

Continuous System
Simulation

Continuous System
Simulation

By

François E. Cellier
Ernesto Kofman

1 3

Francois E. Cellier
ETH - Zentrum
Inst. Informatik
HRS G25
8092 ZÜRICH
SWITZERLAND

Ernesto Kofman
Universidad Nacional de Rosario
Laboratory for System Dynamics and Signal Processing
School of Electronic Engineering – FCEIA
Riobamba 245 bis
2000 ROSARIO
ARGENTINA

Continuous System Simulation

Library of Congress Control Number: 2005936516

ISBN 0-387-26102-8 e-ISBN 0-387-30260-3
ISBN 978-0-387-26102-7

Printed on acid-free paper.

 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if the are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

Dedication by first author:

To Ursula, my wife and companion,
for creating an environment,

in which this work could grow.
She is the lighthouse of my life.

and

To Peter Henrici, a teachers’ teacher,
for giving me the tools
to put it all together.

His inspiration has been my guide.

Dedication by second author:

To my parents, Julia and Hugo,
and to my grandmother, Queca,
for their never–ending support.

Preface

The book Continuous System Simulation is the long overdue sequel to the
book Continuous System Modeling that had been published with Springer–
Verlag in 1991.

Whereas the book Continuous System Modeling dealt with the abstrac-
tion from a physical system to its mathematical description, the book Con-
tinuous System Simulation concerns itself with the transition from such a
mathematical description, usually formulated as either a set of ordinary dif-
ferential equations (ODEs) or a set of differential and algebraic equations
(DAEs), to the trajectory behavior.

Consequently, the companion book was essentially a book of theoretical
physics, whereas this book is a book of applied mathematics. It introduces
the concepts behind numerical ODE and DAE solvers, as well as symbolic
preprocessing algorithms that may be used to precondition a model in such
a way as to improve the run–time efficiency of the resulting simulation code.

Why do we need yet another book on numerical ODE solutions? Haven’t
there been written enough books on that topic already? This surely must
be a rather mature field of research by now.

In order to provide an answer to this question, the reader may allow us to
return in time to the mid seventies. In those days, one of the authors of this
book used to be a graduate student of control engineering at ETH Zurich.
As he thought of writing a Ph.D. dissertation concerning the simulation
of continuous systems with heavy discontinuities in the models, a good
research topic at that time, he asked for an appointment with Peter Henrici,
who headed the applied mathematics group at ETH in those years. He told
him about his plans, and asked him, whether he would consent to serve as a
co–advisor on this dissertation. Peter Henrici’s answer was that “he didn’t
know anything about simulation, but would be glad to learn about the
topic from the dissertation.” Yet, the truth was that Peter Henrici already
knew a lot about simulation . . . he only didn’t know that he knew a lot
about this topic.

The problem is that whereas engineers talk about “simulation,” applied
mathematicians write about “numerical ODEs.” While mathematicians
speak of “ODE solvers,” engineers refer to these same tools as “integration
algorithms.” When engineers concern themselves with “discontinuity han-
dling,” mathematicians ponder about “root solvers.” The two communities
don’t read each other’s literature, and have developed not only different
terminologies, but also different mathematical notations.

An engineer is likely to represent a dynamical system in the form of a

state–space model:

ẋ = f(x,u, t); x(t0) = x0

where x(t) is the state vector, u(t) is the input vector, and t is the inde-
pendent variable, always considered to be time.

A mathematician is more likely to write:

y′ = f(x, y)

calling the independent variable x, using a prime symbol instead of the dot
symbol for the derivative, and placing the variables in reverse order. Math-
ematicians rarely worry about distinguishing between scalars and vectors
in the way engineers do, they hardly ever think about input variables, and
they mention initial conditions explicitly only, when they need them for a
particular purpose.

The difference between the two representations is influenced by different
goals. An engineer is eager to specify a complete problem that can be sim-
ulated to generate a specific trajectory behavior, whereas a mathematician
is more inclined to look at the problem from the angle of finding general
solution techniques that will work for all initial conditions.

Other mathematicians even prefer a notation, such as:

x ∈ X ⊂ R; y ∈ Y ⊂ R
n; y′ ∈ Y ′ ⊂ R

n

f : X × Y → Y ′

which looks utterly foreign to most engineers.
This book is written by engineers for engineers. It uses a notation that is

common to engineers, which should make this book much more accessible
to engineers than the average numerical ODE book written by a mathe-
matician for an audience of mathematicians.

Also, most mathematicians consider it “elegant” to write their books as
much as possible in mathematical language: definition, lemma, proof. They
use English prose as sparingly as they can get away with. Also this book
is full of formulae and equations. However, much text is placed in between
these equations, providing plenty of rationale for what these equations are
supposed to mean. In this book, we use mathematical apparatus only for
the purpose of making a statement either more precise or more concise
or both. Mathematical apparatus is never being used as a goal in its own
right.

Yet, although this book caters to engineering and computer science ma-
jors primarily, it should still contain plenty of material of interest to applied
mathematicians as well. It introduces many exciting new algorithms that
were developed by the authors, and that cannot be found elsewhere. It
relies much more on graphical techniques than traditional ODE books do

viii

for illustrating the characteristics of particular algorithms, such as their
numerical stability, accuracy, and damping properties. Some of the known
algorithms were derived in novel, and maybe more elegant, ways than had
been explored before. Finally, the last two chapters of the book revolution-
ize in fundamental ways the manner that numerical ODEs are being looked
at. They offer a paradigm shift opening the door to an entirely new theory
of numerical ODEs that is based on state discretization in place of time
discretization.

The material covered in this book is clearly graduate–level material, even
for a mathematics department. An undergraduate curriculum would hardly
find the space necessary to dealing with numerical ODEs in such depth and
breadth. Yet, the material is presented in a fairly self–contained manner.
Thus, the book can as easily be used for self–study as in a class–room
setting.

In some ways, as happens frequently in science, the book wrote itself in
the end. Material wanted to be written. The authors were driven more by
their own curiosity and inner drive than by conscious design. The story
wanted to get out, and here it is.

When the companion book was written, we thought that this book would
contain three sections: one section on numerical ODEs, one section on pa-
rameter estimation, and one section on simulation in the presence of noise.

Yet, as we were researching the issues surrounding numerical ODEs and
DAEs, each new answer that we found led to at least two new questions that
wanted to be researched, and so, we ended up with a book on numerical
ODEs and DAEs only.

Maybe, one of these days, we may sit down and think once more deep
and hard about the remaining problems: about parameter estimation and
state identification, off–line methods and adaptive algorithms, supervised
and unsupervised learning; and a third volume may emerge, probably just
as broad and deep as this one, probably spread over just as many pages as
the first two volumes were; but for now, we are at peace. We are content
that the story is out. A story, that has kept us in its grip for a dozen
years, has finally been told; and we, the executors of that story, have been
released.

François E. Cellier and Ernesto Kofman
Zurich, Switzerland and Rosario, Argentina

September 2005

ix

About This Book

This text introduces concepts of simulating physical systems that are math-
ematically described by sets of differential and algebraic equations (DAEs).
The book is written for modeling and simulation (M&S) practitioners, who
wish to learn more about the “intestines” of their M&S environments. Mod-
ern physical systems M&S environments are designed to relieve the occa-
sional user from having to understand in detail, what the environment does
to their models. Simulation results appear magically upon execution of the
model.

Magic has its good and its bad sides. On the one hand, it enables us
to separate the discussion of the tasks of modeling from those of simula-
tion. The occasional user of M&S environments may be perfectly happy to
only learn about modeling, leaving the gruesome details of numerical DAE
solvers to the specialist.

Yet, for those among our readers, who are not in the habit of leaving
the railway station through platform 9 3/4, this book may be helpful, as
it explains, in lots of detail, how M&S environments operate. Thanks to
this knowledge, our readers will understand what they need to do, when
the magic fails, i.e., the simulation run is interrupted prematurely with an
error message. They will also be able to understand, why their simulation
program is consuming an unreasonable amount of execution time. Finally,
they will feel more comfortable with the simulation results obtained, as
they understand, how these results have been produced. “Magic” is awfully
difficult to explain to your boss.

The text contains 12 chapters that are unfortunately rather heavily de-
pendent on each other. Thus, reading one chapter of the book, because it
discusses a topic that you are currently interested in, may not get you very
far. Each chapter assumes the knowledge presented in previous chapters.

Chapters 1–4 introduce the concepts of numerical ODEs in a fairly clas-
sical way. After a general introduction to the topics that this book concerns
itself with, presented in Chapter 1, Chapter 2 offers an introduction to the
basic properties of numerical ODE solvers: numerical stability and accu-
racy. These are introduced by means of the two most basic explicit and
implicit ODE solvers to be found: the forward and backward Euler algo-
rithms.

Chapter 3 offers a discussion of single–step integration algorithms. New
concepts introduced include a new stability definition, called F–stability or
faithful stability, denoting algorithms, whose border of numerical stability
coincides with the imaginary axis of the complex eigenvalue plane. Another

new concept introduced is the frequency order star, leading to an attrac-
tive new definition of an accuracy domain. New ODE solvers include the

or L–stable.
Chapter 4 offers a discussion of linear multi–step integration algorithms.

All of these algorithms are derived by means of Newton–Gregory poly-
nomials, which offer a much more elegant way of introducing these algo-
rithms, than those found in most other numerical ODE textbooks. New
ODE solvers introduced in this chapter include a set of higher–order stiffly
stable BDF methods that are based on least squares extrapolation.

Chapters 5 and 6 complete the discussion of numerical ODEs. These
chapters can be skipped without making the subsequent chapters more
difficult to understand.

Chapter 5 discusses special–purpose ODE solvers for second–derivative
models, as they occur naturally in the mathematical description of mechan-
ical systems. This topic has been discussed in the past in a few mechanics
books, but it is hardly ever covered in the numerical ODE literature.

Chapter 6 offers a fairly classical discussion of the method–of–lines ap-
proximation to partial differential equations (PDEs). Thereby PDEs are
converted to sets of ODEs. This topic is not usually covered in the numeri-
cal ODE literature, but has been dealt with in the past in more specialized
textbooks on numerical PDEs. New in this chapter is the derivation of the
formulae for computing spatial derivatives by means of Newton–Gregory
polynomials. Also innovative is the use of Richardson extrapolation meth-
ods, previously introduced in Chapter 3 in their normal context, for the
computation of spatial derivatives.

Chapters 7 and 8 deal with the issues surrounding numerical DAEs.
Chapter 7 concerns itself with the symbolic conversion of sets of DAEs to
sets of ODEs that can subsequently be dealt with numerically using the
techniques introduced in earlier chapters of the book. Chapter 8, on the
other hand, deals with the numerical solution of DAEs without previous
conversion to explicit ODE form.

The symbolic tools presented in Chapter 7 are the result of a collabo-
ration between one of the authors of this book with Hilding Elmqvist of
Dynasim, a Swedish company specialized in the development of modern
physical systems M&S environments, and Martin Otter of the German
Aerospace Center (DLR) in Oberpfaffenhofen, Germany.

The numerical tools presented in Chapter 8 are a bit more classical. Some
of these concepts can be found in the numerical DAE literature. However,
the concepts presented previously in Chapter 7 help in presenting these
algorithms in a clear and easily understandable fashion, which is not true
for much of the existing numerical DAE literature.

We are convinced that the material presented in Chapters 7 and 8 makes
a significant contribution to advancing the maturity of understanding of the
relatively recent research field of numerical DAEs. New in Chapter 8 are

backinterpolation algorithms, which can be designed to be either F–stable

xii

the discussion of inline integration, and the way, in which we deal with the
problem of overdetermined DAEs. The problem of overdetermined DAEs
has only recently been recognized in the numerical DAE literature, and
furthermore, the techniques for tackling them proposed by other authors,
such as Ernst Hairer and Gerhard Wanner, are quite different from ours.

Chapter 9 discusses the problems surrounding the numerical simulation
across discontinuities. This is a topic that both authors of this book were
centrally concerned with in their respective Ph.D. dissertations. Chapter 9
presents the tools and technique developed by the first author, whereas
those used by the second author are postponed to Chapter 12.

Chapter 10 introduces the reader to the problems of performing simula-
tion runs in real time, i.e., synchronizing the numerical ODE solvers with
the real–time clock. Interesting in this context may be the discussion of
the linearly–implicit integration algorithms. More results, and more funda-
mental results concerning real–time simulation are provided in Chapter 12
of the book.

Up to this point, the book follows fairly classical approaches to numerical
ODE, PDE, and DAE solutions. All of the techniques presented discretize
the time axis, and perform the numerical simulation by means of extrap-
olations that are approximations of Taylor–series expansions. All of the
techniques presented are synchronous algorithms, as all differential equa-
tions are simulated synchronously, in step with the temporal discretization.

Chapters 11 and 12 represent a radical departure from these concepts.
In these chapters, the state variables themselves are being discretized. We
call this a spatial discretization instead of a temporal discretization. In con-
trast, the time axis is no longer discretized. Furthermore, these algorithms
proceed asynchronously, i.e., each state variable carries its own simulation
clock that it updates as needed. The simulation engine ensures that the
state variable that is currently the one most behind always gets updated
next. The different state variables communicate with each other by means
of state interpolation.

As these are the last two chapters in the book, they can be skipped with-
out any problem. Yet, these are easily the most interesting chapters in the
entire book, as they revolutionize the way of looking at numerical ODEs,
offer an exciting new theory of numerical stability, and lend themselves to
plenty of fascinating open research questions.

xiii

Acknowledgments

A work of this size and ambition cannot be completed without the help
of numerous individuals. We wish to take this opportunity to thank the
following colleagues of ours for their critical review of and helpful comments
and suggestions concerning aspects of this work:

Pawel Bujakiewicz
Mike Carver
Hilding Elmqvist
Walter Gander
Jürgen Halin
Sergio Junco
Werner Liniger
Hans Olsson
Martin Otter
Hans Schlunegger
Gustaf Söderlind
Michael Vetsch

Their help is highly appreciated.
Of course, 12 years (which is, how long it took us to put it all together) is

a very long time. Meanwhile, both of us experienced several system crashes
that deleted our respective mail files. Thus, we can only hope that we have
not excluded anyone from this list who did contribute to the endeavor, but
if this should have happened nevertheless, we beg these persons’ forgiveness
for not remembering.

We also wish to thank the following of our students, who have con-
tributed, in one form or another, to the work presented in this book:

Chris Beamis
Jürgen Greifeneder
Klaus Hermann
Luoan Hu
Matthias Krebs
Marcelo Lapadula
Robert McBride
Gustavo Migoni
Wes Morgan
Esteban Pagliero
Michael Schweisguth

Miguel Soto
Vicha Treeaporn
Wei Xie

Without the help of these students, we wouldn’t ever have made it.
Finally, we wish to thank our scientific editors at Springer–Verlag, U.S.A.

for not losing their trust in us, in spite of the incredibly long time, it took
us to complete the work. We wore out two of them: Zvi Ruder and Thomas
von Foerster. The work was finally completed under the guidance of Alex
Greene. Thank you guys for your patience and your support of this project.

xvi

Contents

Preface .
About This Book .
Acknowledgments

1 Introduction, Scope, Definitions 1
1.1 Modeling and Simulation: A Circuit Example 1
1.2 Modeling vs. Simulation . 8
1.3 Time and Again . 11
1.4 Simulation as a Problem Solving Tool 14
1.5 Simulation Software: Today and Tomorrow 15
1.6 Summary . 18
1.7 References . 19
1.8 Homework Problems . 21
1.9 Projects . 24

2 Basic Principles of Numerical Integration 25
2.1 Introduction . 25
2.2 The Approximation Accuracy 26
2.3 Euler Integration . 31
2.4 The Domain of Numerical Stability 34
2.5 The Newton Iteration . 42
2.6 Semi–analytic Algorithms 46
2.7 Spectral Algorithms . 48
2.8 Summary . 48
2.9 References . 50
2.10 Bibliography . 52
2.11 Homework Problems . 53
2.12 Projects . 56
2.13 Research . 56

3 Single–step Integration Methods 57
3.1 Introduction . 57
3.2 Runge–Kutta Algorithms 59
3.3 Stability Domains of RK Algorithms 65
3.4 Stiff Systems . 67
3.5 Extrapolation Techniques 69
3.6 Marginally Stable Systems 73
3.7 Backinterpolation Methods 76

vii
xi

. xv

3.8 Accuracy Considerations 84
3.9 Step–size and Order Control 101
3.10 Summary . 106
3.11 References . 107
3.12 Homework Problems . 109
3.13 Projects . 116
3.14 Research . 116

4 Multi–step Integration Methods 117
4.1 Introduction . 117
4.2 Newton–Gregory Polynomials 118
4.3 Numerical Integration Through Polynomial Extrapolation . 121
4.4 Explicit Adams–Bashforth Formulae 122
4.5 Implicit Adams–Moulton Formulae 125
4.6 Adams–Bashforth–Moulton Predictor–Corrector Formulae 127
4.7 Backward Difference Formulae 128
4.8 Nyström and Milne Algorithms 131
4.9 In Search for Stiffly–stable Methods 133
4.10 High–order Backward Difference Formulae 142
4.11 Newton Iteration . 147
4.12 Step–size and Order Control 150
4.13 The Startup Problem . 154
4.14 The Readout Problem . 156
4.15 Summary . 156
4.16 References . 158
4.17 Homework Problems . 159
4.18 Projects . 163
4.19 Research . 163

5 Second Derivative Systems 165
5.1 Introduction . 165
5.2 Conversion of Second–derivative Models to State–space Form168
5.3 Velocity–free Models . 168
5.4 Linear Velocity Models . 170
5.5 Nonlinear Velocity Models 171
5.6 Stability and Damping of Godunov Scheme 172
5.7 Explicit and Implicit Godunov Algorithms of Different Orders175
5.8 The Newmark Algorithm 179
5.9 Summary . 182
5.10 References . 183
5.11 Bibliography . 184
5.12 Homework Problems . 184
5.13 Projects . 188
5.14 Research . 189

xviii

6 Partial Differential Equations 191
6.1 Introduction . 191
6.2 The Method of Lines . 192
6.3 Parabolic PDEs . 198
6.4 Hyperbolic PDEs . 211
6.5 Shock Waves . 219
6.6 Upwind Discretization . 228
6.7 Grid–width Control . 230
6.8 PDEs in Multiple Space Dimensions 231
6.9 Elliptic PDEs and Invariant Embedding 233
6.10 Finite Element Approximations 236
6.11 Summary . 237
6.12 References . 241
6.13 Bibliography . 243
6.14 Homework Problems . 244
6.15 Projects . 251
6.16 Research . 251

7 Differential Algebraic Equations 253
7.1 Introduction . 253
7.2 Causalization of Equations 256
7.3 Algebraic Loops . 259
7.4 The Tearing Algorithm . 263
7.5 The Relaxation Algorithm 271
7.6 Structural Singularities . 277
7.7 Structural Singularity Elimination 281
7.8 The Solvability Issue . 297
7.9 Summary . 308
7.10 References . 308
7.11 Homework Problems . 310
7.12 Projects . 316
7.13 Research . 317

8 Differential Algebraic Equation Solvers 319
8.1 Introduction . 319
8.2 Multi–step Formulae . 322
8.3 Single–step Formulae . 332
8.4 DASSL . 337
8.5 Inline Integration . 341
8.6 Inlining Implicit Runge–Kutta Algorithms 353
8.7 Stiffly Stable Step–size Control of Radau IIA 355
8.8 Stiffly Stable Step–size Control of Lobatto IIIC 360
8.9 Inlining Partial Differential Equations 362
8.10 Overdetermined DAEs . 368
8.11 Electronic Circuit Simulators 377

xix

8.12 Multibody System Dynamics Simulators 382
8.13 Chemical Process Dynamics Simulators 384
8.14 Summary . 386
8.15 References . 387
8.16 Bibliography . 390
8.17 Homework Problems . 391
8.18 Projects . 394
8.19 Research . 396

9 Simulation of Discontinuous Systems 397
9.1 Introduction . 397
9.2 Basic Difficulties . 399
9.3 Time Events . 407
9.4 Simulation of Sampled–data Systems 409
9.5 State Events . 411

9.5.1 Multiple Zero Crossings 412
9.5.2 Single Zero Crossings, Single–step Algorithms 414
9.5.3 Single Zero Crossings, Multi–step Algorithms 419
9.5.4 Non–essential State Events 420

9.6 Consistent Initial Conditions 421
9.7 Object–oriented Descriptions of Discontinuities 425

9.7.1 The Computational Causality of if–Statements . . . 427
9.7.2 Multi–valued Functions 429

9.8 The Switch Equation . 430
9.9 Ideal Diodes and Parameterized Curve Descriptions 433
9.10 Variable Structure Models 439
9.11 Mixed–mode Integration 443
9.12 State Transition Diagrams 447
9.13 Petri Nets . 454
9.14 Summary . 459
9.15 References . 460
9.16 Bibliography . 462
9.17 Homework Problems . 463
9.18 Projects . 470
9.19 Research . 475

10 Real–time Simulation 479
10.1 Introduction . 479
10.2 The Race Against Time . 482
10.3 Suitable Numerical Integration Methods 483
10.4 Linearly Implicit Methods 486
10.5 Multi–rate Integration . 489
10.6 Inline Integration . 492
10.7 Mixed–mode Integration 495
10.8 Discontinuous Systems . 497

xx

10.9 Simulation Architecture . 499
10.10 Overruns . 500
10.11 Summary . 501
10.12 References . 502
10.13 Bibliography . 507
10.14 Homework Problems . 507
10.15 Projects . 516
10.16 Research . 518

11 Discrete Event Simulation 519
11.1 Introduction . 519
11.2 Space Discretization: A Simple Example 521
11.3 Discrete Event Systems and DEVS 524
11.4 Coupled DEVS Models . 529
11.5 Simulation of DEVS Models 531
11.6 DEVS and Continuous System Simulation 535
11.7 Quantized State Systems 542
11.8 Summary . 548
11.9 References . 549
11.10 Bibliography . 550
11.11 Homework Problems . 551
11.12 Projects . 553

12 Quantization–based Integration 555
12.1 Introduction . 555
12.2 Convergence, Accuracy, and Stability in QSS 558
12.3 Choosing Quantum and Hysteresis Width 562
12.4 Input Signals in the QSS Method 564
12.5 Startup and Output Interpolation 568
12.6 Second–order QSS . 570
12.7 Algebraic Loops in QSS Methods 582
12.8 DAE Simulation with QSS Methods 588
12.9 Discontinuity Handling . 595
12.10 Real–time Simulation . 609
12.11 Open Problems in Quantization–based Methods 615
12.12 Summary . 623
12.13 References . 624
12.14 Bibliography . 625
12.15 Homework Problems . 626
12.16 Projects . 628
12.17 Research . 629

Index 631

Author Index 639

xxi

1

Introduction, Scope,
Definitions

Preview

The purpose of this chapter is to provide a framework for what this book
is to cover. Which are the types of questions that it aspires to answer, and
what are the kinds of knowledge that you, the reader, can expect to gain by
working through the material presented in this book? What are the rela-
tions between real physical systems and their mathematical models? What
are the characteristics of mathematical descriptions of physical systems?
We shall then talk about simulation as a problem solving tool, and finally,
we shall offer a classification of the basic characteristics of simulation soft-
ware systems.

1.1 Modeling and Simulation: A Circuit Example

Let us begin by modeling a simple electrical circuit. The circuit diagram of
this circuit is provided in Fig.1.1.

U
0
=

1
0

R=20

C
=

1
.0

e
-6

L
=

0
.0

0
1
5

Ground

R
=

1
0

0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 1.1. Circuit diagram of electrical RLC circuit.

2 Chapter 1. Introduction, Scope, Definitions

Figure 1.1 was produced using Dymola [1.11, 1.13], which is currently
the most advanced among all of the commercially available physical sys-
tem modeling and simulation environments. The circuit diagram of Fig.1.1
is a mathematical model that can be used to simulate the circuit. It was
composed by dragging icons from the graphical electrical component li-
brary into the graphical modeling window, dropping them there, and in-
terconnecting them graphically. Associated with each of the icons is the
mathematical description of the properties of that particular component
model.

The diagram was then edited using a graphical editor to remove the nu-
merical values of the components, and to add names and directions for all
currents and voltages. Dymola creates its own names and direction conven-
tions, but does not show them on the circuit diagram using the standard
graphical electrical circuit library (this could be changed easily by modify-
ing the component definitions in the library accordingly).

What does Dymola do with the graphical model of the circuit? The model
is first captured in an alphanumerical form using a modeling language called
Modelica [1.21]. In the process of compiling the model, the Dymola model
compiler performs a lot of symbolic preprocessing on the original mathe-
matical representation. We shall learn more about the symbolic formulae
manipulation algorithms that Dymola employs in later chapters of this
book. Once a suitable simulation model has been derived, it is translated
into a C program that then gets compiled further. The compiled model
is then simulated by making calls to the numerical run–time library that
forms part of the overall Dymola modeling and simulation environment.

What if we were to use a professional circuit simulator, such as PSpice
[1.19], instead of the more general Dymola software? Modern versions of
Spice also offer a Graphical user Interface (GUI), usually called a schematic
capture program [1.17] in the context of circuit simulation. In the case of
Spice, the circuit diagram is captured alphanumerically in the form of a
so–called netlist. In older versions of Spice, the netlist constituted the user
interface, just like older versions of Dymola used a language similar to
Modelica as the input language for the description of models.

For the given circuit, the netlist could take the following form:

V in 1 0 DC 10Volts
R1 1 2 00Ohms
R2 2 0 20Ohms
C 2 0 1uF
L 1 0 1.5mH
.END

Spice, contrary to Dymola, performs hardly any symbolic preprocessing.
The netlist is parsed at the beginning of the simulation, and the informa-
tion contained in it is stored internally in a data structure that is then
interpreted at run time.

1.1 Modeling and Simulation: A Circuit Example 3

How about using MATLAB [1.15] to simulate this circuit? MATLAB
is of particular interest to us, since it is a wonderful language to describe
algorithms in, and since this book is all about algorithms, we shall use
MATLAB exclusively in this book for the documentation of these algo-
rithms, as well as for the homework problems that accompany each of the
chapters.

MATLAB is not geared toward simulation at all. It is a general purpose
programming language supporting high–level data structures that are par-
ticularly powerful for the description of algorithms. Since MATLAB wasn’t
designed to support modeling and simulation, the user will have to perform
considerably more work manually, before the circuit description can be fed
into MATLAB for the purpose of simulation.

As the circuit contains five separate components in five distinct branches
of the circuit, the dynamics of this circuits can be described by 10 variables,
namely the five voltages across each of the branches, and the five currents
flowing through them. Hence we shall need 10 separate and mutually in-
dependent equations to describe the model dynamics in terms of these
variables.

The 10 equations can be read out of the circuit diagram easily. Five of
them are the constitutive equations of the circuit components, relating the
voltage across and the current through each of the branches to each other:

u0 = 10 (1.1a)
u1 − R1 · i1 = 0 (1.1b)
u2 − R2 · i2 = 0 (1.1c)

iC − C · duC

dt
= 0 (1.1d)

uL − L · diL
dt

= 0 (1.1e)

Three additional equations can be obtained by applying Kirchhoff’s Volt-
age Law (KVL) to the circuit, which states that the voltages around a mesh
must add up to zero. These are therefore often called the mesh equations.

u0 − u1 − uC = 0 (1.2a)
uL − u1 − u2 = 0 (1.2b)

uC − u2 = 0 (1.2c)

The final two equations can be obtained by applying Kirchhoff’s Current
Law (KCL) to the circuit, which states that the currents flowing into a node
must add up to zero. These are therefore often called the node equations.
One of the node equations is always redundant, i.e., not linearly indepen-
dent, and must therefore be omitted. It has become customary to omit the

4 Chapter 1. Introduction, Scope, Definitions

node equation of the ground node. The two remaining node equations can
be written as:

i0 − i1 − iL = 0 (1.3a)
i1 − i2 − iC = 0 (1.3b)

These 10 equations together form another equivalent mathematical de-
scription of the circuit. They consist of a set of implicitly described partly
algebraic and partly differential equations. We call this mathematical de-
scription an implicit differential and algebraic equation (DAE) model.

We can make the model explicit by deciding, which variable to solve
for in each of the equations, and by arranging the equations in such a
manner that no variable is being used before it has been defined. We call
this the process of horizontally and vertically sorting the set of equations.
In Chapter 7 of this book, you shall learn how equations can be sorted
algorithmically. For now, let us simply present one possible solution to the
sorting process.

u0 = 10 (1.4a)
u2 = uC (1.4b)

i2 =
1

R2
· u2 (1.4c)

u1 = u0 − uC (1.4d)

i1 =
1

R1
· u1 (1.4e)

uL = u1 + u2 (1.4f)
iC = i1 − i2 (1.4g)

diL
dt

=
1
L

· uL (1.4h)

duC

dt
=

1
C

· iC (1.4i)

i0 = i1 + iL (1.4j)

In this model, the equal signs have assumed the role of assignments rather
than equalities, which was the case with the previous model. Each unknown
appears exactly once to the left of the equal sign, and all variables used in
the expressions of the right hand sides have been assigned values, before
they are being used.

Notice that the variables uC and iL are not treated as unknowns. Since
they are the outputs of integrators, they are computed by the integration
algorithm used in the simulation, and don’t need to be computed by the
model. Such variables are referred to as state variables in the literature.

1.1 Modeling and Simulation: A Circuit Example 5

We are still confronted with a mixture of algebraic and differential equa-
tions, but the model has now become explicit. We call this an explicit DAE
model.

Sometimes, the explicit DAE model is also called simulation model, since
the traditional simulation languages, such as ACSL [1.18], were able to deal
with this type of mathematical description directly.

Although MATLAB can deal with simulation models, this is still not the
preferred form to be used when simulating linear systems with MATLAB.

We can now plug the explicit equations into each other, substituting
the unknowns on the right hand side by the expressions defining these un-
knowns, until we end up with equations for the variables duC/dt and diL/dt,
the so–called state derivatives, that depend only on the state variables, uC

and iL, as well as the input variable, u0. These equations are:

duC

dt
= − R1 + R2

R1 · R2 · C · uC +
1

R1 · C · u0 (1.5a)

diL
dt

=
1
L

· u0 (1.5b)

We can add one or several output equations for those variables that we wish
to plot as simulation results. Let i2 be our output variable. We can obtain
an equation for i2 that depends only on state variables and input variables
in the same fashion:

i2 =
1

R2
· uC (1.6)

This mathematical representation is called an explicit ordinary differen-
tial equation (ODE) model. In the control literature, it is usually referred
to as the state–space model.

If the state–space model is linear, as in the given case, it can be written
in a matrix–vector form:

⎛
⎝duC

dt

diL

dt

⎞
⎠ =

⎛
⎝− R1+R2

R1·R2·C 0

0 0

⎞
⎠ ·
⎛
⎝uC

iL

⎞
⎠+

⎛
⎝ 1

R1·C

1
L

⎞
⎠ · u0 (1.7a)

i2 =
(

1
R2

0
) ·
⎛
⎝uC

iL

⎞
⎠ (1.7b)

This model finally is in an appropriate form for feeding it into MATLAB.
The following MATLAB code may be used to simulate the circuit:

6 Chapter 1. Introduction, Scope, Definitions

% Enter parameter values
%
R1 = 100;
R2 = 20;
L = 0.0015;
C = 1e-6;
%
% Generate system matrices
%
R1C = 1/(R1 ∗ C);

R2C = 1/(R2 ∗ C);
a11 = −(R1C + R2C);
A = [a11 , 0 ; 0 , 0];
b = [R1C ; 1/L];
c = [1/R2 , 0];
d = 0;
%
% Make a system and simulate
%
S = ss(A, b, c, d);
t = [0 : 1e-6 : 1e-4];
u = 10 ∗ ones(size(t));
x0 = zeros(2, 1);
y = lsim(S, u, t, x0);
%
% Plot the results
%
subplot(2, 1, 1)
plot(t, y, ′k − ′)
grid on
title(′\tex{Electrical RLC Circuit}′)
xlabel(′\tex{time}′)
ylabel(′\tex{$i 2$}′)
print −deps fig1 2.eps
return

The simulation results are presented in Fig.1.2.
Clearly, MATLAB employs a considerably lower–level user interface than

either Dymola or PSpice, but maybe that is good, since the purpose of this
book is to teach simulation methods.

Do we now understand more about how the simulation was performed
using MATLAB? Unfortunately, this question must be answered in the
negative. The entire simulation takes place inside the lsim box, which we
haven’t opened yet. The main purpose of this book is to open up the lsim
box, and understand, how it has been built, but more about that later.

To be fair to MATLAB, it must be mentioned that also MATLAB, just
like its competitors, offers a graphical user interface, called SIMULINK
[1.7]. However, SIMULINK is not a schematic capture program. It is only
a block diagram editor.

1.1 Modeling and Simulation: A Circuit Example 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0

0.02

0.04

0.06

0.08

0.1

Electrical RLC Circuit

time

i 2

FIGURE 1.2. Simulation results of electrical RLC circuit.

SIMULINK is thus located at the level of the explicit DAE model. Given
that model, we can start by drawing the two integrator boxes, and then
work ourselves backward toward the input variable, and forward toward
the output variable. The resulting block diagram is shown in Fig.1.3.

-

S1

+1

+1

A1

+

+1

+1

k={1/R1}

G1

-

S2

k={1/L}

G2 I1

I

k={1/C}

G3 I2

I

k={1} k={1/R2}

G4

k={1}

U0 u1

i1
i2

uC

duC

dtiC

uL iL
diL

dt

FIGURE 1.3. Block diagram of electrical RLC circuit.

Figure 1.3 was not drawn using SIMULINK, but instead, we chose to
draw the figure in Dymola, using Dymola’s graphical block diagram library.
We then edited the graph manually by adding the names of the variables
to each of the signals.

What was gained by representing the explicit DAE model graphically as
a block diagram? The only advantage of doing so is that it becomes evident
from the block diagram that the integrator computing the variable iL could
have been pruned away, as it does not contribute at all to computing the
output variable.

Block diagrams are useful tools for representing control systems. They
are not useful, however, for representing electrical circuits.

8 Chapter 1. Introduction, Scope, Definitions

1.2 Modeling vs. Simulation

In the previous section, we have shown a full modeling and simulation cycle,
starting out with a physical system, an electrical RLC circuit, and ending
with the display of the trajectory behavior of the output variable, i2.

The process of modeling concerns itself with the extraction of knowledge
from the physical plant to be simulated, organizing that knowledge appro-
priately, and representing it in some unambiguous fashion. We call the end
product of the modeling cycle the model of the system to be simulated.

The process of simulation concerns itself with performing experiments
on the model to make predictions about how the real system would behave
if these very same experiments were performed on it.

At the University of Arizona, we offer currently two senior/graduate level
classes dealing with the issues of modeling and simulating physical systems.
One of them, Continuous System Modeling, deals with the issues of creating
suitable models of physical systems. For it, the companion book of this
textbook, also entitled Continuous System Modeling [1.6], was developed.
The other, Continuous System Simulation, concerns itself with the issues
of simulating these models accurately and efficiently. For that class, this
textbook has been written.

A question that you, the reader, may already have begun to ask yourself
is the following: Where does modeling end and simulation begin?

In the old days, we might have answered that question in the following
way: Simulation is what is being done by the computer, whereas modeling
concerns the steps that the modeler has to undertake manually in order to
prepare the simulation program.

Yet, this answer is not very satisfactory. We have seen that, when using
MATLAB to simulate the circuit, the modeler had to do much more manual
preprocessing than when using either Dymola or Spice. The answer to the
above question would thus depend on the simulation tool that is being
used. This is not very useful.

A more gratifying answer may be obtained by looking at Fig.1.4.

Physical
System

Mathematical
Model

Simulation
Program

Trajectory
Behavior

Modeling SimulationModel
Compilation

User
Interface Interface

Run-time

FIGURE 1.4. Modeling vs. simulation.

The whole purpose of the mathematical model is to provide the human
user of the modeling and simulation environment with a means to represent
knowledge about the physical system to be simulated in a way that is as
convenient to him or her as possible. Modeling is thus indeed always done
manually. The mathematical model represents the user interface. It has

1.2 Modeling vs. Simulation 9

absolutely nothing to do with considerations of how that model is going to
be used by the simulation engine.

Which is the most appropriate mathematical model of a system to be
simulated depends on the nature of the physical system itself, and maybe
also on the types of experiments that are to be performed on the model.

We have already mentioned that a block diagram may be a suitable tool to
represent the knowledge needed to simulate a control system. It is certainly
not a convenient tool to represent the knowledge needed to simulate an
electrical circuit. A circuit diagram, on the other hand, may be the most
natural way to represent an electrical circuit, as long as the experiment
to be performed on the model does not concern itself with non–electrical
phenomena, such as the heating of the device that results from current
flowing through resistors, and the temperature dissipation of the package,
in which the circuit has been integrated. In that case, a bond graph may
be a much better choice for representing the physical knowledge needed to
simulate the circuit.

The bond graph of the above circuit is shown in Fig.1.5.

U0

e0=10
0 1 0

IL

I=
0.
00
15

R
=
10
0

RR
1

R=20
R
R2

C C C=1
e-
6

SE U0

U0

U0

i0

u1 i1

i1i1 i2

uCuC

uC iCiL

FIGURE 1.5. Bond graph of electrical RLC circuit.

Figure 1.5 was produced using Dymola’s graphical bond graph library
[1.3]. Bond graphs play an important role in the companion book, Contin-
uous System Modeling [1.6], to this text. They are of no concern to this
class, since they are only used to the left of the mathematical model in
Fig.1.4. In this textbook, we do not concern ourselves with issues to the
left of the mathematical model.

Once the mathematical model has been formulated, the modeling and
simulation environment can make use of that model to perform simula-
tions, and produce simulation results. For models as simple as our electrical
circuit, either of the three representations: the circuit diagram, the block
diagram, or the bond graph, can be simulated equally easily, accurately,
and efficiently. The user simply instructs Dymola to simulate the model,
Dymola then performs the necessary model compilations, executes the sim-
ulation run, and prepares the variables in a data base, such that the user
can then pick the output variable(s) he or she is interested in, and plot
them.

Since modeling of a physical system is always done manually, it is evi-

10 Chapter 1. Introduction, Scope, Definitions

dent that we need to offer a class, teaching the students, how to generate
a model of a physical system that is suitable for performing a given set
of experiments on it. Yet, if everything to the right of the mathematical
model in Fig.1.4 can be fully automated, why should an engineering stu-
dent concern him- or herself at all with simulation issues? Why not leave
these issues to the experts, i.e., the applied mathematicians?

Unfortunately, things are not going always as smoothly as in this simple
electrical RLC circuit. It happens more often than not that a simulation
does not produce the desired results the first time around. A user who only
understands modeling and uses the simulation environment as a black box
will most likely be at a total loss as to what went wrong and why, and he or
she will have no inkling as to how the problems can be overcome. In fact,
the more complex the symbolic formulae manipulation algorithms are that
are being employed by the modeling and simulation environment as part of
the model compilation, the less likely it is that an uninformed user of that
environment will be able to make sense out of error messages that result
from mishaps happening at run time, the so–called run–time exceptions.

The main purpose of this class and this textbook are to prepare the
student for anything that the modeling and simulation environment may
throw at him or her. The knowledge provided in this textbook will enable
the simulation practitioner to deal with all eventualities that he or she
may come across in the adventure of simulating a mathematical model
effectively and efficiently.

Let us return once more to Fig.1.4. What does the other interface, the
run–time interface, represent? The purpose of that interface is to define a
simulation model that can be simulated efficiently and accurately.

It was already mentioned that Spice essentially simulates the netlist di-
rectly, whereas Dymola performs a lot of symbolic preprocessing on the
model, i.e., the distance between the mathematical model and the simu-
lation program is very small in Spice, whereas it is impressively wide in
Dymola.

You shall learn in this class that it actually matters, which way we pro-
ceed. The algorithms underlying Spice simulations only work because the
possible structures of an electronic circuit are very well defined and don’t
change much from one circuit to the next. On the other hand, if we were
to simulate how a circuit heats up during simulation, and simultaneously
wanted to simulate how the electrical parameter values (the resistances and
capacitances) change in function of the current device temperature, the
algorithms underlying the Spice simulation, the so–called sparse tableau
equations that are used in a modified nodal analysis, would break down,
because the so modified model would contain additional algebraic loops
that these algorithms could not possibly handle.

Thus, the most appropriate run–time interface is also a function of the
system to be simulated, and possibly of the experiment or set of experi-
ments to be performed on the model. Yet, this interface only concerns itself

1.3 Time and Again 11

with the way, the simulation algorithms work. It has no bearing whatsoever
on how the user represents his or her mathematical model.

In which book are the model compilation issues to be discussed? Since
both interfaces move around, i.e., they are sometimes a little further to
the right, and sometimes a little further to the left, it is important to
look at these issues both from the perspective of a modeler and from that
of a simulation practitioner. Hence there is a certain degree of overlap
and redundance between the two textbooks as far as model compilation
algorithms are concerned. This decision was taken on purpose to allow the
students to take the two classes in any sequence. Neither of them depends
on the knowledge provided in the other.

1.3 Time and Again

In the real world, time simply happens. We can measure it, but we cannot
influence it. Every morning, when we wake up, we have aged by precisely
one day since the previous morning. There is nothing to be done about. If
we are slow, in getting something done, we have to hurry up, as we cannot
slow time down.

In simulation, time does not simply happen. We need to make it hap-
pen. When we simulate a system, it is our duty to manage the simulation
clock, and how effectively we are able to manage the simulation clock will
ultimately decide upon the efficiency of our simulation run.

In the previous two sections of this chapter, we have looked at different
ways for representing a model. At the bottom of the hierarchy, we encoun-
tered the explicit ODE model, which we also called the state–space model.
We simulated a simple electrical RLC circuit, represented as a linear state–
space model, by use of MATLAB, and obtained a trajectory for the output
variable, i2, as a function of time. That output trajectory was depicted
graphically in Fig.1.2.

The trajectory i2(t) seems to be a real–valued function of one real–valued
argument. For any value of t, we can obtain the appropriate value of i2.
Yet, this is only an illusion, created to make us believe that the simulation
is a faithful image of how we perceive the real system to work.

A digital computer has no means of computing numerically any real–
valued function of a real–valued argument. To do so would require an infi-
nite amount of real time. Instead, the time axis in the simulation must be
discretized, such that the total number of discrete time points within the
range of simulated time remains finite, and the simulation must proceed
by jumping from one discrete time point to the next. The coarser we can
choose the discretization in time, the smaller the total number of discrete
time points will be, and consequently, the less work needs to be done in the
simulation to evaluate the model at the output points. The discretization

12 Chapter 1. Introduction, Scope, Definitions

in time directly influences the efficiency of the simulation run.
Consequently, neither of the previously introduced model types can be

simulated directly. Inside the simulation box, the model gets converted once
more by reducing differential equation models to difference equation (ΔE)
models. Thereby, an explicit ODE model is converted to an explicit ΔE
model, whereas an implicit DAE model is converted to an implicit ΔAE
model, etc.

The illusion of a continuous i2(t) curve was created by making the plot
routine connect neighboring data points using a straight–line approxima-
tion. How often do we need to actually compute values of i2? We need to
do so sufficiently often that the straight–line approximation looks smooth
to the naked eye. We call the distance between two neighboring computed
output data points the communication interval. When we simulate a sys-
tem, the simulation software asks us to provide that information to it. In
the MATLAB code, we created a vector:

t = [0 : 1e-6 : 1e-4];

of communication points. It states that we wish to compute the output
variable once every 10−6 seconds up until the final time of 10−4 seconds,
giving us a result vector of 101 data points.

Does this mean that the simulation proceeds at the pace dictated by the
communication grid? Absolutely not. The communication grid was only
created to please the user, such that he or she can enjoy the illusion of a
smoothly looking output variable. The simulation pace, however, is dictated
by the numerical needs of the algorithm. The more accurately we wish to
simulate, the smaller the time steps of the simulation must be chosen.

Thus, the simulation clock can advance either more slowly than the com-
munication clock by allowing multiple simulation steps to occur within a
single communication interval, or it could proceed more rapidly. In the lat-
ter case, the intermediate output points are obtained not by simulation,
but by interpolation. If the interpolation routine can produce an interpo-
lation of the same order of approximation accuracy as the integration, this
is a perfectly valid way of computing output points.

Figure 1.6 depicts the relationship between the different types of time
that we have to deal with in a simulation.

Real
Time

Simulation
Time

Output
Time

Illusion of
Real Time

Discretization Straight-lineInterpolation

Approximation

User
Interface Interface
Run-time

FIGURE 1.6. The different faces of time.

Whereas the communication grid is usually equidistantly spaced, the
simulation grid is not. The step size, h, of the simulation is usually allowed

1.3 Time and Again 13

to adjust itself, such that the accuracy requirements are met. A simulation
user knows how to set the communication interval or sampling rate, ts, but
he or she wouldn’t know how to set the step size, h, of the simulation. Con-
sequently, most simulation software systems will ask the user to specify an
accuracy requirement instead. The integration algorithm uses some formula
to estimate the numerical integration error, and then uses a control scheme
to adjust the step size such that the integration error is kept as large as
possible, while not exceeding the specified maximum error.

Does the simulation clock at least advance monotonously with real time,
i.e., will the time difference, Δt, of the simulation clock between two sub-
sequent evaluations of the model be always positive? Unfortunately, also
this question must usually be answered in the negative for three separate
reasons.

1. The step size, h, is not necessarily identical with the time advance,
Δt, of model evaluations. Many integration algorithms, such as the
famous Runge–Kutta algorithms, which we shall meet in Chapter 3
of this book, perform multiple model evaluations within a single
time step. Thus, each time step, h, contains several micro–steps, Δt,
whereby Δt is not a fixed divider of h. Instead, the simulation clock
may jump back and forth within each individual time step.

2. Even if the integration algorithm used is such that Δt remains pos-
itive at all times, the simulation clock does not necessarily advance
monotonously with real time. There are two types of error–controlled
integration algorithms that differ in the way they handle steps that
exhibit an error estimate that is too large. Optimistic algorithms sim-
ply continue, in spite of the exceeded error tolerance, while reducing
the step size for the subsequent step. In contrast, conservative algo-
rithms reject the step, and repeat it with a smaller step size. Thus,
whenever a step is rejected, the simulation clock in a conservative
algorithm turns back to repeat the step, while not committing the
same error. Wouldn’t it be nice if we could do the same in the real
world?

3. Even if an optimistic algorithm with positive Δt values is being em-
ployed, the simulation clock may still not advance monotonously with
real time. The reason is that integration algorithms cannot integrate
across discontinuities in the model. Thus, if a discontinuity is encoun-
tered somewhere inside an integration step, the step size must be
reduced and the step must be repeated, in order to place the discon-
tinuity in between subsequent steps. These issues shall be discussed
in Chapter 9 of this book.

Hence the flow chart shown in Fig.1.6 is still somewhat oversimplified,
as it does not account for the micro–management of time within a single
integration step.

14 Chapter 1. Introduction, Scope, Definitions

The issues surrounding time management as part of the simulation algo-
rithms shall haunt us throughout the various chapters of this book.

1.4 Simulation as a Problem Solving Tool

Simulation has become the major analysis tool in essentially all of engi-
neering, and much of science. Industry nowadays demands that companies
providing parts for their products ship their parts with simulation models
that can be assembled in just about the same fashion as the real system
is. For example, when you buy these days an all–American car, you may
not want to check too closely what is under the hood, because you may
quickly discover that your car comes equipped with a German engine and
a Japanese transmission.

Car manufacturers these days allow two years from the conception of a
new model, until the first cars roll off the production line. During the first
year, the car itself is designed and its performance is optimized by means
of continuous system simulation; during the second year, the production
process of the car is designed, again involving a lot of simulation, though
mostly of a discrete event nature.

This can only work if the parts come equipped with ready–to–use simu-
lation models that can be plugged together quickly and painlessly. This is
only possible if the modeling methodology in use is object oriented, which
invariably leads to large sets of implicitly defined DAE systems.

To this end, the Modeling and Simulation (M&S) environment must be
able to deal with implicit DAE descriptions, either by simulating such de-
scriptions directly, or by automatically converting them to explicit ODE
descriptions beforehand. The days of 10,000 lines of spaghetti FORTRAN
code to e.g. simulate the flight of a missile, taking into account such gory
details as the seeker and its gyroscopically stabilized platform, as well as
the flopping around of the liquid fuel in the fuel tank, are thus finally over.

Whereas the issues surrounding object–oriented modeling are not the
aim of this book1, issues surrounding the symbolic model transformations
to precondition the simulation code for efficient run–time performance are
being dealt with in later chapters of this textbook.

Modern M&S environments, such as Dymola [1.11, 1.13], are capable of
automatically generating simulation code from an object–oriented mathe-
matical model that runs as efficiently as, if not more efficiently than, the
best among the hand–coded spaghetti simulation programs of the past.
The translation of the model is usually accomplished within seconds of real
time.

1These issues are discussed both extensively and intensively in the companion book
of this text, Continuous System Modeling [1.6].

1.5 Simulation Software: Today and Tomorrow 15

In the past, the life cycle of a simulation program often extended beyond
that of its designer. The engineer who originally designed and wrote the
spaghetti simulation code retired before the program itself had reached
the end of its usefulness. Maintaining these programs, after the original
designer could no longer be consulted, was an absolute nightmare. Also
these days are luckily over.

1.5 Simulation Software: Today and Tomorrow

We published an article with the same title, Simulation Software: Today
and Tomorrow, a little over 20 years ago [1.5], because at that time, we
felt that the earlier article discussing similar topics [1.4] had meanwhile
outlived its usefulness.

Reading through the 1983 paper once more, we recognize and happily
acknowledge how hopelessly outdated that article has meanwhile become.
This discovery is a cause of excitement, not depression, because it shows
us how incredibly active this research area has been over the past 20 years,
and how wonderfully dynamic this research area continues to be to this
day.

Although the principles of object–oriented modeling had been developed
already in the sixties [1.8], Simula 67 had only been designed for discrete
event simulation, not for continuous system simulation, and these concepts
could not easily be carried over to modeling physical systems. The reason
is that, in discrete event simulation, we always know what are the causes,
and which are their effects. In physical system modeling, this is not the
case. The computational causality of physical laws can therefore not be
predetermined, but depends on the particular use of that law. We cannot
conclude whether it is the current flowing through a resistor that causes a
voltage drop, or whether it is the difference between the potentials at the
two ends of the resistor that causes current to flow. Physically, these are
simply two concurrent aspects of one and the same physical phenomenon.
Computationally, we may have to assume at times one position, and at
other times the other.

First attempts at dealing with the problems of physical system modeling
in an object–oriented fashion were developed simultaneously in two sem-
inal Ph.D. dissertations By Elmqvist [1.11] and Runge [1.20]. Whereas
Elmqvist focused his attention on symbolic formulae manipulation as a
tool for preconditioning the model equations to obtain efficiently executing
simulation code, Runge attempted to solve implicit DAE models directly.

Whereas a first prototypical implementation of Dymola had been im-
plemented by Hilding Elmqvist already as part of his Ph.D. dissertation
[1.11], Dymola was not yet capable of dealing with large–scale engineering
models in those days. The code got stuck, as soon as it encountered either

16 Chapter 1. Introduction, Scope, Definitions

an algebraic loop or a structural singularity, which happened invariably in
most large–scale engineering models.

First attempts at tackling the algebraic loop and structural singular-
ity problems in a completely generic fashion were undertaken by Hilding
Elmqvist in 1993 [1.2]. This research was followed up in 1994 by an impor-
tant paper on symbolic tearing methods [1.10]. By 1997, heuristic proce-
dures had been developed to automatically identify a suitable set of tearing
variables. By that time, we finally had available a tool that could reduce, in
a fully automated fashion, any implicit DAE model to explicit ODE form.
We shall talk much more about these algorithms in Chapter 7 of this book.

A first prototype of a Graphical User Interface (GUI) for Dymola was
created by Hilding Elmqvist as early as 1982 [1.12]. The graphical software
HIBLIZ [1.12] had a number of interesting features, yet it was far ahead
of its time, as the computer hardware of those days wasn’t ready yet for
these types of applications. Elmqvist resumed his work on a GUI for Dy-
mola in 1993, which resulted in a very powerful modern graphical software
environment, of which you have already seen some samples earlier in this
chapter.

Elmqvist proved to be one of the most innovative and visionary re-
searchers in M&S methodology and technology of the last quarter of a
century, and his Dynamic Modeling Laboratory, Dymola, has become the
de facto industry standard by now. No other tool on the market comes even
close to Dymola in terms of flexibility and generality of its use.

On the numerical front, progress has been a bit less spectacular. The
4th–order Runge–Kutta algorithms in use today are still the same algo-
rithms that were known and used in 1983. However, the development of
production–grade direct DAE solvers [1.1], a direct outflow of Runge’s
earlier work, fell in this time frame, and stirred quite a bit of excitement
among applied mathematicians.

Furthermore, a lot has happened in terms of the development of better
software aiding the design of new numerical algorithms. MATLAB [1.15]
has become the de facto industry standard for the description of numerical
algorithms. All of the algorithms described in this book are explained in
terms of snippets of MATLAB code, and most of the homework problems
are designed to be solved using MATLAB.

In the same context, the quite impressive advances in the development
of tools for computational algebra deserve to be mentioned as well. Applied
mathematicians like to present the coefficients of their algorithms symboli-
cally as rational expressions, rather than numerically as numbers with many
digits after the dot, because in this way, the numerical accuracy of the al-
gorithm can fully exploit the available mantissa length of the computer on
which the algorithm is being implemented. Tools, such as MAPLE [1.16]
and Mathematica [1.22] have made the design of new algorithms consider-
ably less painful than in the past, and indeed, several errors were recently
discovered using computational algebra tools in a number of numerical al-

1.5 Simulation Software: Today and Tomorrow 17

gorithms that had been around for decades [1.14]. When developing this
book, we made frequent use of MATLAB’s symbolic toolbox, which is based
on MAPLE, to derive correct rational expressions for the coefficients of
new algorithms.

The advent of ever more powerful computer hardware made it possible
to search for new algorithms much more efficiently than in the past. For
example, we could not have developed the higher–order stiffly–stable linear
multi–step methods that are described in Chapter 4 of this book as little
as 10 years ago, since several of the search algorithms used in the process
milled for more than 30 minutes of real time on a 2.5 GHz personal com-
puter, whereas 10 years ago, we had to rely on a 1 MHz VAX computer
for all of our computations.

Finally, the automatic preconditioning of models by means of symbolic
formulae manipulation made it possible to employ highly promising nu-
merical algorithms that could not have been used previously, because they
would have forced the users to manually convert the models in a manner,
which would have been far too cumbersome for them. A good example of
this are the inline integration algorithms [1.9] that are discussed in Chap-
ter 8 of this book.

For these reasons, we expect that a good number of exciting new nu-
merical algorithms will appear in the open literature at a much more rapid
pace over the next few years.

What are tools that are still missing or unsatisfactory in Dymola? A first
issue to be improved is the mechanism, by which run–time exceptions are
reported back to the user. Advanced reverse engineering mechanisms ought
to be put in place to translate run–time exceptions back to terms that are
related to the original model, i.e., terms that the user of the Dymola M&S
environment can understand. Right now, the debugging of Dymola models
can be quite challenging.

A second issue to be looked into concerns Dymola’s way of handling
table–lookup functions. The treatment of tabular functions is unsatisfac-
tory on several counts.

1. If an input variable is provided to the simulation engine in the form
of a table, sampled once per communication interval, Dymola uses
linear interpolation to estimate intermediate values of the input vari-
able. Yet, the simulation engine may simulate the model using a
higher–order algorithm, possibly subdividing the communication in-
terval into several steps. This situation can be remedied easily by use
of the Nordsieck vector approach that is discussed in Chapter 4 of
this book.

2. If the independent variable of a table–lookup function is not time,
but a dependent variable of the model, the situation gets more com-
plicated. Yet, the necessary history information could be traced back
also in this case. Furthermore, the effects of reduced–order numerical

18 Chapter 1. Introduction, Scope, Definitions

approximations of table–lookup functions on the overall simulation
accuracy ought to be properly studied. This has not happened to
date. This could be a nice research topic for a young aspiring applied
mathematician.

3. The treatment of large tables, as currently implemented in Dymola,
is highly inefficient. This is a compiler issue that will need to be
addressed.

4. Large multi–dimensional tables need to be interpolated directly on
the storage medium, rather than loading them into the model, and
manipulating them at compile time. This is not currently the case.
However, the use of Modelica as the underlying alphanumerical model
representation helps in this respect. Modelica is a full–fledged lan-
guage, in which adequate table–lookup mechanisms could easily be
implemented [1.21].

A third and very interesting research issue concerns the automated as-
sembly of models. For example, if we wish to model a chemical reaction
system, we ought to be able to automatically extract the necessary param-
eters and table–lookup functions from the open literature.

How do we go about such modeling issues today? We probably would
use Google to find the missing information on the web. Google has become
the de facto standard for finding the answer to pretty much any question
that we may have. Google has become our most important interface to the
accumulated world knowledge.

Yet in order to use Google effectively, we must first come up with the
right keywords to find the most suitable articles on the web, and it will be
furthermore our task to manually sift through the articles returned to find
what we need.

We foresee the need to automate these two current user interfaces as part
of a future distributed M&S environment. The M&S environment ought to
be able to automatically query a distributed data base for the availability
of entire models, model parameter values, and table–lookup functions. This
demand could provide challenging and exciting research topics for several
Ph.D. students of computer science.

1.6 Summary

In this chapter, we started out with a set of different ways how a mathe-
matical model of a physical system can be formulated. We demonstrated
that it is important to distinguish the mathematical model (the user inter-
face) from the simulation program (the run–time interface), such that the
mathematical model can be defined to maximize the convenience for the

1.7 References 19

human user of the tool, whereas the simulation program can be defined to
optimize run–time efficiency of the simulation code.

We looked at the important issue of time management during execu-
tion of a continuous system simulation program with a bird’s eye’s view.
Whereas all of these issues will be revisited throughout the chapters of this
book, we considered it useful to bring these issues to the reader’s attention
early on.

The chapter ended with a discussion of where we stand today in terms
of modeling and simulation environments, and what additional features we
expect will be required in the near future.

1.7 References

[1.1] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial–Value Problems in Differential–Algebraic
Equations. North–Holland, New York, 1989. 256p.

[1.2] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation Supports Object–oriented Continuous System Modeling.
IEEE Control Systems, 13(2):28–38, 1993.

[1.3] François E. Cellier and Robert T. McBride. Object–oriented Model-
ing of Complex Physical Systems Using the Dymola Bond–graph Li-
brary. In François E. Cellier and José J. Granda, editors, Proceedings
of the 2003 SCS Intl. Conf. on Bond Graph Modeling and Simula-
tion, pages 157–162, Orlando, Fl., 2003. The Society for Modeling and
Simulation International.

[1.4] François E. Cellier. Continuous System Simulation by Use of Digital
Computers: A State–of–the–Art Survey and Perspectives for Devel-
opment. In Mohamed H. Hamza, editor, Proceedings Simulation’75,
pages 18–25, Zurich, Switzerland, 1975. ACTA Press.

[1.5] François E. Cellier. Simulation Software: Today and Tomorrow.
In Jacques Burger and Yvon Varny, editors, Proceedings of the
IMACS Symposium on Simulation in Engineering Sciences, pages 3–
19, Nantes, France, 1983. North–Holland Publishing.

[1.6] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[1.7] James B. Dabney and Thomas L. Harman. Mastering SIMULINK
4. Prentice–Hall, Upper Saddle River, N.J., 2001. 432p.

[1.8] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard. Simula
67 Common Base Language. Technical report, Norwegian Computing
Center, Oslo, Norway, 1968.

20 Chapter 1. Introduction, Scope, Definitions

[1.9] Hilding Elmqvist, Martin Otter, and François E. Cellier. Inline
Integration: A New Mixed Symbolic/Numeric Approach for Solving
Differential–Algebraic Equation Systems. In Proceedings European
Simulation Multiconference, pages xxiii–xxxiv, Prague, Czech Repub-
lic, 1995.

[1.10] Hilding Elmqvist and Martin Otter. Methods for Tearing Systems
of Equations in Object–oriented Modeling. In Proceedings European
Simulation Multiconference, pages 326–332, Barcelona, Spain, 1994.

[1.11] Hilding Elmqvist. A Structured Model Language for Large Continu-
ous Systems. PhD thesis, Dept. of Automatic Control, Lund Institute
of Technology, Lund, Sweden, 1978.

[1.12] Hilding Elmqvist. A Graphical Approach to Documentation and Im-
plementation of Control Systems. In Proceedings 3rd IFAC/IFIP Sym-
posium on Software for Computer Control (SOCOCO’82), Madrid,
Spain, 1982.

[1.13] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den, 2004.

[1.14] Walter Gander and Dominik Gruntz. Derivation of Numerical
Methods Using Computer Algebra. SIAM Review, 41(3):577–593,
1999.

[1.15] Duane Hanselman and Bruce Littlefield. Mastering MATLAB 6.
Prentice–Hall, Upper Saddle River, N.J., 2001. 832p.

[1.16] André Heck. Introduction to Maple. Springer Verlag, New York, 2nd

edition, 1996. 525p.

[1.17] Marc E. Herniter. Schematic Capture with Cadence PSpice.
Prentice–Hall, Upper Saddle River, N.J., 2nd edition, 2002. 656p.

[1.18] Edward E. L. Mitchell and Joseph S. Gauthier. ACSL: Advanced
Continuous Simulation Language — User Guide and Reference Man-
ual. Mitchell & Gauthier Assoc., Concord, Mass., 1991.

[1.19] Franz Monssen. OrCAD PSpice with Circuit Analysis. Prentice–
Hall, Upper Saddle River, N.J., 3rd edition, 2001. 400p.

[1.20] Thomas F. Runge. A Universal Language for Continuous Network
Simulation. PhD thesis, Dept. of Computer Science, University of
Illinois, Urbana–Champaign, Ill., 1977.

[1.21] Michael M. Tiller. Introduction to Physical Modeling with Modelica.
Kluwer Academic Publishers, Boston, Mass., 2001. 368p.

1.8 Homework Problems 21

[1.22] Stephen Wolfram. The Mathematica Book. Wolfram Media, Inc,
Champaign, Ill., 5th edition, 2003. 1488p.

1.8 Homework Problems

[H1.1] Different Mathematical Models

Given the electrical circuit shown in Fig.H1.1a.

R=100

R1

C
=

1
e

-6

C

R=100

R2

R
=

2
0

R
3

L=0.01

L

u
0

=
1

0

i4 = 4·u3

u1

i1 i2

u2

u3

i3iC u4

i4

iL

uL

u0

i0

i4

FIGURE H1.1a. Electrical circuit.

The circuit contains a constant voltage source, u0, and a dependent cur-
rent source, i4, that depends on the voltage across the capacitor, C, and
the resistor, R3.

Write down the element equations for the seven circuit elements. Since
the voltage u3 is common to two circuit elements, these equations contain
13 rather than 14 unknowns. Add the voltage equations for the three meshes
and the current equations for three of the four nodes. One current equation
is redundant. Usually, the current equation for the ground node is therefore
omitted.

Formulate an implicit DAE model of this circuit by placing all unknowns
to the left of the equal sign, and all known expressions to the right of the
equal sign.

Sort the equations both horizontally and vertically. Since you haven’t
learnt yet a systematic algorithm for doing this (such an algorithm shall
be presented in Chapter 7 of this book), use intuition to come up with the
sorted set of equations.

Formulate an explicit DAE model of this circuit using the sorted equa-
tions.

22 Chapter 1. Introduction, Scope, Definitions

Use variable substitution to derive a state–space model of this circuit in
matrix–vector form. We shall assume that u3 is our output variable.

Simulate the circuit across 50 μsec using MATLAB’s lsim function. Store
101 equidistantly spaced output values, and plot the output variable as a
function of time.

[H1.2] Discretization of State Equations

Given the following explicit ODE model:

ẋ = A · x + b · u (H1.2a)
y = c′ · x + d · u (H1.2b)

where:

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−2 −3 −4 −5

⎞
⎟⎟⎠ (H1.2c)

b =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ (H1.2d)

c′ =
(
1 0 0 0

)
(H1.2e)

d = 10 (H1.2f)

Engineers would usually call such a model a linear single–input, single–
output (SISO) continuous–time state–space model.

We wish to simulate this model using the following integration algorithm:

xk+1 = xk + h · ẋk (H1.2g)

which is known as the Forward Euler (FE) integration algorithm. If xk

denotes the state vector at time t∗:

xk = x(t)
∣∣∣∣
t=t∗

(H1.2h)

then xk+1 represents the state vector one time step later:

xk+1 = x(t)
∣∣∣∣
t=t∗+h

(H1.2i)

1.8 Homework Problems 23

Obtain an explicit ΔE model by substituting the state equations into
the integrator equations. You obtain a model of the type:

xk+1 = F · xk + g · uk (H1.2j)
yk = h′ · xk + i · uk (H1.2k)

which engineers would normally call a linear single–input, single–output
(SISO) discrete–time state–space model.

Let h = 0.01 sec, tf = 5 sec, u(t) = 5 · sin(2t), x0 = ones(4, 1), where tf
denotes the final time of the simulation.

Simulate the ΔE model using MATLAB by iterating over the difference
equations. Plot the output variable as a function of time.

[H1.3] Time Reversal

Given a state–space model of the form:

ẋ(t) = f(x(t),u(t), t) ; x(t = t0) = x0 ; t ∈ [t0, tf] (H1.3a)

which generates the trajectory behavior x(t).
The state–space model:

ẏ(τ) = −f(y(τ),u(τ), τ) ; y(τ = tf) = xf ; τ ∈ [tf , t0] (H1.3b)

generates the trajectory behavior y(τ).
Show that:

y(τ) = x(t0 + tf − t) (H1.3c)

In other words, any state–space model can be simulated backward through
time by simply placing a minus sign in front of every state equation.

[H1.4] Van–der–Pol Oscillator and Time Reversal

Given the following nonlinear system:

ẍ − μ(1 − x2)ẋ + x = 0 (H1.4a)

This system exhibits an oscillatory behavior. It is commonly referred
to as the Van–der–Pol oscillator. We wish to simulate this system with
μ = 2.0 and x0 = ẋ0 = 0.1.

Draw a block diagram of this system. The output variable is x. The
system is autonomous, i.e., it doesn’t have an input variable.

Derive a state–space description of this system. To this end, choose the
outputs of the two integrators as your two state variables.

Simulate the system across 2 sec of simulated time. Since the system is
nonlinear, you cannot use MATLAB’s lsim function. Use function ode45
instead.

24 Chapter 1. Introduction, Scope, Definitions

At time t = 2.0 sec, apply the time reversal algorithm, and simulate
the system further across another 2 sec of simulated time. This is best
accomplished by adjusting the model such that it contains a factor c in
front of each state equation. c = +1 during the first 2 sec of simulated
time, and c = −1 thereafter. You can interpret c as an input variable to
the model. Make sure that t = 2.0 sec defines an output point.

As you simulate the system backward through time for the same time
period that you previously used to simulate the system forward through
time, the final values of your two state variables ought to be identical to
the initial values except for numerical inaccuracies of the simulation. Verify
that this is indeed the case. How large is the accumulated error of the final
values? The accumulated simulation error is defined as the norm of the
difference between final and initial values.

Plot x(t) and ẋ(t) on the same graph.
Repeat the previous experiment, this time simulating the system forward

during 20 sec of simulated time, then backward through another 20 sec of
simulated time. What do you conclude?

1.9 Projects

[P1.1] Definitions

Get a number of simulation and/or system theory textbooks from your
library and compile a list of definitions of “What is a System”? Write a
term paper in which these definitions are critically reviewed and classified.
(Such a compilation has actually been published once.)

2

Basic Principles of Numerical
Integration

Preview

In this chapter, we shall discuss some basic ideas behind the algorithms
that are used to numerically solve sets of ordinary differential equations
specified by means of a state–space model. Following a brief introduction
into the concept of numerical extrapolation that is at the heart of all nu-
merical integration techniques, and after analyzing the types of numerical
errors that all these algorithms are destined to exhibit, the two most basic
algorithms, Forward Euler (FE) and Backward Euler (BE), are introduced,
and the fundamental differences between explicit and implicit integration
schemes are demonstrated by means of these two algorithms.

The reader is then introduced to the concept of numerical stability as op-
posed to analytical stability. The numerical stability domain is introduced
as a tool to characterize an integration algorithm, and a general proce-
dure to find the numerical stability domain of any integration scheme is
presented. The numerical stability domain of an integration method is a
convenient tool to assess some of its most important numerical character-
istics.

2.1 Introduction

Given a state–space model of the form:

ẋ(t) = f(x(t),u(t), t) (2.1)

where x is the state vector, u is the input vector, and t represents time,
with a set of initial conditions:

x(t = t0) = x0 (2.2)

Let xi(t) represent the ith state trajectory as a function of simulated time,
t. As long as the state–space model does not contain any discontinuities in
either fi(x,u, t) or any of its derivatives, xi(t) is itself a continuous function
of time. Such function can be approximated with any desired precision by
a Taylor–Series expansion about any given point along its trajectory, as
long as the function does not exhibit a finite escape time, i.e., approaches

26 Chapter 2. Basic Principles of Numerical Integration

infinity for any finite value of time. Let t∗ denote the point in time, about
which we wish to approximate the trajectory using a Taylor Series, and let
t∗+h be the point in time, at which we wish to evaluate the approximation.
The value of the trajectory at that point can then be given as follows:

xi(t∗ + h) = xi(t∗) +
dxi(t∗)

dt
· h +

d2xi(t∗)
dt2

· h2

2!
+ . . . (2.3)

Plugging the state–space model into (2.3), we find:

xi(t∗ + h) = xi(t∗) + fi(t∗) · h +
dfi(t∗)

dt
· h2

2!
+ . . . (2.4)

Different integration algorithms vary in how they approximate the higher
state derivatives, and in the number of terms of the Taylor–Series expansion
that they consider in the approximation.

2.2 The Approximation Accuracy

Evidently, the accuracy with which the higher order derivatives are approx-
imated should match the number of terms of the Series that are considered.
If n + 1 terms of the Taylor Series are considered, the approximation accu-
racy of the second state derivative d2xi(t∗)/dt2 = dfi(t∗)/dt should be of
order n−2, since this factor is multiplied with h2. The accuracy of the third
state derivative should be of order n−3, since this factor is multiplied with
h3, etc. In this way, the approximation is correct up to hn. n is therefore
called the approximation order of the integration method, or, more simply,
the integration method is said to be of nth order.

The approximation error that is made because of the truncation of the
Taylor Series after a finite number of terms is called truncation error. The
truncation error contains terms in hn+1, hn+2, etc. It does not contain any
terms in powers of h smaller than n + 1. However, since the magnitude
of the remaining terms usually decreases rapidly with increasing powers
of h, the truncation error itself is often approximated by a single term,
namely the term in hn+1. In order to be able to assess the accuracy of the
numerical integration, it is essential to be aware of this term. Therefore,
many numerical integration codes actually estimate this term, and use this
information for such purposes as step–size control.

The higher the approximation order of a method, the more accurate will
be the estimation of xi(t∗ + h). Consequently, when using a high–order
method, we can afford to integrate with a large step size. On the other
hand, the smaller the step size that we employ, the faster decreases the
importance of the higher–order terms in the Taylor Series, and therefore,
when using a small step size, we can afford to truncate the Taylor Series
early.

2.2 The Approximation Accuracy 27

The cost of integrating a state–space model across a single integration
step depends heavily on the order of the method in use. High–order algo-
rithms are much more expensive than low–order methods in this respect.
However, this cost may be offset by the fact that we can use a much larger
step size, and therefore require a considerably smaller overall number of
integration steps to complete the simulation run. We have therefore always
a choice between employing a low–order algorithm with a small step size in-
tegrating the system over many such steps, or using a high–order algorithm
with a large step size integrating the system over much fewer steps.

Which of these choices is more economical in a given situation, depends
on various factors. However, for now, the following simple rule of thumb
may be used as an often quite decent indicator [2.4]:

If the local relative accuracy required by an application, i.e.,
the largest error tolerated within a single integration step, is
10−n, then it is best to choose at least a nth order algorithm
for the numerical integration.

For this reason, the simulation of problems from celestial dynamics requires
the highest–order algorithms. We usually apply eighth–order algorithms to
such problems. On the other hand, most simulations of economic systems
call for first– or second–order methods, since the parameters of the models
themselves are not more accurate than that. It makes no sense whatso-
ever to waste a superb integration algorithm on a garbage model. Garbage
integrated with high precision still remains garbage.

Many engineering simulation applications require a global relative accu-
racy of approximately 0.001. We usually make the following assumption:

If the local integration error, i.e., the error made during a sin-
gle integration step, is proportional to hn+1, then the global
integration error, i.e., the error of the results at the end of the
simulation run, is proportional to hn.

This assumption is correct for a sufficiently small step size, h, i.e., in the
so–called asymptotic region of the algorithm.

The above heuristic can be justified by the following observation. If the
local integration error is of size e�, then the per–unit–step integration error
assumes a value of ep.u.s = e�/h. The global integration error is proportional
to the per–unit–step integration error, as long as the integration error does
not accumulate excessively across multiple steps.

A global relative error of 0.001, as required by most engineering applica-
tions, calls for an algorithm with an approximation order of h3 for the global
error. In accordance with the previously made observation, this corresponds
to an algorithm with an approximation order of h4 for the local integration
error. Therefore, we should require a local accuracy of 0.0001. This means
that a fourth–order algorithm is about optimal, and, since engineers are

28 Chapter 2. Basic Principles of Numerical Integration

the most highly valued customers of continuous–system simulation soft-
ware designers, this is what most such simulation software systems offer as
their default integration algorithm, i.e., as the algorithm that is used by
the system if the user doesn’t specify explicitly, which technique he or she
wishes to be employed.

A second type of approximation error to be looked at is caused by the
finite word length of the computer, on which the simulation is performed.
On a digital computer, real numbers can only be represented with a finite
precision. This type of error is called the roundoff error. The roundoff error
is important since, in numerical integration, invariably very small numbers
are added to very large numbers.

For example, let us assume we employ a third-order algorithm:

x(t∗ + h) ≈ x(t∗) + f(t∗) · h +
df(t∗)

dt
· h2

2!
+

d2f(t∗)
dt2

· h3

3!
(2.5)

to integrate a scalar state–space model:

ẋ = f(x, u, t) (2.6)

across one second of simulated time. Let us assume for simplicity that the
magnitude of x and its first three time derivatives is in the order of 1.0,
thus:

‖x‖ ≈ ‖f‖ ≈ ‖ḟ‖ ≈ ‖f̈‖ ≈ 1.0 (2.7)

Let us further assume that a constant step size of h = 0.001 is employed
throughout the simulation. The simulation is performed on a computer
with a word length of 32 bits in single precision. Such machines usually
offer a mantissa length of 24 bits, and an exponent of eight bits. On such
a machine, the roundoff error is approximately:

εroundoff = 2−24 ≈ 10−6 (2.8)

Thus, a real number in single precision carries approximately six significant
decimals. Applying this information to the process of numerical integration,
we find:

‖x(t∗ + h)‖ ≈‖x(t∗)‖ + ‖f(t∗) · h‖ + ‖df(t∗)
dt

· h2

2!
‖ + ‖d2f(t∗)

dt2
· h3

3!
‖

≈1.0 + 0.001 + 10−6 + 10−9 (2.9)

Thus, while the constant term contributes six significant digits to the re-
sult of the addition, already the linear term contributes only three digits
to the result, and the second–order term does not contribute anything of
significance at all. We might just as well never have computed it in the first
place. This fact is illustrated in Fig.2.1.

2.2 The Approximation Accuracy 29

+

+

+

=

x(t∗)

f(t∗) · h

x(t∗ + h)

df(t∗)
dt · h2

2

d2f(t∗)
dt2 · h3

6

FIGURE 2.1. Effects of roundoff on numerical integration.

Consequently, using single precision on a 32 bit machine for numerical
integration algorithms of order higher than two may be quite problematic.
In reality, the effects of shiftout will not necessarily be as dramatic as shown
in the above example, since higher–order algorithms allow use of a larger
step size. Yet, double precision algorithms will be definitely more robust
due to their reduced risk of shiftout, and they can meanwhile be imple-
mented quite efficiently also. Therefore, there is no good reason anymore
to use single precision on any integration algorithm but Euler. In this con-
text, it is interesting to notice that many commercially available simulation
software systems, such as ACSL [2.20], use a single–precision fourth–order
variable–step Runge–Kutta algorithm as their default integration method,
integrating happily –and dangerously– along.

A double precision representation will take care of roundoff errors as
shown in Fig.2.2. A double precision representation on a 32 bit machine
provides about 14 significant digits, since double precision words usually
offer a 52 bit mantissa and a 12 bit exponent on such a machine.

+

+

+

=

x(t∗)

f(t∗) · h

x(t∗ + h)

df(t∗)
dt · h2

2

d2f(t∗)
dt2 · h3

6

FIGURE 2.2. Roundoff in double precision.

Unfortunately, double precision operations are more time–consuming and
therefore more expensive than single precision operations. This may still
cause a problem especially in real–time applications. For this reason, Korn

30 Chapter 2. Basic Principles of Numerical Integration

and Wait introduced the concept of 1.5–fold precision [2.18]. The idea
behind 1.5–fold precision is illustrated in Fig.2.3.

+

+

+

=

x(t∗)

f(t∗) · h

x(t∗ + h)

df(t∗)
dt · h2

2

d2f(t∗)
dt2 · h3

6

FIGURE 2.3. Roundoff in 1.5–fold precision.

It may not be necessary to store all real numbers in double precision. It
may suffice to store only the state vector itself in double precision. In par-
ticular, this makes it possible to evaluate the nonlinear state–space model
in single precision. Thereby, some of the accuracy of the state vector is
compromised. The lost digits are shaded in Fig.2.3. However, these errors
will not migrate to the left, i.e., a sufficiently large number of digits re-
mains significant. The accuracy of the state vector is indeed roughly half
way between that of single precision and that of double precision, but the
overall price of the computation is closer to that of single precision.

Simulations of celestial dynamics problems should be performed in full
double precision on a 64 bit machine, or, if only 32 bit machines are avail-
able, full four–fold precision should be used. It hardly ever makes sense
to employ an algorithm of order higher than eight, since otherwise, the
roundoff errors will dominate over the truncation errors even on the high-
est precision machines available.

For most engineering problems, double precision on a 32 bit machine is
sufficient. With the advent of modern high–speed personal computers, pro-
ducers of simulation software became less concerned with execution speed
and more concerned with accuracy. For this reason, MATLAB, and with it
also SIMULINK, perform routinely all numerical computations in double
precision. Hence the roundoff error is today of a lesser concern than it used
to be in the past.

A third type of error to be discussed is the accumulation error. Due to
roundoff and truncation, x(t∗ + h) cannot be known precisely. This error
will be inherited by the next integration step as an error in its initial con-
ditions. Thus, errors accumulate when numerical integration proceeds over
many steps. Fortunately, it can be observed that the effects of the initial
conditions will eventually die out in the analytical solution of an analyt-
ically stable system. Consequently, it can be expected that a numerically

2.3 Euler Integration 31

stable numerical integration (we shall present a proper definition of this
term in due course) will dampen out the effects of initial conditions as
well, and will thereby, as a side effect, also get rid of inaccuracies in the
initial conditions.

This is very fortunate, since it indicates that errors in initial conditions
of an integration step don’t usually affect the overall simulation too much.
However, this assumption holds only for analytically stable systems. This
is the reason why numerical integration algorithms have a tendency to
stall when confronted with analytically unstable systems even before any
trajectory of the analytical solution has grown alarmingly large. While sim-
ulating an analytically unstable system, it can no longer be assumed that
the global integration error is proportional to the per–unit–step integration
error, since the integration error can accumulate excessively across multiple
steps. In such a case, it may be better to start from the end, and integrate
the system backward through simulated time.

On top of all these errors, the simulation practitioner is confronted with
inaccuracies of the model itself. These can be decomposed into parametric
model errors, i.e., errors that reflect inaccurately estimated model param-
eters, and structural model errors, i.e., unmodeled dynamics.

To summarize the above, the modeler and the simulation practitioner
must deal with five different types of errors. Modeling errors can be subdi-
vided into structural and parametric errors. The modeler must verify that
his model reflects reality sufficiently well for the purpose of the study at
hand. This process is commonly referred to as model validation. Techniques
for model validation are discussed in detail in the companion book to this
text: Continuous System Modeling [2.5]. Once it has been asserted that
the model reflects reality sufficiently well, the simulation practitioner must
now verify that the numerical trajectories obtained by means of a numerical
simulation of the model decently replicate the analytical trajectories that
would result if the model were computed with infinite precision. This pro-
cess is referred to as simulation verification. Simulation verification plays a
central role in this textbook. Simulation errors can be classified into trunca-
tion errors, roundoff errors, and accumulation errors. It is the conglomerate
of all of these errors that makes the life of an applied mathematician inter-
esting indeed.

2.3 Euler Integration

Let us now look at some actual numerical integration algorithms.
The simplest integration algorithm is obtained by truncating the Taylor

Series after the linear term.

x(t∗ + h) ≈ x(t∗) + ẋ(t∗) · h (2.10a)

32 Chapter 2. Basic Principles of Numerical Integration

or:

x(t∗ + h) ≈ x(t∗) + f(x(t∗), t∗) · h (2.10b)

It is obviously possible to write the integration algorithm in vector form,
i.e., the entire state vector can be integrated in parallel. The above scheme
is particularly simple, since it doesn’t require the approximation of any
higher–order derivatives. The linear term is readily available from the state–
space model. This integration scheme is called Forward Euler algorithm,
and will, from now on, be abbreviated as FE algorithm. Figure 2.4 depicts
graphically how the FE integration method approximates a state trajectory.

Approximated
Value

True
Value

t + ht

Time

V

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

15

10

5

0

FIGURE 2.4. Numerical integration using Forward Euler.

Simulation using the FE algorithm is straightforward. Since the initial
conditions, x(t = t0) = x0 are given, we can proceed as follows:

step 1a: ẋ(t0) = f(x(t0), t0)
step 1b: x(t0 + h) = x(t0) + h · ẋ(t0)

step 2a: ẋ(t0 + h) = f(x(t0 + h), t0 + h)
step 2b: x(t0 + 2h) = x(t0 + h) + h · ẋ(t0 + h)

step 3a: ẋ(t0 + 2h) = f(x(t0 + 2h), t0 + 2h)
step 3b: x(t0 + 3h) = x(t0 + 2h) + h · ẋ(t0 + 2h)

etc.

Simulation becomes a straightforward and quite procedural matter, since
the numerical integration algorithm depends only on past values of state
variables and state derivatives. An integration scheme that exhibits this
property is called explicit integration algorithm. Most integration algo-
rithms employed in today’s general–purpose continuous–system simulation

2.3 Euler Integration 33

languages, such as ACSL [2.20], are of this nature. However, this state-
ment does not hold for special–purpose simulation software, such as electric
circuit simulators.

Let us now introduce a different integration algorithm. Figure 2.5 depicts
a slightly modified scheme.

Approximated
Value

True
Value

t + ht

Time

V

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

15

10

5

0

FIGURE 2.5. Numerical integration using Backward Euler.

In this scheme, the solution x(t∗ + h) is approximated using the values
of x(t∗) and f(x(t∗ + h), t∗ + h) using the formula:

x(t∗ + h) ≈ x(t∗) + f(x(t∗ + h), t∗ + h) · h (2.11)

This scheme is commonly referred to as the Backward Euler integration
rule. It will, from now on, be abbreviated as BE algorithm.

As can be seen, this integration formula depends on current as well as
past values of variables. This fact causes problems. In order to compute
x(t∗ + h) from Eq.(2.11), we need to know f(x(t∗ + h), t∗ + h)), however,
in order to compute f(x(t∗ + h), t∗ + h)) from Eq.(2.1), we need to know
x(t∗ + h). Thus, we are confronted with a nonlinear algebraic loop. Algo-
rithms that are of this type are referred to as implicit integration techniques.
The integration algorithms that are employed in electronic circuit simula-
tors, such as PSpice [2.21], are of this type. Although implicit integration
techniques are advantageous from a numerical point of view (as we shall
learn later), the additional computational load created by the necessity to
solve simultaneously a set of nonlinear algebraic equations at least once ev-
ery integration step may make them undesirable for use in general–purpose
simulation software except for specific applications, such as stiff systems.

34 Chapter 2. Basic Principles of Numerical Integration

2.4 The Domain of Numerical Stability

Let us now turn to the solution of autonomous, time–invariant linear sys-
tems of the type:

ẋ = A · x (2.12)

with initial conditions as specified in Eq.(2.2). The solution of such a system
can be analytically given:

x(t) = exp(A · t) · x0 (2.13)

The solution is called analytically stable if all trajectories remain bounded
as time goes to infinity. The system of Eq.(2.12) is analytically stable if
and only if all eigenvalues of A have negative real parts:

Re{Eig(A)} = Re{λ} < 0.0 (2.14)

The domain of analytical stability in the complex λ–plane is shown in
Fig.2.6.

Re{λ}

Im{λ}

FIGURE 2.6. Domain of analytical stability.

Let us now apply the FE algorithm to the numerical solution of this
problem. Plugging the system of Eq.(2.12) into the algorithm of Eq.(2.10),
we obtain:

x(t∗ + h) = x(t∗) + A · h · x(t∗) (2.15)

which can be written in a more compact form as:

x(k + 1) = [I(n) + A · h] · x(k) (2.16)

2.4 The Domain of Numerical Stability 35

I(n) is an identity matrix of the same dimensions as A, i.e., n× n. Instead
of referring to the simulation time explicitly, we simply index the time, i.e.,
k refers to the kth integration step.

By plugging the state equations into the integration algorithm, we have
converted the former continuous–time system into an “equivalent” discrete–
time system:

xk+1 = F · xk (2.17)

where the discrete state matrix, F, can be computed from the continuous
state matrix, A, and the step size, h, as:

F = I(n) + A · h (2.18)

The term “equivalence” is defined in the sense of the employed numerical
integration algorithm. It does not mean that the converted discrete–time
system behaves identically to the original continuous–time system. The two
systems are “equivalent” in the same sense as the numerical trajectory is
“equivalent” to its analytical counterpart.

For simplicity, we shall consistently employ the following notation in this
book:

ẋ = A · x + B · u (2.19a)
y = C · x + D · u (2.19b)

denotes the continuous–time linear system, where A is the state matrix,
B is the input matrix, C is the output matrix, and D is the input/output
matrix. x denotes the state vector. It is of length n (x ∈ R

n). u is the input
vector, u ∈ R

m, and y is the output vector, y ∈ R
p.

The equivalent discrete–time linear system is written as:

xk+1 = F · xk + G · uk (2.20a)
yk = H · xk + I · uk (2.20b)

where F now denotes the state matrix, G is the input matrix, H is the
output matrix, and I is the input/output matrix.

The discrete–time system of Eq.(2.17) is analytically stable if and only
if all its eigenvalues are located inside a circle of radius 1.0 about the
origin, the so–called unit circle. From Eq.(2.18), we can conclude that all
eigenvalues of A multiplied by the step size, h, must lie inside a circle of
radius 1.0 about the point −1.0.

We define that the linear time–invariant continuous–time system inte-
grated using a given fixed–step integration algorithm is numerically stable
if and only if the “equivalent” linear time–invariant discrete–time system

36 Chapter 2. Basic Principles of Numerical Integration

(the term equivalence meant in the sense of the same integration algorithm)
is analytically stable.

Figure 2.7 shows the domain of numerical stability of the FE algorithm.

-1

stable

unstable

-2

λ · h

Re{λ · h}

Im{λ · h}

FIGURE 2.7. Domain of numerical stability of Forward Euler.

Notice that the numerical stability domain is, in a rigorous sense, only
defined for linear time–invariant continuous–time systems, and applies only
to fixed–step algorithms. Nevertheless, it is appealing that the numerical
stability domain of an integration algorithm can be computed and drawn
once and for all, and does not depend on any system properties other than
the location of its eigenvalues.

The numerical stability domain of the FE algorithm tries to approximate
the analytical stability domain, but evidently does a quite poor job at that.

Let us now try the following experiment. We simulate the scalar system
ẋ = a · x with initial condition x0 = 1.0 and a fixed step size of h = 1.0
over ten steps, i.e., from time t = 0.0 to time t = 10.0 using the FE
algorithm. We repeat the experiment four times with different values of the
parameter a. The results of this experiment are shown in Fig.2.8 The solid
lines represent the analytical solutions, whereas the dashed lines represent
the numerically found solutions. In the first case with a = −0.1, there exists
a good correspondence between the two solutions. In the second case with
a = −1.0, the numerical solution is still stable but bears little resemblance
with the analytical solution, i.e., is very inaccurate. In the third case with
a = −2.0, the numerical solution is marginally stable, and in the fourth
case with a = −3.0, the numerical solution is unstable.

This result is in agreement with the numerical stability domain shown
in Fig.2.7. We would have had to multiply the eigenvalue λ = a = −3.0
with a step size of h = 2/3, in order to obtain an even marginally stable
solution, i.e., in order to get the eigenvalue into the stable region of the λ·h–
plane. In order to obtain an accurate result, a considerably smaller step size
would have been needed. A 10% integration accuracy requires a step size
of approximately h = 0.1 when applied to the system with a = −3.0, a 1%

2.4 The Domain of Numerical Stability 37

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

0 2 4 6 8 10
−2

−1

0

1

2

0 2 4 6 8 10
−1000

−500

0

500

1000

1500

a = -0.1 a = -1.0

a = -2.0 a = -3.0

FIGURE 2.8. Numerical experiment using Forward Euler.

accuracy forces us to reduce the step size to h = 0.01, and a 0.1% accuracy
calls for a step size of h = 0.001. In this case, we need already 10,000 steps
to integrate this trivial system across 10 seconds. Quite obviously, the FE
algorithm is not suitable if such high an accuracy is desired.

Moreover, the above experiment tested the FE algorithm on a very be-
nign example. Systems with pairs of conjugate complex stable eigenvalues
close to the imaginary axis are much worse. This fact is demonstrated in
Fig.2.9.

-1

stable

unstable

-2

x

x

λ · h

Re{λ · h}

Im{λ · h}λ1

λ2

|λ1|

d

FIGURE 2.9. Determination of maximum step size with Forward Euler.

38 Chapter 2. Basic Principles of Numerical Integration

The location of the eigenvalues of the λ–plane are superimposed on the
stability domain of the λ · h–plane. A maximum step size of:

hmax =
d

|λ1| (2.21)

must be used in order to guarantee a numerically stable solution. In the
case, where the eigenvalues are on the imaginary axis itself, no step size can
be found that will make the numerical solution exhibit the true undamped
oscillation. The FE algorithm is not at all suited to integrate such models.
Systems with their dominant eigenvalues on or close to the imaginary axis
are quite common. They are either highly oscillatory systems with very
little damping, or hyperbolic partial differential equation (PDE) systems
converted to ordinary differential equation (ODE) form by means of the
method–of–lines approximation.

Let us now look at the BE algorithm. We shall plug the state–space
model of Eq.(2.12) into the algorithm of Eq.(2.10). We obtain:

x(t∗ + h) = x(t∗) + A · h · x(t∗ + h) (2.22)

which can be rewritten as:

[I(n) − A · h] · x(t∗ + h) = x(t∗) (2.23)

or:

x(k + 1) = [I(n) − A · h]−1 · x(k) (2.24)

Thus:

F = [I(n) − A · h]−1 (2.25)

Figure 2.10 shows the stability domain of this technique.

2.4 The Domain of Numerical Stability 39

As in the case of the FE algorithm, BE tries to approximate the analytical
stability domain, and does an equally poor job.

Let us repeat our previous experiment, this time with values of a = −3.0,
and a = +3.0. It is of interest to us to simulate the system also in an
analytically unstable configuration. Figure 2.11 shows the results of our
efforts.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

0 2 4 6 8 10
−5

0

5

10

15
x 10

12

a = -3.0 a = +3.0

FIGURE 2.11. Numerical experiment using Backward Euler.

The results could have been predicted easily from the stability domain
shown in Fig.2.10.

The BE algorithm does a fairly decent job on the problem with a = −3.0.
The results are not very accurate with h = 1.0, but, at least, they bear
some resemblance with reality. This type of algorithm is therefore better
suited than the FE type to solve problems with eigenvalues far out on the
negative real axis of the λ–plane. Systems with eigenvalues whose real parts
are widespread along the negative real axis are called stiff systems. Stiff
systems are quite common. In particular, they often result from converting
parabolic PDEs to sets of ODEs using the method–of–lines approximation.
Contrary to the situation when the FE algorithm is used, the step size will,
in the case of the BE algorithm, be dictated solely by accuracy requirements
of the system, and not by the numerical stability domain of the method.

The problem with a = +3.0 reveals yet a different type of problem.
The analytical solution is unstable, but the numerical simulation suggests
that the system is perfectly stable. This can be quite dangerous. Imagine
that a nuclear reactor has been designed and simulated using the BE algo-
rithm. The simulation makes the engineers believe that everything is fine,
but in reality, the reactor will blow up on the first occasion. Traditionally,
researchers have focused more on the simulation of analytically stable sys-
tems, and therefore, many simulation practitioners aren’t fully aware of the
dangers that might result from using implicit algorithms, such as BE, to
simulate systems that are potentially unstable in the analytical sense.

The lesson to be learnt is the following: When it really matters, it may
be a good idea to simulate the system twice, once with an algorithm that

40 Chapter 2. Basic Principles of Numerical Integration

exhibits a stability domain comparable to that of the FE algorithm, and
once with an algorithm that behaves like the BE algorithm. If both simula-
tions produce similar trajectories, the engineer may assume that the results
are true to the model, though not necessarily to the physical plant. This
is the most valuable simulation verification technique that exists, and the
importance of this recommendation cannot be overestimated.

As in the case of the FE algorithm, BE has not much luck with marginally
stable systems, i.e., with systems whose dominant eigenvalues are located
on the imaginary axis. As before, no step size will predict the undamped
oscillation of the true system.

How has the stability domain for the BE algorithm been found? Although
there exist analytical techniques to determine the domain of numerical
stability, they are somewhat cumbersome and error prone. Therefore, we
prefer to go another route and devise a general–purpose computer program
that can determine the domain of numerical stability of any integration
algorithm.

We start out with a scalar problem with |λ| = 1.0, i.e., with its eigenvalue
anywhere along the unit circle. In order to avoid complex numbers, we may
alternatively use a second–order system with a complex conjugate pair of
eigenvalues on the unit circle.

A =
(

0 1
−1 2 cos(α)

)
(2.26)

is a matrix with a pair of conjugate complex eigenvalues on the unit cir-
cle, where α denotes the angle of one of the two eigenvalues counted in
the mathematically positive (i.e., counterclockwise) sense away from the
positive real axis.

The following MATLAB routine computes A for any given value of α.

function [A] = aa (alpha)
radalpha = alpha ∗ pi/180;
x = cos(radalpha);
A = [0 , 1 ; −1 , 2 ∗ x];

return

We then compute the F–matrix for this system. The ff–function accepts
the A–matrix, the step size, h, and a number representing the integration
algorithm, algor, as input arguments, and returns the respective F–matrix
as output argument. The routine is here only shown with the code for the
first two algorithms, the FE and BE algorithms.

2.4 The Domain of Numerical Stability 41

function [F] = ff(A, h, algor)
Ah = A ∗ h;
[n, n] = size(Ah);
I = eye(n);
%
% algor = 1 : Forward Euler
%
if algor == 1,

F = I + Ah;
end
%
% algor = 2 : Backward Euler

%
if algor == 2,

F = inv(I − Ah);
end

return

Now, we compute the largest possible value of h, for which all eigenvalues
of F are inside the unit circle. The hh–function calls upon the aa– and ff–
functions internally. It accepts α and algor as input arguments. It also
requires lower and upper bounds for the step size, hlower and hupper, such
that the solution of the discretized problem is stable for one of them, and
unstable for the other. The function returns the value of the step size, hmax,
for which the discretized problem is marginally stable.

function [hmax] = hh(alpha, algor, hlower, hupper)
A = aa(alpha);
maxerr = 1.0e-6;
err = 100;
while err > maxerr,

h = (hlower + hupper)/2;
F = ff(A, h, algor);
lmax = max(abs(eig(F)));
err = lmax − 1;
if err > 0,

hupper = h;
else

hlower = h;
end,
err = abs(err);

end
hmax = h;

return

The hh–function, as shown above, works only for algorithms with stability
domains similar to that of the FE algorithm. The logic of the if–statement
must be reversed for algorithms of the BE type, but we didn’t want to make
the code poorly readable by including too many implementational details.

42 Chapter 2. Basic Principles of Numerical Integration

Finally, we need to sweep over a selected range of α values, and plot
hmax as a function of α in polar coordinates. There certainly exist more
efficient curve tracking algorithms than the one outlined above, but for the
time being, this algorithm will suffice.

2.5 The Newton Iteration

One additional problem needs to be discussed. In the above example, it was
easy to perform the simulation using the BE algorithm. Since the system
to be simulated is linear, we were able to compute the F–matrix explicitly
by means of matrix inversion.

This cannot be done in a nonlinear case. We need to somehow solve the
implicit set of nonlinear algebraic equations that are formed by the state–
space model and the implicit integration algorithm. To this end, we need
an iteration procedure.

The first idea that comes to mind is to employ a predictor–corrector tech-
nique. The idea is quite simple. We start out with an explicit FE step, and
use the result of that step (the predictor) for the unknown state derivative
of the implicit BE step. We repeat by iterating on the BE step.

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h · ẋk

1st corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC1

k+1 = xk + h · ẋP
k+1

2nd corrector: ẋC1
k+1 = f(xC1

k+1, tk+1)
xC2

k+1 = xk + h · ẋC1
k+1

3rd corrector: ẋC2
k+1 = f(xC2

k+1, tk+1)
xC3

k+1 = xk + h · ẋC2
k+1

etc.

The iteration is terminated when two consecutive approximations of
xk+1 differ less than a prescribed tolerance. Since the predictor step is
explicit, the overall algorithm is explicit as well. This iteration scheme is
called fixed–point iteration.

If we apply the linear system of Eq.(2.12) to this algorithm, and insert
all the equations into each other, we find:

FP = I(n) + A · h
FC1 = I(n) + A · h + (A · h)2

FC2 = I(n) + A · h + (A · h)2 + (A · h)3

FC3 = I(n) + A · h + (A · h)2 + (A · h)3 + (A · h)4

2.5 The Newton Iteration 43

For infinitely many iterations, we obtain:

F = I(n) + A · h + (A · h)2 + (A · h)3 + . . . (2.27)

Thus:

(A · h) · F = A · h + (A · h)2 + (A · h)3 + (A · h)4 + . . . (2.28)

and subtracting Eq.(2.28) from Eq.(2.27), we find:

[I(n) − A · h] · F = I(n) (2.29)

or:

F = [I(n) − A · h]−1 (2.30)

Thus, we are hopeful that we just found a (very expensive) explicit inte-
gration algorithm that behaves like the BE method. Unfortunately, nothing
could be farther from the truth. Figure 2.12 depicts the resulting stability
domain when plugging the F–matrix of Eq.(2.27) into the algorithm that
generates stability domains.

+1

unstable

-2 -1 +2
stable

λ · h

Re{λ · h}

Im{λ · h}

FIGURE 2.12. Stability domain of predictor–corrector FE–BE technique.

The reason for the half–moon domain obtained in this way is that the
infinite series of Eq.(2.27) converges only if all eigenvalues of A · h are
inside the unit circle. The subtraction of the two infinite series of Eq.(2.27)
and Eq.(2.28) is only legal if this is the case. Thus, the stability domain
approaches that of BE only for sufficiently small values of |Eig(A · h)|.

Let us try something else. Figure 2.13 shows how a zero–crossing of a
function can be found using Newton iteration.

Given an arbitrary function F(x). We want to assume that we know the
value of the function and its derivative ∂F/∂x at some point x�. We notice

44 Chapter 2. Basic Principles of Numerical Integration

F (x)

x

α

α

x� x�+1

x�+2

FIGURE 2.13. Newton iteration.

that:

tan α =
∂F �

∂x
=

F�

x� − x�+1
(2.31)

Thus:

x�+1 = x� − F�

∂F�/∂x
(2.32)

Let us apply this technique to the problem of iterating the nonlinear alge-
braic equation system at hand. Let us plug the scalar nonlinear state–space
model evaluated at time tk+1:

ẋk+1 = f(xk+1, tk+1) (2.33)

into the scalar BE algorithm:

xk+1 = xk + h · ẋk+1 (2.34)

We find:

xk+1 = xk + h · f(xk+1, tk+1) (2.35)

or:

xk + h · f(xk+1, tk+1) − xk+1 = 0.0 (2.36)

Equation (2.36) is in the desired form to apply Newton iteration. It de-
scribes a nonlinear algebraic equation in the unknown variable xk+1, the
zero–crossing of which we wish to determine. Thus:

x�+1
k+1 = x�

k+1 −
xk + h · f(x�

k+1, tk+1) − x�
k+1

h · ∂f(x�
k+1, tk+1)/∂x − 1.0

(2.37)

where k is the integration step count, and � is the Newton iteration count.
The matrix extension of the Newton iteration algorithm looks as follows:

2.5 The Newton Iteration 45

x�+1 = x� − (H�)
−1 · F� (2.38)

where:

H =
∂F
∂x

=

⎛
⎜⎜⎜⎝

∂F1/∂x1 ∂F1/∂x2 . . . ∂F1/∂xn

∂F2/∂x1 ∂F2/∂x2 . . . ∂F2/∂xn

...
...

. . .
...

∂Fn/∂x1 ∂Fn/∂x2 . . . ∂Fn/∂xn

⎞
⎟⎟⎟⎠ (2.39)

is the Hessian matrix of the iteration problem.
Applying this iteration scheme to the vector state–space model and the

vector BE algorithm, we obtain:

x�+1
k+1 = x�

k+1 − [h · J �
k+1 − I(n)]−1 · [xk + h · f(x�

k+1, tk+1)− x�
k+1] (2.40)

where:

J =
∂f
∂x

=

⎛
⎜⎜⎜⎝

∂f1/∂x1 ∂f1/∂x2 . . . ∂f1/∂xn

∂f2/∂x1 ∂f2/∂x2 . . . ∂f2/∂xn

...
...

. . .
...

∂fn/∂x1 ∂fn/∂x2 . . . ∂fn/∂xn

⎞
⎟⎟⎟⎠ (2.41)

is the Jacobian matrix of the dynamic system.
Any implementation of this iteration scheme requires, in general, the

computation of at least an approximation of the Jacobian matrix, as well
as an inversion (refactorization) of the Hessian matrix. Since both oper-
ations are quite expensive, different implementations vary in how often
they recompute the Jacobian (so–called modified Newton iteration). The
more nonlinear the problem, the more frequently the Jacobian must be
recomputed. Notice further that a modification of the step size does not
require the computation of a new Jacobian, but it forces us to refactorize
the Hessian.

Let us now analyze how this iteration scheme will affect the solution
of linear problems, and, in particular, how it will influence the stability
domain of the method.

The Jacobian of the linear state–space model is simply its state matrix:

J = A (2.42)

Consequently, the Jacobian of a linear time–invariant model never needs
to be updated, although a new inverse Hessian will still be required when-
ever the step size of the algorithm is modified.

Plugging the linear system into Eq.(2.40), we find:

x�+1
k+1 = x�

k+1 − [A · h − I(n)]−1 · [(A · h − I(n)) · x�
k+1 + xk] (2.43)

46 Chapter 2. Basic Principles of Numerical Integration

or:

x�+1
k+1 = [I(n) − A · h]−1 · xk (2.44)

Evidently, Newton iteration does not influence the stability properties of
the linear system. This is generally true for all integration algorithms, not
only when the Newton iteration is applied to the BE algorithm.

2.6 Semi–analytic Algorithms

As we have seen, numerical integration algorithms call at various places for
the computation of derivatives. Time derivatives of f are needed for the
higher–order terms of the Taylor–Series expansion. Spatial derivatives of f
are required by the Newton iteration algorithm. More uses of derivatives
will be met in due course.

However, the numerical computation of derivatives by explicit algorithms
is notoriously ill–conditioned. An inaccurate evaluation of the Jacobian is
relatively harmless. This will simply slow down the convergence of the
Newton iteration. However, numerical errors in the higher–order terms of
the Taylor Series are devastating. Therefore, numerical analysts have learnt
to reformulate the problem so that a direct computation of the higher-order
Taylor–Series terms can be avoided. We shall talk about this more in the
following chapters of this book.

However, for now, we shall explore another avenue. The Taylor Series
could easily be evaluated directly if only we had available analytical ex-
pressions for the higher derivatives. While analytical expressions for the
higher derivatives can be derived fairly easily, it is painful for the user
to have to manually derive those expressions. If the model is even only
modestly complex, the user will probably make mistakes on the way.

However, techniques for algorithmic formulae manipulation have mean-
while been developed. In fact, this branch of computer science has been met
with quite remarkable success over the past few years. Algorithmic differen-
tiation of formulae has become a standard feature offered by many symbolic
processing programs. However, many of these systems generate derivative
formulae that expand, i.e., are much longer than the original formulae. This
pitfall can be avoided. Joss developed a technique that avoids formulae ex-
pansion in symbolic differentiation [2.16]. The idea behind his technique
is surprisingly simple. The original formulae are decomposed into primi-
tives, each of which can be differentiated separately. The example shown
below illustrates how the algorithm works in practice. Given the following
function:

ẋ = sin2(
√

x +
x2 · t

2
) (2.45)

2.6 Semi–analytic Algorithms 47

Its algebraic differentiation can be computed in the following way:

ẋ = c2
1 ⇒ ẍ = 2 · c1 · ċ1

c1 = sin(c2) ⇒ ċ1 = cos(c2) · ċ2

c2 = c3 + c4 ⇒ ċ2 = ċ3 + ċ4

c3 =
√

x ⇒ ċ3 = ẋ/(2 · √x)
c4 = 0.5 · c5 · c6 ⇒ ċ4 = 0.5 · (c5 · ċ6 + ċ5 · c6)
c5 = x2 ⇒ ċ5 = 2 · x · ẋ
c6 = t ⇒ ċ6 = 1.0

It can easily be verified that equations are available to compute all the un-
known variables. The equations only need to be sorted into an executable
sequence. The second time derivative of x is indeed being evaluated cor-
rectly. Since all possible primitive expressions can be tabulated together
with their derivatives, the process of algorithmically generating derivatives
is a fairly simple task. No formulae expansion takes place when differenti-
ation is implemented in this fashion.

Joss also discovered that it is possible to compute derivatives not only of
formulae, but even of entire programs. He developed an ALGOL program
that can differentiate any ALGOL procedure or set of ALGOL procedures
with respect to any variable or set of variables, generating new ALGOL
procedures for the derivatives. Unfortunately, his dissertation was never
translated into English. However, there exist newer references in English
that can be consulted [2.17, 2.19, 2.22]. Kurz [2.19] used the algorithm
of Joss for developing a PASCAL program that computes the derivative of
any FORTRAN subroutine or set of FORTRAN subroutines with respect
to any variable or set of variables, generating new FORTRAN subroutines
for the derivatives. A treatise of these issues can be found in [2.11, 2.12].

In the context of simulation, symbolic differentiation was first employed
by Halin [2.14, 2.15]. Halin was mostly concerned with real–time simula-
tion, and therefore automatically generated code for a parallel multiproces-
sor. The run–time performance of his system was amazingly fast taking into
account the primitive nature of the individual processors that he employed
in his multiprocessor system. Moreover, his architecture is still valid. All
that needs to be done is to replace the individual processors of his system by
more modern architectures. One disadvantage of his approach to real–time
simulation is that real–time simulators should be able to process external
inputs, i.e., signals produced from a real plant by real–time sensors. Quite
obviously, symbolic differentiation cannot find analytical expressions for
time derivatives of such signals, since no formulae for the original signals
are provided.

Modern modeling software, such as Dymola [2.5, 2.3], is able to choose
from a rich palette of formulae manipulation algorithms when preprocessing
the model in preparation of a simulation run. Algebraic differentiation is
one of the tools that is being offered, and it is being used for a variety of
different purposes.

48 Chapter 2. Basic Principles of Numerical Integration

This is clearly the current trend. Symbolic and numeric processing have
both their strengths and weaknesses. A well–engineered combination of
the two types of processing can preserve the best of both worlds, and can
provide us with faster, more robust, and more user–friendly modeling and
simulation environments.

2.7 Spectral Algorithms

Obviously, a Taylor–Series expansion is not the only way to approximate
an analytic trajectory. Alternatively, the trajectory could be decomposed
into a Fourier Series, and, at least in the case of marginally stable models,
as they result from highly oscillatory systems and method–of–lines approx-
imations to hyperbolic PDEs, this might even make a lot of sense.

Such techniques were investigated quite early by Brock and Murray
[2.2]. However, at that time, no efficient techniques were known that would
have allowed to generate algorithms that could compete with Taylor–Series
methods in terms of run–time efficiency. However, the advent of the Fast
Fourier Transform (FFT) and newly available FFT chips gave rise to a re-
newed interest in such techniques [2.10, 2.24]. New theoretical results were
also reported by Bales et al. [2.1] and Tal–Ezer [2.23].

However, it is a fact that all numerical integration algorithms that are
employed in today’s commercially available simulation software make use
of Taylor Series as a basis for their approximations, and therefore, we shall
ignore other techniques in this book.

2.8 Summary

In this chapter, we have introduced the basic concepts of accuracy and
stability as they relate to differential equation solvers. It turns out that,
whenever we dealt with questions of accuracy, we were looking at nonlinear
state–space models, whereas, whenever we were discussing stability, we were
looking at linear state–space models. This is somewhat unsatisfactory. After
all, accuracy is a local property of the algorithm, whereas stability is a more
global facet of it. The reason for this inconsistency is simple. We dealt
with accuracy in nonlinear terms, because it was easy to do, whereas we
restricted our discussion of stability to the linear problem, since a general
nonlinear treatise of stability issues is a very difficult subject indeed.

Linear stability considerations cannot always be extended to the nonlin-
ear case, or, if they are, they may yield misleading answers. In fact, even
linear time–variant systems may behave in surprising ways. To demonstrate
this fact, let us look at the linear time–variant autonomous continuous–time
system:

2.8 Summary 49

ẋ = A(t) · x =
(−2.5 1.5 · exp(8t)
−0.5 · exp(−8t) −0.5

)
· x (2.46a)

with initial conditions:

x0 =
(

23
11

)
(2.46b)

The eigenvalues of the A–matrix are −1.0 and −2.0, i.e., they are constant
and negative real.

Eig(A(t)) = Root(det(λ · I(n) − A))
= Root((λ + 2.5) · (λ + 0.5) + 0.75) = Root(λ2 + 3 · λ + 2)

Yet, the analytical solution is:

x1(t) = 5 · exp(7t) + 18 · exp(6t) (2.47a)
x2(t) = 5 · exp(−t) + 6 · exp(−2t) (2.47b)

Evidently, x1(t) is unstable, although both eigenvalues of the system are
in the left half λ–plane.

A similar discrete–time example can easily be constructed also. Let us
look at the linear time–variant autonomous discrete–time system:

xk+1 = F(t) · xk =
(−1 1.5 · 8k

−0.5 · 8−k 1

)
· xk (2.48a)

with initial conditions:

x0 =
(

11
5

)
(2.48b)

The eigenvalues of the F–matrix are +0.5 and −0.5, i.e., they are constant
and within the unit circle.

Eig(F(t)) = Root(det(λ · I(n) − F))
= Root((λ + 1) · (λ − 1) + 0.75) = Root(λ2 − 0.25)

Yet, the analytical solution is:

x1(k) = 2 · 4k + 9 · (−4)k (2.49a)
x2(k) = 2 · 0.5k + 3 · (−0.5)k (2.49b)

Evidently, x1(k) is unstable, although both eigenvalues of the system are
within the unit circle of the λ–plane.

This is bad news. In fact, let us assume that an analytically stable linear
time–invariant continuous–time system is being integrated with an obscure

50 Chapter 2. Basic Principles of Numerical Integration

variable–step integration algorithm, whose stability region contains the en-
tire left half (λ · h)–plane (such a method is called A–stable.) Since the
F–matrix is a function of the step size, h, it is entirely feasible that a se-
quence of h values can be chosen such that the numerical solution will blow
up anyway. Such anomalies were reported in [2.6].

A general discussion of numerical stability in the nonlinear sense does ex-
ist. A major breakthrough in this research area was achieved by Dahlquist
in two seminal papers published in the mid seventies [2.8, 2.7]. A mature
discussion of the topic can be found in [2.9, 2.13]. The main idea behind
Dahlquist’s approach to nonlinear stability was to focus on a side effect of
stability. In a stable system, trajectories that start out from neighboring
initial conditions contract with time. Dahlquist focused on formulating con-
ditions for when trajectories contract. Therefore, it has become customary
to refer to nonlinear stability as contractivity. However, the theory is too
involved to be dealt with in this book. The (linear) stability domain, that
was introduced in this chapter, serves our purposes perfectly well, since our
major goals are to help the simulation practitioner with this book to attain
a feel for when which technique might have a decent chance of success, and
if a technique fails to succeed, why this is, and what can be done about it.

2.9 References

[2.1] Laurence A. Bales. Cosine Methods for Second–Order Hyperbolic
Equations with Time–Dependent Coefficients. Mathematics of Com-
putation, 45(171):65–89, 1985.

[2.2] Paul Brock and Francis J. Murray. The Use of Exponential Sums in
Step–by–Step Integration. Math. Tables Aids Comput., 6:63–78, 1952.

[2.3] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation Supports Object–Oriented Continuous–System Modeling.
IEEE Control Systems, 13(2):28–38, 1993.

[2.4] François E. Cellier and Peter J. Möbius. Toward Robust General Pur-
pose Simulation Software. In Robert D. Skeel, editor, Proceedings of
the 1979 SIGNUM Meeting on Numerical Ordinary Differential Equa-
tions, pages 18:1–5, Urbana, Ill., 1979. Dept. of Computer Science,
University of Illinois at Urbana–Champaign.

[2.5] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[2.6] Germund G. Dahlquist, Werner Liniger, and Olavi Nevanlinna. Sta-
bility of Two–Step Methods for Variable Integration Steps. SIAM J.
Numerical Analysis, 20(5):1071–1085, 1983.

2.9 References 51

[2.7] Germund G. Dahlquist. Error Analysis for a Class of Methods for
Stiff Nonlinear Initial Value Problems. In G. Alistair Watson, editor,
Proceedings 6th Biennial Dundee Conference on Numerical Analysis,
volume 506 of Lecture Notes in Mathematics, pages 60–72. Springer–
Verlag, Berlin, 1975.

[2.8] Germund G. Dahlquist. On Stability and Error Analysis for Stiff Non-
linear Problems. Technical Report TRITA–NA–7508, Dept. of Infor-
mation Processing, Royal Institute of Technology, Stockholm, Sweden,
1975.

[2.9] Kees Dekker and Jan G. Verwer. Stability of Runge–Kutta Methods
for Stiff Nonlinear Differential Equations. North–Holland, Amster-
dam, The Netherlands, 1984. 307p.

[2.10] David Gottlieb and Steven A. Orszag. Numerical Analysis of Spec-
tral Methods: Theory and Applications, volume 26. SIAM Publishing,
Philadelphia, Penn., 1977. 172p.

[2.11] Andreas Griewank. On Automatic Differentiation. In Masao Iri and
Kunio Tanabe, editors, Mathematical Programming: Recent Develop-
ments and Applications, pages 83–108. Kluwer Academic Press, 1989.

[2.12] Andreas Griewank. User’s Guide for ADOL–C, Version 1.0. Mathe-
matics and Computer Science Division, Argonne National Laboratory,
Argonne, Ill., 1990.

[2.13] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II: Stiff and Differential–Algebraic Problems, volume 14 of
Series in Computational Mathematics. Springer–Verlag, Berlin, Ger-
many, 2nd edition, 1996. 632p.

[2.14] Hans Jürgen Halin, Richard Bürer, Walter Hälg, Hans Benz, Bernard
Bron, Hans-Jörg Brundiers, Anders Isacson, and Milan Tadian. The
ETH Multiprocessor Project: Parallel Simulation of Continuous Sys-
tems. Simulation, 35(4):109–123, 1980.

[2.15] Hans Jürgen Halin. The Applicability of Taylor Series Methods in
Simulation. In Proceedings 1983 Summer Computer Simulation Con-
ference, volume 2, pages 1032–1076, Vancouver, Canada, July 11–13,
1983. SCS Publishing, San Diego, Calif.

[2.16] Johann Joss. Algorithmisches Differenzieren. PhD thesis, Diss ETH
5757, Swiss Federal Institute of Technology, Zürich, Switzerland, 1976.
69p.

[2.17] Gershon Kedem. Automatic Differentiation of Computer Programs.
ACM Trans. Mathematical Software, 6(2):150–165, 1980.

52 Chapter 2. Basic Principles of Numerical Integration

[2.18] Granino A. Korn and John V. Wait. Digital Continuous–System
Simulation. Prentice–Hall, Englewood Cliffs, N.J., 1978. 212p.

[2.19] Eberhard Kurz. Algebraic Differential Processor. Technical report,
Department of Electrical and Computer Engineering, University of
Arizona, Tucson, Ariz., 1986.

[2.20] Edward E. L. Mitchell and Joseph S. Gauthier. ACSL: Advanced
Continuous Simulation Language — User Guide and Reference Man-
ual. Mitchell & Gauthier Assoc., Concord, Mass., 1991.

[2.21] James W. Nilsson and Susan A. Riedel. Introduction to PSpice for
Electric Circuits. Prentice–Hall, Upper Saddle River, N.J., 6th edition,
2002. 132p.

[2.22] Louis B. Rall. Automatic Differentiation: Techniques and Applica-
tions, volume 120 of Lecture Notes in Computer Science. Springer–
Verlag, Berlin, 1981. 165p.

[2.23] Hillel Tal-Ezer. Spectral Methods in Time for Hyperbolic Equations.
SIAM J. Numerical Analysis, 23(1):11–26, 1986.

[2.24] Robert Vichnevetsky and John B. Bowles. Fourier Analysis of Nu-
merical Approximations of Hyperbolic Equations, volume 5 of SIAM
Studies in Applied Mathematics. SIAM Publishing, Philadelphia,
Penn., 1982. 140p.

2.10 Bibliography

[B2.1] George F. Corliss, Christèle Faure, Andreas Griewank, Laurent
Hascoët, and Uwe Naumann, editors. Automatic Differentiation
of Algorithms: From Simulation to Optimization. Springer–Verlag,
Berlin, Germany, 2002. 459p.

[B2.2] C. William Gear. Numerical Initial Value Problems in Ordinary
Differential Equations. Series in Automatic Computation. Prentice–
Hall, Englewood Cliffs, N.J., 1971. 253p.

[B2.3] Curtis F. Gerald and Patrick O. Wheatley. Applied Numerical
Analysis. Addison–Wesley, Reading, Mass., 6th edition, 1999. 768p.

[B2.4] John D. Lambert. Numerical Methods for Ordinary Differential Sys-
tems: The Initial Value Problem. John Wiley, New York, 1991. 304p.

2.11 Homework Problems 53

2.11 Homework Problems

[H2.1] Marginal Stability

Given the following linear time–invariant continuous–time system:

ẋ =

⎛
⎜⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 −9613
250 −5060 −12079 −8586 −4826
−750 15101 36086 25637 14420
250 −4963 −11896 −8438 −4756

⎞
⎟⎟⎟⎟⎠ · x +

⎛
⎜⎜⎜⎜⎝

5
2
1
−3
1

⎞
⎟⎟⎟⎟⎠ · u

y =
(−1 26 59 43 23

) · x (H2.1a)

with initial conditions:

x0 =
(
1 −2 3 −4 5

)T (H2.1b)

Determine the step size, hmarg, for which FE will give marginally stable
results.

Simulate the system across 10 seconds of simulated time with step input
using the FE algorithm with the following step sizes: (i) h = 0.1 ·hmarg, (ii)
h = 0.95 ·hmarg, (iii) h = hmarg, (iv) h = 1.05 ·hmarg, and (v) h = 2 ·hmarg.
Discuss the results.

[H2.2] Integration Accuracy

For the system of Hw.[H2.1], determine the largest step size that will give
you a global accuracy of 1%.

For this purpose, it is necessary to find the analytical solution of the given
system. The easiest way to achieve this is to use the spectral decomposition
method. The MATLAB statement:

[V,Λ] = eig(A) (H2.2a)

generates two matrices. Λ is the eigenvalue matrix, i.e., a diagonal matrix
with the eigenvalues of A placed along its diagonal, and V is the right
modal matrix, i.e., a matrix that consists of the right eigenvectors of A
horizontally concatenated to each other. The ith column of V contains
the eigenvector associated with the eigenvalue located at the ith diagonal
element of the Λ–matrix.

Apply a similarity transformation:

ξ(t) = T · x(t) (H2.2b)

with:

T = V−1 (H2.2c)

54 Chapter 2. Basic Principles of Numerical Integration

This will put the system into diagonal form, from which the analytical
solution can be read out easily.

If you don’t trust the accuracy of the numerical algorithm, you can com-
pute the transfer function of the system using:

Sys = ss(A,B,C,D) (H2.2d)
G = tf(Sys) (H2.2e)

The numerator and denominator polynomials of the transfer function can
then be extracted by means of:

[p,q] = tfdata(G, ′v′) (H2.2f)

Finally, the roots of the denominator polynomial can be found through:

λ = roots(q) (H2.2g)

You can then perform a partial fraction expansion on the transfer function,
and read the analytical solution out by taking the inverse Laplacian thereof.

Simulate the original system using the FE algorithm across 10 seconds
of simulated time. Repeat the simulation with different step sizes, until you
obtain agreement between the analytical and the numerical solution with
an accuracy of 1%:

εglobal =
‖xanal − xnum‖

‖xanal‖ ≤ 0.01 (H2.2h)

Repeat the same experiment with the BE algorithm. Since the system is
linear, you are allowed to compute the F–matrix using matrix inversion.

[H2.3] Method Blending

Given the following linear time–invariant continuous–time system:

ẋ =
(

0 1
−9.01 0.2

)
· x +

(
0
1

)
· u

y =
(
1 1

) · x + 2 · u (H2.3a)

with initial conditions:

x0 =
(
1 −2

)T (H2.3b)

Find the analytical solution using one of the techniques described in
Hw.[H2.2]. Simulate the system across 25 seconds of simulated time using
the FE algorithm. Determine the largest step size that will lead to a global
accuracy of 1%. Repeat the experiment with the BE algorithm. You may
compute the F–matrix using matrix inversion. What do you conclude?

2.11 Homework Problems 55

Let us now design another algorithm. This time, we shall repeat each
single integration step once with FE and once with BE, and we shall use
the arithmetic mean of the two answers as the initial condition for the next
step. Such an algorithm is called a blended algorithm. Determine again the
maximum step size that will provide a 1% accuracy. Compare your results
with those obtained by FE or BE alone.

[H2.4] Cyclic Method

Repeat Hw.[H2.3]. However, this time, we shall design another algorithm.
Instead of using the mean value of FE and BE to continue, we shall simply
toggle between one step of FE followed by one step of BE, followed by
another step of FE, etc. Such an algorithm is called a cyclic algorithm.

Determine again the maximum step size that will provide a 1% accuracy.
Compare your results with those obtained by FE or BE alone.

[H2.5] Stability Domain

For the predictor–corrector method of Eq.(2.27), find the stability domains
if: (i) no corrector is used, (ii) one corrector is used, (iii) two correctors are
used, (iv) three correctors are used, and (v) four correctors are used. Plot
the five stability domains on top of each other, and discuss the results.

[H2.6] Stability Domain: Blended and Cyclic Methods

Find the stability domain for the blended method of Hw.[H2.3]. What do
you conclude when comparing the stability domain of that method with
those of FE and BE? How does the stability domain of the blended method
explain the result of Hw.[H2.3]?

Find the stability domain for the cyclic method of Hw.[H2.4]. Instead
of interpreting this method as switching to another algorithm after each
step, we can think of this technique as one that is described by a single
macro–step consisting of two semi–steps. Thus:

x(k + 0.5) = x(k) + 0.5 · h · ẋ(k) (H2.6a)
x(k + 1) = x(k + 0.5) + 0.5 · h · ẋ(k + 1) (H2.6b)

Don’t despair, this one is tricky. What do you conclude when comparing
the stability domain of that method with those of FE and BE? How does
the stability domain of the cyclic method explain the result of Hw.[H2.4]?

[H2.7] Stability Domain Shaping: Blended Method

We wish to construct yet another method. It is derived from the previously
discussed blended algorithm. Instead of using the mean value of the FE
and BE steps, we use a weighted average of the two:

x(k + 1) = ϑ · xFE(k + 1) + (1 − ϑ) · xBE(k + 1) (H2.7a)

56 Chapter 2. Basic Principles of Numerical Integration

Such a method is called a ϑ–method. Plot the stability domains of these
methods for:

ϑ = {0, 0.1, 0.2, 0.24, 0.249, 0.25, 0.251, 0.26, 0.3, 0.5, 0.8, 1} (H2.7b)

Interpret the results. For this problem, it may be easier to use MATLAB’s
contour plot, than your own stability domain tracking routine.

[H2.8] Stability Domain Shaping: Cyclic Method

We shall now design another ϑ–method. This time, we start out with the
cyclic method. The parameter that we shall vary is the step length of the
two semi–steps. This is done in the following way:

x(k + ϑ) = x(k) + ϑ · h · ẋ(k) (H2.8a)
x(k + 1) = x(k + ϑ) + (1 − ϑ) · h · ẋ(k + 1) (H2.8b)

Determine the ϑ parameter of the method such that the overall method
exhibits a stability domain similar to BE, but where the border of stability
on the positive real axis of the (λ · h)–plane is located at +10 instead of
+2. Plot the stability domain of that method.

2.12 Projects

[P2.1] ϑ–Methods

For the two ϑ–methods described in Hw.[H2.7] and Hw.[H2.8], determine
optimal values of the ϑ parameter as a function of the location of the
eigenvalues of the A–matrix (for linear time–invariant systems). To this
end, vary the ϑ parameter until you get a maximum value of h that guar-
antees 1% accuracy. Repeat for different locations of the eigenvalues of A,
and come up with a recipe of how to choose ϑ for any given linear system.

[P2.2] Cyclic Methods

Do a library search on cyclic methods, and come up with a decision tree
that characterizes the various cyclic methods that have been proposed.

2.13 Research

[R2.1] Simulation Verification

Study the problem of simulation verification. What techniques could a ro-
bust simulation run–time library offer to support the user in asserting the
correctness of his or her simulation results?

3

Single–step Integration
Methods

Preview

This chapter extends the ideas of numerical integration by means of a
Taylor–Series expansion from the first–order (FE and BE) techniques to
higher orders of approximation accuracy. The well–known class of explicit
Runge–Kutta techniques is introduced by generalizing the predictor–correc-
tor idea.

The chapter then explores special classes of single–step techniques that
are well suited for the simulation of stiff systems and for that of marginally
stable systems, namely the extrapolation methods and the backinterpolation
algorithms. The stability domain serves as a good vehicle for analyzing the
stability properties of these classes of algorithms.

We are then delving more deeply into the question of approximation
accuracy. The accuracy domain is introduced as a simple tool to explore
this issue, and the order star approach is subsequently introduced as a more
refined and satisfying alternative.

The chapter ends with a discussion of the ideas behind step–size control
and order control, and the techniques used to accomplish these in the realm
of single–step algorithms.

3.1 Introduction

In Chapter 2, we have seen that predictor–corrector techniques can be
used to merge explicit and implicit algorithms into more complex entities
that are overall of the explicit type, while inheriting some of the desirable
numerical properties of implicit algorithms.

In particular, we introduced the following predictor–corrector method:

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h · ẋk

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk + h · ẋP
k+1

Let us now perform a nonlinear error analysis of this simple predictor–
corrector technique. To this end, we plug all the equations into each other.

58 Chapter 3. Single–step Integration Methods

We obtain:
xk+1 = xk + h · f(xk + h · fk, tk + h) (3.1)

We wish to pursue the error analysis up to the quadratic term. Let us thus
develop the expression f(xk + h · fk, tk + h) into a multidimensional Taylor
Series around the point < xk, tk >. Since this term in Eq.3.1 is multiplied
by h, we may truncate the Taylor Series after the linear term.

Remember that:

f(x + Δx, y + Δy) ≈ f(x, y) +
∂f(x, y)

∂x
· Δx +

∂f(x, y)
∂y

· Δy (3.2)

Thus:

f(xk +h · fk, tk +h) ≈ f(xk, tk)+
∂f(xk, tk)

∂x
· (h · fk)+

∂f(xk, tk)
∂t

·h (3.3)

where ∂f/∂x is the meanwhile well–known Jacobian of the system. Plugging
Eq.(3.3) into Eq.(3.1), we find:

xk+1 ≈ xk + h · f(xk, tk) + h2 · (∂f(xk, tk)
∂x

· fk +
∂f(xk, tk)

∂t
) (3.4)

Let us compare this with the true Taylor Series of xk+1 truncated after
the quadratic term:

xk+1 ≈ xk + h · f(xk, tk) +
h2

2
· ḟ(xk, tk) (3.5)

where:

ḟ(xk, tk) =
df(xk, tk)

dt
=

∂f(xk, tk)
∂x

· dxk

dt
+

∂f(xk, tk)
∂t

(3.6)

and:

dxk

dt
= ẋk = fk (3.7)

Comparing the true Taylor–Series expansion of xk+1 with the results ob-
tained from the predictor–corrector method, we find that we almost got
a match. Only the factor 2 in the denominator of the quadratic term is
missing. Thus, the predictor–corrector technique can be written as:

xPC(k + 1) ≈ xk + h · f(xk, tk) + h2 · ḟ(xk, tk) (3.8)

We notice at once that a simple blending of FE and PC will give us a
method that is second order accurate:

3.2 Runge–Kutta Algorithms 59

x(k + 1) = 0.5 · (xPC(k + 1) + xFE(k + 1)) (3.9)

or, in other words:

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h · ẋk

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk + 0.5 · h · (ẋk + ẋP
k+1)

which is Heun’s method. This method is sometimes also referred to under
the name modified Euler method.

In the following section, we want to generalize the idea behind Heun’s
method by parameterizing the search strategy for higher–order algorithms
of this kind.

3.2 Runge–Kutta Algorithms

Heun’s method uses an FE step as a predictor, and then a blend of an FE
and a BE step as a corrector. Let us generalize this idea somewhat:

predictor: ẋk = f(xk, tk)
xP = xk + h · β11 · ẋk

corrector: ẋP = f(xP, tk + α1 · h)
xC

k+1 = xk + h · (β21 · ẋk + β22 · ẋP)

This set of methods contains four different parameters. The βij parameters
are weighting factors of the various state derivatives that are computed
during the step, and the α1 parameter specifies the time instant at which
the first stage of the technique is evaluated.

Plugging the parameterized equations into each other and developing
functions that are not evaluated at time tk into Taylor Series, we obtain:

xC
k+1 = xk + h ·(β21+β22) ·fk +

h2

2
· [2 ·β11 ·β22 · ∂fk

∂x
·fk + 2 ·α1 ·β22 · ∂fk

∂t
]

(3.10)
The Taylor Series of xk+1 truncated after the quadratic term can be written
as:

xk+1 ≈ xk + h · fk +
h2

2
· [∂fk

∂x
· fk +

∂fk
∂t

] (3.11)

A comparison of Eq.(3.10) and Eq.(3.11) yields three nonlinear equations
in the four unknown parameters:

60 Chapter 3. Single–step Integration Methods

β21 + β22 = 1 (3.12a)
2 · α1 · β22 = 1 (3.12b)
2 · β11 · β22 = 1 (3.12c)

Thus, there exist infinitely many such algorithms. Clearly, Heun’s method
belongs to this set of algorithms. Heun’s method can be characterized by:

α =
(

1
1

)
; β =

(
1 0

0.5 0.5

)
(3.13)

α2 characterizes the time when the corrector is evaluated, which obviously
always happens at tk+1, thus, α2 = 1.0. β is a lower triangular matrix.

Many references represent the method in a slightly different form:

0 0 0
1 1 0
x 1/2 1/2

which is called the Butcher tableau of the method. The first row of the
Butcher tableau here indicates the function evaluation at time tk. The sec-
ond row represents the predictor, and the third row denotes the corrector.

Another commonly used algorithm of this family of methods is charac-
terized by the following α–vector and β–matrix:

α =
(

0.5
1

)
; β =

(
0.5 0
0 1

)
(3.14)

with the Butcher tableau:
0 0 0

1/2 1/2 0
x 0 1

This method is sometimes referred to as explicit midpoint rule. It can be
implemented as:

predictor: ẋk = f(xk, tk)
xP

k+ 1
2

= xk + h
2 · ẋk

corrector: ẋP
k+ 1

2

= f(xP
k+ 1

2

, tk+ 1
2
)

xC
k+1 = xk + h · ẋP

k+ 1
2

This technique evaluates the predictor at time tk +h/2. It is a little cheaper
than Heun’s algorithm due to the additional zero in the β–matrix.

The entire family of such methods is referred to as second–order Runge–
Kutta methods, abbreviated as RK2.

The idea can be further generalized by adding more stages. The general
explicit Runge–Kutta algorithm can be described as follows:

3.2 Runge–Kutta Algorithms 61

0th stage: ẋP0 = f(xk, tk)

jth stage: xPj = xk + h ·∑j
i=1 βji · ẋPi−1

ẋPj = f(xPj , tk + αj · h)

last stage: xk+1 = xk + h ·∑�
i=1 β�i · ẋPi−1

where � denotes the number of stages of the method. The most popular of
these methods is the following fourth–order accurate Runge–Kutta (RK4)
technique:

α =

⎛
⎜⎜⎝

1/2
1/2
1
1

⎞
⎟⎟⎠ ; β =

⎛
⎜⎜⎝

1/2 0 0 0
0 1/2 0 0
0 0 1 0

1/6 1/3 1/3 1/6

⎞
⎟⎟⎠ (3.15)

or:

0th stage: ẋk = f(xk, tk)

1st stage: xP1 = xk + h
2 · ẋk

ẋP1 = f(xP1 , tk+ 1
2
)

2nd stage: xP2 = xk + h
2 · ẋP1

ẋP2 = f(xP2 , tk+ 1
2
)

3rd stage: xP3 = xk + h · ẋP2

ẋP3 = f(xP3 , tk+1)

4th stage: xk+1 = xk + h
6 · [ẋk + 2 · ẋP1 + 2 · ẋP2 + ẋP3]

or yet more simply:

0th stage: k1 = f(xk, tk)

1st stage: k2 = f(xk + h
2 · k1, tk + h

2)

2nd stage: k3 = f(xk + h
2 · k2, tk + h

2)

3rd stage: k4 = f(xk + h · k3, tk + h)

4th stage: xk+1 = xk + h
6 · [k1 + 2 · k2 + 2 · k3 + k4]

This RK4 algorithm is particularly attractive due to the many zero elements
in its β–matrix. As it is a four–stage algorithm, it involves four function
evaluations. These are taken at tk, tk+1/2, tk+1/2, and tk+1. Thus, it is
possible to think of this RK4 algorithm as a macro–step consisting of four
micro–steps, two of length h/2, and two of length 0.

62 Chapter 3. Single–step Integration Methods

The Butcher tableau of this method can be written as:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0
x 1/6 1/3 1/3 1/6

In general:

c A
x b′

The c–vector contains the time instants when the various function eval-
uations are performed, the A–matrix contains the weights of the various
predictor stages, and the b′–vector contains the weights of the corrector
stage.

Notice that the number of stages and the approximation order are not
necessarily identical. Higher–order RK algorithms require a larger number
of stages to achieve a given order of accuracy. Table 3.1 provides a historic
overview of the development of RK algorithms.

Developer Year Order # of Stages
Euler [3.8] 1768 1 1
Runge [3.21] 1895 4 4
Heun [3.14] 1900 2 2
Kutta [3.17] 1901 5 6
Huťa [3.15] 1956 6 8
Shanks [3.22] 1966 7 9
Curtis [3.4] 1970 8 11

TABLE 3.1. History of Runge–Kutta Algorithms.

It is interesting to notice that, although the general mechanism for de-
signing such algorithms had been known for quite some time, higher–order
RK algorithms were slow in coming. This is due to the fact that the setting
up of the nonlinear equations and their subsequent solution is an utterly
tedious process. The original algorithm by Kutta contained an error that
went unnoticed until it was corrected by Nyström [3.20] in 1925. Curtis fi-
nally had to deal with a large number of very awkward nonlinear equations
in more than 200 unknowns. Symbolic formulae manipulation programs,
such as Mathematica or Maple, would make it much easier today to set up
and solve these sets of equations without making errors on the way, but
such programs were unavailable at the time, and so, at least for these re-
searchers, mathematics wasn’t always fun . . . but required lots of patience,
perseverance, and suffering.

3.2 Runge–Kutta Algorithms 63

It is possible to design RK algorithms in the same number of stages as
the approximation order only up to fourth order. It can be shown that no
five–stage RK method can be found that is fifth–order accurate. Of course,
it is important to keep the number of stages as small as possible, since each
additional stage requires an extra function evaluation.

Additional requirements are usually formulated that are not inherent in
the technique itself, but make a lot of practical sense. Obviously, we want
to request that, in an �–stage algorithm:

α� = 1.0 (3.16)

since we wish to end the step at tk+1. Also, we usually want to make sure
that:

αi ∈ [0.0, 1.0] ; i = {1, 2, . . . , �} (3.17)

that is, all function evaluations are performed at times that lie between tk
and tk+1.

If we want to prevent the algorithm from ever “integrating backward
through time,” we shall add the constraint that:

αj ≥ αi ; j ≥ i (3.18a)

If we want to disallow micro–steps of length 0, we make this condition even
more stringent:

αj > αi ; j > i (3.18b)

The previously introduced classical RK4 algorithm violates Eq.(3.18b).
Why is this last condition important? Modelers sometimes wish to ex-

plicitly use derivative operations in their models. This is generally a bad
idea, but it may not always be avoidable. For example, if u is a real–time
input that stems from a measurement sensor, and the model requires u̇,
there is nothing in the world that can save us from actually having to dif-
ferentiate the input. The typical simulationist would then approximate the
derivative by:

u̇ ≈ u − ulast

t − tlast
(3.19)

where tlast is the time of the previous function evaluation, and ulast is
the value of the input u at that time. Therefore, if it should ever happen
that t = tlast, the numerical differentiation algorithm would get itself into
trouble.

Two caveats are called for. While we were able to develop Heun’s method
using a matrix–vector notation, this technique won’t work anymore as we
proceed to third–order algorithms. Let us explain.

We found that:

64 Chapter 3. Single–step Integration Methods

df
dt

=
∂f
∂x

· dx
dt

+
∂f
∂t

(3.20)

or, in shorthand notation:

ḟ = fx · f + ft (3.21)

When we proceed to third–order algorithms, we need an expression for the
second absolute derivative of f with respect to time. Thus, we are inclined
to write formally:

f̈ = (fx · f + ft)̇
= ḟx · f + fx · ḟ + ḟt
= (ḟ)x · f + fx · (ḟ) + (ḟ)t

= (fx · f + ft)x · f + fx · (fx · f + ft) + (fx · f + ft)t

= fxx · (f)2 + 2 · (fx)2 · f + 2 · fxt · f + 2 · fx · ft + ftt (3.22)

but it is not clear, what this is supposed to mean. Obviously, f̈ is a vec-
tor, and so is ftt, but what is fxx · (f)2 supposed to mean? Is it a tensor
multiplied by the square of a vector? Quite obviously, the formal differ-
entiation mechanism doesn’t extend to higher derivatives in the sense of
familiar matrix–vector multiplications. Evidently, we must treat the ex-
pression fxx · (f)2 differently.

Butcher [3.3] developed a new syntax and a set of rules for how these
higher derivatives must be interpreted. In essence, it turns out that, in this
new syntax:

1. sums remain commutative and associative,

2. derivatives can still be computed in any order, i.e., (ḟ)x = (fx)̇, and

3. the multiplication rule can be generalized, thus: (fx · f)x = fxx · f +
(fx)2.

It is not necessary for us to learn Butcher’s new syntax. It is sufficient
to know that we can basically proceed as before, but must abstain from
interpreting terms involving higher derivatives as consisting of factors that
are combined by means of the familiar matrix–vector multiplication.

Prior to Butcher’s work, all higher–order RK algorithms had simply been
derived for the scalar case, and were then blindly applied to integrate en-
tire state vectors. And here comes the second caveat. Butcher discovered
that several of the previously developed and popular higher–order RK al-
gorithms drop one or several orders of accuracy when applied to a state
vector instead of a scalar state variable.

The reason for this somewhat surprising discovery is very simple. Already
when computing the third absolute derivative of f with respect to time, the

3.3 Stability Domains of RK Algorithms 65

two terms fx · fxx · (f)2 and fxx · f · fx · f appear in the derivation. In the
scalar case, these two terms are identical, since:

a · b = b · a (3.23)

Unfortunately —and not that surprisingly after all— Eq.(3.23) does not ex-
tend to the vector case. Our new animals in the mathematical zoo of data
structures and operations exhibit a property that we are already quite fa-
miliar with from matrix calculus, namely that multiplications are no longer
commutative:

A · B = (B′ · A′)′ �= B · A (3.24)

where A′ denotes the transpose of A. So, algorithms that had been de-
veloped without grouping such terms together continued to work properly
also in the vector case, whereas algorithms that had made use of the com-
mutative nature of scalar multiplications did work well for scalar problems,
but dropped one or several approximation orders when exposed to vector
problems.

The details of the Butcher syntax are of no immediate concern to us, since
we never plan to actually perform these new operations. All we need in order
to develop new RK algorithms is to be able to extract their coefficients.
To this end, we can pretend that the normal rules of matrix and vector
calculus still apply.

3.3 Stability Domains of RK Algorithms

Since all the previously presented RK algorithms are explicit algorithms,
we expect their stability domains to look qualitatively like that of the FE
algorithm, or more precisely, we expect the contours of marginal stability
to bend into the left half (λ · h)–plane.

Let us plug the linear system of Eq.(2.12) into Heun’s algorithm. We
find:

predictor: ẋk = A · xk

xP
k+1 = xk + h · ẋk

corrector: ẋP
k+1 = A · xP

k+1

xC
k+1 = xk + 0.5 · h · (ẋk + ẋP

k+1)

or:

xC
k+1 = [I(n) + A · h +

(A · h)2

2
] · xk (3.25)

i.e.,

F = I(n) + A · h +
(A · h)2

2
(3.26)

66 Chapter 3. Single–step Integration Methods

Since a two–stage algorithm contains only two function evaluations, no
powers of h larger than two can appear in the F–matrix. Since the technique
is second–order accurate, it must approximate the analytical solution:

F = exp(A · h) = I(n) + A · h +
(A · h)2

2!
+

(A · h)3

3!
+ . . . (3.27)

up to the quadratic term. Consequently, all two–stage RK2 algorithms
share the same stability domain, and the same holds true for all three–stage
RK3s, and for all four–stage RK4s. The situation becomes more compli-
cated in the case of the fifth–order algorithms, since there doesn’t exist a
five–stage RK5. Consequently, the F–matrices of RK5s necessarily contain
a term in h6 (with incorrect coefficient), and since there is no reason why
these sixth–order terms should carry the same coefficient in different RK5s,
their stability domains will look slightly different one from another.

Let us apply our general–purpose stability domain plotting algorithm
that was presented in Chapter 2. We find:

−5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

1

2

3

4

Stability Domains of FRK

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.1. Stability domains of explicit RK algorithms.

Some of the RK5s are among those algorithms with small stable islands
somewhere out in the unstable right half (λ · h)–plane.

The reader may notice that these algorithms try indeed (and not sur-
prisingly) to approximate the analytical stability domain, i.e., higher–order

3.4 Stiff Systems 67

RKs follow the imaginary axis better and better. Also, the stability do-
mains grow with increasing approximation order. This is very satisfying,
since higher–order algorithms call for larger step sizes.

3.4 Stiff Systems

Although the term “stiff system” has been popular at least since Gear’s
1971 book [3.10] appeared, the numerical ODE literature still doesn’t
provide a crisp definition of what a stiff system really is. Even the 1991
book by Lambert [3.18] treats “the nature of stiffness” on as many as nine
pages. Lambert observes that:

Statement #1: “A linear constant coefficient system is stiff if all
of its eigenvalues have negative real part and the stiffness ratio
is large.”

Statement #2: “Stiffness occurs when stability requirements,
rather than those of accuracy, constrain the step-
length.”

Statement #3: “Stiffness occurs when some components of the
solution decay much more rapidly than others.”

Statement #4: “A system is said to be stiff in a given interval of
time if in that interval the neighboring solution curves approach
the solution curve at a rate which is very large in comparison
with the rate at which the solution varies in that interval.”

The first statement is not overly useful since it relates to linear systems only.
The second statement is not very precise since the accuracy requirements
are not specified. Thus, one and the same system may be stiff, according to
this statement, if the accuracy requirements are loose, and non–stiff if the
accuracy requirements are tight. The third statement indirectly refers to
the superposition principle, and is therefore, in a strict sense, again limited
to linear systems. The fourth statement is basically a reformulation of the
third.

Lambert concludes his exposé of the matter with the following definition:

Definition #1: “If a numerical method with a finite region of ab-
solute stability, applied to a system with any initial conditions,
is forced to use in a certain interval of integration a steplength
which is excessively small in relation to the smoothness of the
exact solution in that interval, then the system is said to be
stiff in that interval.”

Again, what exactly means “excessively small”?

68 Chapter 3. Single–step Integration Methods

Our remarks may sound critical of Lambert’s work. They are not meant
to be. Lambert’s 1991 book represents a significant contribution to the
numerical ODE literature. All we want to convey is that here is a term
that has been around for more than a quarter of a century, and yet, the
term is still fuzzy.

Let us attempt a more crisp definition of the term “stiff system”:

Definition #2: “An ODE system is called stiff if, when solved
with any nth–order accurate integration algorithm and a local
error tolerance of 10−n, the step size of the algorithm is forced
down to below a value indicated by the local error estimate due
to constraints imposed on it by the limited size of the numeri-
cally stable region.”

Our definition comes closest to Lambert’s statement #2, except that we
added a definition of what we mean by accuracy requirements. Our defini-
tion is still somewhat fuzzy since it is possible that a system may fall under
the category stiff when solved with one nth–order accurate integration al-
gorithm, and doesn’t when solved with another. Yet, as we shall see, the
grey zone of “marginally stiff” systems is fairly narrow, and moreover, this
is exactly what these systems are: marginally stiff.

It is treacherous to rely on the eigenvalues of the Jacobian of a nonlinear
or even linear but time–variant system to conclude anything about stiffness.
Let us explain.

Given the system:

ẋ = A(t) · x =
(−2.5 1.5 · exp(−100t)
−0.5 · exp(100t) −0.5

)
· x (3.28a)

with initial conditions:

x0 =
(

23
11

)
(3.28b)

Its analytical solution is:

x1(t) = 5 · exp(−101t) + 18 · exp(−102t) (3.29a)
x2(t) = 5 · exp(−t) + 6 · exp(−2t) (3.29b)

Therefore, the system is awfully stiff. Yet, the eigenvalues of its Jacobian
are −1.0 and −2.0, i.e., they are perfectly tame at all times.

If we plug this system into the FE algorithm (or RK1, which is the same
algorithm), we find:

F(t) = I(n)+A(t)·h =
(−2.5 · h + 1.0 1.5 · h · exp(−100t)
−0.5 · h · exp(100t) −0.5 · h + 1.0

)
(3.30)

3.5 Extrapolation Techniques 69

Thus, the eigenvalues of the discrete–time system are at:

λ1 = 1 − h ; λ2 = 1 − 2h (3.31)

which is what we would have expected from the locations of the eigenvalues
of the continuous–time system and the stability domain of Fig.2.7. Thus,
the stability domain doesn’t indicate any foul play in this case. Codes that
rely on the Jacobian for computing local error estimates will be fooled by
this problem.

However, this is a particularly malignant problem, and fortunately one
that physics doesn’t usually prescribe. We may not truly want to simulate
this system anyway since, already at simulated time t = 10.0, the element
a21 has acquired a value of −0.5 · exp(1000), something our simulator will
most certainly complain bitterly about.

It is therefore still useful to search for methods that include in their
numerically stable region the entire left half (λ · h)–plane, or at least a
large portion thereof.

Definition: A numerical integration scheme that contains the
entire left half (λ · h)–plane as part of its numerical stability
domain is called absolute stable, or, more simply, A–stable.

One way to obtain A–stable algorithms is to modify the recipe for develop-
ing RK algorithms by allowing non–zero elements also above the diagonal
of the β–matrix [3.2] [3.13]. Such algorithms are invariably implicit. They
are therefore called implicit Runge–Kutta schemes, abbreviated as IRK. A
special role among those algorithms employ methods that limit the non-
zero elements in their respective β–matrices to the first super–diagonal.
Using the Butcher tableau representation, its A–matrix is still lower trian-
gular, but contains nonlinear elements along its diagonal. Such algorithms
are called diagonally implicit Runge–Kutta schemes, abbreviated as DIRK.
They are implicit in each stage, but each stage can be iterated separately,
and it is therefore fairly easy to implement a Newton iteration on them.

However, rather than looking at the problem of defining general IRK and
DIRK algorithms through their α–vectors and β–matrices, we want to turn
to two special classes of such algorithms that have interesting properties:
the extrapolation techniques, and the backinterpolation techniques. We shall
discuss some other classes of implicit Runge–Kutta algorithms in Chapter 8
in the context of solving sets of mixed differential and algebraic equations
(DAEs).

3.5 Extrapolation Techniques

The idea behind the (Richardson) extrapolation techniques is quite straight-
forward. We repeat the same integration step with several low–order tech-

70 Chapter 3. Single–step Integration Methods

niques and blend the results to get a higher–order technique. Let us explain
the concept by means of the linear system:

ẋ = A · x (3.32)

We shall integrate the system four times across one macro–step of length
h each time using the FE algorithm with different micro–step sizes: η1 =
h, η2 = h/2, η3 = h/3, and η4 = h/4. Accordingly, we need only one
micro–step of length η1, but we need four micro–steps of length η4. The
corresponding discrete–time systems are:

xP1(k + 1) = [I(n) + A · h] · x(k)

xP2(k + 1) = [I(n) +
A · h

2
]2 · x(k)

xP3(k + 1) = [I(n) +
A · h

3
]3 · x(k)

xP4(k + 1) = [I(n) +
A · h

4
]4 · x(k) (3.33a)

with the corrector:

xC(k+1) = α1 ·xP1(k+1)+α2 ·xP2(k+1)+α3 ·xP3(k+1)+α4 ·xP4(k+1)
(3.33b)

Multiplying the predictor formulae out, we find:

xP1 =[I(n) + A · h] · x(k)

xP2 =[I(n) + A · h +
(A · h)2

4
] · x(k)

xP3 =[I(n) + A · h +
(A · h)2

3
+

(A · h)3

27
] · x(k)

xP4 =[I(n) + A · h +
(A · h)2

8
+

(A · h)3

16
+

(A · h)4

256
] · x(k) (3.34a)

and for the corrector, we obtain:

xC(k + 1) =[(α1 + α2 + α3 + α4) · I(n)

+ (α1 + α2 + α3 + α4) · A · h
+ (

α2

4
+

α3

3
+

3α4

8
) · (A · h)2

+ (
α3

27
+

α4

16
) · (A · h)3 +

α4

256
· (A · h)4] · xk (3.34b)

Comparing Eq.(3.34b) with the correct Taylor Series truncated after the
fourth–order term, we obtain four linear equations in the four unknown αi

parameters:

3.5 Extrapolation Techniques 71

⎛
⎜⎜⎝

1 1 1 1
0 1/4 1/3 3/8
0 0 1/27 1/16
0 0 0 1/256

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
1/2
1/6
1/24

⎞
⎟⎟⎠ (3.35)

which can be solved directly. We find:

α1 = −1
6

; α2 = 4 ; α3 = −27
2

; α4 =
32
3

(3.36)

Thus, we just discovered another way to construct an RK4 algorithm since
the extrapolation technique is fourth–order accurate . . . at least for linear
systems. We didn’t bother to check whether the algorithm is also accurate
up to fourth order for nonlinear systems, since unfortunately, the technique
is quite inefficient. It took 10 function evaluations to complete a single
macro–step. Compare this with the four function evaluations needed when
performing an ordinary RK4 step.

Let us try another idea. The order of the algorithm wouldn’t be all that
important if we only could make the step size sufficiently small. Unfortu-
nately, this would mean that we would have to perform many such steps
in order to complete the simulation run . . . or doesn’t it?

We can write:

xk+1(η) = xk+1 + e1 · η + e2 · η2

2!
+ e3 · η3

3!
+ . . . (3.37)

where xk+1 is the true (yet unknown) value of x at time tk + h, whereas
xk+1(η) is the numerical value that we find when we integrate the system
from time tk to time tk + h using the micro–step size η. Obviously, this
value contains an error. We now develop the numerical value into a Taylor
Series in η around the (unknown) correct value. The ei vectors are error
vectors [3.6].

We truncate the Taylor Series after the cubic term, and write Eq.(3.37)
down for the same values of ηi as before. We find:

xP1(η1) ≈ xk+1 + e1 · h +
e2

2!
· h2 +

e3

3!
· h3

xP2(η2) ≈ xk+1 + e1 · h

2
+

e2

2!
· (h

2
)2 +

e3

3!
· (h

2
)3

xP3(η3) ≈ xk+1 + e1 · h

3
+

e2

2!
· (h

3
)2 +

e3

3!
· (h

3
)3

xP4(η4) ≈ xk+1 + e1 · h

4
+

e2

2!
· (h

4
)2 +

e3

3!
· (h

4
)3 (3.38)

or in matrix notation:

72 Chapter 3. Single–step Integration Methods

⎛
⎜⎜⎝

xP1

xP2

xP3

xP4

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎝

h0 h1 h2 h3

(h/2)0 (h/2)1 (h/2)2 (h/2)3

(h/3)0 (h/3)1 (h/3)2 (h/3)3

(h/4)0 (h/4)1 (h/4)2 (h/4)3

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

xk+1

e1

e2/2
e3/6

⎞
⎟⎟⎠ (3.39)

By inverting the Van–der–Monde matrix, we can solve for the unknown
xk+1 and the three error vectors. Since we aren’t interested in the errors,
we only look at the first row of the inverted Van–der–Monde matrix. It
turns out that the values in this row don’t depend at all on the step size
h. We find:

xk+1 ≈ (− 1
6 4 − 27

2
32
3

) ·
⎛
⎜⎜⎝

xP1

xP2

xP3

xP4

⎞
⎟⎟⎠ (3.40)

Obviously, xk+1 is no longer the truly correct solution since we had trun-
cated the Taylor Series in η after the cubic term. However, the algorithm
did the best it could to estimate the true value given the available data
. . . by raising the approximation order of the method to four.

Thus, we got precisely the same answers as before. We just found another
way to derive the extrapolation method. Both approaches have their pros
and cons. The first technique unveiled that the resulting method is indeed
fourth–order accurate (at least for linear systems). The second method
didn’t show this fact explicitly . . . it was more like swinging a magic wand.
On the other hand, the first approach made explicitly use of the fact that
each micro–step was performed by means of the FE algorithm. The second
approach was not based on any such assumption.

Thus, we could now replace each of the micro–steps by a BE step of the
same length, e.g. using Newton iteration if the system to be simulated is
nonlinear, and still use the same corrector. The overall implicit extrapola-
tion (IEX) technique then presents itself as:

3.6 Marginally Stable Systems 73

1st predictor: k1 = xk + h · f(k1, tk+1)

2nd predictor: k2a = xk + h
2 · f(k2a, tk+ 1

2
)

k2 = k2a + h
2 · f(k2, tk+1)

3rd predictor: k3a = xk + h
3 · f(k3a, tk+ 1

3
)

k3b = k3a + h
3 · f(k3b, tk+ 2

3
)

k3 = k3b + h
3 · f(k3, tk+1)

4th predictor: k4a = xk + h
4 · f(k4a, tk+ 1

4
)

k4b = k4a + h
4 · f(k4b, tk+ 1

2
)

k4c = k4b + h
4 · f(k4c, tk+ 3

4
)

k4 = k4c + h
4 · f(k4, tk+1)

corrector: xk+1 = − 1
6 · k1 + 4 · k2 − 27

2 · k3 + 32
3 · k4

A complete analysis of the nonlinear accuracy order of this technique is
quite involved, and we have not attempted it. However, by following our
initial approach at deriving the extrapolation method now for BE steps
in place of FE steps, it is a simple exercise to verify that the method
indeed carries fourth-order accuracy for solving linear systems. As was to
be expected from the latter way of reasoning, the αi–parameters turn out
to be exactly the same for BE steps as for FE steps.

Let us look at the stability domain of this method. It is presented in
Fig.3.2. The method is A–stable, and has a nicely large unstable region in
the right half (λ · h)–plane.

Implicit extrapolation techniques, such as the IEX4 technique explained
above, have, in comparison with IRK or DIRK algorithms, the distinct
advantage that they are easy to construct. They have the disadvantages
that no formal nonlinear accuracy analysis is currently available, and that
they are still fairly inefficient. IEX4 is a 10–stage algorithm. In contrast,
a fourth–order fully-implicit IRK algorithm can be constructed with only
two stages, as shall be demonstrated in Chapter 8.

3.6 Marginally Stable Systems

We have seen in Chapter 2 that neither the FE nor the BE algorithm will
do a decent job when confronted with eigenvalues on or in the vicinity of the
imaginary axis. Unfortunately, this situation occurs quite frequently, and
there exists an entire class of applications, namely the hyperbolic PDEs
that, when converted to sets of ODEs, exhibit this property as we shall see
later. It seems thus justified to analyze what can be done to tackle such
problems. Let us start with a proper definition:

74 Chapter 3. Single–step Integration Methods

−2 0 2 4 6 8 10 12 14

−6

−4

−2

0

2

4

6

Stability Domain of IEX4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.2. Stability domain of implicit extrapolation method.

Definition: A dynamical system whose Jacobian has its domi-
nant eigenvalues on or in the vicinity of the imaginary axis is
called marginally stable.

The dominant eigenvalues of a matrix are those eigenvalues that have the
most positive real parts, i.e., that are located most to the right in the
λ–plane.

In order to tackle such problems decently, we require integration algo-
rithms that approximate the imaginary axis particularly well. Such algo-
rithms do exist, and, in fact, algorithms of arbitrary order can be con-
structed whose borders of numerical stability coincide with the imaginary
axis. We shall study these algorithms in due course.

Definition: A numerical integration scheme that contains the
entire left half (λ ·h)–plane and nothing but the left half (λ ·h)–
plane as its numerical stability domain is called faithfully stable,
or, more simply, F–stable.

The reader may now be inclined to think that F–stable algorithms must
be the answer to all our prayers. Unfortunately, this is not so. F–stable
algorithms will perform poorly when asked to integrate stiff systems. The
reason for this surprising disclosure is the following: If we think of the
complex (λ ·h)–plane as an infinitely large plane, we are inclined to assume

3.6 Marginally Stable Systems 75

that each point at infinity is infinitely far away from each other point at
infinity. However, it turns out to be more accurate to think of the complex
(λ · h)–plane as an infinitely large globe. From wherever we stand on that
globe, infinity is the single one spot that is farthest away from us. Thus,
infinity is a “single spot” in the sense that the numerical properties of any
integration algorithm based on Taylor–Series expansion will be exactly the
same irrespective of the direction from which we approach infinity.

Consequently, since (by definition) the entire imaginary axis belongs to
the margin of stability, so does the infinity “spot” itself. This means that,
although the entire left half (λ · h)–plane is indeed stable, as we approach
infinity along the negative real axis, points along the negative real axis
will become less and less stable until, at point infinity, stability is lost.
Similarly, although the entire right half (λ · h)–plane is indeed unstable, as
we approach infinity along the positive real axis, points along the positive
real axis will become less and less unstable until, at point infinity, stability
is reconquered.

The λ–plane has different properties. As we move along a line parallel
to the real axis to the left, the damping of an eigenvalue located at that
position increases constantly until it reaches a value of infinity at point
infinity. In fact, the damping of an eigenvalue is identical with its distance
from the imaginary axis.

An F–stable algorithm can obviously not mimic this facet of the λ–plane,
and consequently, it will perform poorly when exposed to eigenvalues lo-
cated far out to the left on the λ–plane. The time response due to these
eigenvalues will not properly be dampened out. The F–stably simulated
system with eigenvalues at such locations will therefore behave more slug-
gishly than the real system.

Definition: A numerical integration scheme that is A–stable,
and, in addition, whose damping properties increase to infinity
as Re{λ} → −∞, is called L–stable.

The various numerical stability definitions are, in a strict sense, only mean-
ingful for linear time–invariant systems, but they are often good indicators
when applied to nonlinear systems as well.

When dealing with stiff systems, it is not sufficient to demand A–stability
from the integration algorithm. We need to look more closely at the damp-
ing behavior. L–stability may be a desirable property. Evidently, all F–
stable algorithms are also A–stable, but never L–stable.

A system that is both marginally stable and stiff is difficult to cope with.
Such systems exist, and we shall provide an example of one such system
in due course. As of now, we are somewhat at a loss when asked which
algorithm we recommend in this situation. What might possibly work best
is an L–stable algorithm with an extra large unstable region in the right
half (λ·h)–plane, but best may still not be very good. We shall demonstrate
how such algorithms can be constructed.

76 Chapter 3. Single–step Integration Methods

3.7 Backinterpolation Methods

We shall now look at yet another class of special IRK methods, called
backinterpolation techniques, abbreviated as BI algorithms. Similar to the
previously discussed extrapolation techniques, BI methods are easy to con-
struct. However, they offer much better control over the accuracy order
in comparison with the IEX algorithms even when applied to nonlinear
systems. Also, they are considerably more efficient than IEX algorithms.
BI algorithms can be made F–stable, L–stable, or anything in between,
depending on the current needs of the user, and they lend themselves con-
veniently to stability domain shaping.

Let us look once more at the BE algorithm:

xk+1 = xk + h · ẋk+1 (3.41)

We can rearrange Eq.(3.41) as follows:

xk = xk+1 − h · ẋk+1 (3.42)

Thus, a step forward through time from time tk to time tk+1 using the BE
algorithm with a step size of h can also be interpreted as a step backward
through time from time tk+1 to time tk using the FE algorithm with a step
size of −h.

Thus, one way to implement the BE algorithm is to start out from an
estimate of the yet unknown value xk+1, and integrate backward through
time to tk. We then iterate on the unknown “initial” condition xk+1 until
we hit the known “final” value xk accurately. We accept the last guess
of xk+1 as the correct value, and estimate xk+2. Now we integrate again
backward through time to tk+1 until we hit xk+1.

This idea can, of course, be extended to any RK algorithm. For example,
we can take any off–the–shelf RK4 algorithm to replace the former FE
algorithm in integrating backward through time. This is the basic idea
behind backinterpolation. These simplest of all BI algorithms are therefore
sometimes called backward Runge–Kutta methods, or, abbreviated, BRK
methods.

This gives us a series of algorithms of increasing order with the F–
matrices:

F1 = [I(n) − A · h]−1 (3.43a)

F2 = [I(n) − A · h +
(A · h)2

2!
]−1 (3.43b)

F3 = [I(n) − A · h +
(A · h)2

2!
− (A · h)3

3!
]−1 (3.43c)

F4 = [I(n) − A · h +
(A · h)2

2!
− (A · h)3

3!
+

(A · h)4

4!
]−1 (3.43d)

3.7 Backinterpolation Methods 77

Their numerical stability domains are shown in Fig.(3.3). Evidently, these
stability domains are the mirror images of the stability domains of the
explicit RK algorithms. This is not further surprising, since they are the
same algorithms with h replaced by −h.

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

1

2

3

4

Stability Domains of BRK

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.3. Stability domains of basic backinterpolation methods.

Let us now discuss whether we can exploit the backinterpolation idea to
generate a set of F–stable algorithms of increasing order.

Several F–stable algorithms have been known for a long time. One of
those algorithms is the trapezoidal rule:

1st stage: xk+ 1
2

= xk + h
2 · ẋk

2nd stage: xk+1 = xk+ 1
2

+ h
2 · ẋk+1

The trapezoidal rule is an implicit algorithm that can be envisaged as a
cyclic method consisting of a semi–step of length h/2 using FE followed by
another semi–step of length h/2 using BE.

Its F–matrix is thus:

FTR = [I(n) − A · h

2
]−1 · [I(n) + A · h

2
] (3.44)

The trapezoidal rule exploits the symmetry of the stability domains of its
two semi–steps.

78 Chapter 3. Single–step Integration Methods

Since we can implement the BE semi–step as a BRK1 step using the
backinterpolation method, we can extend this idea also to higher–order
algorithms. Their F–matrices will be:

F1 =[I(n) − A · h

2
]−1 · [I(n) + A · h

2
] (3.45a)

F2 =[I(n) − A · h

2
+

(A · h)2

8
]−1 · [I(n) + A · h

2
+

(A · h)2

8
] (3.45b)

F3 =[I(n) − A · h

2
+

(A · h)2

8
− (A · h)3

48
]−1·

[I(n) + A · h

2
+

(A · h)2

8
+

(A · h)3

48
] (3.45c)

F4 =[I(n) − A · h

2
+

(A · h)2

8
− (A · h)3

48
+

(A · h)4

384
]−1·

[I(n) + A · h

2
+

(A · h)2

8
+

(A · h)3

48
+

(A · h)4

384
] (3.45d)

All these techniques are F–stable. F2 is not very useful, since F1 is, by
accident, already second–order accurate.

The implementation of these algorithms is straightforward. For example,
F4 can be implemented in the following way. We start out from time tk
and integrate forward through time across a semi–step from time tk to
time tk+ 1

2
using any off–the–shelf RK4 algorithm. We store the resulting

state xleft
k+ 1

2

for later reuse. We then estimate the value xk+1, e.g. by letting

xk+1 = xleft
k+ 1

2
, and integrate backward through time across the second

semi–step from tk+1 to tk+ 1
2

using the same off–the–shelf RK4 algorithm.

The resulting state is xright

k+ 1
2

. We now iterate on the unknown state xk+1,

until xright

k+ 1
2

= xleft
k+ 1

2
. We then use the final value of xk+1 as the initial

condition for the next integration macro–step.
We need to analyze the iteration process somewhat more. Chapter 2

taught us that a poor choice of the iteration algorithm can foul up our
stability domain.

When applying Newton iteration to the BI1 algorithm, we can set:

F(xk+1) = xright

k+ 1
2

− xleft
k+ 1

2
= 0.0 (3.46)

and find:

3.7 Backinterpolation Methods 79

xleft
k+ 1

2

= FE(xk, tk, h
2)

x0
k+1 = xleft

k+ 1
2

J0
k+1 = J (x0

k+1, tk+1)
xright 1

k+ 1
2

= FE(x0
k+1, tk+1,−h

2)

H1 = I(n) − h
2 · J0

k+1

x1
k+1 = x0

k+1 − H1−1 · (xright 1

k+ 1
2

− xleft
k+ 1

2

)
ε1
k+1 = ‖x1

k+1 − x0
k+1‖∞

J1
k+1 = J (x1

k+1, tk+1)
xright 2

k+ 1
2

= FE(x1
k+1, tk+1,−h

2)

H2 = I(n) − h
2 · J1

k+1

x2
k+1 = x1

k+1 − H2−1 · (xright 2

k+ 1
2

− xleft
k+ 1

2

)
ε2
k+1 = ‖x2

k+1 − x1
k+1‖∞

etc.

where J denotes the Jacobian. For Heun’s method (BI2), we find:

xleft
k+ 1

2

= Heun(xk, tk, h
2)

x0
k+1 = xleft

k+ 1
2

J0
k+1 = J (x0

k+1, tk+1)
xright 1

k+ 1
2

= Heun(x0
k+1, tk+1,−h

2)

J0
k+ 1

2

= J (xright 1

k+ 1
2

, tk+ 1
2
)

H1 = I(n) − h
4 · (J0

k+1 + J0
k+ 1

2

· (I(n) − h
2 · J0

k+1))

x1
k+1 = x0

k+1 − H1−1 · (xright 1

k+ 1
2

− xleft
k+ 1

2

)
ε1
k+1 = ‖x1

k+1 − x0
k+1‖∞

J1
k+1 = J (x1

k+1, tk+1)
xright 2

k+ 1
2

= Heun(x1
k+1, tk+1,−h

2)

J1
k+ 1

2

= J (xright 2

k+ 1
2

, tk+ 1
2
)

H2 = I(n) − h
4 · (J1

k+1 + J1
k+ 1

2

· (I(n) − h
2 · J1

k+1))

x2
k+1 = x1

k+1 − H2−1 · (xright 2

k+ 1
2

− xleft
k+ 1

2

)
ε2
k+1 = ‖x2

k+1 − x1
k+1‖∞

etc.

The algorithm stays basically the same, except that we now need two Jaco-
bians evaluated at different points in time, and the formula for the Hessian
becomes a little more involved.

80 Chapter 3. Single–step Integration Methods

If we assume that the Jacobian remains basically unchanged during one
integration step (modified Newton iteration), we can compute both the
Jacobian and the Hessian at the beginning of the step, and we find for BI1:

J = J (xk, tk) (3.47a)

H = I(n) − h

2
· J (3.47b)

and for BI2:

J = J (xk, tk) (3.48a)

H = I(n) − h

2
· J +

h2

8
· J2 (3.48b)

We recognize the pattern. Clearly, the sequence of H–matrices is:

H1 = I(n) − J · h

2
(3.49a)

H2 = I(n) − J · h

2
+

(J · h)2

8
(3.49b)

H3 = I(n) − J · h

2
+

(J · h)2

8
− (J · h)3

48
(3.49c)

H4 = I(n) − J · h

2
+

(J · h)2

8
− (J · h)3

48
+

(J · h)4

384
(3.49d)

We may even decide to keep the same Jacobian for several steps in a row,
and, in that case, we won’t need to compute a new Hessian either, unless
we decide to change the step size in between.

Evidently, the sequence in which we execute the forward and the back-
ward semi–steps can be interchanged. The F–matrix of the interchanged
BI1 algorithm is:

FMP = [I(n) + A · h

2
] · [I(n) − A · h

2
]−1 (3.50)

which corresponds to the algorithm:

xk+1 = xk + h · ẋk+ 1
2

(3.51)

which is the well–known implicit midpoint rule, the one–legged twin of the
trapezoidal rule. In the same manner, it is possible to generate algorithms of
higher orders as well. The two twins are identical in their linear properties,
but they behave differently with respect to their nonlinear characteristics.
The original BI algorithms are a little more accurate than their one–legged
twins, since we read out the value of the state at the end of the iteration

3.7 Backinterpolation Methods 81

rather than after the forward semi–step. On the other hand, the one–legged
variety has somewhat better nonlinear stability (contractivity) properties,
as shown in [3.5].

BI techniques have a certain resemblance with Padé approximation meth-
ods, which we shall abbreviate as PA methods. The idea behind PA methods
is the following: Every numerical ODE solver tries to somehow approximate
the analytical F–matrix, which would be:

F = exp(A · h) (3.52)

Equation (3.52) can be rewritten as:

F = exp(A
h

2
) · exp(A

h

2
) = [exp(A(−h

2
))]−1 · exp(A

h

2
) (3.53)

According to [3.19], this can be approximated by:

F ≈ D(p, q)−1 · N(p, q) (3.54)

with:

D(p, q) =
q∑

j=0

(p + q − j)! q!
(p + q)! j! (q − j)!

· (−Ah)j (3.55a)

N(p, q) =
p∑

j=0

(p + q − j)! p!
(p + q)! j! (p − j)!

· (Ah)j (3.55b)

which, for p = q, leads to the following set of F–matrices:

F2 =[I(n) − A · h

2
]−1 · [I(n) + A · h

2
] (3.56a)

F4 =[I(n) − A · h

2
+

(A · h)2

12
]−1 · [I(n) + A · h

2
+

(A · h)2

12
] (3.56b)

F6 =[I(n) − A · h

2
+

(A · h)2

10
− (A · h)3

120
]−1·

[I(n) + A · h

2
+

(A · h)2

10
+

(A · h)3

120
] (3.56c)

F8 =[I(n) − A · h

2
+

3(A · h)2

28
− (A · h)3

84
+

(A · h)4

1680
]−1·

[I(n) + A · h

2
+

3(A · h)2

28
+

(A · h)3

84
+

(A · h)4

1680
] (3.56d)

As the indices indicate, these formulae are all accurate to the double order,
i.e., while the individual semi–steps are no longer proper Runge–Kutta

82 Chapter 3. Single–step Integration Methods

steps (they are themselves only first–order accurate), the overall method
attains a considerably higher order of linear accuracy. Due to the symmetry
between D(p, q) and N(p, q), i.e., due to selecting p = q, all these methods
are still F–stable.

PA techniques have been intensively studied in [3.13, 3.16]. The problem
with them is that an accuracy analysis is only available for the linear case.
When exposed to nonlinear systems, the methods may drop several orders
of accuracy. Thereby, F8 may degenerate to an algorithm of merely second
order.

The BI algorithms don’t share this problem. While they are less accu-
rate than their corresponding PA counterparts for the same computational
effort when solving linear problems, their order of accuracy never drops.
When using BI4, we shall retain fourth–order accuracy even when solv-
ing nonlinear problems, since each of its semi–steps itself is fourth–order
accurate for nonlinear as well as linear problems.

Let us check whether we can transform our F–stable BI techniques into
a set of more strongly stable BI techniques. The previous set of F–stable
backinterpolation techniques did exploit the symmetry of the stability do-
mains of its two semi–steps. However, there is no compelling reason why
the two semi–steps have to meet exactly in the middle. The explicit semi–
step could span a distance of ϑ · h, and the implicit semi–step could span
the remaining distance (1 − ϑ) · h. Such a technique is called ϑ–method.
The resulting algorithm would still be accurate to the same order as its
two semi–steps. Using this technique, the stability domain can be shaped.

The case with ϑ > 0.5 is of not much interest, but the case with ϑ < 0.5 is
very useful. It produces a series of techniques with ever increasing stability
until, at ϑ = 0.0, we obtain a set of L–stable algorithms. The F–matrices
of the ϑ–methods are:

F1 =[I(n) − A(1 − ϑ)h]−1 · [I(n) + Aϑh] (3.57a)

F2 =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
]−1·

[I(n) + Aϑh +
(Aϑh)2

2!
] (3.57b)

F3 =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
− (A(1 − ϑ)h)3

3!
]−1·

[I(n) + Aϑh +
(Aϑh)2

2!
+

(Aϑh)3

3!
] (3.57c)

F4 =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
− (A(1 − ϑ)h)3

3!
+

(A(1 − ϑ)h)4

4!
]−1 · [I(n) + Aϑh +

(Aϑh)2

2!
+

(Aϑh)3

3!
+

3.7 Backinterpolation Methods 83

(Aϑh)4

4!
] (3.57d)

Figure 3.4 shows the stability domains of the BI algorithms that result for:

ϑ = 0.4 (3.58)

These methods result in very nice stability domains with large unstable

−2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

1

23

4

Stability Domains of BI0.4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.4. Stability domains of backinterpolation ϑ–methods.

regions in the right half (λ ·h)–plane. The selection of a good value for ϑ is
a compromise. ϑ should be chosen large enough to generate meaningfully
large unstable regions in the right half (λ · h)–plane, yet small enough to
dampen out the high frequency components appropriately in the left half
(λ · h)–plane. The fourth–order algorithm of Fig.3.4 is no longer A–stable.
Its unstable region reaches slightly into the left half (λ · h)–plane. Such
a method is called (A,α)–stable, where α denotes the largest angle away
from the negative real axis that contains only stable territory. BI40.4 is
(A,86o)–stable.

The previously mentioned BRK algorithms are special cases of this new
class of ϑ–methods with ϑ = 0, and the explicit RK algorithms are special
cases of this class of ϑ–methods with ϑ = 1. The F–stable BI algorithms
are special cases with ϑ = 0.5.

84 Chapter 3. Single–step Integration Methods

A set of L–stable BI algorithms with ϑ > 0 can be constructed by choos-
ing the approximation order of the implicit semi–step one order higher than
that of the explicit semi–step. For stiff engineering problems, a BI4 algo-
rithm using an RK4 method for its explicit semi–step and a BRK5 method
for its implicit semi–step together with ϑ = 0.45 turns out to be generally
an excellent choice [3.24]. This method will be abbreviated as BI4/50.45.

3.8 Accuracy Considerations

It is now time to revisit the problem of the approximation accuracy, and
discuss this issue with a little more insight and detail.

We start out with our standard linear test problem:

ẋ = A · x ; x(t0) = x0 (3.59)

with the same A–matrix that we already used when constructing the sta-
bility domain:

A =
(

0 1
−1 2 cos(α)

)
(3.60)

and with the standardized initial condition:

x0 =
(

1
1

)
(3.61)

Let us apply the following fourth–order Runge–Kutta algorithm:

function [x] = rk4(A, h, x0)
%
h2 = h/2; h6 = h/6;

x(:, 1) = x0;
%
for i = 1 : 10/h,

xx = x(:, i);
k1 = A ∗ xx;
k2 = A ∗ (xx + h2 ∗ k1);
k3 = A ∗ (xx + h2 ∗ k2);
k4 = A ∗ (xx + h ∗ k3);
x(:, i + 1) = xx + h6 ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4);

end
return

to simulate this system across 10 seconds of simulated time.
We want to compare the simulated solution xsimul with the analytical

solution:

xanal = exp(A · (t − t0)) · xo (3.62)

3.8 Accuracy Considerations 85

We define the global error as follows:

εglobal = ‖xanal − xsimul‖∞ (3.63)

and vary the step size, h, until the global error matches a prescribed toler-
ance:

function [hmax] = hh2(alpha, hlower, hupper, tol)
%
A = aa(alpha);
x0 = ones(2, 1);
maxerr = 1E-6; err = 100;
while err > maxerr,

h = (hlower + hupper)/2;
xsimul = rk4(A, h, x0);
for i = 0 : 10/h,

xanal(:, i + 1) = expm(A ∗ h ∗ i) ∗ x0;
end,

eglobal = norm(xanal − xsimul,’inf’);
err = eglobal − tol;
if err > 0,

hupper = h;
else

hlower = h;
end,
err = abs(err);

end
hmax = h;

return

This routine looks very similar to the one that was presented in Chapter 2
for the computation of the stability domain.

We again sweep over a range of α values, and plot hmax as a function of
α in polar coordinates. Figure 3.5 shows the results of our efforts.

The chosen error tolerance was tol = 10−4.
Just like the stability domain, the accuracy domain can be plotted in the

(λ ·h)–plane. If we were to select a pair of eigenvalues in the λ–plane twice
as far away from the origin and use a step size, h, that is half as large,
we would get exactly the same accuracy. This happens because both the
analytical F–matrix:

Fanal = exp(A · h) (3.64)

and its numerical counterpart:

FRK4 = I(n) + A · h +
(A · h)2

2!
+

(A · h)3

3!
+

(A · h)4

4!
(3.65)

are functions of A · h.
On first sight, this seems to be an important discovery — accuracy can

be treated in the same way as stability. Unfortunately, this is not quite true.

86 Chapter 3. Single–step Integration Methods

−0.2 −0.15 −0.1 −0.05 0 0.05

−0.1

−0.05

0

0.05

0.1

Accuracy Domain for RK4 with tol = 10−4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.5. Accuracy domain of explicit fourth–order Runge–Kutta method.

The problem is that the accuracy domain depends heavily on the selected
initial condition. The largest step size that can be chosen for a prescribed
tolerance is approximately inverse proportional to the largest gradient in
the simulation, and since:

‖ẋ‖∞ ≈ ‖A‖∞ · ‖x‖∞ (3.66)

hmax is also approximately inverse proportional to any norm of the initial
condition for stable systems. Notice the asymmetry of the accuracy domain
with respect to the imaginary axis. If the poles are located in the analyt-
ically stable left half λ–plane, the transients die out with time, and the
largest errors are committed early on in the game. On the other hand, if
the poles are located in the analytically unstable right half λ–plane, the
transients grow larger and larger, and the committed errors grow accord-
ingly for any fixed step size. This is the major reason why an accurate
simulation of analytically unstable systems is a quite expensive enterprize
as we have to fight accumulation errors in that case.

Figure 3.6 shows the accuracy domains of the RK4 algorithm for three
different error tolerances: tol1 = 10−4 (as before), tol2 = 10−3, tol3 = 10−2,
and finally, tol4 = 10−1. The stability domain has been plotted on top of
the three accuracy domains.

It can be noticed that all three accuracy domains are safely within the
numerically stable region, at least as far as the left–half λ · h–plane is

3.8 Accuracy Considerations 87

−5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

0.1

0.01

stable
region

accurate
region

Accuracy Domains for RK4 in Function of tol

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.6. Accuracy domains of RK4 for different tolerance values.

concerned. However, this is deceiving. As the norm of the state vector
decays for analytically stable eigenvalue locations, the step size could be
chosen larger and larger to achieve the same tolerance.

The solution decays as exp(−σ · t). Let us assume that the two eigen-
values are located at −1.0. In this case, the damping, σ, is 1.0. The norm
of the chosen initial condition is ‖x0‖ = 1.0. With this initial condition,
the accuracy domain intersects the negative real axis at about −0.1. Thus,
when the norm of the state vector has decayed to roughly ‖x‖ = 0.04, the
accuracy domain has grown to the size of the stability domain, and from
then onward, the step size will actually be controlled by the numerical sta-
bility requirements, and no longer by accuracy requirements. This happens
after about 3.2 seconds of simulated time . . . and this is approximately,
how long we would usually simulate such a system before the trajecto-
ries become utterly uninteresting, as long as no input function adds to the
“excitement.”

If we now simulate a system, in which fast phenomena are superposed
to slow phenomena, then the simulation run length will be determined
by the slowest time constant whereas the step size will be dictated by
the numerical stability requirements of the fastest component. This is the
problem that was addressed under the heading stiff system. As the above
calculation shows, it doesn’t take a very large difference in time scales

88 Chapter 3. Single–step Integration Methods

before stiffness becomes a problem. A time scale factor of 10 is probably
still acceptable, one of 100 is already quite problematic. Many engineering
applications call for simulations with time scale differences of several orders
of magnitude. A typical example of such applications are electronic circuits.
This is one of the reasons why all circuit simulators use implicit integration
schemes.

However, let us now return to the question of accuracy. As Fig.3.6 shows,
the difference in step size needed to improve the accuracy by a factor of
10 is not very large. By cutting the step size in half, we can improve the
accuracy by one order of magnitude.

Let us explore this thought a little further. To this end, we shall keep
the eigenvalues at −1.0, and we shall vary the step size to see how accurate
the simulation will be. Figure 3.7 shows the results of this experiment.
I plotted the number of function evaluations, which equals the number of
stages of the algorithm multiplied by the number of steps performed during
the simulation as a function of the achieved accuracy.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

1000

RK4

RK3

RK2

Price per Accuracy for Different RKs

Tolerance

N
um

be
r

of
Fu

nc
ti

on
E

va
lu

at
io

ns

FIGURE 3.7. Simulation cost as a function of accuracy for different RKs.

It turns out that RK4 was cheaper than RK3, which in turn was cheaper
than RK2 for all error tolerance values. This is not very surprising. By
cutting the step size in half, we double the number of function evaluations
needed to complete the simulation run. For the same “money,” we could
have kept the step size the same and instead doubled the accuracy order
(at least for low–order algorithms). Thereby we would have gained two

3.8 Accuracy Considerations 89

orders of magnitude in improved accuracy as opposed to only one order by
reducing the step size.

Euler’s performance is not shown in Fig.3.7. We also tried RK1 (FE),
but we couldn’t get a global accuracy of 10% (corresponding to a local
accuracy of roughly 1%) for below 1000 function evaluations.

For a required global accuracy of 10%, the three algorithms shown in
Fig.3.7 have a quite comparable price. For a 1% accuracy, RK2 is already
out of the question, whereas both RK3 and RK4 still perform decently.
For a 0.1% global accuracy, RK3 has become expensive, while RK4 still
performs acceptably well.

Remembering that we usually control the local integration error rather
than the global integration error, which is roughly one order of magnitude
better, we see that indeed RK4 will work well for local errors of up to about
10−4. If we want to compute more accurately than that, we definitely should
turn to higher–order algorithms.

Notice that all these computations were performed on a 32 bit machine
in double precision, thus, the roundoff error is negligible in comparison with
the truncation error. Just for fun, we repeated the same computations in
simulated single precision by chopping eight digits off the state vector at
the end of each integration step using the MATLAB statement:

x = chop(x, 8)

The results of this effort are shown in Fig.3.8.
If the accuracy requirements are low, the simulation can use large step

sizes, and therefore, roundoff is not a problem. Consequently, the algo-
rithms behave in the same way as before. However, for higher accuracy
requirements, roundoff sets in (due to small step sizes), and accordingly, a
further reduction of the step size will not help to meet the required accu-
racy. No algorithm of any order will get us a global accuracy of better than
10−5 in this case.

To summarize this discussion, problems with roundoff make simulation
in single precision on a 32 bit machine quite problematic for any model
using any integration algorithm. Accuracy requirements put a lower bound
on the approximation order of the integration algorithm. A local error tol-
erance of εlocal = 10−k calls for at least a kth–order integration algorithm.
Lower–order algorithms aren’t necessarily cheaper even if the accuracy re-
quirements aren’t stringent. Accuracy domains aren’t quite as handy as
one could hope for due to their heavy dependence on the chosen initial
conditions.

Let us see whether we can come up with yet another tool to describe the
accuracy of an integration algorithm, a tool that isn’t plagued by the same
flaw as the accuracy domain.

Let us look once more at our standard linear test problem of Eq.3.59
with the analytical solution of Eq.3.62. Obviously, the analytical solution

90 Chapter 3. Single–step Integration Methods

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

1000

RK4

RK3

RK2

Price per Accuracy for Different RKs

Tolerance

N
um

be
r

of
Fu

nc
ti

on
E

va
lu

at
io

ns

FIGURE 3.8. Cost for accuracy for different RKs in single precision.

is correct for any value of t, t0, and x0, and in particular, it is true for
t0 = tk, x0 = xk and t = tk+1. With this substitution, we find:

xk+1 = exp(A · h) · xk (3.67)

Thus, the analytical F–matrix of this system is:

Fanal = exp(A · h) (3.68)

For a scalar problem, we can specialize the general solution of Eq.3.62 into:

x(t) = c1 · exp(−σ · t) · cos(ω · t) + c2 · exp(−σ · t) · sin(ω · t) (3.69)

where σ is the distance of the eigenvalue from the imaginary axis and is
called the damping of the eigenvalue, whereas ω is the distance of the eigen-
value from the real axis and is called the eigenfrequency of the eigenvalue.

It is easy to show that the eigenvalues of the analytical Fanal–matrix are
related to those of the A–matrix through:

Eig{Fanal} = exp(Eig{A} · h) (3.70)

or:

λdisc = exp(λcont·h) = exp((−σ+j ·ω)·h) = exp(−σ·h)·exp(j ·ω·h) (3.71)

3.8 Accuracy Considerations 91

Consequently, the damping, i.e., the distance of an eigenvalue from the
imaginary axis in the λ–plane maps into a distance from the origin in
the exp(λ · h)–plane, whereas the eigenfrequency, i.e., the distance of an
eigenvalue from the real axis in the λ–plane maps into an angle away from
the positive real axis in the exp(λ · h)–plane.

Notice that we just introduced a new plane: the exp(λ ·h)–plane. Control
engineers call this plane the z–domain, where:

z = exp(λ · h) (3.72)

Since even the analytical Fanal–matrix depends on the step size, h, it makes
sense to introduce a discrete damping, σd = h · σ, and a discrete frequency,
ωd = h · ω. Obviously, we can write:

|z| = exp(−σd) (3.73a)
∠z = ωd (3.73b)

Now, let us replace the analytical Fanal–matrix by the one that belongs
to the numerical integration routine, Fsimul. The numerical Fsimul–matrix
is either a rational (for implicit integration algorithms) or a polynomial
(for explicit integration algorithms) approximation of the analytical Fanal–
matrix. We define:

ẑ = exp(λ̂d) (3.74)

with:

λ̂d = −σ̂d + j · ω̂d (3.75)

Therefore:

|ẑ| = exp(−σ̂d) (3.76a)
∠ẑ = ω̂d (3.76b)

As ẑ approximates z, so must σ̂d be an approximation of σd, and ω̂d must
approximate ωd. It makes sense to study the relationship between the an-
alytical discrete damping, σd, on the one hand, and the numerical discrete
damping, σ̂d, on the other. Similarly, we can study the relationship between
the analytical discrete frequency, ωd, and the numerical discrete frequency,
ω̂d.

We can define:

εσ = σd − σ̂d (3.77a)
εω = ωd − ω̂d (3.77b)

92 Chapter 3. Single–step Integration Methods

where εσ denotes the damping error, and εω denotes the frequency error
committed by the numerical integration algorithm.

Since the case of all continuous eigenvalues being negative and real occurs
so frequently (e.g. all thermal systems are of that nature), it is worthwhile
to study the damping error when moving an eigenvalue left or right along
the negative real axis. We can plot σd and σ̂d as functions of σd itself.
The following program will compute σ̂d for any single–step integration al-
gorithm.

function [sdhat] = damp(sd, algor)
%
f = ff(−sd, 1, algor);
sdhat = − log(f);

return

We can then sweep across a range of σd–values, and plot both −σd and
−σ̂d against −σd. Such a graph is called a damping plot. Figure 3.9 shows
the damping plot of RK4.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−6

−4

−2

0

2

4

Damping Plot of RK4

-
D

am
pi

ng

−σ̂d

−σd

−σd

FIGURE 3.9. Damping plot of RK4.

In the vicinity of the origin, the numerical damping value, σ̂d, follows
the analytical damping, σd, very well. However, already for very moderate
eigenvalue locations, the numerical damping behavior deviates drastically
from the analytical one, and somewhere around σd = 2.8, the numerical
damping becomes negative, which coincides with the border of numerical
stability. The area where the approximation of σd by σ̂d is accurate, is
called the asymptotic region of the integration algorithm.

Let us now look at the damping plot of BI4. This plot is shown in Fig.3.10.
Since BI4 is A–stable, the numerical damping stays positive for all values

of λ. Since BI4 is F–stable, the numerical damping approaches zero as λ
approaches −∞. Figure 3.11 shows the damping plot of the ϑ–method with
ϑ = 0.4.

Now, the damping no longer approaches zero, but it doesn’t go to infinity
either. From Eq.3.57d, we can conclude that:

3.8 Accuracy Considerations 93

−15 −10 −5 0
−15

−10

−5

0

Damping Plot of BI4 Algorithm

−σd

-
D

am
pi

ng

FIGURE 3.10. Damping plot of BI4.

−15 −10 −5 0
−15

−10

−5

0

Damping Plot of BI40.4 Algorithm

−σd

-
D

am
pi

ng

FIGURE 3.11. Damping plot of BI4 with ϑ = 0.4.

σ̂d(−∞) = −4 · log(
ϑ

1 − ϑ
) (3.78)

Consequently, for ϑ = 0.5, we find that σ̂d(−∞) = 0.0, a fact that we
already knew (F–stability), and for ϑ = 0.4, we find that σ̂d(−∞) = 1.6219.
The algorithm with ϑ = 0.0, i.e., BRK4, is L–stable, since σ̂d(−∞) → −∞.
Unfortunately, the true power of L–stability is not as glamorous as one
might think, as the BRK4 damping plot of Fig.3.12 demonstrates. Although
BRK4 is L–stable, the increase in damping when moving the pole to the
left is despairingly slow as a result of the logarithm function in Eq.(3.78).
For σd = −10−9, we find that σ̂d ≈ −80. L–stability is thus somewhat
overrated.

Just for completeness, let us draw the damping plot of IEX4 as well. It is
shown inf Fig.3.13. Now, this is interesting. Somewhere around σd = −6.7,
the numerical damping, σ̂d, intersects with the analytical damping, σd, thus
the damping error is exactly equal to zero.

Let us extend our search to the entire complex (λ ·h)–plane. Figure 3.14
plots σ̂d − σd over the complex plane.

Points on Fig.3.14 with positive amplitude represent a surplus in numer-

94 Chapter 3. Single–step Integration Methods

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−100

−80

−60

−40

−20

0

Damping Plot of BRK4 Algorithm

−σd

-
D

am
pi

ng

FIGURE 3.12. Damping plot of BRK4.

−15 −10 −5 0
−15

−10

−5

0

Damping Plot of IEX4 Algorithm

−σd

-
D

am
pi

ng

FIGURE 3.13. Damping plot of IEX4.

ical damping, whereas points with negative amplitude represent a lack in
numerical damping. We can strip away the magnitude information, and
only display the sign of the damping error. This is shown in Fig.3.15. ‘+’
means that there is surplus damping at this point, whereas ‘−’ indicates
that there is not enough damping.

There obviously exists a locus of at least partially connected points of the
λ ·h–plane, where the damping error is zero. This locus has been plotted in
Fig.3.16 for the IEX4 method. Such a locus is called an order star [3.13,
3.16, 3.23].

Figure 3.14 shows that there exist points where the simulated damping
σ̂d is infinite. Contrary to Fanal, which is a very smooth function, any
rational function approximation Fsimul has poles, i.e., points with infinite
numerical damping.

The F–matrix of IEX4 can be written as follows:

F = −1
6
· [I(n) − A · h]−1 + 4 · [I(n) − A · h

2
]−2

−27
2

· [I(n) − A · h
3

]−3 +
32
3

· [I(n) − A · h
4

]−4 (3.79)

3.8 Accuracy Considerations 95

−10

0

10 −15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

20

σd

3D Damping Plot for IEX4

ωd

R
el

at
iv

e
D

am
pi

ng

FIGURE 3.14. 3D–plot of damping error for IEX4.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − − + + + + + + + + + + + +
− − − − − − − − − + + + + + + + + + + + +
− − − − − − − − − + + − − − − + + + + + +
− − − − + + + − − + − + − − − − + + + + +
− − − − + + + + − − 0 + + + + + + + + + +
− − − − + + + − − + − + − − − − + + + + +
− − − − − − − − − + + − − − − + + + + + +
− − − − − − − − − + + + + + + + + + + + +
− − − − − − − − − + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +
− − − − − − − − + + + + + + + + + + + + +

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIGURE 3.15. Damping error sign for IEX4.

Let us analyze the scalar case with:

q = λ · h
We can write:

f = −1
6
· 1
1 − q

+ 4 · 1
(1 − q/2)2

− 27
2

· 1
(1 − q/3)3

+
32
3

· 1
(1 − q/4)4

(3.80)

f is a rational function with 10 poles located at +1 (single pole), +2 (double

96 Chapter 3. Single–step Integration Methods

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x x x xo o o
oo

o

o

o

neg

neg

pos

pos

pos

pos

neg

neg

pos

pos

Damping Order Star of IEX4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.16. Damping order star for IEX4.

pole), +3 (triple pole), and +4 (quadruple pole). As with any respectable
integration algorithm, all the poles are in the right half complex plane. The
pole locations are marked on Fig.3.16 as ‘×’. f has also nine zeros, which
are located at 3.277 ± 0.2155j, 2.1918, 1.3622 ± 0.6493j, 0.9562, −5.6654,
−8.7506, and −65.0105. They were marked on Fig.3.16 as ‘o’. Since:

σ̂d = − log(|f |) (3.81)

zeros show up on the damping plot (Fig.3.13) as negative poles, and on the
3D–plot (Fig.3.14) as positive poles.

Figure 3.14 shows a very rugged terrain just to the right of the origin of
the complex plain. For this reason, extrapolation techniques surely aren’t
suitable for the integration of unstable systems.

In stiff system integration, we requested that σ̂d → −∞ as λ → ∞.
From Eq.(3.81), we conclude that f → 0 as q → ∞. This is obviously only
possible if f is a strictly proper rational function. This is the reason why
explicit integration algorithms can never be L–stable.

IEX4 also has many zeros, some of which are even in the left half complex
plain. This can pose a problem. The BRK algorithms don’t have any zeros.
This may sometimes be beneficial.

Let us now look at the damping order star of a backinterpolation tech-
nique. It is shown for BI4 on Fig.3.17.

The terrain in the vicinity of the origin (the asymptotic region) is much

3.8 Accuracy Considerations 97

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

x

x

x

x

o

o

o

o

neg

neg

pos

pos

pos

pos

neg

neg

pos

pos

neg

neg

Damping Order Star of BI4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.17. Damping order star for BI4.

smoother than in the case of IEX4. BI4 has four poles and four zeros that
are marked on Fig.3.17. As in the case of IEX4, BI4 has zeros in the left
half complex plane, but at least none on the negative real axis.

Let us now discuss the frequency error. It may be worthwhile to study the
frequency error when moving an eigenvalue up or down along the positive
imaginary axis. We can plot ωd and ω̂d as functions of ωd itself. The fol-
lowing program will compute ω̂d for any single–step integration algorithm.

function [wdhat] = freq(wd, algor)
%
f = ff(wd, 1, algor);
wdhat = atan2(imag(f),real(f));

return

We can then sweep across a range of ωd–values, and plot both ωd and ω̂d

against ωd. Such a graph is called a frequency plot. Figure 3.18 shows the
frequency plot of RK4.

The frequency plot of RK4 seems to exhibit a discontinuity around ωd =
2.5. Yet, the plot is misleading. The discrete frequency ωd is 2π–periodic.
The “discontinuity” simply represents a jump of ω̂d from +π to −π. We
could easily compensate for the jump, and get a ω̂d curve that is totally
smooth, as long as the chosen path for ωd doesn’t lead through either a
pole or a zero.

98 Chapter 3. Single–step Integration Methods

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6
Frequency Plot of RK4 Algorithm

ωd

Fr
eq

ue
nc

y

FIGURE 3.18. Frequency plot of RK4.

Does this mean that we can plot a frequency order star in the same
fashion as we drew the damping order star? Unfortunately, there still is
a problem. The damping order star is a contour plot, i.e., a plot of an
equipotential line, namely that for the zero potential. Contour plots, how-
ever, can only be drawn for potential fields, i.e., single-valued functions in
two real variables or one complex variable. The damping error function is
indeed single–valued. Unfortunately, the same does not hold for the fre-
quency error function. For each value of the complex independent variable
sd = σd + j ·ωd, the dependent variable ω̂d assumes infinitely many values,
as ω̂d is 2π–periodic.

Can we fix the problem by eliminating the artificial discontinuities, as
proposed above? Unfortunately, this does not solve the problem. If we
choose a closed path in sd that encircles either a pole or a zero, the to-
tal frequency contribution around the pole or zero is ±2π. The terrain of
the ω̂d function in the vicinity of any pole or zero looks like an infinitely
long spiral staircase. Consequently, the ω̂d–function is not a potential field.

The ω̂d–function can be turned into a potential field by limiting its range
to e.g. (−π,+π], in which case we can indeed plot a frequency order star
just as easily as in the case of the damping order star.

Figure 3.19 shows the frequency order star of BI4, and Fig.3.20 exhibits
the frequency order star of IEX4.

Frequency order stars aren’t depicted often, although they should be,
and were it only for their exquisite beauty.

What can we do with these tools? We have seen that both the damp-
ing plot and the frequency plot exhibit asymptotic regions, i.e., regions,
in which Fsimul deviates only little from Fanal both in terms of the ab-
solute value (damping) and in terms of the phase value (frequency). The
asymptotic region surrounds the origin. Figure 3.21 shows the asymptotic
regions of the RK4 algorithm. The top graph shows the asymptotic region
for sd = −σd, whereas the bottom graph depicts the asymptotic region for
sd = j · ωd.

3.8 Accuracy Considerations 99

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

x

x

x

x

o

o

o

o

pos

neg

neg

pos

neg

pos

Frequency Order Star of BI4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.19. Frequency order star of BI4.

Hence it may make sense to define an error function that accounts for
both types of errors, the damping error and the frequency error, simulta-
neously, e.g.:

oserr = |σd − σ̂d| + |ωd − ω̂d| (3.82)

If both the damping error and the frequency error are defined such that
they form potential fields, then the order star error function, oserr, must
also form a potential field. Consequently, we can draw equipotential lines
of oserr = 10−4, oserr = 10−3, and oserr = 10−2 as contour plots, and
superpose them onto the same graph. Figure 3.22 depicts the order star
accuracy domain of the RK4 algorithm.

The order star accuracy domain has an important advantage over the
previously introduced accuracy domain. It is totally independent of the
problem to be solved or the initial conditions being used. It only depends
on the algorithm itself. It is a metric that is as “pure” as the stability
domain.

Notice that the order star accuracy domain is not asymmetric w.r.t. the
imaginary axis. The reason is simple. The order star accuracy domain com-
pares the analytical solution of the original continuous–time problem with
the equally analytical solution of the derived discrete–time problem. Con-
sequently, it only accounts for the truncation error. It does not consider

100 Chapter 3. Single–step Integration Methods

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

x x x xo o o
oo

o

o

o

Frequency Order Star of IEX4

Re{λ · h}

I
m
{λ

·h
}

FIGURE 3.20. Frequency order star of IEX4.

either the roundoff or the accumulation errors. The roundoff error is rela-
tively harmless, as it can be easily controlled by the length of the mantissa
used in the numerical computation. The accumulation error, on the other
hand, is anything but harmless. It is responsible for the narrow region of
accurate simulations in the right half plane of the accuracy domain. As the
order star accuracy domain doesn’t account for accumulation errors, it al-
lows for an equally large region of accurate computations in the right–half
λ · h–plane as in the left–half λ · h–plane.

Hence and in spite of its other shortcomings, the previously introduced
accuracy domain is a considerably more conservative measure of the ability
of a code to perform accurate simulations than the newly introduced order
star accuracy domain.

Figure 3.23 shows the order star accuracy domain of the IEX4 algorithm.
This time, the order star accuracy domain is indeed asymmetrical to the
imaginary axis. However, the reason here is not related to the accumulation
errors, but rather to the poles and zeros of this algorithm that are located
close to the origin in the right–half λ · h–plane, leading to a very rugged
terrain of the order star in this region. Hence the IEX4 algorithm has no
chance of simulating accurately unstable systems, even irrespective of the
problem of error accumulation.

3.9 Step–size and Order Control 101

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−6

−4

−2

0

2

4

asymptotic

region

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

asymptotic

region

Damping Plot with Asymptotic Region - RK4

−σd

-
D

am
pi

ng

Frequency Plot with Asymptotic Region - RK4

ωd

Fr
eq

ue
nc

y

FIGURE 3.21. Asymptotic regions of RK4.

3.9 Step–size and Order Control

Although we have talked about the various sources of errors that can cor-
rupt our numerical integration results, we have done nothing so far to con-
tain them. We know that smaller step sizes will, in general, lead to smaller
integration errors at a higher computational cost, whereas larger step sizes
will lead to larger errors at a smaller cost. The right step size is a com-
promise between containment of error and cost. However, we don’t know
how to choose the most appropriate step size. As engineers, we certainly
know how accurate we need our results to be, and we also know how much
money we are willing to spend in order to get them, but while this knowl-
edge indirectly determines the step size, we don’t have a good algorithm
yet that would translate the error/cost knowledge into an adequate value
for the step size. This problem will be discussed next.

Since the relationship between error/cost on the one hand and the step
size on the other depends heavily on the numerical properties of the system
to be integrated, it is not clear that a fixed step size will lead to the same
integration error throughout the simulation. It may well be that a variation
of the step size during the simulation period in order to keep the error at
a constant level close to the maximum allowed error tolerance can reduce
the overall cost of the simulation. This observation leads to the demand
for variable–step integration algorithms, which in turn call for a step–size

102 Chapter 3. Single–step Integration Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Order Star Accuracy Domain of RK4

Re{λ · h}

I
m
{λ

·h
}

10−2

10−3
10−4

FIGURE 3.22. Order star accuracy domain of RK4.

control algorithm.
The following step–size control algorithm may work. Take any two arbi-

trary Runge–Kutta algorithms, and repeat the same step twice, once with
each of the algorithms. The results of these two algorithms will differ by
ε. If ε is larger than the tolerated error tolabs, the step is rejected and re-
peated with half the step size. If ε is smaller than 0.5 · tolabs during four
steps in a row, the next step will be computed with 1.5 · h.

This algorithm is very heuristic and somewhat unsatisfactory on several
counts, but the reader certainly has no problems in understanding how the
algorithm is supposed to work. The difference between the two solutions,
ε, is taken as an estimate for the local integration error and is compared
against the tolerated error. If the estimate is larger than the tolerated error,
the step size needs to be reduced, but if it is smaller, the step size can be
increased.

The first objection that comes to mind is the use of the absolute error as
a performance measure. Intuitively, if the state variable (i.e., the output of
the integrator) has a value of the order of 106, we can tolerate a much larger
absolute error than if the state variable has a value of 10−6. It therefore may
make sense to replace the absolute error by a relative error. The modified
algorithm looks as follows:

3.9 Step–size and Order Control 103

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Order Star Accuracy Domain of IEX4

Re{λ · h}

I
m
{λ

·h
} 10−2 10−3

10−4

FIGURE 3.23. Order star accuracy domain of IEX4.

εrel =
|x1 − x2|

|x1| (3.83a)

if εrel > tolrel ⇒ hnew = 0.5 · h (3.83b)
if εrel < 0.5 · tolrel during four steps ⇒ hnew = 1.5 · h (3.83c)

where x1 is the value of the state variable obtained by one of the two
algorithms, whereas x2 is the value obtained by the other algorithm.

Also this algorithm has its flaws. What if, by accident, x1 = 0.0 at some
point in time? This problem can be countered by modifying Eq.(3.83a) in
the following fashion:

εrel =
|x1 − x2|

max(|x1|, |x2|, δ) (3.84)

where δ is a fudge factor, e.g., δ = 10−10.
If an entire state vector needs to be integrated, the user may specify

different relative error tolerances for each of the state variables separately.
The above algorithm could then be applied to each of the state variables
separately, resulting in different suggestions for the next step size, hnew, to
be taken. The smallest of those values would then be applied.

104 Chapter 3. Single–step Integration Methods

The only remaining problem is the price tag associated with this proce-
dure. Each step must be computed twice, i.e., the step–size control algo-
rithm at least doubles the cost of the numerical integration. Is this truly
necessary?

Edwin Fehlberg [3.9] didn’t think so. He proposed to make use of the
freedom in assigning the α and β parameters of the regular RK algorithms
in designing a step–size controlled algorithm in which both RK methods
share the early stages of the scheme, and vary only in the later stages.
He created pairs of algorithms one order apart. The most commonly used
among his methods is RKF4/5 with the Butcher tableau:

0 0 0 0 0 0 0
1/4 1/4 0 0 0 0 0
3/8 3/32 9/32 0 0 0 0

12/13 1932/2197 −7200/2197 7296/2197 0 0 0
1 439/216 -8 3680/513 −845/4104 0 0

1/2 −8/27 2 −3544/2565 1859/4104 −11/40 0
x1 25/216 0 1408/2565 2197/4104 −1/5 0
x2 16/135 0 6656/12825 28561/56430 −9/50 2/55

where:

f1(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1

104
q5 (3.85a)

f2(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1

120
q5 +

1
2080

q6 (3.85b)

Thus, x1 is a five–stage RK4, and x2 is a six–stage RK5. However, the
RK4 and RK5 algorithms have the first five stages in common. Therefore,
the step–size controlled algorithm is overall still a six–stage RK5, and the
only additional cost associated with step–size control is the computation
of the corrector of RK4. Step–size control comes almost for free.

How about the heuristic algorithm for modifying the step size? Luckily,
we can do better than that. Since we have explicit expressions for f1(q)
and f2(q), we can provide an explicit formula for the error estimate:

ε(q) = f1(q) − f2(q) =
1

780
q5 − 1

2080
q6 (3.86)

In a first approximation, we can write:

ε ∼ h5 (3.87)

or:

h ∼ 5
√

ε (3.88)

It makes sense to use the following step–size control algorithm:

hnew = 5

√
tolrel · max(|x1|, |x2|, δ)

|x1 − x2| · hold (3.89)

3.9 Step–size and Order Control 105

The rational behind this algorithm is very simple. As long as:

|x1 − x2|
max(|x1|, |x2|, δ) = tolrel (3.90)

we got the right step size, and the step size won’t change. However, as soon
as |x1 − x2| becomes too large, the step size will be reduced. On the other
hand, if |x1 − x2| becomes too small, the step size will be enlarged.

Contrary to the previously proposed algorithm, no step will ever be re-
peated. The algorithm accepts too large errors in a single step and just
tries to prevent mishap from repeating itself. Algorithms that operate in
this fashion are called optimistic algorithms, whereas algorithms that repeat
steps exhibiting errors that are too large are called conservative algorithms.

The above procedure might work very well indeed if only we could trust
that one of the algorithms always overestimates the true value, while the
other always underestimates it, with the additional constraint that both
algorithms smoothly approximate the true value as h → 0.

Unfortunately, such a guarantee cannot be given. It is entirely feasi-
ble that both algorithms agree, by accident, on the same incorrect result.
Thus, the algorithm can be fooled. Luckily, this doesn’t happen too often
in practice, and consequently, engineers are usually quite happy with this
algorithm.

Kjell Gustafsson [3.11] had an even better idea. Kjell had a background
in control engineering, and therefore viewed the step–size control problem
from a control engineering perspective. This view is shown in Fig.3.24.

u(t)

x(t)ẋ x

εrel

εrel

tolrel e

hnew

Controller

State–Space
Model

Integration
Algorithm

+

−

FIGURE 3.24. Step–size control viewed as a control problem.

The integration algorithm interacts with the state space model in a closed
loop. We have seen that loop before. However, it also generates another
output, namely the estimate of the relative integration error, εrel. This
quantity is fed back and compared with the desired relative error, tolrel.
The resulting error signal, e, is then fed into a controller box that computes
the next value of the step size, hnew.

The controller can be designed using standard control theory. It turns
out that the previously proposed step–size adaptation rule of Eq.3.89 cor-

106 Chapter 3. Single–step Integration Methods

responds to a discrete proportional controller (P–controller). However, we
can just as well implement either a discrete PI–controller or a discrete
PID–controller. All we need to do is to modify Eq.3.89 accordingly.

Gustafsson found that a PI–controller can be implemented using the
following modified step–size control algorithm:

hnew =
(

0.8 · tolrel
εrelnow

) 0.3
n

·
(

εrellast

εrelnow

) 0.4
n

· hold (3.91)

where:

εrelnow =
‖x1 − x2‖∞

max(‖x1‖2, ‖x2‖2, δ)
(3.92a)

εrellast = same quantity one time step back (3.92b)

and n is the approximation order of the integration algorithm, in the case
of RKF4/5, n = 5.

In Fig.3.24, it was assumed that the same relative error applies to all
state variables, i.e., we can operate on norms of the two state vectors rather
than on individual state variables. Therefore, εrel is a scalar rather than
a vector. However, the vector case could have been treated in exactly the
same fashion.

In Chapter 2, we have seen that we always have a choice between a high–
order algorithm with a larger step size and a low–order algorithm with a
smaller step size. Although it has been shown in Chapter 3 that low–order
algorithms aren’t really suitable in most situations, the question remains
whether order control might be a viable alternative to step–size control.

Several authors have extended the idea of embedded RK algorithms (RK
algorithms of different orders sharing their early stages) for the purpose of
order control [3.1]. However, beside from some interesting research papers,
these efforts didn’t go anywhere. The reason is simple. Low–order RK al-
gorithms are dubious anyway. Step–size controlled low–order RKs are even
worse, since the relative overhead paid for step–size control is larger for low–
order algorithms. The additional overhead paid for the embedding makes
these algorithms non–economic for practically all applications. Order con-
trol is a fashionable subject in multi–step integration, algorithms that will
be discussed in the next chapter of this book. However, the order–control
issue is, in our opinion, overrated even in the context of those algorithms.

3.10 Summary

This chapter has extended the general observations on numerical ODE
integration made in Chapter 2 to a large class of higher–order integration

3.11 References 107

algorithms, namely the so–called Runge–Kutta methods. Both explicit [3.3,
3.12] and implicit versions [3.13] of these algorithms were discussed, and
their stability as well as accuracy properties were analyzed.

Most engineering applications call for fourth–order algorithms. The step–
size controlled RKF4/5 algorithm [3.9] is easily the most popular among
the explicit RK techniques. More recently, DOPRI4/5 [3.7, 3.11] became
also fairly popular due to its somewhat smaller error coefficient (97/120, 000
in comparison with 1/780 of RKF4/5), which is paid for by one additional
stage, i.e., one additional function evaluation per step.

The most popular implicit RK algorithms for stiff system simulation are
the fully–implicit Radau algorithms [3.13]. These algorithms are highly
efficient, and good (robust) implementations are available. They shall be
discussed in greater detail in Chapter 8 of this book. Backinterpolation
techniques, and in particular BI4/50.45, are a new and viable alternative
that, in our opinion, will receive more attention in the future.

Implicit extrapolation techniques have been advocated for use on parallel
processor architectures [3.6]. Parallelization of these algorithms is trivial,
since the predictor stages can be computed in parallel. In this way, the
number of consecutive stages of a fourth-order extrapolation method can
be reduced from 10 to four. These algorithms have been successfully applied
to the simulation of complex chemical processing plants, such as distillation
columns with 50 trays.

F–stable algorithms for the simulation of marginally stable systems are a
more specialized breed of animals in the zoo of numerical ODE integration
algorithms. They will never become as popular as either the non–stiff ex-
plicit algorithms or the stiffly–stable implicit algorithms, since the number
of suitable applications for these algorithms is more limited. However, these
algorithms should be looked at more closely in the context of method–of–
lines solutions to hyperbolic PDE problems.

3.11 References

[3.1] Dale G. Bettis. Efficient Embedded Runge–Kutta Methods. In
Roland Bulirsch, Rolf Dieter Grigorieff, and Johann Schröder, editors,
Numerical Treatment of Differential Equations, volume 631 of Lecture
Notes in Mathematics, pages 9–18. Springer–Verlag, New York, 1976.

[3.2] Kevin Burrage. Efficiently Implementable Algebraically Stable
Runge–Kutta Methods. SIAM J. Numerical Analysis, 19:245–258,
1982.

[3.3] John C. Butcher. The Numerical Analysis of Ordinary Differential
Equations: Runge–Kutta and General Linear Methods. John Wiley,
Chichester, United Kingdom, 1987. 512p.

108 Chapter 3. Single–step Integration Methods

[3.4] Alan R. Curtis. An Eighth Order Runge–Kutta Process With Eleven
Function Evaluations Per Step. Numerische Mathematik, 16:268–277,
1970.

[3.5] Germund G. Dahlquist, Werner Liniger, and Olavi Nevanlinna. Sta-
bility of Two–Step Methods for Variable Integration Steps. SIAM J.
Numerical Analysis, 20(5):1071–1085, 1983.

[3.6] Peter Deuflhard. Extrapolation Integrators for Quasilinear Implicit
ODEs. In Peter Deuflhard and Björn Enquist, editors, Large Scale
Scientific Computing, volume 7 of Progress in Scientific Computing,
pages 37–50, Birkhäuser, Boston, Mass., 1987.

[3.7] John R. Dormand and Peter J. Prince. A Family of Embedded
Runge–Kutta Formulae. J. of Computational and Applied Mathemat-
ics, 6(1):19–26, 1980.

[3.8] Leonhard Euler. De integratione æquationum differentialium per ap-
proximationem. In Opera Omnia, volume 11 of first series, pages
424–434. Institutiones Calculi Integralis, Teubner Verlag, Leipzig, Ger-
many, 1913.

[3.9] Edwin Fehlberg. Classical 5th–, 6th–, 7th–, and 8th–Order Runge–
Kutta Formulas. Technical Report NASA TR R–287, NASA Johnson
Space Center, Houston, Texas, 1968.

[3.10] C. William Gear. Numerical Initial Value Problems in Ordinary
Differential Equations. Series in Automatic Computation. Prentice–
Hall, Englewood Cliffs, N.J., 1971. 253p.

[3.11] Kjell Gustafsson. Control of Error and Convergence in ODE Solvers.
PhD thesis, Dept. of Automatic Control, Lund Institute of Technology,
Lund, Sweden, 1992.

[3.12] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. Solving Ordi-
nary Differential Equations I: Nonstiff Problems, volume 8 of Series in
Computational Mathematics. Springer–Verlag, Berlin, Germany, 2nd

edition, 2000. 528p.

[3.13] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II: Stiff and Differential–Algebraic Problems, volume 14 of
Series in Computational Mathematics. Springer–Verlag, Berlin, Ger-
many, 2nd edition, 1996. 632p.

[3.14] Karl Heun. Neue Methoden zur approximativen Integration der Dif-
ferentialgleichungen einer unabhängigen Veränderlichen. Zeitschrift
für Mathematische Physik, 45:23–38, 1900.

3.12 Homework Problems 109

[3.15] Anton Huťa. Une amélioration de la méthode de Runge–Kutta–
Nyström pour la résolution numérique des équations différentielles du
premier ordre. Acta Fac. Nat. Univ. Comenian. Math., 1:201–224,
1956.

[3.16] Arieh Iserles and Syvert P. Nørsett. Order Stars, volume 2 of Ap-
plied Mathematics and Mathematical Computation. Chapman & Hall,
London, United Kingdom, 1991. 248p.

[3.17] Wilhelm Kutta. Beitrag zur näherungsweisen Integration totaler
Differentialgleichungen. Zeitschrift für Mathematische Physik, 46:435–
453, 1901.

[3.18] John D. Lambert. Numerical Methods for Ordinary Differential Sys-
tems: The Initial Value Problem. John Wiley, New York, 1991. 304p.

[3.19] Cleve Moler and Charles van Loan. Nineteen Dubious Ways to Com-
pute the Exponential of a Matrix. SIAM Review, 20(4):801–836, 1978.

[3.20] Evert Johannes Nyström. Über die numerische Integration von Dif-
ferentialgleichungen. Acta Socialum Scientarum Fennicæ, 50(13):1–
55, 1925.

[3.21] Carl Runge. Über die numerische Auflösung von Differential-
gleichungen. Mathematische Annalen, 46:167–178, 1895.

[3.22] Baylis Shanks. Solutions of Differential Equations by Evaluations of
Functions. Mathematics of Computation, 20:21–38, 1966.

[3.23] Gerhard Wanner, Ernst Hairer, and Syvert Nørsett. Order Stars and
Stability Theorems. BIT, 18:475–489, 1978.

[3.24] Wei Xie. Backinterpolation Methods for the Numerical Solution of
Ordinary Differential Equations and Applications. Master’s thesis,
Dept. of Electrical & Computer Engineering, University of Arizona,
Tucson, Ariz., 1995.

3.12 Homework Problems

[H3.1] Family of Explicit RK2 Algorithms

Verify that Eq.(3.10) is indeed the correct Taylor–Series expansion describ-
ing the parameterized family of all two–stage explicit RK2 algorithms.

110 Chapter 3. Single–step Integration Methods

[H3.2] Family of Explicit RK3 Algorithms

Derive the constraint equations in the αi and βij parameters that charac-
terize the family of all three–stage explicit RK3 algorithms.

To this end, the Taylor–series of f(x+Δx, y+Δy) must now be expanded
up to the quadratic terms:

f(x + Δx, y + Δy) ≈ f(x, y) +
∂f(x, y)

∂x
· Δx +

∂f(x, y)
∂y

· Δy +

∂2f(x, y)
∂x2

· Δx2

2
+

∂2f(x, y)
∂x · ∂y

· Δx · Δy +
∂2f(x, y)

∂y2
· Δy2

2
(H3.2a)

[H3.3] Runge–Kutta–Simpson Algorithm

Given the four–stage Runge–Kutta algorithm characterized by the Butcher
tableau:

0 0 0 0 0
1/3 1/3 0 0 0
2/3 -1/3 1 0 0
1 1 -1 1 0
x 1/8 3/8 3/8 1/8

Write down the stages of this algorithm. Determine the linear order of
approximation accuracy of this method. How would you judge this method
in comparison with other Runge–Kutta algorithms discussed in this chap-
ter?

[H3.4] RK Order Increase by Blending

Given two separate nth–order accurate RK algorithms in at least (n + 1)
stages:

f1(q) = 1 + q +
q2

2!
+ · · · + qn

n!
+ c1 · qn+1 (H3.4a)

f2(q) = 1 + q +
q2

2!
+ · · · + qn

n!
+ c2 · qn+1 (H3.4b)

where c2 �= c1.
Show that it is always possible to use blending:

xblended = ϑ · x1 + (1 − ϑ) · x2 (H3.4c)

where x1 is the solution found using method f1(q) and x2 is the solution
found using method f2(q), such that xblended is of order (n + 1).

Find a formula for ϑ that will make the blended algorithm accurate to
the order (n + 1).

3.12 Homework Problems 111

[H3.5] Stability Domains of RKF4/5

Find the stability domains of the two algorithms used in RKF4/5. Interpret
the results. Is it better to use the fourth–order approximation to continue
with the next step, or should the fifth–order approximation be used?

[H3.6] Runge–Kutta Integration

Given the following linear time–invariant continuous–time system:

ẋ =

⎛
⎜⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 −9613
250 −5060 −12079 −8586 −4826
−750 15101 36086 25637 14420
250 −4963 −11896 −8438 −4756

⎞
⎟⎟⎟⎟⎠ · x +

⎛
⎜⎜⎜⎜⎝

5
2
1
−3
1

⎞
⎟⎟⎟⎟⎠ · u

y =
(−1 26 59 43 23

) · x (H3.6a)

with initial conditions:

x0 =
(
1 −2 3 −4 5

)T (H3.6b)

This is the same system that was used in Hw.[H2.1] Simulate the system
across 10 seconds of simulated time with step input using the RK4 algo-
rithm with the α–vector and β–matrix of Eq.(3.15). The following fixed
step sizes should be tried:

1. h = 0.32,

2. h = 0.032,

3. h = 0.0032.

Plot the three trajectories on top of each other. What can you conclude
about the accuracy of the results?

[H3.7] Implicit Extrapolation

Derive the α1 and α2 coefficients of the IEX2 method using the two ap-
proaches demonstrated in the chapter. Show that you indeed obtain the
same coefficients using either of the two methods.

[H3.8] Implicit Extrapolation

Repeat Hw.[H3.6], this time using the IEX4 algorithm. Since the system
to be simulated is linear, the implicit algorithm can be implemented by
matrix inversion rather than by Newton iteration.

Which algorithm is more accurate for the same step size: RK4 or IEX4?

112 Chapter 3. Single–step Integration Methods

[H3.9] Explicit Integration Methods and Their Stability
Domains

Prove that all explicit RK algorithms have stability domains that look
qualitatively like that of FE, i.e., bend into the left–half λ ·h plane. To this
end, show that all explicit RK algorithms are characterized by a polynomial
rather than rational f(q), and analyze f(q) for large values of q → ∞.

[H3.10] Implicit Integration Methods and Their Stability
Domains

Prove that all implicit RK algorithms with strictly proper rational f(q)
functions have stability domains that look qualitatively like that of BE,
i.e., bend into the right–half λ · h plane.

Show furthermore that no integration algorithm with a non–strictly proper
f(q) function can exhibit infinite damping far away from the origin of the
complex λ · h plane.

[H3.11] Stability Domains of BI4/5ϑ

Find the stability domain of BI4/5ϑ using the approximation of Eq.(3.85a)
for the explicit semi–step, and the approximation of Eq.(3.85b) for the
implicit semi–step using the following ϑ values:

ϑ = {0.4, 0.45, 0.475, 0.48, 0.5} (H3.11a)

For this problem, it may be easier to use MATLAB’s contour plot, than
your own stability domain tracking routine.

[H3.12] BI4/50.45 for Linear Systems

Repeat Hw.[H3.6] this time using BI4/50.45. The explicit semi–step uses the
fourth–order approximation of RKF4/5. There is no need to compute the
fifth–order corrector. The implicit semi–step uses the fifth–order corrector.
There is no need to compute the fourth–order corrector. Since the system
to be simulated is linear, the implicit semi–step can be implemented using
matrix inversion. No step–size control is attempted.

Compare the accuracy of this algorithm with that of RK4 and IEX4.

[H3.13] Stability Domain and Newton Iteration

Show that Newton iteration indeed does not modify the stability domain
of BI2.

[H3.14] BI4/50.45 for Nonlinear Systems

Repeat Hw.[H3.12]. This time, we want to replace the matrix inversion by
Newton iteration. Of course, since the problem is linear and time–invariant,
Newton iteration and modified Newton iteration are identical. Iterate until

3.12 Homework Problems 113

δrel ≤ 10−5, where:

δrel =
‖xright

k+ 1
2

− xleft
k+ 1

2

‖∞
max(‖xleft

k+ 1
2

‖2, ‖xright

k+ 1
2

‖2, δ)
(H3.14a)

Compare the results obtained with those found in Hw.[H3.12].

[H3.15] Backinterpolation With Step–Size Control

We want to repeat Hw.[H3.14] once more, this time using a step–size con-
trolled algorithm. The step–size control to be used is the following. On the
explicit semi–step, compute now both correctors, and find εrel according to
the formula:

εrel =
‖x1 − x2‖∞

max(‖x1‖2, ‖x2‖2, δ)
(H3.15a)

If εrel ≤ 10−4, use the Gustafsson algorithm to compute the step size to be
used in the next step:

hnew =
(

0.8 · 10−4

εrelnow

)0.06

·
(

εrellast

εrelnow

)0.08

· hold (H3.15b)

except during the first step, when we use:

hnew =
(

0.8 · 10−4

εrelnow

)0.2

· hold (H3.15c)

However, if εrel > 10−4, we reject the step at once, i.e., we never even pro-
ceed to the implicit semi–step, and compute a new step size in accordance
with Eq.(H3.15c).

If a step was repeated, the step size for the immediately following next
step is also computed according to Eq.(H3.15c) rather than using Eq.(H3.15b).

Apply this step–size control algorithm to the same problem as before,
and determine the largest global relative error by comparing the solution
with the analytical solution of this linear time–invariant system.

Compute also the largest global relative error of the three solutions of
Hw.[H3.14].

Compute the number of floating–point operations of the step–size con-
trolled algorithm as well as the numbers of floating–point operations of the
fixed–step algorithms of Hw.[H3.14].

Use the product of accuracy and cost:

Q = # of floating point operations×largest global relative error (H3.15d)

as a performance measure, and rank the four solutions accordingly. Is the
step–size controlled algorithm economical when using this performance
measure?

114 Chapter 3. Single–step Integration Methods

[H3.16] CSMP–III

The most widely used simulation software in the 70s was a program from
IBM called Continuous System Modeling Program III (CSMP–III). That
software offered, as its default integration algorithm, the classical 4th–order
Runge–Kutta algorithm presented in Eq.(3.15). For step–size control, the
algorithm used an implementation of Simpson’s rule, also known under the
name of 4th–order Milne algorithm, an implicit linear multi–step method
that we shall meet again in Chapter 4 of this book. The algorithm is usually
written as:

xk+1 = xk−1 +
h

3
· (fk+1 + 4 · fk + fk−1) (H3.16a)

However, by shrinking the step size by a factor of two, it can also be written
as:

xk+1 = xk +
h

6
· (fk+1 + 4 · fk+ 1

2
+ fk) (H3.16b)

CSMP–III implemented this formula as a predictor–corrector technique,
using two semi–steps of FE to estimate the unknown derivative values,
fk+ 1

2
and fk+1.

Write down the Butcher tableau of the combined RK4/Simpson algo-
rithm, sharing as many stages between the two algorithms as possible.

Find the linear order of approximation accuracy of this implementation
of Simpson’s rule. How would you characterize this method?

What can you conclude about the usefulness of this technique for step–
size control of the RK4 algorithm?

[H3.17] Embedded RK Algorithms

Given the two embedded RK algorithms characterized by the following
Butcher tableau:

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
x1 1/2 1/2 0
x2 1/6 1/6 2/3

Write down the stages of these two algorithms. Determine the linear
order of approximation accuracy for each of them.

[H3.18] Accuracy Domains

Determine the accuracy domains (left–half plane only) of IEX4 and BI4/50.45

for tol = 10−4, and compare them to the accuracy domain of RK4. What
do you conclude?

3.12 Homework Problems 115

[H3.19] Order Star

Find the damping order star for BI4/50.45, and plot it together with the
pole and zero locations. Compare with the order star of Fig.3.17. Find the
frequency order star for BI4/50.45, and plot it together with the pole and
zero locations. Compare with the order star of Fig.3.19. Finally, compute
and plot the order star accuracy domain of this method.

[H3.20] Lie-series Integration, Algebraic Differentiation

The Van–der–Pol oscillator can be described by the following 2nd–order
differential equation:

ẍ − μ · (1 − x2) · ẋ + x = 0 (H3.20a)

Write down a state–space model of the Van–der–Pol oscillator with x1 = x,
and x2 = ẋ.

Create a MATLAB function:

[f , ḟ , f̈] = vdp(x) (H3.20b)

that computes the first, second, and third state derivative vectors. Use alge-
braic differentiation to symbolically find expressions for the higher deriva-
tives.

We wish to simulate the Van–der–Pol oscillator with μ = 2.0 during
20 seconds using a step size of h = 0.1 by means of Lie–series integration,
i.e., by making direct use of the Taylor–series expansion of the exponential
function:

xk+1 = xk + h · fk +
h2

2
· ḟk +

h3

6
· f̈k (H3.20c)

Use six different sets of initial conditions:

1. x10 = 0.1, x20 = 0.1,

2. x10 = 0.1, x20 = −0.1,

3. x10 = −0.1, x20 = 0.1,

4. x10 = −0.1, x20 = −0.1,

5. x10 = −2.0, x20 = 2.0,

6. x10 = 2.0, x20 = −2.0,

and plot x2(t) as a function of x1(t) in the phase plane, superposing the
six solutions onto the same graph.

116 Chapter 3. Single–step Integration Methods

3.13 Projects

[P3.1] Accuracy Domain vs. Order–star Accuracy Domain

Draw the accuracy domains and order–star accuracy domains for different
integration algorithms, and determine the relationship between these two
approaches to characterizing the accuracy of an integration algorithm.

3.14 Research

[R3.1] ϑ–Method

Study the relationship between the locations of the eigenvalues of the Ja-
cobian matrix of the system to be simulated, and the choice of the theta–
parameter in BI4/5ϑ.

Design a general–purpose control algorithm to modify theta as a function
of the (usually time–dependent) eigenvalue locations of the Jacobian matrix
of the system to be simulated.

[R3.2] L–Stability

Analyze the effects of the shape of the damping plot on the accuracy of a
stiff system integrator. Quantify the importance of L–stability. Determine
a method to systematically find L–stable algorithms that minimize the
distance between σd and σ̂d in a least–square sense within a reasonable
range of the negative real axis of the damping plot.

4

Multi–step Integration
Methods

Preview

In this chapter, we shall look at several families of integration algorithms
that all have in common the fact that only a single function evaluation
needs to be performed in every integration step, irrespective of the order of
the algorithm. Both explicit and implicit varieties of this kind of algorithms
exist and shall be discussed. As in the last chapter, we shall spend some
time discussing the stability and accuracy properties of these families of
integration algorithms.

Whereas step–size and order control were easily accomplished in the case
of the single–step techniques, these issues are much more difficult to tackle
in the case of the multi–step algorithms. Consequently, their discussion
must occupy a significant portion of this chapter.

The chapter starts out with mathematical preliminaries that shall sim-
plify considerably the subsequent derivation of the multi–step methods.

4.1 Introduction

In the last chapter, we have looked at integration algorithms that, in one
way or other, all try to approximate Taylor–Series expansions of the un-
known solution around the current time instant. The trick was to never
compute the higher derivatives explicitly, but to replace these higher deriva-
tives by additional function evaluations to be taken at various time instants
inside the integration step.

One disadvantage of this approach is that, with every new step, we start
out again with an empty slate, i.e., in each new step, we have to build up
the higher–order algorithms from scratch. Isn’t it a pity that, at the end
of every step, all the higher–order information is thrown away again? Isn’t
that wasteful? Wouldn’t it be possible to preserve some of this information
so that, in the subsequent step, the number of function evaluations can be
kept smaller? The answer to this question is a definite yes. In fact, it is
possible to find entire classes of integration algorithms of arbitrary order
of approximation accuracy that require only a single function evaluation in
every new step, because they preserve the complete information from the
previous steps. That is the topic of our discussion in this chapter.

118 Chapter 4. Multi–step Integration Methods

There are many ways how these families of algorithms can be derived.
However, in order to make their introduction and derivation easy, we need
some additional mathematical apparatus that we shall introduce first. To
this end, we shall initially not talk about numerical integration at all. In-
stead, we shall focus our interest on higher–order interpolation (extrapola-
tion) polynomials.

4.2 Newton–Gregory Polynomials

Given a function of time, f(t). We shall denote the values of this function at
various points in time, t0, t1, t2, etc. as f0, f1, f2, etc. We shall introduce Δ
as a forward difference operator , thus, Δf0 = f1−f0, Δf1 = f2−f1, etc.

Higher–order forward difference operators can be defined accordingly:

Δ2f0 =Δ(Δf0) = Δ(f1 − f0) = Δf1 − Δf0 = f2 − 2f1 + f0 (4.1a)

Δ3f0 =Δ(Δ2f0) = f3 − 3f2 + 3f1 − f0 (4.1b)
etc.

In general:

Δnfi = fi+n−n ·fi+n−1+
n(n − 1)

2!
·fi+n−2− n(n − 1)(n − 2)

3!
·fi+n−3+ . . .

(4.2)
or:

Δnfi =
(

n

0

)
fi+n −

(
n

1

)
fi+n−1 +

(
n

2

)
fi+n−2 −

(
n

3

)
fi+n−3 + · · · ±

(
n

n

)
fi

(4.3)
Let us now assume that the time points at which the fi values are given are
a fixed distance h apart from each other. We wish to find an interpolation
(extrapolation) polynomial of nth order that passes through the (n + 1)
given function values f0, f1, f2, . . . , fn at the given time instants t0, t1 =
t0 + h, t2 = t0 + 2h, . . . , tn = t0 + n · h.

Let us introduce an auxiliary variable s defined as follows:

s =
t − t0

h
(4.4)

Thus, for t = t0 ↔ s = 0.0, for t = t1 ↔ s = 1.0, etc. The real–valued
variable s assumes integer values at the sampling points. At those points,
the value of s corresponds to the index of the sampling point.

The desired interpolation polynomial can be written as a function of s:

4.2 Newton–Gregory Polynomials 119

f(s) ≈
(

s

0

)
f0 +

(
s

1

)
Δf0 +

(
s

2

)
Δ2f0 + · · · +

(
s

n

)
Δnf0 (4.5)

This is called a Newton–Gregory forward polynomial . It is easy to prove
that this polynomial indeed possesses the desired qualities. First of all, it
is clearly an nth–order polynomial in s. Since s is linear in t, it is also an
nth–order polynomial in t. By plugging in integer values of s in the range 0
to n, we can verify easily that the polynomial indeed passes through f0 to
fn. Since there exists exactly one nth–order polynomial that passes through
any given set of (n + 1) points, the assertion has been proven.

Sometimes, it is more useful to have an nth–order polynomial that passes
through (n + 1) time points in the past. The Newton–Gregory backward
polynomial can be written as:

f(s) ≈ f0 +
(

s

1

)
Δf−1 +

(
s + 1

2

)
Δ2f−2 +

(
s + 2

3

)
Δ3f−3 + . . .

+
(

s + n − 1
n

)
Δnf−n (4.6)

It is equally easy to show that this nth–order polynomial passes through
the (n + 1) points f0, f−1, f−2, . . . , f−n at the time instants t0, t−1, t−2,
. . . , t−n by plugging in values of s = 0.0, s = −1.0, s = −2.0, . . . , s = −n.

It is common practice to also introduce a backward difference operator ,
∇, defined as:

∇fi = fi − fi−1 (4.7)

with the higher–order operators:

∇2fi = ∇(∇fi) = ∇(fi − fi−1) = ∇fi −∇fi−1

= fi − 2 fi−1 + fi−2 (4.8a)
∇3fi = ∇(∇2fi) = fi − 3fi−1 + 3fi−2 − fi−3 (4.8b)
etc.

or, in general:

∇nfi =
(

n

0

)
fi −

(
n

1

)
fi−1 +

(
n

2

)
fi−2 −

(
n

3

)
fi−3 + · · · ±

(
n

n

)
fi−n (4.9)

The Newton–Gregory backward polynomial can be expressed in terms of
the ∇–operator as:

120 Chapter 4. Multi–step Integration Methods

f(s) ≈ f0+
(

s

1

)
∇f0+

(
s + 1

2

)
∇2f0+

(
s + 2

3

)
∇3f0+· · ·+

(
s + n − 1

n

)
∇nf0

(4.10)
It is also quite common to introduce yet another operator, namely the shift
operator , E . It is defined as:

Efi = fi+1 (4.11)

with the higher–order operators:

E2fi = E(Efi) = E(fi+1) = fi+2 (4.12a)
E3fi = E(E2fi) = E(fi+2) = fi+3 (4.12b)
etc.

It is obviously true that:

Δfi = Efi − fi = (E − 1)fi (4.13a)
∇fi = fi − E−1fi = (1 − E−1)fi (4.13b)

E(∇fi) = E(fi − fi−1) = fi+1 − fi = Δfi (4.13c)

By abstraction:

Δ = E − 1 (4.14a)
∇ = 1 − E−1 (4.14b)
Δ = E∇ (4.14c)

Since these are all linear operators, we can formally calculate with them as
with other algebraic quantities. In particular:

Δn = (E − 1)n = En − nEn−1 +
(

n

2

)
En−2 −+ · · · ±

(
n

n − 1

)
E ∓ 1 (4.15)

Using this calculus, the derivation of the two Newton–Gregory polynomials
becomes trivial.

f(s) ≈ Esf0 = (1 + Δ)sf0 =
[
1 +
(

s

1

)
Δ +

(
s

2

)
Δ2 +

(
s

3

)
Δ3 + . . .

]
f0

(4.16)
is the Newton–Gregory forward polynomial, and:

4.3 Numerical Integration Through Polynomial Extrapolation 121

f(s) ≈ (1 −∇)−sf0 =
[
1 +
(

s

1

)
∇ +

(
s + 1

2

)
∇2 +

(
s + 2

3

)
∇3 + . . .

]
f0

(4.17)
is the Newton–Gregory backward polynomial.

Since differentiation is also a linear operation, we can find the first time
derivative of f(t) in the following manner:

ḟ(t) =
d

dt
f(t) =

∂

∂s
f(s) · ds

dt

≈ 1
h
· ∂

∂s

(
f0 + sΔf0 +

s(s − 1)
2!

Δ2f0 + . . .

)
(4.18)

and in particular:

ḟ(t0) ≈ 1
h
·
(

Δf0 − 1
2
Δ2f0 +

1
3
Δ3f0 − · · · ± 1

n
Δnf0

)
(4.19)

We introduce a new operator, the differentiation operator , D, as:

D =
1
h
·
(

Δ − 1
2
Δ2 +

1
3
Δ3 − · · · ± 1

n
Δn

)
(4.20)

Consequently, we can compute the second derivative as:

D2 =
1
h2

·
(

Δ − 1
2
Δ2 +

1
3
Δ3 − · · · ± 1

n
Δn

)2

=
1
h2

·
(

Δ2 − Δ3 +
11
12

Δ4 − 5
6
Δ5 + . . .

)
(4.21)

etc.
A more thorough discussion of these and other interpolation polynomials

can be found in [4.7]. However, for our purpose, the material presented
here will suffice.

4.3 Numerical Integration Through Polynomial
Extrapolation

The idea behind multi–step integration is straightforward. We can employ
a Newton–Gregory backward polynomial setting tk = t0 and evaluating for
s = 1.0. This should give us an estimate of x(tk+1) = f1. The back values
f0, f−1, f−2, etc. are the previously computed solutions x(tk), x(tk−1),
x(tk−2), etc. Until here, we have written the Newton–Gregory polynomials

122 Chapter 4. Multi–step Integration Methods

for the scalar case, but the concept extends without complications also to
the vector case.

The trick is to somehow modify the notation of the Newton–Gregory
backward polynomial such that values of ḟ are used beside from the values
of f in order to incorporate the knowledge available through the state–
space model, but such that higher derivatives, as f̈ , are avoided, since they
are difficult to compute accurately.

4.4 Explicit Adams–Bashforth Formulae

Let us write a Newton–Gregory backward polynomial for the state deriva-
tive vector ẋ(t) around the time point tk:

ẋ(t) = fk +
(

s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . . (4.22)

where:

fk = ẋ(tk) = f(x(tk), tk) (4.23)

is the state derivative vector at time tk. We wish to find an expression for
x(tk+1). Therefore, we need to integrate Eq.(4.22) in the interval [tk, tk+1]:

tk+1∫
tk

ẋ(t)dt = x(tk+1) − x(tk)

=

tk+1∫
tk

[
fk +

(
s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . .

]
dt

=

1.0∫
0.0

[
fk +

(
s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . .

]
· dt

ds
· ds

(4.24)

Thus:

x(tk+1) =x(tk) + h

1∫
0

[
fk + s∇fk +

(
s2

2
+

s

2

)
∇2fk

+
(

s3

6
+

s2

2
+

s

3

)
∇3fk + . . .

]
ds (4.25)

4.4 Explicit Adams–Bashforth Formulae 123

and therefore:

x(tk+1) = x(tk) + h

(
fk +

1
2
∇fk +

5
12

∇2fk +
3
8
∇3fk + . . .

)
(4.26)

If we truncate Eq.(4.26) after the quadratic term and expand the ∇–
operators, we obtain:

x(tk+1) = x(tk) +
h

12
(23fk − 16fk−1 + 5fk−2) (4.27)

which is the well–known third–order Adams–Bashforth algorithm, abbre-
viated as AB3. Since the expressions on the right are multiplied by h, we
obtain a third–order approximation by truncating the infinite series after
the quadratic term.

If we truncate Eq.(4.26) only after the cubic term, we obtain:

x(tk+1) = x(tk) +
h

24
(55fk − 59fk−1 + 37fk−2 − 9fk−3) (4.28)

which is the AB4 algorithm.
Also these algorithms can be represented through an α–vector and a

β–matrix. These are:

α =
(

1 2 12 24 720 1440
)T (4.29a)

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
3 −1 0 0 0 0
23 −16 5 0 0 0
55 −59 37 −9 0 0

1901 −2774 2616 −1274 251 0
4277 −7923 9982 −7298 2877 −475

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.29b)

Here, the ith row contains the coefficients of the ABi algorithm, i.e., the
coefficients of the ith order Adams–Bashforth algorithm. The ith row of the
β–matrix contains the multipliers of the f–vectors at different time points,
and the ith row of the α–vector contains the common denominator, i.e., the
divider of h.

All algorithms within the class of ABi algorithms are explicit algorithms.
Of course, AB1 is:

x(tk+1) = x(tk) +
h

1
(1fk) (4.30)

which is immediately recognized as the FE–algorithm. There exists only
one explicit first–order algorithm, namely the Forward Euler algorithm.

Let us now look at the stability domains of the ABi algorithms. However,
before we can do so, we must find the F–matrices of the ABi algorithms. Let

124 Chapter 4. Multi–step Integration Methods

us look at AB3 for example. Applying Eq.(4.27) to the linear homogeneous
problem, we find:

x(tk+1) =
[
I(n) +

23
12

Ah

]
x(tk) − 4

3
Ah x(tk−1) +

5
12

Ah x(tk−2) (4.31)

We can transform the third–order vector differential equation into three
first–order vector differential equations with the substitutions:

z1(tk) = x(tk−2) (4.32a)
z2(tk) = x(tk−1) (4.32b)
z3(tk) = x(tk) (4.32c)

With these substitutions, we find:

z1(tk+1) = z2(tk) (4.33a)
z2(tk+1) = z3(tk) (4.33b)

z3(tk+1) =
5
12

Ah z1(tk) − 4
3
Ah z2(tk) +

[
I(n) +

23
12

Ah

]
z3(tk) (4.33c)

or, in a matrix form:

z(tk+1) =

⎛
⎝O(n) I(n) O(n)

O(n) O(n) I(n)

5
12Ah −4

3Ah (I(n) + 23
12Ah)

⎞
⎠ · z(tk) (4.34)

Thus, for a 2×2 A–matrix, we obtain a 2i×2i F–matrix for ABi. The sta-
bility domains that result when plugging these F–matrices into the general
routine of Chapter 2 are shown in Fig.4.1.

As the ABi methods are explicit algorithms, their borders of stability
must loop into the left–half complex λ · h–plane. This was to be expected.
Unfortunately, the stability domains of the ABi algorithms look very disap-
pointing. We proceed to higher orders of approximation accuracy, in order
to use larger step sizes . . . yet, the stability domains shrink ! AB7 is even
totally unstable.

As we proceed to higher orders, the step size will very soon be limited
by the stability domain rather than by the accuracy requirements. In com-
parison with the RK algorithms, it is true that we need only one function
evaluation per step, yet, we probably will have to use considerably smaller
step sizes due to the disappointingly small stable regions in the left–half
λ · h–plane.

The reasons for these unfortunate results are easy to understand. It is
not true that higher–order polynomials necessarily lead to a more accu-
rate interpolation everywhere. They only allow us to fit more points pre-
cisely. In between these points, higher–order polynomials have a tendency

4.5 Implicit Adams–Moulton Formulae 125

−2.5 −2 −1.5 −1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

3
4

5

6

Stability Domains of AB

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.1. Stability domains of explicit AB algorithms.

to oscillate. Worse, while higher–order polynomial interpolation may still be
acceptable, higher–order polynomial extrapolation is a disaster. These poly-
nomials have a tendency to deviate quickly from the approximated curve
outside the interpolation interval. Unfortunately, extrapolation is what nu-
merical integration is all about.

The previous paragraph indicates that the discovered shortcoming of
this class of algorithms will not be limited to the explicit Adams–Bashforth
methods, but is an inherent disease of all multi–step integration algorithms.

4.5 Implicit Adams–Moulton Formulae

Let us check whether we have more luck with implicit multi–step algo-
rithms. To this end, we again develop ẋ(t) into a Newton–Gregory backward
polynomial, however this time, we shall develop the polynomial around the
point tk+1.

ẋ(t) = fk+1 +
(

s

1

)
∇fk+1 +

(
s + 1

2

)
∇2fk+1 +

(
s + 2

3

)
∇3fk+1 + . . . (4.35)

We integrate again from time tk to time tk+1. However, this time, s = 0.0
corresponds to t = tk+1, thus, we need to integrate across the range s ∈

126 Chapter 4. Multi–step Integration Methods

[−1.0, 0.0].
We find:

x(tk+1) = x(tk) + h

(
fk+1 − 1

2
∇fk+1 − 1

12
∇2fk+1 − 1

24
∇3fk+1 + . . .

)
(4.36)

Expanding the ∇–operators and truncating after the quadratic term, we
find:

x(tk+1) = x(tk) +
h

12
(5fk+1 + 8fk − fk−1) (4.37)

which is the well–known implicit Adams–Moulton third–order algorithm,
abbreviated as AM3. Truncating after the cubic term, we obtain:

x(tk+1) = x(tk) +
h

24
(9fk+1 + 19fk − 5fk−1 + fk−2) (4.38)

which is the AM4 algorithm. We can again represent the class of AMi
algorithms through an α–vector and a β–matrix:

α =
(

1 2 12 24 720 1440
)

(4.39a)

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
5 8 −1 0 0 0
9 19 −5 1 0 0

251 646 −264 106 −19 0
475 1427 − 798 482 − 173 27

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.39b)

Clearly, AM1 is the same as BE. This was to be expected since there
can exist only one implicit first–order integration algorithm. AM2 is the
trapezoidal rule, thus while AM1 is L–stable, AM2 is F–stable.

Let us now look at the stability domains of the higher–order AMi for-
mulae. Plugging the linear homogeneous system into AM3, we find:

[
I(n) − 5

12
Ah

]
x(tk+1) =

[
I(n) +

2
3
Ah

]
x(tk) − 1

12
Ah x(tk−1) (4.40)

Using the same substitution as in the case of the ABi formulae, we find:

F =
(

O(n) I(n)

−[I(n) − 5
12Ah]−1 · [1

12Ah] [I(n) − 5
12Ah]−1 · [I(n) + 2

3Ah]

)
(4.41)

Thus, for a 2 × 2 A–matrix, we obtain a 2(i − 1) × 2(i − 1) F–matrix for
AMi. The stability domains that result when plugging these F–matrices
into the general routine of Chapter 2 are shown in Fig.4.2.

4.6 Adams–Bashforth–Moulton Predictor–Corrector Formulae 127

−7 −6 −5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5

6

Stability Domains of AM

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.2. Stability domains of implicit AM algorithms.

As in the case of the ABi algorithms, the results are disappointing. AM1
and AM2 are useful algorithms . . . but they were already known to us under
different names. Starting from the third–order, the stability domains of the
AMi algorithms loop again into the left–half λ ·h–plane. It is unclear to us
why we should want to pay the high price of Newton iteration, if we don’t
get a stiffly–stable technique after all.

4.6 Adams–Bashforth–Moulton
Predictor–Corrector Formulae

The ABi algorithms were rejected due to their miserably small stable re-
gions in the left–half λ · h–plane. The AMi algorithms, on the other hand,
were rejected because they are implicit, yet not stiffly–stable. Maybe all is
not lost yet. We can try a compromise between ABi and AMi. Let us con-
struct a predictor–corrector method with one step of ABi as a predictor,
and one step of AMi as a corrector. For example, the (third–order accurate)
ABM3 algorithm would look as follows:

128 Chapter 4. Multi–step Integration Methods

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h
12 (23ẋk − 16ẋk−1 + 5ẋk−2)

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk + h
12 (5ẋP

k+1 + 8ẋk − ẋk−1)

Evidently, the overall algorithm is explicit. Therefore, no Newton iteration
is needed, and consequently, the fact that the method won’t be stiffly–stable
is of no concern. However, for the price of a second function evaluation per
step, we may have bargained for a considerably larger stability domain than
in the case of AB3.

Replacing the nonlinear problem by the linear homogeneous problem in
the predictor–corrector technique, and plugging the predictor formula into
the corrector, we find:

x(tk+1) =
[
I(n) +

13
12

Ah +
115
144

(Ah)2
]
x(tk) −

[
1
12

Ah +
5
9
(Ah)2

]
x(tk−1)

+
25
144

(Ah)2x(tk−2) (4.42)

with the F–matrix:

F =

⎛
⎝ O(n) I(n) O(n)

O(n) O(n) I(n)

25
144 (Ah)2 − [1

12Ah + 5
9 (Ah)2

] [
I(n) + 13

12Ah + 115
144 (Ah)2

]
⎞
⎠

(4.43)
The stability domains of some ABMi algorithms are shown in Fig.4.3.

Indeed, the approach worked. The stability domains of the ABMi algo-
rithms are considerably larger than those of the ABi algorithms, although
they are still considerably smaller than those of the AMi algorithms —
especially for orders three and four. Since Newton iteration takes usually
about three iterations per step, i.e., three additional function evaluations in
the case of these multi–step algorithms, ABMi is about twice as expensive
as ABi, and AMi is about twice as expensive as ABMi. Thus, if ABMi
allows us to use a step size that is at least twice as large as the step size
we could employ when using ABi, the predictor–corrector method becomes
economical. If AMi allows us to use a step size that is at least four times
as large as the step size we could employ when using ABi, the implicit
algorithm becomes economical in spite of the need for Newton iteration.

4.7 Backward Difference Formulae

Let us check whether we can find a set of multi–step formulae whose sta-
bility domains loop into the right–half λ · h–plane. This time, we write the

4.7 Backward Difference Formulae 129

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

3
4 5

6

Stability Domains of ABM

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.3. Stability domains of predictor–corrector ABM algorithms.

Newton–Gregory backward polynomial in x(t) rather than in ẋ(t) around
the time instant tk+1. Thus:

x(t) = xk+1+
(

s

1

)
∇xk+1+

(
s + 1

2

)
∇2xk+1+

(
s + 2

3

)
∇3xk+1+. . . (4.44)

or:

x(t) = xk+1 +s∇xk+1 +
(

s2

2
+

s

2

)
∇2xk+1 +

(
s3

6
+

s2

2
+

s

3

)
∇3xk+1 + . . .

(4.45)
We now compute the derivative of Eq.(4.45)) with respect to time:

ẋ(t) =
1
h

[
∇xk+1 +

(
s +

1
2

)
∇2xk+1 +

(
s2

2
+ s +

1
3

)
∇3xk+1 + . . .

]
(4.46)

We evaluate Eq.(4.46) for s = 0.0, and obtain:

ẋ(tk+1) =
1
h

[
∇xk+1 +

1
2
∇2xk+1 +

1
3
∇3xk+1 + . . .

]
(4.47)

Multiplying Eq.4.47 with h, truncating after the cubic term, and expanding
the ∇–operators, we obtain:

130 Chapter 4. Multi–step Integration Methods

h · fk+1 =
11
6

xk+1 − 3xk +
3
2
xk−1 − 1

3
xk−2 (4.48)

Eq.(4.48) can be solved for xk+1:

xk+1 =
18
11

xk − 9
11

xk−1 +
2
11

xk−2 +
6
11

· h · fk+1 (4.49)

which is the well–known third–order backward difference formula, abbre-
viated as BDF3. We can obtain BDFi algorithms of other orders by trun-
cating Eq.(4.47) after fewer or more terms.

Also the BDFi algorithms can be expressed through an α–vector and a
β–matrix:

α =
(
1 2/3 6/11 12/25 60/137

)T (4.50a)

β =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
4/3 −1/3 0 0 0

18/11 −9/11 2/11 0 0
48/25 −36/25 16/25 −3/25 0

300/137 −300/137 200/137 −75/137 12/137

⎞
⎟⎟⎟⎟⎠ (4.50b)

where the ith row represents the BDFi algorithm. The coefficients of the β–
matrix are here the multipliers of past values of the state vector x, whereas
the coefficients of the α–vector are the multipliers of the state derivative
vector ẋ at time tk+1. The BDF techniques are implicit algorithms, thus
clearly, BDF1 is the same as BE.

The stability domains of the BDFi algorithms are presented in Fig.4.4.
It becomes evident at once that, finally, we have found a set of stiffly–

stable multi–step algorithms. Unfortunately, they (not unexpectedly) also
suffer from the high–order polynomial extrapolation disease. As the order
of the extrapolation polynomials grows, the methods become less and less
stable. Although the stability domains loop into the right–half λ · h–plane,
they are pulled over more and more into the left–half plane. BDF6 (not
shown on Fig.4.4) has only a very narrow band of stable area to the left
of the origin. BDF6 is thus only useful for simulation of problems with
all eigenvalues strictly on the negative real axis, such as method–of–lines
solutions to parabolic PDEs. BDF7, is unstable in the entire λ · h–plane.

Yet, due to the simplicity of these techniques, the BDFi algorithms are
today easily the most widely used stiff system solvers on the market. In the
engineering literature, these algorithms are often called Gear algorithms,
after Bill Gear who discovered their stiffly–stable properties [4.5]. The
most widely used code based o the BDF formulae is DASSL. DASSL is the
default simulation algorithm used in Dymola. We shall talk more about
DASSL in Chapter 8 of this book.

4.8 Nyström and Milne Algorithms 131

−5 0 5 10 15 20

−10

−5

0

5

10

1

2
3 4

5

Stability Domains of BDF

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.4. Stability domains of implicit BDF algorithms.

By evaluating Eq.(4.46) for s = −1.0, we can obtain a series of explicit
BDFi algorithms. Unfortunately, they are not useful, since they are all
unstable in the entire λ · h–plane.

4.8 Nyström and Milne Algorithms

There exist two more classes of multi–step techniques that are sometimes
talked about in the numerical ODE literature, the explicit Nyström tech-
niques [4.10], and the implicit Milne methods [4.10]. Let us derive them
and look at their stability behavior.

We start again out with Eq.(4.22). However this time, we integrate from
tk−1 to tk+1, thus, from s = −1.0 to s = +1.0. We find:

x(tk+1) = x(tk−1) + h

(
2fk +

1
3
∇2fk +

1
3
∇3fk + . . .

)
(4.51)

The term in ∇fk drops out. Truncating Eq.(4.51) after the cubic term and
expanding the ∇–operators, we obtain:

x(tk+1) = x(tk−1) +
h

3
(8fk − 5fk−1 + 4fk−2 − fk−3) (4.52)

which is the fourth–order Nyström algorithm, abbreviated as Ny4.

132 Chapter 4. Multi–step Integration Methods

The Nyi algorithms are characterized by the following α–vector and β–
matrix:

α =
(

1 1 3 3 90
)T (4.53a)

β =

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
2 0 0 0 0
7 − 2 1 0 0
8 − 5 4 − 1 0

269 −266 294 −146 29

⎞
⎟⎟⎟⎟⎠ (4.53b)

The Nyström algorithms have unfortunately a serious drawback. They are
unstable in the entire λ · h–plane. Ny1 is the explicit midpoint rule with a
double step size, which by accident is already 2nd–order accurate. Ny2 is the
same algorithm as Ny1. Even Ny2 (Ny1) is an unstable algorithm though,
since it is interpreted here as a multi–step technique, rather than as a
single–step algorithm with an FE predictor step, as proposed in Chapter 3.

If we start out with Eq.4.35, but integrate from time tk−1 to time tk+1,
corresponding to the interval s ∈ [−2.0, 0.0], we get:

x(tk+1) = x(tk−1) + h

(
2fk+1 − 2∇fk+1 +

1
3
∇2fk+1 + 0∇3fk+1 + . . .

)
(4.54)

This time around, the term in ∇3fk+1 drops out. Truncating Eq.4.54 after
the cubic term (the quadratic term really) and expanding the ∇–operators,
we find:

x(tk+1) = x(tk−1) +
h

3
(fk+1 + 4fk + fk−1) (4.55)

which is the implicit fourth–order Milne algorithm, abbreviated as Mi4.
The same algorithm is also known under the name of Simpson’s rule.

The α–vector and β–matrix for the Mii algorithms are as follows:

α =
(

1 1 3 3 90
)T (4.56a)

β =

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
1 4 1 0 0
1 4 1 0 0

29 124 24 4 − 1

⎞
⎟⎟⎟⎟⎠ (4.56b)

Mi1 is recognizable as backward Euler with a double step size. Mi2 is by
accident explicit, since the coefficient of fk+1 drops out. Mi2 is the same as
Ny2, i.e., the explicit midpoint rule with a double step size.

4.9 In Search for Stiffly–stable Methods 133

Mi4 is truly remarkable. Due to a combination of “lucky” circumstances,
a lot of terms dropped away, leading to a fourth–order accurate multi–
step methods with only two memory elements (two past values are used in
the algorithm). It is truly regrettable that our “good fortune” comes at a
high price. The stability domain of Mi4 is extremely small — it consists of
the origin only (!) Therefore, while Simpson’s rule is very fashionable for
quadrature problems (to numerically determine the integral of a function),
it is entirely useless for solving differential equations. The higher–order
Milne formulae are all unstable as well.

Nyström and Milne formulae are sometimes useful as partners within
predictor–corrector methods. The fact that these formulae are unstable by
themselves does not preclude the possibility that they may be combined
with other formulae either in a predictor-corrector scheme, or in a blended
method, or in a cyclic method, thereby leading to perfectly usable algo-
rithms with appropriate stability properties.

4.9 In Search for Stiffly–stable Methods

Until now, we used the Newton–Gregory polynomials to derive multi–step
algorithms. This technique has its advantages. In particular, it generates
the integration algorithms using the ∇–operator, which is useful. However,
the technique called for lots of symbolic or at least semi–symbolic opera-
tions that are hard to implement in MATLAB in search for new algorithms
with pre–specified stability and/or accuracy properties.

To this end, let us introduce another technique that can alternatively be
used to derive the coefficients of multi–step integration algorithms. Let us
derive once again the BDF3 algorithm.

We know that every nth–order multi–step algorithm is defined through
an nth–order polynomial fitted through (n + 1) points, a mixture of state
values and state derivative values, at the time points tk+1, tk, tk−1, etc.
Let us write this polynomial once again in the variable s, assuming that
s = 1.0 corresponds to t = tk+1, s = 0.0 corresponds to t = tk, etc. The
polynomial can be written as:

p(s) = a0 + a1 s + a2 s2 + a3 s3 + · · · + an sn (4.57)

in the yet unknown coefficients ai. The time derivative of p(s) can be writ-
ten as:

h · ṗ(s) = a1 + 2a2 s + 3a3 s2 + · · · + n an sn−1 (4.58)

In the case of BDF3, we know that p(0) = xk, p(−1) = xk−1, p(−2) = xk−2,
and h · ṗ(+1) = h · fk+1. This gives us four equations in the four unknowns
a0, a1, a2, and a3. These are:

134 Chapter 4. Multi–step Integration Methods

h · fk+1 = a1 + 2a2 + 3a3 (4.59a)
xk = a0 (4.59b)

xk−1 = a0 − a1 + a2 − a3 (4.59c)
xk−2 = a0 − 2a1 + 4a2 − 8a3 (4.59d)

or, in a matrix form:

⎛
⎜⎜⎝

h · fk+1

xk

xk−1

xk−2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 2 3
1 0 0 0
1 −1 1 −1
1 −2 4 −8

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a0

a1

a2

a3

⎞
⎟⎟⎠ (4.60)

which can be solved for the unknown parameter vector by matrix inversion.
We wish to evaluate:

xk+1 = p(+1) = a0 + a1 + a2 + a3 (4.61)

Thus, we simply add up the elements in each column of the inverse matrix,
and receive directly the desired coefficients of BDF3:

xk+1 =
6
11

h · fk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (4.62)

This procedure can easily be automated in a MATLAB function.
You had been told that BDF6 is not a very useful technique due to its

narrow corridor of stable territory to the left of the origin. The method is
(A,α)–stable, but only with α = 19o. Let us ascertain whether the above
outlined procedure allows us to find a better sixth–order stiffly–stable al-
gorithm than BDF6.

Obviously, any sixth–order linear multi–step method can be written as:

p(s) = a0 + a1 s + a2 s2 + a3 s3 + a4 s4 + a5 s5 + a6 s6 (4.63)

in seven unknown parameters. Consequently, we must provide seven so-
lution points through which the polynomial will be fitted. In the past, we
talked about the high–order extrapolation disease. Maybe, it will work bet-
ter if we shorten the tail of the algorithm by providing both values for x
and for f at s = 0, at s = −1, and at s = −2. Clearly, the list of data
points must contain f(tk+1) in order for the method to be implicit. The
rationale for this idea is that the interpolated curve may look more like a
polynomial over a shorter time span.

Thus:

4.9 In Search for Stiffly–stable Methods 135

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h · fk+1

xk

h · fk

xk−1

h · fk−1

xk−2

h · fk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M · a (4.64)

where:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 5 6
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 − 1 1 − 1 1 − 1 1
0 1 − 2 3 − 4 5 − 6
1 − 2 4 − 8 16 − 32 64
0 1 − 4 12 − 32 80 −192

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.65)
Computing the inverse of M and adding up columns, we find:

xk+1 =
3
11

h·fk+1− 27
11

xk+
27
11

h·fk+
27
11

xk−1+
27
11

h·fk−1+xk−2+
3
11

h·fk−2

(4.66)
This is a beautiful new method, it is clearly sixth–order accurate, and it
has only one single drawback . . . it is unfortunately unstable in the entire
λ · h–plane (!)

Thus, we need to expand our search. Let us allow values to be included
as far back as t = tk−5, corresponding to s = −5. Since we definitely
want fk+1 to be included and since we can pick either x–values or f–values
otherwise, we need to pick six items out of 12. This gives us 924 different
methods to try.

I quickly programmed this problem in MATLAB, calculating the F–
matrices for all 924 techniques, and checking for each of them whether or
not its stability domain intersects with the positive real axis, making it a
potential candidate for a stiffly–stable algorithm.

Most of the 924 methods are entirely unstable. Others behave like Adams–
Moulton. Only six out of the 924 methods have an intersection of their
respective stability domains with the positive real axis. These are:

xk+1 =
20
49

h · fk+1 +
120
49

xk − 150
49

xk−1 +
400
147

xk−2 − 75
49

xk−3

+
24
49

xk−4 − 10
147

xk−5 (4.67a)

136 Chapter 4. Multi–step Integration Methods

xk+1 =
308
745

h · fk+1 +
1776
745

xk − 414
149

xk−1 +
944
447

xk−2 − 87
149

xk−3

− 288
745

h · fk−4 − 2
15

xk−5 (4.67b)

xk+1 =
8820
21509

h · fk+1 +
52200
21509

xk − 63900
21509

xk−1 +
400
157

xk−2

− 28575
21509

xk−3 +
6984
21509

xk−4 +
600

21509
h · fk−5 (4.67c)

xk+1 =
179028
432845

h · fk+1 +
206352
86569

xk − 34452
12367

xk−1 +
26704
12367

xk−2

− 65547
86569

xk−3 − 83808
432845

h · fk−4 +
24
581

h · fk−5 (4.67d)

xk+1 =
12
29

h · fk+1 +
1728
725

xk − 81
29

xk−1 +
64
29

xk−2 − 27
29

xk−3

+
97
725

xk−5 +
12
145

h · fk−5 (4.67e)

xk+1 =
30
71

h · fk+1 +
162
71

xk − 675
284

xk−1 +
100
71

xk−2 − 54
71

xk−4

+
127
284

xk−5 +
15
71

h · fk−5 (4.67f)

Among those six methods, Eq.(4.67a) is the well-known BDF6 technique.
The methods of Eq.(4.67b) and Eq.(4.67f) are useless, since their stability
domains also intersect with the negative real axis. The stability domains
of the survivors are shown in Fig.4.5.

How can we evaluate the relative merits of these four algorithms against
each other? One useful criterium is the angle α of the A(α) stability. Gear
[4.5] proposed an alternate method to judge the stability of a stiffly–stable
method consisting of two parameters, the distance a away from the imag-
inary axis that the stability domain reaches into the left–half λ · h–plane,
and the distance c away from the negative real axis, which defines the clos-
est distance of the stability domain to the negative real axis. These three
parameters are shown in Fig.4.6.

Yet, we shall need to look at accuracy as well. It has become customary
[4.10] to judge the accuracy of a multi–step method in the following way.
Any multi–step method can be written in the form:

xk+1 =
�∑

i=0

ai · xk−i +
�∑

i=−1

bi · h · fk−i (4.68)

where � is a suitably large index to include the entire history needed for
the method. We can take all terms to the left–hand side of the equal sign,
and shift the equation by � steps into the future. By doing so, we obtain:

m∑
i=0

αi · xk+i + h ·
m∑

i=0

βi · fk+i = 0 (4.69)

4.9 In Search for Stiffly–stable Methods 137

−20 −10 0 10 20 30 40
−25

−20

−15

−10

−5

0

5

10

15

20

25

a
c

d

e

Stability Domains of Stiffly-Stable Methods

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.5. Stability domains of some stiffly–stable algorithms.

where αi, βi, and m can be easily expressed in terms of the previously
used parameters ai, bi, and �. Assuming that our system is smooth, i.e.,
the solution is continuous and continuously differentiable at least n times,
where n is the order of the integration algorithm, we can develop xk+i and
fk+i into Taylor series around xk and fk, and come up with an expression
in xk and its derivatives:

c0 · xk + c1 · h · ẋk + · · · + cq · hq · x(q)
k + . . . (4.70)

where x(q)
k is the qth time derivative of xk. The coefficients can be expressed

in terms of the previously used parameters αi, βi, and m as follows:

c0 =
m∑

i=0

αi (4.71)

c1 =
m∑

i=0

(i · αi − βi) (4.72)

... (4.73)

cq =
m∑

i=0

(
1
q!

· iq · αi − 1
(q − 1)!

· iq−1 · βi

)
, q = 2, 3, . . . (4.74)

138 Chapter 4. Multi–step Integration Methods

−15 −10 −5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

Stability Parameters of BDF6

Re{λ · h}

I
m
{λ

·h
}

α

c

a

FIGURE 4.6. Stability parameters of a stiffly–stable algorithm.

Since the function that has been developed into a Taylor series is the zero
function, all of these coefficients ought to be equal to zero. However, since
the approximation is only nth–order accurate, the coefficients for q > n
may be different from zero. Hence we can define the dominant of those
coefficients as the error coefficient of the multi–step integration algorithm:

cerr =
m∑

i=0

(
1

(n + 1)!
· in+1 · αi − 1

n!
· in · βi

)
(4.75)

A small value of the error coefficient is indicative of a good nth–order
multi–step formula.

We may also wish to look at the damping properties of the algorithm.
The damping plot, that had been introduced in Chapter 3 of this book,
can easily be extended to multi-step methods by redefining the discrete
damping as:

σd = − log(max(abs(eig(F)))) (4.76)

The damping plots of BDF6 and the other three surviving algorithms are
shown in Fig.4.7. The top graph shows the damping plots as depicted in
the past. The bottom graph shows the same plots using a semi–logarithmic
scale for the independent variable.

4.9 In Search for Stiffly–stable Methods 139

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

BDF6

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

BDF6

Damping Plot of Stiffly-Stable Methods

−σd

Logarithmic Damping Plot for Stiffly-Stable Methods

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 4.7. Damping plots of BDF6 and other 6th–order stiffly–stable algo-
rithms.

The top graph of Fig.4.7 shows that the asymptotic region of BDF6 is
clearly larger than that of its three competitors. The graph shows further-
more that the discrete damping of the method exhibits a sharp bend at the
place where it starts deviating from the analytical damping, i.e., at approx-
imately σd = −0.125. This bend is caused by a spurious eigenvalue taking
over at that point. This is a new phenomenon that we didn’t observe in the
case of the single–step algorithms. Since the F–matrix is of a larger size
than the A–matrix, it has more eigenvalues, which may become dominant
eventually.

The bottom graph shows that BDF6 is L–stable, whereas its three con-
tenders are not. Although the concept of L–stability is somewhat overrated
in the numerical ODE literature (at σd = 106, the discrete damping of the
BDF6 method assumes only a value of σ̂d = 2.5), this is still a nice property
for a stiffly–stable method to possess.

Hence, and in spite of all our efforts, we haven’t hit a mark yet. BDF6
is still the winner.

Looking at the surviving algorithms, we notice at once that all of them
make use of the entire interpolation span. Quite obviously, it was a lousy
idea to try to shorten the tail of the algorithm. The reason for this result
is also understandable. By extending the interpolation range, the relative
distance of extrapolation necessary to predict xk+1 becomes shorter. This is
beneficial. Thus, let us extend this idea, and allow also interpolation points

140 Chapter 4. Multi–step Integration Methods

at time tk−6, tk−7, etc without increasing the order of the polynomial.
We decided to extend the search all the way to tk−11. Although it would

have been possible to include both previous state values and previous
derivative values in the search, we limited our search to past state val-
ues only, since no stiffly–stable method makes use of past derivative values.
We have to pick six values out of 12.

Some 924 methods later ...
314 methods were found that exhibit properties similar to those of BDF6.

Their performance parameters are summarized in Table 4.1.

BDF6 Other stiffly–stable methods
α = 19o α ∈ [19o, 48o]
a = −6.0736 a ∈ [−6.0736,−0.6619]
c = 0.5107 c ∈ [0.2250, 0.8316]
cerr = −0.0583 cerr ∈ [−7.4636,−0.0583]
as.reg. = −0.14 as.reg. ∈ [−0.30,−0.01]

TABLE 4.1. Properties of stiffly–stable 6th–order algorithms.

Evidently, BDF6 exhibits the worst behavior of all of these algorithms
w.r.t. its α and a values. Yet, BDF6 is characterized by the smallest error
coefficient. Unfortunately, as the length of the tail of the algorithm grows,
so does the error coefficient. The c parameter is somewhere in the middle
range, and so is the asymptotic region, which we defined as the value of
σd, where |σ̂d − σd| = 0.01.

How can these 314 algorithms be rank–ordered? To this end, we shall
need to define a performance index, something along the lines of:

P.I.i =
|αi|
‖α‖ − |ai|

‖a‖ +
|ci|
‖c‖ − k · |cerri

|
‖cerr‖ +

|as.reg.i|
‖as.reg.‖ = max! (4.77)

where each of the five parameters is normalized to make them comparable
with each other. A k–factor was assigned to the error coefficient to be able to
vary the importance of the error coefficient within the overall performance
index. We chose a value of k = 20.

The best three methods are now compared with BDF6. Their coefficients
are given by:

xk+1 =
72
167

h · fk+1 +
2592
1169

xk − 2592
1169

xk−1 +
1152
835

xk−2

− 324
835

xk−3 +
81

5845
xk−7 − 32

5845
xk−8 (4.78a)

xk+1 =
420
977

h · fk+1 +
19600
8793

xk − 2205
977

xk−1 +
1400
977

xk−2

4.9 In Search for Stiffly–stable Methods 141

− 1225
2931

xk−3 +
40

2931
xk−6 − 7

8793
xk−9 (4.78b)

xk+1 =
44
103

h · fk+1 +
5808
2575

xk − 242
103

xk−1 +
484
309

xk−2

− 363
721

xk−3 +
242
7725

xk−5 − 4
18025

xk−10 (4.78c)

Table 4.2 summarizes the five performance parameters of these methods.

BDF6 SS6a SS6b SS6c
α = 19o α = 45o α = 44o α = 43o

a = −6.0736 a = −2.6095 a = −2.7700 a = −3.0839
c = 0.5107 c = 0.7994 c = 0.8048 c = 0.8156
cerr = −0.0583 cerr = −0.1478 cerr = −0.1433 cerr = −0.1343
as.reg. = −0.14 as.reg. = −0.21 as.reg. = −0.21 as.reg. = −0.21

TABLE 4.2. Properties of stiffly–stable 6th–order algorithms.

The stability domains of the four methods are presented in Fig.4.8. The
damping plots are shown in Fig.4.9.

−15 −10 −5 0 5 10 15 20 25 30 35

−20

−15

−10

−5

0

5

10

15

20

BDF6

SS6a

SS6b

SS6c

Stability Domain of Stiffly-Stable Methods

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.8. Stability domains of BDF6 and other 6th–order stiffly–stable algo-
rithms.

142 Chapter 4. Multi–step Integration Methods

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

BDF6

SS6a,SS6b,SS6c

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

BDF6

SS6a

SS6b

SS6c

Damping Plot of Stiffly-Stable Methods

−σd

Logarithmic Damping Plot for Stiffly-Stable Methods

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 4.9. Damping plots of BDF6 and other 6th–order stiffly–stable algo-
rithms.

The asymptotic regions of these three algorithms are almost identical and
considerably larger than that of BDF6. Consequently, it may be possible
to use larger step sizes with any of these algorithms. Thus, either of these
methods may be more economic than BDF6. A large asymptotic region may
be considered an alternative to a small error coefficient as an indicator for
a good algorithm from the point of view of integration accuracy.

The logarithmic decay rate of BDF6 is a little better than those of its
three contenders. Yet, this issue may not be of much concern.

4.10 High–order Backward Difference Formulae

Although it is known that there are no stable BDF algorithms of orders
higher than six, this statement only applies to the algorithms without ex-
tended memory tail. We can apply the same procedure as before to search
for BDF algorithms of order seven, allowing the tail of the algorithm to
reach back all the way to e.g. tk−13. Hence we need to choose seven ele-
ments from a list of 14.

Of the possible 3432 algorithms, 762 possess properties similar to BDF6,
i.e., they are A(α)–stable and also L–stable. The search was limited to
algorithms with α ≥ 10o. Their performance parameters are tabulated in
Table 4.3.

4.10 High–order Backward Difference Formulae 143

BDF6 7th–order stiffly–stable methods
α = 19o α ∈ [10o, 48o]
a = −6.0736 a ∈ [−6.1261,−0.9729]
c = 0.5107 c ∈ [0.0811, 0.7429]
cerr = −0.0583 cerr ∈ [−6.6498,−0.1409]
as.reg. = −0.14 as.reg. ∈ [−0.23,−0.01]

TABLE 4.3. Properties of stiffly–stable 7th–order algorithms.

The smallest error coefficient is now almost three times larger than in
the case of the 6th–order algorithms. The other parameters are comparable
in their ranges with those of the 6th–order algorithms.

This time, we used a value of k = 15 in Eq.(4.77). The best three algo-
rithms are characterized by the following sets of coefficients:

xk+1 =
5148
12161

h · fk+1 +
552123
243220

xk − 200772
85127

xk−1 +
184041
121610

xk−2

− 184041
425635

xk−3 +
20449

1702540
xk−8 − 4563

851270
xk−10 +

99
121610

xk−12

(4.79a)

xk+1 =
234
551

h · fk+1 +
13689
6061

xk − 492804
212135

xk−1 +
4056
2755

xk−2

− 4563
11020

xk−3 +
169

19285
xk−8 − 507

121220
xk−11 +

54
30305

xk−12

(4.79b)

xk+1 =
3276
7675

h · fk+1 +
17199
7675

xk − 191646
84425

xk−1 +
596232
422125

xk−2

− 74529
191875

xk−3 +
1183

191875
xk−8 − 882

422125
xk−12 +

2106
2110625

xk−13

(4.79c)

Their performance parameters are tabulated in Table 4.4.

BDF6 SS7a SS7b SS7c
α = 19o α = 37o α = 39o α = 35o

a = −6.0736 a = −3.0594 a = −2.9517 a = −3.2146
c = 0.5107 c = 0.6352 c = 0.6664 c = 0.6331
cerr = −0.0583 cerr = −0.3243 cerr = −0.3549 cerr = −0.3136
as.reg. = −0.14 as.reg. = −0.15 as.reg. = −0.16 as.reg. = −0.15

TABLE 4.4. Properties of stiffly–stable 7th–order algorithms.

The error coefficients of these methods have grown quite a bit, but luckily,
the asymptotic regions haven’t shrunk yet significantly.

144 Chapter 4. Multi–step Integration Methods

The stability domains of the three methods are presented in Fig.4.10,
where they are also compared to that of BDF6. The damping plots are
shown in Fig.4.11.

−15 −10 −5 0 5 10 15 20 25 30 35

−20

−15

−10

−5

0

5

10

15

20

BDF6

SS7a

SS7b SS7c

Stability Domain of Stiffly-Stable Methods

Re{λ · h}

I
m
{λ

·h
}

FIGURE 4.10. Stability domains of BDF6 and a set of 7th–order stiffly–stable
algorithms.

The three algorithms are very similar indeed in almost every respect,
and they should also perform quite similarly in simulations.

We can now proceed to algorithms of 8th order. We searched for algo-
rithms with tails reaching all the way back to tk−15. Hence we had to choose
8 elements out of a list of 16 candidates. Of the possible 12870 algorithms,
493 exhibit properties similar to those of BDF6.

Their performance parameters are tabulated in Table 4.5.

BDF6 8th–order stiffly–stable methods
α = 19o α ∈ [10o, 48o]
a = −6.0736 a ∈ [−5.3881,−1.4382]
c = 0.5107 c ∈ [0.0859, 0.6485]
cerr = −0.0583 cerr ∈ [−6.4014,−0.4416]
as.reg. = −0.14 as.reg. ∈ [−0.16,−0.01]

TABLE 4.5. Properties of stiffly–stable 8th–order algorithms.

4.10 High–order Backward Difference Formulae 145

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

BDF6

SS7a,SS7b,SS7c

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

BDF6

SS7a,SS7b,SS7c

Damping Plot of Stiffly-Stable Methods

−σd

Logarithmic Damping Plot for Stiffly-Stable Methods

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 4.11. Damping plots of BDF6 and a set of 7th–order stiffly–stable algo-
rithms.

The smallest error coefficient has unfortunately again grown by about a
factor of three, and this time, also the largest asymptotic region has begun
to shrink.

This time around, we used a factor of k = 10 in Eq.(4.77). Two among
the best of these algorithms are characterized by the following sets of co-
efficients:

xk+1 =
112
267

h · fk+1 +
71680
31239

xk − 2800
1157

xk−1 +
179200
114543

xk−2

− 3920
8811

xk−3 +
112

12015
xk−9 − 160

12727
xk−13 +

7168
572715

xk−14

− 35
10413

xk−15 (4.80a)

xk+1 =
208
497

h · fk+1 +
216320
93933

xk − 93600
38269

xk−1 +
16640
10437

xk−2

− 67600
147609

xk−3 +
5408

469665
xk−9 − 1280

147609
xk−12 +

3328
574035

xk−14

− 65
31311

xk−15 (4.80b)

Their performance parameters are tabulated in Table 4.6.
Their stability domains and damping plots look almost the same as for

146 Chapter 4. Multi–step Integration Methods

BDF6 SS8a SS8b
α = 19o α = 35o α = 35o

a = −6.0736 a = −3.2816 a = −3.4068
c = 0.5107 c = 0.5779 c = 0.5456
cerr = −0.0583 cerr = −0.9322 cerr = −0.8636
as.reg. = −0.14 as.reg. = −0.14 as.reg. = −0.13

TABLE 4.6. Properties of stiffly–stable 8th–order algorithms.

the 7th–order algorithms. We therefore refrained from printing these plots.
Let us now proceed to 9th–order algorithms. We decided to search for

algorithms with their tails reaching back as far as tk−17. Hence we had to
choose 9 elements from a list of 18. Of the 48620 candidate algorithms,
only 152 exhibit properties similar to those of BDF6.

Their performance parameters are tabulated in Table 4.7.

BDF6 9th–order stiffly–stable methods
α = 19o α ∈ [10o, 32o]
a = −6.0736 a ∈ [−5.0540,−2.4730]
c = 0.5107 c ∈ [0.0625, 0.4991]
cerr = −0.0583 cerr ∈ [−5.9825,−1.2492]
as.reg. = −0.14 as.reg. ∈ [−0.10,−0.02]

TABLE 4.7. Properties of stiffly–stable 9th–order algorithms.

The smallest error coefficient has once again grown by about a factor of
three, and also the largest asymptotic region has now shrunk significantly.

This time, we used a factor of k = 5 in Eq.(4.77). Two among the best
of these algorithms are characterized by the following sets of coefficients:

xk+1 =
4080
9947

h · fk+1 +
165240
69629

xk − 16854480
6336239

xk−1 +
1664640
905177

xk−2

− 5618160
9956947

xk−3 +
23120

1462209
xk−8 − 332928

9956947
xk−14 +

351135
6336239

xk−15

− 29160
905177

xk−16 +
1360

208887
xk−17 (4.81a)

xk+1 =
1904
4651

h · fk+1 +
719712
302315

xk − 62424
23255

xk−1 +
6214656
3325465

xk−2

− 873936
1511575

xk−3 +
18496

1046475
xk−8 − 249696

16627325
xk−13 +

7803
302315

xk−15

− 6048
302315

xk−16 +
952

209295
xk−17 (4.81b)

Their performance parameters are tabulated in Table 4.8.

4.11 Newton Iteration 147

BDF6 SS9a SS9b
α = 19o α = 18o α = 18o

a = −6.0736 a = −4.3280 a = −4.3321
c = 0.5107 c = 0.3957 c = 0.3447
cerr = −0.0583 cerr = −1.7930 cerr = −1.6702
as.reg. = −0.14 as.reg. = −0.10 as.reg. = −0.08

TABLE 4.8. Properties of stiffly–stable 9th–order algorithms.

Their stability domains and damping plots look almost the same as for
the 7th and 8th–order algorithms.

In this section, a number of new algorithms have been developed and
presented that extend the concept of BDF algorithms to higher orders.

4.11 Newton Iteration

As we have seen, many of the truly interesting multi–step algorithms are
implicit. Let us look once more at BDF3.

xk+1 =
6
11

h · fk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (4.82)

Plugging in the α–vector and the β–matrix of the BDF3 method, we find:

xk+1 = α3 h · fk+1 + β31 xk + β32 xk−1 + β33 xk−2 (4.83)

Thus, the ith–order BDFi algorithm can be written as:

xk+1 = αi h · fk+1 +
i∑

j=1

βij xk−j+1 (4.84)

Plugging in the linear homogeneous problem and solving for xk+1, we find:

xk+1 = −
[
αi · (A · h) − I(n)

]−1 i∑
j=1

βij xk−j+1 (4.85)

On a nonlinear problem, we cannot apply matrix inversion. We can rewrite
Eq.(4.84) as:

F(xk+1) = αi h · f(xk+1, tk+1) − xk+1 +
i∑

j=1

βij xk−j+1 = 0.0 (4.86)

and use Newton iteration on Eq.(4.86):

x�+1
k+1 = x�

k+1 − [H�]−1 · [F�] (4.87)

148 Chapter 4. Multi–step Integration Methods

where the Hessian H can be computed as:

H = αi · (J · h) − I(n) (4.88)

and J is the Jacobian of the system. By plugging the linear homogeneous
system into Eq.(4.87), it is easy to show that we get Eq.(4.85) back, i.e.,
Newton iteration doesn’t change the stability domain of the method.

Most of the professional multi–step codes use modified Newton iteration,
i.e., they do not reevaluate the Jacobian during the iteration. They usually
don’t evaluate the Jacobian even once every step. Instead, they use the
error estimate of the method as an indicator when the Jacobian needs to be
reevaluated. As long as the error estimate remains approximately constant,
the Jacobian is still acceptable. However, as soon as the absolute gradient
of the error estimate starts to grow, indicating the need for a change in step
size, this is a clear indication that a new Jacobian computation is in order,
and only if a reevaluation of the Jacobian doesn’t get the error estimate
back to where it was before, will the step size of the method be adjusted.

Even the Hessian is not reevaluated frequently. The Hessian needs to be
recomputed either if the Jacobian has been reevaluated, or if the step size
has just been modified.

Most professional codes offer several options for how to treat the Jaco-
bian. The user can choose between (i) providing an analytical expression
for the Jacobian, (ii) having the full Jacobian evaluated by means of a nu-
merical approximation, and (iii) having only the diagonal elements of the
Jacobian evaluated by means of a numerical approximation ignoring the
off–diagonal elements altogether.

Both the convergence speed and the convergence range of the Newton
iteration scheme are strongly influenced by the quality of the Jacobian. A
diagonal approximation is cheap, but leads to a heavy increase in the num-
ber of iterations necessary for the algorithm to converge, and necessitates
more frequent Jacobian evaluations as well. In our experience, it hardly
ever pays off to consider this option.

The full Jacobian is usually determined by first–order approximations.
The ith state variable, xi, is modified by a small value, Δxi. The state
derivative vector is then reevaluated using the modified state value. We
find:

∂f(x, t)
∂xi

≈ fpert − f
Δxi

(4.89)

where f is the state derivative vector evaluated at the current nominal val-
ues of all state variables, whereas fpert is the perturbed state derivative
vector evaluated at xi + Δxi with all other state variables being kept at
their currently nominal values. Thus, an nth–order system calls for n ad-
ditional function evaluations in order to obtain one full approximation of
the Jacobian.

4.11 Newton Iteration 149

Yet, even by spending these additional n function evaluations, we gain
only a first–order approximation of the Jacobian. Any linear model can
be converged in precisely one step of Newton iteration with the correct
Jacobian being used, irrespective of the location of its eigenvalues or the size
of the system. Using the first–order approximation, however, we may need
three to four iterations in order to get the iteration error down to a value
below the integration error . On a sufficiently nasty nonlinear problem, the
ratio of the numbers of iterations needed to converge may be even worse.

For these reasons, we strongly advocate the analytical option. In the past,
this option has rarely been used . . . because we engineers are a lazy lot. An
nth–order model calls for n2 additional equations in order to analytically
describe its Jacobian. Moreover, these equations may be longer and more
involved than the original n equations due to the analytical differentiation.
Thus, deriving the Jacobian equations by hand is a tedious and error–prone
process.

However, there is really no good reason why these equations should have
to be derived by hand. As you already know if you read the companion
book to this text Continuous System Modeling [4.2], engineers anyway
don’t usually write down their models by hand in a form that the numerical
integration software could use directly. They employ a modeling language,
such as Dymola [4.3], from which, by means of compilation, a simulation
program is generated.

There is no good reason why the analytical Jacobian equations could not
be generated automatically in this process, i.e., the Jacobian can be gener-
ated once and for all at compile time by means of symbolic differentiation.
Indeed, Dymola [4.3] already offers such a feature. Symbolic differentiation
is very useful also for other purposes that we shall talk about in due course
[4.1].

We are fully convinced that mixed symbolic/numerical algorithms are
the way of the future. Many problems can be tackled either numerically
or symbolically. However in some cases, the numerical solution is more
efficient, whereas in others, the symbolic approach is clearly superior. By
merging these two approaches into one integrated software environment, we
can preserve the best of both worlds. In continuous system modeling and
simulation, models specified by the user in a form most convenient to him
or her are symbolically preconditioned for optimal use by the subsequent
numerical algorithms, such as the numerical integration software.

Even in this chapter, we have already made use of symbolic algorithms
without explicitly mentioning it. We explained in Eqs.(4.60) and (4.61),
how the coefficients of high–order stiffly–stable integration algorithms can
be found. Yet, if this is done numerically in MATLAB, e.g. using the state-
ment:

coef = sum(inv(M)); (4.90)

150 Chapter 4. Multi–step Integration Methods

the resulting coefficient vector will be generated in a real–valued format,
rather than as rational expressions. Numerical mathematicians prefer to
be provided with rational expressions for these coefficients, so that the
mantissa of the machine on which the integration algorithm is to be imple-
mented can be fully exploited without leading to additional and unneces-
sary roundoff errors.

We could have tried to obtain rational expressions making use of the fact
that both the determinant and the adjugate of an integer–valued matrix
are integer–valued, i.e.:

Mdet = round(det(M));
Madj = round(Mdet ∗ inv(M));

coef num = sum(Madj); (4.91)

In this way, the numerators of the coefficients, coef num, can be com-
puted as an integer–valued vector, whereas the common denominator is
the equally integer–valued determinant. We could then use any one among
a number of well-known algorithms to determine the common dividers be-
tween the numerators and denominators of each coefficient.

This approach works well for BDF algorithms of orders three or four,
but fails, when dealing with 8th– or 9th–order algorithms. The reason is
that the determinant of M grows so rapidly with the size of M that the
mantissa of a 32–bit machine is exhausted quickly, in spite of the fact that
MATLAB computes everything in double precision.

For this reason, we generated the coefficient vectors of e.g. Eqs.(4.81) by
means of the MATLAB statement:

coef = sum(inv(sym(M))); (4.92)

i.e., making use of MATLAB’s symbolic toolbox. The symbolic toolbox rep-
resents integers as character strings, and is thereby not limited by the length
of the mantissa. The sym–operator converts the numeric integer–valued
matrix M into a symbolic representation. The inv– and sum–functions
are overloaded MATLAB functions that make use of different algorithms
depending on the type declaration of their operand.

Using similar techniques, Gander and Gruntz [4.4] recently corrected a
number of errors in well-known and frequently used numerical algorithms
that had gone unnoticed for several decades.

4.12 Step–size and Order Control

We have seen in the previous chapter that the appropriate order of an RK
algorithm is determined by the accuracy requirements. Therefore, since the

4.12 Step–size and Order Control 151

relative accuracy requirements usually are the same throughout the entire
simulation run, order control makes little sense.

Let us ascertain whether the same is true in the case of the multi–step
algorithms. To this end, we shall simulate our fifth–order linear test problem
of Eq.(H4.8a) across 10 seconds, using zero input and applying an initial
value of 1.0 to all five state variables. For different global relative error
requirements, we find the largest step sizes that keep the numerical error
just below the required error bounds, and plot the number of function
evaluations needed to simulate the system across 10 seconds as a function
of the required accuracy. The process is repeated for AB2, AB3, and AB4.
The same quantity for RK4 is plotted on the same graph for comparison.
The results of this analysis are shown on Fig.4.12.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

1000

2000

3000

4000

AB2

AB3

AB4
RK4

Cost vs. Accuracy in Adams-Bashforth Methods

Global Relative Error

#
Fu

nc
ti

on
E

va
lu

at
io

ns

FIGURE 4.12. Cost versus accuracy for different ABi algorithms.

The results are a little deceiving, since only the number of function
evaluations (one per step for all ABi algorithms) is plotted, not taking
into account the higher cost associated with data management within the
higher–order ABi algorithms.

If we decide that we are willing to spend about 500 function evaluations
on this simulation, we can get a global relative accuracy of about 10% with
AB2, we can get about 1% global accuracy with AB3, and we can get about
0.1% accuracy with AB4. Thus, just as in the case of the RKi algorithms,
the accuracy requirements determine the minimum order of the algorithm
that is economical to employ. Since the order of the algorithm is dictated
by the (constant) accuracy requirements specified by the user, order control
doesn’t make too much sense.

As a little caveat: AB4 is about 25% cheaper than RK4 in this exam-
ple. Notice that this is a linear time–invariant non–stiff problem, i.e., a
problem where the ABi algorithms perform at their best. Although RK4
takes four function evaluations per step, whereas AB4 takes only one func-
tion evaluation per step, we never gain a factor of four in efficiency, since
the asymptotic regions of the RKi algorithms are considerably larger than
those of the ABi algorithms, forcing us to use a smaller step size in the

152 Chapter 4. Multi–step Integration Methods

latter case. The situation gets worse with higher orders of approximation
accuracy due to the detrimental influence of spurious eigenvalues.

Why is order control fashionable in multi–step algorithms? The answer
is simple: because order control is cheap. Remember how multi–step algo-
rithms work. At all times, we keep a record of back storage values of states
and/or state derivatives. When we proceed from time tk to time tk+1, we
simply throw the oldest values (the rear end of the tail) away, shift all the
vectors by one into the past, and add the newest state information to the
front end of the queue. If we decide to increase the order by one, we simply
don’t throw away anything. On the other hand, if the decide to decrease
the order by one, we simply throw away the two oldest values. Thus, order
control is trivial.

Step–size control is not cheap. If we change the step size at any time, we
are faced with non–equidistantly spaced storage values, and although we
could redesign our multi–step methods to work with non–equidistant spac-
ing also (this has been done on some occasions), it is usually too expensive
to do so. There are better ways to do step–size control, as we shall see.

Since step–size control is expensive and order control is cheap, why not
use order control instead? If we are currently computing too accurately and
wish to increase the step size, why can’t we drop the order instead and keep
using the same step size? The answer is that order control is very coarse.
Dropping the order by one usually reduces the accuracy by about a factor
of 10. This can be easily seen on Fig.4.12. Thus, we must be computing
much too accurately, before dropping the order is justified. Moreover, we
don’t even save that much by doing so. After all, the number of function
evaluations remains the same. The fact that everybody does order control,
doesn’t mean, it’s the smart thing to do (!)

How then can we do step–size control efficiently? The trick is actually
quite simple. Let us reconsider the Newton–Gregory backward polynomials.
We start out with:

x(t) = xk + s∇xk +
(

s2

2
+

s

2

)
∇2xk +

(
s3

6
+

s2

2
+

s

3

)
∇3xk + . . . (4.93)

Differentiation with respect to time yields:

ẋ(t) =
1
h

[
∇xk +

(
s +

1
2

)
∇2xk +

(
s2

2
+ s +

1
3

)
∇3xk + . . .

]
(4.94)

The second derivative becomes:

ẍ(t) =
1
h2

[∇2xk + (s + 1)∇3xk + . . .
]

(4.95)

etc.

4.12 Step–size and Order Control 153

Truncating Eqs.(4.93)–(4.95) after the cubic term, expanding the ∇–
operators, and evaluating for t = tk (s = 0.0), we obtain:

⎛
⎜⎜⎝

xk

h · ẋk
h2

2 · ẍk
h3

6 · x(iii)
k

⎞
⎟⎟⎠ =

1
6
·

⎛
⎜⎜⎝

6 0 0 0
11 −18 9 − 2
6 −15 12 − 3
1 − 3 3 − 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

xk

xk−1

xk−2

xk−3

⎞
⎟⎟⎠ (4.96)

The vector to the left of the equal sign is called the Nordsieck vector ,
here written of third order. Using this trick, it has become possible to
translate state information stored at different points in time by means
of a simple multiplication with a constant matrix into state– and state
derivative information stored at one time point only. The transformation
was written here for a single state variable. The vector case works in exactly
the same fashion, but the notation is less convenient.

This discovery allows us to solve the step–size control problem. If we
wish to change the step size at time tk, we simply multiply the vector
containing the past state values with the transformation matrix, thereby
transforming the state history vector to an equivalent Nordsieck vector. In
this new form, the step size can be modified easily, e.g. by multiplying the
Nordsieck vector from the left with the diagonal matrix:

H =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 hnew

hold
0 0

0 0
(

hnew
hold

)2

0

0 0 0
(

hnew
hold

)3

⎞
⎟⎟⎟⎟⎟⎠ (4.97)

We now have the Nordsieck vector expressed in the modified time step,
hnew. We then multiply this modified Nordsieck vector from the left with
the inverse transformation matrix. This operation results in a modified
state history vector, where the “stored” x values represent the solution at
the modified “sampling points.”

This is today the preferred method for step–size control in multi–step
integration algorithms. Step–size control is still fairly expensive. In the
case of implicit algorithms, we need to also evaluate a new Hessian after
modifying the step size using the above matrix multiplications. Since we are
already in a “spending mood,” we might just as well use the opportunity
to get a new Jacobian also.

For this reason, the Gustafsson algorithm [4.8] is not practical for use in
multi–step integration. We don’t want to change the step size after every
step. If we need to reduce the step size, we shall reduce it at once to at least
one half of its former value to prevent the danger of having to reduce the
step size immediately again. We don’t want to increase the step size either

154 Chapter 4. Multi–step Integration Methods

until we are fairly certain that we can at least double it without violating
the accuracy constraints. How do we know that? The next section will tell.

4.13 The Startup Problem

One problem we have not discussed yet is how the integration process is
started in the first place. Usually, the initial state vector is given at time t0,
but no back values are available. How can we compute estimates for these
values such that the multi–step formulae become applicable?

Traditionally, applied mathematicians have chosen the easy route: ap-
plying order control. They employ a first–order method during the first
integration step. This provides them with a second data point at time
t1 = t + h. Since, by now, they have two data points, they can raise the
order by one, and perform the second integration step using a second–order
formula, etc. After a suitable number of steps, the algorithm has acquired
the desired state history vector in order to make an nth–order multi–step
method applicable.

This method “works,” in the sense that it can be programmed into an
algorithm. However, it is not acceptable on any other grounds. The prob-
lem is accuracy. In order to satisfy our accuracy requirements, we must use
a very small step size during the first low–order steps. Even after we have
built up the order, we should not immediately increase the step size by use
of the Nordsieck transformation, since some of the back values currently in
the storage area of the algorithm are low–order accurate. In the transfor-
mation, we may pick up bad numerical errors. It is better to wait for at
least another n steps, before we even dream of changing the step size to a
more decent value. This is utterly wasteful.

Bill Gear has shown another way [4.6]. We can use Runge–Kutta al-
gorithms for startup purposes. In this way, also the early steps are of the
correct order, and a more decent step size can be used from the beginning.

Let us explain our own version of this general idea. If we decide that
we want to employ an ith–order algorithm, we start out performing (i− 1)
steps of RKi using a fixed–step algorithm. The step size doesn’t matter too
much as long as it is chosen sufficiently small to ensure that the accuracy
requirements are met. For example, we can use step–size control during the
first step to determine the right step size, and then disable the step–size
control algorithm.

By now, we have i equidistantly–spaced storage values of the state vector,
and we are able to start using the multi–step algorithm. However, what step
size should we use? In order to determine the answer to this question, let
us look once more at Fig.4.12. This time, we plotted the same curves as
before using a double–logarithmic scale.

We notice that the logarithm of the step size is, for all practical purposes,

4.13 The Startup Problem 155

linear in the logarithm of the accuracy. Thus, we can perform one step of
the multi–step technique using the step size h1 from the RK starter, and
obtain an error estimate ε1. We then reduce the step size to h2 = h1/2,
and repeat the step. We obtain a new error estimate ε2.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

AB2
AB3

AB4 RK4

Cost vs. Accuracy in Adams-Bashforth Methods

Global Relative Error

#
Fu

nc
ti

on
E

va
lu

at
io

ns

FIGURE 4.13. Cost versus accuracy for different ABi algorithms.

We now place a linear curve through the two points, and interpolate
(extrapolate) with the desired accuracy εdes to obtain a good value for the
true step size to be used by the multi–step algorithm:

(
ln(h1)
ln(h2)

)
=
(

ln(ε1) 1
ln(ε2) 1

)
·
(

a1

a2

)
(4.98a)

ln(hdes) = a1 · ln(εdes) + a2 (4.98b)
hnew = 0.8 · hdes (4.98c)

Eq.(4.98a) solves a linear set of two equations for the unknown parameters
a1 and a2, Eq.(4.98b) solves the interpolation (extrapolation) problem, and
Eq.(4.98c) computes the new step size using a safety margin of 20%.

Runge–Kutta starters work very well in the case of non–stiff problems,
i.e., as start–up algorithms for Adams–Bashforth or Adams–Bashforth–
Moulton algorithms. They are more problematic in the case of the Back-
ward Difference Formulae. The reason for this observation is simple: The
RK start–up algorithm may need to use exceedingly small steps because of
the stiffness of the problem to be solved. Once we switch over to the BDF
algorithm, we may thus wish to increase the step size dramatically. The
Nordsieck approach allows us to do so, but in the process, the sampling
points get extended over a wide range, which corresponds to heavy extrap-
olation, a process that is invariably associated with sources of inaccuracy.
We may thus prefer to limit the allowed step size enlargement to maybe a
factor of 10, then perform n steps of BDF with that intermediate step size
to gain a new accurate history vector, before increasing the step size once
more by a factor of 10, and repeat this process, until the appropriate step

156 Chapter 4. Multi–step Integration Methods

size has been reached.
In step–size control, we can use the same algorithm. We don’t want

to change the step size unless it needs to be changed by a large value.
Therefore, if we have decided that a step–size change is truly in order, we
can afford to calculate one additional test step with half the former step
size (or double the former step size) in order to obtain a decent estimate
of where the step size ought to be.

A yet better approach might have been to use a number of BI4/50.45 steps
during startup to avoid both the numerical stability problems haunting the
RK starters and the numerical accuracy problems associated with the low–
order BDF starters.

4.14 The Readout Problem

The last problem to be discussed in this chapter is the readout problem. If
we simulate a system, we want to obtain results, i.e., we wish to obtain the
values of one or several output variables at pre–specified points in time,
the so–called communication points .

Often, the communication points are equidistantly spaced. In this case,
the distance between neighboring communication points is referred to as
the communication interval .

In single–step integration, we simply reduce the step size when approach-
ing the next communication point in order to hit the communication point
accurately. In multi–step integration, this approach is too expensive. We
cannot afford to modify the step size for no other purpose than to deliver
some output values.

The solution is simple. We integrate past the communication point using
the actual step size. We then interpolate back to calculate an estimation
of the state vector at the communication point. In multi–step integration,
interpolation with the same order of approximation accuracy that the cur-
rently employed integration method uses is cheap. All we need to do is to
convert the state history vector at the end of the integration step to the
Nordsieck form, then correct the step size such that the end of the “pre-
vious step” coincides with the communication point, then record the new
“immediate past value” as the readout value.

After the results have been recorded, the algorithm returns to the end
of the integration step, and proceeds as if no interruption had taken place.

4.15 Summary

20 years ago, the chase for new integration algorithms was still on. In
numerical integration workshops around the globe, new integration meth-

4.15 Summary 157

ods were presented by the dozen. Hardly any of them survived the test
of time. The reason for this surprising fact is simple. To come up with a
new algorithm is the easy part. To incorporate that algorithm in a robust
general–purpose production code is an entirely different matter.

Most engineering users of simulation software use the numerical integra-
tion software as a black box. They don’t have the foggiest idea of how the
code works, and frankly, they couldn’t care less. All they are interested in
is that the code reliably and efficiently generates accurate estimates of the
output variables at the communication points.

In a mature production code of a multi–step integration algorithm, the
actual algorithm occupies certainly less than 5% of the code. All the rest is
boiler plate: code for initializing the coefficient matrices; code for starting
up the integration algorithm, e.g., using an RK starter; code for update,
maintenance, and disposal of the state history information; code for inter-
polating the results at communication points; code for step–size and (alas!)
order control; and finally, code for handling of discontinuities — a topic to
be discussed in a separate chapter of this book.

Software engineers may be inclined to believe that the answer to this
problem is software modularization. Let us structure the software in such
a way that e.g. the step–size control is handled by one routine, interpola-
tion is handled by another, etc., in such a fashion that these routines can
be modularly plugged together. Unfortunately, even this doesn’t work. A
step–size control algorithm that is efficient for an RK algorithm, such as
the Gustafsson method, could theoretically also be used for a multi–step
algorithm, but it would be terribly inefficient.

What has happened is a certain standardization of the interfaces of nu-
merical integration software (the parameter calling sequences), such that a
user can fairly easily replace one entire code by another to check which one
works better. In this context, it is important to mention the efforts of Alan
Hindmarsh whose various LSODE codes are clearly among the survivors.

More could certainly be done. Today’s multi–step codes are unneces-
sarily unreadable. What we would need is an efficient MATLAB compiler
that would allow us to develop new production codes in MATLAB, making
them easily readable, and once they are fully debugged, generate auto-
matically efficient C–code for use as stand–alone programs. Availability of
such a software design tool would make the life of applied mathematicians
much easier. Although a C–compiler for MATLAB has been developed,
the generated code is unfortunately anything but efficient, since it makes
use of the generic data management tools of MATLAB. Consequently, C–
compiled MATLAB code doesn’t execute much faster than the interpreted
MATLAB code itself.

You, the reader, may have noticed that we are somewhat critical vis–à–
vis the multi–step integration methods. Runge–Kutta methods are, in our
opinion, considerably more robust, and it is easier to design production
codes for them. Multi–step techniques are fashionable because the algo-

158 Chapter 4. Multi–step Integration Methods

rithms themselves are so much easier to design, but the price to be paid is
dear. Mature multi–step codes are very difficult to design, and even with
the best of all such codes, it still happens that it breaks down in the face of
a nasty nonlinear simulation problem, and if it does, it may be very difficult
for even knowledgeable users to determine what precisely it was that the
algorithm didn’t like, and which parameter to fiddle around with in order
to get around the problem.

Single–step codes are much simpler to develop and maintain, and they
offer a smaller number of tuning parameters that the user might need to
worry about. They are considerably more robust. Whereas non–stiff RK
codes are available and are being widely used, stiff implicit RK production
codes are slow in coming. BDF codes are still far more frequently used in
practice than IRK codes. However, this is true not because of the superiority
of these algorithms, but due to the wider distribution of good production
codes.

4.16 References

[4.1] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation in Object–Oriented Continuous–System Modeling. IEEE
Control Systems, 13(2):28–38, 1993.

[4.2] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[4.3] Hilding Elmqvist. A Structured Model Language for Large Continuous
Systems. PhD thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[4.4] Walter Gander and Dominik Gruntz. Derivation of Numerical Meth-
ods Using Computer Algebra. SIAM Review, 41(3):577–593, 1999.

[4.5] C. William Gear. Numerical Initial Value Problems in Ordinary Dif-
ferential Equations. Series in Automatic Computation. Prentice–Hall,
Englewood Cliffs, N.J., 1971. 253p.

[4.6] C. William Gear. Runge–Kutta Starters for Multistep Methods.
ACM Trans. Math. Software, 6(3):263–279, 1980.

[4.7] Curtis F. Gerald and Patrick O. Wheatley. Applied Numerical Anal-
ysis. Addison–Wesley, Reading, Mass., 6th edition, 1999. 768p.

[4.8] Kjell Gustafsson. Control of Error and Convergence in ODE Solvers.
PhD thesis, Dept. of Automatic Control, Lund Institute of Technology,
Lund, Sweden, 1992.

4.17 Homework Problems 159

[4.9] Klaus Hermann. Solution of Stiff Systems Described by Ordinary Dif-
ferential Equations Using Regression Backward Difference Formulae.
Master’s thesis, Dept. of Electrical & Computer Engineering, Univer-
sity of Arizona, Tucson, Ariz., 1995.

[4.10] John D. Lambert. Numerical Methods for Ordinary Differential Sys-
tems: The Initial Value Problem. John Wiley, New York, 1991. 304p.

[4.11] William E. Milne. Numerical Solution of Differential Equations.
John Wiley, New York, 1953. 275p.

[4.12] Cleve Moler and Charles van Loan. Nineteen Dubious Ways to Com-
pute the Exponential of a Matrix. SIAM Review, 20(4):801–836, 1978.

4.17 Homework Problems

[H4.1] The Differentiation Operator

Rewrite Eq.(4.20) and Eq.(4.21) in terms of the ∇–operator. Develop also
a formula for D3.

[H4.2] Nyström–Milne Predictor–Corrector Techniques

Follow the reasoning of the Adams–Bashforth–Moulton predictor–corrector
techniques, and develop similar pairs of algorithms using a Nyström pre-
dictor stage followed by a Milne corrector stage.

Plot the stability domains for NyMi3 and NyMi4. What do you con-
clude?

[H4.3] New Methods

Using the Gregory–Newton backward polynomial approach, design a set of
algorithms of the type:

xk+1 = xk−2 +
h

αi
·
⎡
⎣ i∑

j=1

βij xk−j+1

⎤
⎦ (H4.3a)

Plot their stability domains. Compare them with those of the Adams–
Bashforth techniques and those of the Nyström techniques. What do you
conclude?

[H4.4] Milne Integration

Usually, the term “Milne integration algorithm,” when used in the litera-
ture, denotes a specific predictor–corrector technique, namely:

160 Chapter 4. Multi–step Integration Methods

predictor: ẋk = f(xk, tk)
xP

k+1 = xk−3 + h
3 (8ẋk − 4ẋk−1 + 8ẋk−2)

corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC

k+1 = xk−1 + h
3 (ẋP

k+1 + 4ẋk + ẋk−1)

The corrector is clearly Simpson’s rule. However, the predictor is something
new that we haven’t seen yet.

Derive the order of approximation accuracy of the predictor. To this end,
use the Newton–Gregory backward polynomial in order to derive a set of
formulae with a distance of four steps apart between their two state values.

Plot the stability domain of the predictor–corrector method, and com-
pare it with that of NyMi4. What do you conclude? Why did William E.
Milne [4.11] propose to use this particular predictor?

[H4.5] Damping Plots of Adams–Bashforth Techniques

Find the damping plots of AB2, AB3, and AB4 for σd in the range [-1.0,0.0].
Compare them with the corresponding damping plots of RK2, RK3, and
RK4. What do you conclude about the size of the asymptotic regions of
these algorithms?

[H4.6] Damping Plots of Adams–Moulton Techniques

Find the damping plots of AM2, AM3, and AM4 for σd in the range
[−1.0, 0.0]. Compare them with those of AB2, AB3, and AB4. What can
you say about the comparative sizes of the asymptotic regions of these
algorithms?

[H4.7] Damping Plots of Backward Difference Formulae

Find the damping plots of BDF2, BDF3, and BDF4 for σd logarithmically
spaced between 10−1 and 106, and plot them on a logarithmic scale like
in Fig.4.7. What do you conclude about the damping properties of these
algorithms at large values of σd? Do all these methods share the desirable
properties of BDF6, or was this a happy accident?

[H4.8] Cost Versus Accuracy

Compute the cost–versus–accuracy plots of AB4, ABM4, and AM4 for the
linear non–stiff test problem:

ẋ =

⎛
⎜⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 − 9613
250 − 5060 −12079 − 8586 − 4826

− 750 15101 36086 25637 14420
250 − 4963 −11896 − 8438 − 4756

⎞
⎟⎟⎟⎟⎠ ·x+

⎛
⎜⎜⎜⎜⎝

5
2
1

−3
1

⎞
⎟⎟⎟⎟⎠ ·u

(H4.8a)

4.17 Homework Problems 161

with zero input and with the initial condition x0 = ones(5, 1), and plot
them together on one graph. ABM4 consumes always two function eval-
uations per step. In the case of AM4, the situation is more involved, but
for simplicity, we want to assume that AM4 needs, on the average, four
function evaluations per step.

Although we plot the number of steps versus the accuracy, it is more
efficient to vary the number of steps and check what accuracy we obtain
in each case. We suggest that you select a set of values of steps in the
range [200, 4000], e.g. nbrstp = [200, 500, 1000, 2000, 4000]. You then need
to compute the step sizes. In the case of ABi, they would be h = 10/nbrstp,
since we want to integrate across 10 seconds of simulated time using nbrstp
steps in total. In the case of AMi, we would use the formula h = 40/nbrstp.

Since the test problem is linear, you can simulate the system using the F–
matrices. In the case of the AMi algorithms, you can use matrix inversion
rather than Newton iteration (we indirectly accounted for the iteration by
allowing four function evaluations per step).

Since these methods are not self–starting, you need to start out with
(i−1) steps of RKi using the same step sizes. Of course, the RKi steps are
also simulated using their respective F–matrices.

As a gauge, we need the analytical solution of the test problem. Since
the input is constant between sampling points (in fact, it is zero), we can
find the exact solution by converting the differential equations into a set of
equivalent difference equations using MATLAB’s c2d–function. This gen-
erates the analytical F–matrix. Theoretically:

F = exp(A · h) (H4.8b)

but doesn’t use MATLAB’s expm–function. For sufficiently large step sizes,
you’ll get an overflow error. It would be asked a little too much to explain
here why this happens. If you are interested to know more about this
numerical problem, we refer you to Cleve Moler’s excellently written paper
on this subject [4.12].

The local relative error is computed using the formula:

εlocal(tk) =
‖xanal(tk) − xsimul(tk)‖
max(‖xanal(tk)‖, eps)

(H4.8c)

where eps is MATLAB’s machine constant.
The global relative error is computed using the formula:

εglobal = max
k

(εlocal(tk)) (H4.8d)

What do you conclude about the relative efficiency of these three algorithms
to solve the test problem?

162 Chapter 4. Multi–step Integration Methods

[H4.9] Cost Versus Accuracy

We wish to repeat the same analysis as before, but this time for the stiff
linear test problem:

ẋ =

⎛
⎝ 0 1 0

0 0 1
−10001 −10201 − 201

⎞
⎠ · x +

⎛
⎝0

0
1

⎞
⎠ · u (H4.9a)

We wish to compute the step response of this system across ten seconds of
simulated time.

This time, we are going to use BDF2, BDF3, and BDF4, in order to
compare their relative efficiency at solving this stiff test problem. As in the
case of the previous homework, we are going to simulate the system using
the F–matrices. As with the AMi algorithms, we use matrix inversion,
and simply assume that each step consumes, on the average, four function
evaluations.

As a reference, also compute the cost–versus–accuracy plot of the BI4/50.45

algorithm using RKF4/5 for its semi–steps. For reasons of fairness, we shall
assume that the implicit semi–step uses four iterations. Together with the
single explicit semi–step, one entire step of BI4/50.45 consumes five semi–
steps with six function evaluations each, thus: h = 300/nbrstp.

Which technique is more efficient, BDF4 or BI4/5, to solve this stiff test
problem?

[H4.10] The Nordsieck Form

Equation (4.96) showed the transformation matrix that converts the state
history vector into an equivalent Nordsieck vector. Since, at the time of
conversion, we also have the current state derivative information available,
it is more common to drop the oldest state information in the state history
vector, and replace it by the current state derivative information. Conse-
quently, we are looking for a transformation matrix T of the form:

⎛
⎜⎜⎝

xk

h · ẋk
h2

2 · ẍk
h3

6 · x(iii)
k

⎞
⎟⎟⎠ = T ·

⎛
⎜⎜⎝

xk

h · ẋk

xk−1

xk−2

⎞
⎟⎟⎠ (H4.10a)

The matrix T can easily be found by manipulating the individual equations
of Eq.(4.96).

Find corresponding T–matrices of dimensions 3 × 3 and 5 × 5.

[H4.11] Backward Difference Formulae

We wish to simulate the stiff test problem of Eq.(H4.9a) once more using
BDF4. However this time around, we no longer want to make use of the
knowledge that the system is linear.

4.18 Projects 163

Implement BDF4 with Newton iteration in MATLAB. Use three steps of
RK4 for startup. Use the outlined procedure for step–size control. We wish
to record the values of the three state variables once every second. Solve
the readout problem using the algorithm outlined in this chapter.

4.18 Projects

[P4.1] Stiffly–Stable Methods

Extend one of the widely used variable–order, variable–step size stiff system
solvers to include methods of orders seven, eight, and nine, as developed in
this chapter.

Compare the efficiency of the so modified code with that of the original
code when solving a stiff system with high accuracy requirements.

[P4.2] Stiffly–Stable Methods

Study the effect of the start–up algorithm on a stiff system solver by com-
paring an order buildup approach with a single–step start–up approach.

Compare RK starters with BI starters.

[P4.3] Stiffly–Stable Methods

Study the importance of a small error coefficient vs. a large asymptotic
region on the efficiency of a stiff system solver.

Compare different BDF algorithms of the same order using the same
start–up and step–size control strategies against each other. The codes are
supposed to differ only in the formulae being used. Choose some formulae
with small error coefficients, and compare them with formulae with large
asymptotic regions.

Draw cost vs. accuracy plots to compare their relative economy when
solving identical stiff systems.

4.19 Research

[R4.1] Regression Backward Difference Algorithms

In the development of the stiffly–stable algorithms, we always made use of
n + 1 terms to define an nth–order algorithm. It may be beneficial to allow
more terms in the algorithm without increasing its order.

For example, we could allow a 3rd–order accurate BDF algorithm to
make use of the term xk−3 as well. In that case, Eq.(4.60) needs to be
modified as follows:

164 Chapter 4. Multi–step Integration Methods

⎛
⎜⎜⎜⎜⎝

h · fk+1

xk

xk−1

xk−2

xk−3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 1 2 3
1 0 0 0
1 − 1 1 − 1
1 − 2 4 − 8
1 − 3 9 −27

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

a0

a1

a2

a3

⎞
⎟⎟⎠ (R4.1a)

The M–matrix in this case is no longer square. The above equation can thus
only be solved for the unknown parameter vector in a least square sense.
We thus call these algorithms Regression Backward Difference Formulae
[4.9].

We can multiply the equation:

z = M · a (R4.1b)

from the left with M′:

M′ · z = (M′ · M) · a (R4.1c)

where M′ · M is a square matrix of full rank. Hence, we can multiply the
equation with its inverse:

a = (M′ · M)−1M′ · z (R4.1d)

where (M′·M)−1M′ is the Penrose–Moore pseudoinverse of the rectangular
matrix M. It solves the over–determined linear system in a least square
sense.

Extend the search for high–order stiffly–stable methods by allowing extra
terms in the algorithm. The hope is that the added flexibility may enable us
to either reduce the error coefficient or (even better!) enlarge the asymptotic
region.

5

Second Derivative Systems

Preview

In this chapter, we shall look at integration algorithms designed to deal
with system descriptions containing second–order derivatives in time. Such
system descriptions occur naturally in the mathematical modeling of me-
chanical systems, as well as in the mathematical modeling of distributed
parameter systems leading to hyperbolic partial differential equations.

In this chapter, we shall concentrate on mechanical systems. The discus-
sion of partial differential equations is postponed to the next chapter.

Whereas it is always possible to convert second derivative systems to
state–space form, integration algorithms that deal with the second deriva-
tives directly may, in some cases, offer a numerical advantage.

5.1 Introduction

Let us start the discussion by modeling a human body riding in a car.
Some people with weak muscles in their neck region suffer from a so–called
cervical syndrome [5.8]. When riding in a car for extended periods of time,
they suffer awful headache attacks, because their head vibrates (oscillates)
with the vibrations of the car on the road, since their head is not attached
stiffly enough to the shoulders.

Since the passengers in a car are seated, their legs can be eliminated from
the model, as they won’t affect the motion of the neck at all. The body can
be modeled in a first approximation as a mechanical system. A very simple
mechanical model of a sitting human body is depicted in Fig.5.1.

The model is decomposed into four masses that can move separately
from each other, representing the head, the upper torso, the two arms, and
the lower body. Due to linearity, the two arms can be treated as a single
mass. The connections between the four masses are modeled as damped
springs. The bumping of the road is modeled by a time–dependent force
attached to the lower body. To be determined is the distance between head
and shoulders as a function of the driving force.

Only vertical motions are to be considered. Hence each mass represents
a single mechanical degree of freedom. The overall model is obtained by
applying Newton’s law to each of the four masses separately:

M1 · ẍ1 = k1 · (x2 − x1) + B1 · (ẋ2 − ẋ1) (5.1)

166 Chapter 5. Second Derivative Systems

k = 8 kg sec 2
-2

f

F

k = 0.3 kg sec 1
-2 B = 0.8 kg sec 1

-1

B = 10 kg sec 2
-1

k = 3
3 kg sec -2

B = 12 kg sec 3
-1

Head

M = 1.2 kg1

Upper Torso

M = 14 kg2

Arms

M = 3.2 kg3

Lower Body

M = 24 kg4

x 2

x 1

x 3

x 4

FIGURE 5.1. Mechanical model of a sitting human body.

M2 · ẍ2 = k2 · (x3 − x2) + B2 · (ẋ3 − ẋ2) + k3 · (x4 − x2)
+B3 · (ẋ4 − ẋ2) − k1 · (x2 − x1) − B1 · (ẋ2 − ẋ1) (5.2)

M3 · ẍ3 = −k2 · (x3 − x2) − B2 · (ẋ3 − ẋ2) (5.3)
M4 · ẍ4 = F − k3 · (x4 − x2) − B3 · (ẋ4 − ẋ2) (5.4)

Let:

x =

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ (5.5)

be the partial state vector consisting of the four mass positions. Using the
partial state vector, the model can be written in matrix/vector form as
follows:

M · ẍ + C · ẋ + K · x = f (5.6)

where:

M =

⎛
⎜⎜⎝

M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4

⎞
⎟⎟⎠ (5.7)

5.1 Introduction 167

is the mass matrix,

C =

⎛
⎜⎜⎝

B1 −B1 0 0
−B1 (B1 + B2 + B3) 0 0

0 −B2 B2 0
0 −B3 0 B3

⎞
⎟⎟⎠ (5.8)

is the damping matrix,

K =

⎛
⎜⎜⎝

k1 −k1 0 0
−k1 (k1 + k2 + k3) 0 0
0 −k2 k2 0
0 −k3 0 k3

⎞
⎟⎟⎠ (5.9)

is the stiffness matrix, and

f =

⎛
⎜⎜⎝

0
0
0
F

⎞
⎟⎟⎠ (5.10)

is the vector of (generalized) forces.
The mass matrix turned out to be a diagonal matrix in this example,

but this is only true, because no rotational motions were considered in the
given example. Generally, this will not be the case.

Assuming that the mass matrix is non–singular, i.e., there are as many
mechanical degrees of freedom in the system as were formulated into second–
order differential equations, i.e., there are no structural singularities in the
model [5.3], the model can be solved for the highest derivatives:

ẍ = A2 · x + B · ẋ + u (5.11)

where:

A =
√
−M−1 · K (5.12)

B = −M−1 · C (5.13)
u = M−1 · f (5.14)

or, more generally, in a nonlinear case:

ẍ = f(x, ẋ,u, t) (5.15)

Of special interest is the case of the conservative, i.e., friction–less system
with the second–derivative form:

ẍ = A2 · x + u (5.16)

or, more generally:

168 Chapter 5. Second Derivative Systems

ẍ = f(x,u, t) (5.17)

and especially, we may want to look at the homogeneous, conservative,
linear system with the second–derivative model:

ẍ = A2 · x (5.18)

5.2 Conversion of Second–derivative Models to
State–space Form

It is always possible to convert a second–derivative model to state–space
form. To this end, we introduce the velocity vector, v:

ẋ = v (5.19)
v̇ = ẍ = A2 · x + B · v + u (5.20)

We introduce the state vector:

ξ =
(
x
v

)
(5.21)

which leads us to the state–space form:

ξ̇ =
(
Z(n) I(n)

A2 B

)
· ξ +

(
0(n)

u

)
(5.22)

where Z(n) is a zero matrix of dimensions n× n, I(n) is an identity matrix
of dimensions n × n, and 0(n) is a zero vector of length n.

After the conversion, the state–space model can be simulated using any
of the integration algorithms introduced in the previous chapters of this
book.

Unfortunately, the resulting state vector is of length 2 · n, which makes
simulation methods (integration algorithms) that can deal with the second–
derivative model directly potentially interesting.

We might conclude at this point in time that direct methods should be
of particular interest for the simulation of conservative systems, as those
systems do not require computing the velocity vector at all, i.e., half of the
state variables can simply be thrown away.

5.3 Velocity–free Models

We shall define a velocity–free model as one that satisfies, in the linear
case, the differential vector equation:

5.3 Velocity–free Models 169

ẍ = A2 · x + u (5.23)

and, in the nonlinear case, the differential vector equation:

ẍ = f(x,u, t) (5.24)

Notice that every conservative system leads to a velocity–free second–
derivative model. Yet, not every velocity–free second–derivative model is
conservative. This can be recognized easily.

Given a linear, time–invariant, homogeneous state–space model of the
form:

ẋ = A · x (5.25)

Depending on the eigenvalues of A, the system is either damped or un-
damped, stable or unstable. We can differentiate the state–space model,
leading to:

ẍ = A · ẋ = A2 · x (5.26)

Thus, any linear, time–invariant, homogeneous state–space model can also
be written in the form of a velocity–free second–derivative model, irrespec-
tive of where its eigenvalues are located. Yet, a conservative linear system
has its eigenvalues spread up and down along the imaginary axis of the
complex plane.

How can the special structure of a velocity–free second–derivative model
be exploited by a simulation algorithm?

Let us start by developing the solution vector at time (t+h) into a Taylor
series around time t:

xk+1 = xk + h · ẋk +
h2

2
· ẍk +

h3

6
· xk

(iii) +
h4

24
· xk

(iv) + . . . (5.27)

We shall also need to develop the solution vector at time (t − h) into a
Taylor series around time t:

xk−1 = xk − h · ẋk +
h2

2
· ẍk − h3

6
· xk

(iii) +
h4

24
· xk

(iv) ∓ . . . (5.28)

Adding these two equations together, we obtain:

xk+1 + xk−1 = 2 · xk + h2 · ẍk +
h4

12
· xk

(iv) + . . . (5.29)

thus:

xk+1 = 2 · xk − xk−1 + h2 · ẍk + o(h4) (5.30)

170 Chapter 5. Second Derivative Systems

We just found a 3rd–order accurate explicit linear multi–step method
that makes use of the second derivative directly. In some references, the
method is referred to as Godunov’s method [5.2], in spite of the fact that
Sergei Konstantinovic Godunov, a famous Russian applied mathematician
of the middle of the 20th century, was much more interested in conservation
laws, i.e., in partial differential equations of the hyperbolic type, where he
used this technique to approximate spatial derivatives.

The second derivative can be plugged in from the homogeneous linear
second–derivative model of Eq.(5.18):

xk+1 ≈ 2 · xk − xk−1 + (A · h)2 · xk (5.31)

We find the F–matrix of the algorithm in the usual fashion. Let

ξk =
(
xk−1

xk

)
(5.32)

Then:

ξk+1 ≈ F · ξk (5.33)

where:

F =
(

Z(n) I(n)

−I(n)
[
2 · I(n) + (A · h)2

]) (5.34)

Consequently, we should be able to plot the stability domain of this algo-
rithm as a function of the eigenvalues of A ·h, exactly as we did in the case
of the algorithms presented in the previous two chapters. We shall attempt
to do so in due course.

5.4 Linear Velocity Models

We shall next look at the case of a possibly nonlinear second derivative
model with a linear velocity term, i.e., a model of the type:

ẍ + B · ẋ = f(x,u, t) (5.35)

We shall demonstrate that this problem can be reduced to the case of
the velocity–free model.

To this end, we apply the variable transformation:

ξ = exp
(

B · t
2

)
· x (5.36)

Therefore:

5.5 Nonlinear Velocity Models 171

x = exp
(−B · t

2

)
· ξ (5.37)

ẋ = −B
2

· exp
(−B · t

2

)
· ξ + exp

(−B · t
2

)
· ξ̇ (5.38)

ẍ =
B2

4
· exp

(−B · t
2

)
· ξ − B · exp

(−B · t
2

)
· ξ̇

+ exp
(−B · t

2

)
· ξ̈ (5.39)

We introduce the abbreviation:

E = exp
(−B · t

2

)
(5.40)

Thus:

x = E · ξ (5.41)

ẋ = −B
2

· E · ξ + E · ξ̇ (5.42)

ẍ =
B2

4
· E · ξ − B · E · ξ̇ + E · ξ̈ (5.43)

Plugging these expressions into the original second–derivative model, we
obtain:

ξ̈ = E−1 · B2

4
· E · ξ + E−1 · f(E · ξ,u, t) (5.44)

which has taken on the form of a velocity–free second–derivative model.

5.5 Nonlinear Velocity Models

If the second–derivative model assumes the general form:

ẍ = f(x, ẋ,u, t) (5.45)

the velocity vector ẋ needs to be computed as well. However, since we
have access to the second derivative, we can compute the velocity vector
using any one of the integration algorithms proposed in the previous two
chapters.

It seems reasonable to employ an explicit linear multi–step algorithm.
Furthermore, since the derivative vector always gets multiplied by the step

172 Chapter 5. Second Derivative Systems

size, h, it suffices to use a second–order accurate formula. A reasonable
choice might be AB2:

ẋk+1 = ẋk +
h

2
· (3 · ẍk − ẍk−1) (5.46)

For the computation of the stability domain, we are dealing with the
following set of three equations:

xk+1 = 2 · xk − xk−1 + h2 · v̇k (5.47)

vk+1 = vk +
h

2
· (3 · v̇k − v̇k−1) (5.48)

v̇k = A2 · xk + B · vk (5.49)

Plugging the linear second–derivative model of Eq.(5.49) into the two
integrator equations, Eq.(5.47) and Eq.(5.48), we obtain:

xk+1 = 2 · xk − xk−1 + (A · h)2 · xk + (B · h) · (h · vk) (5.50)

(h · vk+1) = (h · vk) +
3
2
· (A · h)2 · xk +

3
2
· (B · h) · (h · vk)

−1
2
· (A · h)2 · xk−1 − 1

2
· (B · h) · (h · vk−1) (5.51)

which can be rewritten in a matrix/vector form as follows:⎛
⎜⎜⎝

xk

h · vk

xk+1

h · vk+1

⎞
⎟⎟⎠ = F ·

⎛
⎜⎜⎝

xk−1

h · vk−1

xk

h · vk

⎞
⎟⎟⎠ (5.52)

where:

F =

⎛
⎜⎜⎜⎜⎝

Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) I(n)

−I(n) Z(n)
[
2 · I(n) + (A · h)2

]
B · h

− 1
2 · (A · h)2 − 1

2 · (B · h) 3
2 · (A · h)2

[
I(n) + 3

2 · (B · h)
]

⎞
⎟⎟⎟⎟⎠ (5.53)

5.6 Stability and Damping of Godunov Scheme

As with all other integration techniques, we shall now introduce a classi-
fication code for the Godunov scheme. Since the algorithm is explicit and
third–order accurate, we shall call this scheme GE3. We shall call the en-
hanced scheme, that also computes the velocity vector, GE3/AB2.

5.6 Stability and Damping of Godunov Scheme 173

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Linear Damping Plot of GE3

−σd

−D
a
m

p
in

g

FIGURE 5.2. Linear damping plot of GE3 algorithm.

Before we attempt drawing a stability domain of GE3, we shall draw the
linear damping plot. It is shown in Fig. 5.2.

How very disappointing! The scheme is unstable in the left half plane.
The result should not surprise us too much. Since the F–matrix of Eq.(5.34)
is an even function in A · h, the damping properties must be symmetric to
the imaginary axis. Thus there cannot exist an asymptotic region around
the origin, as we would expect of any well–behaved integration algorithm.

To gain a better understanding of the damping properties of the algo-
rithm, let us plot the damping order star.

−6 −4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

neg

neg

pos

pos

Damping Order Star of GE3

Re{λ · h}

I
m
{λ

·h
}

FIGURE 5.3. Damping order star of GE3 algorithm.

Interesting is the line segment stretching from −2j to +2j along the
imaginary axis. Evidently, there is zero damping along this line segment,
which is exactly, what it should be. To verify the results, let us plot the
linear damping properties once more, but this time along the imaginary
rather than the real axis.

174 Chapter 5. Second Derivative Systems

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

Linear Damping Properties of GE3

ωd

−D
a
m

p
in

g

FIGURE 5.4. Linear damping properties of GE3 along imaginary axis.

The GE3 algorithm is only useful for strictly conservative systems. In
order to obtain marginally stable results, the largest absolute eigenvalue
multiplied by the step size must be smaller than or equal to 2:

|λ|max · h ≤ 2 (5.54)

Let us now plot the linear frequency properties of GE3 along the imagi-
nary axis.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

Linear Frequency Plot of GE3

ωd

F
re

qu
en

cy

FIGURE 5.5. Linear frequency plot of GE3 algorithm.

The algorithm produces results that are decently accurate, if

|λ|max · h ≤ 1 (5.55)

Let us now discuss the stability and damping properties of the GE3/AB2
algorithm, which is characterized by the F–matrix of Eq.(5.53).

When plotting the stability domain, the elements of the B–matrix cannot
be chosen independently of those of the A–matrix. They must be chosen
such that the overall system has its eigenvalues located on the unit circle.
The procedure is explained in detail in Hw.[H5.3].

Since this is a third–order accurate linear explicit multi–step method
similar in scope to AB3, we decided to plot the stability domain of AB3 on
top of the stability domain of GE3/AB2.

GE3/AB2 performs similar to AB3 for systems with eigenvalues located
in the vicinity of the negative real axis, but it outperforms AB3 when

5.7 Explicit and Implicit Godunov Algorithms of Different Orders 175

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

GE3/AB2

AB3

Stability Domain of GE3/AB2

Re{λ · h}

I
m
{λ

·h
}

FIGURE 5.6. Stability domain of GE3/AB2 algorithm.

employed to simulating systems with their eigenvalues located close to the
imaginary axis.

5.7 Explicit and Implicit Godunov Algorithms of
Different Orders

Classes of both explicit and implicit integration algorithms of different or-
ders of approximation accuracy for second–derivative systems can be de-
rived using Newton–Gregory polynomials.

To this end, we shall develop x(t) into a Newton–Gregory backward
polynomial around tk+1. We then compute the second derivative of the
Newton–Gregory polynomial. Evaluating this second derivative polynomial
for s = −1, we obtain the class of explicit Godunov schemes. Evaluating
the second derivative polynomial for s = 0, we obtain the class of implicit
Godunov methods.

We shall denote the explicit Godunov scheme of order n as GEn, and the
implicit Godunov algorithm of the same order as GIn. The enhanced algo-
rithms, that also compute the velocity vector, are denoted as GEn/ABn−1

and GIn/BDFn−1, respectively.
Since the approach is very similar to those presented in Chapter 4 for

the derivation of the AB, AM, and BDF algorithms, we shall refrain from
repeating this derivation here once more. After all, some problems need to
remain to be dealt with in the homework section.

The resulting algorithms are summarized below:

176 Chapter 5. Second Derivative Systems

GE3 : xk+1 = 2 · xk − xk−1 + h2 · ẍk (5.56)

GE4 : xk+1 =
20
11

· xk − 6
11

· xk−1 − 4
11

· xk−2 +
1
11

· xk−3

+
12
11

· h2 · ẍk (5.57)

GE5 : xk+1 =
3
2
· xk +

2
5
· xk−1 − 7

5
· xk−2 +

3
5
· xk−3

− 1
10

· xk−4 +
6
5
· h2 · ẍk (5.58)

GI2 : xk+1 = 2 · xk − xk−1 + h2 · ẍk+1 (5.59)

GI3 : xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

1
2
· h2 · ẍk+1 (5.60)

GI4 : xk+1 =
104
35

· xk − 114
35

· xk−1 +
56
35

· xk−2 − 11
35

· xk−3

+
12
35

· h2 · ẍk+1 (5.61)

GI5 : xk+1 =
154
45

· xk − 214
45

· xk−1 +
52
15

· xk−2 − 61
45

· xk−3

+
2
9
· xk−4 +

12
45

· h2 · ẍk+1 (5.62)

The algorithms can be summarized using the following α– and β–matrices:

αGE =

⎛
⎜⎜⎜⎜⎜⎝

0
1
1
12
11
6
5

⎞
⎟⎟⎟⎟⎟⎠ ; βGE =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
2 −1 0 0 0
2 −1 0 0 0
20
11 − 6

11 − 4
11

1
11 0

3
2

2
5 − 7

5
3
5 − 1

10

⎞
⎟⎟⎟⎟⎟⎠ (5.63)

αGI =

⎛
⎜⎜⎜⎜⎜⎝

0
1
1
2
12
35
12
45

⎞
⎟⎟⎟⎟⎟⎠ ; βGI =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
2 −1 0 0 0
5
2 −2 1

2 0 0
104
35 − 114

35
56
35 − 11

35 0
154
45 − 214

45
52
15 − 61

45
2
9

⎞
⎟⎟⎟⎟⎟⎠ (5.64)

Unfortunately, all of these methods have F–matrices that are even func-
tions in A · h. Thus, none of these methods can be expected to offer an
asymptotic region for eigenvalues located along the real axis. In fact, all of
the above techniques are unstable everywhere in the vicinity of the origin,
with the exception of the imaginary axis itself, where they exhibit marginal
stability, as they should.

5.7 Explicit and Implicit Godunov Algorithms of Different Orders 177

Let us plot the damping properties of these algorithms up and down
along the imaginary axis. The damping properties of GE4 and GE5 are
shown in Fig. 5.7.

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Linear Damping Properties of GE4

Linear Damping Properties of GE5

ωd

−D
a
m

p
in

g
−D

a
m

p
in

g

FIGURE 5.7. Damping properties of GE4 and GE5 along the imaginary axis.

Both of these algorithms may be used. Unfortunately, all of the explicit
Godunov schemes, when used as stand–alone algorithms, are only applica-
ble to the simulation of linear conservation laws. Engineers will likely shrug
them off, because there aren’t many real–life engineering applications that
call for the simulation of linear conservation laws.

Yet, these algorithms may be perfectly suitable as part of blending algo-
rithms.

Let us now discuss the implicit Godunov schemes. Their damping prop-
erties along the imaginary axis are shown in Fig. 5.8.

−4 −3 −2 −1 0 1 2 3 4
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

GI2GI3

GI4

GI5

Linear Damping Properties of GI2 - GI5

ωd

−D
a
m

p
in

g

FIGURE 5.8. Damping properties of GI2 . . . GI5 along the imaginary axis.

All of these algorithms could be used as well for the simulation of linear
conservation laws, but there is no good reason, why we would ever want

178 Chapter 5. Second Derivative Systems

to do so. These algorithms have no advantages over their explicit brethren.
They are only less efficient.

Furthermore, there is something else wrong with these algorithms. To
understand, what that is, let us look at the damping order star of GI5.

−8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

neg

neg

pos

pos

negx x

Damping Order Star of GI5

Re{λ · h}

I
m
{λ

·h
}

FIGURE 5.9. Damping order star of GI5 algorithm.

The locus of correct damping approximates the imaginary axis, which
is nice. However, all of the algorithms of the GI class have a pole pair
symmetric to the imaginary axis. Thus, all of these algorithms have a pole
in the left half plane, which is something we should shun away from.

Let us now discuss the enhanced algorithms, i.e., the ones that also com-
pute the velocity vector. We begin with GE4/AB3, and compare this algo-
rithm with AB4.

Figure 5.10 compares the stability domains of the two algorithms.
Just as in the case of GE3/AB2, also GE4/AB3 will perform similarly

to AB4 in the case of systems with their eigenvalues located close to the
negative real axis, but the algorithm will outperform AB4 by leaps and
bounds when employed to simulating systems with their dominant eigen-
values located near the imaginary axis.

The GE5/AB4 algorithm is unfortunately unstable. Even GE5/ABM4
turns out to be unstable.

It makes sense to try enhancing the implicit Godunov schemes by com-
puting the velocity vector using a BDF formula of one order below that of
the Godunov scheme itself.

For example, the GI3/BDF2 algorithm may be written as:

5.8 The Newmark Algorithm 179

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

GE4/AB3

AB4

Stability Domain of GE4/AB3

Re{λ · h}

I
m
{λ

·h
}

FIGURE 5.10. Stability domain of GE4/AB3.

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (5.65)

h · ẋk+1 =
4 · h
3

· ẋk − h

3
· ẋk−1 +

2 · h2

3
· ẍk+1 (5.66)

Unfortunately, it didn’t work. Some of the resulting algorithms are indeed
A–stable. They have nice unstable regions in the right half complex λ · h
plane, but unfortunately, the damping is exactly equal to zero everywhere
else. None of these algorithms produces an asymptotic region everywhere
around the origin.

5.8 The Newmark Algorithm

An integration algorithm for the direct numerical solution of second deriva-
tive systems that has seen quite a bit of publicity in the mechanical engi-
neering literature is the integration algorithm by Newmark [5.7]. Although
the algorithm had originally been proposed for the solution of problems in
structural dynamics, such as the simulation of earthquakes, it can be used
for the simulation of other mechanical systems as well [5.1, 5.5].

The method can be described as follows:

xk+1 = xk + h · ẋk +
h2

2
· [(1 − ϑ1) · ẍk + ϑ1 · ẍk+1] (5.67)

h · ẋk+1 = h · ẋk + h2 · [(1 − ϑ2) · ẍk + ϑ2 · ẍk+1] (5.68)

180 Chapter 5. Second Derivative Systems

The method is clearly second–order accurate, as the solution for xk+1

approximates the Taylor–Series directly up to the quadratic term, whereas
the solution for ẋk+1 approximates the Taylor–Series up to the linear term.
Since the velocity vector gets always multiplied by the step size, h, the
overall method must be second–order accurate.

It is a ϑ–method with two fudge parameters, ϑ1 and ϑ2. For ϑ1 = ϑ2 = 0,
the method is explicit; for all other combinations of ϑ1 and ϑ2, the method
is implicit.

The Newmark algorithm is different from the implicit Godunov tech-
niques. The Godunov algorithms made it a point, not to make use of the
velocity vector in the computation of the position vector. This makes sense
in the special case of velocity–free second–derivative systems, but doesn’t
make much sense otherwise, i.e., the enhanced Godunov methods, that also
compute the velocity vector, added an unnecessary constraint on the de-
sign of the algorithm that we paid for bitterly, since we were fighting even
functions that prevented us from getting asymptotic regions around the
origin.

Let us plot the stability domains of the Newmark algorithm for ϑ1 =
ϑ2 = {0.0, 0.25, 0.5, 0.75, 1.0}.

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

0

0.25

0.5

0.75

1

Stability domains of Newmark algorithm

Re{λ · h}

I
m
{λ

·h
}

FIGURE 5.11. Stability domains of Newmark algorithm as a function of ϑ1 and
ϑ2.

These are interesting looking and quite unusual stability domains. The
algorithms are symmetric to ϑ1 = ϑ2 = 0.5. For ϑ1 = ϑ2 = 0, the algorithm
exhibits a stable region in the left half plane that looks like an ascending
half moon. The stable region is limited by Re{λ · h} ≥ −1.0. As ϑ1 and
ϑ2 increase their values, the half moon grows in size, and the stable region

5.8 The Newmark Algorithm 181

extends further to the left. For ϑ1 = ϑ2 = 0.25, the region is limited by
Re{λ · h} ≥ −2.0. As ϑ1 and ϑ2 approach values of 0.5, the entire left half
plane is covered by the stable region. For ϑ1 = ϑ2 = 0.5, the resulting
algorithm is F–stable. At ϑ1 = ϑ2 = 0.5, the stable region wraps around
infinity. For ϑ1 = ϑ2 = 0.75, the entire left half plane is stable, but also the
region limited by Re{λ · h} ≥ 2.0.

¿From a practical perspective, the algorithms with ϑ1 = ϑ2 ∈ (0, 0.5)
are probably not of much interest. ϑ1 = ϑ2 = 0 could be interesting, as
this is an explicit algorithm. Also the algorithms with ϑ1 = ϑ2 ≥ 0.5 are of
interest, since they are all A–stable.

Let us look at some damping plots. Figure 5.12 shows the linear and
logarithmic damping plots of the F–stable Newmark algorithm for ϑ1 =
ϑ2 = 0.5.

−3 −2.5 −2 −1.5 −1 −0.5 0
−6

−5

−4

−3

−2

−1

0

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−5

−4

−3

−2

−1

0

Damping Plot of Newmark Algorithm

ϑ1 = ϑ2 = 0.5

Logarithmic Damping Plot of Newmark

−σd

−σd

−D
a
m

p
in

g
−D

a
m

p
in

g

FIGURE 5.12. Damping plot of Newmark algorithm with ϑ1 = ϑ2 = 0.5.

As was to be expected, the damping is zero everywhere at infinity, and
in fact, the damping assumes very small values in large portions of the left
half plane, which could potentially become a problem when dealing with
stiff systems.

Let us check, whether the Newmark algorithms with larger ϑ–values fare
any better. Figure 5.13 shows the damping plots of the A–stable Newmark
algorithm for ϑ1 = ϑ2 = 0.75.

It did not help. The damping still approaches zero at infinity. We should
have been able to predict this result from the stability domain alone. Since
the border of stability reaches all the way to infinity at some place, the
numerical scheme must exhibit marginal stability at infinity, irrespective
of how infinity is being approached.

Furthermore, the algorithm with ϑ1 = ϑ2 = 0.75 exhibits a much smaller

182 Chapter 5. Second Derivative Systems

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2.5

−2

−1.5

−1

−0.5

0

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Damping Plot of Newmark Algorithm

ϑ1 = ϑ2 = 0.75

Logarithmic Damping Plot of Newmark

−σd

−σd

−D
a
m

p
in

g
−D

a
m

p
in

g

FIGURE 5.13. Damping plot of Newmark algorithm with ϑ1 = ϑ2 = 0.75.

asymptotic region. Whereas Fig.5.12 showed an asymptotic region of ap-
proximately 0.7, Fig.5.13 shows an asymptotic region of approximately 0.2.
This result is disappointing.

We shall refrain from plotting more damping plots. The damping plots
for ϑ1 = ϑ2 = 1.0 don’t look any more promising. Hence the Newmark
family of algorithms is better suited for the simulation of systems exhibiting
oscillatory behavior, such as earthquakes or elastic systems, than for the
simulation of stiff problems.

5.9 Summary

In this chapter, we have looked at new classes of simulation algorithms
that can deal with second derivative systems directly, i.e., without first
converting them to state–space form.

Our original goal had been to design algorithms for velocity–free prob-
lems that would avoid the seemingly unnecessary computation of the ve-
locity vector altogether. To this end, we developed two families of algo-
rithms, the explicit and implicit Godunov schemes, using our old friends,
the Newton–Gregory polynomials.

Unfortunately, this approach was unsuccessful. None of the resulting al-
gorithms possess any asymptotic regions around their origins, as the F–
matrices associated with these algorithms are even functions of A ·h. Con-
sequently, these algorithms, when used in a stand–alone mode, can only be
employed for the simulation of linear conservation laws, a result that is not
overly exciting.

5.10 References 183

We then enhanced these algorithms to make them suitable for the simula-
tion of systems with damping, and found two explicit algorithms, GE3/AB2
and GE4/AB3, that can be considered serious contenders of AB3 and AB4
for the simulation of mechanical systems with strong oscillatory behavior.
This is certainly a nice, albeit still not a truly exciting, result.

We then analyzed an algorithm that has seen quite a bit of publicity in
the mechanical engineering literature: the algorithm by Newmark, an algo-
rithm that is still being used quite frequently for the simulation of mechani-
cal systems exhibiting oscillatory behavior. Unfortunately, the algorithm is
only second–order accurate, which makes it unsuitable for general purpose
simulation, as most engineering applications call for third and fourth–order
accurate integration algorithms, in order to be simulated efficiently.

The Newmark family of algorithms can be, and have often been, used in
real–time applications, because most real–time applications call for small
step sizes to track external input signals, and therefore, are often simulated
using low–order integration algorithms. Since real–time applications cannot
deal with implicit algorithms very well, we should probably use the linearly–
implicit variant of the Newmark algorithm in those cases. We shall deal
intensively and extensively with real–time simulation in Chapter 10 of this
book.

. . . And here comes the most exciting aspect of this chapter. Nathan New-
mark, in 1959, accomplished for second derivative systems, what Leonhard
Euler accomplished for first derivative systems (i.e., state–space models)
in 1768 [5.4], and yet, researchers still write articles about this algorithm
today, and the algorithm is still being employed frequently in engineering
applications.

In the previous two chapters, we had to work very hard to make a mark.
The field of numerical ODE solvers for state–space models is a very mature
research topic, and consequently, it is difficult to come up with something
new that no–one else has thought about before.

In contrast, the field of numerical ODE solvers for second derivative
systems is still in its infancy, largely ignored by the community of applied
mathematicians so far, and is therefore a fruitful research area for young
and aspiring researchers of numerical methods.

5.10 References

[5.1] Klaus-Jürgen Bathe. Finite Element Procedures in Engineering Anal-
ysis. Prentice–Hall, 1982.

[5.2] Christopher Paul Beamis. Solution of Second Order Differential Equa-
tions Using the Godunov Integration Method. Master’s thesis, Dept.
of Electrical & Computer Engineering, University of Arizona, Tucson,
Ariz., 1990.

184 Chapter 5. Second Derivative Systems

[5.3] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[5.4] Leonhard Euler. De integratione æquationum differentialium per ap-
proximationem. In Opera Omnia, volume 11 of first series, pages 424–
434. Institutiones Calculi Integralis, Teubner Verlag, Leipzig, Germany,
1913.

[5.5] Javier Garcia de Jalón and Eduardo Bayo. Kinematic and Dynamic
Simulation of Multibody Systems –The Real–Time Challenge–. Wiley,
1994.

[5.6] John C. Houbolt. A Recurrence Matrix Solution for the Dynamic
Response of Elastic Aircraft. Journal of Aeronautical Science, 17:540–
550, 1950.

[5.7] Nathan M. Newmark. A Method of Computation for Structural Dy-
namics. ASCE Journal of the Engineering Mechanics Division, pages
67–94, 1959.

[5.8] Raymond T. Stefani, Clement J. Savant Jr., Bahram Shahian, and
Gene H. Hostetter. Design of Feedback Control Systems. Saunders
College Publishing, Orlando, Florida, 1994. 819p.

[5.9] Edward L. Wilson. A Computer Program for the Dynamic Stress
Analysis of Underground Structures. Technical Report SESM Report,
68-1, University of California, Berkeley, Division of Structural Engi-
neering and Structural Mechanics, 1968.

5.11 Bibliography

[B5.1] Edda Eich-Söllner and Claus Führer. Numerical Methods in Multi-
body Dynamics. Teubner–Verlag, Stuttgart, Germany, 1998.

[B5.2] Michel Géradin and Alberto Gardona. Flexible Multibody Dynam-
ics: A Finite Element Approach. John Wiley & Sons, Chichester, New
York, 2001.

[B5.3] Parviz E. Nikravesh. Computer–aided Analysis of Mechanical Sys-
tems. Prentice Hall, Englewood Cliffs, New Jersey, 1988. 370p.

5.12 Homework Problems

[H5.1] Explicit Godunov Algorithms

We wish to generate the class of GE algorithms introduced in this chapter.
These linear multi–step algorithms compute xk+1 as a function of previous

5.12 Homework Problems 185

values of x and of ẍk.
Develop x(t) into a Newton–Gregory backward polynomial around the

time instant tk+1. Compute the second derivative:

ẍ(t) =
1
h2

· f(s) (H5.1a)

Evaluate this expression for s = −1. Truncating this expression after
the quadratic ∇2 term, you obtain a second–order accurate formula for ẍk,
which can be solved for xk+1. Truncating after the cubic ∇3 term, you
obtain a third–order accurate formula, etc.

There is no first–order accurate GE scheme. From (H5.1a), one can rec-
ognize by inspection that the second–order accurate GE2 scheme is already
third–order accurate. Explain.

[H5.2] Implicit Godunov Algorithms

We wish to generate the class of GI algorithms introduced in this chapter.
These linear multi–step algorithms compute xk+1 as a function of previous
values of x and of ẍk+1.

Develop x(t) into a Newton–Gregory backward polynomial around the
time instant tk+1. Compute the second derivative:

ẍ(t) =
1
h2

· f(s) (H5.2a)

Evaluate this expression for s = 0. Truncating this expression after the
quadratic ∇2 term, you obtain a second–order accurate formula for ẍk+1,
which can be solved for xk+1. Truncating after the cubic ∇3 term, you
obtain a third–order accurate formula, etc.

[H5.3] Stability Domain of GE4/AB3

The method introduced in earlier chapters for drawing stability domains
was geared towards linear time–invariant homogeneous multi–variable state–
space models:

ẋ = A · x (H5.3a)

We generated real–valued A–matrices ∈ R
2×2 with their eigenvalues lo-

cated on the unit circle, at an angle α away from the negative real axis.
We then computed the F–matrix corresponding to that A–matrix for the
given algorithm, and found the largest value of the step size h, for which
all eigenvalues of F remained inside the unit circle. This gave us one point
on the stability domain. We repeated this procedure for all suitable values
of the angle α.

The algorithm needs to be modified for dealing with second derivative
systems described by the linear time–invariant homogeneous multi–variable
second–derivative model:

186 Chapter 5. Second Derivative Systems

ẍ = A2 · x + B · ẋ (H5.3b)

We need to find real–valued A– and B–matrices such that the model of
(H5.3b) has its eigenvalues located on the unit circle.

This can be accomplished using the scalar model:

ẍ = a2 · x + b · ẋ (H5.3c)

where:

a =
√

a21 (H5.3d)
b = a22 (H5.3e)

of the formerly used A–matrix.
Write the GE4/AB3 algorithm as follows:

xk+1 =
20
11

· xk − 6
11

· xk−1 − 4
11

· xk−2 +
1
11

· xk−3

+
12 · h2

11
· ẍk (H5.3f)

h · ẋk+1 = h · ẋk +
23 · h2

12
· ẍk − 4 · h2

3
· ẍk−1

+
5 · h2

12
· ẍk−2 (H5.3g)

ẍ = a2 · x + b · ẋ (H5.3h)

Substitute Eq.(H5.3h) into Eq.(H5.3f) and Eq.(H5.3g), and rewrite the re-
sulting equations in a state–space form:

ξk+1 = F · ξk (H5.3i)

whereby the state vector ξ is chosen as:

ξk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk−3

h · ẋk−3

xk−2

h · ẋk−2

xk−1

h · ẋk−1

xk

h · ẋk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(H5.3j)

The F–matrix turns out to be a function of (a · h)2 and of b · h.
The remainder of the algorithm remains the same as before. Draw the

stability domain of GE4/AB3 using this approach.

5.12 Homework Problems 187

[H5.4] Stability Domain of GI3/BDF2

We want to draw the stability domain of GI3/BDF2. However, we shall use
a different approach from that advocated in Hw.[H5.3], an approach that
is a bit slower in execution, but more general.

We start by writing the algorithm as follows:

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (H5.4a)

h · ẋk+1 =
4 · h
3

· ẋk − h

3
· ẋk−1 +

2 · h2

3
· ẍk+1 (H5.4b)

ẍ = a2 · x + b · ẋ (H5.4c)

We substitute Eq.(H5.4c) into Eq.(H5.4a) and Eq.(H5.4b), and rewrite the
resulting equations in a state–space form:

ξk+1 = F · ξk (H5.4d)

whereby the state vector ξ is chosen as:

ξk =

⎛
⎜⎜⎜⎜⎜⎜⎝

xk−2

h · ẋk−2

xk−1

h · ẋk−1

xk

h · ẋk

⎞
⎟⎟⎟⎟⎟⎟⎠

(H5.4e)

The F–matrix turns out to be a function of (a · h)2 and of b · h.
We choose a and b such that the two eigenvalues of the second–order

differential equation are located in the position:

λ1,2 = σ ± j · ω (H5.4f)

We perform a double loop over σ and ω to cover an entire area of the
complex plane with eigenvalue locations.

For each eigenvalue location, we compute the corresponding values of α
and h, compute the corresponding F–matrix, and determine the discrete
damping value using the equation:

damp = − log(max(abs(eig(F)))) (H5.4g)

The damping value can be interpreted as a real-valued function of the
complex–valued argument σ + j · ω.

Use MATLAB’s contour plot to draw the locus of all points of zero
damping. This will be the stability domain of the method.

Interpret the results that you get.

188 Chapter 5. Second Derivative Systems

[H5.5] Cervical Syndrome

Given the model of a sitting human body presented in Fig. 5.1. We exert
this model by a sinusoidal force of 1.5 Hz. Simulate this model during
10 seconds, once using the GE4/AB3 algorithm, and once using the AB4
algorithm. Choose a fixed step size of h = 0.1 seconds.

Determine, which of the two algorithms is faster, i.e., requires a smaller
number of floating point operations.

Assume that MATLAB’s solution using the ODE45 algorithm of variable
step size with a relative tolerance of 0.0001 is accurate, and compare the two
solutions of your own simulation algorithms against MATLAB’s solution.
Determine, which of the algorithms produced more accurate results.

5.13 Projects

[P5.1] Houbolt’s Integration Algorithm

John Houbolt proposed already in 1950 a second–derivative integration
algorithm [5.6] that is very similar to the GI3/BDF2 method introduced
in this chapter. Houbolt’s algorithm can be written as follows:

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (P5.1a)

h · ẋk+1 =
11
6

· xk+1 − 3 · xk +
3
2
· xk−1 − 1

3
· xk−2 (P5.1b)

The second derivative formula of Houbolt’s algorithm can immediately be
identified as GI3. The formula used for the velocity vector is BDF3; how-
ever, the formula was used differently from the way, it had been employed
by us in the description of the GI3/BDF2 algorithm. Clearly, the Houbolt
algorithm is third–order accurate.

Although it would have sufficed to use BDF2 for the velocity vector,
nothing would have been gained computationally by choosing the reduced–
order algorithm.

We can transform the Houbolt algorithm to the form that we meanwhile
got used to by substituting Eq.(P5.1a) into Eq.(P5.1b). The so rewritten
Houbolt algorithm assumes the form:

xk+1 =
5
2
· xk − 2 · xk−1 +

1
2
· xk−2 +

h2

2
· ẍk+1 (P5.1c)

h · ẋk+1 =
19
12

· xk − 13
6

· xk−1 +
7
12

· xk−2

+
11 · h2

12
· ẍk+1 (P5.1d)

5.14 Research 189

Find the stability domain and damping plot of Houbolt’s algorithm, and
discuss the properties of this algorithm in the same way, as Nemark’s al-
gorithm was discussed in this chapter.

Repeat the analysis, replacing the BDF3 formula by the BDF2 formula.
Analyze whether stable GI4/BDF3 and/or GI4/BDF4 algorithms can be

constructed in the same fashion.

[P5.2] Wilson’s Integration Algorithm

In 1968, Wilson proposed yet another second–derivative integration algo-
rithm [5.9] that is quite similar to Newmark’s method. A clean derivation
of Wilson’s algorithm can be found in Bathe [5.1].

The algorithm can be converted easily to the form that we embraced in
this chapter:

xk+1 = xk + h · ẋk +
h2

6
· ẍk+1 +

h2

3
· ẍk (P5.2a)

h · ẋk+1 = h · ẋk +
h2

2
· ẍk+1 +

h2

2
· ẍk (P5.2b)

Clearly, Eq.(P5.2a) is second–order accurate in xk, whereas Eq.(P5.2b)
is first–order accurate in ẋk. Hence the overall algorithm is second–order
accurate.

Find the stability domain and damping plot of Wilson’s algorithm, and
discuss the properties of this algorithm in the same way, as Nemark’s al-
gorithm was discussed in this chapter.

Compare Wilson’s and Newmark’s algorithms with each other. Which of
them would you use when and why?

5.14 Research

[R5.1] Second–derivative Runge–Kutta Algorithms

When designing explicit Runge–Kutta algorithms, we started out with a
partial step of Euler, used the result obtained by that stage as a predictor,
and added another stage as a corrector, in which we blended the solutions
of the two stages. We continued in the same way to more and more stages,
trying to approximate the Taylor–series expansion to increasingly higher
orders. Contrary to the multi–step methods, we were able to determine also
the nonlinear order of approximation accuracy in the case of the Runge–
Kutta algorithms.

It must be possible to generalize the Runge–Kutta algorithms to second–
derivative form. To this end, we postulate a first partial step using the
algorithm:

190 Chapter 5. Second Derivative Systems

xP1(t + α1 · h) = xk + α1 · h · ẋk +
(α1 · h)2

2
· ẍk (R5.1a)

We then proceed to building corrector stages in the same fashion, as we
did in the case of the regular RK algorithms.

Whereas we left the first derivative alone in the case of the RK algo-
rithms, and only expanded second and higher–order derivatives into Taylor
series, we now must leave the first and second derivatives alone, and only
develop third and higher–order derivatives into Taylor series.

We shall use a regular RK algorithm of one order lower than the second–
derivative algorithm to compute the velocity vector. We use the freedom
in the design of such algorithms to ensure that the individual stages of
the second–derivative algorithm for computing the position vector and the
first–derivative algorithm for computing the velocity vector are evaluated
at the same instants of simulated time, i.e.:

αi(2nd derivative algorithm) = αi(1st derivative algorithm) (R5.1b)

Clearly, there don’t exist first–order accurate generalized RK algorithms,
and the second–order accurate generalized explicit RK algorithm, GERK2,
can be written as follows:

xk+1 = xk + h · ẋk +
h2

2
· ẍk (R5.1c)

h · ẋk+1 = h · ẋk + h2 · ẍk (R5.1d)

which is identical to the Newmark algorithm with ϑ1 = ϑ2 = 0.0.
It should be possible to develop second–derivative (generalized) explicit

Runge–Kutta algorithms of any order, and we would expect that these
algorithms should outperform their regular RK cousins when dealing with
nonlinear mechanical systems that exhibit highly oscillatory behavior.

6

Partial Differential Equations

Preview

In this chapter, we shall deal with method–of–lines solutions to models
that are described by individual partial differential equations, by sets of
coupled partial differential equations, or possibly by sets of mixed partial
and ordinary differential equations.

Emphasis will be placed on the process of converting partial differential
equations to equivalent sets of ordinary differential equations, and particu-
lar attention will be devoted to the problem of converting boundary condi-
tions. To this end, we shall again consult our –meanwhile well–understood–
Newton–Gregory polynomials.

We shall then spend some time analyzing the particular difficulties that
await us when numerically solving the sets of resulting differential equations
in the cases of parabolic, hyperbolic, and elliptic partial differential equa-
tions. It turns out that each class of partial differential equations exhibits
its own particular and peculiar types of difficulties.

6.1 Introduction

Partial differential equation (PDE) modeling and simulation are certainly
among the more difficult topics to deal with. PDE modeling is still in its
infancy. You hardly ever encounter models of coupled PDEs that contain
more than three or four PDEs at a time. This situation is comparable with
ordinary differential equation (ODE) modeling some 30 years ago. At that
time, researchers were content to analyze simple ODE models consisting of
three or four coupled ODEs. No special software tools were needed to help
the modeler organize his or her models. The modeling process was utterly
trivial. What was difficult was the process of converting these ODEs to a
form such that a numerical differential equation solver could tackle them,
and then the process of simulation itself.

This way of looking at simulation still prevails in large portions of the
simulation literature. However, reality of ODE modeling has changed dras-
tically over the years. Today, continuous system modelers frequently deal
with models containing hundreds or even thousands of coupled differential
and algebraic equations, and the process of first deriving and then main-
taining these ODE models has become the truly difficult part.

This was the focus point of the companion book to this text Continuous

192 Chapter 6. Partial Differential Equations

System Modeling [6.5]. In that book, PDEs weren’t mentioned with even
one word. The reason for this is obvious. No special software tools or model-
ing methodologies are needed yet to derive or maintain PDE models, since
PDE models are still very simple. You don’t encounter models containing
hundreds or even only tens of PDEs. It just isn’t done. If you end up with
three or four coupled PDEs, this is a lot. So, from a modeling perspective,
PDE modeling is still a fairly trivial undertaking.

On the other hand, the numerical solution of PDE models is by no means
trivial. Whereas we have learnt meanwhile pretty well how to numerically
handle large classes of ODE models, the numerical solution of PDE models
still presents a challenge.

Many different approaches to simulating PDE models have been de-
scribed in the literature, partly purely numerical, such as the finite ele-
ment methods used mostly to tackle elliptic PDE problems, and partly
semi–analytical, such as the method–of–characteristics approach to solving
hyperbolic systems of equations. It is not the aim of this chapter at all to
duplicate or compete with that literature.

Among all the techniques that are known for tackling PDE models, only
one specific technique shall be dealt with in this book, namely the method–
of–lines (MOL) approach to numerically solving PDE models. The MOL
methodology converts PDEs into (large) sets of (in some way equivalent)
ODEs that are then solved by standard ODE solvers. Since this book deals
explicitly and extensively with ODE solvers, the MOL approach to PDE
solving fits well within the overall framework of this book methodologically.
This is the only reason why this text focuses on MOL solutions. It is not
our intention to convey the impression that MOL solutions are, in each
and every case, the most suitable way of dealing with PDE problems. PDE
problems are notoriously difficult to tackle, and the MOL approach is only
one, among many, techniques that can provide a partial answer to these
challenges.

6.2 The Method of Lines

The Method of Lines (MOL) is a technique that enables us to convert par-
tial differential equations (PDEs) into sets of ordinary differential equations
(ODEs) that, in some sense, are equivalent to the former PDEs.

The basic idea behind the MOL methodology is straightforward. Let us
look at the simple heat equation or diffusion equation in a single space
variable:

∂u

∂t
= σ · ∂2u

∂x2
(6.1)

Rather than looking at the solution u(x, t) everywhere in the two–dimensional
space spanned by the spatial variable x and the temporal variable t, we can

6.2 The Method of Lines 193

discretize the spatial variable, and look at the solutions ui(t) where the in-
dex i denotes a particular point xi in space. To this end, we replace the
second–order partial derivative of u with respect to x by a finite difference,
such as:

∂2u

∂x2

∣∣∣∣
x=xi

≈ ui+1 − 2ui + ui−1

δx2
(6.2)

where δx is the (here equidistantly chosen) distance between two neigh-
boring discretization points in space, i.e., the so–called grid width of the
discretization.

Plugging Eq.(6.2) into Eq.(6.1), we find:

dui

dt
≈ σ · ui+1 − 2ui + ui−1

δx2
(6.3)

and we have already converted the former PDE in u into a set of ODEs in
ui.

The principal idea behind the MOL methodology is thus utterly trivial.
However, the devil is in the detail.

It is reasonable to use the same order of approximation accuracy for
the discretization in space as for the discretization in time achieved by the
numerical integration algorithm. Thus, if we plan to integrate the set of
ODEs with a fourth–order method, we should better find a discretization
formula for ∂2u/∂x2 that is also fourth–order accurate.

This can be accomplished by use of our old friends, the Newton–Gregory
polynomials. A fourth–order polynomial needs to be fitted through five
points. Since we prefer central differences over biased differences, we fit the
polynomial through the five points xi−2, xi−1, xi, xi+1, and xi+2. Using
Newton–Gregory backward polynomials, we will have to write the polyno-
mial around the point that is located most to the right, in our case, the
point xi+2. Thus, we write:

u(x) = ui+2 + s∇ui+2 +
(

s2

2
+

s

2

)
∇2ui+2 +

(
s3

6
+

s2

2
+

s

3

)
∇3ui+2 + . . .

(6.4)
Notice that we write the approximation polynomial as u(x) rather than as
u(t), since we want to discretize along the spatial axis.

Consequently, the second derivative can be written as:

∂2u

∂x2
=

1
δx2

[
∇2ui+2 + (s + 1)∇3ui+2 +

(
s2

2
+

3s

2
+

11
12

)
∇4ui+2 + . . .

]
(6.5)

Eq.(6.5) needs to be evaluated at x = xi, corresponding to s = −2. Trun-
cating after the quartic term and expanding the ∇–operators, we find:

194 Chapter 6. Partial Differential Equations

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1
12δx2

(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2) (6.6)

which is the fourth–order central difference approximation to the second
partial derivative of u(x, t) with respect to x evaluated at x = xi.

We could have obtained the same result using the Newton–Gregory for-
ward polynomial written around the point xi−2, evaluating it for s = +2.

Had we decided that we wish to integrate with a second–order algo-
rithm, we would have developed the Newton–Gregory backward polyno-
mial around the point xi+1, truncating Eq.(6.5) after the quadratic term,
and evaluating for s = −1. This would have led to:

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1
δx2

(ui+1 − 2ui + ui−1) (6.7)

which is the second–order central difference formula for ∂2u/∂x2, the one
that had been used in Eq.(6.2).

The third–order case is again a little different. For geometric reasons, it
is obviously impossible to fit a central difference approximation of an odd
order around xi using only xi and its nearest three neighbors. Thus, we
can choose between a biased formula using the points xi−2 up to xi+1, i.e.,
develop the Newton–Gregory backward polynomial around the point xi+1

and evaluate it for s = −1, and another biased formula using the points
xi−1 up to xi+2, i.e., develop the Newton–Gregory backward polynomial
around the point xi+2 and evaluate it for s = −2.

It turns out that both cases lead to exactly the same formula, namely
Eq.(6.7). Just by accident, a lot of terms drop out, and Eq.(6.7) turns out
to be third–order accurate.

Looking more deeply into the matter, we find that the “lucky accident”
is no accident at all, but has to do with the symmetry conditions. Every
central difference approximation is one order more accurate than the num-
ber of points fitted by it would make us believe. Consequently, Eq.(6.6) is
in fact fifth–order accurate.

The next difficulty arises as we approach the spatial domain boundary.
Let us assume the heat equation applies to the temperature distribution
along a rod of length � = 1 m. Let us assume we cut the rod into segments of
a length of δ� = 10 cm. Thus, we get 10 segments. If the left end of the rod
corresponds to index i = 1, the right end corresponds to index i = 11. Let
us further assume that we wish to integrate using a fourth–order algorithm.
Thus, we shall apply Eq.(6.6) to the points x3 up to x9. However, for the
remaining points, we need biased formulae, since we cannot use points
outside the range where the solution u(x, t) is defined.

In order to find a biased formula for x2, we shall have to write the
Newton–Gregory backward polynomial around the point u5 and evaluate

6.2 The Method of Lines 195

for s = −3, or alternatively, we can write a Newton–Gregory forward poly-
nomial around the point u1 and evaluate for s = +1. In order to find a bi-
ased formula for x1, we shall have to write the Newton–Gregory backward
polynomial around the point u5 and evaluate for s = −4, or alternatively,
we can write a Newton–Gregory forward polynomial around the point u1

and evaluate for s = 0. Similarly for the points x10 and x11.
Using the above example, we obtain the following biased approximation

formulae:

∂2u

∂x2

∣∣∣∣
x=x1

=
1

12δx2
(11u5 − 56u4 + 114u3 − 104u2 + 35u1) (6.8a)

∂2u

∂x2

∣∣∣∣
x=x2

=
1

12δx2
(−u5 + 4u4 + 6u3 − 20u2 + 11u1) (6.8b)

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(11u11 − 20u10 + 6u9 + 4u8 − u7) (6.8c)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(35u11 − 104u10 + 114u9 − 56u8 + 11u7) (6.8d)

In the MOL methodology, all derivatives w.r.t. spatial variables are dis-
cretized using either central or biased difference approximations, whereas
derivatives w.r.t. the temporal variable are left unchanged. In this way,
PDEs are converted into sets of ODEs that can, at least in theory, be
solved just like any other ODE models by means of standard ODE solvers.

Next, we need to discuss what is to be done with the boundary con-
ditions. Every PDE has beside from initial conditions in time boundary
conditions in space. For example, the heat equation may have the two
boundary conditions:

u(x = 0.0, t) = 100.0 (6.9a)
∂u

∂x
(x = 1.0, t) = 0.0 (6.9b)

The boundary condition of Eq.(6.9a) is called boundary value condition.
This is the simplest case. All we need to do is to eliminate the differential
equation for u1(t), and replace it by an algebraic equation, in our case:

u1 = 100.0 (6.10)

The boundary condition of Eq.(6.9b) is also a special case. It is called a
boundary symmetry condition. It is handled in the following way. Imagine
that there is a mirror at x = 1.0. This mirror maps the solution u(x, t)
into the range x ∈ [1.0, 2.0], such that u(2.0 − x, t) = u(x, t). Obviously,
the boundary condition at x = 2.0 is the same as that at x = 0.0. There

196 Chapter 6. Partial Differential Equations

is then no need at all to specify any boundary condition at x = 1.0, since,
through symmetry, the desired boundary symmetry condition will be sat-
isfied. Knowing this, we can replace Eqs.(6.8c–d) by:

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(−u12 + 16u11 − 30u10 + 16u9 − u8) (6.11a)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(−u13 + 16u12 − 30u11 + 16u10 − u9) (6.11b)

i.e., by central difference approximations. However, since (due to symmetry)
u12 = u10 and u13 = u9, we can rewrite Eqs.(6.11a–b) as:

∂2u

∂x2

∣∣∣∣
x=x10

=
1

12δx2
(16u11 − 31u10 + 16u9 − u8) (6.12a)

∂2u

∂x2

∣∣∣∣
x=x11

=
1

12δx2
(−30u11 + 32u10 − 2u9) (6.12b)

and having done this, we can happily forget our virtual mirror again. We
don’t need to bother to actually compute a solution for the range x ∈
[1.0, 2.0], since we already know the solution . . . it is the mirror image of
the solution in the range x ∈ [0.0, 1.0].

A third type of special boundary conditions is the so–called temporal
boundary condition of the type:

∂u

∂t
(x = 0.0, t) = f(t) (6.13)

In this case, the boundary condition of the PDE is itself described through
an ODE. This case is also easy. We simply replace the ODE for u1 by the
boundary ODE:

u̇1 = f(t) (6.14)

The more general boundary condition of the type:

g (u(x = 1.0, t)) + h

(
∂u

∂x
(x = 1.0, t)

)
= f(t) (6.15)

where f , g, and h are arbitrary functions, is more tricky. For example, we
may have to deal with a boundary condition of the type:

∂u

∂x
(x = 1.0, t) = −k · (u(x = 1.0, t) − uamb(t)) (6.16)

where uamb(t) is the ambient temperature. How would we handle such
a general boundary condition? The answer is simple. We again replace all

6.2 The Method of Lines 197

spatial derivatives by appropriate Newton–Gregory polynomials, e.g. in the
above case:

∂u

∂x

∣∣∣∣
x=x11

=
1

12δx
(25u11 − 48u10 + 36u9 − 16u8 + 3u7) (6.17)

is the fourth–order biased difference approximation polynomial. Plugging
Eq.(6.17) into Eq.(6.16), and solving for u11, we find:

u11 =
12k · δx · uamb + 48u10 − 36u9 + 16u8 − 3u7

12k · δx + 25
(6.18)

By this process, the general boundary condition has been transformed into
a boundary value condition, and the ODE defining u11 can be dropped.

Often we are faced with nonlinear boundary conditions , such as the ra-
diation condition:

∂u

∂x
(x = 1.0, t) = −k · (u(x = 1.0, t)4 − uamb(t)4

)
(6.19)

which leads to:

F(u11) =12k · δx · u4
11 + 25u11 − 12k · δx · u4

amb − 48u10 + 36u9

− 16u8 + 3u7 = 0.0 (6.20)

i.e., an implicit boundary value condition that can be solved by Newton
iteration. Convergence should be fast since we can always use the value of
u11(tk − h) as the starting value of the iteration.

Finally, let us consider diffusion of heat through a wall. Assume that
the wall has two layers consisting of two different materials, one of 1 m
thickness, the other of 10 cm thickness. In that case, the diffusion coefficient,
σ, assumes a different value in the two materials. We can formulate this
problem as follows:

∂u

∂t
= σu · ∂2u

∂x2
(6.21a)

∂v

∂t
= σv · ∂2v

∂x2
(6.21b)

where the PDE for u(x, t) is valid in the region x ∈ [0.0, 1.0], and the PDE
for v(x, t) is valid in the region x ∈ [1.0, 1.1], with boundary conditions at
the boundary between the two layers:

∂u

∂x
(x = 1.0, t) = −ku · (u(x = 1.0, t) − v(x = 1.0, t)) (6.22a)

∂v

∂x
(x = 1.0, t) = −kv · (v(x = 1.0, t) − u(x = 1.0, t)) (6.22b)

198 Chapter 6. Partial Differential Equations

which leads to the following two equations:

(12ku · δxu + 25)u11 − 12ku · δxu · v1 = 48u10 − 36u9 + 16u8 − 3u7

(6.23a)

−12kv · δxv · u11 + (12kv · δxv + 3)v1 = 16v2 − 36v3 + 48u4 − 25v5

(6.23b)

Eqs.(6.23a–b) constitute a linear algebraic loop in the unknown variables
u11 and v1 that can be solved either symbolically or numerically.

6.3 Parabolic PDEs

Some very simple types of PDEs are so common that they were given
special names. Let us consider the following PDE in two variables x and y:

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d (6.24)

which is characteristic of many field problems in physics. x and y can be
either spatial or temporal variables, and a, b, c, and d can be arbitrary
functions of x, y, u, ∂u/∂x, and ∂u/∂y. Such a PDE is called quasi–linear ,
since it is linear in the highest derivatives.

Depending on the numerical relationship between a, b, and c, Eq.(6.24) is
classified as either being parabolic, hyperbolic, or elliptic. The classification
is as follows:

b2 − 4ac > 0 =⇒ PDE is hyperbolic (6.25a)

b2 − 4ac = 0 =⇒ PDE is parabolic (6.25b)

b2 − 4ac < 0 =⇒ PDE is elliptic (6.25c)

This classification makes sense, since the numerical methods most suitable
for these three types of PDEs are vastly different. In this section, we shall
deal with PDEs of the parabolic type exclusively.

Parabolic PDEs are very common. For example, all thermal field prob-
lems are of that nature. The simplest example of a parabolic PDE is the
one–dimensional heat diffusion problem of Eq.(6.1). A complete example
of such a problem is specified once more below.

6.3 Parabolic PDEs 199

∂u

∂t
=

1
10π2

· ∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0,∞) (6.26a)

u(x, t = 0) = cos(π · x) (6.26b)
u(x = 0, t) = exp(−t/10) (6.26c)
∂u

∂x
(x = 1, t) = 0 (6.26d)

Equation (6.26a) is the one–dimensional heat equation, Eq.(6.26b) consti-
tutes its single initial condition, and Eqs.(6.26c–d) describe its two bound-
ary conditions.

Let us discretize this problem using the MOL approach. We split the spa-
tial axis into n segments of length δx = 1/n. We shall apply the third–order
accurate central difference formula of Eq.(6.7) for the approximation of the
spatial derivatives. We furthermore use the symmetry boundary condition
approach at the right end of the interval. This leads to the following set of
ODEs:

u1 = exp(−t/10) (6.27a)

u̇2 =
n2

10π2
· (u3 − 2u2 + u1) (6.27b)

u̇3 =
n2

10π2
· (u4 − 2u3 + u2) (6.27c)

etc.

u̇n =
n2

10π2
· (un+1 − 2un + un−1) (6.27d)

u̇n+1 =
n2

5π2
· (−un+1 + un) (6.27e)

with initial conditions:

u2(0) = cos
(π

n

)
(6.28a)

u3(0) = cos
(

2π

n

)
(6.28b)

u4(0) = cos
(

3π

n

)
(6.28c)

etc.

un(0) = cos
(

(n − 1)π
n

)
(6.28d)

un+1(0) = cos (π) (6.28e)

200 Chapter 6. Partial Differential Equations

This is a linear, time–invariant, inhomogeneous, nth–order, single–input
system of the type:

ẋ = A · x + b · u (6.29)

where:

A =
n2

10π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.30)

A is a band–structured matrix of dimensions n × n. Let us calculate its
eigenvalues. They are tabulated in Table 6.1.

n = 3 n = 4 n = 5 n = 6 n = 7
-0.0244 -0.0247 -0.0248 -0.0249 -0.0249
-0.1824 -0.2002 -0.2088 -0.2137 -0.2166
-0.3403 -0.4483 -0.5066 -0.5407 -0.5621

-0.6238 -0.9884 -0.9183 -0.9929
-0.8044 -1.2454 -1.4238

-1.4342 -1.7693
-1.9610

TABLE 6.1. Eigenvalue distribution for diffusion model.

All eigenvalues are strictly negative and real. This is characteristic of all
thermal field problems and all parabolic PDEs converted to sets of ODEs
by the MOL technique.

We notice at once that, whereas the damping properties of the system
(determined by the location of the dominant pole) don’t change signifi-
cantly with the number of segments, the stiffness ratio, i.e., the ratio be-
tween the absolute largest real part and the absolute smallest real part
of any eigenvalue depends heavily on the number of segments. Figure 6.1
shows the square root of the stiffness ratio plotted over the number of
segments chosen.

It turns out that, for all practical purposes, the stiffness ratio grows
quadratically with the number of segments chosen in the spatial discretiza-
tion process. The more accurate we wish to solve the diffusion equation, the
stiffer the corresponding ODE problem will become. Since diffusion prob-
lems are usually quite smooth, the BDF algorithms are optimally suited to
simulate the resulting set of ODEs.

6.3 Parabolic PDEs 201

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

Stiffness Ratio of 1D Diffusion Problem

Number of Segments

√ St
iff

ne
ss

R
at

io

FIGURE 6.1. Dependence of stiffness ratio on discretization.

We chose a PDE problem, the analytical solution of which is known. It
happens to be:

uc(x, t) = exp(−t/10) · cos(π · x) (6.31)

Hence we can compare the analytical solution of the original PDE prob-
lem with the equally analytical solution of the discretized ODE problem
after applying the MOL discretization.

The analytical solution of the discretized ODE problem is a little harder
to come by. We can create a system description of the continuous–time
problem:

ẋ = A · x + b · u (6.32a)
y = C · x + d · u (6.32b)

where C is an identity matrix of suitable dimensions, and d is a zero vector
using MATLAB’s control system toolbox:

Sc = ss(A,b,C,d) (6.33)

This continuous–time system can then be converted to an equivalent discrete–
time system:

xk+1 = F · xk + g · uk (6.34a)
yk = H · xk + i · uk (6.34b)

using the statement:

Sd = c2d(Sc, h) (6.35)

from which the F–matrix and g–vector of the discrete state equations can
be extracted using the statement:

202 Chapter 6. Partial Differential Equations

[F,g] = ssdata(Sd) (6.36)

The discrete–time system can now be “simulated” by means of iteration of
the discrete state equations. The solution of the discrete difference equation
(ΔE) system is identical with that of the continuous ODE problem at the
sampling points k ·h, where h is the step size (sampling rate) of the discrete
problem, except for the discretization of the input function. The discrete
system assumes that the input function u(t) is kept constant in between
sampling points.

Consequently, the step size, h, must be chosen small enough for the effect
of the discretization of the input function to be negligible.

Let us look at the results of the experiment. The top left graph of Fig.6.2
shows the solution of the PDE problem, uc, as a function of space and
time, whereas the top right graph shows the solution of the discretized
ODE problem, ud, simulated using the approach discussed above. The two
graphs look identical by visual inspection. The bottom left graph of Fig.6.2
displays the difference between the two functions, i.e.:

err = uc − ud (6.37)

and the bottom right graph of Fig.6.2 presents the maximum error, ermax,
as a function of the number of segments used in the discretization. The
maximum error was computed using the MATLAB statement:

ermax = max(max(abs(err))); (6.38)

The step size, h, was chosen small enough so that a further reduction of h
would not visibly change the bottom right graph of Fig.6.2 any longer. In
the given example, a step size of h = 0.001 had to be chosen to accomplish
this goal.

We have just come across a new type of error. The consistency error
describes the difference between the original PDE problem that we wish to
solve, and the discretized ODE problem that we are actually solving.

Evidently, the consistency error cannot be overcome by either step–size
or order control of the underlying ODE solver. Even the best ODE solver
can only approximate the analytical solution, ud, of the discretized ODE
problem, but never the true analytical solution, uc, of the original PDE
problem.

Is the consistency error a modeling error or a simulation error? The an-
swer to this question depends on the point of view. If we use a modeling
environment that allows us to describe the PDE problem directly, we are
inclined to call this a simulation error. However, it is an error that is in-
curred during the symbolic formulae manipulations that accompany the
compilation of the model, rather than at run time. On the other hand, if
we use a lower–level modeling environment that forces us to convert the

6.3 Parabolic PDEs 203

1D Diffusion − Error

Number of Segments

E
rr

o
r

FIGURE 6.2. Solution of the 1D heat diffusion problem.

PDE manually into a set of ODEs, we would be more inclined to call this
a modeling error.

Can the consistency error be overcome by choosing a more accurate
scheme for the computation of the spacial derivatives? Let us use a 5th–
order accurate central difference scheme together with an equally 5th–order
accurate biased difference scheme for the discretization points near the two
boundaries, hence:

u1 = exp(−t/10) (6.39a)

u̇2 =
n2

120π2
· (u6 − 6u5 + 14u4 − 4u3 − 15u2 + 10u1) (6.39b)

u̇3 =
n2

120π2
· (−u5 + 16u4 − 30u3 + 16u2 − u1) (6.39c)

u̇4 =
n2

120π2
· (−u6 + 16u5 − 30u4 + 16u3 − u2) (6.39d)

etc.nonumber (6.39e)

u̇n−1 =
n2

120π2
· (−un+1 + 16un − 30un−1 + 16un−2 − un−3) (6.39f)

u̇n =
n2

120π2
· (16un+1 − 31un + 16un−1 − un−2) (6.39g)

204 Chapter 6. Partial Differential Equations

u̇n+1 =
n2

60π2
· (−15un+1 + 16un − un−1) (6.39h)

The bulk of the equations are formulated using 5th–order accurate cen-
tral differences. Equation (6.39b) is specified using the 5th–order accurate
biased difference formula, whereas Eqs.(6.39g) and (6.39h) are derived by
making use of the symmetry boundary condition.

Hence the resulting A–matrix takes the form:

A =
n2

120π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 − 4 14 − 6 1 . . . 0 0 0 0
16 −30 16 − 1 0 . . . 0 0 0 0
− 1 16 −30 16 − 1 . . . 0 0 0 0

0 − 1 16 −30 16 . . . 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 0 . . . 16 −30 16 − 1
0 0 0 0 0 . . . − 1 16 −31 16
0 0 0 0 0 . . . 0 − 2 32 −30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.40)

The A–matrix is again band–structured. However, the bandwidth is now
wider. Its eigenvalues are tabulated in Table 6.2.

n = 5 n = 6 n = 7 n = 8 n = 9
-0.0250 -0.0250 -0.0250 -0.0250 -0.0250
-0.2288 -0.2262 -0.2253 -0.2251 -0.2250
-0.5910 -0.6414 -0.6355 -0.6302 -0.6273
-0.7654 -0.9332 -1.1584 -1.2335 -1.2368
-1.2606 -1.3529 -1.4116 -1.6471 -1.9150

-1.8671 -2.0761 -2.1507 -2.2614
-2.5770 -2.9084 -3.0571

-3.3925 -3.8460
-4.3147

TABLE 6.2. Eigenvalue distribution for diffusion model.

The eigenvalue distribution has changed very little. In particular, all
of them are still negative and real. Using this discretization scheme, the
smallest number of segments is now five.

Figure 6.3 shows the square root of the stiffness ratio plotted as a function
of the number of segments chosen. The corresponding stiffness ratio plot
for the previously used A–matrix is presented also for comparison.

For the same number of segments, the stiffness ratio of the 5th–order
scheme is slightly higher than that of the 3rd–order scheme. As the correct
solution of the PDE problem corresponds to a discretization with infinitely
many segments, i.e., an ODE problem with infinite stiffness, we may expect
that the solution produced by the 5th–order scheme is indeed more accurate
than that of the 3rd–order scheme.

Let us now perform the same experiment as before, this time using the
5th–order scheme. Figure 6.4 shows the consistency error as a function of

6.3 Parabolic PDEs 205

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

5th−order

scheme

3rd−order

scheme

Stiffness Ratio of 1D Diffusion Problem

Number of Segments

√ St
iff

ne
ss

R
at

io

FIGURE 6.3. Dependence of stiffness ratio on discretization.

the number of segments used in the discretization scheme. The results of
using the 3rd–order accurate discretization scheme and those using the 5th–
order accurate discretization scheme are superposed on the same graph.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8
x 10

−4

5th−order

scheme

3rd−order

scheme

1D Diffusion - Error

Number of Segments

C
on

si
st

en
cy

E
rr

or

FIGURE 6.4. Consistency error of the 1D heat diffusion problem.

The improvement achieved by the more accurate discretization scheme
is quite dramatic. Yet, the “simulation” of the discretized problem is much
more expensive in this case. We had to choose a smaller step size of h =
0.0001 before the consistency error would no longer decrease by further
reducing the step size.

206 Chapter 6. Partial Differential Equations

This observation is not overly surprising. Since the stiffness ratio for
the same number of segments has grown, yet the slowest eigenvalues have
not moved, the fastest eigenvalues are now much further to the left in the
complex λ–plane. Hence we need to choose a smaller step size, h, in order
to operate within the accuracy region of the complex λ · h–plane of the
numerical simulation scheme.

This, unfortunately, is the biggest crux in the numerical solution of
parabolic PDE problems. If we double the number of segments, the num-
ber of ODEs to be simulated doubles as well. However, since the stiffness
ratio grows quadratically in the number of segments, the step size needs
to decrease inverse quadratically in order to keep the accuracy the same in
the complex λ · h–plane. Hence doubling the number of segments forces us
to quadruple the number of time steps. Hence the simulation effort grows
cubically in the number of segments.

Let us try another approach. You certainly remember the Richardson
extrapolation technique that we talked about in Chapter 3 of this text. Let
us ascertain whether Richardson extrapolation may provide us with better
answers to our approximation problem.

We can find four different third–order accurate approximations of ∂2u/∂x2:

∂2u

∂x2

∣∣∣∣
P1

x=xi

(δx2) =
ui+1 − ui + ui−1

δx2
(6.41a)

∂2u

∂x2

∣∣∣∣
P2

x=xi

(4δx2) =
ui+2 − ui + ui−2

4δx2
(6.41b)

∂2u

∂x2

∣∣∣∣
P3

x=xi

(9δx2) =
ui+3 − ui + ui−3

9δx2
(6.41c)

∂2u

∂x2

∣∣∣∣
P4

x=xi

(16δx2) =
ui+4 − ui + ui−4

16δx2
(6.41d)

These approximations differ only in the grid width δx used to obtain them.
We can write:

∂2u

∂x2
(η) =

∂2u

∂x2
+ e1 · η + e2 · η2

2!
+ e3 · η3

3!
+ . . . (6.42)

where ∂2u/∂x2 is the true (yet unknown) value of the second spatial deriva-
tive of u, whereas ∂2u(η)/∂x2 is the numerical value that we find when we
approximate the second spatial derivative using a grid width of η. Obvi-
ously, this value contains an error. Equation (6.42) is a Taylor–Series in
η around the (unknown) correct value. The ei variables are errors of the
approximation.

We truncate the Taylor Series after the cubic term, and write Eq.(6.42)
down for the same values of the grid width that had been used in Eqs.(6.41a–
d). We find:

6.3 Parabolic PDEs 207

∂2u

∂x2

P1

(δx2) ≈ ∂2u

∂x2
+ e1 · δx2 +

e2

2!
· δx4 +

e3

3!
· δx6

∂2u

∂x2

P2

(4δx2) ≈ ∂2u

∂x2
+ e1 · (4δx2) +

e2

2!
· (4δx2)2 +

e3

3!
· (4δx2)3

∂2u

∂x2

P3

(9δx2) ≈ ∂2u

∂x2
+ e1 · (9δx2) +

e2

2!
· (9δx2)2 +

e3

3!
· (9δx2)3

∂2u

∂x2

P4

(16δx2) ≈ ∂2u

∂x2
+ e1 · (16δx2) +

e2

2!
· (16δx2)2 +

e3

3!
· (16δx2)3

(6.43)

or in a matrix notation:

⎛
⎜⎜⎜⎜⎝

∂2u
∂x2

P1

∂2u
∂x2

P2

∂2u
∂x2

P3

∂2u
∂x2

P4

⎞
⎟⎟⎟⎟⎠ ≈

⎛
⎜⎜⎝

(δx2)0 (δx2)1 (δx2)2 (δx2)3

(4δx2)0 (4δx2)1 (4δx2)2 (4δx2)3

(9δx2)0 (9δx2)1 (9δx2)2 (9δx2)3

(16δx2)0 (16δx2)1 (16δx2)2 (16δx2)3

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

∂2u
∂x2

e1

e2/2
e3/6

⎞
⎟⎟⎠
(6.44)

By inverting the Van–der–Monde matrix, we can solve for the unknown
∂2u/∂x2 and the three error variables. Since we aren’t interested in the
errors, we only look at the first row of the inverted Van–der–Monde matrix.
It turns out that the values in this row don’t depend at all on the grid width
δx. We find:

∂2u

∂x2
≈ (56

35 − 28
35

8
35 − 1

35

) ·
⎛
⎜⎜⎜⎜⎝

∂2u
∂x2

P1

∂2u
∂x2

P2

∂2u
∂x2

P3

∂2u
∂x2

P4

⎞
⎟⎟⎟⎟⎠ (6.45)

We can plug Eqs.(6.41) into Eq.(6.45), and find:

∂2u

∂x2

∣∣∣∣
x=xi

≈ 1
5040δx2

(−9ui+4 + 128ui+3 − 1008ui+2 + 8064ui+1

− 14350ui + 8064ui−1 − 1008ui−2 + 128ui−3 − 9ui−4) (6.46)

which is exactly the central difference formula of order 9. Once again,
the Richardson extrapolation has raised the approximation accuracy to the
highest possible order.

Let us now look at a slightly different problem:

208 Chapter 6. Partial Differential Equations

∂u

∂t
= 4

∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0,∞) (6.47a)

u(x, t = 0) = 20 sin
(π

2
x
)

+ 300 (6.47b)

u(x = 0, t) = 20 sin
(π

12
t
)

+ 300 (6.47c)

∂u

∂x
(x = 1, t) = 0 (6.47d)

We again solve a one–dimensional heat equation, but with a different time
constant, and different initial and boundary conditions.

This time around, we don’t know the analytical solution, hence we cannot
compute the consistency error explicitly. What do we do? Similarly to the
step–size control algorithms discussed in the previous chapters, we need an
estimator of the spatial discretization error.

All numerical algorithms should have a second algorithm built in to them
that reasons about the sanity of the first algorithm and starts screaming if
it thinks that something is going awry. Without such a sanity check, numer-
ical algorithms are never safe. It is precisely the availability of such alarm
systems that constitutes one of the major distinctions between production
codes and experimental codes.

We propose to compute all spatial derivatives twice, once with the grid
size δx, and once with the grid size 2δx using central differences.

∂2u

∂x2

∣∣∣∣
P1

x=xi

(δx2) =
ui+1 − ui + ui−1

δx2
(6.48a)

∂2u

∂x2

∣∣∣∣
P2

x=xi

(4δx2) =
ui+2 − ui + ui−2

4δx2
(6.48b)

(6.48c)

The two approximations form two separate partial derivative vectors, uP1
xx

and uP2
xx . Using these approximations, we can formulate a spatial error

estimate:

εrel =
|uP1

xx − uP2
xx |

max(|uP1
xx |, |uP2

xx |, δ)
(6.49)

where δ is a fudge factor, e.g., δ = 10−10.
If the estimated spatial discretization error is too big, we must either

choose a more narrow grid, or alternatively, we must increase the approxi-
mation order of the spatial derivatives.

Is it wasteful to compute the entire vector of spatial derivatives twice?
This question must clearly be answered in the negative. The two predictors
can be used in a Richardson corrector step:

6.3 Parabolic PDEs 209

uC
xx =

4
3
· uP1

xx − 1
3
· uP2

xx (6.50)

This is equivalent to having raised the approximation order of the spatial
derivatives from three to five. However, by writing the 5th–order accurate
spatial derivative formula in this way, we get an error estimator essentially
for free.

Since the problem is stiff, a BDF formula may be appropriate for its
integration. As we wish to obtain a global accuracy of 1%, we decided to
simulate the system using BDF3. We chose nseg = 50 in order to receive
sufficiently many output points in space, and simulated across 10 seconds
in time. The simulation results are shown in Fig.6.5.

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10
300

305

310

315

320

Space

1D Diffusion

Time

So
lu

ti
on

FIGURE 6.5. Solution of heat diffusion problem.

Figure 6.6 shows a slice through the solution at x = 1.0.
Unfortunately, the solution exhibits a fast transient precisely during the

start–up period. The problem isn’t truly stiff until the fast transients have
died out. Initially, the solution is heavily controlled by accuracy require-
ments beside from the numerical stability constraints.

Assuming a fixed step size to be used throughout the solution, we re-
peated the simulation thrice, once using order buildup, i.e., a BDF starter,
once using an RK3 starter, and once using an IEX3 starter. Figure 6.7
shows the step size required to achieve a desired level of accuracy using
these three start–up algorithms.

210 Chapter 6. Partial Differential Equations

0 1 2 3 4 5 6 7 8 9 10
300

305

310

315

320

325

1D Diffusion

Time

So
lu

ti
on

FIGURE 6.6. Solution of heat diffusion problem.

10
−3

10
−2

10
−1

10
−10

10
−5

10
0

BDF

RK3

IEX3

Accuracy vs. Cost

Step size

R
el

at
iv

e
er

ro
r

FIGURE 6.7. Accuracy vs. cost for different start–up algorithms.

Overall, the accuracy of the simulation seems to be quite a bit better
than the 3rd–order algorithm would have made us believe. In addition,
the effect of the start–up algorithm on the simulation accuracy is quite
dramatic. For small step sizes, the RK3 starter seems to work much better
than the BDF starter. However, at h = 0.005, the numerical stability is lost,
and the overall accuracy of the simulation degrades rapidly, in spite of the
fact that the RK3 algorithm is only being used during the first two steps
of the simulation. Of course, an RK starter implemented in a production
code would be expected to proceed with a smaller step size than during the
remainder of the simulation, but we did not want to make use of any type of
step–size control in this experiment, as this would make an interpretation
of the obtained results much more difficult.

The IEX3 starter, implemented using BDF1 steps internally, performs
similarly to the RK3 starter for small step sizes, but without being plagued
by the numerical stability problems of the RK3 starter for larger step sizes.

We also tried a BI4/50.45 starter. It didn’t work well at all in this ap-
plication. The reason is the following. The backward RK semi–step is nu-
merically highly unstable. It is only stabilized by the Newton iteration. In
the given application, we ran into roundoff error problems. The unstable

6.4 Hyperbolic PDEs 211

semi–step produced numbers so big that the Newton iteration could not
stabilize them any longer due to roundoff.

Parabolic PDE problems discretized using the MOL approach always
turn into very stiff ODE systems. The more accurate we wish to simulate,
the stiffer the problem becomes. Yet, decent stiff system solvers, such as
DASSL [6.1], are usually quite capable of dealing with such problems
effectively and efficiently.

6.4 Hyperbolic PDEs

Let us now analyze the second class of PDE problems, the hyperbolic PDEs.
The simplest specimen of this class of problems is the wave equation or
linear conservation law :

∂2u

∂t2
= c2 · ∂2u

∂x2
(6.51)

We can easily transform this second–order PDE in time into two first order
PDEs in time:

∂u

∂t
= v (6.52a)

∂v

∂t
= c2 · ∂2u

∂x2
(6.52b)

At this point, we can replace the spatial derivatives again by finite difference
approximations, and we seem to be in business.

Equations (6.53a–e) constitute a complete specification of such a model.

∂2u

∂t2
=

∂2u

∂x2
; x ∈ [0, 1] ; t ∈ [0,∞) (6.53a)

u(x, t = 0) = sin
(π

2
x
)

(6.53b)

∂u

∂t
(x, t = 0) = 0.0 (6.53c)

u(x = 0, t) = 0.0 (6.53d)
∂u

∂x
(x = 1, t) = 0.0 (6.53e)

Equation (6.53a) is the one–dimensional wave equation, Eqs.(6.53b–c) con-
stitute its two initial conditions, and Eqs.(6.53d–e) describe its two bound-
ary conditions.

Let us simulate this problem using the MOL approach. We decide to split
the spatial axis into n segments of width δx = 1/n. If we work with the

212 Chapter 6. Partial Differential Equations

central difference formula of Eq.(6.7), and using the symmetry boundary
condition approach at the right end of the interval, we obtain the following
set of ODEs:

u1 = 0.0 (6.54a)
u̇2 = v2 (6.54b)
etc.
u̇n+1 = vn+1 (6.54c)
v1 = 0.0 (6.54d)

v̇2 = n2 (u3 − 2u2 + u1) (6.54e)

v̇3 = n2 (u4 − 2u3 + u2) (6.54f)
etc.

v̇n = n2 (un+1 − 2un + un−1) (6.54g)

v̇n+1 = 2n2 (un − un+1) (6.54h)

with the initial conditions:

u2(0) = sin
(π

2n

)
(6.55a)

u3(0) = sin
(π

n

)
(6.55b)

u4(0) = sin
(

3π

2n

)
(6.55c)

etc.

un(0) = sin
(

(n − 1)π
2n

)
(6.55d)

un+1(0) = sin
(π

2

)
(6.55e)

v2(0) = 0.0 (6.55f)
etc.
vn+1(0) = 0.0 (6.55g)

This is a linear, time–invariant, inhomogeneous, (2n)th–order, single–input
system of the type specified in Eq.(6.29), where:

A =
(

0(n) I(n)

A21 0(n)

)
(6.56)

with:

6.4 Hyperbolic PDEs 213

A21 = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.57)

A is a band–structured matrix of dimensions 2n× 2n with two separate
non–zero bands. Let us calculate its eigenvalues. They are tabulated in
Table 6.3.

n = 3 n = 4 n = 5 n = 6
±1.5529j ±1.5607j ±1.5643j ±1.5663j
±4.2426j ±4.4446j ±4.5399j ±4.5922j
±5.7956j ±6.6518j ±7.0711j ±7.3051j

±7.8463j ±8.9101j ±9.5202j
±9.8769j ±11.0866j

±11.8973j

TABLE 6.3. Eigenvalue distribution of linear conservation law.

All eigenvalues are strictly imaginary. All hyperbolic PDEs converted to
sets of ODEs using the MOL technique show complex eigenvalues. Many of
them have their eigenvalues spread up and down fairly close to the imagi-
nary axis. The linear conservation law has all its eigenvalues exactly on the
imaginary axis.

Figure 6.8 shows the frequency ratio, i.e., the ratio between the absolute
largest and the absolute smallest imaginary parts of any eigenvalues plotted
over the number of segments used in the discretization.

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

Frequency Ratio of 1D Linear Conservation Law

Number of Segments

Fr
eq

ue
nc

y
R

at
io

FIGURE 6.8. Frequency ratio of the 1D linear conservation law.

Evidently, the frequency ratio of the 1D linear conservation law grows
linearly with the number of segments used in the discretization.

214 Chapter 6. Partial Differential Equations

The numerical challenges are quite different from those in the parabolic
case. The conservation law does not lead to a stiff set of ODEs. No “fast
transients” appear that die out after some time, and consequently, the
step size in the numerical integration must be kept small to account for
all the eigenvalues of the discretized problem. The more narrow the grid
width is chosen, the smaller the time steps will have to be in order to keep
all eigenvalues within the asymptotic region of the numerical integration
algorithm. Luckily, the spreading of the eigenvalues grows only linearly
with the number of segments chosen.

We have seen that PDEs pose a new kind of challenge. In the case of
ODE solutions, we only worried about stability and accuracy. In the case
of PDE solution, we must concern ourselves with stability , accuracy , and
consistency .

Definition: “A discretization scheme is called consistent if the
analytical solution of the discretized problem smoothly approaches
the analytical solution of the original continuous problem as the
grid width is being reduced to smaller and smaller values.”

The consistency error is thus the deviation of the analytical solution of the
discretized problem from the analytical solution of the continuous problem,
whereas the accuracy error is the deviation of the numerical solution of the
discretized problem from the analytical solution of the discretized problem.1

The example of Eqs.(6.53a–e) is so simple that an analytical solution of
the continuous (field) problem can be given. It is:

u(x, t) =
1
2

sin
(π

2
(x − t)

)
+

1
2

sin
(π

2
(x + t)

)
(6.58)

Since the discretized problem is linear with constant input, we can use the
method described in Hw.[H4.8] to derive its analytical solution. Thus, we
can go after the consistency error directly.

Figure 6.9 shows in its top left graph the analytical solution of the orig-
inal PDE problem, in its top right graph the analytical solution of the
discretized ODE problem. The two solutions look identical when compared
by the naked eye. The bottom left curve shows the difference between the
top two curves.

Since the input function is zero, the solution of the discretized ODE prob-
lem is independent of the chosen step size, h, in time. The discretization in

1Traditionally, the numerical PDE literature talks about the three facets: stability,
consistency, and convergence. It is then customary to prove that any two of the three
imply the third one, i.e., it is sufficient to look at any selection of two of the three [6.13].
However, that way of reasoning is more conducive to fully discretized (finite difference
or finite element) schemes, where the step size in time, h, is locked in a fixed relationship
with the grid width in space, δx. Consequently, h and δx approach zero simultaneously.
In the context of the MOL methodology, our approach may be more appealing.

6.4 Hyperbolic PDEs 215

Consistency Error

Number of Segments

E
rr

o
r

FIGURE 6.9. Analytical solutions of the 1D wave equation.

time serves here only for the purpose of generating sufficiently many output
points. Hence the curve shown in the bottom left graph is the true consis-
tency error. The only potential sources of numerical pollution could be due
to roundoff and accumulation, but these are insignificant in magnitude in
comparison with the analytical consistency error.

The bottom right graph shows the consistency error plotted against the
number of segments chosen for the spatial discretization. The consistency
error is here much larger than in the previous parabolic PDE examples. If
we wish to obtain simulation results with a numerical accuracy of 1%, the
consistency error itself ought to be at least one order of magnitude smaller.
This means we should choose at least 40 segments for this simulation.

Just like in the case of the parabolic PDE problems, let us discuss what
happens when we choose a higher–order discretization in space. Let us try
first with 5th–order central differences.

Figure 6.10 shows the frequency ratio plotted against the number of
segments chosen in the spatial discretization scheme. The frequency ratio
of the 3rd–order scheme is plotted on the same graph for comparison.

The frequency ratio of the more accurate 5th–order scheme is consistently
higher than that of the less accurate 3rd–order scheme for the same num-
ber of segments. Since the true PDE solution, corresponding to the solution
with infinitely many infinitely dense discretization lines, has a frequency
ratio that is infinitely large, we suspect that choosing a higher–order dis-
cretization scheme may indeed help with the reduction of the consistency

216 Chapter 6. Partial Differential Equations

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

5th−order

scheme

3rd−order

scheme

Frequency Ratio of 1D Linear Conservation Law

Number of Segments

Fr
eq

ue
nc

y
R

at
io

FIGURE 6.10. Frequency ratio of the 1D wave equation.

error.
Figure 6.11 shows the consistency error plotted over the number of seg-

ments used in the discretization. The improvement is quite dramatic. The
consistency error has been reduced by at least two orders of magnitude.

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
x 10

−4 1D Linear Conservation Law

Number of Segments

C
on

si
st

en
cy

E
rr

or

FIGURE 6.11. Consistency error of the 1D wave equation.

In a true simulation experiment, the 5th–order spatial discretization
scheme should be implemented using the Richardson predictor–corrector
technique presented earlier in this chapter.

Let us compute the cost–versus–accuracy plot for the above problem,
comparing the various third–order algorithms to each other that we mean-
while know. We shall use 50 segments for the spatial discretization together
with 5th–order central differences, in order to keep the consistency error
sufficiently small, so that it won’t affect the simulation results.

We computed the global accuracy of seven algorithms for simulating the
discretized wave equation across 10 seconds of simulated time using a fixed
step size of h, namely: RK3, IEX3, BI3, AB3, ABM3, AM3, and BDF3. We
chose the step sizes: h = 0.1, h = 0.05, h = 0.02, h = 0.01, h = 0.005, h =
0.002, and h = 0.001 corresponding to 100, 200, 500, 1000, 2000, 5000, and
10000 steps, respectively. The results are tabulated in Table 6.4.

6.4 Hyperbolic PDEs 217

h RK3 IEX3 BI3
0.1 unstable 0.6782e-4 0.4947e-6
0.05 unstable 0.8668e-5 0.2895e-7
0.02 unstable 0.5611e-6 0.1324e-8
0.01 0.7034e-7 0.7029e-7 0.2070e-8
0.005 0.8954e-8 0.8791e-8 0.2116e-8
0.002 0.2219e-8 0.2145e-8 0.2120e-8
0.001 0.2127e-8 0.2119e-8 0.2120e-8

h AB3 ABM3 AM3 BDF3
0.1 unstable unstable unstable garbage
0.05 unstable unstable unstable garbage
0.02 unstable unstable unstable garbage
0.01 unstable 0.6996e-7 unstable garbage
0.005 0.7906e-7 0.8772e-8 0.8783e-8 0.9469e-2
0.002 0.5427e-8 0.2156e-8 0.2149e-8 0.1742e-6
0.001 0.2239e-8 0.2120e-8 0.2120e-8 0.4363e-7

TABLE 6.4. Comparison of accuracy of integration algorithms.

Using a step size of h = 0.001, all seven integration algorithms simulate
the problem successfully. In fact, all of them with the exception of BDF3
are down to the level of the consistency error.

As the step size becomes smaller, the higher–order terms in the Taylor–
series expansion become less and less important. For sufficiently small step
sizes, all integration algorithms behave either like forward or backward
Euler.

BDF3 performs a little poorer than the other algorithms, because its
error coefficient is considerably larger than those of its competitors. BDF
algorithms perform generally somewhat poor in terms of accuracy in com-
parison with their peers of equal order. The BDF algorithms had been
known before they were made popular by Bill Gear in the early seventies
[6.9]. However, they were considered “garbage algorithms” due to their poor
accuracy properties.

It turns out that the problem is kind of “stiff,” although it does not meet
most of John Lambert’s definitions of stiffness [6.11]. The problem is “stiff”
in the sense that all the algorithms with stability domains looping into the
left–half plane are unable to produce solutions with the desired accuracy
of 1.0%, since they are numerically unstable when a step size is used that
would produce the desired accuracy otherwise. BDF3 doesn’t suffer the
same fate, but it eventually succumbs to error accumulation problems. As
the step sizes grow too big, the computations become so inaccurate that
the simulation error exceeds the simulation output in magnitude. Hence

218 Chapter 6. Partial Differential Equations

BDF3 starts accumulating numerical garbage.
Only IEX3 and BI3 are capable of solving the problem successfully for

large step sizes. Between the two, BI3 seems to work a little better, which
is no big surprise. Being an F–stable algorithm, BI3 is earmarked for these
types of applications.

Figure 6.12 presents the same results graphically in a cost vs. accuracy
plot.

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
2

10
3

10
4

10
5

10
6

RK3

IEX3

BI3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
2

10
3

10
4

10
5

10
6

AB3,ABM3

AM3 BDF3

1D Linear Conservation Law - Error

Simulation accuracy

Simulation accuracy

#
fu

nc
ti

on
ev

al
ua

ti
on

s
#

fu
nc

ti
on

ev
al

ua
ti

on
s

FIGURE 6.12. Cost vs. accuracy of the 1D wave equation.

These results are somewhat deceiving, since they do not take into account
the effort spent in computing inverse Hessians. This decision was taken on
purpose, since the number of function evaluations is the only objective
measure available that depends on the algorithm alone, rather than on
implementational details of the production code, as different codes vary a
lot in how often and how accurately they compute inverse Hessians.

Of course, since the given problem is linear and since we don’t vary
the step size ever, it would suffice to compute one inverse Hessian at the
beginning of the simulation. Yet, this fact is peculiar to the specific problem
at hand. For nonlinear problems, the explicit algorithms, i.e., RK3, AB3,
and ABM3, may be at least as attractive as BI3.

We would still argue in favor of the BI algorithms for these types of
applications, not because of their superior cost–per–accuracy properties,
but because of their better robustness characteristics. Using BI3, we can

6.5 Shock Waves 219

obtain a decent answer using any step size that we may try without having
the algorithm blow up on us, and we get a meaningful accuracy in each
and every case.

We could have included also GE3 in the comparison of this section.
Since the problem to be solved is a linear conservation law, the stand–
alone versions of the explicit Godunov schemes would have been excellently
suited for the task at hand. However, we decided against doing so, because
the comparison would have been quite unfair. All of the techniques com-
pared against each other in this section are general–purpose numerical ODE
solvers, whereas the stand–alone versions of the GE algorithms are limited
to dealing with linear conservation laws only.

6.5 Shock Waves

Let us now study a more involved hyperbolic PDE problem. A thin tube of
length 1 m is initially pressurized at pB = 1.1 atm. The tube is located at
sea level, i.e., the surrounding atmosphere has a pressure of p0 = 1.0 atm =
760.0 Torr = 1.0132 · 105 N m−2. The current temperature is T = 300.0 K.
At time zero, the tube is opened at one of its two ends. We wish to determine
the pressure at various places inside the tube as functions of time.1

As the tube is opened, air rushes out of the tube, and a rarefaction wave
enters the pipe. Had the initial pressure inside the pipe been smaller than
the outside pressure, air would have rushed in, and a compression wave
would have formed.

The problem can be mathematically described by a set of first–order
hyperbolic PDEs:

∂ρ

∂t
= −v · ∂ρ

∂x
− ρ · ∂v

∂x
(6.59a)

∂v

∂t
= −v · ∂v

∂x
− a

ρ
(6.59b)

∂p

∂t
= −v · a − γ · p · ∂v

∂x
(6.59c)

a =
∂p

∂x
+

∂q

∂x
+ f (6.59d)

q =

{
β · δx2 · ρ · (∂v

∂x

)2
; ∂v

∂x < 0.0
0.0 ; ∂v

∂x ≥ 0.0
(6.59e)

f =
α · ρ · v · |v|

δx
(6.59f)

1The problem can be found in a slightly modified form in the FORSIM–VI manual
[6.4]. It is being reused here with the explicit permission by the author.

220 Chapter 6. Partial Differential Equations

where ρ(x, t) denotes the gas density inside the tube at position x and time
t, v(x, t) denotes the gas velocity , and p(x, t) denotes the gas pressure.
The quantity a was pulled out into a separate algebraic equation, since the
same quantity is used in two places within the model. The two quantities
computed in Eqs.(6.59e–f) are artificial, as their dependence on δx shows.
Clearly, δx is not a physical quantity, but is introduced only in the process
of converting the (small) set of PDEs into a (large) set of ODEs. q denotes
the pseudo viscous pressure, and f denotes the frictional resistance. They
were introduced by Richtmyer and Morton [6.14] in order to smoothen
out numerical problems with the solution. We shall discuss this issue in
due course. γ is the ratio of specific heat constants, a non–dimensional
constant with a value of γ = cp/cv = 1.4. α and β are non–dimensional
numerical fudge factors. We shall initially assign the following values to
them: α = β = 0.1. The “ideal” (i.e., undamped) problem has α = β = 0.0.

Introduction of the two dissipative terms is not a bad idea, since the
“ideal” solution does not represent a physical phenomenon in any true
sense. Phenomena without any sort of dissipation belong allegedly in the
world that we may enter after we die. They certainly don’t form any part
of this universe.

The initial conditions are:

ρ(x, t = 0.0) = ρB (6.60a)
v(x, t = 0.0) = 0.0 (6.60b)
p(x, t = 0.0) = pB (6.60c)

where ρB is determined by the equation of state for ideal gases (cf. Chap-
ter 9 of the companion book Continuous System Modeling [6.5]):

ρB =
pB · Mair

R · T (6.61)

where T = 300.0 is the absolute temperature (measured in Kelvin), R =
8.314 J K−1 mole−1 is the gas constant, and Mair = 28.96 g mole−1 is the
average molar mass of air.1 The boundary conditions are:

v(x = 0.0, t) = 0.0 (6.62a)
ρ(x = 1.0, t) = ρ0 (6.62b){

v(x = 1.0, t) = −
√

2(p0−p(x=1.0,t)
ρ(x=1.0,t) ; v(x = 1.0, t) < 0.0

p(x = 1.0, t) = p0 ; v(x = 1.0, t) ≥ 0.0
(6.62c)

1Air consists roughly to 78% of nitrogen (N2) with a molar mass of 28 g mole−1, to
21% of oxygen (O2) with a molar mass of 32 g mole−1, and to 1% of argon (Ar) with a
molar mass of 40 g mole−1.

6.5 Shock Waves 221

As proposed in [6.4], we converted all spatial derivatives by means of
second–order accurate central differences using the formula:

∂u

∂x

∣∣∣∣
x=xi

≈ 1
2δx

· (ui+1 − ui−1) (6.63)

except near the boundaries, where we used second–order accurate biased
formulae:

∂u

∂x
(x = x1, t) ≈ 1

2δx
·(−u3 + 4u2 − 3u1) (6.64a)

∂u

∂x
(x = xn+1, t) ≈ 1

2δx
·(3un+1 − 4un + un−1) (6.64b)

where u can stand for either ρ, v, p, or q.
In order to keep the consistency error small, we chose 50 segments for

each of the three PDEs. We created a MATLAB function:

ux = partial(u, δx, bc, bctype) (6.65)

which implements the above set of formulae with correction terms in the
case of a symmetry boundary condition. The variable bc indicates whether
the boundary condition is applied at the left end, bc = −1, or at the right
end, bc = +1. The variable bctype specifies the type of boundary condition.
bctype = 0 indicates a symmetry boundary condition. bctype = 1 denotes
a function value condition.

In the case of a symmetry boundary condition, the central formulae are
used all the way to the boundary while folding the values that are outside
the domain back into the domain, as explained earlier.

The correction formulae are:

∂u

∂x
(x = x1, t) ≈ 0.0 (6.66)

for a symmetry boundary condition at the left end, and:

∂u

∂x
(x = xn+1, t) ≈ 0.0 (6.67)

for a symmetry boundary condition at the right end.
The state–space model itself has been encoded in another MATLAB

function:

function [xdot] = st eq(x, t)
%
% State − space model of shock − tube problem
%
n = round(length(x)/3);
n1 = n + 1;
δx = 1/n;

222 Chapter 6. Partial Differential Equations

%
% Constants
%

R = 8.314;
%
% Physical parameters

%

Temp = 300;
Mair = 0.02896;
p0 = 1.0132e5;
ρ0 = p0 ∗ Mair/(R ∗ Temp);

γ = 1.4;
%
% Fudge factors
%
global α β
%
% Unpack individual state vectors from total state vector
%
ρ = [x(1 : n) ; ρ0];
v = [0 ; x(n1 : 2 ∗ n)];
p = x(n1 + n : n1 + 2 ∗ n);
%
% Calculate nonlinear boundary condition
%
if v(n1) < 0,

v(n1) = −sqrt(max([2 ∗ (p0 − p(n1))/ρ(n1), 0]));
else

p(n1) = p0;
end
%

% Calculate spatial derivatives
%
ρx = partial(ρ, δx, +1, +1);
vx = partial(v, δx,−1, +1);
px = partial(p, δx, +1, +1);
%
% Calculate algebraic quantities
%
f = α ∗ (ρ . ∗ v . ∗ abs(v))/δx;
q = zeros(n1, 1);
for i = 1 : n1,

if vx(i) < 0,
q(i) = β ∗ (δx2) ∗ ρ(i) ∗ (vx(i)2);

end,
end
qx = partial(q, δx,−1, +1);
a = px + qx + f ;
%
% Calculate temporal derivatives
%
ρt = −(v . ∗ ρx) − (ρ . ∗ vx);
vt = −(v . ∗ vx) − (a ./ ρ);

6.5 Shock Waves 223

pt = −(v . ∗ a) − γ ∗ (p . ∗ vx);
%
% Pack individual state derivatives into total state derivative vector
%
xdot = [ρt(1 : n) ; vt(2 : n1) ; pt];

return

The resulting set of 151 nonlinear ODEs was simulated across 0.01 sec
using the RKF4/5 algorithm, as we learnt that RK algorithms are expected
to perform decently when faced with nonlinear hyperbolic PDE problems
converted to sets of ODEs by the MOL approach.

This time around, we used all the bells and whistles and included step–
size control in time. The results of this simulation are shown in Fig.6.13.

Shock−tube problem

Time

A
ir
 p

re
s
s
u
re

FIGURE 6.13. Shock tube simulation.

The first three graphs depict ρ(x, t), v(x, t), and p(x, t). The solutions
look like the water falls of the Iguazu looked at from the Argentinean side
of the river. The bottom left parts of all three functions look dangerously
irregular in shape. Are the simulation results inaccurate?

The bottom right curve shows the air pressure as a function of time. The
solid curve depicts the pressure 20 cm away from the closed end, the dashed
line shows the pressure 40 cm away, the dot–dashed line 60 cm away, and
the dotted line 80 cm away.

As the end of tube opens, the point closest to the opening experiences the
rarefaction wave first. The points further into the tube experience the wave

224 Chapter 6. Partial Differential Equations

later. From Fig.6.13, it can be concluded that the wave travels through the
tube with a constant wave–front velocity of roughly 35 cm per 0.001 sec,
or 350.0 m sec−1. This is the correct value of the velocity of sound at sea
level and at a temperature of T = 300 K. Thus, our simulation seems to
be working fine. (There is nothing more healthy in simulation of physical
systems than a little reality check once in a while!)

As the rarefaction wave reaches the closed end of the tube, the inertia
of the flowing air creates a vacuum. The air flows further, but cannot be
replaced by more air from the left. Consequently, the air pressure now sinks
below that of the outside air.

As the vacuum reaches the open end of the tube, a new wave is created,
this time a compression wave, that races back into the tube.

We ended the simulation at t = 0.01 sec, since shortly thereafter, the
Runge–Kutta algorithm would finally give up on us, and die with an error
message.

How accurate are these simulation results? To answer this question, we
repeated the simulation with 100 segments. The simulated air pressure at
the center of the tube, x = 50 cm, is shown in Fig.6.14. For comparison, the
results of the 50–segment simulation are superposed on the same graph. As
the model itself depends explicitly on the grid width, we set α = β = 0.0
for this experiment. In this way, the explicit (artificial) dependence of the
model on the grid width is eliminated.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0.9

0.95

1

1.05

1.1

1.15
x 10

5

100

50

Shock-tube problem

Time

A
ir

pr
es

su
re

FIGURE 6.14. Consistency error for shock tube simulation.

The simulation results are visibly different. Moreover, the differences
seem to grow over time. Is this a consistency error, or simply the result of
an inaccurate simulation?

To answer this question, we repeated the same experiment, this time us-
ing a different integration algorithm. The F–stable Backinterpolation tech-
nique is supposed to work at least as well as the RK algorithm.

The simulation results are indistinguishable by naked eye. Whereas the
largest relative distance between the air pressure with 50 and 100 segments:

6.5 Shock Waves 225

err =
max(max(abs(p100 − p50)))

max([‖p100‖, ‖p50‖]) (6.68)

is err = 7.5726e − 4, the largest relative distance between the air pressure
with 50 segments comparing the two different integration algorithms is
err = 1.2374e − 7, and with 100 segments, it is err = 6.3448e − 7.

Hence the simulation error is smaller than the consistency error by three
orders of magnitude. Evidently, we are not faced with a simulation problem
at all, but rather with a modeling problem. The simulation is as accurate
as can be expected.

The BI4 algorithm is considerably less efficient than the RKF4/5 algo-
rithm in simulating this problem. Its inefficiency is not caused by the step
size. In fact, the step–size controlled BI4 algorithm can make use of step
sizes that are quite a bit larger than those used by RKF4/5. The ineffi-
ciency is caused by the computation of the Jacobians and of the inverse
Hessians.

Since the problem is nonlinear, the Jacobians need to be numerically
estimated, using an algorithm such as:

function [J] = jacobian(x, t)
%
% Jacobian of shock − tube problem
%
n = length(x);
J = zeros(n, n);
xdref = st eq(x, t);
for i = 1 : n,

xnew = x;
if abs(x(i)) < 1.0e − 6,

xnew(i) = 0.05;
else

xnew(i) = 1.05 ∗ x(i);
end,
xdnew = st eq(x, t);
J(:, i) = (xdnew − xdref)/(xnew(i) − x(i));

end
return

Thus, every single Jacobian, which is being computed once per inte-
gration step, requires 152 additional function evaluations in the case of a
50–segment simulation, and 302 additional function evaluations in the case
of a 100–segment simulation. No wonder that production codes of implicit
ODE solvers are frugal in the frequency of Jacobian evaluations.

The Hessian is of the same size as the Jacobian:

H = I(n) + J · h̄ +
1
2!

· (J · h̄)2 +
1
3!

· (J · h̄)3 +
1
4!

· (J · h̄)4 (6.69)

where h̄ = −h/2 is the step size of the right half–step of the BI4 algorithm.

226 Chapter 6. Partial Differential Equations

The Hessian is used in a Gauss elimination step once per iteration step:

while err2 > 0.1 ∗ tol,

[xright4, xright5] = rkf45 step(xnew, tnew,−h/2);
nfct = nfct + 6;
xnew = xnew − H\(xright4 − xleft4);
err2 = norm(xright4 − xleft4, ′inf′)/max([norm(xleft4),norm(xright4), tol]);

end

The computational burden of these algorithms is atrocious. We shall have
to do something about the size of these matrices. This problem shall be
tackled in the next chapter of this book.

What can we do to reduce the consistency error? From our previous
observation, we know the answer to this question. If we increase the ap-
proximation order of the spatial derivatives by two, the consistency error
is expected to decrease by two orders of magnitude.

We modified the partial function to use fourth–order accurate central
differences instead of the previously used second–order accurate central
differences. To this end, the following formulae were now coded into the
partial function:

∂u

∂x

∣∣∣∣
x=xi

≈ 1
12δx

· (−ui+2 + 8ui+1 − 8ui−1 + ui−2) (6.70)

except near the boundaries, where we used fourth–order accurate biased
formulae:

∂u

∂x
(x = x1, t) ≈ 1

12δx
·(−3u5 + 16u4 − 36u3 + 48u2 − 25u1) (6.71a)

∂u

∂x
(x = x2, t) ≈ 1

12δx
·(u5 − 6u4 + 18u3 − 10u2 − 3u1) (6.71b)

∂u

∂x
(x = xn, t) ≈ 1

12δx
·(3un+1 + 10un − 18un−1 + 6un−2 − un−3)

(6.71c)
∂u

∂x
(x = xn+1, t) ≈ 1

12δx
·(25un+1 − 48 ∗ un + 36un−1 − 16un−2

+ 3un−3) (6.71d)

In the case of a symmetry boundary condition, the central formulae are
used all the way to the boundary while folding the values that are outside
the domain back into the domain, as explained earlier.

The correction formulae are:

6.5 Shock Waves 227

∂u

∂x
(x = x1, t) ≈ 0.0 (6.72a)

∂u

∂x
(x = x2, t) ≈ 1

12δx
· (−u4 + 8u3 + u2 − 8u1) (6.72b)

(6.72c)

for a symmetry boundary condition at the left end, and:

∂u

∂x
(x = xn, t) ≈ 1

12δx
· (8un+1 − un − 8un−1 + un−2) (6.73a)

∂u

∂x
(x = xn+1, t) ≈ 0.0 (6.73b)

for a symmetry boundary condition at the right end.
We then simulated the system using RKF4/5. Unfortunately, the ex-

periment failed miserably. The integration step size had to be reduced by
three orders of magnitude to values around h = 10−8, in order to obtain a
numerically stable solution, and the results are still incorrect.

What happened? In the previous experiment, the global relative simu-
lation error had been around err = 10−7, which is small in comparison
with the consistency error, but is still quite large, taking into account that
MATLAB computes everything in double precision. With step sizes in the
order of h = 10−5, we had already sacrificed roughly nine digits to shiftout.

In the new experiment with step sizes smaller by three orders of magni-
tude, we lose at least another three digits to shiftout, i.e., the simulation
error is now of the same order of magnitude as the former consistency error.
Hence we have not gained anything.

In reality, the problem is even worse. With step sizes that small, the
higher order terms of the Taylor–series expansion become irrelevant, and
RKF4/5 behaves just like forward Euler. Consequently, also the stability
domain of the method shrinks to that of forward Euler, which is totally
useless with eigenvalues of the Jacobian spreading up and down along the
imaginary axis of the complex λ · h–plane.

How did BI4 fare in this endeavor? Unfortunately, its destiny is not much
better than that of RKF4/5. Remember that BI4 consists of two semi–steps
of RKF4/5. With larger step sizes, the left forward RKF4/5 semi–step
produces highly unstable xleft4 values, which the right backward RKF4/5
semi–step needs to stabilize in its Newton iteration.

Unfortunately, it cannot do so, because in the statement:

xnew = xnew − H\(xright4 − xleft4); (6.74)

we subtract a potentially very large number, xleft4, from another equally
large number, xright4, which again leads to an extreme case of roundoff.

228 Chapter 6. Partial Differential Equations

With smaller step sizes, the BI4 algorithm degenerates to a forward Euler
semi–step followed by a backward Euler semi–step, i.e., to an inefficient
implementation of the trapezoidal rule. This is clearly superior to forward
Euler alone, since also BI2 is still F–stable, but unfortunately, the semi–
steps themselves still suffer from the shiftout problems of the RKF4/5
algorithm, i.e., the simulation error is still of the same order of magnitude
as the former consistency error.

Why did all simulation attempts fail after a little more than 0.01 seconds
of simulated time? In flow simulations (and in real flow phenomena), it can
happen that the top of the wave travels faster than the bottom of the
wave. When this happens, the wave will eventually topple over, and at this
moment, the wave front becomes infinitely steep. The flow is no longer
laminar , it has now become turbulent .

This is what happens in our shock–tube problem as subsequent versions
of rarefaction and compression waves chase after each other back and forth
through the tube at ever shorter time intervals. No wonder that the bottom
of the three–dimensional plots of the shock–tube simulation look like the
bottom of a water fall.

The MOL approach doesn’t work for simulating turbulent flows. There
exist other simulation techniques (such as the vortex methods [6.12]) that
work well for very high Reynolds numbers (above 100 or 1000), and that
don’t work at all for laminar flows. Reynolds numbers between 1.0 (transi-
tion from laminar to turbulent flow) and 100, is where the real research in
numerical solution of hyperbolic PDE problems is to be found. Until this
day, we don’t have any decent simulation methods that can deal appropri-
ately with turbulent flows at low Reynolds numbers.

6.6 Upwind Discretization

In the previous section, we have recognized that hyperbolic PDEs, when
converted to sets of ODEs using the MOL approach, lead to systems that
share into some of the properties associated with stiff systems, although
they do not meet most of the definitions of stiff systems. Yet, the step size
had to be often reduced in order to obtain stable solutions when using
explicit integration algorithms. In the case of the shock–tube example, the
step size reduction was detrimental in that it led to a bad shiftout problem,
before the consistency error could be reduced to an insignificantly small
value.

How can we stabilize the RK algorithms when dealing with hyperbolic
PDEs? One successful idea that was first proposed by Carver and Hinds is
to bias the spatial discretization formulae of moving waves in the direction
of the provenance of the wave [6.3].

Many wave propagation problems can be formulated in the following

6.6 Upwind Discretization 229

way:

∂u

∂t
+ v · ∂u

∂x
= 0.0 (6.75)

The velocity v determines the direction of flow of the wave. If v > 0, the
wave moves from left to right. If v < 0, it moves from right to left.

The upwind discretization scheme can thus be implemented e.g. as fol-
lows:

∂u

∂x
(x = xi, t) ≈

⎧⎨
⎩

(3ui − 4ui−1 + ui−2)/(2δx) , v � 0
(ui+1 − ui−1)/(2δx) , v ≈ 0

(−ui+2 + 4ui+1 − 3ui)/(2δx) , v � 0
(6.76)

if second–order accurate spatial differences are to be used.
Looking once more at the shock–tube problem with α = β = 0.0 :

∂ρ

∂t
= −v · ∂ρ

∂x
− ρ · ∂v

∂x
(6.77a)

∂v

∂t
= −v · ∂v

∂x
− 1

ρ
· ∂p

∂x
(6.77b)

∂p

∂t
= −v · ∂p

∂x
− γ · p · ∂v

∂x
(6.77c)

we notice that all three of these PDEs look like Eq.(6.75), each with a
correction term.

We thus encoded the fourth–order accurate upwind formulae in the func-
tion:

ux = upwindv(u, δx, bc, bctype, fdirv) (6.78)

where fdirv is a vector of flow directions, and replaced each occurrence of
partial in the state equations by upwindv, setting the argument fdirv as
the velocity vector, v.

Unfortunately, it didn’t work. The shock–tube model discretized using
any fourth–order accurate spatial discretization scheme seems to be unsta-
ble beyond redemption.

Upwind discretization schemes have become quite fashionable in recent
years and come in many different variations. They can be quite effective
at times. We still like the original scheme [6.3] best for its simplicity. Yet,
there doesn’t seem to exist a clean recipe for when and how to use upwind
discretization. Sometimes, it helps to only discretize one of several PDEs
using an upwind scheme, while discretizing the remaining PDEs using a
central difference scheme. What works best can often only be determined
by trial and error.

230 Chapter 6. Partial Differential Equations

6.7 Grid–width Control

How can we make the solution more accurate without paying too much for
it? We already know that it is generally a bad idea to reduce the consistency
error by decreasing the grid width. It is much more effective to increase the
approximation order of the spatial discretization scheme, whenever possi-
ble. Yet, the shock–tube problem has demonstrated that this approach may
not always work.

A more narrow grid may be needed in order to accurately compute a
wave front. It seems intuitively evident that a more narrow grid width
should be used where the absolute spatial gradient is large, thus:

δxi(t) ∝
∣∣∣∣∂u

∂x
(x = xi, t)

∣∣∣∣
−1

(6.79)

When applied to hyperbolic PDEs, Eq.(6.79) unfortunately suggests use of
an adaptively moving grid , since the narrowly spaced regions of the grid
should follow the wave fronts through space and time.

As we mentioned earlier, näıvely implemented grid–width control is prob-
lematic, to say the least. However when implemented carefully, grid–width
control can provide an answer to containing the consistency error with-
out leading to either numerical stability problems or at least unacceptably
expensive simulation runs. Mack Hyman published some very interesting
results on this topic [6.10]. The general gist of his algorithms is the fol-
lowing. We basically operate on a fixed grid as before. However, we want
to make sure that:

δxi(t) ·
∣∣∣∣∂u

∂x
(x = xi, t)

∣∣∣∣ ≤ kmax (6.80)

at all times. If the absolute spatial gradient grows at some point in space
and time, we must reduce the local grid size in order to keep Eq.(6.80)
satisfied. We do this by inserting a new auxiliary grid point in the middle
between two existing points. We should do this before the consistency error
grows too large. It thus makes sense to look at the quantity:

1
h

(∣∣∣∣∂u

∂x
(x = xi, t = tk)

∣∣∣∣−
∣∣∣∣∂u

∂x
(x = xi, t = tk−1)

∣∣∣∣
)

≈ d

dt

(∣∣∣∣∂u

∂x
(x = xi, t)

∣∣∣∣
)

(6.81)
If Eq.(6.80) is in danger of not being satisfied any longer and if the temporal
gradient of the absolute spatial gradient is positive, we insert a new grid
point. On the other hand, if Eq.(6.80) shows a sufficiently small value and
if furthermore the temporal gradient is negative, neighboring auxiliary grid
points can be thrown out again.

The new grid point solutions are computed using spatial interpolation.
These solutions are then used as initial conditions for the subsequent inte-

6.8 PDEs in Multiple Space Dimensions 231

gration of the newly activated differential equations over time. When a grid
point is thrown out again, so is the differential equation that accompanies
it.

The entire process is completely transparent to the user. Only those
solution points are reported for which a solution had been requested. The
actually used basic grid width (determined using true grid–width control at
time zero) and the auxiliary grid points that are introduced and removed
during the simulation run are internal to the algorithm, and the casual user
doesn’t need to be made aware of their existence. This corresponds to the
concept of communication points and a communication interval discussed
in Chapter 4 of this book.

6.8 PDEs in Multiple Space Dimensions

In principle, the MOL methodology can be extended without modification
to the case of PDEs in multiple space dimensions. For example, the two–
dimensional heat flow problem:

∂u

∂t
= σ

(
∂2u

∂x2
+

∂2u

∂y2

)
(6.82)

discretized using third–order accurate finite difference formulae for both
the discretization in the x– and in the y–directions leads to the following
ODE at point x = xi and y = yj :

dui,j

dt
≈ σ

(
ui+1,j − 2ui,j + ui−1,j

δx2
+

ui,j+1 − 2ui,j + ui,j−1

δy2

)
(6.83)

but the problems are formidable. The first, and most frightening, problem
is concerned with the sheer numbers of resulting ODEs. Everything that we
wrote about the consistency error still applies. Except for toy problems, we
shall certainly need in the order of 50 segments in each space direction, in
order to obtain sufficiently smooth output curves. In two space dimensions,
this leads to 50×50 = 2500 ODEs. In the case of three space dimensions, we
obtain 50×50×50 = 125, 000 ODEs. Let us assume the differential equation
is linear, and we decided to write it in matrix form. The A–matrix of the
three-dimensional problem consists of 125, 000×125, 000 = 15, 625, 000, 000
elements. If you are interested in solving such problems, you better get
yourself a fast computer and powerful sparse matrix solvers. This is the
kind of problems for which supercomputers were invented.

The second problem has to do with the distribution of the non–zero
elements in the A–matrix. Until now, it always happened that the A–
matrix of a single linear PDE converted by use of finite differences was
band–structured with a narrow band width. There exist special matrix

232 Chapter 6. Partial Differential Equations

routines for very efficient handling of band–structured matrices. Unfortu-
nately, the same technique no longer applies to two– and three–dimensional
PDEs. Figure 6.15 shows the distribution of non–zero elements in the two–
dimensional and three–dimensional heat equations converted to ODEs by
means of third–order accurate finite differences using 10 segments in each
space dimension. The differential equations were numbered from left to
right, from top to bottom, and from front to back, i.e., starting with the
last of the three indices. We assumed function value boundary conditions
along all edges of the solution cube.

2D Heat Equation 3D Heat Equation

Columns of AColumns of A

R
ow

s
of

A

R
ow

s
of

A

FIGURE 6.15. Distribution of non–zero elements in 2D and 3D heat equations.

Whereas the band width was five in the one–dimensional case, it is 4n+1
in the two–dimensional case, and 4n2 + 1 in the three–dimensional case.
Of course, the precise structure of the A–matrix is application dependent.
Unfortunately, this means that, when efficiency becomes truly an issue, we
may no longer be able to apply the highly efficient algorithms for han-
dling band–structured matrices. General sparse matrix techniques will still
work, but they are considerably less efficient than the band–structured al-
gorithms.

Special algorithms have been designed for renumbering a set of linear
equations in such a manner as to minimize the band width of the resulting
A–matrix. For example the red–black algorithm often works well. These
algorithms have been described in [6.15].

Unfortunately, we are not at the end of our misery yet. The next problem
is illustrated in Fig.6.16.

Figure 6.16 shows a PDE that is defined on an irregularly shaped domain.
Until now, we were always able to make the boundary condition coincide
with one of the grid points. As Fig.6.16 shows, this may no longer be true
in the multidimensional case.

Let us assume that four neighboring values on grid points in x–direction
for y = yj are u1,j , u2,j , u3,j , and u4,j . Let us assume further that the
boundary value is known at x = x1.35 located between x1 and x2.

If we know the four solution values u1,j , u2,j , u3,j , and u4,j , we can use

6.9 Elliptic PDEs and Invariant Embedding 233

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

6

Irregular Domain Boundaries

x

y

u = 10.0

u = 50.0

∂u
∂n = 0.0

∂u
∂n = 0.0

FIGURE 6.16. Irregular domain boundaries.

the Nordsieck vector approach presented in Chapter 4 to compute u1.35,j .
u1.35,j can be expressed as a weighted sum of u1,j , u2,j , u3,j , and u4,j . In
reality, however, we know u1.35,j (boundary value), and u2,j , u3,j , and u4,j

(through numerical integration). What is unknown is u1,j . Thus, we need
to solve the previously determined equation for the unknown u1,j instead
for the known u1.35,j .

To summarize this section: PDEs in one space dimension were still lots
of fun. PDEs in multiple space dimensions are painful, to say the least.
A large number of applied mathematicians devote their entire academic
careers to nothing but solving these types of challenging numerical PDE
problems. The purpose of the utterly brief description presented in this
section is certainly not to add these specialists to the force of unemployed
people, since you, by now, are able to solve all these problems on your
own. The purpose of this section is to show you that there are still plenty
of very challenging research topics around, and to possibly and hopefully
wake your appetite for delving more deeply into one or the other of those
areas.

6.9 Elliptic PDEs and Invariant Embedding

Equations (6.24) and (6.25) specified what elliptic PDEs are. However, this
way of looking at the nature of PDEs is synthetic. People usually don’t
solve PDEs just for fun. They solve PDEs because they represent physi-

234 Chapter 6. Partial Differential Equations

cal problems that they are interested in. Physically meaningful parabolic
PDEs represent predominantly heat diffusion or chemical reaction prob-
lems, and physically meaningful hyperbolic PDEs describe field problems
in either hydrodynamics, electromagnetism, optics, general relativity the-
ory, etc. Elliptic PDEs, on the other hand, are used to model stress and
strain problems in mechanical structural analysis.

The simplest elliptic PDE is the Laplace equation, e.g. in two space
dimensions:

∂2u

∂x2
+

∂2u

∂y2
= 0.0 (6.84)

Let us assume the Laplace equation is defined in a circular domain of radius
r = 1.0 around the origin. Since the domain is circular, it is much more
appropriate to formulate the problem using polar coordinates .

x = r · cos ϕ (6.85a)
y = r · sin ϕ (6.85b)

or:

r =
√

x2 + y2 (6.86a)

ϕ = arctan
(y

x

)
(6.86b)

We can express u(x, y) as ũ(r(x, y), ϕ(x, y)). Thus,

∂u

∂x
=

∂ũ

∂r
· ∂r

∂x
+

∂ũ

∂ϕ
· ∂ϕ

∂x
(6.87)

or, in short–hand notation:

ux = ũr · rx + ũϕ · ϕx (6.88)

Using the chain rule and the multiplication rule, we find:

uxx + uyy =
(
r2
x + r2

y

)
ũrr + 2 (rxϕx + ryϕy) ũrϕ +

(
ϕ2

x + ϕ2
y

)
ũϕϕ

+ (rxx + ryy) ũr + (ϕxx + ϕyy) ũϕ (6.89)

or finally:

∂2ũ

∂r2
+

1
r
· ∂ũ

∂r
+

1
r2

· ∂2ũ

∂ϕ2
= 0.0 (6.90)

The boundary condition could be something like:

6.9 Elliptic PDEs and Invariant Embedding 235

∂ũ

∂r
= f(ϕ, t) (6.91)

Notice that there is no need for any initial condition, since the PDE doesn’t
depend on time at all (except possibly through the boundary condition as
in the above example). No numerical integration across time will take place
at all. We are thus in trouble with our MOL methodology.

In some cases, we might still be able to apply the MOL approach by
either differentiating along r and integrating along ϕ, or alternatively, by
differentiating along ϕ and integrating along r. In both cases, however, we
would be lacking one initial condition, and would instead have one final
condition too many. This is therefore not an initial value problem, but
rather a boundary value problem. We haven’t discussed yet how those can
be solved.

Does this mean that we have to give up for the time being, or is there a
chance that we may turn this problem into one of our known initial value
problems after all?

Let us simplify Eq.(6.91) a bit by assuming that the boundary condition
does not depend on time. In this case, the problem is totally static in nature,
i.e., the solution is not time–dependent at all. The solution consists simply
of a set of u–values at the grid points.

We can now embed this problem within another problem as follows:

∂ũ

∂t
=

∂2ũ

∂r2
+

1
r
· ∂ũ

∂r
+

1
r2

· ∂2ũ

∂ϕ2
(6.92)

with the boundary condition:

∂ũ

∂r
= f(ϕ) (6.93)

and with arbitrary initial conditions.
This is now clearly a parabolic initial value problem, which we already

know how to solve. Since the PDE is analytically stable, and since the
boundary condition is not a function of time, the solution will eventually
settle into a steady state. However, once the steady state has been reached,
the solution no longer changes with time, thus:

∂ũ

∂t
= 0.0 (6.94)

Therefore we conclude that the steady–state solution of the parabolic PDE
is identical with the solution of the original elliptic PDE. This method of
solving elliptic PDEs is called invariant embedding .1 Of course, the price
that we have to pay for this comfort is formidable. We were able to convert

1A majority of the references spell “imbedding” with an “i” rather than with an “e,”
probably because the inventor of the method didn’t have a dictionary handy when he

236 Chapter 6. Partial Differential Equations

a boundary value problem into an initial value problem at the expense of
increasing the number of dimensions by one.

6.10 Finite Element Approximations

Those of you who read the companion book Continuous System Modeling
[6.5] know our reservations against writing down mathematical formulae
deprived of their physical meaning. Mathematics is no end in itself. Math-
ematics is simply the language of physics. Voltages and currents in an elec-
tronic circuit don’t change their values as functions of time, because they
observe some differential equations. They change their values in order to
bring the system to a state of minimal energy. A differential equation is
not the cause that makes physics tick, it is only one way of describing,
in mathematical terms and after the fact, what happens in the process of
energy exchange taking place in the physical system.

You may remember also that there are two ways of looking at energy
conservation laws:

1. We can look at the energy itself. In the most general case, we write
down a Hamiltonian or possibly a Hamiltonian field of the system
(at least if the system is conservative), and from there, we can then
derive a set of differential equations if we so choose.

2. Rather than looking at the stored energy itself, we can look at incre-
mental energies, i.e., at power flows . This leads directly to the bond
graph approach to modeling that was advocated in Chapters 7–9 of
the companion book.

We strongly advocated the latter approach since power flow is a local prop-
erty of the system, whereas energy is a global property of the system. Thus,
power flow considerations lend themselves directly to an object–oriented
approach to modeling.

In distributed parameter system simulation, the situation is a little differ-
ent. As explained earlier, the PDE models that we are dealing with today
are still structurally so simple that object orientation is of little concern.
Also, especially if we are solving a boundary value problem anyway, as in
the case of the elliptic PDEs, we need to solve a global optimization prob-
lem over the entire definition domain of the PDE, thus, the advantages of
a local model description are gone.

Looking at the solution of the previously discussed Laplace equation,
we know that the solution will minimize the amount of energy stored in

wrote his first paper about the method . . . but we cannot bring ourselves to follow the
trend — it looks so ugly (!)

6.11 Summary 237

the system. Consequently, we can write an energy function parameterized
in the (unknown) solution values, and solve a minimization problem over
the set of unknown parameters. This leads to a set of algebraic equations,
possibly nonlinear, in the unknown solution vector.

Approaches that follow this line of reasoning are called finite element
methods. They come in many shades and colors. The technique was origi-
nally developed by civil engineers trying to determine the static stress in
bridges and other building structures. However, the method has a much
broader range of possible applications. For all practical purposes, it can be
viewed as an alternative to the finite difference approaches. Thus, it can
conceptually also be used for other than elliptic PDEs.

The two approaches have their own particular advantages and disadvan-
tages. Finite elements usually are less infected by problems with consistency
errors than finite difference methods. Consequently, we can get by with a
larger (and irregular) mesh, and thus, with a smaller number of equations.
On the other hand, finite difference approximations always lead to sparse
matrices. Finite element approximations do not share this property. As a
consequence, although the number of equations is smaller in the finite el-
ement case, we may not be able to use sparse matrix techniques, and it
is therefore not evident that the smaller system size truly leads to a more
economical algorithm. Also, a finite difference formulation is usually easier
to derive and harder to solve than a finite element formulation. However, it
is easier to incorporate irregular and even non–convex domain boundaries
into a finite element description.

Meanwhile, finite element methods have also been extended to the solu-
tion of non–stationary problems by means of a Galerkin formulation [6.17].
Thus, finite elements have suddenly become a contender to finite differences
even in the context of the MOL methodology. However, more research in
this area is still needed.

6.11 Summary

In this chapter, we have first and primarily discussed the numerical solution
of PDEs in one space dimension. The method–of–lines approach lets us
reduce such PDEs to large ODE systems that we can solve using regular
ODE software.

Parabolic PDEs lead to sets of (artificially) stiff ODEs that can be treated
appropriately using stiff system solvers such as the BDF algorithms. Since
all of today’s continuous–system modeling and simulation environments,
such as Dymola [6.7, 6.8], offer stiff system solvers as part of their simu-
lation run–time library, it became clear that they are perfectly capable of
dealing with parabolic PDEs in one space dimension. The most cumber-
some part in the conversion process was the derivation of the coefficients for

238 Chapter 6. Partial Differential Equations

the spatial finite difference approximations using Newton–Gregory polyno-
mials, but this process can be easily automated.

Hyperbolic PDEs lead to large sets of marginally stable ODEs that can
best be solved by F–stable integration algorithms, such as the backinter-
polation techniques. However, explicit algorithms, such as AB3 or RKF4/5
may sometimes work just as well, as they avoid the need of computing ex-
pensive Jacobians and inverse Hessians. Hyperbolic PDEs are numerically
more demanding than their parabolic cousins due to the occurrence of trav-
eling shock waves. Adaptive moving mesh algorithms can provide a solution
to this problem, but then call for special–purpose software, since these al-
gorithms are non–trivial in their implementation. It would be too much
of a burden to ask the user to implement such algorithms manually. Yet,
powerful modeling environments can make also this process transparent to
the modeler.

Elliptic PDEs in one space dimension are no PDEs at all. They are one
class of boundary value ODEs, and we shall discuss later in this book how
these can be tackled in general. However, one method was already provided
here, namely the method of invariant embedding, a method that converts
the boundary value ODE into a parabolic PDE in one space dimension,
with which we can then proceed as elaborated above.

Multidimensional PDEs were discussed next. Although they can, in prin-
ciple, be treated in exactly the same manner as their one–dimensional
counterparts, the numerical problems are formidable, and efficiency con-
siderations become here an issue of utmost importance.

Does there exist general–purpose PDE software? We had already men-
tioned the FORSIM–VI software [6.4]. FORSIM–VI is just a Fortran pro-
gram. No preprocessor is involved at all. The user simply provides a Fortran
subroutine describing his or her model. This makes FORSIM inappropriate
for use in more complex ODE situations, since not even an equation sorter
is offered, lest an object–oriented modeling facility. What makes FORSIM
different from any other (simple–minded) ODE simulation system is that
FORSIM provides built–in subroutines for converting spatial derivatives
into finite difference approximations. These routines know how to compute
the necessary coefficients, and consequently, the user doesn’t need to worry
about Newton–Gregory polynomials. FORSIM works with both equidis-
tantly and non–equidistantly spaced grids. FORSIM also offers built–in
routines for converting general and even nonlinear boundary conditions
into boundary value conditions. Thus, FORSIM helps the user tremen-
dously with the encoding of his or her PDEs. Routines are available for
converting PDEs in one to three space dimensions, however, the two– and
three–dimensional routines are not general since they work only on rect-
angular domains. FORSIM is strictly MOL–oriented. Spatial derivatives
are discretized by means of finite difference approximations, whereas tem-
poral derivatives are kept in the program for numerical integration across
time. FORSIM offers a Gear (BDF) algorithm for the solution of parabolic

6.11 Summary 239

problems, and an RKF4/5 algorithm for hyperbolic ones.
A fairly similar software system is DSS/2 [6.16]. The two systems,

FORSIM–VI and DSS/2 are in fact so similar that a further discussion
of DSS/2 can be skipped.

Other systems, such as PDEL [6.2], went another route. For the benefit
of a more finely tuned numerical solution, they sacrificed generality for
efficiency. These software systems allow the user to choose between a set
of standard frequently occurring PDEs, and then employ different types of
(not necessarily MOL) algorithms to solve the problem.

It may be noticed that all of these systems are fairly old. In the early sev-
enties, it was hoped that PDE problems could be solved by general–purpose
PDE software just as ODE problems are solved by general–purpose ODE
software. This turned out to be an illusion. The ODE situation is much
simpler. All we need to do is to provide a tool that allows to choose be-
tween a set of different numerical integration algorithms, and we are in
business. Moreover, it often doesn’t matter too much what algorithm we
choose. One algorithm may be 30% faster or 20% slower than another, but
who cares. Modern PCs have become so powerful that they can effectively
and efficiently deal with the simulation of a large majority of lumped pa-
rameter models. In contrast, there exist many different techniques to solve
PDE problems. Even if we limit our discussion to MOL–solutions, we must
choose:

1. a numerical integration algorithm for integration across time,

2. a grid for discretization in space,

3. a numerical discretization scheme for differentiation across space,

4. an algorithm to translate boundary conditions specified at an arbi-
trary point in space to boundary conditions specified at the nearest
grid point

5. an algorithm for converting general boundary conditions to boundary
value conditions,

and this is only one among many approaches for numerically solving PDEs.
Furthermore, the sensitivity of the solution to the selection of just the right
combination of algorithms is much greater in the PDE case than in the ODE
case. Selecting one method may mean that we have to wait for 50 hours
until we obtain a (hopefully correct) answer, whereas the same problem
may be solved by the best possible combination of algorithms in just a few
seconds.

For these reasons, general–purpose PDE software hasn’t lived up to its
promise. The “casual” user of PDE software cannot be protected from hav-
ing to understand the intricacies of the underlying numerical algorithms,
and the numerical solution to all but toy PDE problems is so expensive

240 Chapter 6. Partial Differential Equations

that it is well worth spending some time on understanding what is going
on before starting to crunch numbers. Getting coefficients out of Newton–
Gregory polynomials may be but the least of our problems.

The situation is somewhat different in the case of elliptic PDEs. Elliptic
PDEs are the simplest and most benign of all PDE problems. An extensive
effort was undertaken by John Rice and his colleagues with large amounts
of funding through the national agencies to solve that problem once and for
all. They designed the ELLPACK software [6.15]. ELLPACK started out
as a collection of useful algorithms to solve general–purpose elliptic PDEs
in two and three space dimensions.

It turned out that the situation became soon too messy. Casual users
no longer could learn to use these algorithms without help from the pro-
fessional. To remedy the situation, a simple language was designed, and a
compiler was written that would translate programs written in that lan-
guage into a Fortran program that would then invoke the previously dis-
cussed algorithms that now form part of the run–time library. Thus, by
this time, we are in the same situation as with the continuous–system sim-
ulation languages.

It turned out that it didn’t work. The approach was too simple–minded.
As a new algorithm became available, new keywords had to be added to
the language in order to make this new algorithm accessible, and conse-
quently, the compiler had to be updated frequently. This became too much
of a hassle to the software designers. So they decided to parameterize the
compiler. The compiler was generated out of a data template file that de-
scribed both syntax and semantics of the ELLPACK language by means
of a compiler–compiler . So, from now on, new features needed only to be
incorporated into the data template file, and a new compiler for the so
modified language could be generated at once.

Well, you may already have guessed . . . it didn’t work. The researchers
found the manual generation of the data template file much too cumber-
some after all. That problem was taken care of easily. The precise details
of the data template file were generated by a data template compiler out
of a more abstract description of the data template file. Of course, also
the data template compiler wasn’t hand–coded. Why should it? Instead,
the data template compiler was generated out of an abstract description
of its duties by the same compiler–compiler that also generates the ELL-
PACK language compiler. This allows us to also update the data template
compiler easily and readily.

At this point in time, only one question remains: Who wrote the compiler–
compiler? We assume most of you read the story of Münchhausen who
pulls himself out of the swamp by pulling on his own hair . . . the compiler–
compiler wrote itself. A first (bootstrap) version of the compiler–compiler
was hand–coded. This version was already able to read a language descrip-
tion in terms of its syntax and semantics. Well, the first language descrip-
tion it got to read was its own. So, by running the bootstrap compiler–

6.12 References 241

compiler through a description of itself, a second and much cleaner version
of the compiler–compiler was obtained that could subsequently be used
to generate new versions of the ELLPACK language compiler, the data
template compiler, and –why not– itself.

Was it worth it? As an intellectual stimulus, most certainly. As an ex-
perimental toolbox for solving new kinds of elliptic PDEs, probably. As a
general–purpose production tool for solving specific PDE problems posed
in industry, not likely. We acquired the tool some years ago when we held
a contract from the microelectronic industry to design a device simulator
that could predict the breakdown behavior of bipolar power transistors (ef-
fectively, of any kind of reverse–biased p–n junction). The results that we
obtained using ELLPACK were documented in [6.18]. ELLPACK allowed
us to fairly quickly and easily go through a number of different algorithms
and gain a feeling for which combination of algorithms might work decently
well. However, the simulations obtained in this manner were painfully slow.
A simple p–n junction milled for an hour or two on a VAX 11/780. More
complex devices could not be handled at all within reasonable time lim-
its. Therefore, we then designed our own special–purpose device simulator,
ASEPS [6.19]. This program was able to simulate simple p–n junctions
in a few seconds of CPU time on the same machine. ASEPS then enabled
us to also study more complex device structures such as special geomet-
ric configurations of device termination structures for radiation–hardened
power MOSFETs [6.6]. These simulation runs took a few minutes each,
and optimization studies could be performed in batch mode over night.

Good special–purpose finite element software for structural analysis, such
as NASTRAN, has been around for some time. This software doesn’t at-
tempt to solve general–purpose elliptic PDEs. Only one type of problem
is solved, but the program is very flexible with respect to the specification
of the domain on which the problem is to be solved and with respect to
the selection of grid points (finite element programs aren’t limited to using
rectangular grids). Special–purpose numerical PDE solvers exist also for
several other classes of applications, such as fluid dynamics.

It is disappointing to a generalist that the general–purpose approach to
numerical PDE solution didn’t work out. Unfortunately, we don’t see any
cure yet. Consequently, special–purpose solutions for specific PDE problems
will be around for years to come.

6.12 References

[6.1] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial–Value Problems in Differential–Algebraic
Equations. North–Holland, New York, 1989. 256p.

[6.2] Alfonso F. Cárdenas and Walter J. Karplus. PDEL — A Language

242 Chapter 6. Partial Differential Equations

for Partial Differential Equations. Comm. ACM, 13:184–191, 1970.

[6.3] Michael B. Carver and H.W. Hinds. The Method of Lines and the
Advective Equation. Simulation, 31:59–69, 1978.

[6.4] Michael B. Carver, D.G. Stewart, J.M. Blair, and W.M. Selander.
The FORSIM VI Simulation Package for the Automated Solution
of Arbitrarily Defined Partial and/or Ordinary Differential Equation
Systems. Technical Report AECL–5821, Chalk River Nuclear Lab-
oratories, Atomic Energy of Canada Limited, Chalk River, Ontario,
Canada., 1978.

[6.5] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[6.6] Kenneth R. Davis, Ronald D. Schrimpf, Kenneth F. Galloway,
and François E. Cellier. The Effects of Ionizing Radiation on
Power–MOSFET Termination Structures. IEEE Trans. Nuclear Sci.,
36(6):2104–2109, 1989.

[6.7] Hilding Elmqvist. A Structured Model Language for Large Continuous
Systems. PhD thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[6.8] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den, 2004.

[6.9] C. William Gear. Numerical Initial Value Problems in Ordinary Dif-
ferential Equations. Series in Automatic Computation. Prentice–Hall,
Englewood Cliffs, N.J., 1971. 253p.

[6.10] J. Mack Hyman. Moving Mesh Methods for Partial Differential
Equations. In Jerome A. Goldstein, Steven Rosencrans, and Gary A.
Sod, editors, Mathematics Applied to Science: In Memoriam Edward
D. Conway, pages 129–153. Academic Press, Boston, Mass., 1988.

[6.11] John D. Lambert. Numerical Methods for Ordinary Differential Sys-
tems: The Initial Value Problem. John Wiley, New York, 1991. 304p.

[6.12] R. Ivan Lewis. Vortex Element Methods for Fluid Dynamic Analysis
of Engineering Systems. Cambridge University Press, New York, 1991.
588p.

[6.13] Anthony Ralston and Herbert S. Wilf. Mathematical Methods for
Digital Computers. John Wiley & Sons, New York, 1960. 287p.

[6.14] John R. Rice and Ronald F. Boisvert. Solving Elliptic Problems
Using Ellpack. Springer–Verlag, New York, 1985. 497p.

6.13 Bibliography 243

[6.15] Robert D. Richtmyer and K. William Morton. Difference Methods
for Initial Value Problems. Wiley Interscience, New York, 1967. 405p.

[6.16] William E. Schiesser. The Numerical Method of Lines: Integration
of Partial Differential Equations. Academic Press, San Diego, Calif.,
1991. 326p.

[6.17] V. Rao Vemuri and Walter J. Karplus. Digital Computer Treatment
of Partial Differential Equations. Prentice–Hall, Englewood Cliffs,
N.J., 1981. 449p.

[6.18] Qiming Wu and François E. Cellier. Simulation of High–Voltage
Bipolar Devices in the Neighborhood of Breakdown. Mathematics and
Computers in Simulation, 28:271–284, 1986.

[6.19] Qiming Wu, Chimin Yen, and François E. Cellier. Analysis of Break-
down Phenomena in High–Voltage Bipolar Devices. Transactions of
SCS, 6(1):43–60, 1989.

6.13 Bibliography

[B6.1] Myron B. Allen, Ismael Herrera, and George F. Pinder. Numerical
Modeling in Science and Engineering. John Wiley & Sons, New York,
1988. 418p.

[B6.2] William F. Ames. Numerical Methods for Partial Differential Equa-
tions. Academic Press, New York, 3rd edition, 1992. 433p.

[B6.3] T. J. Chung. Computational Fluid Dynamics. Cambridge Univer-
sity Press, Cambridge, United Kingdom, 2002. 800p.

[B6.4] Peter S. Huyakorn and George F. Pinder. Computational Methods
in Subsurface Flow. Academic Press, New York, 1983. 473p.

[B6.5] Leon Lapidus and George F. Pinder. Numerical Solution of Par-
tial Differential Equations in Science and Engineering. John Wiley &
Sons, New York, 1999. 677p.

[B6.6] Robert Vichnevetsky and John B. Bowles. Fourier Analysis of Nu-
merical Approximations of Hyperbolic Equations. SIAM Publishing,
Philadelphia, Penn., 1982. 140p.

[B6.7] John Keith Wright. Shock Tubes. John Wiley & Sons, New York,
1961. 164p.

244 Chapter 6. Partial Differential Equations

6.14 Homework Problems

[H6.1] Heat Diffusion in the Soil

Agricultural engineers are interested in knowing the temperature distribu-
tion in the soil as a function of the surface air temperature. As shown in
Fig.H6.1a, we want to assume that we have a soil layer of 50 cm. Under-
neath the soil, there is a layer that acts as an ideal heat insulator.

x

FIGURE H6.1a. Soil topology.

The heat flow problem can be written as:

∂u

∂t
=

λ

ρ · c · ∂2u

∂x2
(H6.1a)

where λ = 0.004 cal cm−1 sec−1 K−1 is the specific thermal conductance
of soil, ρ = 1.335 g cm−3 is the density of soil, and c = 0.2 cal g−1 K−1 is
the specific thermal capacitance of soil.

The surface air temperature has been recorded as a function of time. It
is tabulated in Table H6.1a.

We want to assume that the surface soil temperature is identical with
the surface air temperature at all times. We want to furthermore assume
that the initial soil temperature is equal to the initial surface temperature
everywhere.

Specify this problem using hours as units of time, and centimeters as
units of space. Discretize the problem using third–order accurate finite
differences everywhere. Simulate the resulting linear ODE system using
MATLAB. Plot on one graph the soil temperature at the surface and at
the insulator as functions of time. Generate also a three–dimensional plot
showing the temperature distribution in the soil as a function of time and
space.

6.14 Homework Problems 245

t [hours] u oC
0 6
6 16

12 28
18 21
24 18
36 34
48 18
60 25
66 15
72 4

TABLE H6.1a. Surface air temperature.

[H6.2] Electrically Heated Rod

We start out with a simple parabolic partial differential equation describing
the temperature distribution in an electrically heated copper rod. This
phenomenon can be modeled by the following equation:

∂T

∂t
= σ

(
∂2T

∂r2
+

1
r
· ∂T

∂r
+

Pelectr

λ · V
)

(H6.2a)

The first two terms represent the standard diffusion equation in polar co-
ordinates as described previously in Eq.(6.92), and the constant term de-
scribes the electrically generated heat. It can be derived from Fig.8.13 of
the companion book on Continuous System Modeling [6.5].

σ =
λ

ρ · c (H6.2b)

is the diffusion coefficient, where λ = 401.0 J m−1 sec−1 K−1 is the specific
thermal conductance of copper, ρ = 8960.0 kg m−3 is its density, and
c = 386.0 J kg−1 K−1 is the specific thermal capacitance.

Pelectr = u · i (H6.2c)

is the dissipated electrical power, and

V = π · R2 · � (H6.2d)

is the volume of the rod with the length � = 1 m and the radius R =
0.01 m. The rod is originally in an equilibrium state at room temperature
Troom = 298.0 K.

246 Chapter 6. Partial Differential Equations

The boundary conditions are:

∂T

∂r

∣∣∣∣
r=0.0

= 0.0 (H6.2e)

∂T

∂r

∣∣∣∣
r=R

= −k1

(
T (R)4 − T 4

room

)− k2 (T (R) − Troom) (H6.2f)

where the quartic term models the heat radiation, whereas the linear term
models convective heat flow away from the rod.

We want to simulate this system using the MOL approach with 20 spa-
tial segments (in radial direction), and using second–order accurate finite
difference approximations for the first–order spatial derivatives, and third–
order accurate finite differences for the second–order spatial derivatives.
We are going to treat the boundary condition at the center as a general
boundary condition rather than as a symmetry boundary condition in order
to circumvent the difficulties with computing the term (∂T/∂r)/r, which
evaluates to 0/0 at r = 0.0.

For internal segments, we obtain thus differential equations of the type:

dTi

dt
≈ σ

(
Ti+1 − 2Ti + Ti−1

δr2
+

1
r
· Ti+1 − Ti−1

2δr
+

Pelectr

λ · V
)

(H6.2g)

which are straightforward to implement. For the left–most segment, we
have the condition:

∂T

∂r

∣∣∣∣
r=0.0

= 0.0 ≈ 1
2δr

(−T3 + 4T2 − 3T1) (H6.2h)

and therefore:

T1 ≈ 4
3
T2 − 1

3
T3 (H6.2i)

Consequently, we don’t need to solve a differential equation at r = 0.0, and
thereby, we skip the 0/0 division.

At the right–most segment, we obtain:

∂T

∂r

∣∣∣∣
r=R

= −k1

(
T 4

21 − T 4
room

)−k2 (T21 − Troom) ≈ 1
2δr

(−3T21 + 4T20 − T19)

(H6.2j)
Thus, we obtain a nonlinear equation in the unknown T21:

F(T21) = k1

(
T 4

21 − T 4
room

)
+ k2 (T21 − Troom) − 1

2δr
(−3T21 + 4T20 − T19)

≈ 0.0 (H6.2k)

6.14 Homework Problems 247

which can be solved by Newton iteration:

T 0
21(t) = T21(t − h) (H6.2l)

T 1
21(t) = T 0

21(t) −
F(T 0

21)
H(T 0

21)
(H6.2m)

T 2
21(t) = T 1

21(t) −
F(T 1

21)
H(T 1

21)
(H6.2n)

until convergence

where:
H(T21) =

∂F
∂T21

= 4k1T
3
21 + k2 − 3

2δr
(H6.2o)

[H6.3] Wave Equation

The wave equation has been written as:

∂2u

∂t2
= c2 · ∂2u

∂x2
(H6.3a)

Let us rewrite u(x, t) as ũ(v, w), where:

v = t + x (H6.3b)
w = t − x (H6.3c)

What happens?

[H6.4] Shock Tube Simulation

We wish to analyze the influence of α and β on the accuracy of the sim-
ulation. Repeat the same 50 segment simulation with different values for
α and β. What do you conclude about the relative influence of α and β
in comparison with the consistency error. Assuming a small value of α,
which is the largest value of β acceptable before the relative error exceeds
1%. Similarly, assuming a small value of β, which is the largest value of α
acceptable before the relative error exceeds 1%.

Use one half the maximum values of α and β found above, and simulate
across a longer period of time. Can you reach steady–state? Interpret the
results.

[H6.5] River Bed Simulation

Hydrologists are interested in determining the movement of river beds with
time. The dynamics of this system can be described through the PDE:

∂v

∂t
+ v · ∂v

∂x
+ g · ∂h

∂x
+ g · ∂z

∂x
= w(v) (H6.5a)

248 Chapter 6. Partial Differential Equations

where v(x, t) is the absolute value of the flow velocity of the water, h(x, t)
is the water depth, and z(x, t) is the altitude of the river bed relative to an
arbitrary constant level. g = 9.81 m sec−2 is the gravitational constant.

w(v) is the friction of water at the river bed:

w(v) = − g · v2

s2
k · h4/3

(H6.5b)

where sk = 32.0 m3/4 sec−1 is the Strickler constant.
The continuity equation for the water can be written as:

∂h

∂t
+ v · ∂h

∂x
+ h · ∂v

∂x
= 0.0 (H6.5c)

and the continuity equation for the river bed can be expressed as:

∂z

∂t
+

df(v)
dv

· ∂v

∂x
= 0.0 (H6.5d)

where f(v) is the transport equation of Meyer–Peter simplified by means
of regression analysis:

f(v) = f0 + c1(v − v0)c2 (H6.5e)

where c1 = 1.272 · 10−4 m, and c2 = 3.5.
We want to study the Rhine river above Basel over a distance of 6.3 km.

We want to simulate this system across 20 days of simulated time. The
initial conditions are tabulated in Table H6.5a.

x [m] v [m/s] h [m] z [m]
0.0 2.3630 3.039 59.82

630.0 2.3360 3.073 59.06
1260.0 2.2570 3.181 58.29
1890.0 1.6480 4.357 56.75
2520.0 1.1330 6.337 54.74
3150.0 1.1190 6.416 54.60
3780.0 1.1030 6.509 54.45
4410.0 1.0620 7.001 53.91
5040.0 0.8412 8.536 52.36
5670.0 0.7515 9.554 51.33
6300.0 0.8131 8.830 52.02

TABLE H6.5a. Initial data for river bed simulation.

We need three boundary conditions. We want to assume that the amount
of water q = h · v entering the simulated river stretch is constant. For
simplicity, we shall assume both h and v constant. At the lower end, there
is a weir. Therefore, we can assume that the sum of z and h is constant

6.14 Homework Problems 249

at the lower end of the simulated stretch of river. Since the water moves
much faster than the river bed, it doesn’t make too much sense to apply
boundary conditions to the river bed.

This system is pretty awful. The time constants of the water are measured
in seconds, whereas those of the ground are measured in days. We are
interested in the slow time constant, yet it is the fast time constant that
dictates the integration step size. We can think of the first two PDEs as
a nonlinear function generator for the third PDE. Let us therefore modify
Eq.(H6.5d) as follows:

∂z

∂t
+ β · df(v)

dv
· ∂v

∂x
= 0.0 (H6.5f)

The larger we choose the tuning parameter, the faster will the river bed
move. Select a value somewhere around β = 100 or even β = 1000. Later,
we must analyze the damage that we did to the PDE system by introducing
this tuning parameter. Maybe, we can extrapolate to the correct system
behavior at β = 1.0.

The third boundary condition is analytically correct, but numerically
not very effective since it is specified at the wrong end of the system. Since
water always flows downhill, a boundary condition at the bottom is about
as effective as commanding my dog to solve this homework problem. Let
us therefore introduce yet another boundary condition at the top end:

∂z

∂x
= constant (H6.5g)

However, since we cannot specify a derivative boundary condition for a
first–order equation, we reformulate Eq.(H6.5g) as:

z1 = z2 + constant (H6.5h)

Plot the river bed altitude z(x) measured at the end of every five day period
superposed onto one graph.

Rerun the simulation for different values of β. Is it possible to extrapolate
what the solution would look like for β = 1.0?

[H6.6] Boundary Value Conversion

A PDE in one space dimension is specified in the range [0.0,1.0] with δx =
0.1. Unfortunately, one of the boundary values if given as: u(x = 0.98, t) =
f(t).

We want to translate this boundary value to an equivalent boundary
value at u(x = 1.0, t). Use the Nordsieck vector approach to come up
with a third–order accurate equation for u(x = 1.0, t) as a function of
u(x = 0.98, t), u(x = 0.9, t), u(x = 0.8, t), and u(x = 0.7, t).

[H6.7] Coordinate Transformation

Verify that Eq.(6.92) is indeed correct.

250 Chapter 6. Partial Differential Equations

[H6.8] Coordinate Transformation

We wish to solve the Laplace equation for diffusion along the surface of a
globe, assuming that no diffusion takes place in radial direction. To this
end, we start out with the three–dimensional Laplace equation:(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) = 0.0 (H6.8a)

We want to rewrite this Laplace equation as a function of three different
coordinates:

u(x, y, z) = ũ(ρ, ξ, η) (H6.8b)

where ρ is the radius of the globe, ξ is the longitude, and η is the latitude.
We obtain a modified Laplace equation in these coordinates. We then spec-
ify that:

∂2ũ

∂ρ2
=

∂ũ

∂ρ
= 0.0 (H6.8c)

It is easy to make mistakes in such transformations. We therefore want to
check whether the result is at least potentially correct. To this end, we let
ρ → ∞. Obviously, this must give us the original Laplace equation back,
now expressed in ξ and η instead of x and y.

[H6.9] Poiseuille Flow Through a Pipe

The following equations describe the stationary flow of an incompressible
fluid through a pipe:

dv̂

dρ
=

−√
2Γ

(τM + 1)2
· ρ · τ2 (H6.9a)

d

dρ

(
ρ

T
· dτ

dρ

)
=

−Γ
(τM + 1)3

· ρ3 · τ2 (H6.9b)

where:

ρ =
r

R
(H6.9c)

τ =
T (r)
TW

(H6.9d)

are two normalized coordinates. r is the distance from the center of the
pipe, and R is the radius of the pipe. T (r) is the temperature of the fluid
at a distance r from the center, and TW is the temperature of the pipe wall.
TW is assumed constant. v̂ = k1 ∗ v is the normalized flow velocity, where

6.15 Projects 251

k1 is a constant that depends on the viscosity, the thermal conductivity,
and the average temperature of the fluid.

The boundary conditions are:

dv̂

dρ
(ρ = 0.0) = 0.0 (H6.9e)

dτ

dρ
(ρ = 0.0) = 0.0 (H6.9f)

v̂(ρ = 1.0) = 0.0 (H6.9g)
τ(ρ = 1.0) = 1.0 (H6.9h)

Thus, this is a boundary value problem. We could integrate this problem
across ρ in the range ρ = [0.0, 1.0] with unknown initial conditions v̂(ρ =
0.0) = v̂M and τ(ρ = 0.0) = τM .

However, in the light of what we learnt in this chapter, we shall try
another approach. We embed this boundary value problem into a parabolic
PDE, which we solve with arbitrary initial conditions until we reach steady–
state.

Notice that the equations contain two yet unknown parameters. Γ is a
constant that depends on the fluid. Let us assume that Γ = 10.0. τM is the
value of the normalized temperature at the center of the pipe. We simply
introduce the momentary value of that temperature into the equation, and
modify that value as the simulation proceeds.

6.15 Projects

[P6.1] Grid–Width Control

Implement a moving grid algorithm for the shock tube problem using the
ideas that were outlined in this chapter.

6.16 Research

[R6.1] Grid–Width Control

Generalize the idea of a moving grid algorithm to hyperbolic PDEs in two
space dimensions.

Develop a general theory for assessment of the consistency error, and
derive a grid–width control algorithm that contains the consistency error
in a reliable and systematic fashion.

7

Differential Algebraic
Equations

Preview

In this chapter, we shall analyze simulation problems that don’t present
themselves initially in an explicit state–space form. For many physical sys-
tems, it is quite easy to formulate a model where the state derivatives show
up implicitly and possibly even in a nonlinear fashion anywhere within the
equations. We call system descriptions that consist of a mixture of implic-
itly formulated algebraic and differential equations Differential Algebraic
Equations (DAEs). Since these cases constitute a substantial and impor-
tant portion of the models encountered in science and engineering, they
deserve our attention. In this chapter, we shall discuss the question, how
sets of DAEs can be converted symbolically in an automated fashion to
equivalent sets of ODEs.

7.1 Introduction

In the companion book Continuous System Modeling [7.5], we have demon-
strated that object–oriented modeling of physical systems invariably leads
to implicit DAE descriptions. Some of these can be converted to ODE de-
scriptions quite easily by simple sorting algorithms, whereas others contain
big algebraic loops or even structural singularities.

We shall now revisit these issues and present a set of symbolic formulae
manipulation algorithms that allow us to convert implicit DAE descriptions
to equivalent explicit ODE descriptions.

Let us once again begin with a simple electrical RLC circuit. Its schematic
is shown in Fig.7.1.

As there are five circuit elements defining two variables each, namely the
voltage across and the current through that element, we need 10 equations
to describe the model, e.g. the five element equations, defining the rela-
tion between voltage across and current through the element, plus three
mesh equations in the mesh voltages, plus two node equations in the node
currents. A possible set of equations is:

u0 = f(t) (7.1a)
u1 = R1 · i1 (7.1b)

254 Chapter 7. Differential Algebraic Equations

U
0
=

1
0

R=20

C
=

1
.0

e
-6

L
=

0
.0

0
1
5

Ground
R

=
1

0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 7.1. Schematic of electrical RLC circuit.

u2 = R2 · i2 (7.1c)

uL = L · diL
dt

(7.1d)

iC = C · duC

dt
(7.1e)

u0 = u1 + uC (7.1f)
uL = u1 + u2 (7.1g)
uC = u2 (7.1h)
i0 = i1 + iL (7.1i)
i1 = i2 + iC (7.1j)

As we wish to generate a state–space model, we define the outputs of the
integrators, uC and iL, as our state variables. These can thus be considered
known variables, for which no equations need to be found. In contrast, the
inputs of the integrators, duC/dt and diL/dt, are unknowns, for which
equations must be found. These are the state equations of the state–space
description.

The structure of these equations can be captured in the so–called struc-
ture incidence matrix. The structure incidence matrix lists the equations
in any order as rows, and the unknowns in any order as columns. If the ith

equation contains the jth variable, the element < i, j > of the structure
incidence matrix assumes a value of 1, otherwise it is set to 0. The structure
incidence matrix for the above set of equations could e.g. be written as:

7.1 Introduction 255

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 i0 u1 i1 u2 i2 uL
diL
dt

duC
dt iC

Eq.(7.1a) 1 0 0 0 0 0 0 0 0 0
Eq.(7.1b) 0 0 1 1 0 0 0 0 0 0
Eq.(7.1c) 0 0 0 0 1 1 0 0 0 0
Eq.(7.1d) 0 0 0 0 0 0 1 1 0 0
Eq.(7.1e) 0 0 0 0 0 0 0 0 1 1
Eq.(7.1f) 1 0 1 0 0 0 0 0 0 0
Eq.(7.1g) 0 0 1 0 1 0 1 0 0 0
Eq.(7.1h) 0 0 0 0 1 0 0 0 0 0
Eq.(7.1i) 0 1 0 1 0 0 0 0 0 0
Eq.(7.1j) 0 0 0 1 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.2)

Initially, all of these equations are acausal, meaning that the equal sign
has to be interpreted in the sense of an equality, rather than in the sense
of an assignment. For example, the above set of equations contains two
equations that list u0 to the left of the equal sign. Evidently, only one of
those can be used to solve for u0.

Two simple rules can be formulated that help us decide, which variables
to solve for from which of the equations:

1. If an equation contains only a single unknown, i.e., one variable for
which no solving equation has been found yet, we need to use that
equation to solve for this variable. For example, Eq.(7.1a) contains
only one unknown, u0, hence that equation must be used to solve for
u0, and consequently, Eq.(7.1a) has now become a causal equation,
and u0 can henceforth be considered a known variable in all remaining
equations.

2. If an unknown only appears in a single equation, that equation must
be used to solve for it. For example, i0 only appears in Eq.(7.1i).
Hence we must use Eq.(7.1i) to solve for i0.

These rules can be easily visualized in the structure incidence matrix. If
a row contains a single element with a value of 1, that equation needs to
be solved for the corresponding variable, and both the row and the column
can be eliminated from the structure incidence matrix. If a column contains
a single element with a value of 1, that variable must be solved for using
the corresponding equation. Once again, both the column and the row can
be eliminated from the structure incidence matrix. The algorithm proceeds
iteratively, until no more rows and columns can be eliminated from the
structure incidence matrix.

256 Chapter 7. Differential Algebraic Equations

7.2 Causalization of Equations

Although the algorithm based on the structure incidence matrix will work,
another algorithm has become more popular in recent years that is based
on graph theory. It is an algorithm proposed first by Tarjan1 [7.21]. Rather
than capturing the structure of the set of DAEs in the form of a structure
incidence matrix, it captures the same information in a graphical data
structure, called the structure digraph.

The structure digraph depicts on the left hand side the equations as a
column of nodes. On the right hand side, the unknowns are displayed also
as a column of nodes. Since the number of equations must always equal the
number of unknowns, the two column vectors are of equal length. A straight
line connects an equation with an unknown, if that unknown appears in
the equation.

The structure digraph of the above set of equations could be drawn e.g.
as shown in Fig.7.2.

Eq.(7.1a)

Eq.(7.1b)

Eq.(7.1c)

Eq.(7.1d)

Eq.(7.1e)

Eq.(7.1f)

Eq.(7.1g)

Eq.(7.1h)

Eq.(7.1i)

Eq.(7.1j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

FIGURE 7.2. Structure digraph of electrical circuit.

We now implement our two rules for selecting which variable is to be
solved for from which equation using the structure digraph.

When we select a variable to be solved for using a given equation, we
color the connection between the equation and the variable in “red.” Since
this book is printed in black and white, we shall simulate the coloring by
dashing it.

When we declare that a previously unknown variable is now known, be-
cause we already found an equation to solve for it, or because the equation,

1The algorithm presented in this section is not exactly the one originally proposed
by Tarjan, but rather a somewhat modified algorithm, applied furthermore in a dif-
ferent context. Tarjan, in his original article, did not concern himself at all with the
causalization of equations, but rather with detecting loops in a directed graph.

7.2 Causalization of Equations 257

in which it occurs, is being used to solve for another variable, we color
that connection in “blue.” In this book, we shall simulate the coloring by
dotting it.

A causal equation is an equation that has exactly one red (dashed) line
attached to it. Acausal equations are equations that have only black (solid)
and blue (dotted) lines attached to them. Known variables are variables
that have exactly one red (dashed) line ending in them. An unknown vari-
able has only black (solid) and blue (dotted) lines attached to it. No equa-
tion or variable has ever more than one red (dashed) line connecting to
it.

We are now ready to implement our two rules.

1. For all acausal equations, if an equation has only one black (solid) line
attached to it, color that line red (dash it), follow it to the variable it
points at, and color all other connections ending in that variable in
blue (dot the connections). Renumber the equation using the lowest
free number starting from 1.

2. For all unknown variables, if a variable has only one black (solid)
line attached to it, color that line red (dash it), follow it back to the
equation it points at, and color all other connections emanating from
that equation in blue (dot the connections). Renumber the equation
using the highest free number starting from n, where n is the number
of equations.

Figure 7.3 shows the structure digraph of the electrical circuit after one
iteration through these two rules.

Eq.(7.1a)

Eq.(7.1b)

Eq.(7.1c)

Eq.(7.1d)

Eq.(7.1e)

Eq.(7.1f)

Eq.(7.1g)

Eq.(7.1h)

Eq.(7.1i)

Eq.(7.1j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

Eq. #1

Eq. #2

Eq. #10

Eq. #9

Eq. #8

FIGURE 7.3. Structure digraph of electrical circuit after partial coloring.

258 Chapter 7. Differential Algebraic Equations

In the first iteration, five of the 10 equations were made causal, two using
rule #1, and three using rule #2. However, the algorithm doesn’t end here,
since these rules can be applied recursively.

Figure 7.4 shows the structure digraph of the electrical circuit after all
equations have been made causal.

Eq.(7.1a)

Eq.(7.1b)

Eq.(7.1c)

Eq.(7.1d)

Eq.(7.1e)

Eq.(7.1f)

Eq.(7.1g)

Eq.(7.1h)

Eq.(7.1i)

Eq.(7.1j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

Eq. #1

Eq. #2

Eq. #10

Eq. #9

Eq. #8

Eq. #3

Eq. #4

Eq. #7

Eq. #6

Eq. #5

FIGURE 7.4. Structure digraph of electrical circuit after complete coloring.

We were able to complete the causalization of the equations. We can now
read out the 10 equations in their causal form.

u0 = f(t) (7.3a)
u2 = uC (7.3b)
i2 = u2/R2 (7.3c)
u1 = u0 − uC (7.3d)
i1 = u1/R1 (7.3e)
iC = i1 − i2 (7.3f)
uL = u1 + u2 (7.3g)

duC

dt
= iC/C (7.3h)

diL
dt

= uL/L (7.3i)

i0 = i1 + iL (7.3j)

By now, the equal signs have become true assignments. In addition, no
variable is being used, before it has been computed. Consequently, the
equations have not only been sorted horizontally, i.e., made causal. They
have also been sorted vertically, i.e., the equations have been sorted into
an executable sequence.

7.3 Algebraic Loops 259

Let us write down the structure incidence matrix of the horizontally and
vertically sorted set of equations.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u2 i2 u1 i1 iC uL
duC

dt

diL
dt i0

Eq.(7.3a) 1 0 0 0 0 0 0 0 0 0
Eq.(7.3b) 0 1 0 0 0 0 0 0 0 0
Eq.(7.3c) 0 1 1 0 0 0 0 0 0 0
Eq.(7.3d) 1 0 0 1 0 0 0 0 0 0
Eq.(7.3e) 0 0 0 1 1 0 0 0 0 0
Eq.(7.3f) 0 0 1 0 1 1 0 0 0 0
Eq.(7.3g) 0 1 0 1 0 0 1 0 0 0
Eq.(7.3h) 0 0 0 0 0 1 0 1 0 0
Eq.(7.3i) 0 0 0 0 0 0 1 0 1 0
Eq.(7.3j) 0 0 0 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.4)

The structure incidence matrix of the sorted set of equations is now
in lower–triangular form. Hence sorting the equations both horizontally
and vertically is identical to finding permutation matrices that reduce the
structure incidence matrix to lower–triangular form.

There exist algorithms to find these permutation matrices directly. This
would be yet another approach to sorting the equations.

Variants of the Tarjan algorithm have become the most popular among
all the available sorting algorithms for their efficiency, as their computa-
tional effort grows linearly with the size of the DAE system1. This is the
best performance that can be expected of any algorithm.

A variant of the causalization algorithm, called output set assignment,
can be found in a paper by Pantelides [7.20], who presented the algorithm
once again in a somewhat different context. The Pantelides variant of the
causalization algorithm has become the most popular of these algorithms,
as it has the advantage that it can be implemented using a very compact
and elegant recursive procedure.

7.3 Algebraic Loops

The previous section may leave the impression with you, the reader, that
all DAE systems can be sorted as easily as the example system, by means of
which the causalization algorithm has been demonstrated. Nothing could
be farther from the truth.

Let us now look at a slightly modified circuit. Its schematic is shown in
Fig.7.5. The capacitor has been replaced by a third resistor.

1It was shown in [7.6] that the computational complexity of the Tarjan algorithm
grows in the worst case with o(n ·m), where n is the number of equations, and m is the
number of non–zero elements in the structure incidence matrix.

260 Chapter 7. Differential Algebraic Equations

U
0
=

1
0

R=20

L
=

0
.0

0
1
5

Ground
R

=
1

0
0

+

-

R1

R2

R3

L

U0

i0 u1

i1

u2

i2

u3

i3

uL

iL

FIGURE 7.5. Schematic of modified electrical RLC circuit.

The resulting equations are almost the same as before. Only the element
equation for the capacitor was replaced by a third element equation for a
resistor.

u0 = f(t) (7.5a)
u1 = R1 · i1 (7.5b)
u2 = R2 · i2 (7.5c)
u3 = R3 · i3 (7.5d)

uL = L · diL
dt

(7.5e)

u0 = u1 + u3 (7.5f)
uL = u1 + u2 (7.5g)
u3 = u2 (7.5h)
i0 = i1 + iL (7.5i)
i1 = i2 + i3 (7.5j)

The structure digraph for this new set of equations is presented in Fig.7.6.
Let us now apply the Tarjan algorithm to this structure digraph. Fig-

ure 7.7 shows the partially causalized structure digraph.
Unfortunately, the Tarjan algorithm stalls at this point. Every one of

the remaining acausal equations and every one of the remaining unknowns
has at least two black (solid) lines attached to it. Consequently, the DAE
system cannot be sorted entirely.

Let us read out the partially sorted equations. We shall only list on the

7.3 Algebraic Loops 261

Eq.(7.5a)

Eq.(7.5b)

Eq.(7.5c)

Eq.(7.5d)

Eq.(7.5e)

Eq.(7.5f)

Eq.(7.5g)

Eq.(7.5h)

Eq.(7.5i)

Eq.(7.5j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

u3

i3

FIGURE 7.6. Structure digraph of modified electrical circuit.

Eq.(7.5a)

Eq.(7.5b)

Eq.(7.5c)

Eq.(7.5d)

Eq.(7.5e)

Eq.(7.5f)

Eq.(7.5g)

Eq.(7.5h)

Eq.(7.5i)

Eq.(7.5j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

u3

i3

Eq. #1

Eq. #10

Eq. #9

Eq. #8

FIGURE 7.7. Structure digraph of partially causalized modified electrical circuit.

right side of the equal sign those variables that have already been computed.

u0 = f(t) (7.6a)
u1 − R1 · i1 = 0 (7.6b)
u2 − R2 · i2 = 0 (7.6c)
u3 − R3 · i3 = 0 (7.6d)

u1 + u3 = u0 (7.6e)
u2 − u3 = 0 (7.6f)

i1 − i2 − i3 = 0 (7.6g)

262 Chapter 7. Differential Algebraic Equations

uL = u1 + u2 (7.6h)
diL
dt

= uL/L (7.6i)

i0 = i1 + iL (7.6j)

The six remaining acausal equations form an algebraic loop. They need to
be solved together. The structure incidence matrix of the partially causal-
ized equation system takes the form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u1 i1 u2 i2 u3 i3 uL
diL
dt

i0

Eq.(7.6a) 1 | 0 0 0 0 0 0 0 0 0
− + − − − − − − .

Eq.(7.6b) 0 | 1 1 0 0 0 0 | 0 0 0
Eq.(7.6c) 0 | 0 0 1 1 0 0 | 0 0 0
Eq.(7.6d) 0 | 0 0 0 0 1 1 | 0 0 0
Eq.(7.6e) 1 | 1 0 0 0 1 0 | 0 0 0
Eq.(7.6f) 0 | 0 0 1 0 1 0 | 0 0 0
Eq.(7.6g) 0 | 0 1 0 1 0 1 | 0 0 0

. − − − − − − + − .
Eq.(7.6h) 0 1 0 1 0 0 0 | 1 | 0 0

. − + − .
Eq.(7.6i) 0 0 0 0 1 0 0 1 | 1 | 0

. − + −
Eq.(7.6j) 0 0 1 0 0 0 0 0 0 | 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.7)

Although the causalization algorithm has been unable to convert the
structure incidence matrix to a true lower–triangular form, it was at least
able to reduce it to a Block–Lower–Triangular (BLT) form. Furthermore,
the algorithm generates diagonal blocks of minimal sizes.

How can we deal with the algebraic loop? Since the model is linear, we
can write the loop equations in a matrix–vector form, and solve for the six
unknowns by a Gaussian elimination in six equations and six unknowns.⎛

⎜⎜⎜⎜⎜⎜⎝

1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

i1
u2

i2
u3

i3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
u0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8)

Had the model been nonlinear in the loop equations, we would have had
to use a Newton iteration.

Are algebraic loops a rarity in physical system modeling? Unfortunately,
DAE systems containing algebraic loops are much more common than those
that can be sorted completely by the Tarjan algorithm. Furthermore, the
algebraic loops can be of frightening dimensions. For example when model-
ing mechanical Multi–Body Systems (MBS) [7.16, 7.18] containing closed
kinematic loops, there immediately result highly nonlinear algebraic loops
in hundreds if not thousands of unknowns and equations.

7.4 The Tearing Algorithm 263

7.4 The Tearing Algorithm

We have now been haunted by large algebraic equation systems long enough.
It is time that we do something about them.

Let us look once again at the system of six algebraic equations in six
unknowns that we had met in the last section.

u1 − R1 · i1 = 0 (7.9a)
u2 − R2 · i2 = 0 (7.9b)
u3 − R3 · i3 = 0 (7.9c)

u1 + u3 = u0 (7.9d)
u2 − u3 = 0 (7.9e)

i1 − i2 − i3 = 0 (7.9f)

Its structure digraph is shown in Fig.7.8

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

FIGURE 7.8. Structure digraph of algebraic equation system.

Clearly, every equation contains at least two unknowns, and every un-
known appears in at least two equations. Yet, if only we could e.g. solve
Eg.(7.9f) for the unknown i3, as shown in Fig.7.9, then the entire set of
equations could be made causal, as shown in Fig.7.10.

Now that the equation system has been causalized, we can write down
the causal equations:

i3 = i1 − i2 (7.10a)
u3 = R3 · i3 (7.10b)
u1 = u0 − u3 (7.10c)
i1 = u1/R1 (7.10d)
u2 = u3 (7.10e)
i2 = u2/R2 (7.10f)

264 Chapter 7. Differential Algebraic Equations

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3Eq. #1

FIGURE 7.9. Structure digraph of partially causalized algebraic equation system.

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3Eq. #1

Eq. #2

Eq. #3

Eq. #4

Eq. #5

Eq. #6

FIGURE 7.10. Structure digraph of completely causalized algebraic equation sys-
tem.

Of course, it is all only a pipe dream, because in reality, we do not know
either i1 or i2, and therefore, we cannot compute i3. Or is it not?

Let us substitute the equations into each other, starting with Eq.(7.10a).

i3 = i1 − i2 (7.11a)

=
1

R1
· u1 − 1

R2
· u2 (7.11b)

=
1

R1
· u0 − 1

R1
· u3 − 1

R2
· u3 (7.11c)

=
1

R1
· u0 − R1 + R2

R1 · R2
· u3 (7.11d)

=
1

R1
· u0 − R3 · (R1 + R2)

R1 · R2
· i3 (7.11e)

and thus: [
1 +

R3 · (R1 + R2)
R1 · R2

]
· i3 =

1
R1

· u0 (7.12)

or:

R1 · R2 + R1 · R3 + R2 · R3

R2
· i3 = u0 (7.13)

7.4 The Tearing Algorithm 265

Since the equation is linear in i3, we can solve it explicitly for the unknown,
and obtain:

i3 =
R2

R1 · R2 + R1 · R3 + R2 · R3
· u0 (7.14)

Now, we can plug this equation back into the causalized equation system,
replacing Eq.(7.10a) by it, and obtain the perfectly causal set of equations:

i3 =
R2

R1 · R2 + R1 · R3 + R2 · R3
· u0 (7.15a)

u3 = R3 · i3 (7.15b)
u1 = u0 − u3 (7.15c)
i1 = u1/R1 (7.15d)
u2 = u3 (7.15e)
i2 = u2/R2 (7.15f)

Evidently, it hadn’t been a pipe dream after all.
After substituting the equations into each other in the proposed form,

we end up with one equation in one unknown, instead of six equations in
six unknowns. This is clearly much more economical.

Had the equations been nonlinear in the variable i3, everything would
have worked exactly the same way, except for the very last step, where we
would have to involve a Newton iteration to solve for i3, rather than solving
for i3 explicitly.

Substituting equations into each other may actually be a bad idea. The
substituted equations may grow in size, and the same expressions may
appear in them multiple times. It may be a better idea to iterate over the
entire set of equations, but treat only i3 as an iteration variable in the
Newton iteration algorithm.

Given the set of equations:

u3 = R3 · i3 (7.16a)
u1 = u0 − u3 (7.16b)
i1 = u1/R1 (7.16c)
u2 = u3 (7.16d)
i2 = u2/R2 (7.16e)

i3new
= i1 − i2 (7.16f)

where i3 is an initial guess, and i3new
is an improved version of that same

variable, we can set up the following zero function:

F = i3new
− i3 = 0.0 (7.17)

266 Chapter 7. Differential Algebraic Equations

Since F is a scalar, also the Hessian is a scalar:

H =
∂F
∂i3

(7.18)

A convenient way to compute the Hessian H is by means of algebraic dif-
ferentiation [7.11].

du3 = R3 (7.19a)
du1 = −du3 (7.19b)
di1 = du1/R1 (7.19c)
du2 = du3 (7.19d)
di2 = du2/R2 (7.19e)

di3new
= di1 − di2 (7.19f)

H = di3new
− 1 (7.19g)

We can then compute the next version of i3 as:

i3 = i3 −H\F (7.20)

If the set of equations is linear, the Newton iteration converges in a single
step. Hence it will not be terribly inefficient to employ Newton iteration
even in the linear case.

The algorithm that we just described is a so–called tearing algorithm,
as the set of equations is torn apart by making an assumption about one
variable or possibly several variables to be known. The variables that are
assumed known, such as i3 in the given example, are called tearing variables,
whereas the equations, from which the tearing variables are to be computed,
such as Eq.(7.9f) in the given example, are called the residual equations.

Equation tearing is not exactly a new concept. The idea had originally
been introduced by Gabriel Kron [7.12]. By now, many variations of dif-
ferent tearing algorithms have been reported in the literature. Some of
the techniques are generally applicable, whereas others exploit particular
matrix structures as they occur in special types of physical systems. Tear-
ing has become most popular in chemical process engineering applications
[7.13].

A version of tearing similar to the one described in this chapter has
been implemented in Dymola [7.7] to accompany the Tarjan algorithm
in the efficient solution of algebraic equation systems resulting from the
automated symbolic conversion of DAE systems to ODE form [7.4].

How did we know to choose i3 as tearing variable and Eq.(7.9f) as residual
equation? What would have happened if we had chosen i1 as the tearing
variable and Eq.(7.9a) as the residual equation? The initial situation is
depicted in Fig.7.11.

7.4 The Tearing Algorithm 267

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

Eg. #1

FIGURE 7.11. Structure digraph of partially causalized algebraic equation sys-
tem.

We apply the Tarjan algorithm to the structure digraph. Unfortunately,
the algorithm stalls once again after only one more step, as shown in
Fig.7.12.

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

Eg. #1

Eg. #6

FIGURE 7.12. Structure digraph of partially causalized algebraic equation sys-
tem.

We have been able to causalize only two of the six equations. Once again,
we are faced with an algebraic loop in four equations and four unknowns,
and therefore have to choose a second tearing variable and a second residual
equation.

Let us proceed with the example to demonstrate, how the tearing algo-
rithm can deal with multiple residual equations in multiple tearing vari-
ables. Let us select u2 as the second tearing variable, and Eq.(7.9b) as the
second residual equation. Now, we can complete the causalization of the
equations. The completely colored structure digraph is shown in Fig.7.13.

We can read out the causal equations from the structure digraph of
Fig.7.13.

i1 = u1/R1 (7.21a)
u2 = R2 · i2 (7.21b)
u3 = u2 (7.21c)
i3 = u3/R3 (7.21d)
i2 = i1 − i3 (7.21e)

268 Chapter 7. Differential Algebraic Equations

Eq.(7.9a)

Eq.(7.9b)

Eq.(7.9c)

Eq.(7.9d)

Eq.(7.9e)

Eq.(7.9f)

u1

i1

u2

i2

u3

i3

Eg. #1

Eg. #6

Eg. #2

Eg. #3

Eg. #4

Eg. #5

FIGURE 7.13. Structure digraph of completely causalized algebraic equation sys-
tem.

u1 = u0 − u3 (7.21f)

Using the substitution technique, we can come up with two linearly in-
dependent equations in the two unknowns i1 and u2, i.e., in the two tearing
variables. We begin with the first residual equation.

i1 = u1/R1 (7.22a)

=
1

R1
· u0 − 1

R1
· u3 (7.22b)

=
1

R1
· u0 − 1

R1
· u2 (7.22c)

Hence:

R1 · i1 + u2 = u0 (7.23)

We proceed with the second residual equation.

u2 = R2 · i2 (7.24a)
= R2 · i1 − R2 · i3 (7.24b)

= R2 · i1 − R2

R3
· u3 (7.24c)

= R2 · i1 − R2

R3
· u2 (7.24d)

(7.24e)

Thus: [
1 +

R2

R3

]
· u2 = R2 · i1 (7.25)

or:

R2 · R3 · i1 − (R2 + R3) · u2 = 0 (7.26)

7.4 The Tearing Algorithm 269

We can write Eq.(7.23) and Eq.(7.26) in a matrix–vector form:(
R1 1

R2 · R3 −(R2 + R3)

)
·
(

i1
u2

)
=
(

u0

0

)
(7.27)

which can be solved for the two unknowns i1 and u2. Instead of solving
six linear equations in six unknowns, we have pushed the zeros out of the
matrix, and ended up with two equations in two unknowns. In this sense,
tearing can be considered a symbolic sparse matrix technique.

If we use Newton iteration instead of equation substitution, we need
to place the residual equations at the end of each set, rather than at the
beginning. The set of equations now takes the form:

u3 = u2 (7.28a)
i3 = u3/R3 (7.28b)
i2 = i1 − i3 (7.28c)

u2new
= R2 · i2 (7.28d)

u1 = u0 − u3 (7.28e)
i1new

= u1/R1 (7.28f)

We can formulate the following set of zero functions:

F =
(

f1

f2

)
=
(

i1new
− i1

u2new
− u2

)
=
(

0
0

)
(7.29)

Hence the Hessian is a matrix of size 2 × 2:

H =
(

h11 h12

h21 h22

)
=
(

∂f1/∂i1 ∂f1/∂u2

∂f2/∂i1 ∂f2/∂u2

)
(7.30)

Using algebraic differentiation, we get:

d1u3 = 0 (7.31a)
d1i3 = d1u3/R3 (7.31b)
d1i2 = 1 − d1i3 (7.31c)

d1u2new
= R2 · d1i2 (7.31d)

d1u1 = −d1u3 (7.31e)
d1i1new

= d1u1/R1 (7.31f)
d2u3 = 1 (7.31g)
d2i3 = d2u3/R3 (7.31h)
d2i2 = −d2i3 (7.31i)

d2u2new
= R2 · d2i2 (7.31j)

270 Chapter 7. Differential Algebraic Equations

d2u1 = −d2u3 (7.31k)
d2i1new

= d2u1/R1 (7.31l)
h11 = d1i1new

− 1 (7.31m)
h12 = d2i1new

(7.31n)
h21 = d1u2new

(7.31o)
h22 = d2u2new

− 1 (7.31p)

where the prefix d1 stands for the partial derivative with respect to i1, and
d2 stands for the partial derivative with respect to u2. Since i1 and u2 are
mutually independent, the partial derivative of i1 with respect to u2 is zero,
and vice–versa.

For each additional tearing variable, the causal model equations are re-
peated once in the computation of the Hessian. Hence given a system of n
algebraic equations in k < n tearing variables, we require n·k+k2 equations
to explicitly compute the Hessian in symbolic form.

We have seen by now that the selection of tearing variables and residual
equations is not arbitrary. Our first choice led to a single residual equation
in a single tearing variable, whereas our second choice led to two residual
equations in two tearing variables.

How can we determine the minimum number of tearing variables re-
quired? Unfortunately, this is a hard problem. It can be shown that this
problem is np–complete, i.e., the computational effort grows exponentially
in the number of equations forming the algebraic loop. Consequently, find-
ing the minimal number of tearing variables is not practical.

Yet, it is possible to design a heuristic procedure that always results in a
small number of tearing variables. It often results in the minimal number,
but this cannot be guaranteed. The advantage of this heuristic procedure is
that its computational effort grows quadratically rather than exponentially
in the size of the algebraic system for most applications. The heuristic
procedure is described in the sequel.

1. Using the structure digraph, determine the equations with the largest
number of black (solid) lines attached to them.

2. For every one of these equations, follow its black (solid) lines, and
determine those variables with the largest number of black (solid)
lines attached to them.

3. For every one of these variables, determine how many additional equa-
tions can be made causal if that variable is assumed to be known.

4. Choose one of those variables as the next tearing variable that allows
the largest number of additional equations to be made causal.

Looking at the structure digraph of Fig.7.7, we see that only Eq.(7.5j)
has three black (solid) lines attached to it. All other acausal equations have

7.5 The Relaxation Algorithm 271

only two black solid lines attached to them. Consequently, Eq.(7.5j) will be
chosen as the first residual equation.

Following each of the three black (solid) lines to the right side, we notice
that each of the variables, i1, i2, and i3 has exactly two black (solid) lines
attached to it. Consequently, we need to check for each one of them, what
happens if it were chosen as the first tearing variable.

It turns out that each of these three variables could have been chosen as
the first tearing variable, since all of them lead to a complete causalization
of the equation system.

We shall see in the next chapter that the simple heuristic algorithm
described in this section sometimes maneuvers itself into a corner. The
heuristic algorithm implemented in Dymola has been refined in several
respects. On the one hand, it never gets stuck. The algorithm may become
slow at times, but it will always find a legal tearing structure. On the other
hand, the tearing algorithm implemented in Dymola guarantees that the
selection of tearing variables never leads to a division by zero at run time.
This is a rather tricky demand, because parameter values can change after
compilation.

The complete tearing algorithm, as implemented in Dymola, has not been
published. It is a company secret, designed to give Dynasim a competitive
edge over its competitors.

7.5 The Relaxation Algorithm

There is yet another symbolic algorithm for the solution of algebraic sys-
tems of equations to be discussed, which is called the relaxation algorithm
[7.17].

Contrary to the tearing algorithm, which is a general algorithm that can
be applied to all algebraic equation structures, the relaxation algorithm is
limited to the solution of linear algebraic equation systems only.

Yet, linear algebraic systems assume a special role within the set of alge-
braic equation systems, and deserve special attention. One reason for this
claim is the following. Within each Newton iteration of a nonlinear alge-
braic equation system, there is always a linear algebraic equation system
to be solved. When we write the Newton iteration as:

xnew = xold −H\F (7.32)

we are effectively saying that:

xnew = xold − dx (7.33)

where dx is the solution of the linear algebraic equation system:

H · dx = F (7.34)

272 Chapter 7. Differential Algebraic Equations

Hence indeed, there is to be solved a linear algebraic equation system within
each Newton iteration of the original nonlinear algebraic equation system.

Relaxation is a symbolic implementation of the Gaussian elimination al-
gorithm without pivoting. Let us demonstrate how the relaxation algorithm
works by means of the same example of a linear algebraic equation system
in six equations and six unknowns that we had used in the previous section
of this book.

We start out with the linear algebraic equation system in matrix–vector
form, as presented in Eq.(7.8).⎛

⎜⎜⎜⎜⎜⎜⎝

1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

i1
u2

i2
u3

i3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
u0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.35)

However, we wish to minimize the number of non–zero elements above the
diagonal. To this end, we causalize the equations in the same way that we
used in the tearing algorithm, but write the residual equation as the last
equation in the set.

u3 = R3 · i3 (7.36a)
u1 = u0 − u3 (7.36b)

i1 =
u1

R1
(7.36c)

u2 = u3 (7.36d)

i2 =
u2

R2
(7.36e)

i3 = i1 − i2 (7.36f)

We now move all the unknowns to the left side of the equal sign and all the
knows to the right side. At the same time, we eliminate the denominators.

u3 − R3 · i3 = 0 (7.37a)
u1 + u3 = u0 (7.37b)

R1 · i1 − u1 = 0 (7.37c)
u2 − u3 = 0 (7.37d)

R2 · i2 − u2 = 0 (7.37e)
i3 − i1 + i2 = 0 (7.37f)

We now rewrite these equations in a matrix–vector form, whereby we num-
ber the equations in the same order as above and list the variables in the
same order as in the causal equations:

7.5 The Relaxation Algorithm 273

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −R3

1 1 0 0 0 0
0 −1 R1 0 0 0
−1 0 0 1 0 0
0 0 0 −1 R2 0
0 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u3

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
u0

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.38)

There is now only a single non–zero element above the diagonal, and none
of the diagonal elements are zero.

We can now apply Gaussian elimination without pivoting to this set of
equations. Remember how Gaussian elimination works:

A
(n+1)
ij = A

(n)
ij − A

(n)
ik · A(n)

kk

−1 · A(n)
kj (7.39a)

b
(n+1)
i = b

(n)
i − A

(n)
ik · A(n)

kk

−1 · b(n)
k (7.39b)

We can apply this algorithm symbolically. After each step, we eliminate
the first row and the first column, i.e., the pivot row and the pivot col-
umn. Rather than substituting expressions into the matrix, we introduce
auxiliary variables where needed.

Since we constantly eliminate rows and columns, the index k in the above
equations is always 1. Thus, in the n plus first iteration of the algorithm,
the element in row i − 1 and column j − 1 of the matrix is equal to the
element in the row i and column j of the nth iteration minus the product of
the element at the very left end of the matrix (in row i) times the element
at the very top end of the matrix (in column j) divided by the element in
the top left corner.

For this reason, if an element in the top row is zero, the elements under-
neath it don’t change at all during the iteration. Similarly, if an element in
the leftmost column is zero, the elements to the right of it don’t change.

Therefore, the only elements in the above equation system that change
during the first iteration are the elements in the positions < 2, 6 > and
< 4, 6 >. Let us call the new elements c1 and c2. Thus, the second version
of the equation system takes the form:⎛

⎜⎜⎜⎜⎝
1 0 0 0 c1

−1 R1 0 0 0
0 0 1 0 c2

0 0 −1 R2 0
0 −1 0 1 1

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

u1

i1
u2

i2
i3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

u0

0
0
0
0

⎞
⎟⎟⎟⎟⎠ (7.40)

where c1 = R3, and c2 = −R3.
The only elements that can change in the next iteration are the element

in the position < 2, 5 > of the matrix, as well as the element in the position
< 2 > of the vector. Let us call those c3 and c4, respectively.

274 Chapter 7. Differential Algebraic Equations

Thus, the third version of the equation system takes the form:

⎛
⎜⎜⎝

R1 0 0 c3

0 1 0 c2

0 −1 R2 0
−1 0 1 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

i1
u2

i2
i3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c4

0
0
0

⎞
⎟⎟⎠ (7.41)

where c3 = c1, and c4 = u0.
In the next iteration, the only elements that can change are in the posi-

tion < 4, 4 > of the matrix, and in the position < 4 > of the vector. Let us
call these c5, and c6, respectively.

The fourth version of the equation system takes the form:

⎛
⎝ 1 0 c2

−1 R2 0
0 1 c5

⎞
⎠ ·
⎛
⎝u2

i2
i3

⎞
⎠ =

⎛
⎝ 0

0
c6

⎞
⎠ (7.42)

where c5 = 1 + c3/R1, and c6 = c4/R1.
In the next iteration, the only element that can change is in the position

< 2, 3 > of the matrix. Let us call the new element c7.
The fifth version of the equation system takes the form:

(
R2 c7

1 c5

)
·
(

i2
i3

)
=
(

0
c6

)
(7.43)

where c7 = c2.
In the final iteration, the only element that can change is in the position

< 2, 2 > of the matrix. Let us call the new element c8.
The sixth and last version of the equation system takes the form:

(
c8

) · (i3) =
(
c6

)
(7.44)

where c8 = c5 − c7/R2.
This equation system can be solved at once for the unknown i3:

i3 =
c6

c8
(7.45)

¿From the previous set of equations, we can subsequently compute:

i2 = −c7 · i3
R2

(7.46)

and so forth.
Thus, the overall equation system can be replaced by the following set

of symbolic scalar equations:

7.5 The Relaxation Algorithm 275

c1 = R3 (7.47a)
c2 = −R3 (7.47b)
c3 = c1 (7.47c)
c4 = u0 (7.47d)

c5 = 1 +
c3

R1
(7.47e)

c6 =
c4

R1
(7.47f)

c7 = c2 (7.47g)

c8 = c5 − c7

R2
(7.47h)

i3 =
c6

c8
(7.47i)

i2 = −c7 · i3
R2

(7.47j)

u2 = −c2 · i3 (7.47k)

i1 =
c4 − c3 · i3

R1
(7.47l)

u1 = u0 − c1 · i3 (7.47m)
u3 = R3 · i3 (7.47n)

Of course, we can also combine the relaxation approach with tearing.
Once an expression for the tearing variable i3 has been found, the remaining
variables can be computed from the original set of equations instead of using
those from the back–substitution:

c1 = R3 (7.48a)
c2 = −R3 (7.48b)
c3 = c1 (7.48c)
c4 = u0 (7.48d)

c5 = 1 +
c3

R1
(7.48e)

c6 =
c4

R1
(7.48f)

c7 = c2 (7.48g)

c8 = c5 − c7

R2
(7.48h)

i3 =
c6

c8
(7.48i)

u3 = R3 · i3 (7.48j)

276 Chapter 7. Differential Algebraic Equations

u1 = u0 − u3 (7.48k)

i1 =
u1

R1
(7.48l)

u2 = u3 (7.48m)

i2 =
u2

R2
(7.48n)

What would have happened if we had started out with the second set of
causal equations, i.e., the one derived involving two tearing variables. The
causal equations present themselves as follows:

u3 = u2 (7.49a)

i3 =
u3

R3
(7.49b)

i2 = i1 − i3 (7.49c)
u2 = R2 · i2 (7.49d)
u1 = u0 − u3 (7.49e)

i1 =
u1

R1
(7.49f)

Moving all unknowns to the left side of the equal sign, we obtain:

u3 − u2 = 0 (7.50a)
R3 · i3 − u3 = 0 (7.50b)
i2 − i1 + i3 = 0 (7.50c)
u2 − R2 · i2 = 0 (7.50d)

u1 + u3 = u0 (7.50e)
R1 · i1 − u1 = 0 (7.50f)

This set of equations can be written in a matrix–vector form as follows:⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0
−1 R3 0 0 0 0
0 1 1 0 0 −1
0 0 −R2 1 0 0
1 0 0 0 1 0
0 0 0 0 −1 R1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

u3

i3
i2
u2

u1

i1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
u0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.51)

Just as in the previous case, all the diagonal elements of the matrix
are non–zero, allowing a Gaussian elimination without pivoting to be per-
formed. However this time around, there are two non–zero elements above
the diagonal, one involving the tearing variable u2, the other involving the
tearing variable i1.

7.6 Structural Singularities 277

Finding a minimal set of non–zero elements above the diagonal of the
matrix is thus identical to finding a minimal set of tearing variables. Hence
also this problem is np–complete.

The same heuristic procedure that was proposed for tackling the problem
of finding a small (though not necessarily the minimal) set of tearing vari-
ables can also be used to find a small (though not necessarily the smallest)
set of non–zero elements above the diagonal of the linear equation matrix
for the relaxation algorithm.

Why were we interested in minimizing the number of non–zero elements
above the diagonal? Remember that we only need to introduce new auxil-
iary variables ci in the symbolic Gaussian elimination, if both the elements
in the top row and the elements in the leftmost column are non–zero. If
an element in the top row is zero, then all the elements beneath it don’t
change in the next version of the system equations, i.e., in the next step
of the Gaussian elimination algorithm. Thus by minimizing the number of
non–zero elements above the diagonal, we also minimize the number of new
auxiliary variables that need to be introduced, and for which expressions
have to be evaluated.

Hence also the symbolic Gaussian elimination algorithm exploits the
number and positions of the zero elements in the linear equation system,
and therefore can be interpreted as a symbolic sparse matrix technique.

7.6 Structural Singularities

Let us now look at yet another circuit problem. This time, we shall exchange
the capacitor and the inductor, as shown in Fig.7.14.

The set of differential and algebraic equations thus presents itself as:

u0 = f(t) (7.52a)
u1 = R1 · i1 (7.52b)
u2 = R2 · i2 (7.52c)

uL = L · diL
dt

(7.52d)

iC = C · duC

dt
(7.52e)

u0 = u1 + uL (7.52f)
uC = u1 + u2 (7.52g)
uL = u2 (7.52h)
i0 = i1 + iC (7.52i)
i1 = i2 + iL (7.52j)

with the structure digraph as shown in Fig.7.15.

278 Chapter 7. Differential Algebraic Equations

U
0
=

1
0

R=20

Ground
R

=
1
0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 7.14. Schematic of once more modified electrical RLC circuit.

Eq.(7.52a)

Eq.(7.52b)

Eq.(7.52c)

Eq.(7.52d)

Eq.(7.52e)

Eq.(7.52f)

Eq.(7.52g)

Eq.(7.52h)

Eq.(7.52i)

Eq.(7.52j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

FIGURE 7.15. Structure digraph of once more modified electrical circuit.

Let us start to color the digraph. Figure 7.16 shows the partially colored
digraph after the first iteration.

We notice that we are in trouble. The variable ic has two blue (dotted)
lines attached to it, and nothing else. Consequently, we no longer have an
equation to compute the value of ic.

Let us try another approach. We can introduce the node potentials, vi,
as additional variables, write down for each branch the relationship be-

7.6 Structural Singularities 279

Eq.(7.52a)

Eq.(7.52b)

Eq.(7.52c)

Eq.(7.52d)

Eq.(7.52e)

Eq.(7.52f)

Eq.(7.52g)

Eq.(7.52h)

Eq.(7.52i)

Eq.(7.52j)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

Eq. #1

Eq. #10

Eq. #9

Eq. #8

FIGURE 7.16. Structure digraph of partially causalized electrical circuit.

tween the branch voltage and the two neighboring node potentials, and
eliminate the mesh equations instead. Figure 7.17 shows the schematic of
the electrical circuit with node potentials.

U
0
=

1
0

R=20

Ground

R
=

1
0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

v0

v1

v2

FIGURE 7.17. Schematic of electrical RLC circuit with node potentials.

The new set of equations can be written as follows:

u0 = f(t) (7.53a)
u0 = v1 − v0 (7.53b)
u1 = R1 · i1 (7.53c)
u1 = v1 − v2 (7.53d)

280 Chapter 7. Differential Algebraic Equations

u2 = R2 · i2 (7.53e)
u2 = v2 − v0 (7.53f)

uL = L · diL
dt

(7.53g)

uL = v2 − v0 (7.53h)

iC = C · duC

dt
(7.53i)

uC = v1 − v0 (7.53j)
v0 = 0 (7.53k)
i0 = i1 + iC (7.53l)
i1 = i2 + iL (7.53m)

This time, we ended up with 13 equations in 13 unknowns. Its structure
digraph is shown in Fig.7.18.

Eq.(7.53a)

Eq.(7.53b)

Eq.(7.53c)

Eq.(7.53d)

Eq.(7.53e)

Eq.(7.53f)

Eq.(7.53g)

Eq.(7.53h)

Eq.(7.53i)

Eq.(7.53j)

Eq.(7.53k)

Eq.(7.53l)

Eq.(7.53m)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

v1

v2

v0

FIGURE 7.18. Structure digraph of electrical circuit with node potentials.

Figure 7.19 shows the partially colored digraph.
We again got stuck after two iterations. However, it seems that we made

the problem worse rather than better. Just like last time, we again are left
without an equation to compute iC , but this time, we are also left with an
equation, Eq.(7.53j), which has no unknowns left in it, although it has not

7.7 Structural Singularity Elimination 281

Eq.(7.53a)

Eq.(7.53b)

Eq.(7.53c)

Eq.(7.53d)

Eq.(7.53e)

Eq.(7.53f)

Eq.(7.53g)

Eq.(7.53h)

Eq.(7.53i)

Eq.(7.53j)

Eq.(7.53k)

Eq.(7.53l)

Eq.(7.53m)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC/dt

iC

v1

v2

v0

Eq. #1

Eq. #2

Eq. #13

Eq. #12

Eq. #11

Eq. #3

Eq. #10

FIGURE 7.19. Partially colored structure digraph of electrical circuit with node
potentials.

yet been made causal. We won’t be able to use it for anything. Such an
equation is called a constraint equation.

What has happened in this circuit? The capacitor has been placed in
parallel with a voltage source. Consequently, the voltage across the capaci-
tor cannot be chosen as an independent state variable. There is no freedom
in choosing its initial condition.

7.7 Structural Singularity Elimination

Before we deal with the above circuit, let us choose a much simpler circuit
that exhibits the same problems. Figure 7.20 shows the schematic of an
electrical circuit with two capacitors in parallel.

Since the two capacitive voltages, u1 and u2, are the same, they don’t
qualify as independent state variables, as we cannot choose initial condi-
tions for them independently. Hence we expect problems that are similar
to those observed in the previous circuit.

The equations describing this circuit can be written as:

u0 = f(t) (7.54a)
uR = R · i0 (7.54b)

i1 = C1 · du1

dt
(7.54c)

i2 = C2 · du2

dt
(7.54d)

282 Chapter 7. Differential Algebraic Equations

U
0

=
1

0

+

-

R

C1 C2
U0

i0

u1

i1

u2

i2
uR

FIGURE 7.20. Schematic of electrical circuit with two capacitors in parallel.

u0 = uR + u1 (7.54e)
u2 = u1 (7.54f)
i0 = i1 + i2 (7.54g)

If we choose u1 and u2 as state variables, then both u1 and u2 are considered
known variables, and Eq.(7.54f) has no unknown left. Thus, it must be
considered a constraint equation.

There are several different ways, how this problem can be solved [7.4].
We can turn the causality around on one of the capacitive equations, solving
e.g. for the variable i2, instead of du2/dt. Consequently, the solver has to
solve for du2/dt instead of u2, thus the integrator has been turned into a
differentiator.

In the model equations, u2 must be considered an unknown, whereas
du2/dt is considered a known variable. The equations can now easily be
brought into causal form:

u0 = f(t) (7.55a)

i2 = C2 · du2

dt
(7.55b)

u2 = u1 (7.55c)
uR = u0 − u1 (7.55d)

i0 =
1
R

· uR (7.55e)

i1 = i0 − i2 (7.55f)
du1

dt
=

1
C1

· i1 (7.55g)

with the block diagram as shown in Fig.7.21.

7.7 Structural Singularity Elimination 283

d
dt

1
R

1
C1

C21

+

+
-

-

∫

U0 i0

u1

du1
dt i1

u2
du2
dt i2

uR

FIGURE 7.21. Block diagram of electrical circuit with parallel capacitors.

The solver generates u1 out of du1/dt by numerical integration, whereas
it generates du2/dt out of u2 by numerical differentiation.

Numerical differentiation is a bad idea, at least if explicit formulae are
being used. Using implicit formulae, numerical integration and differenti-
ation are essentially the same, but as we already know, implicit formulae
call for an iteration at every step.

Costas Pantelides [7.20] had a better idea. How about modifying the
equation system such that the constraint equation disappears? In the above
example, if:

u2 = u1 (7.56)

at all times, then obviously, it must also be true that:

du2

dt
=

du1

dt
(7.57)

at all times. Thus, we can symbolically differentiate the constraint equation,
and replace the constraint equation by its derivative. The new set of acausal
equations takes the form:

u0 = f(t) (7.58a)
uR = R · i0 (7.58b)

i1 = C1 · du1

dt
(7.58c)

i2 = C2 · du2

dt
(7.58d)

u0 = uR + u1 (7.58e)
du2

dt
=

du1

dt
(7.58f)

i0 = i1 + i2 (7.58g)

with the partially colored structure digraph as shown in Fig.7.22.

284 Chapter 7. Differential Algebraic Equations

Eq.(7.58a)

Eq.(7.58b)

Eq.(7.58c)

Eq.(7.58d)

Eq.(7.58e)

Eq.(7.58f)

Eq.(7.58g)

u0

i0

uR

i1

i2

du2/dt

du1/dt

Eq. #1

Eq. #3

Eq. #2

FIGURE 7.22. Partially colored structure digraph of electrical circuit with par-
allel capacitors after differentiation of the constraint equation.

The constraint equation has indeed disappeared. After partial causal-
ization of the equations, we are now faced with an algebraic loop in four
equations and four unknowns, a situation that we already know how to
deal with.

Miraculously, we seem to have gotten rid of the constraint between the
two capacitors. After the symbolic differentiation of the constraint equa-
tion, we seem to again have two integrators that we can integrate separately
and independently.

Evidently, this cannot be true. The constraint on the capacitive voltages
has not disappeared. It has only been hidden. It is true that we can now
numerically integrate du1/dt into u1, and du2/dt into u2. However, we
still must satisfy the original constraint equation when choosing the initial
conditions for the two integrators.

The second integrator does not represent a true state variable. In fact, it
is wasteful. We don’t need two integrators, since the system has only one
degree of freedom, i.e., one energy storage.

Let us thus modify the Pantelides algorithm once more. Instead of re-
placing the constraint equation by its derivative, we add the differentiated
constraint equation as an additional equation to the set.

Hence we now have eight equations in seven unknowns. We have one
equation too many, and consequently, we need to throw away one of them.
We shall throw away one of the integrators, for example, the one that
integrates du2/dt into u2.

We symbolize this by renaming the variable du2/dt as du2. du2 is no
longer a state derivative. It is simply an algebraic variable with a funny
name. Hence both u2 and du2 are now unknowns, and we are thus faced
with eight equations in eight unknowns. These are:

u0 = f(t) (7.59a)
uR = R · i0 (7.59b)

i1 = C1 · du1

dt
(7.59c)

7.7 Structural Singularity Elimination 285

i2 = C2 · du2 (7.59d)
u0 = uR + u1 (7.59e)
u2 = u1 (7.59f)

du2 =
du1

dt
(7.59g)

i0 = i1 + i2 (7.59h)

with the partially colored structure digraph as shown in Fig.7.23.

Eq.(7.59a)

Eq.(7.59b)

Eq.(7.59c)

Eq.(7.59d)

Eq.(7.59e)

Eq.(7.59f)

Eq.(7.59g)

Eq.(7.59h)

u0

i0

uR

i1

u2

du2

du1/dt

i2

Eq. #1

Eq. #4

Eq. #3

Eq. #2

FIGURE 7.23. Partially colored structure digraph of electrical circuit with par-
allel capacitors after differentiation of the constraint equation.

Once again, we end up with an algebraic loop in four equations and four
unknowns.

In the mathematical literature, structurally singular systems are called
higher–index problems, or more precisely, structurally singular physical sys-
tems lead to mathematical descriptions that present themselves in the form
of higher–index DAEs [7.1, 7.2, 7.19].

The perturbation index is a measure of the constraints among equations
[7.10]. An index–0 DAE contains neither algebraic loops nor structural
singularities. An index–1 DAE contains algebraic loops, but no structural
singularities. A DAE with a perturbation index > 1, a so–called higher–
index DAE, contains structural singularities1.

The algorithm by Pantelides is a symbolic index reduction algorithm2.
It reduces the perturbation index by one. Hence it may be necessary to

1A number of different definitions of structure indices are provided in the mathe-
matical literature. A paper by Campbell and Gear [7.3] offers a good survey of this
somewhat exotic issue. The different definitions all agree on the index of a linear DAE
system, but sometimes disagree in the case of nonlinear DAE systems.

2The original paper by Pantelides did not concern itself with index reduction at
all. It described an algorithm that could find, in a procedural fashion, a complete and
consistent set of initial conditions for a DAE system. It was shown later in [7.4, 7.15]
that the Pantelides algorithm can also be used as a symbolic index reduction algorithm.

286 Chapter 7. Differential Algebraic Equations

apply the Pantelides algorithm more than once. For example, a mechanical
system with constraints among positions or angles, such as a motor with a
load, whereby the motor and the load are described separately by differen-
tial equations, leads to an index–3 DAE system. By applying the Pantelides
algorithm once, the constraint gets reduced to a constraint between veloc-
ities or angular velocities, which are still state variables. By applying the
Pantelides algorithm a second time, the constraint gets reduced to a con-
straint between accelerations or angular accelerations, which are no longer
outputs of integrators, and therefore, are no longer state variables.

It is thus not surprising that, after applying the Pantelides algorithm,
we ended up with an algebraic loop. This is usually the case.

Let us now return to the more complex circuit. We shall start with the
version that contains a constraint equation, i.e., the version making use of
the node potentials. The partially causalized set of equations can be written
as follows:

u0 = f(t) (7.60a)
v0 = 0 (7.60b)
v1 = u0 − v0 (7.60c)

u1 − R1 · i1 = 0 (7.60d)
u1 + v2 = v1 (7.60e)

u2 − R2 · i2 = 0 (7.60f)
v2 − u2 = v0 (7.60g)

0 = uC − v1 + v0 (7.60h)
i1 − i2 = iL (7.60i)

uL = v2 − v0 (7.60j)
duC

dt
=

1
C

· iC (7.60k)

diL
dt

=
1
L

· uL (7.60l)

i0 = i1 + iC (7.60m)

The unknowns are written on the left side of the equal sign, thus equations
with only one variable to the left of the equal sign are causal equations,
those with more than one variable to the left of the equal sign are acausal
equations, and those with zero variables to the left of the equal sign are
constraint equations.

We differentiate the constraint equation, add it to the DAE system, and
let go of an integrator associated with the constraint.

u0 = f(t) (7.61a)

7.7 Structural Singularity Elimination 287

v0 = 0 (7.61b)
v1 = u0 − v0 (7.61c)

u1 − R1 · i1 = 0 (7.61d)
u1 + v2 = v1 (7.61e)

u2 − R2 · i2 = 0 (7.61f)
v2 − u2 = v0 (7.61g)

0 = uC − v1 + v0 (7.61h)
0 = duC − dv1 + dv0 (7.61i)

i1 − i2 = iL (7.61j)
uL = v2 − v0 (7.61k)

duC =
1
C

· iC (7.61l)

diL
dt

=
1
L

· uL (7.61m)

i0 = i1 + iC (7.61n)

In the process of differentiation, we introduced two new pseudo–derivatives1,
dv1 and dv0, for which we are lacking equations.

We now differentiate the causal equations that define v1 and v0, and add
those to the set as well.

u0 = f(t) (7.62a)
v0 = 0 (7.62b)

dv0 = 0 (7.62c)
v1 = u0 − v0 (7.62d)

dv1 = du0 − dv0 (7.62e)
u1 − R1 · i1 = 0 (7.62f)

u1 + v2 = v1 (7.62g)
u2 − R2 · i2 = 0 (7.62h)

v2 − u2 = v0 (7.62i)
0 = uC − v1 + v0 (7.62j)
0 = duC − dv1 + dv0 (7.62k)

i1 − i2 = iL (7.62l)
uL = v2 − v0 (7.62m)

duC =
1
C

· iC (7.62n)

1The pseudo–derivatives are sometimes also called dummy–derivatives in the litera-
ture [7.15].

288 Chapter 7. Differential Algebraic Equations

diL
dt

=
1
L

· uL (7.62o)

i0 = i1 + iC (7.62p)

We again introduced one additional pseudo–derivative, du0. Thus, the final
set of equations can be written as:

u0 = f(t) (7.63a)

du0 =
df(t)
dt

(7.63b)

v0 = 0 (7.63c)
dv0 = 0 (7.63d)
v1 = u0 − v0 (7.63e)

dv1 = du0 − dv0 (7.63f)
u1 − R1 · i1 = 0 (7.63g)

u1 + v2 = v1 (7.63h)
u2 − R2 · i2 = 0 (7.63i)

v2 − u2 = v0 (7.63j)
0 = uC − v1 + v0 (7.63k)
0 = duC − dv1 + dv0 (7.63l)

i1 − i2 = iL (7.63m)
uL = v2 − v0 (7.63n)

duC =
1
C

· iC (7.63o)

diL
dt

=
1
L

· uL (7.63p)

i0 = i1 + iC (7.63q)

If f(t) is a known function of time, we can symbolically compute its deriva-
tive. On the other hand, if f(t) stands for an input signal in a real–time
simulation with hardware in the loop, we have a problem. In that case,
we may need an additional sensor somewhere in the system that measures
df(t)/dt, and add this signal as an additional real–time input to the simu-
lation.

By now, we have 17 equations in 17 unknowns. The partially colored
structure digraph is shown in Fig.7.24.

It worked. The Pantelides algorithm was able to reduce the DAE system
to index–1. We ended up with an algebraic loop in five equations and
five unknowns that can be tackled using any one among the techniques
described in the previous sections of this chapter.

Let us now return to the original description of the circuit without node
potentials. In that formulation, no constraint equation was visible. We only

7.7 Structural Singularity Elimination 289

Eq.(7.63a)

Eq.(7.63b)

Eq.(7.63c)

Eq.(7.63d)

Eq.(7.63e)

Eq.(7.63f)

Eq.(7.63g)

Eq.(7.63h)

Eq.(7.63i)

Eq.(7.63j)

Eq.(7.63k)

Eq.(7.63l)

Eq.(7.63m)

Eq.(7.63n)

Eq.(7.63o)

Eq.(7.63p)

Eq.(7.63q)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC

iC

v1

v2

v0

du0

dv0

dv1

uC

Eq. #1

Eq. #2

Eq. #3

Eq. #4

Eq. #17

Eq. #16

Eq. #15

Eq. #5

Eq. #6

Eq. #14

Eq. #13

Eq. #7

FIGURE 7.24. Partially colored structure digraph of electrical RLC circuit with
node potentials after differentiation of the constraint equation.

knew that we had run into difficulties, because we recognized that we were
left without an equation to compute the value of the variable ic.

Let us write down the equations in their partially causalized form.

u0 = f(t) (7.64a)
u1 − R1 · i1 = 0 (7.64b)
u2 − R2 · i2 = 0 (7.64c)

u1 + uL = u0 (7.64d)
u1 + u2 = uC (7.64e)
uL − u2 = 0 (7.64f)
i1 − i2 = iL (7.64g)

duC

dt
=

1
C

· iC (7.64h)

diL
dt

=
1
L

· uL (7.64i)

i0 = i1 + iC (7.64j)

We are left with six acausal equations in only five unknowns, since ic doesn’t
show up anywhere in them. Thus, there still exists a constraint equation.
However, it is hidden inside an algebraic system.

Let us draw the structure digraph of the algebraic system, and let us
choose a residual equation and a tearing variable. The structure digraph is

290 Chapter 7. Differential Algebraic Equations

shown in Fig.7.25.

Eq.(7.64b)

Eq.(7.64c)

Eq.(7.64d)

Eq.(7.64e)

Eq.(7.64f)

Eq.(7.64g)

u1

i1

u2

i2

uL

iC

Residual Eq. Tearing Var.

FIGURE 7.25. Structure digraph of algebraic subsystem of electrical RLC circuit
without node potentials after a tearing variable has been selected.

We now complete the causalization of the algebraic equation system. The
completely colored structure digraph is shown in Fig.7.26.

Eq.(7.64b)

Eq.(7.64c)

Eq.(7.64d)

Eq.(7.64e)

Eq.(7.64f)

Eq.(7.64g)

u1

i1

u2

i2

uL

iC

Residual Eq. Tearing Var.

Eq. #1

Eq. #2

Eq. #3

Eq. #4

Constraint Eq.

FIGURE 7.26. Completely colored structure digraph of algebraic subsystem of
electrical RLC circuit without node potentials.

The constraint equation, Eq.(7.64f) has become clearly visible. We can
now write down the equation system in its completely causalized form:

u0 = f(t) (7.65a)
uL = u0 − u1 (7.65b)
u2 = uC − u1 (7.65c)

i2 =
1

R2
· u2 (7.65d)

i1 = i2 + iL (7.65e)
0 = uL − u2 (7.65f)

u1 = R1 · i1 (7.65g)
duC

dt
=

1
C

· iC (7.65h)

diL
dt

=
1
L

· uL (7.65i)

i0 = i1 + iC (7.65j)

We now apply the Pantelides algorithm. We start by differentiating the
constraint equation, adding it to the equation system.

7.7 Structural Singularity Elimination 291

u0 = f(t) (7.66a)
uL = u0 − u1 (7.66b)
u2 = uC − u1 (7.66c)

i2 =
1

R2
· u2 (7.66d)

i1 = i2 + iL (7.66e)
0 = uL − u2 (7.66f)
0 = duL − du2 (7.66g)

u1 = R1 · i1 (7.66h)
duC

dt
=

1
C

· iC (7.66i)

diL
dt

=
1
L

· uL (7.66j)

i0 = i1 + iC (7.66k)

We introduced two new pseudo–derivatives, duL and du2. Hence we differ-
entiate the equations defining uL and u2.

u0 = f(t) (7.67a)
uL = u0 − u1 (7.67b)

duL = du0 − du1 (7.67c)
u2 = uC − u1 (7.67d)

du2 = duC − du1 (7.67e)

i2 =
1

R2
· u2 (7.67f)

i1 = i2 + iL (7.67g)
0 = uL − u2 (7.67h)
0 = duL − du2 (7.67i)

u1 = R1 · i1 (7.67j)
duC

dt
=

1
C

· iC (7.67k)

diL
dt

=
1
L

· uL (7.67l)

i0 = i1 + iC (7.67m)

We introduced three new pseudo–derivatives, du0, du1, and duC . We dif-
ferentiate the equations defining u0 and u1, and we throw the integrator
away that defines uC .

292 Chapter 7. Differential Algebraic Equations

u0 = f(t) (7.68a)

du0 =
df(t)
dt

(7.68b)

uL = u0 − u1 (7.68c)
duL = du0 − du1 (7.68d)

u2 = uC − u1 (7.68e)
du2 = duC − du1 (7.68f)

i2 =
1

R2
· u2 (7.68g)

i1 = i2 + iL (7.68h)
0 = uL − u2 (7.68i)
0 = duL − du2 (7.68j)

u1 = R1 · i1 (7.68k)
du1 = R1 · di1 (7.68l)

duC =
1
C

· iC (7.68m)

diL
dt

=
1
L

· uL (7.68n)

i0 = i1 + iC (7.68o)

We introduced another pseudo–derivative, di1. Thus, we need to differen-
tiate the equation defining i1 as well.

u0 = f(t) (7.69a)

du0 =
df(t)
dt

(7.69b)

uL = u0 − u1 (7.69c)
duL = du0 − du1 (7.69d)

u2 = uC − u1 (7.69e)
du2 = duC − du1 (7.69f)

i2 =
1

R2
· u2 (7.69g)

i1 = i2 + iL (7.69h)

di1 = di2 +
diL
dt

(7.69i)

0 = uL − u2 (7.69j)
0 = duL − du2 (7.69k)

7.7 Structural Singularity Elimination 293

u1 = R1 · i1 (7.69l)
du1 = R1 · di1 (7.69m)

duC =
1
C

· iC (7.69n)

diL
dt

=
1
L

· uL (7.69o)

i0 = i1 + iC (7.69p)

We now introduced yet a new pseudo–derivative, di2, and also a true deriva-
tive, diL/dt.

As the constraint equation was hidden in one solid algebraic loop, we
had to differentiate every single equation of that loop. We ended up with
the following set of 17 equations in 17 unknowns:

u0 = f(t) (7.70a)

du0 =
df(t)
dt

(7.70b)

uL = u0 − u1 (7.70c)
duL = du0 − du1 (7.70d)

u2 = uC − u1 (7.70e)
du2 = duC − du1 (7.70f)

i2 =
1

R2
· u2 (7.70g)

di2 =
1

R2
· du2 (7.70h)

i1 = i2 + iL (7.70i)

di1 = di2 +
diL
dt

(7.70j)

0 = uL − u2 (7.70k)
0 = duL − du2 (7.70l)

u1 = R1 · i1 (7.70m)
du1 = R1 · di1 (7.70n)

duC =
1
C

· iC (7.70o)

diL
dt

=
1
L

· uL (7.70p)

i0 = i1 + iC (7.70q)

Let us start from scratch with the causalization of this DAE system.
Figure 7.27 shows the partially colored structure digraph of this set of
equations.

294 Chapter 7. Differential Algebraic Equations

Eq.(7.70a)

Eq.(7.70b)

Eq.(7.70c)

Eq.(7.70d)

Eq.(7.70e)

Eq.(7.70f)

Eq.(7.70g)

Eq.(7.70h)

Eq.(7.70i)

Eq.(7.70j)

Eq.(7.70k)

Eq.(7.70l)

Eq.(7.70m)

Eq.(7.70n)

Eq.(7.70o)

Eq.(7.70p)

Eq.(7.70q)

u0

i0

u1

i1

u2

i2

uL

diL/dt

duC

iC

du0

uC

du1

du2

duL

di1

di2

Eq. #1

Eq. #2

Eq. #17

Eq. #16

Eq. #15

Eq. #14

FIGURE 7.27. Partially colored structure digraph of electrical RLC circuit with-
out node potentials.

It worked. The constraint equation has indeed disappeared. Instead we
are now facing an algebraic loop in 11 equations and 11 unknowns.

Let us analyze this algebraic loop further, as this analysis will unveil
yet another difficulty. The partially causalized equations can be written as
follows:

u0 = f(t) (7.71a)

du0 =
df(t)
dt

(7.71b)

uL + u1 = u0 (7.71c)
duL + du1 = du0 (7.71d)

u2 − R2 · i2 = 0 (7.71e)
du2 − R2 · di2 = 0 (7.71f)

i1 − i2 = iL (7.71g)

di1 − di2 − diL
dt

= 0 (7.71h)

uL − u2 = 0 (7.71i)
duL − du2 = 0 (7.71j)

7.7 Structural Singularity Elimination 295

u1 − R1 · i1 = 0 (7.71k)
du1 − R1 · di1 = 0 (7.71l)

uL − l · diL
dt

= 0 (7.71m)

duC = du2 + du1 (7.71n)
iC = C · duC (7.71o)
uC = u2 + u1 (7.71p)
i0 = i1 + iC (7.71q)

Figure 7.28 shows the structure digraph of the algebraic subsystem after
selecting a tearing variable and a residual equation.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.

FIGURE 7.28. Structure digraph of algebraic subsystem of electrical RLC circuit
after choosing a tearing variable and a residual equation.

We proceed with the usual graph–coloring algorithm. The partially col-
ored structure digraph is shown in Fig.7.29.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.Eq. #1

Eq. #10

Eq. #9

Eq. #2

Eq. #3

Eq. #4

Eq. #8

Eq. #7

Eq. #5

FIGURE 7.29. Partially colored structure digraph of algebraic subsystem of elec-
trical RLC circuit.

We seem to again have ended up with a structural singularity. Equa-

296 Chapter 7. Differential Algebraic Equations

tion (7.71g) is a constraint equation, whereas we are lacking an equation
to compute the variable duL.

Yet, this is a very different problem from the one discussed before. This
constraint was caused by a poor selection of a tearing variable. Had we
chosen a different tearing variable or a different residual equation, this
problem would not have occurred. For this reason, we cannot simplify the
heuristic procedure further. It is insufficient to look at the number of black
(solid) lines attached to equations and the number of black (solid) lines
attached to variables when selecting the residual equation and the tearing
variable. For each proposed selection, we must pursue the consequences of
that selection all the way to the end and be prepared to backtrack if we
end up with a conflict.

Let us select a different tearing variable. The new selection is shown in
Fig.7.30.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.

FIGURE 7.30. Structure digraph of algebraic subsystem of electrical RLC circuit
after choosing a tearing variable and a residual equation.

The partially colored structure digraph is shown in Fig.7.31.

Eq.(7.71c)

Eq.(7.71d)

Eq.(7.71e)

Eq.(7.71f)

Eq.(7.71g)

Eq.(7.71h)

Eq.(7.71i)

Eq.(7.71j)

Eq.(7.71k)

Eq.(7.71l)

Eq.(7.71m)

u1

i1

u2

i2

uL

diL/dt

du1

du2

duL

di1

di2

Residual Eq.

Tearing Var.

Eq. #1

Eq. #10

Eq. #9

Eq. #2

Eq. #8

FIGURE 7.31. Partially colored structure digraph of algebraic subsystem of elec-
trical RLC circuit.

7.8 The Solvability Issue 297

We were able to causalize six of the eleven equations. We thus need to
select a second residual equation and a second tearing variable, in order to
complete the causalization of the algebraic equation system.

Dymola implements the Pantelides algorithm essentially in the form ex-
plained in this section. However as almost always, the devil is in the detail.
For didactic reasons, we explained the algorithm by starting out with an
individual constraint equation, which we differentiated and added to the
set of equations. We then chose a pseudo–derivative, in order to ensure that
we once again had the same number of unknowns as equations. We then
checked, whether additional equations needed to be differentiated as well,
since new pseudo–derivatives had been introduced in the process. Yet, this
procedure already got us into trouble in one of the examples. For this rea-
son, Dymola first determines all equations that need to be differentiated,
and chooses the dummy derivative only in the very end.

Furthermore, a fixed choice of a pseudo–derivative may occasionally lead
to a division by zero at run time. In fact, it can happen that no fixed
choice of a pseudo–derivative avoids divisions by zero. In those cases, Dy-
mola makes the choice of the state variables dynamic, switching from one
selection to another during the course of the simulation run [7.14].

7.8 The Solvability Issue

The DAE literature talks about yet another issue, namely that of solvability
[7.1]. Take for example the following DAE:

x − ẋ2 = 0.0 (7.72)

Converting Eq.(7.72) to ODE form, we obtain:

ẋ = ±√
x (7.73)

Evidently, this ODE has only a real–valued solution as long as the initial
value of x is positive. This constraint existed even in the DAE case. How-
ever, in the DAE formulation, the situation has become worse. The DAE
formulation does not give us any hint, which of the two roots we should
select. If we choose the positive root, ẋ will also be positive, and x will
keep growing. However, if we choose the negative root, ẋ is negative, and x
will decrease. Both solutions satisfy the DAE, and if the only information
we have is the DAE, we can’t tell which solution is for real. Even worse, it
could happen that we should choose the positive root during some period of
time, and the negative root during another. Thus, at any moment in time,
we obtain a potential bifurcation in the solution depending on whether we
choose the positive or the negative root.

To us, solvability is a non–issue. It is the typical worry of a mathe-
matician who puts the mathematical formulation first, and then tries to

298 Chapter 7. Differential Algebraic Equations

interpret the ramifications of that formulation. Remember what we wrote
earlier: mathematics is simply the language of physics. The reason why we
are interested in differential equations and solving them is that we wish to
gain a better understanding of physical phenomena in this universe. Con-
sequently, the origin of our interest is always physics, not mathematics.
Physics does not provide us with unsolvable riddles. Saying that a DAE
is unsolvable is equivalent to saying that the phenomenon described by it
is “defying causality” in the sense that the outcome of an experiment is
non–deterministic, which in turn is almost equivalent to saying that the
phenomenon is non–physical. True, chaos is for real [7.5]. We can observe
chaotic phenomena in physics every day. However, chaotic phenomena are
not described through unsolvable differential equations. Chaos only means
that the solution in time is undecidable without infinite precision. However,
the differential equation that produces a chaotic solution is perfectly deter-
ministic [7.5]. Thus, philosophizing about the implications of solvability or
non–solvability of DAEs is like discussing how many angels can dance on
the tip of a needle. Or is it not?

Let us look at a simple pendulum as shown on Fig.7.32.

x

y

�ϕ

F

m · g
FIGURE 7.32. Mechanical pendulum.

The equations of motion for this pendulum can be described easily in
DAE form:

7.8 The Solvability Issue 299

m · dvx

dt
= −F · x

�
(7.74a)

m · dvy

dt
= m · g − F · y

�
(7.74b)

dx

dt
= vx (7.74c)

dy

dt
= vy (7.74d)

x2 + y2 = �2 (7.74e)

These are five equations in the five unknowns dvx/dt, dvy/dt, dx/dt, dy/dt,
and F . The four natural state variables: vx, vy, x, and y are assumed known.

We notice at once that Eq.(7.74e) is a constraint equation, since it doesn’t
contain any of the unknowns. We apply the Pantelides algorithm, and ob-
tain the following set of six equations in six unknowns:

m · dvx

dt
= −F · x

�
(7.75a)

m · dvy

dt
= m · g − F · y

�
(7.75b)

dx = vx (7.75c)
dy

dt
= vy (7.75d)

x2 + y2 = �2 (7.75e)

2 · x · dx + 2 · y · dy

dt
= 0 (7.75f)

We decided to let go of the integrator for x, thus the six unknowns are
dvx/dt, dvy/dt, dx, dy/dt, F , and x.

Eq.(7.75e) is no longer a constraint equation, as it can be solved for the
new unknown x. Eq.(7.75f) can be solved for the unknown dx, but this
leaves Eq.(7.75c) as a new constraint equation.

Evidently, the original problem was an index–3 problem, and the Pan-
telides algorithm needs to be applied a second time. We obtain the following
set of nine equations in nine unknowns:

m · dvx = −F · x
�

(7.76a)

m · dvy

dt
= m · g − F · y

�
(7.76b)

dx = vx (7.76c)
d2x = dvx (7.76d)

300 Chapter 7. Differential Algebraic Equations

dy

dt
= vy (7.76e)

d2y =
dvy

dt
(7.76f)

x2 + y2 = �2 (7.76g)

x · dx + y · dy

dt
= 0 (7.76h)

dx2 + x · d2x +
(

dy

dt

)2

+ y · d2y = 0 (7.76i)

In the differentiation of Eq.(7.76c), a new variable, d2x, was introduced.
Thus, the equation defining dx, i.e., Eq.(7.76h), had to be differentiated as
well. In that differentiation, again one more new variable, d2y, was intro-
duced. Hence the equation defining dy/dt, i.e., Eq.(7.76e), had to be differ-
entiated also. Finally, another integrator had to be eliminated, namely the
one defining the variable vx. The nine unknowns of this equation system
are dvx, x, F , dvy/dt, dx, vx, d2x, dy/dt, and d2y.

This set of equations represents an index–1 DAE problem that can be
causalized using the tearing method. Figure 7.33 shows the partially causal-
ized structure digraph of this DAE system.

Eq.(7.76a)

Eq.(7.76b)

Eq.(7.76c)

Eq.(7.76d)

Eq.(7.76e)

Eq.(7.76f)

Eq.(7.76g)

Eq.(7.76h)

Eq.(7.76i)

dvx

dvy/dt

dx

d2x

dy/dt

vx

F

x

d2y

Eq. #1

Eq. #2

Eq. #9

Eq. #3

FIGURE 7.33. Partially causalized structure digraph of mechanical pendulum.

An algebraic loop in five equations and five unknowns remains. Fig-
ure 7.34 shows the completely causalized structure digraph after a residual
equation and a tearing variable have been chosen. Since we have a choice,
we decided to select a tearing variable that appears linearly in the residual
equation.

We can read out the causal equations from the completely causalized
structure digraph of Fig.7.34. They are:

7.8 The Solvability Issue 301

Eq.(7.76a)

Eq.(7.76b)

Eq.(7.76c)

Eq.(7.76d)

Eq.(7.76e)

Eq.(7.76f)

Eq.(7.76g)

Eq.(7.76h)

Eq.(7.76i)

dvx

dvy/dt

dx

d2x

dy/dt

vx

F

x

d2y

Eq. #1

Eq. #2

Eq. #9

Eq. #3

Residual Eq.

Tearing Var.

Eq. #4

Eq. #7

Eq. #5

Eq. #6

FIGURE 7.34. Completely causalized structure digraph of mechanical pendulum.

dy

dt
= vy (7.77a)

x = ±
√

�2 − y2 (7.77b)

dx = −y

x
· dy

dt
(7.77c)

dvx = d2x (7.77d)

F = −m · � · dvx

x
(7.77e)

dvy

dt
= g − F · y

m · � (7.77f)

d2y =
dvy

dt
(7.77g)

d2x = −
dx2 +

(
dy
dt

)2

+ y · d2y

x
(7.77h)

vx = dx (7.77i)

We are facing a new problem. We seem to have come across a solvability
issue. At any point in time, there are two solutions to Eq.(7.77b), one of
which is positive, whereas the other is negative. Yet, the physics behind
the pendulum motion doesn’t exhibit any ambiguity at all. The pendulum
knows exactly, how to swing. It knows that we have to choose the positive
root, whenever the pendulum is to the right of the joint, whereas we must
choose the negative root otherwise.

Applying the Pantelides algorithm actually made the problem worse.
The original index–3 DAE model at least knew that the position of the
pendulum cannot jump, since x is the output of an integrator. The reduced
index–1 DAE system no longer contains that information.

Evidently, the issue that we are facing here is not related to the physics
of the pendulum, but only to the mathematical description thereof, i.e., to

302 Chapter 7. Differential Algebraic Equations

the DAE system describing the pendulum motion. Evidently, the simulation
model, i.e., the index–1 DAE system, and to a lesser extent even the original
index–3 DAE system, offers only an incomplete description of the physical
reality.

Physics doesn’t know anything about Newton’s law. The physical reality
of this universe of ours was created long before Mr. Newton was born. What
physics cares about are the conservation principles: conservation of mass,
conservation of energy, and conservation of momentum. Newton’s law is
one way of indirectly satisfying the conservation of energy principle. Yet
for the problem at hand, we also need to conserve the momentum. The
DAE system, as specified, does not capture, either directly or indirectly,
the need for conserving the momentum.

For the example at hand, the problem can be solved easily by selecting
a different set of state variables. Since the pendulum has one mechanical
degree of freedom, we need two state variables. It turns out that ϕ and ϕ̇
are a considerably smarter choice of a set of state variables than y and ẏ.

Unfortunately, the original model does not even contain ϕ as a variable.
We need to add a description of the relationship between the variables
currently captured and ϕ to the model. The easiest may be to replace the
original constraint equation, Eq.(7.74e), by a set of two different equations:

m · dvx

dt
= −F · x

�
(7.78a)

m · dvy

dt
= m · g − F · y

�
(7.78b)

dx

dt
= vx (7.78c)

dy

dt
= vy (7.78d)

x = � · sin(ϕ) (7.78e)
y = � · cos(ϕ) (7.78f)

These are six equations in the six unknowns dvx/dt, dvy/dt, dx/dt, dy/dt,
F , and ϕ.

Since x and y are initially known variables, we can solve Eq.(7.78e) for ϕ,
which then makes Eq.(7.78f) a constraint equation. Left to its own devices,
the Pantelides algorithm will differentiate the constraint equation, while
letting go of the integrator for y. In the process of differentiation, a new
algebraic variable, dϕ, is created, and therefore, Eq.(7.78e) needs to be
differentiated as well:

m · dvx

dt
= −F · x

�
(7.79a)

m · dvy

dt
= m · g − F · y

�
(7.79b)

7.8 The Solvability Issue 303

dx

dt
= vx (7.79c)

dy = vy (7.79d)
x = � · sin(ϕ) (7.79e)

dx

dt
= � · cos(ϕ) · dϕ (7.79f)

y = � · cos(ϕ) (7.79g)
dy = −� · sin(ϕ) · dϕ (7.79h)

The Pantelides algorithm has no reason to select ϕ as a state variable on
its own. It needs help. In Dymola [7.9], we can offer a choice of preferred
state variables to the Pantelides algorithm. If we tell the algorithm that we
wish to keep ϕ as a state variable, a true state derivative, dϕ/dt, will be
generated in the process of differentiation in place of the algebraic variable,
dϕ. The result of the operation will be:

m · dvx

dt
= −F · x

�
(7.80a)

m · dvy

dt
= m · g − F · y

�
(7.80b)

dx

dt
= vx (7.80c)

dy = vy (7.80d)
x = � · sin(ϕ) (7.80e)
y = � · cos(ϕ) (7.80f)

dy = −� · sin(ϕ) · dϕ

dt
(7.80g)

These are now seven equations in the seven unknowns dvx/dt, dvy/dt,
dx/dt, dy, F , y, and dϕ/dt. Since the integrator for y was eliminated,
y is now an additional unknown. dϕ/dt was added as another unknown,
but ϕ is no longer an unknown, since it is now the output of an integrator.

Since ϕ is now a known variable, Eq.(7.80e) has become a new constraint
equation that needs to be differentiated. The result of this operation is:

m · dvx

dt
= −F · x

�
(7.81a)

m · dvy

dt
= m · g − F · y

�
(7.81b)

dx = vx (7.81c)
dy = vy (7.81d)
x = � · sin(ϕ) (7.81e)

304 Chapter 7. Differential Algebraic Equations

dx = � · cos(ϕ) · dϕ

dt
(7.81f)

y = � · cos(ϕ) (7.81g)

dy = −� · sin(ϕ) · dϕ

dt
(7.81h)

We now have eight equations in the eight unknowns dvx/dt, dvy/dt, dx, dy,
F , x, y, and dϕ/dt. A second integrator, the one defining variable x was
thrown out in the process.

Since vx and vy are still known variables, Eqs.(7.81c–d) need to be solved
for dx and dy, respectively. We can then solve Eq.(7.81f) for dϕ/dt, and
consequently, Eq.(7.81h) has become a new constraint equation that needs
to be differentiated. Since we told the Pantelides algorithm that we wish
to preserve dϕ/dt as a state variable, a true state derivative, d2ϕ/dt2 is
generated in the process of differentiation. The result of the operation is:

m · dvx

dt
= −F · x

�
(7.82a)

m · dvy = m · g − F · y
�

(7.82b)

dx = vx (7.82c)
dy = vy (7.82d)

d2y = dvy (7.82e)
x = � · sin(ϕ) (7.82f)

dx = � · cos(ϕ) · dϕ

dt
(7.82g)

y = � · cos(ϕ) (7.82h)

dy = −� · sin(ϕ) · dϕ

dt
(7.82i)

d2y = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.82j)

By now, we have 10 equations in the 10 unknowns dvx/dt, dvy, dx, dy, F , x,
y, vy, d2ϕ/dt2, and d2y. While differentiating the constraint equation, a new
algebraic variable, d2y, was introduced. Hence the equation defining dy,
Eq.(7.82d) had to be differentiated as well. This pointed to the integrator
to be thrown out. It is the integrator defining vy. Hence variable vy has now
also become an unknown. d2ϕ/dt2 was added as another unknown replacing
the former unknown dϕ/dt, which has now become a known variable, since
it is the output of an integrator.

Since dϕ/dt is now a known variable, yet another constraint equation
was introduced. It is Eq.(7.82g). This equation needs to be differentiated
as well. The result of the operation is:

7.8 The Solvability Issue 305

m · dvx = −F · x
�

(7.83a)

m · dvy = m · g − F · y
�

(7.83b)

dx = vx (7.83c)
d2x = dvx (7.83d)
dy = vy (7.83e)

d2y = dvy (7.83f)
x = � · sin(ϕ) (7.83g)

dx = � · cos(ϕ) · dϕ

dt
(7.83h)

d2x = � · cos(ϕ) · d2ϕ

dt2
− � · sin(ϕ) ·

(
dϕ

dt

)2

(7.83i)

y = � · cos(ϕ) (7.83j)

dy = −� · sin(ϕ) · dϕ

dt
(7.83k)

d2y = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.83l)

This is the final set of 12 equations in the 12 unknowns dvx, dvy, dx, dy,
F , x, y, vx, vy, d2ϕ/dt2, d2x, and d2y. It constitutes an implicit index–1
DAE system.

Dymola [7.9] performs one more level of symbolic preprocessing. If it
finds a trivial equation of the type a = b, it throws it out, keeps only one
of the variables in the model, and replaces all occurrences of the other by
the former. This operation results in:

m · dvx = −F · x
�

(7.84a)

m · dvy = m · g − F · y
�

(7.84b)

x = � · sin(ϕ) (7.84c)

vx = � · cos(ϕ) · dϕ

dt
(7.84d)

dvx = � · cos(ϕ) · d2ϕ

dt2
− � · sin(ϕ) ·

(
dϕ

dt

)2

(7.84e)

y = � · cos(ϕ) (7.84f)

vy = −� · sin(ϕ) · dϕ

dt
(7.84g)

306 Chapter 7. Differential Algebraic Equations

dvy = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.84h)

Hence we end up with a set of eight equations in the eight unknowns dvx,
dvy, F , x, y, vx, vy, and d2ϕ/dt2.

Figure 7.35 shows the partially causalized structure diagram of this sys-
tem.

vy

dvx

d2phi/dt2

y

vx

F

x

dvy

Eq.(7.84a)

Eq.(7.84b)

Eq.(7.84c)

Eq.(7.84d)

Eq.(7.84e)

Eq.(7.84f)

Eq.(7.84g)

Eq.(7.84h)

Eq. #2

Eq. #4

Eq. #1

Eq. #3

FIGURE 7.35. Partially causalized structure digraph of mechanical pendulum.

An algebraic loop in four equations and four unknowns remains. Fig-
ure 7.36 shows the completely causalized structure digraph after a suitable
residual equation and tearing variable have been chosen.

vy

dvx

d2phi/dt2

y

vx

F

x

dvy

Eq.(7.84a)

Eq.(7.84b)

Eq.(7.84c)

Eq.(7.84d)

Eq.(7.84e)

Eq.(7.84f)

Eq.(7.84g)

Eq.(7.84h)

Eq. #2

Eq. #4

Eq. #1

Eq. #3

Residual Eq. Tearing Var.

Eq. #5

Eq. #7

Eq. #6

FIGURE 7.36. Completely causalized structure digraph of mechanical pendulum.

The causal equations can be read out of the structure digraph of Fig.7.36.
They are:

x = � · sin(ϕ) (7.85a)

vx = � · cos(ϕ) · dϕ

dt
(7.85b)

y = � · cos(ϕ) (7.85c)

7.8 The Solvability Issue 307

vy = −� · sin(ϕ) · dϕ

dt
(7.85d)

d2ϕ

dt2
=

dvx

� · cos(ϕ)
+

sin(ϕ)
cos(ϕ)

·
(

dϕ

dt

)2

(7.85e)

dvy = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

(7.85f)

F =
m · g · �

y
− m · � · dvy

y
(7.85g)

dvx = −F · x
m · � (7.85h)

With this choice of the set of state variables, all of the equations are linear in
the variables they are being solved for. Consequently, there is no ambiguity,
and the solvability problem has disappeared. This model can be simulated
without difficulties for all values of ϕ and ϕ̇. Clearly, the solvability issue
was not related to the physics of the pendulum motion at all. It was purely a
mathematical artifact caused by an unfortunate selection of state variables.

Of course, it would have been a yet better idea to formulate Newton’s law
directly in rotational coordinates. In that case, the resulting model would
have been of index 1 or lower right from the beginning, and we would not
have had to invoke the Pantelides algorithm at all.

Does this approach resolve all solvability issues in modeling mechanical
systems? Unfortunately, this question must be answered in the negative. For
multibody systems without closed kinematic loops, i.e., for tree–structured
robots, it is always possible to avoid all solvability issues by choosing the
relative positions and velocities of the joints as state variables. However, the
same does no longer hold true for multibody systems with closed kinematic
loops. The kinematic loops lead to large and highly nonlinear algebraic
loops that must be solved by tearing. It is not always possible to choose
the residual equations and tearing variables of these loops such that all
loop equations are linear in the variables that they need to be solved for.

In fact, there exist fairly simple mechanical devices with closed kinematic
loops, for which it can be shown that there does not exist a minimal set of
state variables, in which all solvability issues can be avoided. One way how
such problems have been dealt with in the past is by selecting redundant
state variables together with some switching mechanisms that decide when
to use which variables during the simulation.

This is precisely, what Dymola now does on its own. Whenever there
is a potential problem with a fixed selection of state variables, Dymola
postpones the decision until run time [7.14]. For the same reason, newer
versions of Dymola will be perfectly capable of simulating the pendulum
problem in its original formulation without any help from the user. Dymola
recognizes the potential solvability issue, postpones the selection of states,
and toggles between x and y at run time as needed.

308 Chapter 7. Differential Algebraic Equations

We shall deal with switching models in Chapter 9 of this book. In Chap-
ter 8, we shall look at these problems from yet another angle.

7.9 Summary

In this chapter, we have presented a number of interlinked algorithms that
can be used to convert even higher–index DAE systems to ODE form.

The most central among these algorithms is the algorithm by Tarjan,
an algorithm based on graph theory to partially sort a DAE system both
horizontally and vertically. The algorithm also finds minimal subsets of al-
gebraically coupled equation systems that need to be solved simultaneously.
Although the algorithm is based on graph theory, it can be easily imple-
mented algebraically using linked lists. The algorithm furthermore discovers
constraint equations, i.e., can be used to detect higher–index problems.

If a higher–index problem has been detected, the algorithm by Pantelides
can be employed to reduce the perturbation index, until all structural sin-
gularities have been resolved.

A heuristic procedure has been presented that allows to find suitable
tearing variables for the algebraically coupled subsystems.

The algorithms presented in this chapter are similar to those that have
been implemented in the model compiler of Dymola [7.8, 7.9], an object–
oriented physical system modeling and simulation environment.

The algorithms are highly computationally efficient and well tested. Dy-
mola is capable of converting DAE systems consisting of tens of thousands
of equations to ODE form within seconds on a modern PC, while applying
these algorithms.

7.10 References

[7.1] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial–Value Problems in Differential–Algebraic
Equations. North–Holland, New York, 1989. 256p.

[7.2] Pawel Bujakiewicz. Maximum Weighted Matching for High Index Dif-
ferential Algebraic Equations. PhD thesis, Delft Institute of Technol-
ogy, The Netherlands, 1995.

[7.3] Stephen L. Campbell and C. William Gear. The Index of General
Nonlinear DAEs. Numerische Mathematik, 72:173–196, 1995.

[7.4] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation Supports Object–oriented Continuous System Modeling.
IEEE Control Systems, 13(2):28–38, 1993.

7.10 References 309

[7.5] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[7.6] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods
for Sparse Matrices. Oxford University Press, Oxford, United King-
dom, 1986. 341p.

[7.7] Hilding Elmqvist and Martin Otter. Methods for Tearing Systems
of Equations in Object–oriented Modeling. In Proceedings European
Simulation Multiconference, pages 326–332, Barcelona, Spain, 1994.

[7.8] Hilding Elmqvist. A Structured Model Language for Large Continuous
Systems. PhD thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[7.9] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual. DynaSim AB, Research Park Ideon, Lund, Sweden, 2004.

[7.10] Ernst Hairer, Christian Lubich, and Michel Roche. The Numerical
Solution of Differential–Algebraic Systems by Runge–Kutta Methods.
Springer–Verlag, Berlin, Germany, 1989. 139p.

[7.11] Johann Joss. Algorithmisches Differenzieren. PhD thesis, Diss ETH
5757, Swiss Federal Institute of Technology, Zürich, Switzerland, 1976.
69p.

[7.12] Gabriel Kron. Diakoptics: The Piecewise Solution of Large–Scale
Systems. Macdonald Publishing, London, United Kingdom, 1963.
166p.

[7.13] Richard S. H. Mah. Chemical Process Structures and Informa-
tion Flows. Butterworth Publishing, London, United Kingdom, 1990.
500p.

[7.14] Sven Erik Mattsson, Hans Olsson, and Hilding Elmqvist. Dynamic
Selection of States in Dymola. In Proceedings Modelica Workshop,
pages 61–67, Lund, Sweden, 2000.

[7.15] Sven Erik Mattsson and Gustaf Söderlind. Index Reduction in
Differential–Algebraic Equations Using Dummy Derivatives. SIAM
Journal on Scientific Computing, 14(3):677–692, 1993.

[7.16] Martin Otter, Hilding Elmqvist, and François E. Cellier. Modeling
of Multibody Systems with the Object–Oriented Modeling Language
Dymola. J. Nonlinear Dynamics, 9(1):91–112, 1996.

310 Chapter 7. Differential Algebraic Equations

[7.17] Martin Otter, Hilding Elmqvist, and François E. Cellier. ‘Relax-
ing’ – A Symbolic Sparse Matrix Method Exploiting the Model Struc-
ture in Generating Efficient Simulation Code. In Proceedings Sympo-
sium on Modeling, Analysis, and Simulation, CESA’96, IMACS Multi-
Conference on Computational Engineering in Systems Applications,
volume 1, pages 1–12, Lille, France, 1996.

[7.18] Martin Otter and Clemens Schlegel. Symbolic generation of efficient
simulation codes for robots. In Proceedings Second European Simula-
tion Multi–Conference, pages 119–122, Nice, France, 1988.

[7.19] Martin Otter. Objektorientierte Modellierung mechatronischer Sys-
teme am Beispiel geregelter Roboter. PhD thesis, Dept. of Mech. Engr.,
Ruhr–University Bochum, Germany, 1994.

[7.20] Constantinos Pantelides. The Consistent Initialization of of
Differential–Algebraic Systems. SIAM Journal of Scientific and Sta-
tistical Computing, 9(2):213–231, 1988.

[7.21] Robert Tarjan. Depth–first search and linear graph algorithms.
SIAM Journal of Computation, 1(2):146–160, 1972.

7.11 Homework Problems

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting

Given the electrical circuit shown in Fig.H7.1a.

R=100

R1

C
=

1
e

-6

C

R=100

R2

R
=

2
0

R
3

L=0.01

L

u
0

=
1

0

i4 = 4·u3

u1

i1 i2

u2

u3

i3iC u4

i4

iL

uL

u0

i0

i4

FIGURE H7.1a. Electrical circuit.

The circuit contains a constant voltage source, u0, and a dependent cur-
rent source, i4, that depends on the voltage across the capacitor, C, and

7.11 Homework Problems 311

the resistor, R3.
Write down the element equations for the seven circuit elements. Since

the voltage u3 is common to two circuit elements, these equations contain
13 rather than 14 unknowns. Add the voltage equations for the three meshes
and the current equations for three of the four nodes. One current equation
is redundant. Usually, the current equation for the ground node is therefore
omitted.

In this way, you end up with 13 equations in the 13 unknowns. Draw the
structure digraph of the DAE system, and apply the Tarjan algorithm to
sort the equations both horizontally and vertically. Write down the causal
equations, i.e., the resulting ODE system.

Simulate the ODE system across 50 μsec using RKF4/5 with zero initial
conditions on both the capacitor and the inductor.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H7.2] Horizontal and Vertical Sorting, Newton Iteration

Given the following model in three nonlinear equations and three un-
knowns:

F1(x1, x3) = 0.0 (H7.2a)
F2(x2) = 0.0 (H7.2b)

F3(x1, x2) = 0.0 (H7.2c)

Write down the structure incidence matrix, S, of this nonlinear model.
Draw the structure digraph, and sort the equations both horizontally

and vertically using the Tarjan algorithm.
Write down the causal equations and their structure incidence matrix,

Ŝ, which should now be in lower–triangular form.
Find two permutation matrices, P and Q, such that:

Ŝ = P · S · Q (H7.2d)

A permutation matrix is a matrix, in which every row and column con-
tains exactly one element with a value of 1, whereas all other elements have
values of 0.

As the structure incidence matrix, Ŝ, is in lower–triangular form, we can
set the simulation up by specifying three Newton iterations in one variable
each, rather than one Newton iteration in three variables. This is much
more economical.

Set up the Newton iterations by introducing symbolic functions denoting
the Hessians.

[H7.3] Hydraulic System, Algebraic Differentiation

Given the hydraulic system shown in Fig.H7.3a.

312 Chapter 7. Differential Algebraic Equations

p2

p0

q1

q2

q3

Water
Reservoir

Environment
Pressure

Consumer
#2

Consumer
#1

Sluice

p1

FIGURE H7.3a. Hydraulic system.

A water reservoir generates a pressure of p2. A sluice reduces the pressure
to p1, which is the water pressure that the consumers see. p0 is the pressure
of the environment, i.e., the air pressure.

The sluice and the consumers can be represented by nonlinear turbu-
lent resistance elements. The turbulent hydraulic resistance characteristic
is shown in Fig.H7.3b.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

Hydraulic turbulent resistance

Δp

q

FIGURE H7.3b. Turbulent hydraulic resistance.

It shows the relationship between the pressure drop, Δp, and the flow
rate, q. Mathematically, the relationship can be described by the formula:

q = k · sign(Δp) ·
√

|Δp| (H7.3a)

or if the inverse computational causality is required:

Δp =
1
k
· sign(q) · q2 (H7.3b)

7.11 Homework Problems 313

Write down the nonlinear equations describing this system. You need six
equations in the six unknowns p0, p1, p2, q1, q2, and q3.

Draw the structure digraph and isolate the nonlinear algebraic loop.
You’ll find an algebraic loop in four equations and four unknowns.

We shall first solve this equation system directly, i.e., without tearing. Set
up a vector zero function, F(x) of length four, where the vector x stands
for the four unknowns of the algebraic equation system. Find a symbolic
expression for the Hessian, H(x), which is a matrix of dimensions 4 × 4.
Write down the linear equation system that needs to be solved once per
iteration step of the Newton iteration.

We now repeat the problem, this time with a tearing approach. Choose
an appropriate tearing variable and residual equation, and causalize the
equation system. Set up an appropriate scalar zero function in the tearing
variable, and set up the Newton iteration such that it iterates over all
equations, yet only uses the tearing variable as an iteration variable. Find
a symbolic expression for the Hessian, which is now also a scalar. Use
algebraic differentiation to compute the Hessian. Since the Newton iteration
is scalar, you can come up with a closed–form symbolic expression for the
next iteration of the tearing variable.

[H7.4] Linear System, Newton Iteration

Given the linear equation system:

A · x = b (H7.4a)

A is assumed to be a nonsingular square matrix.
We wish to solve for the unknown vector x by Newton iteration. Set up

the Newton iteration using symbolic expressions for the Jacobian and the
Hessian. Prove that the Newton iteration indeed converges to the correct
solution within a single step for arbitrary initial conditions.

[H7.5] Electrical Circuit, Tearing

Given the electrical circuit shown in Fig.H7.5a.
We wish to find a symbolic expression for the current i3 as a function of

the input voltage u0 and the five resistance values.
Write down all the equations governing this circuit. Draw the structure

digraph. You end up with an algebraic equation system in 10 equations
and 10 unknowns. Use the heuristic procedure presented in this chapter to
find appropriate tearing variables. You’ll need two of them.

Use the substitution technique to come up with two symbolic expressions
in the two tearing variables. These can be solved symbolically by matrix
inversion. If one of the tearing variables was the current i3, you are done.
Otherwise, find a symbolic expression for i3 in function of the two tearing
variables, and substitute the previously found expressions once more into
that new expression.

314 Chapter 7. Differential Algebraic Equations

U0

R
=

1

R
1

R
=

1

R
2

R=1

R3

R
4

R
=

1

R
5

U0 = f(t)

u1

u5u4

u3

u2

i1 i2

i3

i4 i5

+

-

FIGURE H7.5a. Electrical resistance circuit.

[H7.6] Electrical Circuit, Relaxation

We wish to solve Problem [H7.5] once more, but this time using the relax-
ation algorithm.

Using the tearing structure found in Problem [H7.5], write the 10 equa-
tions in 10 unknowns in a matrix–vector form, such that you obtain only
two non–zero elements above the diagonal of the matrix.

Apply symbolic Gaussian elimination without pivoting to this system to
come up with a sequence of expressions to compute the tearing variables.
At the end, use substitution to reduce this sequence of symbolic expressions
to two expressions for the two tearing variables.

[H7.7] Electrical Circuit, Structural Singularity

Given the circuit shown in Fig.H7.7a containing three sinusoidal current
sources.

Write down the complete set of equations describing this circuit. Draw
the structure digraph and begin causalizing the equations. Determine a
constraint equation.

Apply the Pantelides algorithm to reduce the perturbation index to 1.
Then apply the tearing algorithm with substitution to bring the perturba-
tion index down to 0.

Write down the structure incidence matrices of the index–1 DAE and
the index–0 ODE systems, and show that they are in BLT form, and in LT
form, respectively.

7.11 Homework Problems 315

u3

I3

C

R

iL2

I1

I2

u2

I2

I3

iR

uR

uC

iC
u1

I1

iL1

L
2 uL2

L
1 uL1

FIGURE H7.7a. Electrical structurally singular circuit.

[H7.8] Chemical Reactions, Pantelides Algorithm

The following set of DAEs:

dC

dt
= K1(C0 − C) − R (H7.8a)

dT

dt
= K1(T0 − T) + K2R − K3(T − TC) (H7.8b)

0 = R − K3 exp
(−K4

T

)
C (H7.8c)

0 = C − u (H7.8d)

describes a chemical isomerization reaction. C is the reactant concentra-
tion, T is the reactant temperature, and R is the reactant rate per unit
volume. C0 is the feed reactant concentration, and T0 is the feed reactant
temperature. u is the desired concentration, and TC is the control temper-
ature that we need to produce u. We want to turn the problem around
(inverse model control) and determine the necessary control temperature
TC as a function of the desired concentration u. Thus, u will be an input
to our model, and TC is the output. The problem formulation was taken
right out of [7.1].

Draw the structure digraph. You shall notice at once that one of the
equations, Eq.(H7.8d), has no connections to it. Thus, it is a constraint
equation that needs to be differentiated, while an integrator associated
with the constraint equation needs to be thrown out.

We now have five equations in five unknowns. Draw the enhanced struc-
ture digraph, and start causalizing the equations. You shall notice that a
second constraint equation appears. Hence the original DAE system had
been an index–3 DAE system. Differentiate that constraint equation as

316 Chapter 7. Differential Algebraic Equations

well, and throw out the second integrator. In the process, new pseudo–
derivatives are introduced that call for additional differentiations.

This time around, you end up with eight equations in eight unknowns.
Draw the once more enhanced structure digraph, and causalize the equa-
tions. This is an example, in which (by accident) the Pantelides algorithm
reduces the perturbation index in one step from 2 to 0, i.e., the final set of
equations does not contain an algebraic loop.

Draw a block diagram that shows how the output TC can be computed
from the three inputs u, du/dt, and d2u/dt2.

7.12 Projects

[P7.1] Heuristic Procedures for Finding Tearing Variables

Study alternate strategies for finding small sets of tearing variables and
residual equations. As the size of a DAE system generated by an object–
oriented physical system modeling tool, such as Dymola [7.8, 7.9], can be
very large, often containing thousands if not tens of thousands of equations,
the computational efficiency of the heuristic procedure is very important.

[P7.2] Computation of Inverse Hessian

In Chapter 6, we have discussed approaches to numerically approximate the
Hessian matrix. In this chapter, we have looked at an alternate approach
making use of algebraic differentiation.

Study under what conditions it is more economical to approximate the
Hessian numerically, and when a symbolic computation using algebraic
differentiation should be used.

[P7.3] Solution of Linear Equation Systems

We have presented two different approaches to dealing with the solution
of linear equation systems. On the one hand, we have presented a tearing
approach, on the other, we have looked at a relaxation technique. Both tech-
niques can be interpreted as symbolic sparse matrix algorithms. They have
furthermore much in common. It was shown that the problem of finding
small sets of tearing variables is identical to that of finding a small number
of non–zero elements above the diagonal of the matrix in the relaxation
approach.

Although we have shown by means of a few examples that the remaining
linear systems in the tearing variables can be solved by substitution, this
technique is not recommendable, as it invariably leads to an explosion in
the size of the formulae. An alternate technique was also presented. It may
make more sense to iterate over the entire set of equations, while using a
Newton iteration on the tearing variables only.

7.13 Research 317

In the case of linear systems, this requires an iteration rather than a
closed–form solution, but the iteration may be acceptable as it converges
in a single step if the Jacobian and Hessian are computed exactly, e.g. by
means of algebraic differentiation.

The relaxation approach, on the other hand, leads to a closed–form so-
lution of the linear equation system without requiring substitution. Hence
this approach may be preferable at times.

Study under which conditions Newton iteration of a linear system is more
economical, and when a relaxation approach may be cheaper.

7.13 Research

[R7.1] Pantelides and Small Equation Systems

In the modeling of multi–body systems (MBS), extensive research has fo-
cused on the generation of small sets of simulation equations. If the state
variables are chosen carelessly in modeling a tree–structured robot, the
number of simulation equations grows with the fourth power of the num-
ber of degrees of freedom (i.e., the number of articulations) of the robot.
Yet, it is possible to choose the state variables such that the number of
simulation equations grows only linearly in the number of articulations.
Algorithms that behave in this fashion are called order–n algorithms in the
literature [7.18, 7.19].

For this reason, the MBS library of Dymola [7.8, 7.9], which was de-
veloped by Martin Otter, does not make use of the Pantelides algorithm
to resolve structural singularities. Instead, the model equations are formu-
lated such that the structural singularities are resolved manually already
at the time of the model formulation.

This places a heavy burden on the modeler. It would be better if the
Pantelides algorithm could be made smart enough so that it would select
the integrators to be thrown out such that an equation system is generated
that is as small as possible.

Furthermore, the approach described by Otter only works in the case of
tree–structured robots. If the MBS contains kinematic loops, the approach
needs to be modified.

Study ways to automate the generation of efficient simulation code when
using the Pantelides algorithm for index reduction.

[R7.2] Symbolic Model Compilation and Run–Time Errors

One of the biggest drawbacks of heavy symbolic preprocessing of the model
equations in the generation of efficiently executable simulation code lies in
the problem of tracing back run–time exceptions to original model equa-
tions.

When compiling a Dymola [7.8, 7.9] object–oriented model of a physical

318 Chapter 7. Differential Algebraic Equations

system into explicit ODE form, it happens frequently that the user receives
an error message at the end of the model compilation of the type: “There
are 3724 equations in 3725 unknowns.” Of course, such a model cannot be
simulated.

Unfortunately, it may be quite difficult to trace the error message back
to the original model. Usually, a connection has been omitted somewhere.
Yet, the simulation code no longer contains the information, where the
error might be located.

When the equations are made causal, the compiler will tell the user,
which is the variable, for which no equation was left over. However, that
information may be quite arbitrary.

Similarly, when the simulation dies with a division by zero, it may no
longer be easy for the user to recognize, which equation was responsible for
the problem, as the error message will point at the simulation code, not at
the original model equations. By that time, the equations may have changed
their appearance so drastically that they have become unrecognizable.

Furthermore, many of the equations in the final model were not even
explicitly present among the original model equations. They were auto-
matically generated from the topological connections among submodels.

Study how the algorithms presented in this chapter can be enhanced
so that they preserve as much information as possible about the original
model equations for the purpose of presenting the user with error messages
in terms that he or she can relate to.

8

Differential Algebraic Equation
Solvers

Preview

In the previous chapter, we have discussed symbolic algorithms for convert-
ing implicit and even higher–index DAE systems to explicit ODE form. In
this chapter, we shall look at these very same problems once more from
a different angle. Rather than converting implicit DAEs to explicit ODE
form, we shall try to solve the DAE systems directly. Solvers that are ca-
pable of dealing with implicit DAE descriptions directly have been coined
differential algebraic equation solvers or DAE solvers. They are the focus
point of this chapter.

8.1 Introduction

Let us look once more at the homework problem [H6.2]. In that problem,
we simulated a parabolic PDE in one space dimension with a nonlinear
boundary condition due to radiation. Because of the nonlinear boundary
condition, we required one Newton iteration in a single unknown, T21, per
function evaluation. However, since the ODE problem after conversion of
the PDE problem using the MOL approach is stiff, we also must employ
an implicit integration algorithm, such as a BDF method. Consequently,
we require a second Newton iteration over many variables once every in-
tegration step. Finally, if the simulation is to be error–controlled, we may
need to reject some of the integration steps after the two Newton iterations
converged, in order to repeat the step with a reduced step size. The three
simulation loops are illustrated in Fig.8.1.

How accurately should we perform all these iterations? Clearly, if the
relative error requested for the numerical integration is to be met by the
outermost loop, then the internal loops must be computed at least as accu-
rately. On the other hand, if e.g. the iteration of the integration algorithm
is still far away from convergence, why should we perform the internal it-
eration within the individual function evaluation very accurately already?

Clearly, the different iterations and tolerances are closely interrelated. It
seems awkward that we should have to keep track of different iterations
and different error tolerances that are all part of one and the same process.
Maybe, we should take a step back and reconsider all these issues in the

320 Chapter 8. Differential Algebraic Equation Solvers

state
equations

x x·

Newton
iteration

model containing algebraic loops

Newton
iteration

numerical
integration
algorithm

fixed step/order simulation

step size
and order
control

error controlled simulation

e

h, order

FIGURE 8.1. The three simulation loops.

new light of their seeming complexity to ascertain whether this complexity
is truly necessary.

We may start by asking ourselves, whether algebraic loops, or any other
numerical processes that require iterations, do really exist in this physical
world of ours. Isn’t the physical world truly causal , i.e., isn’t it true that
each event has one or several causes, and that a strictly sequential ordering
is possible between causes and effects? Don’t iterations defy the principle
of strict causality?

Mutual causal dependencies do indeed exist in physics and are rather
common. The relationship between voltage and current in a resistor is non–
causal. It is not true that the potential difference at the two ends of the
resistor makes current flow, or that the current flowing through the resis-
tor causes a voltage drop. These are simply two different facets of one and
the same physical phenomenon. Yet “causal loops” do not truly exist in
the physical world. If we place two resistors in series, this will create an
algebraic loop in our model. Yet, physics doesn’t understand the concept

8.1 Introduction 321

of a loop. The idea of a loop implies a sequence of execution, i.e., a causes
b, which in turn causes c, which is responsible for a. Physics doesn’t under-
stand the concept of a “sequence of execution.” Physics is by its very nature
completely non–causal. All phenomena observed are byproducts of the big
balance equations that we call the conservation principles: conservation of
energy, conservation of mass, and conservation of momentum.

If “causal loops” show up in our models, they are artifactual. They are
byproducts of the way in which we are dealing with the equations. Our way
of thinking is strictly cause–effect oriented, and this is also how we have
built our digital computers. We try to turn everything into cause–effect
relationships. Sometimes, this is not possible. Causal loops, and the need
for iteration, are our way of expressing this problem. Clearly, there does
not exist a natural (physical) way of looking at causal loops.

Let us go back right to the foundations of continuous system simulation,
and ask ourselves where the so–called state–space description of a physical
system came from. It originated with the desire to separate the process
of modeling (in a simple–minded way of looking at things, the process of
generating a state–space model out of physical observations) from that of
simulation (the process of translating the state–space model into trajectory
behavior).

It all made sense. In the context of using explicit integration algorithms
(all integration algorithms that were used in the early days were explicit
algorithms), this separation comes quite naturally. The state–space model
computes ẋ(tk) out of x(tk), and the integration algorithm in turn computes
x(tk+1) out of x(tk) and ẋ(tk) — a meaningful and clean separation of
duties.

By the time implicit integration algorithms were introduced, this sepa-
ration was no longer as clean and crisp and beautiful. We suddenly had to
deal with a causal loop, since the state–space model and the integration
algorithm now operated on the same time instant, i.e., they had to co–
operate to find simultaneously x(tk+1) and ẋ(tk+1). However, tradition had
imprinted this separation so deeply into the brains of the simulation prac-
titioners of that epoch that no–one bothered to raise the question whether
this separation was still useful, or whether it might not even be detrimental
to our task.

Let us check what happens if we let go of the constraint that state–space
models have to be formulated such that they compute the state derivatives
explicitly. Instead, we are going to use the implicit model:

f(x, ẋ,u, t) = 0.0 (8.1)

Let us apply the BDF3 algorithm:

xk+1 =
6
11

h · ẋk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (8.2)

322 Chapter 8. Differential Algebraic Equation Solvers

to the model of Eq.(8.1). We can solve Eq.(8.2) for ẋk+1:

ẋk+1 =
1
h

[
11
6

· xk+1 − 3xk +
3
2
xk−1 − 1

3
xk−2

]
(8.3)

and plug Eq.(8.3) into Eq.(8.1). We obtain a nonlinear vector equation f
in the unknown parameter vector xk+1:

F(xk+1) = 0.0 (8.4)

which can be solved directly by Newton iteration.
In this new formulation, the distinction between iterating on the implicit

integration step and iterating on nonlinear function evaluations has van-
ished. It becomes quite evident that these were not two separate processes,
but only two different facets of one and the same process. It is this –very
fruitful– idea, which had first been proposed by Bill Gear in 1971 in a fre-
quently cited paper [8.13], that we shall pursue in this chapter in more
detail.

8.2 Multi–step Formulae

We have learnt that implicit integration algorithms are most useful for
dealing with stiff systems. Consequently, a DAE formulation in place of the
former ODE formulation will be particularly fruitful in the context of the
simulation of stiff systems, and it should contain a numerical formula that
has been designed for dealing with stiff systems, such as a BDF algorithm.

Since we ultimately want to solve for xk+1, we eliminate ẋk+1 from the
implicit state–space model of Eq.(8.1), and this means that the integration
formula will now have to be solved for fk+1 rather than for xk+1 as in the
ODE case. Thus, we are now looking at numerical differentiation formulae
rather than numerical integration formulae.

We have already seen what a DAE implementation of a BDF algorithm
could look like. In order to assess the validity of this approach, we should
ask ourselves what the stability and accuracy properties of such a BDF
implementation are.

Let us start with a discussion of stability properties. The linear version
of Eq.(8.1) can now be written as:

A · x + B · ẋ = 0.0 (8.5)

Thus, our standard linear test problem has now two matrices, A and B.
Plugging Eq.(8.2) into Eq.(8.5), we obtain:

A · xk+1 +
11B
6h

·
(
xk+1 − 18

11
xk +

9
11

xk−1 − 2
11

xk−2

)
= 0.0 (8.6)

8.2 Multi–step Formulae 323

or: (
−B − 6Ah

11

)
xk+1 = −18B

11
xk +

9B
11

xk−1 − 2B
11

xk−2 (8.7)

We already know that Newton iteration does not affect the stability domain
of a method. Thus, we can solve Eq.(8.7) for xk+1 by use of matrix inversion
without modifying the stability domain of the method. We find:

xk+1 =
(
−B − 6Ah

11

)−1

·
(
−18B

11
xk +

9B
11

xk−1 − 2B
11

xk−2

)
(8.8)

Let us first discuss the simplest case:

B = −I(n) (8.9)

In this case, Eq.(8.5) degenerates to the explicit linear test problem:

ẋ = A · x (8.10)

and Eq.(8.8) becomes:

xk+1 =
(
I(n) − 6Ah

11

)−1

·
(

18
11

xk − 9
11

xk−1 +
2
11

xk−2

)
(8.11)

which is identical to the equation that had been used in Chapter 4 to
determine the stability domain of BDF3. Consequently, at least in this
simple situation, the stability domain is not at all affected by the DAE
formulation.

Let us assume next that B is a non–singular matrix. In this case, Eq.(8.5)
can be rewritten as:

ẋ = −B−1 · A · x (8.12)

Will the inversion of B have an effect on the stability domain? We can
determine the stability domain of the method in the following way. We
choose the eigenvalues of −B−1 · A along the unit circle of the complex
plane, then apply the so found A– and B–matrices to the F–matrix:

F =

⎛
⎝ O(n) I(n) O(n)

O(n) O(n) I(n)

2
11

(
B + 6

11Ah
)−1

B − 9
11

(
B + 6

11Ah
)−1

B 18
11

(
B + 6

11Ah
)−1

B

⎞
⎠

(8.13)
and determine h such that the dominant eigenvalues of F are on the unit
circle. We arbitrarily chose several different non–singular B–matrices of
dimensions 2 × 2, and computed the corresponding A–matrices using:

A = −B ·
(

0 1
−1 2 cos(α)

)
(8.14)

324 Chapter 8. Differential Algebraic Equation Solvers

We then plugged these matrices into Eq.(8.13), and computed the stability
domains. It turned out that, in every single case, the stability domain
was exactly the same as in the ODE case. This is generally true. Non–
singular B–matrices do not influence the numerical stability properties of
the method in any way.

These are good news indeed. Notice that we just solved the algebraic loop
problem once and for all — at least in the context of stiff system simulation.
There is no longer any need to apply a Newton iteration to algebraic loops
that form part of the state–space model, and then apply a separate Newton
iteration around the first one for bringing the implicit integration scheme to
convergence. The two iterations have turned out to be two different facets
of one and the same process.

Let us now look at the case where B is singular. Let the rank of B be
r < n. We can then perform a singular value decomposition on the matrix
B, as indicated in Fig.8.2.

= · ·

B U V*

r
n

∑
FIGURE 8.2. Singular value decomposition.

where U and V are two unitary matrices (each row vector is orthogonal
to all other row vectors and of length 1.0, the same applies to all column
vectors), and Σ is a diagonal matrix. Since both U and V have full rank,
i.e.:

rank(U) = rank(V) = n (8.15)

the Σ–matrix has the same rank as B, thus:

rank(Σ) = rank(B) = r (8.16)

V∗ denotes the Hermitian transpose (the conjugate complex transpose) of
V. Since:

B = U · Σ · V∗ (8.17)

Eq.(8.5) becomes:
A · x + U · Σ · V∗ · ẋ = 0.0 (8.18)

Since the inverse of a unitary matrix is its Hermitian transpose, we can
rewrite Eq.(8.18) as:

U∗ · A · x + Σ · V∗ · ẋ = 0.0 (8.19)

8.2 Multi–step Formulae 325

Let us now perform a variable substitution:

z = V∗ · x (8.20)

Plugging Eq.(8.20) into Eq.(8.19), we obtain:

U∗ · A · V · z + Σ · ż = 0.0 (8.21)

or:
Ã · z + Σ · ż = 0.0 (8.22)

A graphical representation of Eq.(8.22) is shown in Fig.8.3.

r
n

=· ·+
Ã11 Ã12

Ã21 Ã22

z1

z2

ż1

ż2

σi

0

0
0

00 0

0

FIGURE 8.3. Linear test problem after variable substitution.

Eq.(8.22) can be decomposed into:

Ã11 · z1 + Ã12 · z2 + Σ11 · ż1 = 0.0 (8.23a)

Ã21 · z1 + Ã22 · z2 = 0.0 (8.23b)

If Ã22 is non–singular, we can solve Eq.(8.23b) for z2:

z2 = −Ã−1
22 · Ã21 · z1 (8.24)

and plugging Eq.(8.24) into Eq.(8.23a), we obtain:

ż1 = Σ11
−1 ·

(
Ã12 · Ã−1

22 · Ã21 − Ã11

)
· z1 (8.25)

In the new state vector, z, it becomes evident that only a subset of its
variables, namely the vector z1 of length r is described by means of dif-
ferential equations. The remaining variables appear only algebraically in
Eq.(8.22). This means that the system does, in reality, not contain n differ-
ent state variables or energy storages, but only r. Thus, in the terminology
introduced in the previous chapter: a singular B–matrix corresponds to a
structurally singular model, i.e., a higher–index model .

In the new state vector, z1, the situation is now the same as before,
when B was assumed non–singular. Hence the stability domain is indeed
not affected at all by the choice of the B–matrix.

326 Chapter 8. Differential Algebraic Equation Solvers

We need not worry about accuracy . Since the numerical differentiation
formula is nth–order accurate, and since we have full control over what
happens during the Newton iteration, the DAE solver using an nth–order
accurate BDF method must obviously as a whole be nth–order accurate.

Until this point, we have focused our interest on DAE formulations of
BDF algorithms. What happens if we decide to use other types of implicit
multi–step techniques, such as the Adams–Moulton family of methods? Let
us look at the case of AM3:

x(tk+1) ≈ x(tk) +
h

12
(5fk+1 + 8fk − fk−1) (8.26)

We can turn this formula around, and obtain:

ẋ(tk+1) = fk+1 ≈ 12
5h

(x(tk+1) − x(tk)) − 8
5
fk +

1
5
fk−1 (8.27)

Plugging Eq.(8.27) into Eq.(8.1), we obtain again a nonlinear vector func-
tion in the unknown vector xk+1, whereas the quantities xk, fk, and fk−1

can be treated as known.
The problems with Eq.(8.27) are that we have eliminated the state

derivatives from our system of equations, thus, we don’t really know what
values to use for fk and fk−1. One way to overcome this difficulty is to solve
two Newton iterations in sequence:

F1 (x(tk+1)) = f
(
x(tk+1),

12
5h

x(tk+1) − 12
5h

x(tk) − 8
5
w(tk)

+
1
5
w(tk−1),u(tk+1), tk+1

)
= 0.0 (8.28a)

F2 (w(tk+1)) = f (x(tk+1),w(tk+1),u(tk+1), tk+1) = 0.0 (8.28b)

Equation (8.28a) determines x(tk+1). In this iteration, u(tk+1), x(tk), w(tk),
and w(tk−1) are assumed known. Equation (8.28b) then evaluates w(tk+1).
During that iteration, x(tk+1) can be assumed known as well. Clearly, w
is just another name for ẋ.

The BDF case was special, since in the BDF formulae, the state derivative
vector shows up only once. In that case, the DAE formulation becomes
particularly simple and efficient to implement, and half of the variables
(the state derivatives) can be eliminated from the set of variables to be
computed. An integration formula that shares this property is called a
one–leg method . In general, linear one–leg methods can be written for the
ODE case of Eq.(2.1) as:

1
h

n∑
j=0

αjxk−j+1 = f

⎛
⎝ n∑

j=0

βjxk−j+1,

n∑
j=0

βjuk−j+1,

n∑
j=0

βjtk−j+1

⎞
⎠ (8.29)

8.2 Multi–step Formulae 327

The left–hand side of Eq.(8.29) represents the state derivative vector eval-
uated at the intermediate time

∑n
j=0 βjtk−j+1. Equation (8.29) is turned

into a numerical integration formula by solving the expression on the left–
hand side for xk+1 moving all other terms to the right–hand side.

Equation (8.29) naturally extends to the following DAE formulation:

F(xk+1) = f

⎛
⎝ n∑

j=0

βjxk−j+1,
1
h

n∑
j=0

αjxk−j+1,

n∑
j=0

βjuk−j+1,

n∑
j=0

βjtk−j+1

⎞
⎠

= 0.0 (8.30)

Let us now discuss the (linear) stability properties of AM3 in its DAE
formulation. To this end, we plug Eqs.(8.28a–b) into Eq.(8.5). We still
want to assume B to be non–singular. We obtain:

x(tk+1) ≈
(
B +

5
12

Ah

)−1

·
(
Bx(tk) +

2
3
Bhw(tk)

− 1
12

Bhw(tk−1)
)

(8.31a)

w(tk+1) ≈− B−1Ax(tk+1) (8.31b)

and by letting:

zk =

⎛
⎝ xk

wk−1

wk

⎞
⎠ (8.32)

we obtain the following F–matrix:

F =

⎛
⎝F11 F12 F13

O(n) O(n) I(n)

F31 F32 F33

⎞
⎠ (8.33)

where:

F11 =
(
B +

5
12

Ah

)−1

B (8.34a)

F12 = − 1
12

(
B +

5
12

Ah

)−1

Bh (8.34b)

F13 =
2
3

(
B +

5
12

Ah

)−1

Bh (8.34c)

F31 = −B−1A
(
B +

5
12

Ah

)−1

B (8.34d)

F32 =
1
12

B−1A
(
B +

5
12

Ah

)−1

Bh (8.34e)

F33 = −2
3
B−1A

(
B +

5
12

Ah

)−1

Bh (8.34f)

328 Chapter 8. Differential Algebraic Equation Solvers

We select B arbitrarily as a non–singular 2× 2 matrix, and compute A in
accordance with Eq.(4.37). We checked with different selections of B. The
results were always the same as shown in Fig.4.2. The (linear) stability
behavior of the method was not influenced by the DAE formulation. This
may at first look like a surprising result, since the F–matrix of Eq.(4.41)
used to compute the stability domain shown in Fig.4.2 is a 4 × 4 matrix,
whereas the new F–matrix of Eq.(8.33) is a 6 × 6 matrix. However, wk

is linear in xk, thus F is singular. All we did was to add two more spu-
rious eigenvalues at the origin. These eigenvalues will never influence the
stability behavior. Eigenvalues located at the origin of the discrete system
correspond to eigenvalues of the continuous system located at −∞. Such
eigenvalues are completely harmless.

We have discussed how linear implicit multi–step methods can be con-
verted from an ODE formulation to a DAE formulation by solving the
formulae for ẋk+1 instead of for xk+1. This leads to two separate Newton
iterations in n variables each, where n is the order of the system to be
simulated. In the case of the one–leg methods, such as the BDF formulae,
the DAE formulation becomes particularly simple, since the state deriva-
tive vector can be eliminated from the model, and one of the two Newton
iterations becomes unnecessary.

How about explicit multi–step formulae? Let us look at AB3:

x(tk+1) ≈ x(tk) +
h

12
(23fk − 16fk−1 + 5fk−2) (8.35)

Turning Eq.(8.35) around, we obtain:

ẋ(tk+1) ≈ 12
23h

(x(tk+2) − x(tk+1)) +
16
23

fk − 5
23

fk−1 (8.36)

Thus, explicit numerical integration formulae turn in the conversion to DAE
form into overimplicit numerical differentiation formulae. Using such a for-
mula will turn the entire simulation run into one giant iteration loop, which
is certainly not justifiable.

However, this brings up another idea. We could search for overimplicit
numerical integration schemes, which, until now, were quite useless, and
turn those around for use in a DAE solver.

The third–order accurate overimplicit Adams formula is:

x(tk+1) ≈ x(tk) +
h

12
(−f(tk+2) + 8f(tk+1) + 5f(tk)) (8.37)

Solving for the newest state derivative, we obtain:

ẋ(tk+1) ≈ 12
h

(x(tk−1) − x(tk)) + 8f(tk) + 5f(tk−1) (8.38)

which is a third–order accurate explicit numerical differentiation formula.

8.2 Multi–step Formulae 329

Similarly, we can find a third–order accurate overimplicit BDF formula:

x(tk+1) ≈ 57
26

x(tk) − 21
13

x(tk−1) +
11
26

x(tk−2) +
6h

26
f(tk+2) (8.39)

which leads to the explicit third–order accurate numerical differentiation
formula:

ẋ(tk+1) ≈ 1
6h

(26x(tk) − 57x(tk−1) + 42x(tk−2) − 11x(tk−3)) (8.40)

Unfortunately, both formulae are unstable in the vicinity of the origin when
plugged into the DAE. Explicit numerical differentiation is not a recom-
mended procedure because of its poor stability properties and should there-
fore be avoided. If numerical differentiation is a necessity in a simulation
model (e.g., if an input variable needs to be differentiated), we strongly
suggest the use of an implicit numerical differentiation formula together
with a DAE formulation for the overall simulation problem.

We have learnt that implicit multi–step formulae lend themselves splen-
didly for use in DAE solvers. To this end, they simply need to be turned
around and solved for the newest value of the state derivative vector instead
of the newest value of the state vector. Both AMi and BDFi formulae can
be used in DAE solvers. However, the BDF formulae are more attractive
since they, being one–legged formulae, allow to eliminate the state deriva-
tive vector from the simulation program altogether.

We remember that BDFi formulae are inefficient for use in non–stiff
ODEs due to their poor accuracy properties. This was documented in
Fig.6.12. The problem certainly hasn’t vanished by reformulating the model
in a DAE format. Thus, we might suspect that the AMi formulae will still
work better than the BDFi formulae also in non–stiff DAE simulation.
However, whether this is true or not will depend on the relative cost to be
paid for the second Newton iteration. Let us ponder this question.

We shall rerun the wave equation example of Eqs.(6.53a–e), this time in
DAE format, using once a BDF3 and once an AM3 algorithm. We computed
the global accuracy of the two algorithms using the same step sizes as in
Table 6.4. The results are tabulated in Table 8.1.

Figure 8.4 shows these results graphically.
Although the entries in Table 8.1 look exactly like the corresponding

entries in Table 6.4 (after all, these are the same methods applied to the
same problem), the graph of Fig.8.4 looks a little different from that of
Fig.6.12 due to the need for a second Newton iteration in the case of the
DAE formulation of AM3.

Of course in the given example, the Newton iterations converge in a
single step since the problem is linear and the Jacobian has been computed
accurately. Whereas the “economy” of the BDF3 algorithm in terms of the
number of function evaluations required does not change between the ODE
and DAE formulations, the AM3 algorithm has become more expensive

330 Chapter 8. Differential Algebraic Equation Solvers

h BDF3 AM3
0.1 garbage unstable

0.05 garbage unstable
0.02 garbage unstable
0.01 garbage unstable

0.005 0.9469e-2 0.8783e-8
0.002 0.1742e-6 0.2149e-8
0.001 0.4363e-7 0.2120e-8

TABLE 8.1. Comparison of accuracy of integration algorithms.

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
2

10
3

10
4

10
5

10
6

AM3 BDF3

1D Linear Conservation Law - Error

Simulation accuracy

#
fu

nc
ti

on
ev

al
ua

ti
on

s

FIGURE 8.4. Cost–versus–accuracy plot for the 1D wave equation.

to compute in the DAE formulation due to the need for a second Newton
iteration. The lesson to be learnt from this exercise: at least in the non–stiff
case, it may well be worthwhile to convert the model first to ODE format,
using the techniques described in the previous chapter of this book, before
simulating it.

One problem we haven’t discussed yet concerns the initial conditions. In
the ODE case, it was sufficient for the user to specify initial values for the
state vector x and for the input vector u, and the state derivative vector
could then be computed from the state–space model. In the DAE case, we
don’t have an explicit formula to compute the state derivative vector.

If we decide to use the BDF technique (or any other one–legged algo-
rithm), we can eliminate the state derivative vector from the model alto-
gether, and in this special case, we don’t have a problem . . . except during
the startup period. Of course, we can use order control during the startup
period, and then, we won’t need the state derivative vector ever. Let us
explain. The implicit differentiation formulae using the inverted BDF al-
gorithms are:

ẋ(tk+1) ≈ 1
h
x(tk+1) − 1

h
x(tk) (8.41a)

8.2 Multi–step Formulae 331

ẋ(tk+1) ≈ 3
2h

x(tk+1) − 2
h
x(tk) +

1
2h

x(tk−1) (8.41b)

ẋ(tk+1) ≈ 11
6h

x(tk+1) − 3
h
x(tk) +

3
2h

x(tk−1) − 1
3h

x(tk−2) (8.41c)

where Eq.(8.41a) is first–order accurate, Eq.(8.41b) is second–order accu-
rate, and Eq.(8.41c) is third–order accurate. If we wish to simulate the
DAE model using a third–order accurate formula, we can use Eq.(8.41a)
during the first step, then Eq.(8.41b) during the second, and from then on,
we can use Eq.(8.41c). Plugging Eqs.(8.41a–c) into Eq.(8.1), we obtain:

f
(
x1,

1
h
x1 − 1

h
x0,u1, t1

)
= 0.0 (8.42a)

f
(
x2,

3
2h

x2 − 2
h
x1 +

1
2h

x0,u2, t2

)
= 0.0 (8.42b)

f
(
x3,

11
6h

x3 − 3
h
x2 +

3
2h

x1 − 1
3h

x0,u3, t3

)
= 0.0 (8.42c)

f
(
x4,

11
6h

x4 − 3
h
x3 +

3
2h

x2 − 1
3h

x1,u4, t4

)
= 0.0 (8.42d)

etc.

In each step, we perform one Newton iteration in the unknown state vec-
tor at the current time. In this way, the state derivative vector has been
eliminated from the model once and for all.

Unfortunately using this approach, we are faced with the meanwhile
well–known accuracy problems. We shall have to employ a very small step
size initially in order to be able to meet our accuracy requirements. More-
over, the approach won’t work in the case of the AMi algorithms. Those
algorithms don’t eliminate the state derivative vector (the w–vector of
Eqs.(8.28a–b)), and we need to find an estimate for w0 at time t0 by means
of Newton iteration. The problem here is that there is no guarantee that the
Newton iteration will converge at all or will converge to the right solution
if our initial guesses for the state derivative values are far off. Therefore,
most DAE solvers on the market request that the user specify not only the
initial values for the state vector, but also good initial guesses for the state
derivative vector to be used as starting values for the first Newton iteration
on Eq.(8.1) at time t0.

How about using higher–order Runge–Kutta algorithms for startup? This
may turn out to again be a smart idea, but we need to postpone the dis-
cussion of this approach until we have talked about the DAE format of the
single–step algorithms.

Step–size control, order control, and the readout problem don’t cause
any difficulties beyond those that were already discussed in Chapter 4 of
this text.

332 Chapter 8. Differential Algebraic Equation Solvers

8.3 Single–step Formulae

In principle, DAE formulations of all single–step algorithms are straight-
forward. For example, a DAE formulation of our standard explicit RK4
algorithm could be implemented in the following way:

f (xk,k1,u(tk), tk) = 0.0

f
(
xk +

h

2
k1,k2,u(tk +

h

2
), tk +

h

2

)
= 0.0

f
(
xk +

h

2
k2,k3,u(tk +

h

2
), tk +

h

2

)
= 0.0

f (xk + hk3,k4,u(tk + h), tk + h) = 0.0

xk+1 = xk +
h

6
(k1 + 2k2 + 2k3 + k4)

Thus, this is exactly the same formula that we were using in Chapter 3
of this text, except that each and every formerly explicit evaluation of the
state derivative vector needs to be replaced by a Newton iteration.

In general, this is too costly. Let us take the example of BI3. BI3 contains
one explicit RK3 step forward and approximately four RK3 steps backward
due to the Newton iteration. Thus, BI3 contains altogether five RK3 steps,
each requiring three function evaluations. Consequently, BI3 calls for 15
function evaluations per step. This was for the ODE formulation. However,
in the DAE formulation, each of these function evaluations turns itself into
a Newton iteration requiring approximately four function evaluations, thus,
we are now looking at 60 function evaluations per step. If nothing else killed
the efficiency of the BI algorithms, this certainly will.

None of the techniques discussed in Chapter 3 will lead to efficient DAE
implementations. The techniques that are least affected by the DAE formu-
lation are the Richardson extrapolation techniques. They won’t become less
efficient by the DAE formulation . . . but they had been terribly inefficient
already for the ODE case.

Is it hopeless then? Salvation comes from the fully–implicit Runge–Kutta
algorithms [8.16]. Let us look at one type of these algorithms, namely the
Radau IIA algorithms. They can be represented by the following Butcher
tableaus:

1/3 5/12 -1/12
1 3/4 1/4
x 3/4 1/4

4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225
4+

√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−√
6

36
16+

√
6

36
1
9

x 16−√
6

36
16+

√
6

36
1
9

8.3 Single–step Formulae 333

The method with the smaller Butcher tableau is a third–order accurate
fully–implicit two–stage Runge–Kutta algorithm, whereas the method with
the larger Butcher tableau is a fifth–order accurate fully–implicit three–
stage Runge–Kutta algorithm.

The Butcher tableau of the third–order accurate method can be inter-
preted in the ODE case as:

k1 = f
(
xk +

5h

12
k1 − h

12
k2,u(tk +

h

3
), tk +

h

3

)
(8.43a)

k2 = f
(
xk +

3h

4
k1 +

h

4
k2,u(tk + h), tk + h

)
(8.43b)

xk+1 = xk +
h

4
(3k1 + k2) (8.43c)

In the DAE formulation, the method can be written as:

f
(
xk +

5h

12
k1 − h

12
k2,k1,u(tk +

h

3
), tk +

h

3

)
= 0.0 (8.44a)

f
(
xk +

3h

4
k1 +

h

4
k2,k2,u(tk + h), tk + h

)
= 0.0 (8.44b)

xk+1 = xk +
h

4
(3k1 + k2) (8.44c)

There is hardly any difference between the two formulations. In both cases,
we are faced with a set of 2n coupled nonlinear equations in the 2n un-
knowns k1 and k2 that need to be solved simultaneously by Newton iter-
ation. Just as in the case of the AMi algorithms, we need to provide the
system with not only initial conditions for the state vector x(t0), but also
with a good estimate of the state derivative vector ẋ(t0). We set initially:

k1 = k2 = ẋ(t0) (8.45)

Let us now look at the accuracy and stability properties of the Radau IIA
algorithms. To this end, we plug Eqs.(8.43a–c) into the linear test problem.
We shall work with the ODE version, since it doesn’t make any difference,
which formulation we use. We obtain:

k1 = A
(
xk +

5h

12
k1 − h

12
k2

)
(8.46a)

k2 = A
(
xk +

3h

4
k1 +

h

4
k2

)
(8.46b)

xk+1 = xk +
h

4
(3k1 + k2) (8.46c)

334 Chapter 8. Differential Algebraic Equation Solvers

or solved for the unknowns k1 and k2:

k1 =
[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(
I(n) − Ah

3

)
· A · xk (8.47a)

k2 =
[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(
I(n) +

Ah

3

)
· A · xk (8.47b)

xk+1 = xk +
h

4
(3k1 + k2) (8.47c)

and therefore:

F = I(n) +
[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(
I(n) − Ah

6

)
· (Ah) (8.48)

Developing the denominator into a Taylor Series around h = 0.0, we find:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

36
(8.49)

Thus, the method is indeed third–order accurate (we proved this at least
for linear systems), and the error coefficient is:

ε =
1
72

(Ah)4 (8.50)

The fifth–order accurate Radau IIA method is characterized by the follow-
ing F–matrix:

F = I(n)+
[
I(n) − 3Ah

5
+

3(Ah)2

20
− (Ah)3

60

]−1(
I(n) − Ah

10
+

(Ah)2

60

)
Ah

(8.51)
Developing the denominator into a Taylor Series around h = 0.0, we find:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

120
+

11(Ah)6

7200
(8.52)

Thus, the method is indeed fifth–order accurate (at least for linear systems),
and the error coefficient is:

ε =
1

7200
(Ah)6 (8.53)

A frequently used fourth–order accurate fully–implicit Runge–Kutta algo-
rithm is Lobatto IIIC with the Butcher tableau:

0 1/6 -1/3 1/6
1/2 1/6 5/12 -1/12
1 1/6 2/3 1/6
x 1/6 2/3 1/6

8.3 Single–step Formulae 335

This method is characterized by the F–matrix:

F = I(n) +
[
I(n) − 3Ah

4
+

(Ah)2

4
− (Ah)3

24

]−1(
I(n) − Ah

4
+

(Ah)2

24

)
Ah

(8.54)
Developing the denominator into a Taylor Series around h = 0.0, we find:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

96
(8.55)

Thus, the method is indeed fourth–order accurate (at least for linear sys-
tems), and the error coefficient is:

ε =
1

480
(Ah)5 (8.56)

We plugged the three F–matrices into our general–purpose stability domain
plotting routine. The results are shown in Fig.8.5.

−4 −2 0 2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

6

8

Radau IIA(3)

Radau IIA(5)

Lobatto IIIC(4)

Stability Domains of IRK

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.5. Stability domains of fully–implicit Runge–Kutta algorithms.

All three methods are A–stable, a desirable property that we hadn’t been
able to achieve with the higher–order BDF algorithms. The Radau tech-
niques exhibit a somewhat larger unstable region in the right–half complex
plane, which may be profitable at times.

336 Chapter 8. Differential Algebraic Equation Solvers

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

Radau IIA(3)

Radau IIA(5)

Lobatto IIIC(4)

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−30

−25

−20

−15

−10

−5

0

Radau IIA

Lobatto IIIC

Damping Plot of IRK

−σd

Logarithmic Damping Plot of IRK

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.6. Damping plots of fully–implicit Runge–Kutta algorithms.

Let us also look at the damping plots for the three methods. These are
shown on Fig.8.6.

All three methods exhibit satisfyingly large asymptotic regions, much
more so than the BDF algorithms. Although Radau IIA(3) calls for a New-
ton iteration around two function evaluations, i.e., roughly eight function
evaluations per step, and Radau IIA(5) as well as Lobatto IIIC(4) call for a
Newton iteration around three function evaluations, adding up to approx-
imately 12 function evaluations per step, all these techniques will allow us
to use much larger step sizes than in the case of the BDF algorithms due
to their large asymptotic regions. This may well balance off the additional
cost. Consequently, fully–implicit Runge–Kutta algorithms can indeed be
quite competitive in execution speed.

All three methods are obviously L–stable, thus, they are good methods
for integrating stiff systems. The Lobatto IIIC technique has somewhat
better damping characteristics than the Radau IIA algorithms for poles
located far out in the left–half complex plane.

As the explicit RK algorithms are good starter algorithms for the Adams
family of methods, and the BI algorithms are good starters for BDF tech-
niques in ODE format, the fully–implicit Runge–Kutta algorithms can be
used during startup of a BDF method in DAE format.

8.4 DASSL 337

8.4 DASSL

DASSL is one of the most successful simulation codes on the market today.
It implements the BDF formulae of orders one to five in their DAE format,
as presented earlier in this chapter. DASSL is a variable–step, variable–
order code that uses order buildup during the startup period. The code
was written by Linda Petzold [8.4, 8.34].

The code has meanwhile been made the default simulator in Dymola
[8.9, 8.10] in spite of its inefficiency when dealing with non–stiff problems
due to the relatively large error coefficients of the BDF formulae, and in
spite of its inefficiency when dealing with highly nonlinear problems that
require frequent step–size adjustment, such as those that we shall look at
in Chapter 9 of this book.

Why did the developers of Dymola choose a stiff–system solver as the
default integration algorithm? Dymola was designed to be used in large–
scale system modeling. Complex models are almost invariably stiff, as the
complexity of the model usually arises from looking simultaneously at phe-
nomena with different time constants. Furthermore, most engineering users
don’t know whether their models are stiff or not. Since a stiff–system solver
is capable of dealing with non–stiff models as well (although not with op-
timal efficiency), whereas a non–stiff solver cannot deal with stiff models
at all, it may be a good idea to use the vacuum cleaner approach, and of-
fer, as the default simulation engine, a code that will be able to cope with
most problems somewhat successfully. After all, computers have become
fast in recent years, and therefore, optimal efficiency of the simulation en-
gine may no longer be a prime requirement of a modeling and simulation
environment.

Why did the developers of Dymola opt for DASSL as the default method
rather than e.g. Radau IIA? From what we have learnt, we would expect
Radau IIA to be much better suited than DASSL for dealing with highly
nonlinear problems requiring frequent step–size adjustment. After all, most
engineering models are highly nonlinear.

As we have mentioned earlier, the actual integration algorithm occupies
maybe five percent of a production code. The other 95 percent of the code
deal with step–size and order control, startup problems, readout problems,
and other problems that we haven’t looked at yet, such as discontinuity
handling (the so–called root solving problem).

The reason is quite simple. There is no production code implementing
the Radau IIA algorithms around that is as robust and well tested as the
DASSL code. In fact, we haven’t even talked yet about such issues as step–
size control in implicit Runge–Kutta algorithms.

According to [8.4], DASSL is able to simulate problems of perturbation
indices 0 and 1, whereas it may fail when confronted with higher–index
problems. Dymola usually reduces the perturbation index of the model
to zero, before simulating the model, i.e., although DASSL is capable of

338 Chapter 8. Differential Algebraic Equation Solvers

solving DAE problems directly, Dymola converts the model to explicit ODE
form first, before handing it over to DASSL for simulation.

This decision again sacrifices efficiency for convenience. Multiple New-
ton iterations may be set up within each other, as Dymola may set up
Newton iterations as part of the state–space model, and DASSL employs
an overall Newton iteration as part of the simulation process. Yet, solving
DAEs directly may be hard on the user, because in the DAE formulation,
it is not always evident, how many initial conditions are needed, and where
they must be specified. The conversion to explicit ODE form serves the
purpose of ensuring that a complete and consistent set of initial conditions
is available to properly initialize the simulation run.

Before bringing the discussion of DASSL to an end, let us discuss one
more problem that DASSL users may face, a problem that is caused by
exploiting the one–legged nature of the BDF formulae in setting up the
DAE solver.

Let us look once more at an explicit linear state–space model:

ẋ = A · x + B · u (8.57)

Let us use BDF3 in its ODE form to simulate this system:

xk+1 =
6
11

h · ẋk+1 +
18
11

xk − 9
11

xk−1 +
2
11

xk−2 (8.58)

We eliminate the state derivative vector from the Newton iteration by plug-
ging Eq.(8.57) into Eq.(8.58):

xBDF3
k+1 =

6
11

·A·h·xk+1+
6
11

·B·h·uk+1+
18
11

xk− 9
11

xk−1+
2
11

xk−2 (8.59)

We set the zero function for the Newton iteration up as follows:

F(xk+1)ODE = xtrue
k+1 − xBDF3

k+1 (8.60)

i.e., we compute the difference between the true yet unknown value of xtrue
k+1

and the approximation of the value using the integration algorithm, xBDF3
k+1 .

Thus, the Hessian can be computed as:

H(xk+1)ODE =
∂F(xk+1)ODE

∂xk+1
= I(n) − 6

11
· A · h (8.61)

or more generally:

H(xk+1)ODE = I(n) − 6
11

· J · h (8.62)

where J is the Jacobian of the system:

J (xk+1) =
∂f(xk+1)
∂xk+1

(8.63)

8.4 DASSL 339

Let us now analyze the DAE formulation instead. We use the BDF3
formula in its derivative form:

ẋBDF3
k+1 =

1
h

[
11
6

· xk+1 − 3xk +
3
2
xk−1 − 1

3
xk−2

]
(8.64)

We set the zero function up as follows:

F(xk+1)DAE = ẋst eq
k+1 − ẋBDF3

k+1 (8.65)

Thus, we subtract the BDF approximation of the state derivative vector,
ẋBDF3

k+1 from the state derivative vector computed from the state equations,
ẋst eq

k+1 , i.e., from Eq.(8.57). Both of these approximations are functions of
xk+1.

Hence the Hessian can now be computed as:

H(xk+1)DAE =
∂F(xk+1)DAE

∂xk+1
= A − 11

6h
· I(n) (8.66)

or more generally:

H(xk+1)DAE = J − 11
6h

· I(n) (8.67)

What happens when the step size, h, is made very small? In the ODE
case, we find:

lim
h→0

H(xk+1)ODE = I(n) (8.68)

Thus, the Hessian approaches the identity matrix as the step size ap-
proaches zero. In the DAE case, we find:

lim
h→0

H(xk+1)DAE → ∞ (8.69)

As the step size approaches zero, the Hessian approaches infinity. For small
step sizes, the Hessian is highly sensitive to a change in the step size. This
forebodes trouble.

Although the ODE and DAE formulations of the BDF formulae are the
same algorithms in theory, they may behave quite differently from a nu-
merical point of view for small step sizes due to roundoff.

Let us now look at the most general case of a nonlinear implicit model
of the type:

F(x, ẋ,u, t) = 0 (8.70)

In accordance with Chapter 4 of this book, the different BDF algorithms
can be written as:

340 Chapter 8. Differential Algebraic Equation Solvers

xk+1 = h · fk+1 + xk (8.71a)

xk+1 =
2
3
· h · fk+1 +

4
3
· xk − 1

3
· xk−1 (8.71b)

xk+1 =
6
11

· h · fk+1 +
18
11

· xk − 9
11

· xk−1 +
2
11

· xk−2 (8.71c)

etc. (8.71d)

Thus in general, we can write all of these equations in the form:

xk+1 = h̄ · fk+1 + old(x) (8.72)

where h̄ is proportional in the step size h, and old(x) is a function of previ-
ous values of the state vector, which won’t influence the Newton iteration
at this time.

We can turn Eq.(8.72) around:

fk+1 =
xk+1 − old(x)

h̄
(8.73)

When DASSL is applied to the model of Eq.(8.70), it plugs Eq.(8.73)
into Eq.(8.70):

F(xk+1,
xk+1 − old(x)

h̄
,uk+1, tk+1) = 0 (8.74)

at time tk+1, and iterates on xk+1. In setting up the Newton iteration,
we don’t actually need to perform the substitution, as we can see from
Eq.(8.74) what contributions the state derivative vector produces in the
computation of the Hessian:

H(xk+1) = Jx(xk+1) +
1
h̄
· Jẋ(xk+1) (8.75)

where:

Jx(xk+1) =
∂F
∂x

∣∣∣∣
x=xk+1,ẋ=ẋk+1

(8.76a)

Jẋ(xk+1) =
∂F
∂ẋ

∣∣∣∣
x=xk+1,ẋ=ẋk+1

(8.76b)

are partial Jacobians without substitution.
Hence we can set up the Newton iteration in the following way:(

Jx +
1
h̄
· Jẋ

)
· δ� = F(x�, ẋ�, t) (8.77a)

x�+1 = x� − δ� (8.77b)

ẋ�+1 = ẋ� − 1
h̄
· δ� (8.77c)

8.5 Inline Integration 341

By multiplying Eq.(8.77a) by the step size h, we can write the linear system
inside the Newton iteration as:

(h̄ · Jx + Jẋ) · δ� = h̄ · F(x�, ẋ�, t) (8.78)

Which variables need to be included in the iteration vector, x, of the
Newton iteration? If the problem to be solved is an index–0 problem, the
iteration vector is identical to the vector of independent state variables.
However, if the problem to be solved is an index–1 problem, then at least
the tearing variables of the algebraic loops need to be included in the
iteration vector, x, as well.

What happens if we let the normalized step size, h̄, go to zero? The
Hessian then degenerates to:

lim
h̄→0

H = Jẋ (8.79)

which, in the case of an index–1 problem, unfortunately is a singular matrix.
Thus, the smaller the step size, the more poorly conditioned the Newton
iteration will become in the simulation of an index–1 problem.

Unfortunately, small step sizes will haunt us throughout Chapters 9 and
10 of this book, which is yet another reason, why the producers of Dymola
chose to symbolically convert all DAEs to explicit ODE form prior to letting
DASSL handle the simulation.

8.5 Inline Integration

You, the reader, may meanwhile have come to the conclusion that direct
simulation of an index–1 DAE problem is a bad idea after all. Yet, the
problems that we encountered are not directly related to the index–1 DAE
problem, but rather to the way, in which DASSL was set up. When Linda
Petzold developed the code, she still clung to the idea that the simulation
engine must be separated from the model equations, in order to protect
the hapless user. In 1983, when DASSL was developed, computers were
still slow, memory was still expensive, and consequently, compilers were
still limited in their capabilities.

It turns out that direct simulation of a stiff index–1 DAE problem may
still be a good idea at times, but before we can attempt such a direct
simulation, the final barrier between the simulation engine and the model
equations must come down.

For the time being, let us restrict our discussion to the use of backward
Euler, i.e., BDF1:

xBE
k+1 = xk + h · ẋk+1 (8.80)

Let us look once more at the first of our three circuit problems. Its
schematic is displayed in Fig.8.7.

342 Chapter 8. Differential Algebraic Equation Solvers

U
0
=

1
0

R=20

C
=

1
.0

e
-6

L
=

0
.0

0
1
5

Ground
R

=
1

0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 8.7. Schematic of electrical RLC circuit.

However this time around, we shall insert the integration equations di-
rectly into the model. The enhanced set of model equations can be written
as follows:

u0 = f(t) (8.81a)
u1 = R1 · i1 (8.81b)
u2 = R2 · i2 (8.81c)
uL = L · diL (8.81d)
iC = C · duC (8.81e)
u0 = u1 + uC (8.81f)
uL = u1 + u2 (8.81g)
uC = u2 (8.81h)
i0 = i1 + iL (8.81i)
i1 = i2 + iC (8.81j)
iL = pre(iL) + h · diL (8.81k)
uC = pre(uC) + h · duC (8.81l)

pre(iL) denotes the previous value of iL. At time t = 0, we set pre(iL) = iL0 ,
i.e., we apply the initial conditions of the state variables to the vector of
previous states, and evaluate the model equations for the first time at t = h.

By inserting (“inlining”) the integrator equations into the model, we
eliminated the differential equations altogether [8.8]. We are now faced
with a set of difference equations that we need to solve once per step at

8.5 Inline Integration 343

times t = h, t = 2h, etc. diL and duC are no longer state derivatives. They
have now turned into algebraic variables with funny names.

The structure digraph of the above difference equation (ΔE) model is
shown in Fig.8.8.

Eq.(8.81a)

Eq.(8.81b)

Eq.(8.81c)

Eq.(8.81d)

Eq.(8.81e)

Eq.(8.81f)

Eq.(8.81g)

Eq.(8.81h)

Eq.(8.81i)

Eq.(8.81j)

Eq.(8.81k)

Eq.(8.81l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

FIGURE 8.8. Structure digraph of electrical circuit.

Let us start to causalize the structure digraph. The results of our efforts
are shown in Fig.8.9.

We were able to causalize five of our 12 equations, before encountering
an algebraic loop. Whereas the original DAE problem had been an index–0
problem, i.e., a problem not leading to an algebraic loop, the converted
ΔE problem contains an algebraic loop, which calls for a Newton iteration.
This is the Newton iteration caused by the implicit integration algorithm.

Let us find a suitable tearing structure. We shall not use our usual heuris-
tics. The reason is that we don’t want the step size, h, to show up in the
denominator of any equation. Thus, we shall use Eq.(8.81l) as our residual
equation, which we solve for the tearing variable, uC . It turns out that, with
this choice, we are able to causalize all remaining equations. The results of
the causalization are shown in Fig.8.10.

Using DASSL, we would have required two iteration variables, namely
the two state variables, iL and uC . Using inline integration, we only require
a single iteration variable, the tearing variable, uC .

The fact that we were using backward Euler in the above analysis is

344 Chapter 8. Differential Algebraic Equation Solvers

Eq.(8.81a)

Eq.(8.81b)

Eq.(8.81c)

Eq.(8.81d)

Eq.(8.81e)

Eq.(8.81f)

Eq.(8.81g)

Eq.(8.81h)

Eq.(8.81i)

Eq.(8.81j)

Eq.(8.81k)

Eq.(8.81l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

FIGURE 8.9. Partially causalized structure digraph of electrical circuit.

Eq.(8.81a)

Eq.(8.81b)

Eq.(8.81c)

Eq.(8.81d)

Eq.(8.81e)

Eq.(8.81f)

Eq.(8.81g)

Eq.(8.81h)

Eq.(8.81i)

Eq.(8.81j)

Eq.(8.81k)

Eq.(8.81l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

Residual Eq. Tearing Var.

Eq. #2

Eq. #3

Eq. #7

Eq. #4

Eq. #5

Eq. #6

FIGURE 8.10. Completely causalized structure digraph of electrical circuit.

actually irrelevant. We could have used any BDF algorithm, or in fact, we
even could have used a variable–step and variable–order BDF technique. All
we would have had to do is to replace the step size h by the normalized step
size h̄, and pre(x) by old(x). Neither of these two substitutions modifies
the structure digraph.

The causal set of ΔEs can be written as follows:

8.5 Inline Integration 345

u0 = f(t) (8.82a)
u1 = u0 − uC (8.82b)
u2 = uC (8.82c)

i1 =
1

R1
· u1 (8.82d)

i2 =
1

R2
· u2 (8.82e)

iC = i1 − i2 (8.82f)

duC =
1
C

· iC (8.82g)

uC = pre(uC) + h · duC (8.82h)
uL = u1 + u2 (8.82i)

diL =
1
L

· uL (8.82j)

iL = pre(iL) + h · diL (8.82k)
i0 = i1 + iL (8.82l)

Let us apply variable substitution to come up with a completely causal
set of equations.

uC = pre(uC) + h · duC

= pre(uC) +
h

C
· iC

= pre(uC) +
h

C
· i1 − h

C
· i2

= pre(uC) +
h

R1 · C · u1 − h

R2 · C · u2

= pre(uC) +
h

R1 · C · u0 − h

R1 · C · uC − h

R2 · C · uC

and therefore:[
1 +

h

R1 · C +
h

R2 · C
]
· uC = pre(uC) +

h

R1 · C · u0

or:

[R1 · R2 · C + h · (R1 + R2)] · uC = R1 · R2 · C · pre(uC) + h · R2 · u0

which can be solved for uC :

346 Chapter 8. Differential Algebraic Equation Solvers

uC =
R1 · R2 · C

R1 · R2 · C + h · (R1 + R2)
·pre(uC)+

h · R2

R1 · R2 · C + h · (R1 + R2)
·u0

(8.83)
If we let the step size go to zero, we find:

lim
h→0

uC = pre(uC) (8.84)

which is non–singular. Since the original DAE problem had been of index
0, this is not further surprising.

Let us now look at the second of our circuits. Its schematic is shown in
Fig.8.11.

U
0
=

1
0

R=20
L
=

0
.0

0
1
5

Ground

R
=

1
0

0

+

-

R1

R2

R3

L

U0

i0 u1

i1

u2

i2

u3

i3

uL

iL

FIGURE 8.11. Schematic of modified electrical RLC circuit.

Remember this circuit represents an index–1 problem. Inlining the single
integrator, we get the following set of acausal equations:

u0 = f(t) (8.85a)
u1 = R1 · i1 (8.85b)
u2 = R2 · i2 (8.85c)
u3 = R3 · i3 (8.85d)
uL = L · diL (8.85e)
u0 = u1 + u3 (8.85f)
uL = u1 + u2 (8.85g)
u3 = u2 (8.85h)

8.5 Inline Integration 347

i0 = i1 + iL (8.85i)
i1 = i2 + i3 (8.85j)
iL = pre(iL) + h · diL (8.85k)

Its structure digraph is shown in Fig.8.12.

Eq.(8.85a)

Eq.(8.85b)

Eq.(8.85c)

Eq.(8.85d)

Eq.(8.85e)

Eq.(8.85f)

Eq.(8.85g)

Eq.(8.85h)

Eq.(8.85i)

Eq.(8.85j)

Eq.(8.85k)

u0

i0

u1

i1

u2

i2

uL

diL

u3

i3

iL

FIGURE 8.12. Structure digraph of modified electrical circuit.

We begin to causalize the structure digraph. The partially causalized
structure digraph is shown in Fig.8.13.

We were able to causalize five of the 11 equations. Let us apply our
heuristic procedure to select a first residual equation and a first tearing
variable. The results of our efforts are shown in Fig.8.14.

A single tearing variable sufficed to causalize the entire equation system.
DASSL would have required at least two iteration variables, the state vari-
able, iL, and the single tearing variable of the algebraic loop, i3, of the
index–1 DAE system. Inline integration is more economical. We get away
with a single iteration variable, the tearing variable, i1, of the ΔE system.

Let us write down the causal equations:

u0 = f(t) (8.86a)
u1 = R1 · i1 (8.86b)
u3 = u0 − u1 (8.86c)
u2 = u3 (8.86d)

348 Chapter 8. Differential Algebraic Equation Solvers

Eq.(8.85a)

Eq.(8.85b)

Eq.(8.85c)

Eq.(8.85d)

Eq.(8.85e)

Eq.(8.85f)

Eq.(8.85g)

Eq.(8.85h)

Eq.(8.85i)

Eq.(8.85j)

Eq.(8.85k)

u0

i0

u1

i1

u2

i2

uL

diL

u3

i3

iL

Eq. #1

Eq. #11

Eq. #10

Eq. #9

Eq. #8

FIGURE 8.13. Partially causalized structure digraph of modified electrical circuit.

Eq.(8.85a)

Eq.(8.85b)

Eq.(8.85c)

Eq.(8.85d)

Eq.(8.85e)

Eq.(8.85f)

Eq.(8.85g)

Eq.(8.85h)

Eq.(8.85i)

Eq.(8.85j)

Eq.(8.85k)

u0

i0

u1

i1

u2

i2

uL

diL

u3

i3

iL

Eq. #1

Eq. #11

Eq. #10

Eq. #9

Eq. #8

Residual Eq.

Tearing Var.

Eq. #2

Eq. #6

Eq. #5

Eq. #3

Eq. #4

FIGURE 8.14. Completely causalized structure digraph of modified electrical
circuit.

i3 =
1

R3
· u3 (8.86e)

i2 =
1

R2
· u2 (8.86f)

i1 = i2 + i3 (8.86g)
uL = u1 + u2 (8.86h)

diL =
1
L

· uL (8.86i)

iL = pre(iL) + h · diL (8.86j)

8.5 Inline Integration 349

i0 = i1 + iL (8.86k)

Using the variable substitution technique, we can find a closed–form
expression for the tearing variable:

i1 =
R2 + R3

R1 · R2 + R1 · R3 + R2 · R3
· u0 (8.87)

The expression for i1 is not even a function of the step size h, i.e., it is
non–singular for any value of h.

Let us now analyze the third circuit. Its schematic is shown in Fig.8.15.
Remember this is an index–2 problem.

U
0
=

1
0

R=20

Ground

R
=

1
0
0

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 8.15. Schematic of once more modified electrical RLC circuit.

After inlining the integrator equations, the acausal equations present
themselves in the following form:

u0 = f(t) (8.88a)
u1 = R1 · i1 (8.88b)
u2 = R2 · i2 (8.88c)
uL = L · diL (8.88d)
iC = C · duC (8.88e)
u0 = u1 + uL (8.88f)
uC = u1 + u2 (8.88g)
uL = u2 (8.88h)
i0 = i1 + iC (8.88i)

350 Chapter 8. Differential Algebraic Equation Solvers

i1 = i2 + iL (8.88j)
iL = pre(iL) + h · diL (8.88k)
uC = pre(uC) + h · duC (8.88l)

The structure digraph is shown in Fig.8.16.

Eq.(8.88a)

Eq.(8.88b)

Eq.(8.88c)

Eq.(8.88d)

Eq.(8.88e)

Eq.(8.88f)

Eq.(8.88g)

Eq.(8.88h)

Eq.(8.88i)

Eq.(8.88j)

Eq.(8.88k)

Eq.(8.88l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

FIGURE 8.16. Structure digraph of once more modified electrical circuit.

We begin to causalize the structure digraph. The results of our efforts
are shown in Fig.8.17.

We were able to causalize five of the 12 equations, before ending up
with an algebraic loop. Evidently, since the computational causalities of
all energy storage elements have been freed up after inlining the integrator
equations, we don’t obtain any constraint equation any longer.

Unfortunately, we already got ourselves into trouble, because Eq.(8.88l)
needs to be solved for duC :

duC =
uC − pre(uC)

h
(8.89)

i.e., we ended up with the step size, h, in the denominator, which invariably
will cause numerical difficulties, when we try to simulate the system using a
small step size. We had no choice in the matter, as the derivative causality
on the capacitor was dictated upon us.

8.5 Inline Integration 351

Eq.(8.88a)

Eq.(8.88b)

Eq.(8.88c)

Eq.(8.88d)

Eq.(8.88e)

Eq.(8.88f)

Eq.(8.88g)

Eq.(8.88h)

Eq.(8.88i)

Eq.(8.88j)

Eq.(8.88k)

Eq.(8.88l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

FIGURE 8.17. Partially causalized structure digraph of once more modified elec-
trical circuit.

Let us nevertheless continue by applying our heuristic procedure for se-
lecting a first residual equation and a first tearing variable. The results of
our efforts are shown in Fig.8.18.

Eq.(8.88a)

Eq.(8.88b)

Eq.(8.88c)

Eq.(8.88d)

Eq.(8.88e)

Eq.(8.88f)

Eq.(8.88g)

Eq.(8.88h)

Eq.(8.88i)

Eq.(8.88j)

Eq.(8.88k)

Eq.(8.88l)

u0

i0

u1

i1

u2

i2

uL

diL

duC

iC

iL

uC

Eq. #1

Eq. #12

Eq. #11

Eq. #10

Eq. #9

Residual Eq.

Tearing Var.

Eq. #2

Eq. #7

Eq. #6

Eq. #3

Eq. #5

Eq. #4

FIGURE 8.18. Completely causalized structure digraph of once more modified
electrical circuit.

A single tearing variable suffices to causalize the entire equation system.

352 Chapter 8. Differential Algebraic Equation Solvers

The causal equations can be read out of the structure digraph of Fig.8.18.

u0 = f(t) (8.90a)
u1 = R1 · i1 (8.90b)
uL = u0 − u1 (8.90c)

diL =
1
L

· uL (8.90d)

u2 = uL (8.90e)
iL = pre(iL) + h · diL (8.90f)

i2 =
1

R2
· u2 (8.90g)

i1 = i2 + iL (8.90h)
uC = u1 + u2 (8.90i)

duC =
uC − pre(uC)

h
(8.90j)

iC = C · duC (8.90k)
i0 = i1 + iC (8.90l)

Using the variable substitution technique, we can find a closed–form
equation for the tearing variable, i1.

i1 =
L + h · R2

L · (R1 + R2) + h · R2
· u0 +

R2 · L
L · (R1 + R2) + h · R2

· pre(iL) (8.91)

If we let the step size go to zero, we find:

lim
h→0

i1 =
1

R1 + R2
· u0 +

R2

R1 + R2
· pre(iL) (8.92)

At least in the given example, inlining was able to solve also the higher–
index problem directly. This discovery shall prove important in the context
of the next chapter of this book. Yet, inlining the higher–index problem
directly came at a price, as we ended up with the step size, h, in the
denominator of one of the model equations. Thus, it is usually preferred to
first apply the index reduction algorithm by Pantelides.

We have shown that inline integration can solve DAE problems directly
and more economically than the standard version of DASSL1 In all of
these examples, we have used the backward Euler formula for inlining.

1The standard version of DASSL comes with a regular matrix solver and a band–
matrix solver. In addition, DASSL offers an interface for supplying other matrix solvers
externally. A sparse matrix solver can improve the efficiency of DASSL significantly fo
large numbers of states [8.31].

8.6 Inlining Implicit Runge–Kutta Algorithms 353

However, this is not necessary. If we replace the true step size, h, by the
normalized step size h̄, and the previous value of the state vector, pre(x),
by a combination of old state information, old(x), we can inline any and
all of the BDF algorithms in exactly the same fashion.

If we wish to implement a step–size and/or order controlled algorithm,
we can do so using the same techniques that were advocated in Chapter 4
of this book. Since both the new step size and the new order depend on
previous state information only, the equations for step–size and order con-
trol do not need to be inlined. Only the integration formula itself must be
inlined, which can be accomplished for all BDF algorithms in the manner
demonstrated in this section.

8.6 Inlining Implicit Runge–Kutta Algorithms

How can the inlining technique be generalized to implicit Runge–Kutta
algorithms as well? For each stage of the multi–stage algorithm, we need to
replicate the entire set of equations once. Let us explain the technique by
means of the first of the three circuit examples. We shall inline the third–
order accurate Radau IIA algorithm. Since this is a two–stage algorithm,
we need to write down the equations twice, once for each of the two stages,
for the time instant, when that stage needs to be computed.

The first stage is computed at time t = tk + h/3, whereas the second
stage is computed at time t = tk + h = tk+1. The integrator formulae can
thus be written as:

xk+ 1
3

= xk +
5h

12
· ẋk+ 1

3
− h

12
· ẋk+1 (8.93a)

xk+1 = xk +
3h

4
· ẋk+ 1

3
+

h

4
· ẋk+1 (8.93b)

Hence the complete set of equations for the circuit example can be writ-
ten as:

v0 = f(t +
h

3
) (8.94a)

v1 = R1 · j1 (8.94b)
v2 = R2 · j2 (8.94c)
vL = L · djL (8.94d)
jC = C · dvC (8.94e)
v0 = v1 + vC (8.94f)
vL = v1 + v2 (8.94g)
vC = v2 (8.94h)

354 Chapter 8. Differential Algebraic Equation Solvers

j0 = j1 + jL (8.94i)
j1 = j2 + jC (8.94j)

u0 = f(t + h) (8.94k)
u1 = R1 · i1 (8.94l)
u2 = R2 · i2 (8.94m)
uL = L · diL (8.94n)
iC = C · duC (8.94o)
u0 = u1 + uC (8.94p)
uL = u1 + u2 (8.94q)
uC = u2 (8.94r)
i0 = i1 + iL (8.94s)
i1 = i2 + iC (8.94t)

jL = pre(iL) +
5h

12
· djL − h

12
· diL (8.94u)

vC = pre(uC) +
5h

12
· dvC − h

12
· duC (8.94v)

iL = pre(iL) +
3h

4
· djL +

h

4
· diL (8.94w)

uC = pre(uC) +
3h

4
· dvC +

h

4
· duC (8.94x)

Thus, we end up with a difference equation (ΔE) system in 24 equations
and 24 unknowns. Since the two stages are implicitly coupled to each other,
they cannot be executed in sequence. They are simulated together leading
to a model containing twice as many equations and unknowns [8.6, 8.38].

We are only interested in the variables of the second stage. At the end
of the step, iL and uC need to be copied to the previous state vector,
pre(iL) and pre(uC). Yet, we must compute the variables of the first stage
simultaneously with those of the second stage due to the coupling between
the two stages.

We shall refrain from drawing the structure digraph for this ΔE system.
Let us summarize the results. 10 of the 24 equations can be causalized at
once. The heuristic procedure chooses vC as the first tearing variable, and
Eq.(8.94v) as the first residual equation. With this choice, seven additional
equations can be causalized. The procedure then chooses i1 as the second
tearing variable, and Eq.(8.94t) as the second residual equation. With this
choice, the remaining seven equations can be causalized.

Hence we can simulate this problem using the third–order accurate Radau
IIA algorithm with only two iteration variables in the Newton iteration.

8.7 Stiffly Stable Step–size Control of Radau IIA 355

8.7 Stiffly Stable Step–size Control of Radau IIA

A difficult problem with these types on numerical solvers concerns the
control of the step size. To this end, it is necessary to find an estimate
for the integration error, the order of approximation accuracy of which
is one order higher than that of the solver itself. Typically, designers of
such solvers will look for a second solver of the same or higher order of
approximation accuracy to compare it against the solver to be used for the
simulation.

While it is always possible to run two independent solvers in parallel for
the purpose of step–size control, this approach is clearly undesirable, as
it makes the solver highly inefficient. In explicit Runge–Kutta algorithms,
it has become customary to search for an embedding method, i.e., a sec-
ond solver that has most of the computations in common with the original
solver, such that they share a large portion of the computational load be-
tween them. Unfortunately, this approach won’t work in the case of fully
implicit Runge–Kutta algorithms, since these algorithms are so compact
and so highly optimized that there simply is not enough freedom left in
these algorithms for embedding methods to co–exist with them.

One solution that comes to mind immediately is to use a Backward Dif-
ference Formula in parallel with the implicit Runge–Kutta technique. This
solution can be implemented cheaply, because an appropriately accurate
state derivative at time tk+1 can be obtained up front using the Runge–
Kutta approximation, i.e., no Newton iteration is necessary. For example,
the 3rd–order accurate Radau IIA algorithm could be accompanied by a
3rd–order accurate BDF solver implemented as:

xBDF
k+1 =

18
11

xk − 9
11

xk−1 +
2
11

xk−2 +
6
11

· h · fk+1 (8.95)

where fk+1 is the function value evaluated from the state–space model at
time tk+1:

fk+1 = f(xIRK
k+1 ,uk+1, tk+1) (8.96)

and xIRK
k+1 is the solution found by the Radau IIA algorithm. Unfortunately,

such a solution inherits all the difficulties associated with step–size control
in linear multi–step methods. Alternatively, the step size can only be mod-
ified once every n steps, where n is the order of the algorithm, which elim-
inates an important aspect of the elegance and efficiency of Runge–Kutta
methods. For these reasons, we propose a different route.

Clearly, an embedding method cannot be found using only information
that is being used by the Radau IIA algorithm. In each step, there are
four pieces of information available: xk, xk+ 1

3
, ẋk+ 1

3
, and ẋk+1 to estimate

xk+1. Evidently, there is only one 3rd–order accurate polynomial going
through these four pieces of information, and it is this polynomial that

356 Chapter 8. Differential Algebraic Equation Solvers

defines the Radau IIA algorithm. However, enough redundancy can be ob-
tained to define an embedding algorithm if information from the two last
steps is being used. In this case, the following eight pieces of information
are available: xk−1, xk− 2

3
, xk, xk+ 1

3
, ẋk− 2

3
, ẋk, ẋk+ 1

3
, and ẋk+1. It was

decided to look for 4th–order accurate polynomials that go through any
five of these eight pieces of information. This technique defines 56 possible
embedding methods. Out of these 56 methods, only six are stiffly stable.
Two of those six techniques are not A–stable, i.e., have unstable regions
within the left half complex λ ·h plane. One method has a stability domain
with a discontinuous derivative at the real axis, which is suspicious. The
remaining three methods are:

x1
k+1 = − 25

279
xk−1 +

6
31

xk− 2
3

+
250
279

xk +
25h

31
ẋk+ 1

3
+

65h

279
ẋk+1

x2
k+1 = − 1

36
xk−1 +

16
9

xk − 3
4

xk+ 1
3

+ h ẋk+ 1
3

+
2h

9
ẋk+1 (8.97)

x3
k+1 = − 2

23
xk− 2

3
+

50
23

xk − 25
23

xk+ 1
3

+
25h

23
ẋk+ 1

3
+

5h

23
ẋk+1

All of these three techniques have nice stability domains looping in the
right half complex λ · h plane. Each of them is A–stable. It is possible to
write these methods in the linear case as:

xk+1 = F · xk−1 (8.98)

The F–matrices of the three methods can be expanded into Taylor series
around h = 0. The three F–matrices then take the form:

F1 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

2224
279

(Ah)3

6
+

877
58

(Ah)4

24
(8.99a)

F2 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

73
9

(Ah)3

6
+

859
54

(Ah)4

24
(8.99b)

F3 ≈ I(n) + 2 Ah + 4
(Ah)2

2
+

188
23

(Ah)3

6
+

374
23

(Ah)4

24
(8.99c)

What would have been expected of a 4th–order accurate method is:

F ≈ I(n) + 2 Ah + 4
(Ah)2

2
+ 8

(Ah)3

6
+ 16

(Ah)4

24
(8.100)

since the expansion is over a double step. Unfortunately, neither of these
three methods is even 3rd–order accurate. The problem is that although
xk+1 is 3rd–order accurate, the first stage of the method, xk+ 1

3
is only 2nd–

order accurate. We evidently cannot expect the order of approximation
accuracy of our 4th–order polynomials to be any higher than that of its

8.7 Stiffly Stable Step–size Control of Radau IIA 357

supporting values, and indeed, all three of our 4th–order polynomials are
only 2nd–order accurate.

Luckily, there are three such methods available. Hence it should be pos-
sible to blend them:

xblended
k+1 = α x1

k+1 + β x2
k+1 + (1 − α − β) x3

k+1 (8.101)

such that the coefficients of the Taylor–series expansion of the blended
method are correct up to the quartic term. Unfortunately, this doesn’t
work, because the three methods are not linearly independent of each other.
There really are only two methods. The third one is a linear combination
of the other two. However, it is possible to blend any two of these three
methods with the solution found by Radau IIA:

xblended
k+1 = α · x1

k+1 + β · x2
k+1 + (1 − α − β) · xRadau

k+1 (8.102)

These three techniques are indeed independent of each other. The resulting
algorithm is:

xblended
k+1 = xk−1 − 2 xk− 2

3
+ 2 xk+ 1

3
− h

2
ẋk+ 1

3
+

h

2
ẋk+1 (8.103)

This method is indeed 4th–order accurate. It has highly appealing coeffi-
cients. It has only one disadvantage. It is totally unstable everywhere.

It should be possible to find 4th–order accurate embedding methods
spanned by the information collected from Radau IIA over two steps. Yet,
for the purpose of step–size control, it is sufficient to find another 3rd–order
accurate embedding method. To this end, it suffices to blend any two of
the three algorithms found above:

xblended
k+1 = ϑ · x1

k+1 + (1 − ϑ) · x2
k+1 (8.104)

The resulting method is:

xblended
k+1 = − 1

13
xk−1+

2
13

xk− 2
3
+

14
13

xk− 2
13

xk+ 1
3
+

11h

13
ẋk+ 1

3
+

3h

13
ẋk+1

(8.105)
Also this method has beautifully simple rational coefficients. it is indeed
3rd–order accurate:

F ≈ I(n) + 2 Ah + 4
(Ah)2

2
+ 8

(Ah)3

6
+

149
156

· 16
(Ah)4

24
(8.106)

i.e., the error coefficient of the method is:

358 Chapter 8. Differential Algebraic Equation Solvers

−2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

Stability Domain of Radau IIA Error Method

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.19. Stability domain of blended Radau IIA embedding method

ε =
−7

3744
(Ah)4 (8.107)

The stability domain of the blended method is given in Figure 8.19.
The blended method relies on h not changing its values between the two

steps used in the approximation. It may be easiest to prevent the step size
from changing two steps in a row. This seems a small price to pay. After
the step size has remained constant for two consecutive steps, it is free to
change in any way suitable. The code needed to perform step–size control
can be merged with the model equations and the simulation equations,
i.e., it can be inlined as well, but this is not truly necessary. The step–size
control code can be kept in a separate routine called upon by the simulation
engine whenever needed.

Which of the two approximations should be propagated to the next step?
The error coefficient of the embedding method is considerably smaller than
that of Radau IIA. Hence on a first glance, it seems reasonable to propagate
the approximation of the embedding technique. However, there are two
problems with this choice.

First, the embedding technique was designed assuming that the Radau IIA
result would be propagated. If the embedding technique is being propa-
gated, the F–matrices change, and the blended method may no longer be
3rd–order accurate.

8.7 Stiffly Stable Step–size Control of Radau IIA 359

Second, Figure 8.20 shows the damping plot of the embedding method.
Comparing it with the damping plot of Radau IIA, it can be seen that the
embedding method is not L–stable, i.e., the damping does not approach
infinity as the eigenvalues of the model move further and further to the
left.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4

−3

−2

−1

0

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2.5

−2

−1.5

−1

−0.5

0

Damping Plot of Radau IIA Error Method

−σd

Logarithmic Damping Plot of Radau IIA Error Method

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.20. Damping plot of the blended Radau IIA embedding method

Thus, in spite of the smaller error coefficient, the embedding method
should only be used for step–size control, not for propagation.

The fifth–order accurate Radau IIA method (Rad5) can be analyzed
analogously. A single step of Rad5 stores six pieces of information: xk, x1k

,
x2k

, ẋ1k
, ẋ2k

, and ẋk+1, where x1k
and x2k

are the approximations of the
two intermediate stages. There is only one 5th–order accurate polynomial
going through these six pieces of information, and it is this polynomial that
defines the Rad5 algorithm. Again, enough redundancy can be obtained
to define an embedding algorithm if information from the two last steps is
being used. In this case, the following 12 pieces of information are available:
xk−1, x1k−1

, x2k−1
, xk, x1k

, x2k
, ẋ1k−1

, ẋ2k−1
, ẋk, ẋ1k

, ẋ2k
, and ẋk+1.

Searching for 6th–order polynomials going through seven of these twelve
supporting values, there are 792 methods to be evaluated. Of those, 26
are A–stable methods that can be blended to form an alternate 5th–order
accurate embedding method.

Although Rad5 as a whole is 5th–order accurate, its first two stages are

360 Chapter 8. Differential Algebraic Equation Solvers

only 3rd–order accurate. Thus, we should not expect any of these 6th–order
polynomials to reach a higher order of approximation accuracy than three,
and indeed, this is what we get. Hence we need to blend at least three of
the methods to obtain a 5th–order accurate embedding method.

There exist 2600 combinations of blended methods from the 26 individual
methods. We need to eliminate those among them that are not A–stable.
We furthermore should choose a method with a small error coefficient and
decent damping characteristics. It would be an additional benefit if we could
come up with a method that has conveniently small rational coefficients.

A very good embedding method is the following:

xblended
k+1 = c1 · xk−1 + c2 · ẋ1k−1

+ c3 · x2k−1
+ c4 · ẋ2k−1

+ c5 · xk

+ c6 · x1k
+ c7 · ẋ1k

+ c8 · x2k
+ c9 · ẋ2k

+ c10 · ẋk+1 (8.108a)

with the coefficients:

c1 = −0.00517140382204 (8.109a)
c2 = −0.00094714677404 (8.109b)
c3 = −0.04060469717694 (8.109c)
c4 = −0.01364429384901 (8.109d)
c5 = +1.41786808325433 (8.109e)
c6 = −0.17475783086782 (8.109f)
c7 = +0.48299282769491 (8.109g)
c8 = −0.19733415138754 (8.109h)
c9 = +0.55942205973218 (8.109i)

c10 = +0.10695524944855 (8.109j)

We did program the computation of the coefficients also using MATLAB’s
symbolic toolbox, but the resulting expressions are quite awful, thus we
decided to offer the numerical versions instead.

The blending method is indeed 5th–order accurate. It exhibits a nice
convex A–stable stability domain, which is shown in Fig.8.21.

The damping plot exhibits a nice large asymptotic region and decent
damping characteristics far out in the left–half complex λ · h–plane. The
method is not L–stable, but that is neither surprising nor truly necessary.
The damping plot is presented in Fig.8.22.

8.8 Stiffly Stable Step–size Control of Lobatto IIIC

Let us now look at the Lobatto IIIC algorithm. Since the algorithm is less
compact than the Radau IIA algorithms, it should be easier to find suitable

8.8 Stiffly Stable Step–size Control of Lobatto IIIC 361

−4 −2 0 2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

6

8

Stability Domain of Radau IIA Error Method

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.21. Stability domain of blended 5th–order Radau IIA embedding
method

embedding methods. Yet, each algorithm is accompanied by its own set of
difficulties.

First, we checked the order of approximation accuracy of the intermediate
stages of the Lobatto IIIC algorithm. Unfortunately, they are only 2nd–
order accurate. Hence we shall still need to blend three methods to raise
the order of approximation accuracy of the embedding algorithm to four.

Secondly, although we again are working with 12 pieces of information
across two steps, Lobatto IIIC has a peculiarity. It experiences a zero time
advance between the third stage of one step and the first stage of the
next. Although xk and x1k

represent the state vector at the same time
instant, they are two different approximations. In particular, xk is 4th–order
accurate, whereas x1k

is only 2nd–order accurate. The zero time advance
reduces the flexibility in finding suitable error methods, as no individual
error method can use both xk and x1k

simultaneously.
16 individual error methods were found that are all A–stable. Two of

them are even L–stable. Of course, none of these error methods is of higher
order of approximation accuracy than two.

We then proceeded to blend any three of these methods. The best among
the 4th–order accurate blended methods is presented in the sequel. It can
be written as:

362 Chapter 8. Differential Algebraic Equation Solvers

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4

−3

−2

−1

0

1

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Damping Plot of Radau IIA Error Method

−σd

Logarithmic Damping Plot of Radau IIA Error Method

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.22. Damping plot of the blended 5th–order Radau IIA embedding
method

xblended
k+1 =

63
4552

· x1k−1
− 91

81936
· ẋ1k−1

+
1381
81936

· ẋ2k−1
+

3101
2276

· xk

− 393
4552

· x1k
+

775
3414

· ẋ1k
− 165

569
· x2k

+
62179
81936

· ẋ2k

+
12881
81936

· ẋk+1 (8.110)

The coefficients of the blending method were calculated using MATLAB’s
symbolic toolbox.

The embedding method offers a beautiful convex stability domain, as
shown in Fig.8.23.

The damping characteristics of the embedding method are shown in
Fig.8.24.

The method is characterized by a large asymptotic region and a decently
large damping value far out in the left–half complex λ · h plane.

8.9 Inlining Partial Differential Equations

Let us return once more to the simulation of parabolic PDEs converted
to sets of ODEs using the MOL approach. In Chapter 6 of this book, we

8.9 Inlining Partial Differential Equations 363

−2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

Stability Domain of Lobatto IIIC Error Method

Re{λ · h}

I
m
{λ

·h
}

FIGURE 8.23. Stability domain of blended Lobatto IIIC embedding method

simulated these types of problems using a stiff–system solver, such as a BDF
algorithm. Whereas this approach worked quite well, the efficiency of the
simulations was less than satisfactory. What killed our attempts at solving
these problems efficiently was not the step size. The number of function
evaluations was actually quite low, at least as long as we computed the
Jacobian analytically. What made our simulations excruciatingly slow was
the computation of the inverse Hessians.

Let us discuss once more the 1D heat diffusion problem discretized using
5th–order accurate central differences, as described in Eqs.(6.39a–h). We
use 50 segments, n = 50.

Using the approach advertised in Chapter 6, we ended up with 50 ODEs,
requiring a Hessian matrix of size 50 × 50 to be inverted. More precisely,
a linear system of 50 equations in 50 unknowns had to be solved using
Gaussian elimination during every iteration step.

Let us now apply inline integration to the problem. Let us start by in-
lining a variable step and variable order BDF algorithm. We can write the
inlined ΔE system in matrix form as follows:

ẋ = A · x + b · u (8.111a)
x = old(x) + h̄ · ẋ (8.111b)

364 Chapter 8. Differential Algebraic Equation Solvers

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4

−3

−2

−1

0

1

−10
6

−10
5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Damping Plot of Lobatto IIIC Error Method

−σd

Logarithmic Damping Plot of Lobatto IIIC Error Method

log(σd)

-
D

am
pi

ng
-

D
am

pi
ng

FIGURE 8.24. Damping plot of the blended Lobatto IIIC embedding method

where A is the matrix:

A =
n2

120π2
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 − 4 14 − 6 1 . . . 0 0 0 0
16 −30 16 − 1 0 . . . 0 0 0 0
− 1 16 −30 16 − 1 . . . 0 0 0 0

0 − 1 16 −30 16 . . . 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 0 . . . 16 −30 16 − 1
0 0 0 0 0 . . . − 1 16 −31 16
0 0 0 0 0 . . . 0 − 2 32 −30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.112)

We can no longer hope to tear this equation system by hand. Thus, we
encoded our heuristic procedure in a MATLAB routine, and applied that
routine to the problem at hand. Since MATLAB works more naturally
with matrices than with linked lists, we based our implementation on the
structure incidence matrix instead of the structure digraph.

The structure incidence matrix for this problem is shown in Fig.8.25. We
numbered the equations such that we started with the state variables, and
concatenated them with the state derivatives.

Two trivial tearing structures come to mind immediately. We can either
plug Eq.(8.111a) into Eq.(8.111b), and thereby eliminate the state deriva-
tives from the set of iteration variables:

8.9 Inlining Partial Differential Equations 365

0 10 20 30 40 50 60 70 80 90 100
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Structure Incidence Matrix of 1D Heat Equation

Columns of S

R
ow

s
of

S

FIGURE 8.25. Structure incidence matrix of inlined 1D heat diffusion problem
using a BDF algorithm.

x = old(x) + h̄ · (A · x + b · u) (8.113)

or alternatively, we can plug Eq.(8.111b) into Eq.(8.111a), and thereby
eliminate the state variables from the set of iteration variables:

ẋ = A · (old(x) + h̄ · ẋ) + b · u (8.114)

In either case, we reduce the number of iteration variables back to 50, i.e.,
we end up with a Hessian of the same size as in Chapter 6.

Let us check, whether our heuristic procedure can do better. Applying
the heuristic procedure as proposed, we obtain immediately a solution in
32 residual equations and 32 tearing variables. If we modify our heuristic
procedure somewhat by searching for the number of additional equations
to be causalized across all unknowns appearing in a candidate residual
equation, rather than limiting the search to those variables with the largest
number of black (solid) lines attached to them, we obtain a solution with
25 residual equations and 25 tearing variables.

Using this modified heuristic procedure, we have extended the search
somewhat, thereby reducing the efficiency of the algorithm, but in return,
we have obtained a more economical tearing structure.

We suspect that the solution with 25 iteration variables is indeed the
optimal solution, but we are not sure of it. We did not attempt to solve the

366 Chapter 8. Differential Algebraic Equation Solvers

np–complete exhaustive search across all possible combinations of residual
equations and tearing variables.

This is a big improvement. The computational effort of the Gaussian
elimination algorithm grows quadratically in the size of the linear equation
system. Hence by reducing the size of the Hessian from 50× 50 to 25× 25,
we increase the simulation speed by a full factor of four.

Let us now discuss what happens when we inline the 3rd–order accurate
Radau IIA algorithm instead. Our ΔE system can now be written down as
follows:

ẏ = A · y + b · u(tk+ 1
3
) (8.115a)

ẋ = A · x + b · u(tk+1) (8.115b)

y = pre(x) +
5
12

· h · ẏ − 1
12

· h · ẋ (8.115c)

x = pre(x) +
3
4
· h · ẏ +

1
4
· h · ẋ (8.115d)

If we number the variables starting with y, concatenating to it x, then ẏ,
and finally ẋ, the structure incidence matrix assumes the structure shown
in Fig.8.26.

0 20 40 60 80 100 120 140 160 180 200
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Structure Incidence Matrix of 1D Heat Equation

Columns of S

R
ow

s
of

S

FIGURE 8.26. Structure incidence matrix of inlined 1D heat diffusion problem
using Radau IIA.

Two trivial tearing structures come to mind. We can either plug the two

8.9 Inlining Partial Differential Equations 367

sets of state equations into the two sets of integration equations, thereby
eliminating all state derivatives from the set of iteration variables:

y = pre(x) +
5
12

· h · (A · y + b · u(tk+ 1
3
))

− 1
12

· h · (A · x + b · u(tk+1)) (8.116a)

x = pre(x) +
3
4
· h · (A · y + b · u(tk+ 1

3
))

+
1
4
· h · (A · x + b · u(tk+1)) (8.116b)

or alternatively, we can plug the two sets of integration equations into the
two sets of state equations, thereby eliminating all state variables from the
set of iteration variables:

ẏ = A · (pre(x) +
5
12

· h · ẏ − 1
12

· h · ẋ) + b · u(tk+ 1
3
) (8.117a)

ẋ = A · (pre(x) +
3
4
· h · ẏ +

1
4
· h · ẋ) + b · u(tk+1) (8.117b)

In either case, we end up with 100 iteration variables.
Let us see whether our heuristic procedure can do better. Unfortunately,

the algorithm breaks down after having chosen about 60 tearing variables,
and after having causalized about 120 equations. The heuristic procedure
has maneuvered itself into a corner. Every further selection of a combination
of residual equation and tearing variable leads to a structural singularity.
Although the algorithm had been programmed to ignore selections that
would lead to a structural singularity at once, it hadn’t been programmed
to backtrack beyond the last selection, i.e., throw earlier residual equations
and tearing variables away to avoid future mishap.

This is why we wrote in Chapter 7 that the computational complexity of
the heuristic procedure grows quadratically with the size of the equation
system for most applications. It does so, if no backtracking is required.

I was curious how the tearing algorithm built into Dymola would fare
when faced with this problem. I quickly programmed the equation system
into Dymola Version 4.1d, and asked for a compilation. Whereas Dymola
usually tears equation systems with tens of thousands of equations within
a few seconds, it chewed on this problem for a very long time. I watched
an entire movie (Animal Farm) on TV, while Dymola was thinking about
the problem.

It turned out that the heuristic algorithm built into Version 4.1d of Dy-
mola did not break down. Evidently, it is programmed to backtrack suf-
ficiently to get itself out of a corner. Unfortunately after thinking hard,
Dymola came up with one of the two trivial tearing structures.

368 Chapter 8. Differential Algebraic Equation Solvers

The above paragraph had been written almost two years ago. Now, before
sending the manuscript off to the printer, we decided to run the example
once more through the current version of Dymola, which is Version 5.3d.
This time around, Dymola came up with an answer after only six seconds
of compilation time.

We had sent an earlier version of this chapter to Hilding Elmqvist. When-
ever someone stumbles upon an example that the tearing algorithm does
not handle well, the good folks up at Dynasim go into overdrive, trying to
come up with an improved version of their tearing algorithm as fast as they
can.

The answer, however, was still the same. Dymola chose one of the two
trivial structures as the most suitable tearing structure for this system.
We thus suspect that the trivial structures are indeed the optimal tearing
structures in this case, but of course, we aren’t sure. Going through an
exhaustive search for finding the optimal tearing structure would be too
painful to even consider.

Unfortunately, these are bad news. If indeed we pay for using Radau IIA
instead of BDF3 with increasing the size of the Hessian by a factor of four,
Radau IIA would have to be able to use step sizes that are on average
at least 16 times larger than those used by BDF for the same accuracy.
Otherwise, Radau IIA is not competitive for dealing with this problem. We
doubt very much that Radau IIA will be able to do so.

PDE problems are notoriously difficult simulation problems. Although
tearing is a very powerful symbolic sparse matrix technique, it cannot make
an intrinsically difficult problem easy to solve.

8.10 Overdetermined DAEs

At this point, we shall resume the discussion of the mechanical pendulum
problem that we began towards the end of Chapter 7. The mechanical
pendulum schematic is presented once more in Fig.8.27.

We had already come up with a set of causal equations without solv-
ability issues describing the motion of the mechanical pendulum. Let us
use the variable substitution technique to come up with a closed–form for-
mula for the tearing variable. Doing so, we find the following explicit ODE
description of the pendulum problem.

x = � · sin(ϕ) (8.118a)
vx = � · cos(ϕ) · ϕ̇ (8.118b)
y = � · cos(ϕ) (8.118c)

vy = −� · sin(ϕ) · ϕ̇ (8.118d)

8.10 Overdetermined DAEs 369

x

y

�ϕ

F

m · g
FIGURE 8.27. Mechanical pendulum.

dvx = −x · � · ϕ̇2 + x · cos(ϕ) · g
x · sin(ϕ) + y · cos(ϕ)

(8.118e)

ϕ̈ =
dvx

� · cos(ϕ)
+

sin(ϕ)
cos(ϕ)

· ϕ̇2 (8.118f)

dvy = −� · sin(ϕ) · ϕ̈ − � · cos(ϕ) · ϕ̇2 (8.118g)

F =
m · g · �

y
− m · � · dvy

y
(8.118h)

Eq.(8.118e) could have been simplified further, but this is unimportant for
the discussion at hand. The formula, as presented above, is the one that
Dymola will come up with, since it knows that sin2 ϕ + cos2 ϕ = 1, but it
doesn’t know to multiply both the numerator and the denominator with �
to eliminate the trigonometric functions from the expression.

We know that the pendulum, as described, is a conservative (Hamilto-
nian) system, since no friction was assumed anywhere. Hence the pendu-
lum, once disturbed, should swing forever with the same frequency and
amplitude. The total free energy, Ef :

Ef = Ep + Ek (8.119)

which is the sum of the potential energy, Ep, and the kinetic energy, Ek,
should be constant. The potential energy can be modeled as:

370 Chapter 8. Differential Algebraic Equation Solvers

Ep = m · g · (y0 − y) (8.120)

and the kinetic energy can be expressed using the formula:

Ek =
1
2
· m · v2

x +
1
2
· m · v2

y (8.121)

Let us add these three equations to the model.
Let us simulate this problem for a pendulum with g = 9.81 m/(sec2),

m = 10 kg, � = 1 m, ϕ0 = +45o = π/4 rad, and ϕ̇0 = 0 rad/sec. Thus,
y0 =

√
2/2 m.

We shall inline the forward Euler algorithm, thus we add the two equa-
tions:

ϕ̇k+1 = ϕ̇k + h · ϕ̈k (8.122a)
ϕk+1 = ϕk + h · ϕ̇k (8.122b)

We can now simulate the problem by simply iterating over these 13 equa-
tions. We shall simulate the problem during 10 sec with a fixed step size
of h = 0.01. The results of this simulation are shown in Fig.8.28.

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

Forward Euler Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.28. Inlined FE simulation of mechanical pendulum.

We just solved the world’s energy crisis once and for all. Evidently, we
are able to generate free energy out of thin air.

8.10 Overdetermined DAEs 371

Let us see whether backward Euler fares any better. Instead of inlining
Eqs.(8.122a–b), we inline the equations:

ϕ̇ = pre(ϕ̇) + h · ϕ̈ (8.123a)
ϕ = pre(ϕ) + h · ϕ̇ (8.123b)

Since the backward Euler algorithm is an implicit integration method, we
expect to encounter another algebraic loop. The partially causalized struc-
ture digraph for this equation system is shown in Fig.8.29.

Eq.(8.118a)

Eq.(8.118b)

Eq.(8.118c)

Eq.(8.118d)

Eq.(8.118e)

Eq.(8.118f)

Eq.(8.118g)

Eq.(8.118h)

Eq.(8.120)

Eq.(8.121)

Eq.(8.119)

Eq.(8.123a)

Eq.(8.123b)

x

vx

d2phi/dt2

phi

F

Ep

Eq. #13

Eq. #12

Eq. #11

Eq. #10

Eq. #9

y

vy

dvx

dphi/dt

dvy

Ek

Ef

Eq. #8

Eq. #7

FIGURE 8.29. Partially causalized structure digraph of mechanical pendulum
after BE inlining.

We indeed encountered an algebraic loop in six equations and six un-
knowns. Figure 8.30 shows the completely causalized equation system after
a residual equation and a tearing variable have been chosen.

In mechanical systems, it is generally a good idea to select accelera-
tions as tearing variables, and since the model equations had already been
causalized before, i.e., each variable appears exactly once to the left side
of the equal sign and does so in a linear fashion, it makes sense to use the
equation that defines the angular acceleration ϕ̈ as the residual equation.

The causal equations can be read out of Fig.8.30. They are:

ϕ̇ = pre(ϕ̇) + h · ϕ̈ (8.124a)
ϕ = pre(ϕ) + h · ϕ̇ (8.124b)
y = � · cos(ϕ) (8.124c)

372 Chapter 8. Differential Algebraic Equation Solvers

Eq.(8.118a)

Eq.(8.118b)

Eq.(8.118c)

Eq.(8.118d)

Eq.(8.118e)

Eq.(8.118f)

Eq.(8.118g)

Eq.(8.118h)

Eq.(8.120)

Eq.(8.121)

Eq.(8.119)

Eq.(8.123a)

Eq.(8.123b)

x

vx

d2phi/dt2

phi

F

Ep

Eq. #13

Eq. #12

Eq. #11

Eq. #10

Eq. #9

y

vy

dvx

dphi/dt

dvy

Ek

Ef

Eq. #8

Eq. #7

Residual Eq. Tearing Var.

Eq. #1

Eq. #5

Eq. #2

Eq. #4

Eq. #3

FIGURE 8.30. Completely causalized structure digraph of mechanical pendulum
after BE inlining.

x = � · sin(ϕ) (8.124d)

dvx = −x · � · ϕ̇2 + x · cos(ϕ) · g
x · sin(ϕ) + y · cos(ϕ)

(8.124e)

ϕ̈ =
dvx

� · cos(ϕ)
+

sin(ϕ)
cos(ϕ)

· ϕ̇2 (8.124f)

vy = −� · sin(ϕ) · ϕ̇ (8.124g)
vx = � · cos(ϕ) · ϕ̇ (8.124h)

Ek =
1
2
· m · v2

x +
1
2
· m · v2

y (8.124i)

Ep = m · g · (y0 − y) (8.124j)

dvy = −� · sin(ϕ) · ϕ̈ − � · cos(ϕ) · ϕ̇2 (8.124k)
Ef = Ep + Ek (8.124l)

F =
m · g · �

y
− m · � · dvy

y
(8.124m)

The first six of these equations, Eqs.(8.124a–f), constitute the algebraic
loop. This time, we used Newton iteration in the single tearing variable, ϕ̈,
to solve the algebraic loop. We computed the Hessian by means of algebraic
differentiation.

The simulation results are shown in Fig.8.31.
It didn’t work any better than before. This algorithm is losing energy,

where it shouldn’t. The result is easily explainable. This is a conservative
system. The two eigenvalues of its Jacobian are located on the imaginary
axis, at least on average. However, the numerical stability domain of the FE

8.10 Overdetermined DAEs 373

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

Backward Euler Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.31. Inlined BE simulation of mechanical pendulum.

algorithm loops into the left–half complex plane. Thus, the two eigenvalues
of the system are seen as mildly unstable, and the oscillation is growing.
The algorithm adds energy to the system. On the other hand, the stability
domain of the BE algorithm loops into the right–half complex plane. Con-
sequently, the two marginally stable eigenvalues are seen as mildly damped,
and the oscillation decays.

An F–stable algorithm, such as the BI technique, should be expected to
work better. Let us implement BI2 as a cyclic method, toggling between a
step of FE followed by a step of BE. The simulation results are presented
in Fig.8.32.

The approach worked. Yet, it only worked, because we were able to ana-
lyze the problem and come up with a suitable solution. The code itself still
has no inkling that it is supposed to conserve the free energy. It does so by
accident rather than by design.

Let us try to change that. We shall force the backward Euler algorithm
to preserve the free energy. To this end, we simply add the equation:

Ef = 0 (8.125)

to the set of equations.
This is a completely new situation. We haven’t added any new variables

to the set of equations. We only added another equation. Thus, we now
have 14 equations in 13 unknowns. Clearly, this problem is constrained.

374 Chapter 8. Differential Algebraic Equation Solvers

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3

BI2 Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.32. Inlined BI2 simulation of mechanical pendulum.

If we present this problem to the Pantelides algorithm, it will differentiate
itself to death, or rather, until the compiler runs out of virtual memory. The
Pantelides algorithm always adds exactly as many equations as variables,
thus after each application of the algorithm, the number of equations is
still one larger than the number of variables.

Inlining again saves our neck. We simply add the constraint equation
to the iteration equations of the Newton iteration. Thus, the set of zero
functions can now be written as:

F =
(

ϕ̈new − ϕ̈
Ef

)
(8.126)

and therefore:

H =
(

∂ϕ̈new/∂ϕ̈ − 1
∂Ef/∂ϕ̈

)
(8.127)

The Newton iteration can be written as:

H� · dx� = F� (8.128a)

x�+1 = x� − dx� (8.128b)

However, H is no longer a square matrix. It is now a rectangular matrix
with 2 rows and 1 column. In general with n model equations and p con-
straints, the Hessian turns out to be a rectangular matrix with n + p rows

8.10 Overdetermined DAEs 375

and n columns. Thus, Eq.(8.128a) is overdetermined. It cannot be satisfied
exactly. The dx–vector can only be determined in a least square sense. This
can be accomplished by multiplying Eq.(8.128a) from the left with H∗, i.e.,
with the Hermitian transpose of H. If the rank of H is n, then H∗ · H is a
Hermitian matrix of full rank. Thus, we can compute dx as:

dx = (H∗ · H)−1 · H∗ · F (8.129)

where (H∗ · H)−1 · H∗ is called the Penrose–Moore pseudoinverse of H. In
MATLAB, this can be abbreviated as:

dx = H\F (8.130)

The results of the simulation are shown in Fig.8.33.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

Stabilized Backward Euler Simulation of Pendulum

ϕ

time

time

E
f

FIGURE 8.33. Inlined stabilized BE simulation of mechanical pendulum.

The oscillation has indeed been stabilized. Of course, the equation:

F = 0 (8.131)

can no longer be solved precisely. The equation system does not contain
enough freedom to do so. Yet, the error is minimized in a least square
sense, and both the oscillation and the free energy are now stable by design.
Initially, the approach still loses a bit of free energy, but the loss stops after
the solution is stabilized. The solution using backinterpolation turns out to

376 Chapter 8. Differential Algebraic Equation Solvers

be better, but the solution using an overdetermined equation set is more
robust.

There are DAE solvers on the market that can handle overdetermined
DAEs, such as ODASSLRT (a “dialect” of DASSL) [8.12] and MEXX (a
code using Richardson extrapolation) [8.20]. Overdetermined DAE solvers
have become popular primarily among specialists of multibody dynamics,
and the early codes tackling this problem indeed evolved in the engineering
community. Most of these early codes were quite specialized. More recently,
the problem was discovered by mainstream applied mathematicians [8.15],
and it can therefore be expected that more general–purpose codes for the
numerical solution of overdetermined DAE systems will soon become avail-
able.

Yet, the problem of merging overdetermined linear system solvers with
general–purpose DAE codes is a difficult one. Most DAE solvers cannot
deal with higher–index problems, yet overdetermined DAEs have much in
common with higher–index problems. In our view, inlining overdetermined
DAEs is generally a better approach than trying to keep the model equa-
tions separate from the simulator equations.

Most applied mathematicians have shunned away from the inlining ap-
proach, because inlining without a powerful model compiler, such as Dy-
mola [8.9, 8.10], is a toy. Drawing structure digraphs by hand only works
for toy problems.

Hairer and his colleagues thus went a different route [8.15]. Rather than
constraining the DAE system, they generalized on the BI2 solution pre-
sented earlier in this section. It was not by accident that the BI2 solution
produced the correct answer to the problem.

To understand this result, the reader needs to remember our introduction
to the backinterpolation algorithms in Chapter 3 of this book. We recog-
nized that we can implement a class of implicit Runge–Kutta algorithms by
integrating the regular explicit Runge–Kutta algorithms backward through
time. As we simply replace the step size h by −h, the stability domains of
these methods get mirrored on the imaginary axis of the complex λ · h–
plane.

Some algorithms do not change, when h is replaced by −h. For example,
the trapezoidal rule:

xk+1 = xk +
h

2
· (ẋk + ẋk+1) (8.132)

turns into:
xk = xk+1 − h

2
· (ẋk+1 + ẋk) (8.133)

i.e., the formula doesn’t change. Such an ODE solver is called a symmetric
integration algorithm. The stability domains of symmetric ODE solvers
are symmetric to the imaginary axis. In particular, all of the F–stable
integration algorithms introduced in Chapter 3 are symmetric ODE solvers.

8.11 Electronic Circuit Simulators 377

Symmetric integration algorithms are not only symmetric to the imag-
inary axis w.r.t. their stability properties, but also w.r.t. their damping
properties. Thus, symmetric integration algorithms are accompanied by
symmetric order stars as well.

This symmetry can be exploited in the simulation of Hamiltonian sys-
tems. At least, if we carefully choose our step size to be in sync with the
eigenfrequency of oscillation of the system, we can ensure that the damp-
ing errors committed during the integration over a full period cancel out,
such that the solution at the end of one cycle coincides with that at the
beginning of the cycle.

Yet, we still prefer the constrained solution proposed in this section, as
it is considerably more robust. It works with any numerical integration
scheme and enforces the physical constraint directly rather than indirectly.

8.11 Electronic Circuit Simulators

One important application area where DAEs are frequently used is elec-
tronic circuit modeling. Let us briefly relate the topics of Chapters 7 and
8 of this book to the discussions presented in Chapters 3 and 6 of the
companion book on Continuous System Modeling [8.5].

We have seen that object–oriented modeling of electrical and electronic
circuits invariably leads to implicit DAE descriptions. We have furthermore
seen that the resulting sets of DAEs are often index–2 models.

You, the reader, may have come to the conclusion that whether or not a
set of DAEs describing an electrical circuit presents itself as a higher–index
model depends on the topology of the circuit. However, that conclusion
is too simple. The perturbation index of a model is influenced by the ab-
straction mechanism chosen in its mathematical description. In the case of
nonlinear systems, it even depends on the selection of state variables, as
nonlinear transformations performed on a model can influence the pertur-
bation index.

In an explicit ODE description of a system, the state variables are pre-
determined. They are simply the outputs of the integrators. However in
an implicit DAE description, the answer is no longer as clear cut. First
and second derivatives can show up multiple times anywhere within the
implicit equations. How do we even know, how many degrees of freedom a
DAE model really has? Here we have a true choice in deciding, which state
variables to use, and the perturbation index of the model is dependent on
that choice.

Inline integration blurs the situation even further. After inlining, all vari-
ables have become algebraic variables. The number of initial values needed
to simulate an inlined model depends on the number of tearing variables.
We need to specify one initial guess for each tearing variable, as well as

378 Chapter 8. Differential Algebraic Equation Solvers

initial conditions for all variables that appear in ‘pre(.)’ clauses.
In the companion book, we started out in Chapter 3 explaining the

derivations of circuit equations in terms of either mesh currents or cut-
set potentials. We chose a “tree” that defined either a minimal set of mesh
currents or a minimal set of cutset potentials.

We now understand much better, what it is that we accomplished. We
designed techniques to come up with small sets of tearing variables. The
mesh currents assume the role of tearing variables, if we work with mesh
equations, whereas the cutset potentials assume the same role, when we
work with cutset (node) equations.

Branch currents and/or branch voltages are poor choices as state vari-
ables, because they frequently lead to higher–index DAE models. If we
place two capacitors in parallel, we cannot choose the voltages across these
two capacitors as independent state variables. Similarly, if we place two
inductors in series, we cannot select the currents flowing through them as
independent state variables. If we work with such selections, we invariable
end up with index–2 models.

The problem disappears if we choose a subset of either mesh currents of
cutset potentials as state variables. These are always independent of each
other by design. The most difficult problem is to decide, which variables
and how many to select as tearing variables.

Commercial electronic circuit simulators, such as Spice [8.26, 8.39] or
Saber [8.24], work with the node potentials as their tearing variables [8.40].
Yet, rather than substituting the equations into each other, as we proposed
in the companion book, they simply write the equations down as is, and
iterate on them using either Newton iteration or at least fixed–point iter-
ation.

Let us start with the simplest case: an electronic circuit without voltage
sources and inductors. Spice [8.26, 8.39] uses all of the node potentials
as tearing variables. In Spice, this is called the nodeset. Evidently, this
is not a minimal set, but it makes the algorithm of finding the tearing
variables trivial. In fact, there are even two different nodesets in use. The
reduced nodeset contains all of the node potentials of user–defined nodes,
whereas the complete nodeset also includes the internal nodes of the circuit
expansions of the active devices (primarily BJT and MOS transistors).

We can formulate Kirchhoff’s Current Law (KCL) as follows:

Ψ · i = 0 (8.134)

where i is the vector of branch currents, and Ψ is the reduced node inci-
dence matrix. Ψ has as many rows as there are nodes in the circuit, and it
has as many columns as there are branches. It is called the reduced node
incidence matrix, because it only considers those nodes and branches that
are explicitly formulated in the model, excluding the expansions of the ac-
tive devices. The element Ψij has a value of +1, when the branch leaves the
node, i.e., when the positive direction of the branch current is away from

8.11 Electronic Circuit Simulators 379

the node. If assumes a value of −1, if the branch arrives at the node, and
it assumes a value of 0, if the branch is not connected to the node at all.
Eq.(8.134) simply states that the sum of all currents into a node is zero.

The equation:
u = ΨT · v (8.135)

relates the node potentials v to the branch voltages u.
Finally, the equation:

i = g(u, u̇,v, t) (8.136)

captures the element law for each of the branches, relating the voltages and
potentials to the currents.

Capacitors are implemented using the DAE formulation of a BDF for-
mula, i.e.:

u̇C =
uC − old(uC)

h̄
(8.137)

Notice that Spice made use of this approach years before DASSL was writ-
ten, but since the program was specialized to dealing with electronic circuits
only, the mathematical community hardly paid any attention to it.

If all elements are either current sources, or resistors (including the non-
linear diodes), or capacitors, we are already in business. If we assume
the node potentials, v, as known, we can use Eq.(8.135) to determine all
branch voltages, u. We can then use the implicit numerical differentiators
of Eq.(8.137) to compute the derivatives of the voltages for each of the ca-
pacitors. We can then use the elemental laws for each branch, Eq.(8.136),
to compute the branch currents.

Hence we can set up the Newton iteration as follows:

F = Ψ · i = 0 (8.138a)

H = Ψ · ∂i
∂v

(8.138b)

v�+1 = v� −H\F (8.138c)

H is a square matrix with as many rows and columns as the circuit has
nodes.

For the Newton iteration to converge properly, the circuit simulator will
need a consistent set of initial values for all tearing variables. This is why
Spice needs to compute an OP–point, i.e., a consistent set of initial con-
ditions for the loop variables, before the “transient analysis” (simulation)
can begin. If the initial OP–point does not converge, the program is in
difficulties.

To overcome this problem, some Spice dialects offer automated source
ramping. If all sources are initially set to zero and if all active devices are
switched off, the initial nodeset is trivial: all node potentials are equal to
zero. Then, the voltages are smoothly ramped up to their desired initial
values in a pre–simulation run, and are then kept at their final (initial)

380 Chapter 8. Differential Algebraic Equation Solvers

values for some time to give the circuit a chance to settle into a steady
state. The resulting node potentials are then used as the initial nodeset
for the subsequent true transient analysis. Due to the special nature of
circuit topologies, we have a simple and systematic way of determining a
consistent set of initial conditions, a luxury that we do not have in all DAE
simulations. Ramping had been described in Chapter 6 of the companion
book.

How do we deal with inductors? Inductors can be implemented in similar
ways as the capacitors. However, rather than using the BDF formula in its
derivative form, we use it in its integral form:

iL = old(iL) + h̄ · diL
dt

(8.139)

Given the branch voltage, we compute the derivative of the current using
the elemental law, then use the BDF formula in its integral form to find
the current.

How do we deal with the ideal independent voltage sources? In the com-
panion book, we proposed to move independent voltage sources into neigh-
boring branches of the circuit. Commercial circuit simulators do it differ-
ently.

Let us assume an ideal voltage source is placed in branch i, which is
located between node j and node k. The current through the voltage source
is free to assume any value it needs to assume. It is not constrained by an
elemental law.

Consequently, we can eliminate one row of the F vector, either the el-
ement number j, or the element number k, corresponding to either the
jth or the kth row of the Ψ matrix. We add the equation specified by the
eliminated row to the set of equations computing the currents, Eq.(8.136),
solved for the unknown current through the voltage source.

Since the number of nodes has remained the same as before, we are now
lacking one equation in F for the Newton iteration. We replace it by the
new zero function:

vj − vk − ui = 0 (8.140)

We can now proceed as before.
This is a fairly generic description of how electronic circuit simulators

may be implemented. The different simulators on the market vary in im-
plementational details of how they make use of the above equations. In
the circuit simulation literature, Eqs.(8.134–8.136) are generally called the
Sparse Tableau Equations [8.14, 8.25, 8.26].

Many circuit simulators shun away from estimating the complete Hes-
sian, and therefore, limit themselves to a fixed–point iteration only. In that
case, we must iterate over all the loop variables, i.e., the tearing approach
breaks down. In general, we are dealing with nn + 2 nb equations in the
same number of unknowns, where nn denotes the number of nodes, and nb

8.11 Electronic Circuit Simulators 381

is the number of branches. It may therefore be advantageous to reduce the
number of variables contained in the loop. To this end, Eq.(8.134) can be
combined with Eq.(8.136) in the following way:

Ψ · g(u, u̇,v, t) = 0 (8.141)

thereby eliminating the currents altogether from the iteration loop. Again,
there exist different variations of this general scheme, usually referred to in
the literature under the name Modified Nodal Analysis (MNA) [8.18, 8.25,
8.26].

All of the classical circuit simulators have in common that they limit
the symbolic preprocessing to the interpretation of the network topology.
The entire analysis is done numerically, using the equations pretty much as
they come. Contrary to a general–purpose DAE solver, such as DASSL, the
integration of the storage variables is performed in a decentralized manner,
i.e., for each storage element separately.

The approach only works, because the structure of all equations is pre-
determined. For this reason, circuit simulators cannot be combined with
other tools to form e.g. mechatronic system simulators. Even the thermal
analysis offered by the traditional circuit simulators is fairly limited. They
all allow a user to simulate a circuit at different temperatures (the circuit
parameter values, such as R and C, can be specified as functions of tem-
perature), but it is impossible to simulate how the flow of electrical current
through the circuit heats up the circuit, and then simulate the effects of
the change in temperature on the circuit’s electrical performance simulta-
neously. This cannot be done, because the structure of the equations would
change in such a way that it would violate the assumptions on which the
modified nodal analysis are based.

A mixed symbolic and numerical approach, as pursued e.g. in Dymola, is
therefore considerably more flexible and powerful. To preserve this gener-
ality, the developers of Dymola made it a point to make sure that Dymola
knows absolutely nothing about physics. All it understands are mathemat-
ical algorithms. The entire physical knowledge is encoded in the models
themselves, not in the underlying algorithms that are built (hardwired)
into Dymola.

The price that we pay for this generality is small. Electronic circuit sim-
ulations performed by Dymola are as fast and accurate as their Spice or
Saber counterparts. Furthermore, the maintenance of the electronic model
library is considerably easier in Dymola than in either Spice or Saber, be-
cause of the object–oriented nature of the Dymola modeling environment.
Furthermore, Dymola enables the user to simulate electronic circuits that
are parts of larger mechatronic systems in a mechatronic system simula-
tion. They also allow the electrical and thermal interactions of integrated
circuits to be explored in full, e.g. in the design of packages [8.35, 8.36].

382 Chapter 8. Differential Algebraic Equation Solvers

8.12 Multibody System Dynamics Simulators

Whereas Chapters 3 and 6 of the companion book describe fairly accu-
rately the state–of–the–art of electronic circuit modeling, Chapters 4 and 7
don’t describe state–of–the–art multibody system (MBS) dynamics model-
ing. This topic is simply too advanced to be presented in full in a general–
purpose modeling class. The companion book limited a detailed discus-
sion to one–dimensional devices. Unfortunately, this view does not extend
smoothly to two– or even three–dimensional devices, such as robots or ve-
hicles.

The problem is the following: Asking a user to come up with an ODE
model describing the dynamics of a complicated MBS is not a practical
proposition. DAE models, on the other hand, are fairly easy to derive. To
this end, one simply describes the dynamics of each body separately, and
adds the interactions between bodies as constraint equations. However, this
usually leads to index 3 models with nasty nonlinear constraints. Relying
on the Pantelides algorithm to blindly reduce the index down to index 1
will lead to an explosion in the complexity of the resulting equations, unless
the user is very cautious about how he or she chooses the variables in the
model. Furthermore, it often leads to models with solvability issues.

Selection of an appropriate coordinate system is absolutely essential. In
the case of tree-structured robots, special selections of generalized coordi-
nates both for the description of the direct MBS dynamics (motor torques
are inputs, and positions and velocities of the end–effector are outputs),
as well as for the description of inverse MBS dynamics (desired end–
effector positions and velocities are inputs, and necessary motor torques
to achieve those are outputs) have been found that don’t lead to algebraic
loops at all. Using these generalized coordinates, the number of equations
will grow linearly in the number of bodies described in the model. Al-
gorithms implementing this methodology are called order–n algorithms
or order–f algorithms, depending on the particular reference consulted
[8.2, 8.11, 8.21, 8.32].

MBS topologies with closed kinematic loops are more problematic, and
the final word on how to efficiently model such systems hasn’t been spoken
yet. However, let us at least explain briefly how such systems are currently
being modeled. Any tree–structured MBS can be brought into the form:

M(q, t) · q̈ = h(q, q̇, t) + f(q, t) (8.142)

where q are the generalized positions (including angular positions) of the
tree-structured MBS, M is the so–called mass matrix, h models the effects
of body–fixed coordinate systems (Coriolis and centripetal forces) as well
as friction phenomena, and f are the generalized forces (including torques)
acting on the joints.

If an MBS has kinematic constraints (closed kinematic loops), we can

8.12 Multibody System Dynamics Simulators 383

first cut these constraints open, thereby transforming the kinematically
constrained MBS into a tree–structured MBS. For this so modified MBS,
we can derive Eq.(8.142), e.g. using the algorithm described in [8.21].
We then add the constraints as additional constraint equations back into
the overall DAE description, thereby transforming the carefully formulated
index 1 model back into an index 3 model. Luckily, there often aren’t too
many of these additional constraint equations, and the Pantelides algorithm
may work quite decently. The resulting index 1 model can then either be
solved directly using a DAE solver (possibly using a symbolically generated
Hessian matrix), or we can try to reduce the model further to index 0 by
solving the algebraic loops. Luckily, the special structure of mechanical
manipulators suggests immediately a set of tearing variables, namely the
generalized accelerations, q̈.

Meanwhile, an MBS library has been designed for Dymola [8.30] that
enables even non–specialists of MBS dynamics to formulate efficient sets of
DAEs for multibody systems in an effective object–oriented manner. The
library contains models for most of the components that a user might need,
such as different types of joints (revolute joints, prismatic joints, screws,
etc.), rigid bodies and their connections, different types of force elements,
and so on. A top–down description of the topology of an arbitrarily con-
nected three–dimensional (or two–dimensional) tree–structured robot in
an object–oriented fashion is made a fairly simple undertaking using the
MBS library. The generated code compares favorably with other commer-
cial MBS systems such as Adams [8.17, 8.27], or SD–Fast [8.19] in terms
of run–time efficiency.

However, contrary to the more specialized tools, Dymola lends itself ele-
gantly to modeling and simulation of general mechatronic systems, i.e., the
drive chains, motors, and controllers of these robots can be described to-
gether with the MBS dynamics in a unified framework [8.3, 8.29, 8.30, 8.33].

Dymola does a fairly good job of coming up on its own with suitable
tearing structures even in the case of closed kinematic loops. However,
Dymola’s multibody systems (MBS) library [8.30] still supports Dymola
in this task by making sure that the (fully automated) tearing algorithm
starts out with a suitable set of equations. Let us explain.

In the MBS library, translational variables are being carried along in the
inertial frame, whereas rotational variables are described in a body–centric
coordinate system. This by itself already helps with generating efficient sim-
ulation code. Yet, the decision requires that the library perform coordinate
transformations from one body to the next in the rotational variables.

The coordinate transformation inside a joint model can be written as:

x2 = R · x1 (8.143)

where the vectors x1 and x2 contain generalized coordinates of the bod-
ies to the left and to the right, and the matrix R is a rotation matrix.

384 Chapter 8. Differential Algebraic Equation Solvers

This process was demonstrated in the research section of Chapter 4 of the
companion book for a six–degree–of–freedom Stanford robotic arm using
Denavit–Hartenberg (DH) coordinates [8.7].

Depending on where the inertial frame is, we need to use either Eq.(8.143)
or the inverse equation:

x1 = R−1 · x2 (8.144)

However, since R is an orthogonal matrix, the inverse of R can also be
written as a transpose:

x1 = RT · x2 (8.145)

which is more economical.
Unfortunately, Dymola, although offering a matrix manipulation lan-

guage similar to that of MATLAB, doesn’t understand the concept of or-
thogonal matrices. The reason is that Dymola, in order to provide full flex-
ibility for causalizing equations, expands all matrix expressions into scalar
expressions upon compilation. In the scalar version, the orthogonality of the
R–matrix is no longer easily visible. Thus, Dymola will do it the hard way
and solve a linear equation system, whenever it needs the transformation
equations in reversed causality.

In order to support Dymola in producing efficient simulation code, the
MBS library keeps track of where the root (inertial frame) is, and provides
the coordinate transformation to Dymola in a form similar to:

if rooted(frame a) then
x2 = R ∗ x1

else
x1 = transpose(R) ∗ x2

end if;

where frame a denotes the connector of the body to the left. In this way,
Dymola starts out with the best suited equation set when looking for tear-
ing variables using its built–in tearing algorithm.

8.13 Chemical Process Dynamics Simulators

Chemical processes are another prime candidate for DAE formulations.
Here, the problems are again quite different. Chemical processes are mod-
eled through highly nonlinear equations describing the (i) reaction rate
dynamics, (ii) mass flow dynamics, (iii) thermal dynamics, and (iv) energy
balance.

In Chapters 8 and 9 of the companion book, the basic equations de-
scribing chemical processes were introduced. However, these models mostly

8.13 Chemical Process Dynamics Simulators 385

served the purpose of furthering the understanding of what is going on
physically within a chemical reaction system. In reality, chemical reaction
processes are invariably distributed parameter systems that should be de-
scribed by PDEs. Also, there is no such thing as a homogeneous medium.
Consequently, we are dealing with accuracy problems. If a chemical engi-
neer can determine, in a simulation run, what is going on in the real process
with an accuracy of 1%, he or she is very lucky.

For these reasons, it isn’t warranted for practical simulations to deal with
the exact equations. Why use a very complicated model if it is inaccurate
anyway? Moreover, the energy balance equations have a much faster time
constant than e.g. the mass balance equations. Therefore, chemical reaction
processes are usually approximated by implicit ODEs describing average
reaction rates, implicit ODEs describing mass continuity, implicit ODEs
describing average temperatures, and algebraic constraint equations for
energy balances and the equation of state [8.22, 8.37].

The result is a set of higher–index DAEs with nasty nonlinearities. Index
reduction can usually be accomplished more easily here than in the case of
mechanical systems, since the nonlinearities are usually polynomial rather
than trigonometric. Consequently, the Pantelides algorithm will work fine.
In fact, it is for chemical process engineers that Constantinos Pantelides
developed his algorithm in the first place.

Solving the resulting algebraic loops is a different matter. Various tearing
strategies have been described for such purposes [8.23], but they are very
specialized and too complicated for our taste. Whenever we are confronted
in physics with an equation or an algorithm that is very complicated, we
should get suspicious that, probably, we are looking at the problem from a
wrong angle. A typical example are the equations describing celestial dy-
namics when adopting a geostationary world view. We believe strongly that
all physical laws governing this universe are basically simple. Complexity
is introduced into this universe of ours by having many different –and
simple– equations interact with each other. Equations can become more
messy when we are forced to average or aggregate (as is the case in chemi-
cal process engineering), but the DAEs themselves are still fairly harmless.
It is the conversion to explicit ODE form that makes them become truly
messy . . . and this has to do with the previously made simplifications
(aggregations). Thus, we should probably abstain from trying to convert
these equations to explicit ODE form.

So, if we stay with DAEs, where does tearing fit in? Isn’t tearing a
concept related to the transition from DAEs to ODEs? In chemical process
engineering, tearing has mostly been used to simplify the process of fixed–
point iteration of the resulting set of algebraic equations after inlining the
integration method into the implicit state–space model.

A first attempt at object–oriented modeling of chemical process dynamics
has recently been reported [8.28]. Bernt Nilsson didn’t use Dymola for that
purpose, but its twin brother, called Omola [8.1].

386 Chapter 8. Differential Algebraic Equation Solvers

8.14 Summary

In this chapter, mixtures of symbolic and numerical tools for the treatment
of differential and algebraic systems of equations were introduced. DAE
formulations of dynamic models are very natural to applications in many
areas of science and engineering. However, a direct approach to numerically
dealing with the DAEs as they present themselves initially may not be the
wisest thing to do. Automated symbolic preprocessing of the DAE models
into a form that is better suited for the subsequent numerical integration
is an exciting new development in modeling and simulation research.

A symbolic manipulation tool, Dymola, was introduced that has been
specifically designed for such purpose. Dymola is the most advanced tool
for that purpose currently on the market. While more generic symbolic
formula manipulation programs, such as Mathematica or Reduce, could be
used alternatively, they are not efficient for the task at hand. Dymola has
already proven its utility in very large MBS models, for example.

The chapter introduced the most common numerical algorithms for deal-
ing with the resulting set of index 1 DAEs, namely the BDF methods and
fully–implicit Runge–Kutta algorithms, and explained how they work. It
turns out that the solution of (potentially large) sets of algebraically cou-
pled equations are at the heart of dealing with DAE systems. It was shown
how the problem of numerical DAE solution is reduced to one of Newton
iteration, and symbolic generation of the Hessian matrix was proposed as
an additional tool for improvement of efficiency in numerical DAE solution.

By inlining the symbolic equations describing the integration algorithm
into the model, the derivative operator disappears from the model alto-
gether, and Dymola generates directly a set of difference equations that
can be solved by simply looping over the model.

The chapter ended with three application areas: electronic circuits, multi-
body system dynamics, and chemical process engineering. These applica-
tion areas demonstrate vividly the convenience and importance of a mixture
of symbolic and numerical tools that can deal with DAE formulations.

Interestingly enough, many topics became simpler rather than more com-
plicated when looking at them from a DAE rather than an ODE perspec-
tive. Yet, the research area of DAEs is much younger than that of ODEs.
This can be explained easily. When scientists and engineers became inter-
ested in numerically simulating dynamic phenomena, no computers were
available as yet. Armies of “applied mathematicians” (at that time not a
highly respected tag for a mathematician) were employed and placed in a
room for weeks in a row. Pipelining algorithms were designed such that
the first mathematician could calculate the first step at time zero, then
pass his or her result on to the next mathematician who would then solve
step two at time zero, while the first mathematician would start on step
one for time h, etc. Implicit algorithms don’t lend themselves that easily
to pipelining, and so, the focus was entirely on explicit algorithms, where

8.15 References 387

ODE formulations are most natural.
Later on when computers became available, engineers and scientists had

become so used to ODE formulations that it took a while before they
reconsidered the issue. The most exciting part of the story is that here
is a research area where not too much has happened yet. It has become
very difficult to hit a mark in numerical ODE solutions. Too many excel-
lent mathematicians have already ploughed the field in hope of finding a
leftover grain that might grow and bloom and flourish. This is not so in
numerical DAE solution. This is therefore an excellent field for young ap-
plied mathematicians (a proud and respected lot by now) to do research
in.

8.15 References

[8.1] Mats Andersson. Omola — An Object–Oriented Modelling Language.
Technical Report TFRT–7417, Dept. of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden, 1989.

[8.2] Helmut Brandl, Rainer Johanni, and Martin Otter. A Very Effi-
cient Algorithm for the Simulation of Robots and Similar Multibody–
Systems Without Inversion of the Mass Matrix. In P. Kopacek, Inge
Troch, and K. Desoyer, editors, Theory of Robots, pages 95–100. Perg-
amon Press, Oxford, United Kingdom, 1986.

[8.3] Dag Brück, Hilding Elmqvist, Hans Olsson, and Sven-Erik Mattsson.
Dymola for Multi–Engineering Modeling and Simulation. In Proceed-
ings 2nd Intl. Modelica Conference, pages 55:1–8, Munich, Germany,
2002.

[8.4] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial–Value Problems in Differential–Algebraic
Equations. North–Holland, New York, 1989. 256p.

[8.5] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[8.6] François E. Cellier. Inlining Step–size Controlled Fully Implicit
Runge–Kutta Algorithms for the Semi–analytical and Semi–numerical
Solution of Stiff ODEs and DAEs. In Proceedings Vth Conference on
Computer Simulation, pages 259–262, Mexico City, Mexico, 2000.

[8.7] Jacques Denavit and Richard S. Hartenberg. A Kinematic Notation
for Lower–Pair Mechanisms Based on Matrices. ASME Journal of
Applied Mechanics, 22(2):215–221, 1955.

388 Chapter 8. Differential Algebraic Equation Solvers

[8.8] Hilding Elmqvist, Martin Otter, and François E. Cellier. Inline
Integration: A New Mixed Symbolic/Numeric Approach for Solving
Differential–Algebraic Equation Systems. In Proceedings European
Simulation Multiconference, pages xxiii–xxxiv, Prague, Czech Repub-
lic, 1995.

[8.9] Hilding Elmqvist. A Structured Model Language for Large Continuous
Systems. PhD thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[8.10] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den., 2004.

[8.11] Roy Featherstone. The Calculation of Robot Dynamics Using
Articulated–Body Inertias. Internat. Journal of Robotics Research,
2:13–30, 1983.

[8.12] Claus Führer and Ben J. Leimkuhler. Numerical Solution of
Differential–Algebraic Equations for Constrained Mechanical Motion.
Numerische Mathematik, 59:55–69, 1991.

[8.13] C. William Gear. The Simulataneous Numerical Solution of
Differential–Algebraic Equations. IEEE Trans. Circuit Theory, CT–
18(1):89–95, 1971.

[8.14] Gary D. Hachtel, Robert K. Brayton, and Fred G. Gustavson. The
Sparse Tableau Approach to Network Analysis and Design. IEEE
Trans. Circuit Theory, CT–18(1):101–118, 1971.

[8.15] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric
Numerical Integration: Structure–Preserving Algorithms for Ordinary
Differential Equations. Springer Verlag, Berlin, 2002. 515p.

[8.16] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II: Stiff and Differential–Algebraic Problems, volume 14 of
Series in Computational Mathematics. Springer–Verlag, Berlin, Ger-
many, 2nd edition, 1996. 632p.

[8.17] Russell C. Hibbeler. Engineering Mechanics: Dynamics. Prentice
Hall, Upper Saddle River, New Jersey, 9th edition, 2001. 688p.

[8.18] Chung-Wen Ho, Albert E. Ruehli, and Pierce A. Brennan. The
Modified Nodal Approach to Network Analysis. In Proceedings IEEE
Intl. Symposium on Circuits and Systems, pages 505–509, San Fran-
cisco, California, 1974.

8.15 References 389

[8.19] Michael G. Hollars, Rosenthal Dan E., and Michael A. Sherman.
SD/Fast: User’s Manual. Technical report, Symbolic Dynamics, Inc.,
Mountain View, California, 2001.

[8.20] Christian Lubich. Extrapolation Integrators for Constrained Multi-
body Systems. Impact on Computer Science and Engineering, 3:213–
234, 1991.

[8.21] Johnson Y. S. Luh, Michael W. Walker, and Richard P. Paul. On–
Line Computational Scheme for Mechanical Manipulators. Trans.
ASME, Journal of Dynamic Systems Measurement and Control,
102:69–76, 1980.

[8.22] William L. Luyben. Process Modeling, Simulation, and Control for
Chemical Engineers. McGraw–Hill, New York, 1973.

[8.23] Richard S. H. Mah. Chemical Process Structures and Information
Flows. Butterworth Publishing, London, United Kingdom, 1990.

[8.24] H. Alan Mantooth and Martin Vlach. Beyond Spice With Saber
and MAST. In Proceedings IEEE Intl. Symposium on Circuits and
Systems, pages 77–80, San Diego, California, 1993.

[8.25] William J. McCalla. Fundamentals of Computer–Aided Circuit Sim-
ulation. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1988. 175p.

[8.26] Laurence W. Nagel. SPICE2: A Computer Program to Simulate
Semiconductor Circuits. Technical Report ERL–M 520, Electronic
Research Laboratory, University of California Berkeley, Berkeley, Cal-
ifornia, 1975.

[8.27] Dan Negrut and Harris Brett. ADAMS: Theory in a Nutshell. Tech-
nical report, Dept. of Mechanical Engineering, University of Michigan,
Ann Arbor, Michigan, 2001.

[8.28] Bernt Nilsson. Structured Modelling of Chemical Processes — An
Object–Oriented Approach. PhD thesis, Lund Institute of Technology,
Lund, Sweden, 1989.

[8.29] Martin Otter, Hilding Elmqvist, and François E. Cellier. Modeling
of Multibody Systems with the Object–Oriented Modeling Language
Dymola. J. Nonlinear Dynamics, 9(1):91–112, 1996.

[8.30] Martin Otter, Hilding Elmqvist, and Sven Erik Mattsson. The
New Modelica Multibody Library. In Proceedings 3rd International
Modelica Conference, pages 311–330, Linköping, Sweden, 2003.

390 Chapter 8. Differential Algebraic Equation Solvers

[8.31] Martin Otter, Sven Erik Mattsson, Hans Olsson, and Hilding
Elmqvist. Simulator for Large Scale, Multi–physics Systems. Techni-
cal Report Deliverable D27, Report for Task 2.7, German Aerospace
Center, Oberpfaffenhofen, Germany, 2002.

[8.32] Martin Otter and Clemens Schlegel. Symbolic generation of efficient
simulation codes for robots. In Proceedings Second European Simula-
tion Multi–Conference, pages 119–122, Nice, France, 1988.

[8.33] Martin Otter. Objektorientierte Modellierung mechatronischer Sys-
teme am Beispiel geregelter Roboter. PhD thesis, Dept. of Mech. Engr.,
Ruhr–University Bochum, Germany, 1994.

[8.34] Linda R. Petzold. A Description of DASSL: A Differential/Algebraic
Equation Solver. In R.S. Stepleman, editor, Scientific Computing,
pages 65–68. North–Holland, Amsterdam, The Netherlands, 1983.

[8.35] Michael C. Schweisguth and François E. Cellier. A bond graph
model of the bipolar junction transistor. In Proceedings SCS Intl.
Conference on Bond Graph Modeling and Simulation, pages 344–349,
San Francisco, California, 1999.

[8.36] Michael C. Schweisguth. Semiconductor Modeling with Bondgraphs.
Master’s thesis, Dept. of Electrical & Computer Engineering, Univer-
sity of Arizona, Tucson, Arizona, 1997.

[8.37] George Stephanopoulos. Chemical Process Control: An Introduction
to Theory and Practice. Prentice–Hall, Englewood Cliffs, N.J., 1984.
696p.

[8.38] Vicha Treeaporn. Efficient Simulation of Physical System Mod-
els Using Inlined Implicit Runge–Kutta Algorithms. Master’s thesis,
Dept. of Electrical & Computer Engineering, University of Arizona,
Tucson, Arizona, 2005.

[8.39] Paul W. Tuinenga. Spice: A Guide to Circuit Simulation and Anal-
ysis Using PSpice. Prentice Hall, Englewood Cliffs, N.J., 3rd edition,
1988. 288p.

[8.40] Jiri Vlach and Kishore Singhal. Computer Methods for Circuit Anal-
ysis and Design. Van Nostrand Reinhold, New York, 2nd edition, 1994.
712p.

8.16 Bibliography

[B8.1] Braden A. Brooks and François E. Cellier. Modeling of a Distilla-
tion Column Using Bond Graphs. In Proceedings SCS International

8.17 Homework Problems 391

Conference on Bond Graph Modeling, pages 315–320, San Diego, Cal-
ifornia, 1993. SCS Publishing.

[B8.2] Roy Featherstone. Robot Dynamics Algorithms. Kluwer, Boston,
Mass, 1997. 228p.

[B8.3] Steve Gallun. Solution Procedures for Nonideal Equilibrium Stage
Processes at Steady and Unsteady State Described by Algebraic or
Differential–Algebraic Equations. PhD thesis, Texas A&M University,
1979.

[B8.4] Ernst Hairer, Christian Lubich, and Michel Roche. The Numerical
Solution of Differential–Algebraic Systems by Runge–Kutta Methods.
Springer–Verlag, Berlin, Germany, 1989. 139p.

[B8.5] Daryl Hild and François E. Cellier. Object–Oriented Electronic Cir-
cuit Modeling Using Dymola. In Proceedings OOS’94, SCS Object
Oriented Simulation Conference, pages 68–75, Tempe, Arizona, 1994.

[B8.6] Charles D. Holland and Athanasios I. Liapis. Computer Methods
for Solving Dynamic Separation Problems. McGraw–Hill, New York,
1983. 475p.

[B8.7] Asghar Husain. Chemical Process Simulation. John Wiley & Sons,
New York, 1986. 376p.

[B8.8] William L. Luyben. Practical Distillation Control. Van Nostrand
Reinhold, New York, 1992. 533p.

[B8.9] Parviz E. Nikravesh. Computer–Aided Analysis of Mechanical Sys-
tems. Prentice–Hall, Englewood Cliffs, N.J., 1988. 370p.

[B8.10] Richard P. Paul. Robot Manipulators: Mathematics, Programming,
and Control — The Computer Control of Robot Manipulators. MIT
Press, Cambridge, Mass., 1981. 279p.

[B8.11] Mark W. Spong and Mathukumalli Vidyasagar. Robot Dynamics
and Control. John Wiley & Sons, New York, 1989. 336p.

[B8.12] Michael W. Walker and David E. Orin. Efficient Dynamic Com-
puter Simulation of Robotic Mechanisms. Journal of Dynamic Sys-
tems, Measurement and Control, 104:205–211, 1982.

8.17 Homework Problems

[H8.1] Inlining BDF3

Given the electrical circuit shown in Fig.H8.1a.

392 Chapter 8. Differential Algebraic Equation Solvers

R=100

R1

C
=

1
e

-6

C

R=100

R2

R
=

2
0

R
3

L=0.01

L

u
0

=
1

0

i4 = 4·u3

u1

i1 i2

u2

u3

i3iC u4

i4

iL

uL

u0

i0

i4

FIGURE H8.1a. Electrical circuit.

The circuit contains a constant voltage source, u0, and a nonlinear (driven)
current source, i4, that depends on the voltage across the capacitor, C, and
the resistor, R3.

Write down the element equations for the seven circuit elements. Since
the voltage u3 is common to two circuit elements, these equations contain
13 rather than 14 unknowns. Add the voltage equations for the three meshes
and the current equations for three of the four nodes. One current equation
is redundant. Usually, the current equation for the ground node is therefore
omitted. In this way, you end up with 13 equations in the 13 unknowns.

We wish to inline a fixed–step BDF3 algorithm, using order buildup dur-
ing the startup phase. Draw the structure digraph of the inlined equation
system, which now consists of 15 equations in 15 unknowns, and causalize
it using the tearing method.

Simulate the ΔE system across 50 μsec using the inlined BDF3 algorithm
with zero initial conditions on both the capacitor and the inductor. Choose
a step size of h = 0.5 μsec. Use algebraic differentiation for the computation
of the Hessian.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.2] Inlining Radau IIA

We wish to repeat Hw.[H8.1], this time inlining the 3rd–order accurate
Radau IIA algorithm. Draw the structure digraph of the inlined equation
system, which now consists of 30 equations in 30 unknowns, and causalize
it using the tearing method.

Simulate the ΔE system across 50 μsec using the inlined Radau IIA algo-
rithm with zero initial conditions on both the capacitor and the inductor.
Choose a step size of h = 0.5 μsec. Use algebraic differentiation for the
computation of the Hessian.

8.17 Homework Problems 393

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.3] Step–size Control for Radau IIA

We wish to augment the solution to Hw.[H8.2] by adding a step–size control
algorithm.

Use Eq.(8.105) as the embedding method for the purpose of error es-
timation, and use Fehlberg’s step–size control algorithm, Eq.(3.89), for
the computation of the next step size. Of course, the formula needs to
be slightly modified, since it assumes the error estimate to be 5th–order ac-
curate, whereas in our algorithm, it is only 4th–order accurate. Remember
that the step size can never be modified two steps in a row.

Simulate the ΔE system across 50 μsec using the step–size controlled
inlined Radau IIA algorithm with zero initial conditions on both the ca-
pacitor and the inductor. Count the number of Newton iterations. Multiply
that number with the number of statements inside the loop. This should
provide you with a decent estimate of the computational efficiency of the
method.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.4] Inlining Lobatto IIIC

We wish to repeat Hw.[H8.2], this time inlining the 4th–order accurate
Lobatto IIIC algorithm. Draw the structure digraph of the inlined equation
system, which now consists of 45 equations in 45 unknowns, and causalize
it using the tearing method.

Simulate the ΔE system across 50 μsec using the inlined Lobatto IIIC
algorithm with zero initial conditions on both the capacitor and the induc-
tor. Choose a step size of h = 0.5 μsec. Use algebraic differentiation for the
computation of the Hessian.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.5] Step–size Control for Lobatto IIIC

We wish to augment the solution to Hw.[H8.4] by adding a step–size control
algorithm.

Use Eq.(8.110) as the embedding method for the purpose of error esti-
mation, and use Fehlberg’s step–size control algorithm, Eq.(3.89), for the
computation of the next step size. Remember that the step size can never
be modified two steps in a row.

Simulate the ΔE system across 50 μsec using the step–size controlled
inlined Lobatto IIIC algorithm with zero initial conditions on both the ca-
pacitor and the inductor. Count the number of Newton iterations. Multiply
that number with the number of statements inside the loop. This should

394 Chapter 8. Differential Algebraic Equation Solvers

provide you with a decent estimate of the computational efficiency of the
method. MATLAB used to offer a better means of estimating the efficiency
of a code by counting the number of floating point operations, using the
built–in function flops. Unfortunately, this feature has been disabled in
version 6 of MATLAB.

If you also solved Hw.[H8.3], you can compare the computational effi-
ciency of the two algorithms for solving the given circuit problem against
each other.

Plot the voltage u3 and the current iC on two separate subplots as func-
tions of time.

[H8.6] Algebraic Differentiation

We wish to reproduce Fig.8.31 of this chapter. On purpose, we haven’t
shown you the details of how it has been derived. In particular, we didn’t
provide the symbolic equations for the computation of the Hessian by means
of algebraic differentiation.

[H8.7] Stabilized BE Simulation of Overdetermined DAE
System

We wish to reproduce Fig.8.33 of this chapter. On purpose, we haven’t
shown you the details of how it has been derived. In particular, we didn’t
provide you with a formula for when to end the Newton iteration. Since
the linear system is now only solved in a least square sense, you can no
longer test for ‖F‖ having decreased to a small value. The way we did it
was to compute the norm of F and save that value between iterations. We
then tested, whether the norm of F has no longer decreased significantly
from one iteration to the next:

while abs(‖F�‖ − ‖F�−1‖) < 1.0e − 6,
perform iteration

end,

8.18 Projects

[P8.1] Inlining DIRK

There exists yet another interesting class of implicit stiffly stable Runge–
Kutta algorithms that we haven’t discussed in this chapter. These are called
diagonally implicit Runge–Kutta algorithms, and are usually abbreviated as
DIRK algorithms. One of the more fashionable among the DIRK algorithms
is HW–SDIRK(3)4 [8.16] with the Butcher tableau:

8.18 Projects 395

1
4

1
4 0 0 0 0

3
4

1
2

1
4 0 0 0

11
20

17
50

−1
25

1
4 0 0

1
2

371
1360

−137
2720

15
544

1
4 0

1 25
24

−49
48

125
16

−85
12

1
4

x 59
48

−17
96

225
32

−85
12 0

x̂ 25
24

−49
48

125
16

−85
12

1
4

HW–SDIRK(3)4 is a five–stage algorithm. DIRKs are much less compact
than their IRK cousins, and therefore, allow proper embedding algorithms
to exist within them. x represents a 3rd–order accurate method, whereas x̂
represents a 4th–order accurate method.

DIRK methods are attractive alternatives to the IRK methods discussed
in this chapter, since they can be implemented with one Newton iteration
per stage, rather than with one Newton iteration across all stages.

Remember the dilemma that we were facing when we tried to inline
parabolic PDEs. Inlining a BDF algorithm, we had to perform a Newton
iteration in 25 tearing variables, whereas inlining the 3rd–order accurate
Radau IIA algorithm, we had to perform a Newton iteration in 100 tearing
variables. Thus, Radau IIA would need to be able to use step sizes that are
at least 16 times as large as those used by BDF3 in order to be competitive.

Inlining HW–SDIRK(3)4, we would expect to require five Newton it-
erations, each in 25 tearing variables. Thus, we would need to use only
five times as large step sizes as those employed by BDF3, in order to be
competitive.

Find the F–matrices of the two embedded methods, and perform Taylor–
series expansions to verify that the two methods are indeed 3rd–order and
4th–order accurate, respectively. Compute the error coefficient of the error–
controlled method.

Plot the stability domains as well as the damping plots of the two indi-
vidual methods. Decide, which of the two estimates should be propagated
to the next step.

Show how HW–SDIRK(3)4 can be inlined by means of the problem dis-
cussed in Hw.[H8.1].

Simulate the circuit using the step–size controlled inlined HW–SDIRK(3)4
algorithm.

396 Chapter 8. Differential Algebraic Equation Solvers

8.19 Research

[R8.1] Inlining Parabolic PDEs

Develop suitable heuristic procedures for finding small sets of tearing vari-
ables for inlining parabolic PDEs in multiple space dimensions.

As we have discussed in Chapter 6 of this book, the simulation of parabolic
PDEs converted to sets of ODEs by the MOL approach often requires in-
ternal Newton iterations due to either nonlinear boundary conditions or
irregular domain boundaries. Hence inlining them might be quite attrac-
tive.

The numerical PDE literature is full of descriptions of sparse matrix
algorithms for improving the efficiency of the simulation of such problems.
Tearing can also be viewed as a sparse matrix technique, although it is
applied in a symbolic form.

Compare the computational efficiency of the ΔE simulation after inlining
with that of alternative ODE simulations without inlining.

9

Simulation of Discontinuous
Systems

Preview

In this chapter, we shall discuss how discontinuous models can be han-
dled by the simulation software, and in particular by the numerical inte-
gration algorithm. Discontinuous models are extremely common in many
areas of engineering, e.g. to describe dry friction phenomena or impact be-
tween bodies in mechanical engineering, or to describe switching circuits
in electronics. In the first part of this chapter, we shall be dealing with the
numerical aspects of integrating across discontinuities. Two types of discon-
tinuities are introduced, time events and state events, that require different
treatment by the simulation software. In the second part of this chapter,
we shall discuss the modeling aspects of how discontinuities can be conve-
niently described by the user in an object–oriented manner, and what the
compiler needs to do to translate these object–oriented descriptions down
into event descriptions.

9.1 Introduction

As we have seen, all numerical integration algorithms used in today’s sim-
ulation programs are based, either explicitly or implicitly, on Taylor–Series
expansions. Simulation trajectories are always approximated by polynomi-
als or rational functions in the step size h around the current time tk.

This causes problems when dealing with discontinuous models, since
polynomials never exhibit discontinuities at all, and also rational functions
only exhibit occasional poles, but no discontinuities. Thus, if an integration
algorithm tries to integrate across a discontinuity, it will invariably be in
trouble.

Since the step size is finite, the integration algorithm doesn’t recognize
a discontinuity as such. It simply notices that the trajectory suddenly and
unexpectedly changes its behavior by showing symptoms of a very steep
gradient. Thus, the integration algorithm experiences the discontinuity as
the sudden appearance of a new eigenvalue far out to the left in the complex
plane. If the algorithm is step–size controlled, it will react to this obser-
vation by reducing the step–size in order to shrink the eigenvalue into the
asymptotic region of the (λ · h)–plane. Unfortunately, this new eigenvalue

398 Chapter 9. Simulation of Discontinuous Systems

has the nasty habit of being evasive. Although the step size is made smaller
and smaller, the eigenvalue doesn’t allow itself to be captured. The inte-
gration algorithm thus experiences the discontinuity as a singular point of
infinite stiffness.

The algorithm finally gives up, as its step size is either reduced to the
smallest tolerable value, or because the step–size control is getting fooled.
We shall see why this can easily happen. As a consequence, the disconti-
nuity is passed through with a very small step size . . . and the spooky
phenomenon vanishes as fast as it appeared. The integration algorithm no-
tices that the funny eigenvalue has disappeared again, and consequently will
enhance the step size in the steps to come, until the appropriate optimal
step size has been regained. It is in this fashion that the step–size control
within the numerical integration algorithm is able to handle discontinuities
. . . and often, it does so with quite decent success.

Figure 9.1 illustrates how step–size control handles discontinuities.

t

log(h)

discontinuities

FIGURE 9.1. Discontinuity handling by step–size control.

Figure 9.1 shows the logarithm of the step size, h, plotted across simu-
lated time, t. As the integration algorithm approaches a discontinuity, the
step size is reduced until the algorithm judges the solution to be correct.
After the discontinuity has passed, the step size is cautiously increased
again until the next discontinuity is encountered. This is quite inefficient,
but often produces decent results.

It is this lucky by–product of the step–size control mechanism that al-
lowed the simulation software producers to get by for many years without
spending too much of a thought on the problem of discontinuity handling.
Unfortunately, things can go awfully awry as was demonstrated in [9.5].

9.2 Basic Difficulties 399

9.2 Basic Difficulties

In the seventies, one of the authors was a Ph.D. student at ETH Zürich
in Switzerland. He was working on a dissertation on exactly the topic of
this chapter [9.5]. One day, a colleague of his, who had difficulties with
his simulation program, came to see him. He had worked on his program
for weeks and weeks, and it simply didn’t want to run properly. He was
another Ph.D. student, working on the design of a velocity controller for
electrically driven locomotive engines [9.25]. When analyzing his friend’s
problem, he soon realized that his program exhibited difficulties that were
closely related to the way the numerical integration algorithm handled the
discontinuities in his model. Let us explain.

In Switzerland, electric train engines are operated by AC current with a
frequency of 162

3 Hz. The amplitude of the voltage available to the engine
is constant, thus velocity control cannot be achieved by simply modifying
the voltage. An Ohmic voltage divider is out of the question, since we want
to propel the engine, not heat it up. Variable transformers, on the other
hand, are too large and bulky.

Previously, train engines in Switzerland had been equipped with a thyris-
tor circuit controlling the firing angle of the thyristor. Figure 9.2 shows the
circuit diagram of the thyristor circuit.

vLine

+

-

vTh

v

i

i

R

LLoad

Line

Load

Load

Load

FIGURE 9.2. Circuit diagram of thyristor circuit for train speed control.

400 Chapter 9. Simulation of Discontinuous Systems

The partly Ohmic partly inductive load represents the engine. This model
is simplified, but shall do to explain the difficulties with this approach. The
thyristor is a switch element. It can be “fired” (i.e., closed) by applying a
low voltage impulse to the thyristor gate. The thyristor then stays on until
the current through the thyristor passes through zero. At zero current, the
thyristor automatically opens again.

Figure 9.3 shows the current, iLoad, flowing through the load and the
voltage, vLoad across the load, assuming that the thyristor is repetitively
fired by an impulse applied once every period after a given firing angle α.
In the example, we chose α = 30o.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1000

−500

0

500

1000

1500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−200

0

200

400

600

800

Thyristor-controlled Train Engine

v L
o
a
d
[V

ol
ts

]

Time[sec]

Time[sec]

i L
o
a
d
[A

m
p
s]

FIGURE 9.3. Voltage and current of thyristor–controlled train engine.

The Ohmic power made available to the engine for conversion to me-
chanical power is approximately:

POhmic = vLoad · iLoad (9.1)

Evidently, it is possible to control the Ohmic power by changing the firing
angle α. For α = 0o, the full sine wave goes through, i.e., the power is
maximized. For α ≥ 180o, no power goes through at all.

This control strategy worked exceedingly well and almost everyone was
very happy . . . except for the electricity company of the Canton of Uri.
Let us explain.

Figure 9.4 shows the power spectrum of the thyristor–controlled voltage
signal.

9.2 Basic Difficulties 401

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

1.5
x 10

8 Power Spectrum of Thyristor-controlled Engine

Frequency[Hz]

P
ow

er
S

p
ec

tr
u
m

FIGURE 9.4. Power spectrum of thyristor–controlled voltage signal.

This was computed by simulating the above circuit across 1.5 seconds of
simulated time using 1200 communication points. A fast Fourier transform
(FFT) of POhmic was then computed. Figure 9.4 shows the real part of the
low frequency end of that spectrum plotted across frequency.

Roughly 17% of the power is DC power, 30% are at the base frequency,
another 30% are at the 2nd harmonic, roughly 15% are at the 3rd harmonic,
and 4% are at the 4th harmonic.

The 3rd harmonic thus carries a substantial percentage of the overall
power of the signal. Unfortunately, the 3rd harmonic happens to be lo-
cated at 50 Hz, i.e., precisely at the frequency, with which the electric
power company delivers electric power to the households in Switzerland.
It so happened that whenever one of these trains (usually equipped with
two engines) drove up the St.Gotthard mountain, the electric counters in
households located near the rails were reset to zero.

Next, the train engineers tried burst control . Figure 9.5 shows the circuit
diagram of a burst–controlled engine.

Figure 9.6 shows the voltage across and current through the train engine
when using burst control. The high–voltage circuitry is very similar to the
one used in the previous approach. This time, we use two thyristors with
a common gate control logic. However, the gate control of the thyristor
now works differently. Rather than letting through a certain percentage of
every period, the burst–controlled thyristor fires constantly during a certain
number of periods, and then stops firing for the remainder of the burst.

It was decided to use bursts of eight periods. Consequently, the burst
frequency is one eighth of the line frequency, i.e., 2 1

12 Hz. Out of these
eight periods, a certain number of periods is being let through, and the
remainder is stopped. In Fig.9.6, five out of every eight periods are let
through. Evidently, engines using this speed control strategy cannot operate
at an arbitrary percentage of the full power, but only at 1

8

th, or 2
8

th, or 3
8

th,
etc. of the full power.

The advantages of this simple solution were twofold. On the one hand,
it solved the problem of resetting the electric counters, since the power

402 Chapter 9. Simulation of Discontinuous Systems

vTh

v

iLine

i

R

Load

Load

Load

Gate

vLine

+

-

LLoad

FIGURE 9.5. Circuit diagram of thyristor circuit for burst control.

spectrum no longer contains a significant amount of power at 50 Hz, and
secondly, it was very cheap, since the (expensive) high–voltage circuitry
needed very little modification. Only the (comparatively inexpensive) low–
voltage circuitry needed to be replaced.

These circuits were installed in the trains that served the northern shore
of Lake Zürich, on the line Zürich–Meilen–Rapperswil, and were used there
for a number of years. When the train pulled out of the station, it operated
during one burst (about 0.5 seconds) at 1

8

th of full power, then during the

next burst at 2
8

th, etc. These trains weren’t able to accelerate smoothly.
The speed changed abruptly, which the customers felt noticeably in their
stomachs. It just wasn’t very comfortable.

Thus, our colleague had been asked to come up with something better.
He designed the circuitry shown in Fig.9.7.

This time, the engine is represented by something that drains current out
of the net, i.e., as a current source. The representation is not accurate, but
it is good enough for the task at hand. Also, the line frequency has been
normalized to ω = 2πf = 1 sec−1, so that the same circuit would also work
for other countries with different line frequencies. The impedance values
have been adjusted accordingly.

9.2 Basic Difficulties 403

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1500

−1000

−500

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

500

1000

Burst-controlled Train Engine

v L
o
a
d
[V

ol
ts

]

Time[sec]

Time[sec]

i L
o
a
d
[A

m
p
s]

FIGURE 9.6. Voltage and current of burst–controlled train engine.

A

uL

+

-

+
-

uz

uF

iL

iLoad

LL

Ls

LSp

Lσ

Cs

CSp

Y
Az

iL

iLoad

FIGURE 9.7. Circuit diagram of SCR circuit for train speed control.

The gate control logic is also shown on Fig.9.7. The line current, iL, is
controlled in such a way that it always remains in the vicinity of:

Y (t) =
15 · 106

uL
sin ωt (9.2)

For Az = 0.0, the line current, iL, grows rapidly until it crosses (Y + BT)
in the positive direction. At that moment, Az assumes a value of Az = 1.0,
and iL decays quickly again until it reaches (Y − BT), where Az takes a

404 Chapter 9. Simulation of Discontinuous Systems

value of AZ = 0.0 as before.

BT = 200.0 Amps (9.3)

is the allowed tolerance around Y (t), within which iL is supposed to oper-
ate.

Figure 9.8 shows two signals of this circuit during the first half–period,
namely the filter voltage uF within the control loop, and the load voltage,
uz.

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3
1140

1150

1160

1170

1180

1190

1200

1210

SCR-controlled Train Engine

u
F
[V

ol
ts

]

Time[sec]

Time[sec]

u
z
[V

ol
ts

]

FIGURE 9.8. Filter and load voltage in SCR–controlled train engine.

If a numerical integration algorithm could fall into depression, this might
be as good a reason for it to do so as any. What nightmarish curves to in-
tegrate over (!) The filter voltage, uF , after an initial transitory phase,
essentially follows a sine wave. It toggles back and forth between the sine
wave itself and the same curve with a constant DC value of about 300 Volts
superposed. The load voltage, uz, is regulated to stay essentially at a con-
stant value, in the given example somewhere around 1184 Volts. The power
spectrum of the load is mostly DC, except for a small percentage located
at frequencies much higher than 50 Hz.

However, these are not the results that our colleague had found, when
he came to discuss his simulation results. Figure 9.9 presents the results

9.2 Basic Difficulties 405

that he had obtained.

FIGURE 9.9. Filter voltage in SCR–controlled train engine.

This is an old plot that we scanned in from [9.5]. We were unable to
reproduce precisely the results that our colleague had obtained, since they
had been produced by an old simulation software, CSMP–III, that we don’t
have around any longer. It was a software specifically designed for use on
IBM mainframes, machines that have been moth–balled long ago.

The graph shows the filter voltage, uF , plotted over time together with
some other signals. The reader notices that the curve looks similar to the
newly obtained one, except during the time interval from about 8 msec to
24 msec, when the filter voltage on the old plot didn’t exhibit the high
frequency oscillation.

The simulation took forever to run. For this reason, we recommended to
our friend to also plot the step size, h, used as a function of simulated time.
It is shown in Figure 9.10.

The step size varies a lot over time, as the step–size control algorithm is
being used to catch the discontinuities. However, it is quite evident from the
plot that the simulation uses consistently a very small step size during the
period from 8 msec to 24 msec, i.e., the period, during which the simulation
results are incorrect. The simulation exhibits creeping behavior.

Somehow, the gate control had gotten stuck. The numerical integration
algorithm was aware of that fact and tried to fix it by using very small step
sizes, but was unable to do so. Thus, using the step–size control mechanism

406 Chapter 9. Simulation of Discontinuous Systems

FIGURE 9.10. Step size in SCR–controlled train engine.

for handling discontinuities evidently is not only inefficient, it can also be
dangerous. Notice that the simulation program did not produce any error
message at all.

How can these results be explained? The step–size control mechanism
of any step–size–controlled integration algorithm is based on an error esti-
mate. This error estimate, for an nth–order algorithm, is something like:

ε = c · hn+1 (9.4)

Consequently, as we reduce the step size more and more, the error esti-
mate will become smaller and smaller, irrespective of whether the integra-
tion makes any sense or not. Practically speaking, as we reduce the step
size, the higher–order terms in the Taylor–Series expansion become less
and less important until, finally, every integration algorithm behaves like
Euler. Explicit algorithms will behave like forward Euler, whereas implicit
algorithms may behave either like forward Euler or like backward Euler.

If we try to integrate across a discontinuity, the two formulae that are
compared to each other for the purpose of step–size control, will eventually
both behave like Euler, and at that time, they will agree on their “solution”
. . . not necessarily the correct solution, mind you, but at least a solution
they both came up with. If two numerical codes agree on a solution to a
problem, that may indeed indicate that the solution is correct . . . but it
may just as well simply mean that the two codes employ the same (possibly
flawed) algorithm. Therefore, if two different numerical codes miraculously

9.3 Time Events 407

agree on a solution to almost machine resolution, we are usually much more
suspicious of foul play than if their agreement is less spectacular.

Clearly, in the case of Fig.9.9, this is what happened. During some pe-
riods of time, the two algorithms agreed happily on the same –evidently
quite wrong– solution. What happened was the following. The program
used a step–size controlled explicit single–step algorithm, some variant of
a fourth–order Runge–Kutta method, more precisely, it used the Runge–
Kutta–Simpson method described in H3.16, a rather dubious method, as
we now understand.

When the solution approached the threshold, the solution managed to
switch several times back and forth within a single integration step. If the
number of switchings happened to be odd, the step ended with the other
model, and integration proceeded as desired. On the other hand, if the
number of switchings was even, the step ended in the same switch position
it had started out with, and the algorithm went through the same switching
immediately again during the next step. This explains why the solution was
creeping along the switching boundary, unable to leave it.

Abusing the step–size control for locating discontinuities is always quite
inefficient. The reason is that the algorithm doesn’t know, and cannot
know, that a discontinuity is taking place. It must therefore assume the
worst, namely that the system is highly nonlinear with rapidly changing
eigenvalues of its Jacobian matrix. Consequently, the algorithm has to be
cautious in increasing its step size again after the discontinuity has been
cleared in order to avoid potential numerical instability problems that may
be caused by a hyperactive step–size adjustment strategy. This is docu-
mented in Fig.9.1, where the step size remains constantly at too small a
value since the next discontinuity is always encountered before the step size
could regain its optimal value.

Abusing the step–size control for locating discontinuities can sometimes
lead to incorrect results that may be difficult to identify as such, i.e., in-
correct results may be produced and go unnoticed. The above application
is a good example of that.

We evidently need something better.

9.3 Time Events

In many cases, we do know some time in advance when a discontinuity will
take place. For example, in the case of the original thyristor gate control
logic, we know that the thyristor will close exactly αo after the start of each
period. It is just a question of providing this information to the integration
algorithm. Discontinuities will from now on be called discrete events , and if
we know when such an event will take place, we can schedule it to happen
by entering the event time and the event type into a calendar of forthcoming

408 Chapter 9. Simulation of Discontinuous Systems

events .
The event calendar is a linearly–linked list of events arranged in the order

of increasing times of occurrence, thus the first event in the event calendar
is always the next event . In the case of multiple simultaneous events, addi-
tional tie–breaking rules can be specified to decide which event comes first.
The sequence may matter. For example, if a car arrives at a traffic light
that simultaneously switches to red, it may make a big difference whether
the simulation program decides that the car arrived first, or whether it de-
cides that the light changed first. Therefore, tie–breaking rules should be
implemented, and should be considered carefully.

The next event time is considered by the step–size control of the inte-
gration algorithm exactly like a communication or readout point. If the
integration algorithm usually will adjust the step size in the vicinity of a
readout point in order to hit the point accurately (mostly done in the case
of single–step algorithms), then so should it treat the next event time. If
the next event time falls in between the current time and the time when
the next step should ordinarily end, the step size is reduced in order not to
miss the communication point. If the next event can be reached by increas-
ing the next step by not more than 10%, then this is justifiable in order
to prevent a very short step thereafter. On the other hand, if the integra-
tion algorithm interpolates in order to visit the next communication point
(mostly done in multi–step integration by use of the Nordsieck vector),
then it should do the same in order to accommodate the next event time.

Notice that no discontinuity takes places while the event is being located.
The discontinuity is not directly coded into the model, only the condition
of its occurrence is. Thus, the trajectories seen by the integration algo-
rithm are perfectly continuous, and the integration algorithm therefore has
nothing to worry about.

Once the next event time has been located, the continuous simulation
comes to a halt, and a discrete event section of the simulation program is
visited that implements the consequences of the event taking place, i.e.,
sets the state variables to their new values, changes the current values of
input functions, etc. It is this section that implements the discontinuities.
A simulation program may contain many different discrete event sections,
one for every event type.

The end result of event handling can be considered a new set of initial
conditions, from which a completely new integration can start. Thus, a sim-
ulation run across a discontinuous model can be interpreted as a sequence
of distinct strictly continuous simulation runs, separated by discrete events.

The recipe is so trivial that one would assume that all serious continu-
ous system simulation languages (CSSLs) would meanwhile have adopted
it . . . or faced the destiny of natural attrition. However, due to the soi–
disant “event handling” capabilities of the step–size control algorithms
themselves, many simulation software designers never bothered to look into
the issue . . . and so far they got away with it. Well, hopefully this book

9.4 Simulation of Sampled–data Systems 409

will finally change all of this.
Let us consider once more the thyristor–controlled train engine model.

The gate needs to be closed after αo. Thus, the time of the first time event
that closes the gate takes place at:

tperiod =
1

2πf
(9.5a)

tevent =
α

360
· tperiod (9.5b)

Since we know from the beginning of the simulation, when this event is
going to take place, the event can be scheduled in the initialization portion
of the simulation program.

Thus, the initialization section of the simulation program could contain
the statements (in pseudo–code):

Gate = open
schedule CloseGate at t event

The event description section of the simulation program would then close
the gate, and schedule the next gate closing event one period later:

Gate = closed
schedule CloseGate at t + t period

The variable Gate can be referred to from within the continuous–time
simulation model. This is not dangerous, since discrete states behave ex-
actly like parameters or constants as far as the integration algorithm is
concerned. They never change their values while the integration is pro-
ceeding. They only change their values in between segments of numerical
integration, i.e., at event times.

We haven’t talked yet about the gate opening event. We cannot handle
the gate opening event in the same fashion as the gate closing event, because
we don’t know beforehand, when the gate will open. We only know, under
what condition this will be the case, namely when the current that flows
through the thyristor becomes negative.

The gate opening event will be discussed in due course.

9.4 Simulation of Sampled–data Systems

A typical application of time events is the simulation of sampled–data con-
trol systems. A continuous–time plant is being controlled by one or several
discrete–time controllers that may operate on the same or on different fre-
quencies (multi–rate sampling).

A typical application is shown in Fig.9.11.
A robot arm is to be controlled by one or several computers. The inner-

most control loop serves the purposes of stabilization, linearization, and

410 Chapter 9. Simulation of Discontinuous Systems

Stabilizing,
Linearizing
and Decoupling
Controller

ZOH ZOH

ZOHZOH

ZOHZOH

ZOH ZOH

T1 T1

T2T2

T4T4

T3 T3

Robot
+

+

+

+

-

-

-

-

Trajectory
Planner

Actuator control

End effector path to be followed

Path
Planner

Unit operations

Task
Planner

Tasks to be performed

FIGURE 9.11. Robot control.

decoupling. The purpose of this controller is to make the larger control
issues easier to tackle. The signal needs to be sampled in short time in-
tervals, T1, in order to keep the control loop stable. This first controller is
then added to the plant, i.e., the next higher–level controller considers the
innermost control loop part of the plant to be controlled. Its purpose is to
translate a desired path into control signals for the actuators of the motors
that drive the individual joints of the robot arm. This controller solves the
dynamic control problem. It can operate at a slightly slower sampling rate,
T2, than the stabilizing controller. The next higher–level controller solves
the static control problem. It translates descriptions of individual unit op-
erations into desired end–effector positions expressed as functions of time.
It again can operate at a somewhat reduced sampling rate, T3. Finally, the
task planner decomposes complex tasks into series of unit operations that
it then submits to the path planner for execution. The task planner can
operate at a considerably slower sampling rate, T4. Thus:

T1 ≤ T2 ≤ T3 � T4 (9.6)

Figure 9.11 is somewhat stylized. There are multiple signals to be fed back,
and after decoupling, there may be multiple control loops, one for each
joint.

The simulation program will contain a single dynamic block describing
the motion of the robot arm itself together with its motors and drive trains

9.5 State Events 411

in between events. The program also contains four separate discrete blocks,
one for each controller, that are executed at different, yet previously known,
points in time. All four discrete controllers are probably scheduled to be
executed for the first time during initialization of the simulation. Thus, we
are confronted with four simultaneous events, and it will be important that
the task planner is executed first, then the path planner, then the trajectory
planner, and finally the stabilizer, since the inner control loops need the set
points from the outer control loops to function properly. Each controller
will, as part of its event description, schedule the next execution of itself to
occur Ti time units into the future. At a later time, it is probably better to
resolve ties by assigning a higher priority to the inner control loops, since
they are more time–critical.

At any point in time, there are thus scheduled four different time events
to take place at different time instants in the future. These are maintained
by the so–called event queue, which is usually implemented as a linear
linked list with pointers back and forth, in which future events are placed
in ascending order of execution time using additional rules for tie breaking.

9.5 State Events

Frequently, the time of occurrence of a discontinuity is not known in ad-
vance. For example in the thyristor circuit, it is not known in advance
when the thyristor will open again. All we know is that it will open when
the current passes through zero. Thus, we know the event condition, rather
than the event time, specified in terms of a function of continuously varying
simulation variables.

Event conditions are usually specified implicitly, i.e., in the form of zero–
crossing functions. A state event occurs when a variable associated with it
crosses through zero. Multiple zero–crossing functions may be associated
with a single event type.

The zero–crossing functions must be tested continuously during simula-
tion. Thus, they are part of the continuous system simulation environment.
To this end, many of the numerical ODE solvers currently on the market of-
fer so–called root solvers. Variables to be tested for zero crossing are placed
in a vector. These variables are monitored constantly during simulation,
and if one of them passes through zero, an iteration is started to determine
the zero–crossing time with a pre–specified precision.

Since we don’t know when event conditions become true, we cannot
reduce the step size to hit them accurately. Instead, we need some sort of
iteration (or interpolation) mechanism to locate the event time. Thus, when
an event condition is alerted during the execution of an integration step, it
influences the step–size control mechanism of the integration algorithm by
forcing the continuous simulation to iterate (or interpolate) to the earliest

412 Chapter 9. Simulation of Discontinuous Systems

zero–crossing within the current integration step.

9.5.1 Multiple Zero Crossings

Figure 9.12 illustrates the iteration of event conditions, assuming that mul-
tiple zero crossings have taken place within a single integration step.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of state events by Regula Falsi

Time [sec]

Time [sec]

Z
er

o–
cr

os
si

ng
fu

nc
ti

on
s

Z
er

o–
cr

os
si

ng
fu

nc
ti

on
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1

FIGURE 9.12. Iteration of multiple event conditions using Regula Falsi.

Figure 9.12 shows three different zero–crossing functions, f1, f2, and f3.
At time tk = 1.0, f1 is positive, whereas f2 and f3 are negative. We perform
an integration step of length h = 3.0. At time tk+1 = 4.0, f1 is still positive,
whereas both f2 and f3 are now also positive, i.e., two zero crossings have
taken place within this integration step.

We connect the end points of each zero–crossing function, determine,
where these straight lines cross through zero, and choose the smallest of
these time instants as the next time point. Mathematically:

tnext = min
∀i

[
fi(tk+1) · tk − fi(tk) · tk+1

fi(tk+1) − fi(tk)

]
(9.7)

where i stretches over all functions with a zero crossing within the interval.
Thus, we repeat the last time step with a step size of h = tnext − tk.

If no zero crossing has taken place during the reduced step from tk to
tnext, we accept tnext as tk and repeat the algorithm using the remainder
of the interval.

9.5 State Events 413

If more than one zero crossing has taken place during the reduced inter-
val, we reduce tk+1 to tnext, and apply the same algorithm once more to
the so reduced interval.

If exactly one zero crossing has taken place during the reduced interval,
we have simplified the problem to that of finding the zero crossing of a single
zero–crossing function, for which a number of algorithms can be used that
shall be presented in due course.

The algorithm converges always, as the interval is reduced during each
iteration step. Unfortunately, it is not possible to estimate the number
of iteration steps needed until convergence has been reached using this
method. Convergence can indeed be quite slow.

Another algorithm that is sometimes used instead is the Golden Section
method. The Golden Section method has the advantage that, in each iter-
ation step, the interval is reduced by a fixed ratio. Thus, the interval will
soon become quite small. This is how it works.

Already the ancient Greeks had discovered that there exists a special
rectangle with the property that if one cuts off a square, the remaining
rectangle has the same proportions as the original one. This is shown in
Fig.9.13.

1

x

x

1-x

FIGURE 9.13. The Golden Section.

Thus:
x

1
=

1 − x

x
(9.8)

which leads to x = 0.618.
This idea can be applied to the problem of isolating individual zero–

crossing functions. The method is shown in Fig.9.14.
Once the iteration algorithm has been triggered by multiple zero cross-

ings within a single step, the interval is subdivided by calculating two
partial steps, one of length (1 − x) · h, the other of length x · h. Both of
these partial steps start at time tk. In this way, the interval is subdivided

414 Chapter 9. Simulation of Discontinuous Systems

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of state events by Golden Section

tk + (1 − x) · h tk + x · h

Time [sec]

Z
er

o–
cr

os
si

ng
fu

nc
ti

on
s

Z
er

o–
cr

os
si

ng
fu

nc
ti

on
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1

FIGURE 9.14. Iteration of multiple event conditions using Golden Section.

into three subintervals.
If there is no zero crossing within the leftmost of these three subintervals,

then that subinterval can be thrown away, i.e. tk is updated to tk+(1−x)·h,
and a new partial step is computed, as shown in the lower part of Fig.9.14.

If there are multiple zero crossings within the leftmost of the three subin-
tervals, then the rightmost subinterval is discarded, tk+1 is updated to
tk + x · h, and a new partial step is computed, always keeping the propor-
tions of the three subintervals the same.

If there is exactly one zero crossing within the leftmost of the four subin-
tervals, then tk+1 is updated to tk+(1−x)·h, and we continue with any one
of the algorithms for finding a single zero crossing within a given interval.

The Golden Section algorithm can be slightly improved using a Fibonacci
Series instead, but this is hardly ever worth it. The Fibonacci Series shrinks
the interval slightly faster than the Golden Section technique, but it can
be shown that the Fibonacci Series is always less than one iteration step
ahead of Golden Section, and it is only better at all, if we decide up front
how many iteration steps we are going to perform altogether.

9.5.2 Single Zero Crossings, Single–step Algorithms

Of course, any of the techniques presented so far for isolating individual
zero–crossing functions can also be used to find the zero crossings them-
selves. Yet, this may be inefficient, as all of these techniques offer only

9.5 State Events 415

linear convergence speed.
All simulation variables in a state–space model can ultimately be ex-

pressed in terms of state variables and inputs only. This also applies to
the zero–crossing functions. Thus, we could use, in the determination of
the zero crossings, not only the values of the zero–crossing functions them-
selves at different points in time, but also the values of their derivatives.

A first algorithm that exploits this possibility is the well-known Newton
iteration algorithm that we have used so often already in this book, albeit
for different purposes. Figure 9.15 documents the approach.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

Iteration of state events by Newton iteration

Time [sec]

Time [sec]

Z
er

o–
cr

os
si

ng
fu

nc
ti

on
Z
er

o–
cr

os
si

ng
fu

nc
ti

on

f

f

tk

tk

tk+1

tk+1

FIGURE 9.15. Iteration on single zero–crossing functions using Newton iteration.

Once a zero–crossing function has been isolated, we can use either tk or
tk+1 as the starting point of a Newton iteration.

The good news about Newton iteration is that the algorithm exhibits a
quadratic convergence speed. Thus, Newton iteration converges much more
rapidly than either Regula Falsi or Golden Section, if the algorithm con-
verges at all.

Unfortunately, and contrary to the previously introduced algorithms, the
Newton iteration algorithm does not always converge. In the given example,
if we start at tk+1, the algorithm converges quickly, whereas if we start at tk,
already the next step takes the algorithm far outside the interval [tk, tk+1].

Furthermore, it may not be easy to determine upfront, whether or not
the algorithm will converge on a given example. For these reasons, Newton
iteration may not be the method of choice to be used as a root solver.

A better approach may be to use the derivative values at both ends of

416 Chapter 9. Simulation of Discontinuous Systems

the interval [tk, tk+1] simultaneously. Since we have access to four pieces
of information: fk, dfk/dt, fk+1, and dfk+1/dt, we can lay a third-order
polynomial through these four pieces of information and solve for its roots.

The interpolation polynomial can thus be written as:

p(t) = a · t3 + b · t2 + c · t + d (9.9)

with the derivative:
ṗ(t) = 3a · t2 + 2b · t + c (9.10)

Thus, we can write the four pieces of information as follows:

p(tk) = a · t3k + b · t2k + c · tk + d = fk (9.11a)

p(tk+1) = a · t3k+1 + b · t2k+1 + c · tk+1 + d = fk+1 (9.11b)

ṗ(tk) = 3a · t2k + 2b · tk + c = ḟk = hk (9.11c)

ṗ(tk+1) = 3a · t2k+1 + 2b · tk+1 + c = ḟk+1 = hk+1 (9.11d)

which can be written in matrix/vector form as:⎛
⎜⎜⎝

fk

fk+1

hk

hk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

t3k t2k tk 1
t3k+1 t2k+1 tk+1 1
3t2k 2tk 1 0

3t2k+1 2tk+1 1 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ (9.12)

Equation 9.12 can then be solved for the unknown coefficients a, b, c, and
d.

Figure 9.16 illustrates the method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

Iteration of state events by cubic interpolation

Time [sec]

Z
er

o–
cr

os
si

ng
fu

nc
ti

on

f

tk tk+1

FIGURE 9.16. Iteration on single zero–crossing functions using cubic interpola-
tion.

The method converges even faster than Newton iteration, as it exhibits
cubic convergence speed. Furthermore, it is guaranteed to converge, just like
Regula Falsi and Golden Section.

9.5 State Events 417

The cubic polynomial must have at least one real solution within the
interval [tk, tk+1]. Possibly there are three real solutions within the interval,
in which case any one of them could be used as the next evaluation time,
tnext.

Yet, we may be able to improve on that method even a little further. One
drawback of the proposed technique is that we need to solve for the roots
of a cubic polynomial to determine a real root that lies inside the interval
[tk, tk+1].

Instead of fitting a cubic polynomial as proposed above, we could also
fit an inverse cubic polynomial of the type:

t(p) = a1 · p3 + b1 · p2 + c1 · p + d1 (9.13)

which can simply be evaluated for p = 0. Thus, the next evaluation time
can be computed as:

tnext = t(p = 0) = d1 (9.14)

The following four pieces of information are at our disposal:

tk = t(fk) (9.15a)
tk+1 = t(fk+1) (9.15b)

uk =
dt(fk)

df
=

1
hk

(9.15c)

uk+1 =
dt(fk+1)

df
=

1
hk+1

(9.15d)

We know that:

tk = a1 · f3
k + b1 · f2

k + c1 · fk + d1 (9.16a)

tk+1 = a1 · f3
k+1 + b1 · f2

k+1 + c1 · fk+1 + d1 (9.16b)

uk = 3a1 · f2
k + 2b1 · fk + c1 (9.16c)

uk+1 = 3a1 · f2
k+1 + 2b1 · fk+1 + c1 (9.16d)

or in matrix form:⎛
⎜⎜⎝

tk
tk+1

uk

uk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f3
k f2

k fk 1
f3

k+1 f2
k+1 fk+1 1

3f2
k 2fk 1 0

3f2
k+1 2fk+1 1 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a1

b1

c1

d1

⎞
⎟⎟⎠ (9.17)

which could be solved directly for the four unknowns by means of Gaussian
elimination.

Yet, we can do even better. We shall use inverse Hermite interpolation.
The scheme is called inverse interpolation, since we fit the inverse function
with the polynomial. The polynomials that we shall use to span our base
are Hermite polynomials.

418 Chapter 9. Simulation of Discontinuous Systems

We shall introduce a new variable φ of the type:

φ = coef1 · f + coef2 (9.18)

such that:

t f φ

tk fk 0.0
tk+1 fk+1 1.0
tnext 0.0 φ̂

TABLE 9.1. Variable transformation.

We find that:

coef1 =
1

fk+1 − fk
(9.19a)

coef2 = − fk

fk+1 − fk
= φ̂ (9.19b)

We now construct four auxiliary polynomials in φ:

pi(φ) = αi · φ3 + βi · φ2 + γi · φ + δi (9.20a)
dpi(φ)

dφ
= 3αi · φ2 + 2βi · φ + γi (9.20b)

such that:

p1(0) = 1 ; p1(1) = 0 ;
dp1(0)

dφ
= 0 ;

dp1(1)
dφ

= 0 (9.21a)

p2(0) = 0 ; p2(1) = 1 ;
dp2(0)

dφ
= 0 ;

dp2(1)
dφ

= 0 (9.21b)

p3(0) = 0 ; p3(1) = 0 ;
dp3(0)

dφ
= 1 ;

dp3(1)
dφ

= 0 (9.21c)

p4(0) = 0 ; p4(1) = 0 ;
dp4(0)

dφ
= 0 ;

dp4(1)
dφ

= 1 (9.21d)

It is easy to verify that these polynomials are:

p1(φ) = 2φ3 − 3φ2 + 1 (9.22a)

p2(φ) = −2φ3 + 3φ2 (9.22b)

p3(φ) = φ3 − 2φ2 + φ (9.22c)

p4(φ) = φ3 − φ2 (9.22d)

The inverse Hermite interpolation polynomial:

p(φ) = a2 · φ3 + b2 · φ2 + c2 · φ + d2 (9.23)

9.5 State Events 419

now expressed as a function of φ rather than of f , can be written in these
auxiliary polynomials as:

p(φ) = tk · p1(φ) + tk+1 · p2(φ) + sk · p3(φ) + sk+1 · p4(φ) (9.24)

where:

sk =
dtk
dφ

=
1

dφk/dt
=

1
coef1 · (dfk/dt)

=
fk+1 − fk

hk
(9.25a)

sk+1 =
fk+1 − fk

hk+1
(9.25b)

In order to obtain the desired zero–crossing time, tnext, we simply evaluate
Eq.(9.24) at φ = φ̂.

Figure 9.17 illustrates the method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

Iteration by inverse cubic interpolation

Time [sec]

Z
er

o–
cr

os
si

ng
fu

nc
ti

on

f

tk tk+1

FIGURE 9.17. Iteration on single zero–crossing functions using inverse cubic
interpolation.

Inverse Hermite interpolation is certainly more elegant than direct cubic
interpolation. Unfortunately, the simplification in the computation came
at a dire price, as we lost our guaranteed convergence. We can no longer
guarantee that the solution is to be found within the interval [tk, tk+1], and
in the given example, this indeed is not the case.

Notice that all of these techniques were used only to determine the next
time instant, tnext, for evaluating the zero–crossing function. The actual
computation of the zero–crossing function is done by means of numerical
integration, i.e., using the same higher–order numerical integration scheme
used throughout the simulation. Thus, no approximation accuracy is lost
in the process.

9.5.3 Single Zero Crossings, Multi–step Algorithms

In the case of multi–step algorithms, we may be able to do even better
[9.3]. At the end of the step that puts the event conditions on alert, i.e., at

420 Chapter 9. Simulation of Discontinuous Systems

time tk+1, we have the Nordsieck vector available. Thus, we can write:

F(ĥ) =Fi(tnext) = Fi(tk+1) + ĥ
dFi(tk+1)

dt
+

ĥ2

2
d2Fi(tk+1)

dt2

+
ĥ3

6
d3Fi(tk+1)

dt3
+ · · · = 0.0 (9.26)

This is a function in the unknown ĥ that can be solved by Newton iteration.
We set:

ĥ0 = 0.5 · (tk − tk+1) (9.27)

and iterate:

ĥ�+1 = ĥ� − F(ĥ�)

H(ĥ�)
(9.28)

where:

H(ĥ) =
dF(ĥ)

dĥ
=

dFi(tk+1)
dt

+ ĥ
d2Fi(tk+1)

dt2
+

ĥ2

2
d3Fi(tk+1)

dt3
+ . . . (9.29)

Using this technique, we can determine the time of the zero–crossing in a
single step with the same accuracy as the integration itself. However, we
have the Nordsieck vector only available for state variables, not for algebraic
variables. Therefore, it is useful to treat event conditions as additional state
variables, by writing:

xn+i = Fi(x) (9.30a)

ẋn+i =
dFi(x)

dt
(9.30b)

For the benefit of improved accuracy, it is probably a good idea to keep both
equations in the model rather than integrating Eq.(9.30b) into Eq.(9.30a).
However, the variables will be treated like additional state variables, and
will be maintained by the integration algorithm in its data base of old
values. In this way, it is possible to compute the Nordsieck vector for event
conditions whenever needed.

We shall need to compute Eq.(9.30b) anyway, since otherwise, we can-
not conveniently apply an iteration procedure other than Regula Falsi or
Golden Section.

9.5.4 Non–essential State Events

Sometimes, it may be a good idea to even add Eq.(9.30b) as a non–essential
event condition to the set of event conditions. Figure 9.18 illustrates the
reason for this suggestion.

f1 is an essential event condition, whereas f2 = ḟ1 is a non–essential
event condition. A non–essential event condition is an event condition that
doesn’t have an event action associated with it.

9.6 Consistent Initial Conditions 421

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

Unessential state events

Time [sec]

Time [sec]

Z
er

o–
cr

os
si

ng
fu

nc
ti

on
s

Z
er

o–
cr

os
si

ng
fu

nc
ti

on
s

f1

f1

f2

tk

tk

tk+1

tk+1

FIGURE 9.18. Non–essential event conditions.

Had we only formulated f1 as a zero–crossing function, the event at
time t = 1.55 would have been missed, because the essential zero–crossing
function, f1, crosses through zero twice within the single integration step
from time tk = 1.0 to time tk+1 = 4.0.

Adding the non–essential zero–crossing function, f2, to the set of zero–
crossing functions solves the dilemma, because f2 exhibits a zero crossing,
whenever f1 goes through an extremum.

During the iteration of the non–essential event condition, f2, the algo-
rithm will discover that also f1 crosses through zero, and will iterate on
that zero crossing first, as it happens earlier.

9.6 Consistent Initial Conditions

Figure 9.19 shows a piecewise linear function with three segments. In the
“left” region, y = a1 · x + b1, in the “center” region, y = a2 · x + b2, and in
the “right” region, y = a3 · x + b3.

Traditionally, we would describe such a function using an if–statement:
if x < x1 then y = a1 · x + b1

else if x < x2 then y = a2 · x + b2
else y = a3 · x + b3;

However, we know meanwhile that, if the variable y is used in a state–space
model, this will force the step–size control mechanism to reduce the step

422 Chapter 9. Simulation of Discontinuous Systems

x

y

y = a1 · x + b1

y = a2 · x + b2

y = a3 · x + b3

x1 x2

left center right

FIGURE 9.19. Discontinuous function.

size, whenever x crosses through one of the two thresholds, x1 or x2, within
an integration step.

Thus, we may choose to program the function using three different mod-
els, one for each region, with appropriate zero–crossing functions describing
the conditions for switching from one region to the next.

In pseudo–code, we might write:
case region

left : y = a1 · x + b1;
schedule Center when x − x1 == 0;

center : y = a2 · x + b2;
schedule Left when x − x1 == 0;
schedule Right when x − x2 == 0;

right : y = a3 · x + b3;
schedule Center when x − x2 == 0;

end;

together with the three discrete event descriptions:
event Left

region := left;
end Left;

event Center
region := center;

end Center;

event Right
region := right;

end Right;

The schedule–statements are used in this pseudo–code to describe zero–
crossing functions. The variable region is not a continuously changing vari-

9.6 Consistent Initial Conditions 423

able. From the point of view of the continuous simulation, it assumes the
role of a parameter. Its value can only change within a discrete event de-
scription.

This should work except for one little detail. The variable region is a
discrete state variable that needs to be initialized. Somewhere in the initial
region of the simulation program, we would need a statement such as:

if x < x1 then region := left;

else if x < x2 then region := center;
else region := right;

Will this code always work? Unfortunately, the answer to that question
is no. One problem that we haven’t considered yet is that x may reach one
of the thresholds without actually crossing through it.

Let us assume that:

x(t) =
x2 − x1

2
· sin(t) +

x1 + x2

2
(9.31)

In this case, x will always remain in the center region. It will only just
reach the two thresholds, x1 and x2, every once in a while.

The event description, as programmed above, would make the model
switch regions, each time a threshold is reached. One of the more diffi-
cult problems associated with the simulation of discontinuous functions is
to know, in which region the model operates after the event has been pro-
cessed, i.e., to find a consistent set of initial conditions after event handling.

The problem is by no means an academic one. Consider the case of a set
of bowling balls resting on a guide rail. They are all in contact with each
other. A new ball arrives with velocity v that hits the first of these balls.
We all know what will happen: the new ball will come to rest at once, and
the last of the previously resting balls will move away with the same speed
v. Yet, convincing a simulation program that this is what must happen is
anything but trivial.

One way to deal with this problem is to define a narrow band around
each of the zero–crossing functions. The event is detected when the function
crosses through zero, at which time the event is being processed. Yet, before
starting with the next continuous–time simulation segment, trial steps are
taken to determine whether or not the zero-crossing functions will leave the
bands placed around the zero crossing as expected. It happens frequently
that one event immediately triggers other events that change the condition
on the original event again.

An example of this problem might be a robot arm with sticking fric-
tion in each of its articulations [9.11]. Once the force in an articulation
overcomes sticking friction, the articulation starts to move. Yet, this imme-
diately changes the forces in neighboring articulations. As a consequence,
another neighboring articulation may come out of sticking friction also,
which changes the forces in the articulations once again, with the possible

424 Chapter 9. Simulation of Discontinuous Systems

effect that the original articulation returns back to its sticking region.
Modeling this situation correctly is anything but trivial. Let us attempt

this task. Figure 9.20 shows a typical friction model with sticking friction,
dry (Coulomb) friction, and viscous friction.

v

F(v)

Fd

Fs

-Fs

-Fd

FIGURE 9.20. Friction characteristic.

There are three different regions (modes) of this nonlinear model: a back-
ward mode, a sticking mode, and a forward mode. While the velocity of
the articulation is zero, the articulation operates in its sticking mode. It
will remain in this mode, until the sum of forces applied to this articula-
tion becomes either larger than the positive sticking friction force, Fs, or
smaller than the negative sticking friction force, −Fs. When this happens,
the articulation comes out of sticking friction, and changes its operational
mode to moving either forward or backward, in which the friction force is
computed as the sum of a dry (Coulomb) friction component, ±Fd, and a
linear (viscous) friction component. Once the model operates in one of its
two moving modes, it will remain in that mode, until the velocity of the
articulation crosses through zero, at which time the model will return to
its sticking mode.

Yet, this model is still too simple, as it does not account for the possibility
that the result of coming out of sticking friction might be to return to stick-
ing friction immediately again, after having freed up another articulation
in the process.

A more complete model is shown in Figure 9.21, which exhibits a state
transition diagram of the friction characteristic.

The new model possesses six different modes. Beside from the three
modes used in the earlier model, we also have a Start Forward mode, and
a Start Backward mode. If the sum of all forces applied to the articulation

9.7 Object–oriented Descriptions of Discontinuities 425

Start

Sticking

a = 0 ; v = 0

Forward
v > 0

Backward

v < 0

Start
Forward

a > 0

Start
Backward

a < 0

v < 0 v > 0

else

v < 0 v > 0F > FΣ sF < -FΣ s

a > 0 and not v < 0_ a < 0 and not v > 0_

v > 0_ v < 0_

FIGURE 9.21. State transition diagram of friction characteristic.

is larger than zero, the articulation leaves the sticking mode. However, it
doesn’t proceed immediately to the Forward mode yet. Instead, it enters a
transitory mode, called the Start Forward mode. As the sum of all forces is
larger than zero, also the acceleration, in accordance with Newton’s law, is
now positive. However, the velocity is initially still zero. It will only become
positive through integration, as time proceeds forward.

However, before integration starts again, the new forces are propagated
to the neighboring bodies, possibly taking some other articulations also out
of their sticking mode. As the condition for mode switching is programmed
in the form of state conditions, rather than time events, integration needs
to start, in order for this propagation to take place.

As integration starts, multiple zero–crossing functions may be triggered
during the first new integration step. One would be to take the original
articulation from the Start Forward mode to the Forward mode. Another
may be to take a neighboring articulation from the Sticking mode to the
Start Forward mode.

The model must make sure that the latter event takes precedence over the
former. This is accomplished by recognizing the velocity as being positive
only, after the velocity has become larger than some fudge factor v > ε,
which implements the narrow band around the zero crossings that we wrote
about earlier.

The Start mode implements the initialization of the discrete state vari-
able. The discrete state variable starts out in its Start mode, from where it
proceeds immediately to one of the other modes, depending on the initial
velocity.

9.7 Object–oriented Descriptions of Discontinuities

What a mess have we created here! In order to protect the integration
algorithm from having to integrate across discontinuities, we introduced

426 Chapter 9. Simulation of Discontinuous Systems

two new modeling elements: time events and state events, that make the
simulation of discontinuous models safer and faster, but make the modeling
task quite a bit more complicated.

Is this impressively complicated apparatus really necessary? The answer
to this question is yes and no. On the one hand, we truly require integration
algorithms with root solvers for safe and efficient discontinuity handling.
We also require time events for the description of discontinuities that take
place at previously known event times. Yet, state event descriptions are
not a sufficiently high–level mechanism to bother the average simulation
practitioner with.

Although the simulation code, i.e., the code used by the numerical inte-
gration algorithm, may have to be complex and messy, this doesn’t mean
that the modeler has to manually enter it in this fashion.

Returning once more to the example of Fig. 9.19. What is wrong with a
description of the type:

y = if x < x1 then a1 · x + b1
else if x < x2 then a2 · x + b2
else a3 · x + b3;

to describe what this function does? It expresses perfectly well and in an
unambiguous fashion, what the model is supposed to do. Can’t we build a
model compiler that takes such a description, and translates it down to the
level of state events at compile time?

This is the approach that was taken in the design of the Dymola modeling
environment [9.11, 9.12], and indeed, the syntax of the program segment
shown above is that of Dymola.

Already in the previous two chapters, we encountered the need for sym-
bolic preprocessing of model equations, in order to obtain numerically suit-
able simulation code. Although we applied these symbolic graph coloring
algorithms in a manual fashion, by manually causalizing the structure di-
graph, this can obviously only be done for toy problems, such as the simple
electrical circuits used to introduce the algorithms.

In a realistically complex model, such as a six–degree–of–freedom robot
arm, leading to possibly 10,000 equations initially, it must be possible to
apply all of these algorithms in a completely automated fashion. This is
what the Dymola model compiler does [9.4]. The algorithms implemented
in Dymola [9.12] are essentially those that were introduced in the previous
two chapters.

Yet, Dymola is capable of performing considerably more complex model
compilations, as it decomposes object–oriented descriptions of discontinu-
ous models into suitable event descriptions at compile time.

Up to this point, we were able to either describe our algorithms in MAT-
LAB, or apply them manually, as we did with some of the algorithms in
the previous two chapters. Now, we don’t have that luxury any longer, as

9.7 Object–oriented Descriptions of Discontinuities 427

even simple functions, such as the friction model introduced earlier, quickly
become too involved to conveniently describe them as a collection of event
descriptions.

Thus, we shall need to introduce some of the low–level modeling con-
structs of Dymola [9.12] at this time to be able to describe the necessary
discontinuity handling algorithms in a suitably compact fashion.

9.7.1 The Computational Causality of if–Statements

We have seen in the previous two chapters that the computational causality
of statements should not be predetermined, but must be allowed to vary
depending on the embedding of the objects containing these statements
within their environment.

The equal sign of an equation is not to be interpreted as an assignment
in the usual sense of sequential programming languages, but rather as an
equality in the algebraic sense.

Hence in a Dymola program, it doesn’t matter whether Ohm’s law is
formulated as:

u = R ∗ i

or:

i = u/R

or finally:

0 = u − R ∗ i

Dymola will treat each of these statements in exactly the same fashion. It
will turn equations around symbolically as needed.

It may now have become clear, why the Dymola syntax for the if –
statement of the nonlinear characteristic of Fig. 9.19 is:

y = if x < x1 then a1 · x + b1
else if x < x2 then a2 · x + b2
else a3 · x + b3;

rather than:

if x < x1 then y = a1 · x + b1
else if x < x2 then y = a2 · x + b2
else y = a3 · x + b3;

Dymola needs to ensure that each branch of the if –statement computes
the same variable, as otherwise, the vertical sorting algorithm would invari-
ably fail.

428 Chapter 9. Simulation of Discontinuous Systems

Do if –statements have a fixed computational causality, or is it possible to
turn them around in the same way as we turn around algebraic equations?

To answer this question, let us translate the above if –statements to an
event description that looks a bit different from the one used before. To
this end, we shall introduce three additional integer variables, ml, mc, and
mr, whose values are linked to the linguistic discrete state variable, region,
in the following way:

region ml mc mr

left 1 0 0
center 0 1 0
right 0 0 1

Using these new variables, the event description of the nonlinear charac-
teristic can be rewritten as follows:

y = ml · (a1 · x + b1) + mc · (a2 · x + b2) + mr · (a3 · x + b3);
case region

left : schedule Center when x − x1 == 0;
center : schedule Left when x − x1 == 0;

schedule Right when x − x2 == 0;
right : schedule Center when x − x2 == 0;

end;

together with the three discrete event descriptions:

event Left
region := left;
ml = 1; mc = 0; mr = 0;

end Left;

event Center
region := center;
ml = 0; mc = 1; mr = 0;

end Center;

event Right
region := right;
ml = 0; mc = 0; mr = 1;

end Right;

In this way, the former if –statement has been converted to the algebraic
statement:

y = ml · (a1 · x + b1) + mc · (a2 · x + b2) + mr · (a3 · x + b3) (9.32)

9.7 Object–oriented Descriptions of Discontinuities 429

which can be turned around in the usual way:

x =
y − ml · b1 − mc · b2 − mr · b3

ml · a1 − mc · a2 − mr · a3
(9.33)

as long as none of the three slopes is flat, i.e., as long as none of the
parameters a1, a2, or a3 is equal to zero.

9.7.2 Multi–valued Functions

The if –statements that we have introduced so far don’t allow the de-
scription of multi–valued functions, such as the dry hysteresis function of
Fig. 9.22.

x
x1

x2

y

y1

y2

FIGURE 9.22. Dry hysteresis function.

A possible event description for the dry hysteresis function could look as
follows:

y = ylast;
case region

up : schedule Down when x − x1 == 0;
down : schedule Up when x − x2 == 0;

end;

together with the two discrete event descriptions:
event Up

region := up;
ylast := y2;

end Left;

430 Chapter 9. Simulation of Discontinuous Systems

event Down
region := down;
ylast := y1;

end Center;

Dymola offers a when–statement that allows to encode such an event
description in a compact form. We could try to encode the dry hysteresis
function as follows:

when x < x1

y = y1;

end when;

when x > x2

y = y2;
end when;

Contrary to the if –statement that takes the semantics of “if is,” the
when–statement has associated with it the semantics “when becomes.”
Thus, the former of the two when clauses will only be executed, when-
ever x becomes smaller than x1, whereas the latter of the two when clauses
will only be executed, whenever x becomes larger than x2. At all other
times, y simply retains its former value.

Consequently, we shall require an appropriate initialization section to
provide an initial value for the discrete state variable, y.

Unfortunately, the above program won’t work correctly, because it can-
not be sorted. We again ended up with two different statements assigning
values to the variable y. This problem can be fixed easily as follows:

when x < x1 or x > x2

y = if x < 0 then y1 else y2;
end when;

Here, y assumes a new value if and only if either x becomes smaller than
x1 or if x becomes larger than x2. The new value of y will be y1, if x is at
that time smaller than 0, else y assumes a value of y2.

9.8 The Switch Equation

Let us now try to describe the electrical switch of Fig. 9.23.
When the switch is open, the current flowing through it is zero. When it

is closed, the voltage across it is zero.
An elegant way to describe the switch properties in Dymola using a single

statement would be:
0 = if switch == open then i else u;

9.8 The Switch Equation 431

u

i

FIGURE 9.23. Electrical switch.

Let us convert the if –statement to an equivalent algebraic statement. To
this end, we introduce an integer variable, mo, with the following values:

switch mo

open 1
closed 0

Using the new variable mo, we can rewrite the switch equation as follows:

0 = mo · i + (1 − mo) · u (9.34)

The algebraic switch equation can be made causal in two different ways:

i =
mo − 1

mo
· u (9.35a)

u =
mo

mo − 1
· i (9.35b)

Unfortunately, neither of these two equations will work correctly in both
switch positions. Equation (9.35a) will lead to a division by zero, when-
ever the switch closes, whereas Eq.(9.35b) will lead to a division by zero,
whenever the switch opens.

The switch equation confronts us with a new problem. The correct com-
putational causality of the switch equation depends on the numerical value
of a parameter. In the given example, it depends on the numerical value of
mo.

In previous chapters, we have learnt that the computational causality
of all equations is fixed, except for those that show up inside an algebraic
loop.

Hence we may postulate that:

Switch equations must always be placed inside algebraic loops.

Let us illustrate this concept by means of a simple circuit example, as
shown in Fig. 9.24.

432 Chapter 9. Simulation of Discontinuous Systems

+

-

R1

R2

U0

u1i1

u2

i2is

FIGURE 9.24. Electrical circuit containing a switch.

The circuit operates correctly in both switch positions. If the switch is
open, the resistor across the voltage source assumes a value of R1 + R2,
otherwise it assumes a value of R1 only.

We can read out the equations from this circuit:

U0 = f(t) (9.36a)
u1 = R1 · i1 (9.36b)
u2 = R2 · i2 (9.36c)
U0 = u1 + u2 (9.36d)
i1 = is + i2 (9.36e)
0 = mo · is + (1 − mo) · u2 (9.36f)

The structure digraph of this equation system is shown on Fig. 9.25.

Eq.(9.36a)

Eq.(9.36b)

Eq.(9.36c)

Eq.(9.36d)

Eq.(9.36e)

Eq.(9.36f)

U0

u1

i1

u2

i2

is

FIGURE 9.25. Partially causalized structure digraph of switching circuit.

The equation system indeed contains an algebraic loop in five equations

9.9 Ideal Diodes and Parameterized Curve Descriptions 433

and five unknowns, and as expected, the switch equation shows up inside
the algebraic loop.

This time around, we didn’t use our normal heuristics for choosing a
suitable tearing structure. We want our switch equation to serve as the
residual equation, solving it for whichever variable works better. In the
given example, we chose u2 as the tearing variable, since this allowed us to
causalize all remaining equations. The resulting set of causal equations is:

U0 = f(t) (9.37a)

i2 =
1

R2
· u2 (9.37b)

u1 = U0 − u2 (9.37c)

i1 =
1

R1
· u1 (9.37d)

is = i1 − i2 (9.37e)

u2 =
mo

mo − 1
· is (9.37f)

where Eq.(9.37f) is the residual equation, and u2 serves as the tearing
variable.

Using the variable substitution method, we find the following replace-
ment equation for the residual equation:

u2 =
mo · R2

mo · (R1 + R2) + (mo − 1) · R1 · R2
· U0 (9.38)

Equation(9.38) is indeed the correct equation in both switch positions,
since, when the switch is closed, i.e., mo = 0:

u2 = 0 (9.39)

and when the switch is open, i.e., mo = 1:

u2 =
R2

R1 + R2
· U0 (9.40)

No division by zero is obtained in either of the two switch positions.

9.9 Ideal Diodes and Parameterized Curve
Descriptions

Ideal diodes are ideal electrical switches complemented by an internal logic
for determining the switch position. An ideal diode closes its switch, when

434 Chapter 9. Simulation of Discontinuous Systems

the voltage across the diode from the anode to the cathode becomes pos-
itive, and it opens its switch again, when the current through the diode
passes through zero, if at that time the voltage across the diode is nega-
tive.

An ideal diode can be modeled in Dymola as follows:
0 = mo · id + (1 − mo) · ud;
mo = if ud <= 0 and not id > 0 then 1 else 0;

A yet more compact way to describe this model would be:
0 = if OpenSwitch then id else ud;
OpenSwitch = ud <= 0 and not id > 0;

OpenSwitch is here a Boolean variable, the value of which is computed in the
above Boolean expression. If OpenSwitch is true, the switch is considered
open.

The latest example exhibits a third way for encoding state–event de-
scriptions, beside from the previously introduced if –statements and when–
statements. Any Boolean function of real–valued variables is automatically
converted to a state–event description by Dymola’s model compiler.

In reality, this is even the only way to produce state–event descriptions, as
Dymola extracts the conditions of if – and when–statements into separate
Boolean statements prior to expanding them.

How are Boolean functions of real–valued variables converted to zero–
crossing functions? In the simplest cases, such as:

B1 = x > x2 (9.41)

i.e., cases in which the Boolean expression is formed by a single relational
operator, the conversion is trivial, as B1 is almost in the correct form
already. The corresponding zero–crossing function can be written as:

f1 = x − x2 (9.42)

The case:
when x < x1 or x > x2

y = if x < 0 then y1 else y2;
end when;

is a bit more difficult to handle. The condition of the when–statement gets
extracted into the Boolean function:

B2 = x < x1 ∨ x > x2 (9.43)

which gets then converted to the following zero–crossing function:

f2 = if B2 then 1 else − 1 (9.44)

9.9 Ideal Diodes and Parameterized Curve Descriptions 435

Whenever B2 switches from true to false or vice–versa, f2 crosses through
zero.

Unfortunately, f2 is anything but a smooth function. In fact, the gradi-
ent of f2 is zero everywhere except at the zero crossing itself, where it is
infinite. Thus, no higher–order method, such as cubic interpolation or in-
verse Hermite interpolation can be used on such a zero–crossing function.
Only first–order methods, such as the Regula Falsi or the Golden Section
method can be used, and of those, even only the Golden Section method
can be used efficiently.

A better solution would have been to generate two separate zero–crossing
functions:

f2a = x − x1 (9.45a)
f2b = x − x2 (9.45b)

that are both being associated with the same event action:

y = if x < 0 then y1 else y2 (9.46)

The Dymola user can enforce that the model is being translated in this
fashion by employing a slightly different model syntax:

when { x < x1 , x > x2 }
y = if x < 0 then y1 else y2;

end when;

Using this syntax, each of the set of conditions of the when–statement is
converted independently to a separate zero–crossing function. All of these
zero–crossing functions are associated with the same event action.

Unfortunately, even with the enhanced syntax, the problem:
0 = if OpenSwitch then id else ud;
OpenSwitch = ud <= 0 and not id > 0;

cannot be converted to a set of smooth zero–crossing functions. The pro-
posed technique works only in the case of a set of simple Boolean expres-
sions that are connected by or–conditions. Another approach must thus be
taken.

To this end, we shall apply a parameterized curve description, as advo-
cated in [9.22]. Figure 9.26 displays the diode characteristic in the id(ud)
plane.

The curve is parameterized by adding an additional variable, s, to the
model, defined such that s = ud whenever the diode is blocking, and s = id,
whenever the diode is conducting. This allows us to program a smooth
zero–crossing function in terms of the newly introduced variable s:

ud = if OpenSwitch then s else 0;
id = if OpenSwitch then 0 else s;

436 Chapter 9. Simulation of Discontinuous Systems

diode blocking

d
io

d
e

 c
o

n
d

u
ct

in
g

s = 2

s = 1

s = 0

s
=

 -
1

s
=

 -
2

ud

id

FIGURE 9.26. Diode characteristic.

OpenSwitch = s < 0;

This is how the ideal diode has been modeled in Dymola’s standard elec-
trical library.

An algebraic version of that model can be written as:

ud = mo · s;
id = (1 − mo) · s;
mo = if s < 0 then 1 else 0;

which is the version that we shall work with here, as these equations are
easier to analyze.

Let us illustrate the use of the ideal diode model by means of the simple
half–way rectifier circuit of Fig.9.27.

+

-

R=10

R
=

5
0

C
=

0
.0

0
1

Ri

RLCU0

i0

u1

u2

ud

iC iR

FIGURE 9.27. Half–way rectifier circuit.

9.9 Ideal Diodes and Parameterized Curve Descriptions 437

We can read the equations from that circuit:

u0 = f(t) (9.47a)
u1 = Ri · i0 (9.47b)
u2 = RL · iR (9.47c)

iC = C · du2

dt
(9.47d)

u0 = u1 + ud + u2 (9.47e)
i0 = iC + iR (9.47f)
ud = mo · s (9.47g)
i0 = (1 − mo) · s (9.47h)

The partially causalized structure digraph of this equation system is
shown in Fig. 9.28. We ended up with an algebraic loop in four equations
and four unknowns. The switch equations are contained within the alge-
braic loop.

Eq.(9.47a)

Eq.(9.47b)

Eq.(9.47c)

Eq.(9.47d)

Eq.(9.47e)

Eq.(9.47f)

Eq.(9.47g)

Eq.(9.47h)

u0

iR

iC

ud

du2/dt

i0

u1

s

Eq. #8

Eq. #1

Eq. #7

Eq. #2

FIGURE 9.28. Partially causalized structure digraph.

We now must choose a suitable tearing structure. Once again, we won’t
use our normal heuristics. Instead, we want to make sure that the variable
s is being selected as the tearing variable. We choose one of the two switch
equations, e.g. Eq.(9.47h), as the corresponding residual equation.

The completely causalized structure digraph of this equation system is
shown in Fig. 9.29.

Thus, the horizontally and vertically sorted equations can be written as:

u0 = f(t) (9.48a)

438 Chapter 9. Simulation of Discontinuous Systems

Eq.(9.47a)

Eq.(9.47b)

Eq.(9.47c)

Eq.(9.47d)

Eq.(9.47e)

Eq.(9.47f)

Eq.(9.47g)

Eq.(9.47h)

u0

iR

iC

ud

du2/dt

i0

u1

s Tearing Var.Residual Eq.

Eq. #5

Eq. #4

Eq. #8

Eq. #1

Eq. #3

Eq. #7

Eq. #2

FIGURE 9.29. Completely causalized structure digraph.

iR =
1

RL
· u2 (9.48b)

ud = mo · s (9.48c)
u1 = u0 − ud − u2 (9.48d)

i0 =
1
Ri

· u1 (9.48e)

s =
1

1 − mo
· i0 (9.48f)

iC = i0 − iR (9.48g)
du2

dt
=

1
C

· iC (9.48h)

where Eq.(9.48f) is the residual equation, with s having been chosen as the
tearing variable.

Using the substitution technique, we find a replacement equation for the
residual equation:

s =
1

mo + (1 − mo) · Ri
· (u0 − u2) (9.49)

which is correct in both switch positions.
The following equation system results:

u0 = f(t) (9.50a)

iR =
1

RL
· u2 (9.50b)

s =
1

mo + (1 − mo) · Ri
· (u0 − u2) (9.50c)

ud = mo · s (9.50d)

9.10 Variable Structure Models 439

u1 = u0 − ud − u2 (9.50e)

i0 =
1
Ri

· u1 (9.50f)

iC = i0 − iR (9.50g)
du2

dt
=

1
C

· iC (9.50h)

which can be simulated without any difficulties using any numerical inte-
gration algorithm with a root solver.

There is only a single zero–crossing function:

f = s (9.51)

with the associated event action:
event Toggle

mo := 1 − mo;

end Toggle;

The correct initial value of the discrete state variable, mo, is assigned to that
variable in an appropriate initialization section of the simulation program.

The voltage across the capacitor is shown in Fig. 9.30 as a function of
time.

0 0.02 0.04 0.06 0.08 0.1 0.12
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Half-way Rectifier

Time[sec]

u
C

[V
ol

ts
]

FIGURE 9.30. Voltage across capacitor of half–way rectifier circuit.

The default algorithm used in Dymola is DASSLRT, an implementation of
the well–known DASSL algorithm supplemented with a root solver.

9.10 Variable Structure Models

Let us repeat the previous analysis for the slightly different circuit of
Fig. 9.31.

The following set of equations characterizes this circuit:

440 Chapter 9. Simulation of Discontinuous Systems

R=10

C
=

0
.0

0
1

R
=

5
0

L=0.015

+

-

Ri

RLC

L

U0

i0

u1

u2

ud
uL

iC iR

FIGURE 9.31. Half–way rectifier circuit with line inductance.

u0 = f(t) (9.52a)
u1 = Ri · i0 (9.52b)
u2 = RL · iR (9.52c)

iC = C · du2

dt
(9.52d)

uL = L · di0
dt

(9.52e)

u0 = uL + u1 + ud + u2 (9.52f)
i0 = iC + iR (9.52g)
ud = mo · s (9.52h)
i0 = (1 − mo) · s (9.52i)

The structure digraph is shown in Fig. 9.32.
There is no algebraic loop. All equations have fixed causality. The causal

equations are:

u0 = f(t) (9.53a)
u1 = Ri · i0 (9.53b)

iR =
1

RL
· u2 (9.53c)

s =
1

1 − mo
· i0 (9.53d)

iC = i0 − iR (9.53e)
ud = mo · s (9.53f)
uL = u0 − u1 − ud − u2 (9.53g)

du2

dt
=

1
C

· iC (9.53h)

9.10 Variable Structure Models 441

Eq.(9.52a)

Eq.(9.52b)

Eq.(9.52c)

Eq.(9.52d)

Eq.(9.52e)

Eq.(9.52f)

Eq.(9.52g)

Eq.(9.52h)

Eq.(9.52i)

u0

iR

iC

ud

du2/dt

uL

u1

s

di0/dt

Eq. #8

Eq. #1

Eq. #9

Eq. #3

Eq. #2

Eq. #4

Eq. #5

Eq. #6

Eq. #7

FIGURE 9.32. Causalized structure digraph of half–way rectifier circuit with line
inductance model.

di0
dt

=
1
L

· uL (9.53i)

These equations unfortunately cannot be simulated, since Eq.(9.53d) leads
to a division by zero, as soon as the switch opens.

What happened? The current through the inductor is a state variable.
Thus, the inductor computes the current i0, which means that the causality
of the diode is fixed. The diode has no choice but to compute the voltage
ud.

If we replace the diode by a manual switch, we see at once what happens.
If we try to open the switch, while current is flowing through it, we’ll draw
an arc, because the current through the inductance cannot go instantly to
zero. The arc can be modeled as a nonlinear resistor, the value of which
increases, as the gap widens. This resistance drives the current to zero. Yet,
this effect was not included in the model equations.

With a diode, this cannot happen, as the diode always opens at the
moment, when the current passes through zero. Yet, our model doesn’t
know this. Since the logic for when the diode switch opens or closes is not
contained in the continuous model equations, but forms part of the event
description, the continuous model equations are identical in the case of the
diode and the manual switch.

Dymola tackles this problem by offering in its standard electrical library
a leaky diode model, as shown in Fig. 9.33.

The leaky diode can be modeled using the equations:

442 Chapter 9. Simulation of Discontinuous Systems

diode blocking d
io

d
e
 c

o
n
d
u
ct

in
g

s = 2

s = 1

s = 0

s
=

 -
1

s
=

 -
2

ud

id

FIGURE 9.33. Leaky diode characteristic.

ud = if OpenSwitch then s else R0 · s;
id = if OpenSwitch then G0 · s else s;
OpenSwitch = s < 0;

or formulated algebraically:

ud = [mo + (1 − mo) · R0] · s;
id = [mo · G0 + (1 − mo)] · s;
mo = if s < 0 then 1 else 0;

R0 is the resistance of the wires connected to the switch, when the switch
is closed, and G0 is the conductance of the air in the gap, while the switch
is open.

The leaky diode model doesn’t change the causalities of the equation
system, i.e., the structure digraph of the model using the leaky diode is
exactly the same as that using the ideal diode. However, the leaky diode
avoids the division by zero.

The causal equations of the model using the leaky diode are:

u0 = f(t) (9.54a)
u1 = Ri · i0 (9.54b)

iR =
1

RL
· u2 (9.54c)

s =
1

mo · G0 + (1 − mo)
· i0 (9.54d)

iC = i0 − iR (9.54e)
ud = [mo + (1 − mo) · R0] · s (9.54f)

9.11 Mixed–mode Integration 443

uL = u0 − u1 − ud − u2 (9.54g)
du2

dt
=

1
C

· iC (9.54h)

di0
dt

=
1
L

· uL (9.54i)

This model is valid in both switch positions, i.e., it can be simulated. Un-
fortunately, whenever the original model containing an ideal diode exhibits
a division by zero, the new model containing a leaky diode becomes very
stiff. The degree of stiffness is directly related to the values of the two leak-
age parameters, R0 and G0. The smaller the leakage parameters are chosen,
the stiffer the model will become. Hence we would prefer to use the ideal
model, if we could.

What is so special about this model? When the switch is closed, i.e.,
while the diode is conducting, the model exhibits second–order dynamics.
However, once the switch opens, i.e., while the diode blocks the current, we
are faced with only first–order dynamics. The inductor does not contribute
to the dynamics in that case.

We call a model that exhibits different structural properties, such as a
varying number of differential equations depending on the position of some
switches a variable structure model.

Variable structure systems are very common, e.g. in mechanical engi-
neering. All systems involving clutches are by their very nature variable
structure systems. In electrical engineering, most switching power convert-
ers are variable structure systems.

The way, the equations of our system were formulated, Eqs.(9.52a–i), it
doesn’t look like these equations contain a structural singularity though.
There is no constraint equation to be found. The singularity looks to be
parametric in nature, thus the Pantelides algorithm [9.23] cannot be ap-
plied to solve it.

9.11 Mixed–mode Integration

One way to tackle this problem, while preserving the use of an ideal diode
model, is to relax the causality on the inductor, by inlining the integrator
that is associated with it. This approach was first proposed in [9.18].

An approach to simulation by applying different integration algorithms to
different integrators contained in the model is called simulation by mixed–
mode integration [9.24].

The system equations now take the form:

u0 = f(t) (9.55a)
u1 = Ri · i0 (9.55b)

444 Chapter 9. Simulation of Discontinuous Systems

u2 = RL · iR (9.55c)

iC = C · du2

dt
(9.55d)

i0 = pre(io) +
h

L
· uL (9.55e)

u0 = uL + u1 + ud + u2 (9.55f)
i0 = iC + iR (9.55g)
ud = mo · s (9.55h)
i0 = (1 − mo) · s (9.55i)

The partially causalized structure digraph of this model is given in Fig. 9.34.

Eq.(9.55a)

Eq.(9.55b)

Eq.(9.55c)

Eq.(9.55d)

Eq.(9.55e)

Eq.(9.55f)

Eq.(9.55g)

Eq.(9.55h)

Eq.(9.55i)

u0

iR

iC

ud

du2/dt

uL

u1

s

i0

Eq. #9

Eq. #1

Eq. #2

Eq. #8

FIGURE 9.34. Partially causalized structure digraph of half–way rectifier circuit
with inlined inductor.

Only four of the nine equations could be causalized directly. There now
appeared an algebraic loop, which includes the switch equations.

We need to choose s as a tearing variable, because otherwise, the equation
computing s will invariably contain either the term mo or the term (1−mo)
alone in the denominator, which consequently leads to a division by zero
in one of the two switch positions.

We can choose either Eq.(9.55h) or Eq.(9.55i) as the associated residual
equation. If we choose Eq.(9.55h) as the residual equation, we can causalize
all of the remaining equations. Unfortunately, Eq.(9.55e) will in that case be
solved for uL, which we don’t like, since it leaves h alone in the denominator.

Thus, we chose Eq.(9.55i) as the associated residual equation. The further
causalized structure digraph is shown in Fig. 9.35.

9.11 Mixed–mode Integration 445

Eq.(9.55a)

Eq.(9.55b)

Eq.(9.55c)

Eq.(9.55d)

Eq.(9.55e)

Eq.(9.55f)

Eq.(9.55g)

Eq.(9.55h)

Eq.(9.55i)

u0

iR

iC

ud

du2/dt

uL

u1

s

i0

Eq. #9

Eq. #1

Eq. #2

Eq. #8

Res. Eq. #1 Tear. Var. #1

Eq. #3

FIGURE 9.35. Partially causalized structure digraph of half–way rectifier circuit
with inlined inductor.

There remains a second algebraic loop in three equations and three un-
knowns. This time, we choose Eq.(9.55e) as the new residual equation, and
i0 as the tearing variable. In this way, we can force the causality on the
inlined integrator equation as well. The completely causalized structure
digraph is shown in Fig. 9.36.

Eq.(9.55a)

Eq.(9.55b)

Eq.(9.55c)

Eq.(9.55d)

Eq.(9.55e)

Eq.(9.55f)

Eq.(9.55g)

Eq.(9.55h)

Eq.(9.55i)

u0

iR

iC

ud

du2/dt

uL

u1

s

i0

Eq. #9

Eq. #1

Eq. #2

Eq. #8

Res. Eq. #1 Tear. Var. #1

Eq. #3

Res. Eq. #2

Tear. Var. #2Eq. #4

Eq. #5

FIGURE 9.36. Completely causalized structure digraph of half–way rectifier cir-
cuit with inlined inductor.

The causalized equations can be read out of the structure digraph:

u0 = f(t) (9.56a)

iR =
1

RL
· u2 (9.56b)

446 Chapter 9. Simulation of Discontinuous Systems

ud = mo · s (9.56c)
u1 = Ri · i0 (9.56d)
uL = u0 − u1 − ud − u2 (9.56e)

i0 = pre(io) +
h

L
· uL (9.56f)

s =
1

1 − mo
· i0 (9.56g)

iC = i0 − iR (9.56h)
du2

dt
=

1
C

· iC (9.56i)

Using the variable substitution technique, we find replacement equations
for the two residual equations. The final set of horizontally and vertically
sorted equations presents itself as follows:

u0 = f(t) (9.57a)

iR =
1

RL
· u2 (9.57b)

s =
L · pre(io) + h · (u0 − u2)

h · mo + (L + h · Ri) · (1 − mo)
(9.57c)

ud = mo · s (9.57d)
i0 = (1 − mo) · s (9.57e)
u1 = Ri · i0 (9.57f)
uL = u0 − u1 − ud − u2 (9.57g)
iC = i0 − iR (9.57h)

du2

dt
=

1
C

· iC (9.57i)

Let us analyze this set of equations a bit further. The only potentially
dangerous equation is Eq.(9.57c). Let us discuss, how this equation behaves
in the two switch positions.

If the switch is closed, mo = 0, Eq.(9.57c) degenerates to:

s =
L · pre(io) + h · (u0 − u2)

L + h · Ri
(9.58)

which is completely harmless for all values of the step size, h.
If the switch is open, mo = 1, Eq.(9.57c) degenerates to:

s =
L

h
· pre(io) + u0 − u2 (9.59)

This equation is correct for all values of the step size, h, if switching occurs
at a moment, when the current, i0, goes through zero, as this will always be

9.12 State Transition Diagrams 447

the case for a diode. However, if switching occurs for any other value of i0,
only one step will be incorrect, since during that first step, the current i0
will be reduced to zero due to Eq.(9.57e). Thus, already one step later, the
solution is again accurate. There is no stiffness problem using this approach.

9.12 State Transition Diagrams

Let us now return to the discussion of friction phenomena, an important
application of discontinuous models in mechanical engineering.

Before a possible general model for the friction element can be pre-
sented, the friction phenomenon needs to be carefully analyzed. According
to Fig.9.20, the friction force is a known applied force if the velocity v is
different from zero. In that situation, the computational causality of the
friction model is such that the velocity is an input to the model, whereas
the friction force is its output.

When the velocity becomes zero, the two bodies, between which the
friction force is acting, become stuck. In this situation, the model changes
its structure: A new equation, v = 0.0, and a new unknown force, Fc, are
added to the model. The constraint force Fc is determined such that the
new constraint on the velocity, v = 0.0, is always met.

This is a new situation as compared to the electrical switch, because the
electrical switch toggles between two different equations one of which is
always active. Thus, the number of equations remains the same. In contrast,
the friction element adds one equation and one variable to the model, when
v becomes 0, and removes them again, when abs(Fc) becomes larger than
the threshold value Fs.

Simulation environments do not usually allow to add/remove variables
during integration. Therefore, a dummy equation is added, which becomes
active, when the constraint equation, v = 0.0, is removed. The dummy
equation is used to provide a unique –but arbitrary– value for Fc during
sliding motion. For example, Fc = 0.0 is as good a value as any.

The friction force F can thus be defined through the following equations:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then v else Fc

The third equation is our meanwhile well–known switch equation.
The model is so simple, it looks like magic . . . and it also works like magic,

i.e., it doesn’t. In a Newtonian world, it is not sufficient to describe how the
rabbit is being pulled out of the magician’s hat. We also need to describe
how it got into the hat in the first place, at which time, unfortunately, the
magic is gone.

There are two problems with the above model. First, we haven’t come
up yet with an equation for the discrete state variable Sticking . Evidently,

448 Chapter 9. Simulation of Discontinuous Systems

it won’t do to say that:

Sticking = v == 0 (9.60)

as this would simply state that whenever v equals zero, then v equals zero,
which is undoubtedly a true statement, but unfortunately, it isn’t a very
useful one.

The second problem with this model is that the then–branch of the switch
equation is constrained, since the velocity v is a state variable. Thus, the
causality of the switch equation is fixed, which invariably leads to a division
by zero in one of the two switch positions.

Let us tackle the latter problem first. We already know one possible
solution to this problem. We could relax the causality on the velocity, v, by
inlining the integrator that integrates the acceleration, a, into the velocity,
v. Yet, there is a better way.

While in the sticking position, the velocity, v, remains constantly zero.
Thus, also the acceleration, a, must remain constantly zero. We can thus
replace the former switch equation in the velocity, v, by a modified switch
equation in the acceleration, a, as follows:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then a else Fc

This looks like a generalization of the Pantelides algorithm [9.23]. We seem
to have partially differentiated the switch equation. Unfortunately, this
technique rarely works. The Pantelides algorithm can only be generalized to
the case of conditional index changes modeled by means of switch equations,
if either both branches of the if –statement formulating the switch equation
are constrained, or if the unconstrained branch is unimportant.

In the case of the friction model, the then–branch of the switch equation
is constrained, as it is a function of state variables only, whereas the else–
branch is unimportant. While the model is not sticking, we don’t care what
value the variable Fc assumes. Thus, there is no need to differentiate the
else–branch of the switch equation simultaneously with the then–branch.

There is still a small problem with this formulation though. Since the
friction model enters its Sticking region when the velocity passes through
zero, the velocity may numerically not be exactly equal to zero, after the
model entered its “Sticking” region. Therefore, the position, x, may slowly
drift away.

This problem can be easily fixed by adding:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then a else Fc

when Sticking then
reinit(v, 0);

end when;

9.12 State Transition Diagrams 449

to the model. Thus, when the friction model enters its Sticking region, the
velocity, v, is explicitly re–initialized to 0.

Let us now tackle the other problem. We haven’t defined yet, how the
discrete state variable, Sticking , is computed by the model. To this end,
we need to define, how the switching between the sliding and the sticking
phases takes place.

It is advantageous to split the friction force law into the following five
different regions:

region: region conditions:

Forward : v > 0 and F = cf · v + Fd

StartForward : v = 0 and a > 0 and F = +Fd

Sticking : v = 0 and a = 0 and F ∈ [−Fs, +Fs]
StartBackward : v = 0 and a < 0 and F = −Fd

Backward : v < 0 and F = cf · v − Fd

Regions Forward and Backward describe the sliding phase and are defined
by a non–zero velocity. Region Sticking denotes the sticking phase and is
defined by identically vanishing velocity and acceleration. Regions Start-
Forward and StartBackward define the transition from sticking to sliding.
These regions are characterized by a zero velocity. The difference to the
sticking phase is that the acceleration is no longer fixed to zero. The above
five regions cannot be encoded directly, because the equality relation “=”
appears in the definition. It is not meaningful to test computed real–valued
variables for being equal to zero.

Hence an indirect approach will be used. The switching between the five
regions is described by a deterministic finite state machine (DFSM) [9.1].
The state transition diagram of the DFSM was shown earlier in this chapter.
It is repeated here.

Start

Sticking

a = 0 ; v = 0

Forward
v > 0

Backward

v < 0

Start
Forward

a > 0

Start
Backward

a < 0

v < 0 v > 0

else

v < 0 v > 0F > FΣ sF < -FΣ s

a > 0 and not v < 0_ a < 0 and not v > 0_

v > 0_ v < 0_

FIGURE 9.37. State transition diagram of friction characteristic.

The DFSM has six states, corresponding to the five regions of the model
and a Start state. Starting from any one state of the DFSM and using one
of the mutually exclusive conditions, a new state of the DFSM is reached

450 Chapter 9. Simulation of Discontinuous Systems

in an unambiguous fashion. None of the switching conditions contains the
equality relation.

A valid Dymola code can be easily derived from a DFSM by defining
a boolean variable (a discrete state variable) for every state of the DFSM
and by encoding the state transitions leading into or out of each state as
boolean expressions determining the next value of that state.

F = if Forward then cf · v + Fd else
if Backward then cf · v − Fd else
if StartForward then +Fd else
if StartBackward then −Fd else Fc;

0 = if Sticking or Start then a else Fc;

Forward = pre(Start) and v > 0 or
pre(StartForward) and v > 0 or
pre(Forward) and not v <= 0;

Backward = pre(Start) and v < 0 or
pre(StartBackward) and v < 0 or
pre(Backward) and not v >= 0;

StartForward = pre(Sticking) and Fc > +Fs or
pre(StartForward) and not
(v > 0 or a <= 0 and not v > 0);

StartBackward = pre(Sticking) and Fc < −Fs or
pre(StartBackward) and not
(v < 0 or a >= 0 and not v < 0);

Sticking = not (Start or
Forward or StartForward or
Backward or StartBackward);

when Sticking and not Start then
reinit(v, 0);

end when;

Comparing this Dymola model with the DFSM of Fig.9.37, it can be seen
that the translation of one into the other is systematic and quite straight-
forward.

This model can be simulated. Unfortunately, it is characterized by fairly
complicated switching conditions that lead to zero–crossing functions that
aren’t smooth. Let us see, whether this situation can be rectified.

To this end, we shall employ the parameterized curve description tech-
nique once again. Figure 9.38 shows a slightly simplified friction charac-
teristic that has been parameterized in similar ways as with the diode
characteristic introduced earlier in this chapter.

The curve parameter is defined as follows:

9.12 State Transition Diagrams 451

v

F(v)

Fd

-Fd

s = +1

s = -1

s = 0

v = 1

s = +2

v = -1

s = -2

FIGURE 9.38. Simplified friction characteristic with curve parameterization.

region s

forward v + 1
sticking F/Fd

backward v − 1

Curve parameters can be defined in any way that is most suitable. They
don’t have to be equidistantly spaced, and they can even adopt different
units in different regions, as the example demonstrates. Using the new
variable, s, we can define the simplified friction model as follows [9.22]:

Forward = s > +1;
Backward = s < −1;
v = if Forward then s − 1 else

if Backward then s + 1 else 0;
F = if Forward then cf · (s − 1) + Fd else

if Backward then cf · (s + 1) − Fd else Fd · s;

This model is correct in the sense that it describes unambiguously our
intentions of what the model is supposed to accomplish. Thus, we might
expect that a decent model compiler would be capable of translating the
model down to an event description that can be properly simulated.

Unfortunately, the Dymola model compiler, as it is currently imple-
mented, is unable to do so. There are two problems with this model. Let
us explain.

While the model operates in its Forward region, the velocity, v, is a state
variable, thus can be assumed known. Hence the curve parameter, s, can
be computed from the equation s = v + 1, and the friction force can be

452 Chapter 9. Simulation of Discontinuous Systems

obtained using the equation F = cf · (s − 1) + Fd.
What happens, when s becomes smaller than +1? The model is now

entering its Sticking region. In this region, we have the equation; v = 0.
Thus, the velocity, v, can no longer be treated as a known state variable,
and we are confronted with a conditional index change. Somehow, we shall
have to deal with this problem.

Let us now assume that the model is currently operating in its Sticking
region. What happens, when s becomes larger than +1? The model is
now entering its Forward region. In this region, we compute s using the
equation s = v + 1, and since v was initialized to zero after the event, s
returns immediately back to one. As a consequence, a new state event is
triggered that throws the model right back into its Sticking region. Thus,
the model is stuck in its Sticking region forever! This problem seems to
be related to the narrow band problem encountered earlier, although it
manifests itself a bit differently.

We can tackle the former problem using the same argumentation that
had been used already in the previous model: If the velocity, v, is constantly
equal to zero over a period of time, then also the acceleration, a, must be
constantly equal to zero during that time period.

Thus, we can describe the Sticking region and its immediate surroundings
by looking at the acceleration, rather than the velocity. This concept is
illustrated in Fig. 9.39.

a

F(a)

Fd

-Fd

s = +1

s = -1

s = 0

a = 1

s = +2

a = -1

s = -2

^
^

^

^

^
StartForward

StartBackward

FIGURE 9.39. Sticking region of simplified friction characteristic with curve pa-
rameterization.

Since this is a different friction curve from the one shown before, the
model uses a different parameter for its curve parameterization, ŝ. The
model can be described using the same techniques introduced earlier:

9.12 State Transition Diagrams 453

StartForward = ŝ > +1;
StartBackward = ŝ < −1;
a = if StartForward then ŝ − 1 else

if StartBackward then ŝ + 1 else 0;
F = if StartForward then +Fd else

if StartBackward then −Fd else Fd · ŝ;

We shall use a DFSM to describe the switching between the three main
regions of the model, as illustrated in Fig. 9.40.

Start

Sticking

a = 0 ; v = 0

Forward
v > 0

Backward

v < 0

v < 0 v > 0

else

StartBackward and v < 0 StartForward and v > 0

v > 0_ v < 0_

FIGURE 9.40. Deterministic finite state machine modeling the switching events
of the simplified friction characteristic.

This is a much simplified version of the DFSM of Fig. 9.37 used by the
earlier model. The new DFSM has only four instead of six discrete states
(regions). The StartForward and StartBackward modes of operation are no
longer considered separate regions. Instead, they are contained within the
Sticking region model. They only represent different aspects of the Sticking
region.

We shall not offer an encoding of the DFSM at this point, but instead, we
shall leave this problem for one of the exercises at the end of this chapter.

Unfortunately, the simplified DFSM still contains two mixed switching
conditions, describing the conditions under which the model leaves the
Sticking region. These switching conditions prevent Dymola from generat-
ing smooth zero–crossing functions in those cases. Yet, the problem is not
too damaging numerically, because these switchings occur always as an al-
most immediate result of a previous switching to one of the two transitory
modes, StartForward and StartBackward , for which smooth zero–crossing
functions in the curve parameter, ŝ, had been defined.

454 Chapter 9. Simulation of Discontinuous Systems

9.13 Petri Nets

We shall now demonstrate that it is always possible to decompose complex
(combined) event conditions into sets of simple event conditions that consist
of a single relational operator only. Thus, all zero–crossing functions can
be made smooth. To this end, we shall introduce a new model description
tool: the Petri net.

Petri nets [9.20] consist of two modeling elements: places and transitions.
Places are holders of tokens. Each place maintains a discrete state variable
that counts the number of tokens currently held by the place. Transitions
connect places. When a transition fires, it takes some tokens out of places
connected at its inputs, and places some new tokens at places connected at
its outputs in accordance with some logic to be defined. A transition may
fire, when an external firing condition is true, if the conditions concerning
the necessary numbers of tokens held by its input places are true as well.

If one place feeds several transitions, additional logic may be required to
determine firing preferences in the case of simultaneous events, i.e., in the
case where the external firing conditions of several transitions become true
simultaneously, because there may be enough tokens in the input place to
fire one or the other of these transitions, but not all of them.

Many different dialects of Petri nets have been described in the literature
[9.21].

Bounded Petri nets are Petri nets with capacity limitations imposed on
its places. Normal Petri nets are Petri nets with a capacity limit of one
imposed on each place. In a normal Petri net, the discrete state counting
the number of tokens contained in a place can thus be represented as a
Boolean state. If the state has a value of true, there is a token located at
the place. If the state has a value of false, there is no token at the place.

Priority Petri nets resolve the ambiguity associated with multiple transi-
tions being able to fire simultaneously by associating a prioritization scheme
to these transitions.

Normal priority Petri nets (NPPNs) are normal Petri nets employing
prioritization schemes in all of their transitions.

A NPPN place with two inputs and two outputs has been depicted in
Fig. 9.41.

The place passes state information, si, to all neighboring transitions, and
in turn receives firing information, fi, back from these transitions.

The NPPN place could be governed by the following equations:

s1 = pre(p1) (9.61a)
s2 = pre(p1) or f1 (9.61b)
s3 = pre(p1) (9.61c)
s4 = pre(p1) and not f3 (9.61d)
p1 = [pre(p1) and not (f3 or f4)] or f1 or f2 (9.61e)

9.13 Petri Nets 455

s3

s1

s2

s4

p1

f1

f2

f3

f4

FIGURE 9.41. NPPN place with two inputs and two outputs.

The logic of these equations goes as follows. The place first provides the first
input transition, t1, with its state information. Transition t1 needs to know
this information, because, due to the single–token capacity limitation, it
cannot fire, unless the place, p1, is currently unoccupied. The place receives
the firing information, f1, back from transition t1. If t1 fires, it means that
it is going to place a new token at p1.

The place then provides the appropriate state information, s2, to the
second input transition, t2. Transition t2 is assigned a lower priority than
transition t1. Transition t2 is not allowed to fire if either there is already
a token at place p1, or if the other input transition, t1, decided to fire,
because if both transitions were to fire simultaneously, they both would try
to place a token at p1, which would violate the imposed capacity limit of
one.

The place then provides its state information to the first output transi-
tion, t3. Transition t3 is allowed to fire if a token is currently at p1. If it
fires, it will take the token away from place p1.

The place then provides the appropriate state information, s4, to the
second output transition, t4. Transition t4 is assigned a lower priority than
transition t3. Transition t4 is not allowed to fire, unless there is currently a
token at place p1 and transition t3 has not decided to fire, because if both
transitions were to fire simultaneously, they both would fight over who gets
to remove the token from p1.

Finally, the place must update its own state information. If there was a
token at p1 before, and neither of the two output transitions, t3 or t4, has
taken it away, or, if one of the two input transitions, t1 or t2, has placed a
new token at p1, there will be a token at that place during the next cycle.

Let us now look at a transition with two input places and two output
places. It has been depicted in Fig. 9.42.

The logic governing the transitions could be the following. The transi-
tion is allowed to fire along all of its connections, when the external firing

456 Chapter 9. Simulation of Discontinuous Systems

s2

f2

s3

f3
s1

f1

s4

f4

c1

FIGURE 9.42. NPPN transition with two inputs and two outputs.

condition, c1, is true, and if each of the input places holds a token (or more
precisely, if the state information arriving from all of the input places is
true), and if none of the output places holds a token (or more precisely, if
the state information of none of the output places is true).

This logic can be described by the following set of equations:

fire = c1 and s1 and s2 and not (s3 or s4) (9.62a)
f1 = fire (9.62b)
f2 = fire (9.62c)
f3 = fire (9.62d)
f4 = fire (9.62e)

DFSMs can be modeled as normal priority Petri nets with the additional
constraints that there is only one token in the system that is initially located
at the Start place. Furthermore, DFSMs map to NPPNs, in which each
transition is associated with exactly one input place and one output place.

Let us model the DFSM of Fig. 9.37 as a Petri net. The corresponding
NPPN representation is depicted in Fig. 9.43.

We immediately recognize what the external firing conditions, ci, repre-
sent. These are the conditions that are associated with state transitions in
the DFSM. Hence those are the edge–triggered Boolean variables associated
with the zero–crossing functions.

What have we gained by this representation? In the past, we had many
different discrete event blocks representing the actions to be taken, when
one or the other of the zero–crossing functions triggered an event. This is

9.13 Petri Nets 457

Start

Sticking ForwardBackward
Start

Forward
Start

Backward

c7

c1 c2c3

c4 c5

c6

c11

c8 c9

c10

FIGURE 9.43. Petri net representation of friction characteristic.

no longer the case. All of the discrete equations governing both places and
transitions are valid at every event, since they were formulated as functions
of the current location of the tokens, i.e., they were functions of the discrete
state that the system is currently operating in.

Thus, every discontinuous model, as complex as it may be, can be de-
scribed by exactly three sets of equations. There are the implicitly defined
algebraic and differential equations describing the continuous subsystem.
There is the set of zero–crossing functions that are all evaluated in paral-
lel, while the continuous subsystem is being simulated. If a state event is
being triggered by one of them, an iteration (or interpolation) takes place
to locate the event time as accurately as necessary. At that moment, the
third set of simultaneous equations is being executed. These are the (pos-
sibly implicitly defined) algebraic and difference equations describing the
discrete subsystem.

The discrete equations are executed iteratively, until no discrete state
changes occur any longer. When this happens, we have found our new
initial state, from which we can start the continuous simulation afresh.

A simulation model that has been compiled into this form, can be simu-
lated in an organized and systematic fashion based on a synchronous data
flow [9.22].

It may not be convenient for the end user of the modeling and simu-
lation environment to describe his or her model in this fashion. Different
application domains make use of different modeling formalisms that users
are familiar with. It is the job of the model compiler to dissect the model
description that the user supplies, and translate it down to sets of simul-
taneous equations that can be simulated without numerical difficulties.

As this book concerns itself with the set of algorithms underlying a pow-
erful modeling and simulation environment, such as Dymola [9.12], we
had to show step by step, how model equations need to be preconditioned,
until they are finally in a form such that they can be simulated without

458 Chapter 9. Simulation of Discontinuous Systems

difficulties. Yet, it was no longer convenient to translate every model that
we came across manually down to such a form.

Will the iteration on the simultaneous discrete equations always con-
verge? If the model of a physical system is formulated correctly, the iter-
ation should always converge, as our Newtonian world is deterministic in
nature. Yet, it is easy to make mistakes, and formulate a set of discrete
equations that will not converge. It is very easy to specify logical condi-
tions that are contradicting themselves. In the Petri–net implementation,
this leads to oscillations of discrete state variables with infinite frequency,
i.e., it prevents the algorithm from finding a consistent initial state, from
which the continuous simulation can be started.

For example, the discrete “equation”:

p1 = not pre(p1) (9.63)

should not be contained in the set of discrete equations, as this will lead
to an oscillation between the two states true and false that will never end.
If we mean to toggle between two discrete states as a response to a state–
event being triggered (a fairly common situation), we need to model this
using two separate places with transitions back and forth that get fired by
zero–crossing functions.

How can complex zero–crossing functions be reduced to simple ones? or–
conditions can be mapped to a set of parallel transitions located between
the same two places. They can thus be easily implemented. and–conditions
are harder to implement, as they would require transitions to be placed in
series with each other. Unfortunately, this cannot be done without intro-
ducing a new place between them. Thus, and–conditions invariably call for
an increase in the number of discrete states.

We shall demonstrate this concept by means of the DFSM of Fig. 9.40.
We recognize that we wouldn’t need the and–conditions on the zero–crossing
functions in this example, if we were to have available separate discrete
states called StartForward and StartBackward . Thus, we shall decompose
the state Slipping again into three separate discrete states. Luckily, we
know the conditions for switching between them.

We don’t need to draw the modified Petri net, as is looks exactly like the
one of Fig. 9.43. Only the interpretation of the zero–crossing functions is
now different. They are:

c1 = v < 0 (9.64a)
c2 = v > 0 (9.64b)
c3 = v == 0 (9.64c)
c4 = v < 0 (9.64d)
c5 = v > 0 (9.64e)
c6 = ŝ < −1 (9.64f)

9.14 Summary 459

c7 = ŝ > 1 (9.64g)
c8 = ŝ >= −1 (9.64h)
c9 = ŝ <= 1 (9.64i)

c10 = v >= 0 (9.64j)
c11 = v <= 0 (9.64k)

As expected, all of the zero–crossing functions are now simple functions
consisting of a single relational operation only.

9.14 Summary

In this chapter, we have dealt with heavily discontinuous models. We have
shown that integration algorithms should be spared from having to deal
with discontinuous models directly. Two types of event descriptions were
introduced, the time events and the state events, that enable the simula-
tion software to treat discontinuous models in a safe and efficient manner,
while protecting the integration algorithms from them. Special root finding
algorithms were discussed that are particularly well suited to locate state
events.

Event descriptions are quite general, and can be used to deal with most
types of discontinuities adequately from a numerical point of view. Excep-
tions may be the propagation of discontinuous functions through conser-
vation equations. If a step enters an ideal wave equation, a discontinuity
will occur that travels through space with time. Consequently, the event
times will be infinitely dense, which, from a practical point of view, doesn’t
make any sense. Adequate handling of discontinuities in hyperbolic PDEs
is a very difficult task, and no good answer has been found to date for
tackling this challenging problem. The best answer currently available is
to apply a variable transformation that will ensure that the waves travel
at least along the axes of the coordinate system rather than in an arbi-
trary direction, which boils down to using the method of characteristics.
However, even this approach doesn’t solve the problem. It only alleviates
it somewhat.

It was also shown that event descriptions are awkward when dealing with
complex engineering models. They are low–level constructs that should not
be viewed as modeling elements, but only as intermediate descriptions that
are automatically being generated by the model compiler on the way of
transforming the model, as specified by the user, into a simulation pro-
gram that can be executed safely and efficiently using numerical integration
software.

Higher–level constructs were introduced in the form of object–oriented
if –expressions and when–clauses, and several fairly advanced applications
of these tools have been demonstrated.

460 Chapter 9. Simulation of Discontinuous Systems

It was finally shown that, although the description mechanisms using
these constructs are general and convenient, currently available modeling
software (i.e., Dymola) is still unable to translate all possible (and physi-
cally meaningful) models described using these constructs down into prop-
erly executable simulation code. Variable structure models may be con-
taminated by conditional index changes that require special handling, such
as inlining those integrators that are responsible for the partial constraint
on a switch equation. Sometimes it is also possible to apply a generalized
version of the Pantelides algorithm instead. Whereas it should be possible
to at least automate the former approach using the inlining technique, this
has not yet been attempted in the current version of the Dymola model
compiler.

9.15 References

[9.1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, Reading, Massachusetts,
1986. 500p.

[9.2] Ilia Nikolaevich Bronshtein and Konstantin Adolfovich Semendiaev.
A Guide–Book to Mathematics. H. Deutsch Publishing, Frankfurt am
Main, Germany, 1971.

[9.3] Michael B. Carver. Efficient Handling of Discontinuities and Time De-
lays in Ordinary Differential Equation Simulations. In Mohammed H.
Hamza, editor, Proceedings Simulation’77, pages 153–158, Montreux,
Switzerland, 1977. Acta Press.

[9.4] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation Supports Object–oriented Continuous System Modeling.
IEEE Control Systems, 13(2):28–38, 1993.

[9.5] François E. Cellier. Combined Continuous/Discrete System Simula-
tion by Use of Digital Computers: Techniques and Tools. PhD thesis,
Swiss Federal Institute of Technology, Zürich, Switzerland, 1979.

[9.6] John R. Dormand and Peter J. Prince. Runge–Kutta Triples. J. of
Computational and Applied Mathematics, 12A(9):1007–1017, 1986.

[9.7] John R. Dormand and Peter J. Prince. Runge–Kutta–Nyström
Triples. J. of Computational and Applied Mathematics, 13(12):937–
949, 1987.

[9.8] Steven L. Dvorak, Richard W. Ziolkowski, and Donald G. Dudley.
Ultra–Wideband Electromagnetic Pulse Propagation in a Homoge-
neous Cold Plasma. Radio Science, 32(1):239–250, 1997.

9.15 References 461

[9.9] Edda Eich-Söllner. Projizierende Mehrschrittverfahren zur
numerischen Lösung von Bewegungsgleichungen technischer
Mehrkörpersysteme mit Zwangsbedingungen und Unstetigkeiten.
PhD thesis, Universität Augsburg, Augsburg, Germany, 1991.

[9.10] Edda Eich-Söllner. Convergence Results for a Coordinate Projection
Method Applied to Mechanical Systems With Algebraic Constraints.
SIAM J. of Numerical Analysis, 30(5):1467–1482, 1993.

[9.11] Hilding Elmqvist, François E. Cellier, and Martin Otter. Object–
Oriented Modeling of Hybrid Systems. In Proceedings ESS’93, Euro-
pean Simulation Symposium, pages xxxi–xli, Delft, The Netherlands,
1993.

[9.12] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den., 2004.

[9.13] Gerald Grabner and Andrés Kecskeméthy. Reliable Multibody Col-
lision Detection Using Runge–Kutta Integration Polynomials. In Pro-
ceedings International Conference on Andvances in Computational
Multibody Dynamics, Lisbon, Portugal, 2003.

[9.14] Nicola Guglielmi and Ernst Hairer. Implementing Radau–IIA Meth-
ods for Stiff Delay Differential Equations. Computing, 67:1–12, 2001.

[9.15] Mary Kathleen Horn. Developments in High Order Runge–Kutta–
Nyström Formulas. PhD thesis, University of Texas at Austin, 1977.

[9.16] Mary Kathleen Horn. Fourth– and Fifth–Order Scaled Runge–Kutta
Algorithms for Treating Dense Output. SIAM J. of Numerical Anal-
ysis, 20:558–568, 1983.

[9.17] Katsushi Ito and Makiko Nisio. On Stationary Solutions of a
Stochastic Differential Equation. J. of Mathematics of Kyoto Uni-
versity, 4(1):1–75, 1964.

[9.18] Matthias Krebs. Modeling of Conditional Index Changes. Master’s
thesis, Dept. of Electrical & Computer Engineering, University of Ari-
zona, Tucson, Ariz., 1997.

[9.19] Shengtai Li and Linda R. Petzold. Moving Mesh Methods with
Upwinding Schemes for Time–Dependent PDEs. J. of Computational
Physics, 131:368–377, 1997.

[9.20] Pieter J. Mosterman, Martin Otter, and Hilding Elmqvist. Modeling
Petri Nets As Local Constraint Equations For Hybrid Systems Using
Modelica. In Proceedings SCSC’98, Summer Computer Simulation
Conference, pages 314–319, Reno, Nevada, 1998.

462 Chapter 9. Simulation of Discontinuous Systems

[9.21] Tadao Murata. Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[9.22] Martin Otter, Hilding Elmqvist, and Sven Erik Mattsson. Hybrid
Modeling in Modelica Based On Synchronous Data Flow Principle.
In Proceedings IEEE, International Symposium on Computer Aided
Control System Design, pages 151–157, Kohala Coast, Hawaii, 1999.

[9.23] Constantinos Pantelides. The Consistent Initialization of of
Differential–Algebraic Systems. SIAM Journal of Scientific and Sta-
tistical Computing, 9(2):213–231, 1988.

[9.24] Anton Schiela and Hans Olsson. Mixed–mode Integration for Real–
time Simulation. In Proceedings Modelica’2000 Workshop, pages 69–
75, Lund, Sweden, 2000.

[9.25] Hans Schlunegger. Untersuchung eines netzrückwirkungsarmen,
zwangskommutierten Triebfahrzeugstromrichters zur Einspeisung
eines Gleichstromzwischenkreises aus dem Einphasennetz. PhD
thesis, Swiss Federal Institute of Technology, Zürich, Switzerland,
1977.

[9.26] Lawrence F. Shampine, Ian Gladwell, and Richard W. Brankin. Re-
liable Solutions of Special Event Location Problems for ODEs. ACM
Transactions on Mathematical Software, 17(1):11–25, 1991.

9.16 Bibliography

[B9.1] Brian Armstrong-Hélouvry. Control of Machines With Friction.
Kluwer Academic Publishers, Boston, Mass., 1991.

[B9.2] Carlos A. Canudas de Wit, Hans Olsson, Karl Johan Åström, and
Pablo Lischinsky. A New Model for Control of Systems With Friction.
In Proceedings International Conference on Control Theory and Its
Applications, pages 225–229, Kibbutz Maab Hachamisha, Israel, 1993.

[B9.3] René David and Hassane Alla. Petri Nets and Grafcet. Prentice–
Hall, Upper Saddle River, N.J., 1992.

[B9.4] Martin Otter, Hilding Elmqvist, and François E. Cellier. Modeling
of Multibody Systems With the Object–Oriented Modeling Language
Dymola. Journal of Nonlinear Dynamics, 9(1):91–112, 1996.

[B9.5] Martin Otter. Objektorientierte Modellierung mechatronischer Sys-
teme am Beispiel geregelter Roboter. PhD thesis, Dept. of Mech. Engr.,
Ruhr–University Bochum, Germany, 1994.

9.17 Homework Problems 463

[B9.6] Friedrich Pfeiffer and Christoph Glocker. Multibody Dynamics With
Unilateral Contacts. John Wiley & Sons, New York, N.Y., 1996. 318p.

[B9.7] Muhammad H. Rashid. Spice for Power Electronics and Electric
Power. Prentice–Hall, Englewood Cliffs, N.J., 1994.

[B9.8] Jiri Vlach and Kishore Singhal. Computer Methods for Circuit Anal-
ysis and Design. Van Nostrand Reinhold, New York, second edition,
1994.

9.17 Homework Problems

[H9.1] Runge–Kutta–Fehlberg with Root Solver

Implement in MATLAB the RKF4/5 algorithm introduced in Chapter 3
of this book together with the optimistic step–size control algorithm of
Eq.(3.89).

Add a root solver (RKF4/5RT) to the method that is based on an im-
plementation of the Regula Falsi algorithm.

[H9.2] Runge–Kutta–Fehlberg with Root Solver

Repeat Hw.[H9.1]. This time around, we wish to add a root solver based
on an implementation of the Golden Section algorithm to the method.

[H9.3] Runge–Kutta–Fehlberg with Root Solver

Repeat Hw.[H9.1]. This time around, we wish to add a root solver based
on an implementation of direct cubic interpolation to the method.

[H9.4] Direct Hermite Interpolation

We wish to improve the solution to Hw.[H9.3]. Rather than solving for
the coefficients of the cubic interpolation polynomial directly using matrix
inversion, we want to define a set of spanning polynomials, similar to the
way introduced earlier in the chapter in the implementation of the inverse
Hermite interpolation algorithm.

[H9.5] The Mechanical Loose Element

The functioning of a mechanical loose element is illustrated graphically in
Fig.H9.5a.

The output, y, lags behind the input, x, by no more than the distance, d.
If the direction of x changes, y remains constant, until it again lags behind
by d, now in the opposite direction.

Model the loose element using if – and when–statements such that the
model equations can be sorted appropriately.

464 Chapter 9. Simulation of Discontinuous Systems

x

y

d

−d

FIGURE H9.5a. Mechanical loose element.

[H9.6] Quantization With Hysteresis

The hysteretic quantization function is illustrated graphically in Fig.H9.6a.

x

y

q

FIGURE H9.6a. Hysteretic quantization function.

The output, y, stays always in the vicinity of the input, x. The distance
between them is never greater than half of the quantization distance, q/2.
Yet, whereas x can change continuously over time, y is a discrete state
variable.

Model the hysteretic quantization element using if – and when–statements
such that the model equations can be sorted appropriately.

[H9.7] Thyristor

We wish to model the thyristor described earlier in the chapter by means
of if –statements. The thyristor element is depicted in Fig. H9.7a.

9.17 Homework Problems 465

u

i

fire

FIGURE H9.7a. Thyrisor.

The thyristor is a diode with a modified firing logic. The diode can only
close when the external Boolean variable fire has a value of true. The
opening logic is the same as for the regular diode.

Since the thyristor is a diode, we can use the same parameterized curve
description that we used for the regular diode. Only the switching condition
is modified.

Convert all if –statements of the thyristor model to their algebraic equiv-
alents. Write down all of the equations governing the thyristor–controlled
rectifier circuit of Fig. H9.7b.

RLoad

vLine

750V
16 Hz2 3

+

-

vTh

v

i

i

LLoad
10mH

Line

Load

Load

RSh
10Ω

1Ω

FIGURE H9.7b. Thyrisor–controlled rectifier circuit.

Draw the structure digraph of the resulting equation system, and show
that the switch equations indeed appear inside an algebraic loop.

Choose a suitable tearing structure, and solve the equations both hori-

466 Chapter 9. Simulation of Discontinuous Systems

zontally and vertically using the variable substitution technique.
Using any one of the integration algorithms of Hw.[H9.1–4], simulate the

model in MATLAB across 0.2 seconds. The external control variable of the
thyristor, fire, is to be assigned a value of true from the angle of 30o until
the angle of 45o, and from the angle of 210o until the angle of 225o during
each period of the line voltage, vLine. During all other times, it is set to
false. Plot the load voltage, vLoad, as well as the load current, iLoad, as
functions of time.

[H9.8] Thyristor

We wish to repeat the simulation of Hw.[H9.7] for the modified thyristor–
controlled rectifier circuit of Fig. H9.8a.

RLoad

vTh

v

i

i

Line

Load

Load

1Ω

vLine

750V
16 Hz2 3

+

-

LLoad
10mH

FIGURE H9.8a. Thyrisor–controlled rectifier circuit.

Draw the structure digraph of the resulting equation system, and show
that the switch equations do not appear inside an algebraic loop.

Inline the integrator for the inductor using backward Euler. Draw the
structure digraph of the modified equation system. Show that the switch
equations now indeed appear inside an algebraic loop.

Choose a suitable tearing structure, and solve the equations both hori-
zontally and vertically using the variable substitution technique.

Simulate the model in MATLAB across 0.2 seconds. The external control
variable of the thyristor, fire, is to be assigned a value of true from the angle

9.17 Homework Problems 467

of 30o until the angle of 45o, and from the angle of 210o until the angle of
225o during each period of the line voltage, vLine. During all other times,
it is set to false. Since there is no integrator left in the model, you cannot
use RKF4/5RT any longer. Instead, you need to program the iteration on
the zero–crossing function directly into the simulation program. Plot the
load voltage, vLoad, as well as the load current, iLoad, as functions of time.

[H9.9] Zener Diode

No diode can hold current against an arbitrarily strong electrical field.
Thus, if the negative voltage across the diode becomes too large, we are
confronted with avalanche breakdown. The diode suddenly starts conduct-
ing again.

A Zener diode makes use of the avalanche breakdown phenomenon, by
constructing a diode such that avalanche breakdown occurs early and at a
well defined voltage.

Zener diodes are not used like regular diodes, but rather as reverse diodes.
Thus, the voltage, in a Zener diode, is defined positive from the cathode to
the anode, rather than from the anode to the cathode.

Figure H9.9a shows the Zener diode element together with its voltage
and current conventions.

u

i

FIGURE H9.9a. Zener diode.

The current/voltage characteristic of the ideal Zener diode is shown in
Fig. H9.9b.

The voltage uB is the breakdown voltage of the device.
Zener diodes are commonly placed in parallel with delicate equipment,

such as electro–motors. Their purpose is to protect the equipment from
potential damage caused by high voltage.

Use the parameterized curve description technique to derive a model of
the ideal Zener diode.

[H9.10] Tunnel Diode

A tunnel diode is a regular diode with a tunnelling effect in the conduct-
ing area of the device. The tunnel diode element is shown in Fig. H9.10a
together with its voltage and current conventions.

468 Chapter 9. Simulation of Discontinuous Systems

diode blocking

d
io

d
e

 c
o

n
d

u
ct

in
g

a
va

la
n

ch
e

 b
re

a
kd

o
w

n

uz

iz

uB

FIGURE H9.9b. Ideal Zener diode characteristic.

u

i

FIGURE H9.10a. Tunnel diode.

The current/voltage characteristic of a typical tunnel diode are shown in
Fig. H9.10b.

−3 −2 −1 0 1 2 3

0

2

4

6

8

Tunnel diode characteristic

uZ [V olts]

i Z
[A

m
p
s]

FIGURE H9.10b. Typical tunnel diode characteristic.

When the voltage across the tunnel diode becomes positive, the tunnel
diode, just like a regular diode, starts conducting. Yet, the current doesn’t
grow as rapidly as in the case of a regular diode. With increasing voltage,
the current first starts growing, then it decays once more (the tunnelling

9.17 Homework Problems 469

effect), before it starts growing rapidly like with a regular diode.
Tunnel diodes are sometimes used for constructing nonlinear oscillator

circuits.
We wish to idealize the tunnel diode. To this end, we shall describe it by

the idealized characteristic of Fig. H9.10c.

ut

it

u1

i1

u2

i2

FIGURE H9.10c. Ideal tunnel diode characteristic.

Derive a model of the ideal tunnel diode using the parameterized curve
description technique.

[H9.11] Friction

Translate the DFSM of Fig. 9.40 into a set of Boolean expressions governing
the four states and their transitions.

Integrate this model with the model of the simplified friction character-
istic of Fig. 9.39 developed in the chapter, and convince yourself by manual
simulation that the integrated model represents the simplified friction char-
acteristic correctly under all operating conditions.

[H9.12] Dry Hysteresis

Given the dry hysteresis function of Fig. 9.22. Let us assume that x1 =
y1 = −1, and x2 = y2 = +1. We wish to drive that model using the input:

x(t) = 2 · cos(t) (H9.12a)

Derive a Petri net description of the dry hysteresis function. Develop
generic synchronous data flow models for the different types of places and
transitions encountered in the model.

Extract all of the equations of the discrete model as well as the zero–
crossing functions. Implement the model in MATLAB using a suitable al-
gorithm for state–event detection.

Simulate the model in MATLAB across 10 seconds of simulated time,
and plot y as a function of x.

470 Chapter 9. Simulation of Discontinuous Systems

[H9.13] Limiter Function

Given the limiter function of Fig. H9.13a.

x

y

x1

y1

x2

y2

FIGURE H9.13a. Limiter function.

Let us assume that x1 = y1 = −1, and x2 = y2 = +1. We wish to drive
that model using the input:

x(t) = 2 · cos(t) (H9.13a)

Derive a Petri net description of the limiter function. Develop generic
synchronous data flow models for the different types of places and transi-
tions encountered in the model.

Extract all of the equations of the discrete model as well as the zero–
crossing functions. Implement the model in MATLAB using a suitable al-
gorithm for state–event detection.

Simulate the model in MATLAB across 10 seconds of simulated time,
and plot y as a function of x.

9.18 Projects

[P9.1] State Event Localization

In this chapter, we talked little about the use of linear multi–step methods
in the simulation of discontinuous models. The reason is that the overhead
associated with restarting such a method after an event has occurred is
too large to make these methods attractive for the simulation of models
containing frequent discontinuities.

Yet, multi–step techniques have an advantage over single–step algorithms
due to the availability of the Nordsieck vector. The Nordsieck vector makes
it possible to find the zero crossing of a zero–crossing function expressed

9.18 Projects 471

as a state variable through interpolation instead of iteration. This can be
done using an interpolation polynomial of the same order of approximation
accuracy as the integration method itself. Therefore, zero crossings found
in this way are almost as accurate as those found by iteration. They may
still be a little less accurate, because the iteration technique involves a
reduction of the integration step size in the vicinity of the event, whereas
the interpolation method does not.

We had to use iteration in the case of the Runge–Kutta algorithms,
because the solution is only available to us with full approximation accuracy
at the end of the interval, not at any point in between.

The problem of finding interpolation algorithms for Runge–Kutta meth-
ods was first tackled by Horn [9.15, 9.16]. The most commonly used codes
today offering implementations of explicit Runge–Kutta algorithms with
dense output interpolation algorithms are codes based on DOPRI4/5 [9.6,
9.7].

The DOPRI4/5 algorithm is characterized by the Butcher tableau:

0 0 0 0 0 0 0 0

1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45

−56
15

32
9 0 0 0 0

8
9

19372
6561

−25360
2187

64448
6561

−212
729 0 0 0

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656 0 0

1 35
384 0 500

1113
125
192

−2187
6784

11
84 0

x1
5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40

x2
35
384 0 500

1113
125
192

−2187
6784

11
84 0

where:

f1(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1097

120000
q5 +

161
120000

q6 +
1

24000
q7

f2(q) = 1 + q +
1
2
q2 +

1
6
q3 +

1
24

q4 +
1

120
q5 +

1
600

q6

In DOPRI4/5, usually the 5th–order accurate algorithm is propagated,

472 Chapter 9. Simulation of Discontinuous Systems

whereas the 4th–order accurate algorithm is used for step–size control pur-
poses.

Dormand and Prince determined that a third algorithm can be added
without adding an additional stage:

x3(σ) = xn + σ · h ·
7∑

i=1

b̂i(σ) · fi (P9.1b)

where:
σ ∈ [0, 1]

The third approximation polynomial, x3(σ), is parameterized in an ad-
ditional parameter σ. It offers a 5th–order accurate smooth interpolation
polynomial valid anywhere between tn and tn+1, where σ denotes the per-
centage of the step taken, i.e.

x(σ) = x(tσ) = x(tn + σ · h) (P9.1c)

Thus:

x3(σ = 0) = xn (P9.1d)
x3(σ = 1) = x2 = xn+1 (P9.1e)

The coefficients b̂i are cubic polynomials in σ[9.13]:

b̂1 = −435σ3 − 1184σ2 + 1098σ − 384
384

(P9.1f)

b̂2 = 0 (P9.1g)

b̂3 =
500σ(6σ2 − 14σ + 9)

1113
(P9.1h)

b̂4 = −125σ(9σ2 − 16σ + 6)
192

(P9.1i)

b̂5 =
729σ(35σ2 − 64σ + 26)

6784
(P9.1j)

b̂6 = −11σ(3σ − 2)(5σ − 6)
84

(P9.1k)

b̂7 =
σ(σ − 1)(5σ − 3)

2
(P9.1l)

Dense output interpolation was originally designed as a means to facil-
itating the display of smoother output curves. Yet, the technique is very
useful for the localization of zero–crossing functions in discontinuous mod-
els as well. Other applications concern the simulation of delay–differential
equations, and also aspects of real–time simulation, as we shall demonstrate
in the next chapter of this book.

9.18 Projects 473

Assuming that the derivatives of all zero–crossing functions have been
added to the model as additional state equations, the zero–crossing func-
tions themselves are state variables, for which dense interpolation is avail-
able.

Assuming further that xn · xn+1 < 0 for any of the zero–crossing states,
we can find the corresponding next event time tnext by computing the value
σ̂, for which x3(σ̂) = 0. Then, tnext = tσ̂ = tn + σ̂ · h.

Develop effective algorithms for determining σ̂, and compare the com-
putational efficiency of the interpolation technique with that of the earlier
introduced iteration techniques.

[P9.2] State Event Detection

We have demonstrated in this chapter that state events may be missed, if
the corresponding zero–crossing functions exhibit two zero crossings that
are only separated by a short distance in time.

One approach to dealing with this problem, as demonstrated in this
chapter, is through adding unimportant state events to the set of events to
be iterated upon by appending the derivative of the original zero–crossing
function as an additional zero–crossing function to the set.

Yet, this is not the only way of tackling this problem. Another approach
has been described in the literature that might be worth considering as an
alternative.

Given an nth–order polynomial:

p0(t) = tn + an−1 · tn−1 + an−2 · tn−2 + · · · + a1 · t + a0 (P9.2a)

We can define the following series of polynomials:

p1(t) =
d

dt
p0(t) (P9.2b)

and:

p2(t) = −rem
(

p0(t)
p1(t)

)
(P9.2c)

... (P9.2d)

pm(t) = −rem
(

pm−2(t)
pm−1(t)

)
(P9.2e)

where the rem–operator denotes the remainder of the polynomial division.
Such a series of polynomials is called a Sturm sequence [9.2].

If we wish to determine, how many zero crossings the polynomial p0(t)
has in the time interval [ta, tb], we can evaluate the polynomials of the
Sturm sequence for t = ta and for t = tb. We count the number of sign
changes in the values of the Sturm sequence separately at both ends. The

474 Chapter 9. Simulation of Discontinuous Systems

difference between the number of sign changes at both ends equals the
number of zero crossings of the polynomial p0(t) in the interval [ta, tb].

If the zero–crossing function has been defined as a state variable, and if
we simulate the model using a Runge–Kutta triple, we have an nth–order
interpolation polynomial available, as was shown in Pr.[P9.1].

Thus, we can define the Storm sequence of that interpolation polynomial
and determine accurately, how many zero crossings occur within the time
interval [tn, tn+1] [9.26].

Study, how the Sturm sequence can be implemented most effectively.
Compare algorithms for detection of short–living state events that are

based on augmented sets of zero–crossing functions with methods based on
the Sturm sequence for their computational efficiency and reliability.

[P9.3] Delay–Differential Equations

Delay–differential equations are frequently encountered in geological engi-
neering applications and also in chemical process engineering models. In
these types of applications, it happens frequently that one process gener-
ates some material that is then transported to another process, where it is
being used as an input. Other applications of delay–differential equations
include the remote control of equipment in space, where the communication
delays have to be taken into account.

In all of these cases, we encounter delay–differential equations of the
form:

ẋ2(t) = f(x1(t − Δ)) (P9.3a)

The problem here is that the time instant t − Δ may not be an output
point, or even the end of an integration step.

In many applications, a small error in the delay, Δ does not matter.
However when it does matter, i.e., if there is a feedback loop back from x2

to x1, then we have a problem.
If the model is simulated using a linear multi–step algorithm, it no longer

suffices to store the state variables at each output point. We need to store
the entire Nordsieck vector at the end of each integration step for at least
Δ time units, so that we can appropriately interpolate to evaluate x1 at
time t − Δ.

If the model is simulated using a single–step algorithm, it may again be
preferable to use one of the Runge–Kutta triples. However in that case,
we would need to store the solution of every stage of the algorithm at
the end of each integration step for at least Δ time units, so that we can
appropriately interpolate to evaluate x1 at time t − Δ.

Although this technique doesn’t create any principle difficulties, it causes
significant computational overhead. The issue thus is how solvers for delay–
differential equations can be implemented in a computationally efficient
way. Circular shift registers are one approach that comes to mind, but this
may not be the only one, or even the best approach to dealing with this

9.19 Research 475

problem.
Study computationally efficient ways of data storage and retrieval for the

numerical simulation of delay–differential equations, and modify existing
codes to implement those.

9.19 Research

[R9.1] Stiff Discontinuous Models

If a discontinuous model is stiff, we must use an implicit integration algo-
rithm to simulate it. Although we could use a code, such as DASSLRT, this
may be quite inefficient, because linear multi–step methods are hardly ever
suitable for dealing with heavily discontinuous models due to the overhead
and inaccuracy associated with the start–up algorithm needed after each
event.

Thus, it is important to extend the idea of an interpolation polynomial to
obtain dense output from the explicit Runge–Kutta algorithms to implicit
ones, such as the Radau–IIA, or Lobatto–IIIC algorithms introduced earlier
in this book.

The problem has been recognized, and a number of research groups are
currently working on this issue. First results have recently been published
[9.14].

Yet, the problem is still essentially unsolved. The reason is that the
interpolated result needs to be propagated to the next step. Thus, it is
insufficient to prove that the interpolated result is nth–order accurate. We
ought to prove in addition that it is also numerically stable.

[R9.2] Discontinuous Hyperbolic PDEs

Whereas we have discussed in this chapter the problems associated with the
detection and localization of state events, we always made the assumption
that the event times are somewhat spaced out, i.e., within a finite time
interval, the number of events must remain finite.

Unfortunately, this assumption does not always hold true. If we apply a
discontinuity to a hyperbolic PDE, such as the wave equation, the disconti-
nuity travels through the medium with time, i.e., at any point in time, the
discontinuity can be located somewhere in the medium. Hence the event
times are no longer spread out.

Some researchers have applied moving grid methods to these types of
problems [9.19]. Others have applied frequency–domain techniques [9.8].
Yet, whereas these techniques may be suitable to track steep wave fronts,
neither of these techniques is geared to dealing with true discontinuities.

How do we know that inaccuracies in estimating, where the discontinuity
is located at any point in time will not propagate through the solution
and accumulate as time passes? Do we have any handle on the numerical

476 Chapter 9. Simulation of Discontinuous Systems

stability problems associated with these types of situations?
There must exist better ways to calculate with arbitrary accuracy, where

the discontinuity is located when, and tackle the problem by subdividing
the domain into “left” and “right” regions in space, and “before” and “af-
ter” domains in time, and extrapolate (interpolate) to the location of the
discontinuity from all sides.

[R9.3] Sliding Motion

Sliding motion is a second type of problem that can lead to events with
infinite frequency of occurrence.

In this chapter, we have encountered creeping behavior of a simulation
code implementing a discontinuous model twice.

The first time was in the context of the train engine model. However,
the creeping behavior only occurred because we had implemented the dis-
continuity handling incorrectly. Once we solved that problem, the creeping
behavior went away.

The second time, we ran into a similar problem was in the context of one
of our friction models, where we found that coming out of sticking friction
caused the model to be thrown back into sticking friction immediately
again. This happened, in spite of the fact that the model is formally correct.

Here, we were able to tackle the problem by introducing two additional
discrete states, StartForward and StartBackward . Once these states had
been introduced and the state transition logic had been undated appropri-
ately, the problem went away.

Is this the worst that can happen? Unfortunately, the answer to this
question is negative. Let us explain this assertion by means of an example.

Figure R9.3a shows a flying vehicle on a slow collision course with a
sloped wall.

FIGURE R9.3a. Sliding motion.

Once the vehicle arrives at the wall, it either gets stuck there, or if the
thrust is sufficiently large to overcome sticking friction, it will glide up the
slope, as it has no choice in the matter.

9.19 Research 477

Unfortunately, it is a rather difficult problem to convince the simulation
code that this is what must happen. If Newton’s law is being formulated
separately for the horizontal and vertical motions, the vehicle cannot move
forward at all, as the wall is in the way. It can only move upward. However
as it moves upward, it no longer remains in contact with the wall. Thus, the
vehicle starts moving forward again. However by doing so, it bumps imme-
diately back into the wall. The model ends up with state events occurring
at infinite frequency. Of course, the problem will go away, if we modify the
coordinate system to coincide with the slope of the ramp.

Although the example looks somewhat academic, the problem itself is
quite realistic, and these types of problems indeed occur frequently in me-
chanical systems with closed kinematic loops, such as the simulation of a
car moving on a road. As all four wheels are in contact with the ground,
we are faced with multiple closed kinematic loops. If the car drives around
a bend, two of the wheels need to move a little faster than the other two.
Any numerical discrepancy between the simulated motion and the physical
constraint will invariably lead to the type of behavior explained above.

These types of problems have been studied in recent years [9.9, 9.10]. Yet,
no fully automated algorithms have been designed that can detect these
problems and modify the problem formulation automatically and on the fly
in such a way as to remove the events occurring with infinite frequency.

[R9.4] Simulation of Noisy Models

A third type of problems that will lead, in the theoretical limit, to a series
of events occurring with infinite frequency is the simulation of models with
noise.

Most continuous–system simulation software offers at least uniform and
Gaussian distributed random number generators that enable the modeler
to superpose noise to some input signals of his or her model. The noise
signal may e.g. be used to describe the headwind facing a helicopter in
flight, or it may be used to describe the unevenness of a road along which
a vehicle is driving. In the case of the helicopter, the purpose of including
the headwind may be to test the robustness of the control algorithm. In the
case of the road vehicle, it may be to simulate the behavior of the shock
absorbers.

Unfortunately, the random number generator is a rather dubious model-
ing element, as it changes its behavior as a function of the integration step
size used.

Uncorrelated white noise ought to have a frequency spectrum that is
totally flat at all frequencies. Yet, plotting the frequency spectrum of a
random number generator used in a simulation model, we notice that the
spectrum eventually decays as 1/f . The bandwidth of the random number
generator is band–limited by the sampling rate. The smaller we choose the
step size, the larger the bandwidth of the random number generator will

478 Chapter 9. Simulation of Discontinuous Systems

become.
Although some highly theoretical investigations have looked at the ana-

lytical solutions of stochastic differential equations [9.17], this is not useful
for our purpose.

The problem that we are confronted with is that we cannot use event
handling mechanisms to deal with random signals. Yet, if we ignore them,
they will invariably get entangled with the step–size control of the variable–
step integration algorithms.

Very little research has been done to date that looks at this problem
from a practical perspective.

10

Real–time Simulation

Preview

In this chapter, we shall discuss the special requirements of real–time sim-
ulation, i.e., of simulation runs that keep abreast of the passing of real
time, and that can accommodate driving functions (input signals) that are
generated outside the computer and that are read in by means of analog
to digital (A/D) converters.

Until now, computing speed has always been a soft constraint — slow
simulation meant expensive simulation, but now, it becomes a very hard
constraint. Simulation becomes a race against time. If we cannot complete
the computations associated with one integration step before the real–time
clock has advanced by h time units, where h is the current step size of the
integration algorithm, the simulation is out of sync, and we just lost the
race.

Until now, we always tried to make simulation more comfortable for the
user. For example, we introduced step–size controlled algorithms so that the
user wouldn’t have to worry any more about whether or not the numerical
integration meets his or her accuracy requirements. The algorithm would
do so on its own. In the context of real–time simulation, we may not be
able to afford all this comfort any longer. We may have to throw many
of the more advanced features of simulation over board in the interest of
saving time, but of course, this means that we have to understand even
better ourselves how simulation works in reality.

10.1 Introduction

Several very important applications of simulation require real-time perfor-
mance.

A flight simulator for training purposes is useless if it cannot produce
a reflection of the performance of the real aircraft or helicopter or space
craft in real time. The trainee uses the simulator because learning often
is synonymous with making mistakes . . . and mistakes may be too costly
when working with the real system.

Model Reference Adaptive Controllers (MRACs) make use of a model of
an idealized plant, the reference plant, trying to make the real plant behave
as similar as possible to the reference plant [10.34]. However, this requires
that the reference plant model be simulated in real time in parallel with

480 Chapter 10. Real–time Simulation

the real plant, both being driven simultaneously by the same input signals.
A watchdog monitor [10.3, 10.2, 10.47] of a nuclear power station reasons

about the sanity of the plant. It has some knowledge of how the plant is
supposed to operate, and looks out for significant discrepancies between
expected and observed plant behavior. To this end, the watchdog moni-
tor maintains a model of the power plant that it runs in parallel with the
real plant, comparing its outputs to the measurement data extracted from
the real plant. The watchdog monitor thus contains a real–time simula-
tion of a model of the correctly working power plant. Once it discovers a
significant aberration in real plant behavior, it kicks off a fault discrimi-
nator program that, again in real time, tries to narrow down the source
of the fault, i.e., seeks to determine, which of the subsystems of the real
plant is malfunctioning. It maintains real-time simulations of abstractions
of models of all subsystems that permit it to localize errors to a particular
subsystem. Once this has been accomplished, a fault isolation program is
kicked off that invokes a real–time simulation of a more refined model of
the faulty subsystem including models of faulty behavior with the aim of
identifying the kind of error that is most likely to have occurred within the
faulty subsystem [10.11, 10.12, 10.45].

Conceptually, the implementation of real–time simulation software is
straightforward. It contains only four new components:

1. The real–time clock is responsible for the synchronization of real time
and simulated time. The real–time clock is programmed to send a
trigger impulse once every h time units of real time, where h is the
current step size of the integration algorithm, and the simulation
program is equipped with a busy waiting mechanism that is launched
as soon as all computations associated with the current step have been
completed, and that checks for arrival of the next trigger signal. The
new step will not begin until the trigger signal has been received.

2. The analog to digital (A/D) converters are read at the beginning
of each integration step to update the values of all external driving
functions. This corresponds effectively to a sample and hold (S/H)
mechanism. The inputs are updated once at the beginning of every
integration step and are then kept constant during the entire step.

3. The digital to analog (D/A) converters are set at the end of each in-
tegration step, i.e., the newest output information is put out through
the D/A converters for inspection by the user, or for driving real
hardware (for so–called hardware–in–the–loop simulations.

4. External events are time events that are generated outside the sim-
ulation. External events are used for asynchronous communication
with the simulation program, e.g. for the modification of parameter
values, or for handling asynchronous readout requests, or for commu-
nication between several asynchronously running computer programs

10.1 Introduction 481

either on the same or different computers. External events are usually
postponed to the end of the current step and replace a portion of the
busy waiting period.

Figure 10.1 illustrates the different tasks that take place during the ex-
ecution of an integration step.

t

Real-time clock synchronization impulses
(real-time interrupts)

tn+1tn

A
/D

 C
o

n
ve

rs
io

n

Numerical
computations D

/A
 C

o
n

ve
rs

io
n

E
xt

e
rn

a
l e

ve
n

ts

B
u
sy

 w
a
iti

n
g

FIGURE 10.1. Task scheduling within integration step.

Once the message from the real–time clock has arrived indicating that
the real time has advanced to time tk, the simulation program first reads all
the A/D converters to update the values of all input functions to the cur-
rent time. It then performs the actual numerical computations associated
with the step, calling upon the numerical integration routine and the rou-
tine that implements the state–space model. Once this is accomplished, the
results are written out to the D/A converters. At this time, the “regular”
business associated with the current step are over. The algorithm now con-
sults the “mailbox” in which external events that may have arrived in the
meantime are stored, and handles those. Once this has been accomplished,
the algorithm has nothing more left to do and enters a “busy waiting” loop
in which it repetitively checks the mailbox for arrival of the next message
from the real–time clock.

The interprocessor and intertask communication mechanisms can actu-
ally be implemented in many different ways. In some cases, it may be
desirable to use the waiting time of the processor for background tasks,
rather than waste it in a busy waiting loop. In that case, it is not suffi-
cient for the real–time clock to send a message to the simulation program.
Instead, it must use the interrupt mechanism of the processor on which
the simulation is running to interrupt whatever other task the processor is
currently working on.

The difficulties of real–time simulation are not of a conceptual nature.
They have to do with keeping track of real time. How can we guarantee
that all that needs to be accomplished during the integration step can be
completed prior to the arrival of the next trigger impulse?

482 Chapter 10. Real–time Simulation

In the previous chapters of this book, we introduced more and more bells
and whistles that would help us in being able to guarantee the correctness
of the simulation results obtained, but all these additional tools were ac-
companied by some run–time overhead, and in many cases, the amount
of time needed to bring these algorithms to completion was not fixed. For
example, if we decide to use an implicit integration algorithm, how can
we know beforehand how many iterations will be needed to guarantee a
prescribed tolerance of the results? However, if we do not limit the number
of iterations available to the algorithm, how can we possibly know for sure
that the step will be completed before the arrival of the next trigger im-
pulse from the real–time clock? Iteration on state events is a great thing.
Yet, can we afford it under real–time conditions? What happens if we do
not iterate? Can we still know something about the accuracy of the results
obtained? These are the questions that will be discussed in the current
chapter.

10.2 The Race Against Time

There are two questions that we can ask ourselves in the context of racing
against real time: (i) How can we guarantee that all computations necessary
to end the current integration step in time are indeed completed before the
next trigger impulse from the real–time clock arrives? (ii) What happens
if we don’t meet the schedule? Let me first address the second question
since it is somewhat easier to deal with.

There are basically four things that we can do if we don’t meet the
schedule. We can:

1. increase the step size, h, in order to make more time for the tasks
that need to be accomplished,

2. make the function evaluation more efficient, i.e., optimize the program
that represents our state–space model,

3. improve the speed of the integration algorithm, e.g. by reducing the
number of function evaluations necessary during one step, and finally

4. buy ourselves a faster computer.

The last solution may sound like a last resort, but in these times of cheap
hardware and expensive software and manpower, it may actually often be
the wisest thing to do.

The first solution is interesting. Until now, the step size was always
bounded from the top due to accuracy and stability constraints. Now sud-
denly, the step size is also bounded from the bottom. We cannot reduce
the step size to a value smaller than the total real time needed to perform

10.3 Suitable Numerical Integration Methods 483

all the computations associated with simulating the model across one step
plus the real time needed for dealing with the administration of the simu-
lation during that step. If it happens that the lower bound is larger than
the upper, then we are in real trouble.

The second solution is one that has, over the years, been most actively
pursued by Granino Korn, who wrote a large number of articles on the issue
of how to obtain “cheap” (in the sense of fast) approximations for all kind
of functions. He also treated this topic in several of his books [10.26, 10.27].

Many engineering models, such as models used in flight simulators or
models of thermal power plants are full of two– and three–dimensional
tables representing static characteristics that have been deduced by mea-
surements and for which no explicit formulae are known. The need to in-
terpolate in large three–dimensional tables is a nightmare for designers of
real–time simulation software, since these interpolations can be very time
consuming, and since the time needed to find the right entries in the ta-
ble between which to interpolate is not even constant, but depends on
the numerical values of the current arguments. Recent advances in neu-
ral network technology make it now possible to design feedforward neural
networks trained e.g. through accelerated backpropagation algorithms that
approximate two– and three–dimensional static functions with arbitrary
precision. The training of these networks is slow, but this can be done off–
line. Once trained, neural networks are very efficient at run time, providing
for very fast multidimensional function evaluation capabilities. Also in this
arena, it was Granino Korn who did pioneering work in combining fast
neural network technology with high–speed simulation capabilities [10.28].

Finally, the most prominent researchers who dealt (and are still dealing)
with the third solution are Jon Smith [10.43] and Bob Howe [10.22, 10.32,
10.33]. Since this approach deals with the numerical integration algorithms
themselves, it is most relevant to this textbook, and therefore, we shall talk
more about this approach in the current chapter.

Yet, before studying the way of improving the speed of the algorithms,
we shall analyze the different methods in order to focus only on those that
show suitable features for real–time simulation.

10.3 Suitable Numerical Integration Methods

In real–time simulation, it is not sufficient to obtain a good approximation
of the values of the state variables. These approximations are in fact useless,
if they arrive too late. We need to make sure that all of the computations
associated with a single integration step are completed within the allowed
time slot.

To this end, the total number of calculations performed by a single inte-
gration step must be bounded, and all of the iterative processes should be

484 Chapter 10. Real–time Simulation

cut after a fixed number of iterations. It is evident that this will affect the
accuracy of the algorithms, but it is better to obtain a solution with some
remaining error, than not be able to obtain it at all within the allowed time
[10.18].

Taking into account these considerations, the following analysis tries to
examine the different features of the methods introduced in previous chap-
ters of this book in order to discuss their pros and cons in the context of
real–time simulation. The analysis is primarily based on Schiela’s diploma
thesis [10.40].

• Multi–step methods. Multi–step methods use information from the
previous steps to compute a high–order approximation of the next
step. This idea is based on the assumption that the differential equa-
tion is smooth, since the approximation uses a polynomial function.
Unfortunately, many real–time simulations receive input signals from
the real world that are not very smooth. Therefore, multi–step meth-
ods may give inaccurate results in such cases.

On the other hand, multi–step methods reduce the number of function
evaluations per step, which is a crucial factor in the real–time context.
For this reason alone, and in spite of the fact that some accuracy may
be sacrificed in this way, explicit linear multi–step methods, such
as Adams–Bashforth, and among them especially those of low order
of approximation accuracy, are widely used in real–time simulation
[10.23].

• Explicit single–step methods. These methods are compatible with the
requirements mentioned earlier. Their computational effort is rela-
tively low and constant. The number of calculations per step can be
easily estimated. Furthermore, the methods can deal fairly well with
discontinuous input signals, since they do not use information from
the past. Thus, for non–stiff ordinary differential equations, explicit
single–step methods may constitute the best choice.

However as we already know, these methods have problems with stiff
systems. For mildly stiff problems, one remedy is to use integration
step sizes that are a fraction of the sample interval, but then the
efficiency decays with increasing stiffness.

A different strategy for stiff systems is to modify the model so that
the stiffness decreases. In some cases, the fast dynamics do not signif-
icantly influence the overall solution, and under such circumstances,
the fast modes can be removed from the model. However, this is not
generally the case for stiff systems, and it is always a questionable
tactic to change the model in order to get it simulated.

• Implicit single–step methods. As we know, implicit methods require
solving a system of nonlinear equations at each step, which implies

10.3 Suitable Numerical Integration Methods 485

the use of iterative methods, such as Newton iteration. Therefore,
the computational effort for each step cannot be estimated reliably,
as it depends on the (theoretically unbounded) number of iterations.
Hence implicit methods are not suitable for the purpose of real–time
simulation. Nevertheless, algorithms based on implicit methods can
be used in real–time simulation, provided that the number of itera-
tions is kept bounded to a fixed value.

However, we must also take into account that, by limiting the number
of iterations, we modify the stability domain of these methods.

• High–order methods . In most real–time applications, the sampling
intervals are small compared to the time scales of interest, and the
required accuracy is usually rather low. One important reason for us-
ing small sampling intervals is to be able to accommodate real–time
input. Input signals must be sampled frequently, since they cannot be
reliably interpolated. Taking into account that reducing the amount
of calculations at each step is a crucial factor, high–order algorithms
will not be suitable for real–time simulation, except under very par-
ticular circumstances. It is therefore rare to find real–time simulations
that make use of integration methods of orders of approximation ac-
curacy greater than two or three.

• Variable step methods. In real–time simulations, we do not have the
luxury to be able to change the step size, as it is synchronized with the
sampling rate and severely restricted by the real–time specifications
of the problem. The best thing that we can do for “controlling” the
integration error is to estimate it and log these estimates, so that the
quality of the results obtained can at least be judged a–posteriori.

The numerical integration error can be estimated on–line, by com-
paring the actual simulation with another real–time simulation using
a bigger step size. This idea was proposed by Bob Howe [10.23], mak-
ing use of interpolation techniques to obtain the values of the control
run at the sampling times of the actual simulation.

After analyzing all of these features, only low–order explicit methods seem
well suited for real–time simulation.

In absence of stiffness, discontinuities, or badly nonlinear implicit equa-
tions, those methods work properly.

It can happen that the system dynamics are fast compared with the
computer clock frequency. In such a case, there is little that we can do
except try to optimize the way, in which the calculations are made, or buy
ourselves a faster computer.

Leaving high–bandwidth applications aside, real–time simulation of non–
stiff smooth systems does not call for any special treatment from a simu-
lation methodology point of view.

486 Chapter 10. Real–time Simulation

Unfortunately, many systems in engineering applications are in fact stiff
and, as we already know, explicit methods show poor performance in their
integration.

We are unable to solve this problem without using implicit principles
but, for the reasons explained above, we must avoid iterative solutions.

These considerations lead us to semi–implicit or linearly implicit meth-
ods and –in a further step– to multi–rate integration.

10.4 Linearly Implicit Methods

Linearly implicit or semi–implicit methods exploit the fact that implicit
methods applied to linear systems do not require a theoretically unbounded
number of iterations. Indeed, the resulting implicit equations can be solved
by means of matrix inversion.

A widely used linearly–implicit method is given by the semi–implicit
Euler formula [10.40, 10.38]:

xk+1 = xk + h · [f(xk, tk) + Jxk,tk
· (xk+1 − xk)] (10.1)

where

Jxk,tk
=

∂f
∂x

∣∣∣∣
xk,tk

(10.2)

is the Jacobian matrix evaluated at (xk, tk).
Notice that

Jxk,tk
· (xk+1 − xk) ≈ f(xk+1, tk+1) − f(xk, tk) (10.3)

and therefore:

f(xk, tk) + Jxk,tk
· (xk+1 − xk) ≈ f(xk+1, tk+1) (10.4)

Thus, the linearly implicit Euler approximates the implicit Euler method.
Moreover, in the linear case:

ẋ = A · x (10.5)

we have:

xk+1 = xk + h · [A · xk + Jxk,tk
· (xk+1 − xk)] = xk + h ·A · xk+1 (10.6)

which exactly coincides with Backward Euler. This implies that the sta-
bility domain of the linearly implicit Euler method also coincides with the
stability domain of Backward Euler.

Equation (10.1) can be rewritten as:

(I − h · Jxk,tk
) · xk+1 = (I − h · Jxk,tk

) · xk + h · f(xk, tk) (10.7)

10.4 Linearly Implicit Methods 487

which shows that xk+1 can be obtained by solving a linear system of equa-
tions.

The value of xk+1 can also be obtained as:

xk+1 = xk + h · (I − h · Jxk,tk
)−1 · f(xk, tk) (10.8)

The formula given by Eq.(10.8) is similar to Forward Euler, but differs in
the presence of the term (I − h · Jxk,tk

)−1.
¿From a computational point of view, that term implies that the algo-

rithm has to calculate the Jacobian at each step and then either solve a
linear equation system or invert a matrix.

Despite the fact that those calculations may turn out to be quite expen-
sive, the computational effort is predictable, which makes the method well
suited for real–time simulation.

Taking into account that the stability domain coincides with that of
Backward Euler, this method results appropriate for the simulation of stiff
and differential algebraic problems. Low–order linearly implicit methods
may indeed often be the best choice for real–time simulation. However,
they share one drawback with implicit methods: if the size of the prob-
lem is large, then the solution of the resulting linear equation system is
computationally expensive.

Due to this fact, many different techniques were proposed that optimize
how and how often the Jacobian is being evaluated and the linear equation
system is being solved [10.19].

We shall not discuss those techniques here for two reasons. First, many
of these techniques are designed to make the numerical integration faster
on average. We are not interested in such approaches in the context of
real–time simulation, because we must ensure that the algorithm converges
always within the allotted time. Second, the statement that the stability
domain of the linearly implicit Euler algorithm is the same as that of Back-
ward Euler is only true if the exact Jacobian is being used in every step.
For example, if we were to approximate the Jacobian by the zero matrix,
the method would have the stability domain of Forward Euler.

Many of the implicit algorithms make use of a so–called modified Newton
iteration. In one variant of that approach, the underlying Hessian matrix
is being approximated by a diagonal matrix to make its inversion cheap
and painless. This can be done. The price to be paid for this luxury is
that the Newton iteration will converge more slowly, i.e., we have to spend
more iteration steps, while each individual iteration step is now cheaper.
Whether or not this pays off, depends on the application at hand.

Some authors proposed to apply this technique in the case of semi–
implicit algorithms as well by approximating the Jacobian through its di-
agonal elements. We do not recommend this approach. In most cases, this
will be the kiss of death, as the stability domain of the method using a di-
agonal approximation of the Jacobian will most likely loop in the left–half
λ · h plane, i.e., the method will no longer be stiffly stable.

488 Chapter 10. Real–time Simulation

Other authors proposed to carefully look at the structure of the Jaco-
bian, and at least zero out some of the smallest non–vanishing elements in
it. This technique is called sparsing [10.40, 10.38], as it makes the Jaco-
bian more sparse, thereby enabling a cheaper linear system solution using
either numerical or symbolic sparse matrix techniques. It was shown that
sparsing can indeed reduce the computational effort needed to complete
the calculations of a single integration step by a significant amount. Yet,
the technique must be applied cautiously, as it doesn’t take much for the
stiffly stable nature of the algorithms to be lost in the process. It thus
may generally pay off to work with an accurate computation of the exact
Jacobian in each step.

Having said that, we are of course free in how we compute the exact Ja-
cobian, and which technique we use for solving the resulting linear equation
system. The Jacobian can either be computed symbolically, leaving it up to
the model compiler to find the appropriate expressions by symbolic (alge-
braic) differentiation, or it can be approximated numerically. Furthermore,
Jacobian matrices are usually sparse, because not every state derivative
depends on every state variable. Thus, we can use either numerical sparse
matrix algorithms in solving the resulting linear system, or we can use one
of the two symbolic sparse sparse matrix techniques introduced earlier in
this book, i.e., tearing [10.17] or relaxation [10.35].

The improvements achieved by those techniques allow some large stiff
systems to be simulated in real time using semi–implicit algorithms. How-
ever, there are still larger and more complicated systems, in which these
ideas are not enough to win the race against time.

Fortunately, stiffness in large systems is often connected to the presence
of some identifiable slow and fast sub–models. In those cases, we can use
that information to our advantage by splitting the system and applying
different step sizes or even different integration algorithms to the different
parts. These ideas lead to the concepts of multi–rate and mixed–mode
integration.

Finally, we should mention that several higher–order semi–implicit ver-
sions of both multi–step [10.6] and Runge–Kutta [10.1, 10.46] methods
have been reported in the literature. We shall not explore these algorithms
further, since their principles are similar to those of the linearly implicit Eu-
ler method. However, we shall derive one of these methods in a homework
problem.

Least suitable among all of the linearly implicit stiffly stable algorithms
for the task at hand are those algorithms that are F–stable, in particular
the trapezoidal rule and its one–legged twin, the implicit midpoint rule. The
reason for this assertion is the following. Since we cannot use a variable–
step algorithm, we are bound to end up with a numerical error in each
integration step that is caused by the fixed step size and that is essentially
uncontrollable. It is thus recommended to use an algorithm with some
additional artificial damping to prevent error accumulation [10.18].

10.5 Multi–rate Integration 489

10.5 Multi–rate Integration

There are many cases, in which the stiffness is due to the presence of a
sub–system with very fast dynamics compared to the rest of the system.
Typical examples of this can be found in multi–domain physical systems,
since the components of different physical domains usually involve distinct
time constants.

For example, if we wish to study the thermal properties of an integrated
circuit package, we shall recognize that the electrical time constants of the
device are faster in comparison with the thermal time constants by several
orders of magnitude. Yet, we cannot ignore the fast time constants, since
they are the cause of the heating. In some cases, such as switching power
converters, the heating of the device grows with the frequency of switching,
i.e., while no switching takes place, the thermal effects are minimal [10.41].

Let us introduce the idea with the following example. Figure 10.2 shows
a lumped model of a transmission line fed by a Van–der–Pol oscillator (this
example is a variant of an example offered in [10.36]).

RRR

L

LLL

C CCC

LineOscillator

FIGURE 10.2. Van–der–Pol oscillator and transmission line.

We shall assume that the nonlinear resistor of the oscillator circuit sat-
isfies the law:

iR = k · u3
R − uR (10.9)

Then the system can be described by the following set of state equations:

diL
dt

=
1
L

uC (10.10a)

duC

dt
=

1
C

(uC − k · u3
C − iL − i1) (10.10b)

di1
dt

=
1
L

uC − R

L
i1 − 1

L
u1 (10.10c)

du1

dt
=

1
C

i1 − 1
C

i2 (10.10d)

di2
dt

=
1
L

u1 − R

L
i2 − 1

L
u2 (10.10e)

du2

dt
=

1
C

i2 − 1
C

i3 (10.10f)

...

490 Chapter 10. Real–time Simulation

din
dt

=
1
L

un−1 − R

L
in − 1

L
un (10.10g)

dun

dt
=

1
C

in (10.10h)

Here, uC and iL are the voltage and current of the capacitor and inductance
in the oscillator. Similarly, uj and ij are the voltage and current of the
capacitors and inductances at the jth stage of the transmission line.

Let us assume that the transmission line has 5 stages (i.e., n = 5), and
the parameters are L = 10 mH, C = 1 mF, R = 10Ω and k = 0.04.

If we wish to simulate the system using the Forward Euler method, we
need to use a step size no greater than h = 10−4 seconds. Otherwise, the
oscillator output (uC) is computed with an error that is totally unaccept-
able.

However, using the input signal generated by the oscillator, the trans-
mission line alone can be simulated with a step size that is 10 times bigger.

Thus, we decided to split the system into two subsystems, the oscillator
circuit and the transmission line, using two different step sizes: 10−4 seconds
for the former, and 10−3 seconds for the latter.

In that way, we integrate the fast but small (2nd–order) sub–system using
a small step size, whereas we integrate the slow and large (10th–order) sub–
system using a larger step size.

As a consequence, during each millisecond of real time, the computer
has to evaluate ten times the two scalar functions corresponding to the two
first state equations, whereas it only needs to evaluate once the remaining
ten functions. Thus, the number of floating–point operations is reduced by
about a factor of four compared with a regular simulation using a single
step size throughout.

The simulation results are shown in Figs.10.3–10.4.
We can generalize this procedure to systems of the form:

ẋf (t) = ff (xf ,xs, t) (10.11a)
ẋs(t) = fs(xf ,xs, t) (10.11b)

where the sub–indexes, f and s, stand for “fast” and “slow,” respectively.
Then, the use of the multi–rate version of Forward Euler with inlining

results in a set of difference equations of the form:

xf (ti + (j + 1) · h) = xf (ti + j · h) + h · ff (xf (ti + j · h),
xs(ti + j · h), ti + j · h) (10.12a)

xs(ti + k · h) = xs(ti) + h · fs(xf (ti),xs(ti), ti) (10.12b)

where k is the (integer) ratio of the two step sizes, j = 0 . . . k − 1, and
h = ti+1 − ti is the step–size of the slow sub–system.

Equations (10.12a–b) do not specify, how xs(ti + j · h) is being calcu-
lated, since the variables of the slow sub–system are not evaluated at the
intermediate time instants.

10.5 Multi–rate Integration 491

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−3

−2

−1

0

1

2

3

Multirate Simulation (Oscillator)

Time[sec]

u
C

[V
ol

ts
]

FIGURE 10.3. Van–der–Pol oscillator voltage.

In our example, we chose xs(ti + j · h) = xs(ti), i.e., we used the last
calculated value. A more accurate solution might involve using some form
of extrapolation technique.

This last problem is known as the interfacing problem [10.30]. It is re-
lated to the way, in which the fast and slow sub–systems are interconnected
with each other.

In our case, we used the Forward Euler method. Similar approaches have
been reported in the literature based on the 2nd–order explicit Adams–
Bashforth technique [10.24], including also some improvements for parallel
implementation.

In spite of the improvement achieved in this case using multi–rate in-
tegration, we must not forget that the example we analyzed was not very
demanding, since the speed of the fast sub–system is not much higher than
that of the slow sub–system. We already know that explicit algorithms
won’t work in more strongly stiff systems.

In those cases, as previously discussed, semi–implicit methods may be a
better choice in the real–time context. However, we know that in large sys-
tems, those methods have a drawback, as they need to invert a potentially
very large matrix.

A solution that combines both ideas, multi–rate and semi–implicit in-
tegration, consists in splitting the system into a fast and a slow part,
while applying a semi–implicit method to the fast sub–system, whereas the

492 Chapter 10. Real–time Simulation

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Multirate Simulation (Output)

Time[sec]

u
5
[V

ol
ts

]

FIGURE 10.4. Transmission line output voltage.

slow sub–system is being simulated using an explicit integration algorithm.
These types of schemes are referred to in the literature as mixed–mode
integration algorithms.

We shall discuss mixed–mode integration in due course, but let us first
pursue another avenue.

10.6 Inline Integration

Figure 10.5 shows the same circuit as Fig. 10.2 with the inclusion of an
additional RC load at the end of the transmission line.

RRR

L

LLL

C CCC

LineOscillator

Cl

Rl

Load

FIGURE 10.5. Van–der–Pol oscillator and transmission line.

10.6 Inline Integration 493

The state equations are similar to the previous case, but now we have:

diL
dt

=
1
L

uC (10.13a)

duC

dt
=

1
C

(uC − k · u3
C − iL − i1) (10.13b)

di1
dt

=
1
L

uC − R

L
i1 − 1

L
u1 (10.13c)

du1

dt
=

1
C

i1 − 1
C

i2 (10.13d)

di2
dt

=
1
L

u1 − R

L
i2 − 1

L
u2 (10.13e)

du2

dt
=

1
C

i2 − 1
C

i3 (10.13f)

...
din
dt

=
1
L

un−1 − R

L
in − 1

L
un (10.13g)

dun

dt
=

1
C

in − 1
Rl · C (un − ul) (10.13h)

dul

dt
=

1
Rl · Cl

(un − ul) (10.13i)

Let us assume that the load parameters are Rl = 1 kΩ and Cl = 1 nF.
Since the load resistor is much bigger than the line resistors, the newly

introduced term in Eq.(10.13h) won’t influence the dynamics of the trans-
mission line significantly, and we can expect the sub–system (10.13a–h) to
exhibit a similar behavior to the one of System (10.10).

However, the last state equation, Eq.(10.13i), introduces a fast pole. The
position of this pole is approximately located at:

λl ≈ − 1
Rl · Cl

= −106 sec−1 (10.14)

on the negative real axis of the complex λ–plane.
This means that we would have to reduce the step size by about a factor

of 1000 with respect to the previous example, in order to obtain a numeri-
cally stable result.

Unfortunately, such a solution is completely unacceptable in the context
of a real–time simulation.

A first alternative might be to replace the Forward Euler algorithm by
the semi–implicit Euler method studied earlier in this chapter. However,
this is a system of order 13, and, leaving superstitions aside, we may not
have the luxury of inverting a 13× 13 matrix at each step.

A second alternative might be to inline the Backward Euler algorithm
[10.16] and apply the tearing method to the resulting set of difference equa-

494 Chapter 10. Real–time Simulation

tions. Let us rewrite the model using the inling approach.

iL = pre(iL) +
h

L
uC (10.15a)

uC = pre(uC) +
h

C
(uC − k · u3

C − iL − i1) (10.15b)

i1 = pre(i1) +
h

L
uC − Rh

L
i1 − h

L
u1 (10.15c)

u1 = pre(u1) +
h

C
i1 − h

C
i2 (10.15d)

i2 = pre(i2) +
h

L
u1 − Rh

L
i2 − h

L
u2 (10.15e)

u2 = pre(u2) +
h

C
i2 − h

C
i3 (10.15f)

...

in = pre(in) +
h

L
un−1 − Rh

L
in − h

L
un (10.15g)

un = pre(un) +
h

C
in − h

Rl · C (un − ul) (10.15h)

ul = pre(ul) +
h

Rl · Cl
(un − ul) (10.15i)

The causalized structure digraph is shown in Fig. 10.6.

Eq.(10.15a)

Eq.(10.15b)

Eq.(10.15c)

Eq.(10.15d)

Eq.(10.15e)

Eq.(10.15f)

Eq.(10.15g)

Eq.(10.15h)

Eq.(10.15i)

iL

i1

u1

uC

i2

u2

i3

u3

i4

u4

i5

u5

ul

Residual Eq. #1 Tearing Var. #1

Eq. #1

Residual Eq. #2 Tearing Var. #2

Eq. #2

Residual Eq. #3 Tearing Var. #3

Eq. #3

Residual Eq. #4

Eq. #4

Residual Eq. #5

Eq. #5

Residual Eq. #6

Eq. #6

Eq. #7

Tearing Var. #4

Tearing Var. #5

Tearing Var. #6

FIGURE 10.6. Causal structure diagram of electrical circuit.

Inlining did help indeed. We got away with six tearing variables. Instead
of having to invert a 13 × 13 matrix in every step, we now must invert a

10.7 Mixed–mode Integration 495

6× 6 matrix. Since even the best linear sparse matrix solver grows at least
quadratically with the size of the system in terms of its computational
complexity, the savings were quite dramatic. The computations just got
faster by about a factor of four.

Although inline integration had been developed for general simulation
problems, it turns out that this method has become a quite powerful ally
in dealing with real–time simulation as well [10.15].

But what, if the simulation is still too slow? What if the transmission line
consists of 50 segments, instead of only 5 of them? Mixed–mode integration
may be the answer to our needs.

10.7 Mixed–mode Integration

A more careful look at the system shows that there is no strong interaction
between the subsystems of Eqs.(10.13a–h) and Eq.(10.13i). In fact, the fast
dynamics can be explained by looking at the last equation alone.

Thus, it might be reasonable to use Backward Euler (or semi–implicit
Euler) only in the last equation.

To this end, we inlined the equations once more, this time using the
explicit Forward Euler algorithm everywhere except for the last equation,
where we still used the implicit Backward Euler method.

The resulting inlined difference equation system no can be written as
follows:

iL = pre(iL) +
h

L
pre(uC) (10.16a)

uC = pre(uC) +
h

C
= [pre(uC) − k · pre(uC)3 − pre(iL)

−pre(i1)] (10.16b)

i1 = pre(i1) +
h

L
pre(uC) − Rh

L
pre(i1) − h

L
pre(u1) (10.16c)

u1 = pre(u1) +
h

C
pre(i1) − h

C
pre(i2) (10.16d)

i2 = pre(i2) +
h

L
pre(u1) − Rh

L
pre(i2) − h

L
pre(u2) (10.16e)

u2 = pre(u2) +
h

C
pre(i2) − h

C
pre(i3) (10.16f)

...

in = pre(in) +
h

L
pre(un−1) − Rh

L
pre(in) − h

L
pre(un) (10.16g)

un = pre(un) +
h

C
pre(in) − h

Rl · C [pre(un) − pre(ul)] (10.16h)

496 Chapter 10. Real–time Simulation

ul = pre(ul) +
h

Rl · Cl
(un − ul) (10.16i)

All equations are now explicit, except for the very last equation, Eq.(10.16i),
which is implicit in the variable ul. Furthermore, Eq.(10.16i) can only be
computed after un(t) has been evaluated first from Eq.(10.16h). Thus, the
size of the Jacobian is now 1 × 1.

We simulated the system using the same approach as before, i.e., we
applied a step size of 10−4 seconds to the two oscillator equation, whereas
we used a step size of 10−3 seconds on all of the other equations, including
the implicit load equation. The simulation results are shown in Figure 10.7.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Mixed–Mode Simulation

Time[sec]

u
l[V

ol
ts

]

FIGURE 10.7. Load output voltage.

In more general terms, given a system like Eqs.(10.11a–b), the Backward–
Forward Euler Mixed–Mode integration scheme is given by the formula:

xs(tk+1) = xs(tk) + h · fs(xf (tk),xs(tk), tk) (10.17a)
xf (tk+1) = xf (tk) + h · ff (xf (tk+1),xs(tk+1), tk+1) (10.17b)

Thus, the algorithm starts by computing explicitly the value of xs(tk+1).
It then uses this value to evaluate xf (tk+1) either implicitly or in a semi–
implicit fashion.

Mixed–mode integration as presented in this section was first introduced
by Krebs [10.29] for an entirely different purpose, namely to resolve the

10.8 Discontinuous Systems 497

problem of conditional index changes once and for all in a systematic and
algorithmic fashion.

The technique was rediscovered independently by Schiela [10.39] for the
purpose of speeding up real–time simulation. Schiela proposed the use of
linearization and eigenvalue analysis to discern, which of the integrators
should be inlined using Forward Euler, and which should be inlined using
Backward Euler, i.e., for determining the slow and fast sub–systems.

The advantage of solving the implicit equation only for the components
xf (tk+1) can turn out to be very important in systems, such as the one
presented here, where the length of vector xf is considerably smaller than
that of xs.

In our (rather academic) example, the reduction in the number of calcula-
tions is huge. In more realistic applications, the literature reports speed–up
factors of 4 to 16 [10.39].

Mixed–mode versions of higher order Runge–Kutta methods and ap-
proaches also combine mixed–mode and multi–rate integration techniques
have also been reported in the literature [10.42].

In fact, we used a mixture of multi–rate and mixed–mode integration in
our example, as we used a ten times smaller step size of 10−4 seconds for
the integration of the two oscillator equations.

Both multi–rate integration and mixed–mode integration assume that
there indeed exist two distinct and discernable sub–systems. This may not
always be the case. For example, the real–time simulation of a distributed
parameter system described by a parabolic PDE, such as for the purpose of
optimal control of a space heating system, does not share this property. The
eigenvalues are simply spread out. Also, if a system is highly nonlinear, the
concept of looking at eigenvalues by itself become dubious, as eigenvalues
can only be defined for the linearized system. In a sufficiently nonlinear
system, the eigenvalues of the linearized system move around as a function
of time, which again may prevent us from subdividing the system into two
distinct and time–invariant sub–systems, one fast, the other slow.

10.8 Discontinuous Systems

Real–time simulation of discontinuous models is highly problematic, as
state events happen asynchronously. Event handling invariably causes over-
head that needs to be accounted for. Thus, if until now, it may have been
acceptable to have the computations associated with the simulation of a
single step occupy somewhere around 80% of the allotted time, we can no
longer do so if the model to be simulated is discontinuous. In the case of dis-
continuous models being simulated in real time, it is prudent to dimension
the computer system such that regular steps occupy no more than about
20% of the allotted time. This will grant us the additional time needed to

498 Chapter 10. Real–time Simulation

handle no more than one state event per step.
State–event handling in real–time simulation is simplified, when compar-

ing it to the techniques introduced in the previous chapter, by two factors:

1. As we are using low–order integration techniques, we can also use
low–order event localization algorithms.

2. Since we use much smaller step sizes, the precise localization of state
events becomes less critical, and there shouldn’t occur as often mul-
tiple state events within a single integration step.

Since we must control the total amount of computations performed within
an integration step, iterative techniques for localizing state events are out.
We must rely on interpolation alone.

Yet, as we are using low–order integration techniques, the former itera-
tive algorithms can now be employed as interpolators. For example, if we
integrate by inlining a first–order accurate algorithm, i.e., either Forward
Euler or Backward Euler [10.16], we can use a single step of Regula Falsi
to locate the event as accurately as we can hope to accomplish with such
a crude integration algorithm. If we decide to inline the third–order accu-
rate Radau–IIA algorithm [10.5, 10.7], a single step of cubic interpolation
will localize the discontinuity as accurately as can be done using such an
integration method.

Of course, it may be possible to reduce the residual on the zero–crossing
function further by iteration, but this does not necessarily imply that we
would thereby locate the event more accurately, as already the previous
integration steps are contaminated by numerical errors.

Let us discuss, how event handling may proceed. We start out by per-
forming a regular integration step, advancing the simulation from time tn
to time tn+1. At the end of the step, we discover that a zero crossing has
taken place. We interpolate to the next event time, tnext. Since we don’t
have dense output [10.13] available, as this would be too expensive to
compute in real time, we shall have to repeat the last integration step to
advance the entire state vector from time tn to time tnext. We then perform
the actions associated with the event, and compute a new consistent ini-
tial state. Starting from that new initial state, we perform another partial
state advancing the state vector from time tnext to time tn+1. The solution
obtained in this way can then be pushed out through the D/A–converters
and communicated back to whatever hardware needs it.

As no iteration takes place, the amount of work, i.e., the total number of
floating–point operations needed, can be estimated accurately. Assuming
that only one state event is allowed to occur within a single integration
step, we can thus calculate, how much extra time we need to allot, in order
to handle single state events within an integration step adequately.

Unfortunately, the extra amount of work for event handling is non–
negligible. We perform three integration steps instead of only one, and

10.9 Simulation Architecture 499

we have to accommodate the additional computations needed to process
the event actions themselves. Thus, the total effort grows by about a factor
of four. This is the reason, why we wrote earlier that the allowed resource
utilization for regular integration steps needs to drop from about 80% to
about 20%.

10.9 Simulation Architecture

We haven’t yet discussed, how the simulation engine is physically connected
to the hardware. Although it would be possible to connect directly the out-
put signals of the sensor units with the input of the A/D–converters, which
form part of the simulation engine, and the outputs of the D/A–converters,
also integrated with the simulation engine, with the input signals of the ac-
tuator units, this is hardly ever done in today’s world.

Instead, commercial converters have their own computer chips built in,
that perform the necessary computations and store the digital signals in
mailboxes. Thus, an A/D–converter is really a converter together with a
built–in zero–order hold (ZOH) unit. Once the analog signal has been con-
verted, it is available for whichever process needs it, until it is overridden by
the next sample–and–hold (S/H) cycle. A D/A–converter doesn’t take its
data from the simulation directly, but instead, takes it out of its own mail-
box. Even the sensor and actuator units contain their own hardware–built
sample–and–hold equipment.

Handshaking mechanisms are needed to prevent the simulator from re-
placing the data in the mailbox of the D/A–converter, while the converter
tries to read out the data from its own mailbox. Similarly, handshaking
mechanisms are needed to prevent the simulator from reading the data
from the mailbox of the A/D–converter, while these data are in the pro-
cess of being updated by the converter.

A possible physical configuration of a hardware–in–the–loop (HIL) sim-
ulation is shown in Fig. 10.8.

Protocols have been designed to ensure that these handshaking mech-
anisms always work correctly. To this end, the High–Level Architecture
(HLA) standard was created in the U.S. [10.44], whereas Europe devel-
oped its own standard with CORBA [10.37].

Consequently, Fig. 10.1 needs to be modified. The time needed for the
A/D–convertions and D/A–conversions are no longer part of the compu-
tational load associated with advancing the simulation by one time step,
as these activities are performed in parallel by separate units. Instead, we
must include the time needed for the read and write requests from and to
the mailboxes across the architecture.

Since the total time needed for computing all activities associated with
a single integration step must be known, both HLA and CORBA offer

500 Chapter 10. Real–time Simulation

Simulation
engine

A/D-
converters

Mailbox

D/A-
converters

Mailbox

Plant
hardware

Sensors Actuators

Bus
controller

FIGURE 10.8. Physical configuration of HIL simulation.

mechanisms for specifying the maximum allowed latency in answering re-
quests for information transfer across the architecture using the established
communication channels and protocols.

10.10 Overruns

Overruns are defined as situations, where, in spite of our best efforts, the
simulation engine is unable to perform all of the required computations in
time to advance its state to the next clock time, before the real–time clock
interrupt is received.

This may happen, because it cannot be guaranteed that no more than
one state event will ever occur within a single integration step. As all events
must be processed, it can happen that the simulation falls behind. Most
real–time simulations specify the maximum percentage of overruns as e.g.
1% or 2%.

What happens, when the simulation falls behind? Thanks to the buffers
implemented in the form of the mailboxes, the hardware will hardly notice
it. It simply receives the same actuator values for a second time in a row.

For the simulation software, the situation may be worse, because it may
need to know, what time it is. Thus, the following procedure is recom-
mended in the case of an overrun. If the next real–time interrupt arrives,
before the computations have been completed, the subsequent integration
step is doubled in length to catch up with real time. In this way, we allow
one integration step to be computed less accurately once in a while, in

10.11 Summary 501

order to stay synchronous with the real–time clock.

10.11 Summary

In this chapter, we have attempted to paint, using a fairly wide brush, a
picture of some of the requirements associated with real–time simulation
of physical systems. It’s a difficult problem to cope with, as the informa-
tion available on this topic is widely scattered in the literature and hardly
available in a concise and consistent fashion.

Just like in the case of the distributed parameter systems, we do not
claim that we have been able to create here a body of knowledge that is
exhaustive by any standard. We do not claim that you, the reader, will
be able to successfully build a real–time simulator after having read this
chapter.

Naturally, as this book concerns itself primarily with topics surrounding
the numerical integration of ODE and DAE systems, we have focused our
emphasis on issues related to the special demands of real–time simulation
on the integration algorithms.

We only just mentioned the available literature on simulation speed–up
by means of efficient function generation [10.21, 10.28], and we didn’t talk
at all about the use of special–purpose simulation hardware, a fashionable
topic in the 1960’s to 1980’s. These systems have largely been overcome by
events, as conventional digital hardware became faster and faster.

We barely scratched the surface of issues concerning the simulation archi-
tecture. There is a substantial body of knowledge available on this subject,
although it concerns itself more with discrete event simulation in general,
than with physical system simulation.

We didn’t even mentioned the topic of distributed real–time simulation
[10.8, 10.31], where the execution speed of the real–time simulation is in-
creased by distributing the computations necessary to complete an integra-
tion step over multiple computers communicating with each other across
the simulation architecture.

Notice that even Fig. 10.8 does not reflect the full real–time architec-
ture needed to perform distributed simulation experiments. Both HLA
and CORBA were developed to support distributed processing. Whereas
CORBA was designed primarily for instrumentation, HLA has a strong
emphasis on distributed simulation. In Fig. 10.8, the simulation is still “in
charge” of the overall operations. All other units are essentially subservient
to the simulation.

If we allow the simulation to be distributed over multiple processors
working in parallel on a demanding simulation task, this approach won’t
work any longer. Figure 10.9 shows a once more enhanced architecture that
supports distributed simulation.

502 Chapter 10. Real–time Simulation

Passive
Observers

Life
Players

Run-time
Infrastructure

Simulation
Engines

FIGURE 10.9. The HLA architecture.

Figure 10.9 depicts the overall HLA architecture [10.9, 10.10] for dis-
tributed simulation. Here, the former bus controller is replaced by the Real-
time Infrastructure (RTI) [10.20], a distributed operating system that co-
ordinates the activities of the various participants in the simulation. Each
participant is responsible for finishing its assigned tasks within the allotted
time slot and for returning the results in a timely fashion to the RTI.

¿From the perspective of the architecture, there is essentially no differ-
ence between simulators and life players, i.e., hardware–in–the–loop. Pas-
sive observers were added as an additional type of participants. Since pas-
sive observers never return any data to the architecture, it is not essential
that they operate in a time–synchronous fashion. They can complete their
tasks on an “as–fast–as–possible” basis.

10.12 References

[10.1] Jeff R. Cash. A Semi–implicit Runge–Kutta Formula for the Inte-
gration of Stiff Systems of Ordinary Differential Equations. Chemical
Engineering J., 20(3):219–224, 1980.

[10.2] François E. Cellier, Larry C. Schooley, Malur K. Sundareshan, and
Bernard P. Zeigler. Computer–aided Design of Intelligent Controllers:
Challenge of the Nineties. In Recent Advances in Computer Aided
Control Systems Engineering, pages 53–80, Amsterdam, the Nether-
lands, 1992. Elsevier Science Publishers.

[10.3] François E. Cellier, Larry C. Schooley, Bernard P. Zeigler, Adele
Doser, Glenn Farrenkopf, JinWoo Kim, YaDung Pan, and Brian
Willams. Watchdog Monitor Prevents Martian Oxygen Production
Plant from Shutting Itself Down During Storm. In Proceedings IS-

10.12 References 503

RAM’92, ASME Conference on Intelligent Systems for Robotics and
Manufacturing, pages 697–704, Santa Fe, N.M., 1992.

[10.4] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[10.5] François E. Cellier. Inlining Step–size Controlled Fully Implicit
Runge–Kutta Algorithms for the Semi–analytical and Semi–numerical
Solution of Stiff ODEs and DAEs. In Proceedings 5th Conference on
Computer Simulation, pages 259–262, Mexico City, Mexico, 2000.

[10.6] Richard J. Charron and Min Hu. A–contractivity of Linearly Im-
plicit Multistep Methods. SIAM Journal on Numerical Analysis,
32(1):285–295, 1995.

[10.7] Christoph Clauss, Hilding Elmqvist, Sven Erik Mattsson, Martin
Otter, and Peter Schwarz. Mixed Domain Modeling in Modelica. In
Proceedings FDL’02, Forum on Specification and Design Languages,
Marseille, France, 2002.

[10.8] Rémi Cozot. From Multibody Systems Modeling to Distributed
Real–Time Simulation. In Proceedings Simulation’96 IEEE Confer-
ence, pages 234–241, 1996.

[10.9] Judith S. Dahmann, Frederick Kuhl, and Richard Weatherly. Stan-
dards for Simulation: As Simple As Possible But Not Simpler – The
High Level Architecture For Simulation. Simulation, 71(6):378–387,
1998.

[10.10] Judith S. Dahmann. The High Level Architecture and Beyond:
Technology Challenges. In Proceedings PADS’99, 13th Workshop on
Parallel and Distributed Simulation, pages 64–70, Atlanta, Georgia,
1999.

[10.11] Álvaro de Albornoz Bueno and François E. Cellier. Qualita-
tive Simulation Applied to Reason Inductively About the Behav-
ior of a Quantitatively Simulated Aircraft Model. In Proceedings
QUARDET’93, IMACS International Workshop on Qualitative Rea-
soning and Decision Technologies, pages 711–721, Barcelona, Spain,
1993.

[10.12] Álvaro de Albornoz Bueno and François E. Cellier. Variable Selec-
tion and Sensor Fusion in Automatic Hierarchical Fault Monitoring of
Large Scale Systems. In Proceedings QUARDET’93, IMACS Interna-
tional Workshop on Qualitative Reasoning and Decision Technologies,
pages 722–734, Barcelona, Spain, 1993.

[10.13] John R. Dormand and Peter J. Prince. Runge–Kutta Triples. J. of
Computational and Applied Mathematics, 12A(9):1007–1017, 1986.

504 Chapter 10. Real–time Simulation

[10.14] Eduard Eitelberg. Modellreduktion linearer zeitinvarianter Systeme
durch Minimieren des Gleichungsfehlers. PhD thesis, University of
Karlsruhe, Karlsruhe, Germany, 1979.

[10.15] Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson. New
Methods for Hardware–in–the–loop Simulation of Stiff Models. In Pro-
ceedings Modelica’2002 Conference, pages 59–64, Oberpfaffenhofen,
Germany, 2002.

[10.16] Hilding Elmqvist, Martin Otter, and François E. Cellier. Inline
Integration: A New Mixed Symbolic/Numeric Approach for Solving
Differential–Algebraic Equation Systems. In Proceedings European
Simulation Multiconference, pages xxiii–xxxiv, Prague, Czech Repub-
lic, 1995.

[10.17] Hilding Elmqvist and Martin Otter. Methods for Tearing Systems
of Equations in Object–oriented Modeling. In Proceedings European
Simulation Multiconference, pages 326–332, Barcelona, Spain, 1994.

[10.18] Javier Garcia de Jalón and Eduardo Bayo. Kinematic and Dy-
namic Simulation of Multibody Systems –The Real–Time Challenge–.
Wiley, 1994.

[10.19] Kjell Gustafsson and Gustaf Söderlind. Control Strategies for the
Iterative Solution of Nonlinear Equations in ODE Solvers. SIAM Jour-
nal on Scientific Computing, 18(1):23–40, 1997.

[10.20] Frank Hodum and David Edwards. Time Management Services in
the RTI–NG. In Proceedings SIW’01, Fall Simulation Interoperability
Workshop, paper 01F–SIW–090, 2001.

[10.21] Robert M. Howe and Kuo-Chin Lin. The Use of Function Gener-
ation in the Real–time Simulation of Stiff Systems. In AIAA Flight
Simulation Technologies Conference and Exhibit, pages 217–224, Day-
ton, Ohio, 1990.

[10.22] Robert M. Howe. The Use of Mixed Integration Algorithms in
State Space. Transactions of the Society for Computer Simulation,
7(1):45–66, 1990.

[10.23] Robert M. Howe. On–line Calculation of Dynamic Errors in Real–
time Simulation. In Proceedings of SPIE, volume 3369, pages 31–42,
1998.

[10.24] Robert M. Howe. Real–Time Multi–Rate Asynchronous Simulation
with Single and Multiple Processors. In Proceedings of SPIE, volume
3369, pages 3–14, 1998.

10.12 References 505

[10.25] Thomas Kailath. Linear Systems. Prentice–Hall, Englewood Cliffs,
N.J., 1980.

[10.26] Granino A. Korn and John V. Wait. Digital Continuous–System
Simulation. Prentice–Hall, Englewood Cliffs, N.J., 1978.

[10.27] Granino A. Korn. Interactive Dynamic–System Simulation.
McGraw–Hill, New York, 1989.

[10.28] Granino A. Korn. Neural–Network Experiments on Personal Com-
puters. MIT Press, Cambridge, Mass., 1991.

[10.29] Matthias Krebs. Modeling of Conditional Index Changes. Mas-
ter’s thesis, Dept. of Electrical & Computer Engineering, University
of Arizona, Tucson, Ariz., 1997.

[10.30] John Laffitte and Robert M. Howe. Interfacing Fast and Slow Sub-
systems in the Real–time Simulation of Dynamic Systems. Transac-
tions of SCS, 14(3):115–126, 1997.

[10.31] Nicolas Léchevin, Camille Alain Rabbath, and Paul Baracos. Dis-
tributed Real–time Simulation of Power Systems Using Off–the–shelf
Software. IEEE Canadian Review, pages 5–8, 2001. summer edition.

[10.32] Kuo-Chin Lin and Robert M. Howe. Simulation Using Staggered
Integration Steps — Part I: Intermediate–Step Predictor Methods.
Transactions of the Society for Computer Simulation, 10(3):153–164,
1993.

[10.33] Kuo-Chin Lin and Robert M. Howe. Simulation Using Staggered
Integration Steps — Part II: Implementation on Dual–Speed Systems.
Transactions of the Society for Computer Simulation, 10(4):285–297,
1993.

[10.34] Francisco Mugica and François E. Cellier. Automated Synthesis of
a Fuzzy Controller for Cargo Ship Steering by Means of Qualitative
Simulation. In Proceedings ESM’94, European Simulation MultiCon-
ference, Barcelona, Spain, 1994.

[10.35] Martin Otter, Hilding Elmqvist, and François E. Cellier. ‘Relax-
ing’ – A Symbolic Sparse Matrix Method Exploiting the Model Struc-
ture in Generating Efficient Simulation Code. In Proceedings Sympo-
sium on Modeling, Analysis, and Simulation, CESA’96, IMACS Multi-
Conference on Computational Engineering in Systems Applications,
volume 1, pages 1–12, Lille, France, 1996.

[10.36] Olgierd A. Palusinski. Simulation of Dynamic Systems Using Mul-
tirate Integration Techniques. Transactions of SCS, 2(4):257–273,
1986.

506 Chapter 10. Real–time Simulation

[10.37] José Ignacio Rodŕıguez, José Manuel Jiménez, Francisco Javier Fu-
nes, and Javier Garcia de Jalón. Dynamic Simulation of Multi-Body
Systems on Internet Using CORBA, Java and XML. Multibody System
Dynamics, 10(2):177–199, 2003.

[10.38] Anton Schiela and Folkmar Bornemann. Sparsing in Real Time
Simulation. ZAMM, Zeitschrift für angewandte Mathematik und
Mechanik, 83(10):637–647, 2003.

[10.39] Anton Schiela and Hans Olsson. Mixed-mode Integration for Real-
time Simulation. In Modelica Workshop 2000 Proceedings, pages 69–
75, Lund, Sweden, 2000.

[10.40] Anton Schiela. Sparsing in Real Time Simulation. Diploma
Project, Technische Universität München, 2002. 75p.

[10.41] Michael C. Schweisguth and François E. Cellier. A Bond Graph
Model of the Bipolar Junction Transistor. In Proceedings SCS 4th

International Conference on Bond Graph Modeling and Simulation,
pages 344–349, San Francisco, California, 1999.

[10.42] Siddhartha Shome. Dual–rate Integration Using Partitioned
Runge–Kutta Methods for Mechanical Systems With Interacting Sub-
systems. PhD thesis, The University of Iowa, 2000.

[10.43] Jon M. Smith. Mathematical Modeling and Digital Simulation for
Engineers and Scientists. John Wiley & Sons, New York, second edi-
tion, 1987.

[10.44] Simon J.E. Taylor, Jon Saville, and Rajeev Sudra. Developing
Interest Management Techniques in Distributed Interactive Simulation
Using Java. In Proceedings WSC’99, Winter Simulation Conference,
pages 518–523, 1999.

[10.45] Pentti J. Vesanterä and François E. Cellier. Building Intelligence
into an Autopilot – Using Qualitative Simulation to Support Global
Decision Making. Simulation, 52(3):111–121, 1989.

[10.46] Jörg Wensch, Karl Strehmel, and Rüdiger Weiner. A Class of
Linearly–Implicit Runge–Kutta Methods for Multibody Systems. Ap-
plied Numerical Mathematics, 22(1–3):381–398, 1996.

[10.47] Bernard P. Zeigler, Larry C. Schooley, François E. Cellier, and
FeiYue Wang. High–Autonomy Control of Space Resource Processing
Plants. IEEE Control Systems, 13(3):29–39, 1993.

10.13 Bibliography 507

10.13 Bibliography

[B10.1] Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson, Johan An-
dreasson, Martin Otter, Christian Schweiger, and Brück, Dag . Real–
time Simulation of Detailed Automotive Models. In Proceedings 2003
Modelica Conference, Linköping, Sweden, 2003.

[B10.2] José Manuel Jiménez Bascones. Formulaciones cinemáticas y
dinámicas para la simulación en tiempo real de sistemas de sólidos
ŕıgidos. PhD thesis, Universidad de Navarra, San Sebastián, Spain,
1993.

[B10.3] Sean Murphy, Jonathan Labin, and Robert Lutz. Experiences Us-
ing the Six Services of the IEEE 1516.1 Specification: A 1516 Tutorial.
In Proceedings SIW’04, Spring Simulation Interoperability Workshop,
paper 04S–SIW–056, 2004.

[B10.4] Shinichi Soejima and Takashi Matsuba. Application of Mixed
Mode Integration and New Implicit Inline Integration at Toyota. In
Proceedings 2002 Modelica Conference, Oberpfaffenhofen, Germany,
2002.

10.14 Homework Problems

[H10.1] Semi–implicit Trapezoidal Rule

Derive a semi–implicit version of the trapezoidal rule

x(tk+1) = x(tk) +
h

2
[f(x(tk), tk) + f(x(tk+1), tk+1)] (H10.1a)

Hint: Approximate f(x(tk+1), tk+1) using the ideas developed in Section
10.4.

Show that the stability domain of the method coincides with that of
the fully–implicit trapezoidal rule (i.e., show that also the semi–implicit
trapezoidal rule is F–stable).

[H10.2] Pendulum

Using the semi–implicit trapezoidal formula, simulate a pendulum motion
that can be described by the state–space model:

ẋ1 = x2

ẋ2 = − sin(x1) − b · x2

assuming that the friction parameter is b = 0.02.

508 Chapter 10. Real–time Simulation

Start from the initial condition x0 = (0.5 0.5)T using a step size of
h = 0.5, and simulate until tf = 500 time units.

Repeat the experiment using the fully–implicit trapezoidal rule.
Compare the results as well as the number of floating–point operations

required for the two simulations.

[H10.3] Frictionless Pendulum

Repeat problem H10.2 with b = 0 (i.e., without friction).
Compare the results obtained with the two integration methods. Explain

the differences.

[H10.4] Hydraulic Motor

We wish to simulate a position control system involving a hydraulic motor.
Figure H10.4a shows the schematic of a hydraulic motor with two chambers
and a set of flows.

FIGURE H10.4a. Hydraulic motor schematic.

The physics behind the hydraulic motor model are explained in the com-
panion book [10.4].

10.14 Homework Problems 509

Due to the compressibility of the fluid, the change in the pressures of
the two chambers is proportional to the flow balance in and out of these
chambers:

ṗ1 = c1 · (qL1 − qi − qe1 − qind) (H10.4a)
ṗ2 = c1 · (qind + qi − qe2 − qL2) (H10.4b)

where c1 = 5.857× 1013 kg m−4 sec−2 is the inverse of the compressibility
constant.

There exist several laminar leakage flows in this model. The flow qi is
the internal leakage flow between the two chambers:

qi = ci · pL = ci · (p1 − p2) (H10.4c)

where pL is the load pressure of the motor, and ci = 0.737×10−13 kg−1 m4 sec
is the internal leakage coefficient. The flows qe1 and qe2 are external leakage
flows:

qe1 = ce · (p1 − p0) (H10.4d)
qe2 = ce · (p2 − p0) (H10.4e)

where p0 = 1.0132 × 105 N m−2 is the ambient air pressure, and ce =
0.737 × 10−12 kg−1 m4 sec is the external leakage coefficient.

The load pressure, pL, causes a mechanical torque, τm, on the motor
block, which makes the motor spin, ωm, and move forward. Thereby an
induced flow, qind, is generated. In the process, some of the hydraulic power,
pL · qind, is converted into mechanical power, τm · ωm. The equations of
transformation can be written as:

τm = ψm · pL (H10.4f)
qind = ψm · ωm (H10.4g)

where ψm = 0.575 × 10−5 m3.
On the mechanical side, the motor experiences inertia and friction. New-

ton’s law can be formulated as follows:

Jm · ω̇m = τm − ρm · ωm (H10.4h)

where Jm = 0.08 kg m2 is the inertia of the motor block, and ρm =
1.5 kg m2 sec−1 is the friction constant of the motor.

The load flows, qL1 and qL2, in and out of the hydraulic motor are con-
trolled by the four–way servo valve shown in Fig. H10.4b.

The tongue position, x, is normalized such that, x = 1 corresponds to the
orifices of the valve being entirely open. In the central position, x = 0, all
four orifices are 5% open, i.e., the servo valve has an underlap of x0 = 0.05.

The flows through the orifices are turbulent. Consequently, they observe
a square–root law, as shown in Fig. H10.4c.

510 Chapter 10. Real–time Simulation

x

p
0

p
0

p
s

q
L2

q
1q

2
q

3
q

4

q
L1

p
2

p
1

FIGURE H10.4b. Four–way servo valve schematic.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−7 Square-root law of turbulent flows

Δp[N/m2]

q[
m

3
/
se

c]

FIGURE H10.4c. Square–root law of turbulent flows of a liquid substance through
a narrow orifice.

Thus, each of the four turbulent flows, q1 . . . q4, satisfies an equation of
the type:

q = k · Δx · sign(Δp) ·
√
|Δp| (H10.4i)

where k = 0.248 × 10−6 kg−1/2 m7/2, Δx is the relative opening of the
orifice, i.e. Δx = x0 ± x limited between zero and one, and Δp is the
pressure drop across the orifice. ps = 0.137×108 N m−2 is the line pressure

10.14 Homework Problems 511

of the hydraulic motor.
¿From Fig. H10.4b, we conclude that:

qL1 = q1 − q2 (H10.4j)
qL2 = q3 − q4 (H10.4k)

The tongue of the valve is moved by the servo, an electro–mechanical
device, depicted in Fig. H10.4d.

ρs

ks

is
Rs

Ls

u

x

FIGURE H10.4d. Servo schematic.

On the electrical side, the applied voltage, u, causes a current, is to flow
through a coil. The coil exhibits a resistance, Rs, and an inductance, Ls.
Thus:

u = Rs · is + Ls · dis
dt

+ uind (H10.4l)

where Rs = 1.25× 10−5 Ω, and Ls = 10−9 H are the normalized resistance
and inductance of the coil. The current is causes a force, Fs, in the tongue,
which makes the tongue move. The velocity of the tongue, v, causes an
induced voltage, uind on the electrical side. In the process, some of the
electrical power, uind · is, is converted to mechanical power, Fs · v. The
equations of transformation are:

Fs = ψs · is (H10.4m)
uind = ψs · v (H10.4n)

where ψs = 0.005 Volts m−1 sec = 0.005 N Amps−1.
On the mechanical side, the motion of the tongue is opposed by a spring

and a damper. Thus, Newton’s law can be formulated as follows:

ms · v̇ = Fs − ks · x − ρs · v (H10.4o)

where ms = 0.01 kg is the normalized mass, ks = 400 N m−1 is the nor-
malized spring constant, and ρs = 2 N m−1 sec is the normalized damper
coefficient.

512 Chapter 10. Real–time Simulation

-

uMax={1}

I

k={1}

k={1}

Servovalve1

Hydrom...

+

Feedback1
ThSet Limiter1 Servo1

Integrator1

θset

θmωm

e u x

FIGURE H10.4e. Hydraulic motor position control scheme.

The overall position control system is depicted in Fig. H10.4e.
We apply a step of θset = 1 rad, and want to observe the step response

θm as a function of time. The limiter block limits the control signal, u to
±1. It has also built in a gain factor of kl = 0.5.

This is a 7th–order model with the state vector:

x = (θm, ωm, p1, p2, x, v, is)T (H10.4p)

We simulate the model until tf = 0.5 sec. You can set the initial values
of all state variables equal to zero, except for the two pressures, p1 and
p2, which you should set initially both equal to the arithmetic mean value
between the line pressure, ps, and the ambient air pressure, p0.

As we wish to prepare this model for real–time simulation, we choose to
simulate the model using a fixed–step FE algorithm.

Determine experimentally the largest step size, hmax, for which the sim-
ulation remains numerically stable. Reduce the step size until the solution
is sufficiently accurate. As a criterion for accuracy, we shall compare so-
lutions θm(t) found once with the step size h and once with the step size
h/2. When the two solutions no longer vary by more than 0.1%:

err = max
∀t

(|θm(t)[h] − θm(t)[h/2]|) ≤ 0.001 (H10.4q)

we consider the solution sufficiently accurate. Find hacc, the step size that
produces an accurate solution, and plot the output variable, θm as a func-
tion of time.

[H10.5] Algebraic Differentiation

For the hydraulic motor of Hw.[H10.4], compute symbolically the Jacobian
of the model. Determine its eigenvalues for the initial state, and explain,
on the basis of these eigenvalues, the largest step size, hmax found experi-
mentally in Hw.[H10.4].

What can you conclude about the eigenvalue distribution?

10.14 Homework Problems 513

[H10.6] Multi–rate Integration

We shall once more consider the hydraulic motor problem of Hw.[H10.4].
We noticed in Hw.[H10.5] that the electrical time constant of the servo
valve is faster than the mechanical and hydraulic time constants by several
orders of magnitude.

If the step size is indeed dictated by accuracy considerations, we may
simply be out of luck. Yet, we may not really require an accuracy of 0.1%.
Let us assume that an accuracy of 1% is acceptable. In that case, the step
size is limited by the numerical stability rather than by accuracy consider-
ations.

We now wish to implement a multi–rate integration scheme. We keep the
step size of the electrical time constant at the maximum level determined
earlier, hmax, and we increase the step sizes of the other six integrators by
making them multiples of hmax.

We shall use the single–rate simulation as a reference solution. Determine
experimentally, how many time less frequently you may sample the other six
integrators, until the multi–rate solution starts differing from the reference
solution by more than 1%.

[H10.7] Mixed–mode Integration

We wish to look at the hydraulic motor problem of Hw.[H10.4] once again.
This time, we shall replace the FE algorithm of the electrical inductor by
the semi–implicit version of the BE algorithm.

Using the same technique proposed earlier to compare the solution com-
puted for step size h with that computed for step size h/2, determine the
largest step size, hacc, using a mixed–mode integration approach that will
offer an accuracy of 1%.

[H10.8] Deep–sea Oil Drilling

We wish to study a deep–sea oil drilling operation. Figure H10.8a shows a
deep–sea oil drilling platform with a pipe hanging from it.

The problem was taken from Eitelberg’s Ph.D. dissertation [10.14]. The
pipe has a length of � = 5 km. It has a diameter of φ = 0.5 m. The pipe
experiences forces from the sea. The inputs, u(z), represent the forces per
meter of exposed pipe at a given depth, z.

In accordance with [10.14], the displacement of the pipe, x(t, z), can be
modeled as follows:

∂2x

∂t2
=2 · μF · vF

μ
· ∂2x

∂z∂t
− β1

μ
· ∂x

∂t
− α

μ
· ∂4x

∂z4
+
(

γ(z) − μf · v2
F

2μ

)
· ∂2x

∂z2

− μ̄R · g
μ

· ∂x

∂z
+

1
μ
· u(z) (H10.8a)

514 Chapter 10. Real–time Simulation

m0

x

z

u(z)

FIGURE H10.8a. Deep–sea oil drilling platform with pipe.

with the abbreviations:

γ(z) =
g

μ
· (mL − μ̄R · (� − z)) (H10.8b)

μ = μR + μF (H10.8c)

where μR = 173 kg m−1 is the specific mass of the pipe, μ̄R = 150 kg m−1

is a reduced specific mass of the pipe, μF = 180 kg m−1 is the specific mass
of the oil in the pipe, α = 142 × 106 kg m3 sec−2 is the torsion stiffness,
β1 = 20 kg m−1 sec−1 is the damping coefficient, vF = 5 m sec−1 is the
velocity of the oil in the pipe, and mL = 104 kg is the mass of the weight
at the lower end of the pipe.

The boundary conditions can be specified as follows:

x

∣∣∣∣
z=0

= 0 (H10.8d)

∂2x

∂z2

∣∣∣∣
z=0

= 0 (H10.8e)

∂2x

∂z2

∣∣∣∣
z=�

= 0 (H10.8f)

∂2x

∂t2

∣∣∣∣
z=�

=
α

mL
· ∂3x

∂z3
− g · ∂x

∂z
+

1
mL

· uL (H10.8g)

where uL is the force tugging at the weight.
We shall convert this hyperbolic partial differential equation to a set

of ordinary differential equations using the Method–of–Lines approach. To

10.14 Homework Problems 515

this end, we shall cut the pipe into 50 segments of Δx = 100 m length each.
Thus, we end up with 100 first–order differential equations.

We shall use 4th–order accurate central differences for the first spatial
derivatives, 5th–order accurate central differences for the second spatial
derivatives, and 5th–order accurate central differences for the fourth spatial
derivatives. Towards the boundary, we shall need to use 4th–order accurate
biased formulae for the spatial derivatives.

For the second boundary condition at the lower end, we shall use 4th–
order accurate biased formulae for the first and third spatial derivatives.

Why did we choose such high–order formulae? We really didn’t have any
choice. The fourth spatial derivative cannot be discretized, unless we use at
least a formula that is 4th–order accurate. Since we use central differences,
we get one additional order of accuracy for free. Since we have to use high–
order for the discretization of the fourth spatial derivative, we might just as
well do the same with the lower–order spatial derivatives, as we get these
approximations for free.

Find the Jacobian of the resulting ODE system, and plot its eigenvalues
in the complex λ–plane.

[H10.9] Inline Integration

We shall once more consider the oil–drilling operation of Hw.[H10.8]. Since
we now know that the eigenvalues are spread up and down, a little to
the left of the imaginary axis, we choose the F–stable trapezoidal rule for
integration.

Inline the trapezoidal rule, and determine a suitable set of tearing vari-
ables. How many tearing variables do you need?

[H10.10] Inline Integration

We shall once more consider the oil–drilling operation of Hw.[H10.8]. this
time around, rather than simulating the model using the trapezoidal rule of
Hw.[H10.9], we shall inline the Newmark integration algorithm, introduced
in Chapter 5 of this book:

vk+1 = vk + h · [(1 − γ) · ak + γ · ak+1] (H10.10a)

xk+1 = xk + h · vk +
h2

2
· [(1 − 2β) · ak + 2β · ak+1] (H10.10b)

where xk, vk, and ak are approximations to the positions, velocities, and
accelerations at time step k. We shall implement the method with the
parameter values β = 1/4, and γ = 1/2.

How many tearing variables do you need now?

516 Chapter 10. Real–time Simulation

10.15 Projects

[P10.1] Helicopter Control

According to Kailath [10.25], the flight of a helicopter near hover conditions
can be described by the linear model:

ẋ =

⎛
⎝−0.02 −1.4 9.8
−0.01 −0.4 0

0 1 0

⎞
⎠ · x +

⎛
⎝0.9

6.3
0

⎞
⎠ · u

y =
(
1 0 0

) · x (P10.1a)

where x1 is the horizontal velocity, x2 is the pitch rate, and x3 is the pitch
angle. The input, u, is the rotor tilt angle. The eigenvalues of the helicopter
model are located at λ1 = −0.6565, and λ2,3 = 0.1183 ± 0.3678 · j. Thus,
the uncontrolled helicopter is unstable.

We wish to design a stabilizing controller using output feedback and a
full–order Luenberger observer [10.25]. The control structure is shown in
Fig. P10.1a.

A

c'b
+

+

h

A

c'b
+

+

+

k'

+

+

-

-

xx
yur

y
xx

.

.

^
^^

system

observer

controller

∫

∫

FIGURE P10.1a. Output feedback with full–order Luenberger observer.

The controller works as follows. We can stabilize the helicopter easily by
a full state feedback. We can place the poles of the controlled helicopter at
λ1,2 = −1± j and λ3 = −2 by multiplying the state vector x from the left
with the vector k′ = (0.0627, 0.4706, 1). The controller gains can be easily
computed using any one of a number of pole placement algorithms [10.25].

Unfortunately, we don’t have the full state available, as only the output
variable, y, is being measured. Thus, we run a model of the helicopter in

10.15 Projects 517

parallel, producing the output, ŷ. We can obtain a stabilization of the ob-
serving model by subtracting the observed output, ŷ, from the true output,
y, and then multiplying that error signal with a vector h, which generates
a set of signals that are then fed back to the summing point of the observer
model. We can place the observer poles at λ1,2 = −2 ± 2 · j and λ3 = −4
by choosing h = (7.58, 2.2695, 2.4644)T .

Since we don’t have a helicopter to play around with, we shall create a
model of the helicopter that we simulate using a fixed–step RK4 algorithm.
We shall implement that model on a computer reading the input signal,
u, from an input port, and putting out the output, y, through an output
port.

We implement the controller including the observer model on a second
computer using an inlined version of the BE algorithm for the observer
states. This model reads in the output, y, as input from an input port,
and puts out the output, u, through an output port. The second input, r,
is implemented in the form of an asynchronous time event, i.e., r remains
constant until the user of the system decides to set a new value.

Both computers operate on the same real–time clock. The step size is set
such that neither computer experiences overruns.

Real control engineers would go two steps further. They would reduce
the order of the observer as much as possible. In the given system, we
could get away with a second–order observer. They would then convert the
resulting analog controller to an equivalent digital controller designed in the
z–domain. We shall not do any of this, as this book is about simulation,
and not about control.

We wish to implement the real–time simulation in MATLAB using the
HLA architecture. To this end, several hurdles will have to be taken first.
The real–time input and output ports are implemented using MATLAB’s
Instrument Control Toolbox, which can communicate with the outside world
using a number of different protocols, including TCP/IP.

Yet, this won’t solve all of our problems yet. Since MATLAB runs on
general–purpose operating systems, such as MS/Windows or Linux, the
execution speed of a MATLAB code cannot be guaranteed. None of these
operating systems were designed for real–time applications.

However, MATLAB programs (M–files) can be translated to real–time
executable C–code using MathWork’s Real-Time Workshop. This code can
then be ported over to a dedicated real–time system using MathWork’s
xPC Target software.

You will need a third computer to implement an HLA kernel that imple-
ments the basic RTI functionality and that can communicate with MAT-
LAB’s Instrument Control Toolbox.

518 Chapter 10. Real–time Simulation

10.16 Research

[R10.1] Real–time Simulation of Hyperbolic PDEs

We have looked in Hw.[H10.8] at a hyperbolic differential equation that we
wished to simulate in real time. It didn’t look good at all.

In Chapter 6 of this book, we have learnt that many researchers prefer
explicit ODE solvers for dealing with hyperbolic PDEs. However, the FE
algorithm won’t cut the pie, because it will take incredibly small time steps
to capture the eigenvalues close to the imaginary axis inside the stability
region of the algorithm. Thus, we would need to use either an AB3 or an
RK4 algorithm, which may still be the cheapest solution to the problem.

Multi–rate integration is out of the question, because all of the eigen-
values have similar real parts. For the same reason, also the mixed–mode
integration won’t work.

We tried inline integration of implicit F–stable algorithms instead, but
weren’t exactly successful with this approach either. The problem is that
we need large numbers of tearing variables, i.e., the Hessian matrix in the
Newton iteration is still unacceptably large.

This leads to an open research question: Can integration algorithms be
found that are either F–stable of stiffly stable that would allow us to get
away with a much smaller number of tearing variables?

Each explicit integrator breaks some loops, thereby reducing the size of
the remaining Hessian matrix. Can we selectively turn some of the inte-
grators into explicit integrators, while preserving the overall F–stable or
stiffly–stable nature of the algorithm? Could we, for example, find an algo-
rithm that is F–stable or stiffly–stable that integrates all of the velocities,
vk, using an explicit algorithm, while all positions, xk, are being integrated
using an implicit algorithm?

Eitelberg, in his dissertation, went a different route. First, he used non–
equidistantly spaced intervals in his discretization scheme, making the in-
tervals more narrow, where the pipe is bent the most, in order to reduce
the number of segments needed for a sufficiently accurate representation of
the pipe. He then used fifth–order accurate splines for the interpolation. In
this way, Eitelberg ended up with a 40th–order model instead of a 100th–
order model. Second, Eitelberg then studied systematic model reduction al-
gorithms to find different models of lower orders that would still represent
the most interesting solution, x(z = �), accurately enough. In this way, he
was able to reduce the order of the pipe model for control purposes down
from forty to eight.

11

Discrete Event Simulation

Preview

This chapter explores a new way of approximating differential equations,
replacing the time discretization by a quantization of the state variables.
We shall see that this idea will lead us to discrete event systems in terms
of the DEVS formalism instead of difference equations, as in the previous
approximations.

Thus, before formulating the numerical methods derived from this ap-
proach, we shall introduce the basic definitions of DEVS. This methodol-
ogy, as a general discrete event systems modeling and simulation formalism,
will provide us the tools to describe and translate into computer programs
the routines that implement a new family of methods for the numerical
integration of continuous systems.

Further, the chapter explores the principles of quantization–based ap-
proximations of ordinary differential equations and their representation as
DEVS simulation models.

Finally, we shall briefly introduce the QSS method in preparation for the
next chapter, where we shall study this numerical method in more detail.

11.1 Introduction

In previous chapters, we studied many different methods for the simulation
of continuous systems. In spite of their differences: explicit vs. implicit
methods, fixed–step vs. variable–step, fixed–order vs. variable–order, all of
these algorithms had something fundamental in common: given time tk+1,
a polynomial extrapolation is performed for the purpose of determining the
values of all state variables at that time instant.

In this chapter, we shall pursue an entirely different idea. Rather than
asking ourselves, what value a particular state variable assumes at any given
point in time, we shall ask the question, at what time the state variable
will deviate from its current value by more than ΔQ. Hence we wish to
find the smallest time step, h, such that x(tk + h) = x(tk) ± ΔQ.

Evidently, such an integration algorithm will naturally be a variable–
step method. During time periods, when the state variable changes its
value slowly, the algorithm will compute using large step sizes, whereas it
will use small step sizes, whenever the state variable exhibits a large either
positive or negative gradient.

520 Chapter 11. Discrete Event Simulation

It should be remarked that, when x is a state vector, the resulting value of
h will be different for each component of x. Then, we have two possibilities:
we can either choose the smallest of these values as the next central step
size, h, or we can use different values of hi for different components of the
state vector, xi, leading to an asynchronous simulation, in which each state
variable possesses its own simulation time.

The former of these two alternatives can be combined with any of the
previously introduced integration algorithms. It simply represents a novel
way of performing step–size control. It is an interesting concept, but shall
not be pursued further in this chapter, as it doesn’t really introduce any
new challenges.

The latter idea looks much more revolutionary. At first glance, the re-
sulting methods would consist in a sort of combination of multi–rate and
variable–step algorithms.

Up to this point, all of the methods we saw can be described by difference
equations. Such a representation makes no sense in a method, in which each
component evolves following its own values of hi.

A first consequence of this remark has to do with linearity. Given a linear
time–invariant system:

ẋ = A · x (11.1)

numerical integration using any of the previously introduced integration
methods leads to a linear difference equation:

xk+1 = F · xk (11.2)

If we allow each component to follow its own step size, we not only lose
the representation as a difference equation, but we also sacrifice linearity.
Consequently, we can no longer hope to be able to draw a stability domain,
as we have gotten accustomed to throughout this book.

¿From a system–theoretic point of view, we can say that all of the meth-
ods that we have looked at until now discretize time. In other words, the
resulting simulation codes (i.e., the models executed by the simulation pro-
gram) are always discrete–time systems. When we talk about discrete–time
systems, we refer to systems that change their states synchronously in time.

Our proposed approach produces algorithms that are entirely different,
as they operate in a completely asynchronous fashion. New problems arise
that shall have to be dealt with. We shall need to discuss both stability
and accuracy of these algorithms in a new light, as our previously used
techniques break down in the context of these algorithms. Also, we shall
need to discuss synchronization mechanisms, a problem that we had not
encountered so far. As most state equations depend on more than one state
variable, the values of which are now known at different time points, we
shall need to analyze, how we can synchronize the state variables for the
purpose of computing state equations under controlled accuracy conditions.

11.2 Space Discretization: A Simple Example 521

Yet, these new algorithms not only cause new difficulties. They also offer
important simplifications and potential savings.

A first simplification relates to the handling of state events. As we men-
tioned in Chapter 9, the integration method must evaluate the discontinu-
ous states at event times. Since those event times usually do not coincide
with the discrete time instants prescribed by the integration method, we
had to modify the method to hit the events with a given accuracy. This
requirement implied adding iteration techniques that not only complicated
the algorithms but also increased the number of computations per elapsed
simulation time. Moreover in the context of real–time simulation, we may
not be able to afford those iterations without losing the race against time.
We shall learn that the newly proposed algorithms do not call for the itera-
tion of state events, and therefore, may be better suited for the simulation
of discontinuous systems, especially in the context of real–time simulation.

Another potential simplification results in the case of large systems of
ODEs, as they arise when discretizing hyperbolic partial differential equa-
tions using the method–of–lines approach. Hyperbolic PDEs frequently lead
to shock waves that travel through space with time. Consequently at any
point in time, the gradients of these waves will be steep at some point in
space, whereas they are flat in all other regions. Using a synchronous inte-
gration algorithm, the step size of all states will have to be adjusted to the
steepest gradient, so that small step sizes will have to be used on all dif-
ferential equations at all times. In contrast, the newly proposed algorithms
will enable us to use large step sizes on most state variables most of the
time.

11.2 Space Discretization: A Simple Example

Returning to our idea of designing integration methods, in which the steps
are ruled by changes in states rather than in time, we shall introduce an
example that shows some of the basic principles of these integration tech-
niques.

Consider the first order system:

ẋa(t) = −xa(t) + 10 · ε(t − 1.76) (11.3a)

where ε(t) represents the unit step function, i.e., ε(t−1.76) describes a unit
step taking place at t = 1.76.

We shall consider the initial condition

xa(t0 = 0) = 10 (11.3b)

If we try to simulate this model using a fixed–step method with a step
size of h = 0.1, which would be appropriated in accordance with the rate,
at which the single state variable changes its value, the time step would

522 Chapter 11. Discrete Event Simulation

occur at an instant of time that does not coincide with the discrete time
instants prescribed by the integration algorithm.

Let us now consider what happens with the following continuous–time
system:

ẋ(t) = −floor[x(t)] + 10 · ε(t − 1.76) (11.4a)

or:

ẋ(t) = −q(t) + 10 · ε(t − 1.76) (11.4b)

where q(t) � floor[x(t)] denotes the integer part of the positive real–valued
variable x(t).

Although the system defined by Eq.(11.4) is nonlinear and does not sat-
isfy the analytical properties that we like (it is highly discontinuous), it can
be easily solved.

When 0 < t < 1/9, we have q(t) = 9 and ẋ(t) = −9. During this
interval, x(t) decreases linearly from 10.0 to 9.0. Then, during the interval
1/9 < t < 1/9 + 1/8, we have q(t) = 8 and ẋ(t) = −8. During this time
interval, x(t) decreases linearly from 9.0 to 8.0.

Continuing with this analysis, we find that x(t) reaches a value of 3.0 at
time t = 1.329. If no time event were to occur, x(t) would reach a value
of 2.0 at time t = 1.829. However at time t = 1.76, when x = 2.138, the
input changes, and from that moment on, we have ẋ(t) = 8. The variable
x(t) increases its value again linearly with time, until it reaches a value of
3.0 at time t = 1.8678.

The real–valued x(t) variable continues to grow, until the system reaches
x(t) = q(t) = 10, at which time the derivative ẋ(t) becomes zero, and the
system will not change its state any longer.

Figure 11.1 shows the trajectories of x(t) and q(t).
We completed this simulation using 17 steps and, ignoring the round–off

problems, we obtained the exact solution of Eq.(11.4). All computations
required to obtain this solution were trivial, because the state derivative
remains constant in between event times, which enabled us to compute the
real–valued variable x(t) analytically.

The solution x(t) and the solution of our original system of Eq.(11.3),
xa(t), are compared in Fig.11.2.

The solutions of the original and the quantized system are definitely re-
lated to each other. By replacing the state variable x(t) by q(t) = floor[x(t)]
on the right hand side of a first–order differential equation, we found an
explicit method to simulate the quantized model.

The question naturally arises, whether we might not be able to generalize
this approach to nth–order systems by quantizing all state variables on the
right hand side of all state equations. Unfortunately, we are not ready to
answer this question yet. To this end, we shall first need to explore the

11.2 Space Discretization: A Simple Example 523

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

11
Solution of Eq.(11.4)

Time

q(
t)

,
x
(t

)

q(t)

x(t)

FIGURE 11.1. Variable trajectories of the system of Eq.(11.4).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

11
Solutions of Eq.(11.3) and Eq.(11.4)

Time

x
a
(t

),
x
(t

)

xa(t)

x(t)

FIGURE 11.2. State trajectories of the systems of Eq.(11.3) and Eq.(11.4).

discrete nature of the system of Eq.(11.4) and introduce some tools for its
representation and simulation.

524 Chapter 11. Discrete Event Simulation

11.3 Discrete Event Systems and DEVS

The simulation of a differential equation system using any of the methods
we studied in previous chapters led us to a set of difference equations of
the form:

x(tk+1) = f(x(tk), tk) (11.5)

where the difference tk+1 − tk can be either constant or variable, and the
function f can be explicitly or implicitly defined. As a consequence, the
simulation program contained an iterative code that advances the time
in accordance with the next step size. In other words, those simulation
methods produce discrete–time models of simulation.

The system of Eq.(11.4) can be viewed as a simulation model, because
it can be exactly simulated with only 17 steps. However, it does not fit the
format of Eq.(11.5). The problem here is the asynchronous way, in which
it deals with the input change at time t = 1.76.

Evidently, we are confronted with a system that is discrete in some way,
which however belongs to a different class than the systems characterized
as discrete–time systems. As we shall see soon, our new approximation can
be represented by a discrete event system.

Many popular discrete event formalisms have been defined that some of
our readers may already be familiar with. These include the state automata,
Petri nets, event graphs, and state charts. However, none of these represen-
tations is suitable for dealing with our system in a general situation. These
graphical languages are limited to systems with a finite number of states.
Fortunately, there has been found a more general discrete event system
formalism, called DEVS, that offers the support that we were looking for.

DEVS, which stands for Discrete EVent System specification [11.14,
11.11], was introduced by Bernard Zeigler in the mid seventies. DEVS
allows to represent all systems, whose input/output behavior can be de-
scribed by sequences of events under the condition that the state undergoes
a finite number of changes within any finite interval of time.

In our context, an event is the representation of an instantaneous change
in some part of a system. It can be characterized by a value and a time of
occurrence. The value can be a number, a vector, a word, or in general, an
element of a given set.

The trajectory defined by a sequence of events assumes the value φ (or
No Event) for all time instants except for those, when there are events. In
those instants, the trajectory takes the value corresponding to the event.
Figure 11.3 shows an event trajectory that takes the value x2 at time t1,
then the value x3 at time t2, etc.

A DEVS model processes an input event trajectory and, according to
that trajectory and its own initial conditions, provokes an output event
trajectory. This input/output behavior is depicted in Fig.11.4.

11.3 Discrete Event Systems and DEVS 525

t

x1

x2

x3

x4

t1 t2 t3 t4 t5

FIGURE 11.3. An event trajectory.

DEVS

FIGURE 11.4. Input/output behavior of a DEVS model.

The behavior of a DEVS model is expressed in a way that is quite com-
mon in automata theory. This kind of representation consists in enumerat-
ing some sets and functions that define the system dynamics in accordance
with certain rules. Since the rules are always the same in a given formalism,
they are not mentioned in each model.

Following this idea, an atomic DEVS model is defined by the following
structure:

M = (X, Y, S, δint, δext, λ, ta)

where:

• X is the set of input event values, i.e., the set of all possible values
that an input event can assume;

• Y is the set of output event values;

• S is the set of state values;

• δint, δext, λ and ta are functions that define the system dynamics.

Figure 11.5 illustrates the behavior of a DEVS model.

526 Chapter 11. Discrete Event Simulation

X

Y

S

s1

s2 = δint(s1)

s3 = δext(s2, e, x1)

s4 = δint(s3)

y1 = λ(s1)

y2 = λ(s3)

x1

eta(s1) ta(s3)

FIGURE 11.5. Trajectories in a DEVS model.

Each possible state s (s ∈ S) has an associated time advance calculated
by the time advance function ta(s) (ta(s) : S → R

+
0). The time advance is

a non–negative real number, determining how long the system remains in
a given state in absence of input events.

Thus, if the state adopts the value s1 at time t1, after ta(s1) units of
time (i.e., at time t1 + ta(s1)), the system performs an internal transition,
taking it to a new state s2. The new state is calculated as s2 = δint(s1).
Function δint (δint : S → S) is called the internal transition function.

When the state changes its value from s1 to s2, an output event is pro-
duced with the value y1 = λ(s1). Function λ (λ : S → Y) is called the
output function. In this way, the functions ta, δint and λ define the au-
tonomous behavior of a DEVS model.

When an input event arrives, the state changes instantaneously. The new
state value depends not only on the value of the input event, but also on
the previous state value and the elapsed time since the last transition. If
the system assumes the state value s2 at time t2, and subsequently, an
input event arrives at time t2 + e < ta(s2) with value x1, the new state
is calculated as s3 = δext(s2, e, x1). In this case, we say that the system
performs an external transition. Function δext (δext : S × R

+
0 × X → S) is

called the external transition function. No output event is produced during
an external transition.

11.3 Discrete Event Systems and DEVS 527

Let us consider the following simple example: A system receives positive
numbers in an asynchronous way. After it received a number x, it generates
an output event with the number x/2 after 3 ·x time units. A DEVS model
that correctly represents this behavior is the following:

M1 = (X, Y, S, δint, δext, λ, ta), where
X = Y = S = R

+

δint(s) = ∞
δext(s, e, x) = x

λ(s) = s/2
ta(s) = 3 · s

Observe that the state can assume a time advance equal to ∞. When this
occurs, we say that the system is in a passive state, since it will no longer
change its state, unless and until it receives an input event.

Let us analyze what happens with the model M1 when it receives an
input event trajectory. Consider for instance that input events occur at
times t = 1, t = 3, and t = 10 with the values 2, 1, and 5, respectively.
Suppose that initially we have t = 0, s = ∞ and e = 0. Then, the following
behavior would be observed:

time t = 0:
s = ∞
e = 0
ta(s) = ta(∞) = ∞

time t = 1−:
s = ∞
e = 1

time t = 1:
s = δext(s, e, x) = δext(∞, 1, 2) = 2

time t = 1+:
s = 2
e = 0
ta(s) = ta(2) = 6

time t = 3−:
s = 2
e = 2

time t = 3:
s = δext(s, e, x) = δext(2, 2, 1) = 1

time t = 3+:
s = 1
e = 0

528 Chapter 11. Discrete Event Simulation

ta(s) = ta(1) = 3

time t = 6:

output event with value λ(s) = λ(1) = 0.5
s = δint(s) = δint(1) = ∞

time t = 6+:
s = ∞
e = 0
ta(s) = ta(∞) = ∞

time t = 10−:
s = ∞
e = 4

time t = 10:
s = δext(s, e, x) = δext(∞, 4, 5) = 5

time t = 10+:
s = 5
e = 0
ta(s) = ta(5) = 15

time t = 25:

output event with value λ(s) = λ(5) = 2.5
s = δint(s) = δint(5) = ∞

time t = 25+:
s = ∞
e = 0
ta(s) = ta(∞) = ∞

According to the above model, when a new state arrives through an
input event before the previous state has expired, the system assumes the
new state value and forgets the previous one. In the above example, this
happens at time t = 3. A different scenario might require that arriving
input events are to be ignored, while the system is busy. This modified
behavior can be generated using the following DEVS model:

M2 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R

+

S = R
+ × R

+
0

δint(s) = δint(z, σ) = (∞,∞)
δext(s, e, x) = δext(z, σ, e, x) = s̃

λ(s) = λ(z, σ) = z/2
ta(s) = ta(z, σ) = σ

where:

11.4 Coupled DEVS Models 529

s̃ =
{

(x, 3 · x) if z = ∞
(z, σ − e) otherwise

In this new model, we included the variable σ in the state s. People working
routinely with DEVS almost always introduce the variable σ, set equal to
the time advance, as this generally facilitates the modeling task.

11.4 Coupled DEVS Models

As mentioned before, DEVS is a general formalism that can be used to de-
scribe highly complex systems. However, the representation of a complex
system based only on transition and time advance functions is rather diffi-
cult. The reason is that in those functions we have to imagine and describe
all possible situations in the system.

Complex systems can usually be thought of as the coupling of simpler
systems. Through the coupling, the output events of some subsystems are
converted to input events of other subsystems. The DEVS methodology
guarantees that the coupling of atomic DEVS models defines new DEVS
models, i.e., DEVS is closed under coupling. For this reason, complex sys-
tems can be represented by DEVS in a hierarchical fashion [11.11].

There are two different ways, in which DEVS models may be coupled.
The first approach is the most general one. It uses translation functions
between subsystems. The second approach is based on the use of input and
output ports. We shall use the latter approach, since it is simpler and more
adequate in the context of continuous system simulation.

The use of ports requires adding to the input and output events a new
number, word, or symbol, representing the port, through which the event
is arriving. It suffices to enumerate the connections describing the cou-
plings between different systems. An internal connection involves an input
and an output port belonging to subsystems. However in the context of
hierarchical coupling, there also exist connections from the output ports
of subsystems to the output ports of the system. These are called external
output connections. There also exist connections from the input ports of
the systems to input ports of subsystems. These are referred to as external
input connections.

Figure 11.6 shows a coupled DEVS model N that is the result of coupling
the models Ma and Mb. There, the output port 1 of Ma is connected to
the input port 0 of Mb. This connection can be represented by the pair
[(Ma, 1), (Mb, 0)]. Other connections are [(Mb, 0), (Ma, 0)], [(N, 0), (Ma, 0)],
[(Mb, 0), (N, 1)], etc. According to the closure property of DEVS, the model
N can itself be used in exactly the same way, as an atomic DEVS model
would be used, and it can be coupled with other atomic and/or coupled
models.

530 Chapter 11. Discrete Event Simulation

Ma

Mb

N

FIGURE 11.6. Coupled DEVS model.

Note that the input and output ports are numbered using integer num-
bers starting from 0. The DEVS methodology allows using any word to
identify a port. However in the context of this book, we shall always use
integer numbers starting from 0, because we shall work with a software tool
that defines the ports in this fashion [11.7].

Consider for example a system that calculates a static function f(u0, u1),
where u0 and u1 are real–valued piecewise constant trajectories generated
by other subsystems. We can represent piecewise constant trajectories by
sequences of events, if we relate each event to a change in the trajectory
value. Using this idea, we can build the following atomic DEVS model:

M3 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N0

S = R
2 × R

+
0

δint(s) = δint(u0, u1, σ) = (u0, u1,∞)
δext(s, e, x) = δext(u0, u1, σ, e, xv, p) = s̃

λ(s) = λ(u0, u1, σ) = (f(u0, u1), 0)
ta(s) = ta(u0, u1, σ) = σ

where:

s̃ =
{

(xv, u1, 0) if p = 0
(u0, xv, 0) otherwise

Here, each input and output event includes an integer number, indicating
the corresponding input or output port. In the input events (cf. the defi-
nition of s̃ in function δext), the port p can be either 0 or 1. In the output
events (cf. function λ), the output port is always 0.

Now, if we want to represent another system that calculates the func-
tion f [f(u0, u1), u2], we must couple two models of the M3 class with a
connection from the output port of the first subsystem to the input port

11.5 Simulation of DEVS Models 531

0 of the second subsystem. The system output must be taken from the
second model. Thus, calling the subsystems A and B, respectively, and
the overall system N , the connections can be expressed as: [(A, 0), (B, 0)],
[(N, 0), (A, 0)], [(N, 1), (A, 1)], [(N, 2), (B, 1)], and [(B, 0), (N, 0)].

The DEVS methodology uses a formal structure for representing coupled
DEVS models with ports. The structure includes the subsystems, the con-
nections, the system input and output sets, and a tie–breaking function to
govern the occurrence of simultaneous events. The connections are divided
into three sets: one set composed by the connections between subsystems
(internal connections), another set that contains the connections from the
system to the subsystems (external input connections), and a final set that
lists the connections from the subsystems to the system (external output
connections).

The use of the aforementioned tie–breaking function can be avoided with
Parallel–DEVS, which is an extension of the DEVS formalism that allows
dealing with simultaneous events.

We shall not develop these latter concepts, neither the coupled DEVS
formal structure nor the parallel–DEVS formalism, any further, since our
aim is not the introduction of the complete DEVS methodology here. We
are only interested in using DEVS as a tool for continuous system simu-
lation. For a more complete coverage of DEVS methodology, we refer the
reader to Zeigler’s book [11.11].

11.5 Simulation of DEVS Models

One of the most important features of DEVS is that very complex models
can be simulated in an easy and efficient manner.

DEVS models can be simulated with a simple ad–hoc program written
in any language. In fact, the simulation of a DEVS model is not much more
complicated than that of a discrete–time model.

A basic algorithm that may be used for the simulation of a coupled DEVS
model can be described by the following steps:

(a). Identify the atomic model that, according to its time advance and
elapsed time, is the next to perform an internal transition. Call the
system d∗, and let tn be the time of the aforementioned transition.

(b). Advance the simulation clock t to t = tn, and execute the internal
transition function of model d∗.

(c). Propagate the output event produced by d∗ to all atomic models
connected to it through its output ports, while executing the cor-
responding external transition functions. Then, return to step (a)
above.

532 Chapter 11. Discrete Event Simulation

One of the simplest ways for implementing these steps is by writing a pro-
gram with a hierarchical structure equivalent to the hierarchical structure
of the model to be simulated. This is the method developed in [11.11],
where a routine called DEVS–simulator is associated with each atomic
DEVS model, and a different routine called DEVS–coordinator is related to
each coupled DEVS model. At the top of the hierarchy, there is a routine
called DEVS–root–coordinator that manages the global simulation time.
Figure 11.7 illustrates this simulation technique for a coupled DEVS model:

atomic1 atomic2 atomic3

coupled1

coupled2

simulator1 simulator2

simulator3coordinator1

coordinator2

root − coordinator

FIGURE 11.7. Hierarchical model and simulation scheme.

The simulators and coordinators of consecutive layers communicate with
each other through messages. The coordinators send messages to their chil-
dren, triggering the execution of their transition functions. When a simu-
lator goes through a transition, it calculates its next state and, when the
transition is internal, sends the output value to its parent coordinator. The
simulator state coincides with its associated atomic DEVS model state.

When a coordinator executes a transition function, it sends messages
to some of its children, triggering the execution of their own transition
functions. When an output event produced by one of its children has to be
propagated outside the coupled model, the coordinator sends a message to
its own parent coordinator, carrying the output value.

Each simulator or coordinator has a local variable tni
, indicating the

time instant, when its next internal transition is scheduled to occur. In a
simulator, the value of that variable is calculated using the time advance
function of the corresponding atomic model. In a coordinator, it is calcu-
lated as the minimum tni

of its children. Thus, the tni
of the coordinator

at the root of the tree is the time instant, at which the next event of the
entire system will occur. The root coordinator is responsible for advancing
the global time t to that value.

At the beginning of the simulation, a message of initialization is sent
from the root to the leaves of the tree structure.

The following pseudo–code corresponds to a simulator associated with
a generic atomic model. There, the i–message, ∗–message, and x–message
represent the initialization, internal transition, and input message, respec-
tively. These messages are sent from a parent to its children. Similarly, the

11.5 Simulation of DEVS Models 533

y–message is an output message, sent from a child to its parent.

DEVS–simulator
variables:

tl // time of last event
tn // time of next event

s // state of the DEVS atomic model
e // elapsed time in the actual state
y = (y.value, y.port) // current output of the DEVS atomic model

when i–message (i, t) is received at time t
tl = t − e
tn = tl + ta(s)

when ∗–message (∗, t) is received at time t
y = λ(s)

send y–message (y, t) to parent coordinator
s = δint(s)
tl = t
tn = t + ta(s)

when x–message (x, t) is received at time t
e = t − tl
s = δext(s, e, x)
tl = t
tn = t + ta(s)

end DEVS–simulator

The routine corresponding to a coordinator can be written as follows:

DEVS–coordinator
variables:

tl // time of last event
tn // time of next event
y = (y.value, y.port) // current output of the DEVS coordinator
D // list of children
IC // list of connections of the form [(di, portx), (dj , porty)]
EIC // list of connections of the form [(N, portx), (dj , porty)]
EOC // list of connections of the form [(di, portx), (N, porty)]

when i–message (i, t) is received at time t
send i–message (i, t) to all children
d∗ = arg[mind∈D(d.tn)]
tl = t
tn = d∗.tn

when ∗–message (∗, t) is received at time t
send ∗–message (∗, t) to d∗
d∗ = arg[mind∈D(d.tn)]
tl = t
tn = d∗.tn

when x–message ((x.value, x.port), t) is received at time t
(v, p) = (x.value, x.port)
for each connection [(N, p), (d, q)]

send x–message ((v, q),t) to child d
d∗ = arg[mind∈D(d.tn)]
tl = t
tn = d∗.tn

534 Chapter 11. Discrete Event Simulation

when y–message ((y.value, y.port),t) is received from d∗
if a connection [(d∗, y.port), (N, q)] exists

send y–message ((y.value, q),t) to parent coordinator
for each connection [(d∗, y.port), (d, q)]

send x–message ((y.value, q),t) to child d
end DEVS–coordinator

Finally, the root coordinator executes the following routine:

DEVS–root–coordinator
variables:

t // global simulation time
d // child (coordinator or simulator)

t = t0
send i–message (i,t) to d
t = d.tn
loop

send ∗–message (∗,t) to d
t = d.tn

until end of simulation
end DEVS–root–coordinator

There are many other possibilities for implementing a simulation engine
for DEVS models. The main problem with the routines outlined is that,
due to their hierarchical structure, we may observe a significant traffic
of messages passing from higher to lower layers of the architecture. All of
these messages and their corresponding computational time can be avoided
if a flat simulation structure is being used. Hierarchical DEVS simulation
architectures can be converted to flat DEVS simulation architectures fairly
easily [11.4]. In fact, most of the software tools mentioned before implement
the simulation based on a flat code.

Although the implementation of the pseudo code shown above is fairly
straightforward, practical models are usually composed of many subsys-
tems, and therefore, ad–hoc programming of all of these models may be-
come very time–consuming.

In recent years, a number of different software tools for the simulation
of DEVS models have been developed. Some of these tools offer software
libraries, graphical user interfaces, and a variety of other facilities that are
designed to support the user in the modeling task.

A number of software packages for DEVS simulation have been placed
in the public domain, including DEVS–Java [11.13], DEVSim++ [11.5],
DEVS–C++ [11.1], CD++ [11.10], and JDEVS [11.2].

In this book, we shall focus on PowerDEVS [11.7, 11.8, 11.9], a software
that –in spite of being a general–purpose DEVS simulator– is a software
environment that was specifically conceived for facilitating the simulation
of continuous systems.

As we already mentioned, this textbook is not geared towards a general

11.6 DEVS and Continuous System Simulation 535

course on DEVS, and we do not expect the reader to become an expert on
DEVS. Our aim is to provide enough information about DEVS, such that a
PowerDEVS user will understand enough of the underlying principles to be
able to make use of PowerDEVS as a tool for continuous system simulation.

PowerDEVS is a tool that was designed with many different kinds of
users in mind, ranging from mere beginners, who don’t know anything
about either DEVS or C++ programming, to experts in both domains.

PowerDEVS offers a convenient graphical user interface that permits
creating coupled DEVS models using the typical drag and drop tools. A
number of DEVS atomic model definitions have been predefined and stored
in a PowerDEVS model library.

Atomic models can be easily created and modified using an atomic model
editor, where the user has to define the transition, output, and time advance
functions using C++ syntax.

11.6 DEVS and Continuous System Simulation

In the first example of section 11.4, we saw that piecewise constant trajecto-
ries can be represented by sequences of events. This simple idea constitutes
the basis for the use of DEVS in the simulation of continuous systems.

In that example, we also showed that a DEVS model can represent the
behavior of a static function with piecewise constant input trajectories.
The problem is that the continuous system trajectories are usually far from
being piecewise constant. However, we can alter the system, such that it
exhibits these kinds of trajectories. In fact, that is what we did to the
system of Eq.(11.3), where we used the floor function to convert it to the
system of Eq.(11.4).

We can split Eq.(11.4) in the following way:

ẋ(t) = dx(t) (11.6a)
q(t) = floor[x(t)] (11.6b)

and:

dx(t) = −q(t) + u(t) (11.7)

where u(t) = 10 · ε(t − 1.76).
We can represent this system using the block diagram of Fig.11.8.
As we mentioned before, the subsystem of Eq.(11.7) –being a static

function– can be represented by the DEVS model M3 presented in Sec-
tion 11.4.

The subsystem of Eq.(11.6) is a dynamic system having a piecewise con-
stant input trajectory dx(t) and a piecewise constant output trajectory
q(t). We can represent it exactly using the following DEVS model:

536 Chapter 11. Discrete Event Simulation

q(t)u(t) x(t)dx(t) ∫

FIGURE 11.8. Block diagram representation of Eqs.(11.6–11.7).

M4 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
2 × Z × R

+
0

δint(s) = δint(x, dx, q, σ) = (x + σ · dx, dx, q + sign(dx),
1

|dx|)
δext(s, e, x) = δext(x, dx, q, σ, e, xv, p) = (x + e · dx, xv, q, σ̃)
λ(s) = λ(x, dx, q, σ) = (q + sign(dx), 0)
ta(s) = ta(x, dx, q, σ) = σ

where:

σ̃ =

⎧⎪⎪⎨
⎪⎪⎩

q + 1 − x
xv

if xv > 0
q − x
xv

if xv < 0

∞ otherwise

Now, if we want to simulate the system of Eqs.(11.6–11.7) using Pow-
erDEVS, we can translate the generic DEVS atomic models, M3 and M4,
into corresponding PowerDEVS atomic models.

A PowerDEVS atomic model corresponding to M3 looks, in the atomic
model editor, as follows:

ATOMIC MODEL STATIC1
State Variables and Parameters:

float u[2],sigma; //states
float y; //output
float inf ; //parameters

Init Function:
inf = 1e10;
u[0] = 0;
u[1] = 0;
sigma = inf ;
y = 0;

11.6 DEVS and Continuous System Simulation 537

Time Advance Function:
return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float xv;
xv = *(float*)(x.value);
u[x.port] = xv;
sigma = 0;

Output Function:
y = u[0] − u[1];
return Event(&y,0);

The conversion of the DEVS model M3 to the corresponding PowerDEVS
model STATIC1 is straightforward.

Similarly, the DEVS model M4 can be represented in PowerDEVS as
follows:

ATOMIC MODEL NHINTEGRATOR

State Variables and Parameters:
float X, dX, q, sigma; //states
//we use capital X because x is reserved
float y; //output
float inf ; //parameters

Init Function:
va list parameters;
va start(parameters, t);
X = va arg(parameters, double);
dX = 0;
q =floor(X);
inf = 1e10;
sigma = 0;
y = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
X = X + sigma ∗ dX;
if (dX > 0) {

sigma = 1/dX;
q = q + 1;
}

else {
if (dX < 0) {

sigma = −1/dX;
q = q − 1;

538 Chapter 11. Discrete Event Simulation

}
else {

sigma = inf ;

};
};

External Transition Function:
float xv;
xv = *(float*)(x.value);
X = X + dX ∗ e;
if (xv > 0) {

sigma = (q + 1 − X)/xv;
}

else {
if (xv < 0) {

sigma = (q − X)/xv;
}

else {
sigma = inf ;

};
};
dX = xv;

Output Function:
if (dX == 0) {y = q;} else {y = q + dX/fabs(dX);};
return Event(&y,0);

Again, the translation was fairly direct. However, we added a few new
items to the init function. The first two lines are automatically included by
the atomic model editor, when a new model is being edited. They declare
a variable parameters, where the graphical user interface puts the model
parameters. In our case, we defined the initial condition in variable X as a
parameter. The third line in the init function just takes the first parameter
of the block and places it in X.

Then in the graphical user interface, we can just double click on the
block and change the value of that parameter (i.e., we can change the
initial condition without changing the atomic model definition).

The other change with respect to model M4 is also related to the inclusion
of initial conditions. At the beginning of the simulation, we force the model
to provoke an event, so that the initial value of the corresponding quantized
variable q becomes known to the rest of the system. We shall write more
about this topic in the next chapter.

The coupled PowerDEVS model generated using the graphical model
editor is shown in Fig.11.9.

In that model, beside from the atomic models STATIC1 and NHINTE-
GRATOR, we included three more blocks: a STEP block that produces
an event with value 10 at time t = 1.76, and two additional models that
save and display the simulation results. These last two models are being

11.6 DEVS and Continuous System Simulation 539

Step1
Static1 NHIntegrator

iss2disk1

Scope1

∫

∫

FIGURE 11.9. Coupled PowerDEVS model of Eqs.(11.6–11.7).

included with the standard PowerDEVS library.
Using the PowerDEVS model of Fig.11.9, we obtained the data plotted

in Fig.11.1. The plot of that figure was generated by MATLAB, using the
data saved in an appropriate format on a file by the PowerDEVS block
iss2dsk.

The subsystem of Eq.(11.6) corresponds to the integrator together with
the staircase block in the block diagram of Fig.11.8. It is equivalent to
DEVS model M4, represented by the NHINTEGRATOR model in Pow-
erDEVS.

This is, what Zeigler called the quantized integrator [11.12, 11.11]. There,
the function floor acts as a quantization function. A quantization function
maps real–valued numbers onto a discrete set of real values.

A system that relates its input and output by any type of quantization
function shall henceforth be called a quantizer. Thus, our staircase block is
a particular case of a quantizer with uniform quantization.

A quantized integrator is an integrator concatenated with a quantizer
that may employ either a uniform or a non–uniform quantization scheme.

Similarly, model M3 models a static function with its input vector in R
2.

The corresponding STATIC1 PowerDEVS model implements a particular
case of such a static function, namely the function: f(u0, u1) = u0 − u1.
A DEVS model for generic static functions with their input vector in R

n

can easily be built and programmed in PowerDEVS (cf. Hw.[H11.4] for the
general linear case).

In the same way, we can obtain a DEVS model representation of general
quantized integrators that can be employed, whenever their input trajec-
tories are piecewise constant, and it is also evident that we can build a
generic DEVS model of an arbitrary static function, as long as its input
trajectories are piecewise constant.

Thus, if we have a general time–invariant system1:

1We shall use xa to denote the state variables of the original system, so that xa(t) is
the analytical solution.

540 Chapter 11. Discrete Event Simulation

ẋa1 = f1(xa1 , xa2 , · · · , xan
, u1, · · · , um)

ẋa2 = f2(xa1 , xa2 , · · · , xan
, u1, · · · , um)

...
ẋan

= fn(xa1 , xa2 , · · · , xan
, u1, · · · , um)

(11.8)

with piecewise constant input functions uj(t), we can transform it into:

ẋ1 = f1(q1, q2, · · · , qn, u1, · · · , um)
ẋ2 = f2(q1, q2, · · · , qn, u1, · · · , um)

...
ẋn = fn(q1, q2, · · · , qn, u1, · · · , um)

(11.9)

where qi(t) is related to xi(t) by some quantization function.
The variables qi are called quantized variables. This system of equations

can be represented by the block diagram of Fig.11.10, where q and u are the
vectors formed by the quantized variables and input variables, respectively.

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

FIGURE 11.10. Block diagram representation of Eq.(11.9).

Each subsystem in Fig.11.10 can be represented by a DEVS model ex-
actly, since all of the subsystems are composed either by a static function or
by a quantized integrator. These DEVS models can then be coupled, and,
due to the aforementioned closure under coupling property, the coupled
system also forms a DEVS model.

Thus, when a system is modified by adding quantizers to the outputs
of all integrators, the resulting system is equivalent to a coupled DEVS
model that can be simulated, assuming that all of the input functions are
piecewise constant as well.

11.6 DEVS and Continuous System Simulation 541

This idea formed the first approximation to a discrete event–based method
for continuous system simulation. With this method, we can simulate ex-
actly –ignoring round–off errors– the system of Eq.(11.9), which seems to
be a reasonable approximation to that of Eq.(11.8), while avoiding any
kind of time discretization. The time discretization was replaced by the
quantization of the state variables.

Unfortunately, there is a problem with the legitimacy of the resulting
DEVS model. A DEVS model is said to be legitimate if it cannot perform
an infinite number of transitions in a finite interval of time [11.11].

Although it can be easily verified that the subsystems in Fig.11.10 are
legitimate, the legitimacy property is not closed under coupling.

In fact, this simulation method will lead to illegitimate DEVS models
in most cases. The simulation of an illegitimate DEVS model gets stuck,
when the number of state transitions per time unit grows to infinity.

The reason for the illegitimacy of the DEVS model is related to the
solution of Eq.(11.9). There, the trajectories of qi(t) are not necessarily
piecewise constant. Sometimes, they can exhibit an infinite number of state
changes within a finite time interval, which produces an infinite number of
events in the corresponding DEVS model. Due to this problem, we cannot
claim that the use of a simple quantization in the state variables constitutes
a general method for the simulation of continuous systems.

We can observe this problem in the system of Eqs.(11.6–11.7) by changing
the input function to u(t) = 10.5 · ε(t − 1.76). The trajectories until time
t = 1.76 are exactly the same as those shown in Fig.11.1. Once the step
has been applied, the trajectory starts growing a bit faster than shown
in Fig.11.1. When x(t) = q(t) = 10, the state derivative doesn’t become
zero, however. Instead, the trajectory continues to grow with a slope of
ẋ(t) = 0.5. Then after 2 more time units, we obtain x(t) = q(t) = 11. At
this point in time, the slope becomes negative. x(t) now decreases with
a slope of ẋ(t) = −0.5. Thus, q(t) immediately returns to 10, the state
derivative becomes again positive, and x(t) starts growing again. We obtain
a cyclic behavior with infinite frequency.

This anomalous and annoying behavior can also be observed in the re-
sulting DEVS model. When the DEVS model corresponding to the in-
tegrator performs an internal transition, it produces an output event that
represents the change in q(t). This event is propagated through the internal
feed-back loop (cf. Figs. 11.8–11.9), and produces a new external transition
in the integrator that changes the time advance to zero. Consequently, the
integrator undergoes another internal transition, and the cycle continues
forever.

The reader may wonder why we introduced a method that only works in
a very few cases. Yet, we had a very good reason for doing so. It turns out
that, by adding only a small and very simple modification to the method, a
general simulation method can indeed be designed that is based on the pre-
viously introduced simulation approach, yet avoids the illegitimacy prob-

542 Chapter 11. Discrete Event Simulation

lem that has plagued us so far. This new method is called quantized state
systems method (QSS method for short) [11.6], and we shall dedicate the
final part of this chapter to introducing this new simulation algorithm.
The study of its theoretical and practical properties as well as some of its
extensions shall be left to the next and final chapter of this book.

11.7 Quantized State Systems

If we try to analyze the infinitely fast oscillations in the system of Eqs.(11.6–
11.7), we can see that they are caused by the changes in q(t). An infinites-
imally small variation in x(t) can produce, due to the quantization, a sig-
nificant oscillation with an infinitely fast frequency in q(t).

A possible solution might consist in adding some delay after a change in
q(t) to avoid those infinitely fast oscillations. However, adding such delays
is equivalent, in some way, to introducing time discretization. During the
delays, we lose control over the simulation, and we have to deal with the
problems associated with discrete–time algorithms once again.

A different solution is based on the use of hysteresis in the quantization. If
we add hysteresis to the relationship between x(t) and q(t), the oscillations
in q(t) can only be produced by large oscillations in x(t) that cannot occur
instantaneously, as long as the state derivatives remain finite.

Therefore, before introducing the QSS method formally, we shall define
the concept of a hysteretic quantization function.

Let Q = {Q0, Q1, ..., Qr} be a set of real numbers, where Qk−1 < Qk

with 1 ≤ k ≤ r. Let Ω be the set of piecewise continuous real–valued
trajectories, and let x ∈ Ω be a continuous trajectory. Let b be a mapping
b : Ω → Ω, and let q = b(x), where the trajectory q satisfies:

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

Qm if t = t0
Qk+1 if x(t) = Qk+1 ∧ q(t−) = Qk ∧ k < r
Qk−1 if x(t) = Qk − ε ∧ q(t−) = Qk ∧ k > 0
q(t−) otherwise

(11.10)

and:

m =

⎧⎨
⎩

0 if x(t0) < Q0

r if x(t0) ≥ Qr

j if Qj ≤ x(t0) < Qj+1

Then, the map b is a hysteretic quantization function.
The discrete values Qi are called quantization levels, and the distance

Qk+1−Qk is defined as the quantum, which is usually constant. The width
of the hysteresis window is ε. The values Q0 and Qr are the lower and upper
saturation values. Figure 11.11 shows a typical quantization function with
uniform quantization intervals.

11.7 Quantized State Systems 543

Qr

Qr

Q0

Q0

q(t)

x(t)

ε

FIGURE 11.11. Quantization function with hysteresis.

Now, we are ready to define the QSS method:

Given a system such as that of Eq.(11.8), the QSS method
transforms the system to a system similar to that of Eq.(11.9),
where the variables xi(t) and qi(t) are related by hysteretic
quantization functions. The resulting system is called a quan-
tized state system (QSS).

In [11.6], it is shown that the quantized and state variable trajectories of
Eq.(11.9) are always piecewise constant and piecewise linear, respectively.
Hence a QSS can be simulated exactly by a legitimate DEVS model.

A legitimate DEVS model can be built as the coupling of subsystems
corresponding to static functions and hysteretic quantized integrators.

The hysteretic quantized integrators are quantized integrators, where
the simple memoryless quantization functions have been replaced by hys-
teretic quantization functions. This is equivalent to replacing Eq.(11.6b)
by Eq.(11.10) in the system of Eq.(11.6).

With this modification, the hysteretic quantized integrator constituted
by Eq.(11.6a) and Eq.(11.10) can be represented by the DEVS model:

M5 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
2 × Z × R

+
0

δint(s) = δint(x, dx, k, σ) = (x + σ · dx, dx, k + sign(dx), σ1)

544 Chapter 11. Discrete Event Simulation

δext(s, e, xu) = δext(x, dx, k, σ, e, xv, p) = (x + e · dx, xv, k, σ2)
λ(s) = λ(x, dx, k, σ) = (Qk+sign(dx), 0)
ta(s) = ta(x, dx, k, σ) = σ

where:

σ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qk+2 − (x + σ · dx)
dx

if dx > 0

(x + σ · dx) − (Qk−1 − ε)
|dx| if dx < 0

∞ if dx = 0

and:

σ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qk+1 − (x + e · dx)
xv

if xv > 0

(x + e · dx) − (Qk − ε)
|xv| if xv < 0

∞ if xv = 0

The QSS method then consists in choosing the quantization levels (Q0,
Q1, . . . , Qr) and the hysteresis width ε to be used in each state variable.
This choice automatically defines DEVS models of the M5 class for each
resulting hysteretic quantized integrator. Representing the static functions
f1, . . . , fn with different DEVS models similar to M3 and coupling them,
the system of Eq.(11.9) can be exactly simulated (ignoring round–off prob-
lems). As mentioned above, the resulting coupled DEVS model is legiti-
mate, and the simulation will consume a finite amount of time.

Figure 11.12 shows the block diagram representation of a generic QSS.

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

FIGURE 11.12. Block diagram representation of a QSS.

11.7 Quantized State Systems 545

The hysteretic quantized integrator M5 can be implemented in Pow-
erDEVS as follows:

ATOMIC MODEL HINTEGRATOR
State Variables and Parameters:

float X, dX, q, sigma; //states
float y; //output
float epsilon, inf ; //parameters

Init Function:
va list parameters;
va start(parameters, t);
dq = va arg(parameters, double);
epsilon = va arg(parameters, double);
X = va arg(parameters, double);
dX = 0;
q =floor(X/dq) ∗ dq;
inf = 1e10;
sigma = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
X = X + sigma ∗ dX;
if (dX > 0) {

sigma = dq/dX;
q = q + dq;
}

else {
if (dX < 0) {

sigma = −dq/dX;
q = q − dq;
}

else {
sigma = inf ;

};
};

External Transition Function:
float xv;
xv = *(float*)(x.value);
X = X + dX ∗ e;
if (xv > 0) {

sigma = (q + dq − X)/xv;
}

else {
if (xv < 0) {

sigma = (q − epsilon − X)/xv;
}

else {
sigma = inf ;

};
};

546 Chapter 11. Discrete Event Simulation

dX = xv;

Output Function:

if (dX == 0) {y = q;} else {y = q + dq ∗ dX/fabs(dX);};
return Event(&y,0);

Here we changed some things with respect to model M5. In this model,
we used a uniform quantum ΔQ, and we replaced variable k (the index of
the quantization levels) by q (the quantized variable).

It has now become clear how the QSS method can be applied to sys-
tems such as those of Eq.(11.8). We only have to build a block diagram in
PowerDEVS using atomic models such as HINTEGRATOR and STATIC1.

However, we must not forget that the result that we obtain is the solution
of Eq.(11.9). Thus, the accuracy of the simulation will be connected to the
similarity between this system and the original system of Eq.(11.8).

Taking into account that the only difference between both systems is the
presence of the quantization functions, we expect that the error depends
on the size of the quantization intervals. As we shall explain in the next
chapter, this is indeed the case, and this dependence will provide us with
a rule for choosing the quantization levels and the hysteresis width.

Let us illustrate the method by means of a simple example. Consider the
second order system:

ẋa1(t) = xa2(t)
ẋa2(t) = 1 − xa1(t) − xa2(t)

(11.11)

with initial conditions:

xa1(0) = 0, xa2(0) = 0 (11.12)

We shall use a uniform quantum Qk+1 −Qk = ΔQ = 0.05 and a hysteresis
width of ε = 0.05 for both state variables.

Thus, the resulting quantized state system:

ẋ1(t) = q2(t)
ẋ2(t) = 1 − q1(t) − q2(t)

(11.13)

can be simulated using a coupled DEVS model, composed by two atomic
models of the M5 class, corresponding to the quantized integrators, and two
atomic models similar to M3 that calculate the static functions f1(q1, q2) =
q2 and f2(q1, q2) = 1− q1 − q2. Figure 11.13 represents the coupled system.

Observe that, due to the fact that function f1 does not depend on vari-
able q1, there is a connection that is not necessary. Moreover, taking into
account that f1(q1, q2) = q2 the subsystem F1 can be replaced by a direct
connection from QI2 to QI1. These simplifications can reduce considerably
the computational cost of the implementation.

11.7 Quantized State Systems 547

F1

F2

QI1

QI2

∫

∫

FIGURE 11.13. Block diagram representation of Eq.(11.13).

+K
Step1

WSum1 Integrator1Integrator2

iss2disk1 iss2disk2

Scope1

∫

∫∫

∫

FIGURE 11.14. PowerDEVS model.

In fact, when drawing the PowerDEVS block diagram, we automatically
make these simplifications (cf. Fig.11.14).

In the PowerDEVS model of Fig.11.14, there appears a new atomic block
that calculates a weighted sum. The reader should be able to imagine,
what this block does, and what the hidden DEVS model may look like (cf.
Hw.[H11.4]).

The simulation results are shown in Fig.11.15. The first simulation was
completed using 30 internal transitions at each quantized integrator, which
gives a total of 60 steps. We can see in Fig.11.15 the piecewise linear tra-
jectories of x1(t) and x2(t), as well as the piecewise constant trajectories
of q1(t) and q2(t).

The presence of the hysteresis can be easily noticed where the slope of a
state variable changes its sign. Near those points, we can observe different
values of q for the same value of x.

The simplifications we mentioned in the connections can be applied to
general systems, where few of the static functions do depend on all of the
state variables. In this way, the QSS method can exploit the structural
properties of the system to reduce the computational burden. When the

548 Chapter 11. Discrete Event Simulation

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

QSS–Simulation Results

Time

q i
(t

),
x

i(
t)

x1(t), q1(t)

x2(t), q2(t)

FIGURE 11.15. Trajectories of the system of Eq.(11.13).

system is sparse, QSS simulations are particularly efficient, since each step
involves calculations at few integrators only.

Discrete–time algorithms can also exploit sparsity properties. However,
these techniques require specific sparse matrix algorithms to do so. In the
QSS method, the exploitation of sparsity is an intrinsic property.

11.8 Summary

In this chapter, we studied the basic principles of discrete event simulation
under the DEVS formalism and their applications to continuous systems
simulation.

We introduced the concept of state variable quantization and, based on
this concept, we showed how to build a DEVS model that exactly rep-
resents the dynamics of general time–invariant continuous systems with
quantization in their state variables. We saw that the use of simple memo-
ryless quantization can produce illegitimacy in the DEVS model. We then
demonstrated that the use of hysteretic quantization solves this problem.
Making use of these techniques, we introduced the QSS method that allows
the simulation of general time–invariant continuous system.

In the next chapter, we shall show and discuss the main theoretical prop-
erties and practical applications of the QSS method and its extensions. For

11.9 References 549

now, it suffices to mention that the DSS method and its extension provide
efficient simulations of discontinuous systems and sparse problems, and
that these techniques are of particular interest in the context of real–time
simulation.

We might mention further that quantization–based methods are not the
only possible discrete event approaches to continuous system simulation. A
different idea is based on the event representation of trajectories and the
definition of GDEVS [11.3]. However, this solution–based approximation
requires the knowledge of the continuous system response to some particu-
lar input trajectories, which is not available in most cases. For this reason,
GDEVS does not constitute a general continuous simulation method.

For this reason, we shall not introduce GDEVS in this book. Yet, it
should be acknowledged that some of the ideas behind GDEVS were used
in the design of the second–order accurate QSS2 method that shall be
introduced in the next chapter.

Finally, the reader might notice that this chapter does not offer a broad
basis of references and bibliographic pointers. The reason for this is simply
that discrete event simulation of continuous systems is a fairly recently de-
veloped topic. In fact, the first references that we know of are from the late
nineties. This implies that these methods are not yet completely developed
and optimized, which makes them a fertile field for research.

11.9 References

[11.1] Hyup Cho and Young Cho. DEVS–C++ Reference Guide. The
University of Arizona, 1997.

[11.2] Jean Baptiste Filippi, Marielle Delhom, and Fabrice Bernardi.
The JDEVS Environmental Modeling and Simulation Environment.
In Proceedings of IEMSS 2002, volume 3, pages 283–288, Lugano,
Switzerland, 2002.

[11.3] Norbert Giambiasi, Bruno Escude, and Sumit Ghosh. GDEVS:
A Generalized Discrete Event Specification for Accurate Modeling of
Dynamic Systems. Transactions of SCS, 17(3):120–134, 2000.

[11.4] Kihyung Kim, Wonseok Kang, and Hyungon Seo. Efficient Dis-
tributed Simulation of Hierarchical DEVS Models: Transforming
Model Structure into a Non–Hierarchical One. In Proceedings of An-
nual Simulation Symposium, 2000.

[11.5] Tag Gon Kim. DEVSim++ User’s Manual. C++ Based Sim-
ulation with Hierarchical Modular DEVS Models. Korean Ad-
vanced Institute of Science and Technology, 1994. Available at
http://www.acims.arizona.edu/.

550 Chapter 11. Discrete Event Simulation

[11.6] Ernesto Kofman and Sergio Junco. Quantized State Systems: A
DEVS Approach for Continuous System Simulation. Transactions of
SCS, 18(3):123–132, 2001.

[11.7] Ernesto Kofman, Marcelo Lapadula, and Esteban Pagliero.
PowerDEVS: A DEVS–based Environment for Hybrid Sys-
tem Modeling and Simulation. Technical Report LSD0306,
LSD, UNR, 2003. Submitted to Simulation. Available at
http://www.fceia.unr.edu.ar/lsd/powerdevs.

[11.8] Esteban Pagliero, Marcelo Lapadula, and Ernesto Kofman. Pow-
erDEVS. Una Herramienta Integrada de Simulación por Eventos Dis-
cretos. In Proceedings of RPIC03, volume 1, pages 316–321, San Nico-
las, Argentina, 2003.

[11.9] Esteban Pagliero and Marcelo Lapadula. Herramienta Integrada de
Modelado y Simulación de Sistemas de Eventos Discretos. Diploma
Work. FCEIA, UNR, Argentina, September 2002.

[11.10] Gabriel Wainer, Gastón Christen, and Alejandro Dobniewski.
Defining DEVS Models with the CD++ Toolkit. In Proceedings of
ESS2001, pages 633–637, Marseille, France, 2001.

[11.11] Bernard Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of
Modeling and Simulation. Second edition. Academic Press, New York,
2000.

[11.12] Bernard Zeigler and Jong Sik Lee. Theory of Quantized Systems:
Formal Basis for DEVS/HLA Distributed Simulation Environment. In
SPIE Proceedings, pages 49–58, 1998.

[11.13] Bernard Zeigler and Hessam Sarjoughian. Introduction to
DEVS Modeling and Simulation with JAVA: A Simplified Ap-
proach to HLA-Compliant Distributed Simulations. Arizona Cen-
ter for Integrative Modeling and Simulation. Available at
http://www.acims.arizona.edu/.

[11.14] Bernard Zeigler. Theory of Modeling and Simulation. John Wiley
& Sons, New York, 1976.

11.10 Bibliography

[B11.1] Christos Cassandras. Discrete Event Systems: Modeling and Per-
formance Analysis. Irwin and Aksen, 1993.

[B11.2] Ernesto Kofman. Discrete Event Simulation and Control of Con-
tinuous Systems. PhD thesis, Universidad Nacional de Rosario,
Rosario, Argentina, 2003.

11.11 Homework Problems 551

11.11 Homework Problems

[H11.1] Achilles and the Tortoise

Consider the second order system:

ẋa1 = −0.5 · xa1 + 1.5 · xa2

ẋa2 = −xa1

(H11.1a)

Apply the memoryless quantization function:

qi = 2 · floor(
xi − 1

2
) + 1 (H11.1b)

to both state variables, and study the solutions of the quantized system:

ẋ1 = −0.5 · q1 + 1.5 · q2

ẋ2 = −q1
(H11.1c)

from the initial condition xa1 = 0, xa2 = 2.

(a). Show that the simulation time cannot advance more than 5 seconds.

(b). Draw the state–space trajectory x1(t) vs. x2(t).

[H11.2] DEVS Behavior

Using the DEVS model M2, repeat the simulation by hand that was per-
formed with model M1 on page 527. Use the same input trajectory and
compare the evolution obtained with the evolution of M1.

[H11.3] DEVS Demultiplexer

The use of ports in DEVS gives rise to a difficulty. After an internal transi-
tion took place, a model with ports produces an event that carries a value
at one specific output port. This is a limitation, because it is not difficult
to imagine a situation, in which the event value contains a vector, and each
component should be sent to a different sub–model.

This problem does not appear in the general definition of DEVS (coupling
without ports). However, even when using ports, the problem can be solved
with the addition of a DEVS model that demultiplexes events.

A DEVS demultiplexer receives input events carrying a vector value
through its input port, decomposes the vector into individual scalar values,
and sends those out immediately through different output ports.

Build a DEVS demultiplexer that receives events with values in R
k. After

receiving an event, the model should send k events through its k output
ports, carrying the corresponding scalar component values.

552 Chapter 11. Discrete Event Simulation

[H11.4] Linear Static Function

Obtain a DEVS atomic model of a static function fi : R
n → R defined as

f(u0, u1, · · · , un−1) =
n−1∑
k=0

ak · uk (H11.4a)

where a0, · · · , an−1 are known constants.
Then, program the model in PowerDEVS so that the constants and the

number of inputs are parameters.
Hint: You will have to limit the number of inputs to a fixed number (10

for instance).

[H11.5] DEVS Delay Function

Consider a function that represents a fixed delay time T ,

f(u(t)) = u(t − T) (H11.5a)

Consider the input u(t) to be piecewise constant, and obtain a DEVS model
of this function.

Create a PowerDEVS block of this function, where the delay time T is
a parameter.

Hint: Assume that the number of state changes in u(t) during a time
period of T is limited to a fixed number (1000 for instance).

[H11.6] Achilles and the Tortoise Revisited

Modify the PowerDEVS atomic model NHINTEGRATOR of page 537, so
that the quantizer satisfies Eq.(H11.1b). Then, use this new atomic model,
and build the block diagram corresponding to Eq.(H11.1a). Verify by sim-
ulation the prediction made in Hw.[H11.1].

We suggest using a final simulation time such as 4.999 for example.

[H11.7] Varying Quantum and Hysteresis

Obtain the exact solution of the system of Eq.(11.11), and then repeat the
QSS simulation using the following quantization and hysteresis:

(a). ΔQ1 = ΔQ2 = ε = 0.01

(b). ΔQ1 = Δq2 = ε = 0.05

(c). ΔQ1 = Δq2 = ε = 0.1

(d). ΔQ1 = ΔQ2 = ε = 1

Compare the results, and use them to hypothesize about the effects of
the quantization and hysteresis on error and stability.

11.12 Projects 553

11.12 Projects

[P11.1] Grouping Models in the QSS Method

The division between quantized integrators and static functions in build-
ing the coupled DEVS model that implements the QSS method simplifies
considerably the atomic models.

However, this division is not necessary. Indeed, we already mentioned
that DEVS is closed under coupling, and therefore, it must be possible
to define a unique atomic DEVS model that simulates the entire system.
In this way, the number of events is reduced (we do not have to transmit
events between components), and the computational efficiency is improved.

Of course, finding this atomic DEVS model may be quite difficult, and
even if we find it, we might lose the possibility of implementing the simu-
lation in a parallel fashion.

An intermediate solution for the QSS method, that probably represents
the best compromise, consists in grouping each quantized integrator with
the static function that calculates its derivative. In this way, the number
of events is reduced to less than the one half.

Using this idea, propose an atomic DEVS model that represents simulta-
neously a static function and a quantized integrator. Program that model
in PowerDEVS, and couple two of these models to simulate the system of
Eq.(11.11).

Compare the total number of internal and external transitions performed
by this coupled DEVS model with that obtained by simulating the model
composed of separate quantized integrators and static functions. Compare
also the execution time of the two simulations.

Repeat the experiment with other models, and try to determine, under
which conditions the grouping of models yields noticeable advantages.

Conclude on the convenience of using grouped models, taking into ac-
count the trade–off between simplicity and execution time.

[P11.2] DEVS and Multi–Rate Integration

Build a PowerDEVS model of a forward Euler integrator, i.e., a model
that receives input events with scalar values fk and produces scalar output
values:

xk+1 = xk + h · fk (P11.2a)

where the step–size h is a parameter.
Invoke that model multiple times together with the static function model

to simulate some higher–order differential equation models using the FE
method in PowerDEVS.

Then, using different values of h for different integrators, perform some
multi–rate integration experiments.

554 Chapter 11. Discrete Event Simulation

We suggest that you reproduce the example of Section 10.5, given by
Eq.(10.10).

Study the possibility of building integrators corresponding to higher–
order algorithms (RK, AB, etc.).

Conclude about the advantages and disadvantages of using DEVS in the
context of discrete–time integration algorithms.

12

Quantization–based Integration

Preview

This chapter focuses on the Quantized State Systems (QSS) method and its
extensions. After a brief explanation concerning the connections between
this discrete event method and perturbation theory, the main theoreti-
cal properties of the method, i.e., convergence, stability, and error control
properties, are presented.

The reader is then introduced to some practical aspects of the method
related to the choice of quantum and hysteresis, the incorporation of input
signals, as well as output interpolation.

In spite of the theoretical and practical advantages that the QSS method
offers, the method has a serious drawback, as it is only first–order accu-
rate. For this reason, a second–order accurate quantization–based method
is subsequently presented that conserves the main theoretical properties
that characterize the QSS method.

Further, we shall focus on the use of both quantization–based methods in
the simulation of DAEs and discontinuous systems, where we shall observe
some interesting advantages that these methods have over the classical
discrete–time methods.

Finally, and following the discussion of a real–time implementation of
these methods, some drawbacks and open problems of the proposed method-
ology shall be discussed with particular emphasis given to the simulation
of stiff system.

12.1 Introduction

In Chapter 2, we introduced two basic properties of numerical methods:
the approximation accuracy and the numerical stability. If we want to rely
on the simulation results generated by a method, we must know something
about these properties in the context of the application at hand.

The conventional tools for the analysis of numerical stability are based
on the discrete–time systems theory. The basic idea is to obtain the differ-
ence equations corresponding to a given method applied to a linear time–
invariant autonomous system, and then to relate the eigenvalues of the F–
matrix of the transformed discrete–time system to those of the A–matrix
of the original continuous–time system.

This technique, that we have applied throughout this book to the analysis

556 Chapter 12. Quantization–based Integration

of discrete–time methods, cannot be extended to the QSS method, because
the resulting simulation model is a discrete event system that does not
possess an F–matrix.

Since linear stability theory is such a convenient tool, we might be in-
clined to attempt tackling this problem by looking for a discrete event
systems theory that would support this kind of stability analysis. In fact,
there exists a nice mathematical theory based on the use of max–plus alge-
bra that permits expressing some discrete event systems through difference
equations in the context of that algebra [12.1]. This theory also arrives at
stability results based on the study of eigenvalues and is completely analo-
gous to the discrete–time systems theory. However, it can only be applied
to systems described by Petri nets, and unfortunately, the QSS method
produces DEVS models that do not have Petri net equivalents.

A different approach to studying the QSS dynamics might be to compare
directly the results obtained when simulating the original continuous–time
model of Eq.(11.8) with those obtained when simulating its QSS approxi-
mation of Eq.(11.9).

Let us rewrite these two representations using vector notation. The orig-
inal continuous system may be written as follows:

ẋa(t) = f(xa(t),u(t)) (12.1)

and the resulting quantized state system can be written as:

ẋ(t) = f(q(t),u(t)) (12.2)

where x(t) and q(t) are componentwise related by hysteretic quantization
functions.

Let us define Δx(t) = q(t) − x(t). Then, Eq.(12.2) can be rewritten as:

ẋ(t) = f(x(t) + Δx(t),u(t)) (12.3)

and now, the simulation model of Eq.(12.2) can be interpreted as a per-
turbed representation of the original system of Eq.(12.1).

Hysteretic quantization functions have a fundamental property. If two
variables qi(t) and xi(t) are related by a hysteretic quantization function,
such as that of Eq.(11.10), then:

Q0 < xi(t) < Qr ⇒ |qi(t) − xi(t)| ≤ max(ΔQ, ε) (12.4)

where ΔQ = max(Qj+1 − Qj), 0 ≤ j ≤ r − 1, is the largest quantum.
The property given by Eq.(12.4) implies that each component of the

perturbation Δx is bounded by the corresponding hysteresis width and
quantum size. Thus, the accuracy and stability analysis can be based on
the effects of a bounded perturbation.

In Chapter 2, we mentioned that there exists a theory that allows study-
ing the numerical stability of nonlinear systems. We shunned away from

12.1 Introduction 557

pursuing that theory any further, because the mathematical apparatus re-
quired to do so is quite formidable.

Unfortunately, we now have no choice but to go down that route, because
the QSS representation even of a linear system is in fact nonlinear. Luckily,
we shall see that many of the problems associated with general contractivity
theory disappear in the special case of a QSS, because we can reduce the
nonlinearity of the quantization to the special case of a linear perturbation,
and perturbation analysis can be applied even to nonlinear systems quite
easily. Furthermore, when the QSS method is applied to a linear system, it
will also be possible to establish a global error bound, and the problem of
approximation accuracy can then be dealt with not only locally, but even
globally.

Despite these advantages, a new problem appears in the QSS method.
Let us illustrate this problem by means of the following example. Consider
the first–order system:

ẋa(t) = −xa(t) + 9.5 (12.5)

with the initial condition xa(0) = 0.
The results of a simulation using the QSS method with a quantum of

ΔQ = 1 and a hysteresis width of ε = 1 are shown in Fig.12.1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11
Solution of Eq.(12.5)

Time

x
a
(t

),
x
(t

)

Analytical

QSS

FIGURE 12.1. QSS simulation of Eq.(12.5).

Although the system of Eq.(12.5) is asymptotically stable, the QSS sim-

558 Chapter 12. Quantization–based Integration

ulation ends in a limit cycle. The equilibrium point x̄ = 9.5 is no longer
a stable equilibrium point in the resulting QSS, and we cannot claim that
stability, in the sense of Lyapunov, is conserved by the method.

However, the QSS solution never deviates far from the exact solution,
and it finishes with an oscillation around the equilibrium point. Taking
into account that our goal was to just simulate the system and obtain
some meaningful trajectories, this result is not bad.

The trajectory found by the QSS method is called ultimately bounded
[12.8]. In general, the quantization based methods cannot ensure stability in
accordance with the classical definition. Hence we shall talk, in the context
of QSS simulations, about stability in terms of ultimate boundedness of
the solutions obtained.

12.2 Convergence, Accuracy, and Stability in QSS

When a time–invariant system, such as that of Eq.(12.1), is simulated using
the QSS method, we obtain an exact simulation, ignoring the roundoff
problems, of the perturbed system of Eq.(12.3). Then, as it was mentioned
above, the theoretical properties can be studied based on the effects of
perturbation.

The first property proven in the context of the QSS method was that of
convergence [12.10]. The analysis shows that the solutions of Eq.(12.3) ap-
proach those of Eq.(12.1) when the largest quantum, ΔQ, and the hysteresis
width, ε, are chosen sufficiently small. The importance of this property lies
in the fact that an arbitrarily small simulation error can be achieved, when
a sufficiently small quantization is being used.

A sufficient condition that ensures that the trajectories of the system
of Eq.(12.3) converge to the trajectories of Eq.(12.1) is that the function
f(x(t),u(t)) is locally Lipschitz1. Hence the convergence of the QSS method
is a property satisfied by nonlinear systems in general.

Although convergence constitutes an important theoretical property, it
does not offer any quantitative information about the relationship between
the quantum and the error, and it does not establish any condition for the
stability domain.

The stability properties of the QSS method were studied in [12.10] by
finding a Lyapunov function for the perturbed system. The analysis shows
that, when the system of Eq.(12.1) has an asymptotically stable equilibrium
point, for any arbitrarily small region around that equilibrium point, a
quantization can be found, so that the solutions of Eq.(12.2) finish inside
that region. Moreover, an algorithm can be derived from this analysis that

1In a nutshell, this means that the function f must not escape to infinity within the
range of interest.

12.2 Convergence, Accuracy, and Stability in QSS 559

allows calculating the appropriate quantum.
A sufficient condition for ensuring stability is that the function f be

continuous and continuously differentiable. Hence the stability condition is
a bit stronger than the convergence condition.

Thus, the QSS method offers tools, that can be applied to nonlinear sys-
tems, for choosing a quantum that ensures that the steady–state simulation
error is smaller than a desired bound. Although this result represents an
important advantage over the classical discrete–time methods, where stabil-
ity is usually studied in the context of linear time–invariant (LTI) systems
only, the algorithm is quite involved and requires the use of a Lyapunov
function of Eq.(12.1) that cannot be easily derived in general cases. Thus,
the importance of this stability analysis is, as before, more of a theoretical
than a practical nature, and we shall refrain from delving into details about
it.

Like in discrete–time methods, the most interesting qualities of QSS come
from the analysis of its application to LTI systems. The main result of that
analysis, performed in [12.13], states that the error in the QSS simulation
of an asymptotically stable LTI system is always bounded. The error bound,
which can be calculated from the quantum and some geometrical properties
of the system, does not depend either on the initial condition or on the input
trajectory and remains constant during the simulation.

Before explaining this fundamental property in more detail, we shall need
to introduce some new notation, in order to be able to express the relation-
ships between quanta and error bounds in terms of compact formulae.

We shall use the symbol | · | to denote the componentwise module of
a vector or matrix. For instance, if G is a j × k matrix with complex
components g1,1, . . . , gj,k, then |G| is also a j × k matrix with the real
positive components |g1,1|, . . . , |gj,k|.

Similarly, we shall use the symbol “≤” to perform a componentwise com-
parison between real–valued vectors of equal length. Thus, the expression
x ≤ y states that x1 ≤ y1, . . . , xn ≤ yn.

With these definitions, let xa(t) be a solution of the LTI system:

ẋa(t) = A · xa(t) + B · u(t) (12.6)

Let x(t) be the solution, starting from the same initial condition, of its
associated QSS:

ẋ(t) = A · q(t) + B · u(t) (12.7)

which can be written as:

ẋ(t) = A · [x(t) + Δx(t)] + B · u(t) (12.8)

Let us define the error e(t) � x(t)−xa(t). By subtracting Eq.(12.6) eval-
uated at xa(t) from Eq.(12.8) evaluated at x(t), we find that e(t) satisfies
the equation:

560 Chapter 12. Quantization–based Integration

ė(t) = A · [e(t) + Δx(t)] (12.9)

with e(t0) = 0 since both trajectories, xa(t) and x(t), start out from iden-
tical initial conditions.

Let us start analyzing the simple scalar case:

ė(t) = a · [e(t) + Δx(t)] (12.10)

For reasons that the reader will soon understand, we shall assume that a,
e, and Δx belong to C. We shall furthermore request Re{a} to be negative.

We shall also ask that |Δx| ≤ w, with w being some positive constant.
e(t) can be written in polar notation as:

e(t) = ρ(t) · ejθ(t) (12.11)

where ρ(t) = |e(t)|.
Then, Eq.(12.10) becomes:

ρ̇(t) · ejθ(t) + ρ(t) · ejθ(t) · j · θ̇(t) = a · [ρ(t) · ejθ(t) + Δx(t)] (12.12)

or:

ρ̇(t) + ρ(t) · j · θ̇(t) = a · [ρ(t) + Δx(t) · e−jθ(t)] (12.13)

Let us take now only the real part of the last equation:

ρ̇(t) = Re{a} · ρ(t) + Re{a · Δx(t) · e−jθ(t)}
≤ Re{a} · ρ(t) + |a| · |Δx(t)|

≤ Re{a} ·
[
ρ(t) −

∣∣∣∣ a

Re{a}
∣∣∣∣ · w

]
(12.14)

Then, as Re{a} is negative and ρ(0) = 0, it will always be true that:

|e(t)| = ρ(t) ≤
∣∣∣∣ a

Re{a}
∣∣∣∣ · w (12.15)

since, when ρ reaches the upper limit, its derivative becomes negative (or
zero).

Before proceeding to the most general situation, we shall apply this last
result to the diagonal case. Let the A–matrix in Eq.(12.9) be a diagonal
matrix with complex diagonal elements ai,i with negative real parts. We
shall also assume that:

|Δx(t)| ≤ w (12.16)

Repeating the scalar analysis for each component of e(t), we find that:

12.2 Convergence, Accuracy, and Stability in QSS 561

|e| ≤ |Re{A}−1 · A| ·w (12.17)

Now, let us return once more to Eq.(12.9), this time assuming that the
A–matrix be Hurwitz and diagonalizable, i.e., that the original system is
asymptotically stable and can be decoupled.

Let us assume that the quantum and hysteresis were adjusted such that:

|Δx| = |q − x| ≤ ΔQ (12.18)

where each element of vector ΔQ contains the larger of the corresponding
quantum and hysteresis width.

Let Λ be a diagonal eigenvalue matrix of A, and let V be a corresponding
right eigenvector matrix. The matrix V is sometimes also referred to as a
right modal matrix. Then:

A = V · Λ · V−1 (12.19)

is the spectral decomposition of the A–matrix.
We introduce the variable transformation:

z(t) = V−1 · e(t) (12.20)

Using the new variable z, Eq.(12.9) can be rewritten as follows:

V · ż(t) = A · [V · z(t) + Δx(t)] (12.21)

and then:

ż(t) = V−1 · A · [V · z(t) + Δx(t)] (12.22)

= Λ · [z(t) + V−1 · Δx(t)] (12.23)

¿From Eq.(12.18), it results that:

|V−1 · Δx| ≤ |V−1| · ΔQ (12.24)

Taking into account that the Λ–matrix is diagonal, it turns out that
Eq.(12.23) is the diagonal case that we analyzed before, and consequently
from Eq.(12.17), it results that:

|z(t)| ≤ |Re{Λ}−1 · Λ| · |V−1| · ΔQ (12.25)

and therefore:

|e(t)| ≤ |V| · |z(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ (12.26)

Thus, we can conclude that:

562 Chapter 12. Quantization–based Integration

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ (12.27)

Inequality Eq.(12.27) has strong theoretical and practical implications.
It can be easily seen that the error bound is proportional to the quantum

and, for any quantum adopted, the error is always bounded.
It is also important to notice that the inequality of Eq.(12.27) is an

analytical expression for the global error bound. Discrete–time methods
lack similar formulae. The fact that Eq.(12.27) is independent of initial
conditions and input trajectories promises additional important theoretical
and practical advantages.

In some way, the QSS method offers an intrinsic error control without
requiring the use of adaptation rules. Indeed:

The QSS method is always stable without using implicit formu-
lae at all.

The importance of this statement cannot be stressed enough. It revolu-
tionizes the field of numerical ODE (and DAE) solution.

12.3 Choosing Quantum and Hysteresis Width

The QSS method requires the choice of an adequate quantum and hysteresis
width. Although we mentioned that the error is, at least for LTI systems,
always bounded, an appropriate quantization must be chosen in order to
obtain decent simulation results.

The inequality of Eq.(12.27) can be used for quantization design. Given
a desired error bound, it is not difficult to find an appropriate value of
ΔQ that satisfies that inequality. Let us illustrate this design in a simple
example. Consider the system:

ẋa1 = xa2

ẋa2 = −xa1 − xa2 + u(t) (12.28)

A set of matrices of eigenvalues and eigenvectors (calculated with MAT-
LAB) are:

Λ =
(−0.5 + 0.866j 0

0 −0.5 − 0.866j

)
and:

V =
(

0.6124 − 0.3536j 0.6124 + 0.3536j
0.7071j −0.7071j

)
Then:

T � |V| · |Re{Λ}−1 · Λ| · |V−1| =
(

2.3094 2.3094
2.3094 2.3094

)
(12.29)

12.3 Choosing Quantum and Hysteresis Width 563

Let us consider that the goal is to simulate Eq.(12.28) for an arbitrary
initial condition and input trajectory with an error less than or equal to
0.1 in each variable. Then, a quantum:

ΔQ =
(

0.05/2.3094
0.05/2.3094

)
=
(

0.0217
0.0217

)
(12.30)

is sufficiently small to ensure that the error cannot exceed the given bound.
Although the inequality of Eq.(12.27) can be used to compute an upper

bound for the error as a function of the quantum and the hysteresis width,
the measure will often turn out to be quite conservative.

In fact, using quantum and hysteresis width equal to 0.05 in each vari-
able of the system of Eq.(12.28) and applying u(t) = 1, we arrive at the
simulation results shown in Fig.11.15. The predicted error bound is 0.23094
in each variable. However, the maximum error obtained in that simulation
is considerably smaller than this bound.

Except in specific applications, where we would need to ensure a cer-
tain error bound, we do not want to calculate eigenvectors and eigenvalues
before performing the simulation. A practical rule to avoid this is to use
a quantum proportional to the estimated amplitude of each variable tra-
jectory (assuming that we know in advance the order of magnitude of the
values reached by each state variable).

The reader may have already noticed that, in all of the examples dis-
cussed so far, the hysteresis width was chosen to be equal to the quantum
size. However, we did not provide any rationale for that choice.

The problem of hysteresis width selection is discussed in [12.11]. The
conclusion is that it should be chosen equal to the quantum. The reason is
that, in this way, the presence of hysteresis does not modify the error bound
(cf. Eq.(12.4)), while the final oscillation frequency is being minimized.

The reduction of the oscillation frequency is due to the fact that the
minimum time between successive changes in a quantized variable qi is
proportional to the inverse of the hysteresis (assuming that the quantum is
greater or equal than the hysteresis width), as has been shown in [12.10].

Let us illustrate this idea with the simulation of the first–order system
of Eq.(12.5), using a quantum equal to 1 and different hysteresis values.

Figure 12.2 shows the simulation results with a hysteresis width of ε = 1,
ε = 0.6, and ε = 0.1, respectively. In all three cases, the maximum error is
bounded by the same value. In theory, the bound is equal to 1, but in the
simulations, we can observe that the maximum error is always 0.5.

However, the steady–state oscillation frequency increases as the hystere-
sis width becomes smaller. In fact, that frequency can be calculated as:

f =
1
2ε

Then, it is clear that by choosing the hysteresis width equal to the quan-
tum, the frequency is minimized without increasing the error. Reducing the

564 Chapter 12. Quantization–based Integration

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

Solutions of (12.5)

Time

φ
(t

),
x
(t

)

Analytical
ε = 1ε = 0.6

ε = 0.1

FIGURE 12.2. Simulation of Eq.(12.5) with different hysteresis values.

steady–state oscillation frequency reduces in the number of steps performed
by the algorithm, and consequently reduces the computational cost.

12.4 Input Signals in the QSS Method

In the previous chapter, we mentioned that the QSS method allows the
simulation of time–invariant systems with piecewise constant input signals.
However, we did not say how these signals can be incorporated into the
simulation model.

In the DEVS simulation model, each event represents a change in a
piecewise constant trajectory. Consequently, input trajectories can be in-
corporated as sequences of events.

Looking at the block diagram of Fig.11.12, the input signals u(t) seem to
come from the external world, and it is not clear, where the corresponding
sequences of events should be generated.

In the context of a DEVS simulation, all events must emanate from an
atomic DEVS model. Hence a new DEVS model class must be created that
generates those sequences of events. The input function models must then
be coupled with the rest of the system for the purpose of simulation.

Suppose that we have a piecewise constant input signal u(t) that assumes
the values v1, v2, . . . , vj , . . . at times t1, t2, . . . , tj , . . . , respectively. A

12.4 Input Signals in the QSS Method 565

DEVS model that produces events in accordance with this input signal can
be specified as follows:

M6 = (X, Y, S, δint, δext, λ, ta), where
X = ∅
Y = R × N

S = N × R
+
0

δint(s) = δint(j, σ) = (j + 1, tj+1 − tj)
λ(s) = λ(j, σ) = (vj , 0)
ta(s) = ta(j, σ) = σ

Notice that, in this model, the external transition function δext is not
defined, as it it will never be called, since the model is not designed to ever
receive input events.

A particular case of model M6 in PowerDEVS is the step function model
that we invoked from within the models of Fig.11.9 and Fig.11.14.

ATOMIC MODEL STEP1
State Variables and Parameters:

float sigma;
int j; //states
float y; //output
float T [3], v[3], inf ; //parameters

Init Function:
va list parameters;
va start(parameters, t);
inf = 1e10;
T [0] = 0;
T [1] = va arg(parameters, double);
T [2] = inf ;
v[0] = va arg(parameters, double);
v[1] = va arg(parameters, double);
sigma = 0;
j = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
sigma = T [j + 1] − T [j];
j = j + 1;

Output Function:
y = v[j];
return Event(&y,0);

The parameters defined in the graphical block of this DEVS model are

566 Chapter 12. Quantization–based Integration

the step time, the initial value of the output trajectory, and the final value
after the step.

An interesting advantage of the QSS method is that it deals with input
trajectory changes in an asynchronous way. The event indicating a change
in the signal is always processed at the correct instant of time, producing
instantaneous changes in the slopes of the state variable trajectories that
are directly affected.

This is an intrinsic characteristic of the method, and it is obtained with-
out modifying the DEVS models corresponding to the quantized integrators
and the static functions. In contrast, discrete–time methods require a spe-
cial treatment in order to perform a step at the exact moment when an
input change is supposed to occur. We shall revisit to this issue once more
later in this chapter, demonstrating the advantages of the QSS method in
the context of simulating discontinuous systems.

Up to this point, only piecewise constant input trajectories have been
considered. In most applications, the input signals take on more general
forms. However, these can be approximated by piecewise constant trajec-
tories with the addition of quantization functions, and thus, they can be
represented by DEVS models.

For example, the DEVS model M7, shown below, generates an event
trajectory that approximates a sine function with angular frequency ω and
amplitude A using a quantum Δu.

M7 = (X, Y, S, δint, δext, λ, ta), where
X = ∅
Y = R × N

S = R × R
+
0

δint(s) = δint(τ, σ) = (τ̃ , σ̃)
λ(s) = λ(τ, σ) = (A · sin(ωτ), 1)
ta(s) = ta(τ, σ) = σ

with:

σ̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arcsin[sin(ωτ) + Δu/A]
ω − τ if (sin(ωτ) + Δu/A ≤ 1 ∧ cos(ωτ) > 0)

∨ sin(ωτ) − Δu < −1

π · sign(τ) − arcsin[sin(ωτ) − Δu/A]
ω − τ otherwise

and:

τ̃ =
{

τ + σ̃ if ω(τ + σ̃) < π

τ + σ̃ − 2π
ω otherwise

12.4 Input Signals in the QSS Method 567

The DEVS model M7 can be encoded in PowerDEVS as follows:

ATOMIC MODEL SINUS
State Variables and Parameters:

float tau, sigma; //states
float y; //output

float A, w, phi, du, pi; //parameters

Init Function:
va list parameters;
va start(parameters, t);
pi = 2 ∗ asin(1);
A = va arg(parameters, double);
w = va arg(parameters, double)∗2 ∗ pi;
phi = va arg(parameters, double);
du = va arg(parameters, double);
sigma = 0;
tau = phi/w;

Time Advance Function:
return sigma;

Internal Transition Function:
if (((sin(w ∗ tau) + du/A <= 1) && (cos(w ∗ tau) > 0)) || (sin(w ∗ tau) − du/A < −1)) {

sigma = asin(sin(w ∗ tau) + du/A)/w − tau;
}
else {

if (tau > 0) {
sigma = (pi − asin(sin(w ∗ tau) − du/A))/w − tau;

}
else {

sigma = (−pi − asin(sin(w ∗ tau) − du/A))/w − tau;
};

};
tau = tau + sigma;
if (tau ∗ w >= pi){tau = tau − 2 ∗ pi/w; };

Output Function:
y = A ∗ sin(w ∗ tau);;
return Event(&y,0);

The trajectory generated by this model with parameters A = 2.001,
ω = 0.5, and Δu = 0.2 is shown in Fig.12.3.

A piecewise constant trajectory could also be obtained using a constant
time step. However, the previously advocated approximation is better in
QSS, since the quantization in the values ensures that the distance between
the continuous signal an the piecewise constant signal is always less than
the quantum. This fact can be easily noticed in Fig.12.3. In contrast, the
maximum error would have depended on the relationship between the time
step and the signal frequency, had a constant time step been used.

The input signal quantization introduces a new error to the simulation.

568 Chapter 12. Quantization–based Integration

0 0.5 1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Quantized Sine

Time

si
n(

t)

FIGURE 12.3. Piecewise constant sine trajectory.

In the particular case of LTI systems, the presence of the input quantization
error transforms Eq.(12.27) into:

|x(t) − xa(t)| ≤ |V| · |Re{Λ}−1 · Λ| · |V−1| · ΔQ

+|V| · |Re{Λ}−1 · V−1 · B| ·Δu (12.31)

where Δu is the vector with the quanta adopted in the input signals. This
formula can be derived following the approach developed in [12.18] (cf.
Hw.[H12.2]).

12.5 Startup and Output Interpolation

The QSS method startup consists in assigning appropriate initial conditions
to the atomic DEVS models that perform the simulation.

The quantized integrator state can be written as s = (x, dx, k, σ) (cf.
model M5 on page 543), where x is the state variable, dx is its derivative, k
is the index corresponding to the quantized variable qk, and σ is the time
advance.

It is clear that we must choose x = xi(t0) and k such that Qk ≤ xi(t0) ≤
Qk+1. Finally, appropriate values of dx and σ can be found from the cor-
responding state equation fi(q,u).

12.5 Startup and Output Interpolation 569

Yet, there is a much simpler solution. If we choose σ = 0, all quan-
tized integrators will perform internal transitions at the beginning of the
simulation and send their initial values to the static functions.

Then, the models associated with the static functions, fi, will calculate
their output values, producing output events instantaneously. These out-
put events will carry the values of the state derivatives. After that, the
quantized integrators will receive the correct values of dx, and they will
calculate the corresponding σ in the external transition.

However, this behavior will only be observed if the quantized integrators
receive the input events, arriving from the static functions, after they per-
formed their own internal transitions. The problem is that, after the first
quantized integrator performs its transition, not only the other quantized
integrators but also some static models will have their σ set equal to 0, be-
cause they undergo an external transition due to the quantized integrator
output event.

Thus, it is necessary to establish priorities between the components, in
order to ensure that, when some models schedule their next transition for
the same instant of time, the quantized integrators are those that perform
it first. This can be easily accomplished using the tie–breaking function
Select mentioned in Section 11.4.

These considerations also solve the problem of the initial conditions of
the static model. They can be arbitrarily chosen, since the static models
will receive input events arriving from the quantized integrators at the
beginning of the simulation, and then their external transition functions
will set the appropriate states.

Finally, the input signal generator models must start with their σ set
equal to 0, and the rest of the states must be chosen such that the first
output event corresponds to the initial value of the input signal.

In PowerDEVS, we treat these problems in the init function. The prior-
ities between subsystems can be easily chosen from the Edit menu in the
model editor.

Yet, there is another solution that avoids the need of priorities: We can
check the external transition function of the quantized integrators for the
condition σ = 0. If that condition is true, this means that an internal
transition is going to occur. Thus, we can just leave σ = 0 in that case,
and this solves the initialization problems without using priorities.

When it comes to output interpolation, we already know that the state
trajectories in QSS assume particular forms: They are piecewise linear and
continuous.

Hence if we know the values adopted by variable xi at all event times, we
can interpolate using straight–line segments, in order to obtain the exact
solution of Eq.(12.2). In fact, to do that, we only require the values after
external transitions, because the slope does not change during internal
transitions.

Consequently, the problem of output interpolation has a straightforward

570 Chapter 12. Quantization–based Integration

solution in the QSS method.
It is important to remember that Eq.(12.27) and Eq.(12.31) are valid

for all values of time t. Thus, we can ensure that the interpolated values
remain inside their theoretical error bound, which is an interesting and
unusual characteristic for a simulation method.

12.6 Second–order QSS

As we saw along this chapter, the QSS method exhibits strong theoretical
and practical properties that make the method attractive for use in the
simulation of continuous systems. Unfortunately, the method is only first–
order accurate, and therefore, the simulation results obtained with this
method cannot be very accurate.

The inequality of Eq.(12.27) states that the error bound grows linearly
with the quantum. Thus, if we want to reduce the error bound by a cer-
tain amount, we have to reduce the quantum in the same proportion. The
problem is that also the time interval between successive events, i.e., the
time advance σ in the DEVS model, is proportional to the quantum (cf.
model M5 on page 543). Consequently, the error reduction results in a
proportional increment in the number of computations.

To improve the situation, a second–order accurate QSS method was pro-
posed in [12.13]. This new approximation, called second–order quantized
state systems method, or QSS2 method in short, exhibits similar stability,
convergence, and accuracy properties as the previously introduced QSS
method.

The basic idea behind this second–order accurate method is the use of
first–order quantizers, replacing the simple hysteretic quantizers that were
used in the design of the QSS method.

A hysteretic quantizer with equal quantum and hysteresis width can
be viewed as a system producing a piecewise constant output trajectory
that only changes when the difference between output and input reaches a
certain threshold level, i.e., the quantum.

Following this idea, a first–order quantizer has been defined as a system
that produces a piecewise linear output trajectory having discontinuities
only, when its difference with the input reaches the quantum. This behavior
is illustrated in Fig.12.4.

Formally, we say that the trajectories xi(t) and qi(t) are related by a
first–order quantization function, if they satisfy:

qi(t) =
{

xi(t) if t = t0 ∨ |qi(t−) − xi(t−)| = ΔQ
qi(tj) + mj · (t − tj) otherwise

(12.32)
with the sequence t0, . . . , tj , . . . defined as:

12.6 Second–order QSS 571

First Order Quantizer

ΔQ

Input

Output

FIGURE 12.4. Input and output trajectories of a first–order quantizer.

tj+1 = min(t), ∀t > tj ∧ |xi(tj) + mj · (t − tj) − xi(t)| = ΔQ

and the slopes:

m0 = 0; mj = ẋi(t−j), j = 1, . . . , k, . . .

The QSS2 method then simulates a system like that of Eq.(12.2), where
the components of q(t) and x(t) are related componentwise by first–order
quantization functions. As a consequence, the quantized variable trajecto-
ries qi(t) are piecewise linear.

In QSS, we had to add hysteresis in order to ensure that the trajectories
become piecewise constant avoiding illegitimacy. The reader may wonder
why we did not need to add hysteresis here. The reason is that hysteresis is
implicitly present in the definition of the first–order quantization function.
Indeed, the absolute value in Eq.(12.32) expresses that hysteretic behavior.

Remember that, in QSS, not only the quantized variables, but also the
state derivatives are piecewise constant. In this way, we were able to affirm
that the state variables have piecewise linear trajectories, and we exploited
this features in building the DEVS model.

Unfortunately, we cannot find this kind of particular trajectories in QSS2.
Although the quantized variables are piecewise linear, this does not mean
that the state derivatives are piecewise linear as well, even if all inputs
possess piecewise linear trajectories. The reason is that a nonlinear func-
tion, fi, applied to a set of piecewise linear trajectories does not necessarily
result in a trajectory that is piecewise linear.

572 Chapter 12. Quantization–based Integration

Thus, we shall be able to simulate QSS2 approximations to LTI systems
only. Of course,, the QSS2 method can be applied to general nonlinear
systems as well, but in this case, the simulation results will not coincide
exactly with the solutions of Eq.(12.2).

In the linear case, however, provided that the input trajectories are piece-
wise linear, the state derivatives turn out to be piecewise linear as well, and
then, the state variables assume continuous piecewise parabolic trajecto-
ries.

Using these facts, we can proceed following the same lines of thought that
we used in QSS in order to build the DEVS model, i.e., we can split the
model into quantized integrators and static functions. But now, the atomic
models are quite different from before, since they must calculate and take
into account not only the values but also the slopes of the trajectories.
Moreover, the events will have to carry both value and slope information.

The quantized integrators in QSS2 will be formed by an integrator and a
first–order quantizer. We shall call them second–order quantized integrators.
The reason for this name is that they calculate the state trajectories using
their first and second derivatives (i.e., state derivative values and their
slopes).

In order to obtain a DEVS model of a second–order quantized integrator,
we shall suppose that a state derivative is described, in a certain interval
[tk, tk+1], by:

ẋ(t) = dx(tk) + mdx
(tk) · (t − tk) (12.33)

where dx(tk) is the state derivative at time tk, and mdx
(tk) is the cor-

responding linear slope. The slope of the state derivative , mdx
, will, in

general, be different from the slope of the quantized state variable, mq.
Then, the state variable trajectory can be written as:

x(t) = x(tk) + dx(tk) · (t − tk) +
mdx

(tk)
2

· (t − tk)2 (12.34)

If tk is an instant, at which a change occurs in the quantized variable,
i.e., tk is the time instant of an internal transition, then q(tk) will have the
same value and slope as x(tk):

q(t) = x(tk) + dx(tk) · (t − tk) (12.35)

and then, the time instant at which x(t) and q(t) differ from each other by
ΔQ can be calculated as:

t = tk +

√
2 · ΔQ

|mdx
(tk)| (12.36)

If tk is another instant in time, i.e., the time of an external transition,
the time instant, at which |q(t) − x(t)| = ΔQ must be recalculated. Now,
the quantized trajectory can be written as:

12.6 Second–order QSS 573

q(t) = q(tk) + mq(tk) · (t − tk) (12.37)

and then, we have to calculate the value of t, at which |q(t)− x(t)| = ΔQ,
by finding the roots of the corresponding quadratic polynomial.

A DEVS model that can represent the behavior of a second–order quan-
tized integrator is presented below:

M8 = (X, S, Y, δint, δext, λ, ta), where:
X = R

2 × N

S = R
5 × R

+
0

Y = R
2 × N

δint(dx,mdx
, x, q,mq, σ) = (dx + mdx

· σ, mdx
, q̃, q̃, dx + mdx

· σ, σ1)
δext(dx,mdx

, x, q,mq, σ, e, xv,mxv
, p) = (xv,mxv

, x̃, q + mq · e, mq, σ2)
λ(dx,mdx

, x, q,mq, σ) = (q̃, dx + mdx
· σ, 0)

ta(dx,mdx
, x, q,mq, σ) = σ

where:

q̃ = x + dx · σ +
mdx

2
· σ2; x̃ = x + dx · e +

mdx

2
· e2

σ1 =

⎧⎨
⎩
√

2 · ΔQ
|mdx

| if mdx
�= 0

∞ otherwise
(12.38)

and σ2 can be calculated as the smallest positive solution of:

|x̃ + xv · σ2 +
mxv

2
· σ2

2 − (q + mq · e + mq · σ2)| = ΔQ (12.39)

The model M8 represents a second–order quantized integrator with piece-
wise linear input trajectories exactly.

Equation (12.38) and Eq.(12.39) calculate the time advance, that is, the
time instant at which the distance between the piecewise parabolic state
trajectory x(t) and the piecewise linear quantized trajectory q(t) reaches
the quantum ΔQ.

The corresponding PowerDEVS atomic model can be coded as follows:

ATOMIC MODEL QSS2INT
State Variables and Parameters:

float dx, mdx, X, q, mq, sigma; //states
float y[2]; //output
float inf, dq; //parameters

Init Function:

574 Chapter 12. Quantization–based Integration

va list parameters;
va start(parameters, t);
dq = va arg(parameters, double);

X = va arg(parameters, double);
inf = 1e10;
q = X;

dx = 0;
mdx = 0;
mq = 0;
sigma = 0;

Time Advance Function:
return sigma;

Internal Transition Function:
X = X + dx ∗ sigma + mdx/2 ∗ sigma ∗ sigma;
q = X;
dx = dx + mdx ∗ sigma;
mq = dx;
if (mdx == 0) {

sigma = inf ;
}
else

sigma = sqrt(2 ∗ dq/fabs(mdx));
};

External Transition Function:
float ∗xv;
float a, b, c, s;

xv = (float∗)(x.value);
X = X + dx ∗ e + mdx/2 ∗ e ∗ e;
dx = xv[0]; //input value
mdx = xv[1]; //input slope
if (sigma ! = 0) {

q = q + mq ∗ e;
a = mdx/2;
b = dx − mq;
c = X − q + dq;
sigma = inf ;
if (a == 0) {

if (b ! = 0) {
s = −c/b;
if (s > 0) {sigma = s;};
c = X − q − dq;
s = −c/b;
if ((s > 0) && (s < sigma)) {sigma = s;};

};
}
else {

s = (−b + sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if (s > 0) {sigma = s;};
s = (−b − sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if ((s > 0) && (s < sigma)) {sigma = s;};
c = X − q − dq;

12.6 Second–order QSS 575

s = (−b + sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if ((s > 0) && (s < sigma)) {sigma = s;};
s = (−b − sqrt(b ∗ b − 4 ∗ a ∗ c))/2/a;
if ((s > 0) && (s < sigma)) {sigma = s;};

};
};

Output Function:
y[0] = X + dx ∗ sigma + mdx/2 ∗ sigma ∗ sigma;
y[1] = u + mdx ∗ sigma;
return Event(&y[0], 0);

In a QSS2 simulation, we represent the integrators with models of the
M8 class, instead of using those of the M5 class.

For representing static functions, we used models of the M3 class in
the QSS method. However, the M3 model does not take into account the
slopes. Thus, the representation of static functions in QSS2 requires using
a different DEVS model as well.

Each component fj of a static vector function f(q,u) receives the piece-
wise linear trajectories of the quantized states and input variables.

Let us define v � [q;u]. Each component of v has a piecewise linear
trajectory:

vj(t) = vj(tk) + mvj
(tk) · (t − tk)

Then, the output of the static function can be written as:

ẋi(t) = fi(v(t)) = fi(v1(tk)+mv1(tk) ·(t−tk), . . . , vl(tk)+mvl
(tk) ·(t−tk))

where l � n + m is the number of components of v(t).
Defining mv � [mv1 , . . . , mvl

]T , the last equation can be rewritten as:

ẋi(t) = fi(v(t)) = fi(v(tk) + mv(tk) · (t − tk))

which can be developed into a Taylor series as follows:

ẋi(t) = fi(v(t)) = fi(v(tk))+
(

∂fj

∂v
(v(tk))

)T

·mv(tk)·(t−tk)+. . . (12.40)

Then, a piecewise linear approximation of the output can be obtained
by truncating the Taylor series after the first two terms of Eq.(12.40).

In the linear time–invariant case, we have f(v(t)) = A · v(t), and there-
fore: fi(v(t)) = ai

T · v(t) where ai ∈ R
l. Then:

ẋi(t) = ai
T · v(tk) + ai

T · mv(tk) · (t − tk)

which means that the output value and its slope are obtained as linear
combinations of the input values and their slopes, respectively.

576 Chapter 12. Quantization–based Integration

The construction of the corresponding DEVS model is left to the reader
(cf. Hw.[H12.4]).

The nonlinear case is a bit more complicated. The expression of Eq.(12.40)
requires the knowledge of the partial derivatives of function fi evaluated at
the successive values of the quantized state and input variables. In a gen-
eral case, we may not have a closed–form expression for these derivatives,
in which case we shall need to approximate them numerically.

A DEVS model that follows this idea, representing a static nonlinear
function fi(v) = f(v1, . . . , vl) and taking into account input and output
values and their slopes can be coded as follows :

M9 = (X, S, Y, δint, δext, λ, ta), where:
X = R

2 × N

S = R
3l × R

+
0

Y = R
2 × N

δint(v,mv, c, σ) = (v,mv, c,∞)
δext(v,mv, c, σ, e, xv,mxv

, p) = (ṽ, m̃v, c̃, 0)
λ(v,mv, c, σ) = (fi(v),mf , 0)
ta(v,mv, c, σ) = σ

where v = (v1, . . . , vl)T and ṽ = (ṽ1, . . . , ṽl)T are input values. Similarly,
mv = (mv1 , . . . , mvl

)T and m̃v = (m̃v1 , . . . , m̃vl
)T represent the corre-

sponding input slopes.
The coefficients c = (c1, . . . , cl)T and c̃ = (c̃1, . . . , c̃l)T estimate the par-

tial derivatives ∂fi

∂vj
that are used to calculate the output slope in accordance

with:

mf =
n∑

j=1

cj · mvj

When the system undergoes an external transition, the components of
ṽ, m̃v, and c̃ are calculated using the equations:

ṽj =
{

xv if p + 1 = j
vj + mvj

· e otherwise

m̃vj
=
{

mxv
if p + 1 = j

mvj
otherwise

c̃j =

⎧⎨
⎩

fi(v + mv · e) − fi(ṽ)
vj + mvj

· e − ṽj
if p + 1 = j ∧ vj + mvj

· e − ṽj �= 0

cj otherwise
(12.41)

12.6 Second–order QSS 577

where p denotes the port number, i.e., determines, which of the inputs is
currently undergoing an external transition.

If function fi(v) is linear, this DEVS model represents the behavior of
the system exactly, assuming that the components of v are piecewise linear.
However, as we already mentioned, there exists a much simpler and more
efficient solution in that case, since the coefficients cj are constant and
coincide with the entries ai,j of matrix A (cf. Hw.[H12.4]).

The PowerDEVS model for this general nonlinear static function can
then be specified as follows:

ATOMIC MODEL STFUNCTION2
State Variables and Parameters:

float sigma, v[10], mv[10], c[10]; //states
float y[2]; //output
float inf ;
int l;

Init Function:
va list parameters;
va start(parameters, t);
l = va arg(parameters, double);
inf = 1e10;
sigma = inf ;
for (int i = 0; i < l; i + +) {

v[i] = 0;
mv[i] = 0;

};
Time Advance Function:

return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float ∗xv;
float fv, vaux;
xv = (float∗)(x.value);
for (int i = 0; i < l; i + +) {

v[i] = v[i] + mv[i] ∗ e;
};
fv = fj(v);//put your function here
vaux = v[x.port];
v[x.port] = xv[0];
mv[x.port] = xv[1];
y[0] = fj(v); //put your function here
if (vaux ! = v[x.port]) {

c[x.port] = (fv − y[0])/(vaux − v[x.port]);
};
y[1] = 0;
for (int i = 0; i < l; i + +) {

y[1] = y[1] + mv[i] ∗ c[i];
};

578 Chapter 12. Quantization–based Integration

sigma = 0;

Output Function:

return Event(&y[0], 0);

The only problem with the PowerDEVS model proposed above is that a
new atomic model must be introduced for each distinct function fj . How-
ever, this problem has already been solved in PowerDEVS by introducing a
function that parses algebraic expressions. Thus, the corresponding nonlin-
ear function block included in the Continuous library of PowerDEVS, offers
a parameter consisting in a string that contains the algebraic expression
describing the function. That expression, just like any other parameter, can
be modified by double clicking on the block.

There are also some particular nonlinear functions, for which the partial
derivatives can be calculated analytically and the coefficients cj do not have
to be computed using Eq.(12.41). Some examples of such functions are the
sin() function, the multiplier, and the (·)2 block included in the Continuous
library (cf. Hw.[H12.5]).

By coupling DEVS models of the M8 and M9 classes in the same way
as we did in Fig.11.12, we can use the QSS2 method to simulate any
time–invariant ODE system. Using PowerDEVS, we can simulate any time–
invariant ODE system using the QSS2 method by building the block di-
agram from QSS2INT models, used in place of the quantized hysteretic
integrators, and from STFUNCTION2 blocks, used instead of the static
functions introduced earlier.

We already mentioned that the QSS2 method shares the main properties
of QSS. The reasons behind this assertion can be easily explained. Two
variables, xi(t) and qi(t), that are related by a first–order quantization
function satisfy:

|qi(t) − xi(t)| ≤ ΔQi ∀t (12.42)

This inequality is just a particular case of Eq.(12.4) with a constant quan-
tum equal to the hysteresis width. The QSS properties were derived using
this inequality, which implies that the method only introduces a bounded
perturbation in a system that can be represented in the form of Eq.(12.3).
Taking into account that this representation is also valid for QSS2, we con-
clude that the QSS2 method satisfies the same convergence, stability, and
accuracy properties as QSS.

However in nonlinear systems, the QSS2 definition does not coincide
exactly with the DEVS simulation. Thus, our analysis only ensures in a
strict sense that those properties hold true in the simulation of LTI systems.
Although there are many good reasons that allow us to conjecture that the
convergence and stability properties would hold true in the simulation of
nonlinear systems as well, there has not yet been found a formal proof of
this conjecture.

12.6 Second–order QSS 579

As far as the error bound is concerned, the inequalities of Eq.(12.27) and
Eq.(12.31) hold true for the QSS2 method, since they were derived for LTI
systems. Thus, if we use the same quantum in QSS and QSS2, we obtain
the same error bound in both cases.

This last remark gives rise to a question: Where is the advantage of using
the QSS2 method, if it offers the same error bound as the QSS method?

This question can be answered by Eq.(12.38) and Fig.12.4.
On the one hand in QSS, the time advance is proportional to the quantum

and to the error. In QSS2 however, it is proportional to the square root
of the quantum, as Eq.(12.38) shows. For this reason, we can reduce the
quantum without obtaining a proportional increment in the number of
calculations, when using the QSS2 method.

This fact can be clearly observed in Fig.12.4, where the use of a sim-
ple hysteretic quantizer instead of a first–order quantizer with the same
quantum would have resulted in a much larger number of events.

On the other hand, each transition in the QSS2 method involves more
computations than in QSS. Thus, if we are not interested in obtaining
simulation results that are highly accurate, the QSS method may turn out
to be more efficient.

All these facts are discussed in more detail in [12.13], where an ex-
perimental comparison between the execution times of both methods was
presented, illustrating the characteristics of the two methods as outlined in
the above paragraph.

Beside from the theoretical properties that were derived from perturba-
tion analysis, we saw that the QSS method also exhibits practical advan-
tages related to the incorporation of input signals and the exploitation of
sparsity. Let us discuss then what happens with these practical issues in
the QSS2 method.

The sparsity exploitation is straightforward. We conserve the same sim-
ulation structure as in QSS, and each transition only involves calculation
at the integrators and static functions that are directly connected to the
integrator that undergoes the transition.

When it comes to input signals, we have now further advantages. We not
only ensure that changes are being processed as soon as they occur, but we
are furthermore able to correctly represent piecewise linear instead of just
piecewise constant input trajectories.

Let us illustrate these advantages in the following example, taken from
[12.13].

The circuit of Fig.12.5 represents an RLC transmission line. A similar
model had already been introduced in Chapter 10 of this book.

This model can be used to study the performance of integrated circuits
transmitting data at a very fast rate. Although the wires are only a few
centimeters long, the high frequency of the transmitted signal requires that
the delays introduced by the wires must not be ignored, and transmission
line theory must be applied.

580 Chapter 12. Quantization–based Integration

RRR LLL

CCCVin
Vout

FIGURE 12.5. RLC transmission line.

Transmission lines are described as systems of partial differential equa-
tions. However, they can be approximated by lumped models, where the
distributed effects of capacity, inductance, and resistance are approximated
by a cascade of single capacitors, inductors, and resistors, as Fig.12.5 shows.
In order to constitute a good approximation, the RLC model must be
formed by several sections. As a consequence of this, the resulting model
is a linear time–invariant system of ordinary differential equations with a
sparse system matrix.

In [12.6], an example composed by five sections of an RLC circuit is in-
troduced. The resistance, inductance, and capacitance values used in [12.6]
can be considered realistic parameter values. The model obtained is a 10th–
order linear time–invariant system with the following system matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−R/L −1/L 0 0 0 0 0 0 0 0
1/C 0 −1/C 0 0 0 0 0 0 0
0 1/L −R/L −1/L 0 0 0 0 0 0
0 0 1/C 0 −1/C 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 1/C 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A typical input trajectory for these digital systems is a trapezoidal wave,
representing the “0” and “1” levels, as well as the rising and falling edges.
Since a trapezoidal wave is a piecewise linear trajectory, we can generate
it exactly using the following DEVS model:

M10 = (X, S, Y, δint, δext, λ, ta), where:
X = ∅
S = N × R

+
0

Y = R
2 × N

δint(k, σ) = (k̃, Tk̃)
λ(k, σ) = (uk̃,muk̃

, 1)
ta(k, σ) = σ

where k̃ = (k + 1 mod 4) is the next cycle index, which has 4 phases:
The low state (index 0), the rising edge (1), the high state (2), and the

12.6 Second–order QSS 581

falling edge (3). The duration of each phase is given by the corresponding
Tk value.

During the low state, the output is u0, and during the high state, it is
u2. During these two phases, the slopes, mu0 and mu2 , are zero. During
the rising edge, we have u1 = u0, and the slope is mu1 = (u2 − u0)/T1.
Similarly, during the falling edge, we have u3 = u2 and mu3 = (u0−u2)/T3.

The DEVS generator representing the input trajectory produces only
four events in each cycle. This is an important advantage, since the pres-
ence of the input wave only adds a few extra calculations. Moreover, since
the representation is exact, it does not introduce any error, i.e., we can
estimate the error bound using the inequality of Eq.(12.27) instead of that
of Eq.(12.31).

We performed the simulation using the parameter values R = 80 Ω,
C = 0.2 pF , and L = 20 nH. These parameter values correspond to a trans-
mission line of one centimeter length divided into five sections, where the
line resistance, capacitance, and inductance values are 400 Ω/cm, 1 pF/cm,
and 100 nH/cm, respectively.

The trapezoidal input has rising and falling times of T1 = T3 = 10 psec,
whereas the durations of the low and high states are T0 = T2 = 1 nsec.
The low and high levels are 0 V and 2.5 V , respectively.

The quantization adopted was Δv = 4 mV for the state variables rep-
resenting voltages, and Δi = 10 μA for the state variables representing
currents. This quantization, in accordance with Eq.(12.27), ensures that
the maximum error is smaller than 250 mV in the variable Vout.

The input and output trajectories are shown in Fig.12.6.

0 0.5 1 1.5 2 2.5 3

x 10
−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

QSS2 Simulation

Time

V
in

(t
),

V
o
u

t
(t

)

Vout

Vin

FIGURE 12.6. QSS2 simulation results in an RLC transmission line.

582 Chapter 12. Quantization–based Integration

The simulation required a total of 2536 steps (between 198 and 319
internal transitions at each integrator) to obtain the first 3.2 nsec of the
system trajectories.

The experiment was repeated using a 100 times smaller quantization,
which ensures a maximum error on the output voltage, Vout, of 2.5 mV .
This new simulation was performed consuming a total of 26.883 internal
transitions. Here we can see the effects of the second–order approxima-
tion: when reducing the quantum by a factor of 100, the number of events
grows only by a factor of 10, i.e., it grows inverse to the square root of the
quantum.

We also compared the trajectories of both simulations, and the difference
in Vout was always less than 14.5 mV . The conclusion is that the error
in the first simulation was less than 17 mV , in spite of the theoretical
bound of 250 mV . The error bound formula given by Eq.(12.27) often
produces highly conservative results, especially when it is applied to high
order systems.

Although the number of steps in the simulations is big, it is important
to remember that each step only involves scalar calculations at three inte-
grators, the integrator that undergoes the internal transition, and the two
integrators that are directly connected to its output. This is due to the
sparsity of the A–matrix.

12.7 Algebraic Loops in QSS Methods

The circuit of Fig.12.7 can be modeled by the block diagram of Fig.12.8.
The bold lines in this block diagram indicate the presence of an algebraic
loop.

L

R1

R2

C

+−

FIGURE 12.7. RLC circuit.

This algebraic loop expresses the algebraic restriction:

12.7 Algebraic Loops in QSS Methods 583

1
L

1
R1

R2

1
C

∫∫−

−

iC

iCiL

uC

u0 uL

FIGURE 12.8. Block diagram representation of the RLC circuit.

iC = iL +
1

R1
(u0 − uC − R2 · iC) (12.43)

We can implement the QSS method by transforming the integrators into
DEVS models, e.g. of the M5 class (quantized hysteretic integrators), and
the static functions into their DEVS equivalent representation (DEVS mod-
els such as M3). Then, we can couple these DEVS models according to the
coupling scheme of Fig.12.8. In fact, that is precisely what we did to con-
vert the system of Eq.(12.1) into the DEVS representation of Eq.(12.2) (cf.
Fig.11.12).

As you were taught in the companion book on Continuous System Mod-
eling [12.2], block diagrams are not necessarily the most convenient tool
for modeling physical systems, but they are in use widely, and some of the
most popular continuous system simulation tools, in particular SIMULINK
[12.3], are built on this modeling paradigm. Hence also the graphical user
interface of PowerDEVS was built around block diagrams.

Although the block by block translation from a block diagram represen-
tation of a continuous system to its corresponding DEVS model may result
in inefficient simulation code from the point of view of computational cost,
it is a very simple procedure that does not require any kind of symbolic
manipulations. Thus, if we do not want to perform the translation manu-
ally, and if we do not have another automatic tool, such as Dymola [12.4],
available for generating a set of equations, like those of Eq.(12.1), from a
higher–level graphical representation of the system to be simulated, the
block by block translation may be the most convenient way for applying a
QSS method to the simulation of a continuous–time system.

However, if we apply this procedure to the block diagram of Fig.12.8,
we encounter a problem. Due to the algebraic loop, the resulting DEVS
model will turn out to be illegitimate. When an event arrives at the loop,
it propagates forever through the static functions around the algebraic loop.

As we do not want to drastically alter the block diagram or the atomic
model definitions, we tackle the problem by adding a new loop–breaking

584 Chapter 12. Quantization–based Integration

block anywhere in the loop. For example, we can place the loop–breaking
DEVS model in front of the R2 gain element, as Fig.12.9 shows.

1
L

1
R1

R2

1
C

∫∫−

−

iC

iCiL

uC

u0 uL

ĩC
LB

FIGURE 12.9. Addition of a loop-breaking model to the block diagram of
Fig.12.8.

Now, Eq.(12.43) becomes:

iC = iL +
1

R1
(u0 − uC − R2 · ĩC) (12.44)

where ĩC is the output value of the loop–breaking block.
Since this block is inside the loop, whenever it sends an event with a value

ĩC out through its output port, it immediately (in terms of simulation time)
receives an event with value iC , calculated using Eq.(12.44), back through
its input port.

If we want Eq.(12.44) to be equivalent to Eq.(12.43), we need to ensure
that ĩC is equal to iC . In other words, the value received by the loop–
breaking model must be the same that it previously sent out.

Thus, the loop–breaking block could operate as follows: it sends ĩC out
and receives iC back. If the two signals differ from each other, it tries with
a different ĩC . Otherwise, the loop–breaking block becomes passive and
doesn’t send out any further events, until a new external event, caused by
a transition of an integrator or an input function, arrives at the loop.

This technique should solve our problem. Notice that the proposed tech-
nique corresponds closely to the tearing method introduced in Chapter 7 of
this book. iC is a tearing variable. The user will need to introduce enough
tearing variables (loop–breaking blocks) to break all algebraic loops in the
system.

So far, we have not explained, how the value of ĩC is to be calculated.
Yet, before providing an answer to this question, we need to reformulate
our problem in a more general framework.

Let us call z the variable sent by the loop–breaking model. Then, when
it sends an event with value z1, it immediately receives a new event with
value h(z1) calculated by the static functions.

12.7 Algebraic Loops in QSS Methods 585

Thus, the model should calculate a new value for z, let us call it z2, that
should satisfy:

h(z2) − z2 � g(z2) ≈ 0 (12.45)

If g(z2) remains too large, the process must be repeated by sending a new
value z3.

Clearly, zi+1 must be calculated following some algorithm to find the
solution of g(z) = 0. Taking into account that the loop–breaking block
does not know the expression, and hence the derivative, of g(z), a good
alternative to Newton iteration is the use of the secant method.

Using this approach, zi+1 can be calculated as:

zi+1 =
zi−1 · g(zi) − zi · g(zi−1)

g(zi) − g(zi−1)
(12.46)

and since g(zi) = h(zi) − zi, we obtain:

zi+1 =
zi−1 · h(zi) − zi · h(zi−1)

h(zi) − h(zi−1) + zi−1 − zi
(12.47)

Based on these ideas, the loop–breaking DEVS model can be represented
as follows:

M11 = (X, Y, S, δint, δext, λ, ta), where
X = R × N

Y = R × N

S = R
3 × R

+
0

δext(s, e, x) = δext(z1, z2, h1, σ, e, xv, p) = s̃

δint(s) = δint(z1, z2, h1, σ) = (z1, z2, h1,∞)
λ(s) = λ(z1, z2, h1, σ) = (z2, 1)
ta(s) = ta(z1, z2, h1, σ) = σ

where:

s̃ =
{

(z1, z2, h1,∞) if |xv − z2| < tol
(z2, z̃, xv, 0) otherwise

with:

z̃ =
z1 · xv − z2 · h1

xv − h1 + z1 − z2
(12.48)

The parameter tol represents the largest absolute error that we allow
between z and h. Equation (12.48) is the result of applying the secant
method to approximate g(z) = 0, where g(z) is defined in accordance with
Eq.(12.45). We can change the iteration algorithm by modifying Eq.(12.48).

586 Chapter 12. Quantization–based Integration

A corresponding PowerDEVS model can be coded as follows:

ATOMIC MODEL LOOP-BREAK1

State Variables and Parameters:
float z1, z2, h1, sigma; //states
float y; //output
float tol, inf ;

Init Function:
va list parameters;
va start(parameters, t);
tol = va arg(parameters, double);
inf = 1e10;
sigma = inf ;

z1 = 0;
z2 = 0;
h1 = 0;

y = 0;
Time Advance Function:

return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float xv;
xv =*(float*)(x.value);
if (fabs(xv − z2) < tol) {

sigma = inf ;
}
else{

z3 = z2;
if ((z1 == 0) && (z2 == 0)){

z2 = xv; //initial guess
}
else {

z2 = (z1 ∗ xv − z2 ∗ h1)/(xv − h1 + z1 − z2);
};
z1 = z3;
h1 = xv;

sigma = 0;

};

Output Function:
y = z2;
return Event(&y, 0);

For the circuit example of Fig.12.7, we built a coupled DEVS model in
accordance with Fig.12.9 and simulated it during 30 seconds using the QSS
algorithm. We used the parameter values R1 = R2 = L = C = 1, and u0

was chosen as a unit step. The quantum and hysteresis adopted were 0.01
in both state variables, and the error tolerance tol was chosen equal to
0.001.

12.7 Algebraic Loops in QSS Methods 587

The simulation, the results of which are shown in Fig.12.10, was com-
pleted after 118 and 72 internal transitions at each quantized integrator
and a total of 377 iterations at the loop–breaking DEVS model.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

QSS Simulation

Time

u
C

(t
),

i L
(t

)

uC

iL

FIGURE 12.10. QSS simulation of the RLC circuit using a loop–breaking DEVS.

In this case, due to the linearity of the system, the secant method arrives
at the exact solution of g(z) = 0 after only two iterations. This explains
why the total number of iterations at the loop–breaking model was twice
the total number of steps at both quantized integrators.

In a more general nonlinear case, more iterations per transition would
probably be needed, and we would have to discuss the convergence criteria
associated with the chosen iteration method.

An interesting observation is that the effect of the error in the calculation
of iC can be seen as an additional perturbation. If we can ensure that this
error remains bounded, the perturbation is also bounded and can be seen
as something equivalent to having a bigger quantum that only affects the
error bound but does not modify the stability properties.

¿From the discussion in this section, the reader might reach the conclu-
sion that the QSS methods deal with algebraic loops in the same, or at
least a very similar, way as the discrete–time methods introduced in earlier
chapters. However, such a conclusion would be totally wrong.

Almost all of the discrete–time methods presented earlier in this book are
centralized integration schemes that require the iteration of all algebraic
loops during every integration step, or even more accurately, during each
function evaluation.

In contrast, the QSS methods operate in a completely asynchronous fash-
ion. An algebraic loop will only be iterated upon when it gets triggered by

588 Chapter 12. Quantization–based Integration

a transition occurring either in a quantized integrator or in an input func-
tion. Due to the inherent sparsity property of large–scale physical systems,
plenty of transitions may take place in a larger model that do not affect
any of the algebraic loops at all. These transitions can proceed without
ever triggering an iteration on any of the loops.

Notice further that the discussion, presented in this section, focused on
the QSS method, rather than the QSS2 method. In the QSS2 method, each
loop variable carries with it a slope variable. Thus, the loop–breaking block
will need to iterate on two variables simultaneously: the tearing variable,
z, and its associated slope variable, mz.

12.8 DAE Simulation with QSS Methods

In the previous section, we worked with a particular DAE system. We saw
that, by adding a loop–breaking block, we can still use the QSS simulation
method in the presence of an algebraic loop.

Although this technique can be easily implemented, it does not constitute
a general solution yet. Moreover, the method may turn out to be fairy
inefficient, since the iteration process involves a traffic of events across all
blocks that constitute the loop.

This section is aimed at introducing a more general case and a more
efficient solution. As usual, we shall start by analyzing an example.

Figure 12.11 shows the transmission line model of Fig.12.5, modified by
the addition of a load.

RRR LLL

CCCVin

Rp

Rlvz

Line Load

FIGURE 12.11. RLC transmission line with surge voltage protection.

The load is composed of a resistor Rl, possibly representing the gate
of some electronic component, and a surge protection circuit formed by
a Zener diode and a resistor Rp. The Zener diode satisfies the following
nonlinear relationship between its voltage and its current:

iz =
I0

1 − (vz/vbr)m
(12.49)

where m, vbr, and I0 are parameters, the values of which depend on the
physical characteristics of the device.

12.8 DAE Simulation with QSS Methods 589

If the transmission line is divided into five sections, as we did earlier, the
following equations are obtained:

di1
dt

= 1
L · vin − R

L · i1 − 1
L · u1

du1
dt

= 1
C · i1 − 1

C · i2
di2
dt

= 1
L · u1 − R

L · i2 − 1
L · u2

du2
dt

= 1
C · i2 − 1

C · i3
...

di5
dt

= 1
L · u4 − R

L · i5 − 1
L · u5

du5
dt

= 1
C · i5 − 1

RpC
· (u5 − vz)

(12.50)

Here, the state variables, uj and ij , represent the voltage and current in
the capacitors and inductors of the transmission line, respectively, and the
output voltage, vz, is an algebraic variable that satisfies the equation:

1
Rp

· u5 −
(

1
Rp

+
1
Rl

)
· vz − I0

1 − (vz/vbr)m
= 0 (12.51)

Thus, we are confronted with a DAE that cannot be converted into an
ODE by symbolic manipulation, and the simulation using any discrete–
time method will have to iterate on Eq.(12.51) during each step, in order
to solve for the unknown variable vz.

If we want to apply the QSS method to the system defined by Eq.(12.50)
and Eq.(12.51), we can try to proceed as before, replacing the state vari-
ables ij and uj by their quantized versions.

In order to be able to use our standard notation, we define x2j−1 � ij
and x2j � uj for j = 1, . . . , 5. As before, we shall refer to the quantized
version of variable xj as qj .

Then, the use of QSS transforms Eq.(12.50) to:

dx1
dt

= 1
L · vin − R

L · q1 − 1
L · q2

dx2
dt

= 1
C · q1 − 1

C · q3

dx3
dt

= 1
L · q2 − R

L · q3 − 1
L · q4

dx4
dt

= 1
C · q3 − 1

C · q5

...
dx9
dt

= 1
L · q8 − R

L · q9 − 1
L · q10

dx10
dt

= 1
C · q9 − 1

RpC
· (q10 − vz)

(12.52)

and the implicit part of the system, i.e., Eq.(12.51), turns into:

590 Chapter 12. Quantization–based Integration

1
Rp

· q10 −
(

1
Rp

+
1
Rl

)
· vz − I0

1 − (vz/vbr)m
= 0 (12.53)

Notice that Eq.(12.52) looks like a quantized state system, except for
the presence of vz. However, the variable vz is algebraically coupled to q10.
Thus, each time that q10 undergoes a transition, we iterate on Eq.(12.53)
to find the new value of vz, and then use that value in Eq.(12.52), however
and contrary to the previously proposed solution involving a loop–breaking
block, this iteration occurs entirely within a single DEVS model, and there-
fore doesn’t involve events being passed around between different blocks in
a loop.

We can build a block diagram corresponding to Eq.(12.52) and Eq.(12.53)
as follows:

• We start by representing system Eq.(12.52) with quantized integra-
tors and static functions, treating vz as if it were an external input.

• We then add a new atomic block that computes vz as a function of
q10. Consequently, this block has q10 as an input and vz as an output.

The latter block will be in charge of iteration to determine a new value
of vz, each time q10 changes. Ignoring round–off errors and assuming that
the iteration block computes the value of vz correctly, the resulting coupled
DEVS model will exactly simulate the system defined by Eq.(12.52) and
Eq.(12.53).

Notice that the iteration block is only activated by a change in q10. In
all other steps, i.e., when either one of the other nine quantized variables
changes, or when the input changes, no iteration has to be performed, and
the QSS models acts like in the case of an explicit ODE model. Clearly, QSS
is still able to exploit the sparsity inherent in DAE models of large–scale
physical systems.

Our original system, defined by Eq.(12.50) and Eq.(12.51), is a particular
case of the implicit model introduced in Chapter 8:

f(x, ẋ,u, t) = 0 (12.54)

In that chapter, we studied methods for simulating this model without
transforming it to explicit ODE form first.

Let us check whether we can apply similar ideas to the situation of a
QSS simulation involving algebraic loops.

For simplicity, we shall only considering the time–invariant case, although
the explicit inclusion of time is not problematic, especially in the context
of performing a QSS2 simulation.

We can rewrite Eq.(12.54) as follows:

f̃(ẋa,xa,u) = 0 (12.55)

12.8 DAE Simulation with QSS Methods 591

As before, we call the state vector of the original system xa to distinguish
it from the quantized state vector.

Proceeding as we did before, we can modify Eq.(12.55) as follows:

f̃(ẋ,q,u) = 0 (12.56)

where x(t) and q(t) are related componentwise by hysteretic quantization
functions.

Now, we can apply Newton iteration to Eq.(12.56) to solve for ẋ. We shall
assume that the perturbation index of Eq.(12.56) is 1. Otherwise, we shall
apply the Pantelides algorithm first, in order to reduce the perturbation
index of the DAE system to 1.

Once we have obtained numerical values for the state derivatives, they
can be sent to the quantized integrators that perform the rest of the job,
i.e., calculate the quantized variable trajectories. Each time a quantized
variable changes, a new iteration process must be performed in order to
recalculate ẋ.

However in our previous example, we only needed to iterate, when q10

changed. For some reason, we lost the capability of exploiting sparsity in
the compact notation of Eq.(12.56).

As we still want to be able to exploit sparsity, we need to rewrite Eq.(12.55)
as follows:

ẋa = f(xa,u, za) (12.57a)
0 = g(xar ,ur, za) (12.57b)

where za is a vector of tearing variables with dimension equal to or less than
n. The vectors xar and ur are reduced versions of xa and u, respectively.

A straightforward –but useless– way of transforming the system repre-
sented by Eq.(12.55) into the system of Eq.(12.57) is by defining za � ẋa,
which yields xar = xa, ur = u, and g = f − za.

However in many cases, as in the case of the transmission line example,
the dimensions of xar and ur can be effectively reduced.

Equation (12.57b) expresses the fact that some state and input variables
may not act directly on the algebraic loops.

Then, the use of the QSS methods transforms Eq.(12.57) into:

ẋ = f(q,u, z) (12.58a)
0 = g(qr,ur, z) (12.58b)

and now, an iteration will only be performed, when components of either
qr or ur change.

The use of QSS and QSS2 methods with DAE systems is quite similar.
In order to simplify the derivation, we shall only consider the first–order
method for now. We shall add remarks relating to the QSS2 method later.

592 Chapter 12. Quantization–based Integration

When Eq.(12.58b) defines the value of z, we can see that the system
of Eq.(12.58) defines something that behaves like a QSS. In fact, we can
easily prove that the state and quantized variable trajectories correspond to
a QSS (i.e., they are piecewise linear and piecewise constant, respectively).
Moreover, the auxiliary variables z are also piecewise constant.

What still needs to be explained now is how an implicitly defined QSS
can be translated into a DEVS model.

It is clear that Eq.(12.58a) can be represented by quantized integrators
and static functions, as we did in Chapter 11. The only difference here is the
presence of the auxiliary variables z, acting as inputs just like u. However,
whereas the inputs u arrive from signal generators of the M6 or M7 class,
the auxiliary variables must be calculated by solving the constraints of
Eq.(12.58b).

Thus, a new DEVS model must be created. This DEVS model receives
events with the values of either qr or ur, and calculates a new value of z
in return that it then sends out through its output port.

A DEVS model that solves a general implicit equation, such as:

g(v, z) = g(v1, . . . , vm, z1, . . . , zk) = 0 (12.59)

can be written as follows:

M12 = (X, Y, S, δint, δext, λ, ta), where
X = R × N

Y = R
k × N

S = R
m+k × R

+
0

δext(s, e, x) = δext(v, z, σ, e, xv, p) = (ṽ,h(ṽ, z), 0)
δint(s) = δint(v, z, σ) = (v, z,∞)
λ(s) = λ(v, z, σ) = (z, 1)
ta(s) = ta(v, z, σ) = σ

where:

ṽ = (ṽ1, . . . , ṽm)T ; ṽi =
{

xv if p = i
vi otherwise

and the function h(ṽ, z) returns the result of applying a Newton iteration
or some other type of iteration to find the solution of Eq.(12.59) using an
initial value z.

When the size of z (i.e., k) is greater than 1, the output events of model
M12 contain a vector. Thus, they cannot be sent to static functions such as
M3. However, we can use a DEVS demultiplexer (cf. Hw.[H11.3]), in order
to tackle this problem.

12.8 DAE Simulation with QSS Methods 593

q(t)

q(t)

u(t)

z(t)

x1

xn

f1

fn

q1

qn

qr(t)

ur(t)

...

∫

∫

Iteration

FIGURE 12.12. Coupling scheme for the QSS simulation of Eq.(12.57).

Figure 12.12 shows the new coupling scheme with the addition of a new
DEVS model that calculates z.

When it comes to the QSS2 method, the same ideas can be applied, and
analogous DEVS models to M12 can be built. The only difficulty is that now
the trajectory slopes must be taken into account. This is not a problem in
linear systems, but it becomes a bit more complicated in nonlinear systems,
where estimations of the partial derivatives should be used. However, this
problem has already been solved, and a DEVS model replacing M12 for the
QSS2 method is provided in [12.14].

PowerDEVS also offers a nonlinear implicit model that solves a constraint
of the form g(v, z) = 0, calculating both the value and slope of z. The
symbolic expression g is a string parameter that can be modified by double
clicking on the implicit model icon.

We are now ready to return to the transmission line example. Using the
ideas expressed above, we modified the simulation of page 581 by adding a
PowerDEVS model like the one introduced in the previous paragraph that
solves Eq.(12.51), taking into account the slope.

Letting Rl = 100 MΩ, I0 = 0.1 μA, vbr = 2.5 V , and m = 4 with-
out modifying the remaining parameters, we obtained the results shown in
Fig.12.13.

The first 3.2ns of the simulation were completed after 2640 steps (be-
tween 200 and 316 steps at each integrator). The implicit model performed
a total of 485 iterations using the secant method. The reason for this is
that the quantized integrator that calculates u5 only performed 200 inter-

594 Chapter 12. Quantization–based Integration

0 0.5 1 1.5 2 2.5 3

x 10
−9

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

QSS2 Simulation

Time

u
5
(t

),
v z

(t
)

u5

vz

FIGURE 12.13. QSS2 simulation results in an RLC transmission line with surge
protection.

nal transitions, and therefore, the implicit model received only 200 external
events. The secant method needed between two and three iterations to find
the solution of Eq.(12.51) with the required tolerance of tol = 1 × 10−8,
which explains the fact that the total number of iterations was 485.

The advantages of the QSS2 method are evident in this example. In a
discrete–time algorithm, the secant method would have been invoked at
every integration step, whereas the QSS2 only called it after changes in u5,
i.e., about once every 13 steps. Thus, the presence of the implicit equation
only adds a few calculations that do not affect significantly the total number
of computations.

Returning once more to the issue of higher–index DAEs, we already
mentioned that such DAEs can be simulated by reducing their perturba-
tion index to index 1 first using the Pantelides algorithm, introduced in
Chapter 7 of this book, and then applying the QSS approach, presented
in this section, to the resulting index–1 DAE system. However, this may
not be the only way to tackling higher–index DAE problems using a QSS
method. An alternate solution was proposed in [12.9]. There, it is shown
that applying the QSS method to a higher–index DAE results in a model
that switches between two (or more) ODE systems. Thus, the simulation
can be performed applying the same principles that rule the simulation of
variable structure systems.

12.9 Discontinuity Handling 595

We shall not explore this idea any further here, since it was developed
in the context of bond graph modeling only. Although we believe that
this technique may also be applicable to general DAE systems, such a
generalization would require more research.

12.9 Discontinuity Handling

In Chapter 9, we studied the simulation of discontinuous systems using
discrete–time approaches. We remarked that numerical ODE solvers are
based on Taylor–Series expansions, and therefore, their trajectories are ap-
proximated by polynomials or rational functions. Since neither of these
functions exhibit discontinuities, the solvers will invariably be in trouble,
when asked to integrate across discontinuous functions.

However, the same restriction does not hold in the case of the QSS and
QSS2 methods. Here, the discontinuities in the input and quantized variable
trajectories are in fact responsible for time advance. Simulation steps are
only being calculated, when discontinuities are found in those trajectories.

Using discrete–time methods, the time instances of discontinuities had
to be determined precisely, as we were unable to integrate across discon-
tinuities accurately. Consequently, the primary difficulties in dealing with
discontinuous functions using discrete–time methods are related to accu-
rately detecting the time of occurrence of a discontinuity, and to designing
suitable integration step–size control algorithms around them.

Two different kinds of discontinuities were distinguished in our analysis:
time events, that could be scheduled ahead of time, as their time of occur-
rence was known in advance, and state events, that were specified indirectly
by means of some threshold crossing function, which required the use of an
iteration algorithm (a root solver algorithm) for locating them accurately
in time.

As we shall discover soon, all of these problems disappear with the use
of QSS and QSS2 methods.

The simulation of hybrid systems using QSS and QSS2 was studied in
[12.15] and, as the reader may already have anticipated, the most impor-
tant advantages of the discrete event approximations to continuous system
simulation are to be found in these kinds of applications.

Let us begin by analyzing a simple example. The inverter circuit shown
in Fig.12.14 is a device typically used to power electrical machines that are
being operated off the grid.

The set of switches can assume two different positions. In the first po-
sition, switches 1 and 4 are closed, and consequently, the load receives a
positive voltage. In the second position, switches 2 and 3 are closed, and
the load sees a negative voltage accordingly.

The system can be represented by the following differential equation:

596 Chapter 12. Quantization–based Integration

Vin

R

L

+

−

Sw1

Sw2

Sw3

Sw4

FIGURE 12.14. DC–AC full bridge inverter circuit.

diL
dt

= −R

L
· iL + Vin · sw(t) (12.60)

where sw assumes a value of either +1 or −1, depending on the position
that the four switches are operating in.

A typical way of controlling the switches in order to obtain an approxi-
mately sinusoidal current at he load is by using a pulse width modulation
(PWM) strategy.

The PWM signal is obtained by comparing a triangular wave, the so–
called carrier, with a modulating sinusoidal reference signal. The sign of
the voltage to be applied, +Vin or −Vin, and thereby the corresponding
switch position, is determined by the sign of the difference between these
two signals. Figure 12.15 illustrates this concept.

The difference between the carrier and modulation signal could be used
as a zero–crossing function of a state–event description for the control strat-
egy. However, since both the carrier signal and the modulating signal are
simple static functions, the time of the next intersection between these two
signals can easily be computed ahead of time, allowing an implementation
of the PWM control strategy by means of time events.

The system can be thought of as the coupling of a continuous submodel,
described by Eq.(12.60), and a discrete submodel that manages a sequence
of time events for determining the correct value of sw.

The discrete submodel can easily be represented as a DEVS model. It is
a simple DEVS generator model of the M6 class, introduced on page 565.
The output alternates between +1 and −1, and the time elapse between
commutations can be numerically computed ahead of time.

The continuous submodel can be approximated, using either the QSS or
the QSS2 method, by transforming Eq.(12.60) to:

diL
dt

= −R

L
· qiL

+ Vin · sw(t) (12.61)

where qiL
is the quantized state associated with variable iL.

12.9 Discontinuity Handling 597

Vin

−Vin

FIGURE 12.15. Pulse width modulation.

If we consider the last equation only, and if nobody tells us that sw(t)
originates at a discrete submodel, we could think that Eq.(12.61) corre-
sponds to the QSS or QSS2 approximation of a continuous model with an
input trajectory sw(t).

Indeed, the QSS methods effectively treat sw(t) as an input without
regard for where that signal originates. Since the changes in sw are treated
asynchronously, the QSS integration has no problems with accommodating
this signal.

Thus, ignoring round–off errors, and assuming that the DEVS model
generating sw(t) works properly, the system of Eq.(12.61) will be simulated
exactly.

Moreover, as Eq.(12.60) is linear and sw(t) is piecewise constant, i.e., we
can use the exact input trajectory, we can apply Eq.(12.27) to calculate
the global error bound. Consequently, the error of iL is bounded by the
quantum used.

To corroborate these remarks, we simulated the system with the QSS2
method using PowerDEVS.

We first built a new block to provoke the correct sequence sw. To this
end, we assumed that the triangular carrier has a frequency of 1.6 kHz,
and that the modulating sinusoidal signal has the same amplitude, but a
frequency of 50 Hz.

Thus, the number of events per modulating cycle is 2 · 1600/50 = 64,
which is sufficient for producing a fairly smooth sinusoidal current.

The PowerDEVS model is shown in Fig.12.16.
Employing the parameter values R = 0.6 Ω, L = 100 mH, and Vin =

300 V , the simulation starting from iL = 0 and using a quantization of

598 Chapter 12. Quantization–based Integration

+K

PWM
Signal1 WSum1 Integrator1 Scope1

∫

FIGURE 12.16. PowerDEVS model of the inverter circuit.

ΔiL = 0.01 A produced the results shown in Figs.12.17–12.18.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.17. Load current with pulse width modulation.

The final time of the simulation chosen was 1 sec, and thus, the number
of simulated cycles was 50. The discrete system underwent a total of 3200
changes in the switch positions, i.e., 3200 time events took place.

In spite of this large number of time events, the simulation was completed
after only 3100 internal transitions at the second order quantized integrator.
Thus, the total number of simulation steps was 3100 + 3200 = 6300.

As mentioned before, the error is bounded by the quantum. The tra-
jectories depicted in Figs.12.17–12.18 have an error that is no larger than
0.01 A at any instant of time, corresponding to roughly 0.1% of the oscil-
lation amplitude.

The simulation of the same system with discrete–time methods, even
using the most appropriate event handling techniques, requires many more
integration steps, and there is little that we can say about the global error
bound.

This example shows that time events are treated in a very natural way
by QSS methods. The only new thing that we had to do is to express
the discrete subsystem as a DEVS model and connect its output to the

12.9 Discontinuity Handling 599

0.6 0.61 0.62 0.63 0.64 0.65 0.66

−10

−5

0

5

10

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.18. Steady–state behavior of load current.

continuous submodel.
Let us now discuss what happens in the presence of state events. To this

end, we shall modify our previous example.
Due to failures (a short circuit in the load for instance) or during tran-

sients, the load current of the circuit in Fig.12.14 might take on values that
are too large and thus could damage the components. To prevent this from
happening, such circuits are usually protected.

A simple and cheap surge protection scheme consists in measuring the
load current and, when it surpasses the allowed value, to close switches
2 and 4, so that the voltage applied to the load becomes 0. Then, when
the current has returned to a level below the maximum allowed value, the
circuit resumes its normal operation.

Applying this strategy to our example converts Eq.(12.60) to:

diL
dt

= −R

L
· iL + Vin · s̃w(t) (12.62)

where:

s̃w(t) =
{

sw(t) if iL(t) < iM
0 otherwise (12.63)

and iM is the maximum allowed current.
In a real application, we should add hysteresis to the protection, and we

should also prevent the condition iL < −iM . However, as this examples is
introduced for illustrative purposes only, we shall limit our discussion to
the simplified version.

Variable s̃w depends on the value of the state iL. As the value of iL cannot
be computed analytically, the surge protection logic must be implemented

600 Chapter 12. Quantization–based Integration

by means of state events. A state event occurs in the model, whenever
iL = iM .

As we saw in Chapter 9, discrete–time algorithms must iterate to find
the exact moment when iL = iM . We shall see that there is no need for
iterating on state events, when employing a QSS method.

We can proceed as we did earlier, i.e., we change Eq.(12.62) to:

diL
dt

= −R

L
· qiL

+ Vin · s̃w(t) (12.64)

and build a DEVS model of the discrete subsystem that calculates s̃w(t).
Since s̃w(t) depends on iL, the discrete subsystem must receive from the

continuous subsystem information concerning the value of iL(t).
At this point, we have two choices: we can either use the quantized

variable qiL
instead of iL in Eq.(12.63), or we can use the true state variable.

¿From a formal point of view, using iL appears as the correct choice.
Indeed, this is the idea followed in [12.15].

However from a practical point of view, it is much simpler to use qiL
.

Although we can obtain the successive values of the state variables (we al-
ready studied the problem of output interpolation), the quantized variables
are directly seen at the output of the quantized integrators.

Moreover, the state and quantized variables never differ from each other
by more than the quantum ΔQ. Thus, the replacement will not introduce
a large error in general. If iM is a hard limit, it would suffice to modify the
state condition to iL = iM − ΔQ to ensure that the current iL will never
surpass the value of iM .

Thus, for the moment, we shall use qiL
instead of iL for the discrete

subsystem. We shall revisit this issue later on in the chapter.
The discrete subsystem can be formed by two atomic models. The first

block generates sw(t) as before (the block PWM signal of Fig.12.16), and
the second block sends events out with either the value sw or 0 depending
on the value of qiL

. This second block, in order to decide the value to be sent
out, must receive the previously calculated value of sw and the successive
values of qiL

through its input ports.
If we are using the first–order accurate QSS method, qiL

is piecewise con-
stant. Provided that a quantization level equal to iM exists, the detection
of the condition qiL

= iM is straightforward.
If such a level does not exists, we will not be able to detect the exact con-

dition, since it will never occur. However, we can easily detect the crossings,
because, when they occur, we have that qiL

(tk−) < iM and qiL
(tk) > iM .

Thus, the time of occurrence of the state event can be computed exactly.
In the case of the QSS2 method, the trajectory qiL

will be piecewise
linear. Thus, we can easily compute the precise instant in time, when qiL

crosses iM , by solving a linear equation. The time to the next crossing can
be exactly calculated as:

12.9 Discontinuity Handling 601

σ =
{

(qiL
− iM)/mq if mq �= 0 and (qiL

− iM)/mq > 0
∞ otherwise (12.65)

However, as qiL
is discontinuous (cf. Fig.12.4), it can happen that qiL

jumps
over the event condition, and we detect a situation where qiL

(tk−) < iM
and qiL

(tk) > iM . In this case, the time of occurrence of the crossing can
again be detected exactly.

PowerDEVS offers several blocks that detect and handle discontinuities
in accordance with these concepts. For our example, we used a Switch
block, that predicts the intersection of a piecewise parabolic trajectory
with a given fixed threshold value. Then, when this trajectory, entering the
block through the second input port, is greater than the threshold value,
the output sends out the trajectory received through the first input port.
Otherwise, it sends out the trajectory received through the third input
port.

The PowerDEVS model of the circuit with the surge protection is shown
in Fig.12.19. A Delay block was added, modeling the fact that the switches
don’t react instantaneously.

+K

PWM
Signal1

WSum1 Integrator1 Scope1

Constant1

Switch1 Delay1

∫

FIGURE 12.19. PowerDEVS model of inverter circuit with surge protection.

Had we not included the delay, the resulting model would have been
illegitimate. The reason is that when the condition iL = iM occurs, s̃w

is set to 0, and consequently, the slope in iL becomes negative. Thus, s̃w

changes to 1 again, and a cyclic behavior is obtained without time advance.
As mentioned earlier in this chapter, the illegitimacy issue could also

have been avoided by adding hysteretic behavior to the crossing condition.
Such an approach might in fact be preferable to the delay solution, but the
solution with the delay block suffices for illustrating, how PowerDEVS can
deal with state events.

We simulated the model with the QSS2 method using the same pa-
rameters as before, while letting iM = 11 A, and choosing a delay of
ΔT = 1 × 10−6 sec.

As in the previous example, the PWM block generated 3200 time events,
but the switch now sent out 3288 events to the continuous subsystem. At

602 Chapter 12. Quantization–based Integration

least 88 state events must consequently have occurred during the simula-
tion. The quantized integrator now performed 3188 steps.

Figures 12.20–12.21 display the simulation results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.20. Load current with surge protection.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−10

−5

0

5

10

15

QSS2 Simulation

Time

i L
(t

)

FIGURE 12.21. Initial behavior of load current with surge protection.

In this new situation, we cannot say anything about the global error
bound. In the previous example, we knew that sw(t) was exactly generated.
But now, s̃w(t) depends on iL, which is not known exactly.

12.9 Discontinuity Handling 603

As mentioned above, we could have used iL instead of qiL
for the de-

tection of the state events. However, the prediction is a bit more involved,
since we must now solve a quadratic equation in Eq.(12.65). Moreover, in
order to obtain the successive values of iL, we need to look at the derivative
of this signal and reintegrate it.

Thus, depending on the application, we can choose using either the con-
tinuous states or the quantized state variables for the detection of state
events. Using the quantized state variables is more efficient computation-
ally, but using the continuous states offers more accurate simulation results.

After these introductory examples, we are now ready to analyze a more
general case.

We shall assume that the continuous subsystem can be represented by a
set of DAEs, as specified below:

ẋa(t) = f(xa(t),u(t), za(t),ma(t)) (12.66a)
0 = g(xar(t),ur(t), za(t),ma(t)) (12.66b)

where ma(t) is a piecewise constant trajectory emanating at the discrete
subsystem that defines the different operational modes of the system (this
was the role of sw and s̃w in our first and second example, respectively).
Thus for each value of ma(t), there is a different DAE representing the
system dynamics.

As we did in the previous section, we shall assume that the implicit
equation, Eq.(12.66b), has a solution for each value of ma(t), which implies
that the system of Eq.(12.66) does not exhibit conditional index changes.

Independently of the way in which ma(t) is being calculated, the sub-
model corresponding to the continuous part can be built as before, consid-
ering ma(t) as an input.

Then, the QSS and QSS2 methods will transform Eq.(12.66) to:

ẋ(t) = f(q(t),u(t), z(t),m(t)) (12.67a)
0 = g(qr(t),ur(t), z(t),m(t)) (12.67b)

with the same definitions that we used in Eq.(12.58). Consequently, the
simulation scheme for the continuous subsystem will be identical to the one
shown in Fig.12.12, but now, m(t) must also be calculated and included
with the input u(t).

The way, in which m(t) is calculated, is determined by the discrete sub-
system.

One of the most important features of DEVS is its capability for repre-
senting any kind of discrete system. Taking into account that the continu-
ous subsystem has been approximated by a DEVS model, it is only natural
to also represent the discrete subsystem by another DEVS model. Then,

604 Chapter 12. Quantization–based Integration

both DEVS models can be directly coupled building a single coupled DEVS
model that approximates the entire system.

The DEVS model of the discrete subsystem will provoke events that
carry the successive values of m(t).

Taking into account the asynchronous fashion, in which the static func-
tions and quantized integrators work, the events arriving from the discrete
subsystem will be processed by the continuous subsystem as soon as they
arrive, without a need of modifying anything in the QSS or QSS2 methods.
Efficient event handling is an intrinsic characteristic of the QSS methods.

In the presence of state events, the discrete subsystem needs to detect
the occurrence of such events by monitoring zero–crossing functions that
are functions of inputs and state variables.

Here, the QSS and QSS2 methods have an even bigger advantage over
discrete–time methods: input and state trajectories are known functions of
time in a local context. They are either piecewise constant, or piecewise
linear, or piecewise quadratic functions of time. For this reason, the time
of occurrence of a state event that is about to take place can be calculated
analytically, which makes it unnecessary to iterate on state events.

The only thing that has to be done is to provide those trajectories to the
discrete subsystem, so that it can detect the occurrence of state events and
calculate the trajectory m(t), which it then passes on to the continuous
subsystem. The continuous subsystem performs the state event handling
in accordance with the changes in m(t), as if these were mere time events.

The continuous state trajectories, x(t), are not directly available at the
output of the quantized integrators. Only the quantized states, q(t), are
generated by the quantized integrators. However, the state derivative func-
tions are available. These can be integrated to obtain x(t). This is further-
more a very simple task that does not require much computational effort at
all, since the state derivative trajectories are piecewise constant or piece-
wise linear (in QSS2), and obtaining their integrals only takes one or two
simple calculations with the coefficients of the corresponding polynomials.

An alternative –and simpler– solution, which was the solution chosen
in the introductory examples of this section, consists in using the quan-
tized states instead of the continuous state variables in the discrete part.
However, we may increase the error by doing so.

Using these ideas, the simulation model of a hybrid system, such as that
of Eq.(12.66), using the QSS or QSS2 method will be a coupled DEVS with
the structure shown in Fig.12.22.

Here the discrete part is a DEVS model that receives the events repre-
senting changes in the input trajectories and the quantized state variables.
Alternatively to the quantized state variables, we could provide the state
derivative signals to the discrete subsystem.

As state events can be detected before they occur, and since the discrete
subsystem can set its time advance to that moment, ensuring the correct
treatment of the corresponding event, there is no need for iterations or

12.9 Discontinuity Handling 605

q(t)

q(t)

u

z(t)

x1

xn

f1

fn

q1

qn

qrur

...

∫

∫

m(t)

m(t)

Discrete

Implicit

FIGURE 12.22. Coupling scheme for the QSS simulation of discontinuous sys-
tems.

back–stepping, in order to hit the event instants accurately. This is a very
important advantage in the context of real–time simulation, as we shall
discuss shortly.

In the following example, we shall see some further advantages of apply-
ing the QSS methods to the simulation of discontinuous systems.

A typical textbook example of a discontinuous system containing state
events is the bouncing ball problem. We shall consider the case, where the
ball moves in two directions, x and y, bouncing down a stairway. Thus, the
bouncing condition depends on the two variables, x and y.

We postulate that the ball experiences air friction, which we shall assume
linear for simplicity (in physics textbooks, air friction is usually assumed
quadratic in the velocity), and we declare that, when the ball reaches the
floor, it shall behave like a spring–damper system.

A corresponding differential equation model for the bouncing ball prob-
lem can be formulated as follows:

ẋ = vx (12.68a)

v̇x = −ba

m
· vx (12.68b)

606 Chapter 12. Quantization–based Integration

ẏ = vy (12.68c)

v̇y = −g − ba

m
· vy − sw(t) · (b

m
· vx +

k

m
· (y − yf (t))) (12.68d)

where m is the mass of the ball, ba is the air friction constant, g is the
gravitational constant, b is the damping constant, k is the spring constant,
and:

sw(t) =
{

1 when yf (t) � h − floor(x) > y(t)
0 otherwise, i.e., while the ball is in the air

(12.69)

The function yf (t) = h−floor(x) calculates the height of the floor at any
given horizontal position, x, where h is the height of the first step. We are
considering steps of 1 m by 1 m, which correspond more to the dimensions
of the steps on an Egyptian pyramid, than those of a modern–day stairway.

State events are being produced when x and y satisfy the condition:

y = h − floor(x)

or when x = floor(x).
We decided to simulate the system using the QSS2 method. However this

time around, we decided, not to use the quantized state variables for state
event detection. Instead, we shall provide the derivatives of x and y, i.e.,
variables vx and vy to the discrete subsystem and re–integrate them.

The right hand side of Eq.(12.68), i.e., the continuous subsystem, de-
pends only on the three variables vx, vy, and y. Consequently, the quantized
state variable corresponding to x does not appear at all in the quantized
system. Hence the quantized integrator that calculates it can be omitted.

Figure 12.23 shows the PowerDEVS model of the system. Here, the in-
tegrators to the left calculate vy and y, whereas the integrator to the right
computes vx.

+K

+K+K

WSum1

WSum2

WSum3Integ1 Integ2 Integ3

Scope1

Constant1

Multiplier1 Discrete

∫∫∫

FIGURE 12.23. PowerDEVS bouncing ball model.

12.9 Discontinuity Handling 607

The discrete subsystem has been encapsulated. Figure 12.24 shows the
complete discrete submodel.

+K

+K

0

0

1

1

WSum3

WSum4

Integrator1

Integrator2
Pure

Pure

Quantizer2

Constant1

Constant2

Constant3

Switch1sw

vx

vy

floor
height

∫

∫

FIGURE 12.24. PowerDEVS bouncing ball model (discrete subsystem).

The discrete submodel contains two Pure Integrator blocks. These blocks
compute exactly the integral of piecewise linear trajectories.

When one of these blocks receives an event with value dx(tk) and lin-
ear slope mdx

(tk), it immediately sends out an event with value x(tk) =
x(tk−1) + mx(tk−1) · (tk − tk−1) + px(tk−1) · (tk − tk−1)2, where the linear
slope, mx, is computed as mx(tk) = dx(tk), and the quadratic slope, px,
assumes a value of px(tk) = mdx

(tk)/2. Then, it waits until a new input
event arrives.

Thus, the trajectories calculated by these blocks are piecewise parabolic
and continuous. In our example, they compute the state trajectories of x(t)
and y(t).

The trajectory x(t) is then sent to a Quantizer block that calculates
floor(x) in order to evaluate the height of the floor. This is a block provided
by the Hybrid library of PowerDEVS.

We already encountered the Switch block once before in this section. In
the given model, its second input port receives the values of y(t) − yf (t),
and predicts, when this signal crosses the threshold of 0 in either direction,
in order to detect the next floor contact or floor separation event.

For the simulation, we used the parameter values k = 100, 000 N/m,
b = 30 kg/s, ba = 0.1 kg/s, and m = 1 kg. To simplify the logistics of
the simulation (quite significantly, to tell the truth!), the ball is assumed
to be infinitely small. Thus, the spring–damper system represents in fact
the elasticity of the floor, rather than that of the bouncing ball.

A quantum of 0.01 m/s was chosen for the quantized integrators that
calculate vx and vy, whereas a quantum of 0.0001 m was chosen for the
quantized integrator that calculates y. The initial conditions were x(0) =
0.575 m, vx(0) = 0.5 m/s, y(0) = 10.5 m and vy = 0 m/s. We simulated

608 Chapter 12. Quantization–based Integration

the system across 10 seconds of simulated time.
Figure 12.25 shows the simulation results for this system.

0.5 1 1.5 2 2.5 3 3.5
6.5

7

7.5

8

8.5

9

9.5

10

10.5

QSS2 Simulation

x(t)

y
(t

),
10

-i
nt

(x
(t

))

FIGURE 12.25. Ball bouncing down some stairs.

The integrator that calculates vx required five steps, the integrator that
calculates vy required 518 steps, and the integrator that calculates y re-
quired 2413 steps. Hence the Quantizer block received only five external
events. It detected four crossings by integer values, as the ball advanced
four steps downward. Consequently, the routine that predicts crossings by
solving a quadratic polynomial was invoked only nine times.

Similarly, the Switch block received 522 events through its second port,
518 of which originated at the quantized integrator of vy, whereas the
remaining four originated at the Quantizer block. It detected a total of 20
crossings, as each bounce results in two separate events, a floor contact
event, and a floor separation event.

Notice that the second bounce was produced near the border of a step.
Here, discrete–time methods will experience problems. Figure 12.26 details
the result of simulating this system using a variable–step Runge–Kutta
method (ode45 of MATLAB) with two different accuracy settings.

Using a sufficiently large tolerance value, the method skips the event.
Since the time elapse between subsequent function evaluations is larger
than the zone, in which the event condition is triggered, the algorithm
does not recognize that it has passed through that zone.

An example of this problem was given in [12.5], where the authors
proposed a solution based on decreasing the step size as the system ap-
proximates the discontinuity condition. In Chapter 9 of this book, we had
proposed another solution involving the use of the derivative of the zero–
crossing function as an additional (dummy) zero–crossing function.

12.10 Real–time Simulation 609

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

Event Skipping

x(t)

y
(t

),
10

−
in

t(
x
(t

))
small steps

big steps

FIGURE 12.26. Event skipping in discrete–time algorithms.

In the QSS methods, this problem disappears. Provided that we use the
continuous states instead of the quantized state variables for detecting the
discontinuities, as we did in this example, it is impossible for QSS methods
to skip short–living state events as discrete–time methods do.

12.10 Real–time Simulation

In Chapter 10, we studied, which algorithms were suitable in the context of
real–time simulation. We concluded that fixed–step algorithms were neces-
sary, and we only accepted explicit or semi–implicit methods. In the latter
case, we tried furthermore to reduce the size of the matrix to be inverted
using mixed–mode integration techniques. Thus at a first glance, QSS and
QSS2 don’t seem to fit the bill very well, since these are clearly variable–
step algorithms.

We offered two reasons for discarding variable–step methods. The first
reason was that we were not able to spend time discarding values and
repeating steps, when we did not like the error obtained. The second reason
was that the inputs and outputs of most real–time applications occur at
fixed time intervals, which constitutes another good point in favor of fixed–
step algorithms.

However, none of these reasons apply to quantization–based methods,
since they never discard values, since they accept input changes at any
point in time, and since their states are known at any instant of time also.
QSS methods conveniently solve the dense output problem that we had
encountered in Chapter 9 of this book.

We furthermore mentioned in Chapter 10 that real–time simulation of

610 Chapter 12. Quantization–based Integration

discontinuous models is highly problematic, since it forces us to spend time
detecting and handling events, i.e., we are back facing the same problems
that had convinced us to discard variable–step algorithms.

Taking into account the way, in which QSS methods deal with disconti-
nuities, quantization–based algorithms appear to be a very good choice for
handling discontinuities in real time.

Moreover, not all variables have to be calculated at the same rate. We
can let each variable update itself at the rate that it wants. We only need
to ensure that the overall simulation clock proceeds faster than real time.

Let us illustrate these ideas with an example. The PWM strategy in-
troduced in Fig.12.15 can be used to synthesize more general signals than
sinusoidal functions. Another typical application of pulse width modulation
is the control of DC motors. Since it is difficult and expensive to generate
a variable continuous voltage with high power output, the desired power
signal is replaced by a switching signal, in which the duration of the on
state is proportional to the desired voltage. The comparison of the desired
voltage with a fast triangular waveform permits achieving such behavior.

Figure 12.27 shows the block diagram of a control system based on this
technique. The controller compares the speed ω(t) with the input reference,
and calculates the desired input voltage of the motor, uref . This value is
then compared to a triangular waveform, obtaining the actual input voltage
ua that oscillates between two values.

Control Motor
ω(t)ωref(t) uref ua

FIGURE 12.27. PWM controlled DC motor.

A real–time simulation of this kind of model may be needed in order
to detect the presence of failures in the physical system that the model
represents. As in the example of a watchdog monitor for a nuclear power
station, mentioned in Chapter 10, the simulation output can be compared
to the physical system output, and when the two signals differ significantly
one from another, we can conclude that something went wrong with the
system.

The simulation of this system requires accurate event detection. The
moment, at which the triangular wave crosses the value given by uref ,
determines the actual voltage applied to the motor. A small error in the
calculation of this time instant leads to a significant change in the output

12.10 Real–time Simulation 611

waveform.
An additional problem is that the triangular wave operates at a high

frequency, and therefore, state events occur with a high rate. Thus, the
efficient treatment of discontinuities becomes crucial.

The motor can be represented by a second order model of the form:

dia
dt

=
1
La

· (ua(t) − Ra · ia − km · ω)

dω

dt
=

1
J
· (km · ia − b · ω − τ(t))

where La = 3 mH is the armature inductance, Ra = 50 mΩ is the armature
resistance, J = 15 kg · m2 is the inertia, b = 0.005 kg · m2/s is the friction
coefficient, and km = 6.785 V · s is the electro–motorical force (EMF)
constant of the motor. These parameter values correspond to those of a
real system.

The inputs are the armature voltage, ua(t), and the torque load, τ(t),
respectively. In the given example, ua(t) switches between +500 V and
−500 V depending on the PWM control law. A torque step of 2500 N · m
is applied after 3 seconds of simulation.

For the PWM law, we consider a triangular waveform of 1 kHz frequency
with an amplitude of 1.1 V . This triangular wave is compared to the error
signal, saturated at a value of 1 V . The control is using a proportional law,
i.e., uref is proportional to the error ωref (t) − ω(t).

The angular velocity reference signal, ωref (t) is a ramp signal that in-
creases from 0 to 60 rad/sec in 2 seconds.

As a first step, we performed an off–line simulation using the PowerDEVS
model of Fig.12.28.

+K +K +K
WSum1

WSum2 WSum3Integrator1 Integrator2

To
Disk1

Constant1

Constant2

Saturation1

Triangular1

Step1

Switchtraj1
Ramp1

∫∫

FIGURE 12.28. PowerDEVS model of the PWM controlled DC motor.

A simulation across 5 seconds of simulated time took about 0.63 seconds

612 Chapter 12. Quantization–based Integration

of real time on a 950 Mhz computer running under Windows XP. This
allows to predict that we may be able to simulate the system in real time.
We used QSS2 with a quantum of 0.01 for both state variables, which
produced 1952 and 43,263 steps in the integrators corresponding to the
angular velocity and current, respectively. An additional 10,000 events were
caused by the triangular wave generator, and another 10,000 events were
provoked by the switch. The saturation block also produced 398 events,
which led to a total of 65,613 steps.

Before proceeding to the real time experiment, we need to discuss the
real time requirements of the input and output signals. We shall assume
that the angular velocity, ω(t), needs to be measured once each 10 msec,
and that it suffices to provide the model with updated values of the input
signal, ωref (t), at the same rate.

Thus, we added sample and hold blocks that provoke events every 10 msec
to both the input and output signals.

In principle, it would not have been necessary to provide clocked events
for the inputs and outputs, as DEVS models require input values only, when
a change occurs in the input pattern, and as they are able to compute dense
outputs on their own, as all trajectories are known signals in a local context.
For the given input signal, it would thus have sufficed to provide a single
event at the time, when the ramp goes into saturation. However, it may
be convenient to operate with clocked input and output signals in a real
time environment, as this allows to synchronize model inputs with signals,
whose trajectories are not known in advance, and as it allows to hook the
output trajectories of the real–time simulation to equipment that does not
know anything about DEVS models.

One way to simulate this system in real time is to synchronize the entire
simulation with a physical clock, so that each event is performed at a time
that is as close as possible to the physical clock. We can do this directly with
PowerDEVS, since it has the option of running a simulation synchronized
with a physical clock.

However, this is unnecessary in our case. We only need to ensure that
the values at the exits of the sample and hold blocks are sent out at the
correct time instants. In other words, we only need synchronization once
each 10 msec. Of course, in order to achieve this, we need to finish all
calculations corresponding to each period of 10 msec, before that time
window ends.

To obtain this behavior, we just added two new identical blocks called
Clock wait that send out an event, as soon as they receive one in terms of
simulated time, but contain an internal busy waiting loop that waits with
sending out the event, until the physical clock has advanced to the value
shown by the simulation clock. In this way, the synchronization routines
are only invoked, when and where they are needed.

Figure 12.29 shows the modified PowerDEVS model that can be used for
real–time simulation.

12.10 Real–time Simulation 613

+K +K +K
WSum1

WSum2 WSum3Integrator1 Integrator2

To
Disk1

Constant1

Constant2

Saturation1

Triangular1

Step1

Switchtraj1

Ramp1 Sample

Sample
hold1

hold2
Clock

Clock
wait1

wait2

∫∫

FIGURE 12.29. PowerDEVS model of the PWM controlled DC motor (RT).

The Clock wait block has been implemented using the following code in
PowerDEVS:

ATOMIC MODEL CLOCK WAIT
State Variables and Parameters:

float sigma;
void ∗xv; //states
void ∗y; //output
float itime;

Init Function:
inf = 1e10;
itime = 1.0 ∗ clock()/CLOCKS PER SEC;
sigma = inf ;

Time Advance Function:
return sigma;

Internal Transition Function:
sigma = inf ;

External Transition Function:
float actime;
xv = x.value;
actime = 1.0 ∗ clock()/CLOCKS PER SEC − itime;
while (actime < t) {

actime = 1.0 ∗ clock()/CLOCKS PER SEC − itime;
}
sigma = 0;

Output Function:
y = xv;
return Event(y, 0);

We simulated this new model, and saved the output data with both, the
physical and the simulated time. All events at the outputs of the Clock

614 Chapter 12. Quantization–based Integration

wait blocks were sent at the right physical time instants. The error was of
the order of the accuracy of the physical clock access that the gcc compiler
running under Windows permits. This means that the calculations were
indeed performed on time.

The simulation results are shown in Figs.12.30–12.31.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

QSS Simulation

Time

ω
(t

)

FIGURE 12.30. Simulation output of the DC motor.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
57

57.5

58

58.5

59

59.5

60

QSS Simulation

Time

ω
(t

)

FIGURE 12.31. Simulation output of the DC motor (detail).

In this case, the most important advantage of using QSS2 is related to
the efficient treatment of discontinuities. The off–line simulation of this

12.11 Open Problems in Quantization–based Methods 615

system with any of MATLAB’s integration methods requires more than
20 seconds of real time under identical operating conditions, which makes
a real–time simulation impossible.

There is another advantage connected to the fact that the system vari-
ables are not updated simultaneously. For example in our simulation, ω(t)
was only updated 1953 times. Unless we use a very sophisticated multi–rate
algorithm, any discrete–time method would calculate ω(t) at least 20,000
times, as there are 20,000 events in the system. Thus, we would have to
perform all calculations corresponding to each step in a period shorter than
0.25 msec.

In the QSS2 case, this period becomes about 10 times longer. It is true
that we might have more calculations between two steps in ω. However, it
is much easier to perform 1000 calculations in 10 msec, than performing
100 calculations in 1 msec.

Of course, the same idea of synchronizing only when and where it is
necessary can also be used in the discrete–time case. However, this is not
as easy in the case of the QSS2 method. Moreover, when we are forced
to change the step size because of the presence of discontinuities, time
synchronization becomes rather tricky, as we discussed in Chapter 10.

12.11 Open Problems in Quantization–based
Methods

As we had mentioned in the previous chapter, the discrete event simulation
of continuous systems is a newly developing area of research.

Despite the theoretical and practical advantages that we showed along
this chapter, there are still many important problems that should be solved,
before it can be claimed that quantization–based approaches represent a
good choice for the simulation of general continuous systems.

The most important problem is probably related to the solution of stiff
systems. Let us introduce the issue by means of a simple example. We shall
consider the second–order ODE system given by:

ẋ1 = 100 · x2

ẋ2 = −100 · x1 − 10, 001 · x2 + u(t) (12.70)

The eigenvalues of this linear system are located at λ1 = −1 and λ2 =
−10, 000, which means that this system, in spite of its simplicity, is stiff.

We simulated the system across 10 seconds of simulated time using the
QSS method with quantum sizes of 1 × 10−2 for x1, and 1 × 10−4 for x2.
According to Eq.(12.27), this quantization ensures that the error in x1 is
bounded by 0.01, whereas the error in x2 is bounded by 0.0003.

The initial conditions were both set equal to zero, and the input was
chosen as a step function, u(t) = 100 · ε(t). The simulation was completed

616 Chapter 12. Quantization–based Integration

after 100 internal transitions in the quantized integrator that calculates x1,
and after 200 internal transitions in the quantized integrator that calculates
x2. The trajectory of the quantized state q2 is shown in Figs.12.32–12.33.

0 1 2 3 4 5 6 7 8 9 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

QSS Simulation

Time

q 2
(t

)

FIGURE 12.32. QSS simulation of the system of Eq.(12.70).

0 2 4 6

x 10
−4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

QSS Simulation

Time

q 2
(t

)

FIGURE 12.33. QSS simulation of the system of Eq.(12.70), startup period.

The stiffness of this system becomes evident, when we compare the time
scale of Fig.12.32 with that of Fig.12.33. In this example, the performance
of the QSS method is truly amazing. The method was able to adjust the
step size in a very natural way, and performed the overall simulation in
a surprisingly small number of integration steps. The number of transi-

12.11 Open Problems in Quantization–based Methods 617

tions performed can be calculated here by dividing the amplitude of the
trajectory by the quantum.

Looking at this result, we may think that the QSS technique is a won-
derful method for solving stiff systems: it is an explicit method that allows
simulating a stiff system much faster and more efficiently than the most
complex implicit variable–step algorithms that we have met throughout
this book.

This idea seems coherent with the fact that the QSS method is always
“stable.” A simulation method that good must surely turn the entire ex-
isting vault of theories concerning numerical ODE solutions upside down.
Armies of applied mathematicians will have to rebuild from scratch the
foundations of their trade.

Yet, we must not forget the meaning that we have given to the term “sta-
ble.” The QSS method does not ensure asymptotic stability of a solution,
but only its boundedness, and, unfortunately, this can become a problem
when dealing with stiff systems.

To illustrate our point, let us check what happens if we introduce a small
modification to the previously discussed example. We changed the input
step function from u(t) = 100 · ε(t) to u(t) = 99.5 · ε(t), and repeated the
simulation.

In the first five seconds of simulated time, the quantized integrator that
calculates x1 performed 100 internal transitions, i.e., the number stayed
approximately the same as before, but the quantized integrator that cal-
culates x2 underwent a total of 25, 057 transitions! The trajectory of q2 is
shown in Figs.12.34–12.35.

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10
x 10

−3 QSS Simulation

Time

q 2
(t

)

FIGURE 12.34. QSS simulation of the system of Eq.(12.70) with u = 99.5.

The results of this simulation are very similar to those obtained earlier.

618 Chapter 12. Quantization–based Integration

0 0.005 0.01 0.015 0.02 0.025 0.03
8.8

9

9.2

9.4

9.6

9.8

10
x 10

−3 QSS Simulation

Time

q 2
(t

)

FIGURE 12.35. Details of the initial phase of Fig.12.34.

The error, in agreement with the theory, remains bounded, but the number
of calculations is huge.

The reason is the appearance of ultra–fast oscillations in x2 that ru-
ined our triumph of having found an explicit, efficient, stable, and reliable
method for dealing with stiff system. If those oscillations were not present,
we could have calculated the number of transitions by dividing the trajec-
tory amplitude by the quantum. However, this is not possible here.

Although these oscillations may have come as a surprise, they are in fact
already familiar to us. Indeed, they are no different from the oscillations
that we encountered in Fig.12.1 on page 557. There, the oscillations did not
pose a problem, since their period was not much shorter than the settling
time of the system.

Unfortunately, the oscillation frequency is related to the eigenfrequencies
of the system, i.e., the location of its eigenvalues, which is bad news indeed.

How can we solve this problem? We do not have a final answer to this
question yet.

An interesting trick that works in many cases is based on the use of
concepts borrowed from the design of implicit ODE solvers. We have learnt
very early on in this book that stiff systems require implicit algorithms for
their solution. Whereas the FE algorithm:

xk+1 = xk + h · ẋk

was unsuccessful in dealing with stiff systems, the implicit BE algorithm:

xk+1 = xk + h · ẋk+1

could deal with them successfully. The difference between these two algo-

12.11 Open Problems in Quantization–based Methods 619

rithms consists in the time instant, at which the state derivative is being
considered in computing the next state.

We may be able to use the same idea in the design of an Implicit Quan-
tized State System (IQSS) method. If only we knew, what the next state
and the next input would be, we could compute the next state derivative:

ẋik+1 = fi(qk+1,uk+1) (12.71)

and then we could determine the next quantized state, qik+1 , together with
the time of occurrence of the next internal transition by making use of that
future state derivative.

Explicit integration algorithms are loop breakers, whereas implicit al-
gorithms are not. We saw this already in Chapter 7 in the discussion of
the classical DAE solvers. Implicit algorithms invariably led to much larger
algebraic loops.

The same observation is true for QSS methods as well. Until now, we
were able to deal with the static functions independently of the hysteretic
quantized integrators, because the integrators are breaking the algebraic
loops. This is no longer the case, when we are looking at IQSS methods.

Yet, the problem may not be as bad as it looks. There are two points in
our favor:

1. Although we don’t know the value of the next quantized state, qik+1 ,
there are only two possible values that this state can assume: qik+1 =
qik

± ΔQ.

2. Looking at the integrator that is going to transition next, we only
need to consider the future state of that integrator, as all other inte-
grators still carry their previous value.

Given an nth–order system, we require an algorithm that can decide,
which of the n integrators is going to transition next. Once we know this,
we no longer need to iterate over n variables simultaneously. It then suffices
to iterate over a single variable. Furthermore, “iteration” may be a rather
fancy word for what needs to be done, since the future state can only
assume one of two values.

The following algorithm could be used:

1. Given any state qi = Q, where Q is the current value of the state qi.

2. We replace Q by Q + ΔQ in the corresponding state equation: ẋi =
fi(q,u), assuming that the state variable xi is about to increase.

3. We check, whether ẋi is positive. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is negative, the assumption
made was incorrect.

620 Chapter 12. Quantization–based Integration

4. We now replace Q by Q − ΔQ in the corresponding state equation:
ẋi = fi(q,u), assuming that the state variable xi is about to decrease.

5. We check, whether ẋi is negative. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is positive, the assumption
made was incorrect.

6. If one of the two assumptions turns out to be correct, whereas the
other is incorrect, we know the next transition time for this state
variable. If neither of the assumptions is correct, or if both are correct,
we assume that the state isn’t going to change on its own, and set
the corresponding σ value to ∞.

7. We repeat the same algorithm for all integrators. The shortest tk+1 is
the time of the next internal transition, and the corresponding state
variable is the one that is going to transition next.

The algorithm is clearly more expensive than the explicit QSS algorithm,
and it is more centralized. After each event, we need to recompute the
time advance functions of all quantized integrators, and determine the one
integrator that will transition next.

Notice that we should also have considered future values of the inputs
in the calculation of the state derivative functions. However, the input
values do not affect stability, and since our primary aim was to improve
the stability behavior, i.e., get rid of the high–frequency oscillations, it may
not be necessary to take future input values into account.

A much cheaper, and fully decentralized, version of this algorithm can
also be proposed. In this new approach, we only look at the integrator that
is undergoing an internal transition now, and compute its next value and
time advance in the following way:

1. Let qi = Q be a quantized state that is currently going through an
internal transition.

2. We replace Q by Q + ΔQ in the corresponding state equation: ẋi =
fi(q,u), assuming that the state variable xi is about to increase.

3. We check, whether ẋi is positive. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is negative, the assumption
made was incorrect.

4. We now replace Q by Q − ΔQ in the corresponding state equation:
ẋi = fi(q,u), assuming that the state variable xi is about to decrease.

5. We check, whether ẋi is negative. If this is the case, we can now com-
pute tk+1, the next transition time. If ẋi is positive, the assumption
made was incorrect.

12.11 Open Problems in Quantization–based Methods 621

6. If one of the two assumptions turns out to be correct, whereas the
other is incorrect, we know the next state value and the next internal
transition time for this state variable. If neither of the assumptions
is correct, or if both are correct, we assume that the state isn’t going
to change on its own, and set the corresponding σ value to ∞.

The cheap version of the IQSS algorithm is hardly more expensive than
the explicit QSS method, yet it may improve the stability behavior of the
method.

A remark here is that the quantized integrators have to be able to eval-
uate fi, which means that we should no longer separate the quantized
integrators from the static functions that calculate the derivatives.

Although the resulting atomic models are more complex, since they com-
bine the features of a quantized integrator and a static function, the sim-
ulation becomes more efficient, since the number of events is reduced to
less than one half, as we no longer have to transmit events from the static
functions to the quantized integrators and from the quantized integrators
back to the static functions that compute their own derivatives.

We implemented this idea for the above example, and repeated the sim-
ulation with u(t) = 99.5 · ε(t). The number of transitions was now approxi-
mately the same as when using the QSS method with u(t) = 100 · ε(t), i.e.,
the high–frequency oscillations have indeed disappeared.

However, we have not yet been able to prove that this approach works
for all stiff systems, i.e., constitutes an efficient solution for stiff systems in
general.

Furthermore, it may not be entirely trivial to generalize this technique
to higher–order IQSS methods, as the number of combinations of states
and slopes to be checked grows, and the search for consistent assumptions
becomes quite a bit more involved.

Thus, in spite of the fact that we have been able to find an attractive and
efficient quantization–based method for dealing with the above example, we
cannot claim that the same approach will always work, and therefore, we
consider that the problem is still open.

Another open problem in these methods has to do with the choice of the
quantization. Although we mentioned algorithms and showed formulae for
choosing the quantum in accordance with the desired error, this is not a
completely satisfactory solution.

Except in applications, where we need to ensure a fixed error bound,
which justifies performing a precise analysis prior to running the simulation,
nobody wants to calculate a Lyapunov function or compute the eigenvalue
and eigenvector matrices of a system to determine the quantum to be used.

An interesting idea would consist in developing quantum adaptation algo-
rithms similar in concept to the step–size control algorithms of the variable–
step discrete–time methods. Yet, there is no published research yet relating
to this topic.

622 Chapter 12. Quantization–based Integration

Another possibility might be to employ a logarithmic quantization scheme,
so that the quantum becomes larger, when the variables assume bigger val-
ues. In that way, we might expect the algorithm to control the relative
error, instead of the absolute error.

There are many other open problems that will probably be solved soon.
We can easily imagine methods of orders greater than two, enjoying the
same properties as QSS and QSS2, but reducing considerably the error
bounds. A third–order accurate method (QSS3) has already been proposed
and implemented in PowerDEVS [12.16, 12.17]. However, QSS3 is still not
fully functional, as the currently implemented version does not work yet
for general nonlinear blocks, and is not yet able to solve DAEs.

The use of high–order methods will also help with the choice of the quan-
tum, since it will allow us to adopt a conservatively small quantum without
a significant increase in the number of calculations. If we use a method of
order five, for instance, the use of a quantum 1000 times smaller than the
appropriate quantum would only increase the number of calculations by
about a factor of four.

Another idea, mentioned in [12.13], is to apply QSS and QSS2 to the
simulation of PDEs to exploit the natural sparsity of the resulting ODEs
after applying the method of lines. In fact, we did something similar already
in the transmission line examples.

The block diagrams of these ODEs have a very particular form, whereby
a basic structure is repeated along the different spatial sections. Since we
approximate each section by a DEVS model, we obtain in the process a
sort of cellular automaton. Gabriel Wainer defined a particular formalism
for describing cellular DEVS models, called Cell–DEVS [12.20], and he
then combined it with QSS for the simulation of PDEs [12.21]. Similar
approaches can also be found in [12.7] and [12.19].

Unfortunately, we saw that the method–of–lines approximation of PDEs
of the parabolic type invariably leads to stiff ODEs. Thus, the problem
of an efficient QSS simulation of stiff systems must be solved, in order to
arrive at a general discrete event method for the simulation of distributed
parameter systems.

Finally, another problem that has been treated recently is the application
of QSS methods to marginally stable systems [12.12]. There, it was proven
that, in the presence of purely imaginary eigenvalues, the error bound grows
linearly with time and also depends linearly on the quantum.

Moreover, some simulation examples have shown that not only the error,
but also the amplitude of the oscillations grows linearly with time, and
hence the simulation becomes unstable.

However, as we saw, the use of QSS methods is equivalent to introduc-
ing a bounded perturbation. If that perturbation were not correlated with
the state evolution, the presence of purely imaginary eigenvalues would not
cause any problem. In fact, the response of a marginally stable system to
a signal that does not contain spectral components at the resonance fre-

12.12 Summary 623

quency is not unstable. Unfortunately, the presence of hysteresis introduces
a large perturbation at the resonance frequency.

Thus, a modification of the quantized integrators, that attempts to elim-
inate these perturbation components, was proposed. Although the idea
noticeably improves the results, a slowly increasing unstable term still re-
mains.

Again, the usage of an IQSS algorithm might help solve this problem.

12.12 Summary

This chapter introduced the main theoretical and practical issues related
to a new family of numerical methods.

Based on the idea of replacing time discretization by state quantization,
two new ODE solvers, QSS and QSS2, were developed that exhibit theo-
retical properties, which differ noticeably from those of the classic discrete–
time methods. The existence of a global error bound that can be explicitly
calculated is probably the most interesting feature in this context.

The asynchronous nature of these methods and the knowledge of the
state trajectories at any instant of time permits dealing with discontinuous
systems in a very efficient fashion. In the presence of state and/or time
events that occur with a frequency of the same order as the eigenfrequencies
of the system, QSS and QSS2 can reduce significantly the simulation time
with respect to conventional algorithms.

Further advantages can be observed in the simulation of DAE systems,
and in the way of dealing with input signals.

In spite of all this, QSS and QSS2 exhibit a major drawback in the pres-
ence of stiff systems due to the frequent appearance of fast oscillations, but
we should not be discouraged by these findings. First attempts at tackling
the problem by introducing modified QSS algorithms that are implicit algo-
rithm, and yet, don’t require true iterations, led to very promising results.

To us, discrete event integration methods constitute one of the most
exciting recent developments in the field of numerical ODE solutions. There
are still lots of open problems that can constitute subjects of research for
future MS theses and PhD dissertations, which should be good news for
aspiring young applied mathematicians in search of a research topic.

QSS methods may look exotic and unfamiliar at a first glance, yet it is
always the departure to new shores and unexplored lands that ultimately
reaps the most benefit. It is the unknown and unexplored that keeps science
alive.

624 Chapter 12. Quantization–based Integration

12.13 References

[12.1] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre
Quadrat. Synchronization and Linearity: An Algebra for Discrete

Event Systems. John Wiley & Sons, 1992. 485p.

[12.2] François E. Cellier. Continuous System Modeling. Springer–Verlag,
New York, 1991. 755p.

[12.3] James B. Dabney and Thomas L. Harman. Masterink SIMULINK
4. Prentice Hall, Upper Saddle River, N.J., 2001.

[12.4] Hilding Elmqvist. Dymola — Dynamic Modeling Language, User’s
Manual, Version 5.3. DynaSim AB, Research Park Ideon, Lund, Swe-
den, 2004.

[12.5] Joel M. Esposito, R. Vijay Kumar, and George J. Pappas. Accurate
Event Detection for Simulating Hybrid Systems. In Proceedings of
the 4th International Workshop on Hybrid Systems: Computation and
Control, volume 2034 of Lecture Notes in Computer Science, pages
204–217. Springer–Verlag, London, 2001.

[12.6] Yehea I. Ismail, Eby G. Friedman, and José Luis Neves. Figures of
Merit to Characterize the Importance of On-chip Inductance. IEEE
Trans. on VLSI, 7(4):442–449, 1999.

[12.7] Rajanikanth Jammalamadaka. Activity Characterization of Spatial
Models: Application to Discrete Event Solution of Partial Differential
Equations. Master’s thesis, The University of Arizona, 2003.

[12.8] Hassan K. Khalil. Nonlinear Systems. Prentice–Hall, Upper Saddle
River, N.J., 3rd edition, 2002. 750p.

[12.9] Ernesto Kofman and Sergio Junco. Quantized Bond Graphs: An
Approach for Discrete Event Simulation of Physical Systems. In Pro-
ceedings International Conference on Bond Graph Modeling and Sim-
ulation, volume 33 of Simulation Series, pages 369–374. Society for
Modeling and Simulation International, 2001.

[12.10] Ernesto Kofman and Sergio Junco. Quantized State Systems: A
DEVS Approach for Continuous System Simulation. Transactions of
SCS, 18(3):123–132, 2001.

[12.11] Ernesto Kofman, Jong Sik Lee, and Bernard Zeigler. DEVS Rep-
resentation of Differential Equation Systems: Review of Recent Ad-
vances. In Proceedings European Simulation Symposium, pages 591–
595, Marseille, France, 2001. Society for Modeling and Simulation In-
ternational.

12.14 Bibliography 625

[12.12] Ernesto Kofman and Bernard Zeigler. DEVS Simulation of
Marginally Stable Systems. In Proceedings of IMACS 2005, Paris,
France, July 2005.

[12.13] Ernesto Kofman. A Second Order Approximation for DEVS Sim-
ulation of Continuous Systems. Simulation, 78(2):76–89, 2002.

[12.14] Ernesto Kofman. Quantization–based Simulation of Differential
Algebraic Equation Systems. Simulation, 79(7):363–376, 2003.

[12.15] Ernesto Kofman. Discrete Event Simulation of Hybrid Systems.
SIAM Journal on Scientific Computing, 25(5):1771–1797, 2004.

[12.16] Ernesto Kofman. A Third Order Discrete Event Simulation Method
for Continuous System Simulation. Part I: Theory. In Proceedings of
RPIC’05, Ŕıo Cuarto, Argentina, 2005.

[12.17] Ernesto Kofman. A Third Order Discrete Event Simulation Method
for Continuous System Simulation. Part II: Applications. In Proceed-
ings of RPIC’05, Ŕıo Cuarto, Argentina, 2005.

[12.18] Ernesto Kofman. Non–Conservative Ultimate Bound Estimation
in LTI Perturbed Systems. Automatica, 41(10):1835–1838, 2005.

[12.19] James J. Nutaro, Bernard P. Zeigler, Rajanikanth Jammalamadaka,
and Salil Akerkar. Discrete Event Solution of Gas Dynamics within
the DEVS Framework. In Proceedings of International Conference on
Computational Science, volume 2660 of Lecture Notes in Computer
Science, pages 319–328, Melbourne, Australia, 2003. Springer–Verlag,
Berlin.

[12.20] Gabriel Wainer and Norbert Giambiasi. Application of the Cell–
DEVS Paradigm for Cell Spaces Modeling and Simulation. Simula-
tion, 76(1):22–39, 2001.

[12.21] Gabriel Wainer. Performance Analysis of Continuous Cell–DEVS
Models. In Proceedings 18th European Simulation Multiconference,
Magdeburg, Germany, 2004.

12.14 Bibliography

[B12.1] Norbert Giambiasi, Bruno Escude, and Sumit Ghosh. GDEVS:
A Generalized Discrete Event Specification for Accurate Modeling of
Dynamic Systems. Transactions of SCS, 17(3):120–134, 2000.

[B12.2] Ernesto Kofman. Discrete Event Simulation and Control of Con-
tinuous Systems. PhD thesis, Universidad Nacional de Rosario,
Rosario, Argentina, 2003.

626 Chapter 12. Quantization–based Integration

[B12.3] Herbert Praehofer. System Theoretic Foundations for Combined
Discrete–Continuous System Simulation. PhD thesis, Johannes Kepler
University, Linz, Austria, 1991.

[B12.4] Bernard Zeigler and Jong Sik Lee. Theory of Quantized Systems:
Formal Basis for DEVS/HLA Distributed Simulation Environment. In
SPIE AeroSense’98 Proceedings: Enabling Technology for Simulation
Science (II), volume 3369, pages 49–58, Orlando, Florida, 1998.

12.15 Homework Problems

[H12.1] Error Bound in LTI Systems

Given the following LTI system:

ẋa1 = xa2

ẋa2 = −2 · xa1 − 3 · xa2

with initial conditions, xa1(0) = xa2(0) = 1.

1. Find the analytical solution, xa1(t) and xa2(t).

2. Obtain an approximate solution, x1(t) and x2(t), with the QSS tech-
nique, using a uniform quantization in both variables of ΔQ = ε =
0.05.

3. Draw the error trajectories, ei(t) = xi(t)−xai
(t), and compare them

with the error bound given by Eq.(12.27).

[H12.2] Input Quantization Error

Prove the validity of Eq.(12.31).

[H12.3] Approximate Input Signals

Build DEVS models that generate events representing piecewise constant
trajectories that approximate the following signals:

1. A ramp

2. A pulse

3. A square wave

4. A saw-tooth signal

5. A trapezoidal wave

Develop also corresponding PowerDEVS models, and try them out with
some simple systems.

12.15 Homework Problems 627

[H12.4] QSS2 Linear Static Function

Obtain a DEVS model for a linear static function:

fi(z) =
l∑

j=1

ai,j · zj (H12.4a)

that takes into account values and slopes.
Implement the model in PowerDEVS, and try it out, together with the

second–order quantized integrator, to simulate the system of Eq.(11.11).

[H12.5] QSS2 Nonlinear Static Functions

Obtain DEVS models and the corresponding PowerDEVS models of the
following static functions for QSS2:

1. fa(v) = vn, with n being an integer parameter.

2. fb(v) = ev.

3. fc(v) = cos(2π · f · v +φ), where f and φ are real–valued parameters.

4. fd(v1, v2) = v1 · v2

Exploit the fact that you can analytically calculate the partial derivatives
of these functions.

[H12.6] Input Signals in QSS2

Repeat problem H12.3 by building signal generators for the QSS2 method,
now considering piecewise linear trajectories.

[H12.7] Approximate Sinusoidal for QSS2

Propose a DEVS model that generates a piecewise linear approximation to
a sinusoidal wave.

Can you obtain a solution similar to that of model M7 provided on
page 566? Explain the differences.

[H12.8] QSS2 Loop–breaking Block

Obtain a loop–breaking DEVS model for the QSS2 method analogous to
M11. Implement it in PowerDEVS, and simulate the circuit of Fig.12.7
using the QSS2 method.

[H12.9] Hybrid DAE Simulation

The circuit of Fig.H12.9a represents a modification of the example pre-
sented in Fig.12.14. Here, a resistor, Rp, and a nonlinear component were
included to limit the voltage of the load resistor, R.

628 Chapter 12. Quantization–based Integration

Vin

Rp

R

L
+

−

Sw1

Sw2

Sw3

Sw4

FIGURE H12.9a. DC–AC inverter with surge protection.

We shall assume that the nonlinear component is characterized by a
varistor–like voltage–current relationship:

i(t) = k · u(t)α (H12.9a)

Under this assumption, the equation describing the system dynamics
becomes a nonlinear DAE:

diL
dt

=
1
L

· (−Rp · iL − u + sw · Vin) (H12.9b)

where u must satisfy the nonlinear equation:

iL − k · uα − u

R
= 0 (H12.9c)

Simulate this system in PowerDEVS using the QSS2 method. Use the
same parameters as in the example of Fig.12.14, choosing in addition Rp =
0.01 Ω, k = 5−7 mho, and α = 7.

Do you notice any further advantage of using quantization–based inte-
gration techniques in this example?

12.16 Projects

[P12.1] Pulse on a Transmission Line

Consider the transmission line model of Fig.12.5. It is composed of five
sections of RLC circuits.

The goal of this project is to study the effects of varying the number of
sections on the computational cost of the simulation.

To this end, a short pulse input will be considered. A pulse with a dura-
tion of 2 × 10−10 sec may be appropriate.

Then, the idea is to start with a transmission line circuit consisting of a
single section, and then to gradually increase the number of sections until
at least 20.

12.17 Research 629

In each case, measure the total number of transitions and the simulation
time, and try to find a law that relates the computational cost to the
number of sections.

Then, repeat the same experiment with longer pulses, and with periodic
waves, such as the trapezoidal wave used a few times in the chapter.

If you find any difference in the relationship between the computational
cost and the number of segments for any of the new inputs, try to explain
the reason for this difference.

[P12.2] Logarithmic Quantization

Obtain a DEVS model of a logarithmically quantized integrator for the
QSS and the QSS2 methods. To this end, use a quantum proportional to
the state variable value. You will also need to define a minimum value for
the quantum, as otherwise, you might obtain illegitimate behavior.

Once you have built the corresponding PowerDEVS models, take some of
the examples presented in this chapter, and simulate them using the newly
developed logarithmically quantized integrators. Study the advantages and
disadvantages of this new approach.

Using logarithmic quantization, can you still guarantee stability as we
did before?

Study the problems related to stability and global error bound from a
theoretical point of view. Start with a first–order linear system, and then
try to extend the analysis, if at all possible, to the general LTI case.

12.17 Research

[R12.1] Integration of PDEs

The use of the method of lines in PDEs produces a system of sparse ODEs
or DAEs. As we saw, the QSS and QSS2 methods exploit sparsity in a very
efficient fashion.

Study the advantages and disadvantages of using the quantization–based
integration methods together with the method of lines for the simulation
of PDEs. Hyperbolic PDEs may be of particular interest in this context.
Do not forget to take into account the particular problems of shock waves
and discontinuous PDEs.

[R12.2] QSS simulation of Stiff Systems

Investigate the possibility of introducing modifications to the QSS method,
in order to improve their ability for dealing with stiff systems.

You can use the remarks of Section 12.11 as a starting point.

Index

ϑ–method, 56, 82, 116
(A,α)–stability, 83

A–stability, 50, 69
A/D–converter, 499
absolute stability, 69
acausal equation, 255
accumulation error, 30, 86
accuracy, 214, 326
accuracy domain, 85, 89, 99, 114,

116
accuracy error, 214
accuracy requirement, 13
ACSL, 5, 29, 33
actuator unit, 499
Adams–Bashforth algorithms, 122–

125
Adams–Bashforth–Moulton algo-

rithms, 127–128
Adams–Moulton algorithms, 125–

127
ADOL–C, 51
algebraic differentiation, 47, 115,

266, 311, 316, 394, 512
algebraic loop, 16, 33, 198, 253,

259–262, 324, 431, 582–
588

ALGOL, 47
analog to digital converter, 480
analytical stability, 34
approximation accuracy, 26–31, 48,

84–100, 111
approximation order, 26
artificial damping, 488
ASEPS, 241
asymptotic region, 27, 139
asynchronous simulation, 520
atomic model editor, 535

avalanche breakdown, 467

backinterpolation technique, 76–
84, 93, 112–115

backpropagation, 483
Backward Difference Formulae, 128–

131, 162, 200
backward difference operator, 119
Backward Euler algorithm, 33
backward integration, 31
backward Runge–Kutta method,

76
band–structured matrix, 231
biased difference, 193
blended algorithm, 55
blending, 110
block diagram, 7
block diagram editor, 6
bond graph, 9, 236, 595
bouncing ball, 605
boundary condition, 195
boundary symmetry condition, 195
boundary value condition, 195
boundary value conversion, 249
boundary value problem, 235
bounded Petri net, 454
breakdown voltage, 467
busy waiting, 480
Butcher tableau, 60, 62

causal equation, 255
causality, 320
causalization, 256–259
celestial dynamics, 27, 30
Cell–DEVS, 622
central difference, 193
cervical syndrome, 188
chaos, 298

632 Index

chemical process dynamics, 384–
385

chemical processing plant, 107
chemical reactions, 315
circuit diagram, 1
circular shift register, 474
clutch, 443
communication interval, 12, 156,

231
communication point, 156, 231
compiler–compiler, 240
compression wave, 219
computational algebra, 16
computational causality, 15, 427–

429, 431
computational effort, 259, 270
computational overhead, 106
conditional index change, 448
conservation law, 170
conservation principle, 302
conservative algorithm, 13, 105
conservative system, 167, 168
consistency, 214
consistency error, 202, 214, 215
constitutive equation, 3
constraint equation, 281
continuous state matrix, 35
contractivity, 50, 81
control system, 7
control system toolbox, 201
convergence speed, 415
coordinate transformation, 249, 250
cost versus accuracy, 151, 160, 162
Coulomb friction, 424
cubic interpolation, 463
cutset potential, 378
cyclic method, 55, 56

D/A–converter, 499
DAE solver, 319
damping, 90
damping error, 92
damping matrix, 167
damping order star, 96, 97
damping plot, 92, 116, 138, 160

DASSL, 130, 337–341
data template compiler, 240
DC motor control, 610
degree of freedom, 284
delay–differential equation, 472, 474
Denavit–Hartenberg coordinates,

384
dense output, 471, 609
DEVS, 519, 524–535

atomic, 525
coupled, 529–535
definition, 525
legitimacy, 541, 583
simulation, 531–535
tie–breaking function, 569

DEVS–coordinator, 532, 533
DEVS–root–coordinator, 532, 534
DEVS–simulator, 532
DFSM, 449
diagonally implicit Runge–Kutta

method, 69, 394
difference equation, 342, 520, 524
difference equation model, 12
differential algebraic equation solver,

319
differential equation, 342
differentiation operator, 121, 159
differentiator, 282
diffusion equation, 192
digital to analog converter, 480
diode, 433–439
discontinuous hyperbolic PDE, 475
discontinuous system, 497–499, 595
discrete damping, 91, 138
discrete event, 407
discrete event simulation, 519
discrete event system, 524–535
discrete frequency, 91
discrete state matrix, 35
discrete state variable, 423
discrete–time system, 520
discretization, 11, 22
distillation column, 107
distributed M&S environment, 18
distributed parameter system, 236

Index 633

distributed processing, 501
distributed real–time simulation,

501
DOPRI, 107
dry friction, 424
dry hysteresis, 429, 469
DSS/2, 239
dummy–derivative, 287
Dymola, 2, 7, 15, 130, 237, 266,

271, 297, 303, 305, 307,
308, 337, 341, 367, 376,
381, 383, 426, 430

eigenfrequency, 90
eigenvalue matrix, 53, 561
eigenvector matrix, 561
electric heating, 245–247
electrical circuit, 21, 310, 313, 314
electronic circuit simulation, 377–

381
elliptic PDE, 198, 233–236
ELLPACK, 240–241
embedded Runge–Kutta algorithms,

106
equation of state, 220
error coefficient, 138, 217
Euler integration, 31–33
event calendar, 408
event condition, 411
event graph, 524
event queue, 411
event scheduling, 407
event time, 407, 411
event type, 407
exact solution, 522
experimental code, 211
explicit DAE model, 5
explicit Godunov algorithms, 184
explicit integration, 32, 112, 123,

328
explicit midpoint rule, 60
explicit ODE model, 5
external event, 480
external input connection, 529
external output connection, 529

external transition function, 526
extrapolation technique, 69–73, 95,

107, 111, 114

F–stability, 74, 76, 77, 218
F–stable algorithm, 488
faithful stability, 74
fault discriminator, 480
fault isolation, 480
Fibonacci series, 414
field equation, 198
finite elements, 236–237
finite state machine, 449
fixed–point iteration, 42
flight simulator, 479, 483
FORSIM–VI, 219, 238–239, 242
FORTRAN, 47
forward difference operator, 118
Forward Euler algorithm, 32, 123
frequency error, 92, 97
frequency order star, 98
frequency plot, 97
frequency ratio, 213
friction, 447–453, 469
frictional resistance, 220
fully–implicit Runge–Kutta algo-

rithm, 332

gas density, 220
gas pressure, 220
gas velocity, 220
Gaussian elimination, 262
GDEVS, 549
Gear algorithms, 130
global accuracy, 27
global error bound, 562
global integration error, 27, 89
global property, 236
Godunov methods, 168–179
golden section, 413, 463
graphical model, 2
graphical user interface, 2, 16, 535
grid width, 193
grid–width control, 230–231, 251

Hamiltonian, 236

634 Index

Hamiltonian field, 236
hardware–in–the–loop, 480, 499
heat diffusion, 244, 245
heat equation, 192
helicopter, 516–517
Hermite interpolation, 463
Hermite polynomial, 417
Hessian matrix, 45, 79
Heun’s method, 59
heuristic procedure, 270, 316
HIBLIZ, 16
high–level architecture, 499, 502
high–order backward difference for-

mulae, 142–147
higher–index model, 325
higher–index problem, 285
highly oscillatory system, 38, 48
HLA, 502
horizontal sorting, 4, 258, 310, 311
Houbolt integration, 188
hydraulic motor, 508–513
hydraulic system, 311
hyperbolic PDE, 38, 48, 198, 211–

219, 513–515, 518
hysteresis, 464

implicit boundary value condition,
197

implicit DAE model, 4
implicit Godunov algorithms, 185
implicit integration, 33, 112
implicit midpoint rule, 80, 488
implicit Runge–Kutta method, 69,

353–362
induced flow, 509
initial condition, 195, 330, 421–

425
initial value problem, 235
inline integration, 17, 341–354, 391–

393, 443, 492–495, 515
inlining, 394, 396
input port, 529
input vector, 25
instrumentation, 501
integration accuracy, 53

integration error, 13, 149
internal connection, 529
internal transition function, 526
invariant embedding, 233–236
inverse Hermite interpolation, 417,

463
inverse Hessian, 316
inverse Laplacian, 54
iteration error, 149

Jacobian matrix, 45, 58, 68, 69,
79

Kirchhoff’s laws, 3, 378

L–stability, 75, 76, 93, 116, 139
laminar flow, 228
latency, 500
leaky diode, 441
Lie-series integration, 115
limiter, 470
linear conservation law, 177, 211
linear equation system, 316
linear friction, 424
linear system, 313
linear velocity model, 170–171
linearly implicit Euler, 486
linearly implicit method, 486–488
load pressure, 509
Lobatto IIIC, 334
local integration error, 27, 89
local property, 236
loose, 463
LSODE, 157
Lyapunov function, 558

macro–step, 55
mailbox, 499
MAPLE, 16, 62
marginal stability, 40, 48, 53, 73–

75
mass matrix, 167
Mathematica, 16, 62
mathematical model, 8
MATLAB, 3, 16, 40, 426

Index 635

MATLAB compiler, 157
max–plus algebra, 556
mesh current, 378
mesh equation, 3
method blending, 54
method of characteristics, 459
method of lines, 192–198, 521
Milne algorithms, 114, 131–133,

159
mixed–mode integration, 443–447,

495–497, 513
modal matrix, 53, 561
model, 8
model compiler, 2, 426, 457
model reduction, 518
model reference adaptive control,

479
model validation, 31, 250
Modelica, 2, 18
modeling, 8
modeling and simulation environ-

ments, 14
modeling error, 202
modeling language, 149
modified Euler method, 59
modified Newton iteration, 45, 80,

487
modified nodal analysis, 381
moving grid, 230
multi–rate integration, 489–492, 513
multi–step formulae, 322–331
multi–valued functions, 429–430
multibody systems, 262, 382–384
multidimensional PDEs, 231–233

NASTRAN, 241
netlist, 2
neural network, 483
Newmark integration, 179–182, 515
Newton iteration, 42–46, 78, 112,

147–150, 197, 262, 265,
311, 313, 316, 415

Newton’s law, 425
Newton–Gregory backward poly-

nomial, 119

Newton–Gregory forward polyno-
mial, 119

Newton–Gregory polynomial, 118–
121, 193

next event, 408
node equation, 3
node incidence matrix, 378
nodeset, 378
noise, 477
non–essential event condition, 420
nonlinear boundary condition, 197
nonlinear velocity model, 171–172
Nordsieck form, 162
Nordsieck vector, 153, 162, 233
normal Petri net, 454
normal priority Petri net, 454
np–complete problem, 270, 277
NPPN, 454
numerical accuracy, 156
numerical differentiation, 283, 322
numerical stability, 35, 156
Nyström algorithms, 131–133
Nyström–Milne predictor–corrector

technique, 159

object–oriented modeling, 14, 15,
236, 425–430

oil drilling, 513–515
Omola, 385
one–leg method, 326
optimistic algorithm, 13, 105
order control, 101–106, 150–154
order star, 94, 96, 97, 115, 377
order star accuracy domain, 99,

116
order star error, 99
orthogonal matrix, 384
output equation, 5
output function, 526
output interpolation, 569
output port, 529
output set assignment, 259
overdetermined DAEs, 368–377, 394
overimplicit numerical differenti-

ation, 328

636 Index

overrun, 500–501

Padé approximation method, 81
Pantelides algorithm, 281–297, 299,

301, 315, 317, 374
parabolic PDE, 39, 198–211, 396
parallel processing, 107
Parallel–DEVS, 531
parameterized curve description,

433–439, 450
parametric model error, 31
parametric singularity, 443
partial differential equation, 362–

368
partial fraction expansion, 54
passive state, 527
PDEL, 239, 241
pendulum, 507–508
Penrose–Moore pseudoinverse, 164,

375
per–unit–step integration error, 27
permutation matrix, 311
perturbation index, 285
Petri net, 454–459, 469, 470, 524,

556
Poiseuille flow, 250
polar coordinates, 234
pole placement, 516
polynomial extrapolation, 121–122
potential field, 98
power flow, 236
power plant, 483
PowerDEVS, 534

atomic model, 536
predictor–corrector method, 42, 55
priority Petri net, 454
production code, 208
pseudo viscous pressure, 220
pseudo–derivative, 287
pseudoinverse, 375
PSpice, 2, 33
pulse width modulation, 596

QSS, 543
perturbed representation, 556

static function, 536
QSS method, 542–548

convergence, 558
DAE integration, 588–595
definition, 543
discontinuity handling, 595–

609
global error, 559
hysteresis width selection, 563
implicit function, 592
input signals, 564–568
loop breaking, 584, 585
oscillations, 557
output interpolation, 569
properties, 558–562
quantization choice, 562–564
real time, 609
stability, 558, 562
startup, 568
stiff systems, 615

QSS vs. QSS2, 579
QSS2 method, 570–582

DAE integration, 588–595
discontinuity handling, 595–

609
input signals, 579
nonlinear function, 576, 627
real time, 609

QSS3 method, 622
quantization, 464

hysteretic, 542
quantization function, 539

first order, 570
quantization level, 542
quantized integrator, 539

hysteretic, 543, 545
second order, 572

quantized state system, 542
quantized systems, 535–542
quantized variables, 540
quantizer, 539

first order, 570
quantum, 542
quasi–linear PDE, 198

Index 637

Radau, 107
Radau IIA, 332
radiation, 197
ramping, 379
rarefaction wave, 219
readout, 156
real–time clock, 480
real–time infrastructure, 502
real–time simulation, 29, 183, 472,

521, 609–615
red–black algorithm, 232
regression backward difference al-

gorithm, 163
Regula Falsi, 412, 463, 498
relaxation, 314, 316
relaxation algorithm, 271–277
residual equation, 266
reverse engineering, 17
Richardson corrector, 208
Richardson extrapolation, 69–73,

206, 207, 332
river bed, 247
robustness, 218
root solver, 411
rotation, 383
roundoff error, 28, 89, 227
RTI, 502
run–time error, 317
Runge–Kutta method, 59–65
Runge–Kutta–Fehlberg algorithm,

104, 107, 111, 463

sample–and–hold, 480, 499
sampled–data system, 409–411
sampling rate, 13
schematic capture, 2
secant method, 585
second–derivative Runge–Kutta al-

gorithm, 189
semi–analytic algorithm, 46–48
semi–implicit method, 486–488
semi–implicit trapezoidal rule, 507–

508
semi–step, 55
sensor unit, 499

sequence of events, 524
shift operator, 120
shiftout, 227
shock tube, 247
shock wave, 219–231
short–living state event, 474, 609
similarity transformation, 53
Simpson’s rule, 114, 132
simulation, 8

accuracy, 10
efficiency, 10

simulation architecture, 499–500
simulation effort, 206
simulation error, 202
simulation model, 2, 5
simulation verification, 31, 56
Simula 67, 15
SIMULINK, 6
simultaneous events, 408, 531
single–step formulae, 332–336
singular value decomposition, 324
sliding motion, 476
soil simulation, 244
solvability, 297–308
sorting, 4
sound velocity, 224
sparse matrix solver, 231
sparse matrix technique, 269, 277
sparse system, 548, 579
sparse tableau equations, 380
spectral algorithm, 48
spectral decomposition, 53, 561
spurious eigenvalue, 139
stability, 48, 214
stability domain, 34–42, 55, 65–

67, 111, 112, 185, 187,
486

stability domain shaping, 55, 56,
82

stabilization, 394
startup, 154–156, 568
state automata, 524
state chart, 524
state derivative, 5
state event, 411–421, 595

638 Index

state event detection, 473
state event localization, 470
state transition diagram, 424, 447–

453
state variable, 4
state vector, 25
state–space description, 321
state–space model, 5
static function, 539

nonlinear, 576
static problem, 235
steady–state solution, 235
step–size control, 101–106, 113, 150–

154, 355–362, 393
sticking friction, 423
stiff discontinuous model, 475
stiff stability, 133–142, 163
stiff system, 39, 67–69, 75, 87, 322,

615
stiffness matrix, 167
stiffness ratio, 200
structural model error, 31
structural singularity, 16, 167, 253,

277–281, 314, 325, 443
structural singularity elimination,

281–297
structure digraph, 256
structure incidence matrix, 254,

259
Sturm sequence, 473
supercomputer, 231
switch equation, 430–433, 447
switching power converter, 489
symbolic index reduction, 285
symbolic model compilation, 317
symbolic tearing, 16
symbolic toolbox, 17, 150
symmetric integration algorithm,

376
symmetry boundary condition, 221
synchronization, 520

table interpolation, 483
Tarjan algorithm, 256–259
Taylor–Series expansion, 25

tearing, 16, 313, 584
tearing algorithm, 263–271
tearing variable, 266, 316
temporal boundary condition, 196
thyristor, 464, 466
thyristor control, 399–406
tie breaking, 408
tie–breaking function, 531
time advance function, 526
time event, 407–409, 595
time management, 14
time reversal, 23
translation, 383
translation function, 529
trapezoidal rule, 77, 488
tree–structured robot, 382
trivial equation, 305
truncation error, 26
Tunnel diode, 467
turbulent flow, 228

ultimate boundedness, 558
unessential state event, 420–421
upwind discretization, 228–229

validation, 224
Van–der–Monde matrix, 72, 207
Van–der–Pol oscillator, 23
variable structure model, 439–443
variable structure system, 594
variable–step integration, 101
velocity–free model, 168–170
vertical sorting, 4, 258, 310, 311,

427
viscous friction, 424

watchdog monitor, 480
wave equation, 211, 247
Wilson integration, 189

Zener diode, 467
zero–crossing function, 411
zero–order hold unit, 499

Author Index

Aho;Alfred, 460
Akerkar;Salil, 625
Alla;Hassane, 462
Allen;Myron, 243
Ames;William, 243
Andersson;Mats, 387
Andreasson;Johan, 507
Armstrong–Hélouvry;Brian, 462
Åström;Karl, 462

Baccelli;François, 624
Bales; Laurence, 50
Baracos;Paul, 505
Bathe;Klaus–Jürgen, 183, 189
Bayo;Eduardo, 184, 504
Beamis;Christopher P., 183
Benz;Hans, 51
Bernardi;Fabrice, 549
Bettis;Dale, 107
Blair;J.M., 242
Boisvert;Ronald, 242
Bornemann;Folkmar, 506
Bowles;John, 52, 243
Brandl;Helmut, 387
Brankin;Richard, 462
Brayton;Robert, 388
Brenan;Kathryn, 19, 241, 308, 387
Brennan;Pierce, 388
Brock;Paul, 50
Bron;Bernard, 51
Bronshtein;Ilia, 460
Brooks;Braden, 390
Brück;Dag, 387, 507
Brundiers;Hans–Jörg, 51
Bujakiewicz;Pawel, 308
Bürer;Richard, 51
Burrage;Kevin, 107
Butcher;John, 64, 65, 107

Campbell;Stephen, 19, 241, 308,
387

Canudas de Wit;Carlos, 462
Cárdenas;Alfonso, 241
Carver;Michael, 228, 242, 460
Cash;Jeff, 502
Cassandras;Christos, 550
Cellier;François, 19, 20, 50, 158,

184, 242, 243, 308–310,
387–391, 460–462, 502–
506, 624

Charron;Richard, 503
Cho;Hyup, 549
Cho;Young, 549
Christen;Gastón, 550
Chung;T.J., 243
Clauss;Christoph, 503
Cohen;Guy, 624
Conway;Edward, 242
Corliss;George, 52
Cozot;Rémi, 503
Curtis;Alan, 62, 108

Dabney;James, 19, 624
Dahl;Ole–Johan, 19
Dahlquist;Germund, 50, 51, 108
Dahmann;Judith, 503
David;René, 462
Davis;Kenneth, 242
de Albornoz;Álvaro, 503
Dekker;Kees, 51
Delhom;Marielle, 549
Denavit;Jacques, 387
Deuflhard;Peter, 108
Dobniewski;Alejandro, 550
Dormand;John, 108, 460, 472, 503
Doser;Adele, 502
Dudley;Donald, 460

640 Author Index

Duff;Iain, 309
Dvorak;Steven, 460

Edwards;David, 504
Eich–Söllner;Edda, 184, 461
Eitelberg;Eduard, 504, 513, 518
Elmqvist;Hilding, 15, 16, 19, 20,

50, 158, 242, 308–310, 368,
387–390, 460–462, 503–
505, 507, 624

Erisman;Albert, 309
Escude,Bruno, 549, 625
Esposito;Joel, 624
Euler;Leonhard, 62, 108, 183, 184

Farrenkopf;Glenn, 502
Faure;Christèle, 52
Featherstone;Roy, 388, 391
Fehlberg;Edwin, 104, 108
Filippi;Jean Baptiste, 549
Friedman;Eby, 624
Führer;Claus, 184, 388
Funes;Francisco, 506

Galloway;Kenneth, 242
Gallun;Steve, 391
Gander;Walter, 20, 158
Garcia de Jalón;Javier, 184, 504,

506
Gardona;Alberto, 184
Gauthier;Joseph, 20, 52
Gear;William, 52, 67, 108, 130, 154,

158, 217, 242, 308, 322,
388

Géradin;Michel, 184
Gerald;Curtis, 52, 158
Ghosh,Sumit, 549, 625
Giambiasi;Norbert, 549, 625
Gladwell;Ian, 462
Glocker;Christoph, 463
Godunov;Sergei, 170
Gottlieb;David, 51
Grabner;Gerald, 461
Griewank;Andreas, 51, 52
Gruntz;Dominik, 20, 158

Guglielmi;Nicola, 461
Gustafsson;Kjell, 105, 106, 108, 113,

153, 157, 158, 504
Gustavson;Fred, 388

Hachtel;Gary, 388
Hairer;Ernst, 51, 108, 109, 309,

376, 388, 391, 461
Hälg;Walter, 51
Halin;Jürgen, 47, 51
Hanselman;Duane, 20
Harman;Thomas, 19, 624
Harris;Brett, 389
Hartenberg;Richard, 387
Hascoët;Laurent, 52
Heck;André, 20
Hermann;Klaus, 159
Herniter;Marc, 20
Herrera;Ismael, 243
Heun;Karl, 62, 108
Hibbeler;Russell, 388
Hild;Daryl, 391
Hindmarsh;Alan, 157
Hinds;H.W., 228, 242
Ho;Chung-Wen, 388
Hodum;Frank, 504
Holland;Charles, 391
Hollars;Michael, 389
Horn;Mary, 461, 471
Hostetter;Gene, 184
Houbolt;John, 184, 188
Howe;Robert, 483, 485, 504, 505
Hu;Min, 503
Husain;Asghar, 391
Huťa;Anton, 62, 109
Huyakorn;Peter, 243
Hyman;Mack, 230, 242

Isacson;Anders, 51
Iserles;Arieh, 109
Ismail;Yehea, 624
Ito;Katsushi, 461

Jammalamadaka;Rajanikanth, 624,
625

Author Index 641

Jiménez;José, 506, 507
Johanni;Rainer, 387
Joss;Johann, 46, 47, 51, 309
Junco;Sergio, 550, 624

Kailath;Thomas, 505, 516
Kang;Wonseok, 549
Karplus;Walter, 241, 243
Kecskeméthy;Andrés, 461
Kedem;Gershon, 51
Khalil;Hassan, 624
Kim;JinWoo, 502
Kim;Kihyung, 549
Kim;Tag Gon, 549, 550
Kofman;Ernesto, 550, 624, 625
Korn;Granino, 29, 52, 483, 505
Krebs;Matthias, 461, 496, 505
Kron;Gabriel, 266, 309
Kuhl;Frederick, 503
Kumar;Vijay, 624
Kurz;Eberhard, 47, 52
Kutta;Wilhelm, 62, 109

Labin;Jonathan, 507
Laffitte;John, 505
Lambert;John, 52, 67, 68, 109, 159,

217, 242
Lapadula;Marcelo, 550
Lapidus;Leon, 243
Léchevin;Nicolas, 505
Lee;Jong, 550, 624, 626
Leimkuhler;Ben, 388
Lewis;Ivan, 242
Li;Shengtai, 461
Liapis;Athanasios, 391
Lin;Kuo–Chin, 504, 505
Liniger;Werner, 50, 108
Lischinsky;Pablo, 462
Littlefield;Bruce, 20
Lubich;Christian, 309, 388, 389,

391
Luenberger;David, 516
Luh;Johnson, 389
Lutz;Robert, 507
Luyben;William, 389, 391

Mah;Richard, 309, 389
Mantooth;Alan, 389
Matsuba;Takashi, 507
Mattsson;Sven Erik, 309, 387, 389,

390, 462, 503, 504, 507
McBride;Robert, 19
McCalla;William, 389
Milne;William, 159, 160
Mitchell;Edward, 20, 52
Möbius;Peter, 50
Moler;Cleve, 109, 159, 161
Monssen;Franz, 20
Morton;William, 220, 243
Mosterman;Pieter, 461
Mugica;Francisco, 505
Murata;Tadao, 462
Murphy;Sean, 507
Murray;Francis, 50
Myhrhaug;Bjørn, 19

Nagel;Laurence, 389
Naumann;Uwe, 52
Negrut;Dan, 389
Nevanlinna;Olavi, 50, 108
Neves;José, 624
Newmark;Nathan, 183, 184
Nikravesh;Parviz, 184, 391
Nilsson;Bernt, 385, 389
Nilsson;James, 52
Nisio;Makiko, 461
Nørsett;Syvert, 108, 109
Nutaro;James, 625
Nygaard;Kristen, 19
Nyström;Evert, 62, 109

Olsder;Geert, 624
Olsson;Hans, 309, 387, 390, 462,

504, 506, 507
Orin;David, 391
Orszag;Steven, 51
Otter;Martin, 20, 309, 310, 317,

387–390, 461, 462, 503–
505, 507

Pagliero;Esteban, 550

642 Author Index

Palusinski;Olgierd, 505
Pan;YaDung, 502
Pantelides;Constantinos, 283, 310,

385, 443, 448, 462
Pappas;George, 624
Paul;Richard, 389, 391
Petzold;Linda, 19, 241, 308, 337,

341, 387, 390, 461
Pfeiffer;Friedrich, 463
Pinder;George, 243
Praehofer;Herbert, 550, 626
Prince;Peter, 108, 460, 472, 503

Quadrat;Jean–Pierre, 624

Rabbath;Camille, 505
Rall;Louis, 52
Ralston;Anthony, 242
Rashid;Muhammad, 463
Reid;John, 309
Rice;John, 240, 242
Richtmyer;Robert, 220, 243
Riedel;Susan, 52
Roche;Michel, 309, 391
Rodŕıguez;José, 506
Rosenthal;Dan, 389
Ruehli;Albert, 388
Runge;Carl, 62, 109
Runge;Thomas, 15, 16, 20

Sarjoughian;Hessam, 550
Savant Jr.;Clement, 184
Saville;Jon, 506
Schiela;Anton, 462, 484, 497, 506
Schiesser;William, 243
Schlegel;Clemens, 310, 390
Schlunegger;Hans, 462
Schooley;Larry, 502, 506
Schrimpf;Ronald, 242
Schwarz;Peter, 503
Schweiger;Christian, 507
Schweisguth;Michael, 390, 506
Selander;W.M., 242
Semendiaev;Konstantin, 460
Seo;Hyungon, 549

Sethi;Ravi, 460
Shahian;Bahram, 184
Shampine;Lawrence, 462
Shanks;Baylis, 62, 109
Sherman;Michael, 389
Shome;Siddhartha, 506
Singhal;Kishore, 390, 463
Smith;Jon, 483, 506
Söderlind;Gustaf, 309, 504
Soejima;Shinichi, 507
Spong;Mark, 391
Stefani;Raymond, 184
Stephanopoulos;George, 390
Stewart;D.G., 242
Strehmel;Karl, 506
Sudra;Rajeev, 506
Sundareshan;Malur, 502

Tadian;Milan, 51
Tal–Ezer;Hillel, 52
Tarjan;Robert, 310
Taylor;Simon, 506
Tiller;Michael, 20
Treeaporn;Vicha, 390
Tuinenga;Paul, 390

Ullman;Jeffrey, 460

van Loan;Charles, 109, 159
Vemuri;Rao, 243
Verwer;Jan, 51
Vesanterä;Pentti, 506
Vichnevetsky;Robert, 52, 243
Vidyasagar;Mathukumalli, 391
Vlach;Jiri, 390, 463
Vlach;Martin, 389

Wainer;Gabriel, 550, 622, 625
Wait;John, 30, 52, 505
Walker;Michael, 389, 391
Wang;FeiYue, 506
Wanner;Gerhard, 51, 108, 109, 388
Weatherly;Richard, 503
Weiner;Rüdiger, 506
Wensch;Jörg, 506

Author Index 643

Wheatley;Patrick, 52, 158
Wilf;Herbert, 242
Willams;Brian, 502
Wilson;Edward, 184, 189
Wolfram;Stephen, 21
Wright;John, 243
Wu;Qiming, 243

Xie;Wei, 109

Yen;Chimin, 243

Zeigler;Bernard, 502, 506, 524, 531,
539, 550, 624–626

Ziolkowski;Richard, 460

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

