvation, etc.) and as hypothesis for the actual natural process: In both 
cases this would simply take much too long (Levinthal's paradoxon) [7-9]. 

Any bound arrangement of several atoms and/or molecules may be called 
a "cluster". Very many of these arrangements are well known to organic and 
inorganic chemists, as documented in numerous textbooks. They are usually 
called "molecules", and chemists have developed well working sets of rules and 
practical intuitions for their structure, energetics, and reactions, and this is what 
those textbooks are all about. In recent decades, however, several experimental 
techniques made it possible to synthesize and study other arrangements that 
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fall outside the usual realm of traditional textbook chemistry; the discovery of 
carbon clusters of the "fullerene" type is only one popular example [10,11]. For 
these clusters, there are usually no rules or intuitions to predict their structure; 
all we know is that the structure most likely to be found experimentally will 
be that of lowest potential energy (with some reservations, see below). Since 
the overall potential energy depends in a complicated and non-convex fashion 
on the coordinates of the particles in the cluster, prediction of cluster structure 
again constitutes a complicated global optimization problem. 

All of these problems are related: In all of them, one tries to optimally arrange 
a given set of constituents, which have an internal structure that is flexible to a 
certain degree (but which is often modeled as rigid), in three-dimensional space 
according to a given rule (the potential function) that tells us how to evaluate the 
cost function (the potential energy of the whole system) for each arrangement 
of the constituents. Therefore, it is tempting to postulate the existence of an 
optimal solution strategy for all of these problems. However, the author believes 
that efficient solution methods will have to be tailored to specific features of 
each problem, since there are also major structural differences between them: 
For example, in the case of protein folding, the constituents are always forced 
to be linked to each other in a given sequence (the primary structure); this is 
not the case in the cluster geometry optimization problem. 

Similarly, it seems that problems of this kind are intimately related to three-
dimensional tiling. In fact, some results of abstract 3D tiling are currently 
making their way into chemistry [12]. However, these results typically concern 
only periodic tilings with rigid tiles, while here we have flexible tiles and no 
periodicity (and even surface effects instead). This is a decisive difference, as 
exemplified also by the status of the (again, related) problem of optimal hard-
sphere packing, which is solved for infinite packings (in 3D, but also in many 
other dimensions) but unsolved for finite ones [13]. 

1.2 Cluster Geometry Optimization 
Experimental and theoretical cluster research is a rapidly growing field (for 

reviews see Refs. [14-20]), fueled by the realization that clusters play central 
roles in such diverse areas as chemical vapor deposition [21], aerosol chemistry 
and earth climate research [22-24] and nanotechnology [25-28]. However, 
prior to applications like these, some basic issues have to be addressed: Of 
primary interest is the role of clusters as intermediaries between single atoms or 
molecules and the infinite solid. It turned out very soon that clusters are typically 
not simply small pieces of solid, neither in their structure nor in their physical or 
chemical properties. Instead, with the number n of cluster constituents growing 
from n == 1 to '*n = cx)", one usually observes several structural transitions [29] 
and property changes. The onset of the solid state structure and properties occurs 



144 Global Optimization: Scientific and Engineering Case Studies 

at different values of n for different systems, and even at different values of n for 
the same system if one looks at different properties. Also, particular values of n, 
so-called "magic numbers" (their values again depending on the system under 
study) often show enhanced stability or a particularly low reactivity, which 
is usually explained as a shell closure, following some particular structural 
principle. None of these basic issues has been properly resolved or understood 
as yet. 

Again, questions for cluster properties and reactivities cannot be addressed 
before solving the problem of cluster structure. As in the case of many other 
global optimization problems, it has been shown that finding the structure of an 
atomic cluster with globally minimal energy is an NP-hard task [30-32]. These 
proofs do not rely upon particular forms of the potential energy function, but 
argue independently of it. In fact, even related problems without the presence 
of a potential energy function have been shown to be NP-hard, for example find
ing the three-dimensional arrangement of points given their pairwise distances 
[33]. Thus it may seem that there is no hope for solving the global geometry 
optimization problem of clusters for any values of n relevant to physical or 
chemical applications. However, complexity proofs are typically worst-case 
scenarios [32], and one may arrive at solutions for NP-complete problems in 
polynomial time if one looks only at the non-nasty cases [34] (which may not 
be discernible from the difficult ones a priori) or if one imposes additional con
ditions [35]. It is well known that the potential energy function has a strong 
influence on number and nature of the local minima in the cluster geometry 
optimization problem (see below). One may hope that physically relevant po
tential energy functions might be a simplifying additional condition. However, 
mixed experience with potential transformation methods indicates that this is 
presumably not the case in practice. 

If one is willing to sacrifice exactness or the guarantee for finding the global 
minimum, better size scaling and shorter computer times are possible: Finding 
the optimal tour for the famous traveling salesman for about 7000 cities took 
many hours on 60 workstations in parallel, but an approximate tour only 30% 
longer than that can be found in only 2 seconds on a single personal computer. In 
fact, is has been shown that approximate tours can be found in 0{n log(n)) time 
[36,37]. In the case of cluster geometry optimization, no such general results 
are available yet, but obviously the configuration space to be covered may be 
cut down drastically by applying external prior knowledge (using physical or 
chemical arguments) or information gathered during the present program run. 

Ideally, in local and global geometry optimizations of clustes, the forces be
tween the atoms and molecules should be calculated ab-initio, i.e. by using the 
electronic structure methods mentioned above to solve the time-independent 
Schrodinger equation for the electrons. However, this is orders of magnitude 
more expensive than using empirical model potential functions for this purpose. 
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Unfortunately, number and nature of the local minimum cluster structures de
pend sensitively on details of the potential. This was pointed out already almost 
20 years ago by Hoare and Mclnnes [38] and was emphasized again recently 
by Doye and Wales [39], Therefore, global geometry optimization of clusters 
on model potentials runs the risk of producing physically meaningless results, 
while global optimization on the ab-initio level is simply too expensive for 
systems of practically interesting sizes. In the general global optimization 
community, to the knowledge of the author, there are no systematic attempts 
to design global optimization methods for the case of excessively expensive 
cost functions - presumably because the task is considered impossible from the 
outset; however, exactly this problem has to be solved here, as described. 

Several groups have decided to ignore the presence of this problem and to ap
ply brute-force simulated annealing directly on density functional or ab-initio 
potentials [40-43], but in most cases some of the intended goals cannot be 
reached: Either the level of the ab-initio treatment used is not sufficiently accu
rate, or the reliability in locating global minima remains remains in doubt, or the 
systems considered are simply too small to make the use of global optimization 
methods really necessary. In this situation, the author has recently presented 
a way to circumvent this problem in a non-rigorous fashion [44]: The global 
cluster geometry optimization is still done on a model potential, now serving 
as a guiding function. To ensure a close proximity between the model potential 
and the true ab-initio surface, the model potential is adapted to a growing set 
of ab-initio single-point calculations, at cluster geometries corresponding to 
important model potential minima. In a final step, the best resulting geome
tries are locally optimized on the ab-initio potential. This procedure has been 
shown to yield the true ab-initio global minima with high probability in actual 
applications to silicon clusters [45] and water clusters [46]. However, in spite 
of the practical success of this method, the requirements on the model potential 
to work successfully as guiding function in such an approach still remain to be 
investigated. 

In comparison to experimental data, further problems arise: The classical-
mechanical global minimum of a potential energy surface does not necessar
ily correspond to the cluster structure most likely to be found experimentally. 
A famous example for this is the water hexamer: In Saykally's experiments 
[47], the cage form was found, but most ab-initio calculations agree upon the 
prism as classical-mechanical global minimum [46,48] and put the cage in sec
ond place. Depending on the accuracy level of theory, quantum mechanical 
zero-point energy corrections alone [49] or in combination with entropy and 
finite-temperature corrections [48] apparently reverse the theoretical ordering 
and bring it into accord with experiment. Of course, also the experimental clus
ter preparation conditions can influence the resulting cluster structure: Under 
different conditions, Nauta and Miller [50] recently found the 6-ring form of 
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the water hexamer. Therefore, the ultimate theoretical modelling of experiment 
has to include all these effects, up to a simulation of the preparation process. 
On a sufficiently accurate level, this is clearly beyond the capabilities of current 
supercomputers. 

It can be argued that the latter difficulties abate somewhat through the obser
vation that classical-mechanical global minimum structures surprisingly often 
do correspond to experimentally observed structures, for example in silicon 
clusters [45,51,52]. Also, since zero-point energy and finite-temperature cor
rections are easily applied a posteriori, and since a simulation of cluster prepa
ration as well as a proper global optimization directly on the ab-initio potential 
are beyond current capabilities anyway, the location of classical-mechanical 
minima on model potential energy surfaces is a valid research goal at present, 
offering a staggering degree of complexity in itself. Therefore, the remainder 
of this chapter will focus solely on this problem. 

Model potentials for every conceivable chemical system have been developed 
en masse during the last decades. Therefore, a review is again not possible here; 
instead the reader is referred to excellent literature on this topic (for example 
Ref. [53] and references therein). Several simpler potentials of the early days 
have survived as benchmark systems, most notably the Lennard-Jones potential. 
It was originally intended to model systems of rare gas atoms; today we know 
that it is not even fit enough for this purpose: It does not have the correct 
form [53] and erroneously neglects many-body effects (in fact, it does not even 
lead to the correct face-centered cubic (fee) structure in the infinite solid, but 
to hexagonal close-packed (hep) [54]). Recent research has made much better 
potentials available [55]. Nevertheless, in the present context it is very valuable, 
since global minimum energies and structures for Lennard-Jones clusters are 
known with a fair amount of certitude up to n = 150, and good proposals have 
been made up to n = 309; also, all these data are freely available on the internet 
[56,57]. Similarly, a recent large-scale calculation of Wales and Hodges [58] 
on water clusters employing the simple TIP4P potential has established another 
benchmark system for which the global minima are fairly certain up to n — 21. 
In this chapter, calculations for both systems will be shown. 

Wille has recently presented an extensive review [32] of global optimization 
methods applied to the standard benchmark system of Lennard-Jones clusters, 
and there are also several other reviews with different emphasis and scope 
(for example Ref. [59]). Therefore, instead of giving another methods review, 
the author presents a brief, personally biased list of several approaches to the 
problem of global cluster geometry optimization: 

Already the early studies of Hoare et al. [60] pointed out that the number 
of local minima increases exponentially with size in Lennard-Jones clusters, 
after a brute-force enumeration of all local minima up to n — 13. It was 
quickly recognized that Lennard-Jones clusters follow an icosahedral growth 
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pattern proposed by Mackay [61]. This was systematically exploited in the 
landmark paper by Northby [62]: By literally growing larger clusters from 
smaller ones by adding additional atoms in optimal places on the icosahedral 
grid and subsequently relaxing the whole clusters he arrived at an impressive 
list of proposed global minima up to n = 150. Only a few of these proposals 
could be improved upon later by other authors, and disturbingly in most of these 
cases other structural patterns were involved: decahedral forms at n = 75 — 77 
and n = 102 — 104, and at n — 38 even the fee paradigm that was expected to 
come into play only at the transition to the infinite solid structure. Doye, Miller 
and Wales [63] recently managed to locate the lowest-energy member of each 
of these three classes throughout the range n = 5 - 80, revealing that there is 
always a rather close competition between decahedral and fee types which is 
hidden over wide size ranges by a clear dominance of the icosahedral pattern 
- however, in between shell closures the icosahedral forms tend to loose this 
dominance, so far that at the few values of n mentioned above one of the other 
forms wins by a narrow margin. 

The presence of qualitatively different packings can be rationalized by com
bining packing arguments with the softness of the Lennard-Jones potential: In 
fee forms, all interparticle distances are the same (this is a true hard-sphere 
packing) and can attain their minimum value as dictated by the pair potential. 
In icosahedral clusters, however, the number of nearest neighbors is larger, at 
the expense of some elongated and some compressed interparticle distances 
(the decahedrals are in-between the other two forms in these respects). This 
can be illustrated by five tetrahedra with a common edge resulting in an almost 
but not quite closed pentagonal bipyramid; similarly, twenty tetrahedra can be 
assembled roughly to an icosahedron, leaving some wider gaps. In both cases, 
the gaps can be closed by deviations from the ideal pair distance. Obviously, as 
long as the pair potential function does not penalize these deviations too much, 
the icosahedral form will win over fee (cf. Wales and Doye's study of Morse 
clusters [39], demonstrating this very nicely). 

Of course, Northby's growth strategy based upon the icosahedral pattern 
alone could not find the decahedral or fee forms. Therefore, Romero et al. 
[57] used grids for all three forms in their extended search up to 309 Lennard-
Jones particles. Ironically, not even a year later, a new tetrahedral form was 
discovered as global minimum for 98 Lennard-Jones particles [64], increasing 
the number of basic spatial grids to be considered in a grid-based search from 
three to four. 

All this simply illustrates our acute lack of actual understanding in the field 
of global cluster geometry optimization. Although we are able to rationalize 
some structure-potential relationships a posteriori (as mentioned above), we 
are unable to predict a complete list of general structural motifs that could or 
should be present in global cluster minimum structures, for a given interparticle 
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potential — not even for the Lennard-Jones pair potential, which is widely con
sidered as a simplistic toy problem in the physical chemistry community. More 
realistic potentials include not just terms depending solely on pair distances, but 
also terms depending on many-particle geometry, up to 4-body or even 5-body 
terms [53,65,66]. This may complicate the problem even further, and only few 
authors have attempted to include many-body terms in systematic global clus
ter geometry studies and to understand their effects [67]. However, the present 
author is of the opinion that once the Lennard-Jones problem is properly under
stood in the above sense, many-body terms and similar complications will turn 
out to be a minor challenge only (in fact, they may even simplify the problem 
in giving it more structure). 

Therefore, approaches that restrict configuration space by a priori assump
tions on structures to be expected do give us the speedups we need to tackle 
larger clusters, but today's a priori information simply is not accurate and com
plete enough. On the other hand, more exact and complete solution methods 
have been tried on the global cluster geometry optimization problem, but either 
they have met mixed success or they scale so badly with cluster size that they 
cannot be applied to clusters in the experimentally interesting size range. For 
example, deformation methods (homotopy methods, aiming at transforming the 
original problem into a related simpler one and then tracking the solution of 
the simple problem through the back-transformation to the original problem) 
appear to work pretty well for several sizes of the Lennard-Jones cluster bench
mark system [68], but surprisingly fail for certain small and seemingly simple 
sizes [69,70]. As another example, a DC transformation approach [71] could 
be applied as such only up to the size n = 7 (which is still well within the 
range studied already by Hoare et al. [60]); an extension up to n — 24 was only 
possible by combining it with a growth strategy, i.e. claiming that the structure 
of the cluster with n atoms can be obtained from that with n — 1 atoms by simply 
adding an atom — this would have failed at n == 38 where this hypothesis is 
not true. Further attempts in this general direction are documented in Wille's 
review [32]. 

Given the mixed success of competing methods, it is not too surprising that 
simple methods based on random search, possibly enhanced by suitable search 
heuristics, fare comparatively well. One of the most successful of these is 
"basin-hopping", initially introduced by Li and Scheraga [72] for protein fold
ing. There, local optimizations alternate with purely random search steps; 
the latter are typically "Monte Carlo" steps, i.e. downhill moves are always 
accepted while uphill moves are accepted with a probability exponentially de
pending on the energy difference (Metropolis criterion [73]). Although this 
acceptance criterion still contains a "temperature" as control parameter, this 
is kept constant at a suitable value and not changed as in simulated annealing 
[74]. Some applications of this method are given in Ref. [59]; in the present 
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context, the application by Wales and Doye [75] is important: They managed to 
find all the global minima known at that time for Lennard-Jones clusters up to 
n = 110, without external a priori knowledge and within reasonable computer 
time. Published computer times for applications of this method to the Lennard-
Jones benchmark system [59,76] are impressive for small clusters, but indicate 
a size scaling no better than n^. 

Until very recently, the only other approach capable of finding all Lennard-
Jones minima in this range with reasonable efficiency is based on the idea of 
"Genetic Algorithms" (GAs). GAs are search heuristics mimicking some as
pects of natural evolution, for textbooks and reviews see Refs. [77-81]. In 
contrast to basin-hopping, they typically include not only random moves ("mu
tations") but also recombination of parts of previous solution candidates to 
form new solution candidates ("crossover"). Thus, conceptually, they contain 
the implicit assumption that there is at least some degree of separability in the 
problem, such that there is a good chance that parts taken from two (or sev
eral) good solution candidates produce an even better solution candidate upon 
combination, i.e. that these parts constitute so-called "building blocks" for bet
ter solutions and ultimately also for the global optimum. If this is the case, 
a GA gathers information about the problem during its solution and is able 
to combine things it has "learned" in disjoint regions of configuration space. 
Therefore, it can be expected to have an edge over pure random walk strategies 
like basin-hopping, which can explore only the immediate neighborhood of a 
given solution candidate, in the case of small steps, or blindly jump into the 
void, in the case of large steps. However, if there is no separability of this kind, 
the crossover operation effectively degenerates to a complicated way of doing 
mutations. The degree of separability hinges upon the way the problem is rep
resented in the GA or (which amounts to the same) upon the way the crossover 
and mutation operators are implemented. Unfortunately, in practice, in many 
applications this issue is apparently neglected. 

After GAs had been used for the global optimization of dihedral angles in 
small biomolecules [79,82,83], they were employed first by the present author 
[84] and then also by other groups [85] for the global optimization of all degrees 
of freedom in atomic and molecular clusters. In these early papers, an actually 
"genetic" representation of the optimization problem was used by concatenating 
the cartesian coordinates of all particles in the cluster, and by operating with 
standard forms of crossover and mutation on these coordinate "strings". As 
already pointed out in Ref. [84], this representation does not achieve the best 
possible separability. Nevertheless, adding in local search steps, we were able 
to push the size scaling of such a GA down to n^^, for the benchmark system of 
Lennard-Jones clusters [86], but we had to add in a seed growth method to get 
beyond n = 20 within reasonable computer time. Deaven and Ho [87] managed 
to improve this standard representation by eliminating the representation issue 
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altogether, i.e. they applied crossover and mutation operators directly on the 
clusters in physical space (since there are no genetic strings anymore, the present 
author prefers to call this variant "phenotype algorithm"). This enabled them 
to treat Lennard-Jones clusters up to n = 100 [88], but they arrived at wrong 
solutions for n = 75,76,77. Other groups [89] introduced minor variations 
to their basic recipe, but still could not solve these hard cases without seeds, 
i.e. without a priori external knowledge. By employing the concept of niches, 
the present author [90] demonstrated that a phenotype algorithm is able to find 
all currently accepted global minima of Lennard-Jones clusters up to at least 
n == 150 without any use of external prior knowledge. At the same time, the size 
scaling of the method could be pushed below n^, further improving the access 
to larger clusters. Recently, the same methodology was extended to molecular 
clusters and applied to the benchmark system of TIP4P water clusters [91]. 

In section 2, the basic algorithm of this phenotype method will be explained. 
In section 3, new applications to pure and mixed atomic and molecular clusters 
will be described. 

2. Algorithm 

The phenotype algorithm used here has already been described in some detail 
in Refs. [90,91]; for completeness, its main features are sketched here. A fixed 
number of cluster geometries, the "population", is evolved in discrete steps, 
the "generations". Population size depends on problem size; although there 
have been some attempts within the GA community to find a relation between 
these two, this is still a matter of trial-and-error in practice, in particular since 
population size also strongly depends on details of the GA method used. Deaven 
and Ho [87,88] used very small populations down to only four members. Here 
several niches have to be accomodated within the population (see below), each 
of about this size; therefore, we typically use 10-30 individuals per generation. 

Generation zero is chosen at random and then locally optimized. Alterna
tively, one can introduce desired seed structures at this point; we never do this. 
Nevertheless, some faint degree of external prior information does enter here 
almost inevitably: We draw random numbers for the particle coordinates of a 
cluster within some preset range, thus favoring compact structures. We also 
reject particles being placed too close to each other, but this merely serves to 
avoid numerical problems with the at short distances typically steeply repulsive 
branches of the potential during the subsequent local optimization. 

In propagating one generation m to m + 1, we first generate an intermediate 
pool of geometries: Each possible pair of "parents" from generation m is formed 
(even allowing self-pairing, and disregarding all niches), and two "children" are 
generated from each pair. In each of these steps, a crossover is performed by 
cutting each parent cluster in two parts along a plane. As described in Ref. [90], 
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it is advantageous to randomly choose either an optimized orientation of this 
cutting plane or a random orientation. Additionally, as described in Ref. [91], 
in difficult cases it is advisable not to cut the clusters in exact halves always, but 
also to allow non-symmetric cuts, with a Gaussian distribution about the exact 
halves. With a possibilty of 15%, each resulting child is mutated by moving 
a randomly determined number of particles away from their original positions 
by random vectors. Irrespective of mutations, each child is locally optimized 
and then moved into the intermediate pool, to which we also add all unchanged 
parent geometries. 

From this pool, the next generation m + 1 is selected. In order to maintain 
diversity, a combination of energy and geometry criteria are used: The pool 
is ordered according to the energy. Starting from the lowest-energy member, 
clusters are drawn from this pool and inspected. A cluster is selected into the 
next generation if it is different in geometry from the other clusters selected 
before, according to one or several niching criteria; it thus opens a niche of its 
own. If another cluster with similar geometry is drawn from the pool later, it will 
be accepted also, provided the number of clusters in this niche is below a given 
limit and their energy differences are larger than a prescribed value (to avoid 
filling niches with almost identical geometries). Additionally, there is always a 
niche for mutants that has to be filled, in order to guarantee a minimum amount 
of exploration. This process is continued until the fixed number of population 
members has been reached for the next generation. 

Thus, our niches exist only at the moment of selection from the pool into the 
next generation, and solely for the purpose of maintaining diversity (i.e. avoiding 
the common problem of premature convergence of the whole population to 
identical or closely related copies of a single solution which is probably not 
(yet) the global optimum). Also, they are fully automatic and dynamic in that 
the only parameters given are the maximum number of members allowed per 
niche and a "width" for each niche, measuring the geometrical variance allowed 
within a niche; the total number of niches is not fixed, nor are they required to 
be the same from one generation to the next. As described in Refs. [90,91], 
niching can increase the performance of the algorithm by an order of magnitude 
or more in notoriously difficult cases. 

Of course, the actual niche criteria do contain some external insight into 
crucial features of the specific clusters under study: For Lennard-Jones clus
ters [90], it is essential to differentiate the basic geometry types described in 
section 1.2. For TIP4P water clusters [91], it turned out to be useful to dis
cern between clusters containing varying amounts of bond angles close to 90 
degrees. In contrast to optimization approaches using fixed, prescribed grids in 
physical space, as the icosahedral growth sequence in Northby's study [62] or 
the icosahedral, the decahedral, and the fee lattice in the work of Romero et al. 
[57], these niching criteria are much "softer" and less specific; typically, one of 
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our niching criteria can be fulfilled by qualitatively different geometries. Also, 
we can derive these criteria without actual knowledge of any global minimum 
structures; it suffices to inspect the results of preliminary runs using no niches 
and to strive for maximum diversity in introducing niche criteria. Obviously, 
however, this discovery and testing of niche criteria is hard to implement in 
algorithmic form; we still do it "by hand". 

After the members of the next generation have been selected as described 
above, the optimization history over the past generations is examined. If a 
population member has failed to change its energy recently, a number of post
processing attempts are launched, in this order: For molecular clusters, the 
positions of the molecules are fixed and their orientations (Euler angles) are 
globally optimized by running a copy of the whole algorithm described so 
far, but this time operating only on the orientation coordinates. Alternatively, 
for small molecular clusters, it is possible to do a full enumeration of chemi
cally reasonable orientations, as described in Ref. [91]. As another measure, 
a "directed mutation" step is tried several times: A small number of particles 
(typically between one and four) that contribute least to the overall cluster en
ergy is removed and successively reintroduced into the best vacancy sites in the 
cluster. This operation is even more successful if the cluster is expanded by 
10% before reintroduction of the removed particles. 

As in many other global optimization algorithms of this type, there is no 
reliable stopping criterion. Common experience indicates that the energy min
imization progress has an exp(—x) form: A rapid decrease in the beginning 
gradually turns into an almost levelling-off — however, this general behavior 
is difficult to exploit in practice, since the presence of the random mutation 
operator makes sudden, small improvements still possible even after long gen
erations of no change. Other indicators are of a similarly limited value: For 
example, there is usually a general trend in the energy increments obtained by 
successively adding single particles to a cluster, but there are also deviations 
from this trend, indicating "magic numbers" and particularly stable or unstable 
cluster sizes. Therefore, one typically uses some ill-defined combination of 
these and similar criteria for stopping. 

3. Results 
3.1 Lennard-Jones Clusters 

We have extended our studies on the benchmark system of Lennard-Jones 
clusters beyond the range 2 < n < 150 reported in Ref. [90]. A suitable 
database for comparison is available by the work of Romero et al. [57], who 
employed a GA-based placement search on the given icosahedral, decahedral, 
and fee lattices. Dropping any claims for completeness, we performed an 
explorative study by limiting the number of generations to 100, and by stopping 
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the algorithm after 20 generations without any improvement in the best energy. 
Nevertheless, up to n = 190, we managed to reproduce about 50% of the 
energies given by Romero et al.; the largest cluster for which we have found 
agreement so far is n = 250. Computer times for finding these values are still 
tolerable (at most a couple of days on a single-processor PC) and well within 
the approximate n^ size scaling found in Ref. [90]. This is already remarkable, 
since our algorithm does not use any a priori knowledge (apart from the niching, 
which is not crucial in this size range), while the algorithm of Romero et al. 
already starts from the known lattices. 

More interestingly, we managed to improve upon the global minima given 
originally by Romero et al. for n = 185,186,187. They originally proposed 
decahedral structures for these three cases, with the energies given in Table 
1.1; their structures for n = 185,186 constituted a new geometry subtype for 
Lennard-Jones global minima, namely that of a decahedral core with an outer 
layer in fee positions. Our unbiased search managed to find lower-lying minima 
of the more usual icosahedral type, thus eliminating this new structural subtype. 
Our proposal for n = 185 was recently again improved by Leary. 

Table 1.1. Improving Lennard-Jones minima; 
energies are given in units of the pair potential well depth 

size n 

185 
186 
187 

1 Romero et al. 

1 -1125.299820 
-1132.503199 
-1139.240017 

this work 

-1125.304876 
-1132.669966 
-1139.455696 

refinements 

-1125.4938^^" 

a) reported by R. H. Leary, Jan. 21, 2000. 

It is also instructive to look at the cases where our algorithm failed to find the 
structure and energy of Romero et al. (or a better one) within the prescribed 100 
generations: Our directed mutation, as described in section 2, is very efficient 
in removing badly placed atoms from the outer layer into holes in the outer 
core; it is vital to introduce such an operator since the standard operators of 
crossover and mutation take a long time to achieve this. However, our directed 
mutation is actually overdoing it: Contrary to the original expectations by 
Northby [62], it was discovered that there are global minimum structures with 
incomplete cores [92], constituting deviations from any conceivable growth 
sequence. Up to n = 150, there are only a few isolated examples for this 
phenomenon, but in larger clusters there are more cases. For example, for 
n = 169,170,171,172 Romero et al. proposed structures with 4,3,2,1 holes 
in the core. Of these, our algorithm correctly found n — 169 and n = 171 
within 100 generations, but constructed complete cores for the other two cases, 
leading to higher energies. Presumably, a less effective version of this operator 
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or a counterbalancing operator that removes atoms from the core and places 
them into the outer layer could remedy the situation. 

For n = 163 and n — 164, our algorithm finished at a peculiar structural 
type higher in energy than the geometries proposed by Romero et al.. The same 
structural type also occured as low-lying local minimum in our optimization 
runs at many other values of n. At the time of this study, we had not yet heard 
about the new tetrahedral structural type discovered by Leary and Doye [64] for 
n — 98. Comparing our structures with theirs revealed that they follow exactly 
the same pattern. Thus, unintentionally and before their discovery, we have 
shown that our algorithm is able to find also this new, fourth basic structure of 
Lennard-Jones clusters. 

Since Lennard-Jones clusters are considered a mere toy problem in chemistry, 
we have only used it as a benchmark for our algorithm and did not try to 
push this application to the limit. Indeed, by now, the Lennard-Jones cluster 
results reported above for basin-hopping and our phenotype algorithm have 
been extended to still larger cluster sizes by other authors and other approaches 
[93,94], but this is beyond the scope of the present text. 

3.2 Water Clusters 
3.2.1 Pure Water Clusters. In an extension of our work reported in 
Ref. [46], we have successfully located the global minimum and several low-
lying local minima on the ab-initio LMP2 potential energy surface of the water 
heptamer. Geometries and energies are available on the internet [95]. The 
heptamer global minimum can be obtained in a rather obvious fashion from the 
(classical mechanical) trigonal prism geometry of the hexamer global minimum, 
by capping one of the triangle edges. This geometry agrees qualitatively with 
the one obtained by Buck, Buch et al. [96] on a good empirical potential; these 
authors also calculated an approximate OH-stretch vibrational spectrum which 
is in very good agreement to their experimental spectrum. As opposed to the 
infamous case of the water hexamer (alluded to in the introduction section 
1.2), in the heptamer there are no severe difficulties with cluster isomers of 
qualitatively different geometry but only marginally different energy. 

The hard part of our water heptamer calculations is on the ab-initio side, not 
in the global geometry optimization part. In contrast to a GA study by Niesse 
and Mayne [97], we find that the global geometry optimization of (H20)n on 
model potentials for sizes up to and including n = 7 can still be handled 
easily with a brute-force application of a standard GA using a genetic string 
representation; this starts to run into difficulties at about n — 8. In order to 
be able to tackle larger molecular clusters, we have therefore extended our 
phenotype approach to molecular clusters, as described here in section 2. We 
have recently [91] applied this method to water clusters on the TIP4P potential 
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[98]. The virtue of this potential is not its accuracy, but rather its simplicity in 
combination with qualitatively correct results for liquids and small clusters, its 
still widespread use in molecular dynamics simulations of liquids, solutions, 
and water-solvated biomolecules, and the availability of a large-scale global 
cluster geometry optimization study by Wales and Hodges [58] on this potential, 
employing the basin-hopping method. 

The performance of our phenotype algorithm on this system [91] is satisfac
tory: We could confirm all the minima proposed by Wales and Hodges, and 
the computational expense appears to be approximately equal to theirs. In both 
studies, however, a breakdown of performance was experienced at n = 21, 
apparently due to a massive proliferation of qualitatively different structures 
within a very small energy band [91], indicating the need for further method 
development. In fact, this benchmark is obviously much more difficult than the 
Lennard-Jones benchmark, in several respects: The exponentially increasing 
positional configuration space is extended by the also exponentially increasing 
orientational configuration space [91]. Furthermore, a closer inspection of the 
global minima and the most important low-lying local minima indicates that 
there is no general, simple growth sequence in the range n =^ 10—21: In no case, 
the global minimum forn + 1 can be obtained by a simple addition of another 
water molecule to a suitable position in the cluster of n molecules. Instead, 
such simple addition geometries survive at best as low-lying local minima. The 
only discernible generalization is a preference for structures consisting of fused 
cubes and pentagonal prisms (although n = 17,19,21 violate this rule, they 
can be classified as distorted realizations of this principle). In how far this ob
servation could serve as a basis for an improved global optimization algorithm 
for this particular application case remains an issue of future research. 

In fact, the pure water cluster problem also turns out to suffer from the 
high sensitivity to small errors in the potential energy model mentioned in 
the introduction. In a recent extension of our studies to the highly accurate but 
also 20 times more expensive TTM2-F water potential [99], we found [100] that 
while TIP4P yields global minimum structures that are qualitatively surprisingly 
reliable for small cluster sizes up to about 12 water molecules, it then starts to 
deviate slightly for larger sizes, arriving at strong differences to the TTM2-F 
model at n == 17 and n = 21. There, surprisingly, TIP4P still predicts all 
water molecules to reside on the cluster surface. TTM2-F is more in line with 
chemical intuition: It starts to incorporate a first water molecule into the cluster 
interior at these cluster sizes. Obviously, from here it is still a long way to 
go until the first formation of an ice core inside a water cluster, but even this 
question is now directly being investigated [101]. 



156 Global Optimization: Scientific and Engineering Case Studies 

3.2.2 Water Hetero Clusters. Our ability to perform global cluster 
geometry optimizations for clearly non-trivial values of n allows first, tentative 
chemical applications, one of which is briefly sketched here: 

While the structure of liquid water and of small water clusters in the gas 
phase is an intriguing problem in itself, even more interesting from a chemist's 
perspective is the structure of water in the presence of other molecules and 
ions. Recent experimental developments [102,103] have made it possible to 
transport water-solvated species into the gas phase and study them in isolation. 
A favorite structural proposal typically coming up in these studies is that of a 
"clathrate" structure, which ideally consists of a dodecahedral arrangement of 
20 water molecules around the hetero molecule or ion. This model is usually 
ascribed to Castleman [104], but actually goes back to still earlier sources, see 
references in Refs. [105,106]. Solid clathrates involving such cages enclosing 
many different guest species, including CO2 and methane, are almost ubiqui
tous, from deep-sea sediments on Earth [107] to the pole caps on Mars [108]. 
The actual occurence of such dodecahedral arrangements in solvation is subject 
to intense debate, in particular for hydrophobic hetero molecules [109-111]. 
Unfortunately, tests of this model are usually done using large-scale molecular 
dynamics simulations from which only averaged data like radial distribution 
functions or statistics about distributions of 5-membered rings can be extracted 
in a meaningful fashion. There are also some calculations on semiempirical 
and ab-initio levels [112], but these are done on locally optimized geometries 
starting from intuitive guesses, an approach that is dangerously error-prone even 
for rather small clusters [44]. Thus, global geometry optimization seems to be 
completely lacking in this area, although it may give important complementary 
insights. 

In an attempt to remedy this situation, we are currently studying simple 
model systems for isolated, water-solvated species, focussing on alkaline and 
alkaline earth ions and methane in water clusters, using the simple TIP4P/0PLS 
potentials [98] often used in molecular dynamics simulations of these systems 
[113,114]. Mg-̂ "̂ , which is not in the standard parameter set of these potentials, 
is modelled by a charge of +2 on the Mg-atom and a repulsive term of the form 
a • exp(—d • r) between the Mg-atom and the 0-atom of the water molecules, 
with a — 73822.82£^/i and d = 3.86ao, as a function of the distance r between 
these centers. In addition, we include an artificial repulsion term of the form 
exp(—r)/r^ between the hetero ion or molecule and all O-atoms and H-atoms. 
This term does not influence the physically meaningful interactions modelled 
by the other terms at normal inter-site distances r, but prevents "cold fusion" of 
the hetero ion or molecule and a water molecule at unphysically short distances. 
This is usually not necessary in molecular dynamics, where this extremely short 
distance regime cannot be reached, but it can be accessed in our algorithm via 
recombination of cluster halves in the crossover operation. For Mg^"^(H2O)20, 
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our best structure found so far is depicted in Fig. 1.1. Clearly, it does not even 
bear a faint resemblance to a dodecahedral clathrate. A clathrate-like structure 
also does not show up as important local minimum in our optimizations. 

Figure 1.1. Proposal for the global minimum of Mg '''(H2 0)2o 

This is in line with our findings for the alkaline cations Na" ,̂ K"̂  and Cs" .̂ 
The sodium cation simply is too small to fill the dodecahedral clathrate hull. 
Also, again due to its small size, its orienting effect on the immediately sur
rounding water molecules is particularly strong. All this results in totally dif
ferent microhydration cluster structure characteristics, with the dodecahedron 
playing no important role whatsoever. Actually, these findings may already 
have some support by experiment [115]. For the potassium and cesium cations. 
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microhydration cluster structures resembling the dodecahedral ideal actually 
are globally optimal at a size of 20 water molecules in a mathematical sense, 
but different structures containing also 4- and 6-rings are degenerate in energy 
within the error bars of the potential. 

For the case of the simple model methane in TIP4P water, it is interesting 
to calculate the energy of "hand-generated" ideal dodecahedral water shells 
around the methane, after local optimization, for varying van-der-Waals radius 
of methane. It turns out that the binding energy for this model clathrate is 
maximal at the usual literature value of the methane radius, while at this point 
the water molecules in the clathrate hull have almost the same distances they also 
have in complete absence of the methane. The "methane" becomes too large to 
fit into the dodecahedral hull only at about double its literature radius. From this, 
one is tempted to expect that a methane clathrate could be a favorable structure 
for this system, since it does not seem to have a disturbing influence on the 
water structure (interestingly, the literature parameters were not adjusted to this 
situation but rather to molecular dynamics simulations of liquids). However, 
actual global geometry optimization with our phenotype algorithm also used 
in the other examples results in the predominant formation of "surface states", 
exhibiting not a methane surrounded by water molecules but a segregation of 
the two species, with the methane sitting on the surface of a compact water 
cluster. Our best species of this kind obtained so far is shown in Fig. 1,2. It 
has an energy of -859.204247 kJ/mol; this has to be compared to -841.290266 
kJ/mol for the best "hand-constructed" dodecahedral clathrate shown in Fig. 
1.3 and also to -872.988754 kJ/mol for the Wales/Hodges global minimum of 
pure (H20)2o. 

Therefore, neither the ideal clathrate nor the surface states are stable with 
respect to dissociation into a pure water cluster with an infinitely separated 
methane (actually, this "phase separation" is in accord with the chemist's in
tuition of methane as a hydrophobic species). Using a new niche criterion 
based on the distance between the center of mass of the water molecules and 
the methane coordinates, we have tried to enforce the presence of clathrate-like 
states in the optimization, and indeed they are duly found by this method — but 
on the energy scale they are simply not competitive to several types of surface 
states. 

We have also checked methane-water clusters of different sizes, n = 19 and 
n — 24, but again the same picture prevails: By enforcing the water molecules 
and the model methane to be at least in neighboring regions of space, and 
by using the niche criterion mentioned above, our method finds both surface 
states and clathrate structures, but several variants of surface states are lower 
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Figure 1.2. Proposal for the global minimum of CH4(H20)2o. The position of the methane is 
indicated by the single large circle at the bottom. 

O*'"'' 4&^ 

O 
in energy than the best clathrates, and all these states are higher in energy than 
the corresponding pure water clusters without the model methane. 

Of course, water clathrates with methane and other hydrophobic guest mole
cules are an experimental fact — however, there they are typically stable only 
under high pressures and in the bulk. Neither pressure nor bulk packing ef
fects are taken into account in our modelling (besides other approximations, as 
the absence of polarizability in the TIP4P model, or as the simplistic picture 
of methane in the ''united atom approximation", i.e. as a single structureless, 
isotropic Lennard-Jones site, as indicated in the Figures). Nevertheless, our 
model studies serve as a warning that seemingly obvious hypotheses (possibly 
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Figure 1.3. The best dodecahedral clathrate structure of CH4(H20)2o. The position of the 
methane is indicated by the single large circle in the center. 

derived from analogies to the bulk) simply may not work for structures on the 
nanoscale regime. 

4. Conclusions 
In the application examples shown here and in our previous publications, it 

has been demonstrated that the task of global geometry optimization of atomic 
and molecular clusters can be approached successfully with our phenotype 
strategy. In fact, this method is capable of tackling cluster sizes of experimental 
interest, and therefore we are now moving from "simple" benchmark systems 
to more sophisticated application examples. 
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As all GA-based methods, our current strategy does not pretend to be com
plete, exhaustive and exact. On the one hand, this is its main strength, since 
the efficiency of the method mainly stems from its strong exploitation of search 
heuristics (both the "automatic" search heuristics implicit in the standard GA 
concept and the additional guidance imposed by the niches), disregarding their 
tendency to narrow down on limited regions of search space. On the other hand, 
this is also its main weakness, leading to the absence of a reliable stopping cri
terion and of any type of measure or estimate of "distance" remaining to the 
global minimum or of the amount of search space not yet covered. In practice, 
this is an annoying drawback, only partially compensated by the impressively 
low size scaling demonstrated for our method. 

Therefore, the author does not believe for a moment that GAs (or any deriva
tive of this concept, as the one presented here) are the ultimate answer to the 
problem of global cluster geometry optimization. Progress is likely to come 
from more sophisticated combinations of methods: Efficient heuristics guide 
the search to the presumably most interesting regions of configuration space 
which are then covered completely by more exact methods (probably of the 
branch-and-bound type, as in Ref. [117]). Also, the method presented here is 
still almost a general global optimization strategy; the only elements specific 
for clusters are some implementation details of the crossover and mutation op
erators and the various niching criteria. Hence, in our quest to design global 
optimization methods applicable to still larger clusters in still shorter computer 
times, it will be advisable to make the algorithm still more problem specific. 
To this end, a thorough study of potential energy surfaces in typical clusters is 
likely to reveal common characteristics. On the one hand, this can be used to 
design better and more general guiding potentials for our method of combining 
global optimization with highly expensive ab-initio calculations [44-46]. On 
the other hand, more generally, this information can then actually be used in 
the global optimization process — at present, either no assumptions are made 
about the potential energy function at all, or the particles are distributed on a 
few fixed lattices in physical space (which is equivalent to the assumption that 
the potential energy function would have guided the search to these solutions 
anyway); clearly, some intermediate strategy between these two extremes is 
more efficient. Also, as indicated in the introduction, it may turn out to be 
fruitful to join the outcome of such an improved understanding of potential 
energy functions with what pure mathematicians have already found out about 
three-dimensional tiling. 
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Abstract: In this chapter we give an introduction to the area of bioinformatics handling 
the nucleotide sequence analysis problem. We give a brief introduction to the 
nature of DNA and RNA and use one of many topics - the Translation Initiation 
Start (TIS) problem - to explain a computational prediction of motifs on biological 
sequences. Correct identification of the Translation Initiation Start (TIS) in cDNA 
sequences is an important issue for genome annotation. Here we describe a 
computational method for TIS identification based in a combination of statistics 
and Artificial Neural Networks (ANNs). This method makes use of two modules, 
one sensitive to the conserved motif and the other sensitive to the coding/non-
coding potential around the start codon. Finally by applying a method inspired 
by molecular biology, the simplified method of the ribosome scanning model 
improves the prediction significantly. 

Keywords: Neural networks; sequence analysis; TIS prediction; translation initiation start; 
coding potential. 

1. INTRODUCTION 
The genome sequence of an organism is an information resource unlike any 

other that biologists have previously had access to. But the value of a genome 
is only as good as its annotation, which bridges the gap from the sequence to 
the biology of the organism. More than 300 genomes have been sequenced in 
the last decade, most of them from prokaryotes. Now that most of the human 
genome has been sequenced, several new eukaryotic genome projects have 
been started for a variety of organisms, including animals, plants, fungi, and 
numerous pathogenic protozoa. In the ideal case, genome analysis should be 
provided automatically after a significant amount of sequence assembly for a 
new genome is available. This is not presently possible, however. Although a 



170 Global Optimization: Scientific and Engineering Case Studies 

large number of gene prediction programs exist, all include organism-specific 
parameters that must be determined from training examples. The usual process 
is to find experimentally some genes, and then to use these data to design a new 
gene prediction algorithm, or retrain an existing one. 

This chapter describes for us an example of an Artificial Neural Network 
(ANN) appHcation to the mathematical structure analysis of complimentary 
DNA (cDNA) - a subproblem of gene prediction. First we give some biological 
background on DNA and then we describe how this information is presented 
to the ANN'S. 

2. DNA AND GENES 
2.1 DNA 

In humans, as in other higher organisms, a DNA molecule consists of two 
strands that wrap around each other to resemble a twisted ladder whose sides, 
made of sugar and phosphate molecules, are connected by rungs of nitrogen-
containing chemicals called bases. Each strand is a linear arrangement of 
repeating similar units called nucleotides, which are each composed of one 
sugar, one phosphate, and a nitrogenous base (Fig. 1.1). Four different bases 
are present in DNA: Adenine (A), Thymine (T), Cytosine (C), and Guanine 
(G). 

The two DNA strands are held together by weak bonds between the bases 
on each strand, forming base pairs (bp). Strict base- pairing rules are adhered 
to: 

• adenine will pair only with thymine (an A- T pair) and 

• cytosine with guanine (a C- G pair). 

Genome size is usually stated as the total number of base pairs; the human 
genome contains roughly 3 billion bp. The particular order of the bases arranged 
along the sugar- phosphate backbone is called the DNA sequence. In other 
words a DNA sequence can be described as a very long word over a four letter 
alphabet A = {A, C, G, T}, a letter for every base. 

2.2 GENES 
Each DNA molecule contains many genes, the basic physical and functional 

units of heredity. The number of human genes is still an unclear issue. It is 
estimated to be between 24,000 and 50,000. 

Human genes vary widely in length, often extending over thousands of bases, 
but less than 5% of the genome is known to include the protein coding sequences 
of genes called exons. Exons are interrupted by many intron sequences without 
coding function. 
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Figure 1.1. The four nitrogenous bases of DNA are arranged along the sugar- phosphate back
bone in a particular order (the DNA sequence), encoding all genetic instructions for an organism. 
Adenine (A) pairs with Thymine (T), while Cytosine (C) pairs with Guanine (G). The two DNA 
strands are held together by weak bonds between the bases. 

For the information within a gene to be expressed, a complementary RNA 
strand is produced (a process called transcription) from the DNA. This strand 
is a molecule, called messenger ribonucleic acid (mRNA). similar to a single 
strand of DNA. It is also made up of four nucleotides: Adenine (A), Cyto
sine (C), Guanine (G) and Uracil(U), which replaces Thymine (T). Before 
the mRNA serves as a template for protein synthesis the introns are removed 
through the splicing machinery. Then the mRNA arrives at the ribosome, a 
protein- synthesizing machinery, which reads the instructions from the mRNA 
to build a protein (Casey, 1992). 

2.3 THE GENETIC CODE AND PROTEINS 
Proteins are large, complex molecules made up of long chains of subunits 

called amino acids. There are twenty different kinds of amino acids. Each 
amino acid is encoded through triplets of nucloetides called codons (genetic 
code). 
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Out of the 4 nucleotides, 64(4^) different codons can be built. 61 of them 
encode 20 amino acids. Three codons (TAA, TAG and TGA) cause protein 
transcription to cease. These are known as stop codons. 

Since every triplet encodes an amino acid or a stop codon, many pairs of 
codons, that differ only in the third position base, code for the same amino acid. 

A translation example of nucleotides (codons) to amino acids is: 

C... 

A shift of one letter in reading the same nucleic acid sequence results in a 
very different amino acid sequence: 

The phase of codon reading is called the reading frame. There are three 
different frames in one direction and three more reading frames on the com
plementary strand. 

2.4 COMPLEMENTARY DNA (CDNA) 
A gene region of the DNA itself, after the copying mechanism (transcription), 

contains parts with coding information (Exons) and noncoding information (In-
trons). The introns are getting through the splicing mechanism. The remaining 
parts certain only exons and are called messenger RNA (mRNA). The only 
Exons which contain non-coding regions are the first and the last exon. 

In the laboratory, the mRNA molecule can be isolated and used as a template 
to synthesize a complementary DNA (cDNA) strand, which can then be used 
analysed by conventional molecular biology methods. 

A cDNA starts with an untranslated region (UTR) followed by a coding 
region and ends again with another UTR. The start of the cDNA is called the 
5'end, and the end is called 3'end of the cDNA. 

The coding part starts with a specific codon (AUG), which is called the start 
codon. The coding region stops with one of the stop codons. A start codon is 
a nucleotide triplet (ATG) that translates the amino acid Methionin. The same 
triplet (ATG) can also occur in the middle of a coding frame. In this case it just 
encodes Methonin and does not act as a start codon. A start codon leads the 
coding frame, that is always part of an open reading frame (ORE). An ORE is 
a frame that translates amino acids without the interruption of stop codons. In 
other words, an open reading frame is a frame between two stop codons - read 
always in steps of three nucleotides. The first nucleotide of the codon defines 
the translation initiation start (TIS), 
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Figure 1.2. Description of the ribosome scanning model on the cDNA. See also text. 

2.5 TRANSLATION INITIATION START (TIS) 
According to the ribosome scanning model (Kozak, 1996), the ribosome first 

attaches to the 5'end of the mRNA and then scans the sequence until the first 
ATG start codon, which is in optimal nucleotide context. Translation is then 
started. Although this is true for most mRNA studied, there are some notable 
exceptions (reviewed in (Kozak, 1996) & (Pain, 1990)). Mentioned below are 
such cases for eukaryotic non-viral sequences (Fig. 1.2): 

Leaky scanning, when the first ATG codon has less optimal nucleotide 
context and therefore can be bypassed by the ribosome, which then initiates 
translation from a start codon in more optimal nucleotide context further 
downstream. 

Reinitiation, when translation starts from any ATG codon in optimal nu
cleotide context in the 5' UTR and then ends at the first stop codon, nor
mally after a short distance. Scanning then continues until the authentic 
ATG codon is reached. 
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In these cases the TIS can be located on the second ATG third ATG, or 
further downstream. The following part of this chapter is dedicated to the 
computational recognition of the TIS. 

Alignment of experimentally verified translation initiation starts leads to the 
consensus motif GCCACCatgG, where a G residue following the ATG codon, 
and a purine, preferably A, three nucleotides upstream, are the two highly 
conserved positions that exert the strongest effect (Kozak, 1984). 

A computational identification of a TIS that we present here recognize such 
conserved motif before the start ATG and analyze the coding potential around 
the TIS. It is expected that the region before the TIS has a low coding potential 
and the region following it has a high coding potential. There are different 
nethods to measure the coding potential of a sequence region. The simplest 
example is the Open Reading Frame (ORF) i.e., the absence of a stop codon 
in frame. One common method is to count the codons of the region. It is 
expected that the frequency of codons that encode a protein is different from 
the frequency of the codons coming from a noncoding region. 

The following sections of this chapter present a method for the prediction 
of TIS based on statistics and ANN's. The algorithm consists of two modules: 
one sensitive to the conserved motif before the TIS, and one sensitive to the 
coding/non-coding potential around the TIS. For the final result the two modules 
are integrated in an algorithm that simulates, in a simplified form, the biological 
process for the recognition of the start ATG, the ribosome scanning model. 

3. DATA SET 
A main problem today with collecting data from genomic databases is the 

reliability of the data. During a literature search it was found that only l/5th of 
the annotated TIS's had experimental verification. Finally it was possible, with 
the help of human expertise, to retrieve a total of 475 corresponding human 
cDNAs, completely sequenced, annotated and experimentally verified. 

For developing and testing the algorithm these genes are grouped into two 
categories: one gene pool with 75% of the genes is used for the extraction 
of the training data, and a second pool with 25% of the genes is used for the 
extraction of the test data. 

For the training of the ANN to the local information around the TIS regions, 
12 nucleotides are extracted from the genes. Every mRNA provides only 1 
positive data example for the TIS (Fig. 1.3). Consequently, there is only a 
relatively small number of data to be used for the training of this ANN. A total 
of 325 positive and 325 negative regions are used for training and 155 positive 
and 155 negative regions for testing. A possible similarity at the nucleotide 
level between the training and the test genes has no effect on the testing because 
only small regions of sequence (mainly extracted from non-coding regions) are 
used. 
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Figure 1.3. Construction of the positive and negative pattern using 12 bases long windows with 
an ATG starting at the 8th position. 

In contrast, for the training of the second ANN for coding potential, it is pos
sible to extract more positive data from every gene. The length of the window 
used in this case is 54 nucleotides. Here, possible homology between train
ing and test data could influence the result. For this reason, such homologies 
between the training and test genes are eliminated through pairwise alignment 
with the full Smith-Waterman algorithm (Waterman, 1995). 

Only the genes from the training pool with less than 70% homology to 
the genes of the test pool are used for extracting the training data for coding 
potential - a total of 282 genes. Out of these genes, 700 positive and 700 negative 
sequence windows are extracted from the training pool and 500 windows (half-
positive and half-negative) are extracted for testing the performance of the 
ANN. 

For the parametrisation of the integrated algorithm, the whole sequence of 
genes in the training pool are used. The final evaluation of the algorithm is 
performed on all the genes from the test pool. This procedure ensures that the 
test data are never used for training or adjusting any parameters through the 
entire development of the algorithm. 

4. METHODS 
4.1 CONSENSUS - ANN 

For the consensus-ANN a window of 12 nucleotides is used. This sequence 
includes the positions from - 7 to +5, where +1 is the position of the first nu
cleotide of the coding region (see Fig. 1.3). The input is presented to the network 
through the universal encoding system, where each nucleotide is transformed 
into a binary 4-digit string (Fig. 1.4). 

The different ANN architectures tested during the training are: 

feed forward nets without hidden units (perceptron). 
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The architecture of the module for the recognition of the consensus motif around 

• feed forward nets with hidden units and 

• feed forward nets with hidden units and short cut connections (direct con
nections from the input to the output units). 

The last mentioned architecture gives the best performance with an accuracy 
of 76,4%, where the accuracy is taken to be the average of the predictions on 
the positive and the negative data. In this case, the training is performed with 
cascade correlation (Fahlman and Lebiere, 1990). In cascade correlation the 
training starts with a perceptron, which is an ANN with weights only between 
the input and the output units. After some iterations, part of the weights get 
frozen (do not change anymore) and a hidden unit is added. In the remain
ing iteration the new weights are trained to learn examples which were not 
successfully learned in the first steps of the training. 

4.2 CODING - ANN 
For the recognition of coding regions, sliding windows of 54 nucleotides are 

used. Previous investigation has shown that preprocessing the data through a 
coding measure can significantly improve the performance of the ANN (Hatzi-
georgiou et al., 1999). There are different methods for such coding measures. 
The best results are obtained by applying the codon usage statistic to the se
quence window. This leads to a transformation of the sequence window to a 
vector of 64 units. Every unit gives the frequency (normalized) of the corre
sponding codon appearing in the window (Fig. 1.5). 

The counting starts with the first nucleotide of the window, counting all non 
overlapping codons. If the window starts with the first nucleotide of a codon, 
the ANN has a high score (close to 1), otherwise the score is low (close to 0). 
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Figure 1.5. The architecture of the module for the recognition of the coding region around TIS. 
A sequence window of 54 nucleotides length is transformed into a 64 Inog vector, which then is 
used as an input to the ANN, 

The training is done with the algorithm Resilient Backpropagation (RPROP, 
an improved version of the classical Backpropagation) (Riedmiller and Braun, 
1993), applied to a feedforward ANN. 

There are several variants of such procedures. This work uses the "clas
sical" Backpropagation algorithm (Rumelhart and McClelland, 1986), and its 
improved version , the Resilient Backpropagation (RPROP) (Riedmiller and 
Braun, 1993). The main differences of RPROP in comparison with Backprop
agation are that: 

• the change of the weights depends only on the sign of the potential derivation 
of the error and not on its size, 

• the weight update phase incorporates the current gradient and the gradient 
of the previous step and 

• every weight has its own learning parameter for the changing of the weight 
value. 

The experiments show that RPROP gives better results than Backpropaga
tion. The number of hidden units (2) is examined experimentally (Hatzigeor-
giou and Reczko, 1999). 
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4.3 TRAINING PROCEDURE 
A critical point of the training of an ANN is to define the right moment to 

stop the training. A long training can not only decrease the global error of the 
training set, but also lead to overtraining of the ANN - it learns the characteristic 
of every example and not its global nature. 

In order to avoid this only 2/3 of the examples of the training set are used for 
training - the remaining 1/3 is used for evaluating the performance of the ANN 
after every iteration. The training of the ANN stops once the performance of the 
evaluation group starts to decrease. Notice that the extraction of the evaluation 
examples is made from genes belonging to the training pool and not to the test 
pool. 

The prediction accuracy of the consensus ANN on the examples of the test 
set is 76.4% and the prediction of the coding ANN on the examples of the test 
set is 82.5%. The resulting accuracy is taken to be an average of the correct 
prediction rate on the positive (true TIS) and negative examples. 

All the training of the ANNs is performed by the Stuttgarter Neural Net
work Simulator (SNNS), publicly available from the University of Stuttgart, 
Germany (Zell et al., 1993). 

4.4 INTEGRATED METHOD 
The final algorithm is designed for full sequenced mRNA sequences. 
It looks for the longest ORF and gives evidence of the coding potential of 

this ORF. If this coding score is very low, the user can analyze another ORF 
within the sequence. This ORF is scanned from the beginning of the sequence 
for ATG's in frame and their score is investigated. 

The score is obtained by combining the output of the two ANNs. Fig. 1.6 
gives the prediction of the two modules along the first part of a cDNA sequence. 
Among many potential ranking strategies, a simple multiplication of the two 
scores is chosen. The first suitable start codon with a score bigger than 0.2 is 
examined as the correct start codon. The method gives, for every gene, only 
one prediction. Out of genes of the test pool 94% of the TIS are correctly 
predicted and subsequently 6% of the prediction are false positives. 

5. CONCLUDING REMARKS 
The problem of gene identification is one of the main tasks of bioinformatics. 

There has been a great deal of progress in gene identification methods in the 
last few years. The older coding region identification methods have given way 
to methods that can suggest the overall structure of genes. 

Mapping sequences from cDNA remains the most direct way to characterize 
the coding parts and provide reliable information for the structural annotation 
of genes in genomic sequences. This task can not be achieved without proper 
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Figure 1.6. The prediction of the two ANNs on a cDNA sequence (part of the gene). The cod-
line gives the score of the coding ANN for the coding frame. The local-line gives the position 
and the score of the consensus ANN for all ATGs in coding frame. The correct TIS is in position 
148. 

annotation of cDNA itself. A successful method for annotation of cDNA se
quences has been demonstrated in this chapter. 

After the large sequencing projects (such as the Human Genome Project) are 
completed the much larger part of the analysis of these sequences begins and 
computer simulated prediction systems play a major role. Algorithms using 
sophisticated ANN, fuzzy logic, integrated methods and hybrid systems are in 
great demand. 

Moreover, as we enter the post-genomic era, it is becoming clear that in
teresting aspects of biology will go far beyond assembling and finding genes, 
and even beyond predicting the function of endless DNA sequences. Bioinfor-
matics and data generation continue to develop hand in hand to enable us to 
understand the complexities of cells. It will be exciting to watch the cooperation 
between bioinformatics and biology in the coming years. 
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Abstract: This chapter explores the steady state characteristics of a distributed feedback 
(DFB) laser operating in a region above its threshold (turn-on) injection 
current. Starting with coupled wave theory and using the transfer matrix 
method, the laser operations problem is formulated in terms of an objective 
function whose value corresponds to the relative "flatness" of the laser's 
internal (cavity) field solution. Global optimization techniques implemented in 
the LGO solver suite are then used to find an optimally flattened steady state 
field solution for the DFB laser that also satisfies implicitly defined boundary 
conditions. 

Key words: Distributed feedback laser; computational modeling; transfer matrix method; 
constrained global optimization; LGO solver suite; numerical results. 

1. A BRIEF INTRODUCTION TO LASERS 

The history of the laser dates back to the 1958 work of Schawlow and 
Townes. They proposed a method to synchronize the radiation resulting 
from a large number of excited atoms by stimulating the exited atoms to 
emit radiation within a special type of resonant cavity. This was followed in 
1960 by the first solid-state ruby laser and helium neon (He-Ne) gas laser. 
Concurrent research resulted in the 1962 discovery of lasing behavior in 
semiconductor material: since that time lasers have found increasingly 
widespread usage. A short - and by no means comprehensive - list of 
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applications would include communication systems, radars, military 
weapons guidance systems, range finding, medicine, holography, 
manufacturing, and home entertainment systems. 

We present below a brief introduction to distributed feedback lasers, and 
their theory of operation. For additional information, the reader may wish to 
consult the excellent books of Agrawal (1992), Ghafouri-Shiraz and Lo 
(1996), Green (1993), Kawaguchi (1994), Keiser (1993), Tamir (1988), Van 
Etten and Van der Plaats (1991), and Yariv (1991). 

The structure and size of lasers could vary greatly. Semiconductor lasers 
can be as small as the head of a pin, or can be of room size. Lasing media 
can consist of various gasses, insulating crystals, liquids, and semiconductor 
materials. Optical communication systems require a small compact 
monochromatic (single frequency) laser source, and semiconductor lasers 
are the choice for this application. However, unless carefully designed, these 
lasers are not strictly monochromatic. 

The achievement of an efficient monochromatic source from a 
semiconductor laser has been an ongoing research goal. Much of this effort 
involves numerical modeling of the laser behavior, including modeling the 
internal optical field shape and intensity. A partial list of references would 
include the work of Ghafouri-Shiraz and Lo (1996), Kogelnik (1969), 
Kogelnik and Shank (1972), Makino (1991), Makino and Glinski (1988), 
Sargent, Swantner, and Thomas (1980), Wang (1974), and Yariv (1973). 

The (optical) field solutions must satisfy an increasingly nonlinear set of 
relations as the laser's optical power increases. The solution space, in turn, is 
highly nonlinear and multi-extremal. Hence, the required analysis becomes 
extremely complicated, and the design of optimized laser structures is a 
challenging task. In our present work, this challenge will be addressed by 
introducing a numerical approach that integrates the transfer matrix method 
(TMM) and global optimization (GO) strategies. It will be demonstrated 
that by applying this approach it is possible to optimize the DFB laser field 
solution for maximum flatness over varying levels of optical power 
(injection current). 

All types of lasers operate using the same basic principles, which 
involve the following three processes: photon absorption, spontaneous 
emission, and stimulated emission. For illustrative purposes consider a 
simple two state system, with energy levels denoted as Ej and E2. The lasing 
medium's electrons will normally exist in their lowest energy or ground 
energy state Ej. If an incoming photon has an energy level of hvi2 = £2- Eh 
(where h is Planck's constant and v is frequency), then an electron in the 
ground state can absorb the photon's energy and be promoted to the excited 
state E2. This is an unstable energy state for the electron and in a short time 
it will spontaneously return to its ground state, while emitting a photon of 
energy hVi2' This process occurs at random and does not rely on an external 
stimulus. Photons produced in this way are not in phase and assume random 
polarizations and directions within the lasing medium. 
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Stimulated emission occurs when an electron in the excited state ^ , is 
externally induced to make the transition to its ground energy state. This 
occurs when a photon of energy hVi,2 interacts with the excited electron. The 
stimulated photon produced when the electron drops to its ground state is 
also of energy /̂  V/,2, but unlike the case of spontaneous emission, this photon 
is in phase (coherent) with the stimulating photon and has the same 
polarization. 

Normally the level of stimulated emission is negligible unless a 
condition known as population inversion is achieved. This occurs when the 
number of electrons occupying the excited state is greater than the number of 
electrons in the ground state. In this situation stimulated emission may 
dominate over both absorption and spontaneous emission, and a net optical 
gain will result. In order to achieve this condition, the laser medium is 
"pumped" and depending on the type of laser this is done either optically (by 
an external light source), or electrically (by applying a current or voltage to 
the lasing medium). 

injection current 
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metallic contact 

cleaved end facet 
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n-region 
p-regi5n ^ ',-

a j — A ^ 
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laser output 

^ 
-heat sink 

Fig. 1 
Semiconductor Laser Diode 

(Simplified Diagram) 

Fig.l shows a typical semiconductor laser design. Its approximate 
dimensions would be in the order of length ~ 300 |Lim, width - 200 |am, and 
thickness -100 |Lim. It consists of a higher refractive index active medium 
sandwiched between heavily positive (p) and negative (n) doped cladding 
layers with lower refractive indices. Placing the doped semiconductor 
materials together in the manner depicted achieves two important results. 
Firstly, because of the electrical properties associated with the doping (i.e. 
different band-gap) energies, the electron-hole pairs injected from the 
electrical current source will be confined to the active region only. This 
means that when recombination takes place the optical gain is also confined 
to this region. Secondly, the refractive index difference between the layers 
acts to confine the field transversely and guide it longitudinally. Therefore in 
the process of the lasing action, the semiconductor laser medium is pumped 
by application of an injection current at the device's metallic contacts. This 
process fills the energy states of the conduction and the valence bands 
associated with the laser's p-n junction. 
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Spontaneous and stimulated emissions involve the transition of electrons 
from the conduction band to the valence band, thus annihilating electron-
hole pairs, which is analogous to the Ez to Ej energy level transition of the 
two state system previously introduced. The reader interested in further 
details may wish to consult one of the suggested references for a detailed 
discussion of these mechanisms. 

Once pumping occurs, all that remains to initiate laser action is to 
establish a mechanism of optical feedback. In order to set up this situation, 
the pumped active medium is placed within the confines of an optical 
resonant cavity. The resonant condition can be achieved in several ways; 
however, in the case of semiconductor lasers, the earliest methods employed 
reflective facets at the cavity ends. In very simple terms, as the light bounces 
back and forth between the reflecting end facets it interacts with the pumped 
active medium stimulating the emission of photons as the electron-hole pairs 
recombine. A longitudinal field builds up until internal optical losses are 
exceeded and the laser begins to exhibit a self-sustained oscillation. This is 
known as the threshold condition and it is the point that the laser is just 
''turning on". Less than 100% reflectivity allows a portion of the light to 
escape through the end facets. 

Lasers that employ cavity end reflectivity, whether using reflective 
facets or external mirrors, are referred to as Fabry-Perot lasers. A 
semiconductor Fabry-Perot laser has a wide gain spectrum and exhibits 
multimode longitudinal oscillations. Unlike the simple two-level, single-
frequency energy transition model previously discussed, this means that the 
active medium is capable of emitting radiation across a broad range of 
frequencies. Because a cavity with facet reflectivity will support oscillations 
at multiple frequencies, the laser will emit more than one lasing frequency. 
This makes the Fabry-Perot laser useful, for example, in applications such as 
a CD player, but it is undesirable for use in optical communication systems. 

A single longitudinal mode oscillation resulting in a monochromatic 
output can be achieved by changing the nature of the cavity feedback. 
Removing the mechanism of feedback from the cavity ends and distributing 
it over the entire length of the cavity in the form of a periodic index variation 
will accomplish this. A semiconductor laser employing this type of feedback 
mechanism is known as a distributed feedback laser. Please see Fig. 2 for a 
simplified schematic of a DFB laser. 

DFB laser structures are planar and composed of semiconductor 
materials such as indium gallium arsenide phosphide (InGaAsP) waveguide 
and active layers as well as n- and p- doped indium phosphide (InP) buffer 
and substrate layers. Typical dimensions of a DFB laser's active layer are a 
length of 500 //m, a width of 1.5 //m, and a depth of 0.12 jum. 

The grating shown in Fig. 2 is formed using an etching process. These 
methods are very precise and result in an accurate grating depth, pitch, and 
period, parameters that determine the feedback and operational 
characteristics of the laser. 
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Index - Coupled DFB Laser 

(Simplified Diagram) 

The longitudinal periodic index distribution is known as a Bragg grating 
and the mechanism of feedback is by Bragg diffraction. A wave that is 
incident on the Bragg grating will result in reflected wavelets at each grating 
corrugation. If the phase difference between reflecting wavelets is an integer 
multiple of Ijt, then constructive interference will take place. This provides 
the mechanism for longitudinal mode selectivity. Only those modes will 
couple constructively that satisfy the condition 

(1) A = m(;i^/2nJ. 

In (1) A is the grating period, m is a positive integer, XB is the 
wavelength, and Ue is the effective refractive index of the mode. The example 
presented in this chapter considers a first order grating, where m-\. 

Optical feedback generated in this manner results in two counter-
propagating electromagnetic (optical) waves: the right-traveling wave 
couples energy into the left-traveling wave, at the same time the left-
traveling wave couples energy into the right-traveling wave. The strength of 
this coupling is governed by the coupling coefficient K, a parameter that is 
determined by the grating pitch, depth, period, and position relative to the 
active layer. 

When the coupling is restricted to a grating that consists of a periodic 
index perturbation only, this is referred to as index-coupling. Other classes 
of coupling include mixed or gain-coupling. The mixed-coupled structure 
has its corrugation layer fabricated on the upper portion of the active layer. 
Index-coupling is induced through the periodic variation in the refractive 
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index associated with the corrugation layer; however, the active layer 
thickness is also modulated by the presence of the corrugation. This in turn 
results in a longitudinal modulation of the amplitude gain, which induces the 
gain-coupling effect. 

Pure gain-coupling is achieved by fabricating a second grating layer on 
top of the mixed-coupling grating structure. This second grating employs an 
inverse phase corrugation, which acts to cancel the index-coupling effects of 
the original grating. These various coupling classes, index, mixed, and gain-
coupling, are reflected in K values that are respectively either purely real, 
complex, or purely imaginary. 

Although the forthcoming method could be applied equally well to the 
other classes of coupling, the index-coupled DFB laser is extensively used, 
and for the purpose of this chapter consideration will be restricted to the 
DFB structure, with no fundamental loss of generality. 

The DFB laser's ability to produce a single longitudinal mode oscillation 
resulting in a monochromatic output is of fundamental importance in optical 
communications applications. Much work has gone into the design of such 
devices in the effort to achieve narrow spectral line widths, reduced 
longitudinal spatial hole-burning (LSHB), low threshold (turn-on) current, 
and efficient power utilization. The introduction of a quarter-wave phase 
shift at the laser cavity mid-point eliminated a major problem associated 
with DFB lasers, that of low power mode-degeneracy. This is the appearance 
of unwanted side modes at an injection current level that is above, but still 
close to the threshold injection current. This characteristic is due to 
insufficient gain margin at the low power level. Unfortunately, addition of 
the quarter-wave phase shift also resulted in a highly concentrated field at 
the phase shift plane causing LSHB. At this point the intense field of a QWS 
DFB structure locally depletes the carrier density, and as the laser power 
increases, this effect ultimately results in mode-degeneracy now occurring at 
higher operating powers. 

DFB laser design, including the reduction of LSHB, has been the target 
of intensive research. A partial list of references includes the works of Fang, 
Hsu, Chuang, Tanbun-Ek, and Sergent (1997), Fessant (1997), Morthier and 
Baets (1991), Morthier, David, Vankwikelberge, and Baets (1990), and 
Rabinovitch and Fieldman (1989). Recent research by Wang, Cada, and 
Makino (1998), Wang, Cada, and Sun (1999), and Wang and Cada (2000) 
has resulted in the development of a novel coupled-power technique, which 
has also been successfully used to investigate the behavior and the LSHB 
reduction of a DFB laser. 

One method used to reduce LSHB is to introduce a longitudinally 
distributed coupling coefficient (DCC). The DCC is typically length-
normalized and is referred to as the Kappa-L product (KL). By optimally 
choosing a KL distribution, the field maximum that occurs at the laser cavity 
midpoint in a QWS structure for a uniform KL is reduced, thereby reducing 
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the LSHB effects. The question then is, given a finite number of (fixed) KL 
sections, is it possible to select the KL distribution so that the internal field is 
optimally flattened, or at least approaches a uniform state? 

It is also possible to achieve a reduction in the field intensity non-
uniformity by moving away from the QWS structure and longitudinally 
distributing the phase shift (PS) profile. This method may be used alone or in 
combination with a DCC. Such approaches have been investigated using 
designs at threshold power, see Ghafouri-Shiraz and Lo (1996), and 
Yokoyama and Sekino (1998). 

The "above threshold" operations approach, discussed in this chapter, 
uses global optimization in conjunction with the transfer matrix method 
(TMM) to determine coupling coefficient distributions. This will lead to 
optimal reductions in the non-uniformity of field intensity, for various levels 
of above-threshold operation. The advantage of this new method is that it is 
not limited to a "threshold only" analysis. Rather, it is directly employable in 
the "above threshold" operating range of the laser, where the relationships 
modeled are highly non-linear. Key advantages of our approach include the 
potential to develop, fine tune, and test threshold designs for any desired 
laser power level. Furthermore, this approach can reveal new and interesting 
phenomena related to exploring multiple near-optimal design solutions. 

2. COUPLED WAVE THEORY 

The pioneering work of Kogelnik and Shank (1972) provided the first 
theoretical explanation of the operation of a DFB laser structure. Methods 
based on coupled wave analysis have since been used extensively to model 
the steady state characteristics of DFB lasers. 

Coupled wave theory forms the basis of the TMM as applied to the 
threshold and above-threshold analysis of DFB lasers: our discussion will be 
restricted to this approach. Lateral and transverse field confinement imposed 
by the structural constraints of the DFB laser necessitates that each 
longitudinal field solution must satisfy the following one-dimensional time 
independent scalar wave equation 

(2) d^E{z)ldz'-\-k\z)E{z)-^0. 

In (2) z represents the direction of field propagation or longitudinal direction 
of the laser. The term E{z) is the complex amplitude of a time-harmonic field 
and is considered to be independent of the width x and thickness or 
transverse y directions of the laser. 

We will consider the general case where the Bragg grating consists of 
both a periodic refractive index and gain variation. Then, using a first order 
approximation, the index n(z), and gain a(z) profiles are written as 
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(3a) n(z) = n + n^ cos(2j3^z); 

(3b) a(z) = a-\-a^ cos(2j3^ z) • 

In (3) the parameters n(z) and a(z) are average values, while rij and aj 
are the maximum amplitudes of the periodic variations in laser medium 
refractive index and gain, respectively; and ^o is the Bragg propagation 
constant. The wave propagation constant, k, for a wave propagating in a 
complex dielectric is defined as 

(4) k'=k!n'{zii + J^^X 

In (4) ko is the free space propagation constant. Assuming that the 
perturbations in gain and index are much smaller than their average values, 
(ni«n, aj«a), substituting (3a) and (3b) into (4) results in the following 
expression for k\ 

(5) e =kln\z)+ j2kAzHz) + ̂ kAz{^ + J^yos{2p^z). 

Since the coupling coefficient K is defined as 

by replacing koMz) with yS, (5) can be re-written in the following form: 

(7) e ^ p^ + jlpo{z) + ApKco^{2p^z), 

Substitution of (7) into (2) yields 

dz' 
(8) ^ - ^ + [p' + J2Poiz) + A/3Kco^{2P„z)\E{z) = Q 

A necessary condition for coupling and propagation is that the Bragg 
condition must be nearly satisfied. This means that the actual propagation 
constant P must be sufficiently close to the Bragg propagation constant po 
such that the absolute difference between them is much less than the Bragg 
propagation constant: \P-Po\«Po.' With this considered, the solution to (8) is 
the total complex electric field amplitude along the grating and results from 
a linear superposition of two counter-propagating waves (electric fields). 
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The expression 

(9) E{z) = R(z)e-^^^'+S(z)e''^^' 

is the trial solution to the scalar wave equation, and is used to construct a 
general solution by substitution into (8). The field solutions vary slowly in 
amplitude allowing second order derivatives in R(z) and ^(z) to be neglected. 
Similarly because of \P-Po\«Po rapidly changing phase terms such as exp{± 
j3fioZ) can be ignored. (It is common practice in coupled-mode theory to 
neglect the higher order terms because there is no coupling between 3'^ order 
traveling waves.) Finally, the following approximation is applied: 

(10) ^-:^-P-P„=n{(0-(0,)lc = d. 

In (10) c is the speed of light in vacuum, co and cOo are the longitudinal 
mode and Bragg frequencies, respectively, and the parameter d is known as 
the detuning coefficient. It is a measure of the difference between the Bragg 
propagation constant and the actual propagation constant of the longitudinal 
mode. When the terms containing similar exponents are grouped together, 
the general solution, which consists of the following pair of coupled wave 
equations, is obtained. 

(11a) ^ ^ ^ ^ ^ a , ^ jd)R{z) = jKSiz)', 
dz 

(1 lb) ^ ^ + ( a , ~ jd)S{z) - ]KR{z). 
dz 

Expressing the trial solution to the coupled wave equations in terms of 
the complex propagation constant, y, the following relations are obtained 

(12a) R{z) = R,e^+R2e~^, 

(12b) Siz) = S,e''-\-S^e-'\ 

In (12) /?7, /?2, SI, and S2 are complex coefficients that depend on the 
field boundary conditions at the left and right hand facets. These boundary 
conditions in turn depend on facet reflectivity, which is assumed to be zero 
in this analysis. The dispersion relation determines the complex propagation 
constant 
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(13) y'=K^+{a-j6f. 

In the case of zero facet reflectivity, the exact solutions to the coupled 
wave equations are written as 

(14a) /?(z) = s inh; /^(z+-L) , 

(14b) 5(z) = sinh^(z L) . 

In (14) L is the length of the DFB laser. Eqs. (14a) and (14b) form a set 
of eigenfunctions with corresponding eigenvalues y that determine the 
oscillation modes of the laser, as a function of the length L and the coupling 
coefficient K, 

Substitution of (14a)-(14b) into ( l la)-( l lb) results in the following 
threshold equation for zero facet reflectivity (Ghafouri-Shiraz and Lo, 1996): 

(15) jyL = ±KLsmh{^), 

For a fixed value of the length-normalized coupling coefficient; KL, it is 
possible to solve (15) for the various oscillation modes of the DFB laser. 
These modes are expressed in terms of the detuning parameter d, and the 
threshold gain a. Typically these parameters are also normalized relative to 
the length of the DFB laser and are written as dL and oL. 

Equations (1) to (15) provide a complete description of the oscillating 
mode characteristics and resultant field profiles of a DFB laser at threshold, 
i.e. the point where the laser is just turning on. At threshold, the total 
quantity of stimulated photons is considered negligible. As the injection 
current increases, so does the dynamic range of the laser's longitudinal 
carrier density and the stimulated photon density profiles. This 
interrelationship is also reflected by an increase in the dynamic range of the 
laser's internal electric field intensity profile. The non-linear interactions 
between these profiles must now be considered because of their effects on 
the laser's oscillating mode characteristics. The next section will illustrate 
how the transfer matrix method is used to address the above-threshold 
problem 

3. TRANSFER MATRIX METHOD 

The TMM approach presented here uses as its starting point a 
methodology originally proposed by Ghafouri-Shiraz and Lo (1996). 
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Beginning at the left-hand facet, and using sectional transfer matrices, the 
DFB laser's internal electric field is longitudinally propagated through the 
structure until the right-hand facet is reached. Subsequently, the oscillation 
mode characteristics for an above-threshold injection current are obtained by 
matching the internal field's right-hand boundary condition (RBC). This is 
done iteratively: based on the RBC error in the previous iteration, new 
potential solution values are selected and evaluated by re-propagating the 
electric field. 

Ghafouri-Shiraz and Lo's heuristic solution strategy utilizes an 
adaptable numerical grid over the solution space, to select each new set of 
potential solution values. This method *'walks around" the solution space 
until the RBC error is minimized. Because of the multi-extremal nature of 
the error function, one has to carefully select a starting point when solving 
the problem at a given injection current. Solutions are obtained for 
increasing injection current by using a previous lower injection current result 
as a starting point. These increases must be sufficiently small to avoid 
ending up in a local minimum of the error function, which would represent a 
non-physical field solution. 

The methodology presented in this chapter differs from the preceding 
approach in that it integrates the above-threshold transfer matrix method 
with robust global optimization (GO) strategies, to search the entire solution 
space and select the solution that minimizes the RBC error. The GO 
approach is theoretically insensitive to the starting point. By using this 
method, it is possible to directly and rapidly solve for injection currents that 
vary from 1.1 to 5 times the threshold injection current. Ghafouri-Shiraz and 
Lo (1996) selected this range of injection currents to explore the behavior of 
a bulk semiconductor lasing around 1550 nm. This range was chosen 
primarily because it covered a sufficient span to permit the material 
saturation effects to fully mature. 

This chapter explores a numerical example by using the combination of 
the TMM and GO. This approach was fully developed by Isenor (2001), and 
subsequently discussed by Isenor, Pinter, and Cada (2003). The following 
exposition draws on both of these works. 

The TMM approach requires dividing the DFB laser into a large number 
of equal-length sections; within each section all physical parameters are 
considered constant. In the case of the DFB laser's electric field distribution, 
it allows a simple 2x2 matrix relationship to be developed between the input 
and output fields for any section. Refer to Fig. 3 for a simplified schematic 
of an arbitrary (w!^) section of a DFB semiconductor laser diode. 
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Active Layer 

Fig. 3 

DFB Section of a Semiconductor Laser Diode 

For each laser section it is possible to re-write the trial solutions (12a) 
and (12b) in such a fashion that the input and output electric fields are 
related by a matrix equation of the form 

(16) 
Ml hi 

?2i ^22 EsizJ 

In (16) the matrix elements, fy, are written as 

(17a) t,,=(E-p'E-')-e-'^"^'---'-y(l-p'\ 

(17b) t^2=-p{E-E-')•e-''^'^''"*'^'"•^/(l-p^), 

(17c) t,,=p(E-E-')-e^^'^'-''''"y(l-p'), 

(17d) 2̂2 =-(/?^£-£-')-e^^' '<^'--^'"V(l-/?') . 

In the relations (17) 

JK 
(18) p = 

[a-jS+rY 
and 

(19) E = e^^''"^'~'-'\ -1 _g-r(z,„+i-z,„ 

The matrix product of the individual section transfer matrices, written as 

(20) Y ( Z ^ ^ J Z I ) = T ^ - T ^ - ' - - - T ' . T ' 
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forms the complete transfer matrix Y, for a DFB laser of M sections. This 
matrix fully describes the propagation characteristics of the forward and 
backward traveling waves, for the entire DFB laser. 

In the example considered in this chapter, a quarter-wave phase shift 
(QWS) section is introduced at the midpoint of the laser to ensure single 
longitudinal mode stability. In a QWS structure, the input and output electric 
fields are considered continuous, encountering only a shift in phase as they 
travel through this section. The quarter-wave phase shift section is described 
by the matrix 

(21) P = 0 

The phase shift section is easily incorporated into (20) in the following 
manner 

M_ 

(22) Y(z^„k)=T^-T^- ' - - -T2 
+1 ^ - 1 

F T 2 rpZ npl 

Expression (22) gives the complete transfer matrix representation of a 
QWS DFB laser. In order to insure symmetry, an even number of equal-
length sections is chosen, allowing the phase shift section to be placed at 
exactly the midpoint of the DFB laser. This consideration is also reflected by 
(22). 

In the numerical example studied here, M is chosen to be 5000, and the 
phase shift section is placed after section 2500. This section is a plane of 
quarter-wave phase transition for the longitudinal electric fields, i.e. it has no 
actual physical length. Using (22) it is now possible to relate the electric 
fields that appear at the right hand facet of a QWS DFB to the electric fields 
at the left hand facet by the following matrix equation 

(23) = Y(Z^^JZJ-
• ^ . ( ^ l ) " 

^ . ( ^ l ) 

It should be noted that (22) reflects an ideal QWS DFB laser structure with 
zero facet reflectivity at both facets, as well as no residual grating phase at 
either facet. Non-zero residual grating phases at the facets as well as facet 
reflectivity would be accounted for in the transfer matrix formulations, and 
could easily be incorporated into (22) and (23), if needed. However, for the 
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purposes of the present discussion these considerations are an unnecessary 
complexity, and may be omitted. 

4. LASER THRESHOLD CONDITION USING 
THE TMM 

A laser at threshold is an optical oscillator. This means that, at threshold, 
the right-traveling electric field with a value of zero at the left-hand facet 
would grow in intensity until it reaches the right-hand facet. (The same 
consideration would apply to the left-traveling electric field). In order for 
this to occur, the transmission gain of both the left-and right-traveling fields 
must be theoretically infinite. 

Using Eq. 23 the following relationship is obtained for the transmission 
gain. At, of the left-traveling field 

^ ^ A - TTT-T" : - — 1 — r ~ ] ' 

where 

(25) y22(zMM = 0. 

When (25) numerically approaches zero, the transmission gain for the left 
traveling field approaches infinity and the cavity becomes resonant. Solving 
(25) is analogous to solving (15), and it results in the oscillation mode 
parameters of the laser at threshold, again expressed in terms of the detuning 
parameter S, and the threshold gain a. 

5. ABOVE-THRESHOLD OPTIMIZATION 

An analysis of the above-threshold behavior of a DFB laser must 
incorporate the nonlinear interactions between the longitudinally varying 
parameters of electric field intensity distribution, carrier concentration, 
photon density, and refractive index for a given injection current. Because 
the physical parameters in any given TMM section are assumed to be 
homogeneous, it is possible to obtain these parameters for that section. By 
using a sufficiently large number of TMM sections, it is possible to 
numerically extend the localized results to a continuous distribution. 

In the numerical example presented here, we shall study the field 
flatness optimization of a QWS DFB laser consisting of six equal length 
sections symmetrically arranged about the laser's midpoint. A schematic of 
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this structure is presented in Fig. 4. Each section has associated length-
normalized coupling coefficients, KLl to KL6\ phase shift planes, denoted 
by PSl to PS5, separate each section. The structural symmetry permits the 
following simplifications: KL1=KL6, KL2=KL5, and KL3=KL4. The plane of 
symmetry is PS3, the laser's midpoint, where a 90 degree phase shift is 
applied. This arrangement reduces the numerical complexity associated with 
coupling coefficient optimization by three variables. The remaining phase 
shift planes are indicated for completeness but are considered to be zero for 
the simple example considered. 

PSl 

Quarter Wave Shift (QWS) 
PS3 = 90 degrees 

PS2 PS3 PS4 PS5 

UiJiJiJlJiJTrLrunjiJiJ^^ 

Fig. 4 

Schematic of DFB Laser Structure 

Therefore, the next step is to apply optimization methodology, to select 
the coupling coefficient profile KL (KLl to KL6) design parameters as well 
as the lasing wavelength, X, and the dimensionless coefficient, Co, such that 
the field flatness is maximized. Note that Co, relates the actual total electric 
field, E, to the normalized total electric field, £", in the following manner: 

(26) liz) = C„ E{z) = C„ [E^ {Z) + E^ iz)]. 

There are fundamentally two conditions that must be simultaneously 
considered when solving the above problem. The first condition is the 
requirement that the field solution must match the right-hand facet boundary 
condition. The field propagation is chosen to start from the left-hand facet 
and moves through the laser structure section by section until the right-hand 
facet is reached. By this choice of the starting point the left-hand facet 
boundary condition must be automatically satisfied. Assuming that the laser 
structure is symmetric, and the facets are anti-reflective, at this point the 
normalized left-traveling field intensity should be zero and the normalized 
right-traveling field intensity should be one. Under these considerations the 
right-hand boundary condition is met if (25) is satisfied (Ghafouri-Shiraz 
and Lo, 1996). One may use this fact directly in the iterative process to find 
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the best solution or opt to consider the actual left-traveling field intensity's 
requirement to be zero at the right-hand facet. The latter approach was 
considered in our present investigation. It should be noted that with either 
approach (25) is still directly or indirectly minimized. 

Finding the above-threshold field solution for a fixed KL profile 
involves the iterative selection of the X and Co that results in the best field 
boundary condition match at the right-hand facet. This in itself is an 
optimization problem where the objective or merit function to be minimized 
is the boundary condition error. The second condition to be met is 
maximizing the actual field flatness. KL values have to be optimized such 
that the field is maximally flattened while at the same time the boundary 
condition constraint must be satisfied. The field flatness function F is 
defined as 

. 2 

(27) F = - \[l{z)-ljdz, 

and the optimized objective function becomes 

(28) Objf = F + seal X RBC error I 

In (27) I(z) is the sectional field intensity, lavg is the average field 
intensity over the laser length, RBCerror is the right-hand boundary 
condition error, and seal is a suitable scaling (penalty) parameter. This 
represents one of the simplest possible objective functions for this problem. 

The definition of the objective function depends on the problem 
complexity and the relationships between the solution parameters. If 
additional considerations are required such as inclusion of a residual phase 
corrugation and non-zero end facet reflectivity, then it may become 
necessary to redefine the objective function. However, for the purposes of 
this discussion, the objective (28) provides a reasonable starting point and 
yields acceptable results. Based on the outcome of several experimental runs 
using a selection of scaling parameters, a value of seal = 1000 was selected 
and used in the evaluation of the succeeding numerical examples. 

Observe that it is necessary to constrain the solution such that 
minimization of RBCerror takes precedence over maximizing the field 
flatness. This consideration is emphasized by specifying RBCerror=0, as an 
explicit independent constraint, which ensures solution validity. 

When a laser is operating above-threshold (i.e. it is "tumed-on"), the 
carrier rate equation must be included to properly consider the relationship 
between the injection current, /, the carrier density, Â , the stimulated photon 
density, S, and the net (material) gain, g, in each laser section. This equation 
is written as 
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(29) -^ = ^ + BN'+CN'+-^'^^ 
qV T 1 + oS 

The volume, V, is determined from the geometry of the active region. 
The parameter a accounts for saturation effects at high photon densities. 
The remaining equation parameters consist of the bimolecular recombination 
coefficient B, the Auger recombination coefficient C, the linear 
recombination lifetime x, and the group velocity at the Bragg wavelength v̂ . 

The amplitude gain and detuning in each matrix section depend on the 
carrier density and are written as 

(30) a = (rg^a,^J/2, 

l7t 2;TO^ 
(31) S = —-n -[^-^BJ • 

X AZQ A 
In (30)-(31) r is the optical confinement coefficient, aioss is the internal 
cavity loss, n is the effective index, Hg is the group refractive index, 1B is the 
Bragg wavelength, and X is the lasing wavelength. The effective index 
dependence on the carrier density is defined as 

(32) n = n^+r^N, 

where rie is the effective refractive index at zero injection current, and the 
term dn/dN is the differential index. The stimulated photon density in each 
laser section, 5 ,̂ is given by the following expression 

' " h^ ' " ^ ^^^ ' '̂  ^^^ 
where So is the permittivity of free space, h is Planck's constant, and c is the 
speed of light in vacuum. Co is the dimensionless normalization coefficient. 
Both 1 and Co need to be determined in the calculation such that the 
corresponding field profile matches the boundary conditions at the laser 
facets. Finally, the following parabolic gain model is used to characterize 
the active medium's gain 

(34) g=A,(N-NJ-A,[Z-{A„-A,{N-Nj)f-

At the transparency carrier density Â ,̂ this expression reduces to 

(35) A„=X„+A,(N,,-N„). 
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The wavelength Xo is the wavelength at which the material gain is zero, 
at the transparency carrier density, and is defined as the peak gain 
wavelength at zero gain transparency. In the above expression, AQ is the 
differential gain, and the parameters A; and A2 are associated with the width 
of the gain spectrum and changes in gain, respectively, that result from shifts 
in the peak wavelength. 

6. NUMERICAL MODEL EVALUATION 

start 

Return objective function value 
to provide information for 
re-selection of KL,)^, 
and CQ parameter values. 

• 

Iterate using trial 
KL, X, and Q 
parameter values. 

No 

No 

No 

LGO 
Global Optimizer 

Decision Variables Settings 
Select trial values for the KL, 

A, and CQ parameters. 

DFB Laser Model 

Initial Matrix Setup^ 

Model Evaluation 
Field propagation based on 
current parameter settings 

The global optimizer uses a combination of search 
techniques to select values for the KL, A, and Q 
parameters which are in turn used to determine the 
transfer matrix elements. Starting at the left hand 
facet, the normalized electric field is propagated 
through the DFB structure until the right hand facet 
is reached. The boundary condition error at this 
facet is a constraint and is incorporated with field 
"flatness" in the penalized objective function whose 
value is used by the LGO software in the re-
selection of the next KL, A, and CQ values. The 
iterative global optimization process continues until 
the right hand facet boundary condition error meets 
constraint tolerance criteria and the objective 
function is minimized. Note that LGO allows for a 
local search from a given nominal solution as well 
as a global search over the entire solution space. 

' The initial matrix setup is based on the DFB laser's 
threshold parameter values. 

Need to re-propagate the field through 
the laser using fixed KL, k, and Q 
parameter values, until the field 
profile stabilizes 

Test for convergence 
criteria set in LGO 

Significantly precise 
solution found. 

Fig. 5 

DFB Laser Numerical Modeling and Optimization Procedure 
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The flow chart shown in Fig. 5 illustrates the use of (the LGO) global 
optimization software in the solution methodology for obtaining a DFB 
laser's above-threshold optimized field solution. 

The calculation proceeds by first obtaining the laser's threshold 
condition, ath and dth. from (25). Next, (26), and (29) to (35) determine all 
other threshold parameters, Nth, ^th, K, Kh, and UH , which are used to 
initialize each sectional transfer matrix. The normalized field is propagated 
through each laser section, starting at the left-hand facet, until the right-hand 
facet is reached. The final self-consistent field solution is obtained iteratively 
such that with each left-to-right pass through a laser section its effective 
index is updated to reflect the revised sectional carrier density. Because of 
the complex non-linear interrelationship between the longitudinal field, the 
longitudinal carrier density, the refractive index, and the photon density 
profiles, structural iterations must continue until there are no changes in the 
profiles with each subsequent pass. In so doing, the field solution quickly 
stabilizes for a given set of KL, A, and Co values. Once the profiles have 
stabilized, the model function values are evaluated and passed along to the 
optimizer. Based on the search technique employed, the optimizer selects 
new parameter {KL, K and C )̂ values. 

From the preceding description it is clear that the solution requires the 
optimization of a possibly highly non-linear *'black box" system. The "black 
box" terminology used indicates the fact that the system model outlined is 
complicated, and that its evaluation (for each parameter combination 
studied) requires a computationally intensive procedure. In such cases, there 
is no guarantee of convexity in the model structure. Therefore the 
"traditional" repertoire of (local) optimization is insufficient, and a genuine 
global scope optimization methodology is required. 

7. THE LGO SOLVER SUITE 

To find the globally best set of parameters, we use the LGO solver 
engine. LGO abbreviates a Lipschitz(-Continuous) Global Optimizer that 
has been designed to handle global optimization models under very general 
conditions. 

Formally, the general continuous global optimization (CGO) model is 
stated as 

(36) minfix) subject to x^D D:-{x\ l<x<u gj(x)<0 7=1,...,m}. 

In (36) we apply the following notation and assumptions: 
• xeR"^ real n-vector of decision variables, 
• /:/f"->/f continuous (scalar-valued) objective function. 
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• Dei?'' non-empty set of feasible solutions, a proper subset ofR'', 

The feasible set D is defined by 
• / and u finite (component-wise) lower and upper bounds on x, 
• gxR^-^R^ m-vector of continuous constraint functions. 

Let us note here that the constraints gj in (36) could have arbitrary (<, =, 
>) relation signs, and that explicit bounds on the constraint function values 
can also be imposed. Such - formally more general and/or specialized -
models are directly deducible to the form (36). Without going into details 
not needed here, let us also remark that models with bounded integer 
variables can also be brought to this form. This, of course, also implies the 
formal coverage of mixed integer models. 

To ensure the numerical solvability of (36), on the basis of a finite 
sample point sequence from D, the Lipschitz-continuity of the model is 
often assumed. Recall that a function/is Lipschitz(-continuous) in the set D 
if the relation 

(37) \f{xj)-Ax2)\<L\\xj-X2\\ 

is valid for all vector-pairs xi, Xi from D, In the right-hand side of (37), the 
Euclidean norm is used; the value L is the corresponding (smallest possible) 
Lipschitz constant. Observe that the value L=L{D,f) is typically unknown, 
although a suitable value is often postulated or estimated in numerical 
practice: consult e.g. Pinter (1996). Similar Lipschitz conditions can be 
postulated with respect to the component constraint functions in g\ 

(38) \gj{xi) - gj{x2)\<Lj\\xi - X2\\ Lj=L{D,gj) ;=l,...,m. 

The model (36) with a postulated, or proven, Lipschitz structure (37)-
(38) is still very general. In fact, it includes most GO problem types that 
occur in practice. As a consequence, it includes also very difficult problem 
instances. Obviously, for given model instances, the corresponding ''most 
suitable" solution approach could vary to a considerable extent. On one 
hand, a "universal" strategy will work for broad model classes, although its 
efficiency might be lower for certain problem instances. On the other hand, 
highly tailored algorithms often will not work for models outside of their 
intended scope. 

LGO has been designed to handle, in principle, the entire class of 
models defined by (36) and (37)-(38), without requiring any further special 
structure. This design principle and the corresponding choice of component 
algorithms makes LGO applicable even to "black box" models like the laser 
design model introduced above. At the same time, models with a given more 
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specific structure (e.g. an indefinite quadratic objective/over convex D) can 
also be solved by LGO. 

The LGO algorithm system is documented in details elsewhere: consult, 
for instance, Pinter (1996, 2001, 2002, 2005) and further topical references 
therein. Therefore only a concise review of its features is included here. 

The overall solution approach implemented in LGO is based on an 
integrated suite of theoretically convergent global and efficient local search 
methods. Currently, the following search algorithms are offered: 

• branch-and-bound based global search (BB) 
• adaptive global random search (single-start) (GARS) 
• adaptive global random search (multi-start) (MS) 
• constrained local search (generalized reduced gradient method) (LS). 

The global solver modes are mutually exclusive within a given program 
run. First, the selected global solver is executed and then it is automatically 
followed by the local solver. The local solver can also be used in a stand
alone mode, started from a user-supplied initial solution. 

All three global solvers are gradient-free, since these genuinely need 
only model function values. Specifically, their operations are based on 
iteratively calculated values of the exact penalty (merit) function defined as 

(39) fix) + YjJsM)\ +Z;e /n^^^(^yW'0) 

In (39) the index sets E and / in the summations respectively denote the 
subsets of equality and inequality constraints g,, recall (36). The local solver 
option is also gradient-free, since finite difference based gradient 
approximations are used. Again, this approach fully supports (also) the 
optimization of "black box" systems. 

In development since some 15 years, LGO has been implemented, tested 
and supported across a growing number of programming languages and 
modeling environments. The current list of compiler platforms includes 
well-tested Fortran (Lahey Fortran 77/90, Lahey-Fujitsu Fortran 95, 
Digital/Compaq Visual Fortran 95, g77) implementations, with direct 
connectivity also to C models developed using Borland C/C-f+, Microsoft 
Visual C/C++, gcc, and lcc-win32. There is also a range of LGO 
implementations available for prominent modeling and scientific computing 
environments. Currently, these include the following: 

• LGO solver for the Excel Premium Solver Platform (Frontline Systems 
and Pinter Consulting Services, 2001) 

• LGO solver for GAMS (GAMS Development Corporation and Pinter 
Consulting Services, 2003) 
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• MathOptimizer Professional for Mathematica (Pinter and Kampas, 
2003) 

• TOMLAB/LGO for MATLAB (TOMLAB Optimization and Pinter 
Consulting Services, 2004) 

• Global Optimization Toolbox for Maple (Maplesoft and Pinter 
Consulting Services, 2004) 

• LGO solver for MPL (Maximal Software and Pinter Consulting 
Services, 2005). 

LGO has been applied to solve a broad range of optimization models, in 
a large variety of contexts. The current shipment version can be configured 
to handle models formulated with thousands of variables and constrains. 
Note, however, that runtimes may become significant, when solving 
complex and/or large models. Application areas include engineering design, 
chemical and process industries, econometrics and finance, medical 
research, biotechnology, and scientific modeling. 

8. ILLUSTRATIVE RESULTS 

The results presented here are based on the analysis of a 500 |Lim long 
QWS DFB laser, discussed in further details by Isenor (2001). The injection 
current is normalized relative to the threshold current ith, and values ranging 
from \.\ith to 5ith are considered. 

As a starting point for (local) optimization, all six equal length sections 
are first initialized at KL=2. This value is used to determine the threshold 
parameters needed to initialize the transfer matrices associated with the laser 
model. (In our numerical experiments, 5000 such matrices were used.) 
Because of the symmetry conditions previously discussed, this results in a 5-
variable optimization problem formally described as 

(40) minf(x) field flatness function (F) 

g(x) = 0 right hand boundary condition error (RBCerror) 

xl <x <xu explicit, finite parameter bounds 

X = {KLl, KL2, KL3,1, Co} laser design parameters. 

Recall here the preceding discussion regarding the "black box" functions F 
and RBCerror, and the related computations as summarized in Fig. 5. The 
explicit search range considered is based on lower and upper bounds 
1.54677 |im to 1.54679 |im for i, 4.0x10^ to 1.50x10^ for Q. and 0.001 to 
3.0 for KL. 
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The laser model was developed and coupled with LGO using the Lahey 
Fortran (LF95) compiler, from Lahey Computer Systems (2000). The 
relatively significant runtimes (several hours on an Intel Pentium III 800 
MHz processor based personal computer) dictated the restriction of function 
evaluations. Therefore we set 10,000 or 20,000 model function evaluations, 
as global search mode termination criterion. The global search phase was 
then followed by the (generally much faster) local search. According to the 
authors' extensive numerical experience with LGO, the prescribed numerical 
search effort is more than sufficient in the global optimization model 
versions considered here. In our detailed numerical studies solutions were 
obtainable in less than 5 hours when applying 10,000 global search steps. 
This lead to feasible solutions with right hand boundary condition errors in 
the order of 10'̂ , and the objective (field flatness) function values were 
significantly improved when compared to earlier results. 

In order to first gain some insight into the nonconvex, multi-extremal 
nature of the objective function, initial studies were performed using the 
model parameters given in Table 1 (next page), where only two optimization 
parameters, the oscillating wavelength, X, and the dimensionless field-
scaling coefficient, C^ were considered. These variables are minimally 
necessary to achieve a field boundary match at the right hand facet of the 
laser. In this case KLl to KL3 were held fixed at a value of two. Fig. 6 
illustrates the unusual multi-extremality of a subspace projection of the 
objective function. 

Next, Fig. 7 illustrates the results achieved at the various normalized 
injection currents relative to the non-optimized QWS profiles. For clarity, 
only the non-optimized QWS profiles at the injection current extremes l.Sith 
and 5ith are presented in the graph: the other non-optimized QWS profiles 
would be drawn in the space between the two QWS graphs shown. 

The first fact that is immediately obvious from Fig. 7 is that the 
longitudinal field intensity profiles are drastically reduced from those of the 
non-optimized QWS structure, for the entire range of injection currents 
evaluated. This is very significant, as it clearly indicates that the 
optimization-based approach works successfully in the above-threshold 
region of the laser operation and results in significantly flattened profiles. It 
is also important to note that only minor differences are found between the 
optimized profiles, regardless of the value of the injection current at which 
the optimization was carried out. In other words, the optimized normalized 
field intensity profile of the laser operating at l,5ith is virtually identical to 
the normalized field intensity profile of the laser operating at any other 
injection current up to and including 5ith-

Fig. 8 summarizes the field flatness characteristics for various 
normalized (i/ith) above-threshold injection current levels. 
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Table 1 Model Parameters 

Parameter 

Material Parameters 
Spontaneous emission rate 
Bimolecular recombination coefficient 
Auger recombination coefficient 
Differential gain 
Gain curvature 
Diffarential peak wavelength 
Internal cavity loss 
Refractive index at zero iigection 
Carrier concentration at transparency 
Carrier concentration at threshold 
IMfe'ential index 

Q-oup velocity at Bragg wavelength 
Nonlinear gain coefficient 
Peak gain wavelength at transparency 
Lasing wavelength 
Lasing wavelength at threshold 

Structural Parameters 
Active layer width 
Active layo* thickness 
Coupling coefficient 
Laser cavity length 
Optical confinement factor 
Grating period 
Bragg wavelength 
Threshold currait 
Injection currait 

Symbd 

t' 
B 
C 

Ao 
A, 
A2 
Oiais 

rie 

No 
N„ 

dn/ 
/dN 
Vs 
a 

A> 
X 
Xh 

d 
w 
K 
L 

r 
A 

/]a=2A«o 
4 
/ 

Value 

2.5x10^ 
1 X 10"'̂  
3x10^' 
2.7x10"-^° 

aisxiô *̂  
2.7x10"^^ 
4x10^ 
3.41351524 
1.5x10^^ 

-1.8x10"^ 

3x10^3.7 
1.5 X 10"̂ ^ 
1.63x10^ 

1.2x10"^ 
1.5x10-^ 
4x10' 
500x10-^ 
0.35 
2.27039x10^ 
1.55x10"^ 

Unit 

S-' 

irf/s 
nf/s 
irf 
m-̂  
m̂  
m' 

m-̂  
m^ 
m̂  

nVs 
m̂  
m 
m 
m 

m 
m 
m' 
m 

m 
m 
A 
A 

The parameters listed in Table 1 have been used extensively by 
Ghafouri-Shiraz and Lo (1996) in the threshold and the above-threshold 
analysis of a bulk semiconductor DFB laser, and are considered to be valid 
for such a device lasing around 1550 nm. 



Determination of a Laser Cavity Field Solution 205 

Obiec live Fimctioii 3 x itli 

Broad Search Domain 

f_max = 1.0000000000 

f_min = 0.0026245293 t 
0.1^x10^6 

1546.892 mn 
Waveleiigtli 

1546.955 lun 

The image is scaled by the minimal and maximal (or cutoff) function values. 
The projected location of the solution estimate is denoted by the dot. 

Fig. 6 

Objective (Merit) Function versus Co and /I for 3 x ith 
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Coupling Coefficient Optimization vs. Non-Optimized QWS 
Structure: Normalized Longitudinal Field Intensities 
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Fig. 8 
Field Intensity Flatness Optimization Results 

The results presented in Fig. 8 indicate a significant reduction in field 
flatness over the non-optimized structure, with the greatest improvement at 
the lower injection currents. This is expected, as the relative normalized field 
intensity profile of a QWS structure with a constant KL tends to flatten at 
higher injection currents. There is an average of a 90% improvement in 
flatness across the range of injection currents evaluated. Little difference is 
seen between the flatness results obtained by 10,000 and 20,000 global 
iterations, indicating a stable (numerically) optimal solution. 

The coupling coefficient optimized solution values obtained are shown 
in Tables 2 and 3 (on next page). Examination of these results reveals some 
interesting differences between the 10,000 and 20,000 iteration based KL 
values. In some cases, the differences are significant yet the intensity profile 
solutions as well as the corresponding field intensity flatness shows only 
minor variations. This behavior is thought to be the result of more than one 
"near- optimal" solution. This fact may prove very useful to a designer faced 
by additional constraints (imposed e.g. by an actual laser manufacturing 
process). 

Fig. 9 shows that for runs with 10,000 and 20,000 global scope iterations 
the average KL over the range of injection currents for the optimized 
structure remains constant at approximately KLavg = 1.34, as opposed to KL 
= 2 corresponding to the initial non-optimized structure. There is little 
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change (0.02) in the average KL between both iteration counts, which is 
interesting in light of the results presented in Tables 1 and 2. Again, this 
behavior is thought to be representative of more than one near-optimal 
solution and may also be indicative of an underlying (so far unknown) 
relationship between sectional coupling coefficient values and an optimal 
solution. 

Table 2 

Optimized KL Parameters (10,000 iterations) 

Injection 
Current 
1.1 xith 

l.5\i,h 
2 X i,h 

3 X i,h 

4 X /,;, 

5 X i,h 

KLl 

2.22 
2.12 
2.00 
1.85 
1.89 
1.96 

KL2 

0.75 
1.00 
1.36 
1.65 
1.62 
1.47 
Overall 

KL3 

1.18 
0.84 
0.61 
0.60 
0.64 
0.55 
Average = 

Average KL 

1.38 
1.32 
1.32 
1.37 
1.38 
1.33 
1.35 

Table 3 

Optimized KL Parameters (20,000 iterations) 

Injection 
Current 
1.1 xith 

1.5 X i,ii 

2 X i,h 

3 X /(/, 

4 X /,;, 

5 X /,;, 

KLl 

2.11 
2.21 
1.97 
2.21 
1.93 
2.01 

KL2 

1.12 
0.91 
1.37 
1.30 
1.56 
1.27 
Overall 

KL3 

0.74 
0.88 
0.85 
0.11 
0.56 
0.85 
Average = 

Average KL 

1.32 
1.33 
1.40 
1.21 
1.35 
1.38 
1.33 

It should be noted that KLavg slightly exceeds 4/3, which is considered as 
a practical upper limit for overall average coupling; however, at no time 
does a sectional KL value exceed the considered practical limit of 2.5. See 
Yokoyama and Sekino (1998). Using this methodology, which incorporates 
the LGO solver, it would be a simple matter to constrain KLavg to remain 
below a pre-specified level (such as e.g. 4/3). 
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Optimized Average Normalized Coupling Coefficient KL 

Fig. 10 (next page) again reveals the highly nonlinear nature of the 
objective function associated with the QWS DFB laser studied here. This 
figure shows some of the finer details of the optimal flatness solution sub-
space projections for two of the independent design parameters (while the 
three others are fixed at the best parameterization found). The large *'dot" 
shown indicates the position of the optimal solution estimate in the {KLl, 
KL3] subspace. 

It appears from Fig. 10 that the objective function is highly sensitive to 
the value of KLl, and less influenced by KL3. Recall that the KLl (and KL6) 
sections are at the ends of the laser, and include the end facet boundaries. 
Although the exact mechanism is unclear, one possible explanation for the 
sensitivity may be related to the fact that the field profiles must accurately 
satisfy the facet boundary conditions associated with these sections. Note 
also that other sub-space projections of the solution variables can be seen to 
exhibit similar type behaviors. 

Let us note here that Figs. 6 and 10 were produced by the LGO 
implementation used in this study. Namely, such figures can be produced 
upon completion of an optimization run, as a result analysis option. Pinter 
(2001) provides a detailed description of the LGO integrated development 
environment that also supports constraint visualization options. 
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Fig. 10 
Objective Function versus KLl and KL3. Note that the graph cut-off function 

value is 20: this is set as an LGO visualization option. 

9. SUMMARY AND CONCLUSIONS 

In this work we introduced a laser modeling and design methodology 
that is based on combining the transfer matrix method with global 
optimization. This integrated approach is capable of addressing above-
threshold, nonlinear laser design problems with imposed (physical or 
manufacturability) constraints. 

Using sectional coupling coefficients as optimization parameters, it is 
demonstrated that in all cases considered it is possible to obtain about 90% 
reduction in the internal field flatness values over those of the non-optimized 
reference QWS DFB laser. 

The optimized KL parameters demonstrate significant variations with the 
different values of injection currents evaluated, as well as between 10,000 
and 20,000 iteration based LGO runs. However, the changes in field flatness 
always remain negligible. This result is new and not intuitive, and is thought 
to support the possibility of multiple near-optimal solutions. 
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The possible ill-conditioned character of the problem may provide some 
insight into this behavior. Ill-conditioned behavior points out those situations 
where one must be very precise, and also where there may be some 
flexibility in the selection of solution (design) parameters. Changes in what 
are possibly the 'insensitive" solution parameters seem to have a minimal 
effect on the field flatness value and associated field profile solution. 

The visualization presented in Fig. 6 and Fig. 10 reveals some of the 
complexity of the various sensitivities. It can be seen that along a particular 
direction in the KLl - KL3 solution space, the objective function is relatively 
insensitive to the values of the solution parameters, while highly sensitive in 
other directions. Although not included in this chapter, further evidence of 
this behavior has been demonstrated by the authors in several other objective 
function subspace visualizations. Additional studies are needed to fully 
explore the ramifications of this phenomenon, and to confirm whether the 
data is indeed reflective of the existence of multiple near-optimal solutions. 

The need for advanced global optimization is obvious in the entire study. 
If less sophisticated solution methods are used, such as some form of static 
or dynamic numerical grid (or some local scope search), then the probability 
of ending up at a sub-optimal solution is high. This problem becomes even 
more significant with higher injection currents, necessitating first solving 
near threshold and then incrementally increasing the injection current and 
obtaining associated solutions. Using the parameters obtained from the 
previous iteration as the starting point for the next injection current 
increment, this process must be continued until the desired injection current 
is finally reached. In practice these increments are quite small, around 0.2 
times ith' Such techniques would become quickly unusable (and unstable) 
beyond a few degrees of freedom. 

Using a genuine global optimization approach, the above considerations 
are largely unnecessary. A proper global solver will robustly approximate 
the best possible solution. The presented solutions were obtained by directly 
solving the optimization problem at the desired injection current. Hence, the 
need for incremental solutions (by gradually increasing the injection current) 
was eliminated. 

Much work still remains to explore the full capabilities of combining 
laser design models and global optimization techniques. The potential exists 
to extend the global optimization approach towards developing a 
comprehensive advanced methodology for the above-threshold design of 
DFB lasers. Application of this technique to more sophisticated structures 
involving combinations of coupling coefficient and phase shift sections, as 
well as consideration of mode stability, constitute just a few of the related 
topics for further study and research. 
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Abstract In this work we consider the molecular distance geometry problem, which can 
be defined as the determination of the three-dimensional structure of a molecule 
based on distances between some pairs of atoms. We address the problem as a 
nonconvex least-squares problem. We apply three global optimization algorithms 
(spatial Branch-and-Bound, Variable Neighbourhood Search, Multi Level Single 
Linkage) to two sets of instances, one taken from the literature and the other new. 

Keywords: molecular conformation, distance geometry, global optimization, 
spatial Branch-and-Bound, variable neighbourhood search, multi level single 
linkage. 

1. Introduction 

The Molecular Distance Geometry Problem (MDGP) is the problem of de
termining the three-dimensional structure of a molecule where a subset of the 
atomic distances is known. Formally, we need to find vectors xi, ...,Xn € M ,̂ 



214 Global Optimization: Scientific and Engineering Case Studies 

which describe the three-dimensional position of each atom in the molecule, 
such that: 

y{iJ}eS {\\xi-xj\\ = dij), 

where S is the subset of pairs of atoms {i, j } whose distances dij are known. 
We address the problem in terms of finding the global minimizer of the function 

It is easy to verify that xi,... ,Xn E M̂  solve the problem if and only if 
f{xi,...,Xn) =0. 

The MDGP is an important problem in molecular biology. The objective 
is to find a molecular conformation satisfying all the constraints imposed by 
the known distances (i.e., that \\xi — Xj\\ = dij for all {i^j} G S). For some 
references, see [Crippen and Havel, 1988, Hendrickson, 1995, More and Wu, 
1997, More and Wu, 1999, An, 2003]. 

The aim of this work is twofold. On the one hand, we present two differ
ent methods of generating MDGP instances, and we wish to test which of the 
methods generates the hardest instances. On the other hand, we want to assess 
the solution quality and efficiency of three well-known global optimization al
gorithms applied to the MDGP. The algorithms are: spatial Branch-and-Bound 
(sBB) [Ryoo and Sahinidis, 1995, Tawarmalani and Sahinidis, 2002, Adji-
man et al., 1998, Smith and Pantelides, 1999, Hansen, 1992], Variable Neigh
bourhood Search (VNS) [Hansen and Mladenovic, 2001, Mladenovic et al., 
2003], and Multi Level Single Linkage (MLSL) [Rinnooy-Kan and Timmer, 
1987a, Rinnooy-Kan and Timmer, 1987b, Locatelli and Schoen, 1996, Schoen, 
1998, Schoen, 1999, Locatelli and Schoen, 1999, Schoen, 2002, Kucherenko 
and Sytsko, 2005]. We test each of these algorithms on instances of varying 
sizes generated with the two generating methods, one taken from the literature 
[More and Wu, 1997] and the other new [Lavor]. 

Our computational results show that, in terms of user CPU time, VNS is the 
most efficient of the methods we tested. As the size of the instance grows, how
ever, the performance difference between VNS and MLSL decreases. Whilst 
VNS and MLSL are stochastic algorithms, sBB is a deterministic algorithm. 
As such, it provides a guarantee of e-global optimality, but at a practically high 
computational cost on most global optimization problems. With MDGP in
stances, however, sBB was found to be competitive with VNS and MLSL at 
least for small and medium-sized instances. 

It is worth mentioning explicitly that, somewhat unusually for this type of 
problems, we included no smoothing techniques in our algorithms, as the aim of 
this test was to verify the applicability of general-purpose global optimization 
algorithms to the problems in original form. Similar tests, but with smoothing 
techniques included, are currently work in progress. 



Computational Experience with the Molecular Distance 215 

The rest of this paper is organized as follows: Section 2 describes the global 
optimization algorithms used; Section 3 describes the two sets of instances used 
to generate the experiments and discusses the computational results. 

2. Global optimization methods 
In this section, we shall briefly describe the three algorithms we used to solve 

the MDGP. All these methods are general-purpose, in the sense that they can be 
used without modification to solve all global optimization problems. In other 
words, they do not take into account the structure of the problem. 

2.1 Spatial Branch-and-Bound 
Spatial Branch-and-Bound (sBB) algorithms locate the global optimum by 

generating converging sequences of upper and lower bounds to the objective 
function. The upper bounds are obtained by locally solving the original (non-
convex) problem. The lower bounds are obtained by locally solving a convex 
(in this case, linear) relaxation of the original problem. Since any local solution 
of a convex problem is also global, locally solving the linear relaxation yields 
a valid lower bound to the original problem. The algorithm, first proposed in 
[Smith, 1996, Smith and Pantelides, 1999], is shown in Fig. 1.1. The imple
mentation details, as well as many refinements and improvements with respect 
to the original algorithm, are given in [Liberti, 2004]. 

The most outstanding feature of sBB algorithm described in this section is 
the automatic construction of the convex relaxation via symbolic reformulation. 
This involves identifying all the nonconvex terms in the problem and replacing 
them with the respective convex relaxations. The algorithm that carries out this 
task is symbolic in nature as it has to recognize the nonconvex operators in any 
given function. The relaxation is built in two stages: first the problem is re
duced to a standard form where the nonlinear terms are linearized. This means 
that each nonlinear term is replaced by a linearizing variable, and a constraint 
of type "linearizing variable = nonlinear term" is added to the problem formu
lation. Such constraints are called defining equations, or defining constraints. 
In the second stage of the linear relaxation each nonlinear term is replaced by 
the corresponding linear under- and over-estimators. Note that this process is 
wholly automatic, and part of the implementation software. 

2.2 Variable Neighbourhood Search 
Variable Neighbourhood Search (VNS) is a relatively recent metaheuristic 

which relies on iteratively exploring neighbourhoods of growing size to identify 
better local optima [Hansen and Mladenovic, 2001]. More precisely, VNS 
escapes from the current local minimum x* by initiating other local searches 
from starting points sampled from a neighbourhood of x* which increases its 
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1 (Initialization) Initialize a list of regions to a single region com
prising the entire set of variable ranges. Set the convergence tol
erance s > 0, the best objective function value found up to the 
current step as [/ := oo and the corresponding solution point 
as X* := (oo, . . . , cxo). Optionally, perform optimization-based 
bounds tightening. 

2 (Choice of Region) If the list of regions is empty, terminate the 
algorithm with solution x* and objective function value U. Other
wise, choose a region R (the "current region") from the list. Delete 
R from the list. Optionally, perform feasibility-based bounds tight
ening on R. 

3 (Lower Bound) Generate a convex relaxation of the original prob
lem in the selected region R and solve it to obtain an underestima
tion I of the objective function with corresponding solution x. If 
I > U ov the relaxed problem is infeasible, go back to step 2. 

4 (Upper Bound) Attempt to solve the original (generally noncon-
vex) problem in the selected region to obtain a (locally optimal) so
lution X with objective function value u. If this fails, set u :— +oo 
and X = (oo, . . . , oo). 

5 (Pruning) If f7 > t̂ , set x* = x and U := u. Delete all regions 
in the list that have lower bounds bigger than U as they cannot 
possibly contain the global minimum. 

6 (Check Region) Ifu — l<e, accept u as the global minimum for 
this region and return to step 2. Otherwise, we may not yet have 
located the region global minimum, so we proceed to the next step. 

7 (Branching) Apply a branching rule to the current region to split 
it into sub-regions. Add these to the list of regions, assigning to 
them an (initial) lower bound of /. Go back to step 2. 

Figure 1.1. The spatial Branch-and-Bound algorithm. 

size iteratively until a local minimum better than the current one is found. These 
steps are repeated until a given termination condition is met. 

VNS has been applied to a wide variety of problems both from combina
torial and continuous optimization. Its early applications to continuous prob-
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lems were based on a particular problem structure. In the continuous location-
allocation problem the neighbourhoods are defined according to the meaning 
of problem variables (assignments of facilities to customers, positioning of yet 
unassigned facilities and so on) [Brimberg and Mladenovic, 1996]. In the bi-
linearly constrained bilinear problem the neighbourhoods are defined in terms 
of the applicability of the successive linear programming approach, where the 
problem variables can be partitioned so that fixing the variables in either set 
yields a linear problem; more precisely, the neighbourhoods of size k are defined 
as the vertices of the LP polyhedra that are k pivots away from the current vertex 
[Hansen and Mladenovic, 2001]. In summary, none of the early applications 
of VNS to continuous problems solved problems in general form. 

The first VNS algorithm targeted at problems with fewer structural require
ments, namely, box-constrained NLPs, was given in [Mladenovic et al, 2003] 
(the paper focuses on a particular class of box-constrained NLPs, but the pro
posed approach is general). The very same code used in [Mladenovic et al., 
2003] (which is different from that used in this paper) has been already applied 
to another molecular conformation problem with considerable success [Drazic 
et al., 2004]. Since the problem is assumed to be box-constrained, the neigh
bourhoods arise naturally as hyperrectangles of growing size centered at the 
current local minimum x*. In the pseudocode algorithm in Fig. 1.2, the termi-

1 Set A: ^^ 1, pick random point x, perform local descent to find a 
local minimum x*. 

2 Until k > /Cmax repeat the following steps: 

(a) define a neighbourhood A /̂c(x*); 

(b) sample a random point x from Nk{x'^)\ 

(c) perform local descent from x to find a local minimum x'; 

(d) if x' is better than x* set x* <^ x^ and /c —̂ 1; go to step 2; 

(e) SQik^ k + 1 

Figure 1.2. The VNS algorithm. 

nation condition is taken to be A; > fcmax- This is the most common behaviour, 
but not the only one (the termination condition can be based on CPU time or 
other algorithmic parameters). The definition of the neighourhoods may vary. 
If Nk{x) is taken to be a hyperrectangle Hj^{x) of "size" k centered at x, sam
pling becomes easy; there is a danger, though, that sampled points will actually 
be inside a smaller hyperrectangular neighbourhood. A way to deal with this 
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problem is to take Nk{x) = Hk{x)\Hk-i{x), although this makes it harder to 
sample a point inside the neighbourhood. For each k < k^ax we define Hkix"") 
to be hyper-rectangles similar to x^ < x < x^, all centered at x*, whose sides 
have been scaled by TT-. More formally, let Hkix"") be the hyper-rectangle 

"'max 

y^ < X < y^ where, for all i <n: 

yY = x* + ^{xY-xt). 

This construction forms a set of hyper-rectangular "shells" centered at x*. In 
our computational experiments, we used Nk{x) = Hk{x) for simplicity. 

2.3 Multi-Level Single Linkage 

In this section we shall describe the main features of a Multi-Level Single 
Linkage (MLSL) stochastic algorithm for global optimization. The algorithm 
is called SobolOpt [Kucherenko and Sytsko, 2005]. Its main strength is that it 
employs certain Low-Discrepancy Sequences (LDSs) of sampling points called 
SoboV sequences whose distributions in Euclidean space have very desirable 
uniformity properties. Uniform random distributions where each point is gen
erated in a time interval (as is the case in practice when generating a sampling 
on a computer) are guaranteed to "fill the space" in infinite time with probability 
1. In fact, these conditions are very far from the normal operating conditions. 
LDSs, and in particular Sobol' sequences, are guaranteed to fill the space as 
uniformly as possible even in finite time. In other words, for any integer N > 0, 
the first Â  terms of a Sobol' sequence does a very good job of filling the space 
evenly. One further very desirable property of Sobol' sequences is that any 
projection on any coordinate hyperplane of the Euclidean space R^ containing 
N n-dimensional points from a Sobol' sequence will still contain N projected 
(n — 1)-dimensional Sobol' points. This clearly does not hold with the uni
form grid distribution where each point is located at a coordinate lattice point 
(in this case the number of projected points on any coordinate hyperplanes is 

n— 1 

0{N~^), as shown in Fig. L3). The comparison between grid and Sobol' 
points in R^ is shown in Fig. 1.4. 

The regularity and uniformity properties of Sobol' sequences are exploited 
in the following MLSL algorithm. Let Q be the set of pairs of sampled points 
q together with their evaluation f{q) (where / is the objective function). Let S 
be the list of all local minima found up to now. 

The algorithm terminates with a list S of all the local minima found. Finding 
the global minimum is then a trivial matter of identifying the minimum with 
lowest objective function value f(y). Two of the most common termination 
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Figure 1.3. Projecting a grid distribution in R^ on the coordinate axes reduces the number of 
projected points. In this picture, Â  = 12 but the projected points are just 4. 
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Figure 1.4. Comparison between projected distribution of grid points and Sobol' points in '. 

conditions are (a) maximum number of sampled points and (b) maximum time 
limit exceeded. In our tests we accepted a default termination condition based 
on the number of local searches not exceeding 320. 

Sobol' sequences are generated as follows. Let P{x) be a primitive poly
nomial of degree q in GF{2)[x\, say P{x) = J2l=o^q-i^^ where ao = 
aq = 1. Now for alH > g define Qi recursively as the result of the bit
wise XOR operation on the following set of numbers: {2^akQi-k \ 1 £ 
k < q — 1} yj {2^Qi^q^ Qi-q} (this is a g-term recurrence relation; the first 
q terms of the sequence can be chosen as arbitrary odd integers respectively 
less than 2 , . . . , 2^). Let Vi = ^ for all i. For each integer j , let Â  = 
{Vi I thei-thbitof j is nonzero}. We define Xj, the j-th element of the SoboF 
sequence, as the result of the bitwise XOR operation on Aj. Multidimensional 
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1 (Initialization) Let Q = 0, 5 = 0, fc == 1 and set £ > 0. 

2 (Termination) If a pre-determined termination condition is veri
fied, stop. 

3 (Sampling) Sample a point qk from a Sobol' sequence; add 
{QkJ{qk))toQ. 

4 (Clustering distance) Compute a distance rk (which is a function 
of k and n; there are various ways to compute this distance, so this 
is considered as an "implementation detail" — one possibility is 
Tk = /3k~n^ where /? is a known parameter). 

5 (Local phase) If there is no previously sampled point ^j G Q(with 
j < k) such that \\qk - qj\\ < rk and f{qj) < f{qk) - s, solve 
the problem locally with q^ as a starting point to find a solution y 
with value f{y). If y ^ S, add ytoS. Set fc ̂— /c + 1 and repeat 
from step 2. 

Figure 1.5. The SobolOpt algorithm. 

Sobol' sequences are obtained by building each vector out of a different primi
tive polynomial. For a full discussion on the implementation details, see [Press 
etal , 1997], p. 31L 

3. Computational experiments 
In this section we compare the results of the three global optimization algo

rithms mentioned in Section 2 on two sets of instances. 

3.1 Instance generation methods 
The first set of instances (More instances) was generated using the first model 

proposed in [More and Wu, 1997]. The model is based on a molecule with s^ 
atoms (5 = 1,2,3,...) located in the three-dimensional lattice defined by 

{(n,^2,^3) eR^ :0<ik<s-l, k = 1,2,3}. 

An order is defined for the atoms of the lattice by letting atom i be the atom at 
position (21,22,^3), where 

i = I + ii + si2 + s'^is, 
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and the set S is defined by 

S={{iJ}:\i-j\<s^}. 

For example, for 5 = 2, the atoms located at (0,0,0), (1,0,0), and (0,1,0), 
are the first (i = 1), second (i = 2), and third (i = 3) atoms. 

The second set of instances (Lavor instances) was generated according to 
another model. This model considers a molecule as a chain of n atoms with 
Cartesian coordinates given by x i , . . . , x^ G R^. For every pair of consecutive 
atoms i,j, let rij be the bond length which is the Euclidean distance between 
them. For every three consecutive atoms i, j , /c, let 9ik be the bond angle corre
sponding to the relative position of the third bead with respect to the line con
taining the previous two. Likewise, for every four consecutive atoms i, j , /c, /, 
let ujii be the angle, called the torsion angle, between the normals through the 
planes determined by the atoms i, j , k and j , k, l. The sets Mi, M2 are the sets 
of pairs of atoms separated by one and two covalent bonds, respectively. The 
bond lengths and bond angles are set to rij = 1.526A (for all (i, j) G Mi) and 
6ij = 109.5° (for all (i,j) G M2), respectively. Torsion angles are obtained by 
selecting first one value u from the set {60°, 180°, 300°} and another one from 
the set {cj + z : i = — 5 ° , . . . , 5°}. Both of these selections are random. To 
generate distances, it is necessary to calculate Cartesian coordinates for each 
atom of the chain. This can be done, for example, using the procedure de
scribed in [Phillips et al., 1996]. For each molecule, described by the selection 
of the torsion angles, we define the set S using a cut-off value of 4A. That is, 
(i, j ) G S if and only if dij < 4. The pairs of atoms (i, j ) selected, associated 
to the distances dij^ constitute an instance for the molecular distance geometry 
problem. For a complete description of this set of instances, see [Lavor]. 

3.2 Numerical results 
All computations were performed on an Intel Xeon 2.8GHz with 2GB RAM 

running Linux. The local NLP optimization code we used to perform the local 
descents is SNOPT v.5 [Gill, 1999], The global optimization algorithms were 
implemented as global solvers in the ooOVS optimization framework [Liberti 
et al., 2001, Liberti]. As such, they are not specially fine-tuned to solve the 
MDGP — this, together with the choice not to employ smoothing methods, 
explains the relatively small size of the largest molecules we can tackle. 

The results are reported in Tables 1.1 (for the More instances) and 1.2 (for 
the new Lavor instances). The global optimum (with value 0) was found in 
all of the tested instances but the Lavor instance with 40 atoms. Three general 
trends emerge: 

1 the Lavor instances, on average, are harder to solve than the More in
stances. In particular, one of the randomly generated Lavor instance (the 
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Atoms 
8 

27 
64 

Variables 
24 
81 
192 

sBB 
OF Value Time 

0 0.22 
0 30.39 
0 2237.73 

VNS 
OF Value Time 

0 1.21 
0 34.01 
0 398.875 

SobolOpt 1 
OF Value Time 

0 13.56 
0 300.285 
0 2765.13 

Table 1.1. Computational results for the More instances. Timings are in seconds of user CPU 
time. 

Atoms 
5 
10 
20 
30 
40 
50 

Variables 
15 
30 
60 
90 
120 
150 

sBB 
OF Value Time 

0 0.02 
0 1.12 
0 2.25 
0 488.87 
-
-

VNS 
OF Value 

0 
0 
0 
0 

0.09 
0 

Time 
0.48 
7.06 

49.99 
352.06 
1258.13 
673.48 

SobolOpt 1 
OF Value Time 

0 0.57 
0 69.71 
0 411.152 
0 1634.09 

0.547 2376.01 
0 3002.88 

Table 1.2. Computational results for the Lavor instances. Missing values are due to excessive 
computational requirements. Timings are in seconds of user CPU time. 

one with 40 atoms), was so hard to solve that we could not reach the global 
optimum with any of the proposed global optimization algorithms; 

2 the deterministic sBB algorithm is the fastest method for solving small 
to medium-sized instances. This result is rather surprising, as sBB is 
usually slower than heuristic methods; 

3 both VNS and SobolOpt usually manage to find the correct solution, 
but VNS is faster. However, as the size of the molecule grows, the 
performance difference decreases. 

Here are some notes and remarks about these computational experiments. 

• The results obtained by the SobolOpt solver might be improved by careful 
tuning of parameters. Our tests were run with all the default parameter 
values. On the other hand, we did spend some time tuning the parameters 
of the VNS solver. It appears that for very hard instances (like the Lavor 
with 40 atoms), we can get nearer the global optimum by setting a very 
high kmax parameter (possibly in the region of 10*̂ ) and a number of trials 
in each neighbourhood (i.e. maximum number of local searches to carry 
out in each neighbourhood) to something between 5 and 15. This slows 
the search down considerably, but it does produce better results. 

• We also conducted a number of tests using a different VNS neighbour
hood structure. In practice, we focused the search on the comers of each 
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hyper-rectangle Hkix""): this made it possible to sample starting points 
from disjoint neighbourhoods, but it affected the convergence properties 
of the VNS (certain regions were not sampled extensively). Surprisingly, 
VNS managed to locate the global optimum for all instances but the La-
vor with 40 atoms, where it succeeded in locating a point with extremely 
low (albeit clearly non-zero) objective function value. This constitutes 
numerical evidence that the best minima are to be found near the extreme 
points of the hyper-rectangle. 

• The convergence speed of the sBB solver can be improved by relaxing 
the e tolerance (set by default to 1 x 10~^). 

• One of the reasons why sBB is so effective on this problem is that it has a 
known globally optimal value (0), and that the automatic convexification 
of sBB provides a tight lower bound (namely, 0 itself). Since the lower 
bound is so tight, many regions are discarded very soon in the Branch-
and-Bound tree. 

4. Conclusion 

In this paper we described computational experiments performed in globally 
solving instances of the molecular distance geometry problem. We discussed 
three global optimization methods: a deterministic one (spatial Branch-and-
Bound) and two heuristic ones (Variable Neighbourhood Search and Multi 
Level Single Linkage with deterministic low-discrepancy sampling based on 
Sobol' sequences). We solved instances from two different classes: one taken 
from the literature and the other new. Rather surprisingly, sBB is clearly the 
best choice for small-scale problems, both because it provides a guarantee of 
6:-global optimality and because it is faster than the other methods. SobolOpt 
and VNS perform rather well for medium to large-scale problems, with VNS 
being faster than SobolOpt. 
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Summary. The progress made in past years in large-scale optimization algorithms 
led to a general interest in the possibility of applying mathematical optimization 
to real Water Resources Systems (WRS). As it is well known, this kind of problem 
typically generates computationally expensive models involving a large number of 
variables and constraints. Planning aspects can be represented by linear optimization 
models by introducing simplifications and approximations, even if linear assumptions 
are not strictly adherent to real WRS. In order to reach a more adequate level of 
adherence to the physical system more detailed models are resolved by taking into 
account non-linearity in objective function and constraints. An expansion technique 
interacting between primal and dual mathematical optimization models is proposed. 
This kind of approach is very useful to formulate trade-off between the dimension of 
water works, the reliability of the system and the prediction of short falls severity in 
demands. Moreover, the necessity to introduce system-vulnerability leads to solve a 
quadratic programming model taking into account additional non-linear costs due to 
the requirement of well operating during periods of drought. An adequate approach 
for the planning and maintenance optimization of pipes networks for water supply 
distribution, would consider the non-linear relations between head-loss in each pipe, 
its diameter, length and hydraulic property. 

Standard non-linear optimization procedures frequently identify only local op
tima for this kind of problem. In recent years, a number of papers have demonstrated 
that optimization techniques, based on met a-heuristic algorithms, are particularly 
promising for solving problems related to water distribution systems. This new 
methodology may be considered as a useful alternative to traditional approaches, 
based on trial-and-error or mathematical programming methods. Some applications, 
results and perspectives are presented for the different approaches. 

K e y words: non-linear optimization, water resource systems 

1 Introduction 

As well known, to represent water resource systems adequately, we need to 
extend the analysis to a sufficiently wide time horizon in order to take into ac-
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count the variability of its hydrological inflows and water demands. Moreover 
a large number of decision variables and constraints have to be considered for 
planning and management purposes. One of the main goals in this field is to 
reach a configuration that should guarantee an adequate level of reliability of 
water supply and provide management criteria to be adopted by the Water 
Authorities. 

As a consequence, the Water Resource Systems (WRS) management prob
lem generates computationally expensive mathematical models, involving a 
large number of variables and equations necessary to describe the physical 
components of the system, relative functional ties and operating modalities. In 
this connection a decisive contribution to the definition of optimum manage
ment criteria and to the scaling of the works that should guarantee adequate 
water supply reliability is given by mathematical programming techniques 
particularly referred to large scale problems [29]. 

In previous papers [30] it was stated that these techniques, did not allow 
a detailed modeling of the system, and that they had to be accompanied by a 
simulation testing process starting from the solution obtained by optimization 
phase. As will be shown in what follows, it is possible to set up an interac
tive process between the optimization phase and the simulation testing phase, 
that should limit recourse to this last burdensome computational procedure. 
In order to reduce the gap between the optimization solution and the sim
ulation solution we need to resolve the WRS optimization model, adopting 
very efficient algorithms to reach a sufficiently good approximation of the so
lution of the problem. In this way the simulation phase can be reduced to 
few iterations. Moreover, in order to reduce the gap between the real physical 
system and its mathematical formalization we need to reach an adequate level 
of adherence to the physical system with a sufficiently detailed model taking 
into account non-linearity in objective function and constraints. 

In this paper three kind of problems are studied, modeled and solved by 
different algorithm approaches. The first one is concerned with WRS plan
ning problem in which shortage control is focused and a non-linear objective 
function is adopted. An expansion procedure interacting between primal and 
dual mathematical optimization models is proposed. This kind of approach 
is very useful to formulate trade-off between the dimension of water works, 
the reliability of the system and the prediction of severity in demand short 
falls. The second is concerned with WRS management problem in which the 
vulnerability of the system is considered dealing with water resource short
age risk in planning studies. The third model is concerned with the plan and 
maintenance optimization problem of pipe-networks for water supply in which 
new plan, rehabilitation and maintenance are taken into account. 
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2 Water Resource Planning and Management 

The first two models are related to system planning and management. These 
exhibit some common features from a mathematical structure point of view, 
even if each of them describes different aspects that arise when analyzing 
extended water-systems. In a general frame we can refer to a model repre
senting a WRS problem taking into account different variables that, as usual, 
are classified into planning variables (e.g. the storage volume of reservoirs, the 
transfer-work capacity, the extension of irrigation sites, etc.) as well as oper
ating (or flow) variables that represent the water transfer to meet the system 
requirements. 

In a general model, flows are linked to planning variables by relations to 
guarantee the fulfillment of request at demand centers, as well as to bound 
allowed flows by work dimensions. Flows are submitted to mass balance con
straints and, if required, to some problem oriented constraints. In the following 
we describe the main features of this general model and analyze specific mod
els arising when real problems are examined. The general model can then be 
expressed as {Model 1): 

min / ( y + cx) (la) 

F ( x , y ) < 0 (lb) 

x G X (Ic) 

yeY (Id) 

where x represents the set of operating variables and y the set of planning 
variables. An important general feature is that it is possible to establish a 
correspondence between the model formal structure and the classification of 
variables and constraints. Referring, at first, to a single-period situation, we 
can consider a static point of view. In Model 1 we identify an operative as
pect relating to the network operative elements in constraints (Ic) and in the 
objective function concerning x variables. In the same way we can identify 
planning aspects in constraints (Id), in the Unking constraints (lb) and in the 
objective function concerning y variables. 

In WRS analysis we also need to examine the evolution of flow-values in 
time, therefore, from a dynamic point of view we can give a complementary 
classification of the components of the general model. The planning variables 
y have a time independent character as we consider a fixed (but generally 
unknown) situation in work dimensions, while the operating variables x have 
a time dependant character, as they can be different in the different periods 
of time horizon. It has proved particularly useful to adopt a graph structure 
as a topological support to the model that allows the use of such highly 
efficient data structures to reach a significant reduction in computer storage 
and computational time during data input and processing [1] [2]. 

As pointed out in some previous studies [29] [20], the dynamic evolution 
of a water resource system can be represented by a multi-period network. 
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in which the physical components of the system and the related spatial and 
dynamic interconnections are adequately represented. Modularity also allows 
the automatic construction of the multi-period network and of data generators 
that characterize the initialization phase of the resolutive algorithms. The 
generating module is the basic-graph of the river basin scheme with dummy 
nodes and arcs. Therefore we can obtain further information from the analysis 
and to prevent the risk of infeasibility. 

A multi-period network R=(N,A) is then generated by reproducing the 
module as many times as time-periods are [29]. N represents the set of nodes 
and A represents the set of arcs. In this kind of model a close correspondence 
between operating variables and flows of the multi-period network is observed. 
Operating variables are immediately confirmed in the multiperiod graph and 
correspond biunivocally to the flows on the arcs. Among the nodes of the 
network representing the allocation of the planning variable for each single 
period, the nodes referring to the reservoirs are typically connected together 
by inter period arcs. The flow on these transfer arcs represents the volume 
input at the end of each period. This feature allows to identify a network 
kernel related to operating variables and to consider non-network constraints 
as "complicating constraints". This is presented in more detail later in this 
paper. Several WRS management problems can be represented by pure net
work models for which very efficient algorithms have been tested [2]. Some 
planning aspects, such as size and requirements of the works in WRS, are 
usually represented by linear optimization models introducing simplifications 
and approximations, even if linear assumptions are not strictly adherent to 
real WRS. 

2.1 W R S Planning with Shortage Control 

The formal representation of the physical problem by an optimization model, 
must take into consideration the different operating and project aspects that 
are present in the problem. Having located the time-horizon of reference of 
the studied basin, we determine the number of subperiods by a time-step cor
responding to the hydrological and hydraulic characteristics of the physical 
model. The formulation of the model is characterized by the usual operative 
constraints and by the determination of the minimum scaling of supplemen
tary works that allows reduction in the system shortages as much as possible. 
The shortage for each single period corresponds to the flows on the arcs rep
resenting the recourse to external and expensive resources by demand centers. 
The objective function is made up of a function / (y ) fitted to represent the 
set of construction, maintenance and operating costs in a way that is satisfac
tory for this kind of problem. Usually / (y) is assumed as a polynomial convex 
function [30]. A significant part of the constraints is represented by the flow 
continuity equations at the nodes, that are not seats of resource accumulation 
and lower and upper bounds on the flows. 
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The constraints that describe the links between planning constraints and 
some operative variables are also present. These constraints are generally non
linear and, as in this model, they are referred to the link between the flows 
that represent the volume input in the reservoirs at the end of each period 
and the variables that represent the fiUing capacity of the same reservoirs. The 
planning variables are submitted to constraints of lower and upper bounds. 
Moreover the constraint that represents the control on the total shortage is 
a characterizing element. It requires that the sum of the flows on shortage 
arcs should not exceed the prefixed value that the manager of the system 
can accept. The optimization model minimizing construction, maintenance, 
operating costs of plants can be expressed as follows {Model 2): 

i n i n / ( y ) (2a) 

Xk < F{y) (2b) 

s < y < t (2c) 

Ex - b (2d) 

r < X < u (2e) 

1 • Xrf < xo (2f) 

where (2b) and (2c) represent planning constraints. More precisely, constraints 
(2b) require that flow Xk of a subset of arcs KCA are linked to planning 
variables; we assume that flows on arcs belonging to set K must adopt the 
appropriate planning variable yj^ as an upper bound; (2c) represents bounds on 
planning variables y; (2d) and (2e) are the pure network operative constraints 
on multi-period network R={N,A); (2f) represents the shortage control on set 
of short age- arcs DC A. 

Problem formulation shows that a configuration of flows feasible for net
work constraints and for the shortage constraint, corresponds to each preflxed 
conflguration y* of y. The determination of such a conflguration of flows cor
responds to the solution of the pure network flows problem {Model 3)\ 

g {y*) =z min 1 • Xd (3a) 

Ex = b (3b) 

r < X < u* (3c) 

where the vector u* depends on the current value of the vector y * correspond
ing to the arcs of K. More precisely, upper bounds on flow-variables xi^j for 
an arc (i, j) C iT, connecting nodes i, j e N, are: 

< i == ^J (hj) ^ K 

To solve the Model 3 we can determine the direction of expansion im
proving the objective function, by converting the variation analysis of the 
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minimum shortage in terms of variation of the planning variables. The varia
tion of the optimum g{y*) = min 1 -Xd with respect to y* can be studied by 
the dual of network flow problem {Model 3): 

primal dual 
^(y*)=min 1 • Xd max wb — TTU-f hr ,-x 

E x - b v^E-7r + h = c ^ ^ 
r < x < u * 7 r , h > 0 Vv̂  

where the dual variables TT, h correspond to the constraints r < x < u* 
in which ys appears as an upper bound and represent the variation of the 
objective function with respect to right hand side y*. The dual variables w 
correspond to continuity constraints. The R.H.S. of the dual is the vector 
c = (1,0) that is the cost vector of primal. We can state the Kharush-Khun-
Tucker conditions (KKT) [5]: 

TTiJ = Wi- Wj - Cij {Uij - Xij)7Tij = 0 (6) 

where non null TT Ĵ'S are related to the flow-variables that have not reached 
their upper bound Uij . All the arcs (ij) G Ks, have y* as upper bound and 
the only non zero and equal to one components of the vector c correspond 
to shortage flows. The term containing the upper bounds of these arcs in the 
current objective function of the problem is given by: 

9u{y) = - Es=i,5 T.{ij)eKs (^i - ^j - ^^3)y^ 
(7) 

as Cij = 0 for (i,j) G Ks^ the direction q* of shortage reduction on varying 
the configuration y* of y will therefore have components: 

^̂  {iJ)eKs {hj)eKs 

The direction of shortage reduction can therefore be determined through 
the solution of a network problem. A few sample basins in which the most 
significative elements were included by the manager have been considered, 
and subsequently a drinkable water real supply scheme [31]. During the Icist 
decade two critical shortages occurred. Because of this event several demand 
centers were cut-off from all water supplies for some consecutive days and the 
scarce water had to be rationed. 

In all the cases examined, our objective was to test the level of shortage in 
critical periods and we obtained the best scaling of the supplementary works 
that are necessary to guarantee adequate reliability of the system. Moreover 
we stated the rules of management of the system itself. Thanks to a minimum 
cost fiow algorithm applied to the multi-period network, it has been possible 
to assess the minimum shortage values that an ideal manager would have 
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obtained, if he had had a priori knowledge of the sequence of hydrological 
inflows and demands. 

The obtained results point out the computational competitiveness of this 
technique with respect to the classical mathematical programming technique 
and the possibility of changing scenario rapidly thanks to the structure of the 
graph supporting the model [30]. 

2.2 W R S Management with Vulnerability Criteria 

The problem of the optimal dimension of the water resource system and the 
related optimal configuration should take into account additional costs given 
by the criteria to operate satisfactorily during periods of drought. Particularly 
the vulnerability of the system should be considered dealing with water re
source shortage risk in planning studies. The vulnerability express the severity 
of drought in terms of its consequences. The consequences of drought are gen
erally expressed by a loss (cost) function and measure to estimate the severity 
of a drought is given considering cost functions weighting more the shortage 
flows as the severity of the drought event increases. Vulnerability trend can be 
examined simulating a simple system that considers a generalized expression 
using the standardized shortage to define the expected losses L [17]: 

where R is the eff'ective release and T is the target. A simulation procedure 
allowed to evaluate the vulnerability of the system for different values of ex
ponent p. Vulnerabihty achieves its maximum at P = 0 and decrease with 
increasing /? finding a minimum for P= 2. We assume P= 2 to minimize the 
system vulnerability in planning situations and introduce a multiplicative pa
rameter k to represent the time extension of losses. Replacing releases with 
deficit values x^, since cT is the expected benefit from the irrigation site, 
the cost term in the objectify function (OF) related to draught losses can be 
written: 

X d 2 

'^HT^ =e'(^T (10) 
x'^max / 

The OF of the optimization problem can then be written: 

minz=^ / fc j / f c + ^ C i : c , + ^c ' (x ,^ )2 (11) 
k i j 

where the first two terms represent, as usual, costs on planning and operating 
variables (see the general model: Model 1). In this way the problem can be 
expressed as a quadratic programming model {Model 4) [5]: 
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min z = f̂  + c^x -h - x ^ H x (12a) 

^k < F(y) (12b) 

s < y < t (12c) 

Ex = b (12d) 

r < X < u (12e) 

Some of the state-of the art LP codes allow to resolve quadratic problems 
by the resolution of the associated linear complementary problem. We use 
the public domain code LOQO based on the resolution of the reduced KKT 
system by the interior point method and it is developed to solve linear and 
quadratic programming problems. Referring to real water resource system, 
the LOQO code has been used to solve the model when a quadratic function 
cost has been used for the deficit flows in the multi-period problem. In this 
way it has been possible to solve a set of problems containing up to 29,000 
variables and 14,400 constraints. In Figure 1 it is evident the computational 
time explosion in solving QP model compared to LP ones and the increase 
of CPU time when QP is used to solve problems with five planning variables 
and from 120 to 600 time period extension [31]. 

3 The Pipe Network Optimization Problem 

In this paragraph we refer to the classical pipe distribution network plan
ning problem with the following main features: network demands are known 
and configured as node-outflows, continuity of flow must be maintained at all 
nodes in the pipe-network, the head loss in each pipe-arc is a known function 
of the flow in the pipe, its diameter, length and hydraulic properties of the 
pipe, at each node minimum and maximum pressure head limitation must be 
satisfied and diameter constraint may be applied to pipes. In the network, 
existing pipes (with known diameters) as well as new pipes are taken into ac
count. For each pipe-arc different possible states are examined: the possibility 
to leave exactly the same pipe-arc (leave), the possibility to clean the existing 
pipe (clean), the possibility to add a new pipe-arc to the existing one (dupli
cate) and the possibility to put a new pipe-arc (new). A notable number of 
recent works [32], [7], [28], [33], [22], [6] described applications of metaheuris-
tic optimization procedures when solving problems concerning the design of 
new pipes and duplication and maintenance rehabilitation in water distri
bution networks. For these problems, metaheuristic algorithms afford several 
benefits compared with classical mathematical programming techniques, as 
they can be implemented without heavy a-priori model requirements, such as 
convexity or differentiability in objective function and constraints. Thanks to 
their ability to manage discrete variables, metaheuristic optimization proce
dures can deal directly with the alternatives available (commercial diameters, 
cleaning and duplication alternatives, etc.). Each alternative consists of a set 
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Fig. 1. CPU time comparison solving LP and QP model 

of discrete, organized strings that are usually coded using predefined rules. 
Recently, metaheuristic approaches have also been used with the aim of op
timizing the number of valves, their location and calibration. In this paper 
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we refer to a simplified problem of pipe network design for a pressure system 
(without pumping-stations) with the following main features: 

- the network demands are known and configured as node-outflows; 
- diff'erent demand patterns are considered; 
- the continuity of flow must be maintained at all nodes in the pipe-network; 
- the head loss in each pipe-arc is a known function of the flow in the pipe, 

its diameter, length, and hydraulic properties; 
- at each node minimum and maximum pressure head limitations must be 

satisfied; 
- at each arc minimum and maximum velocity limitations can be imposed; 
- diameter constraints may be applied to the pipes; 
- diff'erent possible pipe-arc states and design options can be considered. 

In the network G — {N, R) the existing pipes (that have known diameters) 
as well as new pipes can be taken into account. For each pipe-arc, diff'erent 
options are examined, i.e. leaving exactly the same pipe-arc (leave), cleaning 
the existing pipe (clean), adding a new pipe-arc to the existing one (dupli
cate), and installing a new pipe-arc (new). The general constraint equations 
considered for a given demand pattern are as follows: Continuity at each node: 

^ Q,- + ^, = 0 (13) 
jeRj 

for each i e N^ where Qj represents the flow in each of the set of pipes Ri G 
R connected to node i , and q^ is the demand at node i Head-loss equation: 

Hi. - Hi, = — ^ (14) 

for j = (̂ 1,̂ 2 ^ R) where Hi is the node-head, Lj the length of pipe j from 
node ii to node ^2, Cj the roughness coefficient and Dj the pipe diameter. 
Minimum pressure head constraint: 

Hi>H* (15) 

where iJ* is the node hydraulic-head that must be guaranteed. Bounds on 
water velocity in the pipe: 

Vj^min < Vj < Vj^rnax j ^ R (16) 

Bounds on pipe diameters: 

•^j,min — -^j S J-^j,max ^ G i t (1 ' j 

where the minimum diameter refers to the existing diameter in the event of 
dupHcation. Considering 5 different demand patterns (s = 1, S), the purpose 
is to optimize a non-linear objective function, i.e. the total cost needed to 
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construct new pipes, or clean or duplicate the existing ones. For the last two 
cases, we used the "equivalent diameter" approach [32]. 

Moreover, implementing the optimization procedures, equations (15) are 
relaxed on the OF as penalty components depending on whether the network 
satisfies the minimum pressure constraints at the nodes, and equations (16) 
can be treated as flow bounds for defined diameters. After generating an initial 
network configuration, the procedure performs a hydraulic analysis of the pipe 
network, resolving the non-linear system given by equations (13), (14), and 
(16). Node pressure diff'erences from target values are then used in the OF to 
compute penalty costs. The OF assumes the general form: 

min 22 ^^J^3 + zZ ^2j^j + 2Z ^3j^j + 
jeRi jeR2 jeR3 

+ ^ C^jLj + ^ ( ^ C^H* - Hi)A (18) 
jeR4 s=i,s \ieN* I 

where the first term refers to the maintenance of old pipes, the second to 
cleaned pipes, the third to the duplicate set, the fourth to new pipes and the 
fifth to hydraulic head diff'erences. 

3.1 The Metaheuristic Approach 

Thanks to their ability to manage discrete variables, metaheuristic approach 
can deal directly with the alternatives available (commercial diameters, clean
ing, duplication, etc.). Each alternative consists of a set of discrete, orga
nized strings that are usually coded using predefined rules. Starting from 
initial pipe-network configurations, the proposed metaheuristic procedures 
only use OF cost values or other fitness information, (i.e.: the hydrauHc-
head constraint violation to be penalized) to allow the algorithm to reach 
a feasible solution as a final optimum. Over the past years metaheuristic ap
proaches, mainly based on the Genetic Algorithm (GA) and Tabu Search 
(TS) technique methodology has been developed for pipe-network optimiza
tion [27] [8] [32] [26] [7] [21] [10] [23] 

In this paper, comparisons between three different metaheuristic optimiza
tion approaches based on GA, reactive TS, and a combined Scatter Search 
(SS) - tabu search technique, have been considered. These techniques have 
been implemented and tested on a well-known test-problem given by [12], 
while introducing some extensions. 

As extensively referred in [21] [22] the utilization of metaheuristic opti
mization procedures to the problem has been summarized in the following 
steps: 

1. Initialization procedure: the sets of possible network element configura
tions (i.e. diameters, pipe-states, etc.) are proposed to the algorithm; an 
initial set of values is thus adopted. 
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2. Hydraulic verification procedure: continuity, head-loss, and velocity con
straints equations are solved retrieving pressure-heads at the nodes. 

3. OF evaluation: for the chosen system configuration, the economic OF 
evaluations are added to the penalty evaluation caused by target node 
pressure violation. 

4. Design variables values replacement: using the fitness information, and 
thanks also to suitable strategic decisions, a new set is generated with the 
metaheuristic optimizer. 

5. Optimization cycle closure: the cycle is closed and the procedure is re
turned to step 2. 

The stop criteria can be related to the number of cycles and to improve
ments in a fixed number of iterations. Even though the tests indicate that opti
mal or near-optimal solutions are almost always obtained using well-calibrated 
procedure parameters related to the design variables replacement, metaheuris-
tics do not guarantee that the global optimum will be reached. Moreover, the 
computational time needed to reach near-optimal configurations should be 
tested to check the ability of these approaches to fit real problems. In the 
following some general remarks on GA, TS, and SS will be given, as well as 
information on the applied codes. GA algorithms are search algorithms based 
on the mechanism of natural selection and natural genetics. The primary 
monograph on the topic is by Holland (1975), and extended applications of 
this approach have been made by Goldberg (1989). As stated in the opening 
paragraph, many applications of this technique are available in the recent lit
erature on GA application on these problems. This study uses the PGA-Pack 
Library optimization module [3]. One of the main advantages of the genetic 
algorithm is that situations that cannot be adequately described with only one 
numeric parameter can be represented synthetically. This is possible thanks 
to the fact that the symbolic code system used by the GA is related to each 
variable configuration. The tests carried out on the GA algorithm have shown 
that a correct calibration of the model parameters must be reached. Using the 
GA, the following aspects should be kept under control: 

- initial population size; 
- definition procedure and string initialization; 
- population replacement parameters. 

The OF evaluation number needed to reach optimality remains the most 
limiting problem when applying GAs to real water systems. This is mainly 
due to the large number of system configurations in each GA population. The 
tabu search approach main concepts are collected in [13], and [14]. As a mat
ter of fact, TS is usually defined as a meta-strategy in [14] [18] that guides 
several subordinated heuristics to produce solutions beyond those normally 
generated by the search for a local optimum. The employed methodologies 
were essentially two: an adaptive memory and a "sensitive" exploration, both 
of which typify the method. The system practically exploits its memories in 
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an attempt to avoid being trapped in attraction basins, or better, in order 
to direct the search towards domain areas believed to be more promising. 
Limitations on search space generally operate by direct exclusion of search 
alternatives that are classified as prohibited, hence tabu. We implemented a 
so-called reactive kind of TS scheme: RTS [4]. An extended illustration of the 
RTS variant to WDND problems has been reported in [10]. In this variant, 
the RTS memory structure of the past solutions is dynamical, and its optimal 
value is estimated automatically from the algorithm by means of a retroac
tive assessment of the search history. The reaction mechanisms are related to 
the transition frequency of the current solution. The RTS algorithm has been 
implemented using a general purpose tabu search tool called Universal Tabu 
Search (UTS) [11]. Scatter search metaheuristics, as well as GAs, is designed 
to operate on a set of solutions maintained from iteration to iteration, while 
TS typically maintains only one solution by applying specific mechanisms to 
update solutions from one iteration to the next. A description of the SS can 
be found in [14]. In the present paper, we have developed an interface for 
the problems using the OptQuest general-purpose optimizer as a resolution 
module. OptQuest was developed by [15] using scatter search methodology. 
This optimizer uses the SS framework associated with tabu search strategies 
to obtain enhanced solutions for problems defined using complex settings. The 
optimization process is organized in such a way as to utilize auxiliary solu
tions in evaluating the combination obtained from the previous solutions, and 
in generating new solution vectors actively. A significant diff'erence between 
classical GA implementation and SS is that, while the former heavily relies 
on randomization and somewhat limiting operations to create new solutions, 
the latter employs strategic choices and memory along with a combination of 
solutions to generate new solutions. Moreover OptQuest exploits a neural net
work accelerator trained on the historical data collected during search. Even 
though OptQuest can be used to take into account the linear and non-linear 
constraints of the model, in the interface we have implemented the OptQuest 
module as the GA and TS above, only in design variables replacement using 
fitness information. 

3.2 Test Case 

The Gessler Problem [12] can be used to compare solutions obtained using 
difi'erent approaches. The Gessler problem considers eight diff'erent pipe sizes 
(commercial diameters) available for new pipes, while existing pipes may be 
left as they are, cleaned, or duplicated with new pipes. The search space is 
extended to include, among the options for the existing arcs, replacing the 
pipeline completely, and doubling the alternatives for the available pipes. The 
total search space is 3.436 10^° possible configurations (32 alternatives for 
existing arcs and 16 for new arcs). Using commercial NL optimization software 
only near-optimal solutions were been obtained and there is a problem to 
approximate the obtained pipe-size up or down to the nearest commercial 
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available diameter. Results obtained applying metaheuristic approaches to the 
benchmark case, and comparing them. In Table 1, we report statistics over 
100 run results obtained using the previously described resolution modules 
implementing the GA, TS, and SS approaches. Each run starts from randomly 
generated initial configurations. The presented results report the following 
indications: 

- the average of obtained minimum cost functions; 
- the relative occurrence frequency of the optimum; 
- the average number of iterations needed to assess the corresponding opti

mum; 
- the number of OF evaluations needed to reach the optimum. 

As can be observed in Table 1, TS and SS find absolute optima in 100% 
of the cases, with a relatively low number of function calculations. The per
formance of the applied techniques is remarkably better than any other pre
viously described method. For example, the cost of the optimum solution 
supplied by Gessler (1985) with selective enumeration is 4.8% higher than the 
absolute optimum. 

Table 1. Average results (100 runs) obtained from modified Gessler Problem 

Optim. Average Success Average Average 
technique cost ($) ($) iter. of eval. 

GA 1,818,756 80% 205 20,790 
TS 1,750,300 100% 172 2632 
SS 1,750,300 100% 124 1110 

Though according to correct guidelines, the search space may drop to the 
2632 checks by TS (negligible, considering the total search space) and even 
further using SS, on average 1110 evaluations. Moreover, a comparison of the 
results shows that the success percentage rises from 80% to 100% using TS and 
SS instead of GA. Besides this clear diff'erence in success percentage, it should 
be observed that the function calculations are remarkably more numerous in 
GA. 

4 Conclusions 

With respect to WRS models, in Sect. 2 and 3, the illustrated resolution tech
niques exploiting the pure network kernel, allow to reach a high computational 
efl[iciency with respect to the classical mathematical programming technique. 
This gives to the manager of the system the possibility of an easy examination 
of the changing scenario, aided by the structure of the graph supporting the 
model. With respect to the pipe network problem in Sect. 3, the illustrated 
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resolution technique allows to analyze objective function without having to do 
an a priori s tudy on convexity and differentiability and prevents by stalling in 
local optima. To improve solution t ime at each iteration, efficient resolution 
techniques exploiting the peculiarity of the matr ix constraints, in the global 
optimization model, can be adopted in the resolution of a non-linear system, 
during a metaheuristic iteration. The proposed general modeUng approach in 
water resource systems and in pipe network analysis can be applied for a wide 
variety of problem in his field and can give to Water Authori ty an easy and 
efficient support in taking decisions in critical conditions. 
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Abstract The phase unwrapping problem consists in recovering a real function U 
defined on a discrete set (i.e. a rectangular grid) from the knowledge 
of its values modulus 27r. The phase unwrapping problem is the key 
problem in interferometry, for simplicity we restrict our attention to the 
SAR (Synthetic Aperture Radar) interferometry problem. The phase 
unwrapping problem is not well defined in fact it has infinitely many 
solutions, so that it must be "regularized" to be satisfactorily solvable. 
We propose a formulation of the phase unwrapping problem based on 
a network optimization problem depending on a parameter. We study 
the behaviour of the solution obtained as a function of this parameter. 
Numerical algorithms to solve the network optimization problems ob
tained are proposed. We report some numerical experience comparing 
the results obtained with the algorithm proposed here with the results 
obtained with another algorithm proposed in the scientific literature. 
The numerical experience proposed is relative to synthetic data and to 
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real SAR interferometry data. The real data are taken from the ERS 
missions of the European Space Agency (ESA). 

Keywords: SAR interferometry problem, phase unwrapping problem, minimum 
cost flow problem. 

1. Introduction 
We begin introducing some notations. Let N, 'Z, M be the sets of 

natural, integer and real numbers respectively. Let Â  G W, we denote 
with Z^ the set of A '̂-tuples of integers and with M^ the A/'-dimensional 
real Euclidean space. Let x = (xi, X2,..., xj^Y G M^ be a generic 
vector, where the superscript t denotes the transposition operation, for 
X, y G M^ we denote with gc^y the Euclidean scalar product of x_ and 
y. Let 1 < p < oo, we denote with ||x|| the usual p-norm in M^. We 
denote with Ôv the vector of M^ having all the components equal to 
zero and with 1^ the vector of M^ having all the components equal to 
one. 

Let U he a real valued function defined on a discrete set (i.e. in 
the simplest case a rectangular grid). The phase unwrapping problem 
consists in the reconstruction of the function U from the knowledge of 
its values modulus 27r. More precisely we consider: 

PROBLEM 1 (phase unwrapping) Let I = {{ijj) \ i = 1, 2,..., Ni, j = 
1, 2, . . . , N2}, let U = Uij, (i^j) E I be a real function defined on I. Let 
W = Wij, {hj) ^ I be a real function defined on I, such that for every 
(i^j) E I we have Wij — [Uij]27T, that is Wij is equal to Uij modulus 
2TT. The problem considered is: from the knowledge ofW recover U. 

We use [•]27r G [—7r,7r) that is we take the value of • modulus 2TT in 
the interval [—7r,7r) instead than in the more usual interval [0,27r). In 
Figure 1.3 we show an illustrative picture of a one dimensional version 
of the phase unwrapping problem. We note that usually W is called the 
wrapped phase function and U is called the (unwrapped) phase function. 

We note that the phase of an electric field is the argument of the elec
tric field as a complex number. We want to use the property that every 
complete rotation in the phase, i.e. every increment or decrement of 
2TX in the phase angle, the (time harmonic) electromagnetic field travels 
a distance equal to the wavelength. Thus in principle we can recover 
distances from the phase measurements. Problem 1 rises naturally from 
the fact that phase measurements can be done only modulus 27r, in fact 
the argument of a complex number is defined modulus 2TY, 
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antennas obstacle 

Figure LI. The example. 

Problem 1 occurs in many application fields, for a review see [1, 2]. 
For example it arises naturally when from backscattering measurements 
one has to compute the distance 6 between the scatterer and the loca
tion where the datum is collected, that is the position where both the 
transmitting antenna and the receiving antenna are located, see Figure 
1.1. The transmitting antenna generates an electromagnetic wave, when 
the scatterer is hit by this wave generates a scattered electromagnetic 
wave that is measured by the receiving antenna. Let us suppose that all 
the electromagnetic waves involved in this experiment have wavelength 
A. The distance between the antennas and the scatterer is equal to half 
of the path traveled by the electromagnetic wave from the transmit
ting antenna to the scatterer and back from the scatterer to the receiv
ing antenna. This distance denoted with S can be computed from the 
knowledge of A and the knowledge of the difference u of the phase of the 
electromagnetic wave received by the receiving antenna and the phase 
of the electromagnetic wave generated by the transmitting antenna, in 
fact we have: 

2 2TT 
(1.1) 

However note that we can only measure the phase of an electromagnetic 
wave modulus 27r, as a consequence of that also the difference of phase 
u previously considered can be evaluated only modulus 27r. 

We note that the reconstruction of the distance S in the previous ex
ample can be obtained in many other ways, for example the distance S 
can be obtained measuring the travel time of the electromagnetic waves 
involved in the experiment, that is the time necessary to the electromag
netic wave generated by the transmitting antenna to reach the scatterer 
and to come back to the receiver. However in some practical situations 
the measurement of a phase function can be the more convenient way to 
solve remote sensing problems. In section 2 an interesting application 
of the phase unwrapping problem will be presented, that is a remote 
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sensing application aimed at recovering the digital elevation map of the 
Earth surface using interferometric data measured by two SAR (Syn
thetic Aperture Radar) systems travelling on board of an airplane or of 
a satellite, for details see [2-4]. This problem is called SAR interfer-
ometry problem and, due to its important applications, several different 
methods have been proposed for its solution, see [2, 4-10] for details. 

We note that in Problem 1 from the knowledge ofW = Wij^ (i^j) G / 
we can recover U — Uij, (i,j) G / computing the integer function 
AC* = Av*j, (i, j ) G / such that Uij = Wij + 27r/^*j, (i,j) G / . However 
any integer function K = Kij^ {i^j) G / gives a legitimate reconstruction 
of U through the formula U = W + 2TTK. This means that Problem 
1, the phase unwrapping problem is not well defined. A more sophisti
cated mathematical formulation of the phase unwrapping problem than 
the simple definition given in Problem 1 is needed to try to characterize 
K*. In this paper we reformulate the phase unwrapping problem as a 
network optimization problem, where the objective function is a mea
sure of the "magnitude" of a function related to the function n — K.ij^ 
(i^j) G / . Of course this can be done in many diff'erent ways. We 
choose to model the phase unwrapping problem using the "gradient" of 
the phase function as an integer minimum cost fiow problem on a net
work. This choice generahzes the choice made in [5], where the objective 
function considered is the 1-norm of an unknown function related to K. 
This problem is a very special one in fact it is equivalent to a linear 
minimum cost flow problem on a network. We note that the minimum 
cost flow problems considered in [5] and here are linear programming 
problems that have special properties, the most important one is that 
the integral constraint on the independent variables does not increase 
the difficulty of the problem, in fact these problems can be solved (or 
approximated) as linear programming problems with real variables, for 
details see [11] page 10 or [12] page 94. When we consider the phase 
unwrapping problem in the context of SAR interferometry this is a very 
important feature of minimum cost flow problems on a network. In fact 
this problem usually involves a large number of variables, so that in this 
case very efficient algorithms are needed to solve Problem 1. Here "ef-
flcient algorithm" is refered both to the computational cost as well as 
to memory requirements. The special properties of minimum cost prob
lems on a network can be exploited to build very eflicient algorithms, 
for details see [11] page 10 or [12] page 94. A first attempt to reconsider 
the choices made in [5] was done in [7] where the objective function is 
chosen to be the p-norui of the unknown function considered in [5] with 
p > 1 or p = oo and the solution of the corresponding integer nonlinear 
programming problem is computed through the solution of a minimum 
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cost flow problem. This feature makes possible the construction of very 
efficient algorithms. 

In this paper the objective function is chosen to be the oo-norm of the 
unknown function. The corresponding network optimization problem is 
highly degenerate that is it has many different solutions, so that we pro
pose a method to select one of these solutions. This selection mechanism 
is the main improvement on [5] and [7] made in this paper. The selec
tion mechanism is based on a pair of minimum cost flow problems that 
depends on a parameter w] this parameter controls the magnitude of the 
1-norm of the solution of the oo-norm problem chosen. The parameter 
w should be chosen depending on the particular instance of Problem 1. 
Remember that the oo-norm problem has a highly degenerate set of so
lutions. We show with some numerical examples based on synthetic data 
that the solution of Problem 1 obtained using the mathematical model 
proposed here is strongly dependent from the parameter w; moreover 
when the "right" value of w is chosen the solution of Problem 1 ob
tained with the method proposed here is usually substantially better 
than the one obtained with the methods proposed in [5, 7]. Based on 
statistical considerations we propose a simple way to choose the value 
of the parameter w. The numerical experience obtained on a different 
set of simulated data shows that this strategy to choose the value of the 
parameter w is only moderately effective. A more efficient strategy to 
perform this choice will be investigated in a future paper. 

In section 2 we present the SAR interferometry problem. In section 3 
we formulate the phase unwrapping problem as a network optimization 
problem depending on a parameter and we propose a numerical method 
to solve this problem. In section 4 we show some numerical experience 
based on simulated and real SAR interferometry data comparing the 
results obtained using the method proposed with the results obtained 
with the method proposed in [5, 7]. The real data are taken from the 
ERS missions of the European Space Agency (ESA). In section 5 we 
present some final remarks. 

2. The SAR interferometry problem 
Let us consider the Earth surface, that we suppose flat, and at a 

distance h above it we consider the origin of a Cartesian coordinate 
system having the z-axis oriented downward, see Figure 1.2(a). Let 
(x, y, zY be the corresponding Cartesian coordinates and (r, y, Oy be the 
cyhndrical coordinates such that: 

x = rcos^, (1.2) 

^:==rsinl9. (1.3) 
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Figure 1.2. The SAR interferometry system. 

In the radar jargon the coordinate r is called slant ranae coordinate and 
the coordinate y is called azimut 
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Figure 1.3. The SAR interferometry system in the plane y = const: (a) the SAR 
interferometry system, (b) the (unwrapped) phase function, (c) the wrapped phase 
function. 
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A SAR system usually travels on board of satellites or airplanes, 
and is able to emit an electromagnetic radiation to illuminate the Earth 
surface moreover it is able to measure the electromagnetic radiation 
scattered by the Earth surface when hit by the emitted electromagnetic 
radiation. Let A be the wavelength of all the electromagnetic radiations 
involved in this experiment. The measurements of the backscattered 
electromagnetic radiation are processed taking advantage of the fact 
that the SAR system is travelling to obtain new synthetic data that 
can be interpreted as the measurements obtainable with an antenna 
having a larger aperture (i.e. synthetic aperture) than the aperture of 
the physical antenna. This procedure increases the resolution power of 
the instrument. For more details about SAR see [3]. 

We consider two SAR systems ^ i , 5*2 travelling along two parallel 
trajectories moreover ^i is travelling along the y-axis and we suppose 
that Si and ^2 have the same y coordinate, see Figure 1.2. We note that 
under the above assumptions the relative position of Si and S2 can be 
determined by the distance d between ^ i , ^2 and the angle a, see Figure 
1.2. Every SAR system measures the phase modulus 27r of the backscat
tered electromagnetic radiation as a function of the (x, yY coordinates 
of the position P on the observed scene. We can assume that P has the 
same y coordinate of ^ i , 52. The modulus 27r of the difference of the 
phase measured by the two SAR systems is called wrapped interferomet-
ric phase^ the difference of the whole phases of the signals arrived to 
the SAR systems is called (unwrapped) interferometric phase. We note 
that from the knowledge of the unwrapped interferometric phase we can 
compute the elevation map of the scene that is the z coordinate of a 
generic point P on the scene as a function of its (x, yY coordinates, see 
equation (1.4) and see [2] for details. We consider the following problem: 

PROBLEM 2 (SAR interferometry) Prom the knowledge of the wrapped 
interferometric phase compute the corresponding unwrapped interfero
metric phase. 

In Figure 1.3(a),(b),(c) we report an illustrative picture of a one dimen
sional version of SAR interferometry problem, where the characteris
tic parameters /i, c?, a, A are similar to those used in the ERSl mis
sion of ESA, that is: h = 782563m, d - 143.13m, a = -1.44radiants, 
A = 0.056415m. The scale of U in Figure 1.3(b) is different from the 
scale of W in Figure 1.3(c). We note that this problem is a phase 
unwrapping problem, that is this problem is a particular case of Prob
lem 1. So that it can be solved with the method proposed in section 
3. However the SAR interferometry problem has some special features, 
such as the shadow and the layover phenomena that are due to the spe-
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cial experimental setting. In practical situations these phenomena make 
impossible a complete knowledge of the wrapped interferometric phase 
function. Let us explain briefly these phenomena. 

Let fii C {{x.yY G JR :̂ x > 0} be a bounded open set, let Z :Vt\ ^ 
M be the elevation map of the observed scene, that is for {x^yY G Jli 
the surface of the observed scene is given by: z — h~ Z(x, y). Moreover 
in the cylindrical coordinates (1.2), (L3) we suppose that the surface 
z = h - Z{x,y) is represented by the function 6 = 0(r , y), (r.yY G ^2, 
where f]2 C M^ is a suitable bounded open set that depends on fi!i 
and the elevation map Z through the change of variables (1.2), (1.3). 
When the observed scene is such that the function © is single valued 
and injective the unwrapped interferometric phase is given by: 

47r 
Ue(r,y) = —dcos{e{r,y)-a) , {r.yY G f̂ 2, (1.4) 

see Figure 1.2. In our numerical experiments the unwrapped interfero
metric phase is replaced with the following function: 

u{r,y) = Ue{r,y) + e(r,y) , (r,yf G f̂ 2, (1-5) 

where e(r, y) is a random term that takes in account all the errors that 
will affect the wrapped phase function. For example in (1.5) we can 
consider the errors due to the inhomogeneities of the atmosphere, or 
the measurement errors that take place in the wrapping process. All 
these errors are grouped together in the term e{r^y). Note that from 
the knowledge of the unwrapped phase i^e(r, y) using equation (1.4) is 
possible to obtain informations about 0(r , y) that is the digital eleva
tion map of the scene. The wrapped interferometric phase is defined as 
follows: 

w{r,y) = [u{r,y)]2n , {r,yY G ̂ 2. (1.6) 

We note that the measurements of w are usually made by a sampling 
operation, so that we define: 

Wij = w{ro+jS2,yo + i6i) , (i,j) G/ , (1.7) 

where VQ^ yo^ 61^ 62 E M with ro, ^1, 2̂ > 0 are parameters that charac
terize the measurement operations. As in the general phase unwrapping 
problem from the measurements of VF^j, (i, j ) G / , we have to compute 
Ue,i,j^ ihj) ^ IJ where for (i, j ) G / the values Ue,ij are the approxima
tion of Ue{ro + j^2? 2/0 + ^^1) computed by the reconstruction procedure. 
We note that formula (1.4) does not hold when the observed scene is 
such that 0 is a multivalued function and/or a non injective function 
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with respect to the r variable. More precisely when for some value of the 
y coordinate the function 0 is not injective with respect to the r variable 
we have the so called shadow phenomenon. When for some value of the 
y coordinate the function 0 is a multivalued function with respect to the 
r variable we have the so called layover phenomenon. We must keep in 
mind that the data of a SAR interferometry experiment can be affected 
by shadow and/or layover phenomena. We note that the shadow and 
layover phenomena deteriorate the information content of the data, so 
that also the corresponding abihty to reconstruct the unwrapped phase 
function is deteriorated, see [6] for a detailed discussion. 

3. The Network Optimization Problem 
Let us consider Problem 1. This problem is not well defined, in fact 

the set J\f = {u : I —> M\ u = Uij = 27rnij, ^ i j ^ ^^ i — 1? 2 , . . . , 
A î, j — 1, 2 , . . . , Â 2} can be seen as the "kernel" of the modulus 2TX 
operation, that is for every u e Af we have [U\27T = 0. Moreover the 
solution U of Problem 1 can be written as U — W + u* ioi Si suitable 
function u* G J\f, in fact [U]2n = [W + u*]27r — W. So that without some 
a priori information on U from the knowledge of W we cannot distinguish 
the required solution U from all the other possible solutions that is the 
functions of the form W + u^ u e Af. That is in the set {W + u^ u E Af} 
of all possible solutions of Problem 1 we must select a function which 
we consider the solution of Problem 1. This is done formulating the 
phase unwrapping problem as an optimization problem. The optimizers 
of this optimization problem will be the proposed solutions of Problem 1. 
When several optimizers corresponding to the same value of the objective 
function are present one of them, for example the one obtained by the 
numerical algorithm used, will be privileged. 

Let h = {{ij),i = 1, 2,...,7Vi - 1, j - 1, 2,... ,iV2}, and h = 
{{ij),i = 1, 2, . . . , iVi, j = 1, 2 , . . . , i V 2 - l } . Let F : / -^ i R b e a 
generic function, we define the discrete partial derivatives operators Ai , 
A2 acting on F in the following way: 

{AiF)ij = Fi+,j - Fij , {i,j) e h, (1.8) 

{A2F)ij = Fij^i - F,,j , (i,j) 6 h. (1.9) 

We note that equations (1.8), (L9) define two functions which are usually 
denoted as follows: F^ = Fj^^ij = {AiyF)ij^ (i^j) ^ I^^ u = 1,2. The 
vector field (Fi, F2)^ = ( A I F ' , A2F)^ defined on h n h, is called the 
discrete gradient vector field of the function F . We note that a generic 
vector field (Fi, F2)^ defined on I\ fl I2 is the gradient of a function F 
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defined on / when it satisfies tlie irrotational property, tiiat is: 

{A2Fi)ij - (AiF2)ij , (ij) ehn h. (1.10) 

Tlie function F can be computed from th.e knowledge of its value in a 
point, for example the knowledge of Fi^i, and the knowledge of (Fi, F2)^ 
that is the discrete gradient vector field of F , in fact we have: 

i-i j - i 

Fi^j = ^1,1 + E ^ i , U + E^2 ,M , ihj) e / , (1.11) 
1=1 1=1 

where the sums having upper index equal to zero must be considered 
equal to zero. 

Let [/, W be the functions defined in Problem 1. We define the 
following functions: 

G^^ij - [A^Whn i,j + '^nK^ij , (iJ) e /^ , z/ - 1,2, (1.12) 

where kj^^ij, (i^j) E lu^ i^ = 1,2, are integer variables that must be 
determined. We note that: 

[KW]2n iJ = A^Wij + 27Tb^^ij , (iJ) G /^ , Ẑ  - 1,2, (1.13) 

for a suitable choice of bj^^ij G { — 1, 0, 1}, (i, j ) E Iiy, u — 1,2. We note 
that the values of the variables 6i/,i,j, (i,i) E 1^, u = 1,2 are uniquely 
determined by equation (1.13) since W : I —^ [—TT, TT). 

Let us impose that (Gi, 62)^ is a discrete gradient vector field, that is 
we require that (Gi, ^2)^ verifies the irrotational property (1.10); from 
(1.12), (1.13) we can rewrite the irrotational property for (Gi, G2)^ as 
follows: 

ki,i,j+i - h,ij - k2,i-\-ij + k2,ij = -(fei,i,j+i - bi^ij - b2,i+ij + b2^ij), 

{hj)eiini2. (1.14) 

We note that equation (1.14) gives M — {Ni — 1)(A 2̂ — 1) constraints for 
the N = Ni{N2 - 1) + N2{Ni - 1) variables fc^^^j, (iJ) e Iiy, u = 1,2. 

Let k G 2Z^ be the vector containing the variables kjy^ij, {i,j) G Ijy, 
ly = 1,2, P_ e 2Z^ be the vector containing the terms on the right 
hand side of equations (1.14), A be the matrix of the coefficients of the 
Unear system made of equations (1.14) having the rows and the columns 
arranged appropriately and finally let Ak_ = /? be the linear system (1.14) 
in the matrix-vector notation. 

Every integer solution fc of the linear system Ak_ = p_ defines, via 
the equations (1.12), (1.13), a vector field (Gi, G2)S that is a possible 
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choice for the discrete gradient vector field of U. We note that Ak = §_ 
is always compatible in Z^^ in fact the vector fc^ whose components 
ki,^i^j are defined as follows kjj^i^j = —K^ij^ (i^j) e Ii^^ u = 1^2 verifies 
Aki^ = p. So that we introduce a merit function to select a particular 
solution ^* of Ak — P_. That is given p with 1 < ;? < oo, we can compute 
^* as a minimizer of the following problem: 

min fp{k) 

s.t. :Ak=-p, (1.15) 

keZ^, 

where for k G Z^ we define: 

When in (1.13) we have bi^^ij — 0, {i^j) ^ I^^ v — 1^2 the solution of the 
optimization problem (1.15), (1.16) is fc* = 0^. Later we restrict our 
attention to the more interesting case when by^i^j ^ 0 for some (i, j ) G I^^ 
i/ = l ,2. 

The optimization problem (1.15), (1.16) has been investigated in [7]. 
The constraints Ak_ = P_oi problem (1.15) can be seen as flow conserva
tion conditions on the nodes of a grid graph and the vector /3 gives the 
exogenous supplies at the nodes of the graph, for a detailed discussion on 
network problems see [11] page 10 or [12] page 37. However to consider 
an equivalent genuine network problem we have to add four "ground 
nodes" and an artificial node P , see Figure 1.4 where is reported the 
graph Q which is constituted by the original grid graph, by the four 
"ground nodes" and by the node P. Note that the node P is joined with 
the four ground nodes and in P we require an exogenous supply equal 
to —(J, where a = P^IM- Thus problem (1.15), (1.16) is equivalent to 
the following network problem: 

min/p(fc) 

s . t . : ^ i ( | ) = ^ ^ , (1.17) 

kez^, 
/ ^ G ^ ^ 

where h = {hi, /i2, hs, h^)\ P^ = (^^ 0,0, 0,0, -aY G ^ ^ + ^ Ai = 
A Z \ 
^ ^ jj and Z is the null matrix having M rows and 4 columns. We 
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Figure I.4. The graph Q. 
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note that the matrix B has 5 rows and N columns and the matrix C 
has 5 rows and 4 columns. Moreover the first four rows of the matrix 
( 5 , C) give the left hand side of the flow conservation conditions at the 
ground nodes and the last row of the matrix (S, C) gives the left hand 
side of the flow conservation condition at node P. So that when p = 1 
problem (1.15), (1.16) can be seen as a minimum cost flow problem, for 
details see [5]. We note that in a minimum cost flow problem the integral 
constraint on the variables, that is the fact that k_ G 2Z^^ h G ̂ ^ , does 
not increase the difficulty of the problem, for a detailed discussion see 
[11] page 10 or [12] page 94. When 1 < p < oo problem (1.15), (1.16) 
cannot be reformulated as a linear optimization problem, in [7] a method 
to solve this problem is proposed, which is based on the approximation 
of the problem considered using minimum cost flow problems. So that 
when p = 1 we can consider the following simple algorithm to solve the 
phase unwrapping problem. 

ALGORITHM 1 (proposed in [5], p = 1) Read the parameters Ni, N2 and 
the data W — Wij, (i^j) G / ; perform the following steps: 

1 compose the matrix A\ and the vector /3 of problem (1.17); 

2 compute k^, h* as a minimizer of problem (1.17) with p = 1; 

3 compute the discrete gradient vector field {G\, G2Y using formula 
(1.12), with k^^ij = kl^^j (ij) e Ijy, ly = 1,2, where k^^^j (ij) G 
Iiy, z/ = 1,2 are the components of vector k* and compute U = Uij, 
{i^j) e I up to an arbitrary constant using formula (1.11); 

4 stop. 

We note that step 2 consists in the solution of a linear programming 
problem with real variables and nicely structured constraint matrix. 

We note that the minimizer of problem (1.15), (1.16) withp = 1 found 
determines the correction introduced in formula (1.12), so that problem 
(1.15), (1.16) with p = 1 can give a good solution of the phase unwrap
ping problem when the functions [AiyW ]̂27r, ^ = 1,2, need a correction 
fc* of small 1-norm to deflne a reasonable approximation of Gj^, z/ = 1,2, 
that is the discrete partial derivatives of U. However in general there 
is no reason to beheve that the required correction should have small 
1-norm. For example considering the SAR interferometry problem we 
have that the correction k G Z^ introduced in formula (1.12) necessary 
to have a reasonable approximation of the discrete partial derivatives of 
U depends on the character of the observed scene and the 1-norm of this 
correction tends to increase when the observed scene becomes craggier. 
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It is easy to see that in general problem (1.15), (1.16) is degenerate, 
that is its solution is not unique. This degeneracy is particularly rele
vant when p = oo, that is problem (1.15), (1.16) for p = oo is highly 
degenerate, in fact it has a large number of solutions. We want to take 
advantage on this property of problem (1.15), (1.16), with p = oo, in par
ticular among all the possible solutions of problem (1.15), (1.16) when 
p = oo we want to select the appropriate correction fc* to compute the 
solution of Problem 1. Thus we want to introduce a class of optimization 
problems to control the magnitude of the 1-norm of the correction k* 
used to solve Problem 1. 

Let «Soo be the set of the solutions of problem (1.15), (1.16) with p = 
oo, we select a solution in SQQ using a couple of auxiliary optimization 
problems. We note that Soo is the set of vectors k G M^ satisfying 
Ak — P_ and \\k\\^ = 1, in fact h = kb defines an element of 5oo. Moreover 
from the assumption that &i/,ij, (i,j) G / j / , î  = 1,2 are not identically 
zero we have |6iy,ij| = 1 for some (i, j ) , that is Ĥ Ĥoo = 1 and the fact 
that 0 ^ Soo-

Let us consider a graph Ti given by the graph Q plus two artificial 
nodes 5"^, 5 " , such that the node S'^ is joined with each node of Q 
(except P) having positive exogenous supply, the node S~ is joined 
with each node of Q (except P) having negative exogenous supply, see 
Figure 1.5. Let Â "̂  E IN he the number of arcs between S'^ and Q and 
/ G JN^ be the vector containing the flows on these arcs; let A ~̂ G IN 
be the number of arcs between S~ and Q and m G IN^ be the vector 
containing the flows on these arcs; flnally let S^ be joined with S~ and 
let 0 G IV be the flow on this last arc. We note that when N'^ = {) 
{N~ = 0) no arcs between S~^ and Q {S~ and Q) are considered. In 
the following we assume N'^ ^ 0 and A ~̂ 7̂  0, however with the proper 
modifications the discussion that follows holds also when Â"*" — 0 and/or 
when N~~ = 0. 

Let ^2"= (P\, 0, 0)^ and 

Ai 

0% 
0% 

Bt 
- 1 ^ 
0* 

BT 
0̂  

OM 
1 

- 1 
A2 = 0% -l*y+ 0%. 1 . (1.18) 

V 0% 0%^ 4 _ - 1 J 
We note that the matrices B^, B^ of dimensions M x N'^ and M x N~ 
respectively take care of the flow conservation conditions on the arcs 
joining the nodes 5+, S~ to the nodes of Q, while the last two rows 
of A2 take care of the flow conservation conditions on the nodes 5"^, 
S- respectively. Let Q = U= {k\ h^, [^ m\ ^)\ he Z^, heZ^, 

I G W^^ , m G W^~, (t) G W } . Let w^ G W^^, ^2 ^ ^ ^ ~ , ^ G W be 
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Figure 1.5. The graph H. 

given weights. We consider the following problem: 

s.t. : ^42^ = ^2' 

- liv < ^ < ITV, 

(1.19) 

We note that here and in the following inequalities between vectors 
should be understood componentwise. Let /i^ ^ ^^ be a vector such 
that (fĉ , l^^y is a feasible point of problem (1.17) (such a vector always 
exists since ^fc^ = P). We note that x^ defined hy k — k^j, h = h^, [ = 0, 

m == 0, ^ = 0 is always a feasible point for problem (1.19). Let x == (fc , 

h J I ^ ni^^ 4^Y ^^ ^ solution of problem (1.19). 
It is easy to see that given the weights w_i^ yjj2 the number of non 

vanishing components of fc tends to increase when the weight w increases. 
In fact in order to minimize the objective function in (1.19) we would 
like to take 0 as large as possible, and as a consequence also the flows 
/, m and the flows on Q tend to increase componentwise in order to 
satisfy the conservation conditions given in (1.19). Note that the vector 
k_ does not verify the constraints of problem (1.15), (1.16) or equivalently 
fc, h do not verify the constraints of problem (1.17). In fact we have 
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Ai i ^ I = ^1 ~ ^tl ~ Bim. Let ^, ^ be a solution of the following 

problem: 

min||fc||i 

s.t. :Ai(j^\= Btl+ B^m, (1.20) 

k- IN ^ k< k + lN^ 
k e Z^, 

We note that problem (1.20) is always feasible. Let (fc ,̂ /i^)* be the 
feasible point of problem (1.17) defined above. Note that due to the 
assumptions made on &i/,2j, {hj) 6 /^, z/ = 1,2 we have IÎ ^Hoo = 1. 

Then it is easy to see that {{kh ~ ^ ) ^ {hb ~ tkY) is a feasible point of 
problem (1.20). 

We define fc* — k — k- We note that as a simple consequence of 
the properties of the vectors ^, k we have that fc* G Soo- In other 
words the functions Gi, G2 defined by (1.12) choosing k = k* verify 
the irrotational property (1.10), thus Gi, G2 can be seen as the discrete 
partial derivatives of U and by (1.11), from the knowledge of Gi, G2, 
we can compute the function U up to an arbitrary constant. 

Note that the number of non zero components of fc* depends on the 
value of the parameter w and tends to increase when w increases. In 
fact this parameter controls the number of non zero components of the 
vector fc, however this vector in general is not a feasible point for problem 
(1.15), (1.16). The vector k. should be corrected; the required correction 

is made by the vector k. solution of problem (1.20). So that k* = k — k 
is a solution of problem (1.15), (1.16) with p = 00. Finally we note that 
problems (1.19), (1.20) are linear optimization problems, they have a 
global minimum corresponding eventually to multiple global minimizers. 

Summarizing we have the following simple algorithm: 

ALGORITHM 2 Read the parameters Ni, N2, the data W = Wij, (ij) e 
I and the weights w.i, UI2, w; perform the following steps: 

1 compose the matrix A2 and the vector (3 of problem (1.19); 

2 compute k, h, h EL? 4^ CLS a minimizer of problem (1.19); 

3 compose the matrix Ai and the vectors B^l + B^m, k — lN? R+IN 

of problem (1.20); 
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4 compute k,hasa minimizer of problem (1.20) 

5 compute the vector k* = k — k; 

6 compute the discrete gradient vector field {G\, G2Y using formula 
(1.12), with kjy^ij = k^^ij (ij) e U, u = 1,2, where k^^^j (ij) e 
I^^ z/ == 1,2 are the components of vector k_* CL'nd compute Uij, 
{i^j) E I up to an arbitrary constant using formula (1.11); 

7 stop. 

The steps 2 and 4 consist in the solution of a hnear programming 
problem with real variables and a nicely structured constraint matrix. So 
that having some a priori information about the number of non vanishing 
components of the vector fc* that defines the approximation Gi, G2 
of the discrete partial derivatives of U through formulas (1.12), (1.13) 
we can choose the value of the weight w such that the solution fc* of 
problems (1.19), (1.20) will have approximately that number of nonzero 
components. In the next section we propose a method to choose the 
value of the weight w without the knowledge of a priori information on 
fc*, that is of the solution of Problem 1. 

4. The Numerical Experience 
Let us consider Problem 2. We solve this problem using synthetic and 

real SAR interferometry data. The real data are taken from the ERS 
mission of the European Space Agency (ESA). 

We begin with synthetic SAR interferometry data generated using 
an implementation of formulas (1.4), (1.5), (1.6), (1.7) in a FORTRAN 
program. Let m denote meters. The numerical experiment is performed 
with values of the parameters /i, d, a, A similar to those used in the ERSl 
mission of ESA, that is: h = 782563m, d — 143.13m, a — -1.44radiants, 
A = 0.056415m. In the ERSl mission the measurements of the two SAR 
systems are obtained by two successive passages of the same instrument 
over the scene. In the following examples we consider a grid of points 
contained in ^̂ 2? whose indices belong to the set / , and from relations 
(1.2), (1.3), (1.4), (1.5), (1.6), (1.7) we compute the quantities U^ = 
Ue,i,j^ ihj) E I and W = Wij, (i^j) G / corresponding to a given 
elevation map Z. Moreover, with the notation of section 2, the grid 
on Q2 is defined by the following parameters: Â i = 100, N2 = 100, 
ro = 846645m, yo = -797m, ^1 = 15.944m, 82 = 7.905m. Moreover in 
formula (1.5) we have chosen e{r^y) — 0. 
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We define a point (i, j ) E h H I2 to be "non-irrotational" when the 
vector field {[AiW]2n^ [A2W]2nY defined in (1.12), (1.13) does not verify 
the irrotational property (1.10) at the point (i, j ) . 

In particular in Algorithm 2 we fix w_i = 1^+^ 2M.2 = IAT-, and we 
propose a method to choose the remaining weight w appearing in prob
lem (1.19) according to some statistics obtained considering the weight 
w = w that gives the "best" reconstructed phase function as a func
tion of the rate of non-irrotational points in the wrapped interferometric 
phase function in a class of simulated scenes. In particular we have 
considered one hundred scenes having different rates of non-irrotational 
points. In (1.12) we expect a large number of nonzero components in 
the correction needed k = k* when the rate of non-irrotational points is 
large and we expect a small number of nonzero components in the cor
rection k = k* when the rate of non-irrotational points is small. These 
scenes are generated randomly in the way shown below in the following 
family of scenes: 

Z(x.,) = max 0,(,-i, J s i „ ^ ( : 2 ^ ) + c o s ^ ( ^ ) + 

^^„..(^),.„.(^) 
4a / V 4a 

y + 1000 
+ 

ix,yfeni, (1.21) 

where a, b, c^ d^ e E M are parameters that characterize the scene. 
The wrapped interferometric phase of each scene is processed using 

Algorithm 1 proposed in [5] and using Algorithm 2 with several choices 
of the value for the parameter w^ that is lu = 1, 2 , . . . , 30. Let Ue be 
the exact interferometric phase, let U be the unwrapped interferometric 
phase computed with Algorithm 1 or Algorithm 2 using in both cases 
Ui^i = t/e,i,i, then we define the following performance index: 

EAU,U.) = (^'''iu''''~ryiy'- (1-22) 

The following results are obtained considering the ten classes of scenes 
(1.21) corresponding to all the possible choices of the three parameters 
a, 6, e in the set: a = 50, 30, b = 150, 170, 190, 210, 230, e = 3, In 
each class of scenes we have selected randomly ten scenes sampling the 
parameter c from a random variable uniformly distributed in the interval 
[0.15,0.85] and defining d = 1 — c. For i = 1, 2 , . . . , 100 we denote with 
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Figure 1.6. The values of w versus p and the least square parabola fitting them. 

w'^ the value of weight w such that Algorithm 2 gives the best result, that 
is the value of w such that the performance index (1.22) is minimized. 
In Figure 1.6 the results of this experiment are reported, that is we have 
plotted li) as a function of rate p of non-irrotational points for the one 
hundred randomly generated scenes considered. For i — 1, 2, . . . ,100 
we denote with Ul the exact interferometric phase for the i-th scene, 
we denote with C/̂  the solution obtained with Algorithm 1 for the i-th 
scene, and we denote with U'^ the solution obtained with Algorithm 2 
using the weight w — w'^ for the i-th scene. We have: 

100 

Y,Ei2{ij\Ui)^QM, 
i = l 
100 

100 

1 

(1.23) 

(1.24) 

That is Algorithm 2 gives significant improvements on the perfor
mance of Algorithm 1 when the correct choice of the weight w is made. 

Now we turn our attention to the problem of choosing the weight w. 
We have computed the least squares parabola fitting the data reported 
in Figure 1.6, and rounded its coefficients to the closest integer. We 
obtain the following parabola: 

w == -2398/?^ + 418/) + 4. (1.25) 
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The parabola (1.25) is used to choose the value w when Algorithm 2 is 
used on a new set of data, that is for example on the set of one hundred 
scenes generated randomly in the following family of scenes: 

(x-x^y + (y-y^y 

7i ^ ^, ^^^^"^ 19 1 , ^ + 1000 
Z[x,y) = max <hje ^ , j = 1,2,... ,n^ > + aj 

{x^yYeftu (1.26) 

where rig e IN and hj^ Xj, yj^ aj G JR, â -, j = 1, 2 , . . . ,n^ are param
eters that characterize the scenes. We choose randomly rig G {1, 2 . . . , 
20}, and for j = 1, 2, . . . , n^ we choose randomly hj G [50m, 300m], 
Xj G [-1000m, 1000m], yj G [-500m,500m], aj G [50m,200m], aj G [0.5, 
5] sampling a random variable uniformly distributed in the above men
tioned intervals. Moreover in formula (1.5) for every (r, yY G ^2 we 
choose e(r, y) as the samples of a random variable uniformly distributed 
in [-0.1, 0.1] multiplied by Ue{r, y). For i = 1, 2 , . . . , 100 we denote with 
Ul the exact interferometric phase for the z-th scene, we denote with C/̂  
the solution obtained with Algorithm 1 for the i-th scene, and we de
note with U'^ the solution obtained with Algorithm 2 using the weight 
w = w\ obtained rounding to the closest integer the value of w provided 
by formula (1.25), for the i-th scene. We consider rounded values for w 
since w is a. coefficient of the objective function of the minimum cost flow 
problem (1.19) and this problem can be solved more efficiently when the 
cost function has integer coefficients. We have the following results: 

-. 100 

— ^£ ; ,2 ( t /M7^)^0 .12 , (1.27) 
1=1 

-. 100 

— Y^Ei.{U\Ui) ^O.n. (1.28) 
i=l 

That is Algorithm 2 with the choice of it; given by (1.25) and the rounding 
described above outperforms Algorithm 1 of about 10% in the test case 
considered. 

For the real SAR interferometry data we report a simple numerical 
experiment using Algorithm 1 and Algorithm 2. We note that in this 
case we do not know the exact phase function, thus we cannot evaluate 
the performance indices (1.27), (1.28) as done with the synthetic data. 
We have considered the SAR interferometry data provided by the ERS 
mission of ESA that corresponds to a particular region of Sardinia, Italy. 
We note that Sardinia is a craggy island, so that we can hope to com
pute with Algorithm 2 a better solution than the one computed with 
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Figure 1.7. The phase U reconstructed using Algorithm 1. 

Algorithm 1. The experiment of the data coming from the ERS mission 
is performed using the same values of the parameters /i, d, a, A than 
those mentioned above for the synthetic data. Moreover for the size of 
the interferogram we have: Â i = 641, N2 = 329. We note that the rate 
of non-irrotational points of these data is equal to 0.053. 

The numerical experiment is performed as follows: we solve Problem 
2 using Algorithm 1 and using Algorithm 2 with several values of weight 
w, that is with tî  == 1, 2 , . . . , 20. In Table 1.1 we report the 1-norm of 
the solution fc* obtained with Algorithm 1 and obtained with Algorithm 
2 using several values for the weights w. 

Finally in Figure 1.7 we report the unwrapped interferometric phase 
computed with Algorithm 1 and in Figure 1.8 we report the unwrapped 
interferometric phase computed with Algorithm 2 using w = 19, that 

Algorithm 1 

iiriii 
12810 

Algorithm 2 
w 

1 
5 
9 
13 
17 

iiriii 
15468 
22538 
30195 
35825 
39462 

w 

2 
6 
10 
14 
18 

iriii 
15531 
24364 
32245 
37077 
39932 

w 

3 
7 
11 
15 
19 

iiriL 
17290 
26786 
33708 
37774 
40552 

w 

4 
8 
12 
16 
20 

iiriii 
21270 
28761 
34641 
38706 
41279 

Table 1.1. The value of ||^*||2 for several values of the parameter w. 
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Figure 1.8. T h e phase U reconstructed using Algori thm 2 wi th w = 19. 

is the rounded weight obtained using formula (1.25). We note that in 
the numerical experience proposed in this paper the minimum cost flow 
problems appearing in Algorithm 1 and in Algorithm 2 are solved with 
RELAX4^. This choice seems to be a good one, in fact RELAX4 has 
solved in a few minutes all the examples considered. However different 
codes can be used in place of RELAX4, see [13] page 53 for a complete 
review of the available minimum cost flow problems solvers. Moreover 
the code implementing Algorithm 2 is available and can be obtained free 
of charge contacting the authors by electronic mail. 

5. Conclusions and Remarks 
We note that the results shown in (1.23), (1.24) imply that on the set 

of data considered the solution of Problem 1, or equivalently of Prob
lem 2, can be computed more accurately using Algorithm 2 than using 
Algorithm 1 when the weight w in Algorithm 2 is chosen appropriately. 
Moreover Table 1.1 shows that the results obtained using Algorithm 1 
or using Algorithm 2 are quite different and that the results obtained 
with Algorithm 2 are highly dependent on the choice of the parame
ter w. Thus, according to the results obtained with the synthetic data 
considered, we can suppose that Algorithm 2 with a suitable choice of 

•^RELAX4 is a minimum cost flow problems solver designed by D.P. Bertsekas and P. Tseng, 
for details see [11] page 279. This software package is available free of charge in the Web site 
http://www.mit.edu/people/dimitrib/RELAX4.txt 
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the weight w gives also in the case of real data a substantially better 
result than Algorithm 1. The simple way of choosing the weight given 
by (1.25) is not entirely satisfactory as can be seen from (1.23), (1.24), 
(1.27), (1.28). Further investigation is needed to refine the choice of the 
weight parameter w. 

We remark that the results of this paper are relevant for the phase 
unwrapping problem. The contribution presented is a first step of a 
promising research to study adaptive techniques to solve the phase un
wrapping problem, that is techniques adapted to the particular instances 
of Problem 1. 
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Abstract: The Chapter presents some evolutionary algorithm based methods used for 
solving global optimization problems. Firstly, the methods, which use 
proportional selection, are briefly described. Secondly, a bicriterion approach 
is applied for solving the constrained function minimization problem. This 
method transforms the constrained function minimization problem to the 
bicriteria optimization problem in the way that the first objective function is 
the sum of violated constraints and the second objective function is the one 
that should be minimized. Thirdly, the constraint tournament selection method 
is presented. The aim of the method is to reduce the number of function 
evaluations in the optimization process. The method is very effective while 
solving highly constrained single criterion optimization problems as well as 
the problems with the computationally expensive objective function. The 
method may also reduce the computation time for ordinary nonlinear 
programming problems as well as produce better results. Finally, the 
application of evolutionary algorithms to two design optimization problems is 
presented. The first problem deals with optimum design of concentric springs, 
whereas the second problem deals with the optimum design of a robot gripper. 
Both of these problems are considered as discrete programming problems. For 
problems like these the use of conventional optimization methods is very 
limited or even impossible. As it is shown in this Chapter evolutionary 
algorithm based methods can easily handle such problems. 

Keywords: evolutionary algorithms, genetic algorithms, constrained nonlinear 
programming, discrete programming, computationally expensive objective 
functions, proportional selection, constraint tournament selection, Pareto set 
distribution method, concentric springs design, robot gripper design. 
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1. INTRODUCTION 

Evolutionary and genetic algorithms are powerful and widely used wise 
stochastic optimization techniques which rely on analogies to natural 
processes. They can often outperform conventional optimization methods 
when applied to difficult real-word optimization problems. Many different 
evolutionary algorithm based strategies have been developed recently to find 
the global minimum for nonlinear programming problems (see review papers 
by Gen & Chang, 1996 and Michalewicz & Schoenauee, 1996). In contrast 
to conventional optimization methods evolutionary algorithm methods for 
nonlinear programming problems have the following two advantages: 

(i) they impose no restriction on the optimization problem; the objective 
function can be multimodal and noncontinuous, the feasible domain 
can be incoherent etc., 

(ii) they can be used to solve any optimization models i.e., models with 
continuous, integer, discrete and mixed continuous - integer and 
continuous - discrete decision variables. 

A general nonlinear programming problem is formulated as follows: 

Find X =\xj ,X2 ,...xj^\ which will satisfy the K inequality constraints 

gk{x)>0 k = l,2,...K (1) 

and the M equality constraints 

h^{x) = 0 m = l,2,...,M <N (2) 

and minimize the objective function/(x) 

f(x*)=minf{x) (3) 

where X = [x],X2,.-.,xpj] is the vector of decision variables. 

This Chapter presents some evolutionary algorithm based methods 
developed so far, which are used for finding the global minimum of the 
function (3) under the constraints (1) and (2). Firstly, the methods, which use 
proportional selection, are presented. Secondly, a bicriterion approach is 
applied for solving the constrained function minimization problem. Thirdly 
the constraint tournament selection method is presented. Finally, 
applications of evolutionary algorithms to two design optimization problems 
are presented. From the results obtained while solving these problems it is 
clear that these methods are very effective in solving some global 
optimization problems. 
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2. EVOLUTIONARY ALGORITHMS WITH PROPORTIONAL 
SELECTION 

2.L Scaling the objective function 

In proportional selection, also called roulette wheel selection, individuals are 
selected according to their relative fitness value. This often leads to the 
situation that in early generations a few super chromosomes dominate the 
selection process and in later generations the competition among 
chromosomes is less strong and an evolutionary algorithm method works 
like an ordinary random search method. The main question, which arises 
here is: how to increase the selection pressure to find the maximum in a 
short computation time and at the same time avoid convergence to the local 
maximum. 

Another problem is that most common evolutionary algorithm methods 
based on proportional selection require positive values of the fitness function 
for the process of evaluation. For function maximization problems it is, in 
many cases, easy to satisfy this requirement. Assuming that / (x) > 0 for all 

X, the objective function / (x) can be treated as the fitness function. For 
function minimization problems, which occur more often in design 
optimization, the question arises: how to transform these problems so that 
evolutionary algorithms can solve them effectively. One of the simplest 
ways is to use some positive constant C and then the fitness function is 
evaluated from the following formula: 

/ ' ( x ) - C - / ( x ) (4) 

where C is a constant, which should satisfy the following formula: 

C > / ( x ) for all X (5) 

If formula (5) is not satisfied the value of the fitness function is set to zero. 
Value of constant C can be chosen in many different ways. However, the 

problem is that this choice has a great influence on the effectiveness of the 
algorithm. The constant C might be entered by the user of the evolutionary 
algorithm, it might be equal to the maximum of / (x) found so far or it 
might be evaluated for each generation using the following formula: 

C' =max{ fJ{x) } (6) 
JeJ 

where J is the population size. This means that in the ^th generation the 
value of C^ is equal to the maximal value of the function obtained in this 
generation. This seems to be a very universal approach since for each 
problem the zero fitness function is assigned only to one chromosome. 
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Michalewicz, 1996 in his genetic algorithm system GENESIS uses the so-
called scaling window method. This method updates the constant C while 
running GENESIS in the following way: If the scaling window W >0 ,thQ 
system sets C to the greatest value of/(x) which has occurred in the last W 
generations. A value W indicates the infinite window, i.e., C = max{f{x)] 
over all evolutions. If fT < 0, the sigma truncation method can be used (see 
Michalewicz, 1996). 

Some other methods of scaling the objective function are presented in Gen 
& Chang, 1997 and Osyczka, 2000. 

2.2. Handling constraints 

The main problem in applying evolutionary algorithms to solving a 
constrained problem is how to deal with constraints because evolutionary 
operators used for manipulating chromosomes may yield infeasible 
solutions. Quite a large number of methods have been developed recently to 
handle constraints when evolutionary algorithms are used (see Kim & 
Myung, 1996; Michalewicz, 1995; Myung & Kim, 1996; Orvosh & Davis, 
1994). These methods can be roughly classified as follows: 

(i) Rejecting strategy 
(ii) Repairing strategy 
(iii) Modifying genetic operator strategy 
(iv) Penalty function strategy 

The last strategy has a universal character and thus it is the most often used 
strategy. Many different forms of this strategy have been developed recently 
and some of these forms will be presented below. 

Penalty function strategy 
This strategy is based on the strategies developed for conventional 
optimization methods in which solutions, which are out of the feasible 
domain, are penalized using a penalty coefficient. In other words a 
constrained optimization problem is transformed to an unconstrained 
optimization problem in which the function to be minimized has the form: 

h4 K 

(l>{x,r) = f{x)^r l[/z^(x)] + r ZGjg^(x)] (7) 
m=7 k=l 

where: Ĝ  is the Heaviside operator such that Gj^=0 for g^ (x) > 0 and 

Gj^ = 1 for gj^ (x) < 0, and r is a positive multiplier which controls the 
magnitude of the penalty terms. 

It may seem logical to choose a very high value for r to ensure that no 
constraints are violated. However, this approach leads to difficulties. As r is 
increased the minimum of ^(x,r) moves closer to the constraint boundary 
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(see Fig.l), but at the same time, the selective pressure for infeasible 
solutions decreases. This means that solutions, which differ significantly in 
their infeasibility, produce similar fitness values and in proportional 
selection all infeasible solutions have the same chance to be chosen for the 
next generation. 

f(x) . 
(l)(x,r) 

18 -

16 -

14 -
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/ 

"^(l)(x,r)=x2+r(x-2)^ 
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1 1 1 — • 

Fig.l. Illustration of the penalty function method 
for the problem min f(x)=x^ with the constraint gi=x-2>0. 

Penalty function methods for both conventional and evolutionary 
algorithm methods can be classified as follows: 

(i) constant penalty method, 
(ii) variable penalty methods. 
The constant penalty approach is less effective and most penalty function 

methods, which have been proposed in the area of evolutionary algorithms, 
are of a variable penalty character. It should be mentioned here that the 
concept of variable penalty methods is taken from conventional optimization 
methods where several approaches have been developed such as the penalty 
trajectory method (see Murray, 1969), the recursive quadratic programming 
method (see Biggs, 1975) and the sequential quadratic penalty function (see 
Broyden & Attia, 1983). 

Homaifar, Lai and QVs Method. Homaifar et al., 1994 proposed the method 
in which the penalty function has the form: 

K ^ 

(l)(x,r) = /(x)+ Y.^kiGk[gk{^)] (8) 
k=i 

where r̂ / is a variable penalty parameter for the A:-th constraint on the /-th 
level of violation, where / = 1,2,...Z. It is assumed that higher levels of 
violation require larger values of the parameter r̂ /̂. 
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The disadvantage of this method is that for K constraints it is required that 
K coefficients are established on the L different levels and the results of the 
optimization process depend significantly on the choice oir^. It is quite 
likely that for a given problem there exists an optimal set of coefficients for 
which the method gives a good solution but it might be difficult to find them. 
This means that the method is a problem orientated method rather than a 
universal one. 

Joines and Houck's Method. Joines & Houck, 1994 proposed a method 
with dynamic penalties in which the penalty coefficient increases with the 
increasing number of generations. At each Mh generation the evaluation 
function has the form: 

(25(x,/) = / (x ) + (Cx/)« 
^ • P K . f M 1^ K 

/n=7 k=l 
(9) 

where C, a and fi are constant. The method requires fewer coefficients than 
the previous one. Still, as indicated by Joines & Houck the quality of the 
solution is very sensitive to the values of these coefficients. Joines & Houck 
proposed C = 0.5 and a = y5 = 2 as a reasonable choice of these constants. In 

this method the value of the penalty term (C x ẑ )̂  increases constantly along 
with the number of generations. This leads to the situation in which in the 
last few generations infeasible chromosomes obtain death penalty and thus 
the method tends to converge in early generations. 

Michalewicz and Attia's Method. Michalewicz & Attia, 1994 used the 
concept of the sequential quadratic penalty method in which the function, 
which is minimized, has the form: 

^(x,/) = / ( x ) + ^ A ^ A (10) 

where r{t)>0 and A is a vector of all active constraints a],a2,...,ai. 

The variable penalty coefficient r{t), beginning with the starting value 
r(o), decreases in each generation to reach the final assumed value r ( r ) in 
the last generation. The method is very sensitive to the change of the 
coefficient r{t) through the generations and how to settle these changes for a 
particular problem remains an open question. 

Using this method Michalewicz and his co-workers have developed an 
optimization system GENECOP. The results they obtained using this system 
while testing several examples are very promising (see Michalewicz & 
Schoenauer, 1996). 
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Yokota, Gen, Ida and TaguchVs Method. Yakota, et al., 1995 considered 
the following nonlinear programming problem: 

max / (x) 

such that 

g^{x)<b^, m=\,2,...M (11) 

and took the multiplication form of the penalty function: 

^(x) = / ( x H x ) (12) 

The penalty term p(x) is constructed as follows: 

M m=l 

1 ¥.(Ab^{x) 

bm 
(13) 

Ab^{x) = max{0,g^{x)-bj (14) 

where Ab^{x) is the value of violation of the m-th constraint. In this method 
the penalty function is designed with the non-parameterized approach and is 
problem-independent. 

3. A BICRITERION APPROACH TO CONSTRAINED 
OPTIMIZATION PROBLEMS 

This method transforms the constrained function minimization problem to 
the bicriteria optimization problem in the way that the first objective 
function is the sum of violated constraints and the second objective function 
is the one that should be minimized. 

3.1. Problem formulation and transformation 

Let us formulate for convenience once more the nonlinear programming 
problem for single criterion optimization 
Find X* = [xi\ Xj*,..., :̂ N*] which will satisfy the K inequality constraints 

g^(x)>0 for ^ = 7,2,...,^ (15) 

and the M equality constraints 

h^{x) = 0 for m = 1,2,...,M (16) 

and minimize the objective functiony(x) 
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f(x*)=mmf{x) (17) 

The main idea of the proposed method consists in transforming the single 
criterion optimization problem into the bicriteria optimization problem with 
the following objective functions: 

fj{x)= Z | /z^(x^+IG^xg^(x) (18) 
m=] k=l 

/2 (x)= / (x) (19) 

where: 
G]^ is the Heaviside operator such that Gj^ = -1 for gj^ (x) < 0 and 

G,,=0 for g,,{x)>0, 

/ (x) " the objective function that is to be minimized. 
The minimum of/i(x) is known and equals zero. The function/i(x) will 

achieve its minimum for any solution that is in the feasible region. Assuming 
that the weak Pareto solutions are not taken under consideration, after 
solving the above bicriteria problem, the Pareto set can be obtained. From 
this set the first solution gives the global minimum of the minimized 
function (17) and satisfies constraints (15) and (16). The remaining Pareto 
solutions are slightly violated (see the numerical example below, section 3.3) 
which means they are very near to the feasible region. These solutions might 
be very important in the optimization process, especially when sensitivity 
analysis (see Olhoff & Lund, 1995) is to be performed. 

3.2. Method of Solution 

To solve the bicriterion problem formulated above, Pareto set distribution 
method (see Osyczka & Tamura, 1996) was used. The main idea of this 
method is as follows: Within each new generation a set of Pareto solutions is 
found on the basis of two sets: the set of Pareto solutions from a previous 
generation and the set of solutions created by genetic algorithm operations 
within the considered generation. The new set of Pareto solutions, thus 
created is distributed randomly to the next generation for a half of the 
population. There are two possible ways of breeding the remaining half of 
the population: 
Approach 1. By randomly chosen strings from the previous generation, 
Approach 2. By randomly generated strings. 
The graphical illustration of this method is presented in Fig.2. 

The method updates the set of Pareto solutions and then orders this set 
according to the increasing values of the first objective function. This 
ordering plays an important role because in our case the first objective 
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function refers to constraints violation. Thus in the Pareto set the first 
solution will be the least violated solution, whereas, the last solution the 
most violated one. When the real set of Pareto optimal solutions is found, the 
first solution from the set gives zero violation. 

For general applications of the Pareto set distribution method the whole 
set of Pareto optimal solutions has to be found. 
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Fig.2. Graphical illustration of the Pareto set distribution method 

But for the bicriterion approach good results can be obtained when 
the set of Pareto solutions is limited to the solutions that are close to 
the minimum of the first objective function, i.e., the solutions which 
are close to the feasible region. Thus after running each generation the 
set of Pareto solutions, which is remembered and distributed to the 
next generation, is limited to the assumed number of solutions. The 
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best results were obtained when this set is between 10 and 20 
solutions. 

As it was mentioned before to solve a bicriteria optimization problem as 
formulated in (18) and (19), the Pareto set distribution method as described 
above was used. Using this method for the above problem the best results 
were obtained with the following options: 

The Approach 2 for breeding the remaining half of the population. 
Real number representation of the chromosomes. 
Variable point crossover (see Osyczka, 2000). 
Non-uniform mutation (see Michalewicz, 1996). 

3.3. Numerical example 

In order to show the way the method works the following numerical example 
will be considered (Floudas & Pardalos, 1992): 
Minimize 

f[x)=5xi +5^2 +5^3 +5x4 " ^ S ^ / - Z^/ 
i=\ i=5 

subject to 

2^1 + 2x2 + -̂ 10 + -̂ l 1 -10^ 2x| + 2x3 + -̂ lo + -̂ 12 - 1 ̂ ^̂  
2xi+2x3+xii+xi2^10, -8xi + XIQ < 0, -8x2+X| | < 0, 

-8x3 + X|2 ^ 0, -2x4 -X5 + X|Q < 0, -2x5 -X7 + X|| < 0, 

-2x8-X9+xi2<0, 0<x^<l , i = l,2,...,9, 

0<x^<100, i = 10,11,12, 0<xi3<l , 

The problem has 9 linear constraints; the function / (x) is quadratic with its 
global minimum at 

x*=auuui,u33,ij 
where: / (x*) = - 1 5 . 
Six out of nine constraints are active at the global optimum (all except the 
following three: - Sx̂  + X̂ Q < 0, - 8x2 + x̂  ̂  < 0, - 8x3 + x\2 ^ 0). 

Using the bicriteria method the sets of Pareto solutions obtained after 
running 30, 50, 100 and 2000 generations with the population size equal 100 
each are shown in Table 1 and illustrated graphically in Figure 3. The 
example was run under assumption that the set of Pareto solutions stored 
between generations is less or equal to 15 solutions. 

All are ordered according to the increasing value of the first objective 
function. After 30 generations the first solution is in the feasible region but 
the function, which is minimized, is far from the global minimum. Similar 
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results are obtained after running 50 and 100 generations, however, the 
minimized ftinction is closer to the global minimum. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Tal 
generation = 30 
fi(x) 
0.0 

0.0025 
0.3857 
0.4049 
0.5126 
0.8292 
0.9233 
1.3143 
2.2454 
2.4665 
3.0314 
3.0404 
3.5870 
4.4061 
4.4797 

f2(x) 
-8.3343 
-9.0168 
-9.2298 
-9.3399 
-9.5632 
-9.7139 
-10.3139 
-10.9543 
-11.0049 
-11.4977 
-11.7973 
-11.8809 
-12.2400 
-12.3043 
-12.6996 

ble 1. Results oft 
generation = 50 
fi(x) 
0.0 

0.0158 
0.0464 
0.0920 
0.0930 
0.6844 
1.5650 
2.0770 
3.9748 
4.0369 
4.4263 
5.4202 
6.9159 
7.0647 
10.3906 

f2(x) 
-10.5220 
-10.9049 
-11.2853 
-12.0309 
-12.4564 
-13.6639 
-13.7253 
-13.7517 
-13.9124 
-14.0490 
-14.2431 
-14.7359 
-14.9687 
-15.8519 
-16.0907 

tie numerical example. 
generation = 100 
fi(x) 
0.0 

0.0980 
0.1771 
0.6554 
1.0417 
1.2937 
1.8433 
2.2659 
2.6537 
4.3450 
10.1634 
14.4600 
16.5506 
18.9173 
19.3740 

f2(x) 
-13.8610 
-13.9361 
-14.3953 
-14.7565 
-14.7660 
-14.8542 
-14.8840 
-14.9873 
-15.1261 
-15.34.06 
-16.5952 
-17.8367 
-18.1385 
-19.7414 
-20.2950 

generation = 2000 
fi(x) 
0.0 

0.00004 
0.00009 
0.00012 
0.00043 
0.00049 
0.00068 
0.00081 
0.00099 
0.00099 
0.00110 
0.00110 
0.00160 
0.00170 
0.00170 

f2(x) 
-14.9990 
-14.9991 
-14.9993 
-14.9993 
-14.9994 
-14.9996 
-14.9997 
-14.9997 
-14.9997 
-14.9998 
-14.9998 
-14.9998 
-15.0000 
-15.0001 
-15.0001 

Fig. 3. Sets of Pareto solutions for numerical example 

After 2000 generations the first Pareto solution is feasible and gives the 
global minimum of the minimized function. The remaining Pareto solutions 
are slightly violated but they might be very useful in the optimization 
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process. For these solutions the rate of violation of each constraint can be 
analyzed. Note that using the proposed method the set of Pareto solutions 
can be presented to the decision maker after running for example every 50 
generations. The solutions from the generations, w ĥich are close to the last 
generation, might be very interesting for the decision maker. He will know 
what the influence of the constraint's relaxation on the objective function 
value is. 

3.4.Test Cases 

In order to check the efficiency of the bicriteria method four test cases were 
performed. Michalewicz & Schoenauer, 1996 using different GA based 
methods, compared the first four tests. Test cases 2, 3 and 4 were originally 
formulated by Hock & Schitkowski, 1981. 

Test Case #1 

The numerical example from the previous section 3.3 will be considered as 
the Test Case #1. 

Test Case #2 

The problem is to minimize the function: 

f{x) = xi+X2+X2 

where 

1 - 0.0025 '(x4+x^)>0,l- 0.0025 • ^^5 + X7 - x^) > 0, 

l-0.01Y^8-^5y^^0^ X1X6-833.33252x4-100%!+83333.33 >0, 

X2XJ -1250^5 - X2X4 -f 1250^4 > 0, 

100 < xi < 10000, 1000 <jc,< 10000, i = 2,3, 10<Xy<1000, i = 4,5.,.,8. 

The problem has 3 linear and 2 nonlinear constraints; the function y(x) is 
linear and has its global minimum at 

jc* =^579.3167,1359.943,5110.071,182.0174,295.5985,217.9799,286.4162, 

395.5979; 

where /(x*)= 7049.330923 
All six constraints are active at the global optimum. 

Test case #3 

The problem is to minimize the function: 

/ ( X ) = ^ J C I - 1 0 / + 5 Y ^ 2 - 1 2 / + 4 + 3 Y ^ 4 - 1 1 / + 1 0 X | + 7JC| + 
+ X7 - 4x5X7 - 1 0 x 5 - 8x7 
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where: 

127 - 2xf - 3JC2 - ^3 - ^xj - 5x5 > 0 

282 - 2JC| - 3^2 -10^3 - X4 + X5 > 0, 

196 - 23^1 - JC2 - 6x1 - 8x7 > 0 

-10<x^-<10, i = l,2,...J 

The problem has 3 nonlinear constraints; the function Xx) is nonlinear and 
has its global minimum at 

/-r2.330499,1.951372,-0.4775414,4.365726,-0.6244870,1.038131, 

1.594227; 

where /(x*)-680.6300573. 
Two out of four constraints, the first and the fourth, are active at the global 
optimum. 

Test case #4 

The problem is to minimize the function: 

/ ( x ) = xx + X2 + XxX2 - 1 4 x - 1 6 x 2 +(^^3 -10^^ + 4 Y^4 - 5 ^ ^ + 

+ (x^ - 3 / + 2 • (x^ - 1 / + 5x^ + 7 • f ̂ 8 - 1 1 / + 2 • (x^ - l o / + 

Y X 1 0 - 7 / + 4 5 

where: 

105 - Axx - 5x2 + 3x7 - 9x8 ^ 0, 

- lOxj + 8x2 + 17x7 - 2x8 ^ 0, 

8x| - 2x2 ~ -̂̂ 9 + 2x|Q +12 > 0, 

- 3 * ^xi - 2 / - 4. (X2 - 3 / - 2x3 + 7X4120 > 0, 

- 5xx - 8x2 - ('X3 - 6 / + 2x4 + 40 > 0, 

- xf - 2 • ('X2 - 2 / + 2xiX2 - 14x5 + 6x5 > 0, 

- 0 . 5 - r ^ l - 8 / - 2 Y ^ 2 - 4 / - 3 x f + X 6 + 3 0 > 0 , 

3xi - 6x2 -12 • (x^ - 8 / + 7xio ^ 0̂  

- 1 0 < x , < 1 0 , i = l,2,...J0. 

The problem has 3 linear and 5 nonlinear constraints; the function y(x) is 
quadratic and has its global minimum at 

X* = ^2.171996,2.363683,8.773926,5.095984,0.9906548,1.430574,1.321644, 

9.828726,8.280092;, 
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where /(x*)= 24.3062091. 
Six out of eight constraints, except the last two, are active at the global 
optimum. 

These test cases were run for the following data: 
variant I: number of generations = 3500, population size = 100, 
variant II: number of generations = 350, population size = 1000, 

The remaining data for the evolutionary algorithm method are the same for 
both variants: 

length of chromosome = N x computer precision for a double 
number, 
crossover rate = 0.6, 
mutation rate = 0.2, 
range of Pareto solutions =15. 

Ten experiments were carried out for each test case and the results of 
these experiments are presented in the last two columns of Table 2. These 
results were compared with the best results obtained by different methods 
tested by Michalewicz & Schoenauer, 1996. For the test case #1 the same 
results were obtained. For the test cases #2 and #4 much better results were 
obtained for the best, worst and median solutions. For the test case #3 
slightly worse results were obtained using the bicriterion method for the 
best, worst and median results. 

Table 2. Results of the first four test cases 

test#l 

test #2 

test #3 

test #4 

Exact 
optimum 

-15.000 

7049.331 

680.640 

24.306 

best 
worst 

median 

best 
worst 

median 

best 
worst 

median 

best 
worst 

median 

Best results from 
Michalewicz & 

Schonauer(1996) 
- 15.000 
- 15.000 
- 15.000 

Method in Section 3.2.3* 
7377.979 
9652.901 
8206.151 

Method in Section 3.2.3* 
680.642 
680.955 
680.718 

Method in Section 3.2.3* 
25.486 
42.358 
26.905 

Method in Section 3.2.2* 

Bicriterion 
method 

Variant I 
-15.000 
-15.000 
-15.000 

7191.430 
9140.260 
7764.712 

680.681 
681.333 
680.938 

24.611 
27.425 
25.610 

Bicriterion 
method 

Variant II 
- 15.000 
- 15.000 
- 15.000 

7079.875 
7800.337 

7343.7737 

680.688 
681.318 
680.883 

24.749 
26.392 
25.212 

"^The methods describe in Michalewicz and Schoenauer, 1996 

It should be mentioned here that the real advantage of the discussed Pareto 
constrained optimizer is that search direction is unconstrained. All penalty 
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methods have preferred search directions, which may or may not be 
amenable to evolutionary algorithm search. Pareto schemes take their 
solutions from any direction regardless of their feasibility or other 
considerations. 

4. TOURNAMENT SELECTION IN CONSTRAINED 
OPTIMIZATION 

The tournament selection method seems to be a more effective method while 
solving constrained nonlinear programming problems. This selection picks 
up the better solution for the next generation. Thus this selection does not 
depend on the way of scaling the function as well as the kind of the problem 
what is considered. Both maximization and minimization problems are 
treated in the same way because tournament selection will choose a better 
solution in both cases. For a minimization problem, the solution with the 
smaller fitness value is selected and kept in an intermediate population, 
whereas for a maximization problem, the solution with a higher fitness is 
selected. It is also possible to transform a maximization problem to a 
minimization problem using the identity 

max{f(x) ] = -min{-f{x)] (20) 

For the constrained optimization the tournament selection method is less 
sensitive as to the choice of the penalty function. In most cases the constant 
penalty method with a great value of the penalty coefficient will produce 
good results. Kundu & Osyczka, 1996 showed that tournament selection 
gives better results while solving multicriteria constrained optimization 
problems using the distance method. Deb, 1997 used tournament selection in 
his Genetic Adaptive Search method and applied it to solve several 
mechanical design problems, which are also highly constrained problems. 
Recent works by Osyczka et al., 1999 and Zhang & Kim, 1999 indicate that 
tournament selection and ranking selection can give much better results than 
proportional selection. Osyczka et. al., 1999 studied nonlinear programming 
problems and show that tournament selection produces better results than 
proportional selection. Zhang & Kim, 1999 study refers to the machine 
layout design problem and from this study it is clear that ranking selection 
and tournament selection are a better choice than proportional selection. 
Osyczka et. al., 1999 considered the example as presented below. 

Example 1 

Let us consider a fairly complicated nonlinear optimization problem 
provided by Himmelblau, 1972 which was then solved by Gen & Cheng, 
1997 using the genetic algorithm method with proportional selection. 
The optimization problem is: 
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T The vector of decision variables is IL = [x\,X2,X'}^,X/^,x^] 
The objective function is: 

/(x)=5.3578547xf +0.8356891x1X5 +37.293239x1 -40792.141 

The constraints are: 

gl(x) = 85.334407 + 0.0056858x2X5+0.0006262x1^4-0.0022053x3x5 >0 

g2(x)^ 92.0 -(85.334407 + 0.0056858x2X5 + 0.0006262xiX4 -

- 0.0022053x3x5) >o 

g3(x) = 80.51249 + 0.0071317x2X5+0.0029955x1X2+0.0021813x3-

-90 .0>0 
g4(x) = 110.0-(80.51249 + 0.0071317x2X5+0.0029955x1X2 + 

+ 0.0021813xf)>0 

g5(x) ^ 9.300961 + 0.0047026x3X5 + 0.0012547x1x30.0019085x3x4 - 20 > 0 

g6(x) = 25-(9.300961 + 0.0047026x3X5 +0.0012547x1X3 + 

+ 0.0019085x3x4) >o 

Low êr and upper bounds on the decision variables are: 

78<xi<102, 33<X2<45, 27<X3<45, 27<X4<45, 27<X5<45 

For the above problem the tournament selection method was used with the 
same parameters for the evolutionary algorithm as in Gen & Cheng, 1997. 
These parameters are: 

- Length of the string for every decision variable - 19 bits, 
- Crossover rate j ^ ^ = 0.8, 
- Mutation ratepm = 0.088, 
- Penalty parameter r =1000, 
- Population size J= 400, 
- Number of generations T= 200. 

The comparison of the results obtained using different methods, including 
the evolutionary algorithm proportional selection method and the tournament 
selection method is shown in Table 3. 

In this table the first four columns are taken from Gen & Cheng, 1997 and 
the fifth column presents the best results obtained using the tournament 
selection method. This table shows that the tournament selection method 
produces much better results than the other methods. The experiment was 
carried out for ten different initial seeds and in each case a better solution 
than the other solutions in Table 3 were obtained. The worst solution was -
30412.03 and the median was -30502.42. Similarly, better results were 
obtained for other test examples. 
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Table 3. Results of the experiment for the numerical nonlinear programming 
problem. 

Items 

F(x) 
Xi 

X2 

X3 

X4 

X5 

Reference 
Solution 

-30665.5 
78.00 
33.00 

29.995 
45.00 
36.776 

General 
Reduced 
Gradient 
Method 

-30373.950 
78.62 
33.44 
31.07 
44.18 
35.22 

GA Solution by Gen 
& Cheng, 1997 with 

proportional 
selection 

-30182.269 
81.49 
34.09 
31.24 
42.20 
34.37 

The best GA 
solution with 

tournament selection 

-30573.244 
78.30 
33.20 
30.44 
44.91 
35.69 

5. CONSTRAINT TOURNAMENT SELECTION METHOD 

5.1. Constraints and computationally expensive functions. 

Many optimization problems are highly constrained problems with a very 
limited feasible domain. Thus, while running an evolutionary algorithm, 
quite often the first several generations contain only nonfeasible solutions. 
As it was presented in the previous section, the tournament selection method 
may produce better results than the proportional selection method using the 
simple penalty function method. Using most of evolutionary methods we 
waste computing time for evaluation of the objective functions for both 
feasible and nonfeasible chromosomes. Moreover, in quite a large number of 
optimization problems objective functions are computationally expensive. 
Several conventional optimization methods have been developed to solve 
such problems using mainly the experimental design theory (see Kardis & 
Turns, 1984, Schoofs, 1988 and Osyczka et al., 1994). The aim of these 
methods is to reduce the number of function evaluations in the optimization 
process. In this section a tournament selection method very recently 
developed by Osyczka & Krenich, 1999 is discussed. This method is very 
effective while solving highly constrained single criterion optimization 
problems as well as the problems with the computationally expensive 
objective function. The method may also reduce the computation time for 
ordinary nonlinear programming problems as well as produce better results. 

5.2. Description of the method. 

In this method the tournament between two chromosomes is carried out in 
the following way: 

(i) If both chromosomes are not in the feasible region the one which is 
closer to the feasible region is taken to the next generation. The 
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values of the objective function are not calculated for either of 
chromosomes, 

(ii) If one chromosome is in the feasible region and the other one is out 
of the feasible region the one, which is in the feasible region, is taken 
to the next generation. The values of the objective function are not 
calculated for either chromosomes, 

(iii) If both chromosomes are in the feasible region, the values of the 
objective function are calculated for both chromosomes and the one, 
which has a better value of the objective function is taken to the next 
generation. 

The constraint violation function can be evaluated as follows: 

Kx)= Zk(x)f+EGjg^(x)f (21) 

where: G/^ is the Heaveside operator such that Gj^=0 for g^(x)>0 and 

Gk=lfov gk{x)<0. 

It is clear that for the solutions, which are in the feasible region, the value 
of function (21) equals zero and for those, which are out of feasible region, 
the value of ^(x) indicates how far the solutions are from the feasible region. 

In the tournament selection method a comparison between violated solutions 
is made and the one, which is less violated, i.e., which is closer to the 
feasible region, will be chosen to the next generation. 

The steps of the method are as follows: 
Step 1. Set t = \, where t is the index of the generation. 
Step 2. Set y = 1, where j is the index of the chromosome in each 

generation. 

Step 3. Generate an initial population of chromosomes at random 

x-̂ ' = |x|,X2,X3,...,x^J for j=l, 2, ..., J, where J is assumed 

number of chromosomes in each population. 
For the first chromosome from the population calculate / (x ' I 

and *p(x '̂̂ ) and substitute / (x*) =/(X^'^)+'F{X^'^) (the first 
chromosome is treated as the optimal solution). 

Step 4. Select at random chromosomes r and s from the Mh generation. 

Step 5. Calculate ¥^(x '̂̂ ) and ^(x''^). 

Step 6. If !p(x'''^)> 0 and '̂ (x '̂̂ )> 0 go to 7, otherwise go to 8. 

Step 7. If 'F[X''^)< ^(X^'^) go to 15, otherwise go to 16. 

Step 8. If 'F{^''^)> 0 and 'F{X''^)= 0 go to 16, otherwise go to 9. 

Step 9. If 'F{X'''^)= 0 and 'F[X''^)> 0 go to 15, otherwise go to 10. 
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step 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

Calculate /(x'^'^)and /(x"'^). 

If /(x'''^)< /(x^'^) go to 12, otherwise go to 13. 

If fl^''^)< / (x*) substitute x* = x''^ and / (x*) = /(x^'^j and 

go to 14, otherwise go straight to 14. 

If /(x^'^)</(x*) substitutex* = x''^ and / (x*) =/(x^'^) and 

go to 15, otherwise go straight to 15. 
Take the r-th chromosome and place it as the y'-th string in the 

^+1 generation, i.e., substitute x-̂ '̂ "̂  = x^'^, then go to 16. 
Take the ^-th chromosome and place it as they-th string in the 

/+1 generation x-̂ '̂ "*" - x^'\ then go to 16. 
Set J =7+1 and if 7 < J go to 4, otherwise go to 17. J is the 
number of the chromosomes in the population. 
Perform the evolutionary algorithm operations (crossover and 
mutation) on the ^+1 generation. 
Set t = t-^\ and if ^ < T substitute r = 1 and go to 4, otherwise 
terminate calculations. 7" is the assumed number of generations. 

The main idea of the constraint tournament selection method is illustrated 
graphically in Fig.4. 

X2- L 

^ ( X * ' ' ) 

• , 

The feasible domain 

• 
5 

• 
^ 2 

'"A 

• 
6 
¥(x^*)-Ol 

f..̂  
4^(x '̂) • 

f 

Xl 

• # 5 

^(X^'') < ^(X'^') The feasible solution 

1 4 

Fig. 4. The idea of the constraint tournament method. 
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Example 2. 
Let us consider once more the problem from Example 1. The experiments 
were carried out ten times for the constraint tournament selection method, 
simple tournament selection method and proportional selection method. The 
data for this experiment were the same as in Example 1. The results of the 
experiments are shown in Table 4. This table shows clearly that the 
constraint tournament selection method produces best results in the shortest 
computation time. 

Table 4. Comparison of the methods for the numerical nonlinear 
programming problem 

Method of 
solution 

Constraint 
Tournament 

Method 
Simple 

Tournament 
Method 

Proportional 
Method 

Results 
(best, 
worst, 

average) 
-30588,42 
-30423,52 
-30503,82 

-30573.244 
-30412.03 
-30502.42 
-30475,54 
-30301,09 
-30384,76 

Average 
time of 
solving 

[s] 

26 

38 

52 

Average number 
of the objective 
function callings 

109.102 

160.000 

160.000 

Last 
improvement 
on the best 

solution 

180 

159 

309 

6. APPLICATION OF EVOLUTIONARY ALGORITHMS TO 
DESIGN OPTIMIZATION 

Some evolutionary algorithm methods presented above were applied to solve 
real-life design optimization problems two of which are presented below. 
The first problem deals with optimum design of concentric springs, whereas 
the second problem deals with the optimum design of a robot gripper. Both 
of these problems are considered as discrete programming problems. For 
problems like these the use of conventional optimization methods is very 
limited or even impossible. 

6.1 Optimum design of concentric springs 

The problem is to find dimensions of concentric springs, which satisfy 
constraints and minimize the volume of the springs. The scheme of the 
springs is presented in Fig.5. The optimization model was built on the basis 
of formulas from Polish Standard PN-85/M-80701-3, which is based on 
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British Standard BS 1726, German Standard DCvf 2989 and Japanese 
Standard JISB 2704-1978. 

The concentric springs are under repeated loading P within the range 0 
and Pyyi^y.. Both springs are made of the same material. The basic equations 
for these springs are: 
The load on the outer spring 

p,=-^^-p (22) 

The load on the inner spring 

Pw=- • p (23) 

K33---U ^ © ^ 
X7 

Fig. 5. Scheme of the concentric springs. 

The stiffness of the outer spring 

8 • X2 • ^3 

where: G [N/mm^] - shear modulus. 
The stiffness of the inner spring 

(24) 

The shear stress in the outer spring; 

^W 

jprii 

^mz 

= G-

ig ; 

= k 

8 

8 

4 X4 

^5-^6 

•^1-Pz 
3 

71 -Xi 

(25) 

(26) 
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where: A:- Wahl factor that can be approximated very closely by the relation: 

(27) 
4 

+ —• 1 

where: w - index of the spring expressed hy w- — 

The shear stress in the inner spring: 

TV -X^ 
^mw-k.^^-^^ (28) 

where k is calculated using formula (7.30) for w = — 

The variable shear stress amplitudes for the outer and the inner spring are 

r , , = ^ a n d r , , = ^ (29) 

Optimization model 

Decision variables: 

X = [ Xi, ^2 , X3, X45 X5, ^6 , X7] 

where: 
x\ - wire diameter of the outer spring [mm], 
X2 - meancoil diameter of the outer spring [mm], 
X3 - number of active coils of the outer spring [], 
X4 - wire diameter of the inner spring [mm], 
xs - meancoil diameter of the inner spring [mm], 
xe - number of active coils of the inner spring [], 
X7 - length of the spring system [mm]. 

Objective function : 

Volume of both springs 

/ ( x ) - ^ f xi ^|x2X^ + (x7-xif + xl ^lxlxl + (x7-X4f 

^ ( 2 2 \ 
+ — \^1 ^2 + ^ 4 ^ 5 / 

Constraints: 

(i) Shear stress constraint for the outer spring 

+ 
(30) 
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gx{^hsfTaop-k-^^^>0 (31) 

where: r^^^ [N/mm^] - allowable shear stress, 

s f ~ coefficient of allowable changes in shear stress, 

A: - is calculated using formula (7.30) for w = — . 
XI 

(ii) Shear stress constraint for the inner spring 

g^{x)^Sf'Td,p-k'^^-^^>Q (32) 

where: A: - is calculated using formula (7.30) for w- — . 

(iii) Total stiffness of the spring 

g'^{x) = Ac-c- c-
(<j'X\ G-X4 

3 3 
8 • ^2 • ^3 8 • X5 • ^5 

> 0 (33) 

where: 
zlc[N/mm] - allowable deviation of the stiffness of the springs, 
c[N/mm] - required total stiffness of the springs, 

(iv) Clearance between the coils for the outer spring 

g4(x )^X7-^^^^^^^-Xi .X3 . ( l + a ) > 0 (34) 
G'Xx 

where: 
a - coefficient of the clearance, which can be approximated as 
follows: 
for X| < 0.8 : 

ĉ  = / (w) =-0.00003 • >v^+0.0025-w^-0.027 •w +0.1390 (35a) 

forxj >0.8: 

a = /(M;) = -0.00002.w^ + 0.002-w^ + 0.0018-w + 0.0627 (35b) 

where: w = — 
xi 

(v) Clearance between the coils for the inner spring 
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g5(x)^X7 ^^^^^^1^ X4-x^'(l + a)>0 (36) 
G-x^ 

where: 
a is calculated from the formula (7.45a) for X4 < 0.8 or from 

the formula (7.45b) for X4 > 0.8 and w = ^ 
X4 

(vi) Buckling constraint of the outer spring 

/ X 1 0 0 - 8 - X 2 - X v ^ ^ 

G- xj • xi 

where: 
Xn 

X - —^ - spring slendemess ratio, 

^dop - f(^) " Spring allowable flexibility ratio, which can be 

approximated as follows: 

+ 6.448-/l^-12.807-/l2+9.897-1 + 52.444 

(vii) Buckling constraint of the inner spring 

G • X7 • X4 

where: 

/I = —^ - spring slenderness ratio, 
X5 

Tĵ  = /(>t) is calculated using the formula (7.48) for 2 = — 

(viii)Minimal ratio between the meancoil diameter and the wire diameter 
of the inner spring 

g8(x)^X5-3-X4>0 (40) 

(ix) Maximal ratio between the meancoil diameter and the wire diameter 
of the inner spring 

g9(x)^20-X4-X5>0 (41) 

(x) Dependencies between diameters of both springs 
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^loW=^2-^l-fe+^4)^0 

gn(x)=20-Xi-X2>0 

(xii) Maximal outer diameter of the outer spring 

^12W^^^a;c- (^1+^2)^0 

(xiii)Minimal inner diameter of the outer spring 

(xiv) Maximal length of both springs 

(xv) Minimal length of both springs 

(xvi) Minimal safety factors of strength fatigue for the outer spring 

^16(x)- ^ 

/^z-rz-'^az + z ' ^ az "*" ^mz 
2 - Z e 

- - U 3 > 0 (48) 

(xvii) Minimal safety factors of strength fatigue for the inner spring 

1̂7 W = - ^so 

Pw ' Tw ' ^aw "̂  ^mw 
y ^y ) 

-1,33 >o (49) 

(xvii) Difference between the safety factors of strength fatigue of both 
springs 

^18W=^^lim/Y-

/^z-Tz-^az+^m 
2-z,, 

V ^^J 

Pw ' Yw ' '^aw "*" '^m 
2-z„ 

V 'sj 

>0 (50) 

where: 
SFiimit - assumed upper limit of the difference between the 
safety factors of strength fatigue of both springs, 
Zso - alternating tortional fatigue strength, 
Zsj - fluctuating tortional fatigue strength, 
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J^z=[^ + Vz'(^k_z-VJ'/3ps_z - fatigue factor of strength 

concentration for the outer spring, 
J^w = f^ + ̂ w'(^k_w -VJ' J^ps _w - fatigue factor of strength 

concentration for the inner spring, 
where: 

J^ps z ? J^ps w • surface state factors of the outer and 

inner springs, respectively, which can be approximated 
using the formula: 

J3 ps =f{Rr) = 1-154'10-"^+\m 

where: Rf. - tensile strength of the spring material. 

^k z ^ ^k w ' shape factors of the outer and inner 

springs, respectively, which can be approximated using 
the formula: 

aj^ = f{w) = 0.574 • 10""̂  • w"̂  - 0.285 • 10"^ + 

0.05208-w^-0.424-w + 2.452 (51) 

where: w = — for the outer spring, 

w = — for the inner spring. 
X4 

'Hz, Îw - stress concentration factors of the outer and inner 
springs respectively, which can be approximated using 
the formula: 

77 = /(z^^)= 5.0-10"^+0.75 (52) 

Yz? Yz - quantity factors of the outer and inner springs, 
respectively, which can be evaluated as follows: 

for the spring with diameter d<lO Y "̂  1 ? 
for the spring with diameter d>lO using the 
following formula: 

r = f[ak,Zgo,d)=B'log{d)+A (53) 

where: 



Evolutionary Algorithms for Global Optimization 293 

n = / r Z g o , a k ; = 4,2860-10-'^-f2go-500,0; + 
(56) 

0,1038• a^ -0,9265• a^ + 2,693l-aj,-0,5870 

Results of optimization 

The optimization problem formulated above was considered as a discrete 
programming problem with the following arbitrary chosen sets of discrete 
values of the decision variables: 

Xi = {1.0, 1.5,2.0,...,15.0}, 
X2={35.0,40.0,45.0,..., 105.0}, 
X3={5.0, 5.5,6.0, ....,15.0}, 
X4={1.0, 1.5, 2.0,...,15.0}, 
X5={10.0, 15.0, 20.0, ....,80.0}, 
X6={5.0, 5.5, 6.0, ....,15.0}, 
X7={50.0, 60.0, 70.0,..., 200}. 

For the exhaustive search method, which is able to find the global 
minimum of the volume of the springs, these sets require calculations in 
1 959 655 824 points and no one would recommend this method for finding 
the optimum. Other conventional optimization methods may probably fail in 
searching minimum or may be not able to find this minimum in a reasonable 
computation time. 

Data for the optimization process: 

(i) Data for the spring 
- Load P = 1500 [N], 

Spring constant c = 150 [N/mm], 
Allowable deviation of the spring constant Ac = 3 [%], 
Material of the spring - toughened spring steel 5HG for which we 
have: 
• modulus of rigidity G = 82000 [N/mm^], 
. tensile strength i?̂  = 13 00 [N/mm^]. 
From the given tensile strength R^ the remaining strength factors 
are calculated as follows: 

7 

7 

7 . : 

= 0.6 

= 0.6 

= 1.1-

'Rr = 
.7 

7 
^go 

-- 780 [N/mm'], 

= 468 [N/mm^], 

= 858 [N/mm^], 

^dop =0.5-Rr= 650 [N/mm^]. 

Constraints on the dimensions of the concentric springs: 

Dmax = 100 [mm], 

Dmin = 10 [mm], 
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Lmca = 50 [mm], 

^min = 200 [mm]. 

Assumed upper limit of the difference between the safety factors 
of strength fatigue of both springs SFiimit̂ l, 

(ii) Data for the evolutionary algorithm 

population size J = 400, 
number of generations T = 400, 
crossover ralQ pc = 0.4, 
mutation ratepm = OM. 

Three different evolutionary algorithm methods: the constraint tournament 
method, the simple tournament method and the proportional method were 
used for solving this problem. The experiments were carried out several 
times for different initial populations (different initial seeds) with the same 
parameters in each method. The results of experiments are presented in 
Table 5 and Table 6. 

Table 5. The best solution obtained for the concentric springs. 

Items 

f(x) 
Xi 

X2 

X3 

X4 

X5 

X6 

X7 

Constraint 
Tournament 

Method 
10.583-10^ 

6.5 
45 
7.0 
6.5 
20 
5.0 
130 

Simple 
Toumament 

Method 
10.96M0^ 

6.5 
45 
8.5 
5.5 
20 
5.0 
130 

Proportional 
Selection Method 

11.022-10^ 
6.5 
45 
7.5 
6.5 
20 
5.0 
130 

Table 6. Comparison of the methods for the concentric springs. 

Method of 
solution 

Constraint 
Toumament 

Method 
Simple 

Toumament 
Method 

Proportional 
Method 

Average 
time of 
solving 

[s] 

22 

28 

34 

Average number 
of the objective 
function callings 

101.102 

160.000 

160.000 

Last 
improvement 
on the best 

solution 

254 

359 

317 
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From this example it is clear that recently developed evolutionary 
algorithm based constraint tournament selection method is a very effective 
tool in finding the global minimum for highly constrained optimization 
problem. 

6.2. Optimum design of robot gripper 

Let us consider an example of a robot griper the scheme of which is 
presented in Fig. 6. 

mil III! 

Fig.6. The scheme of robot griper mechanism. 

The geometrical dependences of the griper mechanism are (see Fig.7): 

c?- =b^ +g^ -2-b-g-cos{p + (l>), 
2 2 2 / \ 

b =a +g -2' a- g • cos[a-<^), 

(^ = a tan\ 

f 

„ 

Ls^llM 
A D 

1-z 

1 

Fig.7. The geometrical dependences of the griper mechanism. 
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The distribution of the forces is presented in Fig.8 and from this figure we 
have: 

p P 'b 
R'Sin(a-^f5) -b = Fk-c, R = — -cos(a), Fk== sin(a + j3)• cos(a) 

2 2'C 

Fig.8. The distribution of the forces in the mechanism of the griper. 

Using the above formulas the optimization model can be evaluated as 
follows: 

Vector of decision variables 
x = [a, b, c, e,f, I, 5^, where a, b, c, e,f, I are dimensions of the griper 
and ^is the angle between b and c elements of the griper. 

Objective function: difference between the maximum and the minimum 
griping forces for the assumed range of griper ends displacement: 

f(x) = maxFj^(x,z)-mmFj^(x,z) 
z z 

This objective function depends on the vector of decision variables and 
displacement z, thus we have to use a procedure, which makes these function 
computationally expensive. 

From the geometry of the griper the following constraints can be derived: 

( I ) gi(x) = Ymin -yipC, Zmax) > 0 , 

( I I ) g2{x)=y{x,Zmax)>0, 

(III) gs{x)=y{x,0)-Y^a.>Q. 
(IV) g4{x) = Yo-y{x,0)>Q, 
(V) g5{x)^{a+by-f-e'>Q, 
(VI) geix) = (l-Zmaxf + {a-ey -b'>0, 
(VII) gy(x) = l-Z^ax>0, 

where: y(x,z)=2'[e + / + C'Sin{J3+S)\ displacement of the griper ends 
Ymin - minimal dimension of griping object 
Yfnax - maximal dimension of griping object 
YQ - maximal range of the griper ends displacement 
Zmax - maximal displacement of the griper actuator 

The optimization process was carried out using the following data: 
1. The arbitrary chosen discrete values of decision variables: 

a={10, 50,90, 130, 170,210,250}, 
b={10, 50, 90, 130, 170, 210, 250}, 
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c={100, 140, 180, 220, 260, 300}, 
e={0, 10,20,30,40,50}, 
f={10, 50, 90, 130, 170, 210, 250}, 
1={100, 140, 180, 220, 260, 300}, 

71 71 2 5 
5 - { —, — , —-71 , —-71 . 

^ 3 2 3 6 
71} 

7,,, = 50, Y^ax = 100, YG = 150, Z ,^ =50, P = 100 

2. The parameters for GA: 
• Number of generation 7=400 
• Population size J =400 
• Crossover rate R^ = 0,6 
• Mutation rate R^ = 0,08 

• Penalty rate r = 10 

For the above problem the exhaustive search method requires 1810 seconds 
of calculations. The results obtained using the evolutionary algorithm 
methods i.e. constraint tournament selection method, simple tournament 
selection method and proportional selection method are presented in Table 7 
and Table 8. As for the previous example the constraint tournament selection 
method produces the best results considering the computation time and the 
obtained minimum. 

Table 7. The best solution obtained for the robot gripper design problem. 

Item 
s 

f(x) 
A 
B 
C 
E 
F 
L 
8 

Constraint 
Tournament 

Selection Method 
0.568 
250 
210 
300 
30 
50 

220 
2.094 

Simple 
Toumament 

Selection Method 
0.568 
250 
210 
300 
30 
50 

220 
2.094 

Proportional 
Selection Method 

1.358 
250 
210 
220 
10 
50 

260 
2.094 

Table 8. Comparison of the methods for the robot gripper design problem. 

Method of solution 

Constraint Toumament 
Method 

Simple Toumament 
Method 

Proportional Method 

Average time 
of solving 

[s] 

24 

117 

134 

Average number 
of the objective 
function callings 

30.234 

160.000 

160.000 

Last improvement 
on the best solution 

372 

279 

301 
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7. CONCLUSIONS 

In this Chapter the evolutionary algorithm based methods for solving global 
optimization problems are presented. Special attention is devoted to the two 
methods recently developed by the authors: the bicriterion method for 
solving constrained minimization problems and the constraint tournament 
method. The evolutionary algorithm based methods are a new tool for 
solving a wide range of nonlinear programming problems including those 
with integer and discrete decision variables. They simulate natural 
evolutionary processes of living organisms and they can often outperform 
conventional optimization methods used for seeking the global minimum. It 
is difficult to prove that these methods are better than conventional global 
optimization methods, but from the examples presented in this Chapter it is 
clear that these methods are very effective in solving some global 
optimization problems mainly those which are discrete nonlinear 
programming problems. 
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Abstract State-of-the-art global optimization (GO) algorithms are applied to com
putation of 3-D virus reconstructions from solution x-ray scattering data 
by minimizing a weighted least squares error. Starting with random 
uniformly-distributed initial conditions, high quality reconstructions are 
achieved using GO algorithms. Similar quality reconstructions using 
classical multistart require initial conditions that incorporate more de
tailed a priori knowledge which is not always available. The behavior 
of the GO algorithms with respect to the parameterization of the er
ror function and with respect to the accuracy of the quadrature rule 
embedded in the calculation of the regressor are described. Several fu
ture directions in terms of structural biology and GO algorithms are 
discussed. 

!• Introduction 
Determination of three-dimensional structures of viruses is an impor

tant problem in biophysics. In this chapter we pose this reconstruction 
problem as an optimization problem by appropriate mathematical mod
eling of the virus and measurement process. We solve this problem by 
applying global optimization (GO) techniques to determine the values of 
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Figure 1.1. A small subimage from a cryo electron micrograph of the Nudaurelia 
capensis u virus after histogram equalization showing seven particles. 

the parameters in the model and thereby determine the virus structure 
in 3-D. Though other techniques exist, e.g., techniques based on inter
val mathematics [Corliss and Kearfott, 1999], we focus on stochastic 
methods. 

Viruses are of great biological interest in and of themselves, as pathogens 
of plants and animals, and as relatively simple models of more complex 
organisms. There is a large range of virus structures [Chiu et al., 1997]. 
Our work considers the so-called "spherical viruses" which are viruses 
with a shell of protein (the so-called "capsid") surrounding an inner core 
of nucleic acid. The capsid is "crystalline" in the sense that it is con
structed from many repetitions of the same polypeptides and the entire 
capsid is invariant under the rotational symmetries of the icosahedron. 
Typical radii for these viruses are in the range 10^-10'^A. A cryo electron 
micrograph^ showing several virus particles is shown in Figure 1.1. 

The structure of viruses can be determined from x-ray crystal diffrac
tion data, cryo electron microscope images, or x-ray solution scattering 
data. In this chapter we focus on x-ray solution scattering data which is 
the least informative type of data (see below) but which is the only type 
of data that is recorded while the virus particle is in its natural aqueous 
environment and is the type of data that can be recorded most quickly 
(e.g., 50 ms using a synchrotron x-ray source). Therefore this type of 
data has the potential of tracking, in real time, the changes in 3-D virus 
structure that occur during maturation and infection. 
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The reason that solution x-ray scattering data is uninformative is that 
each virus particle is constantly rotating in the aqueous solution essen
tially independently of all of the other virus particles and therefore the 
data is the spherical average of the magnitude-squared of the Fourier 
transform of the electron density in the virus. This is 1-D data even 
though we seek a 3-D reconstruction. Furthermore the resolution range 
of the data is hmited, e.g., less than 0.05A . Therefore, exploiting 
known properties of the virus particle (such as its icosahedral symme
try) and using a simple model with a small number of parameters is 
crucial and we describe results based on 9 or 10 parameters. Because 
of the presence of the icosahedral symmetry and Fourier transforms, we 
make extensive use of so-called "icosahedral harmonics" in our mathe
matical representations of these viruses. Such harmonics are a complete 
orthonormal basis for the subspace of square-integrable functions on the 
sphere. 

Given a mathematical model of the virus particle and data collection 
process, we can compute predicted data for every possible set of param
eter values. Our approach to computing a reconstruction is to determine 
that set of parameter values which minimizes the difference between the 
measured data and the predicted data. We measure this difference by 
the least squares criteria. We regularize the problem indirectly by con
trolling the number of parameters in the model, in particular, the value 
of L in Eq. 1.7. Because the predicted data is a nonhnear function of 
the parameters that describe the virus, this is a nonlinear least squares 
problem. There are also constraints to be considered, e.g., the shell of 
capsid protein must lie outside of the core of nucleic acid. In addition to 
those constraints, we use a priori knowledge of the possible parameter 
values and solve the optimization problem in the corresponding hyper-
cube. Our numerical experiments show that the weighted least squares 
error function^ has many local minima with long and narrow valleys. 
Therefore a GO method is necessary to find the global minimum. 

We have done similar calculations in the past [Zheng et al., 1995] 
using simple multistart ideas. What is attractive to a virologist about 
the GO approach is the possibility of automatic location of the solution 
and the impartial nature of the initial condition algorithms used by 
GO algorithms. These features will be increasingly important when the 
problems are scaled up to handle, for instance, multiple x-ray solution 
scattering curves where different curves were measured with different 
x-ray wavelength and/or originate from solutions of chemically modified 
virus particles where the modification is to introduce a strong point 
scatterer. 
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The cost function and its gradient can be expressed analytically (see 
Section 2) and requires the computation of multidimensional quadra
tures which is expensive. For example, evaluation of the cost with a 
10 X 10 (5 X 5) point Gaussian quadrature takes approximately 2 (0.5) 
minutes on one processor of a Sun Microsystems HPC-3500. We also 
examine the effect of the quadrature rule order on the quahty of the 
solution. This type of nonrandom error has not been much studied in 
GO. 

The remainder of this chapter is organized in the following fashion. Af
ter a description of the virus model and the cost function (Section 2), we 
describe several state-of-the-art optimization algorithms that are tested 
(Section 3) and then the numerical results (Section 4). Finally, we close 
with some discussion in Section 5. 

2. Virus Model and the Cost 
The electron density in most virus particles exhibits some sort of sym

metry [Chiu et al., 1997]. This has the effect of reducing the amount of 
information that must be stored in the virus genome in order to describe 
the virus particle. It is also important in the reconstruction problems 
considered in this chapter because it reduces the number of unknown 
degrees of freedom. We focus on spherical viruses where the global sym
metries (i.e., those symmetries that apply to the entire particle) are the 
60 operations of the icosahedral group which are described in, for in
stance, Zheng and Doerschuk, 1995. Because these operations are all 
rotations and the rotation axes share a common point, we describe the 
electron density in spherical coordinates with the origin placed at the 
intersection of the rotation axes. 

Let / be a square-integrable function from H^ to H. Use spherical 
coordinates (r, ^, 0) in R^. Then / can be expressed as a hnear super
position of spherical harmonics [Jackson, 1975, Eq. 3.53], denoted by 
Yi^rni^i 0) for / 6 {0,1,. . .} and m G {—/,..., - |-/}, where the weights in 
the superposition, denoted by ^/^^(r), are functions of radius and each 
harmonic is a function of the two spherical coordinate angles: 

oo +/ 

l=Om=-l 

For practical computation, the / sum is terminated at some value L. 
The disadvantages of this approach are that there are a large number of 
spherical harmonics (2/ + 1 for each value of /) and, for most choices of 
weights, the resulting linear superposition will have no particular sym-
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metry. Therefore, if symmetry is required, £ts it is in our problem, then 
the symmetry must be described as constraints on the weights. 

Both disadvantages of the approach described in the previous para
graph can be remedied by replacing the spherical harmonics with a basis 
for a subspace of the space spanned by the spherical harmonics, in par
ticular, the subspace of suitably symmetric functions. We employ this 
approach and use the so-called icosahedral harmonics [Zheng and Do-
erschuk, 1996a, Zheng and Doerschuk, 2000] (denoted by T/^^(^, </>) for 
/ G {0,1,. . .} and n G { 0 , 1 , . . . , A// — 1}) as the basis functions for the 
subspace of icosahedrally-symmetric functions. (See the citations for the 
value of Ni^ which is far smaller than the 2/ -t-1 occurring with spherical 
harmonics). There are a variety of ways to define the icosahedral har
monics. As described in the references, we define T/̂ ^ to be a real-valued 
linear combination of Ŷ ^̂  with mG {—/,...,/}: 

m=—l 

where recursions for the weights bi^n,m are given in the references. The 
number of icosahedral harmonics of a particular / (i.e., Ni) is 0 for 

/ G {1, 2,3,4, 5,7,8,9,11,13,14,17,19,23,29}, 

since there are no linear combinations of Yi^^{6^ cf)) that have icosahedral 
symmetry, and 1 for 

/ G {0,6,10,12,15,16,18, 20, 21, 22, 24, 25, 26,27, 28}. 

For / > 30 the number of icosahedral harmonics of a particular / (i.e., 
Ni) is at least 1 (i.e., Ni > 1). The lowest order [i.e., (/,n) = (0,0)] 
icosahedral harmonic is a constant: TQ^O{6^(J)) = l/\/47r. Plots of the 
next three lowest order icosahedral harmonics [i.e., (/, n) — (6,0), (10,0), 
or (12,0)] are shown in Figure 1.2. 

The most general icosahedrally-symmetric object, written in spherical 
coordinates, is 

P W = E T. Anir)Tl,niO,cP), (1.1) 
/=0 n=0 

where ^^,n(^) are unspecified coefficient functions. We use the most 
simple standard physical model: the scattered field, denoted by P(k), 
is the Fourier transform of p(x) and the solution scattering, denoted by 
/(fc), is the spherical average of the magnitude-squared of P(k): 
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nfii0,cp) 10,0 (^,<^) Ti2,o{0,4>) 
Figure 1.2. Icosahedral harmonics. For each value of 0 and 0 the distance of the 
surface from the origin is ci,n + Ti^n{0,(l)) where ci^n = 2maxe,4>{\Ti,n{0,^)\). The 
icosahedral symmetry axes are located as shown in Figure 1.4(a). 

m = ^/|p(k)|2dfi' (1.3) 

where / dJl' denotes integration over solid angles in Fourier space [k — 
{k^O'^cj)')] which, in spherical coordinates, is L7^QJQ,^Q smO'dO'dcj)^. Us
ing Eq. 1.1 in Eqs. 1.2 and 1.3 we find that 

oo Ni-l 

m = j-Y.Y.<n{k) 47r 

where ai^rn{k) is the spherical Hankel transform of ^/^^(r), i.e., 

(1.4) 

- / 
TT Jo 

Ai,m{'^)jl{kr)r'^dr, (1.5) 

The importance of the 3-D Fourier transform is the reason we emphasize 
harmonic functions. 

It would be desirable if I{k) uniquely determined />(x). However, 
this is not true. In particular, if p is an electron density with solution 
scattering intensity / then p'(x) = p( -x) is a second electron density 
which is not related to p by an operation from the icosahedral group and 
which also has solution scattering intensity / . 

We desire the mathematical model of the viral electron density to 
incorporate the information that is known about the viral particle in
dependent of the solution scattering data. The information we have 
focused on is the icosahedral symmetry of the particle; the finite size 
of the particle (typically p{x.) = 0 for |x| > i?+ or, for empty particles, 
yo(x) = 0 for |x| < i?_ and |x| > R^)^ which is often called a support 
constraint; the fact that the electron density is real; and the fact that 
the electron density is positive (i.e., p{x.) > 0 for all x), which is often 
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called a positivity constraint. For the model described in this chapter, 
all four properties can be exactly enforced in a practical way. 

We have considered a variety of mathematical models for the electron 
density of spherical virus particles [Zheng and Doerschuk, 1998, Zheng 
and Doerschuk, 1996b, Zheng et a l , 1995] but here we focus on gen
eralizations of the piecewise constant "Envelope" model [Zheng et al., 
1995], because of the strong nonlinearities present in that model. In the 
Envelope model there are / concentric shells with different electron den
sities which are constant throughout a shell and the mathematical model 
focuses on the boundaries (called "envelopes") between the shells. The 
interpretation of a simple two-shell model is that the inner shell (which 
extends into the origin) is the nucleic acid coding the genes of the virus 
and the outer shell is the protein capsid that protects the nucleic acid, 
recognizes a new host cell, and achieves appropriate entry of the nucleic 
acid into the new host cell thereby infecting the new host cell. 

The shells are restricted to sets that are star-shaped at the origin [ 
Gardner, 1995, Section 0.7, pp. 18-20] and so the boundaries can be de
scribed by the distance of the boundary from the origin at a particular 
(^, 0). Therefore overhanging regions on the surface of the virus particle 
and voids within the virus particle are not allowed. These restrictions im
ply that this model is only appropriate for low spatial resolution studies, 
which is exactly the situation that occurs with solution x-ray scatter
ing. These angularly-dependent distances are denoted by the functions 
7(*)(^, (f)) (z G {0 , . . . , /}) , which must have icosahedral symmetry if the 
particle is to have icosahedral symmetry, and the electron densities are 
denoted by pi (z E {0 , . . . , /}) . The electron density is 

7 (^ - i ) (^ ,0 )<r<7«(e , ( / ) ) 
7(^)(^,(/)) < r p(-)={'.'• w:r:-z'^''"''' • d-") 

While the 7^^ (̂̂ , (f)) functions could be arbitrary icosahedrally-symmetric 
functions, for numerical computation we describe them as finite sums of 
icosahedral harmonics: 

^(i)(^^ ^) ^ I Ef=0 E n i o ' 7 f > ^ n ( e , <P) i e {1, . . . , / } _ (^7) 

When using this model, computing a 3-D structure for the virus particle 
based on the data is the same as estimating the real-valued parameters 

(i) 
pi and "Yi^ from the data. 

Let cj be a vector containing all of the parameters. For any mathe
matical model and value of cj, Eqs. 1.1-1.5 imply a predicted scattering 
that we denote by /(fc; cj). Let I{k) denote the measured scattering. 
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A general approach to determining the parameters is to minimize, 
perhaps with constraints, a cost function J, which is a function of u) and 
which is the sum of two terms denoted by Ji and J2. The first term mea
sures the difference between I{k) and I{k]uj) for a proposed value of ou. 
The second term, often called a "regularizer", measures the desirability 
of a proposed value oiu. In a maximum a posteriori estimation interpre
tation, the first term would be the logarithm of the probability density 
function (pdf) of the data conditional on the parameters and the second 
term would be the logarithm of the a priori pdf of the parameters. 

We take a weighted least squares approach so that the first term is 

Jiiuj) = J2i^{k)-I(k;Lu)]^w{k) (1.8) 
k 

where w{k) = k^ with a typically near 8. This choice of weight w(k) with 
a = 8 is the inverse of the asymptotic behavior of [I{k]uj)]'^ for large k 
and so leads to equal weighing across the entire range of scattering angles 
k. While least squares could be interpreted as a Gaussian measurement 
model, this is probably not realistic. For instance, the standard deviation 
in a Gaussian model should probably be proportional to the data, which 
(see, e.g.. Fig. 1.4) varies much more rapidly than l/y/w{k). 

We use an extensive set of constraints. In particular, we require 

^^'-'H9„4>,)<j(^He„4>,) (1.9) 

for i G { 1 , . . . , / } where {6q^ (j)q) are all of the abscissas in the quadrature 
rule required to approximately evaluate the integration hidden in the 
calculation of I{k;Lj) (see Eqs. A.4-A.5). In addition, we require that 
p ^ > O f o r i G { 1 , . . . , / } . 

We note that there are many aspects of biological knowledge that are 
not incorporated into our model, cost, or constraints. Such knowledge 
could be incorporated into the regularizer J2, but here we use J2 = 0. 
One reason for this choice is the great difficulty in selecting and weight
ing such knowledge, especially given the highly nonlinear nature of the 
optimization problem. Another reason is that we seek a compromise 
between automatic and expert-aided analysis. Hence, instead of com
puting the global minimum of J and declaring that value of uj as "the 
answer", we compute the global minimum and a set of local minima 
with low cost function values, and present the set of UJ values (or actu
ally various images of p(x)) to virologist collaborators and ask them to 
make a selection. 

Eqs. 1.1-1.8 completely define the cost function. However there are 
two pairs of parameterizations that merit discussion. The first pair con
cerns the method used to describe the piecewise constant regions. Define 
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sW(x) = 1 for 7(*-i)(6',0) < r < -f'^'\d,<j)) and = 0 otherwise. Then, 
p(x) = E ( = I Pis«(x). Define iW(x) = 1 for 0 < r < 'ji^iO, <f>) and = 0 
otherwise. Assume that ^^'^\e,(f)) < -f^'^\9,(t)) < • • • < -f^^\0,<l)) for all 
{9, (j)), which is what we enforce, at least at the quadrature abscissas, by 
our constraint. Then, 

Therefore we could use either pi or Si = pi — Y^ii=i^i pi' as parameters 

along with 7]̂ ^̂ . Use of pi requires a 1-D numerical quadrature from 

k-f^'-^\e,(t)) to k-i^'\9,(t)) (see Eqs. A.4 A.5, and A.6) while use of 5i 
requires a similar quadrature from 0 to k^^'^'\9^(j)). Directly computing 
the quadratures required by 5i is an unfavorable option since the region 
of integration is larger than the region required for pi. However, since 
the larger quadrature region required by 5i can be assembled from the 
smaller regions required by pi at the cost of some bookkeeping, the two 
approaches can be made equivalent and we have used pi in order to 
minimize the bookkeeping while at the same time minimizing the size of 
the total quadrature region. 

The second pair of parameterizations concerns the method used to 
describe the electron density. We focus on pi rather than 5i since 
they are essentially equivalent. Instead of using pi we could select a 
particular shell, number /̂ , and define g and Vti by pi = gQi [i G 
{!,. . . , /}) and Vt^ — 1. Then the parameter vector would he u — 
(p, f i i , . . . , fi/^_i, fi/^-^i,..., O/, 7/^). Because g linearly scales p(x) it 

follows that g linearly scales P(k) and g'^ linearly scales I(k]uj). There
fore, because we minimize a weighted least squares cost, we can sym
bolically determine the optimal value of g'^ and substitute that value 
back into the cost to get a reduced cost that is a function only of 
uj' — ( r i i , . . . , ri/^_i, $1,^+1,..., ri/, 7/^). This is a special case of separa
ble nonhnear least squares [Golub and Pereyra, 1973, Kaufman, 1975]. 
Two attractive aspects of using Ui as parameters are that the dimen
sion of the parameter space is reduced by one and at every step of an 
iterative GO algorithm, the prediction I{k]u') is reasonably scaled to 
the data I{k). An unattractive aspect is that the cost function becomes 
even more nonlinear (compare the more complicated Eqs. A.7 and A.8 
with Eqs. A.l and A.2). In particular, the cost function is no longer 
of a least-squares type which implies that the large body of special
ized algorithms for least squares (e.g., [Bjorck, 1996]) cannot be applied. 
In our numerical experiments, we have considered both uj = {Pi^in) 
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and u' — ( J l i , . . . , ri/^_i, Jl^-fi,. . . , fi/, ^yil). We refer to the cost as the 
"scaled cost" when using u' and the "unsealed cost" when using u. 

The nonintersection constraint on the envelopes (Relation 1.9) does 
not imply that the parameter space is compact. Therefore the param
eter space is further restricted to a hypercube. The dimensions of the 
hypercube depend on the specific virus and are described in Section 4. 

3. Optimization Algorithms 
We employ four state-of-the-art GO algorithms which represent a 

range of different approaches to the problem, along with the classical 
multistart technique. This set of algorithms, however, does not include 
all techniques of current interest. For instance, we have not applied 
algorithms based on interval mathematics [Corliss and Kearfott, 1999]. 
The algorithms are 

1 ASA 18.2 by L. Ingber, a simulated annealing algorithm, which 
uses adaptive temperature schedules (both for cost and each pa
rameter) [Ingber, 1993]^; 

2 DIFFEVOL 3.6, a heuristic genetic type of algorithm, which cre
ates new points by adding the difference of two points to a third 
point [Storn and Price, 1995]^; 

3 GENESIS 5.0, a genetic algorithm by John J. Grefenstette [Grefen-
stette, 1986]^ 

4 GLOBAL, a derivative free implementation by T. Csendes of the 
clustering algorithm of Boender, Rinnooy Kan, Stougie, and Tim-
mer [Boender et al., 1982, Csendes, 1985]^; and 

5 MULTISTART [Zhigljavsky, 1991]. 

For the first four algorithms we used the suggested or default values 
for all parameters and generation of the initial point or population was 
performed by the algorithm using its standard approach. 

For MULTISTART we used Levenberg-Marquardt [Marquardt, 1963] 
local search applied to pseudo-random initial points uniformly distributed 
over the feasible set determined by the nonintersection constraint (Re
lation 1.9) and the hypercube constraint (Relation 1.10 or 1.11). We 
considered 50 initial points. The algorithm for selection of these points 
is based on rejection. Let / be the cost and Xn G K^ be the nth pa
rameter vector. A local search was stopped when any of the following 
occur. 
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1 The change in the function value is small: \f{xn) — / (x^- i ) < 

2 The/i norm of the gradient is small: Td=i \[V f {xn)]i\ < 10-^f{xn). 

3 Xn exits the feasible set which can occur since the Levenberg-
Marquardt algorithm solves the unconstrained optimization prob
lem. By terminating the search when Xn exits the feasible set we 
are doing a random projection back inside of the feasible set. 

4 The number of iterations exceeds a limit no which we take as no = 
100 and which, for our cost functions, is only infrequently reached. 

The impartial nature of the initial conditions is important to the bi
ological interpretation of the results and so we enumerate the methods 
that are used in each of the algorithms: 

1 ASA: the initial condition is a random sample that comes from a 
uniform distribution over the feasible set. 

2 DIFFEVOL and GLOBAL: the initial population is a set of inde
pendent random samples that come from a uniform distribution 
over the hypercube (Relation LIO or L l l ) . Therefore, some of 
the initial population will violate the nonintersection constraint 
(Relation 1.9) but, as described in Section 4, we have chosen the 
hypercube in a way that less than 10% of the points will violate 
the nonintersection constraint. 

3 GENESIS: the initial population is a set of independent random 
samples which are vectors of 32 independent random bits, each tak
ing values 0 and 1 with equal probability. These bit strings code 
uniform scalar quantizations of each component of the parameter 
over the allowed range of the parameter which is an interval since 
only the hypercube constraint (Relation 1.10 or 1.11) is consid
ered. This implies, ignoring the quantization, that the samples are 
uniformly distributed over the hypercube. Therefore, as with DIF
FEVOL and GLOBAL, some of the initial population will violate 
the nonintersection constraint (Relation 1.9). 

4 MULTISTART: the situation was described above. 

The sequence of points or populations of points may or may not re
main in the feasible set for different algorithms. The feasible set is 
the intersection of the nonintersection constraint (Relation 1.9) and the 
hypercube (Relation 1.10 or 1.11) and we consider these two sets sep
arately. With regard to the hypercube, ASA, GENESIS, and MULTI-
START guarantee that all points or populations of points remain within 
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the hypercube but GLOBAL and DIFFEVOL allow points outside of 
the hypercube (see, e.g., the negative pi values in Table LI). With 
regard to the nonintersection constraint, ASA provides a Boolean func
tion for implementing a constraint, i.e., if the proposed point is feasible 
then the function returns TRUE and if infeasible then the function re
turns FALSE. This was used to ensure that all points satisfy the non-
intersection constraint. Similarly, in MULTISTART all points satisfy 
the nonintersection constraint. In the other programs, which lacked a 
feature analogous to the Boolean function in ASA, the nonintersection 
constraint was implemented by returning a cost that was 1 unit greater 
than the maximum cost value found so far. Therefore, while some mem
bers of the population might violate the nonintersection constraint, it 
is highly likely that at least the minimum cost member will satisfy the 
nonintersection constraint. 

Only GLOBAL has a statistical stopping condition, which stops when 
global sampling does not produce new clusters or local searches from un-
clustered points do not generate a new local minimum. For the other 
algorithms, it was necessary to fix a reasonable maximum number of 
function evaluations, and for consistency all algorithms were treated in 
the same way. Also, MULTISTART runs its local searches to conver
gence and provides a precise location of the local minimum and evalua
tion of its cost. For the other algorithms, we therefore follow GO with 
a local search using the Levenberg-Marquardt algorithm starting from 
the best member of the population. 

4. Numerical Experiments 
All of our numerical experiments concern models with two shells (i.e., 

1 = 2) where the inner shell represents the nucleic acid core and the 
outer shell represents the protein capsid. The data is an experimental 
solution x-ray scattering curve from empty capsids of cowpea mosaic 
virus (CpMV) [Chen et al., 1990], whose electron density has been solved 
at near atomic resolution based on x-ray crystal diff'raction studies and 
fit with an atomic model [Chen et al., 1990]. The range of the data is 
from k = 0.004279A~^ to k = 0.020853A"\ The number of samples 
over this range is 156 and the data is subsampled by a factor of 3 to 
speed the computation. Because the data is low resolution, only a low 
resolution reconstruction can be computed. In particular, the expansion 
of the envelopes (i.e., 7^^ (̂̂ , (/>)) uses only the icosahedral harmonics TQ^O, 
^6,0) ^10,0? and ri2,o which are the four lowest order harmonics. (Note 
that there are no harmonics of order / G {1-5, 7-9, 11, 13, 14, 17, 19, 
23, 29} and there is at most one harmonic, that is, Ni = 1^ for all orders 
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/ < 30). Therefore there are eight 7̂ ^̂^ parameters (since there are two 
envelopes) plus two pi parameters (since there are two shells) for a total 
of ten parameters for the first parameterization and nine parameters 
for the second parameterization. In all calculations, the least-squares 
weighting function w{k) is w{k) = k^. 

The nonintersection constraint on the envelopes (Relation 1.9) does 
not imply that the parameter space is compact. Therefore the parameter 
space is further restricted to a hypercube. For the first parameterization 
the hypercube is 

300<7ĵ (j <450, 400<7J5J <600 
-100<7/o)<100, -100<7f5<100 for / G {6,10,12} • (1-10) 

0< pi <10, 0< p2 <10 

For the second parameterization we have always used AC = 2 and a hy-
(i) 

percube that is the same as Relation 1.10 in the 7̂ ^̂  coordinates but 
with the Pi coordinates replaced by 

0 < f ] i < 100. (1.11) 

The dimensions of the hypercube have the following motivation. Since 
jYi^rn{0,(l))dn = J/,o^m,oV^it follows that /T/,n(6>,(^)df7 = 5/,o^n,o\/47r 

and therefore that J^^'\e, (/!))df7 = -folV^. Therefore, 7JJ is I/X/ITT ^ 
.28 times the average radius of the ith envelope and these radii can be es-

(i) 

timated from other data, e.g., electron microscopy images. Because 7̂ ^̂  
control the average radii of the envelopes, they have a strong interaction 
with the nonintersection constraint and a poor choice of the hypercube 
dimensions in these variables, e.g., increased overlap in the allowed range 
of 7o'o 

and 7Q̂ d, leads to rejection of most uniformly sampled points in 
the hypercube by the nonintersection constraint. Efficiency of all of 
the genetic algorithms depended on whether the initial population con
tained enough feasible points. This was ensured by careful choice of the 
hypercube such that at least 90% of the initial points in the hypercube 
(Relation 1.10 or 1.11) satisfied the nonintersection constraint (Relation 
1.9). 

Each panel of Fig. 1.3 shows a plane through the scaled cost function 
demonstrating the nonconvexity of the cost function (the unsealed cost 
function is also nonconvex). The unsealed cost function has a very large 
dynamic range (around 10~^ — lO-̂ "̂ ) and is very sensitive to the values 
pi and p2. The scaled cost has a much smaller dynamic range (about 
10""̂  —10^). It can be shown that the scaled cost function has at least as 
many local minima as the unsealed cost function, but also has one less 
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(a) (b) 
Figure 1.3. The scaled cost function, computed using a 10 x 10 quadrature rule, 
evaluated on two planes in parameter space demonstrating the nonconvexity of the 
cost function. For Panel (a) the plane is defined by the local minima found by local 
search from a starting point provided by GLOBAL (scaled cost, 10 x 10 quadrature 
rule, automatic termination around 16000 function evaluations), ASA (scaled cost, 
5 x 5 quadrature rule, 5000 function evaluations), and GLOBAL (scaled cost, 10 x 10 
quadrature rule, 5000 function evaluations) while for Panel (b) the same first two 
points were used but the third was replace by ASA (scaled cost, 10 x 10 quadrature 
rule, 5000 function evaluations). 

parameter. To aid in interpreting our results, Fig. 1.4 shows data and 
models computed from atomic resolution 3-D structure based on x-ray 
crystal diffraction data. All 3-D figures which appear in our results are 
shown with the virus positioned so that the icosahedral symmetry axes 
have the locations shown in Fig. 1.4(a). In Fig. 1.4 (c)-(d) we show en
velope models computed from the atomic resolution 3-D structure. The 
envelopes have the same number of 7̂ ^̂  coefficients as are used in all of 
the other calculations in this chapter and therefore have resolution far 
less than atomic resolution. The underlying atomic resolution structure 
is regarded as the "gold standard" and therefore these envelopes are as 
close as we can come to knowing the truth for this reconstruction prob
lem. Fig. 1.4(b) shows the predicted x-ray solution scattering computed 
from the envelopes shown in Fig. 1.4(c)-(d) and the experimental curve. 
Note that the two are somewhat different. The difference is attributed 
to the preprocessing of the experimental curve, unmodeled physics in 
the scattering process and the x-ray detector, and failures of the enve
lope model to precisely represent the complexity of the virus structure 
(as described in Section 2). Note also that the x-ray scattering curve 
and the envelopes associated with the (unknown) global minimum of 
the cost function need not coincide with the curves and envelopes in 
Fig. 1.4(b)-(d). 
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(c) (d) 
Figure 1,4- Results based on the atomic resolution model of CpMV. Panel (a): An 
icosahedron in the standard orientation used in all images in this chapter. One sym
metry axis of each type—2-, 3-, and 5-fold—is shown. Panel (b): The experimental 
and computed solution scattering curves. Panels (c) and (d): Inner [(c)] and outer 
[(d)] envelopes. The computed solution scattering curves and both envelopes are 
based on envelopes computed from the atomic resolution structure. Each envelope 
is individually scaled to fit the available space which makes it appear that the inner 
envelope is too large to fit inside of the outer envelope. 
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The five GO optimization algorithms were apphed to the unsealed 
and scaled cost functions, with high (10 x 10) and low (5 x 5) order 
quadrature rules. The low order quadrature results in less expensive cost 
function evaluation than the high order quadrature (about 0.5 minute 
compared with 2 minutes on a Sun HPC-3500), but introduces more ap
proximation error. The algorithms were compared after 5000 function 
evaluations followed by a local search performed using the Levenberg-
Marquardt algorithm from the best member of the terminal population. 
When performing the local search we always used a 10 x 10 quadrature 
rule (even if local search in the GO algorithm used a 5 x 5 quadrature 
rule). None of the algorithms' performance improved significantly with 
more than 5000 function evaluations, and the subsequent local search 
almost never required more than 200 function and gradient evaluations 
to converge to a local minimum (only 10 — 20 function evaluations were 
usually needed for the latter). MULTISTART with 50 initial search 
points was roughly equivalent in computation to 5000 function evalu
ations. Table 1.1 shows the local minimum locations and cost values 
(after local search). From the table it is seen that for the unsealed cost 
ASA performed the best with a function value of 0.02076, while for the 
scaled cost GLOBAL was best with a function value of 0.01051. Gen
erally, the performance of the algorithms was better on the scaled cost, 
and with the higher order quadrature rule (in either case the algorithms 
found diff'erent local minima). 

Additional information about the GO algorithms can be obtained 
from a learning curve. The learning curve l{n) is defined to be the 
smallest cost found at all iterations less than or equal to n, and over all 
population members (in some algorithms, such as ASA, there is only one 
population member). For MULTISTART this is not a natural definition 
because the local searches from different initial search points have no 
natural order. Therefore in this case we concatenate the local searches 
for a random permutation of initial search points, and then average over 
the permutations. In our numerical results there are 50 initial search 
points, so we were unable to compute the average over all permutations 
and instead we replaced it by an average over 10,000 randomly chosen 
permutations. Fig. 1.5 shows some learning curves where time is mea
sured in units of function evaluations rather than iterations so that the 
different algorithms can be fairly compared. The algorithms were run 
for a total of 5000 function evaluations, with local searches performed 
using the Levenberg-Marquardt algorithm from the best member of the 
population at 500 and multiples of 1000 function evaluations (the ter
minal point of these learning curves is the data in Table 1.1). When 
performing the local searches we always used a 10 x 10 quadrature rule 
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Table 1.1. Local minimum locations and cost values. The alorithms are "XY" where 
the values of "X" and their meanings are A-ASA, D-DIFFEVOL, Gl-GLOBAL, 
Ge-GENESIS, and M=MULTISTART and the values of "Y" are the order of the 
quadrature rules ( 1 0 x 1 0 or 5 x 5 ) . 

Unsealed Alg. 7̂ ^̂ ] 7̂ ^̂ ] 7̂ ô o 7$2!o Pi Cost 
(2) (2) (2) (2) 

7o,o 76,0 7io,o 7i2,o P2 cost 
AlO 372.5 15.80 -11.70 10.61 0.000232 

484.1 26.13 -3.245 -4.791 0.004937 
A5 372.7 17.82 

486.5 20.54 
-16.39 
-3.741 

6.611 
-3.386 

0.000205 
0.004883 

0.02286 

0.02076 

DIO 117.5 -14.59 
480.3 -26.95 

30.13 
70.78 

-22.50 
-6.976 

0.02735 
0.003110 

2.873 

D5 185.9 -10.22 
539.8 -71.50 

17.14 
-48.36 

8.531 
35.99 

-0.02068 33.49 
0.003991 

GelO 384.0 -6.621 -17.61 6.701 0.006731 
575.8 21.41 -40.93 -39.24 0.004905 

Ge5 310.8 
549.9 

-7.672 
6.789 

-2.747 
7.178 

-15.29 
35.82 

0.01030 
0.000239 

2.133 

5.765 

GllO 354.9 -40.60 -39.09 -36.03 0.000671 
535.3 83.98 30.19 79.13 -0.003497 

G15 444.5 65.58 
458.8 68.67 

2.958 
8.521 

63.58 
61.91 

-0.002269 
-0.02666 

0.7052 

2.850 

MIO 360.2-29.32 -25.22 -30.24 0.0002 
558.2 76.10 24.59 69.07 0.0036 

M5 378.5-36.54 -15.76 -31.57 0.002060 
514.3 3.617-20.69 4.189 0.004990 

0.8157 

2.304 

Scaled 
cost 

Alg. 7o,o 
(2) 

7o,o 

76,0 

76,0 

7io,o 
(2J 

7io,o 
7l2,0 

(2) 
7l2,0 

Hi Cost 

AlO 374.2 
487.1 

A5 377.5 
485.9 

DIO 374.8 
486.5 

D5 380.2 
486.0 

GelO 379.8 
487.4 

Ge5 379.8 
487.6 

GllO 376.7 
488.0 

G15 374.2 
487.8 

MIO 322.2 
589.4 

-14.90 
-24.91 
12.12 
19.82 
-6.894 

-16.19 
-15.08 
-20.29 
-14.11 
12.07 

-14.19 
12.07 
-2.938 

-13.54 
-13.54 
-22.28 
-60.50 
-48.41 

7.534 
5.916 

-16.54 
-8.463 
16.68 
10.74 
-3.125 
11.34 
0.2384 
7.372 
0.2804 
7.429 

11.48 
15.88 
10.90 
9.711 

39.72 
73.63 

10.96 
-2.637 
3.165 

-0.4666 
-15.45 

-7.794 
-10.15 

1.427 
-5.559 
13.12 
-5.696 
13.05 
3.965 
0.9524 

9.993 

9.948 

12.94 

11.94 

8.764 

8.754 

12.72 

-0.3923 13.78 
-4.936 

-32.94 
-53.85 

56.55 

0.01087 

0.01994 

0.02739 

0.04351 

0.08300 

0.08373 

0.01051 

0.01485 

0.9184 

M5 310.7 
508.1 

13.59 
84.95 

-90.24 
51.57 

16.72 
87.38 

76.01 3.699 
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Figure 1.5. Learning curves, i.e., cost as a function of function evaluation number, 
for each of the five algorithms. Curves are given only for the 10 x 10 quadrature rule 
since the performance with the 5 x 5 rule was poor. Separate curves are given for the 
two parameterizations. As described in the text, the vertical lines show the decrease 
in cost achieved with a local search at that iteration of the algorithm. 
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(even if local search in the GO algorithm used a 5 x 5 quadrature rule). 
The cost at the local minimum is often substantially reduced from the 
cost at the starting vector, and is shown in the learning curve plots 
as a vertical line segment where the bottom (top) is the cost at the 
local minimum (starting vector). Since all five learning curves are plot
ted together we offset these line segments in function evaluation count 
("time") so that they do not overlap: for ASA, DIFFEVOL, GENESIS, 
and GLOBAL the line segment trails by 0, -60, -h60, and -120 function 
evaluations (in the case of MULTISTART there is no line segment since 
additional local search is not performed as it runs its own local search 
to convergence). The apparent absence of a line segment is due to the 
negligible difference between the cost before and after the local search 
was performed. From the figures it is seen that local searches improved 
ASA performance significantly more than GLOBAL, which already per
forms some local search. Also, note that although MULTISTART has 
amongst the steepest learning curves, all the algorithms outperformed 
MULTISTART when local searches were applied. 

As discussed in Section 1, our cost criteria do not nearly capture all of 
a virologist's knowledge concerning the structure of viruses. In particu
lar, recall that we have no regularizing term but only a term measuring 
the fit of the predicted data to the experimental data in the least squares 
sense. Therefore some local minima, even minima with low cost values, 
will be biologically unacceptable. In particular, there are two common 
problems. One is that the curvature of the virus surface is to great. 
The second is that quasi-symmetry [Chiu et al., 1997] is violated. Un
like the icosahedral symmetry, which applies exactly and globally (i.e., 
to the entire particle), quasi symmetries apply approximately and lo
cally. Based on information such as the number of protein subunits 
that are contained in a single virus capsid, it is expected that CpMV 
would have so-called T = 3 quasi symmetry which means that each 3 
fold axis of the icosahedral symmetry is approximately a 6 fold axis. 
Clearly both of these biological ideas could be added to the cost as a 
regularizer (though the weight to apply to regularization versus fitting 
the experimental data is not clear). However, instead of further com
plexifying the cost function, we prefer to find these local minima and 
reject them manually in concert with an expert virologist. In addition, 
for some local minima, the predicted and experimental scattering curves 
are very diff̂ erent which implies that such a local minimum is biological 
unacceptable. Unacceptabihty in this sense is generally refiected in a 
high least squares cost. Figs. 1.6-1.8 display some results of Table 1.1 
in a form (scattering data and envelopes) which an expert virologist can 
assess. The biological acceptability of each of the local minima found 
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Table 1.2. Biological acceptability of local minima. "+", "±", and "-" indicate 
acceptable, marginal, and unacceptable characteristics, respectively. The algorithms 
are "XY" where the values of "X" and their meanings are A=ASA, D=DIFFEVOL, 
Gl-GLOBAL, Ge=GENESIS, and M-MULTISTART and the values of "Y" are the 
order of the quadrature rules (10 x 10 or 5 x 5). The abbreviated column headings 
are C, Q, and D for Curvature^ Quasisymmetry, and Data fit. 

Alg. 
AlO 
A5 
DIO 
D5 
GelO 
Ge5 
GllO 
G15 
MIO 
M5 

C 

+ 
+ 
-
-

+ 
± 
-
-
-
-

Unsealed Cost 

Q 
-
-
-
-
-
-
-
-
-
-

D 

+ 
+ 
-
-

+ 
-
-
-
-
-

Cost 
0.02286 
0.02076 
2.873 

33.49 
2.133 
5.765 
0.7052 
2.850 
0.8157 
2.304 

C 

+ 
+ 
+ 
-f 

+ 
+ 
+ 
+ 
-
-

Scaled Cost 

Q 
-
-
-
-
-
-

+ 
-
-
-

D 
4-

+ 
+ 
+ 
+ 
+ 
+ 
+ 
-
-

Cost 
0.01087 
0.01994 
0.02739 
0.04351 
0.08300 
0.08373 
0.01051 
0.01485 
0.9184 
3.699 

at 5000 function evaluations is listed in Table 1.2. It is seen that the 
only completely satisfactory virus structure results from GLOBAL with 
scaled cost and high quadrature rule. 
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Unsealed (inner surface) Unsealed (outer surface) 

Scaled (inner surface) Scaled (outer surface) 

Figure 1.6. Results for ASA for the scaled and unsealed cost functions using 10 x 10 
quadrature. Each envelope is individually scaled to fit the available space which makes 
it appear that the inner envelope is too large to fit inside of the outer envelope. 
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Unsealed (inner surface) Unsealed (outer surface) 

Unsealed Sealed 

Sealed (inner surface) Sealed (outer surface) 

Figure 1.7. Results for GENESIS for the scaled and unsealed cost functions using 
10 X 10 quadrature. Each envelope is individually scaled to fit the available space 
which makes it appear that the inner envelope is too large to fit inside of the outer 
envelope. 
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Unsealed (inner surface) Unsealed (outer surface) 

Sealed (inner surface) Sealed (outer surface) 

Figure 1.8. Results for GLOBAL for the scaled and unsealed cost functions using 
10 X 10 quadrature. Each envelope is individually scaled to fit the available space 
which makes it appear that the inner envelope is too large to fit inside of the outer 
envelope. 
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5. Discussion and Conclusions 
In this chapter we studied the apphcation of GO to 3-D reconstruction 

of spherical viruses using experimental solution x-ray scattering data. 
Starting from previous work on modeling and estimation of the electron 
density for spherical viruses [Zheng et al., 1995], we formulated the 3-D 
reconstruction problem as a nonlinear weighted least squares problem 
based on a two shell envelope model. Two versions of the cost function 
were considered, the original unsealed cost, and a reduced scaled cost 
based on a linear scaling of the electron density (with this scaling, the 
original cost function is partly separable and the optimal scaling can be 
computed analytically which results in one less parameter and smaller 
dynamic range, but the reduced cost function is no longer of the least 
squares type). There are also constraints based on the structure and 
size of the virus. The evaluation of the cost function and its gradient 
require expensive multidimensional quadratures, whose expense can be 
controlled. The cost function is observed to have many local minima 
in long deep valleys. For these reasons, it was felt that advanced GO 
techniques were of potential use for this problem. 

We applied several state-of-the-art optimization algorithms and also 
the classical multistart approach for comparison. Our results showed 
that certain algorithms were far more effective for finding low-lying local 
minima. In particular, amongst the algorithms we considered, GLOBAL 
and ASA worked best, followed by genetic algorithms and multistart, 
and the performance gap between GLOBAL and ASA and the others 
was significant. Generally, it was found that the algorithms required 
the scaled cost and high order quadrature rules to obtain the best so
lutions. Although the algorithms found many local minima, and there 
was clearly a positive correlation between the depth of a local minimum 
and an expert virologist's assessment of biological correctness of the 3-D 
virus reconstruction, only one algorithm (GLOBAL) was able to find 
a completely satisfactory reconstruction according to the expert. This 
suggests two approaches: (i) regularize the cost function by adding addi
tional information which hopefully would remove spurious local minima 
and produce more realistic virus structures, or (ii) generate many low-
lying local minima and have then evaluated by an expert. In view of 
the difficulty of identifying and incorporating the additional information, 
and also the additional complexity in the cost function (and in particular 
the possibility of introducing as well as removing spurious local minima), 
we favor the second approach. 

Our results suggest that 3-D virus reconstruction is a rich area for 
both modeling and GO. The quahty of reconstructions presented here 
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have only been obtained previously using a simple multistart approach 
when extensive knowledge of a good initial condition is available. Using 
the methodology described here, we can get these results from an arbi
trary initial condition, followed by screening of solutions by an expert. 
There are also many interesting areas for further work. One such area 
involves developing cost functions for other virus models and data, with 
different cost criteria and/or constraints. For instance, the virus may 
have a diflFerent (typically lower order) global symmetry which would 
imply a different model or multiple x-ray solution scattering curves may 
be available {as described in Section 1) which would imply a different 
cost. Another area for future work involves development and experimen
tation with other GO algorithms which are particularly suited to the 3-D 
virus reconstruction problem. Here new algorithms should be developed 
which can adaptively control the quadrature error, allowing longer runs 
on more complex problems. There is very little work on GO in the pres
ence of cost function errors, and what work exists is primarily theoretical 
analysis with random errors (c.f. [Gelfand and Mitter, 1991, Yakowitz, 
1993]). Also new algorithms should be investigated which seek to iden
tify many sufficiently distinct (according to some metric) low-lying local 
minima which can then be presented to an expert for further evaluation. 
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Appendix: The cost and its gradient 
Let J^ C IR be the finite set of scattering angles at which measurements are made. 

The weighted least squares cost and its gradient are 

J{u) = ^[I{k)-I{k]u)fw{k) ( A . l ) 
keK 

V J H = 2'^[I{k)-I{k;u;)]w(k)VI{k;uj). (A.2) 
keK 

The first parameterization is cj — {pi,^il)- After some symbolic computation, the 
cost and the gradient of the cost can be computed by using 

oo Ni-1 

i{k;u) = J^J2alUk;u;) (A.3) 
/=0 n=0 

dl "̂  ^^"^ da 
—(77)-(/c;cj) = 2^Y^ai,n{k]u)—-^{k]uj) 
^'V,n' 1=0 n=0 ^il',n' 

di "^ ̂ '~^ da 
— (A:;cc;) - 2"^ ^ ai,^{k;uj)-^{k;u) 

i=\ -̂  

(A.4) 

— ^ ( / c ; a ; ) = [pi> - pi>^i{l - 5i>j)] x 

I' .,(i')l X TiAe,<t>)h^'\0,4>)\ ji{W'\9,4>))Ti,^^,{e,4,)dn 

^ ( / c ; a ; ) = j ^ JTUeA)Mkl^''~'\d,4>),k^^''\0,4>))dn (A.5) 

fj^iim^m) = / 'n'^ji{v)<^'n (A.6) 

where ji are spherical Bessel functions of the first kind [Jackson, 1975, Eq. 16.9] for 
which sophisticated numerical evaluation methods exist [Press et al., 1992, Section 6.7, 
pp. 240-252]. 

The second parameterization is 

u' = (n i , . . . , n^_ i ,n«+i , . . . , n / ,7^^*^) . 

We can write the prediction using the second parameterization, denoted by l2{k;uj'), 
in terms of the prediction using the first parameterization, denoted by h{k;u), for 
which formulas are given in Eqs. A.3-A.6. In particular, define 
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and then l2{k]u') = gQX2{k\uj') where go is t he opt imal gain which is 

9l ^I[k)X2{k;J)w{k) I 

After some symbolic computa t ion , the cost evaluated a t t he opt imal g is 

(w 
2 \ttK Efc6Kp2(^;^)l «'W J 

and the derivative of the cost wi th respect to the p th component of cj ' is 

- glY^I{kf^(k,J)^{k). (A.8) 

Use of Eqs. A.3-A.6 in Eqs. A.7 and A.8 allows the computa t ion of t he cost and its 
gradient a t the opt imal g. Our current code for evaluat ing t he cost and its gradient 
is in t he C programming language. 

Notes 
1. "Cryo" refers to the fact that the specimen is frozen in ice when the image is made. 
2. In the remainder of this chapter, we refer to the weighted least squares error function 

cis the "cost". 
3. http://www.ingber.com/ASA-CODE 
4. h t t p : / / h t t p . i c s i . b e r k e l e y . e d u / ~ s t o r n / c o d e . h t m l 
5. h t t p : / / w w w . a i c . n r l . n a v y . m i l / g a l i s t / s r c / g e n e s i s . t a r . Z 
6. f t p : / / f t p . j a t e . u - s z e g e d . h u / p u b / m a t h / o p t i m i z a t i o n / c / g l o b a l . t a r . g z 
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Abstract: In this study, a difficult advanced kinematics problem is presented and solved 
with a collaborative methodology that integrates an effective symbolic 
inference scheme and a local search method into a global interval partitioning 
algorithm. The resulting methodology proves to be very effective in discarding 
infeasible sub-spaces, because with some exceptions, the symbolic inference 
scheme guarantees to reduce infeasibility in each re-partitioning iteration. 
Thus, the local search method is called much less frequently as compared to a 
subdivision scheme without symbolic inference. Empirical results are obtained 
on two applications, the 6R inverse position and modified kinematics 
problems. The first test problem is quite difficult to solve as compared to the 
second one, however, our available commercial solvers were not able to solve 
any of them. The proposed collaborative methodology is generic and can 
handle any Constraint Satisfaction Problem where the goal might be to cover 
all solutions or identify a first feasible solution. 

Key words: Inverse Kinematics; Interval Analysis; Symbolic-Interval cooperation; 
Sequential Quadratic Programming. 

INTRODUCTION 

A manipulator can be defined as a group of rigid bodies, or links, 
connected together by joints that are either revolute or prismatic. The 
relative motion associated with each joint can be controlled such that the 
fi-ee-end (the hand) is positioned in a desired manner. The revolute joint 
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allows only rotational motion along the joint axis whereas prismatic joint 
allows only linear motion. 

The kinematic analysis of manipulators can be represented either as a 
direct position problem or inverse position problem. In direct position 
problem all the relative joint displacements are given and the positions of 
every link including the free end are to be found. This type of problem can 
be solved by the matrix method of analysis (Hartenberg and Denavit, 1964). 
On the other hand, in inverse position problem the hand position and 
orientation are given and joint displacements are to be found. The inverse 
position problem is more difficult to solve because the governing equations 
are highly nonlinear. However, the solution to the inverse problem is easier 
to use by designers. 

Inverse position problems are solved by identifying the closed-form 
solution to algebraic equations relating a given position and orientation of 
the hand to an unknown joint displacement. All possible solutions can be 
found using this approach (Tsai and Morgan, 1985), 

In Pieper and Roth (1969), it is mentioned that the analysis of an open-
loop manipulator is related to the displacement analysis of a closed -loop 
spatial mechanism. The authors identify the sufficient conditions for a 
closed-form solution of a manipulator where three adjacent joint axes 
intersect at a common point. Pieper (1968) also develop closed form 
solutions to six-re volute-joint (6R) manipulators, which result in a total 
degree of 64,000. Since the analysis of a six-degree-of-freedom 6-revolute-
joint (6R) manipulator is equivalent to that of the single-loop, 7- re volute-
joint (7R) spatial mechanism, all the methods used for spatial mechanisms, 
can be applied to manipulators. Examples of such approaches are screw 
algebra (Kohi and Somi, 1975), dual numbers (Yang and Freudenstein, 
1964), vector methods (Chase, 1963). 

In an effort to solve the 6R problem. Roth et al. (1973) show that it has at 
most 32 solutions. Duffy and Crane (1980) derive the corresponding 32 
degree polynomial. A lower degree polynomial for 6R problem with 
prismatic or cylindrical joints on consecutive parallel axes is developed by 
Duffy (1980). Tsai and Morgan (1985) convert the problem into a system of 
eight second-degree equations (with a total degree 256), which they solved 
numerically using polynomial continuation method. The 6R problem is 
reformulated of into different degree equations in Morgan and Sommese 
(1987a, 1987b). The problem is then reduced into a 16* degree polynomial 
(Lee and Liang, 1988). Computations with both formulations support that 
there are always 16 (sometimes complex) finite solutions. 

The solution methodologies developed for solving these equations are in 
general numerical (Uicker et al.,1964; Yuan and Freudenstei, 1971; Roth et 
al , 1973; Albala and Angeles, 1979). The success of these methods depend 
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on the initial solutions and if the desired position of the hand is far away 
from a known position of the manipulator or when there is no knowledge of 
the state of the manipulator, they fail to solve the inverse position problem. 

A well-known numerical technique is the Continuation method (Drexler, 
1978; Chow et al , 1979; Garcia and Zangwill, 1979; Watson, 1979; 
Allgower and Georg, 1980; Morgan, 1983a, 1983b) designed to solve n 
equations with n unknowns. The method is based on the concept of 
continuation paths which consist of a sequence of solutions obtained by 
solving a system of equations K(jc) that gradually approach the original set 
of equations F(jc) of the 6R problem. K(jc) is a weighted combination of a 
simplified solvable set of equations l(x) and the original system F(jc). With 
each update of the continuation weight the similarity between K(jc) and F(x) 
increases. By starting at different solutions of I(JC), the method hopes to find 
all solutions to F(jc). The resulting continuation paths are computed 
numerically by defining a differential equation. In the literature, there are 
reliable techniques of polynomial path tracking (e.g., Morgan and Sommese, 
1989). 

Some problems with the Continuation methods are related to particular 
values of the continuation weight. At some values, there might not be a 
solution to K(jc) or the solution may diverge to infinity. Further, l(x) might 
not have enough solutions to start with in order to trace all solutions of F(jc). 
Though remedies are sought by adding random perturbations to parameters, 
the stability of these methods is parameter-dependent. 

More recent efforts to solve the 6R kinematics problem are made in 
Wampler and Morgan (1991) who propose coefficient-parameter polynomial 
continuation, in Recio and Gonzalex-Lopez (1994) who use symbolic 
simplification and in Manocha and Canny (1994) who describe matrix 
operations and reduce the problem into an eigenvalue problem rather than a 
root finding one. Sommese et al. (2002) review the progress in continuation 
methods. Leykin et al. (2004) provide the most recent software contribution, 
PHCmwplQ, for solving general polynomial equations. 

Here, we propose a reliable and non-parametric solution methodology 
that integrates symbolic computing elements with an interval partitioning 
algorithm. The approach is exhaustive in the sense that it guarantees to 
identify all solutions. Symbolic computing elements involve a symbolic 
interval inference procedure that guides the search in selecting the most 
influential variables for subdivision in the next partitioning iteration. The 
convergence rate of the interval partitioning algorithm improves 
significantly because this approach chops off infeasible sub-spaces very fast. 
The proposed symbolic scheme applies parallel subdivision of all selected 
variables. A local search strategy (Sequential Quadratic Programming 
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(Panier and Tits, 1993; Zhou and Tits, 1996)) is also incorporated and 
activated whenever discarded infeasible area does not increase significantly 
in a number of consecutive iterations. Hence, in this collaborative 
methodology, symbolic inferencing, interval partitioning and local search 
work in cooperation to determine all solutions to 6R inverse position system 
or maximize the number of solutions identified within a given computation 
time. The latter is important in real time robotic applications. 

In Section 2, we introduce the model for six-re volute-joint (6R) 
manipulator. In Section 3, we describe the generic collaborative approach. 
The final section provides the experimental results for the manipulator 
model. 

2. MODEL FORMULATION 

A 6R manipulator has six moving links, numbered sequentially from 2 to 
7, as shown in Fig. l-l(Tsai and Morgan, 1985). Link 1 is designated as the 
base (fixed to ground) and link? as the hand or the manipulator. Every two 
neighboring links are connected by a joint that is associated with a joint axis 
Zi, i=lto 6. Let Zi, and Zi+i be two adjacent joint axes and HiOi+i be the 
directed common normal between Zi, and Zi+i. Hi is the intersection of HiOi+i 
and Zi, and Oi+i is the intersection of HiOi+i and Zi+i. Then one can define the 
following link parameters shown in Fig. 1-2 (Hartenberg and Denavit, 1964). 

at = the offset distance from the common normal HiOi+i. 
ai = the angle to rotate the axis Zi about the common normal HiOi+i so 

that Zi is parallel to Zi+i. The sign of rotation is given by the right hand screw 
rule with the screw taken along normal HiOi+i. 

di = the distance between the two normals Hi.iOi and HiOi+i measured 
from Zi. The sign of df is positive if OiHi points to the positive Zi direction. 
Otherwise, di is negative. 

Of = the angle to rotate extended line of Hi.iOi about Zi so that the 
extended line Hi.iOi is parallel to HiOi+i. The sign of rotation is given by the 
right hand screw with the screw pointing along the positive Zi-axis. 

If the î ^ joint is revolute, then at, di, and a/ are constant while ^ is 
variable. If the ith joint is prismatic, then a/, ai, and ^ are constant while di is 
a variable. 

A coordinate system (Xi, Yi, Z^) is attached to each link of the manipulator 
as shown in Fig. 1-2. In each coordinate system, the Zi - axis is defined to 
align with the ith joint axis, the ^-axis is the one along the extended line of 
Hi.iOi; and the Yi- axis is defined according to the right-hand screw rule. The 
first coordinate system is fixed to ground. Since the common normal HQOI 

does not exist, the Xi-axis is chosen perpendicular to Zi, in an arbitrary 
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manner. Also, a seventh coordinate system is attached to the free-end to 
specify the position of the hand. Zy-axis Ues in the direction from which the 
hand would approach an object as shown in Fig. 1-1. Xy-axis is defined by 
the common normal between Z6 and Z7 axes, and Yy-axis is defined 
according to the right-hand screw rule. 

^1 
^ Link2 

k| 
l - U f * 1 ^ ^ 

f ; ? ^ 

/ 2 / ^ Z4 

i S / j / ^ » < , ^ ^ < » < Link 5 

Figure 14-1. A general 6-R Manipulator 

Z| (Jofnt r) 

Z ,> i (Joint l-ft) 
f 

X|+1 

Lrnk I 

Figure 14-2. The basic notation 

Let the coordinates of a point P in the î ^ and (i+1)̂ ^ coordinate systems be 
expressed as ipxi.Pyi.Pzi) and (pxi+i,Pyi+],Pzi+i), respectively. Then, vectors pi 
and pi+i can be written in the (4x1) matrix form as follows: 
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Pyi 

Pn 
1 

and Pi+, 

PM 

PyM 

PzM 

1 

(1) 

These vectors, are related to the hand position and orientation vectors by 
the following two equations: 

The transformation of coordinates from the (i+l)"'system to ith system is 
achieved by Eq. (2). 

p, = Ai p,+/ 

where Ai is a (4x4) matrix defined as follows: 

4 = 
s, c,.A, -c,.//,. a,.y,. 

0 //,. A. d. 

0 0 0 1 

where c,=cos^-, s,=sin^, Xi= cos«,,and //,= sin«,. 
The inverse also transformation exists: 

(2) 

(3) 

(4) 

A7' = 

c, 

-5,.!,. 

s.^. 

0 

^i 

c,.A,. 

-c,//,. 

0 

0 

M 

A-
0 

-a,. 

of,//, 

^A 
1 

(5) 

Similarly, let the components of a unit vector u in the i*̂  coordinate and 
in the (i+1)̂ ^ coordinate systems be expressed as (uxi, Uyt^ Uzj) and {u^i^j^ Uyi+i 
^zz+y/Then the vectors u^ and Ui+i can be written as follows. 
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" . , ' 

u . 
yi 

u^. 
0 

and Uĵ ., = 

"x ,+ l 

UyM 

"z ,+ l 

0 

u, 

Coordinate transformation is obtained as follows. 

u, = 4u,.,, 

(6) 

(7) 

u,>, = A- u, (8) 

By applying the matrix transformation to each pair of coordinate systems 
between two successive links and proceeding from link 7 to link 1, Eq. (9) is 
obtained. 

Pl = Ai A2A3 A4A5A6 P7 (9) 

Pieper and Roth (1969) define the following equivalent transformation 
matrix 

^ e q = A i A2A3 A4 A5A6 

Therefore, Eq. (9) can be re-written as 

(10) 

Pl = AeqP7 (11) 

Similarly, the transformation of the unit vector can be written as 

Ui = AeqU7 (12) 

Since the equivalent transformation matrix defines the relationship 
between the coordinates of any point in the seventh system pv, and that of 
the same point expressed in the first system, pi, the matrix Aeq is known 
when the position and orientation of the hand is specified. Let p {p^,, py, p^) 
be the position vector from the origin of the first system to the origin of the 
seventh system as shown in Fig. 1-1; and 1 (l^, ly, k), m {nix, f^y,fnj and n (rix, 
ny,n^ be three mutually perpendicular unit vectors aligned with X7, Y7, and 
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Z7 axes, respectively. Then, when p, 1, m and n are given in the first system, 
the equivalent matrix is given by: 

^ . = 

0 0 1 

(13) 

By applying coordinate transformation and variable elimination, one can 
arrive at a system of eight nonlinear equations with eight unknowns 
expressed in the system of equations given in Eq. (14) (Tsai and Morgan, 
1985). 

The following model describes the dense constraint system (1< / < 4) for 
a 6R problem. —v 

X /H" X ;>/ — 1—0 

QjiX] X3 + Cl2iXi X^+ CI Si X 2 X$ + (241X2 X4 H" Cl^iXj Xj 

+ a^iXs X8~^ a-jiX^x-j + a^ix^xg + agiXi + a 101X2 

+ ajjiXs + a 121X4 + cijsiXs + a 141X6'^ ci 151^7 

(14) 

ai6iX8 + aijiXg = 0 

"1 <Xi< 1 

Where xi, X2, X3, X4, Xj, x^,, xj and xg represent C], Si, C2, S2, C4, S4, C5 and, 
S5. 

In Eq. (14) coefficients aki (These are listed in Appendix A for a 
particular instance of the problem used for testing) are defined as the 
manipulator parameters. 
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3. COLLABORATIVE SOLUTION 
METHODOLOGY 

The 6R inverse position problem has not received much attention from 
the interval community. An exception is the work described in Van-
Hentenryck et al. (1997a, 1997b) who use the interval partitioning method, 
Numerica, that is based on box consistency and interval Newton method. In 
the following sections, we provide a general background for interval 
partitioning algorithms and describe the symbolic inferencing method for 
subdivision direction selection. 

3.1 Background on Interval Partitioning 

Interval Partitioning methods (IP) produce reliable results for 
Constrained Optimization (COP) and Constraint Satisfaction Problems 
(CSP) (overviews on interval methods can be found in (Ratschek and Rokne, 
1988; Hansen, 1992; Neumaier, 1990; Ratschek and Rokne, 1995)). CSP 
consists of a system of nonlinear equalities and inequalities that have to be 
satisfied simultaneously and it is expressed as: 

Find ;C*GXC[R^ such that: 

gi(xV<0 i=h k (15) 

hj(xV=0 j=k+\,..,.r (16) 

where X is the search box within which the union of feasible sub-boxes 
X exist with arguments x* satisfying (1.1) and (1.2). In vector notation, 
constraints can be expressed as g(x)< 0 and /z(3c)= 0, where functions g/ and 

hj are components of vector-valued functions g: X->[R and h: X-^[R . The 
search box is assumed to be a closed interval with bounds: X=[ X,X ] where 
X/= min x^ and X/= max x^, for /=l,2...n. A subset of X, or sub-box, is 

denoted as Y = [ Y , Y ] c X . 

6R inverse position problem given in the system of equations given in 
Eq. (14) is a CSP where the goal is to maximize the number of feasible 
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solutions found. In this problem general gradient based solvers (e.g, 
CONOPT (Drud, 1995)) usually fail to identify any feasible solution, even if 
they do, they identify only one. In general, it is quite difficult to find all 
solutions to a CSP (this can be guaranteed only by complete solvers) and 
often impossible to know whether all solutions are found (verification phase 
for all complete solvers). 

IP is a non-parametric exhaustive method that is ideal for identifying all 
solutions reliably. The basic idea of IP is to subdivide a given domain into 
smaller sub-spaces (boxes) and assess them according to the ranges of 
constraints calculated through an approximating inclusion function. In 
practice, even if all solutions cannot be identified within a reasonable 
computation time, approaches that improve the convergence of IP are 
welcome to obtain as many as possible within a short time span. Here, we 
improve /P's convergence rate substantially with a symbolic variable 
selection rule that re-partitions the variable domains that are most 
responsible for infeasibilities. In each re-partitioning iteration, we guarantee 
a reduction in the infeasibility degree of each constraint, except for some 
instances. This definitely improves convergence because infeasible regions 
are identified in the early stages of the search and chopped off. Furthermore, 
the symbolic re-partitioning scheme involves parallel partitioning of selected 
variables. After a box is re-partitioned, the local search code CFSQP 
developed by Lawrence et al. (1997) is applied within the boundaries of each 
pending box if the total infeasible space chopped off does not increase 
significantly for a number of consecutive iterations. In this manner, feasible 
solutions are collected by CFSQP during the partitioning process, and this 
continues until either the user is satisfied with the number of feasible 
solutions obtained or there are no more pending boxes to be partitioned (all 
solutions are identified). To describe this collaborative procedure, we need 
to define inclusion functions and their properties. 

Definition 1: Let g-(Y) ={g(x): x GY} be the range of g over Ye I(X) 
where E is the set of ^-dimensional compact intervals in X. A function G: I 
(X)^I, is an inclusion function for g, if g(Y) c G(Y) for any YG 1I(X). An 
inclusion function H(Y) is defined similarly for /̂ (Y). 

It is assumed that for all functions in the real domain, the natural interval 
extensions of g and h over Y are always defined. An important property for 
inclusion functions is to be inclusion isotone, which enables to reduce 
constraint range in sibling boxes as compared to their parent. 

In IP, box assessment can end up with one of the following three results. 
1. If G/(Y)<0, V/, and Hj(Y)=0, \/j\ then box Y is a feasible box and it is 

stored. 
2. If Gi(Y)>0 for any /, or, 0^//,(Y) for any 7, then box Y is called a 

infeasible box and it is pruned. 
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3. If OeGi(Y) for any / and OeHj(Y)^0 for any j , (implying that 
indeterminate constraints exist), then Y is called an indeterminate box 
and it holds the potential of containing both X^ (partially or completely) 
andX\; i^ . 
Checking these three conditions to determine the status of a box is called 

box consistency check. 
Definition 3: The degree of infeasibiHty, PGy (PHy) of an indeterminate 

inequality (equality) is defined by Eqs. (17)-(18), respectively. 

PGY = G(Y) (17) 

PHY= H{Y)+\H(Y)\ (18) 

IP sub-divides indeterminate boxes so as to reduce PGy and PHy and 
drive them to zero in the limit by nested partitioning. The latter takes place 
due to inclusion monotonocity of H and G and also due to the contraction 
property that states that w(Y)->0, >v(G(Y)) ->0 and w(H(Y)) ^ 0 (Ratchek 
and Rokne, 1995), where w() is the width of the argument. These properties 
render convergence to IP. 

IP implementation is scarce in CSP or COP literature. A generic IP 
algorithm is described in Byrne and Bogle (Byrne and Bogle, 1996), 
however numerical results consist of a few test problems. Markot et al. 
(Markot et al., to appear) present a multi-section IP algorithm where a new 
box selection rule based on feasibility index is described. The approach is fit 
for inequalities and numerous test instances are generated from bound 
constrained optimization problems. Kearfott (Kearfott, 1996) conducts tests 
on different approaches to verify existence of feasible solutions in problems 
with equality constraints. The branch and prune approach (Van-Hentenryck 
1997b) uses IP in conjunction with interval Newton procedure to narrow 
down the domains defined by each box. This method applies box-
consistency (Benhamou et al., 1994). 

3.2 Symbolic Interval Inference Approach 

In the literature, symbolic-interval cooperation has been formulated in 
terms of consistency techniques and symbolic expression transformation 
(simplification-factorization) (Granvilliers et al., 2001). Consistency based 
pruning that incorporates intervals is first proposed by Cleary (Cleary, 
1987), followed by L'Homme (Lhomme et al., 1998), Faltings (Faltings, 
1994), Benhamou and Older (Benhamou and Older, 1997). The latter 
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techniques are called hull consistency techniques and they narrow the 
intervals of variables by using constraint inversion and interval substitution 
(Ceberio and Granvilliers, 2000; Granvilliers and Benhamou, 2001; 
Granvilliers, 2004; Lhomme et al., 1998; Sam-Haroud and Faltings, 1996). 
Hull consistency techniques propagate intervals over multiple constraints, so 
that, with the inversion of each constraint another variable domain is 
hopefully reduced, and finally, a feasible solution is identified. 

While the above symbolic-interval cooperation is based on the full 
function expression, here, we propose a scheme {Symbolic Interval 
Inference) that concentrates on interpreting a constraint in terms of its 
hierarchically recursive sub-expressions and the corresponding interval 
propagation. This perspective is different from hull consistency techniques 
in the sense that it does not require any symbolic pre-processing nor 
inversion of constraints, which might prove to be quite difficult in complex 
and highly non-linear constraints. The goal here is to dissect the constraint, 
represent it as a binary tree, propagate sub-expression intervals on the tree 
and use chained symbolic interpretation to identify the pair of variables 
(source variables) that are most influential on the constraint's infeasibility 
degree. The variables that are identified as such have their ranges partitioned 
in the next iteration of IP with a guarantee of infeasibility degree reduction 
in three out of four sibling boxes generated for each constraint. Hence, rather 
than narrowing down variable domains implicitly through external constraint 
propagation, we narrow down variable domains explicitly using internal 
interval propagation through constraint sub-expressions, and hence diminish 
total infeasibility degree of boxes. 

For the purpose of generality, we discuss the generic Symbolic Interval 
Inferencing approach {SII) for CSP with equalities and inequalities, though 
this application only involves equalities. In 5//'s collaborative framework, 
we develop three basic components to enable a recursive symbolic 
propagation through sub-expressions: a parser, a tree builder, and a rule 
operator. The tree builder constructs a binary tree that represents a given 
function after parsing. The rule operator uses the binary tree for propagating 
intervals to make an inference on the source variables for each constraint. 
Next, source variables are collected into a single pool. Then, a reduced 
subset of the pool is generated as follows: The pool consists of an ordered 
set of variables based on constraint infeasibility degree ranking. Pairs of 
source variables are selected in this order, but if a selected source variable is 
also a source variable for a constraint in a more inferior rank, then, the 
remaining source variable of the inferior rank constraint is deleted from the 
pool. All source variables that are able to survive this pool screening 
procedure are subdivided in parallel in the next iteration. 
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The mechanics of -57/'s three enabUng components are as follows. The 
parser is activated once before IP is executed. It dissects each constraint's 
expression and passes the output to the tree builder. A binary tree that 
represents the constraint is then constructed. Next, IP is executed. At each 
box assessment, 57/ activates a tree traversal to identify the pair of variables 
to be re-partitioned for the given constraint. This is achieved by calling the 
Interval Library at each (molecular) level of the hierarchical binary tree so 
that the impact of all terms can be assessed in descending order of 
complexity until the first atomic element (variable) having the maximum 

impact on G(Y) is reached. Since PGY is a function of G(Y) in inequalities, 

57/ targets G(Y) to reduce PGy. For equalities, the binay tree is traversed 

twice, the first with target |^(Y)| and the second, H{Y) .PHy is reduced, 

because it is a function of both |:^(Y)| and H{Y). Once the first source 
variable is identified, a backward traversal is activated to identify the 
coupling maximum impact (source) variable. 

In the following, we briefly describe how SII works and prove that the 
degree of infeasibility of a constraint in the parent box is strictly reduced in 
three of the four siblings generated if both of the source variables are re-
partitioned, and it is reduced in one of the two siblings generated if one 
source variable is re-partitioned. There exist exceptions to this guarantee for 
even power functions and absolute value function whose interval arguments 
include both positive and negative bounds, and for trigonometric functions. 

3.2.1 Symbolic Interval Inference over a Binary Tree 

Suppose a binary tree is constructed for a constraint and its source 
variables are to be identified by a tree traversal after intervals for sub
expressions have been propagated for a given box Y. We denote a parent at 
tree level k as D^, and its immediate Left and Right sub-branches, as L̂ "̂^ and 

R''^^ Let us also denote the interval bounds of parent node D^ by [D , 5 ], 

and those of the sub-branches as [/'^\Z^"^^] and [R^'^\R^^^]. 

The box selection strategy in our IP implementation is based on the 
simple criterion of maximizing the sum of infeasibility degrees taken over all 
violated equalities and inequalities. This is in agreement with the goal of 5// 
in the sense that it aims at chopping off infeasible boxes as early as possible. 
Hence, at the topmost level (level zero) of the tree, our interest is focused on 
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D or D for g(x) or h(x). For the topmost node, we determine which pair 

of interval bounds ({L^0^H v {isR^} v {l}eR^} v {Z^0^H ) result exactly 

in 5 or D when connected by their operator. Then, we compare the 

absolute values of individual bounds in the pair and take their maximum to 

choose and label the corresponding L or R branch. For instance, if 10^ = 

D^ or 1̂ 0̂ ^ = D , and if IL̂  I = max{| i\ ,\R^ |}, then we take Left branch 

and label \L\ for going to the next level down the tree (level 2). This 
procedure is applied recursively from top to bottom, each time searching for 
the bound pair resulting in the labeled bound at the upper level till a leaf (a 
variable) is hit. Once this forward tree traversal is over, all leaves in the tree 
corresponding to the variable selected are set to "Closed" status. The 
procedure then backtracks to the next higher level of the tree to identify the 
other leaf in the couple of variables that produce the labeled bound. 

An example is given in Fig. 1-3 for the function 
"((xi-^X2)'^(x3+X4))+Sm(x]-\-X3) = 0". The domain intervals of the box are 
x^- [-1.0, 10.0], x^- [-10.0, 20.0], x^- [1.0, 5.0], andx^= [1.0, 10.0] and the 

expression interval is [-166, 451]. Suppose we target at //(Y). In Fig. 1-3, 
the branches selected by 57/ rule are indicated: arrows with dotted lines 
indicate the possible choices at each level while full arrows indicate the 
actual choice of SII. Bound calculations for labeled bounds are indicated in 
the figure for clarity, and bounds in bold are labeled bounds for the current 
level and the one immediately below. 57/ selects the Left branch two times 
consecutively, leading to source variable x ,̂ after which, backtracking leads 

to the second source variable x^. Tree traversal is applied as follows. 

Level 0: [D\D']= [-166, 451] 

Select D^ ( H(Y)) at level zero. 

a 0 b - {(-165+ 1) or (450+ 1) or (-165-1) or (450-1)} = 451. 

—1 —1 
Hence, a 0 b = Z +i? . 
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7^4 -̂= max {\ L \, \ R \} =>max {|450|, |1| 

=> select L 

1-165,450 »|3®* 1511 
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Figure 14-3, Implementation of SII "((xl+x2)*(x3+x4))+Sin(xl+x3)". 
(Legend: S: Sine function) 

Level 1: [D\i)^]=[.165, 450] 

At level zero, 450 has been labeled as most contributing bound of level 

one 
a 0 b = {(-11*2) or (30*2) or (-11*15) or (30*15)} = 450. 

a©b=L^*i?^ 

/M4;^-max {\L I , \ R \}^ max {|30|, |15|} 

— 2 

select L . 
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Level2: [D\D^] =[-11,30] 

At level one, 30 has been labeled as most contributing bound of level 
two. 

a 0 b = {(-1+-10) or (-1+20) or (10+20) or (10-10)} = 30. 

^a0b=ZV^^ 

lMAx=m^x {\L \, \R'\}^ max {|10|, |20|} 

select R 

This leads to 7?^, bound of leaf X2. 

The leaf pertaining to X2 is "Closed" from here onwards, and the 
procedure backtracks to Level 2. Then, 57/ leads to the second source 
variable, x/. 

3.2.2 Convergence of SII 

There are two exceptions where 57/ cannot identify source bounds for a 
given sub-expression. 

LEMMA 1. 

At any level A: of a binary tree, iS7/ cannot identify source bounds for 
trigonometric (trig) sub-expressions, and for even power or absolute value 
(abs) type sub-expressions whose interval argument includes both negative 
and positive bounds. 

PROOF. 

The proof is trivial since counterexamples can be easily constructed for 
each case. • 
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LEMMA 2. 

For expressions excluding the exceptional sub-expressions stated in 
Lemma 1, 57/tree traversal identifies the couple of variables that contribute 

most to G(Y)or \ll(Y)\,orH(Y) among all variables that can be re-partitioned 
in the next iteration. 

PROOF. 

By the monotonicity property of elementary interval operations and 
functions, 57/tree traversal identifies the correct couple of bounds that result 
exactly in the bound labelled at the immediate upper level. By selecting the 
next level's labelled bound based upon the principle: max {|L|, |R|}, the 
maximum impact bound is identified at each level of the tree. A recursive 
repetition of this selection until an "Open" leaf is hit provides the maximum 
impact or first source variable for a given box. Similarly, recursive 
backtracking until a second "Open" leaf is hit provides the second source 
variable. • 

THEOREM 1. 

Suppose a given constraint gi(x) or hj(x) does not contain exceptional sub
expression types indicated in Lemma 1. Let Y be a parent box and let Si, S2, 
S3 and S4 be its four siblings produced by the parallel bisection of the two 
source variables identified by SII for a given indeterminate inequality or 
equality constraint. Then, PGs, < PGyor PHs. < PHy for z=l, 2, 3. Therefore, 
as nested partitioning iterations (/') increase, 

lim PGs. -^ 0, or, lim PHs. -^ 0 (19) 

j->oo j^'OO 

Hence, SII is a convergent method and it guarantees positive 
improvement in total infeasibility degree of a box in every partitioning 
iteration provided that the set of feasible boxes X*^^. 

PROOF. 

Let xl, x^ be the source variables of box Y identified by SII for a given 

constraint g/(x) or hj(x). We denote intervals of x^ and x^ in box Y as: / J = 

Y 
m 

are denoted by /f, /=l,2..n. 

Y —Y Y Y —y 

[x^r ,Xr ] and /^ = [Km^^^^'> respectively. Variable domains in siblings 
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—Y —Y 
Further, let Xr and Xm be identified as most contributing source 

bounds to G(Y) or \H(V\orH(Y). We obtain four siblings Si, S2, S3, S4 from 
Y Y 

repartitioning /^ and/^ in parallel. Sibling domains are given in Table 1-1. 
S Y We assume that Ij =1^ , V/ ̂  r,m. Below, we show that either PG^ <PGy or 

PH^ <PHY for sibling Si depending on whether g/(x) or hj{x) is analyzed by 

SII. 

Table 14-1. Domain boundaries of sibling boxes. 

Sibling jS jS 

S] Y Y Y Y Y Y 

Y Y —y Y Y Y 

Y Y Y Y Y —y 

Y Y -y Y Y -y 

Case of Si: Based on sibling domains indicated in Table 1-1, Si c Y. 

Then, by inclusion isotonicity, w{G{S^))<w{G{Y))?indG{S^)<G{Y). Similarly, 

if the constraint analyzed is /z/x), then, either H(S^)< H(Y), or 

I I i I - ' ^ i - ^ 
L^(5|) <|^(7)|, whichever is targeted. Further, since X/^Xr and 

^ Y 
Xnl ^ Xm , then, G(S^)^ G(Y). The reasoning for hj(x) is similar. 

From the above, G(S^)< G(Y) (for hj(x): H(S^)< H(Y), or |ii(^|)|< |^(r) |), 

holds as strict inequality which leads to either PG^ < PGy or PH^ < PHy . 
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One can show by similar reasoning that PG^ < PGy and PG^ < PGy. 

—SA —Y —S. -Y 
However, PG^ ^PGy, because Xr = Xr and Xyn = Xm. The latter is also 

valid for hj{x). 

The above proof is applicable to all combinations (4 bound combinations 
—s —s 

in total) of contributing source bounds other than {x^ ,Xm) pair. In each 

case, three of the siblings result in reduced PG^ or PH^ . • 

For dealing with the exceptions indicated in Lemma 1, we propose the 
heuristic rules described in the next section. 

3.2.3 Heuristic rules for exceptional sub-expressions 

• Heuristic rule for even powers and abs type sub-expressions: Consider a 
section of a binary tree containing^^ sub-expression at level k that is an 
even power. Suppose L ^ and L are the lower and upper bounds for 
the sub-expression interval at level k+1, the immediate Left branch of the 
"Power" operator at level k. The heuristic rule for this situation is defined 
as follows. 

Rule 1. If L < 0 and L > 0, then, select the stamped bound at level 

k+1 as Z "̂  . Else, apply 57/. 

The motivation behind Rule 1 is as follows: It is the negative bound that 
causes the problem indicated in Lemma 1. Hence, using this strategy, the 

heuristic aims to change L ^ (in the next iteration) in order to eliminate 
the negative argument bound for the sub-expression at level k. The rule 
for abs type sub-expression is the same. 

Heuristic rule for trigonometric functions: The heuristic rule for trig 
operator is defined as follows. 

Rule 2. If (L - L ) > 7c/2, then select the labeled bound at level k+1 
k:^\ —k-\-l 

as max {\L \,\L | } . Otherwise, apply SII. 



350 Global Optimization: Scientific and Engineering Case Studies 

This rule is motivated by the fact that trigonometric cycles are repetitive 
every nil units in a given interval. Therefore, the heuristic targets the 
portion of the interval having the maximum number of nil units, so that 
the bounds of the sub-expression soon become confined to [-nil, n/2] and 
the source bound identification problem is resolved. 

3.3 Sequential Quadratic Programming (CFSQP) 

C code for Feasible Sequential Quadratic Programming (CFSQP) finds a 
feasible solution the problem considering only nonlinear inequalities and 
linear equations. After the first feasible solution is obtained all subsequent 
solutions remain feasible for these constraints. Nonlinear equality constraints 
are then converted into inequality constraints and they are penalized in the 
objective function. The objective function is converted into a quadratic form 
consisting of second and first order derivatives of constraints and objective 
function. The model is solved to find an improving direction. Convergence 
of the method to a KKT solution is superlinear. The algorithms implemented 
are described in Lawrence et al. (1997). Here, we prefer to use finite 
derivative option of CFSQP rather than feeding in the gradient. 

In our collaborative methodology, every time an indeterminate box is 
subdivided, a decision is taken on whether or not CFSQP should be applied 
to every indeterminate box in the pending list within their corresponding 
boundaries. The pending list is always sorted according to maximum total 
infeasibility. A decision is made on the number of times a partitioning 
iteration does not improve the total infeasible area chopped off For instance, 
if total infeasible area is not 10% more than that of the last iteration, IP is 
assumed to fail. If failure occurs in 3 successive partitioning iterations, then 
all boxes in the pending list are subjected to CFSQP. Feasible solutions 
found during CFSQP applications are stored. 

4. NUMERICAL RESULTS 

We compare the performance of the collaborative methodology with an 
IP algorithm that subdivides all variables in parallel once a box is selected to 
be re-partitioned. This parallel algorithm (All_Vars) is shown to be effective 
in unconstrained optimization (Casado et al., 2000). The algorithm calls 
CFSQP in the same manner. The only difference between the two algorithms 
is the utilization of 57/ in selecting the variables to be partitioned. Two test 
problems are used to assess performance. The first one is the 6R inverse 
position problem defined in Eq. (14) (Tsai, and Morgan, 1985) and the 
second one is the Modified Kinematics problem, Kinl, (Coprin, 2004, 
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Shcherbina et al., 2002). Kinl has trigonometric expressions. The model of 
Kinl is given in Appendix B. The first test problem is used as a benchmark 
by Van-Hentenryck (1997a) and has 10 real solutions. The second one is 
used by Coprin (2004) and Shcherbina et al. (2002), and it has 16 real 
solutions. 

Table 14-2. Comparison of results. 

Function Name 
[D, NE, NI] 

6R 

[8, 8, 0] 

Kinl Modified 

[6,6,0] 

#CFSQ 
P Calls 

3511 

132 

Collaborative 
#FE 

130495 

4686 

T 
(min.) 

10.564 

0.3012 

#CFSQ 
P Calls 

7602 

384 

All Vars 
#FE 

459416 

22631 

T 
(min.) 

20.368 

1.2133 

Table 1-2 shows numerical results. Properties of the two test problems 
are indicated as (D- Dimension of Problem, NE- Number of Equality 
Constraints, NI-Number of Inequality Constraints). Performance is measured 
in terms of CPU time (in minutes), T, Number of Function calls (# FE) and 
Number of CFSQP Calls. Table 1-3 and Table 1-4 summarize the percentage 
of infeasible area discarded from the search space at given function 
evaluations, as well as the number of real solutions found for 6R and Kinl 
problems. 

All solutions identified by the collaborative methodology and the 
corresponding constraint precisions are listed for both problems in 
Appendices C and D, respectively. The runs are executed on a PC with 256 
MB RAM, 2.0 GHz P4 Intel CPU, under Windows OS system. All codes are 
developed with Visual C++ 6.0 interfaced with PROFIT interval arithmetic 
library (Knuppel, 1994) and CFSQP (Lawrence et al., 1997). It is observed 
that in the 6R problem both methods take a long time to identify the last and 
the last two solutions, respectively. 57/'s impact on convergence can easily 
be seen in the percentage of infeasible area discarded from the search space 
as well as the number of solutions found at given FE. Hence, it is able to 
identify all solutions within 10 minutes whereas AU_Vars has to run for 
about 20 minutes. It is also observed that Kinl is much easier to solve than 
6R problem. Still, 57/ improves convergence by cutting off 96% of the area 
during the first 1000 function calls. 
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Table 14-3. Percentage of infeasible area discarded and number of solutions found versus 
number of function calls in 6R Inverse position Problem. 

Collaborative 

# FE % Area 

Discarded 

All_Vars 

# of # FE % Area 
Solutions Discarded 

Found 

#of 
Solutions 

Found 

30000 

60000 

90000 

120000 

130495 

24.011 

28.023 

28.71 

46.846 

51.745 

9 

9 

9 

9 

10 

30000 

60000 

90000 

120000 

130495 

150000 

180000 

210000 

240000 

459416 

15.211 

17.777 

20.649 

26.633 

29.261 

33.674 

38.475 

41.809 

46.203 

83.69 10 

CONCLUSION 

A new collaborative methodology is developed here to solve Constraint 
Satisfaction Problems. The implementation is illustrated on a difficult 
advanced kinematics problem. The collaborative method is founded on 
global interval partitioning approach. The convergence of this basic 
approach is enhanced by a symbolic interval inference scheme that selects 
variables to be subdivided with a guarantee of reducing infeasibility degrees 
of constraints. Feasible points in boxes are identified by the Sequential 
Quadratic Programming (SQP) algorithm that is activated if a certain 
condition is satisfied. 

Implementation on two test instances indicate that the collaborative 
method is able to discard a substantial area from the search space by 
classifying them as infeasible, hence, it economizes on both the number of 
function calls and SQP calls. Comparisons with the non-symbolic version of 
interval partitioning algorithm illustrates the enhancement obtained by the 
symbolic scheme. A final remark on the proposed methodology is that it has 
a wide applicability in both unconstrained and constrained optimization 
fields. 
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Table 14-4. Percentage of infeasible area discarded and number of solutions found versus 
number of function calls in Kinl modified Problem. 

#FE 

1000 

2000 

3000 

4000 

4686 

Collaborative 

% Area 
Discarded 

96.655 

99.024 

99.143 

99.525 

99.730 

#of 
Solutions 

Found 

9 

9 

9 

12 

16 

#FE 

1000 

2000 

3000 

4000 

4686 

6000 

22631 

All_Vars 

% Area 

Discarded 

86.67 

90.1344 

96.5134 

97.966 

97.95 

98.0097 

99.2125 

#of 
Solutions 

Found 

0 

6 

9 
9 

9 
10 

16 
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APPENDIX A 

The coefficients aki for a test instance. 

Table 14-5, coefficients a^i for a test instance. 

all= 

al2= 

al3= 

al4= 

a21= 

a22= 

a23= 

a24= 

a31= 

a32= 

a33= 

a34= 

a41= 

a42= 

a43= 

a44= 
a51= 

-0.24915068 

= 0.12501635 

• -0.63555007 

a .4894773 

= 1.6091354 

• -0.68660736 

-0.11571992 

= 0.23062341 

• 0.27942343 

-0.11922812 

• -0.66640448 

1.3281073 

1.4348016 

-0.71994047 

0.11036211 

-0.25864503 
0.0 

a52 = 

a53 = 

a54 = 

a61 = 

a62 = 

a63 = 

a64 = 

a71 = 

a72 = 

a73 = 

al21: 

al22: 

al23= 

a 124= 

al31= 

al32= 

al33= 

-0.43241927 

0.29070203 

1.1651720 

0.40026384 

0.0 

1.2587767 

-0.26908494 

-0.80052768 

0.0 
-0.62938836 

= -0.75526603 

= 0.0 

-0.079034221 

.0.35744413 

= 0.50420168 

-0.039251967 

= 0.026387877 

al34= 1.2499117 

al41=-1.0916287 

al42= 0.0 

a74= 0.53816987 

a81=0.0 

a82=-0.86483855 

a83= 0.58140406 

a84= 0.58258598 

a91= 0.074052388 

a92=-0.037157270 

a93= 0.19594662 

a94=-0.20816985 

al01=-0.083050031 

al02= 0.035436896 

al03=-1.2280342 

al04= 2.6868320 
al 11=-0.38615961 

all2= 

all3= 

all4-

al43= 

al44= 

al51= 

al52= 

al53= 

al54= 

al61= 

al62= 

al63= 

al64= 

al71 = 

al72= 

al73= 
al74= 

= 0.085383482 

= 0.0 

= -0.69910317 

= -0.057131430 

= 1.4677360 

= 0.0 

= -0.43241927 

= -1.1628081 

= 1.1651720 

= 0.049207290 

0.0 
^1.2587767 

1.0763397 

0.049207290 

0.013873010 

2.1625750 
-0.69686809 

APPENDIX B 

Model for the Modified Kinematics Problem (Shcherbina et al, 2002; Coprin, 2004) 
sin(6>2)*cos(i95)*sin(̂ 6)-sin(6>j)*cos(6>5)*sin(6><5)-sin(6!̂ )*cos((95)*sin(6'5)+ 
cos(6>2)*cos(6!5)+cos(^5)*cos(6!5)+cos(6!^)*cos(^6)-0.4077=0 
cos((97)*cos(^2)*sin(<95)+cos(^;)*cos(i%)*sin(6>5)+cos((9;)*cos(i9^)*sin(6'̂  
+sin((9;)*cos(6|5)-1.9115=0 
sin(6>2)*sin(6>5)+sin(6>5)*sin(6|5)+sin(6!/)*sin((95)-l .9791 =0 
COS((9/)*COS(6>2)+COS((9;)*COS(6'5)+COS(l9/)*COS(6!#)+COS(^;)*COS(6>2)+ 

cos(i9/)*cos(i%)+cos(<9;)*cos(6>2)-4.0616=0 
sin(<9/)*cos(t2)+sin((9;)*cos(6>j)+sin(i9;)*cos(6>^)+sin((9/)*cos((92)+sin(<9;)* 
cos(t3)+sin(^;)*cos(6>2)-1.7172=0 
sin( 6'2)+sin( <%)+sin( 6!̂ )+sin( 6'2)+sin( 6'3)+sin( 6>2)-3.9701 =0 
where Oj, O2, O3, O4, 05, 06, are the design variables which ranges between [0, 211] 
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APPENDIX C 

Table 14-6. 10 real solutions for the 6R inverse position problem 

SOLUTION 
(Xjj X2, Xsy X4, Xs, 

X6, Xy„ Xg,) 

CONSTRAINT 

PRECISION 

(hi, h2, /ij, /î , hs^ he, 

h7,hs) 

SOLUTION 
(Xj, X2f X3, X4, Xsf 

X6, Xjy, Xs,) 

CONSTRAINT 

PRECISION 

(hi, h2, hs^ h4^ hs, 

h6,h7,hs) 

-0.7675197725 

0.6410252716 

0.6964160419 

-0.717638277 

-0.9999792481 

-0.0064423 

0.8149506345 

0.5795303817 

0.9527580345 

0.3037303537 

-0.7905265443 

0.6124277775 

0.2415115238 

0.9703979513 

0.2373597961 

-0.971421807 

-0.9749979045 

-0.2222140551 

-0.9938796286 

-0.1104684746 

-0.9999920795 

0.00398006627 

0.9983398141 

-0.05759874586 

-0.5419279206 

0.8404249692 

0.4670431944 

0.884234502 

-0.8367190935 

-0.5476323206 

0.8951440397 

0.4457770162 

-3.287300987e-016 

-2.177620063e-016 

-4.272840762e-016 

-3.870601756e-017 

1.078781162e-017 

-2.025842347e-016 

1.380026312e-016 

7.350348628e-016 

-1.009392223e-016 

-1.488609583e-016 

-1.489693785e-016 

-4.499981117e-016 

-1.283966423e-016 

-3.977937771e-016 

3.739616581e-016 

5.7890975e-016 

-3.944327504e-016 

-3.410357934e-016 

-4.797052512e-016 

-2.108773225e-016 

3.056365924e-016 

-3.338843074e-016 

2.98228482e-016 

4.304282625e-016 

-2.419939249e-016 

-1.329231863e-016 

-5.912696548e-016 

-1.256590318e-016 

3.775463015e-016 

-5.011453492e-016 

1.357285595e-016 
1.163565772e-015 

-0.554195147 

0.8323867723 

0.5626360082 

0.826704737 

0.8285714396 

-0.559883353 

-.6908546768 

-0.7229936484 

0.9779218583 

0.2089709049 

0.02611329026 

0.9996589899 

-0.09786861 

0.9951993443 

0.07707361041 

-0.9970254052 

-0.8332582975 

-0.5528839025 

-0.954937654 

0.2968064639 

0.8646283146 

-0.5024120595 

-0.2334735726 

-0.9723631476 

0.9807938843 

0.1950470621 

-0.9941103362 

-0.1083726874 

0.8844523118 

0.4666305908 

0.2943403616 
-0.95570066 

-5.5435257e-016 

-5.2681383e-016 

-5.2263965e-016 

-7.176334e-016 

-4.1825809e-016 

5.4830814e-016 

5.05990377e-016 

-1.838264783e-016 

-2.170572749e-016 

-1.605703417e-016 

-2.481738773e-016 

-4.277719672e-016 

-1.844465065e-016 

-5.133697287e-016 

3.075305581e-016 

6.332824889e-016 

-2.945235202e-016 

-5.0404559e-016 

-1.374226254e-016 

-2.803746818e-016 

-2.589074788e-016 

2.584466929e-016 

2.67421854e-016 

-3.50359932e-016 

-1.604619215e-016 

-3.279711572e-016 

-1.250085105e-016 

-3.756760528e-016 

-2.408555126e-016 

1.646632049e-016 

3.106950732e-016 
5.758197738e-016 
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SOLUTION 
(Xj, X2, X3, X4, X5, 

X6f Xj,f Xgf) 

CONSTRAINT 

PRECISION 

(hj^ h2, /15, h4^ hs, hs, 

SOLUTION 
(Xj, X2f Xsy X4, Xs, 

^69 Xjyy ^Sy) 

CONSTRAINT 

PRECISION 

(hi^ h2, ^5, /i^, ^5, 

h6,h7,h8) 

0.9455046053 

0.3256087244 

0.9385612474 

0.3451127134 

-0.9391447018 

-0.343521803 

0.8707744714 

0.4916826415 

-1.667502941e-016 

-1.16768574e-016 

-4.702726923e-016 

-3.034681881e-016 

4.602709273e-016 

-4.522071736e-016 

2.020664858e-016 

9.680299097e-016 

0.8476730058 

0.5305190621 

0.9852621645 

-0.1710510662 

0.4900210554 

-0.8717105972 

-0.551930866 

-0.8338898723 

7.641456912e-016 

-2.364102837e-016 

-5.577135975e-016 

-5.309338039e-016 

-5.27776065e-016 

5.617793557e-016 

4.656987144e-017 

1.354168513e-015 

APPENDIX D 

Table 14-7. 16 real solutions for the Modified Kinematics problem 

SOLUTION 
(Xj, X2, X3, X4, Xsf Xfy 

Xjyy Xgf) 

CONSTRAINT 

PRECISION 

(hi,h2,h3^h4^hs, 

h6,h7,h8) 

SOLUTION 
(Xj, X2y X^y X4, Xs, X6, 

X7,, Xgy) 

CONSTRAINT 

PRECISION 

(hi, h2, hs^ h4^ hs, 

h6,h7,h8> 

3.54158911587688 

2.54163820909018 

2.34152470623069 

2.14157870708576 

1.94168714644523 

4.3434014151202 

0.399996462287087 

0.676593554513105 

0.653413405776952 

1.06725170617493 

1.2168098705472 

4.76631936842528 

0.399996462287087 

0.819005889921112 

0.524824446603841 

0.889212794930671 

1.74096428607806 

4.9429956645897 

1.43277e-016 

-1.37423e-015 

1.07585e-015 

-1.54347e-015 

-4.51028e-017 

8.88178e-016 

9.4157 e-016 

-7.018 e-016 

-2.1684 e-017 

-5.819 e-016 

3.980 e-016 

1.11022 e-016 

-1.47993 4271 e-016 

-3.5149e-016 

-2.8015e-016 

-4.9439 65339e-017 

5.06322 073le-017 

1.110223 2516e-016 

0.399996462287087 

0.676593554513104 

0.653413405776954 

1.06725170617493 

1.21680987054719 

1.22969809134691 

0.399996462287087 

0.819005889921112 

0.524824446603842 

0.889212794930671 

1.74096428607806 

1.42521254487548 

3.54158911587688 

2.32258676366868 

2.61676820698595 

2.25237985865912 

1.40062836751173 

1.80140301099991 

-7.322701e-016 

-6.643990e-016 

-2.024205e-016 

-6.683022e-016 

1.0516761e-016 

7.77156117238e-016 

6.56213362e-017 

-9.47701 le-016 

-3.632077e-016 

-7.333543e-016 

4.6403852e-016 

7.77156117238e-016 

-2.9086433e-016 

-3.271037e-016 

-1.643650e-016 

-6.310056e-016 

4.72278466 e-016 

6.6613381 e-016 
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SOLUTION 
(Xj, X2, Xsy X4, X5, Xfy 

CONSTRAINT 
PRECISION 

(hi,h2,h3h4^h5^ 

SOLUTION 
(Xi, X2, X3, X4, Xs, X6f 

Xjff Xs,) 

CONSTRAINT 

PRECISION 

(hi,h2,h3^h4^hs, 

3.54158911587688 

2.54163820909018 

2.34152470623069 

2.14157870708576 

1.94168714644523 

4.3434014151202 

3.54158911587688 

2.46499909907669 

2.48817924781284 

2.07434094741487 

1.9247827830426 

4.3712907449367 

0.399996462287087 

0.599954444499609 

0.800067947359107 

1.00001394650403 

1.19990550714456 

4.73538644590494 

0.399996462287087 

0.612920767546544 

0.941561364401486 

0.678167384505091 

1.74943577165617 

4.96946138038386 

3.54158911587688 

2.52867188604325 

2.2000312891883 

2.4634252690847 

1.3921568819336 

4.59504553384007 

1.43277e-016 

-1.37423e-015 

1.07585e-015 

-1.54347e-015 

-4.51028e-017 

8.88178e-016 

-1.422 6e-015 

-8.991 29e-016 

-1.0217 034e-015 

-7.56773 4882e-016 

2.0199 5774e-015 

5.551 1 8e-016 

-4.10018156 e-016 

-2.6096746 1 e-016 

8.1315162 e-017 

-7.2858385 e-016 

-8.5326710 e-017 

3.33066907 e-016 

-9.61470486 e-016 

-3.074797e-016 

2.699663 le-017 

-3.924811 3e-016 

-7.31836466 5e-017 

0 

5.43456338 e-017 

-2.726443 e-015 

2.2120976 e-015 

-2.91693 e-015 

-6.78493 e-016 

8.8817845e-016 

0.399996462287087 

0.676593554513104 

0.653413405776954 

1.06725170617493 

1.21680987054719 

1.22969809134691 

0.399996462287087 

0.599954444499607 

0.800067947359109 

1.00001394650403 

1.19990550714456 

1.20180876153041 

0.399996462287087 

0.612920767546544 

0.941561364401486 

0.678167384505091 

1.74943577165617 

1.45345288025028 

3.54158911587688 

2.52867188604325 

2.20003128918831 

2.4634252690847 

1.39215688193363 

1.82786872679406 

3.54158911587688 

2.54163820909018 

2.34152470623069 

2.14157870708576 

1.94168714644523 

1.59379379231515 

-7.322701e-016 

-6.643990e-016 

-2.024205e-016 

-6.683022e-016 

1.0516761e-016 

7.7715611724e-16 

5.7435610 e-017 

-6.893357 e-016 

-2.0903417 e-016 

-9.67975699 e-016 

-2.2096040 e-016 

-2.220446041e-016 

6.67868538e-017 

-2.2096040e-016 

2.6996634e-017 

-3.9248113e-016 

-7.31836415e-017 

0 

-1.2633392e-015 

-2.060309e-015 

1.6622987e-015 

-2.165802e-015 

-3.266701e-016 

9.9920072e-016 

-2.027458e-017 

-1.774838e-016 

1.5460722e-016 

-1.118896e-016 

5.6020726e-016 

0 
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Abstract Learning in artificial neural networks is usually based on local minimiza
tion methods which have no mechanism that allows them to escape the 
influence of an undesired local minimum. This chapter presents strate
gies for developing globally convergent modifications of local search 
methods and investigates the use of popular global search methods in 
neural network learning. The proposed methods tend to lead to de
sirable weight configurations and allow the network to learn the entire 
training set, and, in that sense, they improve the efficiency of the learn
ing process. Simulation experiments on some notorious for their local 
minima learning problems are presented and an extensive comparison 
of several learning algorithms is provided. 
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Introduction 
Scientific interest in models of neuronal networks or artificial neural 

networks mainly arises from their potential ability to perform interesting 
computational tasks. Nodes, or artificial neurons, in neuronal network 
models are usually considered as simplified models of biological neu
rons, i.e. real nerve cells, and the connection weights between nodes 
resemble to synapses between neurons. In fact, artificial neurons are 
much simpler than biological neurons. But, for the time being, it is far 
from clear how much of this simplicity is justified because, as yet, we 
have only poor understanding of neuronal functions in complex biolog
ical networks. Artificial neural nets (ANNs) provide to computing an 
alternative algorithmic model, which is biologically motivated: the com
putation is massively distributed and parallel and the learning replaces a 
priori program development, i.e. ANNs develop their functionality based 
on training (sampled) data 

In neural net learning the objective is usually to minimize a cost 
function defined as the multi-variable error function of the network. 
This perspective gives some advantage to the development of effective 
learning algorithms, because the problem of minimizing a function is well 
known in the field of numerical analysis. However, due to the special 
characteristics of the neural nets, learning algorithms can be trapped 
in an undesired local minimum of the error function: they are based on 
local search methods and have no mechanism that allows them to escape 
the influence of an undesired local minimum. 

This chapter is focused on the use of Global Optimization (GO) meth
ods for improved learning of neural nets and presents global search 
strategies that aim to alleviate the problem of occasional convergence 
to local minima in supervised training. Global search methods are ex
pected to lead to "optimal" or "near-optimal" weight configurations by 
allowing the network to escape local minima during training. 

In practical apphcations, GO methods can detect just sub-optimal 
solutions of the objective function. In many cases these sub-optimal 
solutions are acceptable but there are applications where the optimal 
solution is not only desirable but also indispensable. Therefore, the de
velopment of robust and efficient GO methods is a subject of considerable 
ongoing research. 

It is worth noting that, in general, GO-based learning algorithms pos
sess strong theoretical convergence properties, and, at least in principle, 
are straightforward to implement and apply. Issues related to their nu
merical efficiency are considered by equipping GO algorithms with a 
"traditional" local minimization phase. Global convergence, however. 
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needs to be guaranteed by the global-scope algorithm component which, 
theoretically, should be used in a complete, "exhaustive" fashion. These 
remarks indicate the inherent computational demand of the GO algo
rithms, which increases non-polynomially, as a function of problem-size, 
even in the simplest cases. 

The remaining of this chapter is organized as follows. Section 1 for
mulates the learning problem in the optimization context. In section 
2, deterministic monotone and nonmonotone strategies for developing 
globally convergent modifications of learning algorithms are presented. 
Section 3 focuses on global search methods and error function transfor
mations to alleviate convergence to undesired local minima. Section 4 
presents simulations and comparisons with commonly used learning al
gorithms, and discusses the results. 

1. Learning in neural nets 
Let us consider an ANN whose /-th layer contains Â^ neurons (/ = 

1 , . . . , L). The neurons of the first layer receive inputs from the external 
world and propagate them to the neurons of the second layer (also called 
hidden layer) for further processing. The operation of the neurons for 
/ = 2 , . . . , L is usually based on the following equations: 

where net^j is for the j-th neuron in the /-th layer (/ = 2 , . . . , L ; j = 
1 , . . . , A /̂), the sum of its weighted inputs. The weights from the i-th 
neuron at the (/ — I) layer to the j - th neuron at the /-th layer are denoted 
by w^~ ' , y^- is the output of the j-th neuron that belongs to the /-th 
layer, and f{net^j) is the j - th 's neuron activation function. 

If there is a fixed, finite set of input-output pairs, the square error 
over the training set, which contains P representative cases, is: 

P NL P NL 

^H = E E f e - î.p)' = EE[-'(«4+^f) - hpT-
p=i j=i p=i j=i 

This equation formulates the error function to be minimized, in which 
tj^p specifies the desired response at the j - t h neuron of the output layer 
at the input pattern p and yj'p is the output at the j - t h neuron of 
the output layer L that depends on the weights of the network and 
cr is a nonlinear activation function, such as the well known sigmoid 
a{x) = (1 -f e~^)~ . The weights of the network can be expressed in a 
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vector notation: 

/ 1-1,1 1-1,1 1-1,1 nl l-l.l l-l.l \^ 
w 

where ^j denotes the bias of the j - t h neuron (j = 1 , . . . , A/'/) at the /-th 
layer (/ — 2, . . . , L ) . This formulation defines the weight vector as a 
point in the A/^-dimensional real Euclidean space M^, where N denotes 
the total number of weights and biases in the network. 

Minimization of E{w) is attempted by updating the weights using a 
learning algorithm. The weight update vector describes a direction in 
which the weight vector will move in order to reduce the network training 
error. The weights are modified using the iterative scheme: 

w ̂ +l = ^^ + A ^ ^ A : - 0 , 1 , . . . 

where w^'^^ is the new weight vector, w^ is the current weight vector 
and Atf;̂  the weight update vector. 

Various choices of the correction term At̂ ;̂  give rise to distinct learn
ing algorithms, which are usually first-order or second-order methods 
depending on the derivative-related information they use to generate 
the correction term. Thus, first-order algorithms are based on the first 
derivative of the learning error with respect to the weights, while second-
order algorithms on the second derivative (see [5] for a review on first-
order and second-order training algorithms). 

A broad class of first-order algorithms, which are considered much 
simpler to implement than second-order methods, uses the correction 
term —iiVE{w^)] // is a heuristically chosen constant that usually takes 
values in the interval (0,1) (the optimal value of the stepsize JJL depends 
on the shape of the A^-dimensional error function) and VE{w^) defines 
the gradient vector of the ANN obtained by applying the chain rule on 
the layers of the network [50]. 

The most popular first-order algorithm is called Backpropagation 
(BP) and uses the steepest descent [36] with constant stepsize ^: 

w ̂ +1 = w^ - iiVE{w^), fc = 0 , 1 , . . . . 

It is well known that the BP algorithm leads to slow network learn
ing and often yields suboptimal solutions [16]. Attempts to speed up 
back-propagation training have been made by dynamically adapting the 
stepsize fi during training [29, 55], or by using second derivative related 
information [32, 34, 54]. Adaptive stepsize algorithms are more popu
lar due to their simplicity. The stepsize adaptation strategies that are 
usually suggested are: (i) start with a small stepsize and increase it ex
ponentially, if successive iterations reduce the error, or rapidly decrease 
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it, if a significant error increase occurs [4, 55], (ii) start with a small small 
stepsize and increase it, if successive iterations keep gradient direction 
fairly constant, or rapidly decrease it, if the direction of the gradient 
varies greatly at each iteration [9], (iii) for each weight, an individual 
stepsize is given, which increases if the successive changes in the weights 
are in the same direction and decreases otherwise [21, 52], and (iv) use a 
closed formula to calculate a common stepsize for all the weights at each 
iteration [29, 46] or a different stepsize for each weight [14, 31]. Note 
that all the above-mentioned strategies employ heuristic parameters in 
an attempt to enforce the decrease of the learning error at each iteration 
and to secure the converge of the learning algorithm. 

Methods of nonlinear optimization have also been studied extensively 
in the context of NNs [32, 54, 56]. Various Levenberg-Marquardt, quasi-
Newton and trust-region algorithms have been proposed for small to 
medium size neural nets [18, 25]. Variations on the above methods, 
limited-memory quasi-Newton and double dogleg, have been also pro
posed in an attempt to reduce the memory requirements of these meth
ods [1, 6]. Nevertheless, first-order methods, such as variants of gradient 
descent [27, 41] and conjugate-gradient algorithms [34] appear to be more 
efhcient in training large size neural nets. 

At this point it is worth mentioning an important consideration for 
adopting an iterative scheme in practical learning tasks is its suscep
tibility to ill-conditioning: the minimization of the network's learning 
error is often ill-conditioned, especially when there are many hidden 
units [51]. Although second-order methods are considered better for 
handling ill-conditioned problems [5, 32], it is not certain that the extra 
computational/memory cost these methods require leads to speed ups 
of the minimization process for nonconvex functions when far from a 
minimizer [35]; this is usually the case with the neural network train
ing problems, [5], especially when the networks uses a large number of 
weights [27, 41]. 

Moreover, BP-like learning algorithms, as well as second-order al
gorithms, occasionally converge to undesired local minima which affect 
the efficiency of the learning process. Intuitively, the existence of local 
minima is due to the fact that the error function is the superposition of 
nonlinear activation functions that may have minima at different points, 
which sometimes results in a nonconvex error function [16]. The insuffi
cient number of hidden nodes as well as improper initial weight settings 
can cause convergence to an undesired local minimum, which prevents 
the network from learning the entire training set and results in inferior 
network performance. 
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Several researchers have presented conditions on the network archi
tecture, the training set and the initial weight vector that allow BP to 
reach the optimal solution [26, 60]. However, conditions such as the 
linear separability of the patterns and the pyramidal structure of the 
ANN [16] as well as the need for a great number of hidden neurons (as 
many neurons as patterns to learn) make these interesting results not 
easily interpretable in practical situations even for simple problems. 

2. Globally Convergent Variants of Local Search 
Methods 

A local search learning algorithm can be made globally convergent by 
determining the stepsize in such a way that the error is exactly mini
mized along the current search direction at each iteration, i.e. E{w^'^^) < 
E{w^). To this end, an iterative search, which is often expensive in 
terms of error function evaluations, is required. It must be noted that 
the above simple condition does not guarantee global convergence for 
general functions, i.e. converges to a local minimizer from any initial 
condition (see [11] for a general discussion of globally convergent meth
ods). 

Monotone Learning Strategies 
In adaptive stepsize algorithms, monotone reduction of the error func

tion at each iteration can be achieved by searching a local minimum with 
small weight steps. These steps are usually constrained by problem-
dependent heuristic learning parameters. 

The use of heuristic strategies enforces the monotone decrease of the 
learning error and secures the convergence of the training algorithm to a 
minimizer of E. However, the use of inappropriate values for the heuris
tic learning parameters can considerably slow down the rate of training 
or even lead to divergence and to premature saturation [26, 49]; there 
is a trade-off between convergence speed and stability of the training 
algorithm. Additionally, the use of heuristics for bounding the stepsize 
prevents the development of efficient algorithms with the property that 
starting from any initial weight vector the weight updates will converge 
to a local minimum, i.e. globally convergent training algorithms. 

A monotone learning strategy, which does not apply heuristics to 
bound the length of the minimization step, consists in accepting a posi
tive stepsize r]^ along the search direction (p^ ̂  0, if it satisfies the Wolje 
conditions: 

E{w^ + ryV^) - E{w^) < CJIT]^ (VE^W^), / ) , (1.1) 
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(yE{w^ + r]^ip^), / ) ^ (72 (V£^(^^), / ) , (1.2) 

where 0 < ai < (72 < 1 and (•, •) stands for the usual inner product in 
R^. The first inequality ensures that the error is reduced sufficiently, and 
the second prevents the stepsize from being too small. It can be shown 
that if (fi^ is a descent direction and E is continuously differentiable and 
bounded below along the ray {w^ + r](fi^ | r/ > 0}, then there always 
exists a stepsize satisfying (1.1)-(1.2) [11, 35]. Relation (1.2) can be 
replaced by: 

E{w^ + r/V^) - Eiw^) ^ a2V^ (^E{w^), / \ , (1.3) 

where (72 G (cri, 1) (see [11]). The strategy based on Wolfe's conditions 
provides an efficient and effective way to ensure that the error function 
is globally reduced sufficiently. In practice, conditions (1.2) or (1.3) are 
generally not needed because the use of a backtracking strategy avoids 
very small learning rates [31, 57]. 

An alternative strategy has been proposed in [47]. It is applicable to 
any descent direction Lp^ and uses two parameters a^jS E (0,1). Follow
ing this approach the stepsize is rf = /?^^, where rrik G Z is any integer 
such that: 

E{w^ + / ? ^ ^ / ) - E{w^) ^ /3^^a lvE{w^), ^^) , (1.4) 

E{w^ + /?^^-V^) - E{w^) > p'^^-^a (VE{W^), / ) . (1.5) 

To ensure global convergence, monotone strategies that employ con
ditions (1.1)-(1.2) or (1.4)-(1.5) must be combined with stepsize tun
ing subprocedures. For example, a simple subprocedure for tuning the 
length of the minimization step is to decrease the stepsize by a reduction 
factor g"-̂ , where q > 1 [36], so that it satisfies conditions (1.1)~(1.2) at 
each iteration. This backtracking strategy has the effect that the stepsize 
is decreased by the largest number in the sequence {q~^}^=i^ so that 
condition (1.1) is satisfied. When seeking to satisfy (1.1) it is important 
to ensure that the stepsize is not reduced unnecessarily so that condi
tion (1.2) is not satisfied. Since in training, the gradient vector is known 
only at the beginning of the iterative search for a new weight vector, 
condition (1.2) cannot be checked directly (this task requires additional 
gradient evaluations at each iteration), but is enforced simply by plac
ing a lower bound on the acceptable values of the stepsize. This bound 
on the stepsize has the same theoretical effect as condition (1.2), and 
ensures global convergence [11]. 
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Nonmonotone Learning Strategies 
Although monotone learning strategies provide an efficient and effec

tive way to ensure that the error function is reduced sufficiently, they 
have the disadvantage that no information, which might accelerate con
vergence, is stored and used [15]. To alleviate this situation we propose 
a nonmonotone learning strategy that exploits the accumulated infor
mation with regard to the M most recent values of the error function. 
The following condition is used to formulate the new approach and to 
define a criterion of acceptance of any weight iterate: 

E (w^ - rj^VEiw^)) - max E{w^-^) ^ 7 7 / ^ (vE{w^), c/)^) , (1.6) 
\ / 0^jf<M \ / 

where M is a nonnegative integer, named nonmonotone learning horizon^ 
0 < 7 < 1, 77̂  indicates the learning rate and cf)^ is the search direction 
at the kth iteration. The above condition allows for an increase in the 
function values without affecting the global convergence properties, as 
it has been proved theoretically in [17, 48], 

Furthermore, it can be shown that the nonmonotone learning strategy 
generates a globally convergent sequence for any algorithm that follows 
a search direction ip^ ^ 0, provided that two positive numbers ci,C2 
exist, such that: 

V£ ; (^ '= ) , / ) ^ -c i | |VE(^*=) | | , (1.7) 

\\^'\\^C2\\VE{w')\\. (1.8) 

This follows directly from the convergence theorem in [17]. 
Next, we summarize the basic steps of the nonmonotone learning 

strategy at the fcth iteration: 

1: Update the weights w^'^^ =^ w^ + rj^ip^, 

2: If E{w^-^^) - max E(w^-^) ^ 7 7 / ^ (vE(w^),(^^), store w^-^\ 

set k = k + 1 and go to Step 1; otherwise go to the next step. 

3: Use a tuning technique for TJ^ and return to Step 2. 

Experimental results indicate that the choice of the parameter M is 
critical for the implementation and depends on the nature of the prob
lem [42, 46]. Therefore, instead of using a user-defined value for the 
nonmonotone learning horizon M, an adaptive procedure can be applied 
to dynamically evaluate M. 
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To this end, the following procedure, based on the notion of the Lips-
chitz constant, dynamically adapts the value of the nonmonotone learn
ing horizon M at each iteration: 

r M^-i + 1, A^ < A^-^ < A^-^, 
M^ = I M^-i - 1, A^> A^-^ > yl^-2, (1.9) 

[ M^~^ , otherwise, 

where A^ is the local estimation of the Lipschitz constant at the kth 
iteration [29]: 

llv^j-vEy--)!! 
which can be obtained without additional error function or gradient eval
uations. If A^ is increased for two consecutive iterations, the sequence of 
the weight vectors approaches a steep region and the value of M has to 
be decreased in order to avoid overshooting a possible minimum point. 
On the other hand, when A^ is decreased for two consecutive iterations, 
the method possibly enters a valley in the weight space, so the value of 
M has to be increased. This allows the method to accept larger step-
sizes and move faster out of the flat region. Finally, when the value of 
A^ has a rather random behavior (increasing or decreasing for only one 
iteration), the value of M remains unchanged. It is evident that M has 
to be positive. Thus, if Relation (1.9) gives a non positive value in M, 
the nonmonotone learning horizon is set equal to 1 in order to ensure 
that the error function is sufficiently reduced at the current iteration. 

At this point it is useful to remark that a simple technique to tune 
77̂  at Step 3 is to decrease the stepsize by a reduction factor 1/g, where 
g > 1, as mentioned in the previous subsection. The selection of q is 
not crucial for successful learning, however, it has an influence on the 
number of error function evaluations required to obtain an acceptable 
weight vector. Thus, some training problems respond well to one or 
two reductions in the stepsize by modest amounts (such as 1/2), while 
others require many such reductions, but might respond well to a more 
aggressive stepsize reduction (for example by factors of 1/10, or even 
1/20). On the other hand, reducing 77̂  too much can be costly since the 
total number of iterations will be increased. The value q = 2 is usually 
suggested in the literature [2] and, indeed, it was found to work effec
tively and efficiently in the experiments [41, 46]. The above procedure 
constitutes an efficient method of determining an appropriate stepsize 
without additional gradient evaluations. As a consequence, the num
ber of gradient evaluations is, in general, less than the number of error 
function evaluations. 
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The nonmonotone learning strategy can be used as a subprocedure 
that secures and accelerates the convergence of a learning algorithm by 
providing the ability to handle arbitrary large stepsizes, and, in this way, 
learning by neural nets becomes feasible on a first-time basis for a given 
problem. Additionally, it alleviates problems generated by poor selection 
of the user-defined learning parameters, such as decreased rate of con
vergence, or even divergence and convergence to undesired local minima 
due to premature saturation [26]. It is worth noting that any stepsize 
adaptation strategy can be incorporated in Step 1 of the above algorithm 
model. For example, in [41, 46] the nonmonotone Backpropagation with 
variable stepsize (NMBPVS) and the nonmonotone Barzilai-Borwein 
Backpropagation (NMBBP) have been proposed. 

The NMBPVS is the nonmonotone version of the Backpropagation 
with Variable Stepsize (BPVS) [29], which exploits the local shape of the 
error surface to obtain a local estimate the Lipschitz constant at each 
iteration and uses this estimate to adapt the stepsize 77̂ . The nonmono
tone strategy helps to eliminate the possibihty of using an unsuitable 
local estimation of the Lipschitz constant. 

With regards to the NMBBP, the nonmonotone strategy helps to se
cure the convergence of the BBP method [42], even when the Barzilai-
Borwein formula [3] gives an unsuitable stepsize. Experimental results 
show that the NMBBP retains the ability of BBP to escape from unde
sirable regions in the weight space, i.e. undesired local minima and flat 
valleys, whereas other methods are trapped within these regions [41, 46]. 

Furthermore, alternative weight adaptation rules can be used in Step 2 
of the above algorithm model to develop their nonmonotone version. For 
example, in [21, 50] a simple, heuristic strategy for accelerating the BP 
algorithm has been proposed based on the use of a momentum term. The 
momentum term can been incorporated in the steepest descent method 
as follows: 

^k+i ^ f̂c _ (̂2̂  _ rn)ri\/E{w^) + m{w^ - w^~^), 

where m is the momentum constant. A drawback with the above scheme 
is that, if m is set to a comparatively large value, gradient information 
from previous iterations is more influential than the current gradient 
information in updating the weights. A solution is to increase the step-
size, however, in practice, this approach frequently proves ineff'ective 
and leads to instability or saturation. Thus, if m is increased, it may be 
necessary to make a compensatory reduction in 77 to maintain network 
stabihty. Combining the BP with Momentum (BPM) with the non
monotone learning strategy (this is named NMBPM) helps to alleviate 
this problem. 



Improved Learning of Neural Nets through Global Search 371 

3. Learning Through Global Search Methods 
In this section we focus on global search methods for neural network 

learning and we propose objective function transformation techniques 
that can be combined with any search method (either local or global) 
to alleviate the problem of occasional convergence to undesired local 
minima. 

Adaptive stochastic search algorithms 
Adaptive stochastic search algorithms include, simulated annealing [8, 

24], genetic and evolutionary algorithms [33], as well as swarm intelli
gence [13, 22, 23]. Next, the fundamentals of those methods are re
viewed. 

The method of simulated annealing. Simulated Annealing (SA) 
refers to the process in which random noise in a system is systemati
cally decreased at a constant rate so as to enhance the response of the 
system [24]. 

In the numerical optimization framework, SA is a procedure that has 
the capabihty to move out of regions near local minima [10]. SA is 
based on random evaluations of the objective function, in such a way 
that transitions out of a local minimum are possible. It does not guar
antee, of course, to find the global minimum, but if the function has 
many good near-optimal solutions, it should find one. In particular, 
SA is able to discriminate between "gross behavior" of the function and 
finer "wrinkles". First, it reaches an area in the function domain space 
where a global minimizer should be present, following the gross behavior 
irrespectively of small local minima found on the way. It then develops 
finer details, finding a good, near-optimal local minimizer, if not the 
global minimum itself. 

In the context of neural network learning the performance of the clas
sical SA is not the appropriate one: the method needs a greater number 
of function evaluations than that usually required for a single run of 
first-order learning algorithms and does not exploit derivative related 
information. Notice that the problem with minimizing the neural net
work error function is not the well defined local minima but the broad 
regions that are nearly fiat. In this case, the so-called Metropolis move 
is not strong enough to move the algorithm out of these regions [59]. 

In [8], it has been suggested to incorporate SA in the BP algorithm: 

^^+1 =:w^- fiVE{w^) + nc2-^\ 
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where n is a constant controlling the initial intensity of the noise, c E 
(—0.5,+0.5) is a random number and d is the noise decay constant. 
In the experiments reported below we have applied this technique for 
updating the weights from the beginning of the training as proposed by 
Burton et al [8]. Alternatively, we update the weights using plain BP 
until convergence to an undesired local minimum is obtained, then we 
switch to SA. This combined BP with SA is named BPSA. 

Genetic Algorithms. Genetic Algorithms (GA) are simple and ro
bust search algorithms based on the mechanics of natural selection and 
natural genetics. The mathematical framework of GAs was developed in 
the 1960s and is presented in Holland's pioneering book [19]. GAs have 
been used primarily in optimization and machine learning problems and 
their operation is briefly described as follows. At each generation of a 
GA, a new set of approximations is created by the process of selecting 
individuals according to their level of fitness in the problem domain and 
breeding them together using operators borrowed from natural genetics. 
This process leads to the evolution of populations of individuals that 
are better suited to their environment than their progenitors, just as in 
natural adaptation. For a high level description of the simple GA see 
Figure 1.1. 

More specifically, a simple GA processes a finite population of fixed 
length binary strings called genes, GAs have two basic operators, namely: 
crossover of genes and mutation for random change of genes. The 
crossover operator explores different structures by exchanging genes be
tween two strings at a crossover position and the mutation operator is 
primarily used to escape the local minima in the weight space by alter
ing a bit position of the selected string; thus introducing diversity in 
the population. The combined action of crossover and mutation is re
sponsible for much of the effectiveness of GA's search. Another operator 
associated with each of these operators is the selection operator, which 
produces survival of the fittest in the GA. 

The parallel noise-tolerant nature of GAs, as well as their hill-climbing 
capability, make GAs eminently suitable for training neural networks, as 
they seem to search the weight space efficiently. The "Genetic Algorithm 
for Optimization Toolbox (GAOT)" [20] has been used for the experi
ments reported here. GAOT's default crossover and mutation schemes, 
and a real-valued encoding of the ANN's weights have been employed. 

Evolutionary Algorithms. Evolutionary algorithms (EA) are adap
tive stochastic search methods which mimic the metaphor of natural 
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STANDARD GENETIC ALGORITHM MODEL 

{ 
/ / i n i t i a l i s e the time counter 
t := 0; 
//initialise the population of individuals 

InitPopulation(P(t)); 

//evaluate fitness of all individuals 

Evaluate(P(t)); 

//test for termination criterion (time, fitness, etc.) 

while not done do 

t := t + 1; 

//select a sub-population for offspring production 

Q(t) := SelectParents(P(t)); 

//recombine the "genes" of selected parents 

Recombine(Q(t)); 

//perturb the mated population stochastically 

Mutate(Q(t)); 

//evaluate the new fitness 

Evaluate(Q(t)); 

//select the survivors for the next generation 

P(t + 1) := Survive(P(t), Q(t)); 

end 

} 

Figure 1.1. A high level description of the simple GA Algorithm 

biological evolution. Differently from other adaptive stochastic search 
algorithms, evolutionary computation techniques operate on a set of po
tential solutions, which is called population^ applying the principle of 
survival of the fittest to produce better and better approximations to 
a solution, and, through cooperation and competition among the po
tential solutions, they find the optimal one. This approach often helps 
finding optima in complicated optimization problems more quickly than 
traditional optimization methods. 

To demonstrate the efficiency of the EA in alleviating the local minima 
problem, we have used the Differential Evolution (DE) strategies [53]. 
DE strategies have been designed as stochastic parallel direct search 
methods that can efficiently handle non differentiable, nonlinear and 
multimodal objective functions, and require few, easily chosen control 
parameters. Experimental results [28] have shown that DE algorithms 
have good convergence properties and outperform other evolutionary 
methods [44, 45]. To apply DE algorithms to neural network learning 
we start with a specific number {NP) of A/^-dimensional weight vectors, 
as an initial weight population, and evolve them over time. The num
ber of individuals NP is kept fixed throughout the learning process and 
the weight vectors population is initialized randomly following a uniform 
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probability distribution. As in GAs, at each iteration of the DE algo
rithm, called generation^ new weight vectors are generated by the com
bination of weight vectors randomly chosen from the population, which 
is called mutation. The outcoming weight vectors are then mixed with 
another predetermined weight vector, the target weight vector. This op
eration is called crossover diiid it yields the so-called trial weight vector. 
This vector is accepted for the next generation if and only if it reduces 
the value of the error function E. This last operation is called selection. 

Below, we briefly review the two basic DE operators used for ANN 
learning. The first DE operator, we consider, is mutation. Specifically, 
for each weight vector Wg^ i = 1 , . . . ,7VP, where g denotes the current 
generation, a new vector Vg-^i (mutant vector) is generated according to 
one of the following relations: 

Alg. DEi 

Alg. DE2 

Alg. DE3 

Alg. DE4 

Alg. DE5 

Alg. DEe 
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(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

where w^^^^ is the best member of the previous generation, ^ > 0 is a real 
parameter, called mutation constant, which controls the amplification of 
the difference between two weight vectors, and 

r i , r2, r3, r4, r5 E {1, 2 , . . . , 2 - 1, i + 1 , . . . , NP} 

are random integers mutually different and different from the running 
index i. 

Relation (1.11) has been introduced as crossover operator for GAs [33] 
and is similar to Relations (1.12) and (1.13). The remaining relations 
are modifications which can be obtained by the combination of ( l .H), 
(1.12) and (1.13). It is clear that many more relations of this type 
can be generated using the above ones as building blocks. In recent 
works [44, 45], we have shown that the above relations can efficiently be 
used to train ANNs with arbitrary integer weights as well. 

The second DE operator, i.e. the crossover, is applied to increase the 
diversity of the mutant weight vector. Specifically, for each component j 
(j = 1, 2 , . . . , A/') of the mutant weight vector v^^i^ we randomly choose 
a real number r in the interval [0,1]. Then, this number is compared 
with the crossover constant p; if r ^ p we replace the j - th component 
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of the trial vector u't_^i with the j - th component of the mutant vector 
vi^i] otherwise, we pick the j - th component of the target vector t̂;̂ . 

The part icle swarm opt imizat ion m^ethod. In Particle Swarm 
Optimization (PSO) algorithm the population dynamics simulates a "bird 
flock's" behavior where social sharing of information takes place and in
dividuals can profit from the discoveries and previous experience of all 
other companions during the search for food. Thus, each companion, 
called particle^ in the population, which is now called swarm^ is assumed 
to "fly" over the search space in order to flnd promising regions of the 
landscape. For example, in the minimization case, such regions possess 
lower functional values than other visited previously. In this context, 
each particle is treated as a point in a A^-dimensional space which ad
justs its own "flying" according to its flying experience as well as the 
flying experience of other particles (companions). 

There are many variants of the PSO proposed so far, after Eberhart 
and Kennedy introduced this technique [13, 22]. In our experiments 
we have used a version of this algorithm, which is derived by adding a 
new inertia weight to the original PSO dynamics [12]. This version is 
described in the following paragraphs. 

First let us define the notation used: the i-th particle of the swarm 
is represented by the A^-dimensional vector Xi = (x^i, 0:̂ 2̂  • - • ^ ^IN) and 
the best particle in the swarm, i.e. the particle with the smallest function 
value, is denoted index g. The best previous position (the position giving 
the best function value) of the i-th particle is recorded and represented 
as Pi = {pii',Pi2i • • • -IVIN)^ and the position change (velocity) of the z-th 
particle is Vi = {vii,Vi2,..., VIN)-

The particles are manipulated according to the equations 

Vin ^WVin + Ciri{pin - Xin) + C2r2{Pgn " ^ m ) , (1.17) 

Xin =^ Xin I Vint \^'^^) 

where n = 1,2,..., Â ; i = 1, 2 , . . . ,7VP and NP is the size of population; 
w is the inertia weight; ci and C2 are two positive constants; ri and r2 
are two random values in the range [0,1]. 

The first equation is used to calculate i-th particle's new velocity by 
taking into consideration three terms: the particle's previous velocity, 
the distance between the particle's best previous and current position, 
and, finally, the distance between swarm's best experience (the position 
of the best particle in the swarm) and i-th particle's current position. 
Then, following the second equation, the i-th particle files toward a 
new position. In general, the performance of each particle is measured 
according to a predefined fitness function, which is problem-dependent. 
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The role of the inertia weight w is considered very important in PSO 
convergence behavior. The inertia weight is employed to control the 
impact of the previous history of velocities on the current velocity. In 
this way, the parameter w regulates the trade-off between the global 
(wide-ranging) and local (nearby) exploration abilities of the swarm. A 
large inertia weight facilitates global exploration (searching new areas), 
while a small one tends to facihtate local exploration, i.e. fine-tuning 
the current search area. A suitable value for the inertia weight w usu
ally provides balance between global and local exploration abilities and 
consequently a reduction on the number of iterations required to locate 
the optimum solution. A general rule of thumb suggests that it is better 
to initially set the inertia to a large value, in order to make better global 
exploration of the search space, and gradually decrease it to get more 
refined solutions, thus a time decreasing inertia weight value is used. 

From the above discussion it is obvious that PSO, to some extent, re
sembles EAs. However, in PSO, instead of using genetic operators, each 
individual (particle) updates its own position based on its own search ex
perience and other individuals (companions) experience and discoveries. 
Adding the velocity term to the current position, in order to gener
ate the next position, resembles the mutation operation in evolutionary 
programming. Note that in PSO, however, the "mutation" operator is 
guided by particle's own "flying" experience and benefits by the swarm's 
"flying" experience. In another words, PSO is considered as performing 
mutation with a "conscience", as pointed out by Eberhart and Shi [12]. 

In general, PSO has been proved very efficient in a plethora of appli
cation in science and engineering [23, 38-40] 

Transforming the objective function 
Let a point w such that there exists a neighborhood B oi w with 

E{w)^E{w), yweB, (1.19) 

This point is a local minimizer of the error function and, as already 
mentioned above, many methods get stuck in such undesired local min
ima. The main idea of applying a transformation to the error function 
is to make some undesired local minima disappear, while keeping the 
location of the global minimizer unchanged. The techniques that will be 
described below aim at transforming the error function in such a way 
that convergence to a global minimizer is enhanced for any learning al
gorithm that is equipped with them. Two methods are described: the 
deflection procedure and the function stretching technique. 
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The deflection procedure. Following the deflection procedure pro
posed in [30], when the sequence of weight vectors {W^}Q^ converges to 
a local minimum w G M^ the error function E{w) is reformulated as 
follows: 

F{w) = S{w]w,X)-^E{w), 

where S{w; w^ A) is a function depending on a weight vector w and on the 
local minimizer tD of £'; A is a relaxation parameter. In case there exist 
m local minima tDi,. . . , Wm € K^, the above relation is reformulated as: 

F{w) = S{w] iDi, Ai)~-̂  • • • S{w] Wm, \m)~^E{w), 

The deflection procedure suggests to find a "proper" 5(-) such that F{w) 
will not have a minimum at Wi^i = l , . . . ,7ri, while keeping all other 
minima of E locally "unchanged". In other words, we have to con
struct functions S that provide F with the property that any sequence 
of weights converging to Wi (a local minimizer of E) will not produce a 
minimum oi F dit w =^ Wi. In addition, this function F will retain all 
other minima of E, This is the deflection property [30]. For example, 
the function: 

S{w;Wi,Xi) = tanh(Ai||t(; - Wi\\), 

provides F with this property, as it will be explained below. 
Let us assume that a local minimum Wi has been determined, then 

lini ^ ( ^ ) ^ ^ 
w-^wi tanh {X\\w — Wi\\) 

which means that Wi is no longer a local minimizer of F. Moreover, it is 
easily verified that for ||K; —iD̂H ^ e, where £ is a small positive constant, 
it holds that: 

lim F{w)= lim T-TTT^ i^ = E(w), (1.20) 
A->+oo A-̂ +oo tanh(A||t(; - K;f||) 

since the denominator tends to unity. This means that the error function 
remains unchanged in the whole weight space. 

It is worth noticing that the eflFect of the deflection procedure is 
problem-dependent and is related to the value of A. For an arbitrary 
value of A there is a small neighborhood 7?,(iD, p) with center w and radius 
p, with p oc A~\ that for any x G TZ{w^p) it holds that F{w) > E{w), 
To be more specific, when the value of A is small (say A < 1) the de
nominator in the above relation becomes one for w "far" from w. Thus, 
the deflection procedure affects a large neighborhood around w in the 
weight space. On the other hand, when the value of A is large, new local 
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Error Contour Plot 

Figure 1.2. Applying deflection to a simple learning task 

minima is possible to be created near the computed minimum tD, like a 
"Mexican hat". These minima have function values greater than F{iD) 
and can be easily avoided by taking a proper stepsize or by changing the 
value of A. 

To better visualize the effect of the deflection procedure, we provide 
an application example. It concerns training a single neuron using the 
BP algorithm to associate 8 input-output pairs. The error surface of 
the problem is shown in Fig. 1.2 (top-left). The desired minimum is 
located at the center and there are two valleys that lead to undesired 
local minima. In Fig. 1.2 (bottom-left) we illustrate the weight trajec
tory when the initial conditions lead the learning algorithm to converge 
to an undesired local minimum. In Fig. 1.2 (top-right) and in Fig. 1.2 
(bottom-right) we present the deflected trajectory of weights drawn on 
the contour lines of the original and the error function subject to deflec
tion, respectively. 

Notice that the deflection procedure can be incorporated in any learn
ing algorithm to help escaping the influence of local minima. In the ex
periments reported below, the classical BP method has been equipped 
with the deflection procedure. The resulting scheme is named BP with 
deflection (BPD). 

The function "stretching" technique. The function '^stretching'' 
technique [37] consists of a two-stage transformation in the form of the 
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original error function E{w) and can be applied soon after a local mini
mum w of the function E has been detected: 

G{w) = E{w) + y 11̂  - w\\ {sign(E(w) - E{w)) + 1), (1.21) 

u( \ r( \j. s i g n ( ^ H - £ ^ ( ^ ) ) + l .. . . . 

where 71,72 and /i are arbitrary chosen positive constants, and sign(-) 
defines the well known three valued sign function. Note that the sign 
function can be approximated by the well known logistic function: 

sign(^.) ^ logsig(«;) = ^ ^ ^ ^ p ^ _ ^ ^ ) - 1 = tanh (^ w 

for a large value of u. This sigmoid function is continuously differentiable 
and is widely used as a transfer function in artificial neurons. 

It is worth noticing that the first transformation stage elevates E{w) 
and makes disappear all the local minima located above w. The second 
stage stretches the neighborhood of w upwards, since it assigns higher 
function values to those points. Both stages do not alter the local minima 
located below tD; thus, the global minimizer is left unchanged. 

At this point it is useful to provide an application example of this 
technique in order to illustrate its effect. The problem considered is a 
notorious two dimensional test function, called the Levy No. 5: 

5 5 

/ (^) "̂  X ] ^ ^̂ t̂*̂ ^ + l)xi+i]x^j cos[(j + l)x2 + j] + 

+ {xi + 1.42513)^ + {X2 + 0.80032)2, (1.23) 

where —10 ^ Xi ^ lO^i = 1,2. There are about 760 local minima and 
one global minimum with function value /* = —176.1375 located at 
X* = (—1.3068,-1.4248). The large number of local optimizers makes 
extremely difficult for any method to locate the global minimizer. In 
Fig. 1.3, the original plot of the Levy No. 5 into the cube [—2, 2]^ is 
shown. 

After applying the transformation of Eq. 1.21 (first stage of function 
"stretching") to the Levy No. 5, the new form of the function is shown in 
Fig. 1.4 (left). As one can see, local minima with higher functional values 
than the "stretched" local minimum disappeared, while lower minima as 
well as the global one have been left unaffected. In Fig. 1.4 (right), the 
final landscape, derived after applying the second transformation stage 
to the Levy No. 5, is presented. It is clearly shown how the whole neigh
borhood of the local minimum has been elevated; thus, the former local 
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Figure 1.3. The original plot of the function Levy No. 5. 

Figure 1.4- Plot of the Levy No. 5 after the first stage (left) and after the second 
stage (right) of the function "stretching" technique. 

minimum has now turned to be a local maximum of the function. Details 
on the performance of the PSO algorithm combined with the function 
"stretching" technique (SPSO) on two well known test problems, as well 
as suggestions for selecting parameter values, are presented in the next 
section. 

4* Experiments and discussion 
Experiments have been performed to evaluate the learning methods 

mentioned in the previous sections and compare their performance. Be
low, we exhibit results on two notorious for their local minima problems. 
The algorithms have been tested using initial weights chosen from the 
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uniform distribution in the interval (—1,1). Note that BPSA and BPD 
update the weights using BP until convergence to a global or local min
imum is obtained: the weight vector w^ is considered as a global mini-
mizer when E{w^) ^ 0.04. Convergence to a local minimizer is related 
to the magnitude of the gradient vector, i.e. when the stopping condi
tion ||V£^(?i;^)|| ^ 10"^ is met, w^ is taken as a local minimizer Wi of 
the error function E. 

No effort has been made to tune the mutation and crossover param
eters, ^ and p respectively. We have used the fixed values (̂  = 0.5 and 
p =: 0.7, instead. The weight population size NP has been chosen to be 
twice the dimension of the problem, i.e. NP— 2N^ for all the simulations 
considered. Some experimental results have shown that a good choice 
for NP is 2N ^ NP ^ AN. It is obvious that the exploitation of the 
weight space is more effective for large values of NP^ but sometimes more 
error function evaluations are required. On the other hand, small values 
of NP make the algorithm inefficient and more generations are required 
in order to converge to the minimum. 

In all the PSO simulations reported, the values of 71,72 and /i were 
fixed: 71 = 10000,72 = 1 and /i = 10"-^^. The balance between the 
global and local exploration abihties of the SPSO is mainly controlled by 
the inertia weights, since the particles' positions are updated according 
to the classical PSO strategy. A time decreasing inertia weight value, 
i.e. start from 1 and gradually decrease towards 0.4, has been found to 
work better than using a constant value. This is because large inertia 
weights help to find good seeds at the beginning of the search, while, 
later, small inertia weights facilitate a finer search. 

Notice that for the BP, BPM, BBP, SA, BPSA and BPD methods each 
iteration corresponds to one gradient and one error function evaluation, 
differently from the BPVS, NMBPM, NMBBP and NMBPVS where, in 
general, the number of error Function Evaluations (FE) is larger than 
the number of Gradient Evaluations (GE), due to the use of the hne 
search. In the table below, there are two rows for these algorithms; the 
first one indicates the statistics for the FE and the second for the GE. 
On the other hand, a key feature of GA, DE, PSO and SPSO algorithms 
is that only error function values are needed. 

1) The XOR classification problem: classification of the four XOR pat
terns in one of two classes, {0,1}, using a 2-2-1 ANN is a classical test 
problem [50, 54]. The XOR problem is sensitive to initial weights and 
presents a multitude of local minima [7]. The stepsize is taken equal 
to 1.5 and the heuristics for SA, BPSA and PSO are tuned to n = 0.3, 
d — 0.002 and ci == C2 = 0.5. In all instances, 100 simulations have been 
run and the results are summarized in Table 1.1. 
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2) The three bit parity problem [50]; a 3-3-1 ANN receives eight, 3 -
dimensional binary input patterns and must output an "1" if the inputs 
have an odd number of ones and "0" if the inputs have an even number of 
ones. This is a very difficult problem for an ANN because the network 
must determine the proper parity (the value at the output) for input 
patterns which differ only by Hamming distance 1. It is well known that 
the network's weight space contains "bad" local minima. The stepsize 
has been taken equal to 0.5 and the heuristics for SA, BPSA and PSO 
have been tuned to n == 0.1, d = 0.00025, ci = 0.1 and C2 = 1. In all 
instances, the results of 100 simulations are summarized in Table 1.1. 

The results suggest that combination of local and global search meth
ods like BPSA and BPD provide a better probability of success than 
the BP. Note that the performance of BPSA is not the appropriate one 
although derivative related information has been used. On the other 
hand, BPD escapes local minima and converges to the global minimum 
in all cases, A consideration that is worth mentioning is that the number 
of function evaluations in BPSA and BPD contains the additional eval
uations required for BP to satisfy the local minima stopping condition. 
The results also indicate that the GA and the DE are promising and 
effective, even when compared with other methods that require the gra
dient of the error function, in addition to the error function values. For 
example, GAs as well as DE^ and DE4 have exhibited very good perfor
mance for the test problems considered. On the other hand, there have 
been cases where a discrepancy has been found in DE's behavior; see for 
example DE^ and DEQ. For a discussion on the generalization capabili
ties of the networks generated by the DE algorithms see [43, 45]. Finally, 
the PSO algorithm combined with the function "stretching" technique 
(SPSO) has exhibited improved success rate, although it needed addi
tional iterations to converge. 

In conclusion, global search methods provide techniques that alleviate 
the problem of occasional convergence to local minima in neural network 
learning. Escaping from local minima is not always possible, however 
these methods exhibit a better chance in locating appropriate solutions 
and, in that sense, they improve the efficiency of the learning process. 
Experiments indicate that learning algorithms equipped with the pro
posed error function transformation techniques are capable to escape 
from undesired local minima and locate a desired one effectively. The 
deflection procedure and the function "stretching" technique provide sta
ble convergence and thus a better probability of success for a learning 
algorithm. In general, the results exhibited by the proposed methods on 
two notorious for their local minima problems are promising. 
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Training 
Method 

BP 
BPM 
BBP 

NMBPM 

NMBBP 

BPVS 

NMBPVS 

SA 
BPSA 
GA 
DEi 
DE2 
DE3 
DE4 
DE5 
DEe 
PSO 
SPSO 
BPD 

(FE) 

(GE) 

(FE) 

(GE) 

(FE) 
(GE) 

(FE) 

(GE) 

XOR Problem 
Mean 
144.1 
249.7 
93.3 

260.4 
254.4 
191.6 
102.1 
199.1 
185.2 
208.4 
201.3 
424.2 

1661.9 
422.3 
192.9 
284.9 
583.9 
706.1 
300.5 
482.9 

1459.7 
7869.6 

575.1 

s.d. 
112.6 
322.1 
201.5 
287.8 
287.3 
328.9 
173.4 
373.1 
343.3 
395.2 
378.8 
420.8 

2775.7 
397.5 
124.7 
216.2 
256.3 
343.7 
250.2 
264.9 

1143.1 
13905.4 

387.3 

Succ. 
42% 
49% 
71% 

68% 

80% 

78% 

80% 

43% 
65% 
95% 
75% 
80% 
97% 
98% 
85% 
93% 
77% 
100% 
100% 

Parity Problem 
Mean 
9 3 2 X 
219.9 
150.3 
244.3 
235.1 
106.6 
99.2 

105.8 
100.4 
102.1 
95.3 

805.4 
2634.0 
1091.5 
622.6 

1994.1 
896.3 

1060.2 
2112.0 
2062.5 
6422.4 
9803.6 

760.0 

s.d. 
1320.8 

198.9 
137.3 
205.9 
204.4 
123.1 
164.5 
186.9 
171.6 
109.9 
183.5 

2103.1 
6866.8 

766.2 
522.1 
657.6 
450.6 
716.6 
644.9 
794.8 

2992.1 
5436.6 

696.4 

Succ. 
" " 9 1 ^ 

93% 
94% 

99% 

99% 

98% 

99% 

22% 
66% 
73% 
91% 
61% 
99% 
98% 
26% 
44% 
42% 
95% 
100% 

Table 1.1. Comparative results 
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Abstract The purpose of this paper is to describe the main problems concerning the de
sign of assembly lines. It is composed of the following steps: (1) input data 
preparation (2) elaboration of the logical layout of the line, which consists in the 
distribution of operations among stations along the line and an assignment of 
resources to the different stations and (3) finally the mapping phase, allowing to 
check the results with a commercial simulation package. This work presents a 
new method to tackle the hybrid assembly lines dealing with multiple objective. 
The goal is to minimize the total cost of the line by integrating design (conges
tion, machine cost,...) and operation issues (cycle time, precedence constraints, 
availability,...). After an overview of the current work in this area, this paper 
presents, in detail, a very promising approach to solve multiple objective prob
lems: a multiple objective grouping genetic algorithm (a grouping genetic algo
rithm hybridized with the multi-criteria decision-aid method PROMETHEE II). 
An approach to deal with user's preferences in design problems is also intro
duced. The essential concepts adopted by the method are described. An appli
cation of the proposed method to an industrial case study is presented. 

Keywords: Assembly lines design, multiple objective problems, grouping genetic algorithm, 
multi-criteria decision-aid. 

1. Introduction 
Assembly lines are found in all types of industries, wherever "products" may be imagined 

to move along from station to station. Assembly is a process by which subassemblies and 
components are put together yielding the finished products. The assembled product takes shape 
gradually, starting with one part called the base part, the remaining parts being attached at the 
various stations the product visits. Tasks are accomplished by a group of workers, machines or 
robots. After a lapse of time called the cycle time, the conveyor moves, thus positioning each 
product in front of the next station in the line. Figure 1.1 illustrates our words. 

The design of an efficient assembly line is a problem of considerable industrial importance. 
Line layout problems are divided into logical and physical layout [8]. The goal of the logical 
layout is to assign tasks to a set of stations and to decide about their order along the line. 
The physical layout determines the space requirements taking into account station dimensions. 
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Fig. 1.1 The assembly line concept. 

material storage,... In this paper the authors are more concerned with the logical line layout 
(LLL) of assembly lines. 

In the literature, the LLL is divided into assembly line balancing (ALB) and resource plan
ning (RP) problems. The ALB used especially for manual assembly lines (MAL) aims to bal
ance the loads of the stations. This approach is appropriate for such systems, since the global 
cost of MAL is directly influenced by the number of stations. Thus, the main objective of the 
ALB problem is either to minimize a number of stations or to distribute a workload among 
them. 

On an hybrid assembly line (HAL) tasks can be executed either manually, by robots or by 
hard automated equipment. In general, the operating time and the cost depend on the resource 
used. Given a list of available candidate equipment to complete the operations, the problem in 
the RP is to decide which resources to use and which tasks to assign to each of them. Here, 
the main objective is to minimize the total cost of the line by integrating design (congestion, 
cost,...) and operation issues (cycle time, precedence constraints and availability,...). 

Assembly line design (ALD) problems are multi-criteria ones. That is, those problems 
involve multiple often conflicting objectives to be met (cost, availability, imbalance between 
station,...) and ask for a compromise among them. Since their early days, the genetic algo
rithms (GAs) have been viewed to be well suited for multiple objective problems (MOP). Thus, 
several GA-based techniques have been developed since then. 

The paper is organized as follows: in section 2, a more detailed description of the ALD 
problem is given, discussing its constraints as well as its objectives. Section 3 presents related 
work concerning ALD techniques. The first phase of the integrated approach which is the 
"preparation of data" is introduced in section 4. Section 5 is devoted to the optimization phase 
while the mapping phase is described in section 6. Results of a case study are presented in 
section 7, and conclusions are drawn in section 8. 

2. Assembly line design 

2.1 Task and resource assignment problems 
The proposed method is built upon many collaborations with industrials. Its main steps can 

be summarized as follows (see Figure 1.2): 

• Preparation: the designer introduces its input data (tasks, resources, constraints, preferences,...); 

• Optimization: the optimization method proposes a line architecture (stations contents, 
their order,...); 
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• Mapping: allows the designer to analyze and test the results using a simulation package. 

» set of task: 
' set of re 
set of con 

' set of preference: 

input 

optimisation Metliod 

output 

\ feedbacl< fronn 
' \ simulation 

^^^^^^ Assembly line^ 
installation^ 

Fig. 1.2 Design method. 

2,2 Problem statement 
As the reader will remark, the authors will only detail the resource planing problem and not 

the line balancing. Indeed, if each task has its own equipment and by the way a fixed process 
time, the problem is transformed to an assembly line balancing one. The same technique is used 
to solve both of the problems. 

A task in the point of view the RP is the combination of feeding, handling and insertion for 
each assembly operation. A set of possible groups of equipment (feeders, handlers, insertion 
devices) called "functional groups" (FG) [21] are attributed to each task. 

In other words the RP problem can be defined as follows. Given a set of tasks, and for each 
of them a set of possible resources each characterized by its price, availability and speed in 
terms of the resulting duration of the task; given a fixed number of stations, a desired cycle time 
and possible precedence among tasks, find: 

• the resources to be allocated to each task, among the possible ones, 

• an assignment of the tasks to stations along the line, so that: 

- no precedence constraint is violated; 

- the stations workload is as close as possible to the cycle time. 

The following objectives have to be met: 

• the total cost of the resources allocated to tasks is as less as possible; 

• a maximal availability of the line is attained; 

• the workload is as balanced as possible between the stations. 

The proposed method is composed of three parts namely the preparation, the optimization and 
finally the mapping phase. In the next sections the authors will go through these different 
modules. 

3. Background 
Most ALD methods deal with separate objectives namely minimize the number of stations, 

minimize the idle time, minimize the cost, maximize availability, . . . A detailed survey on the 
subject can be found in [3] and [26]. 
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Most of the research on balancing deal with the simple assembly line balancing (SALB) 
problems in which no alternative equipment types are considered. That is, each process time 
is fixed. The RP problem is proven to be an NP-Hard problem [32]. This state of the art will 
focus on the review of some meta-heuristic approaches to ALD problem. 

On the evolutionary algorithms side, to the best of our knowledge, the first attempt to tackle 
SALB problems was done by [11]. Falkenauer developed a grouping GA (GGA). The authors 
generalized a bin packing algorithm to obtain a fast algorithm supplying high-quality approx
imate solutions. The aim advantage is its ability to handle problems with sparse, even empty 
precedence constraints. 

Sureh and Sahu[28] developed a simulated annealing (SA) heuristic for the SALB prob
lem. They considered the problem of stochastic task durations. Their aim was to minimize the 
smoothness index which intends to distribute work into the station as evenly as possible. 

Leu et al.[17] proposed a sequence-oriented GA to deal with the ALBP. The authors used a 
set of heuristics to initialize the population. They also proposed several techniques to get valid 
solutions. 

Anderson and Ferris[l] used the station-oriented GA encoding. They used the COMSOAL 
heuristic [2] to initialize the population. They suggested three approaches to deal with infeasible 
solutions. The first uses some penalty function to drive the solutions towards feasibility. A 
second uses a repair routine to force generated solutions to correspond to feasible ones. In the 
third one, the chromosome is decoded using rules which guarantee a feasible assignment. 

Kim et al.[15] developed a GA to solve multiple objective ALBP They proposed and ad
dressed several types of ALB problems and considered five objectives: (1) minimize the num
ber of stations; (2) minimize the cycle time; (3) maximize workload smoothness; (4) maximize 
work relatedness; and (5) a multiple objective with (3) and (4). The authors used the sequence-
oriented coding and a repair routine to deal with infeasible solutions. Their emphasis is placed 
on seeking a set of Pareto optimal solutions. 

Sureh et al.[29] used a GA to solve the stochastic SALBP. They proposed a GA working 
with two populations, the first one stores only feasible solutions while the second one deals with 
infeasible ones. Some solutions are exchanged at regular intervals between the two populations. 

Falkenauer proposed a method based on the GGA and the B&B algorithm to deal with the 
ALB with resource dependant tasks times problem [9]. The GGA distributes the tasks onto 
stations, while the B&B algorithm selects the optimal resource for each station. 

MTnzu and Henrioud[20] proposed a "kangaroo" algorithm to treat the problem of multi-
product assembly lines. The method aims to minimize the maximum work content of the sta
tions, which leads to a well balanced line. The computational tests prove that the algorithm 
supplies good solutions in a small number of iterations. 

McMullen and Frazier[19] presented a SA method to address the ALB with multiple ob
jectives. Two kind of objectives were treated: the single and the composite objectives. Three 
single objectives were considered: (1) minimize the cost of the line, (2) minimize the smooth
ness, and (3) minimize the probability of lateness due to the stochastic nature of task duration. 
Also, three composite objectives which are expressed as the weighted sum of the first and the 
third objective. Several heuristics (called trade, transfer, compression and the expansion) were 
used as local improvements. 

Ponnambalam et al.[22] used the sequence-oriented encoding for a multi-objective GA (MO-
GA). They used 14 simple heuristics to initialize the population. The method aims to maximize 
the line efficiency. During the execution of the MO-GA, a set of Pareto optimal solutions are 
stored and updated at each generation. 

Sabuncuoglu et al.[25] proposed a sequence-oriented GA to deal with the ALBP. They used 
the two-point crossover and the scramble mutation, that is a random cut-point is selected and 
the genes after the cut-point are randomly replaced. The authors also proposed a method called 
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"dynamic partitioning" that modifies the chromosome to save computation time. The method 
modifies the chromosome by allocating tasks to stations (i.e. freezing certain tasks) that satisfy 
some criteria, and continues with the remaining unfrozen tasks. 

Little concern has been given to the physical demands placed on workers when assigning 
tasks to stations. Camahan proposed a methodology considering both production objectives (cy
cle time and number of station) as well as worker physical constraints [6]. The method is based 
on the sequence-oriented GA and appHed to the SALBP-2 [26]. The authors used two search 
algorithms: (1) a multiple rank heuristic (MRH) and (2) a problem space GA (PSGA). The 
MRH is a combination of 81 separate heuristics utilizing three search methods, three ranking 
criteria, three tasks assignment and three weighting factors. The PSGA uses these 81 heuristics 
to initialize the population. 

Lee et al.[16] presented a sequence-oriented GA hybridized with the trade and transfer 
heuristics. The trade procedure is used to exchange tasks between adjacent stations. The trans
fer procedure has two varieties: the expansion transfer aims to create additive stations if needed, 
while the compression transfer aims to decrease the number of stations. The method aims to 
minimize the weighted sum of the total cost of the line and the lateness across all stations. 

The sequence-oriented representation is also used in [18]. The authors put the accent on 
the initialization phase. The first step is the creation of the precedence table (the tasks having 
predecessors). Next a list of tasks without predecessors is compiled and finally a task without a 
preceding task is randomly selected from the list and assigned to the first position of the solution 
string. The list of tasks without predecessors is updated and another task without preceding is 
selected and assigned and so on. The mutation operator works as follows: all tasks to the left of 
the mutation point are deleted from the chromosome and the initialization procedure is called 
thereafter to reconstruct the solution. 

When covering the literature on multiple objective problems (MOP) solving methods, it 
seems that the main difference among these methods is the way the solutions are ranked. The 
ranking approach uses methods that can be classified in one of three ways: the aggregating 
approaches, the non-Pareto approaches and the Pareto approaches. In the late eighties, [13] 
published his method called non-dominated sorting, and search techniques started to use the 
concept of Pareto optimality through selection and ranking methods. Since then, numerous 
approaches to solve MOP have appeared. For a comprehensive review, the reader is suggested 
to refer to the overviews of the different MO-GA methods presented in [12], [7] and [30]. 

4. Data preparation (phase 1) 
Once the product and the existing resources of the enterprise has been analyzed a set of 

assembly plans are proposed as well as their preferable resources. The results of the preparation 
phase will only be presented. For more details about this phase the reader is suggested to refer 
to [21]. The method yields the following input for the optimization phase, as illustrated on 
Figure 1.3: 

• the desired number of stations, 

• the desired cycle time, 

• for each task: 

- the precedence constraints between this task and the other ones, 

- the user's operating mode preferences (manual, automated or robotic), 

• an equipment database which yields the features of the different resources (cost, avail
ability, process time, occupied area). 
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For each task: 

+ precedence constraints 
+ user's mode preferences 
•f position 

DB Equipment 

»- List of tasks 
h Cycle time — 
»• Number of stations 

Z 
MO-GGA 

HAL 

+ Cost 
+ Process time 
+ Reliability 
•f Occupied area 

^ Stations & 
" Resources 

Fig. 1.3 Data flow for the ALD method. 

Precedence graph 
The precedence graph of a product is a partial ordering in which tasks must be performed. 

The nodes of the graph represent tasks and the directed arcs (i, j) constitute the precedence re
lationship as shown in Figure 1.4. 

0^0 

Fig. 1.4 Example of precedence graph of 6 operations. 

Cost of a functional group 
The cost of afunctional group will be given by the sum of the costs of its pieces of equipment. 

They will include: (1) the purchase cost, (2) the exploitation and the maintenance cost, (3) the 
manpower cost, including possible training,... and (4) the consumption cost [21]. 

Process time 
The estimation of the process time of an elementary task is far from being simple. There 

is still a lack of reliable tools for the estimation of these times, except for the manual feeding, 
handling and insertion where the work of [4] has brought a considerable improvement. 

Availability 
The availability of an equipment is defined as the proportion of total time that it will be 

available for use. When several FGs are grouped on the same station, the availability of the 
station is the product of the availabilities of the FGs. 

Grouping preferences for HAL 
Three possible methods for each operation are considered (manual, robotic and automated). 

The compatibility between the different modes yields a set of dissociative preferences (manual 
tasks cannot be grouped with robotic or automated ones). On the other side, one of the industrial 
preoccupations is the recovery of existing stations (heavy machines or robots). Two types of 
virtual operations were introduced: (1) fixed operations on stations: some operations have to be 
fixed on a given station (control station, paint station,...) and no additional operation can be 
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added to it, (2) linked operations: a set of operations must be grouped on the same station but 
additional operations can be added. These preferences are introduced by the designer as hard 
constraints of the problem. 

5. Assembly line design: optimization phase 
(phase 2) 

This part constitutes the evolutionary computation part of the methodology. The approach 
is based on the genetic algorithm and many industrial designers' ideas, which are embedded in 
the method as heuristics. Since ALD can be simply described as a problem of assignment of 
tasks to stations, it can be easily viewed as a grouping problem. In order to deal with multiple 
objective nature of ALD, a multiple objective grouping genetic algorithm will be presented in 
section 5.2. 

5.1 Grouping genetic algorithm 
Falkenauer pointed out the weaknesses of standard GAs [14] when applied to grouping prob

lems, and introduced the grouping genetic algorithm (GGA), which is a GA heavily modified 
to match the structure of grouping problems. Those are the problems where the aim is to group 
together members of a set (i.e. find a good partition of the set). The GGA operators (crossover, 
mutation and inversion) are group-oriented, in order to follow the structure of grouping prob
lems. For more details about the GGA and its applications, the reader will refer to [10]. 

5.2 Overall architecture of the MO-GGA 
Applying GAs to solve MOPs has to deal with the twin issues of searching large and complex 

solution spaces and dealing with multiple potentially conflicting objectives. Classical methods 
reduce the problem to a mono-criterion one —such as the popular weighted-sum approach. 
Many studies adopted the Pareto-based GA search to sample the solution space [7]. Few re
searchers have suggested ways of integrating multicriteria decision-aid (MCDA) methods and 
the GA search. The GA iteratively samples the tradeoff surface while the MCDA method nar
rows the search. 

The MOPs involve two "quasi-inseparable" difficulties, namely search and multi-criteria 
decision making. The space to search inside can be too large to be enumerated, and too complex 
to be explored by simple search methods. The objectives may be conflicting, this is why a 
tradeoff has to be made by a rational decision maker (DM). 

In MOPs there is no common agreement on what optimum really means. Thus, the MOP 
is defined as the problem of finding a vector of decision variables which optimizes a vector 
function whose elements represent the objective functions. The word "optimize" means finding 
a solution which would give acceptable values for all the involved objectives. It has several 
interpretations within this context, and it is up to the DM to decide which solution best fits his 
desiderata. 

The two classical (pragmatic) strategies that were applied to the traditional separation of 
search and multi-criteria decisions can be described as follows. 

First, make multi-criteria decisions to aggregate objectives, then apply the search method 
to optimize the resulting figure of merit. The different objectives are combined to form a scalar 
objective function, usually through a linear combination (weighted sum) of the attributes. The 
weights represent the importance of each objective. The main drawback is that it may use the 
sum of values of two totally different objectives (in the case of ALD, it could be the sum of 
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the cost and the availability values), which makes no sense. In general, the obtained "optimal" 
solution is a function of the coefficients used to combine the objectives. 

Conduct the search using the different objectives at the same level of importance. In gen
eral, the objectives compete, in the sense that an improvement of one objective will lead to a 
degradation of others. The idea is to search not for a single solution but for a set of solutions 
that represent the "best tradeoffs". This approach yields the Pareto frontier. The search phase 
is then followed by making multi-criteria decisions to choose among the reduced set. This ap
proach is generally considered to be a "best practice". Nevertheless, the problem is the number 
of solutions the DM has to choose among which can become unmanageable for a DM. 

The approach proposed here is based on a merge of a search and MCDA as illustrated in 
Figure 1.5. Indeed, in order to come out of the MOP stated by the cost function, the MCDA 
method PROMETHEEII is used. For more detail about this method, the reader is invited to refer 
to [5]. It is however important to know that it computes a flow (j) which is a kind of fitness for 
each solution. This "fitness" gives a ranking between the different solutions in the population. 
Note that the weights (associated to the different objectives) used in PROMETHEE II allow an 
easy matching of the user's wishes. 
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Fig. 1.5 Classical GA (a) and the proposed selection approach integrating search and decision making (b). 

The choice of one solution over the others requires problem knowledge. It is the DM's task 
to adjust the weights to help the method to find good solutions. Optimizing a combination of 
objectives has the advantage of producing a single solution. If the solution proposed cannot 
be accepted, because of inappropriate setting of the weights, new runs may be required until a 
suitable solution is found. For a given user's preferences the following multiple objective GA is 
run: 

Generate an initial population with an individual construction algorithm (ICA); 
Order individuals using PROMETHEE II; 
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repeat 
Select parents; 
Recombine best parents from the population; 
Mutate children; 
Reconstruct individuals using the ICA; 
Use PROMETHEE II to order the new population; 
Replace individuals of the population by children; 

until a satisfactory solution has been found. 

The principal features of the method will be outlined in the next sections. 

5.2.1 Individual construction algorithm. 
The equal piles for assembly lines (ER\L) method is embedded in the GGA and is used 

to construct solutions [23]. The essential and distinct concepts adopted by the method will be 
described below, along with step-by-step execution procedure and an illustrative example. 

The Boundary stones algorithm. 
In the equal piles problem, the hard constraint is the fixed number of stations (piles). The 

approach proposed to solve the problem is based on the "boundary-stones". These boundaries 
will be used as seeds to fill the stations. The algorithm follows the steps described below. 

Step 1. It begins by detecting if the precedence graph is cyclic [27]. This step allows 
to check the validity of the proposed precedence graph. 

Step 2. It orders the operations using the labels defined below. These labels depend on 
the number of predecessors and successors. A first formula is given by: 

labelii = nbpredsi — nbsuccsi^ (1-1) 

where labelu is the ordering criteria of operations i (it heavily depends on the precedence 
graph), nbpredsi is the total number of predecessors of operation i, and nbsuccsi is its total 
number of successors. The calculation of labels do not take into account the operations duration. 

For complex graphs (presenting several sprays), formula (1) falls in a trap (yielding a poor 
balancing). The more the graph contains sprays the graph contains the more its ordering be
comes difficult (for a graph having a diagonal adjacency matrix the labeling is very easy since 
the graph is "dense" and uniform). Formula (1) was completed to avoid the trap, giving: 

labeli = nbpredsi — nbsuccsi + followsi, (1-2) 

where followsi is the maximal label value of the direct successors of operation i in the prece
dence graph. 

Table 1.1 gives result of the application of formulas (1) and (2) to the precedence graph 
illustrated in Figure 1.4. This method permits to order operations, finding the probably first and 
last operations on the product, and permits to choose the possible seeds of stations. 

Step 3. Boundary stones (or station seeds) are chosen using the sequence obtained at 
the second step. The number of stones is equal to the number of stations. This step allows to 
find seeds of piles. Suppose that the aim is an assembly line with three stations (so the number 
of stones is three). The boundary stones are determined to cluster operations in three clusters 
corresponding to the three stations. In this example, the first operation in the graph precedence 
of the product is 1 (it has no predecessor and gets the minimal label). The last operation is 
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Table 1.1 Example of application of formulas (1) and (2). 
Op. 

1 
2 
3 
4 
5 
6 

nbpreds 
0 
0 
1 
2 
4 
5 

nbsuccs 
4 
3 
2 
2 
1 
0 

labeli (1) 
-4 
-3 
-1 
0 
3 
5 

follows 
0 
0 
3 
3 
5 

6" 

label(2) 
-4 
-3 
2 
3 
8 
11 

^There are no successors for the given operation and it is the last operation in the precedence graph, so its 
label is equal to the total number of operations. 

6 (having no successor and corresponding to the maximal label). According to their labels 
{ -4 , -3 ,2 ,3 ,8 ,11} , operations are ordered as follows {1,2,3,4,5,6} (refer to Table 1.1). 
The first boundary stone is the label corresponding to the first operation: 

stonei — min(/a6e/). 

Boundary stone number i is defined as: 

stonei+i = stonei + gap^ 

where 

gap = 
m3Xi{labeli) — Ynmi{labeli) 

In this example, gap = 5 and the boundary stones are {—4,1,6}. 

(1.3) 

(1.4) 

(1.5) 

Step 4, Once the boundary stones have been fixed, the labels (and consequently the 
operations) are grouped into as many clusters as stations. The seed (to which corresponds the 
first operation) of cluster i, seedi will be a label close to stonei', for the first station, seedi 
is set to labeli. To this seedi will also correspond an operation which will be the seed of 
station i. Note that there can be several possible seeds (operation) for each cluster, which adds 
randomness to the procedure. Once the seeds have been chosen each cluster i is completed by 
adding label to it in increasing order, so that 

\fclusteri^ \/j G [l,nop], seedi < labeU < seedi+i^ (1.6) 

where no-p is the total number of operations. The clustering fixes possible insertion positions 
(stations) of the remaining unassigned operations. Operations of clusteri (the one correspond
ing to the seedi and the operations in the last cluster excepted) may be assigned to station i or 
z + l . 

For example, suppose the chosen cluster seeds are {-4,2,8}. The corresponding label clus
ters are {—4, —3}, {2,3} and {8,11}. So operation 1 will be assigned to station 1, operation 3 
to station 2 and operation 5 to station 3. Among the remaining operations, forming three clus
ters {2}, {4}, {6}, operation 2 may be assigned to station 1 or 2, operation 4 to station 2 or 3, 
and operation 6 to station 3. Figure 1.6 illustrates the authors' words. The operations already 
assigned are the station seeds. The arrows starting from the clusters (c/i, c/2,c/3) point to the 
station which the remaining operations can be assigned to. 
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Fig. 1.6 Operation clustering and assignment. 

Step 5. Once the clustering has been done the algorithm assigns the remaining oper
ations to stations according to the rules exposed at step 4, taking into account the precedence 
constraints and the user's preferences. The operations are randomly extracted from the clusters. 

Due to the precedence constraints of the product, most of the time the obtained station loads 
will exceed the desired cycle time (the maximum stations process time). A local improvement 
phase attempts to equalize again these loads, by moving operations along the line or exchanging 
operations between stations. 

Steps 4 and 5 are applied each time the GGA is about to construct a new solution (assembly 
line), e.g. at population initialization, or complete an existing one, e.g. after a crossover or 
during the mutation. 

5.2.2 Dealing with Precedence Constraints. 
The EPAL algorithm must yield a solution (set of stations) which respects the precedence 

constraints of the product. Indeed, if these constraints are violated for a given order of stations 
along the line the product being assembled has to move against the sense of the line conveyor, 
thus visiting at least one station several times. 

5.2.3 The Heuristics. 
Four heuristics are used to improve the solutions obtained by the boundary stones algorithm: 

the simple wheel and the multiple wheels, the merge and split and the pressure difference heuris
tics. All of them will be executed on a solution until no improvement is obtained, or a maximum 
number of trials is reached. 

The simple wheel. 
This heuristic moves sets of operations along the line. The move will always be accepted if 

the destination station operating time added to the operating time of the moved operations does 
not exceed the cycle time. If it exceeds, the move is accepted with some probability. Firstly the 
heuristic tries to move a set of operations from the first station to the second one. Then it tries 
to move a set from the new second station to the third and so on until the last station is reached. 
Next, it begins with moves from the last station to the last but one and so on until the first station 
is reached as shown in Figure 1.7. This leads to move operations along the line to reduce the 
imbalance between stations (precedence constraints are always checked). 
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1 , , 2 

O 

Fig. 1.7 Simple wheel heuristic. 

The multiple wheel. 
The second idea is to exchange operations between stations. Two adjacent stations are taken 

at each time (refer to Figure 1.8). All possible exchanges (which do not violate precedence 
constraints) are executed. The first exchange is made between the first and second station, the 
second one is performed between the second and third station and so on. 

Fig. 1.8 Multiple wheel heuristic. 

The first heuristic gives the best results, the second is used only if the algorithm is stuck in a 
local optimum and fails to improve the solution. 

Merge and split. 
Figure 1.9 (a) represents a kind of situation one has to face when dealing with the operating 

mode of hybrid assembly lines. Suppose there are two non-filled adjacent manual stations and 
an over-filled automated one. In order to find a good balancing, one way is to merge the two 
manual stations and to split the automated station. Indeed, since the hard constraint is the fixed 
number of stations, merging two stations obliges to split another one. 

Station to split 

Stations to group 

Idle time 

Manual 
30% 

p l i t B H n 

Manual 
60% 

(a) 

k 
Exceed time 

Cycle time 

Idle time 

Automated 
160% 

Manual 
90% 

Automated 
70% 

(b) 

Automated 
90% 

Fig. 1.9 Solution before (a) and after (b) the merge and split heuristic. 
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Figure 1.9 (b) represents the solution obtained after the merge and split procedure. The result 
of the heuristic is one manual station and two automated stations. In the balancing point of view, 
the second solution is better than the first one. 

P ressure difference. 
The main idea behind this heuristic gave it its name. It begins by finding a station exceeding 

the cycle time (the high pressure) as well as the station less filled (less pressure). The goal is to 
move the exceeding process time of the station C in Figure 1.10 (a) to fill the gap (idle time) 
existing on station A. In this case a task i to move from station C must have all its predecessors 
in station A (or before). If the move had been from A to C, all the successors of task i would 
have to be in C or later. 

Figure 1.10 (b) represents the solution obtained after executing the procedure. The kind 
as well as the number of stations obtained is the same before the application of this heuristic. 
The simple wheel and multiple wheel heuristics cannot improve such a solution, since the two 
manual stations are separated by an automated one. Note that the operating modes and the 
precedence constraints of each task has to be verified each time a move is made. 

Cycle time Exceed time Idle time 

Manual 
80% 

Automated 
100% 

Manual 
110% 

Manual 
90% 

Automated 
100% 

Manual 
100% 

(a) (b) 

Fig. 1.10 Solution before (a) and after (b) the pressure difference heuristic. 

5.2.4 Cost Function. 
The objective is to equalize stations loads, under the constraint of a fixed number of stations. 

The authors propose the following cost function which has to be minimized: 

N 

/ E P = /_^(/^^^i — cycletime)^, (1.7) 

where N is the number of workstations, filli the sum of working times on workstation i, and 
cycletime the desired cycle time, defined as: 

cycletime • Et'i ^^^^^ 
N 

(1.8) 

5.2.5 Mult i -cr i ter ia decision-aid me thods and genetic algo
r i thms . 

The decision (using preferences) and the search are embedded in the algorithm and inter
act mutually. Evolutionary methods, particularly GAs, possess several characteristics that are 
desirable for MOPs and make them preferable to classical optimization methods [13]. 
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Selection mechanism. 
Selection is a process in which solutions are chosen according to their fitness. In classical 

GAs, the individual's fitness is computed according to a cost function that leads to a scalar fitness 
value. The PROMETHEE II net flow (0) is used as an evaluation function for the MO-GGA. 
The solutions are compared to each other thanks to flows, depending on the current population. 
Note that the values of the 0 are context related and have no absolute meaning. 

At each generation, a ranking changes the fitness of the individuals according to their envi
ronment (the current population). In classical GAs, the fitness of an individual is independent 
of the other individuals constituting the population. There is no direct feedback from the envi
ronment to the individual's fitness; each individual's phenotype remains constant, unaffected by 
the environment. The authors believe this is an handicap of GA-based methods in the case of 
MOPs. 

The control strategy. 
As the fitness of the individuals is contents dependent, solutions have to be compared to the 

best ever found one. At each generation the best-ever solution takes part in the evaluation of 
the 0 flows. The MCDA method ranks an individual by taking into account the presence of 
the others. This fitness allows the GA to choose the best solution simply by looking for the 
individual having the maximum value. 

6. The mapping phase (phase 3) 

The optimization module yields a logical-layout of the line. The GGA solution contains the 
following information: 

• cycle time, 

• the number of stations, 

• for each station: 

- the process time, 

- a list of tasks, their mode, order as well as their position, 

- alist of resources. 

M: manual 

A: automatic 

R: robotic 

list of tasks 
+ list of equipments 

process time 
+ tasks order 

Stations ^f~ 
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Yflow 
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representation 

automatic station 

robot 

o m a t K 

f- ., ' - - 'U ,^''>"*^^ 

if^^g?^^r-<4^ 
conveyor 

^^ manual 
station 

real installation 

Fig. 1.11 Relationship between the real architecture of the line and its representation. 

This information only constitutes the logical-layout of the assembly line presented on the 
left side of Figure 1.11. The right part shows a real installation of an assembly line and its 
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relative representation which comes from the GGA module. The missing step of the physical 
layout is replaced by an interactive method. Each station is represented by a object (square) 
and is defined by a list of tasks, a list of resources, its order among the other stations,... The 
mapping phase helps the designer to make a first draw of the assembly line. 

Figure 1.12 shows the "virtual" representation of an assembly line as it done in AUTOMOD 
software [31]. It represents four stations connected by a conveyor. Tasks are accomplished by 
one operator, two dedicated machines and one robot. 

0 ^ -} 

>«i»f 

I'l 
/ •J--^ 

1^ 

Fig. 1.12 An AUTOMOD representation of an assembly line. 

Application 
The chosen product is a car's alternator, corresponding to a real industrial case. The desired 

cycle time of the assembly line is fixed at 15 seconds. A description of the operations per
formed on product is summarized in tables 1.3, 1.4 and 1.5. Table 1.2 presents the precedence 
constraints between tasks. 

Table 1.2 Precedence constraints of the product. 
Op 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Preds 
4 
1 
2 
-
3 
-
-
-
-

7,8,9 
10 
10 

11, 12 
13 
14 
15 

Op 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Preds 
16 
6 
17 
37 
20 
21 
17 
17 
18 
16 
44 
45 
28 
28 
27 
31 

Op 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

Preds 
32 
31 

33,34 
35 
33 
31 

36, 38, 46, 47, 48 
39 
40 
41 
42 

29,30 
20, 23, 24, 25 

35 
35 
35 

Table 1.3 presents for each task the possible resources to accomplish it and the operating 
mode (M: manual, R: robotic and A: automated) associated to each equipment. For instance, 
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Table 1.3 Operating mode and possible resources associated to each task. 
TASK 

1 

2 

3 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 

15 

16 

MODE 
M 
A 
A 
M 
A 
R 
A 
M 
M 
M 
M 
M 
M 
M 
A 
A 
A 
R 
R 
R 
R 
A 
A 
A 

EQUIP 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Task 
17 

18 
19 
20 
21 

22 
23 
24 
25 

26 

27 
28 
29 

30 

31 
32 

MODE 
R 
R 
R 
M 
M 
A 
A 
M 
M 
M 
M 
A 
M 
A 
A 
M 
M 
A 
A 
A 
A 
M 
M 

EQUIP 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
41 
42 
43 
44 
45 
46 
47 
48 

TASK 

33 

34 

35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 

MODE 
A 
A 
A 
A 
A 
A 
A 
M 
A 
M 
M 
A 
A 
A 
A 
M 
M 
M 
A 
A 
A 
A 

EQUIP 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
65 
66 
67 
68 
69 
70 
71 

task 1 can use one of the three equipment {0,1,2}, 0 being done manually, whilst 1 and 2 are 
automated FGs. Table 1.4 shows the process time and the cost of each equipment associated to a 
given operation. The last column in the table shows for each equipment the number of necessary 
operators (1 operator for manual tasks and 0 in case of machines or robots). The input data is 
prepared and structured using the SELEQ software package [21]. 

Only two criteria are optimized in this example: 

• imbalance of workload: the imbalance between the process time of the stations has to 
be minimized, 

• cost: the price of the assembly line has to be minimized. 

Note that the real number of stations cannot be determined by computing the ratio between 
the sum of the operating times and the cycle-time. Indeed, that number constitutes the the
oretical minimum number of stations without considering the precedence constraints and the 
operating mode of the operations. The cycle time constraint is complied with by observing that 
there is a minimal/maximal duration for each task. The theoretical minimal (respectively maxi
mal) number of stations is the sum of the duration of the fastest (respectively slowest) resource 
of each task over the cycle time. For the case presented here, the theoretical minimum number. 
of stations is equal to 22, while the maximal number is 25. 

In order to generate possible solutions, the following ICA is proposed: 

1 assign tasks to the stations according to the equal piles strategy. 

2 generate all valid resources combinations for each station. 

3 select the best equipment combination for each station using PROMETHEE II. 
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Table 1.4 Process time, cost (arbitrary units) and number of operators required by each equipment. 

EQUIP 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

TIME 

800 
700 
800 
400 
200 
200 
400 
1500 

300 
300 
300 
300 
300 
300 
1500 

0 
0 
600 
700 
600 
700 
200 
300 
800 
900 
500 
700 
600 
400 
800 
800 
400 
500 
500 
500 

COST 

1712023 

118396 

131218 

1700000 

100484 

344492 

466587 

1795355 

1700000 

1700000 

1700000 

1700000 

1700000 

1700000 

125000 

83931 

83931 

35915 

328029 

18926 

471996 
6473 

384361 

77318 

231324 

27659 

271667 

172932 

1700000 

1700000 

45570 

80687 

1835082 

1700000 

1700000 

NB_OP 

1 
0 
0 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

EQUIP 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

TIME 

900 
400 
500 
1500 

1400 

900 
1500 

600 
700 
800 
800 
300 
300 
600 
600 
700 
400 
400 
1500 

300 
300 
1400 

300 
1000 

500 
500 
600 
1400 

1500 

1500 

300 
1400 

400 
400 
400 

COST 

1700000 

80687 

1835082 

99613 

476287 

1775000 

1700000 

92387 

468292 

90403 

468292 

1700000 

1700000 

114550 

488751 

198341 

10424 

45570 

75000 

70000 

1700000 

75000 
1700000 

1700000 

79298 

81960 

457187 

25000 

1700000 

1700000 

1700000 

37500 

70000 

70000 

70000 

NB_OP 

0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 

More detail about the method the can be found in [24]. 
The MO-GGA was applied to this instance for several user's preferences. The results of the 

method will be examined for the different weights combinations corresponding to the relative 
importance one might give to each objective. 

Table 1.5 summarizes the results, obtained in less than 10 minutes on a Pentium II333 MHz. 
It presents the process time on the different stations, the total cost of the line according to the 
different optimization strategies. The number of stations is given by N, the cost of the line by 
"COST" and the balancing of the stations by "BALANCE". The columns labeled from 1 to 25 
represents the workload of the different stations. Number in bold font represent stations where 
the cycle time is exceeded. The weight attributed to the balancing is 'B\ the one for cost the 



254 
74 
62 

513 
93 
44 

312 
132 
122 

516 
287 
161 

22148352 
23848352 
29197448 

22148352 
24068032 
28657204 

22437168 
25768032 
30675056 

22355208 
27248352 
33150960 
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Table 1.5 Process time of each station according to the different weights {B,C). 

N B C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 BALANCE COST 

22 0 1 23 22 15 12 15 13 13 12 14 15 14 18 14 5 15 15 14 16 15 14 15 15 
22 0.5 0.5 15 15 15 15 14 13 14 12 12 14 15 14 18 14 15 15 14 21 15 14 15 15 
22 1 0 15 15 15 15 15 15 14 12 13 14 15 15 18 14 15 15 15 21 15 14 15 15 

23 0 1 23 22 15 14 13 4 4 8 12 14 14 15 14 23 10 15 15 14 16 15 14 15 15 
23 0.5 0.5 10 14 15 12 15 14 13 13 12 14 14 15 14 18 14 10 15 15 16 15 14 15 15 
23 1 0 15 15 15 15 15 15 12 16 14 14 15 15 12 15 14 11 15 15 14 13 14 15 15 

24 0 1 15 9 18 15 14 13 14 12 12 14 15 12 6 18 10 15 15 14 15 11 5 14 15 15 
24 0,5 0.5 10 14 15 12 15 14 13 9 13 12 14 15 14 12 14 10 14 15 15 15 13 14 15 15 
24 1 0 15 15 15 15 14 15 14 12 13 14 15 13 7 15 11 11 15 15 14 13 15 14 15 15 

25 0 1 12 9 21 15 4 14 13 9 13 12 14 15 14 18 4 5 14 10 15 15 16 15 14 15 15 
25 0.5 0.5 14 7 15 9 15 14 13 13 13 12 14 15 14 12 4 14 10 14 15 15 13 15 14 15 15 
25 1 0 14 8 15 12 15 14 12 12 9 13 13 14 15 15 11 15 11 15 15 14 13 15 14 15 15 

being ' C . The weights {B, C) represents the relative importance given to each criterion. In 
this case, three pairs of preferences which are {(0,1), (1,0), (0.5,0.5)} were used. The pair 
(0,1) means that the cost is the only important objective, no care is given to the imbalance of 
the line. In contrast, the pair (1,0) means the opposite. Finally, the pair (0.5,0.5) means that 
the same importance is given to the two objectives. 

The algorithm was run 12 times using four different N "number of stations" (A'' varying 
from the theoretical minimum number of stations to the theoretical maximal number) and three 
combinations of preferences. For a given number of station the three cases were studied. The 
results show that the proposed method respects the user's preferences regarding the optimization 
objective. 

Figure 1.13 shows the cost of the line according to the number of stations for several prefer
ences. It demonstrates that the increase of the cost with the number of stations is not a general 
behavior. For instance the cost of a line with 23 stations is less than with 22 stations (for weights 
set to (1,0)). For a given number of stations, the cost of the line corresponding to (1,0) is high 
in comparison with (0.5,0.5) which is higher than the cost corresponding to (0,1). 

The results corresponding to the solutions of 24 stations allow to make the following com
ments: 

• the couple (^ = 1, C = 0) yields a minimal process time of 7 (station 13) and the 
maximal process time of 15 and a cost of 30675056. 

• the couple {B = 0.5, C — 0.5) yields a minimal process time of 9 (station 8) and the 
maximal process time of 15 and a cost of 25768032. 

• the couple (^ = 0, C = 1) yields a minimal process time of 5 (station 21) and the 
maximal process time of 18 (station 3) and a cost of 22437168. 

The preference (1,0) yields an expensive but well balanced line in comparison to other 
preferences (see Table 1.5). In contrast, the results obtained using the preference (0.5,0.5) 
show clearly that setting an equal weight to the two objectives does not mean that one will 
obtain the line with the lowest cost and the lowest imbalance simultaneously, but rather the best 
compromise between the two objective. Finally, the couple (0,1) leads to a cheapest (minimal 
cost) and a less balanced line. 

Figure 1.14 shows that the preference (1,0) leads to a good balancing in comparison to the 
other ones. Since the two objectives (cost and imbalance) are conflicting, improving the quality 
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Fig. 1.13 Cost (arbitrary units) of the line according to three preferences. 

of one of them decreases the quality of the other. The preference given to the different objectives 
permits to the algorithm to explore several regions of the search space. 
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Fig. 1.14 The balancing of the line according to the preferences set for different number of stations. 

The station load can exceed the cycle time in some cases, meaning that the desired cycle time 
cannot be held for the selected number of stations. The line will generally be less expensive as 
the cycle time constraint is relaxed. 

These results show that a solution using 22 stations leads to the cheapest cost if the balancing 
is not important. Even if the cost of this solution is very small, the process time of some stations 
exceeds the cycle time (for instance, 23 seconds for station 1) and the quality of the balancing 
is so poor that this solution will never be accepted in practice. The choice of a solution is user-
dependent. A good compromise between the balancing and the cost of the line corresponds to a 
solution using 24 stations found using the (0.5,0.5) preference. 
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The three combinations of weights analyzed show that obtaining a solution having simul
taneously the lowest cost and the lowest imbalance is not possible in the proposed instance of 
the problem. It has also clearly demonstrated that considering each criterion separately leads 
to very bad results according the other ones. Giving the same preference to the two objectives 
leads to solutions where the values obtained for each criterion are a good compromise between 
the two others. 

The main advantage of such a computer-aided tool is that it allows to try a lot of different 
combinations for a lot of different sets of data. This is almost impossible to realize manually 
due to the very large amount of possible solutions. An important aspect of this approach is that 
the decision maker stays the master of the optimization process. 

8. Summary and conclusions 
This paper presents a new method to design assembly lines. It is based on a multiple ob

jective grouping genetic algorithm. The aim is to assign assembly tasks to station and to select 
equipment to carry them out. 

The accent is put on how to deal with the user's preferences in design problems. The method 
can deal with the preferences, simply by adjusting the weight of the different objectives. A new 
paradigm to deal with multiple objectives using genetic algorithms is introduced. The method 
cannot guarantee that the best absolute solution will be found. But one could ask what the opti
mal solution to such a problem is. The authors believe the answer is that there is not an optimal 
solution to such a MOP, because it is first of all a matter of finding the best compromise be
tween different objectives. Note that the choice of one solution over the others requires problem 
knowledge. 

The architecture of the proposed method shows that wishes coming from the industrial world 
can be taken into account. The authors believe that the method is able to deal with real-world 
problems, but it still needs more tests and confrontations to industrials' point of view. 
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Ja mach nur einen Plan 
Sei nur ein grofies Licht! 
Und mach dann noch 'nen zweiten Plan 
Gehn tun sie beide nicht. 

-Bertholt Brecht, 1921 

Abstract 

Keywords: 

This chapter presents applications of agroecological models in the framework 
of optimum control theory. The question of regional agroecosystem managemt 
can be answered with this approach. The focus is laid on the estimation of 
optimum fertiliser input and crop rotation schemes as a dynamic control problem 
with different time scales. In this context mathematical properties of ecological 
models are discussed. Ecological models are heterogeneous in mathematical 
structure and incorporate different characteristic time scales. 

Several solutions are presented for a German investigation site. Different 
assessment scenarios of production schemes are compared with the tool of op
timisation. An innovative topic is the estimation of regionalised optimum ma
nagement strategies, depending on site properties. The proposed methodology 
supports the step of decision support in precision farming. 

Agroecosystem, Ecological Modelling, Management Optimization, GIS, Hierar
chy, Scales 
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1. INTRODUCTION 
1.1 EARLIER RELATED WORK 

Modeling agroecological processes is a well known branch of environmental 
modeling. Simulation models offer a deep insight into the ongoing processes 
of an agricultural site. Second, models allow the prognosis of management 
consequences. Because of this, simulation models for agricultural sites and 
regions exist in abundance, see overview and evaluation in Diekkiiger et al, 
(1995). 

Management of agricultural regions is a very good exercise of environmen
tal management. Farmers are directly influencing ecological systems and are 
mutually dependent on these systems. Therefore the question of optimizing 
management strategies arises. Optimum control theory offers the connection 
between simulation models, evaluation of the environmental system states and 
anthropogenic management. 

Clark laid the foundation of investigating ecological optimum control pro
blems (Clark, 1976; Clark et al, 1979). Applications in optimum harvesting 
of renewable resources, for instance fishing and forest management were pre
sented. This initiated a large number of publications on agricultural models 
(Cohen, 1987; Falkovitz & Feinerman, 1994; Velten & Richter, 1993). 

Costanza introduced the terms aggregated and complex models to characte
rize the properties of complexity, scale and hierarchy (Costanza et al, 1993). 
The more stress is laid on realism and accuracy in model development, the more 
processes have to be considered. On the other hand, the more complex a model 
system becomes, the more challenging is its application in optimum control 
theory. Common in all cited contributions is, that very aggregated models are 
considered which allow the estimation of an analytical solution of the problem. 

More complex simulation models are studied in terms of scenario analysis 
and retrospective simulation. Because of the complexity and heterogeneity of 
the underlying simulation models applications in numeric optimum control 
is rare. For instance applications in ecological economics and agroecosystem 
management are presented by Doherty et al (1999) and Duffy et al (1993). 
Dynamic programming procedures are used to solve the problem in these 
contributions. 

Additionally, environmental processes show spatial properties. Regional op
timization of management strategies requires a regionalised simulation of agro-
ecological processes. Several solutions can be found in recent literature (Han 
et al, 1995). They study potato yield and nitrogen leaching distribution re
sulting from site-specific potato management. Voinov et al offered a regional 
agroecological simulation model for the Patuxent watershed in Maryland, USA 
(Voinov et al, 1999). Applications for two agricultural sites in Germany can 
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be found in (Svendsen et al, 1995). In terms of optimization first applications 
in landscape design are presented by Assfalg and Werner (1993). 

1.2 THE TASK 
The estimation of optimum management strategies of agroecosystem in 

terms of optimum control theory requires the following 

• formulation of an appropriate and probably complex spatial explicit simu
lation model for an agricultural region with the incorporation of farmers 
management 

• definition of a performance criterion (and — as needed — constraints) 
which assess the observed variables and assigns a set of state variables 
to values identified with "good" or "bad" environmental states, whatever 
this means in the considered context. 

Both items above are difficult to achieve in environmental modeling. The first, 
because modeling of environmental processes leads to complex and non-linear 
equation systems, which cannot be treated analytically. The second, because 
it is not appropriate to set up a performance criterion by a single-disciplinary 
approach. It requires a multidisciplinary approach comprising social, economic 
and ecologic issues. 

In this chapter several applications of optimum control theory to agroeco
system models are presented. The overall goal is the estimation of optimum 
management schemes with respect to ecology and economy. 

2. AGROECOSYSTEM MODELING 
2.1 SYSTEM ANALYSIS 

The first step of the analysis of an agroecosystem is a collection of state 
variables. In the second step the interaction of these variables are identified. 
Table 1.1 summarizes a list of most important variables of an agroecosystem and 
Figure 1.1 shows a conceptual network of processes. This conceptual network 
focuses on the processes, which are studied in this particular contribution. More 
general food-webs and conceptual systems of agricultural ecosystems can be 
found (Begon etal, 1986; Bick, 1993). 

Some general remarks are necessary before going into detail of model deve
lopment. With a look at Table 1.1 and Figure 1.1 one can identify the following 
properties of agroecosystem models. 

1. Modeling the entire system in an integrative way requires input from mo
deling approaches of different disciplines, such as soil science, biology, 
chemistry, physics. 
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2. "The are no Newtonian laws in ecology" Beddington et al (1981). Of 
course the basic laws of thermodynamics and physics are valid in envi
ronmental systems. However, equal processes can be described by diffe
rent modeling approaches, while looking on the phenomena on different 
levels of aggregation. 

The consequence is, that environmental simulation models and especially 
agroecosystem models are set up by multidisciplinary approaches. For 
instance, population dynamics are described by algebraic difference or 
matrix equations; process models are expressed by systems of ordinary 
differential equations. If spatial processes are to be considered, partial 
differential equations have to be included. 

Table 1.1 Agroecological processes on different time scales and the modeling approaches. 
Abbrev.: DAE — Difference Algebraic Equation, ODE — Ordinary Differential Equation, PDE 
— Partial Differential Equation. 

Process Variables Characteristic Ti
me 

Mathematical Model 

Growth of microbial 
Populations 

Nitrification, denitrifi-
cation 

Degradation, Volatilati-
on of Agro-Chemicals 

Pest populations dyna
mics 

Crop growth 

Population dynamics of 
weed 

Water transport in unsa
turated soil zone 

Solute transport in un
saturated soil zone 

Solute transport in aqui
fer 

Biomass, Nitrogen Content, 
Activity 

N H J , N O - , N2O, N2, mi
crobial activity 

Concentration in liquid and so
lute phase 

Density of eggs, juveniles, lar
vae, adults 

Organ biomass, Nitrogen con
tent. Leaf Area Index 

Seed dispersal. Coverage level 

Water content, -pressure 

Concentration in liquid and so
lute phase 

Concentration in liquid and so
lute phase 

30 minutes 

1 day to 1 week 

Minutes to weeks 

Weeks to vegetati
on periods 

Month 

Vegetation period 

1 hour 

Large spectrum 

up to several years 

ODE 

System of ODE 

System of ODE 

Matrix-Equations, 
DAE 

(Systems of) ODE 

DAE 

PDE Equation 

PDE coupled with 
ODE systems 

PDE coupled with 
ODE systems 
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W(0 Anorganic 
Nutrients 

Figure 1.1 Conceptual model of an agricultural ecosystem. White boxes denote compartments, 
gray boxes denote management variables. Arrows denote general transport of mass, energy. 
Dashed arrows denote dependencies or flow of information. State and control variables are 
noted at the upper left comer of the compartment boxes. 

4. Processes show a broad spectrum of time scales, starting from very fast 
processes like pesticide degradation, volatilisation to very slow process 
like nutrient fate in groundwater. 

Environmental modeling is characterized by a large number of different ap
proaches. Depending on the scale of interest, on the accessibility and usability 
of data sets, and of the aim and scope of the problem to be solved, different 
simulations models are developed and used. Some authors complain about an 
enormous redundancy (Mliller, 1997). 

In terms of application optimum control theory item 3 faces us with the 
problem, which can be summarized as mathematical heterogeneity (Seppelt, 
1999; Seppelt, 2003). It is not feasible to model integrated systems in the 
framework of one mathematical theory like ordinary differential equations. 
Numerical algorithms of optimum control have to take these mathematical 
properties into account. The lesser prerequisites an algorithm of numerical 
control has, the broader is the spectrum of possible application in environmental 
modeling. 
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2.2 MODELING THE PROCESSES 
Crop growth — Macrophytes. Let W{t) denote the weight of the above 
ground biomass (in kg/ha) of a specific crop, a primary producer (see Fig. LI). 
There exists an abundant literature for modeling crop growth. The approach 
used here simulates crop growth in a single differential equation and covers the 
processes of growth (parameter r in 1/d), mortality (/x in 1/d) and senescence 
(function /s(t)), c.L (Richter et al, 1991). /§ is monotonically decreasing and 
equals unity at t = 0. It incorporates the reduction in dry matter biomass during 
maturite stages of crops into the model. 

W={rfs{t)-^i)w (1.1) 

The growth rate r is defined by a maximum growth rate and reducing factors, 
which incorporate reactions of plant growth on nutrient availability and pest 
infestation 

{N)rp{P^,t) (1.2) 

'^max (1/d) denotes the maximum growth rate of a specific crop (1/d). The 
reductions functions rN{N)^rp{P4^t) G [0,1] describe the dependence of 
growth on soil nitrogen and a pest population P4 (see below). A Michaelis-
Menten kinetic is used for r^, a Weibull function is used for rp, c.f. (Richter 
etal., 1991 \ Schmidt et al, 1993). 

Nutrient cycle — Detritus. The plant-accessible pool of mineral nitrogen 
in soil is denoted by N{t) in kg/ha. Plant growth depends on this pool. The 
simulation model couples the processes of nitrogen uptake by plants, nitrogen 
leaching out of the root zone, decomposition, mineralization, NO2 fixation and 
fertilization. 

W 
N = -d{W,t)-kiN + kmfiW + rf,^^^—^ + F{t) (1.3) 

Leaching and mineralization are modeled by linear flows with the rates k and 
km (1/d). Fixation of NO2 is modeled by a Michaelis-Menten function with 
the parameters Vf (1/d) and kf (kg/ha). The demand of nitrogen taken up by the 
crop d{W^ t) is calculated using the reference content of nitrogen in the crop 
biomass kcn{t) (%) (Schroder & Richter, 1993) and is defined by: 

d{W,t) = ̂ ^(^kcn{t)W{t)) = kcnW + kcnW 

Decreasing biomass leads to negative values of d{W^ t). This may be interpreted 
as mineralization of dead biomass. This completely different process cannot be 
set up by the same parameter of nitrogen uptake. Therefore d is restricted to be 
positive or zero. 
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Pest infestation — Consumers. Pest population modeling is a very good 
example of mathematical heterogeneity in ecological modeling. Two types of 
pest populations are considered here. The first has a slow population dynamic, 
about one to three generations per vegetation period. A population like this has 
to be take into account in crop rotation design. The second population, with 
a very fast exponential growth in one year has to be controlled by pesticide 
applications. 

An example for the first type of pest population is the sugar beet cyst 
nematode Hetewdera schachtii population P(ti). This population develops in 
distinct stages. For H, schachtii the stages eggs and juveniles (i^), hatched 
larvae {P2), penetrated larvae (P3) and adults (P4) are distinguished. From 
an agricultural point of view Pi, the number of eggs and juveniles in a unit 
soil in spring is decisive in determining potential crop damage. The adults 
P4 stress crop growth of sugar beets, see Eqn. (1.2). Transition probabilities 
of development to the succeeding stage p^, pp and pd, the fertility / and the 
probability of survival over winter ps can be identified in terms of parameter 
estimation. This approach leads to a difference equation based on a Leslie 
matrix (Richter et aL, 1991; Schmidt et al, 1993): 

P{U+i) = 

/ Ps 0 0 
\ Ph 0 0 

0 Pp 0 
\ 0 0 pd 

^ \ 
0 
0 
0 / 

P{ti) (1.4) 

The transition probabilities depend on climatic situations and on the hosted 
crop. 

Additionally to the modification of the growth rate, shown in Equation (1.2), 
the population P derives its energy from the host biomass. This is modeled by 
the extension of Equation (1.1) by another sink 

W 
W = 7 W + kp 

An example for the second pest type is powdery mildew (Erysiphe graminis). 
This population also develops in distinct stages. For this model we assume 
that one has no knowledge for a separation of stages and assume a model for 
the entire population P in terms of a differential equation. Population growth 
depends of the ability of extraction of biomass from the host. 

For parameterization of the model a worst case scenario is assumed. A fast run 
off from the crop leaf, a high degredation rate together with a high exponential 
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growth rate of the pest makes the time of pesticide applications an important 
control variable. The nonlinear dose-response function 

TC^CL) - 1 - e 

and the consideration of leached pesticide out of the upper soil layer in the 
performance criterion will be decisive for the amount of pesticide applied. 

Xenobiotica cycle — Agrochemicals. The differential equations for the fate 
of agrochemicals are derived from the compartment scheme in Figure 1.1 with 
the assumption of linear fluxes. Let CL denote the concentration (mg/1) of a 
pesticide on the crops leaf and Cs the concentration (mg/1) in the upper soil 
layer. Precipitation is the driving force for transport from leaf surface to soil 
surface {k^) and for leaching out of the upper soil horizon (ki). Degradation 
of the chemicals is assumed as linear first order process (/^). 

CL - -kdCL-k^CL^y{W)A{t) (1.6) 

Cs = -kdCs + k^CL~kiCs + {l-iy{W))A{t) (1.7) 

The distribution of the amount of applied pesticide A{t) (mg/1) depends of the 
current state of crop, on the leaf area index. The more leaf area is present, 
the more pesticide reaches the plant leaf. This is expressed by the function, 
c.f. (Schroder era/., 1995) 

iy{W) = 
CLAlW 

CLAlW + 1 
(1.8) 

Generic Agroecosystem Model. The entire agroecosystem model is set up 
by the following equation system. This model couples all processes described 
above. 

W = {rmaxrN{N)rp{P4,t)Mt)-ii)W-'y^^^^P 

W 
N = -kiN-d{W,t) + kmW^ + rf-

P{t 

W + kf 

CL = -kdCL-ky,CL + iyiW)Ait) 
Cs = -kdCs + KCL - kCs + {1 - HW))Ait) 

( Ps 0 0 F\ 
Ph 0 

+ F{t) 

H+l P{ti 
0 0 

0 pp 0 0 
V 0 0 pd 0 J 

w 
W + kp 



Agroecosystem Management 421 

In terms of a summary, here are the used parameter functions: 

N 

[ 1 if i < id 

I l+pie-P2t ^'S® 

TC{CL) = l-e y^'^-^'J 
q-l 

F{t) = Y.Fi5{t-U) 
2=0 

q-l 

A{t) = ^ A , ( 5 ( t - t , ) 
i=0 

The system is highly nonlinear, an open system and mathematical heteroge
neous. The system is solved using high order embedded Runge-Kutta formulae 
(Prince & Dormand, 1981). Parameters are derived from literature and field ex
periments. Most of the introduced parameters are itself functions. They depend 
either 

• on the specific properties of the investigation site, like soil parameters, 
hydrological parameters, 

• on climatic conditions, like precipitation, humidity, temperature, or 

• on the planted crop on the field, for instance: Vmax^ f^N^ 1^^ Pi^ P2i id are 
estimated using parameter estimation procedures (Richter et aL, 1991) 
using data sets from field experiments (McVoy et aL, 1995) for the 
following crops: sugar beet (abbreviation "sub"), winter wheat ("ww"), 
winter barley ("wb"), oats ("oa"), spring barley ("spb") and the fallow 
seeds: oil raddish ("or") and field beans ("fb") and fallow, for instance 
no crop on the field. 

From this follows, that the control variable "crop planted" a(4) modifies the 
model parameters. Additionally, for special cases, such as "fallow", the structure 
of the model is modified also. The dependence from site specific parameters 
introduces spatial aspects into the model, which require regional simulations. 
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Model Regionalisation and Spatial Database. Agroecosystem manage
ment is a spatial problem. Spatial dependencies are introduced to the model 
with the spatial dependence of state variables W{t^ x), N{t^ x ) , . . . , the con
trol variables F(t, x), A{t, x) and the model parameters. The model paramters, 
which show spatial dependencies, such as Â , A:̂ ,̂ Tmax are denoted by the vector 
6{x). The spatial localization in the observed region G is denoted by x G G. 

Spatial information has to be provided, which either specifies spatial dis
tribution of parameters 9{x) and initial conditions W(0, x), A (̂0, f ) , . . . as a 
function of location x, or, which defines the spatial range of validity of control 
variables, like fertilizer application F{t^x), pesticide application A{t,x) or 
planted crop Q;(t, x). 

For the described model two layers of spatial information are used: 

• The digital soil map (1:5.000) SsoU with the attributes "field capacity" 
and "rooting depth" from which the parameter ^^(x), the leaching rate, 
is derived. 

• The land use map Sfieia with the field borders identifies every single 
field by a unique identifier, an integer number. 

These two layers of information determine different aspects of an agroecolo-
gical simulation. The relevant information layer for simulation and the model 
parameter specification is the soil-map with its pedological attributes. Mana
gement variables F{t^x) and a{t^x) depend on the observed field Sjieid- In 
terms of precision farming (Lu et ai, 1997) fertilization ought to depend on 
soil properties Ssou-

A well known approach for regional agroecological modeling is the calcula
tion of the intersection-map Sfieid^SsoU (Breunig, 1996, p. 77). This generates 
a new map with homogeneous attributes with respect to all underlying layers 
of information, here: soil properties and field identifiers. All further steps refer 
to these smallest homogeneous units in the observed region, which are called 
ecotopes (Naveh & Lieberman, 1984, p. 6). 

3. MANAGEMENT IN TERMS OF CONTROL 
THEORY 

The chosen example of an agroecosystem management model is typical for 
environmental modeling. It shows the solution of two important problems in 
ecosystem management: the determination of long term strategies with the use 
of the temporarily structured model and regionalised management optimization. 

3.1 ASSESSING THE PROCESS 
Integration of Economy and Ecology. Performance criteria have to integrate 
economic and ecological issues. Economic issues are for instance prices for 
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yield, farmers income, and prices for fertilizer, farmers expense — the first to 
be maximized, the latter to be minimized. Further economic issues may focus 
on taxation of fertilizer, to reduce fertilizer input, or on a limitation of fertilizer 
input. 

The nutrient content in soil or the infestation of pests are examples for the 
ecological part of the assessment. Whereas the former economic assessment 
could be performed within a monetary unit, it is difficult to identify units for 
ecological variables. Ecologic and economic issues are difficult to compare. 

Open Systems. Ecological systems are open systems. In a performance crite
rion only variables can be used, which are represented in the simulation model. 
For instance, an assessment of possible groundwater contamination with ni
trate can only be assessed by the possible outflow of nitrogen out of the plant 
accessible root zone. In economic terms this means, that external cost have to 
internalized. 

Model Variables vs. Measurement Variables. Ecological variables and 
more often variables of a simulation model are difficult to measure in reality. 
Yield, and nutrient content in soil are easy to measure. Nutrient outflow into 
groundwater or the population of a pest like the considered sugar beet cyst 
nematode are very difficult to measure. Only effects can be observed. Therefore 
these variables cannot be used in a framework of practical farm management 
system. One has to identify different variables, so called indicators. 

General Performance Criterion. A general notation of a performance cri
terion which maps state and policy space for the simulation time 0 to T and the 
entire region G of the given agroecosystem model to a scalar value is 

J[W, N, Cs, A, F, a] = Xw{oi{t, x)) J W{T, a{T, x),x) dx 
G 

T 
— J J XFF{t, x) + A^A(t, x) dt dx (I g\ 

GO ^ ' "^ 
T 

-IIXNkN{t,x) + XchCsit) dt dx 
G 0 

With the weights Xi the different state and control variables are aggregated to a 
scalar performance criterion. Setting up values for the weights requires answers 
to the above stated problems of comparing economic and ecologic variables, 
openness and the use of measurable and non-measurable variables. Different 
sets of A-values define different assessment scenarios and with this different 
perspectives to optimality. 

A-values for the different criteria 

• can be derived from market prices ("economic" criterion), 
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Table 1.2 Overview of the considered scenarios and their performance criteria with the assessed 
variables and the weights Â . Weights are set to zero in eqn. (1.9) for variables which are not 
assessed in a performance criterion, denoted by the missing #. Constraints are understood as 
constraint for the entire region, e.g. for all x e G. All goal functions are quantified by monetary 
unit per area (DM/ha). 

scenario assessed variables in Eqn. (1.9) additional constraints 
W N Cs 

Jl 
J2 
Js 
JA 

J5 

"economic" • 
"taxes" • 
"ecologic" • 
"N-limit" • 
"F-limit" • 

N{T) < Nmax 
Y,F{U)<Fmc 

weight Xy/ Xj\ Xc XF XA 

• may be modified by taxation of fertilizer ("taxes" criterion), 

• are estimated by internalization of external effects. This makes use of 
the approach of an assessment relative to non-disturbance (Nilsson & 
Bergstrom, 1995) ("ecologic" criterion), 

• can be supported by constraints like limitation of total fertilizer input ("F-
limit" criterion) or of nutrient content in soil at harvest time ("N-limit" 
criterion). 

Table 1.2 summarizes these performance criteria. Obviously not all criteria are 
based on measurable variables. It is necessary to study the results of these 
different optimization criteria. 

3.2 CONTROLLING THE PROCESS 
General Task. Based upon the knowledge of the agricultural process sum
marized in a simulation model we are now able to formulate a general optimum 
control problem: Estimate a function of optimum fertilizer input F'it^x), of 
pesticide application ^{t^ x) and a sequence a'^{ti^ x) of planted crop, so that 
a performance criterion J[X^U] is maximized. 

Note that 

• Fertilization and pesticide application are discrete events. From this fol
lows that not only the amounts but also the time of optimum application 
are to be estimated. 

• The spatial dependency of fertilizer, pesticide application and model 
parameters complicate the problem tremendously. 
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• With the specification of the control variable planted crop a, a set of 
model parameters and also the model structure is changed during simu
lation. 

Algorithm. Additionally to the characterization of the model system (see end 
of Section 2.2) one can state that the derived optimization problem is complex 
and the solution recommends a clear structure and necessitates a simplification 
of the problem. 

The underlying procedures for solving the numerical optimization problems 
are derived from the dynamic programming approach, introduced by Bellman 
and Dreyfus (1962). Advantages of this approach are the use of a general dyna
mic system with lesser prerequisites to the mathematical structure of the pro
blem and the ability of dealing with discrete and continuous control variables. 
Applications can be found in recent literature in agro-ecosystem management 
(Duffy & Taylor, 1993; Seppelt, 1999). 

The disadvantage of this algorithm is that the computational effort incre
ases polynomially with the increasing number of state and policy variables. 
Bellman characterizes this property as "curse of dimensionality" (Bellman & 
Dreyfus, 1962). For an application to environmental system, one can make use 
of properties of environmental systems, namely the given hierarchies in time, 
see Table 1.1. 

Hierarchy in Time. The optimum control problem is at first structured using 
the hierarchy in time, which is defined by the process dynamics. One can distin
guish between fast processes like crop growth, pesticide dynamics, fertilization 
and pesticide application and slow processes like population dynamics and crop 
rotation design. Additionally control variables may be continuous and discrete. 

The problem can be structured in the framework of a hierarchical control 
model. In a first step a local optimum control problem is solved, with the 
optimization of fertilizer input in a vegetation period for each crop. These 
solutions are stored as a function of initial values and crop identifiers. In the 
second step, the global or entire optimum control problem is solved and an 
optimum crop rotation is estimated where every crop receives its optimum 
fertilizing scheme. In this step the performance criterion makes use of the 
performance criterion of the local problem. 

Jn[N,J] = TJn[W,N,F,A,Cs]-AN f f kiN{t,x)dtdx (1.10) 

The solution of this global task makes intensive use of the previously stored 
local solutions which reduces computational effort and couples a discrete and 
continuous optimum control solutions. 
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Spatial Control Problem. Solving the spatial optimization task requires a 
significant reduction of computational effort, which is induced by the spatial 
dependence of state and control functions. The important step is the identifi
cation of homogeneous areas in the region. A vector-oriented database, which 
represents the investigated area by a set of irregular polygons, is used instead of 
a grid-based map. This decomposition of the plain into irregular cells is called 
tesselation (Breunig, 1996, p. 15). Tesselations may be derived from grid based 
data sets by aggregating grid points with similar attributes using classification 
algorithms, c.f. (Sadler et al, 1998; Weibel, 1997). The result is a map S of 
homogeneous areas s e S, 

Based on this data-structure the soil-map, the field-map and the ecotope-
map can be accessed by unique identifiers stored in the GIS-database. Figure 1.2 
shows this technique: Input data consists of the geometry information and the 
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Figure 1.2 Database concept in GIS: The underlying data sets consist of geometry information, 
a decomposition of the region by irregular polygons (left column) and the associated attribute 
tables for soil properties and field identifiers (middle column). Dependencies to the simulation 
model and the optimum control problems are noted in the right column. Associations between 
units of the input maps are derived from the intersection-map, shown in the last row. 
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associated database with soil properties and field identifiers. The right column 
summarizes the model variables which have spatial dependencies. Simulation 
and optimization is based on the intersected maps shown in the last row. In the 
observed region the intersection map consists of Â  — \Shom\ = 220 ecotopes. 
For each of these units a simulation is performed and all results are aggregated 
and visualized by the GIS. 

If the ecotope map is used for the solution of the spatial optimization problem 
N2 = 220 optimization runs are necessary for the complete regional solution. 
The basic idea for a regional optimization is to estimate a set of optimum control 
solutions depending on initial conditions and soil properties. This reduces the 
numerical effort to the number of distinct pedological areas Â  = \Ssoii\ = 61. 

A regionalisation is performed based on this data set of optimum solutions 
and the identifier given in the ecotope map Shom- Efficiency increases with an 
increase of access to pre-calculated results with equal pedological properties. 

The basic innovation of this approach is a careful separation between spatial 
areas with distinct properties. A simulation and optimization is only performed 
for regions with new and distinct properties. This reduces the computational 
effort by orders of magnitude. This distinguishes the solution from all grid 
based modeling approaches. 

4. CASE STUDIES 
4.1 VEGETATION PERIOD 
Fertilizing Schemes. The estimation of optimum fertilizing schemes to diffe
rent performance criteria (see Table 1.2) are derived first. Table 1.3 contains the 
results of total fertilizer input, harvest biomass and leached nitrogen for different 
crops. Literature values are added for comparison (Niesel-Lessenthin, 1988). 
Optimum fertilizing schemes from "economic" lead to a maximum consump
tion of fertilizer with a high amount of nitrogen loss. A reduction of fertilizer 
input can be achieved with governmental restrictions. With the use of "taxed" 
fertilizer (J2) or the limitation of harvest nitrogen pool N{t) < Nmin = 45 
kg/ha (J4), total fertilizer input is reduced by 30%. This leads to a reduction of 
nitrogen loss in the same range, while yield reduction is less than 15%. 

Introducing external costs into assessment (j^) results in the lowest values 
of leached nitrogen after vegetation period: less than 60% of the results of 4-
This fertilizing scheme incorporates a notable reduction of yield: 25% less than 
the results of "economic" assessment. 

These calculations use a non-measurable variable for assessment, due to the 
nonzero weight X^. One can ask for an assessment based on these results using 
measurable state variables. This problem is solved using J^ for assessment. 
This limits the maximum amount of applied fertilizer to Fmax = Yl ^i using 
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Figure 1,3 Distribution of optimum fertilizer amounts of grains in the main development stages 
for different performance criteria. Standard deviation is calculated based on fertilization schemes 
applied to different grains (ww, wb, oa, spb). 

the optimum fertilizing schemes F* calculated on the basis of the "ecological" 
assessment with J3. 

Table 1.3 Comparison of optimal fertilizing strategies from different performance criteria and 
crops. The last column shows literature values of expected yield and recommended fertilizer 
(Niesel-Lessenthin, 1988). Total amounts of applied fertilizer from J3 printed in italics are 
used as Fmax values for J5. All values in kg/ha. Symbols are: W(T) harvest biomass, Ntot 
total amount of nitrogen leached from root zone during vegetation perod, Ftot total amount of 
fertilizer applied (optimized). 
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spring barley 
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W(T) 
Ntot 
Ftot 

W{T) 
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W{T) 
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W{T) 
Ntot 
Ftot 

W{T) 
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On a closer examination the optimum function P'{t) explains the time 
dependence of the fertilizer application. For a comparison of the fertilizing 
schemes the results of the grain-models are taken for detailed study. A compa
rable time scale can be defined using the stages of development (Zadoks et al, 
1974). Figure 1.3 summarizes the distribution of fertilizer (results of optimum 
control assessed by Ji, J3, J A in the development stages normalized by the total 
amount). This figure explains why the solution of J^ attains a 60% reduction 
of fertilizer and nitrogen loss with a considerable smaller reduction of yield. 
Fertilizer is applied only in the main stages of growth which are DC 30 to DC 
49, see (Zadoks et al, 1974). The solutions derived by other scenarios (J^, J4) 
of assessment lead to optimum fertilizing schemes, which set up a sufficient 
amount of fertilizer at the beginning of the vegetation period. Obviously, this 
increases the amount of nitrogen loss. 

Pesticide Application. Figure 1.4 shows the results of optimum pesticide 
application schemes to the performance criterion of Eqn. (1.9). The parameter 
of variation is the initial pest infestation P(0) and the time, denoted by main 
development stages. All figures show the relative distribution of application 
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Figure 1.4 Distribution of pesticide and fertilizer application for control of pest population P 
in a vegetation period using criterion J3 ("ecologic") for assessment. 
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amounts A*{t) with respect to the maximum application amount of a whole 
vegetation period and the entire spectrum of initial pest investations. The left 
figures show the distribution function as a density plot and allows an analysis of 
time dependence. The right figures show the accumulated application amount 
of fertilizer and pesticide as a function of initial pest population relative to the 
maximum amount applied. 

The distribution of the fertilizer schemes is shown in the lower figures. 
For low initial pest infestation one can identify the results described in the 
former paragraph. Above a critical level of investigation the fertilization scheme 
changes completely. No fertilizer is applied at the stages after DC 20 and the 
total amount of applied fertilizer is less than 20% of the normal amount. 

The reason for this optimum fertilizing scheme is, that fertilization is no 
more decisive for the outcome of yield. Yield is controlled only by pest control 
throughout pesticide application. 

Optimum pesticide application schemes look as follows: 

• The pest population is controlled at the earliest stages with an optimum 
amount, slightly above the critical dose to get response in the pest po
pulation. The pest population shows a high growth rate. To achieve a 
maximum effect in pest control with a minimum amount of pesticide 
getting washed into the upper soil layer, an early application date is 
important. 

• For moderate pest populations below the critical level two or three app
lication events can control the pest population. If more application days 
are necessary, continuous but small applications of pesticide are optimal. 
This reduces pesticide run off into the upper soil layer. 

• Above the critical level of initial pest infestation, the pesticide application 
is decisive for the yield amount. The amount of applied pesticide reaches 
a maximum. For the control of the pest population an application during 
the entire vegetation period becomes necessary. 

• With a further increase of the initial pest population it becomes impossible 
to maintain a sufficient amount of yield. Optimum application amounts 
are reduced for a limitation of pesticide run off. 

4,2 LONG-TERM STRATEGIES 
Fertilization and crop rotation design are the selected variables for the esti

mation of long-term strategies. Figure 1.5 shows an example of a complete 
soludon of the optimum control problem: An optimum crop rotation (based 
on J3) with locally optimum fertilized crops (continuation of J^). The figure 
shows a typical crop rotation of the farming systems in the investigation site: 
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A sequence of sugar beet and winter wheat/barley with a period length of two 
to three years. 

For detailed analysis the continuation of the local performance criteria j{ 
"economic", J3 "ecologic" and J4 "N-limitation" are chosen. 

Nutrient balance. An important question in the assessment of the nutrient 
circulation is, if the nutrient balance can be equalized observing a vegetation 
period or a crop rotation. The weight AN in equation (1.10) incorporates the 
amount of nitrogen loss into the assessment of the crop rotation. One can 
include or exclude the local assessment of nitrogen loss with the choice of the 
local performance criterion. Table 1.4 summarizes the results of a seven year 
crop rotation with all possible scenarios. 

Only if the local assessment does not restrict the application of fertilizer 
(like Ji), a global assessment of N{t) reduces the amount of nitrogen loss. If 
a considerable reduction of fertilizer is achieved in the vegetation period, the 
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Figure 1.5 Optimum crop rotation of T — 13 years with optimum fertilizing schemes (ho
rizontal axis shows t in years). State variables: biomass W{i) (thick line) Nitrogen content in 
soil N{t) (thin line upper plot), and Population of//, schachtii P{t). Control function: fertilizer 
F{ti) (center plot) and planted crop {a{ti)) notation in upper plot. Initial values: Âo = 50 kg/ha, 
Po = 500 eggs and juveniles per lOOg soil. 
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Table 1.4 Total amount of nitrogen leached after a 7 year crop rotation for long-term perfor
mance criteria and literature values for comparison (Niesel-Lessenthin, 1988). The calculation 
of the average and standard deviation values was carried out with respect to different initial 
populations Pi (to). 

Ji Js J4 

AN =0 650(±40) 190(±45) 275(±35) (kg/ha) 
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Figure 1.6 Quantitative characterization of the most rapid iterated approach to an optimum 
path of soil nitrogen content (lower left, first vegetation period) and population of nematodes 
(upper), assessment. 

resulting amount of leaching nitrogen cannot be reduced any more even if N{t) 
is used in the global performance criterion. 

Weed control. Weed control can be carried out by designing the crop ro
tation scheme or by pesticide application. Optimum biological weed control 
requires an optimum crop rotation. In the given example it is the population 
of H. schachtii which effects the yield of sugar beet, the most important, most 
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valuable crop. After plantation of sugar beets the plantation of a non-host crop 
may reduce the population of nematodes in a crop rotation. For this reason, 
the optimum crop rotation solution in figure 1.5 consists of a 2 to 3 year crop 
rotation of sugar beet, with intermediate plantation of wheat. Crops like oil ra
dish or field beans may decrease the population of nematodes more efficiently 
— these crops are catch crops, which enable H, schachtii to hatch but disable 
the larvae for becoming fertile (see (Schmidt et al, 1993)). On the other hand, 
these crops do not have a positive effect on farmers income, see Section 4.3. 

A general property of all these solutions of the optimum control problem 
is displayed in figure 1.6. The optimum solution consists of two most rapid 
approaches to a local and a global optimum path. The local optimum state 
of nitrogen content in soil is a content of 50 kg/ha or less. This is reached 
within the first vegetation period with its optimum fertilizing scheme. All 
further fertilizing schemes start and end with an average nitrogen content of 
approximately 50 kg/ha. This demonstrates, that the assumption for assessment 
of Section 3.1 is plausible. The global optimum control path is reached after 
three vegetation periods. This path is characterized by an interval of 80 to 200 
eggs and juveniles in 100 g soil ofH. schachtii. Figure 1.6 shows three different 
initial conditions (PQ = 10,100,1000e. + j./lOOg). Note, the optimal solution 
leaves this path, if the assessment stops at the end of the simulation interval. 

4.3 REGIONAL OPTIMUM MANAGEMENT 
The integration of the spatial explicit model into optimum control procedures 

extends the questions of "What to plant when?" to "What to plant when and 
whereT\ 

The observed region, in which the field experiments for model calibrations 
are carried out, is the catchment site "Ohebach" which is part of the investi
gation area "Neuenkirchen" of the CRP 179, c.f. (McVoy et al, 1995). The 
investigation area is located in the northern forelands of the Harz mountains 
in Lower Saxony (Niedersachsen), Germany, with an area of 16 km^. A local 
2km^ "Ohebach" catchment is chosen for detailed study. Soil is set up by 
unconsolidated quaternary sediments and covered by a 1 — 2 m thick layer of 
loess, and topped finally by 0.2 — 1 m of colluvial sediments, depending on 
slope. In the loess areas soils are Orthic to Gleyic Luvisols (FAO classification), 
see McVoy at al (1995) for details. The average field size is 30 ha. 

Precision Farming Fertilizing Schemes. For an analysis of nitrogen app
lications we focus on a single vegetation period of one crop (winter wheat) 
on a given field. Figure 1.7 shows the intensive investigation "Field 278" of 
the "Ohebach" region. Soil properties of the field are characterized by seven 
homogeneous pedological units with an effective field capacity of 127 up to 
268 mm. 
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Investigation site "Ohebach" 
Field 278 

Area= 93 ha 
eff. fcap.= 127 to 268 mm 

fertiliser scheme F(t) (kg/ha) 
^M U{t) 
labels specify the total 
amount of fertiliser (kg/ha) 

Improvement In optimisation 
criterion value / (%) 

0 
0-7.5 
7.5-10 

110-

60 0 60 120 Meter A 
Figure 1.7 Zoom into "Field 278" of investigation site "Ohebach". The 93 ha field is set up 
by 7 pedological units. The amount of total fertilizer applied is labelled beside. 

The grey shading shows, that regional management can be improved by up 
to 10% in comparison to an equally applied fertilizer, when applying preci
sion farming approaches (as expressed by the performance criterion value). 
This is performed by an optimum allocation of fertilizer to the stages of crop 
development, qualitatively displayed with the bar charts. 

Regionalised Crop Rotations. Figure 1.8 completes these results. The whole 
observation region "Ohebach" is shown, with the results of year three to seven 
of the optimum crop rotation from the precision farming solution. The lower 
part of the figure shows the population density of H, schachtii and the upper 
part shows the planted crop. Note that different optimum crop rotations are 
estimated for minimization of nitrogen loss and pest control. Exemplary two 
crop rotations are noted for field A and B below the maps. On the less fertile 
sites also fallow crops are used as catch crops for H, schachtii, see Section 4.2. 
Moreover, less nutrient demanding crops are planted in the more permeable 
regions of the investigation site (north-western part). 

5. DISCUSSION 
It is well known that ecological systems are complex and hierarchical sy

stems. As a consequence ecological simulation models tend to be complex. 
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Figure 1.8 Regional optimum crop rotation in investigation site "Ohebach". Optimum crop 
rotation including precision farming solution of optimum fertilizer input. For detailed study, two 
crop rotation solutions are noted below the maps. 
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Because of this, the analysis of human impact to ecosystems using simulation 
models in terms of scenario analysis is limited. 

This chapter showed that a systematic search throughout the policy space of 
environmental impact can be provided by the application of numerical optimum 
control theory to environmental models. The approach links ecological process 
models with the human impact in a clear manner, distinguishing between state, 
control and assessment variables and models. 

Problems and perspectives of this approach in ecological system science 
are presented. Main difficulties of this approach, which give hints to further 
research needs, are 

• to model a performance criterion or indicator, which takes all important 
disciplinary aspects of environmental processes into evaluation, 

• to find an appropriate level of model aggregation, and 

• to apply a suitable procedure of numerical optimum control. 

Comparable to the standard approach of scenario analysis is the analysis of 
different performance criteria and the related optimum solutions. A very inte
resting outcome of the case studies is to study and to compare different views to 
optimality by modification of the performance criterion. It allows the compari
son of different policy strategies of farm management. The proposed framework 
allows the analysis of different indicators of environmental assessment and can 
answer the question wheather environmental variables are aggregated in a sui
table way. Facing this, it may also give an answer to the question of how to 
incorporate externalities into the process assessment. 

Overall, the choice of a simulation model on an appropriate level of aggrega
tion is decisive for the success of the approach. A more complex model may be 
more realistic. On the other hand, this may lead to problems of computational 
effort or of assessing the process in an appropriate way. Further research is 
necessary. 

The proposed framework for optimum control and the dynamic program
ming procedure with a hierarchical structure of different time scales comes out 
as a general concept applicable to a large class of environmental models. Ma
thematically heterogeneous systems like ecosystem models can be treated. On 
the other hand, the "dilemma of dimensionality" is an intrinsic property of the 
underlying procedure. Approaches to face this problem with special respect to 
environmental models are presented. However, this problem cannot be elimina
ted completely. Further research should focus on robust procedures of optimum 
control of mathematically heterogeneous models with lesser prerequisites on 
the underlying model. 

GIS comes out as a framework, which enables the coupling of agroecological 
simulation models and spatial databases. GIS-functions and robust optimiza-
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tion procedures decrease the numerical effort. Common precision farming ap
proaches focus on the identification of spatially explicit management strategies 
in terms of pesticide or fertilizer application. Knowing this the most interesting 
results in the context of regional optimization are that not only the fertilizer 
schemes should be estimated and applied for each pedological unit. There is 
also a spatial dependence in the allocation of the optimum crop rotation. It is 
shown that agroecological process models with regionalised parameter fields 
integrated in numerical optimum control procedures may support the decision 
process in precision farming systems. 

Overall, applications of environmental models in terms of optimum control 
theory are a very promising branch of ecological system theory. Optimum 
control of environmental model should find its way into an application of 
decision support system for environmental management. 
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Abstract In this survey, the problem of finding the minimal root to an equa
tion is discussed. It is supposed that the equation under consideration 
can have many roots. In the case when the Lipschitz constant for the 
objective function or its first derivative is known a priori, two methods 
based on global optimization ideas are presented. The algorithms either 
find the minimal root or determine the global minimizers (in the case 
when the objective function has no roots). If the Lipschitz constants 
are unknown, there are introduced two methods adaptively estimating 
local Lipschitz constants during the search. This approach allows us to 
accelerate the search in comparison with the case with known a priori 
Lipschitz constants. Suflficient conditions for convergence of the new 
methods to the desired solution are established. 

Keywords: Minimal root, multiextremal functions, global optimization. 

Introduction 
Let us consider the problem of finding the minimal root of an equation 

f{x) = 0 where x G [a, 6], f{x) is multiextremal, and /(a) > 0. This 
problem arises in many applications, such as computer graphics (see [6], 
[20], [26]), time domain analysis (see [1], [10]), filter theory (see [16], 
[22]), wavelet theory (see [24]), and phase detection (see [11], [25], [41]). 
A few of them are presented in the next section of this survey. 
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In the case when the formula of the objective function is known, inter
val analysis methods (see [7], [8], [17], [20], [21]) can be applied to solve 
this problem. In this survey, it is supposed that the formula is unknown 
and the function f{x) satisfies the Lipschitz condition with the constant 
L, 0 < L < (X), i.e., 

\fix)-fiy)\<L\x-y\, x,ye[a,b]. (1.1) 

A more special case is also discussed: the function f{x) is Lipschitzian 
with an unknown constant L and has the Lipschitzian first derivative, 
i.e., f\x) satisfies the following condition 

| / ' ( a : ) - / ' ( y ) | < i ^ | x - y | , x,ye[a,b], (1.2) 

where the constant K, 0 < K < oc, is the Lipschitz constant for f^{x). 
In many applications, the problem under consideration may be inter

preted in the following way. It is necessary to know the behaviour of 
a device over a time interval [a, 6]. The device works correctly while a 
function f{x) > 0. Of course, at the initial moment, x = a^ the device 
works correctly and /(a) > 0. We must either find an interval [a, x*) 
such that 

/ ( x * ) - 0 , / ( x ) > 0 , :rG[a,x*), x*G(a,6], (1.3) 

or prove that x* satisfying (1.3) does not exist in [a, 6]. It is necessary 
not only to solve the equation f{x)=^0 but also to prove that the found 
root is the minimal over [a, 6]. 

If the point x* does not exist, then in many applications it is useful to 
find a measure of the robustness of the device, i.e., a global minimizer 
x^ and the value f{x') such that 

f{x') = min{f{x):xe[a,b]}. (1.4) 

In general, it is difficult to determine the point x* (or x') in an analytical 
way and numerical methods are used to find a a-approximation x* of 
the point x* such that 

0 < / « ) , \x:-x*\<a. (1.5) 

Analogously for the point x' in the case 

/ ( x ) > 0 , xe[a,b], (1.6) 

a point x^ such that |x' — x^| < a is determined. 
Two approaches are currently used by engineers for solving these prob

lems. The first one uses standard local techniques for finding equation 
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roots in order to achieve a rapid convergence to the point x*. The 
drawback of these methods is that convergence is not assured since f{x) 
is a multiextremal function on [a, 6] and the methods may diverge or 
converge to a local minimum greater than zero (see [30]). Moreover, if 
the objective function f{x) has more than one root (and this is usually 
the case), different choices of the initial conditions can produce different 
solutions of the equation f{x) = 0. 

The second approach is based on the use of any simple grid technique 
which produces a dense mesh starting from the point a and going on by 
the step a till the value f{x) becomes less than zero. This approach is 
very reliable but the number of evaluations of f(x) is too high. 

In this survey a new approach (see [12], [27], [38]) is described. Nu
merical algorithms able either to find a point x* or determine x'̂  for 
the problems (1.3), (1.6) are proposed. Four methods based on geomet
ric ideas of the global optimization techniques [28], [33], [34], [36] are 
described. 

Two of them use the exact a priori given Lipschitz constants of the 
objective function or its first derivative. When these constants are not 
known a priori, two other methods solving the problem by using adap
tive estimates of the local Lipschitz constant during the search are intro
duced. As it has been shown in the recent hterature (see [3], [29], [34], 
[35], [38]), adaptive balancing local and global information can accelerate 
the search significantly. 

1. ELECTRICAL ENGINEERING 
APPLICATIONS 

Problem 1. The first example deals with a neural Analog to Digital 
(A/D) converter [9], i.e. an electronic device which transforms the elec
trical signals from the analog form to the digital one. Let us consider an 
example of A/D with eight similar blocks linked in series. Each block is 
built using only an input comparator and a subtractor amplifier. The 
comparator compares the input signal VJN with a reference signal equal 
to half of the A/D converter range (V/?5'/2), where V/?5 is the full-scale 
voltage. The comparator output signal is subtracted from the input of 
the block and is amphfied two times. The resulting signal being the error 
signal corresponding to the unconverted part of the input signal becomes 
the input of the successive conversion stage. Therefore, the input signal 
shape of the i — th block corresponds to the part of the VJN signal for 
X > x-i-i, where Xi-i is the time instant in which the input signal of the 
{i — 1) — th block reaches the value V F 5 / 2 . Consequently, the A/D con
verter operates on error signal propagation in cascade blocks. To avoid 
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possible commutation errors due to the simultaneous commutations of 
the comparators of different blocks, a correction circuit is also applied 
at the digital output VQUT- The time instants x ,̂ where 1 < i < 7, are 
unknown but each of them can be found as the minimal root of seven 
equations fi{x) = 0, where fi{x) is the input signal to the i — th block, 
1 < i < 7. 

Problem 2. The second example deals with electrical filters (see [16], 
[22]). Filters are basic electronic components used in many fields such 
as power conversion circuits, electronic measurement instruments and 
communications systems. Particularly, electrical filters can be found in 
the telephone, television, radio, radar, and sonar. A filter is a device that 
modifies in a predetermined way the input signal that passes through 
it. Electrical filters may be classified as: analog filters, used to process 
analog or continuous-time signals; and digital filters, used to process 
digital signals (discrete-time signals). 

Let us consider a signal s{x)^ where x is time. If a signal 5(x), com
posed of a sum of signals 5i(x), S2(x),.., Sn{x) so that 

S{x) = Si{x) + S2{x) + .. + Snix), 

is the input of an analog filter, the output signal is obtained from the 
input one by suppressing certain components Sk{x)^k E { l , . . ,n} . Let 
us define for the signal s{x) its frequency 9 as the number of times that 
the signal repeats itself in unit time and the pulse u — 2IT9. Below we 
refer to ^ or u; simply as frequency. 

As an example, let us consider a radio or a television receiver. The 
transmission station is assigned an interval of frequencies called the hand 
of frequencies ov channel frequencies^ in which it must transmit its signal. 
Ideally, the receiver should accept and process any signal in the assigned 
channel and completely exclude signals at all other frequencies so that 

^c l < ^ < ^c2 (1-7) 

is the channel of the signal to be received. However, no circuits can pro
duce such a transfer function exactly. In practice, filters are not required 
to meet the extremely stringent requirements such as those of (1.7) and 
some filters with a channel approximating (1.7) have been found to be 
consistently satisfactory. In this example the cutoff" frequency can be 
found as the root. 

Problem 3. The last example is related to the problem of mea
suring the phase angle between two functions with the same frequency. 
This problem very often arises in electronics and electrical engeneering 
and some instruments were created for measuring it. Traditional tech
niques work by converting the functions into two square waves and then 
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measuring the difference either between the roots or between the pulse 
centers of the square waves. These techniques introduce error in phase 
measurement when the input functions are distorted by harmonics. 

Another way of measuring the phase difference between two functions 
fi{x) and /2(^) rnay be obtained by considering the difference between 
the time instants in which the functions cross zero. Thus, the process 
to obtain the phase difference consists of three steps: 

i. The functions fi{x) and f2{x) are sampled and digitised by an A/D 
converter (see Problem 1); 

ii. An algorithm is applied twice to find the minimal roots of /i(x) 
and /2(x); 

iii. The time difference between the roots for both functions is pro
portional to phase difference. 

2. ALGORITHMS FOR PROBLEMS WHERE 
THE FIRST DERIVATIVES ARE NOT 
AVAILABLE 

In this section algorithms for solving the problems (1.1), (1.3) and 
(1.1), (1.4), (1.6) are presented. The case where the function f{x) is 
non-differentiable or it is differentiable but the first derivatives can not 
be evaluated is considered. Let us describe the main idea of the methods. 

Suppose that the objective function f{x) has been already evaluated 
at n trial points ^^,1 < i < n, and Zi = f{xi). For every interval 
[xi-i^Xi]^ 1 < i < n, we construct an auxiliary function (f)i{x) in such a 
way that hopefully (j)i{x) < / (x) , x G [xi-i^Xi]. Adaptively improving 
the set of functions (j)i{x)^ 1 < i < n^ by adding new points we improve 
our lower approximation of f{x). This approach is widely used in global 
optimization (see [13], [19], [29], [39], [40]) applying functions (/>i(x) with 
different structures. The papers [14], [28], [29], [34] address methods 
using only the values of objective functions and the papers [2], [5], [33], 
[15], [36] describe algorithms, where the first derivatives are also taken 
into consideration. In this section we propose the methods using support 
functions from [28], [34]. The next section deals with the methods based 
on ideas from [33], [36], [40]. 

In two algorithms presented here the following ideas are used to pro
vide a fast localization of the points x* from (1.5) or the point x^ in the 
case (1.6): 

(A) constructing piece-wise hnear auxiliary functions from [28], [34] 
where they have demonstrated a good performance in the global opti
mization; 
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(B) constructing auxiliary functions only for intervals [xi-i,^^], 1 < 
z < /c, where 

k = min{{n} U {i : f{xi) < 0 , 1 < i < n}}. (1.8) 

(C) adaptive estimating the local Lipschitz constant Li for every in
terval [xi-i,Xi] (in the second algorithm). 

Let us discuss these ideas one after another. (A) Suppose that we 
have an estimate mi of the constant Li such that: 

rrii > Li. (1.9) 

In this case it is possible to construct a piece-wise linear support function 
4>i{x) for f{x) over [xi-i^Xi] (see [28], [34]) as follows: 

(f)-(x) = max{zi-i - mi{x - x^-i), Zi - mi{xi - x)}. (1.10) 

In (1.10) Zi-i and Zi are the values of the function /(x) at the points 
Xi-i and Xi respectively. It is easy to compute the value 

Ri = (t>i{yi) = min{(t)i{x) : x E [x^_i,x^]}. 

as 

Ri = 0.b[zi + Zi-i - mi{xi - Xi-i)], (1.11) 

The minimum takes place at the point 

yi = 0,5[xi + Xi^i - {zi - Zi-.i)/{mi)]. (1.12) 

We shall call Ri the characteristic of the interval [xi-ijXi]. 
Let us discuss the item (B). The new algorithms construct the function 

(l)i{x) from (1.10) from left to right. If in a step the characteristic Rj < 0 
has been found, this means that there exists a point Xr G [xj-i, Xj] such 
that (f)j{xr) = 0. 

In this case we determine the point x -̂, set the new trial point x^+^ = 
Xr and evaluate /(x^"^^). If in this new point /(x^"^^) < 0 then there 
is no need to consider the interval (x^"^^,6] because the solution x* is 
in (a,x^"^^] (here a, b are from (1.3)). Then we set n = n -I- 1 and 
restart the procedure. If (1.6) takes place, then the algorithm finds an 
approximation x'̂  of the point x' from (1.4). 

Lastly (C). The values rrii from (1.9) have a decisive influence on 
the convergence rate (and correctness) of the algorithm. Estimation of 
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the global Lipschitz constant L is a global optimization problem itself. 
Underestimates of L (or, more generally, lack of the global information 
about the objective function) can lead to loss of the global solution in 
both cases when methods use a priori given or adaptive estimates of L 
(see [3], [18], [37], [39], [40], [42]). 

Since in real problems often it is difficult to know the exact value 
of L from (1,1) a priori, a fixed estimate H > L of L is used during 
the search in many global optimization methods for diff'erent auxiliary 
functions (f)i{x) (see, for example, [5], [28]). Our first algorithm Al uses 
this approach too and takes rrii = H > L. 

The main drawback of this approach is that the global Lipschitz con
stant L gives a very poor information about the behaviour of the ob
jective function over every small interval [xi-i^Xi]. In order to avoid 
this drawback in algorithm A2 we estimate local Lipschitz constants Li 
for every interval [xi_i,Xi], 1 < i < k. The problem of estimating Lip
schitz constants is under an intensive investigation (see [31], [42]) and 
many global optimization algorithms do it in different manners (see [14], 
[31], [29], [39], [42]). In this paper an approach successfully applied in 
many global optimization techniques (see [34], [35], [36], [40]) for differ
ent classes of problems will be used. 

Let us now describe the methods. We introduce the general scheme 
and only Step 2 wih be different for algorithms Al and A2. 

Step 0. Set x^ = a,x'^ = 6,z' - f{x'),i ^1,2,9 -=^h,k ^2, Suppose 
now that n > 2 trials of the algorithm have already been carried out at 
points x \ ..,a;^. The (n -f- l)th trial point x^^^ is chosen according to 
the following procedure. 

Step 1. The points x^ ^ 1 < j < n, x^ < 6^, where b^ = xj^ (k is from 
(1.8)), of the previous n trials are ordered according to the increase of 
their coordinates. Below we denote by superscripts, iterations numbers, 
and by subscripts, the trial points ordered in the course of iterations. 
Thus, we order the points 

x ^ l <j <n,x^ <}/" 

as follows: 

a = xi < X2 < ... < Xi < ... < Xk = b'^ <b. (1-13) 

Set i = 2. 
Step 2. Calculate the estimate rrii of the local Lipschitz constants Li 

of the interval [xi_i,Xi] as follows: 
For the method Al (a priori given Lipschitz constant): Set 

mi = H, (1.14) 
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where the constant H is such that L < H < oo. 
For the method A2 {adaptive estimating the local Lipschitz constants 

during the search): 
mi = r ' max{Xi, 7 ,̂ ^ } , (1-15) 

where the parameter r > 1 is a rehabihty parameter and ^ > 0 is a small 
number - the second parameter of the method. 

The values Â  and 7̂  from (1.15) relate to changes of local and global 
information, respectively, obtained during the search. The value 

Xi = max{— ^ ^ : j = z - 1, z, i + 1,1 < j , < fc} (1.16) 

where Zi = f{xi)^ I < i < k^ relates to a local estimate and looks only 
at adjacent intervals. In contrast, 7̂  gives a global estimate, where 

^ X^-Xi^^,,^ 

The value X^^^ is the length of the widest interval, i.e. 

^max ^ ^^^^^. _ ^._^ :2<i<k}, 

and the value X'^^^ is a global estimate of the global Lipschitz constant, 
i.e. 

A^«^ = max^^'~_^'~^\ \<i<k], (1.18) 
Xi Xi—\ 

Thus, the formula (1.15 banlances local and global information repre
sented by Xi and 7 ,̂ respectively. 

Step 3. Evaluate the characteristic value Ri from (1.11) and the point 
y{i) from (1.12). If i?^ < 0 then go to Step 5 otherwise set i = i + 1. If 
i <k then go to Step 2 otherwise go to Step 4. 

Step 4. Find an interval i with the minimal characteristic, i.e. 

i = argmin{Rj : I < j < k} (1.19) 

and define the new trial point x^~^^ as follows 

where yi is determined following (1.12), then go to Step 6. 
Step 5. Calculate 

x^+^ = Xi^i + Zi-i/rrii, 

i.e. the left root of the equation 0i(x) = 0 over the interval [x^_i, Xi], 
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Step 6. If the stopping rule x^+^ — Xi-i < a, where a is from (1.5), 
is fulfilled then Stop. Otherwise calculate the value /(x^"^^) and go to 
Step 1 setting 6^+^ - x""-^^ if /(x^+i) < 0 and 6^+^ - 6^ otherwise. 

Convergence conditions of the algorithms proposed are described by 
the following two theorems (see [27]). 

Theorem 1 Let the situation (1-6) take place, i.e. there is no root in 
[a, 6]; and Lt be the local Lipschitz constant of f{x) over the subinterval 
[xt-i,xt]^t == t{n), a global minimizer x' belongs to during the n-th iter
ation of Al or A2. If there exists an iteration number n' such that for 
all n> n' the inequality 

mt > Lt (1.20) 

holds then, the global minimizer x' will be a limit point of the sequence 
{x^} generated by Al or A2 and only global minimizers can be limit 
points of {x^}. 

Theorem 2 Let there exist a point x* from (1.3), i.e. there exist at 
least one root x* in [a,6] and x* E [x^_i,x^],t == t{n)^ during the n-
th iteration of Al or A2 and Lt be the local Lipschitz constant of f{x) 
over the interval [xi_i,x^]. / / there exists a number n* such that for all 
n > rf the inequality (1.20) holds, then the point x* will be the unique 
limit point of the sequence {x^} generated by Al or A2. 

Thus, if the convergence conditions of the methods are satisfied, after 
fulfillment of the stopping rule the following situations can take place: 

i. t^+i ^ b. This means that we can take x* = Xk if f{xk) = 0 or 
X* = Xk-i if fixk) < 0 because Xi,z = A: — 1, is the maximal trial point 
such that f{xi) > 0. 

ii. 6^+1 = b and Ri > 0, for all 2,1 < i < k. This means that no root 
has been found in the interval [a, 6]. The point 

x^ = argmin{f{xj) : I < j < n} 

can be taken as a a-approximation of the global minimizer x' over [a, b] 
and the value /(x^) can be used as an estimate of reliability of our device 
over the interval [a, 6]. 

iii. b'^~^^ = b and there exists an interval j such that its characteristic 
Rj < 0. This situation means that it is necessary to take new a^ < a 
because the algorithm stops within the interval [ X n — ]̂  , X n ] with properties 
Zj-i > 0, Zj > 0, Rj < 0 and cannot proceed because |xj_i — Xj\ < a. 
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3. ALGORITHMS FOR PROBLEMS WHERE 
THE FIRST DERIVATIVES ARE 
AVAILABLE 

In problems where the first derivatives are available, it is possible 
to use them to construct better support functions. Simple non-smooth 
(see [12]) and a little bit more complex smooth (see [38], [40]) support 
functions can be used in order to solve the problems (1.2), (1.3) and 
(1.2), (1.4), (1.6). Since the smooth ones are closer to the objective 
function, let us present here two methods based on these structures. 

In order to introduce the methods we suppose that the objective func
tion f{x) and its first derivative f^{x) have been already calculated at n 
trial points x\l < i < n. We can reorder these points by subscripts in 
such a way that 

a = x i < X2 < ... < Xi < ... < Xn ^^ b. 

We designate the results of trials as 

Zi = f{xi), z\ = f{xi), 1 < 2 < n, 

and suppose that we have an estimate m^ of the constant Ki such that: 

rui > Ki. (1.21) 

In this case it is possible to construct a support function (f)i{x) for 
f{x) over [xi-i^Xi] (see [36]) as follows: 

Zi-i + z^i_^{x - Xi-i) -0.5m^(x-a;^_i)2, x e [xi_i,y-] 
(l)i{x) == \ O.brriiX^ + biX + Ci, x e (y-, yi] 

Zi - z'^{xi - x) - 0.5mi(xi - x)^, X e {yi, Xi] 
(1.22) 

where 

Qi = 
Zj-i - Zi + z[xi ~ z[_iXi-i + 0.5mi{xf - xf_^) 

mi{xi - Xi-i) + z[ - z[_^ 

hi = z[ - 2miyi -f rriiXi, (1-25) 

a^ Zi- ZiXi - O.brriixf + rriiyf. (1-26) 
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The function (l)i{x) has been constructed (see [36]) by using the Taylor 
formula for the point Xi-i (see the first line in (1.22)) and the point Xi 
(see the third line in (1.22)). The second line of (1.22) has been obtained 
using boundness of the f{x) curvature which follows from (1.2). Note 
that the first derivative (t)[{x)^ for all x G {xi-i^Xi) exists. 

Let us find the point 

hi — argmin{(j)i{x) : x G [xi-i,^^]} (1-27) 

and the corresponding value {characteristic of the interval [xi-i^Xi]) 

Ri = (t)i{hi) = min{(t)i{x) : x G [x^_i,x^]}. (1-28) 

Let us consider two cases. If (j)[{y'i) < 0 and 0^(yi) > 0, then 

hi =^ argmin{f{xi-i), (t)i{xi), f{xi)} (1.29) 

where: 

Xi = 2yi - z'iTu'^ - Xi-i. (1.30) 

The point Xi is determined from the equation 0^(x) = 0, x G [Vi^yi]' It 
follows from (1.22) that 

0i(xi) = Ci- 0,5mixf. (1-31) 

In the second case there is no point Xi G [y[^ yi] such that 4>'i{xi) = 0 and 

hi = argmin{f{xi-i), f(xi)}, (1.32) 

The algorithms A3 and A4 work similarly to Al and A2 by construct
ing the function 02 (x) from (1.22) from left to right taking the intervals 
one after another and calculating their characteristics. If in a step Rj < 0 
has been found, this means that there exists a point x G [xj-i^Xj] such 
that 4>j{x) = 0. 

In this case we determine the new trial point x^~^^ — x and evaluate 
/(x^+i) and f (x^+^). If in this new point /(x^+i) < 0 then there is 
no need to consider the interval (x'^'^^^b] because the solution Xg- is in 
(a, x "̂̂ ]̂ . Then we set n = n + 1 and restart the procedure. 

Let us suppose that n trials, with n > 2, of the algorithm have already 
been carried out at points x \ ..,x^. The (n + l)-th trial point x^~^^ is 
chosen according to the following procedure. 

Step 1. Among the trial points x^^ ..^x^ of the previous n iterations 
form the subset X^^^^ such that 

xHn) ^ { ĵ :l<j<n,x^< 6^, 6^ = Xk}, 
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where k is from (1.13). Thus, b^ is determined by (1.13) and is the 
right margin of the search interval during the nth iteration. Reorder the 
elements of the set X^^'^'^ by subscripts in ascending order as in (1.13). 

Step 2. For the first derivative / ' (x) calculate the estimate m^ of the 
local Lipschitz constants Ki of the interval [xi-i^Xi] as follows: 

For the method A3 (a priori given Lipschitz constant): Set 

rrii^H, (1.33) 

where the constant H is such that L < H < oo. 
For the method A4 {adaptive estimating the local Lipschitz constants 

during the search): Calculate adaptive estimates rui for the local Lips
chitz constants Ki for the intervals 

[xi-i,Xi],l <i < k, 

as follows: 
rui^r •max{Ai,7^,^}, (1-34) 

where (̂  > 0 and r > 1 are parameters of the method. 
The values Â  and 7̂  reflect changes of local and global information 

obtained during the search. The value Â  is calculated as 

Â  = max{vj : 1 < j < /c,2 — 1 < j < z + 1}, (1.35) 

where 

(1.36) 
_ |2(^j-i - Zj) + {z'^ + z'j_^){xj - Xj-i)\ + dj 

[Xj Xj-l) 

and 

dj = {[2{zj-i-Zj) + {z^j-z'j_,){xj-Xj^i)f + {z^j-z'j_^^f 

The second component 7̂  from (1.34) is calculated as 

7i = mixi - Xi-O/X^' '^ (1.37) 

where m estimates the global Lipschitz constant K from (1.2) 

m = max{vi : 1 < i < k} (1.38) 

and 

^max ^ ^ax^^. _ ^ ._^ : 2 < i < fc}. 

Step 3. Initially set the index sets / = 0; y rrr 0; y^ = 0. Set the 
index of the current interval i — 2. 



Finding the Minimal Root of an Equation 453 

Step 3.0. If i > k then go to Step 4, otherwise compute the values 
yi, y[ according to (1.23) and (1.24). If (/>-(y-) • (t>[{yi) < 0 then go to 
Step 3.2, otherwise go to Step 3.1. 

Step 3.1. Calculate Ri = (t>i{hi)^ where hi is from (1.32). If hi — Xi 
then include i in Y" else include i in Y'. Go to Step 3.3. 

Step 3.2, Calculate Ri = (/>i{hi), where hi is from (1.29). Include i 
in / . Go to Step 3.3. 

Step 3.3. li Ri <0 then go to Step 5 otherwise set i = z + 1 and go 
to Step 3.0. 

Step 4. Find an interval i with the minimal characteristic, i.e. 

i = argmin{Rj : 1 < j < k} (1.39) 

and define the new trial at the point x^^^ as follows 

r y'i i H e y 
a;"+i = <̂  Xi Hi el (1.40) 

Go to Step 6. 
Step 5. If (t>i{y'i) < 0 then go to Step 5.1. Otherwise go to Step 

5.2. 
Step 5.1. Calculate 

x"+i = Xi_i + —(z^_i + ^z'l^ + 2m,^i_i), (1.41) 

i.e. the right root of the equation 

Zi-i + z[_i{x - Xi-i) - 0.5mi(x - Xi_i)^ = 0 

obtained from the first line of (1.22) and go to Step 6. 
Step 5.2. If (t)[{y[) • (j)'i{yi) > 0 then go to Step 5.3. Otherwise if 

(l>i{Si) > 0 then compute 

x^+i = Xi + —{z/ + Jz';^ + 2miZi) (1.42) 
rui ^ 

i.e. the right root of the equation 

Zi — z'i^Xi — x) — 0.5mi{xi — x)'^ — 0 

obtained from the third line of (1.22) and go to Step 6. 
If (l)i{xi) < 0 then x̂ "̂ ^ is calculated following the formula 

_Li - h - x/bf - 2miCi 

rrii 
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obtained from the second line of (1.22) as the left root of the equation 

O.brriix'^ + bix + Q = 0 

then go to Step 6. 
Step 5.3. li <pi{yi) > 0 then calculate x^^^ using (1.42) and go to 

Step 6. Otherwise use (1.43) for calculating x^'^^. 
Step 6, If the stopping rule \xi — Xi-i\ < a, where a is from (1.5), 

is fulfilled then Stop. Otherwise calculate the value f{x^^^) and go to 
Step 7 setting h^^^ = x^+i if /(a;^+^) < 0. 

Step 7. Calculate the value f\x^~^^). Set n = n + 1 and go to Step 1. 
The results obtained after satisfaction of the stopping rule are consid

ered similarly to the results for the algorithms Al and A2. The following 
convergence conditions (see [38]) hold for the methods A3 and A4. 

Theorem 3 Let Kt he the local Lipschitz constant of f'{x) over the 
interval [xt-i^xt] 3 x*; t = t{n), during the n-th iteration of A3 or 
A4' If there exists an iteration number n* such that for all n > rf the 
inequality 

mt > Kt (1.44) 

holds then the point x* will be the unique limit point of the trial sequence 
{x'^} generated by A3 or AJ^. 

Theorem 4 Let the situation (1-6) take place, i.e. there is no root in 
[a^b], and Kt is the local Lipschitz constant of f\x) over the interval 
[xt-\^Xt] 3 x', where x' is a global minimizer and there exists a number 
n' such that (1.44) tcikes place. Then x' will be a limit point of the trial 
sequence {x^} generated by A3 or A4 and only global minimizers can be 
limit points of {x'^}. 

It should be notice that in all the four methods presented here to 
have convergence to the desired solution it is not necessary to estimate 
correctly the global Lipschitz constant K (or L in the case when the first 
derivatives are not available) over the whole region [a, b]. It is enough to 
do it only for the local constant Ki (or Li for the methods Al and A2) 
for the subinterval [xt-i^xt]> This condition is significantly weaker than 
the corresponding convergence results for the methods using estimates 
of Lipschitz constants (see [14], [15], [18], [39]). 

4. NUMERICAL EXAMPLES 
In this section three numerical experiments are considered. In the 

first of them four algorithms and a grid method solve a test problem. 
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The second and third experiments deal with real appHcations. Let us 
start with the following test function 

f{x) = cos(x) — sin(5x) + 1. 

It has six roots over the interval [0, 7] and the minimal root is x* — 
1.57079. 

The parameters of the algorithms have been chosen as follows: r = 1.1 
for the algorithrii A2 and r = 1.2 for A4, e = 10~^ for both of them. 
The value a = 10~^{b — a) has been used in the stopping rule for all 
algorithms. The exact Lipschitz constants have been apphed in Al and 
A3 in all experiments. The methods A1-A4 have found the desired 
solution with the required accuracy in 53, 36, 11, and 10 iterations, 
correspondingly. The grid method with the step a — 10""̂  (6 — a) has 
solved this problem in 2016 iterations. 

The second and third experiments are related to practical electrical 
engineering problems of finding the cutoff frequency for the filters prob
lem presented in Section 1. Let us consider a Chebyshev filter (see [16]) 
with parameters: R = IJl; L == 2i7; C = AF. The cutoff frequency can 
be found as the minimal root of the function 

F(u;) VouM , 1 1 

The solution has been found at the point oo — 0.8459ra(i/5. This result 
was obtained in 2745 iterations by the grid method, in 11 iterations by 
the algorithm A3 and in 10 iterations by the algorithm A4. 

The last example considers a passband filter (see [16]). The transfer 
function of this filter is given by 

where 

Zi = -uj^RiLiL2+ojRiL2+ujRiLiCi/C2-Ri/{uoC2)+2uoLiRi+uLiR2, 

2̂ 2 = cj L\L2 + cj R1R2L1C1 — R1R2 — L1/C2, 

The parameters for this filter have been chosen as follows 

Ri = 3108f7, Li = 40e-^F, Ci = le'^F, 
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The cutoff frequency was found as the minimal root of the function 

F{u) = -{f{uf - 1/2FI,,). 

The solution has been found at the point u = 4:824A3rad/s. This result 
was obtained in 4474 iterations by the grid method, in 44 iterations by 
the algorithm A3 and in 27 iterations by the algorithm A4. 

5. C O N C L U D I N G R E M A R K S 

In this survey, we have considered a problem very often arising in 
engineering applications, namely, the problem of finding the minimal 
root of an equation f(x) = 0, where f{x) is a multiextremal black-
box function which either satisfies the Lipschitz condition (1.1) with a 
constant L, 0 < L < 00, or f(x) is such that its first derivative f^{x) 
satisfies the corresponding Lipschitz condition(1.2) with a constant K^ 
0 < K < 00, Since the objective function, / (x) , is multiextremal, local 
search techniques cannot be used to solve the problem and, therefore, 
methods based on ideas of global optimization have been considered. On 
the other hand, the fact that the function is given in a black-box form 
means that its formula is not available. This means that interval anal
ysis techniques cannot be used and the Lipschitz information becomes 
extremely important. 

Four methods proposed for solving the problem have been described 
in this survey. All of them construct auxiliary support functions during 
their work in order to locate the desired solution. The first and the sec
ond methods can be applied when the first derivatives are not available. 
The first algorithm uses the exact a priori given Lipschitz constant L 
of the objective function. When L is not known a priori, the second 
method can be used successfully. It solves the problem using adaptive 
estimation of the local Lipschitz constant during the search. It should 
be also mentioned that it uses the obtained estimates very efficiently in 
order to accelerate the search of the minimal root. 

When the first derivatives are available, it is possible to use the third 
and the fourth methods. The third algorithm uses the exact a priori 
given Lipschitz constant K of the first derivative. When K is not known 
a priori the fourth method solves the problem by using adaptive es
timates of the local Lipschitz constant during the search. Again, the 
usage of the local Lipschitz estimates allows us to accelerate the search. 

It is worthwhile to notice that all the introduced methods start the 
search of the minimal root without any knowledge about existence of 
at least one root over the search interval. During the search the al
gorithms either determine an approximation of the minimal root or an 
approximation of a global minimizer (in case where there are no roots). 
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Abstract 
In radiation therapy new delivery techniques have been recently de

veloped. Especially the multileaf collimator (MLC) has provided bet
ter facilities to deliver the dose for a cancer patient. The MLC based 
techniques allow the construction of 3-dimensional and conformal dose 
distributions. The succesful use of MLC delivery method requires the 
global optimization of the treatment plan. The paper gives one po
tential approach to optimize the treatment plan applying the so called 
multiple static MLC technique. For numerical optimization, the LGO 
global optimization software system is used. For the comparison of the 
numerical results, simulated annealing algorithm was used. 

Keywords : Radiation therapy, inverse treatment planning, multileaf collimator, 
global optimization in high dimensional problems. 
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Introduction 
Advanced technical and computational resources have provided new 

techniques for radiation therapy treatment. Two recent techniques of 
high interest are intensity modulated radiation therapy (IMRT) and in
verse radiation therapy treatment planning (IRTTP). These two new 
techniques together provide more conformal dose distribution to the tar
get volume, as well as saving the other tissues. IMRT and IRTTP are 
now becoming routinely used techniques in leading clinics, and they are 
subject of intensive research. 

External radiation therapy is usually delivered by a linear accelerator 
(Figure 1.1, left). A relatively new accessory of hnear accelerator, nec
essary for IMRT, is the multileaf collimator (MLC) (Figure 1.1, right). 
It is a collimator where a number of opposite segments (the leaves of 
the coUimator) are able to move in parallel. So the open field can be 
changed as a function of time. In planning the collimator plane, the 
treatment space is a 2-dimensional rectangle divided into smaller rect
angles (2.5 mm x 2.5 mm), called bixels. Since the duration of time 
which the bixel is open (beam-on-time of the bixel) is directly corre
lated to the intensity weight of the bixel, intensity modulated fields can 
be created by moving the leaves of the MLC. The locations or velocities 
of heads (edges) of MLC leaves {the multileaf parameters) must be de
termined in the course of treatment planning. The dose can be delivered 
by dynamical collimation or multiple static collimation. Applying dy
namical colhmation, the radiation is on during the movement of leaves. 
Using multiple static collimation, the radiation is interrupted when the 
leaves are moving. In the multiple static colhmation, the time lengths 
(beam-on-times) of the subsequent subfields can be chosen as planning 
parameters. Finally, the collimator can also rotate around its transversal 
axis. The collimator angle gives an additional parameter for the multiple 
static colhmation. For reviews of intensity modulated treatment plan
ning we refer to Borgers, 1997; Brahme, 1995; Shepard et al., 1999; Webb, 
1993; Webb, 1997. In the hterature rotational tomotherapy technique is 
also reported Oelfke and Bortfeld, 1999; Shepard et al., 1999; Yang et al., 
1997, but in the following we shall not consider rotational therapy. The 
successful choice of the treatment parameters demands the application 
of an inverse treatment planning algorithm which is based on a suitable 
optimization strategy. 

In the IRTTP the desired dose is determined in the planning target vol
ume (macroscopic and microscopic tumor, possible lymphnode regions, 
margins) and appropriate hmitations are set for the dose in certain crit
ical organs and, also, in the healthy normal tissue. Then, the treatment 
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plan parameters are optimized to meat (approximate) the given dose 
distribution. This is just the opposite of routine forward planning, in 
which the parameters are set by the planner and the dose distribution is 
then calculated and analyzed, whether it fulfills the requirements or not. 
Especially, when the shape of the target volume is complex, this forward 
planning is time consuming and the results may be far from optimal. 

Conventionally the IRTTP problem is solved in two steps. First, one 
tries to optimize the intensity distributions (weights or beam-on-times 
of bixels) of fields in such a way that the corresponding fiuxes incident 
on the patient body surface produce the desired dose distribution in the 
patient space. Second, one optimizes the MLC parameters to generate 
the obtained intensity profiles. In our optimization strategy we hnk the 
dose to the MLC parameters. The objective functions used are expressed 
directly with the help of these parameters. 

The optimization criteria which guarantee an acceptable plan are not 
uniquely determined. However, the most common approach is to se
lect the treatment parameters (directions, multileaf parameters and time 
lengths) in such the way that the tumor receives the prescribed dose and 
that the doses in the critical organs and in the normal tissue are below 
some prescribed values. In addition, one often describes (partial) dose 
volume constraints. The dose volume constraint is associated with a cer
tain structure of the patient space, e.g. with the critical organ. Typically, 
it is required that the volume fraction that receives a dose greater than a 
given threshold must be under a prescribed value Borgers, 1997; Webb, 
1993; Bortfeld, 1999. The above optimization criteria are called physical 
criteria. In addition to developing optimization algorithms for IRTTP in 
the above sense, one often tries to find only feasible solutions Censor et 
al., 1988; Censor and Zenios, 1997; Kolmonen et al., 1998. In the feasible 
solution approach the aim is to find a solution which guarantees that the 
dose in the tumor is between the prescribed limits, and that the doses in 
organs at risk and normal tissue are under the prescribed hmits. Dose 
volume constraints can be added also in this approach. 

Instead of the physical criteria, there exist also biological criteria to 
optimize the treatment plan Brahme, 1999. The objective function is 
constructed using probabihties to destroy the tumor and, at the same 
time, to save the critical organs and normal tissue. In the literature well 
known related concepts are the tumor control probabihty (TCP) and the 
normal tissue comphcation probabihty (NTCP) Borgers, 1997; Webb, 
1993; Webb, 1997. However, such biological objective functions require 
some statistical model parameters which are not reliably known. For 
this reason, optimization based on such foundations is not commonly 
accepted. In this work we shall use only physical objective functions. 
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It is easy to check numerically that the objective function types derived 
in this model are highly multiextremal. Hence, it is necessary to apply 
a global optimization approach to find as good solution as possible for 
the constrained extremum problem. Especially in the past decade, the 
advances in global optimization algorithms, convergence analysis and 
increasing computational power have given real possibilities to handle 
large dimensional global optimization problems in practice. However, 
numerical complexity increases exponentially with the number of decision 
variables and constraints. Therefore, without any a priori information 
the search strategies applied in global optimization software systems may 
still be too time-consuming for truly real world problems. We hope that 
this contribution gives some inspiration and insight for the optimization 
experts to improve the solution methods for the optimization problems 
presented. 

The notion of IRTTP problem always requires a dose calculation model 
(the solution for the forward problem). A commonly used approach is 
based upon the pencil beam model. In this approach, one divides the 
penetrating beam into beamlets, so called pencil beams. The effect of 
radiation of each pencil beam emerging from the field Si to a point of 
the patient space is covered by the "dose deposition kernel" hi. One of 
the disadvantages of this method is that the kernel function hi is not 
known analytically: however, various discrete or semianalytical expres
sions have been developed for it which are based on the classical Bathon 
law, Gaussian type kernels or on more sophisticated foundations Janssen 
et al., 1997; Johns and Cunningham, 1983; Mackie et al., 1988; Tervo and 
Kolmonen, 1998; Ulmer and Harder, 1996; Wang and Jette, 1999; Webb, 
1993. The advantage of the pencil beam modelhng approach is simple 
implementation of dose calculations. The most rigorous dose calcula
tion models are based on the Boltzmann transport equation Cercignani, 
1988; Dautray and Lions, 1993; Jette, 1995; Larsen, 1997; Tervo et al., 
1999a. The diflRculty of transport equation based models is the partial 
lack of knowledge of differential cross sections of different particles and 
interactions. In addition, the large dimensionality of numerical schemes, 
e.g. the schemes for grid based finite element or collocation approxima
tions, causes further difficulties. However, advances in the knowledge 
of cross section data and the increase of computing power will dimin
ish these disadvantages in the near future. For simplicity, in this con
tribution we shall use the pencil beam model in dose calculation. In 
some previous studies we have already considered IRTTP problem using 
MLC locations as decision parameters. In Tervo and Kolmonen, 2000 we 
sought a feasible solution applying the Cimmino algorithm together with 
initiahzation. The paper Tervo et al., 2003b considered the problem for 
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dynamical MLC technique. The optimization was based on simulated 
annealing (SA) algorithm. The contribution Tervo and Kolmonen, 2002 
linked the model to the Boltzmann transport based dose calculation. The 
numerical test apphed the SA algorithm. 

In this paper we use two different global optimization algorithms. One 
of them is the LGO (Lipschitz Global Optimizer) software system. In 
Tervo et al., 2003a we preliminarely used LGO software. Here we enlarge 
considerations of global optimization for the IRTTP problem. LGO is 
an integrated system of global and local solvers in which a (theoretically 
convergent) global search phase is followed by local search procedures. 
In the local phase the gradient information is also used. For theoretical 
background of the LGO system we refer to Pinter, 1996. Current LGO 
features are described in Pinter, 1998; Pinter, 2000. The other method 
which we use for the comparison is the well-known simulated annealing 
algorithm as described e.g. in Press et al., 1986; Corana et al., 1987. 

1. Inverse Planning with Multileaf Parameters 

1.1 Dose Calculation Based on the Pencil Beam 
Model 

Sections 1 and 2 review the mathematical model for leaf control, as 
presented in Tervo et al., 2003a; Tervo et al., 1999a. See also Tervo 
and Kolmonen, 2002; Tervo et al., 2003b. We adopt the notation and 
formahsm of these references. As mentioned above, our method does not 
require the determination of the intensity distribution as an intermediate 
step. Specifically, we compute the dose D = D{x) in the patient space as 
a function of the decision variables. Then we are able to optimize or to 
find feasible solutions directly by using MLC operations based decision 
variables. 

Assume that the colhmator plane (treatment head) is a rectangle U = 
[—a^a] X [—b^b] C R^. Denote an arbitrary point of f7 by î  == iui^U2). 
The collimator leaves are orthogonal to the U2-^xis. Suppose that the 
leaves have a positive width d and that there are N leaf pairs {Bi^ Ai), i = 
1,...,A^. Let Ui :— [~a,a]x]u2,i-i,U2,i[^ i = 1,...,A^ be the strips (so 
called channels) along the ^i-axis determined by the leaf pairs {BijAi). 
Figure 1.1 illustrates the concepts and the notation. 

Assume that we have L fields 5^, / = 1,...,L. Let ^/ = ^i{u) = 
^l{ui^'^2) be the flux density per unit area of the considered field Si, 
We assume that ^/ is a piecewise continuous function C/ t-> R such that 
'^l{u) = "^liiui) for u e Ui. Clearly, only such fiuxes can be generated 
with the MLC technique corresponding to an individual field Si (in the 
case where the collimator angle is fixed). Let ^o be the uniform fiux den-



466 Global Optimization: Scientific and Engineering Case Studies 

Figure 1.1. Left: The linear accelerator, couch and MLC. The angles a^, Pi and 9i 
describe the gantry, couch and collimator angles, respectively. Right: The MLC seen 
from the lower side. In the photograph the number of leaf pairs N = 17. 

sity per unit time and unit area on the MLC and let T/ be the treatment 
time corresponding to Si. Denote the right and left hand location of the 
head (edge) of leaf Ai and Bi by aii{t) G [-a, a] and by hii{t) E [-a^a] 
at time moment t G [0,T;], respectively. 

In Tervo et al., 2003a we have shown that, in the case where head scat
tering, leakage and the so called tongue and groove effects are omitted, 
we have 

^ii{ui) - ^0 / \H{aii{t) - ui) - H{bi{t) - ui))dt, ueUi (1.1) 

or equivalently 

* / (^i) - *o / ' H{aii{t) - ui)H{ui - bi{t))dt, ueUi (1.2) 
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where H is the Heaviside function 

'w={J: HM^r.' l^l 
In the following model formulation we shall use (1.1). 

In the mathematical modelling of radiation response using the pencil 
beam model we apply the integral equation Gustafsson et al., 1994; Kol-
monen et al., 1998 

L 

D{x) = y / hi{x,u)^i{u)du, xeV. (1.3) 

Here hi{x^u) is the so called dose deposition kernel. It tells how much 
energy is deposited at the point x of patient space V from the point u of 
the treatment space U. As mentioned the exact analytical expression of 
hi{x^u) is unknown, but it can be approximately or numerically calcu
lated with various methods. Here we use a rather simple approximation 
in the calculation of hi{x^u) based on the Fermi equation. The strips Ui 
are mutually disjoint and U — ufLiUi, Thus we have 

L . L N 

D{x)^y hi{x,u)^l{u)du = y y hi{x,u)^ii{ui)du. (1.4) 

Substituting (1.1) into (1.4) we obtain 

L N T 

J 9 ( x ) - ^ o E E / / ' hi{x,u){H{aH{t)-ui)-H{bii{t)-ui))dtdu. 

(1.5) 

1.2 Leaf Const ra in ts 
Below we shall describe the essential physical contraints which the 

leaves must satisfy. The symbols 7, 7, K will denote positive model 
parameters. 

1 The leaves can not overlap: 

bH{t)<aii{t), l = l,...,L, i - l , . . . , i V , te[0,Ti] (1.6) 

2 The position of the leaf has to be in the interval [—a, a]: 

auit) <a, bii{t) >-a, / - 1 , , . . , L , i - l , . . . , i V , te[0,Ti] (1.7) 
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3 The movement of the leaves over the central axis of the treatment 
space U is restricted: 

aii{t) > -n, bii{t)<K, l = l,...,L, i = 1,..,N, t E [0,Ti] (1.8) 

4 The opposite leaves are not too near each other or they are fully 
closed: 

ai{t) - bi{t) > 7 or aii{t) - bii{t) = 0, 

/ = 1,...,L, i = l,...,N,te[0,Ti] 

which in view of (1.6) is equivalent to 

aiiit) - biiit) > 0 

and 

{aii{t)-bii{t)){aii{t)-bH{t)-^)>0, 

/ - 1 , . . . , L , i = l,,..,N,te[0,Ti] (1.9) 

5 The leaf movements satisfy the so called inter-digitation condition: 

bii{t) < a^(z+i)(t), &^(i+i)(t) < aii{t), 

/ - 1 , . . . , L , i - l , . . . , A r - l , ^ E [ 0 , T / ] (1.10) 

6 The distance between the extreme Ai and correspondingly Bi leaves 
is bounded: 

aii{t) - aij{t) < 7, bii{t) - bij{t) < 7, 

/ = 1,...,L, iJ = l,...,N,te[0,Ti] (1.11) 

1.3 The Inverse Problem 
As mentioned in the Introduction, the patient space is modelled as a 

3-dimensional region V: it typically contains a given planning target vol
ume (PTV) T, organs at risk (OAR) C, and normal (or complementary) 
tissue N. y ^ T U C U N , and T, C, N are mutually disjoint volumes. 

In practice the dose calculations are done with respect to some fixed 
coordinate systems. For the origin O of the patient coordinate sys
tem {xi^X2,xs) one often chooses the isocentre (point). The isocen-
tre is the point in the patient space around which the diff"erent parts 
(gantry, collimator, couch) of the treatment unit are rotating (see Figure 
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1.2). For a more detailed explanation of the terminology see e.g. Webb, 
1993; Webb, 1997). The treatment coordinate system {ui^U2) is orthog
onally transversal to the hne OSi which connects the isocentre O and 
the (field) focus Si. The axis OSi is called field central axis. Gantry and 
couch angles a^ /?/ are the rotation angles with respect to the 0:3 and 
X2 axes, respectively. The collimator angle 9i is the rotation angle with 
respect to the OSi axis. 

Using the above definitions, the basic problem of radiation therapy for 
leaf trajectories can be stated as follows: 

Suppose that DQ is the prescribed (uniform) dose in T. Furthermore, 
suppose that the upper bounds of dose in critical organ(s) and normal 
tissue are DQ and D^, respectively. Let Ti be positive numbers. 

Find the number L of fields Si, gantry, couch and collimator angles 
ai, Pi, 61 of the fields Si, respectively. For any i = 1,..., A/", / = 1,...,L 
determine under the above described constraints (1.6-1.10) the leaf tra
jectories an : [0, Ti] H-> R, bn : [0, T/] H-> R 0/ the fields Si such that the 
overall dose distribution computed by the integral (1.5) satisfies 

D{x) = Do, xeT, (1.12) 

D{x) <Dc, xe C, (1.13) 

D{x) <DN, xe N. (1.14) 

Figure 1.2 illustrates the coordinate systems and the problem setting. 
We suppose that the parameters L, a/,/?/ are given. Instead of the 

requirement D{x) = DQ^ X G T one may only demand that 

dr < D[x) <DT, xeT (1.15) 

where dr {DT) is the lower (upper) bound of the dose in PTV. Then the 
problem is called a feasibility problem. 

In addition to the requirements (1.12-1.14) one often requires that 
the so called dose volume constraints Borgers, 1997; Webb, 1993 are 
fulfilled. The dose volume contraints are expressed with respect to a 
certain structure. For example, for the critical organs C these conditions 
can be described as follows. Let v{D) be the volume fraction of C that 
receives a dose greater than D. We can then prescribe that 

v{D) < vo, for all D > do,c (1.16) 
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D< D, 

D= D 

Figure 1.2. The problem setting. The patient space coordinate system {x 1^x2^x3,) 
and the treatment space coordinate system (^1,112). 

where t'o is a given volume fraction and (io,c is a given dose. The function 
V — v{D) is the so called (differential) dose volume histogram. Because 
the dose volume histogram is a decreasing function of D the condition 
(1.16) is equivalent to 

v{do,c) < vo- (1.17) 

In practice the condition (1.17) is handled as follows. We define a 
partition {V^|m = 1,...,M} of C and choose a point in each partition 
Xm ^ ym- We demand that 

\{m. = l,...,M\D{xm)>do,c}\ 
M < vo (1.18) 

where |{ }| denotes the numer of elements of a set. The condition (1.18) 
can be expressed by the approximation (cf. Shepard et al., 1999) 

M 

M 

Y^ evi^{D{xm) - do^c) < VQ (1.19) 
7 7 1 = 1 
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where erf̂  is the error function given below, see (2.4). The positive 
number e is so small that the function erf̂  approximately equals the 
Heaviside function. In the case, where dose volume contraints are taken 
into account, conditions of the form (1.18) are added to the requirements 
(1.12-1.14). 

2. Optimization of IRTTP with Multiple Static 
Collimation 

2.1 Multiple Static Collimation 

Multiple static collimation means that corresponding to each field Si 
the time interval [0,T^] is divided into ni subintervals 
[tio^tli]^ '"•)['^i{ni-i)^'^ini] a-nd within each subinterval the MLC configu
ration is fixed. The radiation is interrupted, when the subsequent leaf 
configurations are changed. In the following we consider the computa
tion of dose in the case of multiple static colhmation. We also compute 
the leaf constraints. 

Let {tiQ, ...^tim} be a partition of the interval [0,r^]. Furthermore, let 
Xik be the characteristic functions 

y,M) = / 1' ^^ [ii{k-i)^Uk] 
^^^^^ \ 0, otherwise 

In our mathematical model of multiple static colhmation, the leaf tra
jectories aii^ bii are of the form 

ni ni 

(^li{t) = Yl ^likXlk{t), bii{t) = Yl ^likXlkit)' (2.1) 
k=l k=l 

The leaf configurations corresponding to the subintervals [^/(/c-i), ̂ //c], ^ = 
1,..., n; are called sub fields of the fields 5/, / = 1,..., L. The practical in
terpretation of parameters ank^ buk is that the edges of the i^^ leaf pair 
(Si, Ai) corresponding to the k^^ subfield of the l^^ field are at points buk 
and aiik. The choice of parameters ank, buk must be optimized. In the 
following we find that our modelhng enables to set also the time lengths 
of subfields tik — tn^k-i) ^s optimization parameters. 

The exact Heaviside function over the interval [—a, a] is given in Sec
tion 1. In practice it is reasonable to replace the Heaviside function with 
a continuous approximation: examples are 

H{x) = Ci + C2afc tan(C3:r) (2.2) 

(here arc tan denotes the principal branch of arc tan function) 

H{x) = Ci + C2(l - tanh(C3^)) (2.3) 
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1 
H{x) = eririx) = -j=r- T e-^'/^'ds. . . „ . (2.4) 

yjT^T J-oo 

The unknown parameters cfj, Ci, (72, C3, r for (2.2-2.4) can be obtained 
with data fitting techniques by using measurement or Monte Carlo data. 
The replacement of Heaviside function with a smooth function is neces
sary also because of head scatter and leakage Tervo et al., 2003a. We 
shall not consider the corrections in this contribution. In the fohowing 
we express the formulations with H = H. 

The coefhcients {am^ ...,a/^y^J, {bm^ •..,^/m/) ^ R-̂ ' ^^^ called multileaf 
parameters. The multileaf parameters and time lengths Stij^ :— tij^ — 
ti{k-i) ^^6 decision variables in the multiple static collimation. Denote 
^li = [O'lii.'-'.O'lini), bii = {biii,...,biini) G R"̂ ^ and 

(a,b) == (an, ...,ai7v, . . . , ^ ^ 1 , ...,aiAr,6ii, ....,6iAr,..., 

From (1.5) we obtain the dose expressed with the decision variables, that 
is D{x) = D(a;,a, b,5t) where 

L N . .Ti 
D{x,8L,h,St) = * o ^ ^ / / hi{x,u) 

fr{friJuJo 
'[H i ^aiikXik{'t) -ui 

(2.5) 

\ \/c=:l 

-H I J2biikXik{t) -ui 
\k=l / 

L N ni 

dtdu 

' CHk r 

^^biikXlkii) -ui 
k=i 

L N ni 

= ^oEEE 
1=11=1k^l 

\dudt 

/ hi{x,u){H{aiik -ui) 
JUi 

-H{biik - ui))du Stik 

where we denoted St = {8ti,.,.,6tL) E R^i+-+^^, 5ti = (Stn, ...,6tini) ^ 
R^^ We observe that the time lengths 5tij^ of the subintervals [ti(k-i)^'^ik] 
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can also be chosen as parameters of the optimization processes. In 
the sequel we shall assume that the decision variable is (a, b ,5 t ) G 
j^(2Ar+l)(ni+...+nL)^ 

The time lengths 6tik must satisfy the constraint 

0<6tik<Ti, / - 1 , . . . , L , k = l,...,ni. (2.6) 

Instead of (2.6) we demand that for some CQ > 0 

CO < Stik < Ti or 6ik = 0 (2.7) 

which is equivalent to 

0<Stik <Ti, StikiStik - Co) > 0 , / - l , . . . , L , k = l,..,,ni (2.8) 

This restriction will exclude subfields that are too short for clinical use. 
The leaf constraints described in Section 1.2 can easily be computed. 

Since aii{t) =^ auk, huit) ^ biik for t G [^/(/c-i),^//c], the constraints (1.6-
1.10) are equivalent to the following conditions: 

kik < CLiik, I = 1, •••, L, i = 1,..., N, k = l, ...,ni (2.9) 

diik < a, kik > -a, I = l , - - - , i , ^ == l , - - - ,^ , k = l,...,n^ (2.10) 

O'lik > -1^ and biik < n, 1 = 1,..., L, i = 1,..., A ,̂ A; == 1,..., n^ (2.11) 

{aiik -biik)[aiik -biik - T ) > 0, I = 1,...,L, i = 1,...,A^, k = l,...,n^ 

(2.12) 

biik < (^i{i+i)k^ \i+i)k ^ (^lik^ I = 1, ""> L, i = l,..., Â  - 1, A: == 1,..., n/ 
(2.13) 

O'lik -oijk < 1, biik -bijk <7, I = 1 , . - . ,^ , hj == l , - - . , ^ , k = l , . . . ,n / . 
(2.14) 

As mentioned above, in multiple static collimation we add the constraint 

0<Stik<Ti, 6tik{6tik-CQ)>0, l = l,,..,L, k = l,...,ni (2.15) 

which is sometimes replaced only by the more simple (linear inequality) 
constraint 

0<Stik<Ti, / - l , . . . , L , A; = l , . . . , n^ (2.16) 

R E M A R K 1 The constraints (2.12) and (2.15) are nonlinear and noncon-
vex. They make the numerical solution more difficult because one must 
find global minima on nonconvex feasible sets. 
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2.2 Optimal Solution 
Applying the above concepts, we are now able to formulate different 

kinds of optimality and feasibility problems with the help of the decision 
variables introduced. The dose D{x^ a, b, 6t) is obtained from (2.5). First 
we formulate the feasibility problem. The patient space V is divided into 
subregions (so called voxels) Vp^ p = 1,...,P. Suppose that Xp G Vp. 
Then we have 

D{xp) = D{xp,8i,h,6t) (2.17) 
L N ni 

/r=l i=l k=l 

-H{biik -ui))du 

I hi{xp,u){H{aiik -ui) 
JUi 

Stik-

Divide the index set J = {1, ...,P} into three disjoint sets J = JT ^ 
Jc U JN where 

jT-={pe J\xp e T} , 

Jc = {pe J\xp e C}, 
JN = {p^ J\xp e N} . 

Let Djsf^ Dc', DT be the prescribed upper limit of dose in normal, critical 
and tumor tissue, respectively and let (IT be the lower limit of dose in 
tumor tissue. We can state the following feasibility problem. 

Find (a,b,(^t) G R(2A^+I)(^I+-+^L) y^^ /̂̂ ^c/i the inequalities 

dr < D{xp, a, b, 5t) < DT, p e JT, (2.18) 

D{xp, a, b, 5t) <Dc, pe Jc, (2.19) 

D{xp, a, b, St) < DN, P G JN, (2.20) 

are satisfied under the additional constraints (2.9-2.15). 
In addition to the requirements (2.18-2.20), one can consider the dose 

volume constraint for the critical organs 

- | - Y. ^MD{xp, a, b, 5t) - do,c) < vo (2.21) 

where (as above) \Jc\ denotes the number of elements in Jc- Analogous 
requirement can be added for the case of normal tissue. 
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Second, we state the following optimization problem. Define the ob
jective function 

F{8i,h,6t) =^ ciY^ \Do-D{xp,8L,h,St)\'^ 
peJr 

+ C2YI \{Dc-Dixp,Si,h,6t))^\^ 
peJc 

+ csYl \{DN-D{xp,ei,h,6t))^f 
P^JN 

+ C4 vo - —— Y] eYie{D{xp,a,h,St) - do,c) 

+ C5 ^ \\V,:D{xp,Si,h,St)\\\ (2.22) 
peJr 

where the subscript _ refers to the negative part of a function. V^ 
is the gradient of the dose distribution with respect to variable x; the 
coefficients ci, C2, C3, C4 and C5 are suitably chosen positive weights. The 
last term of the objective function increases the smoothness of the dose 
distribution in PTV by minimizing its gradient. We have also inserted 
the penalty for the dose volume constraint of the critical organ. We can 
now state the optimization problem: 

Find the global minimum 

min F{sL,h,6t) (2.23) 

under the constraints (2.9-2.15). 

REMARK 2 A. We remark that the feasible problem can be converted to 
the global optimization problem by replacing the term ci Ylp^jj. \Do — 
D{xp,8L,h,St)\'^ by 

ci Y^ \{DT-D{xp,a,h,St))^\^ + C2 Yl \{D{xp,8i,h,St)-dT)-\^. 
peJr peJr 

(2.24) 
Consult Horst and Tuy, 1996 for more details. 

B. One can also consider the optimization problem 

min Y. \\^xD{xp,^,h,6t)\\^ (2.25) 
P^JT 

under the constraints (2.18)-(2.21). In this case one can omit the issue 
of finding suitable weights ci — C5. 
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3, Optimization Algorithms and Simulations 
We demonstrate the calculation of the treatment scheme based on the 

determination of parameters in the inverse problem. We use discrete 
square norm based objective functions that is, the optimization problem 
of Section 3.2. Only the first three terms of the objective function (2.21) 
are included and the first term is substituted by (2.24). In the opti
mization both the leaf positions and time intervals were set as decision 
parameters leading to objective functions of type F(a, b,(^t). To model 
the intensity response of the MLC we used the simple Heaviside function. 
The dose calculation was done, for simphcity, applying the solution to 
the Fermi equation Borgers and Larsen, 1996. 

3.1 Algorithms 
In reahstic multiple static colhmation problems the number N of leaf 

pairs is typically 4 — 25. Assuming that the number of fields (L) is 
between 2 and 10 and that the number ni of subfields, is 3 to 10, we find 
that {2N + l)(ni + ... -h ni) = 36 — 5100. Hence, the above model leads 
to a large scale global optimization problem. The constraints are mainly 
hnear inequality constraints; added are the nonconvex constraints (2.12) 
and (2.15) unless those are omitted. The objective function F is defined 
in a subset of R^̂ "̂̂ )̂̂ ^̂ "̂ '**"̂ ^̂ ) and it is highly nonlinear. Therefore the 
optimization algorithm must be chosen so that it is suitable to handle 
nonhnear optimization problems with (linear inequahty) constraints. In 
addition, the large dimensionahty of the problem must be taken into 
account and the algorithm must be carefully initialized or it must have 
a capability to search the global extremum. Here we solve the problem 
by applying the latter alternative. In global search we have utilized the 
LGO software Pinter, 1996; Pinter, 1998; Pinter, 2000 and simulated 
annealing Press et al., 1986; Corana et al., 1987. The current LGO 
system is described in this monograph Pinter, 2000. 

The simulated annealing (SA) method generates random trial values 
F of the objective function to the problem in the neighborhood of the 
current best solution Fbest Corana et al., 1987. The constraints are 
handled as penalty terms included in the object function. If the solution 
is better than the current best (AF — F — Fbest ^ 0) it is accepted. If, 
however, the solution is worse than the current best solution it can still 
be accepted with probabihty p{AF) = e x p ( - A F / r ) . 

The fact that worse solutions can be accepted is the key feature of the 
method. It enables SA to climb out of a local minimum. An important 
parameter in the algorithm is the temperature T. It governs the accep
tance probabihty p. During iteration the temperature is slowly cooled. 
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Figure 1.3. The phantom that was used in simulations. A large PTV is shown with 
a smaller OAR next to it. Three treatment fields are also shown. 

In the beginning the acceptance level is "high" and many points in the 
search space are evaluated. In the end only the solutions that are better 
than the current best solution tend to be accepted. Heuristically, this 
should ensure that in the end the global minimum is found with a desired 
accuracy. 

3.2 Phantom and treatment fields 
In the numerical example discussed here, we considered only a 2-

dimensional phantom (a slice of a 3-dimensional phantom) to dimin
ish the computational complexity. Hence, we need only one leaf pair 
[N = 1 ) . The phantom together with treatment field setting is shown 
in Figure 3. The phantom was hexagonal shaped because the treatment 
fields could be placed so that the central axes of the fields were perpen
dicular to the phantom surface. Thus comphcations arising from obhque 
incidence were avoided. 

The relative dose constraints together with relative weights for diff'er-
ent areas of the phantom are shown in table 1.1. 

Table 1.1. Relative dose constraints and weighting of the constraints for the phan
tom simulation. PTV is the target with lower and higher dose constraints. OAR is 
the organ at risk having a higher constraint. Compl. is the complementary tissue 
belonging neither to the PTV nor OAR. This tissue had a higher limit for dose 

Area 
PTV low 
PTV high 
OAR 
Compl. 

Dose 
0.95 
1.05 
0.6 
0.8 

Weight 
2.0 
0.5 
1.0 
2.0 
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Three fields were used (L = 3). Each field had three multiple static 
subfields (ni = n2 = ns = 3). As one subfield of a field had two leaves 
(left and right) the total number of leaf parameters was 18 and weight 
parameters 9. Hence the total number of decision parameters was 27. 

3.3 Results 
The optimization was at first carried out using LGO software package. 

For global optimization, an adaptive random search was used with 90000 
function evaluations. After that a constrained local search with 10000 
function evaluations was used. 

For reference the simulated annealing algorithm was used. A con
siderably large number (33750) of function evaluations was permitted 
together with a slow cooling scheme to ensure that the final solution 
would be near the global minimum of the objective function. In the end 
the Nelder-Meade Simplex method of Matlab was used as a local opti
mizer to obtain the accurate (possibly local) minimum for the simulated 
annealing method. 

In Figure 1.4. are shown the dose distributions after global optimiza
tion. In Figure 1.5 are the cumulative dose-volume histograms deter
mined from the dose distributions. Table 1.2 shows information about 
the dose distributions. 

LGO 

Figure 1,4. The resulting dose distributions after the MLC parameters were globally 
optimized. Isodose curves represent the dose. Left: LGO, right: Simulated anneahng. 
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LGO 

0 0.2 0.4 0.6 0.8 1 1.2 
Dose 

0 0.2 0.4 0.6 0.8 1 1.2 
Dose 

Figure 1.5. The resulting dose distributions of figure 1.4 represented using cumula
tive dose-volume histograms. Upper: LGO, lower: Simulated annealing. 

Table 1.2. Information about the solutions when the two global algorithms were 
used: LGO and Simulated Annealing (SA). Contents are for each region (PTV, OAR 
and CompL): the minimum dose (Z^min), maximum dose (jDmax), mean dose (Dmean) 
and the standard deviation (Dstd) of dose. 

Method 
LGO 

SA 

Region 
PTV 
OAR 

CompL 
PTV 
OAR 

Compl. 

Discussion 

•^min 

0.861 
0.464 
0.019 
0.875 
0.462 
0.016 

-t-^max 

1.158 
0.615 
0.980 
1.139 
0.615 
0.962 

-L/mean 

1.016 
0.569 
0.451 
1.004 
0.557 
0.449 

Dstd 

0.093 
0.055 
0.217 
0.073 
0.055 
0.222 

In the present study, we optimized a radiation therapy treatment plan 
for a phantom model using a novel multiple static colhmation algorithm 
and two global optimization strategies. Both strategies give comparable 
results in the simple phantom geometry with limited dimensions. This 
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suggests that both strategies are able to find the global minimum. How
ever, calculation times for solving the problems (typically 1-5 hours with 
Pentium 400 MHz PC) are long, as compared to the problem dimensions. 

IMRT is a topic of increasing interest today because it offers possi
bilities to conform the dose strictly to the target region Nutting et al., 
2000; Eisbruch et a l , 1999; Dawson et al., 2000. This, naturally, enables 
sparing of normal tissue and critical organs. In these studies doses for 
critical organs have been reduced as compared to a conventional treat
ment plan. On the other hand, it provides a way for dose escalation 
in the target. These studies have also shown the therapeutic benefit of 
dose escalation, because the local regional recurrences after treatment 
were found in the areas of high risk in planning, i.e. areas included into 
the tumor. 

The usual way in the intensity modulated IRTTP is to optimize the 
intensity distributions for each field to fullfil the desired dose distribution 
in the patient domain. After this intermediate step, the MLC parameters 
are optimized to generate the required intensity distribution. We have 
developed an IRTTP algorithm for the optimization of the dose distri
bution using the MLC parameters directly, as decision variables. Using 
this strategy, optimization of the intensity distribution is not needed as 
an intermediate step.We have studied the direct optimization model ear-
her in Kolmonen et al., 2000; Tervo and Kolmonen, 2000; Tervo et a l , 
2003a; Tervo et al., 2003b; Tervo and Kolmonen, 2002. This approach 
has some obvious benefits such as more easy and rehable way to take 
into account the (physical) restrictions of the movements of MLC leaves. 
MLC constraints are properly taken into account in the inverse problem. 
Also, head scattering, leakage and "groove and tongue effects" can be 
modelled more accurately. Dose volume constraints are also more natu
ral to implement by using this approach. The overall treatment planning 
is in principle more simple, because no intermediate (two step) optimiza
tion is needed. The 'disadvantage' of the method is that it leads to large 
dimensional, highly nonhnear (multiextremal) problems. Hence, careful 
expert initialization or the use of proper global optimization strategies 
Horst and Tuy, 1996; Pinter, 1996 is necessary. 

In our IRTTP algorithm, we use a physical objective function in the 
optimization. In the objective function, dose hmits for target and upper 
dose limits for OAR and normal tissue were given. Use of the physical 
objective function has an advantage of exact determination of the dose 
Bortfeld, 1999. Moreover, an extensive literature is devoted to the tar
get dose vs. tumor control relationship, for different types of cancers. 
Using such statistical data, we are able to construct so called biological 
objective functions. Of course, using a biological objective function in 
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principle gives a benefit of direct determination of the dose to reach the 
tumor control and possibly avoid the comphcations Brahme, 1999. How
ever, the radiobiological approach includes many uncertainties due to 
the limited knowledge of complicated biology in tissue irradiation. This, 
at least currently, does not strongly support the use of radiobiological 
objective function. 

In IRTTP, various optimization methods have been applied including 
e.g. simulating anneahng, genetic optimization, tomographic image re
construction, active set methods, (alternating) projection methods, gen
eralized gradient methods. However, very little attention has been paid 
to more sophisticated global optimization algorithms. In this study, we 
used two different global optimization strategies, LGO and simulated 
anneahng plus local search. Both optimization strategies had significant 
calculation times (several hours). The important finding is, however, 
that the dose distribution given by the both global optimization strate
gies is very similar. This proposes that the strategies approximate well 
the global minimum. 

In simulations, we used a hexagonal phantom with concave target 
partly surrounding the critical organ. Three portals with three subfields 
were used. This is a low amount of portals. Sauer et al Sauer et al., 1999 
have proposed a suitable amount of portals to be five to seven, in order to 
achieve homogeneous dose distribution. Also, with three subfields, the 
step-and-shoot method is capable to provide only a coarse, skyscaper 
hke intensity distribution. The intensity distributions with this dose 
dehvery technique will become smoother only by adding subfields. Our 
aim in limiting the number of portals and subfields was, however, to keep 
the number of decision parameters low in the illustrative optimization 
problem. For this reason, the optimal distribution in our solution does 
not provide a very homogeneous dose distribution for the target. Raising 
the number of portals and subfields (i.e. the decision variables) will 
certainly improve the distribution, but the optimization time will also 
increase. 

In conclusion, we have developed a new IRTTP model and solved it ap
plying two global optimization strategies. The optimal treatment plans 
given by the both strategies are very similar, which proposes the useful
ness of the both optimization strategies in this kind of IRTTP problems. 
The apphcability of our IRTTP method in a simple case, demonstrated 
in this study, also makes possible to apply it to more complex problems 
in future. 
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Abstract We propose a parallel triangulation based partitioning algorithm (TRIOPT) for 
solving low dimensional bound-constrained black box global optimization prob
lems. Black box optimization problems are important in engineering design 
where restricted numbers of input-output pairs are provided as data. Optimiza
tion is carried out over sparse data in the absence of a formal mathematical 
relationship among inputs and outputs. In such settings, function evaluations 
become expensive, because system performance assessment might be conducted 
via simulation studies or physical experiments. Thus, the optimal solution should 
be found in a minimal number of function evaluations. In TRIOPT, input-output 
pairs are treated as samples located in the search domain and search space cov
erage is obtained over these samples by triangulation. This produces an initial 
partition of the domain. Thereafter, each simplex is assessed for re-partitioning 
in parallel. In this assessment, performance values at the vertices are transformed 
and mapped to [0,1] interval using a non-linear transformation function with dy
namic parameters. Transformed values are then aggregated into a group measure 
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upon which the decision for re-partitioning is taken. Simplices whose group mea
sures overcome a given threshold value are re-partitioned in parallel. Here, the 
performance of TRIOPT is measured on several applications from different fields 
and compared with powerful partitioning techniques such as LGO, DIRECT, and 
MCS. 

Keywords: black box optimization problems, partitioning, adaptive parallel search 

1. Introduction 
Black box optimization problems such as optimal system design are often 

found in engineering practice and in other fields. In such applications, the 
function defining system performance may not have a precise mathematical 
expression and a function evaluation may imply a system simulation or a phys
ical experiment. In these situations, an optimization method should focus on 
minimizing the number of function evaluations while searching for the global 
optimum. 

We consider the bound constrained global optimization problem expressed 
below. 

findx* e P such that/(x*) ^ / (x) , Vx E P (l.I) 

where V cW^ is the feasible domain, and / : P -^ R is the objective function. 
We assume that the form of / is unknown or that only sample information is 
available for the solver. 

Partitioning approaches are global optimization techniques that divide given 
domains into smaller sub-spaces whose potential of holding the global optimum 
is determined either reliably (deterministic approaches, e.g. Hansen and Jau-
mard, 1995; Pinter, 1996) or in a heuristic manner (stochastic approaches, e.g. 
Ozdamar and Demirhan, 2000; Ozdamar and Demirhan, 2001). Deterministic 
partitioning algorithms can be classified under two major categories: algorithms 
based on interval methods (e.g., Horst and Tuy, 1996; Kearfott, 1996; Moore 
and Ratschek, 1988) and algorithms based on certain a priori assumptions on 
functions, such as Lipschitz methods (e.g., Gourdin et al., 1994; Hansen and 
Jaumard, 1995; Pinter, 1988). The first category of algorithms use inclusion 
functions where the range of / within a specific partition is estimated by an 
inclusion function that always covers actual function range, hence, leading to 
reliable box disposal. On the other hand, Lipschitzian algorithms generate a 
partition of the domain based on an assumed rate of change, that is, the Lips
chitz constant. If the latter constant is known with accuracy, these methods are 
also reliable. There exist Lipshitzian approaches that eliminate the necessity 
of specifying the Liptshitz constant, e.g., DIRECT (Jones et al., 1993) where 
the Lipshitz constant is taken as a weighting parameter that balances global and 
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local features of the search. DIRECT conducts dynamic parallel partitioning 
on boxes that are non-dominated with respect to two criteria: box size and box 
value. A powerful commercial software that integrates deterministic and prob
abilistic global and local search within a global partitioning framework is the 
Lipschitz(-Continuous) Global Optimizer (LGO) that has been developed by 
Pinter (Pinter, 1996; Pinter, 1997). LGO includes random search components 
such as multi-start random search and local optimization components such as 
generalized reduced gradient method. An efficient black box partitioning ap
proach is the Multilevel Coordinate Search (MCS) (Huyer and Neumaier, 1999) 
where non-uniform partitioning is performed by introducing a partition bias that 
divides boxes in the vicinity of samples having better function values. Samples 
are collected from box boundaries leading to sample sharing by neighbor boxes. 
Apart from interval and Lipschitz methods, there exists yet a third category of 
partitioning approaches that are based on fuzzy box assessment where evidence 
within each partition is collected by using random search techniques, such as 
Simulated Annealing, hill climbing methods, etc. (Demirhan and Ozdamar, 
1999; Ozdamar and Demirhan, 2000). 

All of the approaches above involve rectangular partitioning. There are also 
simplical partitioning algorithms that are at times more efficient in terms of the 
number of new partitions obtained per additional sample taken. As indicated 
in Clausen and Zilinskas, 2002, Wood, 1991, and Zhang et al., 1993, simplical 
partitioning might be comparatively more flexible because a wide range of 
partitioning schemes can be used to result in more regular geometrical shapes 
that are proportional to the topology of the domain. Similar to rectangular 
partitioning, simplical partitioning is also convergent when nested partitioning 
is applied, because edge length is reduced to zero exponentially. 

In simplical partitioning, each re-partitioning iteration on a given simplex 
can be interpreted as a simplical direct search move in the category of con
traction. Direct search methods are derivative free local search techniques that 
explore the domain in a prescribed manner, moving from one solution to a 
hopefully better one. An well-known example is the pattern search that moves 
according to a given design of exploratory moves (Lewis and Torczon, 1999). 
For a recent review of direct search methods, the reader is referred to Kolda 
et al., 2003. Simplical direct search methods, such as Nelder-Mead (Nelder and 
Mead, 1965), are quite popular and they are widely used by researchers and 
practitioners (Walters et al., 1991). Lewis et al., 2000 discuss the advantages 
of simplical direct search methods in their extensive review of direct search, 
however noting Nelder-Mead's instability in convergence (McKinnon, 1998). 

Here, a dynamic, parallel and global simplical partitioning approach is in
troduced. We call the approach TRIOPT (Triangulated Optimization). The 
novelty in TRIOPT is that simplices are assessed for re-partitioning after vertex 
function values are transformed and mapped onto the [0,1] interval. During 
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function transformation, adaptive parameters are utilized. For instance, such a 
parameter is the function threshold whose value can increase or decrease dur
ing the search. The threshold acts as a virtual line where larger function values 
are treated as peaks and those below as valleys. Hence, an adaptive threshold 
re-defines peaks and valleys leading to dynamic re-direction of the search and 
a changing degree of parallelism where all such peaks are looked into. The 
adaptive threshold scheme is enabled by the removal of small simplices and 
their vertices from the available sample set as well as the acquisition of new 
sample data. Unlike other partitioning approaches where the current upper 
bound always improves during the search, the removal of simplices leads to a 
decrease in the threshold value rather than an increase. Similar to DIRECT and 
other partitioning algorithms, TRIOPT is a convergent algorithm. 

2. TRIOPT Algorithm 

Generic algorithm. Given a search domain P , an initial triangulation is 
formed, and a working simplex list W that includes all simplices is generated. 
Then, a simplex Sc is selected from W and if its size is lower than S, it is added 
to V, that is the set of simplices to be reported. Vertices in Sc that are not shared 
with other simplices are removed from the set of available samples, V, leading 
to a possible change in the maximum and minimum function values (denoted 
as /max, /min, respectively) in V. If the size of Sc is greater than S, then its 
entropy, Es^, is checked. If Es^ is greater than the entropy threshold /5, then 
it is re-partitioned, removed from W, and its child simplices are added to a 
temporary list, T. The new sample taken during re-partitioning is added to V. 
This step is repeated until all simplices Sj E W are evaluated. After this scan 
is completed, child simplices in T are added to W and T is flushed. In the next 
iteration, all simplex entropies are re-calculated using updated values for /max, 
/min and the function threshold, t. 

The following notation is provided for presenting the pseudocode of TRIOPT. 

W: List of all pending simplices that require a decision for re-partitioning; 

V: Final list of simplices reported to have a potential of enclosing x*; 

Sci Currently processed simplex; 

size{Sc)i Size of currently processed simplex; 

T: Temporary list of child simplices; 

V: Set of currently available samples; 

Ej: Entropy of simplex 7; 

6: Tolerance area for removing a simplex from W; 
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/?: Entropy threshold for re-partitioning a candidate simplex; 

The pseudocode is given below. 

Step 0. Construct a triangulation on an initial sample V e V, and initialize 
W = {all simplices}. For each simplex Sj, calculate Ej. 

Step 1. Select a simplex Sc G W. 

Step 2. If size{Sc) < <5, then, remove Sc from W, insert it in V, remove 
unshared vertices of Sc from V and go to Step 3. Otherwise, go to Step 
6. 

Step 3. If T U W = 0, or termination criterion is satisfied, then stop, report 
V. Otherwise, continue. 

Step 4. If re-partitioning decision of all Sj E W is not completed, then go to 
Step 1. Otherwise, continue. 

Step 5. Add simplices in T to the set W, update Ej, empty T, and go to Step 
1. 

Step 6. If Esc ^ /?, split Sc, add new vertex to V, remove Sc from W, add 
child simplices to T. 

Step?. Go to Step4. 

The termination criterion mentioned in Step 3 might be a maximum number 
of function evaluations (number of physical experiments conducted) or a mini
mum percentage of improvement in the best function value obtained at the end 
of the last assessment cycle. 

If, in any iteration, none of the simplices in W overcome the entropy threshold 
/5, then, TRIOPT can stop prematurely. In this case, the simplex with the 
maximum Esj is re-partitioned. Otherwise, Step 4 enables the assessment all 
successful candidates in parallel. 

Function transformation and simplex entropy. Function values of samples 
X G V are sorted in descending order of / (x) and a threshold value t is selected 
from the sorted list, t is equal to a sample function value that is near /max- The 
transformation function / classifies function values according to parameter t 
where f{x.)^t are treated as peaks and / (x) < t as valleys. / is calculated 
by using dynamic parameters /max» /min and t. All / (x) are transformed and 
mapped onto the [0.1,1.0] interval using the following formula. 

f = f{f(K),t)^{ 
[ 0 . 1 + 0 . 4 ( l . 0 - f E e ) ' , i f / ( x ) < t ; 

0-5 + 0 . 5 ( e ^ ) \ i f / ( x ) ^ i . 
(1.2) 
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Here, the deflation and inflation parameters, p > 1.0 and g < 1.0, are both 
positive real numbers, p and q reduce function values below t and increase 
the ones above, respectively, leading to a more discriminating classification of 
simplices. The slope of / changes at t and the lower bound specified in (1.2) is 
a precaution against possible splitting degeneracies. 

Let us define / as a piecewise linear transformation of / (x) where / in (1.2) 
is applied with both parameters p and q set to one. 

The linear transformation function / is monotone increasing in / . Further, 
/ includes / , that is, / C / for any / (x) , x G V. This holds because for any 
peak, / > / and for any valley, / < / . Furthermore, when f — t, f — f • 

REMARK 1 Due to the relationship explained above, f does not change the 
topology of f constructed from V. The use of f increases the attraction power 
of apeak x neighboring a valley y by the order ofx.^~^y^~^ as compared to f. 

Any other transformation function satisfying this property can be used to 
transform / . After calculating transformed function values / for all x G V, an 
aggregate entropy measure, Ej, is computed for each simplex Sj by considering 
the contribution of its vertices. Ej is calculated follows. 

Ej = i 
^ J2 / ( x ) e x p ( 1 . 0 - / ( x ) ) , i f 3 / ( x ) ^ a ; 

0.0, otherwise. 

Here, each vertex x contributes to the entropy if / (x) ^ a. k is the number of 
vertices satisfying this condition. The cut a on / prevents inferior vertices in a 
simplex from affecting the potential reflected by superior ones. The expression 
given for Ej is a multiplicative entropy form and it is adapted from Pal and Pal, 
1989. 

Parallelism. Since all simplices with Ej ^ (3 are selected for re-partitioning 
in parallel, the number of simplices re-partitioned in parallel is dynamic and 
depends on global information (/max? /min? 0 updated during the execution of 
the search. There are two occasions where these parameters might change. 
The first one takes place when a simplex size reaches the tolerance level, 6 and 
all vertices of the simplex that are not shared by others are discarded from V. 
Hence, /max. fmm and t might be modified to result in readjusted / values. 
The second occasion is encountered regularly when new sample, x^e^ changes 
global information. Both occasions lead to the re-definition of peaks and val
leys, however, the first occasion is important for convergence. In particular, if 
/max is reduced with the removal of a small simplex, previously inferior sim
plices might now become peaks to be re-partitioned. In the limit, the algorithm 
converges to the simplex that contains the global optimum even if its vertices 
do not initially indicate a promise of holding it. 
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Initial partition and simplex re-partitioning strategies. In Step 0, the initial 
partition over V is constructed by triangulating (by using Delaunay triangulation 
on W^ by Quickhull algorithm, Barber et al., 1996) an initial set of available 
samples V, if such a set exists. Otherwise, a sample is collected from each vertex 
of V and one from its mid-point. The flexibility of partitioning on an arbitrary 
set of samples becomes an advantage for TRIOPT in black box optimization 
problems where a set of physical experiments are already available. However, 
it should be noted that if the initial sample does not contain all vertices of the 
hypercube V, the whole search domain cannot be covered. The latter necessity 
restricts the method to low dimensional problems. 

In Step 6, when a simplex is re-partitioned, either interior simplex splitting or 
longest-edge simplex splitting is conducted. These two partitioning schemes are 
utilized because interior simplex splitting may result in very irregular simplices 
if applied repetitively. The following rule is used for making a decision on the 
type of splitting. 

Simplex Partitioning Rule: If a simplex Sj is regular, re-partitioning is carried 
out by interior-simplex splitting, otherwise longest-edge splitting is applied. 

A simplex is considered to be regular if the length of each edge is between 
the shortest edge and twice the shortest edge. 

For both partitioning schemes, the location of the new vertex is selected by 
taking the weighted average over transformed function values of the relevant 
vertices (all vertices are relevant in interior-splitting and 2 vertices are relevant 
in longest-edge splitting). Below we provide the formula for locating the new 
vertex, yinew, in interior splitting. 

fi^y (1.4) 

xG5j 

Here, r is a non-negative constant that regulates the bias towards good vertices. 
In longest-edge splitting, x̂ ew; is located by taking the weighted combination 

of the two vertex coordinates forming the edge. 

3, Numerical Studies 
Testing Applications 

Several applications from different fields compose the test bed. These are 
described below. 

QFTBounds Calculation Problem The Quantitative Feedback Theory (QFT) 
is an engineering design technique for uncertain feedback systems where closed-
loop frequency-domain specifications are translated into Nichols chart domains 
specifying the allowable range of the nominal open-loop response. In the max-
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imization problem considered below, an upper bound for an active noise and 
vibration control system (ANVCS) (Nataraj and Sheela, 2002) is seeked. 

TT 

xi = [0.75,1.25], X2 = [0.02,0.06], UJ = 1.0 

Optimal Shape Design Optimizing shape design (structural optimization, or 
redesign) aims at reducing new product development cycle length in industries 
such as automotive, marine, and aerospace. Here, a truss structure design 
system is given in Figure 1.1 as a sample shape design problem. The objective 
is to minimize the volume or weight of the truss structure depending on the 
location of node D, i.e.: 

mm 

4 4 

/ (x ) -5 ; ]^ , .L , = -^ | iV,(x) | .Li . 
i = l 

where i is the index of rods, x = (x-̂ ,̂ y^), Ni(x) are axial forces, Ai is cross 
sectional area of rods, Li is rod length and CTQ is an allowable stress. Parameters 
are assumed to be as follows (Pownuk, 2000): L == 1 m, P — 10 kN, allowable 
stress CTQ = 190 MPa. 

Figure 1.1. Optimal shape design of a truss. 

Weeds and Palmer 4 (CUTEr) Weeds and Palmer 4 are data fitting problems 
where a given data set is fit into a nonlinear function. In Weeds, a logistic growth 
function is used, and the aim is to identify the optimal function parameters 
X — {a, b, c} that provide the best data fit. Palmer 4 is a AD data fitting 
application and the objective is to find the optimal coefficients x — {a, 6, c, d}. 

Weeds: 

min / (x) = yZ\yi~ T~^ r~-—u\ I 
^-^ \ 1 + exp{ct - b) J 



Parallel Triangulated Partitioning for Black Box Optimization 495 

where a = [-100,100], h = [-100,100] and c = [1.0, 3.0], y is the vector of 
input data to be fitted. 

Palmer 4: 

min/(x) = ^ ( , . - a z , 2 - - A _ ) 

where a = [0^20],b = c = d = [0,1], y and z are known output and input data 
to be fitted, respectively. 

Pressure vessel design (Krikanov, 2000) Cylindrical pressure vessels are 
widely used for commercial and aerospace applications. The use of composite 
materials improves the performance of vessels and leads to a significant amount 
of material and weight savings. 

L2 

Figure L2. Cylindrical pressure vessel. 

Consider a laminated cylindrical pressure vessel loaded with internal pressure 
p as shown in Figure 1.2. We assume the vessel consists of two angle-ply layers. 
The first layer has thickness ti and is formed by symmetric filament winding 
under angle ±Lpi which is known, because the preassigned radius of the polar 
opening should satisfy geodetic winding conditions. 

The second layer is an arbitrary angle-ply laminate characterized with thick
ness ̂ 2 and angle ±(/?2- The design parameters for the vessel shown in Figure 1.2 
are t\, t2 and (/?2. The objective function is to minimize the mass of the cylin
drical part of the vessel, G, while satisfying the stress and strain constraints. 
Assume that gi — tiPi, ai = (Ji/pi, Ki = Ei/pi\ here subscript i indicates 
the ith layer, g is the mass per unit area, p the density, a the stress, a and 
K are normalized stress and modulus. We also assume that a is the ultimate 
normalized stress, e the ultimate strain. Then, the corresponding minimization 
problem can be written as: 
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subject to 

min^i + g2 

pR/2 = aigi cos^ cpi + a2^2 cos^ (̂ 2 
pR = aigi sin^ (pi + a2^2 sin^ (̂ 2 

cii/Ki = Ex cos^ Lpi + Ey sin^ Lpi 
0^2/^2 = Sx COŜ  (̂ 2 + ^y Sin^ ip2 

ai ^ a^, 0 < a2 ^ a2 
^x ^ ^x? ^y ^ ^y 

where 

al = ai(3sin (̂ 2 ~ 2) cos(/?i/(sin (/P2\/sin(/?2 — sin 99̂  

From the first four equations, ai, a2, ê ; and Sy can be represented in terms 
of gi, g2 and (̂ 2» and substituted into the objective, leaving the last four stress 
and strain bound constraints to be incorporated into the objective with a penalty 
factor as indicated below. 

mingi+ g2 + Y^rmax(^;^ -Vi,0) 

where, Vi represent ai and £{, and Vi are the corresponding ultimate normalized 
stress and strain, r is the penalty coefficient. 

Protein folding (Stillinger et al., 1993) This problem involves two amino 
acids "A" and "B" that are linked together by unit length bonds forming two 
dimensional linear polymers, n — 2 angles of bend are to be optimized at 
each of the nonterminal residues. Here, n == 5 and we solve 3D protein 
folding problems. In this model, it is assumed that two kinds of interactions 
compose the intramolecular potential energy, Vi, backbone bend potentials, and 
V2, non-bonded interactions with species dependent Lennard-Jones (12,6) form. 
Residue species along the backbone are encoded by a set of binary variables, 
^ 1 , . . . , ^^. If ^i = 1, i^^ residue is A, and if it is —1, residue is B. Below the 
intramolecular potential-energy function is expressed generally for an n-mer. 
Here, r^j is distance, and coefficient C{^i^^j) is 1 for an AA pair, 1/2 for a 
BB pair and —1/2 for an AB pair. In the experiments, all possible sequences 
of the n == 5 problem are solved, but only the ones found to produce different 
results under the portfolio of tested methods are reported (8 problems). 

n—l n—2 n 

i=2 i=l j=i+2 

where, 
- T T ^ 9i ^ TT 
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Tij — 

• j - 1 / k N 

+ 
• j - 1 / k > 

E-M E^' 
2 \ 1/2 

Fi(^i) = ( l-cos^i) /4 

1^2(r,j,|i,0) = 4 -12 Cte,e,)r-'^^'ij 

c(e.,e,) = (i + ei + o + 5^ ê,)/8 
Summary of Applications 

All applications are summarized in Table 1.1 together with their global op
tima and related references. We now briefly describe some features of these 
applications. ANVCS is a smooth function but it is discontinuous in the vicin
ity of the global optimal solution. The optimal solution lies on the edge of the 
discontinuity. The truss structure has a very flat surface near the global opti
mum that might lead to wasted function evaluations. Palmer 4 fitting problem 
involves even degree polynomials, hence its surface is expected to be more irreg
ular as compared to the truss structure and ANVCS. Protein folding problems 
are highly multi-modal and therefore quite difficult to solve, so is the pressure 
vessel design problem. 

Table 1.1. Summary of applications. 

Function 

ANVCS 
Truss structure 
Weeds 
Palmer 4 
Pressure vessel 
Protein folding 

Dimension 

2 
2 
3 
4 
3 
3 

Optimum 

89.9999 
0.4102 

1046.42" 
2285.38" 

12.7 
N.A. 

Reference 

Nataraj and Sheela, 2002 
Pownuk, 2000 

CUTEr 
CUTEr 

Krikanov, 2000 
Stillingeretal., 1993 

Reported minimum value of the objective function. 

4. Numerical Results 
The experimental and parametric settings for TRIOPT are as follows. The 

initial cover is obtained with samples collected from each vertex of the hyper-
cube V and one additional sample at its mid-point. The size tolerance level, 5, 
is set to (niLi ^0/8000 where k is bound length of the i^^ coordinate. The pa
rameters (p, q) used in Equation 1.2 are set to (1.5,0.5) for non-smooth surfaces 
(data fitting and protein folding problems), and (3.0,0.5) for the remaining ap
plication problems. The a and (3 cuts are fixed to 0.7 and 0.9, respectively to 
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enable fast convergence. With such a high value set for the a cut, the parameter 
p has no effect on entropies but it does affect the location of the new sample 
when a simplex is re-partitioned. 

Performance assessment is measured by the number of function evaluations 
(/e)that each method takes to converge to a near optimal solution that is within 
a small percentage below/above the global optimum solution. This relative 
error e is set to 1.0% and 0.01% in these sets of experiments. An exception is 
made for the protein folding problem where the deviation from the best function 
value obtained over all methods is reported within given numbers of/e, 100, 
300, 500, 1000, 2000, respectively. This exception is due to the significantly 
large numbers oife reported for convergence (Stillinger et al., 1993). 

Empirical analysis of threshold-based transformation and 
simplex removal 

The experiments described in this section aim at illustrating the impacts 
of two features on performance: the existence of a dynamic threshold in the 
transformation function and the removal of vertices from V. The latter two 
features actively contribute to dynamic concurrency in re-partitioning. 

Table 1,2. Number of parallel simplices during TRIOPT runs, rounded up to next integer 

No. of parallel nodes P(min) P(avg) P(max) 

1.0% accuracy 
0.01% accuracy 
Protein folding 500 evaluations 
Protein folding 1000 evaluations 
Protein folding 2000 evaluations 

4 
4 
4 
3 
2 

7 
10 
22 
17 
16 

28 
28 

124 
166 
164 

First, we illustrate the scale of parallelism. Table 1.2 provides a summary of 
the minimum (P(min)), maximum (P(max)), and average numbers (P(avg)) of 
simplices partitioned in parallel for all test problems. For brevity, these three 
numbers are averaged over the first five applications and separately for the 8 
protein folding problems. It is observed that simpler applications with smoother 
surfaces result in lower degrees of parallelism (maximum number of parallel 
nodes is in the range of [4-6]) whereas more difficult ones such as Weeds and 
Palmer 4 have a maximum of 33 and 63 nodes in parallel activated at one point 
during the search. The protein folding problems have their maximum degree 
of concurrency in the range of [100-200]. In Figure 1.3 and Figure 1.4, the 
number of simplices re-partitioned in parallel at each cycle is illustrated for the 
applications ANVCS and Palmer 4 (0.01% accuracy level run). The former 
has a smooth surface and the degree of concurrency has a narrower range as 
compared to the latter. 
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We now design the two tests that illustrate the effects of the two features 
mentioned above: the removal of unshared vertices belonging to extinct sim-
plices and the dynamic threshold defined in the transformation function. The 
first test, N-Rem, executes TRIOPT without removing such vertices, and the 
second test, NJ, assumes that there is no threshold over which / is defined and 
all / are transformed using the formula: 

/ = / ( / (x ) ) = 0.1 + 0.9 f l . O - {̂ ""̂  ~ {'"'")'• (1.5) 
\ /max /min / 

The test NJ illustrates the impact of t on classification power as well as its 
contribution to the dynamic re-definition of peaks and valleys, and, N.Rem 
shows the impact of vertex removal when a dynamic threshold exists. 

Table 1.3. Results illustrating impacts of TRIOPT's features 

Function TRIOPT NJiem NJ 

1.0% accuracy 

ANVCS 33 33 34 
Truss structure 6 6 6 
Weeds 8387 — — 
Palmer 4 30 30 19 
Pressure vessel 113 113 — 

0.01% accuracy 

ANVCS 80 
Truss structure 52 
Weeds 8387 
Palmer 4 139 
Pressure vessel 113 

Table 1.3 summarizes the impacts of vertex removal and thresholding strategy 
on TRIOPT's performance for all applications except protein folding. Results 
are given as the number of function evaluations (fe) needed to converge to 1.0% 
and 0.01% tolerance levels. In the first column, we provide TRIOPT's results 
with all features included. These can be compared iofe under N.Rem and Nd 
columns. In all tables, '—' indicates that the corresponding method cannot 
solve the problem at the given accuracy level within 20000, and 50000/e. 

It is observed that for applications with comparatively smooth surfaces, ver
tex removal has no effect on /max, however, in a more difficult problem such 
as Weeds, the simplex removal enables convergence in a finite number of/^. 
The dynamic threshold scheme is much more effective at both accuracy levels 
leading to convergence. 

80 
53 

139 
113 

314 
790 

— 
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Table 1.4. Results illustrating TRIOPT's features in 8 protein folding problems with 500,1000, 
2000 function evaluations. 

TRIOPT NJRem Â _/ 

500 evaluations 

Average % dev. 
Maximum % dev. 
No. of best 

0.032 
0.111 

8 

0.207 
1.093 

2 

10.860 
53.607 

0 

1000 evaluations 

Average % dev. 
Maximum % dev. 
No. of best 

0.011 
0.035 

8 

0.075 
0.231 

2 

10.808 
53.619 

0 

2000 evaluations 

Average % dev. 
Maximum % dev. 
No. of best 

0.008 
0.035 

8 

0.044 
0.179 

2 

8.468 
38.183 

0 

Table 1.4 summarizes the results obtained for 8 protein folding sequences 
AAAAA, AAAAB, AAABA, AABAA, AABBA, ABAAB, ABBAB. Here, 
there are 3 sets of experiments: the number offe is limited to 500, 1000, and 
2000, respectively, and the deviation from best function value obtained over all 
methods is reported. (We omit 100 and 300/e for brevity.) For each method, 
the average and maximum percentage deviations from the best result, and the 
number of best solutions found in 8 problems are reported. In these problems 
both features are observed to play an important part in improving convergence. 

Obviously, re-definition of peaks and valleys through a dynamic threshold is 
one of the primary factors impacting TRIOPT's performance. The concept of 
producing artificial peaks and valleys by using a threshold and changing global 
information by removing samples work together in a coordinated manner to 
result in an effective concurrency control strategy. 

Comparison with other methods 

TRIOPT is compared with three global partitioning methods. The first one is 
DIRECT (Jones et al., 1993) and the corresponding module glbSolve of the com
mercial software package TOMLAB™ (http://www,tomlab,biz) is utilized here. 
Similar to TRIOPT, DIRECT has an adaptive concurrent partitioning scheme. 
DIRECT is implemented with its default settings in glbSolve. The second one is 
MCS (Huyer and Neumaier, 1999) and it is implemented here by using the Mat-
lab code provided in http://ww^,mat.univie,ae,atrneum/software/mcs/. MCS 
has an important parameter that affects results. This parameter is the maximum 
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depth of the tree, Smax- Here, it is set to two values, bn + 10 (recommended 
one) and 15n + 10, and these are labelled as MCSl and MCS2, respectively, in 
the summary of results. It is necessary to increase this parameter when MCS 
cannot converge to the global optimum. MCS has a local search option in its 
code, we also include it in the test runs, as MCS2L, i.e., we fix 5niax to 15n +10. 
The last partitioning algorithm is LGO (Pinter, 1997) that incorporates deriva
tive free random sampling techniques within a global partitioning algorithm. 
The commercial software for LGO is utilized here (Pinter, 2003) with the two 
random search options Global Adaptive Random Search (GARS) and Multi 
Start Global Random Search (MS). However, in these applications both give 
the same results. 

We summarize the results of the first five applications in Table 1.5 and protein 
folding problem results in Table 1.6. In the last rows of 1 % and 0.01 % accuracy 
results, the number of best and second best solutions found are indicated. In 
the second column of both tables a second set of results are given for TRIOPT 
where the local search method Nelder-Mead (NM) is appended to the global 
partitioning approach. NM is applied when a simplex becomes small enough 
to be removed from the list. In that case, the simplex becomes a source simplex 
for NM, if its best vertex is not in the list of previous source vertices for NM. 
NM stops when the largest edge of the working simplex is less than 0.00001 or 
when there is no improvement 25 times consecutively. 

Table 1.5. Number of function evaluations required for 1.0% and 0.01% accuracy levels. 

Function TRIOPT TRI-NM DIRECT MCSl MCS2 MCS2L LGO 

1.0% accuracy level 

ANVCS 
Truss Structure 
Weeds 
Palmer 4 
Pressure vessel 

Best/second best 

33 
6 

8387 
30 

113 

3 

32 
6 

143 
19 
48 

5 

— 
5 

15335 
57 

10087 

1 

— 
17 
— 

2324 
12199 

0 

— 
26 

36879 
8624 

19293 

0 

69 
34 
93 
75 

19293 

1 

4 
12 

188 
93 

337 

1 

0.01% accuracy level 

ANVCS 
Truss Structure 
Weeds 
Palmer 4 
Pressure vessel 

Best/second best 

80 
52 

8387 
139 
113 

1 

64 
52 

151 
73 
67 

4 

— 
79 

15533 
905 

10131 

0 

— 
70 
— 

7759 
12235 

0 

— 
123 

36879 
9000 

19471 

0 

— 
49 
93 
89 

19471 

3 

4 
21 

278 
120 
353 

2 
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Table 1.6. Results for 8 protein folding problems for different/e 

TRIOPT TRI-NM DIRECT MCSl MCS2 MCS2L LGO 

100 evaluations 

Average % dev. 
Maximum % dev. 
Best/second best 

4.133 
19.408 

4 

3.595 
13.628 

6 

21.750 
92.331 

0 

13.800 
37.614 

0 

21.750 
93.331 

0 

0.0 
0.0 

8 

5.424 
14.825 

0 

300 evaluations 

Average % dev. 
Maximum % dev. 
Best/second best 

0.041 
0.102 

0 

0.005 
0.025 

8 

3.461 
10.319 

0 

4.906 
16.217 

0 

12.197 
31.132 

0 

0.0 
0.0 

8 

4.448 
14.848 

0 

500 evaluations 

Average % dev. 
Maximum % dev. 
Best/second best 

0.057 
0.195 

3 

0.0 
0.0 

8 

3.202 
10.151 

2 

3.730 
15.707 

0 

9.250 
31.132 

0 

0.0 
0.0 

8 

0.0 
0.0 

8 

1000 evaluations 

Average % dev. 
Maximum % dev. 
Best/second best 

0.034 
0.100 

4 

0.0 
0.0 

8 

1.522 
4.567 

2 

3.723 
15.707 

0 

5.300 
14.530 

3 

0.0 
0.0 

8 

0.0 
0.0 

8 

2000 evaluations 

Average % dev. 
Maximum % dev. 
Best/second best 

0.029 
0.100 

6 

0.0 
0.0 

8 

1.512 
4.531 

2 

3.729 
15.707 

0 

2.986 
11.781 

4 

0.0 
0.0 

8 

0.0 
0.0 

8 

An overview of the results shows that when the assumption of continuity does 
not hold (ANVCS), methods that do not incorporate local search do not converge 
except for TRIOPT. Among methods with local search, LGO converges fastest 
in this problem. NM usually improves the performance of TRIOPT and this 
improvement is drastic especially in Weeds. In Weeds, all methods require 
significant numbers of function evaluations if they are not supported by local 
search. On the other hand, in Palmer 4, TRIOPT's performance is satisfactory 
both with and without NM whereas MCS and DIRECT need local search support 
at the higher accuracy level. In the Truss Structure, where the global optimum 
lies on a very flat surface, LGO converges faster than others. 

Among different s^ax levels, that of MCS2 seems to be appropriate for con
vergence. For MCS, it is advised to use the default level since it results in the 
least number offe required to converge, however, the risk of non-convergence 
is higher, because ending boxes of the tree might be too large to satisfy the re
quired accuracy level. Again, the efficient local search code embedded in MCS 
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improves performance significantly except in Pressure Vessel. Unfortunately, 
such a local search module could not be appended to DIRECT implementation 
of TOMLAB. However, in a difficult problem such as the Pressure Vessel, local 
search does not help MCS and one cannot predict the possible effect of local 
search on DIRECT, if it were available. However, TRIOPT converges with or 
without NM. The next best performance is LGO's. An observation on LGO's 
performance over all problems is that its convergence is quite reliable although 
it is not the fastest method to converge. 

In the 8 protein folding problems that are highly multi-modal, MCS2L is 
clearly the best performing method. TRIOPT and TRI-NM find better results 
at the level of 300/e, in fact quite close to those of MCS2L, and from 500 fe on
wards, TRI-NM's performance is as good as MCS2L. LGO also catches up with 
the latter two from this point onwards. Although the support of NM is required 
to obtain best results, TRIOPT also produces solutions of acceptable quality 
without NM. To summarize, in the light of these applications, the proposed tri
angulated partitioning method seems to be as reliable as other well-established 
methods in the literature for solving black box problems from different fields. 

5. Conclusion 
Black box optimization techniques have an important role in real world ap

plications, especially when a function is expensive to evaluate, or, additional 
information on the function is difficult to obtain. 

A triangulated partitioning approach (TRIOPT) that manages the degree 
of search concurrency is proposed here. TRIOPT involves a flexible parallel 
search strategy based on dynamic threshold-based function transformation. The 
partition assessment and selection methodology in TRIOPT is based on a group 
entropy measure that reflects a potential for containing the optimum. During the 
search, the same simplex may be viewed both as promising and non-promising 
at different times, depending on re-defined peaks and valleys designated by the 
adaptive threshold and overall function range. A feature such as simplex/vertex 
removal, enables the search to re-direct itself to less promising simplices that 
might contain the global optimum. This, and the threshold-based non-linear 
transformation function strategy lead to a faster convergence rate. 

One of the advantages of TRIOPT is related to its initial partitioning strategy. 
If some experimental results (function evaluations) are already obtained from a 
feasible domain without a specific pattern, an initial partition is easily generated 
by Delaunay triangulation. Such cases might be more difficult to handle by other 
partitioning methods that require a careful design of initial samples minimizing 
the number of function evaluations in further partitioning. 

Current work is under way to implement TRIOPT on a grid-computing plat
form where each simplex may be assessed, re-partitioned and stored by separate 
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processors. This should enable the solution of higher dimensional challenging 
problems. 
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Abstract This chapter presents an engineering apphcation of global optimiza
tion with a case study on designing large composite structures. The 
problem of designing large composite structures often becomes a global 
optimization problem when practical issues such as performance and 
manufacturabihty of the structures are considered. We demonstrate 
how problems on this type can be formulated and solved using two de
sign examples. A stochastic optimization approach is used to obtain the 
solutions in both examples. 

Keywords: Composite materials, composite manufacturing, global optimization, 
large structural design optimization. 

Introduction 
The demand for composite structures is rapidly growing as the need 

for hghter yet stronger and stiffer structures increases. Weight saving of 
a composite structure in comparison to the same structure made of a con
ventional material counterpart such as aluminum or steel alloys is made 
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possible through the use of new fiber-reinforced composite materials. 
This weight saving advantage becomes greatly beneficial, particularly in 
weight-sensitive applications such as in aerospace structures, because it 
enhances the fuel efficiency and the thrust-to-weight ratio. 

In addition to the high strength-to-weight and stiffness-to-weight ra
tios, composite materials also allow the engineer to design the material 
as weh as the structure by tailoring the directional stiffness and strength 
as required for the structure [6, 7, 27]. On one hand, this can be viewed 
as an advantage because it offers added flexibility in the design and the 
ability to precisely meet the requirements. On the other hand, designing 
the material and the structure simultaneously increases the burden to 
the design engineer because the number of design variables increases dra
matically. The interactions between the design variables also amplify the 
complexity of the design process by requiring additional computational 
effort. Fortunately, the capability of today's computer technology en
ables the design engineer to utilize computationally intensive optimiza
tion algorithms to explore the interaction amongst the design variables, 
while evaluating overall system performance and objectives. 

The goal of this research has been to develop an optimization approach 
suitable for designing large composite structures. The optimization ap
proach developed allows the design engineer to explore the design space 
and identify robust values for the design variables. It also allows the en
gineer to evaluate tradeoffs between various objectives, including weight 
and performance. 

This chapter highlights some key considerations when designing large 
composite structures, and it is organized as follows. The next section 
briefly addresses some background in designing large composite struc
tures. Sections 2 and 3 respectively discuss optimization problem formu
lation, and issues relating to selection of optimization algorithms. Two 
composite structure design examples are illustrated in Section 4. The 
chapter is concluded in Section 5, with the engineering specifications and 
the material properties of the two examples detailed in the Appendix, 

!• Background 
Large composite structures (such as aircraft) are typically composed 

of a collection of composite panels. These panels are commonly designed 
based on lamination theory [22]. Unlike conventional engineering ma
terials which are often assumed homogeneous, each of these panels are 
composed of individual laminae or plies^ stacked on top of each other 
and bonded together. The bonded assembly is called laminate. For ex
ample, a graphite epoxy ply consists of graphite fibers embedded in an 
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Fiber Angle 

Composite Laminate 

Ply 3 

Figure 1.1. A 3-ply composite laminate with variation in fiber angle from one ply to 
the next 

epoxy resin matrix. Each ply contains either unidirectional or woven 
fibers. To simphfy our discussion, we concentrate only on unidirectional 
fiber plies throughout this chapter. The specific order and fiber orien
tations of the plies in a laminate is referred to as the stacking sequence. 
Lamination theory relates the complex interactions between these plies 
to predict mechanical properties such as stiffness and strength of the 
overall laminate. 

Figure 1.1 shows a simple composite laminate consisting of three uni
directional fiber plies. The laminate in Figure 1.1 also illustrates that 
the orientation of the fibers in one ply may differ from the orientation 
of another ply. By convention, the fiber orientation 6 associated with a 
given ply i is identified using a subscript. Thus, the fiber angle in ply 
1 is denoted by ^i, the fiber angle in ply 2 is denoted by 62^ etc. It is 
interesting to note that for conventional engineering materials (such as 
steel) a thicker structure naturally implies a stronger structure. This 
implication, however, is not appropriate for a composite structure be
cause of the strong infiuence of fiber directions. In fact, the mechanical 
performance of any composite structure depends so heavily on the fiber 
directions of the laminate that a thinner laminate with appropriate fiber 
angles can easily be superior to a thicker one with fiber angles in sub-
optimal directions. 
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There are many pertinent issues to consider in designing large com
posite structures. The next three subsections address some of these 
issues. 

1.1 Performance Issues 
As with any other structure, composite structures are designed to 

perform under different criteria depending upon the functional tasks. 
The most common requirements are load requirements. In order to meet 
these load requirements, the overall composite structures rely upon the 
properties of the individual plies. 

Strength, the ability to withstand loading without fracture, is a com
mon requirement imposed in composite structural design. The strength 
of a composite laminate is predicted based on the strain induced in in
dividual plies. Strain is a measure of the deformations induced by a 
given loading. Hence, the overall strength of a composite laminate must 
be such that the loads applied do not induce ply strains above an al
lowable limit. A second requirement imposed during design is overall 
laminate stiffness. Stiffness is a measure of the deformations caused by 
per unit loading. Once again, the overall stiffness of a composite struc
ture is directly related to the strains induced in individual plies by a 
given loading. Note that laminate stiffness and strength are two differ
ent requirements although they are closely related. For instance, for a 
given application a composite laminate may exhibit sufficient strength 
but insufficient stiffness, and vice versa for another apphcation. 

Conceptually, any laminate stacking sequence can be evaluated dur
ing the design process. However, symmetric laminates are almost al
ways used in real applications. Non-symmetric laminates are very dif
ficult to produce without warping and so they are rarely used in prac
tical designs. In a symmetric laminate, ply fiber angles are arranged 
symmetrically about the geometric mid-plane of the laminate. For ex
ample, if a symmetric laminate contains p even number of plies, then 
6i = 9p^ 62 = Op-i^ 63 = 9p-2^ etc. 

A favorable characteristic of composite is their high stiffness-to-weight 
ratios. Another method of enhancing the stiffness-to-weight ratio is 
through the use of sandwich panels [3, 8]. In any sandwich panel, a 
very light weight (and typically low strength and/or stiffness) core ma
terial is sandwiched between two facesheets which possess high stiffness 
and strength. This separation of the facesheets results in an enormous 
increase in bending stiffness with very little increase in weight. In the 
case of a composite sandwich structure, the two facesheets are composite 
laminates. Several different core materials may be used, including poly-



A Case Study: Composite Structure Design Optimization 511 

Ply 1 , 
Ply2> 

Ply k-2 . 
Ply k-1 . 

Plyk-
Mid-plane — 

Ply k+1 -
Ply k+2 " 

Ply n-1 • 
Plyn ' 

" ^ 

' Core 

^ 

^ ^J 
, ^ ^ 
<>^ y^ 

Sandwich Structure Composite Laminate 

Figure 1.2. Cross-sectional view of the sandwich structure composite laminate with 
n total number of plies 

merle foams or aluminum honeyeomb. To specify the stacking sequence 
of this panel, one must specify the number of plies and the corresponding 
fiber angles in both facesheets, as well as the thickness of the core. 

An example of a composite sandwich panel with convention notations 
describing the panel is shown in Figure 1.2. An x-y-z coordinate system 
is used, where the x-y plane coincides with the geometric mid-plane of 
the laminate. There are a total of n layers (or phes) shown. The core 
is denoted as ply k. The phes within the first composite facesheet are 
numbered as ply 1 through ply fc — 1, and the plies within the second 
composite facesheet are numbered as ply k + 1 through ply n. Two 
"levels" of symmetry may be defined for a composite sandwich panel 
like this. In a singly symmetric sandwich panel both facesheets are 
themselves symmetric, but fiber angles within the two facesheets are 
not otherwise related. This implies that for a singly symmetric sandwich 
panel: 

6i = 6k-i 

O3 = Ok-s and 

Ok+l = On 

Ok+2 = On-l 

^/c+3 =" On-2 

and so on and so on 

The second level of symmetry is termed a doubly symmetric sandwich 
panel. In this case, both facesheets are symmetric, and furthermore the 
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Figure 1.5. Example ply configurations on a 4 x 6 composite panel. Configuration 
(a) complies with the "greater-than-or-equal-to" blending rule but configurations (b) 
and (c) violate the rule [13] 

as well as various optimization techniques base(d on local optimization 
schemes are ad(iresse(d in some of the aforementioned list [24]. 
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stacking sequence present in both facesheets is identical. For a doubly 
symmetric sandwich panel, we have: 

Oi = Ok-i = Ok+i = On 

62 — Ok-2 = dk+2 = On-l 

and so on 

Doubly symmetric sandwich laminates are commonly used in practice. 
The examples presented later in this chapter assume that the panels are 
doubly symmetric. 

An optimization approach that is useful to a design engineer must 
be able to satisfy performance constraints, including strain and stiffness 
requirements, as well as a type of symmetry property such as a singly or 
doubly symmetric structure laminate. It must also satisfy manufacturing 
issues which are discussed next. 

1.2 Manufacturing Issues 
In real-hfe apphcations, a large composite panel is rarely subjected 

to a uniformly distributed load. Actual loading usually varies over the 
length and width of the panel, with some areas experiencing relatively 
high loads and others experiencing relatively low loads. An example is 
the keel panels in a commercial aircraft (i.e. panels used in the under
belly of an aircraft fuselage). Typically, there is an opening in the keel 
panel to accommodate the landing gear. The region of the keel panel 
just aft of the landing gear normally experiences relatively high loads, 
while the magnitude of loading gradually decreases as regions are fur
ther away from the gear. The design engineer is typically provided with 
a "map" of predicted load contours over the length and width of the 
keel panel, as shown schematically in Figure 1.3(a). The smooth hues 
shown at internal regions of the panel represent lines of constant load 
intensity. These load contours are predicted during preliminary analysis 
of the overall aircraft. The job of the engineer is to design a panel that 
can safely sustain these loads. In the case of a composite sandwich keel 
panel, this means that the engineer must specify the stacking sequence 
of both facesheets as well as the core material and thickness. 

Of course, one solution would be to identify a stacking sequence that 
can support the highest concentration of load, and then to use this stack
ing sequence throughout the entire length and width of the panel. While 
such a design would be mechanically feasible, it is certain to be heavier 
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than is needed because the regions of the panel that experience relatively 
low loads would be overdesigned. It is possible to change the stacking se
quence used in a composite panel by "dropping" phes (i.e. discontinuing 
a ply) in regions of low loads. To do so, the panel is divided into regions, 
as shown in Figure 1.3(b), during the design process. The magnitudes 
of the loads applied to each region are assumed to be constant, and are 
inferred from the load contours shown in Figure 1.3(a). The star symbol 
A denotes the region that experiences the highest loading, and we call 
this region the key region. 

In order to avoid overdesigning the panel, an optimization approach 
must be able to tailor the design of specific regions to the anticipated 
loads. However, the number of plies and fiber orientations cannot vary 
too dramatically or else the panel would be impractical to manufacture. 
From the manufacturing view point, it is preferred to have a common 
stacking sequence over as many regions as possible, and then reduce the 
number of plies gradually between adjacent regions. The design engineer 
must avoid abrupt changes in fiber orientation within a ply to eliminate 
seams that are mechanically weak. A mechanism of allowing a ply to 
continue through adjacent regions until it is no longer required is called 
blending. The optimization approach presented here uses blending rules 
to achieve a blended panel that is not only manufactureable, but also 
tailored to allow load concentrations. The next paragraph explains how 
the blending rules are applied to a composite panel design. 

Given the load conditions, the key region of the panel can be identified. 
Because the key region undergoes the largest load concentration, it is 
the region that requires the most number of plies. Starting from the 
key region, the number of plies in adjacent regions may be dropped 
(i.e. some plies can be removed from the stack) if the required stiffness 
and strengths of these regions are satisfied. Once a ply is dropped, it 
cannot be added back to the stacking sequence in later regions. Thus, 
as we move further away from the key region, the stacking sequence 
will, in general, have fewer and fewer plies. This rule of consistently 
dropping plies from the key region is called the "greater-than-or-equal-
to" blending rule [13, 32]. Figure 1.4 demonstrates how the blending 
rules are applied to a 4 x 6 panel [13]. The key region (3,3) is marked by 
a star. The ">" symbol indicates the direction in which the ply can be 
dropped. For instance, if a ply exists in region (3,3), it may or may not 
exist in region (2,3). But if a ply exists in region (2,3), the same ply must 
exist in region (3,3). Figure 1.5 shows three different ply configurations. 
Configuration (a) comphes with the blending rules, but configurations 
(b) and (c) do not. In configuration (b), only region (1,4) violates the 
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Point of Highest 
Load Concentration 

Point of Lowest 
Load Concentration 

(a) Contours of constant load in a large composite panel 

Region of Lowest 
Load Concentration 

Region of Highest 
Load Concentration 

^ * 

Region of Intermediate 
Load Concentration 

(b) Discrete representation of load contours in a composite panel 

Figure 1.3. Non-uniform loading of a large composi te panel 



516 Global Optimization: Scientific and Engineering Case Studies 

Axial 

3 4 5 6 

(1,1) $ (1,2) $ 

-M- -Ah 

-A\-

-Af- -y\f-

-VM-

-V\f-

-Ah 

^ (1,6) 

(2,1) 

-Al— - T M - -Af-

—iV-

(4,1) < 

-tv-

* 

i V - -N- i \ r -fV-

f (4,6) 

Figure I.4. The "greater-than-or-equal-to" blending rule applied to a 4 x 6 composite 
panel [13] 

"greater-than-or-equal-to" blending rules, whereas regions (1,1), (1,2), 
and (2,1) in configuration (c) all violate the blending rules. 

1,3 Optimization Issues 
A design problem using an optimization scheme requires selections 

of design variables, the type (continuous or discrete) of these variables 
and their ranges when applicable, the proper objective function to min
imize, and a set of constraints placed on the behavior of the structure 
[16]. For a given set of loads over a composite panel, the design vari
ables must be able to represent multiple material systems, the number 
of plies, ply orientations, and the stacking sequence. With the number 
of design variables involved, one can easily imagine that solving even a 
simple panel design problem to the optimum soon exceeds a manageable 
level. A design procedure based on numerical optimization algorithms is 
imperative to fully exploit the promise of advanced composite materials. 

There are a number of books and papers discussing basic concepts of 
structural design optimization of composite structures. The following is 
a short list of references found in the hterature [9, 10, 15, 17, 19, 20, 23, 
24]. A myriad of objective functions are explored in these references. 
Some objective functions minimize weight [9, 10, 19, 20, 23, 24], while 
others maximize strength or stiffness [15, 17]. Multi-criteria optimization 
formulation, i.e. many objectives must be optimized simultaneously. 
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The optimum design of laminated composite structures subjected to 
multiple loading conditions is truly a global problem in which the asso
ciated design space includes many local minima [25]. A series of studies 
[6, 7, 12, 13, 16, 28, 30, 32] have taken this global issue into account. 
In [6, 7, 16], the objective function was to maximize the performance of 
the composite structures, whereas the objective function in [12, 13, 28, 
30, 32] was to minimize the weight of the composite structures. This 
chapter is based mainly on this series of studies, and we focus here on 
optimization problems whose objective is to minimize the weight of the 
structure in the later examples. Before we describe these examples, let 
us first discuss a general problem formulation of the composite structure 
design and issues relating to optimization algorithm selection in the next 
two sections. 

2. General Problem Formulation 
A mathematical statement of the composite structure optimization 

problem can be written as follows. Find a set of design variables x that 
will: 

minimize 
subject to 

fix) 
9j\X) d. 9min 
x{ < Xi < xf 

J € { 1 , 2 , . . 
i € { l , 2 , . . 

. ,m} 
. ,n} 

where n is the number of variables and m is the number of constraint 
equations. The objective function f(x) is a measure of a characteristic of 
interest (such as the total weight of the composite structure) pertaining 
to the problem. The design variables Xi whose respective values are 
to be determined during the design process are contained in a design 
vector X. The objective function may consist of any combination (linear 
or nonlinear) of the design variables. The inequahty constraints gj{x) > 
Qmin impose limits on the feasible search region of the design space. The 
upper and lower bounds x[ < Xi < xf are side constraints on the design 
variables. 

As mentioned earher, weight saving is one of the important concerns 
when designing composite structures. Hence, a typical objective func
tion in composite structure design problems is to minimize weight while 
satisfying constraints on strain, stiffness, hygrothermal expansion (ex
pansion due to moisture and temperature variations within the lami
nate), and thickness [3]. To simplify our discussion, we only consider 
the relationship between the weight and the strain, stiffness, and thick-
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ness constraints. The details of the effects of hygrothermal expansion to 
a composite laminate can be found in [9]. 

3, Optimization Algorithm Consideration 
Optimization algorithms play an important role in solving optimiza

tion problems. Since composite structure design is a global problem, only 
global optimization algorithms are relevant to this discussion. Arora 
[1, 2] suggested that a good optimization algorithm should have several 
attributes including: 

• Robustness. The algorithm must not be problem dependent. It 
must be able to handle any optimization problem regardless of 
problem structure. The algorithm should be general and does not 
oppose any further restriction on the constraint functions, such as 
linear versus nonlinear, or equality versus inequality. Theoretically, 
it must be accurate in a sense that it guarantees the convergence to 
the solution even when it starts from a poor initial design estimate 
or initial seed. 

• Ease of Use, Experts or nonexperts alike must be able to grasp 
the fundamental philosophy of the algorithm. Algorithms that 
are difficult to use in practice are usually those that are problem 
dependent. 

• Efficiency. The algorithm must be efficient in an engineering sense. 
This means that it should (i) have a relatively fast convergence rate 
and require few iterations, and (ii) keep the analysis and calcula
tion minimal so computation time is realistic. 

There are always tradeoffs between these attributes. Typically, effi
ciency can be increased only by decreasing robustness and ease of use. 
A computational penalty, e.g. the CPU time, is often paid in order to 
achieve a robust and easy to use algorithm [21]. 

The global optimization algorithms available today are based on one of 
two approaches, namely deterministic and stochastic approaches [5]. An 
important tradeoff of the deterministic approach when handling global 
optimization problems is that it usually requires some knowledge about 
the structure of the objective and/or constraint functions. The stochas
tic approach is more robust and general than the deterministic approach, 
but it can more computationally intensive. 

The stochastic approach was selected as the method to solve the exam
ple problems in the next section primarily because it is capable of han-
dhng a mixture of continuous and discrete variables with ill-structured, 
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nonconvex functions. Stochastic approaches, such as simulated anneal
ing, genetic algorithms, and evolutionary programming, are useful for 
optimizing engineering problems. The reader may consult [2, 5, 8, 9, 
11, 29, 31, 33] for more details of various techniques on the stochastic 
approaches. 

It is important to realize that a stochastic search approach does not 
guarantee the optimal solution in all the searches. The probability of 
obtaining the global optimum is unity only in the limit, but it is never 
possible to implement an infinite number of iterations in practice. In a 
lot of cases, however, we do not need the absolute optimal solution. A 
Nobel laureate economist, Herbert Simon, once mentioned that people 
do not need to optimize, but rather to "satisfice" by setting goals for 
various objectives [4]. This is also applicable for engineering design 
problems. The price we pay to obtain the absolute optimum is the time 
spent on searching through the whole feasible design space. Since global 
optimization problems are known to be NP-hard [26], the computation 
needed to solve a large problem with hundreds of design variables and 
constraints to optimality can be impractical. A sub-optimal solution 
that can be obtained quickly may be more valuable from a practical 
point of view. Each example presented in the following section found a 
sub-optimal but useful solution in four to five hours on a SUN SPARC 
10 workstation. 

4. Example Problems 
Two optimization examples of composite design problems are pre

sented. The first example is a point design problem. The objective is to 
find a feasible design with the least weight in each of the regions in the 
panel. The feasibility implies that the panel must comply with all the 
constraints. There are three loads, namely load Fx in the x direction, 
load Fy in the y direction, and load Fxy in the xy or shear direction, in 
each of the regions. The magnitude of the loads and the dimensions of 
the panel are given in Figure 1.6. 

The second example deals with the same overall composite panel but 
the blending rules are applied. In other words, the stacking sequence in 
the second example must abide by the blending rules. The objective of 
this second example is also to minimize the total weight of the whole 
panel. The two examples provide us a tradeoff comparison. The point 
design has a minimal weight but may be impractical to manufacture, 
while the blended design may be shghtly heavier (with more phes) but 
the blending rules ensure a practical design. The two examples are 
formulated according to the doubly symmetric sandwich structure and 
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Figure 1.6. Loads in Ibfs and dimensions in inches of the example composite panel 

classical lamination theory [22]. A software package called COSTADE 
[14] was used to complete the computations described. 

The mathematical formulation of the two examples can be summa
rized as follows. 

minimize / ( 0 , r ) = weight 
subject to 

for each ply in each region < 

for the core in each region < 
QxV'k) ^ ^x.core 

9y[^k) ^ ^y core 

9xy\tk) ^ ^xy.core 

for each region { GyiO, T) > S^^'^ 
G . , ( e , T ) > 5 - 9 

and - 9 0 < 6 ' i < 9 0 i e {1,2, 
e = (01,92,...,On) 

i, = {1,0} ie{l,2, 
tk>0 

,n} 

,k-l,k + l,.. .,n} 

T = {ti,t2,... ,tk,. 1 ''nj 
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where 9i denotes the angle of ply i, 6 is the vector of all ply angles, 
and n is the total number of phes. The binary variable t̂ , for i G 
{1, 2 , . . . , /c — 1, /c + 1 , . . . , n}, is the variable indicating whether ply i 
exists in that region. When there exists ply i in the region, U is one, and 
zero otherwise. The variable tk is the thickness of the core which situates 
at ply k. The vector T contains all the indicator variables and the core 
thickness. There is a set of strain and stiffness constraints, gx^9y^gxy> 
for each region (j, k) in the panel. It is only implicitly described in the 
formulation because the explicit description is too cumbersome. The 
strain constraints e^^^^, ê ^̂ ^̂ , and e^y^'^ refer to the allowable strain 
of each ply in x, y, and shear direction, respectively. The values of 
these e's can be found in Table l.A.l. Similar strain constraints are 
imposed for the core, and the value of these Ccore^ can be found in 
Table l.A.2. Furthermore, each region must have the region's stiffness 
G of each direction equal to or greater than the corresponding required 
stiffness S'^^^ of each direction, given in Table l.A.3. 

In some cases, only certain discrete values of fiber angles such as —90, 
—45, 0, 45, and 90 degrees are used to manufacture a composite panel. 
Incorporating this limit on the values of the fiber angles makes the design 
problem more realistic, but the new design is likely to be sub-optimal in 
terms of weight. The only change in the formulation to accommodate 
this fiber angle limitation is to allow Oi to take on only the allowable 
values of the fiber angles. For instance, we can express the fiber angles 
previously mentioned as: 

0 i - { - 9 0 , - 4 5 , 0 , 4 5 , 9 0 } for z G {1, 2,..., n}. 

The above expression can be modified to accommodate other sets of fiber 
angle values such as every 5 degrees or every 10 degrees. For the purpose 
of the discussion in this chapter, we allow the fiber angles to take on any 
integer values between —90 and 90 in the two examples. More details 
on incorporating discrete value and manufacturing tolerances into the 
composite design optimization problem can be found in [12, 18]. 

4.1 Point Design/Non-Blended Panel 
In this point design problem, each region is experiencing different 

loading conditions and is optimized separately. The thickness of the 
core is held constant at 0.25 inch. This implies that the thickness of 
the entire panel varies as the number of required plies changes in each 
region. Table 1.1 shows the optimization results of the point or non-
blended design. 
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Table 1.1. Layup result of the regions in the non-blended/point design panel. The 
total weight is 896.02 lbs 

1 Region 

1,1 

1,2 

1,3 

1,4 

2,1 

2,2 

2,3 

2,4 

3,1 

3,2 

3,3 

3,4 

Weight 
Core Thickness 

46.04 
0.25 

46.04 
0.25 

61.39 
0.25 

96.91 
0.25 

52.62 
0.25 
76.59 
0.25 

118.10 

0.25 
86.14 
0.25 

59.19 
0.25 
59.19 
0.25 
78.93 
0.25 

114.88 
0.25 

Strain MS 
Stiffness MS 

1.583 
0.031 
1.314 
0.021 
0.437 
0.016 
1.179 
0.211 
3.144 
0.084 
0.319 
0.331 
0.115 

0.407 
0.363 
0.018 
1.583 
0.031 
1.314 
0.021 
0.437 
0.016 
0.903 
0.002 

Number of Plies 
Ply Angles 

16 
[44,-56,0,12]s 

16 
[23,10,64,-30]s 

16 
[-56,9,6,49]s 

20 
[42,-82,2,29,-19]s 

16 
[27,5,45,-26]s 

24 
[14,-42,72,44,60,34]s 

28 

[59,67,38,45,-48,3,4]s 
20 

[72,57,41,-22,-7]s 
16 

[44,-56,0,12]s 
16 

[23,10,64,-30]s 
16 

[-56,9,6,49]s 
20 

[86,-75,20,45,30]s 

The abbreviation MS in the table stands for margin of safety. More 
details on the margin of safety can be found in the appendix. The sub
script s after a set of ply angles denotes the double symmetry of the ply 
angles in the stack. For instance, the [44, —56,0,12]s ply stack in region 
(1,1) refers to a laminate with ply angles of 44, —56,0,12,12,0, —56,44, 
core, 44, —56, 0,12,12,0, —56,44 stacking sequence. 

From the table, the ply angles of one region are hardly similar to those 
of the adjacent regions. This abrupt change in fiber angles makes the 
panel impractical to be manufactured as a whole, so the panel is unlikely 
to be produced. The total weight of the panel of this point design, 
however, can be used as a lower bound on the minimum achievable 
weight. This lower bound on the weight is an excellent benchmark when 
comparing the current design with any future designs of the panel. 

We next consider the same panel under the same loading condition, 
only this time the blending rules are applied. The blending rules further 
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constrain the feasible design space and limit the design solutions to those 
that are manufacturable. 

4,2 Blended Panel 
The thickness of the entire panel is held constant throughout in this 

example. Instead of designing each region separately, the blended panel 
relates the different regions so that they must be designed all together. 
The core thickness of the key region is fixed at 0.25 inch, but the core 
thickness of other regions is adjusted such that the thickness of all the 
regions in the panel is the same throughout, which results in a constant 
thickness panel. In order to do so, after a feasible stacking sequence of 
the key region is found, the thickness of the panel is determined based 
on this solution of the key region. The thickness of the key region is 
the sum of all the thickness of the required facesheet phes plus its 0.25 
inch core thickness. The core thickness of the other regions is calculated 
in a similar fashion, by subtracting the total thickness of the required 
facesheet plies of that region from the total thickness of the key region. 

The optimization results of the blended design is shown in Table 1.2. 
Notice that the stacking sequence of all the regions is a subset of the 
stacking sequence of the key region. This is a consequence of the blending 
rules. 

The solution found by the stochastic algorithm in the second example 
is not intuitive, and is unlikely to be found with a trial and error method. 
Although the total weight of the blended design is slightly more, 61.94 
lbs or 6.91% increase, than that of the point design, this blended design 
is preferred over the point design due to the reasons previously discussed. 
The solution of the blended panel can possibly be further improved by 
repeatedly running the software with different starting points and then 
select the least weight design among the results obtained, or allowing 
the software to execute more iterations in each run. We hmited the 
implementation time for both examples to four to five hours for the sake 
of a fair comparison. 

5. Summary 
This chapter demonstrates how a stochastic optimization algorithm 

can be utilized in designing composite structures. The design of com
posite structures has been formulated as a mixed continuous/integer 
global optimization problem that includes performance and manufac
turing constraints. The optimization algorithm used in the chapter ob
tained solutions that would probably not be found through trial and 
error. Moreover, the stochastic optimization approach implemented is 
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Table 1.2. 
957.96 lbs 

Layup result of the regions in the blended panel. The total weight is 

1 Region 

1,1 

1,2 

1,3 

1,4 

2,1 

2,2 

2,3 

2,4 

3,1 

3,2 

3,3 

3,4 

Weight 
Core Thickness 

47.96 
0.367 
47.69 
0.367 
77.29 
0.338 
63.95 
0.367 
66.25 
0.338 
77.68 
0.308 
134.08 

0.250 
103.58 
0.308 
61.66 
0.367 
61.66 
0.367 
116.52 
0.308 
99.37 
0.338 

Strain MS 
Stiffness MS 

1.708 
0.048 
0.872 
0.048 
0.426 
0.136 
0.299 
0.048 
2.064 
0.124 
0.228 
0.239 
0.126 

0.415 
0.529 
0.239 
1.585 
0.048 
1.215 
0.048 
1.025 
0.289 
0.321 
0.186 

Number of Plies 
Ply Angles 

16 
[16,-45,-1 ,51]s 

16 
[16,-45,-1,51)8 

20 
[ 1 6 , - 4 5 , - 4 5 , - l , 5 1 ) s 

16 
[16 , -45 , - l ,51 ] s 

20 
[16,-45,42,-1,51]s 

24 
[69,16, -45,42, - l ,51]s 

32 

[69 ,16 , -45 , -45 ,42 , -1 ,47 , 51]s 
24 

[69,16, -45,42, - l ,51]s 
16 

[16 , -45 ,42 , - l ] s 
16 

[16 , -45 ,42 , - l ] s 
24 

[69 ,16 , -45 , -45 ,42 , - l ] s 
20 

[69 ,16 , -45 ,42 , - l ] s 

efficient in the sense that it found solutions, albeit sub-optimal ones, 
within a reasonable amount of time. The solutions found in the two ex
amples offer the design engineer a systematic way to evaluate tradeoffs 
between weight and performance, particularly strain and stiffness, of the 
structure. 

The blending rules force the design solution to be practical from a 
manufacturing point of view when a large panel experiences a range 
of loads. The formulation of the problems can be easily adjusted to 
incorporate future modifications in manufacturing specifications. The 
optimization process established here is useful and versatile to design 
large composite structures. 

6. Acknowledgement 

The authors would like to thanks the Boeing company and their staff, 
particularly G.E. Mabson, for the generous support and collaboration. 



A Case Study: Composite Structure Design Optimization 525 

The work of Zelda B. Zabinsky and Charoenchai Khompatraporn has 
been partially supported by NSF Grant No. DMI-0244286. 

References 

I] Arora, J.S., "Computational Design Optimization: A Review and 
Future Directions," Structural Safety 7, 131-148, 1990. 

2] Arora, J.S. (ed.), Guide to Structural Optimization^ ASCE Manuals 
and Reports on Engineering Practice, No. 90, American Society of 
Civil Engineers, New York, 1997. 

3] Baier, H.J., "Composite Laminate and Sandwich Optimization with 
Application," Optimization of Large Structural Systems, Volume 11^ 
edited by G.I.N. Rozvany, Kluwer Academic Publishers, the Nether
lands, 997-1009, 1993. 

4] Belton, B. (ed.), "Math That Helps Nearly Everyone Make Deci
sions," BusinessWeek Online^ at http://www.businessweek.com/ 
bwdaily/dnflash/oct2000/nf20001013_580.htm, October 13, 2000. 

5] Boender, C.G.E., and Romeijn, H.E., "Stochastic Methods," Hand
book of Global Optimization^ edited by Horst, R. and Pardalos, P.M., 
Kluwer Academic Publishers, the Netherlands, 829-869, 1995. 

6] Graesser, D.L., Zabinsky, Z.B., Tuttle, M.E., and Kim, G.I., "De
signing Laminated Composites Using Random Search Techniques," 
Composite Structures 18, 311-325, 1991. 

7] Graesser, D.L., Zabinsky, Z.B., Tuttle, M.E., and Kim, G.L, "Opti
mal Design of Composite Structures," Composite Structures 24^ 273-
281, 1993. 

8] Giirdal, Z., Haftka, R.T., "Optimization of Composite Laminates," 
Optimization of Large Structural Systems, Volume II, edited by G.I.N. 
Rozvany, Kluwer Academic Pubhshers, the Netherlands, 623-648, 
1993. 

9] Giirdal, Z., Haftka, R.T., Hajela, P., Design and Optimization of 
Laminated Composite Materials, John Wiley & Sons, Inc., New York, 
102-221, 1999. 

10] Haftka, R.T. and Giirdal, Z., Elements of Structural Optimization, 
Third revised and expanded edition, Kluwer Academic Publishers, the 
Netherlands, 1992. 

II] Khompatraporn, C , Pinter, J.D., Zabinsky, Z.B., "Comparative As
sessment of Algorithms and Software for Global Optimization," Jour
nal of Global Optimization, forthcoming. 



526 Global Optimization: Scientific and Engineering Case Studies 

[12] Kristinsdottir, B.P., Zabinsky, Z.B., Tuttle, M.E., Csendes, T., 
"Incorporating Manufacturing Tolerances in Near-Optimal Design of 
Composite Structures," Eng. Opt 26, 1-23, 1996. 

[13] Kristinsdottir, B.R, Zabinsky, Z.B., Tuttle, M.E., Neogi, S., "Op
timal Design of Large Composite Panels with Varying Loads," Com
posite Structures 51, 93-102, 2001. 

[14] Mabson, G.E. and Graesser, D.L., Cost Optimization Software for 
Transport Aircraft Design Evaluation (COSTADE) - Users Manual, 
NASA Contractor Report 4738, August 1996. 

[15] Massard, T.N., "Computer Sizing of Composite Laminates for 
Strength," J. Reinforced Plastics Comp, 3, 300-345, 1984. 

[16] Neogi, S., Zabinsky, Z.B., Tuttle, M.E., "Optimal Design of Com
posites Using Mixed Discrete and Continuous Variables," Proceedings 
of the ASME Winter Annual Meeting, Symposium on Processing, De
sign and Performance of Composite Materials, MD-Vol,52, 91-107, 
1994. 

[17] Park, W.J., "An Optimal Design of Simple Symmetric Laminates 
under the First Ply Failure Criteria," J. Comp, Mater. 16, 341-355, 
1982. 

[18] Romeijn, H.E., Zabinsky, Z.B., Graesser, D.L., and Neogi, S., 
"New Reflection Generator for Simulated Annealing in Mixed-
Integer/Continuous Global Optimization," Journal of Optimization 
Theory and Applications 101(2), 403-427, 1999. 

[19] Schmit, L.A., "Structural Synthesis—Its Genesis and Develop
ment," AIAA J. 19, 1249-1263, 1981. 

[20] Schmit, L.A., Farshi, B., "Optimum Laminate Design for Strength 
and Stiffness," Int. J. Numer. Meth. Engng. 7, 519-536, 1973. 

[21] Thanedar, P.B., Arora, J.S., Li, G.Y., Lin, T.C., "Robustness, Gen
erality and Efficiency of Optimization Algorithms for Practical Appli
cations," Structural Optimization 2, 203-212, 1990. 

[22] Tuttle, M.E. Structural Analysis of Polymeric Composite Materials, 
Marcel Dekker, Inc., New York, 2004. 

[23] Vanderplaats, G.N., "Structural Optimization—Past, Present, and 
Future," AIAA J. 20, 992-1000, 1982. 

[24] Vanderplaats, G.N., Numerical Optimization Techniques for Engi
neering Design: With Applications, McGraw Hill, New York, 250-282, 
1984. 

[25] Vanderplaats, G.N., Wesshaar, T.A., "Optimum Design of Compos
ite Structures," Int. J. Numer. Meth. Engng. 21, 437-448, 1989. 



A Case Study: Composite Structure Design Optimization 527 

[26] Vavasis, S.A,, "Complexity Issues in Global Optimization: A Sur
vey," Handbook of Global Optimization^ edited by Horst, R. and Parda-
los, P.M., Kluwer Academic Publishers, the Netherlands, 27-41, 1995. 

[27] Vinson J.R., Chou, T-W. Composite Materials and Their Use in 
Structures, John Wiley & Sons, New York, 28-32, 1975. 

[28] Zabinsky, Z.B., "Global Optimization For Composite Structural De
sign," Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Struc
ture, Structural Dynamics, and Materials Conference, April 1994. 

[29] Zabinsky, Z.B., "Stochastic Methods for Practical Global Optimiza
tion," Journal of Global Optimization 13, 433-444, 1998. 

[30] Zabinsky, Z.B., "Optimal Design of Composite Structures," Ency
clopedia of Optimization, edited by Floudas, C.A. and Pardalos, P.M., 
Kluwer Academic Publishers, the Netherlands, Vol. 4, 153-160, 2001. 

[31] Zabinsky, Z.B., Stochastic Adaptive Search for Global Optimization, 
Nonconvex Optimization and its Applications Series, Vol. 72, Kluwer 
Academic Publishers, the Netherlands, 2003. 

[32] Zabinsky, Z.B., Seifer, J.D., Tuttle, M.E., Kristinsdottir, B.P., and 
Neogi, N., "Optimal Design of Composite Panels with Varying Loads," 
Proceedings of the ICCE/2 conference. New Orleans, 1995. 

[33] Zabinsky, Z.B., Smith, R.L., McDonald, J.F., Romeijn, H.E., and 
Kaufman, D.E., "Improving Hit and Run for Global Optimization," 
Journal of Global Optimization 3, 171-192, 1993. 

Appendix 

Factor of Safety and Margin of Safety 
A factor of safety (FS) is normally used in any engineering design. It is basically the 

numerical multiples of the design's requirement. For example, suppose a composite 
structure is required to withstand an in-plane unidirectional load of 1000 lbs, but the 
final designed structure can withstand an in-plane unidirectional load up to 2200 lbs. 
The corresponding factor of safety is 2200/1000 = 2,200. The factor of safety can be 
written as: 

capability 
r o = : , 

requtrement 

A second measure of safety that is more commonly used in the aerospace community 
is the margin of safety (MS). The MS measures the numerical marginal amount in 
multiples of the designed structure capability. Hence, from the previous example the 
margin of safety is (2200-1000)/2200 — 0.545. If a composite structure is designed 
with a margin of safety equal to zero, then that structure is designed to exactly 
meet the requirements. A composite structure design with negative margin of safety 
indicates that the design does not meet the requirement. The margin of safety can 
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be expressed mathematically as: 

M 5 -
capability — requirement 

capability 

Calculations within this chapter are based on margins of safety rather than factors of 
safety. 

Material Properties 
The following Tables l.A.l and 1.A.2 show the properties of the materials used to 

obtain the solutions in the example problems. Note that directions used for e?^^"^, 
^aiiow ^ and 6^2 °̂̂  are such that direction 1 represents the direction that aligns with 
direction of the fibers, direction 2 represents the direction that is normal to the 
direction of the fibers, and direction 12 represents the shear direction of the ply. 

Table l.A.l. Material properties of the unidirectional graphite epoxy (facesheet ma
terial) 

El 
Msi 
17.4 

E2 
Msi 
1.36 

Ei2 
Msi 
0.76 

1^12 

0.32 

P 
Ib/in^ 
0.057 

Ply thickness 
in 

0.0073 

allow 

0.01 

^allow 
^2 

0.005 

^allow 
^12 

0.007 

Table l.A.2. Material properties of the fiber honeycomb core 

El 
Msi 

1E~5 

E2 
Msi 

l E - 5 

El2 
Msi 

l E - 7 

i^l2 

0.32 

P 
Ib/in^ 

0.3 

Ply thickness 
in 

0.25 or more 

allow 
^l,core 

0.1 

allow 
^2,core 

0.1 

allow 
^12,core 

0.1 

Minimum Effective Panel Stiffness 
The notation S'^^^ in the following Table LA.3 stands for the minimum stiff*ness 

requirement. The subscript x, y, or xy of each S^^^ indicates the associating direction. 

Table LA.3. Minimum required eff'ective panel stiff'ness 

oreq 

Ibf/in 
1.00E6 

oreq 

Ibf/in 
0.08E6 

qreq 

Ibf/in 
0.27E6 
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Abstract: This is a case study of application of Global Optimisation (GO), in which a 
discrete optimal self-tuning controller is designed to regulate the speed of rotor 
and the amplitude of the rotor flux in an induction motor drive system. Firstly 
the non-linear dynamics of the induction motor is approximated by a linear 
model, around its operation point, through a recursive least-squares algorithm. 
Then the errors between the outputs of the identified linear model and actual 
rotor are used to train a back-propagation neural network for determining the 
future control output. With this type of structure, the two control goals of 
regulating rotor speed and rotor flux amplitude are de-coupled in a nature so 
that power efficiency can be optimised without affecting speed regulation. A 
simulated case study is presented to demonstrate the effectiveness of the 
proposed approach. 
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1. INTRODUCTION 

Over the last three decades, considerable efforts have been devoted to 
both the theoretical justification and the development of algorithms for 
global optimisation. (Dixon and Szego 1975). Whenever a problem can be 
formulated as the determination of a set of parameters such that the values of 
some objective function have maxima or minima, then an optimisation 
algorithm might be employed to achieve the solution. Such problems 
commonly arise in the general field of engineering design. 

Optimisation problems also frequently occur in control engineering. In 
general, these optimisation problems are concerned either with system 
identification, to find an optimal model to approximate the behaviour of the 
system, or determining the optimal static and/or dynamical performance in 
operation. As more advanced control techniques developed, optimisation 
methodology has played a significant role in the controller design procedure. 
As a type of optimisation method, self-tuning control (Astrom and 
Wittenmark 1995) was proposed to improve the robustness of dynamic 
systems with regard to adapting the change of environment and to the 
variation of the parameters within system operation. The general self-tuning 
controller design has been successfully applied to the control of linear 
dynamic systems. However, the expansion to non-linear systems has not 
reached maturity, although there have been a large number of studies 
published. 

Mathematically global optimisation is concerned with the 
characterisation and computation of global minima or maxima of a non
linear function. The general global minimisation problem can be defined as 

Given: K a,R" compact set, /• K->R continuous function. Find: X*E 
K,/ =fix*) such that/ <f(x) for all x e K. 

There exist a huge number of algorithms in various books and papers 
concerned with the solution of the global optimisation problems. Interested 
readers may refer to relevant materials. 

As mentioned above, the (global) optimisation problem in control 
engineering mainly can be divided into two areas: system identification and 
control performance optimisation, both of which will be involved in this case 
study. 

Consider a discrete-time dynamic system with following general form 
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y{t + l) = f{Y,U) (1.1) 

where/is a smooth function over E! X R'^''\ Y = {y{t\ y{t-\), ,,„y{t-l-[-\)f 
and U = (u(t), u(t-l), ... , u(t-m))^, and y(t) and u(t) are the plant output and 
control input signals respectively, t is the time index. 

In general, system identification determines the parameters of a system 
from a set of measured input and output data. It is closely related to the 
function estimation. Now the famous, generalised least squares algorithm for 
linear systems has been widely used as a typical approach in control 
engineering and other industrial modelling fields. 

For optimal control, consider the following generic performance index 

J{u(t))=j:g(y(t),u(t)) (1.2) 

where ^ is a given real-valued function which is often of some norm form. 
The optimal control problem of the system (1.1), with the performance index 
(1.2), is to determine the optimal control input u(t) within the class of 
allowable control input such that the given performance index reaches the 
minima or maxima values. Depending on the nature of the performance 
index, the nature of the constraints, and the desired output etc, the optimal 
control problems are different. For linear time invariant systems with a 
quadratic performance index, the optimal control theory has been well 
developed (Ogata 1995) whist the optimal control problem for non-linear 
dynamic systems remains has not been completely resolved. 

There has been a renaissance of the neural network methodology (Rojas 
1996) during 1980s, mainly due to the development of back-propagation 
optimisation techniques. Neural networks have been widely employed in 
both linear and non-linear control system design (Hunt, et al 1992, Narandra 
1996), including self-tuning controller design for non-linear systems. In 
general, there have been three major streams in neuro-controller design. The 
first one is that of using neural networks as direct controllers (Narendra and 
Parthasarathy 1990, Chen 1990). The second is that of predictive control 
using neural networks as predictors (Liu, Kadirkamanathan and Billings 
1998), and the third is that of using neural networks as plant models (Chen 
and Khalil 1995, Zhu, Ma and Warwick 1999). However, none of the above 
streams of neural network-based methods has reached a satisfactory stage of 
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development because of the lack of a comprehensive understanding 
necessary to design neuro-control systems. 

The development of non-linear control techniques and the rapid 
improvements in power devices and microelectronics have made possible 
induction motor drives for high performance applications. Adaptive control, 
particularly feedback linearisation and input-output de-coupling techniques 
have been widely used in this field (Ben-Brahim, Tadakuma and Akdag 
1999, Liaw, Chao, and Lin 1992, Marino, Peresada and Valigi 1993). 
However those methods assumed either the full state measurements are 
available, or the flux observer can be constructed or the unknown parameters 
such as load torque are constant. With the neural network enhanced optimal 
self-tuning control approach described here, it is shown that those 
assumptions can be easily removed without significant effect on the 
performance of the controlled system. The preliminary theoretical research 
results were reported by Zhu, Hayns and Garvey (1999), and Zhu, Ma and 
Warwick (1999). 

In this case study, a novel neural network-based self-tuning control 
method is used, combining the attributes of neural network learning with a 
generalised minimum variance self-tuning control strategy. This is applied to 
control the rotor speed and the rotor flux amplitude of an induction motor. 

2. A NEURO OPTIMAL MIMO SELF-TUNING 
CONTROLLER 

Zhu, Ma, and Warwick (1999) presented a general framework for a 
neural network enhanced non-linear Single Input and Single Output (SISO) 
control system, shown in Figure 1. 

In this study, the framework for a SISO control system is expanded to a 
Multi-Input and Multi Output (MIMO) system to control an induction motor. 
The control system design consists of following three steps: 

1. Optimal (minimum mean variance) controller design 

2. Linear sub-model identification design 

3. Neural network training algorithm design. 

Assume a class of MIMO dynamic plants can be described as follows 
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Y = /(Y,U) (2.1) 

where Y and U are the output and the control input vectors of the plant 
respectively, and/is either a linear or a non-linear vector function over YxU 
representing the dynamic of the plant. Generally this input-output relation 
can be readily approximated with a (discrete or continuous time) linear 
model. Here a discrete model is used for the discrete self-tuning controller 
design, which is described as follows 

A(z-')y(t + l) = B(z-')u(t)^¥o(..,) (2.2) 

where 

A(z~^) = diag(\ + aiz~^ + "' + aiz~^) 

B(z-') = diagibo+biz-'+'-' + b^^z-"') 

and Fo(.,.) is, defined as an error agent, a corrective item representing the 
error of the linear model. It is actually a function of the input and output 
variables of the plant. 

There are at least two ways to obtain this type of models. In trivial case, 
A(z^) = I, B(z^) = I and Fo=/, in which I is an identity matrix. In another 
way, / can be expanded according to Taylor series, whose linear part as 
linear model and those derived from second and higher order derivative can 
be considered as FQ. 

Now assume the plant model to be stable and de-coupled. 

2.1 Controller design 

An obvious advantage of GO concept and algorithms for linear time-
varying system design is to avoid the complicated numerical computation for 
global search, whose computation time is very vital to practical control 
system implementation on line. To derive, in terms of generalised minimum 
variance, an optimal controller, the closed loop system performance index 
can be described as follow 

J=\\s(z-')y(t + l)-R(z-'Mt)-Q(z-'Mt)-H(z-')¥o(J\ (2.4) 



534 Global Optimization: Scientific and Engineering Case Studies 

where v(0 is a bounded reference input vector. ||»|| is an any kind of 
appropriate norms defined in the suitable space. S(z^), Q(z^), R(z^) and H(z' 
)̂ are all diagonal weighting polynomial matrices of z ^ which are defined as 

S(z-') = diag(\ + s\z-' + "' + sl,z-''') 

Q(Z-') = diagiqo + q[z-' + "• + q^^Z-'') 

Now define an auxiliary output vector 

^(t^l) = S(z-')y(t + l) (2.6) 

According to the standard generalised minimum variance controller 
design procedure, the optimal predictor (p*(t+l/t) for the auxiliary output 
vector (p(t-{-l) can be obtained by 

f(t^l/t) = G(z-')y(t)^C(z-')B(z-')u(t)^C(z~')¥o(.,.) (2.7) 

in which C(z'^) and G(z^) are diagonal polynomial matrices and defined as 

C(z-') - diagd + ciz-' + • • • + 4z-"^) 

G(z-') = diag(8o + giz-'+'- + 8',,z-'') 

and which satisfy 

S(z-^) = C(z~^)A(z-^)-^ z-^Giz'^) (2.9) 

The solution to minimise the performance of equation (2.4) is then found 
to be 

(P\t + l/t) = R(z-')y(t) + Q(z-'Mt) + H(z-')¥,U) (2.10) 

According to equation (2.7) and equation (2.10), the controller output 
u(0 which satisfies the minimisation requirement can be obtained from 

u(0 = [-Qiz-') + C{z-')B{z-')]-\R(z-'Mt) + H(z-')¥,U)- Giz-')y{t) - C{z-')F,(.,.)) 

(2.11) 

By combining equation (2.11) and equation (2.2), the closed-loop system 
equation can be expressed as follow 
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//(z-^)Fo(.,.)-C(z-^)Fo(.,.))+F(.,.) 

(2.12) 

where F(.,.) = (-Q(z')+C(z')B(z'))¥o(z'l 

To produce satisfactory dynamics, a stable polynomial matrix T(z^) is 
chosen to specify the desirable closed-loop characteristic equation as follow: 

T(z-') = diag(ti, + t{z-' + '-'^Cz-''') (2.13) 

The following relationship therefore needs to be accommodated in order 
to achieve the required control action 

B(z-')S(z-')- A(z-')Q(z-') = T(z~') (2.14) 

So S(z^) and Q(z^) can be determined from equation (2.14) in which, at 
the time of calculation, A(z'^), B(z^) and T(z^) are all known. 

In order to cancel the static offset, R(z^) can be selected as 

R(zl = diag 
T\l) 

B\l) 
(2.15) 

And to eliminate the effect, in the steady state, of the non-linear part, H(z'^) 
can be chosen as 

H{z~l = diag Q'iX) 
B\\) 

(2.16) 

Thus, using equations (2.14), (2.15), (2.16) and (2.9), all parameters in 
the polynomial matrices can be calculated effectively. 

2.2 Linear submodel identification design 

For the linear sub-model parameter estimation, a standard recursive least 
squares (RLS) algorithm can be applied directly (Astrom and Wittenmark 
1995). Note that least squares algorithm is a GO algorithm for linear 
systems. Also note that the MIMO RLS algorithm can be used to generate 
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the estimation for all parameters simultaneously, or the SISO RLS algorithm 
can be used to give the parameters separately for each SISO sub-model, 
because the coupling effect among the output has been removed. Here the 
MIMO RLS algorithm is presented to identify the parameters for a MIMO 
plant as follows 

y(r + i) = o(0^^(0 + Fo(r + l) (2.17) 

where is the estimation of the output vector of the plant at the time r+1, 0(0 
is the regressor and ^is the parameter vector. These are defined as follows 

0(0 = diag[^{t\ ̂ 2(0, •••, 0̂ ^ (O) 

(t>i{t) = {y\t\"-,y\t + \-l)',u\t)r".u\t-m)f 

The update procedure is then 

0(t) = §(t-l) + P(t)^(t)e(t) 

£(t) = y(t)-^(tf3(t-l) 

P(t) = ~x[P(r -1) - P(t - l)0(r)(;d + 0(r)^ P(t - l)O(O)'̂  0(0^ P(t -1)] 

(2.19) 

where 0 < K < 1 is a forgetting factor to affect the convergence of the 
parameter estimates and to cope with slowing time-varying plants. 

2.3 Neural network training algorithm design 

A three-layer BP neural network with hyperbolic tangent activation 
functions in hidden layer is employed to detect the error agent Fo(.,.)- Note a 
neural network is inherently suitable to deal with a MIMO function 
relationship so that it is natural to accommodate it within a MIMO plant. 
Currently there exist plenty of GO algorithms for improving the efficiency of 
neural network training (Hsin, Li, Sun, and Sclabassi 1995 and Moler, 
1993). With regard to the computational efficiency in real time control, a 
standard BP network with momentum is selected in this study whose 
structure is shown in Figure 1. The objective of the network training is to 
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adjust all variable weights to minimise the error E{t) from real plant output 
and linear sub-model, where E{t) is defined as 

£(0 = I (FOC/FO (.,.)) (2.20) 

Actually, during each sampling period the parameters of the linear-sub
model are estimated by the RLS algorithm and then the non-linear vector 
function Fo(.,.) can therefore be numerically detected by 

¥^{.,.) = y{t + \)-^{tfe{t) (2.21) 

Vit) 

i 

Controller 
i i L 

1(f) 

¥ 

Plant 

Linear sub-model: 
parametric model 

Error agent 
BP neural network 

KO 
h . 

^ 

+ 

/ 
^V. 3 

Figure 1. Configuration of the proposed neuro optimal self-tuning control for 
field-oriented induction motor drive 

The error training signal of the neural network may be provided from 
equation (2.21) whist its input signal vector can be chosen from the delayed 
controller output (i.e. plant input) and plant output, for example. Thus 

/(̂  + i) = (y(0'̂ ,...,y(^-/ + i)'^;u(0^,...,u(r-m)^)^ (2.22) 

In general, these input variables may be chosen as historical data from 
the input and output of the controlled plant. Furthermore, some measurable 
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variables related to disturbances can also be used as input element to the 
network to give some insight into forthcoming disturbances at the current 
sampling instant. In practice, the input variables of the network depend on 
the underlying physical background of the problem and must encapsulate the 
real characteristics of the process. 

The training procedure for a neural network can be described by three 
phases: forward propagation phase, back propagation phase and weights 
updating phase. 

In the forward propagation phase the output of the hidden layer is first 
calculated as 

Oi(t) = ^ ;j = l,...,M 
^ l + Qxp(-Netj) (2.23) 

The output of the overall network is, in case of linear activation function, 
then 

Fo(.,.) = W^^^xO (2.24) 

where matrices W^^^ and W^^^ are weights between the input and hidden 
layers, and, the hidden layer and output layer. 

In the back propagation phase, so-called "delta-vectors" are computed as 
follows 

Â^̂  (0 = 0(t)(I - 0(t)).xW^^^^A^^^ (0 
(2.25) 

Then the weights updating equations can be obtained thus: 

W ^^^ (t + l) = W ̂ ^^ (t) + cx[W ̂ ^^ (t) - W ̂ ^^ (t -1)] + 7]A^^^ (tf I it) 

M/(2) (̂  + 1) = W^'^\t) + (AW^^\t) - Ŵ ^̂  {t -1)] + 7]A^^\tfO(t) 
(2.26) 

where 0 < 6ir< 1 and 0 < ;/ < 1 are the momentum constant and learning rate 
in the computation of the weights respectively. 
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In summary, the computation for the whole control system at each time 
instant t can be outlined as follows: 

(1) Sample the plant output y(t) and form the regression vector O(^-l) 
by means of the plant input u(r-l) and output y(/-l) historical data 
sequences, and then form the neural network input vector I(t) by 
means of u(t-\) and y(0 data sequences, 

(2) Predict the next error Fo(.,.) using the trained neural network, 
(3) Estimate the parameters of A(z^) and B(z^) from equations (2.18-

2.19), 
(4) Calculate the controller parameters from equations (2.14), (2.9), 
(5) Generate the controller output u(0 from equation (2.11), 
(6) Produce the next step neural network training input signal vector 

/(r+1), 
(7) Train the neural network for a pre-selected number of epochs using 

equations (2.22-3.26), 
(8) Wait for the sampling clock pulse, then go to step 1. 

3. INDUCTION MOTOR MODELS 

The voltage equations of induction motors in a synchronously rotating 
frame can be expressed according to the general theory of electric machines 
(Krause 1986) as 

'GS 

^ds 

0 

0 

R, + sL, 

-co,L, 

^^m 

r^sl^m 

co^L^ 

R, + sL^ 

^sl^m 

sL^ 

sL^ 

-(^e^m 

R^ + sL^ 

-(^sl^r 

(OeK 

S^m 

(Osl^r 

R^ + sL 

'qs 

^dr, 

(3.1) 

where v̂ ^ is the quadrature-axis (^-axis) stator voltage, v̂^̂  is the direct-axis 
((i-axis) stator voltage, i^s is the ^-axis stator current, i^s is the J-axis stator 
current, iqr is the ^-axis rotor current, idr is the J-axis rotor current, Rs is the 
stator resistance, Rr is the rotor resistance, L̂  is the stator inductance, Lr is 
the rotor inductance, L^ is the magnetising inductance, P is the number of 
poles, cOe is the electrical angular speed and cOs is the slip angular speed. 

The mechanical equations of the induction motor can be of the following 
form 
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Te= — Lm (igs^dr - idJgr ) = J - ^ + ^^r + ^L 
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(3.2) 

where Te is the generated torque, cOr is the rotor angular speed, Ti is the load 
torque, J is the inertia constant and B is the damping ratio. 

Equations (3.1) and (3.2) can be rearranged to yield the following state 
equations 

^ds 

^dr 

_^qr_ 

= 
-CO, 

R, RrJl-CT) 

2oL,L, 

R, 

¥- -(«.-f«.) 

PO^rK 
2oL,L, 

^m^r 

OL.LI 

(0,-^0), 

/?, 
L, 

^ds 

^qs 

^dr 

^qr 

1 
^^s 

^ds 

V 
0 

_o_ 

(3.3) 

and 

^r =-jCO, +1(7, -T,) = -^co, +E.j^(i^^A,,-i,,A^,)-JT, (3.4) 

where (7= 1 - LJ /(LsLr), Agr = L^ iqs + Lr iqr and is the ^-axis rotor flux, and 
Xdr - Lm ids + Lr idr and is the (i-axis rotor flux. 

Let Ji = {Xqr-^Xdr^'^' Here X is the rotor flux amplitude. Define X and cOr 
to be the plant outputs and Vq^, Vds to be control inputs. This is a typical 
MIMO non-linear dynamic system. 

DESIGN AND SIMULATION OF A FIELD-
ORIENTED INDUCTION MOTOR CONTROL 
SYSTEM 

In this study, the neuro optimal self-tuning controller is used to 
implement the field-oriented control of induction motors. The actual 
physical dynamic of an induction motor is significantly non-linear and also 
the physical parameters involved, such as inductance, resistance and load 
torque etc., are most often not precisely known or are time-varying. 



Neural Network Enhanced Optimal Self-tuning Controller 541 

Model structure selection is the first step in designing the control system. 
A de-coupled MIMO linear model is used to approximate the dynamics of 
the induction motors and a BP neural network is used to accommodate the 
errors induced by the MIMO linear model. Therefore the completed model is 
selected as 

(\ + afz-')co,(t + l) = (b^+b^z-')v^,(t) + f^ 

The forgetting factor for recursively estimating the associated parameters 
in this linear model was selected to be 0.98. The error agents/^ and/y are 
obtained by the BP neural network. 

The neural network for predicting the error was set-up with ^/=15, nh=l 
and n=2 for the input layer, hidden layer and output layer respectively. The 
momentum constant is 0.2 and learning rate is 0.05. The network was trained 
twice in each sampling period. The input signal vector to the BP neural 
network was chosen as 

/ = [-1, A(t), A(t -1), A, (0, /i/ (t -1), v ,̂ (r), v ,̂ (t -1), A(t) - A, (r), 

CO, (t), CO, (t -1), CO,I (r), CO,I (t -1), v^, (r), v^, (t -1), co, (t) - co,i (r)] 

where Xi and cOri are the linear model outputs. 

The second step is to design the controller, following the formulations 
presented in section 2.1. The desired closed-loop dynamic polynomial matrix 
T{z'^) is assigned as 

T{z-^) = diag{\-05z~\\-0.5z-^) (4.3) 

As a case study, an induction motor of three phase, delta-connected, four-
pole, 1 Hp, 60 Hz, 220 V is chosen with following parameters 

Rs = 3.20 Q; Rr = 2.349 Q; L, = 0.1294 H; 
L, = 0.1329 H; L^ = 0.1267 H; / = 0.009 kg ml 

A MATLAB script has been developed to test the designed control system. 
The simulation results are shown in Figures 2 to 5. 
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Figure 2 shows the simulated responses of the rotor flux amplitude and 
rotor angular speed to indicate that the flux amplitude is actually affected 
shortly after the rotor angular speed is changed. Figure 3 shows the 
estimated parameters of the linear model using a recursive least squares 
algorithm, which finally converge to the constants. The simulation results 
show that the entire closed loop system is stable with good transient and 
static performance. Figure 4 shows the neural network output versus the 
actual error between linear model and real outputs. Figure 5 shows the 
control inputs Vds and v̂ ^ from which it can be seen that the rotor flux 
amplitude and rotor speed are de-coupled by the proposed control strategy. 
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Figure 2. The simulated output response of the induction motor: vl, v2 are reference inputs 
and y\,y2 are rotor flux amplitude and speed 
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Figure 3. Estimated parameters of linear models by RLS 
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Figure 4, Neural network output and actual error 
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Figure 5. Control input: u\, u2 are Yds and Vqs 

5. CONCLUSIONS 

GO has been a very important concept and the relevant algorithms have been well 
developed. As a case study, this paper takes advantage of GO concept and 
computation algorithms to develop an integrated procedure for control system 
design of induction motor. The methodology shows that (1) exact electrical and 
mechanical models of the induction motor are not necessary, (2) advanced 
knowledge of parameters such as resistance, inductance and load torque is not 
necessary, (3) the correlation among inputs and outputs can be easily de-coupled, (4) 
the system states are not necessarily required as feedback signals, and (5) the use of 
linear time-varying model can effectively relieve the complexity of GO search 
computations, this is a vital consideration in practical real time systems. The 
simulation results show good performances in both the rotor speed following and 
rotor flux amplitude regulation have been achieved. 
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