
CHAPTER 12 

Role of Endogenous Neural Stem Cells 
in Neurological Disease and Brain Repair 

Jorg Dietrich and Gerd Kempermann 

Introduction 

There is abundant evidence diat neural stem cells persist in the adult mammalian brain— 
including humans—throughout lifetime and support ongoing neurogenesis in re
stricted regions of the central nervous system (CNS). The potential role of neural stem 

cells not only in normal brain function, but also in neurological disease and repair now appears 
to be larger than anticipated only a few years ago. The question, however, remains whether the 
persistence of adult stem cells, their proliferation, and neurogenesis from these progenitors 
reflect the ability for self-repair in the mammalian brain. We here discuss recent advances in the 
understanding of the role of endogenous stem cells in normal brain function and under cir
cumstances of neurological disease. 

Neural Stem Cells in the Mammalian CNS 
Neural stem cells (NSCs) are defined by their potential for theoretically unlimited 

self-renewal, and their ability to generate cells of both neuronal and glial lineages. During 
development, stem cells are found in the ventricular zone of the CNS.^'^ In the adult brain, 
neural stem cells are primarily restricted to two brain regions, the subventricular zone of the 
lateral ventricles^'^ and the subgranular zone of the dentate gyrus^'^^—both regions in which 
neurogenesis persists throughout adulthood (Fig. 1). In low numbers, stem or progenitor cells 
have also been derived from many other brain regions, including septum, striatum,^"^ cortex,^^ 
optic nerve,̂ "̂ '̂ ^ spinal cord and retina.^ ̂ 'Apparently, these cells comprise a quiescent popu
lation of stem cells with as yet unknown fimctional relevance for the brain. 

Stem cells of the adult brain have traditionally been classified as "multipotent". This term 
reflects their potential for differentiation into multiple neuroectodermal lineages, but not be
yond this tissue-specificity. More recent evidence, however, suggests that cells with greater dif
ferentiation potential ("pluripotency") can be derived from the adult brain.̂ '̂ " '̂̂ ^ Moreover, 
stem cells from outside the brain can give rise to neurons in vivo (Fig. 2), at least under specific 
experimental conditions. '^^ 

The field of neural stem cell biology is currently undergoing dramatic changes in its con
cepts of "stemness", tissue-specificity, and developmental potential.'̂ '̂'̂  For the purpose of this 
review we adhere to the classical concepts of neural stem cell biology. However, much of what 
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Figure 1. New neurons in the adult hippocampus. Confocal microscopic image of the hippocampus of an 
adult mouse, demonstrating neurogenesis in the granule cell layer of the dentate gyrus. A) Dividing cells 
in the subgranular zone (the border between granule cell layer and hilus) are labeled with proliferation 
marker bromodeoxyuridine (BrdU). B) Four to five weeks after cell division, newly generated neurons can 
be found throughout the granule cell layer. They are identified by their colocalization of immunoreactivity 
with antibodies against BrdU and neuronal marker NeuN. Astrocytes are identified by their expression of 
SlOOp. Scale bar (in A) equals lOOjlm for (A) and 20 |im for (B). Image from Kempermann, Bipolar 
Disorders 2002; 4:17-33, with kind permission of Munksgaard, Copenhagen, Denmark, ©2002. 

will be discussed reflects a rather preliminary and probably simplifying view on the principles 
underlying stem cell biology in the adult brain. 

Progeny from neural stem cells of the subventricular zone migrate alone the rostral migra
tory stream to the olfactory bulb to diflPerentiate into local interneurons.^^' In the hippocam
pus, neural stem cells give rise to new granule cells that extend their axons to area CA3 along 
the mossy fiber tract, as do all other granule cells of the dentate gyrus. The new granule 
cells are electrophysiologically indistinguishable from older granule cells, suggesting their 
functional integration. 

Numerous factors that regulate adult hippocampal neurogenesis have been identified, but 
at present we are far from a unifying theory on which principles govern this regulation and 
which functional consequences it has (as reviewed in e.g., ref. 35). 

Cells with stem-cell-like properties, dissected from diverse regions of the adult mamma
lian brain, can be induced to proliferate and diflPerentiate in vitro in the presence of various 
growth factors, such as epidermal growth factor (EGF) or fibroblast growth factor 
(FGF-2).^'^^' Clonal analysis of these cells derived from the embryonic and adult brain has 
demonstrated their multipotency by giving rise to neurons, astrocytes and oligodendrocytes. 
This multipotency can also be detected in so-called neurospheres, a three-dimensional cell 
aggregates that are widely used to study neural stem cells in vitro. ̂ '̂̂ ^ With multiple neural 
stem cell populations loosely identified, questions arise where exactly these cells are located in 
the adult CNS and whether these stem cell populations are actually distinct cell types sharing 
similar potentials ^ or reflect diflFerent developmental stages that can be traced back to one 
unifying stem cell population. Interestingly, the isolation and characterization of neurospheres 
from diflFerent regions of the human embryonic CNS reveals a regionally specific pattern of 
growth and diflPerentiation characteristics, suggesting the possible existence of distinct neural 
stem cell populations. Consistent with these observations, there is evidence that stem cells 
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Figure 2. New neurons from bone marrow. Confocal microscopic image of bone marrow-derived Purkinje 
cells. One year after transplantation of bone marrow transduced with a retrovirus carrying green flourescent 
protein (GFP), donor-derived Purkinje cells were visualized by confocal microscopy. The surrounding 
staining is GAD (glutamate decarboxylase), identifying the neighboring GAD-expressing Purkinje cells (see 
Priller et al. J Cell Biol 2001; 155:733-738 for details. Image courtesy of Josef Priller, Berlin). 

isolated from different brain regions maintain their regionally specific expression pattern of 
homeobox genes in vitro. These results suggest that the identity of a particidar stem or pro
genitor cell might be regionally and temporally specified depending on local environmental 
cues. However, in many respects, the behavior of the adult-derived stem and progenitor cells is 
indistinguishable from that of similar cells of the embryonic brain, suggesting some lineage 
continuity between the embryogenic and the adult CNS. ^ 

Neural Stem Cells in Neurological Disease and Repair 
The very existence of stem cells and neurogenesis in the adult brain throughout lifetime 

has shed new light on the potential of the brain for regeneration in the context of a variety of 
neurological diseases. In fact, several pathological conditions of the CNS have been associated 
with alterations in progenitor and stem cells - either as a consequence or as a cause of disease. 
In general, the following concepts for a stem cell-based therapy in the brain exist: 

1. NSCs for direct replacement of lost cells from an identified neuronal population, 
2. NSCs for replacement of glial or other cells with indirect effects on neurons (e.g., in spinal 

cord injury or multiple sclerosis), 
3. NSCs for replacement of diffuse and complex cell losses (e.g., in stroke or trauma), 
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4. NSCs as vehicles for growth factor or gene delivery, 
5. NSCs as basis of regeneration in situ, and 
6. NSCs as target cells for other therapies based on the assumption that stem cells are involved 

in the pathology of a particular disease (e.g., depression, brain tumors). 
In the following paragraphs we will discuss recent developments in which the concept of 

neural stem cells has been of special importance in changing the current understanding of 
neurological and psychiatric disease. 

The Injured CNS 
In contrast to other self-repairing tissues, such as the liver, skin or blood, the mammalian 

brain apparently lacks the regenerative potential to compensate adequately for neuronal and 
glial cell death, making this tissue particularly vulnerable to injury and disease. 

Repair strategies following CNS injury consist of different aspects of regeneration, includ
ing cellular replacement (by means of cell transplantation or endogenous stem cell activation), 
neurotrophic factor delivery, axon guidance and removal of growth inhibition, manipulation 
of intracellular signaling, bridging and artificial substrates, and modulation of the immune 
response (as reviewed in e.g., ref. 45). 

For the purpose of this review we will specifically focus on recent findings in the contribu
tion of endogenous neural stem cells to repair mechanisms. 

Brain injury induced by traumatic lesions can cause a transient increase in proliferation of 
neural stem cells in the ventricle wall. ^ However, these studies could not clearly demon
strate any neuronal contribution of stem cells to the lesioned CNS. 

As multipotent neural stem cells have been isolated from various regions of the adult 
mammalian brain, the failure of the normal brain to sufficiendy regenerate under pathological 
conditions (e.g., traumatic brain injury) does not appear to be an intrinsic deficit of neural 
stem cells, but rather a characteristic feature of the damaged environment that does not suffi
ciently promote fiinctional repair. 

Nevertheless, the adult brain appears to be able to reorganize itself after/>en/>^^m/injury 
and initial deficits in behavior, perception or cognition can be followed by a spontaneous 
recovery. '̂̂ ^ At least on a cortical level, this has been explained by the ability of the mamma
lian brain for cortical reorganization and plasticity. From these studies, however, it cannot be 
concluded whether or to what extent adidt neurogenesis contributes to such re-organizational 
processes. 

In a more recent study Macklis and co-workers have demonstrated that neurogenesis can 
be induced in the lesioned neocortex of adult mice.^^ Endogenous precursor cells were stimu
lated by selective pyramidal cell apoptosis to generate cortical neurons that established appro
priate corticothalamic connections. It has been speculated that either neural stem cells from 
the subventricular zone or resident cortical progenitors might have represented the source of 
these newborn neurons. Thus, it seems possible that cells with stem-cell-like properties exist 
throughout the adult CNS. However, physiologically, these cells appear to give rise to neurons 
only in restricted neiu*ogenic areas. Accordingly, it has also been suggested that adult neurogenesis 
represents the dormant capacity of the brain for a limited self-regeneration. However, direct 
evidence is still missing that would clearly demonstrate the replacement of degenerated or 
dying neurons by newborn neurons. If this were the case, it would be important to know about 
the sequence of signals (e.g., released by apoptotic cell death) that are involved in the neuro
genic response and that might direct newborn cells towards the lesioned area. 

While the persistent neurogenesis in the brain with its apparent responsiveness to injury 
might reveal a possible endogenous repair program, the situation in the spinal cord seems to be 
somewhat different. A few studies report the existence of multipotent neural stem cells derived 
from adult spinal cord.^ '̂̂ ^ At present there is no convincing report on neurogenesis in the 
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adult mammalian spinal cord. Progenitor cells in the adult rodent spinal cord produce glial 
cells. Although there is increased proliferation of parenchymal progenitor cells^^ and 
nestin-expressing ependymal cells in the spinal cord after traumatic injury, neurogenesis as a 
response to injury has not been found. This suggests that in case of spinal cord injury mobiliz
ing endogenous neural stem cells to initiate neuronal repair remains a relatively distant possi
bility. However, at present no study on spinal cord injury has used such a highly specific and 
local induction of cell death as in the described study by Macklis and co-workers.^^ 

Spinal cord injury is usually followed by a combination of neuronal and axonal damage, 
inflammation and demyelination. Thus, mobilizing more restricted progenitor cell pools (e.g., 
oligodendrocyte precursors) after spinal cord injury might—under appropriate conditions— 
contribute to myelin repair, regeneration of conduction velocity, and ftinctional improvement 
(see ref 59). Functional recovery frequendy observed after spinal cord trauma in rodents and 
humans appears to be a consequence rather of axonal plasticity than of neural stem cell activa
tion. Nevertheless, the stimulation of local progenitor pools and the enhancement of ax
onal plasticity, e.g., by local application of growth factors ^ and neuroprotective factor, or 
other compounds ' might become a useftil approach to promote recovery after adidt spinal 
cord injury. 

Thus far, cell transplantation strategies for the injured brain and spinal cord have been 
performed using a variety of cell types and tissues, such as neuronal cell lines, embryonic 
neuroblasts,^^''^^ neural precursors,'^^ oligodendrocyte precursors'"^ and spinal cord tissue.'̂ ^ 

In many of these studies, the expression of appropriate neurotransmitters by the grafted 
cells, the receiving of synaptic inputs from host neurons, or the establishment of long-distance 
projections could be demonstrated. In addition, ftxnctional improvements have been observed. 
Thus, cellular replacement of the injured CNS via transplantation might be possible, however, 
it seems to be critically dependent on the molecular host environment and the ftxnctional 
integration of the grafted tissue into the neuronal synaptic circuitry. 

Taken together, in the field of spinal cord injury, stem cell research and the potential 
recruitment of endogenous cellular repair mechanisms hold great promises, but at present only 
few data exist that substantiate this optimism. However, the existence of neural stem cells in 
the adult mammalian brain and the positive effects of physical activity or the exposure to a 
complex environment on adult hippocampal neurogenesis suggest a potential practical impact 
of this research for neurorehabilitation.^"^ 

Neurodegenerative Diseases 
Neurodegenerative diseases are characterized by a continuous loss of neurons with specific 

patterns of neuronal cell death associated with distinct disturbances in the neuronal network. 
Examples are the loss of dopaminergic input to the striatum from the substantia nigra in 
Parkinsons disease or the degeneration of cortical neurons with a cholinergic deafferentation in 
Alzheimer's disease. 

In the light of our current understanding of the limited regenerative capacity of the adult 
mammalian CNS, the hypothesis has emerged that neurodegenerative diseases might actually 
reflect a failure of endogenous neural stem cells to replace lost neurons. This "malfunction" of 
neuro-regeneration could be due to a primary failure of stem cell proliferation, migration, 
appropriate differentiation or a combination of all three, resiJting in a lack of neurons at criti
cally important topographical locations. At present there is no experimental evidence that a 
generalized theory of this kind could hold true, because with extremely few well-documented 
exceptions adult neurogenesis is restricted to the olfactory system and the hippocampal dentate 
gyrus. 

Neurogenesis within neurogenic regions can be stimulated in vivo after exogenous admin
istration of various growth factors and cytokines, including erythropoietin,'^ brain derived 
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neurotrophic factor (BDNF), Insulin-like growth factor I (IGF)/"^ epidermal growth factor 
(EGF) and basic fibroblast growth factor (bFGF)/^'^^ Moreover, cytokine infiision has been 
shown to stimulate neurogenesis in animal models of neurological disease. For example, infu
sion of transforming growth factor alpha (TGFa) to the forebrain of 6-hydroxydopamine 
lesioned rats (a model for Parkinsons disease) resulted in increased cell proliferation, directed 
migration of newly generated cells toward the infusion site and increased numbers of neurons 
in the striatum. This increase of neurons was associated with improvements in 
apomorphine-induced rotations of the animals (indicative of motor improvement). This re
sult fits well with data from the first study using transplantation of embryonic stem cells into a 
model of Parkinsons disease. 

Although very litde is known about what signals direct newborn cells towards a particular 
CNS lesion and what factors orchestrate the appropriate site-specific differentiation of neural 
progenitors, the activation of endogenous stem cells to induce neurogenesis might be a possible 
means to overcome neuronal cell loss that occurs during the course of neurodegenerative dis
ease. Despite encouraging first findings, this strategy remains speculative at the present time. 

Most experiences in using neural stem cells for treatment of neurological disease have 
been made in Parkinsons disease.^^ Fetal cells have already been transplanted to severely im
paired patients in clinical trials^^'^ and demonstrate that fetal human mesencephalic cells con
taining dopaminergic neurons can survive after transplantation, restore striatal dopamine re
lease, and ameliorate motor behavior impairments. However, clinical and experimental studies 
have shown that functional integration of the grafted neurons within the host brain is neces
sary to produce substantial recovery.̂ '̂̂ ^ 

In Huntington's disease, a genetic disease characterized by a progressive neurodegeneration 
in the striatum and cerebral cortex, transplantation of fetal neural tissue has also offered a 
therapeutic opportunity. ' In animal models of Huntington's disease, transplantation of fetal 
striatal neuroblasts to the striatum have been shown to be functionally integrated into the host 
environment and to restore striatal connections. Reconstruction of neuronal circuitry by 
grafted tissue into the striatum could also be demonstrated in primates.^^'^^ Moreover, trans
plantation of fetal striatal tissue has also been applied in patients with Huntington's disease. ̂ '̂̂  
In a clinical study, five patients with Huntington's disease who received fetal grafts were as
sessed for therapeutic outcome one year after transplantation. Patients with presumed surviv
ing grafts (demonstrated by positron-emission tomography) showed improvements in motor 
and cognitive functions, and functional benefits were seen in daily-life activities. 

Due to a number of limitations using fetal grafts (e.g., ethical problems, survival of grafted 
cells, and problems in standardization and quality control), future efforts will also focus on the 
in vitro expansion and differentiation of neural stem cells as alternative sources to primary fetal 
CNS tissue for replacement therapy in neurodegenerative diseases. ' ' 

A cell-mediated gene therapy of the diseased CNS offers an alternative approach for the 
treatment of neurodegenerative diseaes. For example, specific neurotransmitter release 
(e.g., y-aminobutyric acid or dopamine) by transplanted neurotransmitter-synthesizing cells 
into the affected regions of the CNS has been shown to improve disease-related symptoms. ' 

Taken together, neurodegenerative diseases in which a defined cell type is being lost or 
damaged, such as Parkinson's disease, might be good candidates for a targeted stem cell therapy. 
In contrast, owing to the diffuse nature of neuronal and glial cell death that is associated with 
other neurodegenerative diseases such as Alzheimer's disease, repair of such disorders represents 
a potentially different category of problem than the repair of focal degeneration. Assuming that 
there is no primary deficit in the neural stem cells themselves as a cause of disease, a direct 
stimulation of endogenous neural stem cells through pharmaceutical or behavioral manipula
tion might increase brain plasticity and repair. Regardless, the continued cell loss during the 
course of neurodegenerative diseases will be challenging to overcome. It seems substantial. 
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however, to define more clearly the cellular compartments affected in those disorders as a pre
lude to the analysis of cell protection or cell replacement strategies. It seems more likely that 
future therapies of neurodegenerative diseases will be advanced by general lessons on cellular 
development, survival and plasticity learned from stem cell biology than by the direct applica
tion of stem cells in these conditions. 

Brain Tumors 
Compelling theories are linking neural stem cell biology to neurological disease in the 

field of neuro-oncology. An increasing knowledge about neural stem and progenitor cells has 
started to shed light on the potential role of these cells in respect to tumorigenesis, brain tumor 
classification, and the treatment of brain tumors. Moreover, understanding the vulnerability of 
CNS precursor cells towards drug toxicity or irradiation might help to reveal the biological 
basis for brain damage frequently associated with cancer treatments. 

Consistent with experiences in the treatment of tumors of the hematopoietic system, the 
diagnosis of brain tumors based on cell lineage appears to be of great potential value. In 
hemato-oncology, the normal cellular lineage to which a tumor is related seems to be closely 
correlated with treatment response and prognosis.^^^'^^^ 

At present, various precursor cell populations have been identified in the developing and/ 
or mature CNS: EGF-dependent and FGF-dependent neuroepithelial stem cells 
(NSCs), '̂̂ '̂̂ '̂̂ ^ '̂̂ ^^ Uneage-restricted precursor cells,̂ ^ '̂̂ ^^ including neuron-restricted pre
cursor (NRP) cells ^ '̂  ̂ ^ and glial-restricted precursor (GRP) cells, and oligodendrocyte-type-2 
astrocyte (02A) progenitor cells.̂  ̂ '̂̂  In addition, a number of astrocyte precursor cells ^̂  ' ^ 
and a pre-02A progenitor cell have been reported in the literature.^ Both multipotent neural 
stem cells and lineage restricted precursor cells have also been identified in the adult mamma
lian brain, including humans.^ '̂̂ ^ '̂̂ ^^ 

To make matters even more complex, there have been recent reports on stem cells with an 
overlapping developmental potential between the CNS and the hematopoetic system, which 
could give rise to both neural cells and blood cells. '̂̂ -̂̂ '̂ ^ Harriett and coUeages have isolated 
a more-than-multipotent stem cell from the adult mouse brain, whose developmental poten
tial approached that of pluripotent embryonic stem cells. ̂  Similar data exist for stem cells from 
bone marrow and skin. These data question the validity of the term "tissue specificity" of 
stem or progenitor cells and elucidate that we are far from a final systematic of stem cell biology 
in the adult. 

All of the described cells could be potential targets of transformation events to initiate the 
development of a tumor in the CNS.^^^ Thus, a lineage-based classification system for brain 
tumors might lead to the establishment of better prognostic criteria and might also help to 
define patient populations that would benefit from a particular treatment. ̂ ^̂ '̂  ^ 

Establishment of brain tumor models on the basis of CNS precursor cells will not only 
increase our understanding of potential genomic alterations during tumorigenesis, but will also 
provide helpful information on the relation between transformed precursor cells and the (het
erogeneous) tumors they create in vivo.^ ' In this regard, the cell lineage appears to be 
important in determining whether or not a particular genetic lesion will have functional conse
quence. For example, a specific genetic alteration could result in a different tumor-forming 
ability or tumor phenotype, depending on the precursor cell that was targeted. 

Several studies have described the expression of glial and neuronal markers in brain tu
mors, including astrocytomas, oligodendrogliomas, meduUoblastomas and primitive neuroec
todermal tumors 

(PNETS).i^7-^5i^Q 
date no markers are available that specifically and unam

biguously label neural stem or precursor cells, only the development of antibodies to new cell 
type specific antigens, e.g., by gene expression analysis and microarray technology, might help 
to assign particular brain tumors to their lineages of origin. ^̂ '̂̂ ^ For some tumor populations 
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such analysis has already been successfully applied in order to cluster tumors with a similar 
prognosis. ̂ ^̂ " 

Neural stem cells might become useful as possible means of brain tumor treatment. To 
achieve this it will be important to understand to what extend endogenous stem and precursor 
cells influence or modulate tumor cells in the CNS. The most straightforward approach is to 
use stem cells as vehicle cells in gene therapy, building on the readiness of these cells to develop 
tissue specificity and become functionally integrated in the host organism. For example, neural 
stem cells genetically modified to produce interleukin-4 promoted tumor regression and pro
longed survival in mice injected intracranially with a mouse glioma cell line. In another 
study, implantation of a neural stem cell line, engineered to produce cytosine deaminase (which 
converts 5-fluorocytosine to the oncolytic drug 5-fluorouracil), into the CNS of mice harbor
ing a tumor resulted in a reduction of the tumor mass in vivo, when animals were treated with 
5-fluorocytosine.^^^ Interestingly, implanted neural stem cells were detected in the primary 
tumor mass when injected at a distance from the tumor and were also seen to co-cluster with 
tumor cells at distances remote from the tumor injection site. This result is exciting since one of 
the most important impediments to the treatment of malignant brain tumors has been the 
invasion of tumor cells into the surrounding normal brain tissue, which makes their treatment 
particularly challenging.^ ' Many more experiments will be required and many questions 
will have to be answered before it is clear whether neural stem cells can be used for the treat
ment of brain tumors (as reviewed in refs. 162,163). For example, do neural stem cells really 
migrate towards dispersed tumor cells or are they simply using the same migratory substrates 
leading to an occasional juxtaposition? Do endogenous or transplanted neural stem cells change 
their biological properties (e.g., differentiation and proliferation) in case of a present tumor 
mass? What are potential adverse effects of transplanting neural stem cells into the human 
brain? And would it be possible to visualize and monitor transplanted stem cells in vivo to 
design controlled clinical studies? In this regard, there have already been promising results with 
labeling neural stem or progenitor cells in order to make them detectable by magnetic reso
nance imaging after transplantation. ' 

A different aspect relating neural stem cells to oncology has been raised in regard to the 
vulnerability of the CNS to conventional cancer treatment. In fact, traditional approaches to 
cancer therapy are often associated with severe neurotoxicity. For example, radiation-induced 
neurological complications include leukoencephalopathy, radionecrosis, myelopathy, cranial 
nerve damage and cognitive impairment.^ 

Moreover, it has been well known that many chemotherapeutic regimens may be associ
ated with severe neurotoxicity. For example, midtiple reports have confirmed cognitive impair
ment in children and adults after chemotherapy. Neurotoxicity of chemotherapy may be par
ticularly hazardous when combined with radiotherapy.^ '̂ ^^ For example, computed 
tomography (CT) studies of patients receiving both brain radiation and chemotherapy showed 
that all patients surviving a malignant glioma for more than 4 years developed 
leukencephalopathy and brain atrophy. ̂ ^̂  

Thus, improvements in survival for children with leukemias or brain tumors treated 
with radiotherapy and chemotherapy have led to increasing concerns on quality-of-life issues 
for long-term survivors, in which neuropsychological testing has revealed a high frequency of 
cognitive deficits.>68'i72-i75 

Potential clues to the biological basis of neurotoxicity, such as cognitive impairment, 
have come from studies on the effects of radiation on the brain. On a cellular basis, radiation 
appears to cause damage to both dividing and non-dividing CNS cells. Irradiation has been 
shown to cause apoptosis in the subgranular zone of the hippocampal dentate gyrus ^̂ '̂̂ ^̂  and 
in the subependymal zone, both of which are sites of continuing stem or progenitor cell 
proliferation in the adult CNS. Such damage also is associated with long-term impairment of 
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subependymal repopulation,^^^ indicating diat surviving stem cells are unable to regenerate 
the subependymal zone. This could in fact lead to a profound impairment of the overall cellu
lar plasticity in the CNS. 

Furthermore, non-dividing cells, such as oligodendrocytes, are also killed by irradiation, 
which seems to be consistent with clinical evidence, where irradiation induces diffuse myelin 
and axonal loss, tissue necrosis and diffuse spongiosis of the white matter. There is consider
able discussion whether the damage caused by irradiation represents a direct or indirect effect 
on the brain. Although some damage in vivo might be secondary to vascular damage, radiation 
is also directly damaging important CNS populations, such as oligodendrocyte precursor cells. ̂ ^̂  

Recent studies have indicated that carmustine (BCNU), a lipophilic alkylating agent, is 
toxic for oligodendrocytes at doses that woidd be routinely achieved in patients. In contrast, 
astrocytes appear to be relatively resistant to BCNU, and 0-2A cells showed intermediate 
levels of sensitivity. ̂ ^̂  The sensitivity of oligodendrocytes to BCNU raises the disturbing issue 
of whether the normal cells of the brain are damaged by exposure to chemotherapeutic agents. 
Preliminary results raise the concern that multiple types of neural precursor cells are at least as 
sensitive to death induced by chemotherapeutic agents as are cancer cells themselves (J. Dietrich 
and M. Noble, unpublished observations). 

Taken together, in the field of neuro-oncology various intersections between neural stem 
cells and tumors of the CNS seem to emerge. An increasing knowledge about the lineage 
relationships and biological properties of different neural stem and precursor cells might help 
to better understand the process of tumorigenesis in the CNS and might also help to develop 
novel treatment options for future cancer therapies. 

Demyelinating Diseases 
Demyelination is a common feature of various neurological diseases with different under

lying causes such as inflammation, automimmune reactions, degeneration, and trauma.^^^'^^ 
Multiple sclerosis (MS), as the most prominent example of a demyelinating disease, is charac
terized by chronic inflammatory focal demyelination associated with a variable degree of ax-
onal loss.'»7-l89 

The appearance of demyelination and axonal loss very early in the course of the dis
ease ' suggests that strategies of myelin repair might be a possible means of protecting 
axons from further immunological insults. 

In general, therapeutic strategies to promote myelin repair have focused on two major 
avenues: (1) cell transplantation to provide an exogenous source of cells which are competent 
to form myelin producing cells, and (2) recruitment of endogenous cell populations that are 
capable to produce myelin. 

Experimentally, the transplantation of certain types of cells, including oligodendrocyte 
precursor cells or multipotent stem cells, which are able to generate myelin-producing oligo
dendrocytes, can lead to remyelination of chronic demyelinated tissue. ̂ ^̂ '̂ ^̂  Promising results 
in myelin repair and re-establishment of nerve conduction have come from the use of embry
onic neural stem cells that were expanded in vitro and induced to the oligodendroglial lineage 
prior to transplantation. ^ '̂ ' However, regardless of the potential of transplanted cells to 
produce myelin, poor survival of grafted cells, lack of migration of these cells beyond the lesion 
site and therefore an unpredictable therapeutic outcome are current limitations to this ap
proach. ̂ ^̂  

In demyelinated CNS regions a certain amount of remyelination occurs,'^^^'^^ but 
remyelination in the adult damaged brain remains incomplete.'̂ '̂̂ '̂ ^ '̂̂ '̂̂  

The identity and origin of cells, that participate in endogenous remyelination has been 
unraveled to some degree. Multipotential stem cells, oligodendrocytes, or oligodendrocyte pre
cursor cells are possible candidates involved in the remyelination process. Multipotent neural 



200 Brain Repair 

stem cells have been implicated in myelin repair. For example, in a lysolecithin-induced 
demyelination of the corpus callosum progenitors of the rostral subventricular zone (SVZ) 
expressing the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) prolifer
ate and seem to migrate towards the lesion site and differentiate into glia but not neurons. 

Whereas oligodendrocytes of the adult forebrain are primarily postmitotic, persistent 
cycling oligodendrocyte precursor cells (OPCs) might represent the most likely population and 
source for myelin repair. ' 

OPCs are not only present in the developing but also in the adult mammalian 
brain. ' Their specific function in the normal brain is largely unknown. It has been 
hypothesized that they play a role in influencing neuronal activity'̂ ^ '"̂ ^̂  and synaptic 

In the injured brain or in case of demyelination, oligodendrocyte precursor cells might 
form a glial population that can be activated to proliferate and to become involved in repair 
mechanisms by giving rise to myelinating oligodendrocytes. This exciting potential has 
initiated research on the exact meachnisms that induce oligodendrocyte precursor cells migra
tion, proliferation and differentiation to promote myelin repair. 

Several studies have also indicated the persistence of mitotic oligodendrocyte precursor 
cells in the adult human subcortical white matter. ̂ ^ '̂̂  However, only small numbers of oligo
dendrocytes are generated in the intact adult mammalian brain.^^^ Thus, subcortical white 
matter progenitors appear to be a quiescent population, and oligodendrocyte differentiation 
from these cells to a myelinating stage is considered to be a rare event. 

In contrast, glial progenitor proliferation can be found after injury and in several animal 
studies of induced demyelination. ̂ ^̂ '̂  ' Moreover, oligodendrocyte precursor cells have 
also been identified in multiple sclerosis lesions.̂ ^ '̂"^^^ 

However, they apparently fail to proliferate and to differentiate during chronic stages of 
the disease. Reasons for the incomplete repair might lie in a profound axonal loss, the lack of 
sufficient precursor migration towards a lesion, insufficient precursor pools that could be mo
bilized or the lack of permissive environmental cues (e.g., growth factors and cytokines) to 
activate precursor cells. 

For example, immature cycling progenitor cells of the adult subcortical white matter can 
be recruited to give rise to myelin-producing oligodendrocytes in response to experimental 
focal demyelination by lysolecithin,^^^ but do not migrate towards the lesioned area so that 
only cells present at the site of demyelination can participate in remyelination. Consequendy, 
severe demyelination might damage all resident progenitors at one particular lesion site—as it 
is to be assumed in chronic MS lesions—and thus profoundly reduce the capacity for myelin 
repair in that region. 

Therefore it would be a useful approach to direct the migration of cycling precursor cells 
towards a demyelinated area that has suffered depletion of its own precursor population. 

Since oligodendrocyte precursors fail to survive and migrate when transplanted into the 
intact mammalian brain,"̂ ^̂ '"̂ ^̂  multiple environmental factors might be important to trigger 
progenitor cells to proliferate and differentiate. In fact, the balance between cell proliferation 
and differentiation appears to be mediated by local environmental cues, such as growth factors 
locally synthesized by surrounding neurons and glia. For example, glial growth factor 2 (a 
neuroregulin isoform) or Insulin-Growth-Factor 1, have been shown to promote remyelination 
in animal models of inflammatory demyelination."^^^ 

The immune system itself is likely to influence myelin repair. For example, there is 
evidence that circulating immunoglobulins bind to oligodendrocyte surface antigens to pro
mote remyelination,"^^ and that antigen-antibody binding may facilitate the opsonization of 
myelin debris allowing repair to proceed."^^ 
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Taken together, it remains to be determined to what extent cell types such as neural stem 
or progenitor cells can contribute to myelin repair. It is a substantial scientific challenge to 
determine the signals involved in the activation of oligodendrocyte precursor cells and in the 
induction of multipotent CNS precursor cells to proliferate and differentiate into migratory 
oligodendrocyte precursor cells to enhance remyelination and to improve neurological deficits. 

Seizures 
Epilepsy is a common neurological condition that is characterized by recurrent seizures 

due to hyperactivity and synchronization of activity within neuronal populations (as reviewed 
e.g., in refs. 237-240). Animal models of induced seizure activity attempt to mimic these char
acteristic features of epilepsy. For example, kindling is a widely used model, in which repeated 
electrical stimulation of limbic areas leads to a stimulus-induced stable seizure activity, that 
resembles the temporal lobe epilepsy in humans. ' Other commonly used seizure models 
are based on the stimulation of glutamatergic or cholinergic receptors by drugs such as kainate 
and pilocarpine. ^ For review on other widely used seizure models, see e.g., ref. 245. 

Epileptic activity has been reported to result in a number of long-term alterations, such as 
altered gene and growth factor expressions, "̂  neuronal cell loss in the hippocampus,"^ '"̂ ^̂  
Ammons horn sclerosis, ' dendritic abnormalities of pyramidal cells, and synaptic reor
ganizations within the hippocampus, '^ ^ all of which have a potential impact on the neu
ronal circuits. These effects might induce a cascade of consequences, including alterations of 
glutamate receptor expression, glial hypertrophy, axonal growth and formation of new syn
apses that might contribute to an increased susceptibility to further seizures. 

In patients with temporal lobe epilepsy, nests of ectopic granule cells have been de
scribed. ' Similarly, Houser and co-workers found aberrant sprouting of mossy fibers, the 
axons of granule cells, in the brains of these subjects. These findings were first interpreted as 
reflecting a deranged development and thus a cause of the seizures. Research on adult hippoc-
ampal neurogenesis has allowed the alternate hypothesis that these changes are a direct conse
quence of seizures."^ '̂"̂ ^̂  Parent et al were the first to report that pilocarpine induced seizures 
in rats lead to a transient increase in cell proliferation in the dentate gyrus. '^^ Others have 
extended on these findings with similar models and similar findings. ^ '̂ '^ Such increased 
proliferation corresponds to the up-regulation of several cytokines and mitogens, as described 
elsewhere."^^^'^^^ Interestingly, it appears that stimulation of neurogenesis following 
kainate-induced seizures requires endogenously synthesized FGF-2, since this result cannot be 
seen in FGF-2 knockout mice. ^^ While the induction of cell proliferation has been convinc
ingly documented in several studies, less attention has been given to the question, whether a 
greater number of mature, functionally relevant neurons develop from these dividing cells and 
what their ultimate fate is. Parent et al have initially speculated that it might be the new cells 
that produce aberrant connections considered to sustain seizure activity,"̂ "̂ ^ but later provided 
arguments that this might not be the case (see below). 

Activity-induced cell proliferation in the dentate gyrus—and in some cases neurogenesis— 
has been demonstrated in both electrical ' ^ and chemically induced seizures, ^ ' ' '̂ '̂ ' 
suggesting a fundamental response mechanism as a result of synchronized neuronal activity. 
However, it remains to be shown, whether altered neurogenesis is a cause or consequence of 
increased seizure activity. 

Bliimcke et al reported an increased proliferation index as assessed by IG-67 immunoreac-
tivity in the dentate gyrus of children with early-onset temporal lobe epilepsy who had under
gone surgery to remove the epileptogenic focus in the hippocampus. They found an increase 
in nestin-labeled cells as a putative marker of progenitor cells in the dentate gyrus. Although 
the further development of the proliferating cells remains unclear, these finding are suggestive 
that the response of the human hippocampus is similar to the rodent hippocampus. Scharfman 
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et al demonstrated that pilocarpine- and kainate-induced seizures in rats cause proliferation of 
hippocampal neural stem or progenitor cells whose progeny can migrate to the CA3 region of 
the hippocampus to give rise to ectopic NeuN^ and Calbindin^ granule cells."̂ ^̂  This would be 
consistent with the observation by Houser et al in humans."^^^ However, despite exhibiting 
granule cell specific intrinsic properties (e.g., membrane properties, firing behavior and mor
phology), these cells seem to be abnormally integrated into the CA3 network. 

Interestingly, conditions known to be able to induce neurogenesis, such as living in an 
enriched environment,^^ ̂  have not only been shown to be associated with reduced spontane
ous apoptotic cell death in the rat hippocampus, but also to protect from kainate-induced 
seizure activity itself ̂ "̂̂  The relation between these two separate observations that is suggested 
by Young et al remains to be proven, but raises the question whether seizure-induced structural 
changes in the brain might be linked to altered stem cell activity. 

It appears, however, that there are fundamental differences between the immature and the 
aged brain in regard to susceptibility to seizures and the functional consequences of seizures. 
Despite the evidence that seizures result in a more profound cell death in aged animals com
pared to young animals, ' seizures might have deleterious effects in the neonatal brain. For 
example, seizures in the developing brain can result in irreversible alterations in neuronal con
nectivity, as reviewed in 295. It has been reported that newborn animals receiving 10 daily 
electroconvulsive seizures have significandy smaller brains than controls."^^^ Furthermore, sei
zures in the neonatal brain result in a reduced neurogenesis in the dentate gyrus, measured by 
BrdU incorporation and phenotypical characterization of newborn cells by the neuronal marker 
NeuN. In contrast, aged animals exposed to the same number of seizures show a significant 
increase in hippocampal neurogenesis. While the underlying cause of the age-related differ
ences is not exactly known, it has been speculated that increased glutamate release following 
seizures or a pronounced level of sensitivity to hypoxia in the neonatal brain might be pardy 
responsible for altering the balance between cell death and birth."^^^ 

These observations are intriguing, because recurrent neonatal seizures could therefore— 
even in the absence of cell loss—have profound effects on brain development and might ex
plain some of the late neurological impairments following recurrent seizure activity.^^ ,300-302 

In addition, recurrent seizures in the neonatal brain cause sprouting of mossy fibers into 
the inner molecular layer of the dentate gyrus and pyramidal layer of CA3 in rats. ^̂ ^ While 
seizure-induced progenitor proliferation in the dentate gyrus can be inhibited by irradiation, 
synaptic remodeling of the mossy fiber pathway appears not to be altered. Thus, it seems 
likely that mossy fiber synaptic reorganization is independent of neurogenesis, suggesting that 
sprouting arises from mature granule cells. 

A completely different question is whether the use of neural stem cells (either as trans
planted cells or as recruitment of endogenous cells) might provide a possible means for the 
treatment of epilepsy.̂ "̂  For example, there have been several studies trying to circumvent the 
imbalance between excitatory and inhibitory neurotransmission in seizures by transplanting 
embryonic cells that release inhibitory neurotransmitters such as GABA. Although successful 
transplants resulted in seizure suppression, the underlying mechanisms of the graft action are 
mostly unclear and seizure suppression has so far only been transient. 

It remains to be established whether there is any potential therapeutic benefit to be de
rived from endogenous stem cell activity in response to seizures, and whether the seen effects 
are part of the epileptogenic pathology or attempts of endogenous regeneration. 

In summary, repetitive seizures have been shown to lead to well-described neuropatho-
logical changes such as neuronal cell death, reactive gliosis, enhanced neurogenesis and axonal 
sprouting. Most of these damages seen in animal models are similar to those seen in hu
mans, e.g., in cases of intractable temporal lobe epilepsy. Many questions about the molecular 
mechanisms involved in these changes remain to be elucidated, as reviewed in e.g., ref. 309). 
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Better understanding the exact mechanisms that modulate proliferation and differentiation of 
neural stem and progenitor cells following seizure activity might offer potential targets for 
future therapies. 

Ischemia 
Cerebrovascular insults are a major cause for permanent neurological impairment. After 

cerebral infarction, necrotic tissue is usually not replaced and functional recovery of the patient 
is very limited. As in other areas, neural stem cell activity and neurogenesis in the adult brain 
might play a role in the clinical outcome of CNS disease such as cerebral infarction. Unfortu
nately, much of this general optimism is as yet backed by only limited experimental evidence. 
Nevertheless, the use of neural stem cells might offer future treatment options either as vehicle 
systems to deliver neurotrophic factors or as cell replacement therapy via transplantation. Re
cent studies have described a significant increase of cell proliferation in the subventricular zone 
and the dentate gyrus of the mammalian brain in response to vascular injury, such as global and 
focal ischemia in experimental models.^^ '̂̂ ^^ 

Thus, transient ischemia could be a potent signal for inducing neural stem cell prolifera
tion (as measured by BrdU-incorporation) and differentiation into neuronal and astroglial 
phenotypes (by co-labeling BrdU-positive cells with lineage specific markers). However, it is 
not known, what is actually reflected by the increase in the number of BrdU-labeled cells, 
which is interpreted as increased cell proliferation, because most conclusions are indirect. No 
specific positive markers for neural stem cells in vivo are known and most studies lack the 
examination of long survival periods in order to assess the net and long-term effects. Also, at 
least in the hippocampus, prolonged periods of global ischemia (> 2 minutes) seem to be 
necessary to significandy increase BrdU incorporation. ̂ "̂̂  Despite several reports describing 
the proliferation and differentiation of hippocampal progenitors following global ischemia, 
further quantitative studies will be required to determine whether this also results in an sus
tained increase of granule neurons. Interestingly, BrdU incorporation in the subgranular zone 
of the dentate gyrus has been described to a more pronounced degree on the ipsilateral side, in 
case focal cerebral ischemia was applied,^^^ suggesting that signals associated with cell death 
might locally stimulate cell proliferation. 

Increased cell proliferation has also been described in the rat neocortex following transient 
global^ and focal ischemia.^^^ Newborn cells were distributed randomly in cortical layers 
II-Vl with highest densities in the ischemic boundary zone.^ Reactive neurogenesis in a 
photo thrombotic stroke model has been reported, which seems to fit well with cortical 
neurogenesis after phototoxic lesions ^̂  and the controversial report of spontaneous neurogenesis 
in cortical areas of the primate brain.^^^ Photothrombotic stroke is an interesting model system 
that however lacks several features characterizing normal embolic or thrombotic ischemia. It 
remains generally conceivable that some ischemia-induced neurogenesis might also be present 
in the human brain in various brain areas and might even be a potential means for brain repair 
after stroke. However, the unequivocal demonstration of functional and lasting neurogenesis 
following ischemia has still to be made. 

Mechanisms that have been shown to reduce vascular damage and ischemia-induced cell 
death, such as glutamate receptor blockade, have also been demonstrated to positively influ
ence stem or progenitor cell proliferation.^^^ Several mechanisms have been controversially 
discussed that might influence hippocampal neurogenesis after ischemia. Potential signals in
clude changes of NMDA receptor signaling, death of glutamatergic neurons that project 
into the granule cell layer,̂ "̂ '̂̂  dying hippocampal neurons,'̂ ^ '̂'̂ '̂ '̂̂ ^ '̂̂ ^^ growth factors or 
mitogenic factors such as FGF^^ '̂̂ ^^ and erythropoietin.^^ 

In addition, age-related differences in stem or progenitor cell activity following ischemic 
insults appear to be important. While neurogenesis in the dentate gyrus following global 
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ischemia seems to be less accelerated in aged and more pronounced in young animals,^^^ 
young animals seem also to be more vulnerable to ischemic insults. Neonatal rats exposed to 
cerebral ischemia show a severe and sustained damage of the subventricular zone (SVZ) with 
necrotic and apoptotic cell death.^^ More specifically, oligodendrocyte precursor cells and 
neural stem cells appear to be particularly vulnerable resulting in subcortical white matter 
demyelination and profound cell loss in the SVZ three weeks after the insult.^^ Moreover, 
there is evidence for a maturation-dependent vulnerability of oligodendrocyte precursors to 
hypoxia and ischemia, which might explain the selective vulnerability of the periventricular 
white matter to hypoxia and ischemia seen in the premature infant. ̂ ^ 

Thus, neurological impairment (e.g., cognitive and motor dysfunction) caused by asphyxia 
of the newborn might be due to damage to progenitors and stem cells of the CNS. 

It has been hypothesized that grafted neural tissue may be a possible means for therapy of 
brain ischemia by either direct cell replacement or by releasing neurotrophic factors to the 
damaged brain, as reviewed e.g., in refs. 82,335. A variety of grafted cell types have been stud
ied in ischemic brain models, including fetal cells and tissues,^^ immortalized cells and 
genetically modified cells, as reviewed in e.g., 338. Numerous reports have demonstrated that 
transplanted cells were able to survive, to migrate preferentially toward the lesioned area, to 
differentiate into neuronal cells, to re-establish functional connections within the host animal, 
and to restore functional deficits.̂ ^ '̂̂ ^ '̂̂ ^^ A first clinical study by Kondziolka et al is an initial 
indication that transplanting cultured neuronal cells into the brains of humans after stroke is 
safe and could have functional benefits. ^ In general, however, clinical application of this 
strategy appears premature, because risks and potential benefits cannot yet be reasonably judged. 

The establishment of a functional neuronal circuitry between the host and the grafted 
tissue is dependent on many variables, including the availability of trophic factors. Neurotrophic 
factors are essential to maintain the physiological function of glia and neuronal cells. ̂  '̂  
Furthermore, proliferation and differentiation of endogenous stem and progenitor cells is also 
dependent on appropriate neurotrophic signals. ' 

In pathological situations, as in the ischemic brain, neurotrophic factors protect brain 
tissue from experimentally induced damage. For example, gene delivery of the glial cell 
line-derived neurotrophic factor (GDNF) into the rat brain one day before a transient middle 
cerebral artery occlusion resulted in a significandy smaller infarct volume and was associated 
with a reduction of apoptosis. ^̂ "̂  Consistent with these reports, neurotrophin receptors are 
up-regulated in cholinergic striatal interneurons after global cerebral ischemia, suggesting that 
neurotrophin signaling might be important for the survival and function of these cells. 

In summary, recent findings have raised hopes for novel treatment approaches of ischemic 
brain damages, including activation of endogenous neural stem cells and transplantation of 
neural grafts. However, the use of neural transplants for the treatment of CNS ischemia has to 
be considered with caution and further pre-clinical studies are needed to validate the safety and 
efficacy of such an approach before neural stem cells could be applied to stroke patients. Alter
natively, there is evidence that endogenous progenitors and stem cells are activated and might 
be involved in repair mechanisms following ischemic brain injury. As of yet, the plasticity of 
the adult human brain in acute and chronic ischemic conditions is poorly understood. For 
example, compensatory reactions and functional recovery (as it can be seen in stroke patients) 
that have been thus far explained by synaptic or functional plasticity might in fact include a 
limited neuronal replacement, potentially far from the injury site. 

Mood Disorders 
Adult hippocampal neurogenesis affects hippocampal function and is thus potentially 

involved in higher cognitive functions. Some of the known factors that are able to induce 
neuronal cell death and to potently suppress hippocampal neurogenesis are psychosocial 
stress^^ '̂̂ ^ and glucocorticoid hormones. 
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Major depression, although not a hippocampal disease in a strict sense, shows hippocam-
pal impairment, for example with regard to symptoms of dementia and memory loss.̂ ^ '̂̂ ^^ 
Recent studies have indicated that the pathogenesis and treatment of depression is likely to 
involve the impaired plasticity of neuronal circuits within the hippocampal formation. Thus, 
stress-induced impairment of dentate gyrus neurogenesis has been linked to the onset of clini
cal phases of depression ' 

In accordance with this hypothesis, studies using magnetic resonance imaging demon
strated selective atrophies in the limbic-cortical-striatal-pallidal~thalamic tract, which consis
tently includes a volume loss of the hippocampus in various psychiatric disorders, like in 
long-standing depression.^ These findings were complemented by postmortem observations 
of hippocampal atrophy and cell loss in patients with mood disorders.^ These structural 
changes correlate with deficits in declarative, spatial and contextual memory performance, 
supporting a link between hippocampal dysfunctions and the development and clinical ap
pearance of certain psychiatric conditions.^ 

This hypothesis has led to the assumption that remodeling the hippocampal network, 
e.g., by increased neurogenesis, might be a possible means to influence the outcome of 
stress-related mood disorders.^^ '̂̂  Hence, circumstantial evidence to support this hypothesis 
has come from several studies showing that drugs used for treatment of depression, including 
tricyclic antidepressants and serotonin re-uptake inhibitors, as well as electroconvulsive therapy 
and physical activity stimulate adult hippocampal neurogenesis.'̂ '̂̂ '̂  '̂̂ ^^ 

It has been suggested that antidepressants might therefore exert their therapeutic effects 
by stimulating changes in neuronal systems, such as by an increase in neurogenesis - possibly 
by enhancing the expression of growth and survival promoting factors like neurotrophins. 
Interestingly, in the case of serotonin re-uptake inhibitors, stimulation of neurogenesis requires 
long-term treatment, which is consistent with the clinical experience of a long latency pe
riod before onset of an anti-depressive eff̂ ect. 

Furthermore, lithium (in clinical use for the treatment of bipolar disorders) has an effect 
on adult hippocampal neurogenesis, too.̂ '̂ ^ This effect is possibly mediated through the 
upregulation of the anti-apoptotic protein bcl-2. 

Stimulation of neurogenesis (e.g., by antidepressants) might thus inhibit or reverse the 
effects of stress-induced downregulation of hippocampal neurogenesis and hippocampus atro-
pj^^370,374376 

At present, however, it remains unknown, whether a disturbance in adult hippocampal 
neurogenesis is a consequence, cause or correlate of major depression and bipolar disorders. 
Several recent reviews have speculated about this potential pathogenic link.̂ ^ '̂̂ ^ '̂̂ '̂̂  As of yet, 
this relation remains an interesting hypothesis that still has to be substantiated by empiric and 
experimental evidence. Intriguingly, major depression and schizophrenia share some character
istic features such as hippocampal involvement. Whether an impairment of cellular plasticity 
within the hippocampus is involved in schizophrenia has been suggested,^^ '̂̂ ^^ but at present, 
this hypothesis is even more speculative than in the case of major depression. 

Summary 
These examples show that stem-cell-based therapy of neuro-psychiatric disorders will not 

follow a single scheme, but rather include widely different approaches. This is in accordance 
with the notion that the impact of stem cell biology on neurology will be fundamental, provid
ing a shift in perspective, rather than introducing just one novel therapeutic tool. Stem cell 
biology, much like genomics and proteomics, offers a "view from within" with an emphasis on 
a theoretical or real potential and thereby the inherent openness, which is central to the con
cept of stem cells. Thus, stem cell biology influences many other, more traditional therapeutic 
approaches, rather than introducing one distinct novel form of therapy. 
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Substantial advances have been made in neural stem cell research during the past few 
years. With the identification of stem and progenitor cells in the adult brain and the complex 
interaction of different stem cell compartments in the CNS—both, under physiological and 
pathological conditions—new questions arise: What is the lineage relationship between the 
different progenitor cells in the CNS and how much lineage plasticity exists? What are the 
signals controlling proliferation and differentiation of neural stem cells and can these be uti
lized to allow repair of the CNS? Insights in these questions will help to better understand the 
role of stem cells during development and aging and the possible relation of impaired or dis
rupted stem cell function and their impact on both the development and treatment of neuro
logical disease. A number of studies have indicated a limited neuronal and glial regeneration in 
certain pathological conditions. These fundamental observations have already changed our 
view on understanding neurological disease and the brains capacity for endogenous repair. The 
following years will have to show how we can influence and modulate endogenous repair mecha
nisms by increasing the cellular plasticity in the young and aged CNS. 
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