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CHAPTER 1 

Cell Death in the Nervous System 

Kerstin Krieglstein 

P rogrammed cell death is a fundamental and essential process in development and tissue 
homeostasis of multicellular organisms. About half of all neurons produced during 
neurogenesis die before the nervous system matures. Failure to kill appropriate cells can 

lead to severe developmental defects and diseases such as cancer, whereas increased cell death 
can lead to degenerative diseases. 

Programmed Cell Death 
The term "programmed cell death'* is used for developmentally occurring cell death, where 

cells are "programmed" to die during normal development. '̂"^ As cell death seems to follow an 
intracellular "program", programmed cell death is sometimes also used as a synonym for 
apoptosis. 

Apoptosis is a cell autonomous genetically defined program, in which cells respond to 
internal or external signals by actively participating in their suicide and organization of their 
disposal. Originally, the term "apoptosis" was defined by a characteristic pattern of morpho
logical changes '̂  and is now increasingly used to describe the underlying molecular mecha
nisms. Any cell death lacking the features indicative for active cell death is referred to as 
necrosis. Necrosis presents a passive form of cell death with relatively slow disintegration of the 
cells.^ 

The morphological changes by which apoptotic cell death can be characterized and iden
tified, occur in a consecutive fashion. Dying cells start to detach from neighboring cells and 
extracellular matrix and round up. The cells start to show pertrusions from the plasma mem
brane, referred to as blebs. Many dying cells show nuclear condensation and disintegration of 
the nucleus into several fragments. Organelles are generally intact, but may be affected at later 
stages. Mitochondria have been described to either swell or condense, there is dilatation of the 
ER, release and aggregation of ribosomes and the occurrence of cytoplasmic vacuoles. Whole 
cells condense and reorganize into so-called apoptotic bodies, which are membrane bound 
vesicles containing cytosolic elements, organelles and parts of the condensed nuclei in various 
combinations. Apoptotic cells are rapidly engulfed and digested by neighboring cells, ' which 
makes it quite difficult to study morphological changes in vivo. 

Neuronal CeU Death during Development 
A central problem in developmental neurobiology is the understanding of the regulation 

of neuron survival and death. The neurotrophic theory^'^^ provides a basis for understanding 
several features of neuronal development, including the question of why, in many populations 
of developing neurons, only a proportion of the original number of postmitotic cells survives. 

Brain Repair, edited by Mathias Bahr. ©2006 Eurekah.com 
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It is well known that in many regions of the nervous system large numbers (approx. 50%) of 
postmitotic neurons degenerate and die by a process of naturally occurring neuronal death. ̂  It 
has been repeatedly demonstrated that in most populations of neurons this normal cell loss 
occurs during the period when neurons are establishing synaptic connections with their tar
gets. ̂ '̂̂ ^ This temporal coincidence, together with the demonstration that manipulations of 
the availability of putative synaptic targets alters the number of surviving innervating neurons, 
led to the proposal that neurons compete for a target-derived factor that is supplied in limiting 
amounts by the targets and thus adjusting neuron numbers so as to provide sufficient innerva
tion for their targets. ' However, there is growing evidence that other mechanisms may be 
involved in regulating cell death. 

Cell Death in Early Neural Development 
Cell death in the developing nervous system is already seen prior to neuronal differentia

tion and synaptogenesis. Early neural cell death is detected as early as neurulation and seems to 
affect proliferating neural precursor cells as well as young postmitotic cells during and follow
ing neurogenesis of the neural tube and spinal cord as well as the neural crest derived peripheral 
nervous system. The extent of cell death in early neurogenesis is quite large as estimated from 
the phenotype analyses of caspase3, caspase9 and Apafl gene target ablations,^'^'^^ however, the 
precise developmental role remains unknown. In general, apoptosis may be used to select for 
specific parameters, for morphogenesis or for shaping compartments. ' 

GHal CeU Death 
So far, research on programmed cell death in the nervous system has focused on neurons. 

However, it is becoming increasingly clear that developmental cell death also occurs in oligo
dendrocytes and Schwann cells, the glia of the central and the peripheral nervous system, 
respectively. Establishing quantitative matches between neurons and ensheathing or myelinating 
glia suggests that the number and appropriate differentiation of oligodendrocytes or Schwann 
cells during development should be under close regulation. Considerable oligodendrocyte cell 
death occurs during development, and also after traumatic conditions. Similarly, programmed 
cell death of Schwann cells has been described during development in response to the presence 
of the absence of axon-derived signals. ' Programmed cell death of both oligodendrocytes 
and Schwann cells follow a typical caspases-dependent pathways. ' 

Molecular Mechanisms of Programmed Cell Death 
Apoptosis is controlled by several pro- and antiapoptotic gene families that are conserved 

from nematodes through mammals. ' In the nematode C. elegans, neurons destined to die do 
so according to a stereotyped scheme: 131 of the 1090 somatic cells generated during develop
ment are destined to die. Genetic screens for cell death abnormal (ced) mutants have revealed 
that a cascade involving ced-3 and ced-4 is required to regulate the intrinsic cell death program 
in C. elegans, whereas ced-9 is negatively regulated by egl-1 in dying cells (Table 1). '̂  Al
though the basic components of the vertebrate apoptotic machinery are similar to those seen in 
nematodes, they are more varied and complex. In addition to the cell intrinsic genetic cascade 
many death and survival signals lead to the activation of extrinsic or intrinsic pathways being 
composed of several adaptors, regulators, caspases, inhibitors as well as pro- and antiapoptotic 
mediators. 

The key effector components of apoptosis are caspases. '̂ ^ A family of currently 15 mem
bers has been identified as important regulators of inflammatory response, while 8 of them 
play important roles during apoptosis. Caspases are cysteine proteases that cleave their sub
strates after aspartate residues. Caspases are initially produced as inactive zymogens (procaspases). 
Caspases may be divided in two functional subfamilies: initiator caspases (caspases-2, -8, -9 or 
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Table 1. Comparison ofapoptosis 
vertebrates (bottom) 

*BH3 Only Inhibitor 
of Regulator Regulator 

EGL-1 -1 CED-9 -1 
BAD, BIKetc.-I Bcl-2 -| 

effector mechanisms 

Adaptor 

CED-4 ^ 
Apaf-1 -^ 

in nematodes (top) and 

Protease 

CED-3 -^ death 
Casp9 ^ Casp3 -^ death 

Signals -| inhibiting or -^activating the cell death pathway 

-10), which are involved in upstream regulatory events, and effector caspases (caspases-3, -6, or 
-7), which are directly responsible for cell disassembly events, i.e., widespread cleavage of mul
tiple substrates ultimately causing cell death.^^ Effector caspases are direct targets of initiator 
caspases, while activation of initiator caspase precursors is achieved by adaptor proteins that 
bind to them via shared motifs. For example, caspase 9 is activated after association of the 
caspase recruitment domain (CARD) in its prodomain with the CAUD in another adaptor 
protein such as Fadd and Apafl.^^'^ The ability of adaptors to activate the caspases can be 
regulated by other proteins that appear to directly interact with the adaptors, e.g., members of 
the Bcl2 family. 

Bcl-2 family members are important sensors that receive multiple signals from various 
signal transduction pathways residing upstream of irreversible cell damage, they play a pivotal 
role in deciding whether cells will live or die by either blocking or permitting the regulation of 
downstream cell death effectors (Table 2). ' This decision is carried by various members of 
the Bcl2 family that have either anti-apoptotic (e.g., Bcl-2, Bcl-xl, Bcl-w, Mcl-l) of pro-apoptotic 
(e.g., Bax, Bak, Bcl-XS) function. The ratio between the two subsets is thought to be one 
determinant for the susceptibility to programmed cell death, which may be mediated via for
mation of heterodimers.^^ Bcl-2 family members are composed of up to four Bcl-2 homology 
domains (BH), which are highly conserved in anti-apoptotic Bcl-2 family members, whereas 
they are conserved to a lesser degree in pro-apoptotic family members. There is an emerging 
subfamily of "BH3-domain-only' members (e.g., Bid, Bad, Bik, Bim), which are all pro-apoptotic 
to date (Table 1). Many of the Bcl-2 members contain a hydrophobic sequence at their 
C-terminus that has been shown to target these molecules to membranes such as the outer 
mitochondrial membrane.^^ Anti-apoptotic members are found as integral membrane proteins 
in the mitochondria, endoplasmic or nuclear membrane,^^ whereas the pro-apoptotic mem
bers localize to cytosol and translocate upon a death signal to the mitochondrial outer mem
brane. ' A model describing the mechanism of action of pro- and anti-apoptotic molecules 
at the mitochondria builds on the channel forming capacity of the Bcl-2 family members, 
whereby the anti-apoptotic molecules are "guarding the mitochondrial gate" while the 
pro-apoptotic molecules "gain access" following a death signal.^ 

One consequence of a variety of death stimuli is the release of cytochrome c into the 
cytosol, activating Apaf-1, which in turn activates caspase-9 and caspase-3 (Table 2). '̂ 

However, besides the anti-apoptotic Bcl-2-family members there is an additional 
antiapoptotic acting gene family, the inhibitor of apoptosis (LAP) family of proteins linked to 
caspases inhibition. Up to now, seven members of the LAP family have been identified (i.e., 
XIAP, lAPl, IAP2, NAIP, Survivin, Bruce and livin). lAPs seem to archive their anti-apoptotic 
activity by two separate mechanisms: one involving caspases inhibition, the other requiring 
TAKl-dependent JNKl activation. LAPs have been shown to directly bind and inhibit spe
cific members of the caspases family, e.g., XIAP, LAPl, IAP2 and Survivin directly bind and 
inhibit caspases-3, -7 and -9 , but not caspases-8 or -10. 
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Table 2, Mouse models with defective programmed cell death of in the nervous system 

Gene Knockout Phenotype References 

bclx Embryonic lethality (E13.5); Extensive neuronal phenotype 90 
bax Viable; Neuronal hyperplasia 91 
Bak/bax Perinatal lethality; accumulation of neurons 

in the nervous system 92 
Apafi Embryonic lethality (E16.5); exencephaly due 

to defective apoptosis of neural progenitor cells; 93-95 
Caspase 9 Perinatal lethality, neuronal hyperplasia 19,51,96 
Caspase 3 Perinatal lethality, neuronal hyperplasia 18,51 

Caspase Independent Pathways 
The importance of caspases in the apoptotic process is well established, however, there is 

also strong evidence for a caspase-independent pathw^ay in the nervous system. Evidence for 
this comes on one hand from the analysis of programmed cell death in caspase null mice, in 
which in contrast to the striking perturbances in the forebrain, the extent of cell death of brain 
stem and spinal cord motoneurons as well as ganglia of the peripheral nervous system may be 
delayed but in essence is unaltered. Cell death may be mediated via other mitochondrially 
regulated pathways, ' such as via the apoptosis-inducing factor (AIF). 

Cell Death Receptors 
Programmed cell death is executed by cell intrinsic pathways, yet, the induction of cell 

death may be the consequence of extracellular signals. Sensors mediating cell death signaling 
from the outside into the intracellular death machinery are termed death receptors.^ Death 
receptors belong to the tumor necrosis factor receptor (TNFR) gene superfamily (Table 3), 
which is defined by a common extracellular cysteine motif that serves as the ligand binding 
domain. ' The death receptors also contain an additional common cytoplasmic domain 
termed the "death domain". '̂  Upon ligand binding the assembly of a death-inducing signal
ing complex is initiated. In the case of CD95L, the ligation of the death receptor is induced to 
form a homotrimeric complex, thereby clustering the death domains of the receptor. ̂ ^ A 
Fas-associated death domain (FADD) binds as an adaptor protein through its own death do
main to the clustered death domains of the receptor. FADD in turn binds through its "death 
effector domain' the zymogen form of caspases 8 (FLICE/MACH).^^' The death effector 
domain is an example of a caspase recruitment domain (CARD) that represents a more global 
homophilic interaction domain, which is found in several caspases involved in the apoptotic 
machinery, including caspases-2, -8, -9, -10.^ Upon interaction with FADD, procaspase 8 
oligomerization is activated by self-cleavage and triggers the apoptotic pathway by cleaving 
appropriate effector caspases. As the death receptors transmit the signals directly from the cell 
surface to the apoptotic machinery, caspase activation can be achieved within seconds, causing 
cell death within hours. 

The p75 nerve growth factor receptor also contains a death domain, recent evidence 
supports an involvement of this receptor in neuronal cell death. ' However, in contrast to 
the cell death receptors discussed above, the proapoptotic function of p75 seems not exclu
sively to depend on ligand binding, but on the interplay between Trk and p75 that determines 
neuronal survival. Neurotrophin receptor interacting factor (NRIF) has been identified as an 
intracellular p75 binding protein transducing the cell death signals during development. 
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Table 3. Cell death receptors 

Death Receptor Ligand References 

CD95(Fas, Apol) 
TNFR1 (p55, CD120a) 
CAR1 (avian) 
Death receptor 3 (DR3, Apo3, WSL-1, TRAMP, LARD) 
DR4 
DR5 (Apo2, TRAIL-R2, TRICK 2, KILLER) 
p75 

CD96L 
TNFa, lymphotoxin a 
unknown 
Apo3L (TWEAK) 
Apo2L (TRAIL) 
Apo2L (TRAIL) 
NGF 

55,56 
58,97 
98 
99-102 
103-106 
107-111 
66,68 

Disruption of the nrif gene leads to a reduction in cell death closely resembling that of p75 (-/-) 
andngf(./-).^8'69 

Extrinsic Mechanisms 
Outside the nervous system, triggering of cell death by extrinsic factors plays an impor

tant role in normal development. In the immune system, for example, the regulatory elimina
tion of many cells is mediated by signaling through transmembrane receptors of the Fas/TNFR 
family.̂ ^ In the nervous system, a pro-apoptotic role is emerging for nerve growth factor (NGF) 
and bone morphogenetic protein 4 (BMP4). While NGF is best known for its trophic func
tions, recent experiments indicate that it can also cause cell death during development by 
activating the neurotrophin receptor p75 in the absence of trkA (see above). There is growing 
evidence that BMPs function in the early nervous system during regional morphogenesis, i.e., 
of the dorsal telencephalon or of segmented neural crest-derived structures originated of the 
hindbrain by regulating specific gene expression, cell proliferation and local cell death. ' 

Most recently, the pleiotrophic molecule transforming growth factor-P (TGF-|i) has been 
shown to act as a key regulator in the induction of developmental as well as lesion induced cell 
death.̂ '̂"^^ TGF-P induced apoptosis affects neurons of the peripheral and central nervous 
system,'̂ '̂  Schwann cells^ in vivo and oligodendrocytes in vitro. '"̂  TGF-P seems to cooperate 
with other factor to induce cell death, such as NGF,^^ TNF-a,^^ or CD957^'^^ The molecular 
mechanism of TGF-P induced cell death is reviewed by Schuster and Krieglstein.'̂ ^ 

Cell Death during Neurodegenerative Disorders and Aging 
Many neurological diseases involve neuronal degeneration and consequendy cell death.^^ 

Acute disorders, occurring within minutes and hours, e.g., brain trauma, or infarction involve 
injury-induced apoptosis.^^"^^ Chronic disorders, such as Parkinsons disease, Alzheimer's dis
ease or amyotrophic lateral sclerosis, involve slow degeneration of the central nervous system, 
spanning years or decades. There is evidence that the mechanism of neuronal cell death may 
involve apoptosis in these disorders.^ Understanding the biochemical signaling events con
trolling and mediating apoptosis will lead to the identification of potential targets that could be 
used for developing new therapeutic agents to reduce cell death as a means to promote func
tional recovery. Along this line multiple experience is now available using caspases as targets in 
stroke and neurodegenerative diseases.^^ Another successful approach to inhibit injury induced 
apoptosis involves the application of the X-linked inhibitor of apoptosis (XIAP). 

Regulation of apoptosis of inflammatory cells within the injured nervous system does also 
play an important role in protecting the central nervous system from immune-mediated dam
age. For further information see e.g., Pender and Rist or Zipp et al. 
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Whether apoptosis contributes or even explains the aging progress is still under debate. A 
good overview on the aging hypothesis and apoptosis is presented for example by Higami and 
Shimokawa. ^ 
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CHAPTER 2 

The Glial Response to Injury and Its Role 
in the Inhibition of CNS Repair 

James W. Fawcett 

The failure of axon regeneration after CNS injury is due to an inadequate or inappropriate 
regenerative response from damaged CNS axons and to a CNS environment that 
inhibits regeneration. This inhibitory environment contains many molecules that 

promote axon growth as well as molecules that inhibit it, but the balance of activities in the 
damaged CNS does not favour the regeneration of adult CNS axons. In principle, therefore, 
axon regeneration could be achieved in three ways: (1) Inhibitory molecules might be de
stroyed or blocked, (2) the amount of permissive molecules might be increased, or new permis
sive molecules introduced, (3) Axons might be altered so that they can grow in the inhibitory 
CNS environment. Some success has been achieved with all three of these approaches. This 
review addresses the inhibitory properties of the glial scar, a structure which forms wherever the 
CNS is damaged, and which is one source of axon growth inhibitory molecules in CNS inju-

What Is the Glial Scar? 
The end stage of glial scar formation, which is seen weeks after injury, is a largely astro

cytic structure. The astrocytes are hypertrophic, with many tighdy interweaving processes, 
many of them joined with junctional complexes. The appearance is similar in many ways to 
the astrocytic glia limitans which lies around the surface of the CNS under the meninges. 
However the scar evolves over the weeks following injury, and other cell types play critical roles. 
Wherever the CNS is damaged a scarring process is initiated, which involves microglia, oligo
dendrocyte precursors, astrocytes, meningeal cells and vascular endothelial cells. The first change 
seen after injury is the appearance at the injury site of blood-borne cells, particularly mono
cyte/macrophages. Within a few hours the endogenous macrophage lineage cells of the CNS, 
the microglia, begin to respond. They hypertrophy, begin to divide, and upregulate many 
molecules including complement receptors, which are the antigens often used to identify the 
cells and their state of reactivity.^ Starting at about 24 hours oligodendrocyte precursors (OPCs) 
become reactive, with a burst of cell division; they hypertrophy and increase in cell surface 
levels of the chondroitin sulphate proteoglycan (CSPG) NG2 which is the most useftil marker 
of these cells. ' Astrocytes show reactivity after one to two days. They hypertrophy with an 
increase in size and and length and number of processes, a proportion of the cells divide, and 
they gready upregulate the intermediate filament proteins GFAP, vimentin and nestin. The 
GFAP upregulation is widespread, the vimentin and nestin upregulation much more restricted 
to the site of the lesion. Most lesions are invaded by meningeal cells, either from the meningeal 
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layer surrounding the CNS, or from the meningeal-like cells that surround major blood ves
sels. Meningeal cell invasion is a particularly marked feature of spinal cord injuries, where there 
is often a large plug of these cells filling the lesion cavity. Around CNS injuries capillaries 
become hypertrophic, with a considerable increase in the amounts of laminin and other matrix 
molecules, and endothelial cells can be seen invading lesions and forming part of the plug of 
cells that may fill them. Over time, most of the reactive microglia and oligdendrocyte precur
sors disappear, leaving behind the reactive astrocytes surrounding the injury and the meningeal 
cells and vascular endothelial cells filling it. 

Control of Glial Scar Formation 
The initiation and control of scar formation is an extremely complex subject that needs a 

review to itself A recent review summarises current knowledge in this area.^ The control of scar 
formation has been most extensively studied in the type of reactive gliosis that occurs when a 
peripheral nerve is injured. Many of the studies have been performed in the facial nerve nucleus, 
where there is recruitment and activation of microglia and reactive astrocytosis after nerve 
crush. However oligodendrocyte precursors are not activated in these lesions. The control of 
glial reactivity involves a complex interplay between microglia, neurones and astrocytes with 
signals probably passing in both directions between these three cell types. The molecules in
volved include IL-6, TGFbeta, FGF-2, MCSF and other cytokines. 

The Glial Scar and Axon Regeneration 
Numerous in vivo experiments have shown that the glial scar inhibits axon regeneration. 

There is obviously a correlation between the environment in which axon regeneration fails and 
scar formation, since a scar will form where ever axons are cut. Even very small lesions, which 
are insufficient to excite an visible disruption of glial architecture can cause changes in the CNS 
environment sufficient to block axon regrowth.^ In order to show more than a correlation 
between glia scarring and inhibition of axon growth various transplant experiments have been 
performed. CNS tissue, even immature CNS tissue containing largely astrocytes and few oligo
dendrocytes blocks axon regeneration when it is transplanted to peripheral nerves, and tissue 
removed from scarred areas is very inhibitory. ̂ '̂̂ ^ Until recently the question of whether all 
CNS tissue is equally inhibitory to axon regeneration, or whether scar tissue is particularly 
inhibitory was not resolved. Two experiments from Davies and Silver show convincingly that 
the glial scar is much more inhibitory than the rest of the CNS tissue. The first experiment was 
to transplant adult sensory neurones into the corpus callosum of adult rats, using an atraumatic 
microtransplantation technique that does not usually initiate scar formation. In most animals 
there was extensive regeneration of axons from the transplanted neurones through the corpus 
callosum. However in a few cases regeneration failed, and it was in these cases that the trans
plant had been more traumatic, and had excited reactive gliosis around the transplant. In the 
second experiment adult sensory neurones were transplanted into the spinal cord and a dis
tance from a spinal cord injury. Again axons regenerated from the transplanted neurones through 
the spinal cord white matter, but growth was blocked when the axons approached the scar 
tissue surrounding the injury site. The general conclusion is that all CNS tissue is inhospi
table to axon regeneration, but glial scar tissue is much more inhibitory than undamaged tis-

Inhibitory Glial Boundaries 
In addition to the inhibition of axon regeneration by normal and damaged CNS tissue, 

there are situations where axon growth stops at places where the glial environment changes 
sharply from one type of glial cell to another; these are called glial boundaries. The most stud
ied of these boundaries is that found between peripheral nerve tissue and CNS tissue, where 
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the Schwann cell environment of peripheral nerve changes to the astrocytic environment of the 
CNS, as is seen at the dorsal root entry zone (DREZ). Axons will regenerate within the dorsal 
root following a crush, particularly if the regenerative response is increased by a concomitant 
crush of the peripheral nerve attached to the same dorsal root ganglia. However the axons stop 
precisely at the DREZ, being unable to transit from a Schwann cell environment to an astro
cyte/oligodendrocyte environment. ' A similar situation occurs when a peripheral nerve or a 
Schwann cell transplant is placed in the CNS. These transplants attract axons successfully, so 
axons experience no difficulty in passing from astrocytes to Schwann cells. However when the 
axons reach the other end of the graft most are blocked at the Schwann cell/astrocyte boundary 
that exists there. Meningeal cells also appear to have boundary-forming properties. Most 
CNS injuries become lined with invading meningeal cells within a few days. Some axons are 
able to regenerate to the interface between astrocytes and meningeal cells, but regeneration 
into the meningeal cell plug is very rarely seen. For instance in optic nerve crush lesions a 
largely astrocyte-free zone is seen at the crush site which is invaded by meningeal cells, micro
glia and oligodendrocyte precursors (OPCs). Axons can be seen that have grown to the edge 
of the astrocyte zone, but they do not penetrate into the crush lesion unless they accompany 
astrocytic processes, some of which eventually invade these injuries. 

Inhibitory Molecules in the Damaged CNS 
There are many molecules that have inhibitory activity towards axon growth in the adult 

CNS. These can be divided into three categories: (1) Molecules present in myelin produced by 
oligodendrocytes which are present in the normal and damaged CNS, (2) Molecules upregulated 
in reactive glial cells around areas of injury, which are mosdy chondroitin sulphate proteoglycans, 
(3) Axon guidance molecules which play a role in the develpment of the CNS, and which are 
also present in CNS injuries. 

Inhibitory Molecules Produced by Oligodendrocytes 
Oligodendrocytes produce several molecules which are extremely inhibitory to axon growth, 

and which play an important part in the inhibition of axon growth in the CNS. The subject of 
this review is the glial scar-related molecules, so only a brief description is given here. NogoA is 
a molecule of the reticulon family, expressed in oligodendrocytes and also some classes of neu
ron, which is inhibitory to all classes of axon except some embryonic axons. Much work has 
been done with a blocking antibody, IN-1 and more recently with other antibodies with block
ing activity. These antibodies have been shown to stimulate axon regeneration in a variety of 
lesion models in the spinal cord and elsewhere. A receptor molecule has recently been identi
fied. ' MAG is expressed in myelinating oligodendrocytes, and is also released from the cell 
surface to diffuse more widely. It is inhibitory to many types of axon, although inhibition varies 
with axonal type and age.^ A MAG knockout showed little regeneration in the CNS, dem
onstrating that other inhibitory mechanisms are able to block regeneration even in the absence 
of MAG, although the properties of MAG in vitro make it clear that it must be an important 
inhibitor of axon regeneration in vivo. Tenascin-R is a member of the tenascin family with 
axon growth inhibitory properties expressed at particularly high level in white matter, pro
duced by oligodendrocytes and oligodendrocyte precursors. Also produced by oligodendro
cytes is the CSPG versican, which is described below. 

Inhibitory Molecules Produced in the Glial Scar 
The first investigations into glial scar inhibitory molecules were performed in astrocytes, 

since they are the main component of mature scar tissue. The first in vitro experiments did not 
reveal inhibitory properties, since axons grow fairly well on monolayers of astrocytes. However 
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a glial scar is a three-dimensional tissue of tightly interwoven astroq^es, not a monolayer, and 
when astrocytes are grown as three-dimensional tissues axons grow through them very poorly. 
In order to try and identify the types of inhibitory molecules produced by astrocytes a variety 
of astrocytic cell lines were produced, some of which were inhibitory to axon regeneration, 
some of which were permissive. Comparisons between these cells showed that the ability of the 
different cell lines to support axon regeneration was mirrored closely by the growth-promoting 
properties of their extracellular matrix. Yet the matrix of even the most inhibitory lines con
tained large amounts of laminin and other growth-promoting molecules. Clearly these cells 
were producing extracellular matrix molecules with the ability to block the growth-promoting 
effects of laminin. Various lines of evidence showed that these inhibitory molecules were CSPGs, 
and that much of the inhibition due to these CSPGs could be abrogated either by digesting 
away their glycosaminoglycan chains (GAGs) with chondroitinase ABC, or by preventing the 
sulfation of the GAGs with chlorate, or by preventing the GAGs from attaching to their pro
tein cores by treatment with beta-D-xylosides. ' For one particular inhibitory astrocyte line 
the main inhibitory molecule was the CSPG NG2.^'^ That CSPGs are important inhibitory 
molecules for primary astrocyte cultures was shown by treating three-dimensional cultures 
with chlorate to block GAG sulfation, resulting in astrocytes that were much more permissive 
for axon regeneration than untreated cells. ̂ ^ 

There were also indications from in vivo work that CSPGs might be important inhibitory 
molecules in glial scars. Using an antibody, CS56, that binds to sulfated forms of the chon-
droitin sulfate (CS) GAG chain, it was shown that in many types of CNS injury CS is upregulated 
within a few days of injury, and remains increased for a month or more afterwards. Two types 
of experiment had also shown that these molecules are inhibitory. In the first, filter material 
was implanted into a CNS lesion, then removed several days later covered in scar astrocytes. 
These provided an inhibitory environment for axon growth, but when digested with 
chondroitinase the cultures were more permissive.^^' A second approach was to dissect scar 
tissue from around a CNS lesion and extract inhibitory material from it. This investigation 
showed that the inhibition produced by these extracts was sensitive to chondroitinase and 
heparitinase.^^'^ 

More recendy infusions of chondroitinase ABC to the damaged CNS have shown that 
digesting away GAG chains from CSPGs can make the glial scar less inhibitory to axon regen
eration. In the first experiment chondroitinase was infused into a knife cut lesion of the 
nigro-striatal tract. Since the turnover of matrix in the CNS is fairly slow, these injections were 
given as bolus injections on alternate days, ensuring that the enzyme was present at a high 
enough concentration to be effective. In animals treated in this way around 2000 out of a 
complement of 45,000 axons were able to regenerate back to the striatum, compared with no 
regeneration in controls. In a second set of experiments chondroitinase ABC has been in
fused into lesions of the dorsal columns of the rat spinal cord at level C4. These animals have 
shown regeneration of both sensory and corticospinal axons, with return of postsynaptic po
tentials resulting from cortical stimulation below the level of the lesion. The animals were 
assessed behaviourally, and showed a dramatic and rapid return of almost normal function in 
beam and grid walking tasks, but no improvement in a pure sensory task that would require 
axons to regrow back to the dorsal column nuclei. ̂ ^ 

When astrocytes participate in the glial scar they greatly upregulate two cytoskeletal pro
teins, GFAP and vimentin. There has always, therefore, been an question as to whether this 
process is responsible for some of the inhibition seen in the glial scar. This has recently been 
tested in animals in which the GFAP and vimentin genes have been knocked out. Animals with 
a GFAP knockout showed increased axon regeneration after spinal cord injuries, but there was 
no effect after vimentin knockout. 
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Individual CSPGs 

Neurocan 
Neurocan belongs to the family of lecticans, which also includes versican, brevican and 

aggecan. These molecules are all secreted molecules, which have a hyaluronate-binding motif. 
In the adult CNS much of the neurocan is in a processed form, in which the molecule is 
cleaved by proteolytic action into an N and C terminal fragment, known as neurocan N and 
neurocan C. When the CNS is extracted into detergent-free saline much of the intact neurocan 
and neurocan C is removed, indicating that they are not attached to the cell surface. However 
a proportion of the intact neurocan and about half the neurocan N can only be extracted if the 
brain homogenate is treated with hyaluronidase, indicating that this neurocan is 
hyaluronate-bound. When production of neurocan is investigated in purified glial cell popu
lations in vitro it is produced by astrocytes and by OPCs, but not by mature oligodendrocytes. 
Neurocan is greatly upregulated following CNS damage. Immunostaining of normal brain 
showns neurocan to be present in white matter and at the glia limitans and also in perineuronal 
nets around many neurones. After cortical damage intense immunoreactivity is seen in grey 
and white matter surrounding the lesion. Western blots show that much of this upregulation is 
of the intact form of neurocan. ' When proteoglycans are run on western blots they are 
generally present as a long difRise smear rather than as a single discrete band. This is because of 
the variable quantity of GAG attached to the molecules, giving a range of molecular weights. 
However if the extract is treated with chondroitinase the GAGs are removed and the core 
protein runs as a single band. From this the amount of GAG (glycanation) can be estimated. 
Estimates of this type for neurocan show that glycantion is increased following CNS injury, 
each neurocan molecule carrying more GAG. Neurocan is inhibitory for axon growth: in a 
stripe assay in which stripes of LI alternated with LI plus neurocan axons from cerebellum 
chose to grow on the neurocan-free stripes. Neurocan has been shown to interact with N-CAM, 
Ng-CAM/Ll, TAG-l/ axonin-l, and tenascin, and to inhibit axon growth mediated by Ng-CAM/ 
Ll. ' The difference in inhibitory properties between monolayers and three-dimensonal cul
tures of astrocytes is probably due to the way in which neurocan associates with astrocytes. In 
monolayer culture neurocan does not associate with the astrocyte surface, although it sticks to 
the dish surrounding the cells. Thus in astrocyte monolayers most of the neurocan is secreted 
into the medium, is diluted away and therefore is unable to inhibit axon growth on the astro
cyte surface. In three-dimensional cultures, however, the neurocan cannot diffuse away and is 
trapped in between the cells. It is therefore present at high concentration in the environment in 
which the axons are attempting to grow, and can therefore block axon regeneration. Neurocan 
production by astrocytes is upregulated by TGFalpha, TGFbeta and FGF-2. 

Versican 
Versican can exist in four splice variants. The major form in the normal CNS is the small

est form, V2. ^ In purified glial cultures versican is not produced by astrocytes, but the V2 
form is produced in a differentiation-related fashion by cells of the OP lineage. ' ^ Undiffer
entiated bipolar OPCs do not make versican, but mulitpolar precusors and pre-oligodendrocytes 
do. There is less production by fully mature oligodendrocytes with myelin-like sheets. Versican 
is also made by meningeal cells in vitro, but these cells produce the larger VO and VI forms of 
the molecule. Extracting versican with saline, and following hyaluronidase digestion showns 
that about half the versican in the brain is bound to hyaluronate, about half is in a form which 
can be extracted by detergent-free saline. The versican from brain appears to be less glycanated 
than neurocan, since even without chondroitinase treatment it runs on western blots as a single 
band. However this band shifts slightly after chondroitinase digestion showing that there is 
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some glycanation. Versican produced in vitro, however, is much more glycanated, and much of 
it will not enter a gel unless chondroitinase is used. In the normal brain versican is present in 
the white matter, and after injury it is upregulated in and around the injury in white and grey 
matter. This upregulation is presumably due to production by the OPCs that are recruited in 
large numbers to CNS injuries, although the secreted versican diffuses too readily to be identi
fied around individual OPCs in immunostains. Versican has been shown to be inhibitory to 
axon growth in stripe and other assays. ' In addition medium conditioned by oligodendro
cyte cultures has large amounts of versican and brevican in it, and is inhibitory to axon growth. 
When the medium is depleted of versican it is less inhibitory. Versican production by OPCs 
in culture is increased by TGFbeta, II-1 and CNTF. ^ 

Brevican 
Brevican is the smallest of the lecticans found in the CNS. It can be produced by astro

cytes, is upregulated following injury and has axon growth inhibitory properties. ' 

NG2 
NG2 is produced as a membrane spanning molecule. It is a part time proteoglycan in that 

it can be produced both with and without GAG chains attached. NG2 can be cleaved from the 
cell surface by the action of an unidentified metalloproteinase, so that in the normal CNS 
around half of the NG2 is membrane associated, and half can be extracted without the use of 
detergents.^^ In the CNS NG2 is seen on three types of cell, oligodendrocyte precursors, vascu
lar endothelial cells and meningeal cells, and these cell types also produce NG2 in vitro. NG2 
positive OPCs are present throughout the CNS in both grey and white matter, where they may 
contact nodes of Ranvier and synapses. After CNS injury there is rapid proUferation of OPCs 
within 2mm of the injury site, and the OPCs hypertrophy and gready increase the around of 
NG2 on the cell surface. Western blot analysis shows a large increase in levels of NG2 after 
injury, starting at 24 hours and peaking around 7 days, after which levels decline over the 
following two or three weeks.^^ Comparisons between chondroitinase digested and undigested 
lanes show that the glycanation of NG2 is increased after injury. NG2 is strongly inhibitory to 
axon regeneration, and a blocking antibody to NG2 has been shown to promote axon growth 
on an inhibitory astrocyte cell line that produces large amounts of the proteoglycan (32). NG2 
has other functions. It associates with the PDGFalpha receptor and acts as a necessary cofactor 
to its ability to transduce effects from this growth factor. '̂  Since a large proportion of the 
NG2 in the CNS is in the released form, it is possible that there is some functional competition 
between released and cell surface NG2, but this issue has not yet been addressed experimen
tally. 

Phosphacan 
Phosphacan and its mouse homologue DSD-1 belong to a family of alternatively spliced 

molecules. Phosphacan, which is a secreted molecule, is the extracellular domain of the recep
tor tyrosine phosphatase RPTPbeta/zeta. RPTPbeta/zeta itself is found in two forms, a short 
receptor form and the full length form. In vitro phosphacan is expressed by astrocytes and by 
OPCs. Both cell types also make RPTPbeta/zeta, with OPCs making predominantly the short 
receptor form. -̂ '̂ '̂̂ ^ Phosphacan is inhibitory to some axons, but promotes growth in oth-
ers.^ '̂5^ 

Glycanation ofCSPGs 
Various experiments described above demonstrate that the inhibitory properties of CSPGs 

are partly dependent on the sulphated GAGs attached to the protein cores. The biology of this 
form of inhibition is not established. To some extent the inhibitory properties of CSPGs can be 
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reproduced by GAGs by diemselves, if presented at high concentration.^^ However in general 
the GAGs and proteoglycan core proteins must be attached to one another for them to show 
their normal inhibitory properties. Exacdy how the inhibition works is not established. Many 
of the CSPG core proteins bind to other matrix molecules such as laminin and tenascin, or to 
cell surface adhesion molecules such as LI. It seems probable that if the highly charged sul
fated GAGs are localised to a region of a protein by the binding of the CSPG protein core, 
there might be masking of epitopes that promote axon growth, or a change in the tertiary 
structure of the protein sufficient to alter its function. Some experiments have examined whether 
the position in which the GAGs are sulfated affects their inhibitory function. These experi
ments suggest that the 6-sulfated GAGs are particularly inhibitory, while GAGs sulfated in the 
6 position and the 2 position on the glucuronic acids are more permissive to axon growth. 

We have examined glycanation of NG2, neurocan and versican in the normal and injured 
brain. This can be done on western blots by comparing lanes in which the extract has or has not 
been digested with chondroitinase ABC. In undigested lanes GAGs of various lengths cause 
the CSPGs to run as a smear, which resolves to a single band after digestion. Densitomitry of 
the smear region gives an estimate of glycanation. These studies show that for NG2 and nemrocan 
both core protein and the extent of glycanation are increased following cortical injury. Versican, 
however, is less glycanated in vivo than the other two CSPGs, and this does not change gready 
after injury. When CSPGs from glia grown in vitro are examined in the same way, the degree of 
glycanation is greater than is seen in vivo, particularly for versican which is so highly glycanated 
when produced by oligodendrocyte line^e cells in vitro that it will not enter a gel at all unless 
digested widi chondroidnase ABC.̂ '̂̂ '̂̂ '̂̂ ^ 

Chondroitin Sulphate Proteoglycans and Regeneration in the CNS 
Since CSPGs are expressed in large amounts in CNS injuries, and since most of them are 

inhibitory to axon growth they must play some part in blocking axon regeneration after injury. 
Some of the evidence that injury-related CSPGs are a significant factor in CNS regeneration is 
discussed above. The most direct evidence are the experiments in which the enzyme 
chondroitinase has been infused into brain and spinal cord injuries, also described above. 

If CSPGs are inhibitory to axon regeneration, what strategies might be used to counteract 
their effects and so promote regeneration after CNS injury? The first consideration in planning 
a strategy is to decide where CSPGs exert their effect. The molecules are expressed to some 
extent in the normal CNS, particularly in white matter, but are upregulated with an increase in 
their glycanation around injuries. If the molecules only have to be counteracted in the imme
diate vicinity of an injury, the task will be easier than trying to clear inhibition from the whole 
region where axon regeneration is needed. There is litde evidence on this issue. Three experi
ments from Davies and Raisman and Davies and Silver, mentioned previously, suggest that 
inhibition due to CSPGs is much greater around injuries than in normal CNS.^' '̂ ^ The first 
experiment examined axon regeneration after very small lesions in the spinal cord which did 
not disturb glial architecture: following this cut axons sprouted away from the lesion through 
undamaged tissue but not through it, suggesting that only the lesion area is very inhibitory. 
The second and third experiments were to transplant adult sensory neurones into the rat CNS 
using an atraumatic technique. Axon growth from these transplants was only blocked where 
they encountered glial scar tissue, with high levels of CSPG. The conclusion is that normal 
CNS is probably moderately inhibitory to axon growth, but scar tissue is highly inhibitory. If 
axons can be enabled to pass through the scar area they therefore stand a chance of being able 
to regenerate on through the undamaged tissue. What treatment might be applied? The prob
lem is that there are many CSPGs in the injured CNS, all of them inhibitory. It will be difficult 
to design treatments for each CSPG individually. However all CSPGs possess GAG chains, 
and much of their inhibitory activity relies on them, making them an attractive therapeutic 
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target. Moreover the experiments in which chondroitinase has been infused into the CNS to 
remove GAG chains have been successful in promoting regeneration. In principal inhibition of 
GAG synthesis would be a good way of preventing the buildup of inhibition in CNS injuries. 
However at present on sodium chlorate and beta-D-xylosides are able to do this, and both 
promote axon regeneration in in vitro models, but there are problems with both these agents. 

Glial Boundaries in the CNS 
The inhibitory mechanisms due to CSPGs and myelin-related molecules can be called 

surround inhibition, since the inhibitory molecules are diffusely expressed within the glial scar. 
There are places where axons meet boundaries between different glial cell types, and at some of 
these boundaries axon growth is stopped abrupdy. For CNS repair two types of boundary are 
significant, Schwann cell/astrocyte and astrocyte/meningeal cell boundaries. 

Schwann CelVAstrocyte Boundaries 
Boundaries between Schwann cells and astrocytes occur wherever peripheral nerves con

tact the CNS, for instance at the dorsal and ventral roots. Schwann cells and astrocytes show no 
ability to mix, leading to sharp boundaries between the cell types and dorsal root and ventral 
root entry zones.^^' The form of myelination changes at these entry zones, so that motor 
and sensory axons as they enter or leave the CNS have a node of Ranvier with an oligodendro
cyte on one side, a Schwann cell on the other. If motor axons are damaged within the spinal 
cord, they can usually regenerate out of the CNS across the ventral root entry zone and into 
peripheral nerve, indicating that these axons can cross from astrocytes onto Schwann cells. 
However if the dorsal root is crushed the axons will regenerate back towards the spinal cord, 
particularly if the peripheral nerve is crushed at the same time to increase the vigour of regen
eration, but when the axons encounter astrocytes at the dorsal root entry zone their growth is 
blocked. ̂ '̂ The stopped axon growth cones undergo morphological changes that indicate 
that the axon has received a stop signal as if it has reached an appropriate target. ' These 
axons are unable, therefore to cross from Schwann cells to astrocytes. Similar boundary behaviours 
are seen when a peripheral nerve or Schwann cells are transplanted into the CNS in an attempt 
to bridge across an injury. Many types of CNS axons will grow into these grafts quite readily, 
indicating that they can cross from astrocytes to Schwann cells. However when axons attempt 
to leave the grafts back into an astrocytic environment their growth is blocked, as they are 
unable to cross from a Schwann cell environment back into an astrocytic one. ' ' 

Just as Schwann cells and astrocytes seldom mix in vivo, so they mix poorly in vitro. 
Therefore when Schwann cells and astrocytes are placed together in the same cultures they 
tend to separate out into separate patches. This makes it possible to examine the ability of 
axons to grow across boundaries between Schwann cells and astrocytes in vitro. We have exam
ined the growth of sensory axons in such cultures. Their behaviour is very similar to that seen 
in vivo. Where axons growing on astrocytes encounter a patch of Schwann cells almost all of 
them will cross onto the Schwann cells. However when axons growing on Schwann cells en
counter a boundary with astrocytes only between 10% and 30% are able to cross. One of the 
reasons why axons do not like to leave a Schwann cell environment for an astrocyte one may 
involve the adhesion molecule LI, a potent promoter of axon growth that is present on Schwann 
cells but not astrocytes. Thus when exogenous LI in the form of Ll-Fc is applied to the cul
tures, or when LI is blocked by a functional blocking antibody the proportion of axons able to 
cross boundaries onto astrocytes is gready increased. We were not able to find evidence of 
inhibition by astrocyte-produced CSPGs as a factor in preventing boundary crossing, probably 
because the main astrocyte CSPG, neurocan, is not attaced to the astrocyte cell surface but 
released into the culture medium. The recognition of Schwann cell astrocyte boundaries that 
leads to the blockage of growth appears to involve a signalling pathway that has been shown to 
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affect growth in other models. cAMP levels in the growth cone has been shown to have a strong 
eflFect on the ability of axons to grow on inhibitory molecules such as MAG. We find that 
raising cAMP levels in axons allows more of them to cross from Schwann cells onto astrocytes. 
Developmental changes are also significant. Axons growing from embryonic sensory neurones 
or embryonic retina can cross from Schwann cells to astrocytes in much larger numbers than 
axons from postnatal neurones (Adcock, Shewan, Czvitkovich, Fasvcett unpublished results). 

Boundary crossing behaviour has also been studied in a different in vitro model, using 
frozen sections of the dorsal root entry zones a the culture surface. The behaviour of axons in 
this model is similar to that seen in vivo, and to that seen in the culture model described above. 
Axons cross readily from the CNS to peripheral nerve, but not in the other direction. Develop
mental age has a critical influence. Thus when the substrate is taken from embryonic spinal 
cord the boundary is crossed by many more axons, and embryonic axons can cross adult bound
aries. Calcium signalling plays a part in axonal behaviour at these boundaries, since blocking 
calcium release from internal stores with dantrolene increases the number of axons crossing 
dorsal root boundaries.^^'^^ 

Astrocyte/Meningeal Cell Boundaries 
Meningeal cells are specialised fibroblast-like cells that surround the CNS and its major 

blood vessels, and are responsible for co-operating with astrocytes in the setting up of the glia 
limitans.'̂ '̂̂ '̂  This is a layer of hypertrophic astrocyte processes running parallel to the surface 
of the brain and spinal cord, with a layer of basal lamina on top in between the astrocytes and 
meningeal cells. Following CNS injuries, particularly those that penetrate the meninges, the 
meningeal cells divide, and migrate into the injury cavity. Within a few days they line the entire 
injury cavity, and if the injury has reduced the density of astrocytes and created space within 
the tissue meningeal cells may invade more diffusely.̂ '̂̂  As the invading meningeal cells come 
into contact with astrocytes, they induce the same changes that are seen at the glia limitans. 
This leads eventually to the formation of a new glia limitans and often more general reactive 
astrocytic changes. Just as axons do not grow out of the brain or spinal cord through the normal 
glia limitans, the new glia limitans that forms after CNS injury appears to present a barrier to 
regenerating axons. In various regeneration studies axons can be seen to have approached the 
astrocyte-meningeal cell boundary and stopped at that point.'^ ' For instance Beattie et al̂  
have reported that corticospinal axons retract from the injury site after spinal cord injury, but 
will then show some regenerative growth leading them to the meningeal boundary, where they 
stop. Davies and Silver performed transplants of adult sensory axons into the injured spinal 
cord, placed so that axons would grow through the dorsal columns until they encounter the 
injury. When the transplants were performed some time after the cord injury the CSPG reac
tion had abated sufficiendy that a proportion of the axons were able to penetrate the glial scar 
tissue to reach the meningeal boundary, and there they stopped. In all the experiments in 
which regeneration has been induced in the spinal cord, by blocking NogoA, chondroitinase 
and other treatments, the regenerating axons have gone around the meningeal boundary, not 
through it. However, by inhibiting the buildup of collagen and extracellular matrix in the 
injury it has been possible to induce axon regeneration across the injury site.̂ '̂'̂ ^ 

We have been able to model axon behaviour at astrocyte/meningeal cell boundaries in 
vitro. As with Schwann cells and astrocytes, meningeal cells and astrocytes separate out in vitro 
into separate territories, the result being islands of meningeal cells in a lawn of astrocytes. We 
have plated sensory and other neuronal types onto these cultures to observe their behaviour at 
boundaries. Axons will grow on both astrocytes and meningeal cells, although axons growing 
on meningeal cells tend to be fasciculated and tortuous. When axons growing on meningeal 
cells reach a boundary of astrocytes around 90% will cross, with the remainder following around 
the interface between the cell types. However, when axons growing on astrocytes meet meningeal 
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cells only 15-30% will cross, many of the axons turning to follow the interface between the cell 
types/^ Why are meningeal cells inhibitory? In principle this could be because they express 
inhibitory molecules, or because they lack the growth-promoting molecules present on astro
cytes. Meningeal cells express at least three inhibitory molecules; the CSPGs NG2 and versican, 
and the axon guidance molecule Semaphorin 3A/ coUapsinl. We have applied blocking anti
bodies to both NG2 and to the semaphorin receptors plexin 1 and plexin 2, and we find that 
the NG2 and plexin 2 antibodies both ncrease the number of axons that can cross onto meningeal 
cells from arond 20 to around 40%. There is no specific way of blocking inhibition due to 
versican. The main growth-promting molecule that is present on astrocytes but absent on 
meningeal cells is N-Cadherin, but we find that blocking this molecule with HAV peptides 
does not enhance boundary crossing onto meningeal cells. As with Schwann cell/astrocyte 
boundaries, it is possible to promote boundary crossing by manipulating growth cone signal
ling. Thus increasing cAMP levels and blocking the GTPase Rho both increase the number of 
axons crossing boundaries.'^^'^^ 

Glial Boundaries and Repairing the CNS 
To date the only treatment designed specifically to deal with glial boundaries is the inhibi

tion of collagen synthesis in the lesion, which has succeeded in promoting some regenera
tion.'̂ '̂̂ ^ In addition two of the treatments that affect axonal boundary crossing as well as 
growth on inhibitory substrates, namely increasing cAMP levels and blocking Rho have been 
applied. The Rho ribosylating toxin, C3 from Clostridium bottdinum, has been applied to 
optic nerve and spinal cord injuries. In both cases axon regeneration was promo ted. ̂ '̂̂ ^ In the 
optic nerve experiments it is likely that the axons encountered a meningeal boundary, since 
these cells invade optic nerve crushes within 24 hours, and the crushed axons retracted from 
the injury and probably did not grow through it for at least 24 hours after crush. There has only 
been one experiment to manipulate cAMP levels in vivo, by injecting it direcdy into dorsal 
root ganglia. This promoted some regeneration in the spinal cord, although it is not clear that 
any glial boundaries were involved. However the actions of neurotrophins are at least in part 
though cAMP, and these molecules do promote boundary crossing. Many experiments have 
attempted to promote axon growth across the Schwann cell/astrocyte boundary of the dorsal 
root entry zone. The most successful techniques have used neurotrophns. NT3 infiised into 
the region of the entry zone allowed many axons to cross the boundary into the CNS. ' 
Neurotrophins have also been expressed in the cord by adenoviral infection, and NGF and 
FGF-2 have attracted axons across the boundary.^^'^ The technique has been used with a 
degree of success to attract axons out of Schwann cell grafts to the spinal cord back into cord 
tissue. An infusion of BDNF and NT-3 allowed a modest number of axons to grow across the 
boundary. 

Strategies for Repairing tlie CNS 
The events that remodel the CNS glial environment after injury are complex, leading to a 

terrain with several types of inhibitory obstacle. It would be daunting to devise a treatment that 
modifies all these inhibitory mechanisms simultaneously. However, it may not be necessary to 
deal with every inhibitory molecule. Axon growth cones integrate together all the various sig
nals that they receive both growth promoting and growth inhibitory. In principle, therefore, 
axon regeneration could be achieved by increasing the amount of growth promoting activity or 
by reducing the amount of inhibition. Various different treatments to block inhibition in the 
damaged CNS have been applied, particularly anti NogoA antibodies, chondroitinase 
and demyelination all promote growth to a comparable degree. It will be important to find 
out whether these treatments have additive effects, or whether axon growth is the same once a 
certain level of permissiveness in the environment has been achieved. The issue of whether 
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treatments are additive also applies to the other ways in which axon growth can be promoted, 
by manipulating signalling pathways and with neurotrophins. If all these treatments converge 
on the same growth cone mechanisms it is unlikely that they will be additive. All the treatments 
that have been identified to date are able to promote growth of a fairly modest number of axons 
over distances of 1-2 cm. This is just at the margin of what would be useful to a spinal injury 
patient, where bringing the effective level of an injury down by even one spinal level would be 
of great benefit to patients with cervical level injuries. However, achieving robust growth of 
large numbers of axons over long distances is still an elusive aim. It is likely that there are axon 
growth control mechanisms that are yet to be discovered which we will need to manipulate to 
achieve this aim. 
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Summary 

I nteractions between neurons and glial cells play important roles in regulating key events of 
development and regeneration of the CNS. Thus, migrating neurons are partly guided by 
radial glia to their target, and glial scaffolds direct the growth and directional choice of 

advancing axons, e.g., at the midline. In the adult, reactive astrocytes and myelin components 
play a pivotal role in the inhibition of regeneration. The past years have shown that astrocytic 
functions are mediated on the molecular level by extracellular matrix components, which in
clude various glycoproteins and proteoglycans. One important, developmentally regulated chon-
droitin sulfate proteoglycan is DSD-1-PG/phosphacan, a glial derived proteoglycan which rep
resents a splice variant of the receptor protein tyrosine phosphatase (RPTP)-beta (also known 
as PTP-zeta). Current evidence suggests that this proteoglycan influences axon growth in de
velopment and regeneration, displaying inhibitory or stimulatory effects dependent on the 
mode of presentation, and the neuronal lineage. These effects seem to be mediated by neuronal 
receptors of the Ig-CAM superfamily. 

General Introduction 

The Extracellular Matrix in Neural Development and Regeneration 
The development of the central nervous system (CNS) evolves as a series of specifiable, 

separate morphogenetic steps which include cell proliferation, migration of neuronal precur
sors to their respective locations, differentiation of neurons, process extension, axon outgrowth, 
guidance, synaptogenesis and, finally, selective neuronal death due to limiting amounts of growth 
factors, for review). 

Brain Repair^ edited by Mathias Bahr. ©2006 Eurekah.com 
and Kluwer Academic / Plenum Publishers. 



26 Brain Repair 

In all of these events, interactions of the cell with its environment play an important 
regulatory role. Cells can interact both directly with other cell surfaces or with the complex of 
secreted proteins and carbohydrate polymers which make up the extracellular matrix (ECM). 

Cell-cell interactions are mediated by molecules such as the IgCAM-superfamily,'^'^ the 
cadherins, and the Eph-tyrosine kinases and their ephrin-A and ephrin-B ligands, ' which 
are implicated in mechanisms such as the regulation of axon growth by fasciculation (N-CAM) 
or the establishment of functional boundaries within the tissue (interrhombomeric boundary, 
ephrin).^ 

Many potentially important interactions also occur within between cells and the neural 
extracellular matrix (ECM). Although the organization of the ECM in the vertebrate CNS is 
not well understood it can be considered as a complex and dynamic association of extracellular 
molecules that is relatively rich in chondroitin sulphate proteoglycans (CSPGs) and hyaluronan, 
but poor in fibrous elements (reviewed in ref. 10). 

ECM molecules are thought to contribute to the regulation of CNS histogenesis by a 
variety of functional properties. Thus, the ECM has been implicated in the control of cellular 
migration, the storage of soluble growth factors, the promotion of neurite outgrowth, or the 
inhibition of neuritogenesis by the formation of tissue boundaries. 

Cell interactions with the ECM are mediated by receptors such as the growing family of 
integrin heterodimers '̂ '̂  and proteins from the Ig-CAM family. ̂ ^ 

CSPGs in the ECM 
Chondroitin sulfate proteoglycans (CSPGs), a heterogeneous set of proteins bearing gly-

cosaminoglycans (GAGs) of the chondroitin sulfate (CS) class, account for most of the "soluble" 
proteoglycans in the brain. Tissue fractionation studies performed with rat brain have re
vealed that whereas most heparan sulfate proteoglycans are tightly associated with cell mem
branes, the CSPGs, which constitute the major population of proteoglycans (PGs) in the CNS, 
are recovered in detergent-free salt extracts.^^'^ It is known that soluble CSPG preparations 
from postnatal rat brain contain at least eight core glycoproteins which are differentially ex
pressed during rat CNS development.^^ 

ECM Proteins Control Axon Growth by Promoting and Inhibiting 
During development, axon growth and growth cone guidance are regulated by numerous 

proteins of the ECM^^ including the semaphorin gene family and their receptors, and the 
Nogo proteins.̂ " '̂̂ ^ These proteins are expressed in differents parts of the CNS and their ex
pression is regulated during time. Depending on the cell type with which they interact, they 
can exert promotory or inhibitory effects, and display attractive or repulsive properties. 

The CSPGs are also ECM molecules involved in the regulation of axon growth as has 
been demonstrated by in vitro studies on CSPGs such as NG2, neurocan and phosphacan. 
By virtue of inhibitory or stimulatory influences on neurite growth, CSPGs could be involved 
in the regulation of sprouting, as has been proposed for CAT 301. 

CSPGs Are Present in Functional Boundaries in the CNS 
During development, strong immunostaining for CS often localizes to territories thought 

to act as barriers to migrating neurons or extending axons such as the roof plate and midline 
dorsal tectum,^^'^ the posterior sclerotome, '̂̂ '̂ ^ the glomeruli of the olfactory bulb,^^' the 
somatosensory barrel field and the dorsal root entry zone and dorsal columns in the spinal 
cord. '̂ Thus, the CSPGs could contribute to the regulation of the establishement of axonal 
highways by its spatial distribution in boundaries associated with its neurite outgrowth inhibi
tory properties. These boundaries seem to share common properties with the glial scar, that is, 
the expression of CSPGs and tenascin-C at lesion sites is associated with inhibition of axonal 
regrowth, as has also been proposed for the dorsal root entry zone. 
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ECM Proteins Expressed during Development Are Also Upregulated 
in Lesions: Upregulated CSPGs Could Inhibit Regeneration in Lesions 

Most of the expression of the proteoglycans occurs during the embryonic and postnatal 
period and decreases to a low basal level of expression in the adult. Interestingly, it has been 
shown that the expression of these CSPGs is upregulated at sites of damage to the CNS. For 
example, NG2, ^ neurocan, ^'^^ decorin,^^ versican, and brevican '̂  are all upregulated in 
lesions. It is meanwhile well established that the inability of the CNS to regenerate is at least in 
part due to inhibitory factors released by glial cells into the lesion environment.^^'^^ The astro
cytes react to lesion of the CNS to form a gliotic scar. ' These reactive astrocytes and the 
ECM that they produce have been shown to inhibit neurite outgrowth in vitro ' and in 
vivo. '̂ ' The demonstration that CSPGs can modulate neurite outgrowth in in vitro studies 
has led to the suggestion that the CSPGs may be contributing to the failure of axonal regenera
tion in lesions. 

Numerous studies have emphasized that the reactive astrocytes up-regulate their expres
sion of CSPGs and keratan sulfate epitopes, and have shown that these components are suffi
cient to override the beneficial influence of laminin-1, thus impeding the axon growth pro
cess. ' ''^^ It has recently been proposed that neurons implanted by a non-traumatic technique 
into the corpus callosum are able to regenerate long fibers in the presence of intact myelin, 
provided that the fibers can "escape" from the environment of a ring of tenascin-C and 
CSPG-expressing reactive astrocytes which emerge around the implantation site.'̂ '̂ '̂ ^ In recent 
in vivo experiments, treatment of the tissue with the enzyme, chondroitinase ABC, which 
cleaves CS-glycosaminoglycan chains, leads to a substantial regrowth of axons through the 
lesion.̂ ^-^^ 

Using Cell Lines and Dissecting the Reactive Astrocyte: 
Confirmation of a Rolefiir CSPGs 

These results have strongly stimulated further investigations into the molecular identity of 
the CSPGs expressed by reactive astrocytes. An astrocytic cell line selected for its properties 
similar to those of reactive astrocytes has been shown to express CSPGs.^^ In another study, 
using a cell line model system of reactive astrocytes, it could be shown that inhibitory activities 
are associated with the proteoglycan fraction and that these are sensitive to the digestion of 
GAGs and the blocking of sulfation of polymeric sugars.^^'^^ The CSPG, NG2, was identified 
as one important component in the inhibitory pathway.^ NG2 is expressed by a subclass of 
glial cells, up-regulated in lesions, and inhibits neurite outgrowth in several in vitro as-
says.̂ «'̂ '̂« -̂«^ 

DSD-1-PG/Phosphacan/RPTPbeta 

Introduction 
Thus, proteoglycans have attracted increasing attention because recent investigations sug

gest that this biochemically heterogeneous group of molecules is functionally significant both 
during development and regeneration of neural structures. ' Among them, phosphacan/ 
RPTPbeta has been shown to be expressed during the embryonic and postnatal period where it 
could, according to various in vitro studies, play a role in the regulation of axon growth,^^ cell 
migration^ ̂  and myelination.^^ The expression of this molecule is regulated in the site of lesion 
in the adult central nervous system ^ (Dobbertin et al, in preparation). Hence, these CSPGs 
could be playing a critical role in the regulation of axonal regeneration. 
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Figure 1. The structure of the phosphacan/RPTP-beta isoforms. The symbols are as indicated in the text. 
The phosphacan isoform misses the transmembrane domain and is released into the cellular environment. 

Structure and Expression o/DSD-l-PG/Phosphacan, a Splice Variant 
ofRPTP'Beta, and Related Isoforms 

Previously, it has been shown that DSD-1-PG/phosphacan, one of the more abundant of 
the soluble CSPGs in the postnatal mouse brain, is the mouse homologue of the rat CSPG, 
phosphacan,^^'^^ which closely resembles the cytotactin-binding-proteoglycan CTBP. ^^'^^ The 
GAG-composition of DSD-1-PG/phosphacan is characterised by CS-A and a preponderance 
of CS-C chains. In addition, the CS-D-dependent DSD-1-epitope has been identified with 
the help of the MAb 4 7 3 H D , and a keratan sulfate moiety has been detected with the MAb 
3 H 1 which is expressed at least by a subclass of the DSD-1-PG/phosphacan molecides.^^'^^' 
As shown in Figure 1, the secreted proteoglycan, DSD-1-PG/phosphacan, is the product of a 
splice variant of the transmembrane receptor protein tyrosine phosphatase, RPTP-beta, and it 
corresponds to the entire extracellular region of the largest isoform of RPTP-beta, which is also 
heavily glycosylated with chondroitin sulphate glycosaminoglycan chains (CS GAGs).^^'^^^ In 
the short RPTP-beta isoform, there is a deletion of 850 amino acids between the S domain and 
the transmembrane domain, corresponding to the GAG attachment sites.^^'^^^ The expression 
profile of DSD-1-PG/phosphacan matches that reported for rat phosphacan, with a rapid 
increase in its concentration during the late embryonic and early postnatal period, the levels 
remaining high in adult brain. ̂ "̂̂  Recently, evidence has been obtained for the existence of a 
novel isoform of RPTP-beta, corresponding to the N-terminal 600 residues of the extracellular 
domain common to the three known isoforms of this protein. The novel cDNA transcript was 
isolated by expression screening of a mouse brain c D N A library using a polyclonal antibody 
raised against the DSD-1-PG/phosphacan isoform, with which the other isoforms of RPTP-beta 
had been previously cloned^^ (Garwood et al, submitted). Data collected in amphibians open 
the possibility that an even wider range of isoforms exists. ̂ ^̂  Whether this is also true for the 
mammalian nervous system remains to be seen. 
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The spatiotemporal expression pattern of the RPTP-beta isoforms during the develop
ment, maintenance and pathology of the CNS has been correlated with a range of develop
mental processes which involve cell-cell and cell-ECM signalling, including cellular prolifera
tion, migration, differentiation, circuit formation, synaptogenesis, synaptic function and tissue 
regeneration,^ '̂ ^̂  reviewed in reference 106. Based on the essentially glial expression of 
DSD-1-PG/phosphacan/RPTP-beta, the effects on neuronal behaviour of extracellular signals 
presented by RPTP-beta have been considered, whether as protein sequences/domains or asso
ciated with the extensive carbohydrate molecules, especially CS-GAG chains, with which they 
are modified. 

The systematic study of primary cerebellar cultures of distinct developmental stages showed 
that DSD-1-PG/phosphacan is surface-expressed on a subclass of immature glial cells. Analysis 
by immunoprecipitation of biosynthetically labelled primary cultures and cell lines and by 
biochemical techniques such as ion exchange and size-exclusion chromatography supports the 
conclusion that the proteoglycan synthesized in vitro corresponds to the molecule obtained 
from postnatal mouse brain. In particular, at later stages, and in secondary cultures enriched 
for astrocytes, a substantial overlap of DSD-1-PG/phosphacan with 04-positive and Ol-negative 
oligodendrocytes was found.̂ '̂̂ ^ '̂̂ ^^ In mixed glial cell cultures from neonatal rat, antibodies 
directed against DSD-1-PG/phosphacan stained bipolar precursors and more mature oligo
dendrocytes, presumably 04-positive (Heck N, Perrault M, Faissner A, unpublished observa
tions) (Fig. 2). With regard to lineage-related restriction of expression, the large RPTP-beta 
and the released form, DSD-1-PG/phosphacan, seem to be strongly expressed by oligodendro
cyte precursors. By comparison, mature astrocytes preferentially express the short 
RPTP-beta.^^^'^^^ Glial precursor cells, radial glia, Golgi cells, and astrocytes from different 
developmental stages and parts of the CNS have all been shown to express RPTP-beta 
isoforms;°«'i'» 

Studies of the distribution of both the phosphacan mRNA^^^ and of the expressed pro
tein^ ̂ ^ show the phosphacan mRNA at E13-E16 largely confined to areas of active cell prolif
eration such as the ventricular zone of the brain and the ependymal layer surrounding the 
central canal of the spinal cord. Also, although the mRNA is mostly in the neuroepithelium of 
the embryonic brain and spinal cord, the protein is widely distributed in these tissues, presum
ably as a consequence of transport in or along glial processes, local secretion and/or redistribu
tion as a consequence of cell migration.^^ '̂̂ ^^ In P7 mouse cerebellum, DSD-1-PG/phosphacan 
staining is strongest in the prospective white matter and is also present in the granule layer and 
molecular layers, whereas the external granule layer is unstained, with the exception of the 
Bergmann glia fibres (Garwood J, Heck N, Faissner A, unpublished observations) (Fig. 3), 
matching a similar distribution of phosphacan in P7 rat cerebellum.^ ̂ ^ The distribution of 
DSD-1-PG/phosphacan during development corresponds to regions implicated in the forma
tion of axonal trajectories. In this respect, it might play either a neurite promoting role as in the 
interrhomberic boundaries in chick,^^^ or an inhibitory role which would correspond to its 
presence in glial barrel field boundaries in the developing somatosensory cortex of mouse. '̂ 

In the adult rat brain, it has been shown that DSD-1-PG/phosphacan occurs in the cir
cumference of a selected subpopulation of neurons which expressed the calcium-binding pro
tein, parvalbumin, occupying the extracellular space in close vicinity to the cell body, sur
rounding axon terminals and glial end feet, but not the synaptic clefts. It has been suggested 
that CSPGs associate with hyaluronic acid in such perineuronal nets or pericellular matrices to 
form a neuronal ECM structure analogous to that found in connective tissue.^^ '̂ ^̂  Different 
neuronal subsets have different complements of CSPGs^ such that perineuronal CSPGs could 
regulate the extracellular milieu of neurons in cell type-specific ways (see Fig. 4A). For example, 
late in development, the mature ECM may be an important element in limiting synaptic plastic
ity. ' Another intriguing expression in the adult brain has been observed around the 
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Figure 2. Expression of phosphacan/RPTPbeta by oligodendrocytes. A) The mAb 473HD which recognizes 
the DSD-1 epitope stains precursors of oligodendrocytes in mixed glial cultures from neonatal rat. B) In 
cerebral cell cultures prepared from embryonic mice, the polyclonal antibody KAF13 which recognizes all 
isoforms of phosphacan/RPTPbeta shows a staining of the plasma membrane of mature oligodendrocytes. 

ventricular zone, where cell proliferation occurs (Fig. 4B). At the dorsal edge of the lateral 
ventricle, the presence of phosphacan/RPTPbeta seems to be corrrelated with the pathway of 
the migrating neurons of the olfactory bulb, which are permanently regenerated.^ 

There have been conflicting reports concerning the expression pattern of RPTP-beta 
isoforms. Although most studies agree that the majority of the protein is of glial origin, there 
have been several reports of neuronal expression. On El6 cortical neurons, there is 
immunostaining with anti-6B4-PG/phosphacan of cell bodies, neurites, the rims of growth 
cones, and filopodial processes. ̂ ^ ' However, using an antibody against the tyrosine phos
phatase D2 domain on cultured cortical neurons from El 7, it seems that at least some of this 
expression on the cellular surface corresponds to receptor forms of RPTP-beta. ̂ ^ On the other 
hand, the protein expression by neurons, including migrating neurons in the cerebrum and 
cerebellar Purkinje cells, ̂ ^̂  has been difficult to interpret since DSD-1-PG/phosphacan is present 
in the ECM surrounding certain subsets of neurons^ '̂̂ "̂ ^ and such an extracellular distribu
tion, although apparently associated with the cell surface of neurons, could be glial in origin. A 
better analysis of the cellular origin of RPTP-beta isoform transcripts has been elaborated by in 
situ hybridisation analysis, which has confirmed a restricted neuronal expression pattern^'^ 
and, more recently, a heterozygote mouse has been generated in which a lacZ reporter gene has 
been placed under the control of the RPTP-beta promoter. ̂ "̂^ This latter has shown that, in 
addition to expression by GFAP-positive astrocytes in the P7 cerebral cortex, there are subsets 
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Figure 3. Phosphacan/RPTP-beta expression in P7 cerebellum. A) In situ hybridization on rat cerebellum 
at postnatal day 7. The riboprobe used recognizes all known isoforms of phosphacan/RPTPbeta. An 
expression is seen in the Purkinje cell layer, in the inner granule cell layer and in the white matter. B) 
Immunodetection of the all isoforms of phosphacan/RPTPbeta with the polyclonal antibody KAF13 in the 
rat cerebellum at postnatal day 7. 

of expressing neurons, including pyramidal neurons, found mostly in layers II, III, and V. 
Again, the use of antibodies against the intracellular tyrosine phosphatase domains of RPTP-beta 
have indicated that some of the neuronal expression described corresponds to the receptor 
forms of RPTP-beta.^^ However, in the postnatal cerebral cortex, our in situ hybridisation 
studies limit expression of the receptor transcripts to the ventricular zone in accordance with 
other reports^^ '̂̂ ^ '̂̂ ^^ (Garwood et al, submitted). 

CSPGs and DSD'l'PG/Phosphacan in Neurite Outgrowth Inhibition 
Several studies have reported the enhanced expression of growth inhibiting CSPGs in the 

context of CNS lesions ' ' '^^' ̂  and DSD-1-epitope is also upregulated upon woimding in 
the CNS (Fig. 5).48,123,125-128 ^^^ ^j^ upregulation of the DSD-1-epitope in the wound reac
tion might be due to the action of TGF-beta based on studies of Oli-neu, an oligodendrocyte 
precursor cell line^^^ (see below). 

Chondroitin sulfate proteoglycans (CSPGs), such as DSD-1-PG/phosphacan and 
neurocan^^ '̂̂ '̂ ^ have in several cases been regarded as barriers for neurite outgrowth and cred
ited with inhibitory properties with respect to cell adhesion. '̂ ,̂71,8 ,130132 j ^ ^ y\xxQ studies 
show that CSPGs can inhibit neurite outgrowth and elongation effects* 30,71,104,130,132-134, /^hich 
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Figure 4. Adult expression of phosphacan/RPTP-beta. A) A subset of adult mouse cortical neurons are 
surrounded by perineuronal nets, a specialised extracellular matrix closely related with the plasmamembrane 
which can be visualised by immunohistochemistry with the polyclonal antibody KAF13, which recognizes 
all phosphacan/RPTP-beta isoforms. B) Strong phosphacan/RPTP-beta expression around the ventricle of 
the adult rat revealed with the polyclonal antibody KAF 13. 

can be associated with either the whole CSPG, the chondroitin sulfate (CS) GAGs^ '̂̂ '̂̂ ^ or 
the protein cores^^ '̂̂ ^^ 

In particular the expression of a KS/CSPG in the dorsal roof plate is noteworthy because 
these regions contain laminated bands of specialized glial cells which are believed to subdivide 
the dorsal neural tube during development and to prevent the crossing of axons to the opposite 
side. Another example of KS-rich zones has been reported for neuroanatomical subdivisions 
between the cortex and thalamic nuclei. ̂ ^ Glial cells are a plausible source of KS/CSPG and it 
has been hypothesized that the KS/CSPG (s) expressed in these regions might mediate a boundary 
function of glia in this case.̂ ^ Consistent with this hypothesis neurites growing from chicken 
embryonic DRG explants avoid KS/CSPG spots applied to laminin or N-CAM substrates 
designed to support DRG process outgrowth in vitro^ '̂̂ '̂̂ ^ The MAb AH 10 can be used to 
purifiy the KSPG claustrin from embryonic chicken brain. In contrast to KS antibodies, AH 10 
does not react with tissues like bone and muscle also known to express KS-GAGs, hinting at 
GAG microheterogeneities with tissue-specific distribution.^^ Claustrin inhibits the growth of 
E12 optic lobe neurites from laminin-containing into laminin/claustrin coated areas of a pat
terned culture substrate, an effect which is abolished by keratanase treatment or incubation of 
the cultures with an antibody recognizing the KS chains, suggesting that the GAG is the 
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Figure 5. Upregulation of DSD-l-PG in a stab wound. Immunodetection of the CS GAG-epitope DSD-1 
with the mAb 473 HD in adult cerebellum into which a stab wound has been made. The expression of the 
DSD-1 epitope on DSD-l-PG /Phosphacan/RPTP-beta, is strongly upregulated in the region around the 
lesion site. Figure by courtesy of Dr. Steindler. 

functionally active component'^^'^^^ These effects of KS are reminiscent of inhibitory influ
ences of CS GAGs or CSPGs on neurite growth reported by other workers. For example, 
embryonic chick ORG neurites do not grow out when maintained in a gel that contains hep
arin, CS and hyaluronic acid (HA),^^^ and avoid dermatan sulfate (DS), CS and HA in combi
nation with collagen type I.̂ ^^ Further, a CSPG expressed in embryonic chick epidermis pre
vents embryonic chick DRG neurite ingrowth into epidermal explants in an in vitro co-culture 
system, ̂ ^̂  and antibodies to CS GAGs neutralize this inhibitory property. ^ Along these lines, 
a schwannoma-derived inhibitor of the neurite outgrowth promoting activity of laminin-1 
contains a KS/CSPG as a prominent component.^ ^ Interestingly, DSD-1-PG/phosphacan 
also expresses a KS-epitope recognized by MAb 3H1 and inhibits neurite outgrowth from 
postnatal day 1 DRGs in a laminin-1-rich environment (Fig. G)?^ A summary of in vitro 
neurite outgrowth studies employing DSD-1-PG/phosphacan is presented in Table 1. With 
regard to its localisation, DSD-1-PG/phosphacan has been observed in the extracellular matrix 
spaces between glial cells in the roof plate of the developing spinal cord as well as in the DRGs, 
the dorsal root entry zone and the ventral roots ' ^ and in various boundary-like struc
tures. '"^ Based on this distribution pattern, it has been suggested that DSD-1-PG/phosphacan 
may be the CSPG which serves as the glial barrier to axonal extension in the roof plate and that 
it may restrain axonal growth and movement in these glial-bordered extracellular spaces of the 
spinal cord.^^ In this perspective, DSD-1-PG/phosphacan could act by either preventing in
vasion of elongating axons into the roof plate from the floor plate and ventral commissure, or 
by guiding axonal extension around the floor plate region. Supporting this interpretation, in
hibitory effects of 6B4/phosphacan have been found for neurite outgrowth from El7 cerebel
lar neurons,^^ and P6-P8 retinal ganglion cells.^ ^ 
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Figure 6. Contrasting effects of DSD-l-PG on neurite outgrowth. Left: outgrowth from hippocampal 
neurons plated on a minimal substrate (PORN) is promoted by addition of DSD-l-PG. MidFigure 6: 
Contrasting effects of DSD-1 -PG on neurite outgrowth. Left: outgrowth from hippocampal neurons plated 
on a minimal substrate (PORN) is promoted by addition of DSD-l-PG. Middle: the strong promotion of 
outgrowth from hippocampal neurons plated on laminin-1 is not affected by addition of DSD-1 -PG. Right: 
addition of DSD- 1-PG to a laminin-1 substrate results in inhibition of outgrowth from dorsal root ganglion 
explants.dle: the strong promotion of outgrowth from hippocampal neurons plated on laminin-1 is not 
affected by addition of DSD-l-PG. Right: addition of DSD-l-PG to a laminin-1 substrate results in 
inhibition of outgrowth from dorsal root ganglion explants. 

Finally, the neuronal CSPG, neurocan, a member of the aggrecan family of PGs, binds 
directly to CAMs of the Ig-superfamily, inhibits homophilic LI- or N-CAM-mediated cell 
adhesion and interferes with both neuron adhesion to and neurite outgrowth on substrates 
consisting of combinations of cell adhesion molecules or monoclonal antibodies ^ '̂ ^̂  The 
inhibitory properties of neurocan partially reside in the core protein, consistent with a recent 
report which has attributed inhibition of neurite outgrowth by CSPGs to the core glycopro
teins rather than the GAG moieties. ̂ ^̂  Thus, several examples illustrate that chondroitin sul
fate proteoglycans may exert inhibitory influences on axon outgrowth in the context of astroglial 
scar formation, or the construction of transient glial boundaries of neural tissues. Injection of 
chondroitin sufate-degrading enzymes has resulted in the modification of axon growth trajec
tories in vivo and application of these enzymes to choice paradigms of axon growth in vitro has 
indicated a reduction of inhibitory properties of chondroitin sulfate-expressing structures. In 
light of these experiments, chondroitin sulfate proteoglycans have been viewed as constituents 
of glial scars with neurite outgrowth inhibiting properties. ' ^ ^ ^ ' ' A study of the role of 
CSPGs in the outgrowth and adhesion of thalamic neurons plated onto living slices of the 
mouse embryonic neocortex demonstrated that CS digestion could affect both the permis
sive environment of the sub-cortical plate and the neurite-repellent properties of the cortical 
plate. However, rather than being associated with the presence of different CSPGs, they sug
gest that the opposing activities of these different zones is due to differentially localised 
CS-binding factors. 

Growth Promoting Effects of CSPGs and DSD-l-PGIPhosphacan 
On the other hand, it is undisputed that there are also regions in which CSPGs have been 

found, such as the neocortex and retinal neurons in which CSPGs cannot be regarded as a 
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Table 1. A summary of in vitro neurite outgrowth studies using whole DSD-1PG/ 
phosphacan (also known as 6B4-PG) and recombinant protein domains as 
coated substrates for different neuronal types 

Coated Substrates 

DSD1-PG 

DSD1-PG 

DSD1-PG + LN 

DSD1-PG + LN 

Purified Phosphacan 

Purified Phosphacan + LN 

6B4-PG 

6B4-PG + FN 
6B4-PG + TN 
6B4-PG 
NgCAM + Phosphacan 

C6 monolayer 
(Astrocytic cell line 
producing Pcan/RPTPb) 
+ Ab vs 6B4-PG 

C6 monolayer 
(Astrocytic cell line 
producing Pcan/RPTPb 
+ Ab vs F3 

bF, bS 
bC, bCF 
bCFS 

bCFS + Ab vs Ng-CAM 
bCFS + Ab vs Contactin 

Neuronal Types 

Hippocampic neurons 

Mesencephalic neuron* 

Hippocampic neurons 

Dorsal Root Ganglion 

Retinal Ganglion Cells 

Retinal Ganglion Cells 

Cortical neurons 

Cortical neurons 
Cortical neurons 
Thalamic neurons 
Neurons 

Cerebellar neurons 

Cerebellar neurons 

Tectal neurons 
Tectal neurons 
Tectal neurons 

Tectal neurons 

Animal/Age 

Rat E18 

; Rat El 4 

Rat E18 

RatPO 

Rat P6-8 

Rat P6-8 

Rat El 6 

Rat E16 
Rat E16 
Rat El 6 

Chick E9 

Mouse P5 

Mouse P5 

Chick 
Chick 
Chick 

Chick 

Effect on 
Neurite Growth 

Promotion 
(due to CS-GAG) 
Promotion 
(due to CS-GAG) 
No effect 

Inhibition 
(due to core protein) 
Inhibition 
(due to core protein) 
Inhibition 
(due to core protein) 
Promotion 
(due to core protein) 
Promotion 
Promotion 
No effect 
Inhibition 
(due to core protein) 
Inhibition 

Inhibition 

No effect 
Promotion 
Maximal promotion 
(against bC and bCF) 
Abolition of the 
promotion 

Ref. 

93 

93 

90 

90 

143 

143 

104 

104 
104 
104 
131 

239 

239 

155 
156 
155 

156 
155 

barrier to axonal outgrowth. In these cases, tissues that express CSPGs do not exclude the entry 
of axons, and CSPG staining partially coincides with developing axon 

pathways.i^^-151 j ^ 
sup

port of this, several in vitro studies suggest that CSPGs^ '̂̂ 52 and isolated core proteins 
favour rather than inhibit neurite outgrowth. Indeed, initial studies using a mixture of at least 
three soluble postnatal rat brain CSPGs showed that CSPGs promote neurite outgrowth from 
E16 rat embryonic neurons. The promoting property was assigned to the core proteins while 
the CS-GAGs, mosdy chondroitin 4-sulfate (CS-A, 80%) and chondroitin 6-sulfate (CS-C, 
20%), prepared from the CSPGs were without effect. ̂ ^̂ '̂ ^ A summary of in vitro neurite 
outgrowth studies employing DSD-1-PG/phosphacan is presented in Table 1. The 6B4-PG/ 
phosphacan homologue of DSD-1-PG/phosphacan was found to stimulate outgrowth from 
E16 cortical neurons in a situation where the substrate was neutral for outgrowth from E16 
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thalamic neurons. This study using 6B4/phosphacan coated on poly-L-lysine displayed an 
increased percentage of neurite-bearing cells for both El6 cortical and El6 thalamic neurons, 
but an enhanced length of the resulting neurites for cortical neurons only. Bacterially and 
eukaryotically expressed protein domain constructs corresponding to different parts of the core 
protein of phosphacan/RPTPbeta have been tested in neurite outgrowth assays^^ '̂̂ ^^ These 
indicated that outgrowth from chick rectal neurons could be supported by the carbonic anhy-
drase domain, an effect potentiated by addition of the *S' domain. Another example relates to 
cerebellar granule cell neurons which migrate postnatally along the processes of Bergmann glia 
cells into the prospective internal granular layer. During this migration, the CSPG astrochondrin 
is expressed at contact sites between granule cells and Bergmann glia in vivo, and the mono
clonal antibody L5 directed against a Lewis-X-carbohydrate epitope present on astrochondrin 
reduces the migration of granule cells in the early postnatal mouse cerebellar cortex in a living 
explant system, and process formation of astrocytes on laminin and collagen IV in vitro ̂ ^̂ '̂ ^̂  

Although these studies partly operate with mixtures of different neuronal subtypes, they 
are not inconsistent with the contrasting observations relating to DSD-1-PG/phosphacan. On 
the one hand, this large neural CSPG promotes neurite growth of rat embryonic day 14 (El 4) 
mesencephalic and E l 8 hippocampal neurones when coated as substrate on 
poly-DL-ornithine-conditioned plastic (Fig. 6).^^ Yet on the other hand, a striking inhibition 
by DSD-1-PG/phosphacan of neurite outgrowth from DRGs plated on a mixed laminin-1/ 
CSPG substrate was also observed (Fig. 6).^^ The inhibitory effects of DSD-1-PG/phosphacan 
are not removed by chondroitinase ABC digestion indicating that they are associated with the 
core glycoprotein. Interestingly, digestion of the CS-GAG chains does not affect either the 
inhibitory nor the promotory effects of DSD-1-PG/phosphacan in related approaches. 
Although it has been found that the digestion of the CS-GAG chains does not alleviate the 
inhibitory effects of DSD-l-PG on DRGs, the neurite outgrowth promoting effect of 
DSD-1-PG/phosphacan on hippocampal neurons is mediated by the particular CS-GAG struc
ture, DSD-1.^^ In fact, the neurite outgrowth promoting effect can be neutralized by enzy
matic digestion with chondroitinase ABC or addition of the blocking monoclonal antibody, 
473 HD, which is specific for the DSD-1-epitope contained in the chondroitin sulfate chains. 
This is reminiscent of earlier reports that HS-, DS- and CS-GAGs potentiate neurite out
growth by PC 12 cells to varying extents upon exposure to aFGF, bFGF and NGF, which might 
reflect an improvement of cytokine effects. ̂ ^̂  

Similarly, some in vitro studies indicate that CS-GAG chains and heparan siJfate can 
promote neurite outgrowth.^^'^^ ,153,160,161 ^ sunimary of the in vitro neurite outgrowth stud
ies of the different CS GAG types is presented in Table 2. For example, purified HS-, DS- and 
CS-GAGs induce neurite outgrowth by E14 mesencephalic neurons. ' In the light of these 
results, the DSD-1-epitope had originally been considered as a putative chondroitin sulfate/ 
dermatan sulfate hybrid GAG structure, based on its differential sensitivity to the 
endoglycosidase, chondroitinase ACI, and its resistance to digestion by the exoglycosidase, 
chondroitinase ACII (DSD-1: for "dermatan-sulfate-dependent".^^ Later investigations have, 
however, established, that the epitope depends on sulfation and is associated with the chondoitin 
sulfate type D glycosaminoglycan (and should hence read "D-type chondroitin sulfate depen
dent".^ ' In a recent study, the effects of diverse chondroitin sulfate GAGs on El 8 hippoc
ampal neurite outgrowth were systematically investigated. Consistent with the results of the 
earlier studies, CS-D and CS-E slighdy enhance the fraction of neurite bearing neurons when 
applied as a substrate in comparison to CS-A, CS-B and CS-C. ' It was observed that 
neither CS-A, CS-B nor CS-C significandy increased neurite length, CS-D displayed a mild 
promotory effect and CS-E exerted the strongest effect on neurite extension. The addition of 
MAb 473HD which is known to block neurite outgrowth promotion enacted by CS-D, did 
not neutralize the CS-E effect. ' Consistent with this observation, the DSD-1-epitope 
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Table 2. Summary of in vitro neurite outgrowth studies using different types of 
glycosaminoglycans as both coated substrates and in soluble form 

GAG 
Types * 

CS-4, CS-6, 
DS 

CS-4, CS-6, 
DS 

CS-4 

CS-4, CS-6 

CS-6, DS, 
DS 

CS-A, CS-C, 
DS 

CS 
CS, DS, DS 
CS, CS, 

DS, DS 
CS-A, CS-B, 

CSC 
CS-D, CS-E 

CS-A, CS-B, 
CS-C 

Mode of 
Application 

coated 

coated 

coated 

coated 

coated 

soluble 

soluble 
soluble 
soluble 

coated 

coated 

soluble 

Coated 
Substrate 

LN, LN, L1 

L1,L1,LN 

L1 

LN, LN 

L1,LN, L1 

LN, LN 
LN, LN 

FN,FN,FN 

Neuronal Type 

Cerebellar neurons 

Cerebellar neurons 

Dorsal root 
ganglions neurons 
Dorsal root 
ganglions neurons 
Dorsal root 
ganglions neurons 
NGF induced 
PCI2 cells 
Thalamic neurons 
Thalamic neurons 
Hippocampal 

Hippocampal 
neurons 
Hippocampal 
neurons 

Dorsal root 
ganglions neurons 

Animai/Age 

Rat P5-P6 

Rat P5-P6 

RatE15-E16 

RatE15-E16 

RatE15-E16 

Rat El 5 
Rat E18 
Rat El 8 
neurons 
Rat El 8 

Rat El 8 

Effect on 
Neurite Growth 

Inhibition 

No effect 

Promotion 

Inhibition 

No effect 

No effect 

Promotion 

No effect 
No effect 

No effect 

Promotion 

Chick E8-E11 No effect 

1 Refs. 

30 

30 

30 

30 

30 

130 

161 
161 
161 

164 

164 

240 

* CS-A: chondroitin sulfate A (C4-S); CS-B: chondroitin sulfate B; CS-C: chondroitin sulfate C (C6-S); 
DS:dermatan sulfate 

which is contained in commercially available CS-D preparations could not be revealed in CS-E 
preparations. ' CS-E carries a similar charge to CS-D, but displays a different sulfation 
pattern. Hence, while CS-D is sulfated in the C6-position of N-acetylgalactosamine and the 
C2-position of hexuronic acid, the constitutive carbohydrate dimer of CS-E carries sulfate 
groups in the C4- and C6-positions of N-acetylgalactosamine. Recently, the importance of 
sulfate group distributions on carbohydrate polymers has been highlighted by the observation, 
that the DSD-1-epitope requires sulfation of a tetra-deca-saccharide. These findings suggest 
that both the sequence of disaccharide motifs and the attachment of sulfate groups contribute 
to the formation of chondroitin sulfate domains with functional properties and that a novel, 
hitherto unknown structiu*al domain with neurite outgrowth promoting properties is con
tained in CS-E. These observations contrast with the inhibitory properties of GAGs discussed 
before. The seemingly conflicting reports might be reconciled because the repiJsive effects of 
GAGs have in many cases been observed in choice situations where neurites were confronted 
with favourable substrates, e.g., coUagens, laminin and N-CAM on the one side, and areas of 
the culture dish containing GAGs and/or PGs in addition on the other. There are precedents 
that molecules displaying repulsive or inhibitory activities in choice situations may permit, or 
even enhance neurite growth or cell migration as homogeneous substrata, for example tenascin-C, 
that carries distinct f\inctional domains.̂ '̂̂ ^ '̂̂ ^^-^^^ Choice experiments on patterned sub
strates confront growth cones and/or cell bodies with a 100% step gradient of GAGs and/or 
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PGs and reveal repulsive properties which may not appear under conditions of uniform con
centration. Alternatively, these opposite results could reflect a structural heterogeneity of the 
complex chondroitin sulfate polymers. Furthermore, a lineage-dependence of neuronal responses 
to chondroitin sulfates might contribute to the seemingly contradictory reports from different 
studies. 

Multiple Ligands o/DSD-l-PG/Phosphacan 
The eff̂ ects on process outgrowth described above seem to be mediated by both the core 

glycoprotein and the CS GAGs (Table 1), and likely neuronal receptors for these interactions 
are members of the IgCAM superfamily. In effect, DSD-1-PG/phosphacan has been shown to 
possess three levels at which it can interact with other molecules either in the ECM or on cell 
membranes. These are the GAG chains, the other N- and O-linked oligosaccharides, and fi
nally the regions of the protein core which are not covered by carbohydrate modifications. 
With such a range of possible interactions, it is not surprising that DSD-1-PG/phosphacan is 
implicated in many developmental processes such as migration and neurite outgrowth. In ad
dition to variations in the presentation of such sites of interaction on the CSPG, the amplitude 
of its eff̂ ects is likely to be dependent upon localised combinatory variations, both quantitative 
and qualitative, of promoting and inhibitory factors which recognise these sites. Cell-type spe
cific differences in the cell-surface receptors (mosdy IgCAMs) when confronted with a variety 
of potential ligands in the ECM, and the relative responsiveness of their intracellular signalling 
mechanisms to such factors in either cis- or trans- with other cell surface receptor molecules 
could then account for the differential cellular behaviour observed. Models proposed to 
explain the relationship between the secreted DSD-1-PG/phosphacan isoform and the trans
membrane receptor forms of RPTP-beta suggest that extracellular interaction sites common to 
the diff̂ erent isoforms could compete for extracellular ligands and thereby modulate the nature 
of the tyrosine phosphatase signal. ̂  ̂  Other intracellular targets for RPTP-beta also imply roles 
in the regulation of G-protein coupled receptor signaling cascades (GIT 1/Cat-1),^^ and syn
aptic organisation (PSD-95/SAP90).^^^ 

A plausible interpretation for the variable effects of phosphacan/RPTP-beta on neurite 
outgrowth discussed above might reflect variations in the repertoire of CAM receptors present 
on the different neuronal types (Fig. 7). In this context, the aminoterminal CA- and 
FNIII-domains and parts of the S-domain seem to be involved in the interactions which have 
been described for phosphacan/RPTP-beta. Members of the neuronal IgCAMs ̂ ^ found to 
interact with phosphacan/RPTP-beta include Ll/NgCAM,^^^ F3/contactin2'i56,174-176 ^ ^ Q _ J / 
axonin-1, and NrCAM. It has been shown that the GPI-anchored F3/contactin binds to the 
CA-domain,^5^ whereas the related GPI-anchored IgCAM, TAG-1/Axonin-1, binds via the 
CS GAG chains. ̂ "̂̂  Similarly, interactions have been demonstrated between the S-domain of 
phosphacan/RPTP-beta and NCAM, NgCAM/Ll, and NrCAM. ̂ ^̂  Several of these binding 
interactions have been shown to result in promotion of neurite outgrowth, effects which could 
be blocked by specific antibodies directed against the receptor molecules. ̂ ^̂ '̂ ^ 

In addition to the CS GAGs, DSD-1-PG/phosphacan is highly glycosylated with other 
carbohydrate modifications as illustrated by the presence of the 3H1, 3F8, L2/HNK-1 and L5/ 
Lewis-X epitopes. ̂ ^ The latter is an N-linked carbohydrate which bears similarities with the 
forse antigen, a topographically restricted epitope of the developing nervous system. ^ ' ^ ' 
It appears likely that the sulfation, carbohydrate composition and oligosaccharide structure of 
DSD-1-PG/phosphacan is developmentally regulated and that at least some of these carbohy
drate modifications could alter its affinity for other proteins, for example, the N-linked sugars 
on the carbonic anhydrase and FNIII domains of DSD-1-PG/phosphacan which mediate its 
interactions with NgCAM, NCAM andTN-C.^^^ 
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Figure 7. Neuron-glia interactions mediated by phosphacan/RPTP-beta. The Ig CAMs represented as 
neuronal receptors can all interact with extracellular sites on phosphacan/RPTP-beta: F3/F11 /contactin via 
the CA domain; TAG-1/Axonin via the CS GAGs; the others via the S region. 

Recombinant Fc-fusion proteins with the different domains have been used to characterise 
a range of molecular interactions underlying changes in cell behaviour. Hence, the CA-domain 
has been shown to support neuronal adhesion and neurite outgrowth by binding to F3/contactin 
on the surface of neurons. This interaction with F3/contactin also implies a transmembrane 
receptor, Caspr^^^ in a neuronal signaling complex which has been localised in vivo at paranodal 
junctions between axons and paranodal loops of myelinating glia. It has recendy been shown 
that the CA-domain can block the localisation to the paranodes of the F3/contactin-Caspr 
complex, ̂ ^̂  suggesting that this complex may be targeted via ECM interactions with RPTP-beta 
expressed by myelinating glia. Studies on mice deficient for RPTP-beta indicate that, although 
there is no gross abnormality in the overall brain architecture, there is a fragility in the myelin 
sheaths of CNS neurons,̂ *^ and a recent report indicates dysfunctioning of the central dopam
inergic system associated with locomotion defects. 

It has also recently been shown that the CA domain can interact with the extracellular 
beta-1 domain of the voltage-gated sodium channel, an interaction which could modulate 
the action potential of the neuronal membrane. This study also demonstrated that the cyto
plasmic tyrosine phosphatase domains of short RPTP-beta could interact with, and dephos-
phorylate, the pore-forming alpha-subunit. Hence, it is possible that competitive binding of 
different RPTP-beta isoforms could modulate sodium channel activity in a biphasic mecha
nism: the CA-domain binding to the extracellular domain in contrast to tyrosine phosphatase 
interactions with the cytoplasmic domain. 

In vitro functional studies have provided evidence for roles in the development and main
tenance of the CNS, and biochemical studies have demonstrated a number of potential bind
ing partners in the ECM, such as the tenascins, TN-C andTN-R.^^^ Meanwhile the RPTP-beta 
FNIII domain has been shown to bind to a distinct ligand on the surface of glial cells, includ
ing astrocytes, which has been recently identified as TN-C.^^ It has been suggested that this 



40 Brain Repair 

interaction is a primary adhesion receptor system to the ECM for gUal tumour cells. The 
presence of TN-C on the cell surface is intriguing since TN-C is a large secreted glycoprotein 
with many isoform variants which is mosdy present in die ECM.^^ '̂̂ ^^ However, it seems that 
there are glial receptors for TN-C which can retain it on the cell surface in a configuration 
which permits interaction with the RPTP-beta FNIII domain. Furthermore one of these glial 
receptors for TN-C may well be the short RPTP-beta itself, adding a further level of complex
ity to the potential range of cell-ECM interactions, since it has also been shown that the adhe
sion of glioblastoma cells to TN-C via the short RPTP-beta is modulated by the secretion of 
DSD-1-PG/phosphacan.^^^'i^^ In th is context it is also interesting to note that it has been 
recently demonstrated that RPTP-beta was intrinsically active in unstimulated cells in a study 
of signalling by the heparin-binding cytokine, pleiotrophin/HB-GAM/HBNF.^^^ As such, it 
seems that pleiotrophin signals through a ligand-dependent inactivation of RPTP-beta, conse-
quendy increasing levels of tyrosine phosphorylation of beta-catenin to initiate downstream 
signalling and associated changes in process outgrowth and cell migration. Hence the compe
tition of phosphacan, the released soluble form of RPTP-beta, for common ligands might also 
play a role in regulating the enzymatic activity of RPTP-beta itself and subsequent changes in 
cell behaviour. 

Regulation ofDSD'l-PG/Phosphacan and Other CSPGs 
by Cytokines in Lesions: Role ofTGF-Beta 

Using chondroitin sulfate markers, CSPGs have been shown to be markedly upregulated 
at CNS injury sites. '̂ " '̂̂ '̂̂ '̂ ^ With the use of antibodies directed against the core pro
teins, several studies have reported the enhanced expression of growth inhibitory CSPGs in
cluding lecticans such as neurocan, brevican and versican, ' ' the CSPG NG2 and 
decorin.^^ In contrast, DSD-1-PG/phosphacan core glycoprotein levels have been shown to be 
decreased in cerebral cortex lesions during the first week following injury^ and also in 
kainate-induced seizures models and Iharas epileptic rats.^^ '̂̂ ^ The phosphacan diminution 
during the first week posdesion in cerebral cortex lesions could result, at least in part, from a 
reduced production since it was shown that the phosphacan mRNA level is downregulated at 2 
days posdesion (dpl).^ ^ However, extracellular degradation might also contribute to the rapid 
decrease in phosphacan protein levels as the decrease of phosphacan in the hippocampus after 
kainate-induced seizure is largely due to its proteolysis by plasmin.^^^ After 7 dpi the phosphacan 
mRNA levels are slightly increased in cerebral cortex lesions as observed following deafferenta-
tion of the hippocampus. ̂ "̂^ Following peripheral nerve crush, phosphacan mRNA is signifi
cantly induced in the distal segments of the sciatic nerve. ̂ ^̂  In contrast to the core glycopro
tein, the phosphacan glycosaminoglycan epitope DSD-1, recognized by the 473mAb, has been 
found upregulated upon stab wounding in the CNS,̂ "^ '̂̂ ^ '̂̂  ^ revealing differential modula
tions of the phosphacan core glycoprotein and DSD-1 epitope after injury. 

The factors responsible for the regulation of proteoglycans in neural tissues are poorly 
understood. In lesion zones of the CNS, activated microglial cells and astrocytes express a 
variety of modulatory cytokines and growth factors ̂ ^̂ '̂ ^̂  and some of these are known to 
modulate proteoglycan expression in non-neural test systems. For example, platelet-derived 
growth factor (PDGF) and transforming growth factor (TGF)-betal both increase the amount 
of a versican-like CSPG on arterial smooth muscle cells,^^^ and TGF-betal enhances the rate 
of proteoglycan synthesis in rabbit articular chondrocytes. Likewise, TGF-betal selectively 
induces the expression of biglycan, but not decorin, on human embryonic lung fibroblasts. 
Cytokines such as interleukin-1 can directly inhibit proteoglycan synthesis."^^^ In the nervous 
system, TGFbetal was shown to increase the expression of neurocan by astrocytes'^ and of 
versican by oligodendrocyte precursors. The astrocytic expression of neurocan was also en
hanced by epidermal growth factor (EGF) and in a higher magnitude than by TGFbetal, 
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whereas it was reduced by IFNgamma and PDGF.^^ Recendy, it was shown that the astroq^ic 
expression of phosphacan core glycoprotein is strongly augmentated by EGF and is decreased 
by tumor necrosis factor alpha (TNFalpha), interferon gamma (IFNgamma) andTGFbetal.^ ^ 

In order to further understanding of DSD-1-PG/phosphacan expression in oligodendro
cyte precursors, the effects of soluble mediators known to be implicated in inflammation or 
wound reaction were systematically examined on the regulation of DSD-1-PG/phosphacan in 
the cell line Oli-neu. This cell line has been generated by immortalizing cultures enriched for 
oligodendrocytes with the oncogene t-neu,^^ and it expresses the antigen 0 4 , a marker of 
immature oligodendrocytes, and can be driven to express myelin associated glycoprotein (MAG), 
a marker of mature oligodendrocytes, by continuous db-cAMP treatment.^ In this regard 
Oli-neu behaves like differentiating primary oligodendrocytes in vitro. It is interesting to com
pare these observations with earlier studies concerning CSPG expression by glial cells. Thus, 
the detection of chondroitin sulfate epitopes on immature oligodendrocytes has been reported, 
and at least one defined CSPG has been detected on oligodendrocyte surfaces, namely 

-epitope and DSD-1-PG/phosphacan are known to be expressed 
by oligodendrocyte precursors (OPCs) in vitro and no other cell line or primary culture system 
was found which would present comparable advantages in terms of cell numbers and homoge
neity of expression. Finally, the ability of Oli-neu to migrate on laminin and the cellular re
sponse upon contact with either astrocytes or meningeal cells is similar to that of an enriched 
oligodendrocyte precursor cell preparation. For these reasons, Oli-neu was chosen as a model 
system for the study of DSD-1-PG/phosphacan regulation by oligodendrocyte precursors. To 
this end, an enzyme-linked immunosorbent assay using the cell line Oli-neu in conjunction 
with MAb 473HD was developed and combined with biosynthetic labeling and immunopre-
cipitation techniques. Using these approaches, it was found that, of all of the compounds 
tested so far, the growth factors TGF-betal-3 induced a significant upregulation of the CSPG, 
both in the supernatant and in the detergent extract of cultured Oli-neu cells. The roles attrib
uted to TGF-beta in the CNS to date are manifold and include the regulation of migratory 
properties of neural crest cells, the control of neural progenitor cell proliferation, an influence 
on neuronal survival and differentiation, the increase of neurite growth of dorsal root ganglia, 
and the modification of adhesive properties of radial glia and cells migrating in close contact 
with radial glia"̂ ^ ' ^ for review, see references 209, 210. 

TGF-beta 2 and 3 isoforms are known to be expressed in most cells present in the unin
jured CNS such as astrocytes, neurons and oligodendrocytes while TGFbeta 1 is mainly syn
thesized in lesioned tissue. ^ ' Upon CNS injury, TGF-betal is upregulated by macrophages 
and astrocytes in the vicinity of adult CNS wounds and contributes to the formation of the 
glial scar, thus impairing regeneration."^^ '̂̂ ^^ TGF-betas could influence core protein expres
sion, GAG chain length, -number and -composition, or a combination of these parameters. 
For example, TGFbetas enlarged the size of individual GAG chains by approximately 25 kDa 
on a versican-like molecule expressed by smooth muscle cells, and enhance the level of mRNA 
that was detectable by a versican-cDNA probe 3-fold over unstimidated controls."^^^ It also 
increased the number and length of chondroitin sulfate chains attached to the proteoglycan 
syndecan in mouse mammary epithelial cells, while the core protein levels remained un
changed.'̂ ^ ̂  TGF-betal apparently increased the expression of the GAG-chain associated 
DSD-1-epitope and, to a lesser degree, of the DSD-1/phosphacan-proteoglycan core protein. 
Indeed, the immunoprecipitation of DSD-l-PG from TGF-betal treated Oli-neu cells showed 
that there was both an increase of core protein expression and an enhanced incorporation of 
sulfate into the GAG chains. This might result from an increased length and/or number of 
chondroitin sulfate chains, structural rearrangements or varied sulfation, concomittant with an 
enhanced density of DSD-1-epitope expression on individual cell surfaces. Interestingly, a com
parable enhanced sulfation of GAG-chains and an increase of GAG-chain attachment has also 
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been described for NG2 as synthesized in die cell line Neu-7, a model of reactive astrocytes in 
vitro7^'«3 

DSD'l'PG/Phosphacan and RPTP-Beta Isoforms in the Regulation 
of Cell-Substrate Interactions and Cell Motility 

The importance of ECM molecules for cell motility could be demonstrated in several 
culture models of cellular migration. For example, neural crest cells migrate through the em
bryo to differentiate into peripheral nervous system, facial skeleton or pigment cells using 
migration pathways comprising coUagens, laminin-1 or fibronectin.^^ Directional restraints 
may be imposed by substrates unfavourable for migration, e.g., QSVGs?^'^^^' An example of 
extensive migration in the CNS relates to the 02A (oligodendrocyte-type 2 astrocyte) precur
sor cells that are generated outside the optic nerve and immigrate from its chiasmal side to the 
retina."^^^ Likewise, oligodendrocyte precursors in the developing spinal cord are generated in 
the subventricular zone and subsequendy migrate away to populate the spinal cord."̂ ^̂  In the 
adult CNS, a progenitor cell type with limited migratory potential, termed 02A-adult, is 
retained in the postnatal brain. Migration of oligodendrocyte precursors (OPCs) hence seems 
important for the determination of myelination territories during development and the 
remyelination of axons after lesion events. Cell-cell and cell-substratum interactions of oligo
dendrocytes and their precursors are likely to influence proliferation, migration to sites of dif-
ferentiation'̂ ^ '̂'̂ '̂ ^ re-immigration to places of demyelinating lesions, and remyelination. It has 
been proposed that the polysialylated form of the neural cell adhesion molecule N-CAM is 
involved in the control of the motility of 02A (oligodendrocyte-type 2 astrocyte) glial progeni
tors. ' The corresponding characteristic carbohydrate polymer alpha 2-8 linked polysialic 
acid has been detected on the surface of 02A-progenitor cells from the hypophysis of newborn 
rats. Enzymatic digestion of the carbohydrate structure by endoneuraminidase and blockade of 
the NMDA-receptor activation-dependent exposure of PSA on the cell surface completely 
blocked the motility of the OPCs.^^ '̂̂ ^^ The mechanisms involved in the migration of OPCs 
have been elucidated in some detail. Growth factors such as platelet-derived growth factor 
(PDGF) stimulate migration presumably by chemotactic mechanisms'^^ or by keeping oligo
dendrocyte precursors in an undifferentiated state.'̂ ^^ Furthermore, the importance of extracel
lular matrix molecules as migration substrates has been increasingly appreciated. Oligodendro
cyte precursors can migrate on substrates of laminin-1 and fibronectin glycoproteins, while 
tenascin-C as a cosubstrate to fibronectin reduces their migratory ability."̂ "̂  Along these lines, 
integrins as cell-surface receptors for several ECM glycoproteins (Hynes, 1992) have been shown 
to play an important role in this context (Milner et al, 1996). Integrins 2̂.16,227 ^^Q^^2XC adhe
sion to laminin-1,'^^^ merosin (laminin-2),'̂ '̂ ^ fibronectin,^^^ tenascin-C^^ '̂'̂ '̂̂  in part by an 
RGD-dependent mechanism. TGF-beta differentially regidates the expression of various integrin 
genes depending on the cell type and subunit composition of the heterodimers. For example, 
TGF-beta stimulates adhesion of human mononuclear phagocytes to laminin and fibronectin 
by increasing integrin beta 2 and alpha 5 mRNA and protein synthesis,^^^ and a comparable 
differential regulation of distinct integrin chains has been described for rat alveolar epithelial 
cells,"̂ ^ This might also be relevant in the context of tumour invasion and metastasis, because 
the invasion of U-138MG glioma cells was facilitated due to an increased adhesion to ECM 
after alpha-5 integrin upregulation by TGF-beta.^^^ While in most cases studied so far TGF-beta 
strengthens adhesion to various ECM substrates, the data relating to DSD-1-PG/phosphacan 
indicate that the Oli-neu cell line shows decreased attachment to laminin upon 
TGF-beta-treatment. Antibody perturbation studies with mono- and polyclonal antibodies 
suggest that this can at least partially be attributed to DSD-1-PG/phosphacan. The precise role 
of DSD-1-PG/phosphacan in this process is, however, currendy unclear. 
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Interestingly, it has been reported that a CSPG isolated from human melanoma cells 
directly binds an amino acid sequence motif contained in a fibronectin fragment and thereby 
contributes to the adhesion of melanoma cells to fibronectin.^^ It is conceivable that DSD-1 -PG/ 
phosphacan influences the interaction between laminins and their receptors, potentially by 
interfering with the activation state of appropriate integrins. Because differential expression of 
integrins is believed to regulate oligodendrocyte precursor cell (OPC) motility, this might im
pinge on the movement of OPCs."̂ *̂ '̂ ^ Alternatively, a fine-tuning of ligand binding by 
cis-interactions of DSD-1-PG/phosphacan with receptor-integrins in the cellular membrane 
might be assumed. This might primarily concern the transmembrane isoforms of RPTP-beta, 
because the largest variant is expressed by oligodendrocyte precursors.^^^ It contains the 
tyrosine-phosphatase domains and could, therefore, potentially anatagonise the activation of 
integrins, which may involve the tyrosine kinase "focal adhesion kinase" (FAK). The tuning 
of integrins in the cell membrane presumably affects both the substrate attachment and the 
motility behaviour of the cell concerned, e.g., the OPC in this case.'̂ ^^ In conclusion, it seems 
reasonable to conclude that the levels of DSD-1-PG/phosphacan in the cell membrane modu
late the adhesive interactions of Oli-neu with the ECM. The modulation of cell-substrate in
teractions presumably translates in the tuning of cell motility of Oli-neu cells, and the OPC 
equivalent (Schnadelbach and Faissner, in preparation). 
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CHAPTER 4 

Regeneration Failure in the CNS: 

Cellular and Molecular Mechanisms 

Anne D. Zurn and Christine £. Bandtlow 

Introduction 

Traumatic injuries to the brain and spinal cord cause severe and irreversible disabilities 
due to the inability of the CNS, in contrast to the peripheral nervous system, to regen
erate injured fibers. CNS axons initially start to sprout, but they fail to regenerate over 

long distances and cannot contact appropriate target cells, resulting in a permanent loss of 
function. This lack of regeneration appears to be due to both the intrinsic inability of central 
fibers to grow, and an inhospitable environment. The present review focuses on the cellular and 
molecular aspects of intrinsic differences in growth potential and of axonal growth inhibition, 
in particular on the recent advances in the characterization of growth-inhibitory molecules and 
their mode of action. Additional details may be found in other recent reviews. ' 

Intrinsic Neuronal Properties 

Neuronal Survival Following Injury 
Injury or trauma of the nervous system can vary considerably in extent and severity from 

minor contusions or crushes to open injuries associated with partial or even complete disrup
tion of the nerves. Any type of axonal injury induces an array of dramatic molecular and 
cellular responses at the level of the cell bodies and at the site of the injury that have a direct 
impact on the potential for successful regeneration. One of the most immediate changes is the 
destruction of tissue at the site of injury, which can vary greatly depending on the type of 
injury. Damage to the axons may consist in the complete transection of the nerve fibres, fol
lowed in some cases by the death of the neuronal cell body. However, the most important 
requirement for regeneration of the injured axons to occur is the survival of the nerve cell body 
and its capacity to induce gene expression leading to axonal regrowth and reinnervation of the 
original targets (for a review see ref. 7). The closer the axonal insult occurs to the cell body, the 
less likely the neuron can be maintained in a healthy state. Injuries that sever axons relatively 
distal to the cell body produce a severe reduction in neuronal size (atrophy), but the neurons 
survive the lesion. They undergo morphological and molecular changes that involve major 
rearrangements of the endoplasmic reticulum and Golgi apparatus, a process referred to as 
chromatolysis. Chromatolysis is often accompanied by an increase in the expression of a set of 
genes associated with axon growth. However, even if the neuron ultimately survives the injury. 
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its nerve terminals and the entire segment distal to the lesion will degenerate, a process called 
Wallerian degeneration. 

Developmental Loss of Regenerative Ability 
A number of studies have demonstrated that the intrinsic growth ability of mammalian 

CNS neurons is developmentally regulated. While embryonic CNS axons can regenerate quite 
readily, they lose this capacity with age.̂ '̂̂ ^ For instance, successful regeneration and sprouting 
of nerve terminals following lesion gives rise to functional recovery in the CNS of young, but 
not adult mammals.^ ' In addition, defined spinal cord lesions in chicken embryos or new
born mammals lead to extensive regeneration of fibres, whereas no such growth is observed in 
the adult. Adult neurons seem to loose their ability to grow during postnatal development and 
their regenerative response becomes abortive. The loss in capacity to grow appears to coincide 
with the maturation of CNS glial cells, both astrocytes and oligodendrocytes, and with the 
onset of myelination. Delaying spinal cord myelination, for instance, delays the end of the 
permissive period in chick embryos.^^ However, myelin and associated molecules are not the 
only candidates that account for the developmental loss of regenerative capacity. Indeed, in an 
in vitro model system devoid of myelin, axotomized Purkinje cells retain their age-dependent 
decrease in ability to regenerate, despite the absence of myelin. ̂ ^ In the retina, amacrine cells 
appear to be responsible for the loss of intrinsic growth capacity of retinal ganglion neurons.^^ 
Neurons can thus signal other neurons to lose their axonal growth ability. 

Developmental loss of regenerative ability is also correlated with an intrinsic decrease in 
the neuronal expression of growth-associated proteins such as GAP-43 and SCGIO^^ and a 
decrease in endogenous cAMP levels.̂ ^ Interestingly, there may also be a developmental in
crease in the capacity to respond to extrinsic inhibitory cues since increases in intracellular 
calcium concentrations in response to the myelin protein Nogo are small and transient in 
cultured embryonic chick retinal ganglion neurons compared to mature neurons. Similarly, a 
difference in receptor levels or responsiveness to trophic or guidance signals could explain these 
differences. Exogenously elevating TrkB levels, however, fails to revert postnatal axonal growth 
rates to embryonic levels.^ Down-regulation of the expression of the anti-apoptotic protein 
Bcl-2 was also proposed to be responsible for the decreased axonal growth rates of retinal 
ganglion cells. However, Bcl-2 overexpression in these neurons in vitro and in vivo neither 
promotes axon growth nor enhances growth in response to neurotrophic factors.^^ In sum
mary, both the intrinsic neuronal growth state (developmental expression of genes involved in 
axonal growth and/or in limiting axonal growth), as well as the neuronal environment (oligo
dendrocytes and myelin or astrocytes) appears to account for the age-related switch from a 
successful to an abortive regeneration. 

Expression of Growth-Associated Molecules 
Upon injury, adult CNS axons undergo a spontaneous, but short-lived and ultimately 

abortive attempt at repair called regenerative sprouting. These sprouts extend for only a few 
flm before growth is aborted and the new sprouts are gradually resorbed. The reasons for this 
unsuccessful regenerative process remain largely unknown, but they indicate that injured CNS 
neurons have not necessarily lost their intrinsic property to grow, but that they fail to initiate 
and/or maintain a specific growth programme required for axonal elongation. Important regu
lators of axonal growth that are expressed during nervous system development (GAP-43, 
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cytoskeletal proteins, transcription factors, neuropeptides, integrins, growth factors and 
neurotrophin receptors) are re-expressed upon nerve injury (for review see re£ 25) However, in 
contrast to the PNS, this event is often only transient or completely absent in the CNS. These 
observations suggest that prolonged expression of growth-associated genes may be required for 
successful regeneration. 

Experimental sensory fiber lesions have brought additional evidence that expression of 
growth-associated molecules may be a prerequisite for axonal regeneration. Primary sensory 
neurons with their cell bodies in the dorsal root ganglia (DRG) possess two axonal branches, a 
peripheral axon that can regenerate, and a central axon, located in the spinal cord that cannot 
regenerate upon injury. Interestingly, lesion of the central ascending sensory axons, in contrast 
to lesion of the peripheral branches, does not lead to the up-regulation of GAP-43, c-Jun, and 
JAK in the DRG neurons.^ Overexpression of GAP-43 alone, however, allows only sprout
ing and not regeneration of CNS neurons. Only the combined expression of GAP-43 with 
another growth cone protein, CAP-23, permits regrowth of sensory axons from the spinal cord 
lesion site into a peripheral nerve graft. In addition to a reactivation of growth associated 
genes expressed during development, peripheral axotomy leads to the up-regulation of regen
eration-associated proteins (RAGs) including SPURIA, a small proline-rich protein that asso
ciates with F-actin, and fibroblast growth factor-inducible-14. '̂ ^ These two proteins are not 
expressed during development, but promote axon growth when overexpressed in neurons and 
PCI2 cells, respectively. '̂ ^ RAGs, in addition to growth-associated proteins, may therefore 
also be required to trigger successftil nerve regeneration. 

Up-regulation of regeneration-associated genes upon injury in the CNS is influenced by 
the distance between the cell body and the site of the lesion. '̂ ^ This is illustrated by the 
observation that corticospinal cell bodies respond to intracortical, i.e., proximal, axotomy by 
up-regulating a range of growth-associated molecules, while they fail to do so in response to 
spinal axotomy. This may in part explain the lack of regeneration of corticospinal axons into 
peripheral nerve grafts placed in the spinal cord.^^ 

Conditioning Lesion 
As described in the previous chapter, peripheral, but not central processes of primary 

sensory neurons can regenerate after injury. This discrepancy is due both to the non-permissive 
character of the CNS environment, and the failure of central, in contrast to peripheral sensory 
processes, to induce the expression of growth-associated molecules upon CNS injury."̂ '̂ ' ̂  
Interestingly, central sensory processes show improved regeneration through a peripheral nerve 
graft if their peripheral axons are previously cut (conditioning lesion), i.e., if their axonal growth 
program is activated. In addition, a conditioning peripheral nerve lesion prior to dorsal col
umn injury results in some growth of ascending sensory axons into the spinal cord above the 
lesion. It is interesting to note that regenerating ascending sensory axons appear to grow 
across areas with strong expression of tenascin-C and CSPG, but avoid areas containing scar-as
sociated fibroblasts expressing Semaphorin3A, as well as areas with CNS myelin. ^ 

Intrisic Differences in Growth Potential 
Different subtypes of CNS neurons appear to have distinct growth potentials. For in

stance, peripheral nerve grafts implanted in the CNS promote regeneration of inferior olivary 
axons from deep cerebellar nuclei, but not from Purkinje cells. In addition, distinct classes of 
neurons react differendy to the same non-permissive CNS environment since biotin-dextran 
labeled ascending sensory axons, but not the subgroup labeled with CGRP, can regenerate after 
spinal cord crush in mice. 
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The CNS Environtnent Is Non-Permissive for Axonal Growth 

Cellular Response to Injury 
Failure of regeneration in the CNS is also due to an environment unfavorable for axonal 

growth. For instance, peripheral neurons that grow well in peripheral tissues often show only 
limited growth when transplanted into the brain or spinal cord of adult vertebrates. On the 
other hand, some injured CNS neurons can grow through peripheral nerve grafts transplanted 
as bridges into the brain or spinal cord of adult rats, but they cease to grow when they re-enter 
the CNS tissue.^^'' These experiments demonstrate that (1) adult CNS tissue is unfavorable 
for axonal growth and (2) some adult CNS neurons can extend long processes when provided 
with a permissive environment. 

Traumatic spinal cord injury results in many cellular and molecular changes that extend 
over months and years after injury. During the acute phase of injury (first few days), there is 
disruption of the blood-brain barrier, ischemia, edema, leading to neuronal death, degenera
tion of axons, astrocyte proliferation, and infiltration of immune cells and meningeal fibro
blasts. The subsequent secondary injury extends over a time course of several weeks and results 
in reactive gliosis, formation of a glial scar, strong inflammation, formation of a cystic cavity, 
and apoptotic cell death (for review see ref 48). 

The Glial Scar 
CNS injury results in a rapid glial response around the injury site, leading to gliosis and 

formation O^^L glial scar. Although the functional role of glial scarring is not completely under
stood, it has been suggested that it protects neuronal fiinction following injury. Astrogliosis 
may for instance contribute to the clearance of glutamate, restoration and maintainance of ion 
concentrations, and provide anti-inflammatory cytokines as well as neurotrophic support. 
However, glial scarring can also be detrimental since it may impede axonal regeneration and 
thus interfere with neuronal repair. Reactive gliosis involves astrocytes, oligodendrocyte pre
cursor cells, microglia/macrophages, leptomeningeal fibroblasts, and eventually forms a scar 
that is a major impediment to axonal growth. Reactive astrocytes are characterized by a number 
of cellular changes, including hypertrophy, generation of long and tighdy packed cytoplasmic 
processes, increased production of the intermediate filament proteins GFAP and vimentin, 
and up-regulation of a number of cell surface and extracellular matrix (ECM) molecules, in 
particular chondroitin sulfate proteoglycans (CSPGs) and tenascin (for review see refs. 6,53). 
The glial scar thus forms both a mechanical and molecular barrier to axon growth. Upon 
injury, microglial cells also rapidly divide, transform into phagocytic cells that remove neuronal 
and myelin debris, and release inflammatory cytokines, glutamate, and free radicals (reviewed 
in refs. 54,55). In addition, another type of glial cell is recruited to the site of injury and 
participates in the formation of the glial scar, the oligodendrocyte precursor cell (OPC) be
lieved to be an immature cell of the oligodendrocyte lineage. OPCs are present throughout 
the CNS and respond to injury by dividing, hypertrophy, and increase in chondroitin sulfate 
proteoglycan NG2 expression. Furthermore, if the injury disrupts the meninges and blood 
vessels, meningeal fibroblasts invade the lesion area. ' They contribute to the inhibitory 
nature of the glial scar by synthesizing semaphorin class III chemorepellent molecules, tenascin-C, 
and NG2 (reviewed in ref. 43). 

Wallerian Degeneration: Oligodendrocytes and Myelin Debris 
Following CNS lesion, the entire distal segment of the nerve undergoes Wallerian degen

eration, with desintegration of the distal axonal segment, degradation of myelin sheaths and 
the axon cytoskeleton, and the subsequent apoptotic death of oligodendrocytes around the 
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lesion site. This process occurs within the first few days after lesion and is probably the result of 
protease, such as calpain, activation. While axonal injuries in the PNS trigger the rapid re
cruitment of macrophages from the peripheral blood to remove axonal and myelin debris, 
the number of circulating macrophages that invade the CNS lesion site is considerably smaller. 
Instead, resident CNS microglia are activated, migrate into the lesion site, and progressively 
acquire properties of fully competent macrophages to finally phagocytose axon and myelin 
debris. CNS injury therefore results in the long-term persistence of myelin debris at the lesion 
site. Cell culture experiments have shown that both CNS myelin and myelin producing 
oligodendrocytes can inhibit axonal growth indicating that myelin debris may participate in 
the failure of nerve fibre regrowth after lesion. ' ^ Consistent with this view are the observa
tions that CNS injuries in very young mammals, i.e., before the onset of fibre myelination, 
allow axonal regeneration and often lead to fiill functional restoration. Thus the onset of myeli
nation and the presence of myelin-associated inhibitory proteins are considered to be involved 
in the developmental switch that marks the end of the growth permissive period. 

Injury-Induced Inflammation 
Traumatic spinal cord injury leads to hemorrhage, glial activation, ischemia, edema, and 

results in inflammation, cyst formation, and secondary loss of neurons and glia. These sec
ondary events may be mediated by microglia/macrophage activation and the subsequent re
cruitment of cells of the immune system, leading to the production of free radicals and the 
release of pro-inflammatory cytokines such as II-1, 11-6, TNFa, and TGFp. Inflammatory 
mediators do not appear to be sufficient to cause oligodendrocyte loss in white matter tracts 
that are spared after contusion lesion of the spinal cord, although many macrophages and 
neutrophils are present. ^ However, oligodendrocyte death has been observed primarily associ
ated with degenerating fiber tracts, i.e., where axons are also damaged. This death is apoptotic 
and depends on the activation of p75 and on the expression of Bax. ' Astrocytes may also be 
severely damaged and lost following CNS injury prior to the development of reactive gliosis.̂ ^ 
The most common early response to injury is astrocyte swelling. Astrocytic edema develops 
as early as 3h following trauma, and persists for as long as 3 days.^^ Cellular brain edema results 
from an entry of water into the intracellular compartment due to a dysregulation of ion ho
meostasis, leading to impaired neurotransmitter uptake and release of excitotoxic amino acids 
such as glutamate by reactive astrocytes. ̂ "̂  This contributes to neuronal and oligodendroglial 
death as well as to a transient loss of astrocytes.^^ However, inflammation, if properly con
trolled, may also have beneficial effects on secondary neuronal and glial cell loss, axonal re-
growth, and remyelination, thus promoting CNS repair. ' 

Several inflammatory cytokines have been suggested to be involved in mediating glial scar 
formation and thus impede regeneration. For instance, interleukin-1, TGFa, TGFp, TNFa, 
and IFN-y all have been shown to be increased in scar tissue after brain lesion, to promote 
astrocyte proliferation in vitro, and/or to augment gliosis in vivo. Moreover, a poor or slow 
appearance of inflammatory mediators in the CNS compared to the PNS may also contribute 
to the inefficient removal of myelin debris and thus add to the failure of regeneration in the 
brain. Interestingly, the expression of tenascin and of neurocan, a CNS-specific chondroitin 
sulfate proteoglycan with growth-inhibitory properties, is increased in highly purified rat astro
cytes treated with TGFp. '̂ '̂  However, the potential regulation of these and other myelin-as
sociated growth-inhibitors by inflammatory mediators remains to be evaluated ftirther. 

Species-Specific Responses to CNS Injury 
Among other mammals examined to date, mice exhibit a unique pathological response to 

spinal cord injury. This is probably due to a species-specific neuroinflammatory response that 
contributes to the formation of distinct tissue environments at the lesion site.^^ For instance, in 
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contrast to rats and humans in which spinal cord lesion leads to tissue loss and the formation of 
large cystic cavities, the lesion site in mice is filled with a dense connective tissue matrix made 
up of macrophages and fibroblasts, leading to revascularization of the tissue over time. In addi
tion, the genetic background also appears to be important. For example, the lesion area and 
cavitation following spinal cord injury are larger in FVB/N strains that are sensitive to kainate 
toxicity than in the kainate-resistant strains C57B1/6 and Balb/c.^ '̂̂ ^ interestingly, C57B1/6 
mice are deficient in peripheral axonal regeneration afi;er sciatic nerve lesion compared to Balb/c 
and other strains of mice. 

Molecular Components of Inhibition 

Myelin-Associated Inhibitors 
Growth inhibitors present in myelin seem to be involved particularly during the early 

phase that follows CNS injury, before the glial scar forms.^ Several myelin-associated proteins 
have been identified that are thought to contribute to a hostile environment for regenerating 
nerve fibers. These proteins include Nogo/RTN-4, myelin-associated glycoprotein (MAG), 
oligodendrocyte-myelin glycoprotein (OMgp), tenascin-R, and chondroitin-sulfate 
proteoglycans (CSPGs). The relative contribution of these proteins to the inhibitory activity of 
myelin has been a subject of intense study. The main in vivo evidence for an inhibitory effect of 
myelin on CNS regeneration comes from experiments using either antibodies that neutralize 
myelin inhibitory molecules,^^'^ or a peptide that specifically acts as a NGR antagonist,^^ 
Both approaches have improved the regeneration of corticospinal tract axons and have shown 
some fiinctional recovery after dorsal hemisection of the adult spinal cord (for recent reviews 
see refs. 3,5,92). 

MAG 
MAG belongs to the family of immunoglobulin-type lectins (I-type lectins) called siglecs, 

a sub-family of the immunoglobulin superfamily of cell adhesion molecules.^^ While all other 
siglecs play important roles in the immune system, MAG/siglec-4 is expressed by oligodendro
cytes and Schwann cells of the central and peripheral nervous system, respectively. In the CNS, 
MAG is found exclusively in the periaxonal myelin membrane, while in the PNS, it is also 
found in the outermost membrane of the myelin sheath. MAG was shown in a variety of in 
vitro studies to act as a bifimctional protein that either promotes or inhibits neurite outgrowth, 
depending on the age and type of neuron. For example, neurite outgrowth in response to MAG 
is enhanced in early postnatal dorsal root ganglion (DRG), and embryonic spinal cord neu
rons.^ In contrast, growth is inhibited in older DRG neurons and in neurons such as cerebellar 
granule cells, retinal, spinal and hippocampal neurons, i.e., cells that are myelinated in vivo. 
Changes in endogenous cAMP levels are thought to account for the developmental switch in 
the neuronal response to MAG in vitro.^^' To what extent MAG contributes to growth failure 
in vivo is less clear. The presence of MAG in the PNS, where regeneration can occur, appears to 
question the fiinction of MAG as an important inhibitor in vivo. Several studies, however, have 
demonstrated that peripheral nerve myelin is cleared rapidly and efficiendy by macrophages 
afi;er injury to the PNS (reviewed in ref. 100). PNS regeneration is restored in Wlds mice that 
have a slow myelin clearance and regenerate poorly, when they are crossed with MAG-deficient 
mice.̂ ^^ These studies support a role for MAG as an in vivo inhibitor. However, experiments in 
MAGnuU mice suggest that its inhibitory contribution in the CNS may be minor, as the extent 
of axonal regrowth in lesioned optic nerve and corticospinal tract is not, or only moderately 
enhanced in MAG-deficient mice.̂ "̂̂ '̂ ^̂  
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Nogo 
Perhaps the most widely studied myeUn-associated inhibitor is Nogo. Nogo was indepen-

dendy cloned in different laboratories^^ ' following the publication of a partial protein se
quence of a high molecular weight inhibitory myelin protein, bovine NI-220.^^^ Three distinct 
isoforms of Nogo, Nogo A, B, and C, are generated by alternative splicing (Nogo-A/B) and 
promoter usage (Nogo-C). They share a C-terminus of 188 amino acids (aa), called 
reticulon-homology domain (RHD). This sequence characterizes Nogo as a member of the 
reticulon (RTN) family of proteins (Nogo is RTN4). Reticulons are very old in evolutionary 
terms and occur in all eukaryotes including plants and fungi. ̂ ^̂  With the exception of Nogo/ 
RTN 4, little is known about the possible function of the other three known mammalian 
paralogues (RTNl, -2, -3). A hallmark is their association with the endoplasmic reticulum 
(ER) via an ER retention motif suggesting a role in membrane trafficking and/or sorting.^^^ 
Indeed, the majority of Nogo-A is found as an intracellular pool associated with the ER and the 
Golgi complex.^^^ While the physiological relevance of this intracellular distribution is not 
clear yet, cell membrane localized Nogo-A is best known for inhibition of neurite growth and 
induction of growth cone collapse. There are at least two domains of Nogo-A which exert 
inhibitory activity on neurons.^^ '̂̂ ^^ First, there is a loop-domain of 66 aa, which is spanned 
between two hydrophobic stretches and termed Nogo-66. It is located within the RHD and is 
thus common to all three Nogo isoforms. Second, there is a large stretch which is specific for 
Nogo-A (aa 174-979 for rat Nogo-A) and termed NiG or central inhibitory domain of Nogo-A. 
Recent work indicates that Nogo-A can adopt at least two different cell membrane topologies 
in oligodendrocytes with Nogo-66 always being exposed to the cell surface and with NiG 
facing once the cell surface, and once the cytoplasm.^^^ 

Oligodendrocytes of the adult CNS, specifically the innermost adaxonal and outermost 
myelin membranes, are the predominant, but not the only sites of expression of Nogo-A.^ ̂ "̂  
Interestingly, Nogo-A is also found in neurons, in particular during development.^ '̂̂ '̂ ^^ The 
localization of Nogo-A to mature oligodendrocytes fits well with its role as a myelin associated 
inhibitor of nerve fibre growth, whereas expression of Nogo-A in other tissues, mosdy neurons, 
suggests further functions in addition to nerve growth inhibition. 

Several lines of evidence demonstrate the relevance of Nogo to axon regeneration in vivo. 
Antibodies directed against Nogo-A can promote axon growth and plasticity in the adult brain 
(for a detailed review see ref 116). In addition, a Nogo-66 peptide antagonist increases axonal 
sprouting and functional recovery after spinal cord injury.̂ '̂̂  ^ "̂  Furthermore, overexpression of 
Nogo-A in PNS Schwann cells delays regeneration following sciatic nerve lesion.^^^ Similar 
results were obtained with transgenic animals overexpressing Nogo-C, the smallest Nogo isoform, 
supporting a general inhibitory role for Nogo.^^^ Analysis of Nogo knockout mice, however, 
has complicated the picture. Three different laboratories independently generated Nogo dele
tion mutants using different strategies. Insertion of a gene trap vector created a Nogo A/B 
mutant line that disrupted Nogo-A and -B expression, but Nogo-C expression remained unaf
fected. ̂ ^̂  These mice show substantial corticospinal sprouting proximal to a spinal cord dorsal 
hemisection, and regenerating corticospinal axons below the lesion. The regenerative effects 
seem to be restricted to young mice. A second Nogo-A mutant line using conventional gene 
targeting disrupting the large Nogo-A-specific exon 3.̂ "̂ ^ Although these mice lack Nogo-A, a 
compensatory increase in Nogo-B was detected in this strain, which may explain the signifi
cant, but more modest regenerative effects in these mice. Finally, two Nogo knockout strains 
were produced by Tessier-Lavigne and collaborators: one disrupted in Nogo-A/B without af
fecting Nogo C, and the other one disrupted in all three Nogo isoforms by deletion of their 
common C-terminal region. ̂ "̂̂  Surprisingly, neither of these strains showed improved axonal 
regeneration after dorsal spinal cord hemisection. To date, there is no clear explanation for the 
disparate findings from the various strains of Nogo knockout mice. One may speculate that 
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dififerences in genetic background or compensatory up-or down-regulation of unidentified 
inhibitory influences may be responsible. Backcrossing nogo deletion mutants to pure genetic 
background might therefore help to resolve this issue. In fact, a recent report on a nogo-a 
knock-out line in a pure (greater than 99%) genetic background^ ̂ ^ confirmed results on en
hanced axonal regeneration as described previously. Clearly, more in-depth analysis is re
quired to resolve these discrepancies. 

Oligodendrocyte-Myelin Glycoprotein (OMgp) 
The most recently identified myelin-associated protein that inhibits nerve fiber growth in 

vitro is the oligodendrocyte-myelin glycoprotein (OMgp).^^ ' This GPI-linked protein has 
been previously described as a relatively minor component of CNS myelin, being expressed by 
myelinating oligodendrocytes and localized to the glial-axonal interface of myelinated 
axons. ̂ ' ^ The OMgp gene is placed within an intron of the neurofibromatosis type I gene 
on the opposite strand, but until recendy, its precise function has remained unknown. Mouse 
and human OMgp are structurally very similar. The protein has a series of tandem leucine-rich 
repeats, like those in a variety of adhesion molecules and receptors, including the Nogo recep
tor NgR. Like Nogo, OMgp in the mouse brain is not only expressed by white matter oligo
dendrocytes, but also in diverse groups of neurons ^ such as the pyramidal cells of the hippoc
ampus, the Purkinje cells of the cerebellum, motoneurons in the brainstem and spinal cord. 
Whether and to what extent neuronally expressed OMgp contributes to axon growth inhibi
tion remains to be determined. 

Glial Scar-Associated Inhibitors 
Astrocyte-associated inhibitory molecules are possible candidates responsible for growth 

inhibition in the glial scar. This is supported by the demonstration that astrocytes, depending 
on culture condition, source, and age, have growth-inhibiting properties in vitro. Similarly, 
various astrocytic cell lines have been obtained that are either permissive or inhibitory to axonal 
growth in vitro. ̂ ^̂  ECM components of reactive astrocytes in the glial scar include laminin, 
fibronectin, matrix metalloproteases and their inhibitors, chondroitin sulfate proteoglycans 
(CSPGs) and tenascins. Oligodendrocyte precursor cells, oligodendrocytes, and meningeal cells 
that also make up the glial scar synthesize inhibitory molecules as well, among which CSPGs, 
the chemorepulsive axon guidance molecules semaphorins, and collagen. '̂ ^̂ '̂ ^̂  Many of these 
molecules have been shown to restrain neurite outgrowth of a variety of neurons in vitro and 
are therefore strong candidates as inhibitors of regenerative responses in the CNS in vivo. 

CSPGs 
Chondroitin sulfate proteoglycans (CSPGs) appear to be the main class of inhibitory 

molecules produced by activated astrocytes. Indeed, CSPGs are up-regulated in the glial scar 
upon injury and axon growth on astrocytic scars is inhibited in the presence of injury-induced 
proteoglycans.^^ '̂ '̂̂  In addition, axon growth can be increased on inhibitory astrocytic cell 
lines treated with chondroitinase ABC or grown in the presence of proteoglycan synthesis 
inhibitors. ̂ ^̂  

CSPGs are extracellular matrix glycoproteins carrying varying degrees of covalendy bound 
sidfated glycosaminoglycan (GAG) chains (for further details see reviews by refs. 140,141). 
The CSPGs brevican, neurocan, and versican are a subgroup of proteoglycans called lecticans/ 
hyalectans which share similar globular N-terminal hyaluronan-binding domains and C-ter-
minal selectin-like domains, with a central region which is not conserved among lectican fam
ily members. While the N-terminal domain of hyalectans interacts with hyaluronan, the 
C-terminal globular domains interact with tenascin C and tenascin R, surface molecules such 
as LI and N-CAM, integrins, and the ECM proteins fibulins.^ '̂̂  ^ The brain-specific link 
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proteins Brail and Bralll probably serve to stabilize hyaluronan/versican and hyaluronan/brevican 
aggregates, respectively, by binding to both molecules and forming hyaluronan/Bral/hyalectan 
complexes. ' 

Brevican is the most abundant lectican in the adult CNS. It is present in different isoforms, 
a secreted form primarily produced by neurons and deposited in perineuronal nets where it 
interacts with hyaluronan and tenascinR,^ and a GPI-linked form mainly produced by oligo
dendrocytes.^ '̂̂  ^ Brevican may also be expressed by adult astrocytes^ '̂̂ ^̂  and has been iso
lated from brain myelin. ̂ "̂̂  Neurocan is primarily expressed by CNS neurons. It undergoes 
proteolytic processing and is deposited in perineuronal nets where it binds to tenascin C and 
tenascin R. Versican exists in 4 isoforms resulting from differential splicing, VO, VI, V2, and 
V3 (reviewed in ref 141) Versican V2 is exclusively present in the CNS where it appears to be 
expressed both by oligodendrocyte precursor cells and mature oligodendrocytes. ̂ ^̂ '̂ ^ Versican 
V2 has also been isolated from bovine CNS myelin. ^ ' Versican V2 appears to be colocal-
ized with the brain-specific link protein Brail to the CNS white matter, especially at the nodes 
of Ranvier.^^ While Brevican, Neurocan, and Versican V2 are all CNS-specific, Versican VI 
has a wider tissue distribution, being expressed along neural crest pathways and in the adult 
aorta. The NG2 proteoglycan is a unique transmembrane CSPG that can also undergo pro
teolytic cleavage to produce a secreted form. NG2 is expressed mainly by oligodendrocyte 
precursor cells during brain development as well as throughout the adult brain. Its pos
sible expression on microglia and subpopulations of activated astrocytes remains to be con
firmed. Like versican VI, NG2 is not CNS-specific since it has recently been described to be 
present on Schwann cells and/or perineurial fibroblasts in peripheral nerve and to be increased 
at the site of sciatic nerve lesion.^ 

Brevican, neurocan, versican V2, and NG2 have all been described to be potent growth 
inhibitors in vitro. Furthermore, neurocan, brevican, and NG2 are up-regulated in the glial 
scar after various types of CNS lesions. Whether Versican V2 expression is modulated upon 
CNS injury is still controversial since a knife lesion in the cerebral cortex appears to increase 
versican V2 expression, whereas unilateral transection of the spinal cord leads to a decrease 
in versican V2 production.^^2 CSPGs may also be important growth-inhibitors for sensory 
neurons since grafts of adult sensory neurons can regenerate axons in degenerating white mat
ter tracts of the spinal cord, but not through a glial scar containing CSPGs. Evidence that 
CSPGs are key players in preventing CNS regeneration has also recendy been brought by the 
demonstration that extensive regeneration occurs after nigrostriatal axotomy or spinal cord 
lesion in rats treated with chondroitinase ABC, the enzyme which cleaves the GAG side chains 
of CSPGs.^^-^^^ CSPGs may therefore, together with other inhibitory molecules of CNS myelin, 
contribute to growth inhibition in the brain and spinal cord. 

Tenascins 
Tenascins are a family of large extracellular matrix glycoproteins including tenascin-C and 

tenascin-R that are expressed during development, down-regulated upon maturation, and 
reexpressed after injury (for more details see refs. 167-170) Tenascin-C is present both in the 
PNS and CNS, while tenascin-R is predominantly expressed in the CNS. Both tenascin-C and 
R, and the recently described new family member, tenascin-N, are repulsive for neurite growth 
in vitro. ̂ ^̂ '̂ "̂̂  Enhanced expression of tenascin C by activated astrocytes after CNS lesion may 
contribute to failed regeneration through the glial scar. Tenascin-R is expressed by oligoden
drocytes and by subpopulations of neurons where it is deposited in perineuronal nets. Upon 
injury, it accumulates around the lesion site but is down-regulated in motoneurons of the 
spinal cord.^^^ 
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Semaphorins 
Semaphorins are one of the largest families of axon guidance molecules.^ Sema3A, a 

chemorepellent during nervous system development, is up-regulated in meningeal fibroblasts 
in the glial scar and is therefore likely to contribute to the inhibitory properties of this tis
sue. ̂ '̂ '̂ ' ^^ Sema3A, but not Sema3C, has recently been demonstrated to inhibit neurite out
growth of embryonic DRGs in vitro. ̂ ^̂  Sema4D, a membrane-bound semaphorin, has been 
shown to induce the collapse of growth cones of CNS axons and to be up-regulated upon CNS 
injury.^^^ In contrast to Sem3A, Sema4D is expressed by oligodenrocytes and myelin and is 
therefore a newly identified myelin-associated growth inhibitor. More recently, an additional 
member of the semaphorin family, Sema5A, has been found to be expressed by oligodendro
cyte lineage cells and to impede axon growth from adult optic nerve explants.^^^ 

Transmission of Inhibitory Signals 

Receptors for Myelin-Associated Inhibitors 
A key step in understanding how axons respond to inhibitory influences is the identifica

tion of axonal receptors that bind myelin-associated inhibitory molecules. So far, NgR is the 
only known high affinity neuronal receptor originally identified as a binding molecule for 
Nogo-66.^^^ NgR is a GPI-linked neuronal protein that consists of eight consecutive leucine-rich 
repeat (LRR) domains followed by a carboxy-terminal LRR. NgR is not only necessary to 
render neurons sensitive to Nogo-66, but its axonal expression pattern is consistent with NgR 
acting as a functional Nogo receptor.^^^ Unexpectedly, recent studies have identified NgR as a 
component required also in the signalling of the inhibitory effects of MAG and OMgp.̂ "^ '̂ ^̂ '̂  
Thus, the same molecule acts as a high affinity binding receptor for three different 
myelin-associated ligands. This finding is somewhat surprising since MAG, Nogo- 6G, and 
OMgp are structurally unrelated proteins. Based on the crystal structure of the NgR 
ligand-binding domain, it was proposed that the highly symmetrical arrangement of conserved 
aromatic residues on the concave face of the curved ectodomain could provide generic binding 
sites for multiple ligands.^^^' ^ Future studies employing site-directed mutagenesis of NgR 
will be necessary to gain fiirther insight into the promiscuous nature of the NgR binding 
protein. Independently, however, the NGR homolog NgR2 was presented as another receptor 
for MAG.̂ '̂̂  Like all NgR family members it is a GPI-linked membrane protein, but unlike 
NGR it is selective for MAG by binding MAG but not Nogo-66. 

Although NgR is essential for binding of the myelin-associated inhibitors, it was pre
dicted early on that it signals through the action of coreceptors, one of which was identified as 
the transmembrane neurotrophin receptor P75NTR 188,189 ^ ^ ^ ^ e r constituent was revealed to 
be LINGO-1, a nervous system specific leucine rich repeat (LRR) and Ig-domain containing 
transmembrane protein with a very short intracellular moiety (38 aa; (190). Thus, while NgR 
is the interacting subunit of this receptor complex, LINGO-1 and especially p75^^^ have been 
shown to be essential for relaying the inhibitory signal across the membrane. Importantly, the 
NgR/p75 complex interacts with and mediates the effect of Nogo-66, MAG, and OMGp, 
but not of amino-Nogo or CSPGs.^ '̂ ^̂ '̂ ^̂ '̂ ^̂  The knowledge about the molecular interac
tion of the three main inhibitors of myelin with the same NgR/p75 receptor complex 
implies that there is functional redundancy between these inhibitors. This redundancy is likely 
to be even greater if the three inhibitors have the same or overlapping binding sites on NgR. 
This may explain previous findings in MAG or Nogo deficient mice, where no or only a small 
amount of spontaneous long distance axonal regeneration was observed. Possibly the presence 
of other, unblocked ligands for NgR/p75 , or of other unidentified receptors, can still pre
vent most axons from regenerating. Most likely, the picture of myelin inhibitors and their 
signalling machinery is still far from complete. Recently, TROY/TAJ has been identified as 



64 Brain Repair 

another constituent of a myelin inhibitory receptor complex. ̂ ^̂ '̂  TROY/TAJ is an orphan 
TNF receptor family member and p75 homologue which apparently can replace the 
neurotrophin receptor in the NgR/p75 /LINGO-1 complex and mediate the inhibitory 
effects of myelin inhibitors. Other than p75^ , TROY/TAJ is broadly expressed in the post
natal and adult CNS which might explain the responsiveness of neurons to myelin inhibitors 
that do not express p75 . 

Moreover, MAG has also been described to bind to neurons via a sialic acid linkage in
volving the gangliosides GTlb and GDI a, a subclass of glycosphingolipids containing one or 
more sialic acid residues. These gangliosides have therefore been proposed to act as functional 
MAG receptors involved in inhibition. ̂ ^̂ '̂ ^̂  Further evidence that gangliosides may be in
volved in mediating growth inhibition is supported by the finding that clustering of ganglio-
side GTlb with antibodies in the absence of ligand is sufficient to inhibit neurite out
growth. ' However, sialic-acid-dependent binding of MAG to neurons is neither necessary 
nor sufficient for MAG-mediated inhibition of axonal regeneration since binding of MAG to 
NgR-expressing cells is unaffected by removal of sialic acid residues, and since the interaction 
between MAG and NgR does not require sialic acid. Nevertheless, MAG binding to gan
gliosides may potentiate its inhibitory effects by clustering signaling molecules at the intracel
lular membrane face. 

Signalling Pathways of Myelin-Associated Inhibitors 

Rho-GTPases andRho Kinase 
Consistent with the redundancy of myelin-associated growth inhibitors is the finding that 

the effects of all three inhibitors can be overcome by altering certain intracellular signalling 
molecules. One such molecule is the small GTPase, Rho. Rho family GTPases transduce extra
cellular signals to the actin cytoskeleton to modulate growth cone motility. The most intensely 
studied members are Rho, Rac, and Cdc42. Rho GTPases cycle between an active GTP-bound 
state and an inactive GDP-bound state. This transition is positively or negatively controlled by 
several GTPase activating proteins (GAPs), by guanine nucleotide exchange factors (GEFs), 
and by guanine nucleotide dissociation inhibitor (GDI). These modulators maintain Rho 
GTPases in their inactive GDP-bound state. In general, activation of Cdc42 and Rac is 
associated with growth cone attraction via promotion of F-actin polymerization in filopodia 
and lamellipodia. In contrast, activation of RhoA causes growth cone repulsion and collapse, 
possibly by enhancing retrograde F-actin flow. 

Involvement of RhoA in myelin-dependent outgrowth inhibition and growth cone col
lapse is supported by various findings. For instance, inactivation of RhoA by the clostridial 
toxin C3 transferase protects CNS neurons from myelin-induced growth cone collapse and 
outgrowth inhibition in vitro. '̂"̂  ^ A problem with C3 transferase however, is that it is poorly 
membrane permeable. C3 could penetrate injured axons soon after spinal cord injury, but this 
may be limited to a short period after the trauma. Application of C3 in vivo has been described 
to promote regeneration after optic nerve lesion or spinal cord injury.'̂  '̂ ^̂  However, the marked 
improvement in function was seen already two days post-injury, i.e., too early to be accounted 
for by axonal regeneration. Whether these early effects are the consequence of an early effect of 
C3 on neuronal survival remains to be confirmed. 

Biochemical studies have shown that amino-Noeo-A, Nogo-66, MAG, Versican V2 and 
presumably other CSPGs direcdy activate 

I^„Ai9i.20i.S)3,204 ^ j concomitantly inactivate Rac 1. 
Although it is reasonable to assume that a specific GEF is recruited by activated RhoA during 
neurite inhibition, the identity of such a guanine nucleotide exchange factor remains specula
tive. However, the guanine nucleotide dissociation inhibitor Rho-GDI seems to directly inter
act with p75 , and is enhanced by binding of myelin-associated inhibitors to NgR.^^^ This 
suggests a model whereby Rho-GDI is sequestered by p75^ , leading to Rho activation. This 
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model is consistent with previous results demonstrating that p75^ activation stimulates Rho 
. • 704 

activity. 
RhoA acts on several downstream effectors to regulate the underlying cytoskeleton. One 

of these effectors, termed Rho kinase, or ROCK, has been implicated in neurite outgrowth 
inhibition by CNS myelin components.^^^ Treatment with Y-27632, an ATP competitive an
tagonist that blocks ROCK activation, promotes neuronal outgrowth on myelin-associated 
inhibitory substrates in vitro as well as in in vivo models of spinal cord injury.̂ ^ '̂̂ ^ '̂ '̂ ^̂  
Moreover, glial-scar derived inhibitors such as CSPGs, can also be blocked by inhibitors of 
ROCK.2^^ How ROCK induces neurite retraction is a complex issue because it has been shown 
to phosphorylate and signal through multiple downstream effectors. ^̂  In summary, regardless 
of its mechanism of activation, RhoA seems to be the point of convergence for all presently 
identified myelin and glial scar derived inhibitors and might therefore be an attractive molecu
lar target for small molecules that interfere with its activation. One caveat however is that small 
GTPases and their effector proteins are universally expressed and involved in regulating many 
distinct cellular functions such as cell migration, proliferation, and adhesion. Thus, therapeu
tically manipulating RhoA and/or ROCK to improve axonal regeneration, may negatively in
fluence other physiological events. 

cAMP/PKA 
Neuronal cAMP levels decrease spontaneously and sharply with development at a time 

that correlates with their loss of regenerative ability and the appearance of an inhibitory re
sponse to MAG and myelin. Furthermore, elevation of intracellular cAMP levels by 
intraganglionic administration of cAMP overcomes inhibition by MAG and myelin and results 
in extensive regeneration of injured dorsal column axons. ' This process initially involves 
phosphorylation of PKA, but eventually becomes PKA-independent.^^^ The precise molecular 
mechanisms are not yet fully understood, but are presumably transcription dependent which 
would also explain the time period that is required for cAMP elevation to come into effect. 
Importandy, other than with RhoA, a variety of low-molecular-weight compounds are avail
able which modulate the activity status of the cAMP-PKA signalling module. One of them, 
rolipram, a phosphodiesterase inhibitor which allows accumulation of cAMP by blocking its 
degradation, was reported to promote axonal regeneration and functional recovery upon spinal 
cord injury, even in a post-lesion manner.'̂ ^^ 

Experimental Strategies to Promote Nerve Regeneration Following 
CNS Injury 

Several experimental strategies have been developed to overcome inhibition after CNS 
injury. They involve the use of antibodies to neutralize growth inhibitors, Nogo peptides bind
ing to NGR and blocking its activity, and blockers of the intracellular pathways mediating 
growth inhibition (for recent reviews see refs. 3,5,213,214) In addition, rather than blocking 
inhibitors, receptors, or their signaling pathways, growth of dorsal column ascending sensory 
axons has been improved by intraganglionic administration of cAMP^̂ '"̂ ^̂  or by application of 
rolipram.'̂ '̂̂  To decrease its inhibitory properties, the biochemical composition of the ECM 
has also been altered by treatment with chondroitinase ABC, the enzyme which cleaves the 
GAG side chains of CSPGs. ' Furthermore, attempts to reduce glial scarring have been 
made using pharmacological agents to decrease collagen deposition in the ECM."̂ "̂ ^ Matrix and 
ADAMs metalloproteinases, enzymes that can degrade ECM proteins and CSPGs, are also 
potential candidates for remodeling the glial scar. Other strategies to promote CNS repair 
including application of neurotrophic factors, implantation of olfactory bulb ensheathing cells, 
or grafting of peripheral nerve, have recently been reviewed elsewhere."̂ ^̂ '̂ ^̂ '"̂ "̂ '̂"̂ ^̂  
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The discovery that the NgR/p75NTR complex binds and mediates the effects of the three 
most prominent myeUn-derived Ugands has made this receptor complex a very attractive target 
for therapeutic drug development. Therapeutic candidates for targeting NgR include protein 
antagonists and small-molecule antagonists, but an antagonist of NgR that blocks binding of 
all three myelin proteins has not yet been found. One likely explanation is the lack of compel
ling evidence for the existence of a single molecular binding site on NgR for all myelin inhibi
tors. Recently, inhibition of NgR was achieved utilising a peptide corresponding to residues 
1-40 of Nogo-66 (NEPl-40) that acts as a competitive antagonist of the receptor in vitro and, 
more importantly, promotes axonal regeneration and functional recovery following CNS in
jury in vivo. A soluble version of a recombinant NgR could also be a possible solution to 
effectively inhibit the action of all three myelin proteins interacting with NgR Several inde
pendent reports have shown that the soluble full length NgR ectodomain lacking the GPI 
anchor, and an C-terminally truncated NgR ectodomain comprising the ligand binding do
main alone (NgR-310), are potent antagonists of neurite outgrowth inhibition mediated by 
Nogo-66, MAG and whole myelin in vitro^̂ '̂"̂ ^̂  and in vivo.^^^ Similarly, preventing the in
teraction of NgR with its coreceptor p75 could be an alternative site for intervention to 
promote axonal regeneration. The recent finding that the interaction between p75 and 
Rho- GDI requires the fifth alpha helix of p75 , has opened additional strategies. A peptide 
ligand, Pep5, for instance, has been shown to bind this helix and has been used to inhibit the 
interaction between Rho-GDI and p75^ .̂ ^̂  This peptide blocks both Rho activation and 
the growth inhibitory effects of MAG and Nogo on cerebellar granule cells. Pep5 therefore has 
potential as a therapeutic agent to block inhibitory cues that impede regeneration in the CNS. 

Increased deposition of a number of ECM molecules such as collagen IV and CSPGs 
during glial scar formation is considered to contribute to the local impediment of axonal growth. 
Two main in vivo approaches have been taken to reduce the inhibitory properties of the ECM 
(1) reduction of collagen deposition, and (2) enzymatic digestion of CSPGs. Injection into a 
fimbria fornix lesion of the iron chelator 2,2 -dipyridine (DPY), an inhibitor of collagen syn
thesis and triple helix formation, significandy reduced lesion-induced collagen deposition. This 
effect was correlated with a pronounced regeneration of the lesioned fimbria fornix axons."̂ ^̂  
However, in a spinal cord lesion model in which basement membrane deposition is more 
extensive, injections of DPY did not result in sufficient reduction in collagen deposition to 
allow regrowth of corticospinal tract axons."̂ ^ '"̂ ^̂  Furthermore, because basal membrane ECM 
proteins such as collagen IV are structural elements of blood vessels, it is uncertain whether the 
vascular blood supply is compromised by the application of DPY to the injured area. To re
move additional inhibitory components of the glial scar, the bacterial enzyme Chondroitinase 
ABC (ChABC) was used to digest CSPGs. ChABC hydrolyzes glycosaminoglycan side-chains 
of CSPGs and has been shown to block the inhibitory activity of CSPGs in vitro. Application 
of ChABC via a gelfoam to the contused dorsal thoracic cord resulted in decreased CSPG 
immunoreactivity, but no axonal regrowth was reported. "̂^ Some growth of spinal cord neu
rons into a peripheral nerve graft was achieved when gelfoam soaked with ChABC was placed 
on the interface between the thoracic hemisection and a peripheral nerve graft.̂ ^5 More re
cently, Bradbury and collaborators have reported that intradiecal administration of ChABC 
after dorsal column lesion in rats, could successfully promote regeneration of corticospinal 
tract axons as well as functional recovery of locomotor and proprioceptive ftinction. 

Conclusion 
In the last few years, enormous advances have been made to revise the dogma that axons in 

the adult mammalian CNS cannot regenerate after injury. In various experimental CNS, and 
in particular spinal cord lesion models, administration of neurotrophic factors, implantation of 
olfactory ensheathing cells, blockade of myelin-associated growth inhibitors and/or their re-
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ceptors, or removal of inhibitory extracellular matrix molecules by enzymatic treatment has 
had very encouraging success, leading to some functional recovery. Several of the experimental 
interventions that promote axonal regeneration have also enhanced compensatory sprouting of 
nonlesioned nerve fibers, resulting in innervation of denervated targets (see review ref. 237). 
This type of plasticity may therefore contribute to functional recovery after injury. Aberrant 
sprouting of sensory fibers, for instance, may however lead to debilitating pain. Hence, a deli
cate balance between beneficial versus detrimental sprouting/regeneration needs to be achieved 
for optimal outcomes. Although the final aim for the treatment of human spinal injuries is to 
promote long fiber regeneration, restore myelination, and to achieve appropriate connectivity, 
a more limited repair may already improve the quality of life of paraplegic patients. Thus, the 
many promising results obtained in the last decade offer new strategies for developing clinically 
effective therapies, either alone or in combination, for many patients. 
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CHAPTER 5 

The Role of lonotropic Purinergic Receptors 
(P2X) in Mediating Plasticity Responses 
in the Central Nervous System 

Fulvio Florenzano, Maria Teresa Viscotni, Fabio Cavaliere, Cinza Volonte 
and Marco Molinari 

The past few years have witnessed increasing interest in the field of purinergic signalling 
and have recognised ATP as an extracellular messenger eliciting a wide array of 
physiological effects in several different tissues. These effects range from simple bio

logical events such as neurotransmission, secretion and vasodilatation, to complex biological 
phenomena such as development, cell death and regeneration. Purinergic actions are mediated 
by specific receptors, either for purine nucleotides (P2 receptors for ATP), or for purine nucleo
sides (PI receptors for adenosine). The present review will discuss the involvement of 
purinoceptors (particularly P2X subtypes) in the CNS reaction to epigenetic insults. After 
briefly reviewing in vitro data, we will describe recently obtained results demonstrating modu
lation of the P2X receptor subunits following CNS damage in in vivo models. In addition, the 
role of P2X receptor in neural plasticity and in neuronal responses to damage will be discussed. 

Neurobiology of P2 Receptors 
Some properties of the adenosine 5'-triphosphate (ATP) molecule make it an ideal trans

mitter in cell-cell signalling: it is small and quickly diffusing, highly unstable and not abundant 
in the extracellular space. The ATP signalling function and the vesicular release of ATP during 
excitatory transmission have been definitively demonstrated in PNS neurons ' and in CNS 
neurons.^' The diffusion and the actions of the nucleotide ATP in the extracellular space is 
terminated by ectoATPases.^ This family of enzymes sequentially hydrolyses phosphate groups 
until the nucleoside adenosine is liberated. ' 

In the nervous system, P2 receptors are widely expressed and two subclasses have been 
identified: P2X, fast ionotropic receptors responsible for fast excitatory neurotransmission, and 
slow P2Y, G-protein coupled metabotropic receptors.^'^ Both receptor classes have been re
ported in the PNS and CNS. '̂  Changes in the expression of purinergic receptors are fre-
quendy observed, not only as a function of neuronal maturation and differentiation, ^̂ '̂ ^ but 
also in different pathological conditions, hence justifying the exploitation of purinergic ago
nists and antagonists as potential therapeutic agents. '̂ ' P2X receptor structure and function 
have been mainly investigated in in vitro models. They have been reported to mediate fast 
synaptic transmission, neuromodulation, '̂  cell death, differentiation and to act as trophic 
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agents. Recently, in vivo studies demonstrated P2X involvement in many different physi
ological functions, ranging from controlling normal male reproduction'^^ to central chemosen-
sory signalling. ̂ "̂ '"̂ ^ 

Functional Properties of the ATP Gated P2 Receptor Channels 
P2X receptors are cation-selective channels mediating fast excitatory synaptic transmis

sion (within milliseconds) and presenting low affinity, in the |LLm range, for ATP. These recep
tors present almost equal permeability to Na+ and K+ and substantial Ca2+ permeability.^' '̂  
Seven distinct P2X subunits (P2Xi_7) have been cloned from mammalian species and all can 
form either homomultimer or heteromultimer combinations, of which the minimum stoichio
metric ratio is a trimer."^ '̂ ^ Different receptor subunit combinations yield different receptor 
phenotypes allowing diversity in transmission signalling. P2X receptor phenotypes differ in 
agonist and antagonist selectivity, desensitisation and other channel properties. ' ' Therefore, 
it has been suggested that different P2X receptor combinations may be linked to different 
physiological functions."^ '̂'̂ ^ This hypothesis was confirmed in recent studies on the P2X phe
notypes expressed by peripheral neurons.'^'^'''^'^ Dorsal root ganglion (DRG) neurons present 
differences in P2X receptor combinations associated with differences in cell sensitivity to cap
saicin. '"̂ ^ In particular, homomeric P2X3 receptors are mainly expressed in nociceptive 
capsaicin-sensitive small DRG neurons, while the heteromeric P2X2/3 receptors are mainly 
expressed in non-nociceptive capsaicin-insensitive medium DRG neurons.^^ Immunohis-
tochemical and in situ hybridisation studies have demonstrated the co-expression of different 
P2X receptor subtypes in sensory trigeminal, dorsal root and nodose ganglion neurons, ' '"̂ ^ as 
well in CNS neurons. ' ' Peripheral neurons present considerable heterogeneity in their physi
ological responses to ATP It has been proposed that this heterogeneity depends on varying 
proportions of homomeric and heteromeric receptors in the different cell populations.^' '̂ ^ 

Cellidar expression of different P2X receptor phenotypes seems to be a common feature 
in the nervous system. However, also in those cells that express several P2X receptor subunits, 
the overall receptor functional properties correspond to a single phenotype. ' Therefore, it 
has been suggested that, in the case of multiple expression of different subunits, a particular 
one dominates cell functioning. Consistendy, it has been argued that the receptor subunit 
profile may regulate the receptor function through modifications of the receptor molecular 
properties. 

P2X Receptors: Interactions with other Transmitter Systems and Regulation 
ofCa^^ Flow 

Despite the lack of structural homologies to the aminoacidic sequences of other ligand 
gated channels, similarities in activation kinetics and permeability of P2X receptors to nico
tinic and glutamate receptor superfamilies have been evidenced. '̂̂  The above similarities, the 
wide expression in the nervous system and the presence of many well known P2X receptor 
pharmacological agonists and antagonists^^ led to the proposal that P2X receptors are a third 
class of ligand gated channels in the nervous system. In particular, the interest of investigators 
has been attracted not only by the P2X receptor similarities to other families of ligand gated 
channels, but also by the P2X receptor capacity to influence the functions of the other receptor 
families. Indeed, interactions between ATP and ACh receptors on the postsynaptic side have 
been suggested since the postsynaptic response, during co-transmission of ATP and Ach, is not 
the linear sum of the two individual synaptic potentials.^ '̂ ^ These studies indicated that the 
concept of receptor functional independence might not apply to P2X receptors. In a recent 
review Khakhetal^ proposed the existence of structural and functional interdependence of the 
P2X receptors with other families of receptors starting from the demonstration of the interac-
tion/co-assembly of P2X receptors with other families of ligand gated channels. 
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The co-release of ATP and difFerent neurotransmitters on the presynaptic side,2'^^andthe 
contribution of P2X currents to glutamate currents^ on the postsynaptic side have raised some 
interesting questions about ATP involvement in the generation of action potentials. It has been 
reported that the currents carried out by the P2X receptors are physiologically important for 
neurotransmission at least in the medial habenula and in sympathetic neurons.^^'^ Neverthe
less, when compared to the currents elicited from glutamatergic or cholinergic inputs, P2X 
currents are relatively small; this suggests a minor contribution of P2X receptors to the genera
tion of action potentials. Taken together, these data suggest that P2X receptors do not directly 
affect the generation of action potentials, but more likely provide a channel for the modulation 
of cell excitability and neurotransmission.^' 

One of the most interesting functions of P2X receptors is their influence on Ca2+ influx 
and on the release of neurotransmitters. In cultured DRG neurons, Ca2+ influx through P2X 
receptors was shown to induce glutamate and substance P release.^ ATP induced presynaptic 
currents in cholinergic presynaptic nerve terminals and co-release of the two transmitters were 
demonstrated in the chicken ciliary ganglion. ^ In cultured cerebellar granule neurons, extra
cellular ATP induces aspartate release. Of particular relevance is the P2X receptor mediated 
Ca2+ entry observed after co-release of a fast excitatory and a fast inhibitory transmitter such as 
ATP and GABA. This experiment was the first demonstration of a co-release of excitatory and 
inhibitory transmitters from the same presynaptic cell^ ' ^ and marshalled some very interest
ing aspects regarding the modulation of the Ca2+ concentration in a hyperpolarised cell."̂  In 
cultured spinal dorsal horn neurons, ATP and GABA co-release was shown to lead to a mem
brane hyperpolarisation because of the greater conductance of the GABA receptor activation.^ 
Neither voltage gated nor ligand gated channels, such as AMPA or NMDA receptors, permit 
Ca2+ influx under hyperpolarised conditions. On the other hand, due to the driving force for 
Ca2+ influx through the open P2X voltage independent channel, Ca2+ influx through the 
P2X receptors is maximised. In the same conditions, depolarisation owing to Ca2+ entrance 
through P2X receptors is minimal. Nevertheless, it is possible to achieve a fast local rise in 
Ca2+ under completely difFerent conditions from those typical of other known Ca2+ signal
ling pathways. All the above considerations led Robertson et al to suggest a possible synaptic 
physiological role of P2X receptor mediated currents mainly in modulating Ca2+ influx, rather 
than in cell depolarisation. 

There is general agreement about the importance of Ca2+ concentrations in inducing 
plasticity responses. Ca2+ spatiotemporal patterns at presynaptic and postsynaptic sites are 
critical for different downstream signalling functions. DifFerent forms of short-term syn
aptic plasticity phenomena, such as facilitation, augmentation, and post-tetanic potentiation, 
depend on pre-synaptic Ca2+ levels. Similarly, long-term synaptic functional changes, such 
as LTP and LTD, are related to postsynaptic Ca2+ content. ^ Presynaptic or postsynaptic el
evation of Ca2+ can be elicited by Ca2+ release from intracellular sources or/and by Ca2+ 
entry from extracellular space through ligand gated channels. The best characterised sources 
for Ca2+ entry are glutamate gated receptor channels and voltage gated calcium channels. In 
addition, as indicated previously, P2X receptor channels can play a crucial role by mediating 
Ca2+ entry in conditions completely difFerent From those oF the other Ca2+ sources. In gen
eral, P2X receptors present substantial permeability to Ca2+ ions; this permeability is signifi-
candy modulated by their subunit composition, and P2X receptors can act on both presynap
tic and postsynaptic sides."̂ '̂ ^ However, as indicated in the previous paragraph, P2X receptors 
elicit interactions with the other Families oF ligand gated channels which can modulate intrac
ellular Ca2+ concentration and, consequendy, cell plasticity responses. 

P2X and Neuronal Morphological Plasticity 
The influence oF activity on sculpting specific patterns oF dendritic arbors and on the 

development oF circuits in the nervous system is among the most interesting and puzzling 
scientiFic topics. Spine plasticity and dendritic remodelling are considered the morphological 



80 Brain Repair 

manifestations of activity-dependent changes in neuronal behaviour. ' '̂̂ "̂  The importance of 
P2X in mediating activity-dependent morphological adaptations is suggested by recent data 
demonstrating inducible redistribution of the neuronal localisation of P2X receptors.^^'^^ ATP 
application has been shown to induce a redistribution of P2Xi receptor clusters in cultured 
superior cervical ganglia neurons,^^ in Xenopus oocytes and in human embryonic kidney 293 
cells. In these studies, P2Xi-GFP adenoviral infection was used to follow the time course of 
P2Xi receptor clustering in cytoplasmatic membranes. After a few seconds of ATP exposure, 
P2Xi-GFP receptor chimera spontaneously form synaptic-size clusters in the plasma mem
brane that are dispersed and, subsequently, internalised. 

Further, changes in P2X2 receptor subcellular localisation affecting cellular morphology 
were reported in ex-vivo preparations.^^ In untreated dissociated cultures of embryonic hip-
pocampal neurons, P2X2 receptor was distributed mainly in the cytosolic domain. Following 
ATP administration, P2X2 receptor aggregates formed varicosities which migrated over a few 
micrometers into neuronal filopodia, affecting dendritic morphology.^ The observed redistri
bution was reversible and not direcdy linked to cellular depolarisation. The above data demon
strate that ATP availability influences P2X receptor cellular distribution and that changes in 
P2X receptor localisation are able to modify the morphological cellular aspect in in vitro sys
tems. Confirmation of these data in in vivo models would be very interesting. Activity-dependent 
changes in dendritic morphology are of paramount importance for understanding the mecha
nisms that control adaptation in the mature CNS, as well as during development^ or in 
pathological conditions. ̂ ^ 

P2X Distribution and Localisation 
Inferences about the physiological functions of P2X receptors can be drawn from their 

CNS distribution features, from the cellular phenotypes expressing P2X receptors and from 
P2X receptors sub-cellular localisation. Early in situ hybridisation studies showed widespread 
expression of P2X receptor subunits in the CNS. With the availability of P2X subunit specific 
antibodies, the presence of P2X receptors in the CNS was confirmed and characterised using 
immunocytochemical methods. In one extensive immunocytochemical study on P2X2 recep
tor subunit expression in the CNS, different structures were demonstrated to express this sub-
unit. ̂ ^ The pattern of the P2X2 receptor CNS expression is extremely widespread and includes 
broad sectors of the cerebral cortex, different rhinencephalic structures, many thalamic, hypo
thalamic and basal ganglia nuclei as well as sensory, motor and integration nuclei of the brainstem 
and the cerebellar cortex. This wide distribution and the evidence that different systems rely on 
P2X2 receptor signalling strongly suggest its involvement in basic cellular mechanisms. 

The topographical distribution of P2Xi.6 receptor subunits in the rat and common mar
moset hindbrain was investigated by using antibodies directed against an extracellular portion 
of the different receptors. ̂ ^ This study showed much wider distribution of all six P2X receptor 
subunits than previously reported. ^ Within this general pattern, distinctions were found 
between brain nuclei and P2X receptor subunits expression. The medial vestibular nucleus and 
the nucleus of the solitary tract tended to present the highest level of positivity for all antisera 
in both species. These findings was recently confirmed in a study specifically devoted to the 
characterisation of P2X1.5 receptor subunits expression in the nucleus of the solitary tract. Of 
particular interest is the evidence that different subunits are differently expressed within the 
various subdivisions of the nucleus suggesting a possible correlation between P2X subunits 
expression and neuronal phenotype within the nucleus. 

Furthermore, in agreement with the evidence that exogenously applied ATP causes hemo
dynamic changes in vivo, ' immunopositive neurons for different P2X receptor subunits 
were reported in many brainstem structures involved in the central regulation of the cardio
vascular mechanisms.^^ In addition, P2X receptor subunit immunopositivity was reported 
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in different sensory (medial vestibular nucleus, spinal trigeminal nucleus) and motor (hypo
glossal and motor trigeminal nuclei) brainstem structures. These latter findings are consistent 
with the hypothesised P2X receptors role in sensory ' ^ and motor^^' functions. 

The possible involvement of purinergic receptors in hormone release and in membrane 
recycling was proposed in a recent study demonstrating the expression of the P2X(5 receptor 
subunit in neurons and axons of the rat hypothalamo-neurohypophysical system. 

Subcellular localisation is another important aspect which can help assess the P2X recep
tor actions on cellular functions. P2X receptor subunits were demonstrated by immunocy-
tochemistry in neuronal somata, dendrites, axons and terminals. ^'5^'^^' '̂ ^ Interestingly, im-
munohistochemical and ultrastructural studies showed P2X2,4,6 receptor subunits targeted to 
subpopulations of the dendritic spines of Purkinje and CAl pyramidal neurons.^^ In particu
lar, in the Purkinje cells this arrangement of purinergic receptor subunits was opposed to par
allel fibre terminals and was not observed in the spines opposed to climbing or basket termi
nals. This specificity in the subunit distribution among populations of spines within the same 
neuron was also observed in CAl pyramidal neurons. In the latter case, only spines postsynap
tic to Shaffer collateral terminals contained P2X2,4,6 receptor subunits. It is worth stressing 
that both systems are known to be capable of a high level of plasticity and thus the above 
mentioned data strongly suggest the involvement of P2X receptors in controlling adaptation of 
glutamatergic transmission. Further support for the importance of P2X receptors control over 
synaptic fiinctions derives from immunogold electron microscopic data showing both presyn
aptic and postsynaptic distribution of the P2X2,4,6 receptor subunits.^^ Therefore, P2X recep
tors can affect presynaptic modulation of transmitter release as well as postsynaptic excitatory 
fast currents. 

P2X Signalling and Development 
Activity-driven Ca2+ influx into the cell can lead to the induction of the new gene tran

scription^^ required to shape and wire the brain during development. Ca2+ spikes and waves 
directly control neuritogenesis in cultures of amphibian spinal neurons.^^'^^ Intracellular Ca2+ 
spikes can modulate neuronal migration^^ or neurogenesis of neocortical precursor cells. 
P2X receptors have been repeatedly indicated to play a role in development.^^' Therefore, 
Ca2+ influx through the P2X receptors appears to be a promising field of CNS development 
research. In the chick embryo P2X receptor subunits are expressed at early stages of skeletal 
muscle development; the expression disappears before the stage in which myoblasts fuse to 
form myotubes. P2Xi and P2X2 receptor subunits were shown to play a key role in the 
development of afferent and efferent innervation and morphogenesis of the cochlea.^ '̂̂ ^ P2Xi 
receptor subunit expression presents specific localisations in definite developmental time win
dows; from El6 to P6 in the spiral ganglion neurons, from El 8 to P6 in the efferent and 
afferent nerve fibres to the spiral ganglion. The P2X2 receptor subunit is expressed both in 
the adult and in the developing rat cochlea. As early as El9, P2X2 expression is detected in the 
spiral ganglion and in associated nerve fibres extending to the inner hair cells and underneath 
the outer hair cells. By P6, P2X2 receptor subunit is seen in the synaptic regions of both types 
of hair cells. This expression becomes most prominent from the onset of cochlear functioning 
(P8-P12). By P21, the pattern of immunolabelling is similar to that found in the adult, i.e., 
there is a weak expression only in some spiral ganglion neurons. 

Developmental changes of P2X receptors associated with changes in synaptic plasticity 
were reported in preparations of dissociated rat spinal cord neurons. Glycinergic presynaptic 
nerve terminals, possibly from dorsal horn interneurons, terminating on substantia gelatinosa 
neurons presented non-desensitising P2X receptors at early stages of postnatal development. 
During postnatal development, a shift was found toward a more desensitising organisation of 
P2X receptors. These findings were interpreted as an indication that P2X receptor changes 
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may contribute toward the regulation of neuronal excitability and in particular the regulation 
of pain signals. 

P2X3 receptor subunit expression has often been associated with sensory innervations and 
their transient expression during development has been reported in both CNS and PNS struc-
tures/^'^^ Surprisingly, until now the P2X3 receptor subunit is the only subtype of purinergic 
receptor that has been reported in early CNS embryonic development. The P2X3 receptor 
subunit is expressed as early as E l l in the neural tube and in the sensory ganglia. During 
successive embryonic development a strong association with neural crest derivatives is present 
and a major role of P2X3 receptor subunit is proposed in sensory processing and possibly in 
somatic and autonomic functions during embryonic development.^^ In the early postnatal 
period, P2X3 expression down regulates. Although all researchers agree that P2X3 receptor 
subunit expression is less diffuse in the adult, conflicting results have been reported regarding 
its distribution mainly related to differences in the antibodies used (see ref 75 for a discussion 
of this matter). Another point that needs to be mentioned is that co-expression of P2X2 and 
P2X3 receptor subunits was present in the sensory structures of E l6 embryos.'^^ This 
co-expression followed the first appearance of P2X3 receptor subunit expression in the same 
structures after 5 days. 

The transient expression and/or co-expression of different P2X receptor subunits during 
development, and in particular the presence of the P2X3 receptor subunit in early embryonic 
stages, indicate that ATP signalling plays a significant role in CNS developmental mechanisms. 
The characterisation of purinergic receptors during development will certainly provide key 
elements for a better understanding of CNS development. 

P2X, Glial Signalling and Plasticity Responses 
Glial cells use ATP as an extracellular signal mediating communication in glial-glial and 

glial-neuronal interactions and ATP has been demonstrated to be the primary glial extracellu
lar messenger.^ ' ' ^ The role of P2X receptors for ATP signalling between glial cells is sug
gested by the presence of different P2X receptor subunits on astrocytes and on microglial 
cells.^^ The functioning of these receptors is shown by the block of calcium wave propagation 
in cultured astrocytes after the addition of purinergic antagonists.^ Indeed, a recent study 
demonstrated that the spatial expansion of Ca2+ waves is mediated by ATP and subsequent 
activation of purinergic receptors. Interestingly, Ca2+ entry through purinergic receptors 
and its diffusion through gap junctions were proposed as signalling mechanisms in glial cells. ̂  ' 

Purinergic signals can induce functional changes instrumental to development, differen
tiation and survival of both neurons and glial cells. '̂̂ ^ In this regard, it is interesting to stress 
that calcium waves, which are diffiised through gap junctions and modulated by purinergic 
agonist/antagonists, can induce growth and differentiation in glial neuronal co-cultures. ^ Fur
ther, the direct influence of neuronal activity on glia can be shown by the capacity of DRG 
neurons to influence Schwann cell development and proliferation by releasing ATP. This re
lease increases intracellular Ca2+ in Schwann cells through activation of P2 receptors. '^ Simi
larly, ATP analogues were shown to induce astrocyte differentiation in primary cultures of rat 
striatum. ' In this experimental condition, the elongation of astrocyte processes was blocked 
by the administration of suramin, a potent P2X receptor antagonist. These correlations be
tween ATP release and glial responses prompted further investigations of the role of purinergic 
signalling in controlling astroglial cell differentiation during brain development and ischaemia-
and trauma-associated hypergliosis. 

Microglia and astrocytes are the non-neuronal cells which respond to CNS injury^ '̂ ^ and 
ATP is a well known signal of cell damage. It was shown that P2X receptors are expressed in rat 
(ref 96 and 97) and human microglial cells. ̂ ^ The capacity of ATP to influence microglial cells 
was shown in culture where ATP stimulation induced Ca2+ transients because of Ca2+ entry 
through P2X receptors^^ and induced microglia ramification. ̂ ^̂  
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Some recent studies pointed out the selective involvement of the P2X7 receptor subunit in 
the purinergic communication between astrocytes and microglial cells^^ and in microglial in
flammatory cytokine release. ̂ ^̂ '̂ ^̂  Astrocyte released ATP mediates paracrine activation of the 
microglial P2X7 receptor which provokes a Ca2+ response in microglial cells.^^ Repeated stimu
lations of microglial cells by astrocyte-released ATP activate P2X7 receptor on microglial cells 
and greatly increase membrane permeability, eventually leading to microglial apoptosis. 
IFN-gamma increases ATP release and potentiates the P2X7 receptor mediated cytolytic effect. 
ADP and AMP stimulation can induce release of IL-1 from microglial cells and ATP stimula
tion of P2X7 receptor strengthens this effect. 

Taken together these data indicate the strict links between purinergic signalling and glial 
mediated CNS inflammatory responses. The purinergic mediated release of inflammatory 
cytokines from microglial cells is of particular relevance taking into account the suggested role 
of cytokines in different CNS pathologies. Cytokine mediated inflammation mechanisms were 
suggested as pathogenic mechanisms in multiple sclerosis, Alzheimer's and Parkinsons dis
ease. ̂ ^̂  The availability of specific purinergic agonists/antagonists and the definition of the 
P2X receptors role in controlling the inflammatory cascade is providing important data for 
planning new therapeutic strategies for neurodegenerative diseases. 

P2Xin in Vivo Plasticity Models 
As previously indicated, in vitro and in vivo data suggest that P2X receptors may have a 

role in mediating neuronal responses to injuries. ATP release, shown in different pathological 
conditions, can exert both protective and neurotoxic effects; these effects depend at least par
tially on the activity of P2X receptors. Specific purinergic agonist/antagonists provide impor
tant experimental tools. A better understanding of the P2X receptors role in different patho
logical conditions may lead to the development of pharmacological strategies potentially useful 
in different neurological diseases. '̂  

P2X Expression after Peripheral Nerve Injury 
In recent years an increasing number of studies have reported changes in the expression of 

P2X receptors after PNS injuries, supporting the idea that purinergic receptors are involved in 
the modulation of the cellular response to damage. P2X receptor subunits are expressed 
physiologically in DRG neurons, '̂  and they are involved in the processing of noxious infor
mation.^^' Transection of peripheral nerves induces a down-regulation of the P2X3 subunit 
mRNA and protein content in DRG neurons. This down-regulation is blocked by intrathecal 
delivery of the glial derived neurotrophic factor (GDNF). ' Two different mechanisms were 
proposed to explain the effect of GDNF administration on P2X3 receptor subunit expression: 
an increase in protein synthesis or a protection against cell death. ̂  Although at present it is 
not possible to discriminate between these two hypotheses, it is conceivable that P2X3 recep
tors are involved in mediating cell responses to both injures and trophic factors. 

Further support for the hypothesis of involvement of the P2X3 receptor in neuronal 
posdesional plasticity derives from studies of uninjured DRG neurons. Administration of GDNF 
up-regulates the P2X3 subunit in the DRG neurons that normally express this receptor. In 
contrast, administration of NGF induces de novo P2X3 subunit expression.^ ^ These latter 
results agree with in vitro data demonstrating that under neurite regenerating conditions NGF 
administration to PC 12 cells induces up-regulation of P2X2,3,4 protein expression.̂ '̂"^^ Fur
thermore, up-regulation of P2X3 subunits in DRG neurons was shown following chronic con
striction injury.^^^ In this model, the increase in the P2X3 subunit was interpreted as depen
dent on the protein transport block secondary to the nerve ligation. It was also shown that P2X 
receptors are involved in peripheral inflammation mechanisms. An injection of CFA into the 
hindpaw provoked the up-regulation of P2X receptors in DRG neurons.^^^ It was suggested 
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that the over expression of P2X receptors might mediate increased ATP responses which, in 
turn, might account for abnormal pain responses. Based on this hypothesis, P2X receptor 
blockers were suggested as useful tools for inflammatory and neuropathic pain therapy. 

It is well known that severed PNS neurons survive and regenerate their axons. Under
standing the signalling mechanisms that regulate PNS neuronal survival and regeneration may 
help in the development of approaches to support the regenerative attempts of central axons. 
Damaged cells release ATP and P2X receptors up-regulation may be a mechanism to increase 
or reduce cellular sensitivity to damage signals. An increase of P2X receptor expression aug
ments the mediated currents and consequently the Ca2+ influx, which in turn promotes intra
cellular signalling and plasticity responses. The importance of this purinergic route is under
lined by the capacity of trophic factors to modulate purinergic post-lesional responses, as shown 
by the dependence of the PNS neuronal P2X receptors expression on neurotrophin supply in 
cultured DRG neurons. ^ The role of neurotrophic factors in peripheral neuron survival and 
maintenance in normal and neuropathic conditions is well documented. In fact, neurotrophin 
administration has been proposed for the treatment of peripheral neuropathies.^^^'^^^ 
Up-regulation of P2X receptor expression afl:er neurotrophin administration in normal and 
neuropathic conditions suggests a positive correlation for neuronal survival. ̂ ^ The interac
tions between trophic factors and P2X receptors open up interesting perspectives for the devel
opment of plasticity promoting drugs. Indeed, if neurotrophic factors act directly on P2X 
receptors expression, pharmacological interactions between trophic factors and P2X receptor 
agonist/antagonists could be effective in rescuing damaged neurons. ' ^ 

P2X Expression after CNS Injury 

Glial Reaction 
Expression of P2X receptor subunits in glial cells is well documented (see paragraph P2X, 

glial signalling and plasticity responses) and in vitro manipulations can induce changes in the 
P2X7 receptor subunit expression pattern^ as well in purinergic receptor profiles. '̂  Data 
from in vivo models are less common and conflicting. Intraperitoneal injection of kainic acid 
induces hippocampal gliosis proportional to the gravity of the induced seizures. Slice prepara
tions can be obtained from this tissue that are apt for studying the electrical properties of 
reactive glial cells. In this model. Jabs and coworkers^ ̂ ^ reported a lack of P2 receptor involve
ment in the genesis of the reactive gliosis. Opposite findings were reported in a different in vivo 
model of induced astrogliosis. Injection of a mixture of artificial CSF and a P2 agonist into the 
nucleus accumbens of the rat was shown to produce a clear increment of astrogliosis compared 
to an injection of artificial CSF alone. This effect was clearly reduced if P2 selective antagonists 
were added to the injected mixture. Findings supporting the idea of P2X involvement in 
controlling glial reactions were reported also in a stab wound model of reactive astrogliosis. 
Afi:er mechanical lesion of the nucleus accumbens, astrocytes presented an up-regulation of the 
immunofluorescence signal for the P2X1.7 receptor subunit profile. This increment presented a 
characteristic distribution on astrocyte processes and cell bodies.̂ '̂̂ "^ 

The effects of axonal degeneration on the glial expression of purinergic receptors were 
recently studied by James and Butt.^^^ Following neonatal enucleation, optic nerve axons de
generated provoking a parallel loss of oligodendrocytes. In this condition, the optic nerve cel
lular population is prevalently formed by astrocytes with a small proportion of microglial cells. ̂  ̂ ^ 
In this experimental model, it is possible to test the glial response to ATP by removing the optic 
nerve and setting a whole free nerve preparation. James and Butt^ ̂ ^ used the fura-2 ratiometric 
recording technique to 2SSQSS intracellular Ca2+ levels afi;er administering ATP to the optic 
nerve preparation. In this experimental setting, a rapid and large increase in intracellular Ca2+ 
concentration was recorded after ATP application. The potency of different purinergic recep-
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tor agonists in mimicking the ATP effect was used to assess the contribution of the different 
receptor subtypes in mediating the increased Ca2+ concentration. In the unlesioned optic 
nerve, ATP induced increment of Ca2+ concentration was mainly sustained by P2Yi receptors 
with only a minor contribution from P2Y2,4, P2Xi,2/3 and PI receptor subtypes. In the lesioned 
optic nerve, a clear reduction in the contribution of P2Yi receptors with a parallel increase in 
the contribution of P2Y2,4 and P2Xi,2/3 receptors to the ATP induced Ca2+ influx was re
corded.^ ̂ ^ Thus, reactive astrocytes present a reduction of the glial signalling associated P2Y 
receptors and an increment of P2X and P2Y2,4 receptors. Further, on the basis of the diu^ation 
of the ATP induced increase in the glial Ca2+ concentration the presence of the pore-forming 
P2X7 purinoceptor in the reactive astrocytes was suggested. In a nutshell, after a lesion 
astrocyte and microglial cells present a modulation of P2 receptor phenotypes with a shift in 
functions from glial signalling to control of Ca2+ intracellular concentration. In synthesis, in 
vivo data, although still scarce, indicate that P2 receptors are active in mediating astrocyte and 
microglial responses to different types of CNS injuries. The overall effect of the purinergic 
mediation is still largely unknown and, depending on the experimental conditions, both sur
vival and degenerative actions have been described. The modulation of purinergic receptors in 
in vivo glial reaction paradigms suggests that these receptors mediate extracellular damage sig
nals between glia and neurons and that both survival or degenerative effects can be mediated 
through this route. 

P2X and Neuronal Reaction to Axotomy 
As stated previously, the P2X receptor in vivo literature is still scarce and a few data are 

available to delineate their functions in central neurons. The presence of P2X receptors in 
central neurons has been ascertained but the complete picture of the distribution of the differ
ent subunits still needs to be clarified. Regarding P2X receptor mediated functions, Thomas 
and Spyer̂ '̂ ^ demonstrated the involvement of P2X1.7 receptor subunits in central chemore-
ception mechanisms in neurons of the Botzinger complex in the ventrolateral medulla. The 
location of P2X2 in neuronal and glial cells induced Kanjhanand and coworkers^^ to propose a 
role for purinergic receptors in plasticity and CNS homeostasis. 

The majority of adult CNS neurons die after disconnection from their target, but some 
are able to survive and can regenerate their axons.̂ ^ '̂̂ ^ '̂̂ ^^ Despite extensive descriptions of 
the morphological features of the neuronal reaction, ̂ '̂ '̂̂ ^̂  the cellular mechanisms that consti
tute the basis of neuronal sensitivity and fate after axotomy are still poorly understood. In 
recent years, several observations and experimental successes in regenerating CNS neurons 
stimulated interest in the field.̂ ^ '̂̂ ^ '̂̂ "̂̂ ' ^ Among the different hypotheses advanced to 
explain the death of central neurons after loss of their axons, the most widely cited is the 
trophic deprivation hypothesis. It proposes that the death of axotomized neurons is caused by 
disconnection from a target which normally supplies trophic signals to the cell bodies.^ '̂̂ ^^ In 
line with this hypothesis, completely axotomized neurons should die. However, if there are 
some spared axonal branches that can still deliver target-derived trophic signals, axotomized 
neurons can survive. On this basis, the exogenous application of trophic factors was proposed 
as a therapeutic approach to induce or enhance regenerative responses in axotomized CNS 
neurons.^^ '̂̂ ^ '̂̂ ^^ In addition, it was observed that CNS and PNS neuronal survival may also 
depend on electrical activity and/or cAMP elevation. ' This last observation implies that 
axotomized neurons receiving less synaptic input or becoming less active lose trophic sensitiv
ity. Consequendy, axotomized CNS neurons may fail not only to receive but also to respond to 
trophic stimuli. This can result either in the death of the axotomized neurons or in the failure 
of the axotomized axons to re-extend. ^̂  

At this time, two important research directions are being followed to promote CNS re
generation. The first approach uses nerve grafts or transplanted cells. ' The second 
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approach focuses on understanding die molecular mechanisms that act after neuronal injury. 
Indeed, injured adult CNS neurons up-regulate the expression of several markers associated 
with both degenerative and reparative molecular aspects.^ ̂ '̂̂ ^̂ '̂ ^ Some of these proteins have 
been identified and their function is currently being investigated. For example, axotomized 
neurons can express c-Jun and other transcription factors, the enzyme NOS and the protein 
GAP-43 (see for review refs. 136,128). However, the functional meaning of these markers is 
not fully understood and they can be related to both degeneration and/or survival efforts de
pending on the experimental conditions. ̂ "̂̂  

Cerebellar circuits constitute a well-known topographically organised system, particularly 
apt for investigating the functional meaning of injury markers through morphological meth
ods. Either regressive or reactive neuronal modifications have been reported after different 
types of injuries (see for reviews refs. 138,139). Cellular atrophy and marked cell loss can be 
provoked in precerebellar neurons after cerebellar lesions.̂ ^ '̂̂ ^ '̂̂ "̂ ^ However, at least a subset 
of precerebellar neurons resist such injury, do not undergo atrophy and express some injury 
markers. This neuronal popidation does not show cellular signs of degeneration and is capable 
of establishing compensatory phenomena in response to injury. ̂ ^̂ '̂  '̂  ^ 

As previously detailed, P2X receptors are (i) involved in the glial response to injury,̂ '̂̂ '̂̂ ^^ 
(ii) expressed in the cerebellar system,^ '̂̂ ^ (iii) can mediate trophic actions which induce 
neuritogenesis^^'^^'^^ and (iv) are up-regulated after axotomy in the PNS. '̂ ^̂  In particular, 
P2Xî 2 receptor subunits expression has been reported in precerebellar neurons ' and in 
vitro data support their involvement in cell survival and neuritogenesis, as well as in the 
mediation of pathological processes. ̂ '̂̂ ^ 

The potential changes in P2Xî 2 receptor subunits expression in neurons of the precerebellar 
nuclei following unilateral ablation of their cerebellar targets was recendy investigated.^ ^ P2Xi,2 
immunoreactivity was assessed by immunocytochemical and quantitative analyses were per
formed by comparing immunolabelled neurons between experimental side and control side. 

In normal rats no side differences were present in the P2Xi,2 immunoreactive brainstem. 
Starting from day 7 after the lesion, many precerebellar neurons started to express strong P2Xi 
immunolabelling (Fig. 1). Accordingly, precerebellar populations of P2X2 immunolabelled neu
rons showed clear changes, becoming more numerous and intensely stained. Interestingly, the 
neurons that expressed P2Xi or P2X2 immunoreactivity did not present morphological signs of 
degeneration. Quantitative evaluation demonstrated differences in time course of P2Xi and 
P2X2 induction (Fig. 2). From day 14 to day 28 the number of P2Xi immunoreactive neurons 
increased progressively, reaching the peak between day 21 and day 28 followed by a progressive 
reduction. One month after the lesion, only a few sparse P2Xi positive neurons were still 
detectable. For P2X2 positive neurons, the peaks were on day 14 and the successive reduction 
was less evident. 

Thus, damage of the cerebellum induces a transient and time dependent up-regulation of 
P2Xi,2 receptor subunits neuronal expression in the precerebellar nuclei. The two receptor 
subtypes considered in the cited study present differences in the time windows of their re
sponses suggesting differences in their specific cellular ftinctions and/or regulation. Impor-
tandy, the up-regulation follows the appearance of morphological cellular signs of degenera
tion. Thus, the healthy state of the P2Xî 2 immunoreactive neurons, the late onset and the 
relative persistence of the P2Xi,2 receptor subunit up-regulation at later time points is at odds 
with a possible involvement of the P2Xî 2 receptor subunits in precerebellar neuronal death 
mechanisms. In addition, the late onset and, particularly for the P2X2 subunit, the prolonged 
activation are in favour of a role in mediating the survival/regenerative cellular responses to 
axotomy. This hypothesis, that up-regulation of P2Xî 2 receptor subunits mediates pro-survival 
and pro-regenerative cellular response to axotomy in precerebellar neurons, is also supported 
by several studies indicating that: (1) precerebellar neurons can survive and express regenerative 
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Figure 1. P2Xi immunolabelling (A) and NADPH-d (a marker for the NOS enzyme) histochemistry (B) 
in the brainstem of a case 21 days after right hemicerebellectomy. A) Note the unilateral up-regulation of 
P2Xi immunopositive neurons in the inferior olive (lO), lateral reticular nucleus (LRn), spinal trigeminal 
nucleus (SpV), external cuneate nucleus (ECu) (arrows). B) Note the unilateral up-regulation of NADPH-d 
histochemistry in lO, LRn, SpV and ECu (arrows), C) Inset a of A showing P2Xi immunopositive cells in 
the 10 of the experimental side (left side), and the absence of immunopositive cells in the lO of the control 
side (right side). D) Inset b of B showing NADPH-d positive cells in the lO of the experimental side (left 
side), and the absence of immunopositive cells in the lO of the control side (right side). Note that P2Xi and 
NADPH-d positive neurons present a comparable distribution; compare A and B. Scale bars: A, B ^ 350 
mm;C, D = 100 (Xm. 
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Figure 2. Relations between the total number of P2Xi and P2X2 immunopositive neurons in the inferior 
olive (lO) and the number of P2Xi and P2X2 immunopositive neurons in the different olivary subdivisions 
(MAO= medial accessory olive; PO= principal olive; DAO= dorsal accessory olive). Each bar represents the 
mean value of the difference between sides (experimental versus control) obtained from three cases per time 
point. Note the substantial contribution of the immunopositive neurons of the MAO subdivision to the 
total number of lO for P2Xi and P2X2 immunopositive neurons at all time points. Reprinted with permis
sion from: Florenzano F, Viscomi MT, Cavaliere F et al. Neuroscience 2002;115(2):425-34. ©2002. 

markers,^ '̂  '̂ ' (2) a role has been established in regeneration and trophic actions for ATP 
and purinergic receptors, ̂  5'̂  ̂ '̂  ̂ ' (3) P2X receptors are up-regulated following injuries to sen
sory neurons. '̂ ^^ 
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Figure 3. Time course of the number of P2Xi- and P2X2-immunopositive neurons in the inferior oUve (lO) 
and pontine nuclei (Pn) of each side after hemicerebelleaomy. Each bar represents the mean value of 
immunopositive neurons in the experimental or control side obtained from three cases per time point. In 
the upper histograms, P2Xi immunoreactivity shows a peak between 21 and 28 days for the lO and at 28 
days for the Pn. In the lower histograms, P2X2 immunoreactivity shows a peak at 14 days for both lO and 
Pn. Error bars: standard deviation. Statistics: one way ANOVA control vs experimental side: * p < .05, **p<. 
005, ***p<. 0005. Reprinted with permission from: Florenzano F, Viscomi MT, Cavaliere F et al. Neuro-
science2002; 115(2):425-34. ©2002. 

As stated previously, different data indicate that purinergic receptors are relevant in medi
ating glial reaction to injury in the C N S . The above mentioned study is the first demonstra

tion that in C N S the injury dependent P2X receptor subunit up-regulation is not limited to 
glial cells but also involves neurons. Thus, in agreement with the well known involvement of 

ATP in glia/glia and glia/neuron communication,^^ the marked expression of diflferent P2X1.7 
receptor subunits in both neurons or glia after lesion suggests a primary role for ATP in C N S 
communication of cell damage among different cell types. 

It has been shown that precerebellar neurons up-regulate the enzyme n N O S after cerebel

lar lesion. ̂ "̂ '̂̂ ^̂  It is of particular interest that P2Xi,2 receptor subunit up-regulation is localised 
in the same precerebellar structures that up-regulate the enzyme n N O S after cerebellar lesion 
(Fig. 1). Preliminary data from double labelling immunofluorencence experiments indicate 

that the same cells that present postlesional n N O S up-regulation also present up-regulation of 
the P2Xi,2 receptor (Florenzano et al, Soc. Neurosci. Abs. 2002) (Fig. 3). 
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Figure 4. Confocal images of NOS (A,D,GJ) and P2Xi (B,E) or P2X2 (H,K) double immunofluorescence 
in the inferior olive (lO; A-C, G-I) and pontine nuclei (Pn; D-F, J-L) ofacase21 days after hemicerebelleaomy. 
Note colocalizion of NOS and P2Xi (C,F), or of NOS and P2X2 (L,P) in the majority of neurons in the 
10 and Pn. Scale bars: A-C), G-I) = 40 |ilm; D-F), J-L) = 90 fim. 

PlXand CNS Ischaemic Damage 
Several studies have described a protective action for adenosine and Al receptor agonists 

resulting from oxygen/glucose depletion secondary to an ischaemic insult. ' Besides the 
involvement of adenosine, direct participation of extracellular ATP receptors in ischaemic stress 
has also been suggested. '̂ '̂̂  '̂̂  ^ In addition, in vitro data indicate that ATP stimulation 
exerts neurotoxic effects. In primary neuronal cultures high extracellular concentrations of 
ATP are toxic and induce both necrotic and apoptotic cell loss.̂ ^ Further, primary neuronal 
cultures exposed to excessive glutamate^^ to serum/potassium deprivation,^^ to hypoglycaemia 
or chemical hypoxia ' can be rescued by the addition of several P2 receptor antagonists. 

Recently, the expression of P2X2 and P2X4 receptor subunits during cerebral ischaemia 
was investigated both in in vivo and in vitro models. ̂ ^ After hypoxia insult in gerbils, an 
intense induction of both P2X2 and P2X4 was observed (Fig. 4). In this condition P2X2 recep
tors were up-regulated on fibres extending throughout the CA1-CA2 pyramidal cell layer and 
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Figure 5. Transverse sections through the dorsal hippocampus of a gerbil six days after ischemia (A,D-G) 
or after sham operation (B-C). Arrows in A-E indicate CA1-CA2 transition zone. A) Nissl staining after 
ischemia. Note the massive neuronal loss in the CAl pyramidal cell layer. B) P2X2 immunoreactivity in a 
control animal, note the lack of immunostaining. C) P2X4 immunoreactivity in a control animal, note the 
lack of immunostaining. D) P2X2 immunoreactivity in a ischemic animal, note the up-regulation with 
presence of immunopositive fibers in the CAl region (compare to B). E) P2X4 immunoreactivity in a 
ischemic animal, note the up-regulation with presence of immunopositive cellular processes in the CAl 
region (compare to C). F) High m^nification of P2X2 immunoreactivity in the CAl region of an ischemic 
animal, note the presence of a dense network of immunopositive fibers. G) High magnification of P2X4 
inmiunoreactivity in the CAl region of an ischemic animal, note the presence of immunopositive structures 
resembling glial processes. Scale bars: A-E) = 250 |Xm; F) = 50 |lm; G) 20 |i,m. 

strata oriens and radiatum (Fig. 4). Conversely, P2X4 receptor distribution after hypoxia was 
strictly confined to the pyramidal cell layer of the C A l and to the transition zone of the CA2 
sub fields (Fig. 4). In this area, the P2X4 receptor was up-regulated in microglial cells that 
surrounded unlabelled cellular bodies (Figs. 4, 5). In the course of the same study, converging 
data were obtained in hippocampal organotypic cultures. In this model after 20 hours of oxy
gen/glucose deprivation a steep up-regulation, about 2.5 fold, of the expression of P2X2 and 
P2X4 receptors was reported.^ Of particular relevance for potential therapeutic strategies is 
the evidence that the presence of P2 receptor antagonists, like suramin or in reactive blue 2, 
during the ischaemic insult not only abolishes P2X receptor up-regulation but also totally 
prevents the ischaemia induced cell death. ^ 
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Similar protective effects were also observed in slice cultures from different brain regions 
using various P2 antagonists.^^ In double organotypic cultures from cortex/striatum, 
oxygen-glucose deprivation induced massive cellular loss in the dorso-lateral region of the cor
tex and in the caudate putamen. Addition of basilen blue induced different degrees of 
neuroprotection to striatal and cortical cells. Indeed, while it totally prevented cell degenera
tion in the striatum, it only reduced cell death in the cortex (25%).^ '̂* The relationship be
tween neuronal cell types and degree of the neuroprotection exerted by P2X blockers is in 
agreement with results obtained in dissociated primary neuronal cultures. ̂ ^ 

Thus, in vitro and in vivo data converge in focussing on P2X receptors as mediating key 
elements of CNS responses to different insults marshalling them as relevant elements in con
trolling cell fate. Interestingly, various neuronal populations present differences in the pattern 
of the different P2X subunits activated by ATP stimulation. In the hippocampus, toxic con
centrations of extracellular ATP induced activation of P2X2 and P2X4 receptor subtypes. In 
the cerebellum, in the same toxic conditions only P2X7 and P2Y4 presented up-regulation.^^ 
This multifarious framework indicates that P2 receptors are important in supporting cell speci
ficity, particularly in explaining some of the differences observed among neuronal populations 
in the reaction to toxic stimuli.^^''^^ 

Of particular relevance is the evidence that P2 receptors are present and modulated by 
toxic insult not only in neurons^ ̂ '̂ ^ but also in glial cells.̂  Therefore, these different cell 
types share the same signalling and/or communicating mechanisms. This framework supports 
the concept of the interplay between neurons and glia in mediating ischaemia-evoked signals 
and proposes P2 receptor modulation as the common language between glia and neurons and 
ATP as the intercellular signalling molecule acting between neurons and glia.^ 

Hypothesis on P2XRole in CNS Toxic Insult Signalling 
The intracellular energy pool is a key element in determining the ability of CNS cells to 

respond to stressful environmental conditions. ̂ '̂̂ ^̂  ATP is released under physiological or 
pathological conditions^ '̂̂ ^̂  and sources of extracellular ATP include both neurons and glial 
cells.̂ ^^ In turn, ATP concentration in the extracellular compartment can influence either 
physiological functions, ' or have detrimental effects, thus acting as a toxic agent. ' 
Furthermore, in the latter case purinergic signalling can induce either regressive or regenerative 
changes. In this respect the two experimental models reviewed here are prototypical. 

The axonal reaction induced in the precerebellar neurons by lesion of their target areas is 
associated with an up-regulation of the P2Xî 2 receptor subunits. The two receptor subtypes 
present differences in the time course and in the features of their expression in different groups 
of precerebellar neurons. This evidence supports the hypothesis that P2X expression is an ele
ment in defining the specificity of the reaction to injury in different neuronal populations. 
Further, the dissociation between the time course of the regressive changes and the time course 
of P2Xi,2 receptors as well as the morphological features of P2Xi,2 receptor subunits expressing 
neurons indicates that, at least in this model, P2X receptors can mediate cellular regenerative 
efforts. 

A completely different picture emerges from the analysis of the pattern of P2X receptor 
up-regulation observed under ischaemic conditions. First of all, in this case there is a temporal 
coincidence between cell death and P2X receptors over-expression. Second, the toxic nature of 
the information conveyed by P2X receptors is clearly indicated by the protective effect exerted 
by P2X blockers. In this view, it has to be underlined that the two P2X receptor subtypes that 
are up-regulated in the hippocampus after ischaemia, namely, P2X2 and P2X4, are expressed by 
neurons (P2X2) and by microglial cells (P2X4) (Fig. 6). Therefore, metabolic impairment shares 
signalling and/or communicating mechanisms in these different cell types. In this context, it is 
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Figure 6. Confocal images of double immunofluorescence for P2X4 and IB4 (a marker for microglial cells) 
or NeuN (a marker for neuronal cells) in die CAl pyramidal cell layer of a gerbil six days after ischemia. 
A),B)>C), P2X4 and IB4 double labelling. Note die high degree of colocalization in processes of microglial 
cells. D),E),F), P2X4 and NeuN double immunofluorescence. Note the almost complete segregation of the 
two markers, P2X4 immunofluorescent processes surround with no overlap the NeuN immunofluorescent 
neuronal cell bodies. G),-N), z-series of optical sections 1 mm spaced of P2X4 immunopositive processes 
from inset a of F. Note how activated migroglial process (red) tend to surround the CAl neuronal cell body. 
Scale bars: A)-C) = 20 |lm; D)-F) = 50 ^m; G)-N) = 10 \lm. 

worth recalling that data from difiPerent models indicate neurons and glia as capable of releas
ing ATP in an activity-dependent manner. ̂ "̂̂  Further, through P2 receptors ATP released from 
glial cells can induce fast excitatory responses and Ca2+ signals in neurons. Therefore, ATP 
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flowed out during ischaemia/cellular damage may represent the intercellular signalling mol
ecule between neurons and glia in different pathological conditions. 

In addition to neurons, all types of glial cells also possess membrane receptors for extracel
lular ATP. ̂ '̂̂ "̂  In the in vivo models reviewed here different patterns of P2 receptor activation 
were linked to astrocytes or microglia reaction to insults. Different compositions of P2 receptor 
subunits seem to characterise astrogliosis when induced by axonal degeneration or by a stab 
wound. In the former case, the activated astroglial cells express the P2X1.7 subunits; in the 
latter case, activated astrocytes present a shift from P2Y signalling subtypes to P2X, P2Y2.4 
subtypes. After anoxic insult, the P2X receptor pattern displayed by the activated glia is again 
different. In this case, glial up-regulation is mainly sustained by P2X4 over-expression in mi
croglia. This agrees with previous results showing that in microglial cells the P2X4 receptor 
(together with the P2X7)^^ is the major candidate for activation by toxic ATP release. 

Evidence available from in vitro studies indicates that purinergic receptors are modulated 
and involved in responses to injury as well as regeneration.^^ This indication is also supported 
by recent in vivo evidence demonstrating up-regulation of different P2X receptor subtypes in 
glia and neurons following CNS lesions. This can correlate either with degeneration or with 
regenerating efforts, although neurons injured by stroke or trauma in the adult mammalian 
CNS normally fail to regenerate. After CNS damage, a glial reaction often occurs involving 
proliferation, expression of immunomolecules at the cellular surface, secretion of cytokines or 
growth factors and differentiation into brain phagocytes. ̂ "̂ '̂̂ ^ This glial reaction can in turn 
transmit signals through the common purinergic language to neurons favouring or opposing 
the neuronal reaction. Some of these events may mediate tissue damage, while others may play 
an important role in limiting the extent of damage and or promoting/inhibiting tissue repair. 
Although in some cases it is relatively easy to depict a potential role for P2X in triggering 
neuronal degeneration or conversely in mediating cell regenerative efforts, in others it is not so 
obvious whether P2X activation is beneficial or detrimental. Nevertheless, the use of selective 
P2 agonists and inhibitors in many instances clarifies the general effect of purinergic stimula
tion in a given context. In synthesis, in vivo data on purinergic involvement in the CNS reac
tion to injury are still scarce. However, purinergic research constitutes an extremely interesting 
and promising field for investigating the mechanisms that regulate CNS behaviour in different 
pathological conditions. Last but surely not least, purinergic research is a fruitful area for spe
cific drugs capable of selective modulation of the CNS response to injury by inhibiting P2 
mediated regressive changes or by enhancing P2 mediated regenerative actions. 
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CHAPTER 6 

Lesion-Induced Axonal Sprouting 
in die Central Nervous System 

Thomas Deller, Carola A, Haas, Thomas M. Freiman, Amie Phinney, 
Mathias Jucker and Michael Frotscher 

Summary 

I njury or neuronal death often come about as a result of brain disorders. Inasmuch as the 
damaged nerve cells are interconnected via projections to other regions of the brain, such 
lesions lead to axonal loss in distal target areas. The central nervous system responds to 

deaiferentation by means of plastic remodeling processes, in particular by inducing outgrowth 
of new axon collaterals from surviving neurons (collateral sprouting). These sprouting pro
cesses result in a partial reinnervation, new circuitry, and functional changes within the 
deafferented brain regions. Lesioning of the entorhinal cortex is an established model system 
for studying the phenomenon of axonal sprouting. Using this model system, it could be shown 
that the sprouting process respects the pre-existing lamination pattern of the deafferented fascia 
dentata, i. e., it is layer-specific. A variety of different molecules are involved in regulating this 
reorganization process (extracellular matrix molecules, cell adhesion molecules, transcription 
factors, neurotrophic factors, growth-associated proteins). It is proposed here that molecules of 
the extracellular matrix define the boundaries of the laminae following entorhinal lesioning 
and in so doing limit the sprouting process to the deafferented zone. To illustrate the role of 
axonal sprouting in disease processes, special attention is given to its significance for 
neurodegenerative disorders, particularly Alzheimer's disease (AD), and temporal lobe epilepsy. 
Finally, we discuss both the beneficial as well as disadvantageous functional implications of 
axonal sprouting for the injured organism in question. 

Introduction 
The central nervous system (CNS) of a healthy adult organism is distinguished by a large 

number of coherently interconnected nerve cells. At the conclusion of their developmental 
phase, these nerve cells are highly specialized and, as a general rule, post-mitotic. As such, it was 
assumed until well into the middle of the last century that nerve cell fibers as well, which 
conduct information and signals between neurons, were incapable of modification anatomi
cally. The CNS was construed as a "hard-wired" system of nerve cells and their axons. In the 
past forty years, this view of the brain has undergone fundamental change. It could be shown 
that plastic reorganization can, and does, occur at any point in time even in the fully developed 
brain and that the ability to remodel synaptic connections appears to be one of the physiologi
cal properties of neurons.^ The most recent findings even indicate that the brain is capable of 
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Figure 1. Collateral sprouting after CNS lesion. Injuries and diseases of the CNS can result in the death of 
involved nerve cells (upper portion of figure). Such a lesion also leads to the destruction of synapses in the 
target region of the neurons, i.e., to deafferentiation of subsequent connected brain regions. In response to 
the loss, surviving nerve cells send out new axon collaterals and reinnervation takes place (lower portion of 
the figure). 

producing new nerve cells well into old age and these neurons, in turn, are interconnected with 
existing nerve cells.^ Such plastic processes enable the adult organism to learn and to adapt to 
a constandy changing environment. 

The physiological ability to reorganize synaptic connections is retained by the adult brain 
even following injury and in the course of neurodegenerative diseases. Even under these condi
tions nerve tissue possesses the capacity to modify nerve fiber connectivities and produce new 
synapses. However, different parts of the nervous system differ in their ability to reorganize 
themselves following lesion: Whereas neurons in the peripheral nervous system (PNS) are able 
to regenerate their axon over long distances, neurons located in the CNS are incapable to do so. 
After a central fiber tract has been severed, fiber connectivities are permanendy interrupted 
with resulting axonal and synaptic loss in the distally located regions of the brain. Although the 
affected nerve fibers cannot reconnect to their original target region, the central nervous system 
reacts to this deafferentiation with remodeling processes of a plastic nature within the dener-
vated brain regions. Surviving nerve fibers sprout new axon collaterals (collateral sprouting) 
and form new synapses (reactive synaptogenesis), thereby reinnervating the denervated brain 
region (Fig. 1). Fiowever, this sprouting process does not restore original anatomical connec
tions. It leads to, in the final analysis, a partial reinnervation of the deafferented brain regions, 
with many new interconnectivities, and considerable functional changes within the involved 
brain areas. 

Collateral sprouting is a common response of the CNS to injury. It was first described in 
the spinal cord^ and shortly thereafter in the brain.^ Since then, lesion-induced forms of neu
ronal plasticity have been demonstrated in numerous species and brain regions. "̂ '̂ '̂̂  Possible 
triggers of axonal sprouting in the adult brain are, in effect, every form of injury and any 
disease that lead to the deafferentiation of a given brain area. Accordingly, sprouting processes 
occur following head traumata^ ̂  where a singular massive loss of nerve cells takes place but also 
during the course of neurodegenerative disorders ̂ ^and certain forms of epilepsy, '̂̂ ^ in which 
slowly increasing neuronal loss in particular regions of the brain is at the forefront. In effect, 
axonal sprouting is a widespread plastic response on the part of the CNS to a lesion. As such, 
a detailed neuroanatomical profile of axonal sprouting, identification of the cellular and mo-
lecidar mechanisms involved, as well as elucidation of their respective functional implications 
for the organism as a whole would seem to be both logical and of significance for the ongoing 
development of therapeutic interventional strategies. 
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Reorganization of the CNS after Entorhinal Lesioning 
Subsequent to a lesion, the reorganization of the CNS entails a very complicated series of 

events that cannot be simulated in vitro. One classic model system for studying axonal sprout
ing is the lesioning of the entorhinal cortex in small rodents. Following removal of the entorhinal 
cortex, one encounters degeneration of the entorhinal fibers in the hippocampus and loss of up 
to 90% of all synapses within the outer molecular layer of the fascia dentata. The entorhinal 
lesioning model is regarded as well characterized and easily accessible experimentally. ' 
Moreover, it offers enormous advantages in comparison with other lesioning models: first, the 
lengthy distance between the site of the lesion and the deafferented region facilitates the accu
rate distinction between neurodegenerative and sprouting processes. Second, the layered ter
mination of the entorhinal fibers in the fascia dentata permits clean delineation of the deafferented 
zone from the adjacent regions of the CNS (Fig. 2). 

The entorhinal lesioning model was described for the first time in the 1970s and initially 
characterized employing histochemical and electron microscopy techniques."^ At that time, 
however, the direct demonstration of sprouting fibers was not technically possible and, thus, it 
was unclear until well into the 1990s precisely in what manner the morphology of individual 
axons changes within the context of the sprouting phenomenon. Nonetheless, insofar as these 
morphological data are crucial for gauging and assessing the effects of experimental invasive 
methods on sprouting axons, we began our studies first of all with a detailed description of 
axonal sprouting at the level of single, isolated fibers. 

For this purpose, we marked the sprouting fibers with the sensitive anterograde tracer 
Phaseolus vulgaris leucoagglutinin (PHAL).^ This procedure enabled us to visualize single axons 
from projection fibers in control animals as well as in those with entorhinal lesions and com
pare them. For purposes of quantifying the changes, we determined the degree of branching on 
the part of the axons and the number of boutons within a clearly defined axon segment. In 
addition, we characterized the sprouting-associated changes in fiber morphology. As paradig
matic for the sprouting behavior of anatomically heterologue and homologue fiber systems, 
the GABAergic commissural ' and the glutamatergic crossed entorhinal fiber systems were 
studied. In comparison with control animals, we observed post-lesion a significant increase of 
the degree of branching and total fiber length for single fibers as well as an increase in the 
number of boutons contained within a defined axon segment. Further, we also found alter
ations in the normal fiber morphology. Whereas some sprouting axons developed a large num
ber of short, truncated axonal processes (axonal extensions), other fibers gave rise to conspicu
ous glomerular or tangle-like formations.^^'^^ 

Remarkably, these neuroanatomical analyses revealed that the axonal sprouting adapted 
itself stricdy to the existing lamination pattern in the dentate gyrus. Thus, after entorhinal 
lesioning, the results were deafferentiation of the outer molecular layer and sprouting by sur
viving axons within the layer (Figs. 3a and b). Fiber systems of adjacent intact layers, e.g., the 
commissural fibers belonging to the inner molecular layer, do not succeed in penetrating the 
deafferented zone (Figs. 3c and d). As such, the ordered, laminated structure of these brain 
regions remains intact even after extensive deafferentiation of the gyrus dentatus. ' 

Molecular Regulation of Axonal Sprouting 
The neuroanatomical description of axonal sprouting poses the question as to which cells 

and molecules are involved in the regulation of the sprouting process. Since an axonal growth 
process is involved, one's thoughts quite logically turn, primarily, to those classes or groups of 
molecules that likewise play an important role in axonal growth processes during development. 
Here, a basic distinction is made between so-called "intrinsic" molecules that are expressed by 
growing neurons and "extrinsic" molecules that reside in the local microenvironment of the 
growing axon. Expression of intrinsic growth-associated molecules (e.g., growth-associated 
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Figure 2. The entorhinal projection to the rat fascia dentata. A) The entorhinal cortex (EC) projects to the 
hippocampus (H) in a topographically ordered manner. Dorsal portions of the entorhinal cortex project to 
septal (S) portions of the hippocampus, whereas more ventrally located portions of the entorhinal cortex 
project to temporal levels of the hippocampus. Thus, the lesion site in the ECL model is far away from the 
denervated septal portion of the hippocampus. B) Schematic diagram of a slice through the hippocampal 
formation. Entorhino-hippocampal fibers originate from layer II neurons in the EC. They fasciculate, form 
the perforant pathway, and terminate in the outer molecular layer (OML) of the dentate gyrus (DC). H, 
hilus; IML, inner molecular layer; S, subiculum. C) A typical granule cell of the fascia dentata is illustrated. 
Afferents terminate on the dendritic arbor of this cell in either a lamina-specific or a diffiise fashion. In the 
outer molecular layer (OML) fibers of the ipsilateral entorhinal cortex (EC), contralateral entorhinal cortex 
(CO. EC), and GABAergic commissural and associational fibers (com/assoc) terminate. The inner molecu
lar layer (IML) is occupied by glutamatergic commissural and associational fibers (C/A). Fibers from the 
medial septum (MS) terminate throughout all layers. GCL, granule cell layer. Reprinted from Deller et al; 
Restor Neurol Neurosci 2001; 19:159-167. ©2001 lOS Press. 

protein 4 3 , GAP-43) is required for a nerve cell even to acquire the capacity for growth in the 
first place, its "growth competence," so to speak. Wha t is involved is a genetically determined 
growth program that becomes activated by the neuron during axonal growth. Extrinsic 
molecules are found in the target area of the growing axon where they are important for neu
ronal pattern formation. These homing-moleciJes point the way for the growing axon to the 
correct target region and the target cell. They regulate the degree of axonal branching, the 
number of synapses that are formed, and, presumably, they also play a role in synaptic stabili
zation (Fig. 4). The extrinsic molecules frequently are subdivided further into those which 
stimidate axonal growth and those inhibiting it. To the extrinsic molecules belong a variety of 
cell adhesion molecules (e.g., N - C A M ) , extracellular matrix molecules (e.g., tenascin-C, 
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Figure 3. Sprouting in the fascia dentata after ECL is layer-specific. A) Commissural fiber to the outer 
molecular layer in a control animal. These fibers do not give ofFbranches to the inner plexus, and the number 
of collaterals in the outer molecular layer is low. IML= inner molecular layer; OML= outer molecular layer. 
B) Commissural fiber to the outer molecular layer four weeks after ECL. The number of axonal collaterals 
has considerably increased in the OML. Note that this axon does not branch in the inner molecular layer 
similar to the axon shown in A. C) Section of the fascia dentata immunostained for PHAL in a control 
animal. The conmiissural projection to the inner molecular layer terminates within 70 |Jm from the granule 
cell layer. D) Section of the fascia dentata of an animal four weeks after entorhinal cortex lesion. The 
termination field of commissural fibers to the inner molecular layer has expanded by 30-40 |JUn (only very 
few fibers grow beyond this layer). Scale bars: a, b= 30jim; c, d= 50 |im. Reprinted from Deller et al; Restor 
Neurol Neurosci 2001; 19:159-167. ©2001 lOS Press. 

neurocan), and numerous diffusible molecules (e.g., growth factors and cytokines), which can 
be produced by nerve cells or glial cells within the target region.^'^"^ 

Wha t are the molecular bases for axonal sprouting? To identify the molecular and cellular 
players involved in the sprouting process, the entorhinal lesion model is once again a useful 
experimental paradigm. Using this model system we and others have analyzed suitable molecu
lar candidates subsequent to entorhinal lesioning and have correlated both the spatial and 
temporal changes on the part of the expression pattern seen in these molecules with axonal 
sprouting. Where clear correlations exist, genetically altered mice (transgenic mice, knock-out 
mice) are now being used to demonstrate causal relationships between certain molecules and 
the phenomenon of axonal sprouting. In our previous studies, we could identify several mol
ecules that might be of regulatory significance for the axonal sprouting that occurs after entorhinal 
lesioning. Among the molecules we have examined are neurotrophic factors (nerve growth-
factor, N G F ; brain-derived neurotrophic factor, BDNF; ciliary neurotrophic factor, CNTF) , '̂  
transcription factors (c-Fos, c-Jun, Jun B, and STAT3),^^'^^ cell adhesion molecules (neural 
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Figure 4. Molecular regulation of axonal growth. Both intrinsic (1) as well as extrinsic (2-5) molecules are 
involved in the molecular regulation of axonal growth processes. Intrinsic molecules (e.g., GAP-43) are 
expressed by growing and regenerating neurons. These molecules are part of a nerve cells genetic growth 
program that is activated within the context of axonal growth processes and which are essential for the 
growth competence of nerve cells. Extrinsic molecules are found along the axons route to the target region 
as well as within the target region. They provide local guidance cues for the growing axons. Extrinsic 
molecules can intervene at various points in the axonal growth process both in a growth promoting as well 
as growth inhibiting manner. Thus, extrinsic molecules regulate the outgrowth of growth cones (2), inter
actions with glia cells (3), elongation of the growing axon (4), and the formation and stabilization of synapses 
(5). The extrinsic molecules include cell surface molecules, extracellular matrix molecules, and diffusible 
molecules (growth factors and cytokines), which can be produced by nerve cells but also by glia cells. 

adhesion molecule LI, neural cell adhesion molecule N-CAM),^^'^^ together with extracellular 
matrix molecules (tenascin-C; DSD-1-proteoglycan; reelin; brevican; neurocan). Because 
it is beyond the scope of the present review to discuss all molecidar changes that have been 
reported following entorhinal lesion, and several recent reviews exist on this subject matter,^ ' ̂ ' 
we will focus here on extracellular matrix molecules and their role in the reorganization process 
after entorhinal lesioning. 

Extracellular Matrix Molecules Direct Axonal Growth Processes 
Over the past years, it has become increasingly clear that the extracellular matrix (ECM) is 

of great importance for axonal growth processes during development and following injury to 
theCNS.^^'^5-75TheECM consists of structurally and ftxnctionally different molecules, among 
them many proteoglycans and glycoproteins, which are organized around a hyaluronan back
bone into a complicated three-dimensional structure. As such, it constitutes the growth sub
strate for axons in the brain and is capable of exerting influence via its molecular composition 
on the growth process itself. Of particular ftinctional significance is the fact that the molecular 
composition of the ECM during development displays regional differences in the brain. Its 
diversified components, which include growth-permissive, growth-stimulating, and 
growth-inhibitory molecules, finally accounts for the ECM s effect on the growing axon. It is 
assumed, therefore, that brain regions which are well supplied with inhibitory ECM molecules 
are avoided by growing axons, whereas brain areas that are richly endowed with 
growth-stimidating ECM molecules provide a favorable substrate for the growing axon. In this 
manner, growth boundaries could emerge on the basis of the local distribution of the ECM 
molecules in the brain during development. ' 

It has been suggested that ECM molecules coidd assume a role similar to the one they play 
during the developmental phase in the injured brain. And, in fact, long-term changes in the 
ECM s composition occur within the area surrounding a lesion, including, in particiJar, an 
increase in the concentration of chondroitinsulfate-proteoglycans (CSPG). These molecules 
inhibit axonal growth, and it has been assumed that their presence constitutes a major barrier 
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to axonal regeneration within the CNS. '^^'^'^'^ Based upon these findings, we postulated that 
CSPG molecules might also be of significance for the regulation of axonal sprouting in 
deafferented brain regions and, as such, we studied the molecular composition of the ECM in 
the deafferented hippocampus at various time points following entorhinal cortex lesioning. To 
visualize each of the ECM molecules, we employed antibodies, and we identified the cells that 
synthesize theses molecules with the help of in situ hybridization combined with immunocy-
tochemistry. Out of these experiments emerged evidence showing that in deafferented brain 
regions the molecular composition of the ECM is considerably altered. Thus, tenascin-C, 
DSD-1-proteoglycan, brevican, and neurocan are synthesized by reactive astrocytes in 
the fascia dentata following entorhinal lesioning, are released into the ECM, and accumulate 
there. As a result, the composition of the ECM in the deafferented region is altered in relation 
to intact neighboring layers, and clearly-defined molecular boundaries exist separating the 
deafferented regions of the CNS from those areas that are still intact (Fig. 5). 

What are the functional implications of such a regional alteration within the ECM fol
lowing lesioning? We are operating under the assumption that it regulates the local sprouting 
process within the deafferented zone. It appears that the layer-specific alteration in the ECM 
produces, in the process, different effects on the axons that sprout within the deafferented layer 
than on those of the adjacent layers. The sprouting axons encounter within the deafferented 
external molecular layer a milieu that is favorable to growth. This environment consists of 
ECM molecules, cell adhesion molecules, growth factors, and cytokines, which in toto regulate 
and nurture the axonal sprouting process and in so doing the reinnervation of the deafferented 
region as well. In their attempt to extend their growth into the deafferented zone, the axons of 
the adjacent layers (e.g., the fibers belonging to the undamaged internal molecular layer) would 
be confronted by a molecular barrier that harbors growth-inhibiting ECM molecules, such as 
neurocan. The fact that these kinds of molecular barriers are capable of hindering the ingrowth 
of fibers into a given brain area could account for why, subsequent to entorhinal lesioning, 
ingrowth of fibers originating in the adjacent layers does not take place (Fig. 3). Theoreti
cally, the altered composition of the ECM could, in this manner, confine the sprouting process 
to the axons of the deafferented zone (Fig. 6)7^''^^ 

Axonal Sprouting in Alzheimer's Disease 
In the course of neurodegenerative disorders, such as Alzheimer's disease (AD), a gradual 

but increasing degree of neuronal loss occurs. As a result of cell death, the synapses in subse
quent, connected regions of the brain also die, and surviving nerve cells generate new axon 
collaterals. Because, initially, only a few cells belonging to a single projection tract become 
affected in neurodegenerative illnesses, collateral sprouting at the time of disease onset occurs 
in those types of nerve fibers that can functionally compensate for the neuronal loss. Viewed in 
this light, axonal sprouting appears to be a welcome compensatory mechanism for such pa
tients and it is believed that its occurrence delays the appearance of clinical symptoms. ̂ "̂ '̂ ^ 

In the case of AD, however, there are signs that axonal sprouting may not always be 
advantageous. In this neurodegenerative disorder, characterized, in part, by the extracellular 
deposition of amyloid (plaques), one finds indications of aberrant axonal growth processes in 
the vicinity of amyloid deposits. These observations suggest that not only compensatory but 
also pathological sprouting processes occur in AD. 

Initial signs of pathological sprouting phenomena in AD were found in the brains of AD 
patients, i.e., in human autopsy specimens.'̂ '̂̂ ^ Since postmortal tissue is only of limited use in 
experimental studies, it was not possible initially to supply any further explanation for the 
aberrant sprouting processes in the vicinity of the plaques. It was only with the advent and 
development of the transgenic mouse model for AD that new experimental perspectives pre
sented themselves. Accordingly, it became possible to apply modern experimental methods to 
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Figure 5. Reactive astrocytes change the molecular composition of the extracellular matrix in the denervated 
outer molecular layer A, B. Immunoreactivity for GFAP in a control animal (A) and in an animal 14 days 
post lesion (B). In the control (A), astrocytes are fairly evenly distributed throughout the molecidar layer. 
After ECL (B), GFAP immunoreactivity is increased in the outer molecular layer (OML), and astrocytes 
form a row of cells at the border between the inner molecular layer (IML) and the OML (arrows). C, D) 
Immunoreactivity for the chondroitin sulfate proteoglycan neurocan in a control animal (C) and in an 
animal 14 days post lesion (D). In the control (C), neurocan immunoreactivity is not above background. 
After ECL (D), a distinct neurocan immunoreactive band is visible in the OML (arrow). E) Immunoreac
tivity for tenascin-C in an animal 14 days post lesion. Note that the tenascin-C enriched outer molecular 
layer forms a sharp molecular boundary towards the non-denervated IML (arrow). F G) Neurocan mRNA 
expression in a control animal (F) and in an animal four days postlesion (G). In the control (F) no neurocan 
mRNA expressing cells can be detected in the molecular layer. After ECL (G), many cellular profiles are 
observed in the outer molecular layer of the fascia dentata. (H) Fascia dentata four days after entorhinal 
cortex lesion. This section was double labeled for GFAP (immunohistochemistry) and neurocan mRNA (in 
situ hybridization). Several double labeled astroglial cells are visible. Immunostaining for GFAP identifies 
astrocytes and labels their somata and proximal processes (arrowheads). In situ hybridization for neurocan 
mRNA identifies neurocan mRNA expressing cells. Scale bars: A-E= 50 flm; F, G= 40 |lm; H=10 |Xm. 
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Figure 6. Collateral sprouting after entorhinal cortex lesion. Molecules of the ECM may guide the sprouting 
fibers after entorhinal cortex lesion (ECL): Fibers that sprout within the denervated outer molecular layer 
(OML) grow within a growth promoting environment. This environment contains a variety of growth 
promoting ECM molecules, cell adhesion molecules, and cytokines. In contrast, fibers that attempt to grow 
into the denervated OML from the neighboring inner molecular layer (IML) meet a barrier of inhibitory 
ECM molecules which are secreted by reactive astrocytes. This molecular barrier could prevent ingrowth 
of fibers from non-denervated adjacent zones into the denervated OML. 

the problem of axonal sprouting for the purpose of characterizing axonal growth processes at 
the level of single nerve fibers. We used a transgenic mouse (APP23 transgenic mouse)^^'^^ for 
our investigations. The APP23 mouse overexpresses a mutated form of the human amyloid 
precursor protein (APP) that was discovered in the brains of patients, in whose families A D 
occurs with a marked frequency. At six months of age, the transgene in the brains of the mice 
results in the pronounced formation of amyloid deposits that resemble very closely the plaques 
seen in A D . To determine what influence amyloid deposition has on neighboring axons, we 
marked the entorhinal projection to the hippocampus with the anterograde tracer PHAL.^ 
Inasmuch as this projection tract becomes involved very early in AD, it seemed an especially 
suitable candidate for our studies pertaining to axonal alterations in the vicinity of amyloid 
plaques.^5'^^ 

The entorhinal fiber projection to the hippocampus in aged control cases and in young 
APP23 transgenic animals displayed a normal morphology (Figs. 7A and C). In these animals, 
we were able to locate the entorhinal fibers in their usual layer, namely the middle and outer 
molecular layer of the fascia dentata. Isolated fibers displayed a long, drawn-out course and 
developed numerous small boutons. In contradistinction to these, we found in older transgenic 
animals accentuated axonal changes near the amyloid deposits (Figs. 7B, D and E). Most no
ticeable were the large swellings (dystrophic boutons) formed by the entorhinal fibers in the 
immediate vicinity of the plaques. Under the electron microscope, these boutons exhibited the 
properties that are typical for dystrophic neurites, such as they also are found in AD, 

Evidence, however, of dystrophic changes within the confines of the normal termination 
zone of the entorhinal fibers does not mean that these structures originate via axonal sprouting. 
In effect, it is conceivable that such changes come about both by means of degenerative as well 
as axonal growth processes. Accordingly, we sought additional indications of axonal growth in 
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Figure 7. Entorhinal axonal projections in APP23 mice. A, B) Anterogradely Phaseolus vulgaris-
Leucoagglutinin (PHAL)-labeled projection (arrow) form the entorhinal cortex to the molecular layer of 
the dentate gyrus (DG) in an 18-months-old nontransgenic control mouse (A) and an 18-months-old 
APP23 mouse (B). Note the amyloid deposits (blue-gray reaction product) throughout the hippocampus, 
the thalamus (TH), and within the alveus (ALV). CAl, CA3, hippocampal subfields. C, D) Higher mag
nification of the inferior balde of DG from a control mouse (C) and an APP23 transgenic mouse. Note the 
thickened PHAL-labeled axons (arrow) and ballooned, spheroidal axon terminals (arrowheads) in the 
vicinity of amyloid plaques. GC= granule cell layer; IML= inner molecular layer; MML= middle molecular 
layer; OML= outer molecular layer. E) High magnification of PHAL-labeled axons with the characteristic 
dystrophic terminals around an amyloid plaque in CA3. Many PHAL-labeled axons appear normal until 
direcdy adjacent to the amyloid (arrow), then typically curve around the amyloid periphery, forming several 
small swellings followed by a large terminal balloon-shaped swelling that turns away from the plaque 
(arrowhead). Scale bars: A, B= 300 |Xm; C-E= 25 |Im. Reprinted from Phinney et al. J Neurosci 1999; 
19:8552-8559. ©1999 Society for Neuroscience. 

the vicinity of amyloid deposits. Here, we were aided by the fact that entorhinal fibers in 
control cases wrere found only in specific regions and layers of the brain and that the presence of 
entorhinal fibers at ectopic sites would be decisive evidence for the existence of reactive axonal 
growth processes in the mutant animals. We found such evidence for reactive axonal growth, 
once again, within the fascia dentata of the hippocampal formation. In this brain area, entorhinal 
fibers terminate in a layer-specific manner in the outer molecular layer and commissural/asso-
ciational fibers terminate layer-specifically in the inner molecular layer (Fig. 2). In control 
cases, this laminar organization is respected by both projections systems, and the fiber systems 
are confined to their respective layers. In APP23 transgenic animals, however, we observed that 
this fiber stratification is missing close to the plaques. As entorhinal fibers occur within the 
"wrong" inner molecular layer (Fig. 8A), commissural fibers are found ectopically within the 
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Figure 8. Plaque-associated ectopic axon terminals in APP23 transgenic mice. A) Disruption of the 
layer-specific termination of PHAL-labeled entorhinal axons in the vicinity of an amyloid plaque (asterisk) 
is evidenced by the invasion of these fibers (brown reaction product) into the inner molecular layer (IML) 
of the dentate gyrus, which is also labeled for calretinin (blue-gray reaction product). Calretinin is specific 
for the commissural/associational fibers in the mouse and labels specifically the IML. GC= granule cell layer 
of the dentate gyrus. B) Calretinin-labeled commissural/associational fibers (brown) also form dystrophic 
axon terminals (arrow) and deviate from their normally specific termination in the IML when in vicinity 
of amyloid (blue-gray). C) High magnification of the amyloid plaque (blue-gray) shown in the thalamic 
region in Figure 7B. Entorhinal fibers curve around the amyloid and form dystrophic boutons directly 
adjacent to the amyloid. Interestingly, PHAL-labeled entorhinal axons also formed dystrophic boutons 
around vascular amyloid deposits (arrow). Scale bars: A, B= 10 jlm; C= 50 |Xm. Reprinted from Phinney 
et al. J Neurosci 1999; 19:8552-8559. ©1999 Society for Neuroscience. 

*Wong" outer molecular layer (Fig. 8B), and, on these ectopic sites, both fiber systems give rise 
to typically dystrophic boutons. 

We found a further piece of evidence for aberrant axonal grow^th in the thalamus of the 
APP23 transgenic mouse. There, amyloid deposits can be visualized routinely in the vicinity of 
blood vessels (vascular amyloid).^^ Whereas, in controls, entorhinal fibers display no particular 
affinity to blood vessels, we found in APP23 transgenic animals countless dystrophic entorhinal 
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Figure 9. Entorhinal fibers form dystrophic boutons. A) Light micrograph of an amyloid plaque (asterisk) 
in the alveus of the hippocampus. Three PHAL-labeled entorhinal boutons surround the plaque (arrows). 
B) Electron micrograph of the plaque illustrated in A. The core amyloid (asterisk) is surrounded by numer
ous dystrophic neurites. The three large entorhinal boutons illustrated in A are indicated by arrows. One 
of the unlabeled dystrophic neurites is myelinated (short arrow). Scale bars: A= 10 )Llm; B= 5 |Im. Reprinted 
from Phinney et al. J Neurosci 1999; 19:8552-8559. ©1999 Society for Neuroscience. 

boutons in the immediate vicinity of vascular amyloid (Fig. 8C). In the final analysis, the 
entorhinal fibers could only have reached these locations via axonal growth. 

Presumably, the best example that we found for abnormal axonal sprouting in the APP23 
transgenic mice was near amyloid plaques in the hippocampal white matter, in the alveus. 
There, entorhinal fibers make their way en-route to their target cells in the hippocampus. At 
this point, they are myelinated and do not produce any synapses. Nonetheless, we observed 
numerous entorhinal boutons in the alveus surrounding the plaques (Fig. 9A) and could iden
tify them electron microscopically as dystrophic neurites (Fig. 9B). Many of these entorhinal 
boutons are immunoreactive for the growth-associated protein GAP-43, which is typically in 
evidence as a feature of axonal growth during development, axonal regeneration, and occurs in 
the course of sprouting processes. Moreover, the dystrophic boutons contain the synaptic pro
tein synaptophysin and show ultrastructural changes that point in the direction of a partial 
synaptic differentiation.^ 

The molecular mechanisms that underlie this form of abnormal axonal sprouting are the 
focus of our recent investigative efforts. It is conceivable that ECM alterations in the plaque 
periphery, such as the accumulation of perlecan,^^ to name but one example, have an impor
tant role to play. Furthermore, amyloid deposition in the brain activates astrocytes and 
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microglia in the vicinity of the plaques. Activated glial cells could, for their part, synthesize 
growth factors and cytokines, thereby exerting an influence on the sprouting process.^ ' 

At present, the following picture emerges: axonal alterations appear only in the neighbor
hood of amyloid; entorhinal axons grow close to amyloid deposits and into the "wrong" areas 
of the CNS; and entorhinal axons are immunopositive for the growth-associated protein GAP-43 
and display morphological as well as molecular characteristics of synaptic differentiation. These 
findings indicate that dystrophic entorhinal boutons come into existence by way of axonal 
growth processes. Furthermore, inasmuch as axonal sprouting can be shown to occur exclu
sively in the vicinity of amyloid deposits, the conclusion can be reached that amyloid deposi
tion is responsible for these axonal growth processes either directly or, more likely, indirecdy via 
the activation of glial cells. 

Axonal Sprouting in Temporal Lobe Epilepsy 
Sprouting processes have also been described in other diseases of the nervous system in 

which neuron loss occurs. In these disorders, neuronal damage leads to a plastic reaction of the 
brain and a reorganization of the central nervous circuitry. A prominent example in this con
text is human temporal lobe epilepsy (TLE). This disease is linked strongly to severe neuronal 
loss in a characteristic pattern known as hippocampal sclerosis (HS). It is assumed that follow
ing preferential loss of hippocampal neurons, such as those located in the hilus and hippocam
pal subfield CAl, surviving neurons sprout new axon collaterals and reinnervate the partially 
denervated hippocampus. The sprouting fibers form a new hippocampal circuitry that is thought 
to contribute to seizure pathogenesis as well as seizure prop^ation. '̂ '̂̂ ^ 

Because TLE frequendy is drug-resistant, hippocampal surgery is often necessary to achieve 
seizure control. These human hippocampi could be studied, and morphological evidence for 
the reorganization of hippocampal circuits was found. The most prominent changes were ob
served in the dentate gyrus, where granule cells sprout new collaterals into the inner molecular 
layer and establish recurrent synapses with granule cell dendrites. Histochemical staining meth
ods, such as the Timm's stain, ' visualize ectopic supragranular mossy fibers in sclerotic hip
pocampi (Fig. 10 A, B). Furthermore, based on Timm's staining and dynorphin immunoreac-
tivity, mossy fibers sprout across subfield boundaries into the hippocampal subfield CAl and 
subiculum. ' Finally, evidence was obtained for the sprouting of neuropeptide Y, somatosta
tin, and interneurons containing gamma-aminobutyric acid (GABA).'^'^ Within other regions of 
the hippocampus considerable network reorganization has also been reported. Thus, ana
tomic circuit reorganization occurs to a considerable extent in this disorder, and numerous 
aberrant connectivities are formed by the sprouting fibers. 

At present, only very few studies have been published, in which the connectivity of the 
human hippocampus is analyzed in detail, e.g., at the level of single axons or that of single 
identified cells.̂ '̂̂ ^^ As such, we sought a method for studying the reorganization of hippoc
ampal pathways at the level of local fiber tracts. Because anterograde tracing techniques are 
used for this purpose in experimental animals in vivo^^^ as well as in vitro,^^^ we adapted 
known anterograde tracing methods to human hippocampal slices and employed this tech
nique to analyze mossy fiber sprouting in the human brain. Hippocampal slices were ob
tained from the hippocampi of patients with HS or from those with mass lesions located in the 
temporal lobe. All of the patients gave their written consent for the use of their brain tissue for 
scientific research purposes. All of these studies were approved by the University of Freiburg's 
Ethics Committee. Hippocampal slices were kept alive in a slice chamber, and the anterograde 
tracer neurobiotin was iontophoretically injected into the granule cell layer of the dentate gy
rus. Single injections resulted in the labeling of small groups of granule cells (Fig. 10 C, D). 
The axonal arbor of these cells could be partially reconstructed, and single mossy fibers could 
be followed from the soma to the inner molecular layer of the sclerotic dentate gyrus (Fig. 10 E, 
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Figure 10. Mossy fiber sprouting in human hippocampus. A) Timm-stained section of the dentate gyrus. 
Patient with tumor-associated TLE (astrocytoma; WHO 11°). The cytoarchitecture of the granule cell layer 
(GCL) appears to be normal. Mossy fibers are darkly stained. They are abundant in the hilus (H) and 
virtually absent from the molecular layer (ML). B) Timm-stained section of the dentate gyrus. Patient with 
Ammon's horn sclerosis. The granule cell layer is less compact compared to A. Mossy fibers form a dense 
fiber plexus in the inner portion of the molecular layer (arrow). C, D) Medium sized injection of the 
anterograde tracer neurobiotin (NB) in the granule cell layer (GCL) of the dentate gyrus. A group of granule 
cells has taken up the tracer. Single granule cells can be identified and their axonal projections can be 
reconstructed using a camera lucida (D, E, F). H, hilus; IML, inner molecular layer. E, F) Camera lucida 
reconstructions of a granule cell (E; c.f, D) and a granule cell axon (F) in the inner molecular layer. G) 
Neurobiotin-labeled mossy fiber synapse in the IML of the dentate gyrus. Note that the anterogradely 
labeled bouton forms an asymmetric synapse with a small postsynaptic element, most likely a granule cell 
spine (S). The arrow points at the synaptic cleft:. A= axon terminal. Scale bars: A, B= 500 |Im; C, D= 50 jlm; 
E, F= 25 ^im; G= 0.25 ^im. 

F). Electron microscopy revealed asymmetric mossy fiber synapses on spiny neurons in the 
inner molecular layer, presumably granule cells (Fig. 10 G). 

The description of the sprouting process in human FiS is only the first step towards un
locking the molecidar and electrophysiological processes that underlie the reorganization of the 
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hippocampus and seizure pathogenesis. In this context, we have learned a great deal from 
animal models of TLE. By using these model systems, the supragranular sprouting response of 
mossy fibers was studied and changes in neurotrophic factors,^^ extracellular matric mol
ecules, transcription factors, and other sprouting-related molecules^ ̂  were analyzed. Very likely, 
the most widely accepted model for the recurrent mossy fiber sprouting response involves 
seizure-induced alterations in neurotrophic factors. In short, it has been demonstrated that 
seizures alter the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 
and fibroblast growth factor (FGF) in the dentate gyrus. This may induce the granule cells to 
sprout new axon collaterals, which then grow into the inner molecular layer and reinnervate 
proximal granule dendrites. Although neurotrophic factors are likely to play a crucial role in 
the induction of axonal outgrowth, extracellular matrix (ECM) molecules and cell adhesion 
molecules may be just as important for xkeguidznce of sprouting fibers. Along this line, several 
cell adhesion and ECM molecules have been described in animal models of TLE, among them 
neural cell adhesion molecule^^^ and tenascin-C,^ '̂ ^̂  and it has been proposed that these 
molecules guide the sprouting axons. 

In human hippocampi, similar changes were observed, which in turn suggests that com
parable mechanisms may be operative in human TLE. For instance, BDNF as well as NT-3 
were also found to be associated with increased mossy fiber Timm's staining, ̂ ^̂  and the distri
bution of tenascin-C in HS indicates that ECM molecules may have an important role to play 
in the rewiring of the hippocampus. ̂ ^̂  In this context, it should be taken into account that the 
absence of individual trophic molecules may be compensated for by others. As an example, in 
mice deficient in BDNF, we still observed the sprouting of mossy fibers in the hippocampus. ̂ ^̂  

What Is the Functional Significance of Axonal Sprouting? 
The pressing question arises as to how we should judge the functional significance of 

axonal sprouting for the affected organism. Is it an essentially positive process that can be 
viewed as a natural means of repair and a compensatory mechanism that leads to the fiinctional 
improvement of an organism, or should it be classified as an undesirable process that is accom
panied by detrimental consequences for an injured organism? Our experimental data and those 
reported by other research groups suggest that the fiinctional significance of axonal sprouting 
for an injured organism can not be judged in a sweeping manner, and that both the degree of 
axonal sprouting as well as its fiinctional consequences depend on the age of the organism, the 
brain regions injured, and the type of lesion involved. Depending on these variables, the phe
nomenon of axonal sprouting brings in its train both favorable as well as unfavorable conse
quences for the subsequent fiinctioning of an organism that has been subjected to injury or 
trauma. Several excellent reviews and commentaries are recommended to the reader in which 
the functional significance of axonal sprouting processes have been discussed at greater length 
for lesion-induced reorganization in the neocortex,^ '̂̂ '̂̂ ^^ the spinal cord,̂ "̂̂  and the hippoc-
ampal formation following entorhinal lesion. ' ' 

The following examples should serve to illustrate the two-faced aspect of axonal sprout
ing: Young children, by whom the cortex had to be removed from one side of the brain, com
pensate their motor deficits via axon collateral sprouting processes. What is probably involved 
here are the intact motor axons of the other hemisphere, which are capable of crossing over the 
midline at spinal cord level. These fibers sprout into the deafferented spinal chord and can 
thereby regulate movements on both sides of the body.^ ' ^ In contrast to these favorable 
aspects of axonal sprouting behavior, one also finds instances of detrimental connectivities that 
can result in the CNS via axonal sprouting. So the report by Woolf and coworkers^ ̂ ''̂  describ
ing how, following injury of a peripheral nerve, collateral sprouting occurs on the part of sen
sible fibers in the spinal chord. In the process, these fibers gain access to the spinal chord's pain 
pathways, which in turn can trigger painfiil sensations at a light touch . In this case, axonal 
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sprouting is not only disadvantageous for the injured organism but is involved at the most 
fundamental level in the pathogenesis of a chronically painful disorder. 

With regard to AD, the difficulty of assessing axonal sprouting becomes clear even within 
a single case. Accordingly, whereas compensatory collateral sprouting on the part of surviving 
nerve fibers delays the clinical presentation of symptoms, on the one hand, '^ aberrant sprout
ing behavior in the vicinity of amyloid deposits could well contribute to the pathogenesis of 
dementia on the other. ̂  Particularly the changes seen in the white matter could result in 
pronounced dysftinction since even minute damage to a fiber tract is capable of interrupting 
the connectivity between two brain regions. It can be assumed, therefore, that aberrant axon 
growth in the vicinity of plaques contributes to cognitive deficits in AD.^ 

In view of this situation, it does not appear reasonable to evaluate the significance of 
axonal sprouting in a generalized manner. In the event that sprouting processes play a role in 
certain disorders, they initially should be classified morphologically, molecularly, and by means 
of behavioral experiments. Only by using this approach can the functional importance of axon 
sprouting for a given disease be assessed successfully, regulatory molecules positively identified, 
and, finally, the means provided for intervening in that process. In the long run and in this way, 
new therapeutic strategies could be developed for treating specific neurological disorders. 
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CHAPTER 7 

A Kinase with a Vision: 

Role of ERK in the Synaptic Plasticity of the Visual Cortex 

Gian Michele Ratto and Tommaso Pizzorusso 

Introduction 

We look at these written words with two eyes, their neuronal representations are elabo
rated separately in the two retinae and they are conveyed to two separate zones of 
the thalamus. The segregation in eye specific structures is broken only in the pri

mary visual cortex, where neurons responsive to both eyes can be finally found. The cortical 
circuitry that brings together information from the two eyes is exquisitely tuned during the 
early post natal life, in a critical period in which synaptic changes are driven by the electrical 
activity evoked by the visual stimulation. Though the plasticity of binocular vision has served 
as a model for the study of synaptic plasticity for over 40 years, the identity of the molecular 
mechanisms involved in this process has remained elusive. Recently, we have offered evidences, 
gathered both in vivo and in vitro, suggesting that the Extracellular-signal Regulated Kinase 1/ 
2 (ERK 1/2) plays a crucial role in the control of this form of plasticity. 

In this chapter we will at first describe ocular dominance in visual cortex and how it is 
shaped by visual activity during development. Then we will analyze the factors that are known 
to influence visual plasticity and their transduction pathway. Finally, we will show how the 
activation of this intracellular machinery is necessary for visual cortical plasticity in vitro and in 

Critical Period for Ocular Dominance 
Most of the richness and complexity of the external world is conveyed to us by the sense of 

vision. The architecture of the visual system complicates gradually from lower mammalian to 
primates and man, in a way corresponding to the increasing importance of vision in respect of 
the other sensorial modalities. Still, many functional features of the visual system are shared at 
all levels of phylogenetic development, both in terms of the neuronal architecture and in terms 
of the developmental processes leading to the mature system. Among these conserved themes, 
one of the most striking feature is the fact that the visual system gradually learns to see during 
a definite period of development. During this time window most parameters determining the 
performances of the visual system improve gradually, in correspondence of a progressive tuning 
of cortical circuitry. This period, aptly named critical period, begins roughly at eye opening 
and lasts for a few weeks or months depending on the species, and culminating to a duration of 
a few years in humans. At this time the circuitry of the visual system is prone to changes 
according to the visual experience impinging on the subject, as it is exemplified by the 
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Figure 1. Organisation of the mammalian visual system, and definition of ocular dominance. A) Each eye 
projects to both sides of the thalamus with unequal weight. In rodents, 95% of the retinal fibres occupy most 
of the controlateral thalamus, while the remaining fibers project to a small volume of the ipsilateral thalamus. 
These two zones are still segregated, in the sense that post-synaptic thalamic neurons respond to either one 
or the other eye. The thalamo-cortical projections converge on the binocular portion of the visual cortex, 
and thus cortical neurons are responsive to stimuli presented to both eyes. B) The histogram is used to classify 
the ocular dominance of cortical neurons, from a score of 1 (responsive only to the controlateral eye) to 7 
(responsive only to the ipsilateral eye). C) The monocular deprivation during the critical period (post natal 
day 21 to about 32 in rats and mice) cause a dramatic shift of ocular dominance, which can be partially 
rescued with exogenous infusion of NGF or BDNF (D and E respectively). 

matura t ion of the ocular dominance of cortical neurons. The information incoming from the 
two eyes is initially segregated in two separate pathways that converge only at the level of the 
binocular portion of the primary visual cortex (Fig. lA). No t until this stage we find neurons 
responsive to visual stimuli presented to both eyes. Accordingly, cortical neurons can be classi
fied in base of their ocular dominance, with a score that defines the degree of control of each 
eye in determining the cell responsiveness (Fig. IB). A score of 1 or 7 indicates that the eye is 
responsive only to the contralateral or ipsilateral eye respectively, score 4 indicates equal re
sponsiveness to both eyes. The ocular dominance in a mature rodent is described by the histo
gram IB. Clearly the contralateral eye is somewhat dominant, but there is a significative contri
bution by the ipsilateral eye also. If during the critical period one eyelid is sutured (monocular 
deprivation) the ocular dominance distribution shifts drastically toward the non deprived eye 
(Fig. \C)} 

Factors Critical for Ocular Dominance: Electrical Activity 
and Neurotrophins 

In the quest for the mechanisms controlling the plasticity of ocular dominance, we must 
understand first how monocular deprivation is translated into the neuronal alphabet of spike 
trains. T h e suture of the eyelid does not sink the retina in uniform darkness since light changes 
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Figure 2. Signal transduction pathway associated with neurotrophins and electrical activity. Neurotrophins 
transduction is started at the Tyrosine Kinase receptors. There are three flavours of receptors (TrkA, B and 
C) with different preferential affinity for the various neurotrophins: NGF (TrkA), BDNF (TrkB), NT3 
(TrkC) and NT4 (TrkB). The phosphatidylinositol 3-kinase pathway mediates the control of neuronal 
survival, and it is not considered here. Electrical activity triggers the ras-ERK pathway in a Ca-dependent 
way. After its phosphorylation ERK 1/2 can control gene expression and exert local effects on cytoplasmatic 
or membrane-bound substrates. 

are attenuated but still discernible; what is taken away from the visual world is the presence of 
spatial contrast. The thalamic fibers carrying the input originating from the deprived eye miss 
the high frequency trains characteristic of the perception of edges. Thus, the strengthening of 
the normal eye at expenses of the deprived eye, can be interpreted as an expansion of the 
synaptic target of the active fibers against the terminals with depressed electrical activity. An
other factor that contributes to regulate this competitive process between the two eyes, is the 
availability of neurotrophins in the visual cortex."^ Indeed, the involvement of neurotrophins 
on monocular deprivation is directly demonstrated by the fact that their exogenous adminis
tration during deprivation prevents the shift of ocular dominance caused by the unbalance of 
electrical activity^'^ (Fig. ID-E). Furthermore, the duration of the critical period for monocu
lar deprivation is shortened in mice overexpressing BDNE^ 

These observations reveal that monocular deprivation is a play with two actors on stage: 
electrical activity and neurotrophins, with a central role played by BDNF. Therefore it is rea
sonable to assume that the mechanisms controlling plasticity of ocular dominance must sit 
somewhere between the intracellular signaling pathways activated by neurotrophins and those 
which convert visually driven activity into long-lasting changes of cortical circuitry. A possible 
scheme of molecular interactions between neurotrophin signaling and activity dependent sig
naling is represented in Figure 2. Most of the physiological functions of neurotrophins begin 
with their binding with the tyrosine kinase receptors (Trk receptor). Consequendy, the recep
tor self-phosphorylates and exposes consensus sites for various Trk substrates. Two pathways 
that have been well characterized in vitro are especially interesting, because they converge on 
the transcription factor CREB (cAMP Response Element Binding protein) that, upon activa
tion, begins CRE-mediated transcription. The offspring of this episode of gene expression has 
an important role for memory and learning in Drosophila, Aplysia, and mouse.^^'^^ 
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Figure 3. Effects of BDNF on neurons of the visual cortex. A) A 1 hr exposure of a slice of visual cortex to 
BDNF (200 ng/ml) caused a strong phosphorylation of the response element CREB (bar 20 fim). B) In the 
same conditions Ca-imaging at the confocal microscope failed to show any response to BDNF, but the cells 
were responsive to brief pulses of Cyclopiazonic acid (50 ^iM) and of NMDA (20 |lM). C) BDNF (50 ng/ 
ml for 30 min) is a powerful activator of ERK 1/2, as shown by the strong pERK immunofluorescence in 
cell body and dendrites (bar 50 |Xm). 

The first pathway leading from Trk to CREB passes through the activation of phospholi-
pase Cy, the production of Inositol 3-phosphate (IP3) and the consequent release of calcium 
from internal stores.^ At the end of this cascade, CREB phosphorylation would be brought 
about by the Ca-dependent activation of C a M K IV. The second pathway does not involve a 
Ca change, and the Trk receptors are linked by the complex of adapter proteins shc-Grb-sos to 
the ras-ERK 1/2 cascade. Eventually, these molecidar stepping-stones lead to the cell nucleus 
since phosphorylated ERK causes CREB activation by means of the intermediate kinase RSK. 
In these schemes coalesce experimental evidences gathered mainly in vitro, and do not reflect 
necessarily what occurs in vivo. For example, the data regarding a direct action of neurotrophins 
on intracellular calcium are rather controversial, and have been obtained mainly in culture as 
discussed elsewhere. In the next section we will show that, in the visual cortex, B D N F causes 
CREB activation by means of the Ca—indepent cascade only. 

Activation of ERK 1/2 Is Necessary for BDNF-Induced 
Phosphorylation of CREB 

Our initial goal is to show what pathways are involved in mediating B D N F action in the 
visual cortex. Simply put, we must answer to the following questions: 

1. Does BDNF activate CREB in neurons of the visual cortex? 
2. Does BDNF cause an increase of intracellular calcium and/or activate ERK 1/2 to mediate 

the activation of CREB? 
Experiments executed on both cultured neurons and acute slices obtained from the visual 

cortex show that B D N F activates CREB, strongly arguing for an involvement of CREB in 
mediating the action of B D N F in the visual system. This is demonstrated by immunoreaction 
with an antibody raised against CREB phosphorylated at the Ser 133 residue (Fig. 3A). Expos
ing cortical slices to B D N F in similar conditions, we performed Ca-imaging experiments to 
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Figure 4. BDNF causes CREB phosphoiylation in a Ca-independent way but requires ERK activation. A) 
Incubation with the cell permeable form of the calcium chelator BAPTA quenched the Ca transient caused 
by release from the intracellular stores (cyclopiazonic acid 50 |lM), and strongly reduced the size of the 
NMDA response (20 \lM). B) In the same conditions, BDNF (50 ng/ml for 15 min) still caused a strong 
phosphorylation of CREB in cultured neurons (bar 50 |im). C) In contrast, treatment with the MEK 
inhibitor U0126 completely blocked CREB phosphorylation (bar 50 ^.m). 

detect any calcium increase triggered by the neurotrophin. In a set of remarkably uneventful 
experiments, we recorded hundreds of cells and we observed a Ca-change only in an handful of 
neurons (13 out of over 1000 cells), even if the imaging system was sensitive enough to reveal 
the tiny Ca transient unmasked by the SERCA inhibitor Cyclopiazonic acid (Fig. 3B). More 
was to be found on the other branch of the cascade departing from the Trk receptor and leading 
to the nucleus, since BDNF proved to be a powerful activator of ERK 1/2. This is shown by the 
strong increase in phospho-specific immunostaining of cultured neurons, after exposure to 
BDNF (Fig. 3C). 

The necessity of either pathways can be demonstrated by blocking them with specific 
agents and looking at the effects on CREB phosphorylation. The two tools in our hands were 
the Ca chelator BAPTA, to interrupt the Ca-dependent pathway, and the molecule U0126, a 
specific blocker for the ERK kinase MEK.̂ '̂̂ ^ In neurons loaded with a cell-permeant form of 
BAPTA, the calcium changes due to the release from intracellular stores were virtually sup
pressed, and even the much larger changes caused by the influx of external calcium through the 
NMDA receptors were heavily depressed (Fig. 4A). Therefore, given the high affinity and 
binding speed of BAPTA with Ca, this treatment should effectively quench any Ca change that 
might have been left undetected in the imaging experiments. In these conditions the pCREB 
staining after exposure to BDNF was virtually unaffected (Fig. 4B). This data, together with 
the Ca imaging experiments, prove that Ca is not a key effector in the pathway between TrkB 
activation and CREB phosphorylation in visual neuron. The opposite situation holds true for 
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Figure 5. Neuronal activity causes ERX phosphorylation. A) A theta burst delivered to the white matter 
activated ERK in the visual cortex 5 min after stimulation. A similar control slice that did not receive the 
theta stimulation was much more weakly stained. ERK activation by the theta burst was blocked by UO126 
(20 jxM) and by a similar concentration of the NMDA antagonist CPP (bar 40 [Im). B) ERK phosphory
lation was also induced by a 15 min exposure to light after a period or dark rearing. 

the ras-ERK pathway: pre-incubation of cortical neurons with the M E K blocker U0126, com

pletely suppressed the pCREB induction operated by stimulation with B D N F (Fig. 4C). There

fore, B D N F dependent CREB phosphorylation requires ERK activation and it is independent 

on changes of intracellular Ca. 

ERK 1/2 Is Phosphorylated by Activity and Visual Stimulation 
in the Cortex 

The surprise of meeting a Ca-independent process does not last long, since Ca comes back 
on scene when we study the pathway linking electrical activity to CREB phosphorylation. 
Indeed, activity-mediated CREB phosphorylation is quantitatively dependent on intracellular 
calcium increases caused by influx through voltage sensitive channels and N M D A receptors. 
While the details of this regulation are still elusive, it is likely that the Ca influx acts on the 
ras-ERK pathway at the level of ras and /or raf. The involvement of N M D A receptors on 
activity dependent ERK phosphorylation is demonstrated in Figure 5: slices from the visual 
cortex received a special pattern of stimuli from an extracellidar electrode. The pattern, named 
theta burst, consists of short bursts at high frequency (100 Hz), repeated at 5Hz frequency. 
Fifteen minutes after stimidation, staining with pERK antibody revealed a strong level of phos
phorylation that required Ca influx through the N M D A receptor, since ERK activation was 
completely blocked by the N M D A receptor antagonist CPP (Fig. 5A). It could be argued that 
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Figure 6. ERX activation is necessary for LTP induction in visual cortex. A) Experiments were performed 
on slices from the visual cortex of rats within the critical period. The stimulating electrode is placed in the 
white matter (WM), and the recordings are obtained from neurons in the superficial layers. B) The artefact 
caused by the stimulation is followed by the downward field response. After theta burst the response shows 
potentiation in control conditions, but not after incubation with U0126. C) The amplitude of the field 
response is tested every 30 s before and after the TBS and plotted in fijnction of time. Each point represents 
averages from 18, 5 and 7 different slices recorded in control, PD98059 and U0126 respectively. 

the in vitro stimulation is different from the pattern of electrical activity that is evoked in the 
cortex by visual stimuli. Thus, we desired to test whether visual stimulation would bring about 
ERK phosphorylation in behaving animals. Rats were kept in darkness for 3 days, and then 
were exposed to light. Twenty minutes afterward, the animals were sacrificed and processed for 
immunohistochemistry with the pERK antibody. Figure 5B shows that exposure to visual en
vironment caused a robust activation of neurons in the visual cortex. ' 

In conclusion, since ERK acts as a convergence point between electrical activity and 
neurotrophins, it appears to be in a strategic position to translate the regulatory actions of 
activity and neurotrophins into changes of cortical circuitry. Of course, it remains to be dem
onstrated a direct link between ERK activation and the regulation of synaptic strength. 

ERK Activation Is Required for Synaptic Plasticity in Vitro 
and in Vivo 

In models of synaptic plasticity, such as long term potentiation (LTP) or depression (LTD), 
it has been shown that the changes of neuronal connectivity are the result of a complex chain of 
events involving calcium entry through N M D A receptors and voltage-gated calcium channels, 
activation of protein kinases, gene expression and protein synthesis (see refs. 24,25 for recent 
reviews). In acute slices of visual cortex it is possible to stimulate the incoming excitatory fibers 
by means of extracellular electrodes and the evoked post-synaptic activity can be recorded from 
the superficial layers (Fig. 6A). LTP of the thalamo-cortical circuit can be induced by applying 
a theta burst stimulation in the white matter. Since this form of LTP is present only during the 
critical period, it has been suggested that this form of synaptic plasticity might be implicated in 
the activity-dependent refinement of cortical circuitry occurring during the critical period. 
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Test stimuli were delivered every 30 sec by an electrode placed on the white matter, while 
recording the evoked field response from layer II/III. The presentation of a theta burst induced 
a potentiation of the response amplitude of about 20% in control conditions (Fig. 6B,C). If 
the theta was preceded by a 10 min incubation with the MEK inhibitors U0126 or PD98059, 
the potentiation was completely suppressed. It is interesting to notice that the time course of 
the response amplitude of slices treated with the inhibitors, differs from controls immediately 
after TBS delivery (Fig. 6C). The rapidity of the onset of the effect of MEK blockage suggests 
that ERK action is required for some mechanism of potentiation that, at least initially, is inde
pendent on gene transcription. Separate experiments have shown that the inhibitory effect of 
U0126 on LTP were not caused by reduced responses to the theta burst or by reduced activa
tion of the NMDA receptors that are required for the induction of this form of LTP.̂ ^ 

To test the role of ERK pathway in visual plasticity, we needed a way of delivering the 
MEK inhibitors to the cortex during monocidar deprivation. The drugs can be supplied by 
osmotic minipumps with their oudet placed immediately in front of the binocular visual cor
tex. Treatment was provided for one week at the peak of the critical period, as schematized in 
Figure 7A. After seven days of treatment the MEK inhibitor was still effective. This was proven 
in an experiment in which electrical activity was strongly increased by acute infusion with 
picrotoxin, a blocker of GABAA receptor. This treatment caused a robust ERK phosphoryla
tion in control cortex but not in the cortex treated with U0126 (Fig. 7B). At this point we are 
finally ready to study whether activation of the ERK cascade is necessary for the 
experience-dependent plasticity occurring during monocular deprivation. Indeed, block of ERK 
activation by U0126 or PD98059 prevented MD effects (Fig. 7C). In normal P28 rat the 
overwhelming majority of visual cortical cells are binocular, with a clear dominance of the 
controlateral eye, and one week of deprivation at this age should cause a massive shift of re
sponsiveness to the normal eye. This plastic change is clearly prevented by the blockage of the 
ERK pathway. 

Beyond ERK: Mechanisms Controlling Synaptic Plasticity 
in the Visual Cortex 

What are the cellular mechanisms critical for the plasticity of ocular dominance and that 
are blocked by the inhibition of the ras-ERK pathway? From the molecular point of view, the 
possible targets of ERK after its visually driven activation are at two different levels: at the 
nucleus and at the cytoplasm. In the first case activated ERK translocates to the nucleus where 
it can start CRE-mediated gene expression, with the consequent production of gene transcripts 
essential for establishment or maintenance of plastic changes. ̂ '̂ '̂ '̂ '̂ ^̂  Indeed, recent observa
tions by us and others, suggest that protein synthesis is necessary for ocular dominance plastic
ity, and that visual activity regulates CRE-mediated gene expression.^ '̂̂ ^^ The second scheme 
envisions a local action of ERK that, upon its activity/neurotrophin dependent activation, 
phosphorylates certain substrates that are critical for synaptic transmission or neuronal excit
ability. Such an intriguing possibility, is consistent with the observed distribution of the pERK 
staining that is very strong in dendrites and not only at the cell body, and with the rapid effect 
of ERK blockade after theta. Recent data show that there are at least three possible sites for 
acute ERK action: First, in Aplysia ERK is required for the downregulation and internalization 
of the adhesion molecule Ap-CAM, a key step in the induction of long term facilitation.^^ 
Second, ERK can act at synaptic level, since it has been shown that synapsin I has consensus 
sequences for ERK. Furthermore, ERK phosphorylates synapsin I in response to 
neurotrophis,^^ with consequent effects on glutamate release. Finally, ERK can phosphory-
late the potassium channel Kv4.2,^^ which is one of the main determinant of the rapidly inac
tivating potassium current. Given the importance of this conductance in determining spike 
duration, neuronal excitability and spike back-propagation, it is conceivable that this might be 
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Figure 7. ERK activation is necessary for ocular dominance shift after monocular deprivation. A) Time 
schedule of experimental treatment. The period of monocular deprivation coincides with the duration of 
inftision and it is located at the peak of the critical period. B) At the end of the treatment the cortex was 
exposed and perftised with 1 mM of picrotoxin. At this concentration the electrical activity increased of 
about a factor four, and this was refleaed by ERK induction, which was still blocked on the cortex treated 
with U0126 (250 )LlM). C) Average distributions of the ocular dominance for 6 control rats (histogram at 
left), and 11 rats that were monocularly deprived (right). Seven of the deprived rats were implanted with 
a minipump delivering U0126. Similar results were obtained with the second MEK inhibitor, PD98059. 

another key target for ERK actions on synaptic connectivity. Further details of the mechanisms 
controlling the acute and long term effects of ERK on neuronal plasticity are still no more than 
hypotheses. 
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CHAPTER 8 

Attempts to Restore Visual Function after 
Optic Nerve Damage in Adult Mammals 

Tomomitsu Miyoshi, Takuji Kurimoto and Yutaka Fukuda 

Abstract 

Retinal ganglion cells (RGCs) and their axons, i.e., optic nerve (ON) fibers, provide a 
good experimental model for research on damaged CNS neurons and their functional 
recovery. After the ON transection most RGCs undergo retrograde and anterograde 

degeneration but they can be rescued and regenerated by transplantation of a piece of periph
eral nerve (PN). When the nerve graft was bridged to the visual center, regenerating RGC 
axons can restore the central visual projection. Behavioral recovery of relatively simple visual 
ftinction has been proved in such PN-grafted rodents. Intravitreal injections of various neu
rotrophic factors and cytokines to activate intracellular signaling mechanism of RGCs and 
electrical stimulation to the cut end of ON have promoting effects on their survival and axonal 
regeneration. Axotomized RGCs in adult cats are also shown to survive and regenerate their 
axons through the PN graft. Among the cat RGC types, Y cells, which function as visual 
motion detector, tend to survive and regenerate axons better than others. X cells, which are 
essential for acute vision, suffer from rapid death after ON transection but they can be rescued 
by intravitreal application of neurotrophins accompanied with elevation of cAMP. To restore 
visual function in adult mammals with damaged optic pathway, the comprehensive and inte
grative strategies of multiple approaches will be needed, taking care of functional diversity of 
RGC types. 

Optic Nerve Regeneration and Functional Recovery of Vision 
in Rodents 

During embryonic development the neural retina and optic nerve (ON) are formed as 
bilateral protrusions from a frontal part of the neural tube and thus these tissues are a part of 
the CNS. Basic studies on deterioration of the retina and the ON after the damage in the 
central visual pathway and various attempts to promote recovery of visual function will cer
tainly benefit our knowledge on brain damage and its repair in general. The retinal ganglion 
cells (RGCs) send visual information, processed within the retina, to various visual centers of 
the brain through their axons in the ON. When the ON is severely injured, almost all RGCs 
die in adult mammals and there is no spontaneous axonal regeneration through the original 
optic pathway. However, these axotomized RGCs can regenerate axons when a segment of 
peripheral nerve (PN) is grafted to their cut ends. ' Proportion of the RGCs with regenerated 
axons was, however, only 2-5% and even the best case approximately 10% in adult rats."̂  When 
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the opposite end of the PN graft was bridged to the superior coUiculus (SC), regenerating 
axons make synaptic contacts with proper target neurons. "̂ '̂  The visual ftinction of regenerated 
ON axons and re-estabUshed retino-collicular projection has been proved by electrophysiologi
cal recordings of single unit activities. Regenerated RGC axons, when recorded in the PN graft, 
revealed typical visual responses of ON, OFF or ON-OFF center with some surround. 
Transsynaptic activation of re-innervated SC neurons was verified by electrical stimulation of 
the PN graft and visual stimulation to the operated eye. 

The behavioral evidence for the recovery of visual function in PN-grafted rodents has also 
been presented. Thanos et al have first reported that pupillary light response could be recov
ered in ON-damaged rats 8 and 12 weeks after PN transplantation between the ON stump 
and the pretectum, though the response was weaker than in intact rats. After PN grafting into 
the SC in hamsters, Sasaki et al̂  have proved that these animals could learn avoidance behavior 
using Ught as conditioned stimulus. As shown in Figure lA, the shutde box was divided into 
two chambers by a partition which was low enough for the hamster to jump over. When the 
hamsters did not jump into the other chamber within ten seconds after the light on at the 
ceiling of shutde box, they received electrical shocks to their foot. A session of thirty or fifty 
trials of such avoidance task was performed for 10 consecutive days. The hamsters with intact 
visual system acquired the avoidance behavior as the session proceeded, and achieved about 
40% success trials after 10 sessions (Fig. IB). Blind hamsters with bilateral ON transection did 
not show any improvement in the success rate of avoidance. On the other hand, the hamsters 
with PN grafts between the ON stump and the SC (the opposite ON was transected) showed 
a gradual increase in success rate although the extent was lower than that in normal hamsters 
(Fig. IB). Sasaki et al̂ '̂̂ ^ have further succeeded to show behavioral recovery of visual ftinction 
in PN-grafted hamsters by using more natural paradigms such as counting spontaneous ambu
lating activity in light and dark conditions and measuring bodily movement coincided with 
EEC desynchronization induced by light. On the other hand, Thanos et al̂ ^ have reported in 
PN-grafted rats that they could discriminate between vertical and horizontal stripes, with some 
morphological and electrophysiological evidence for restoration of retinotopic representation 
in reconstructed retino-collicular pathway. 

Attempts to Promote RGC Survival and Their Axonal Regeneration 
in Rodents 

As described above, at present only a small proportion of axotomized RGCs regenerate-
their axons through the PN graft so that only a limited recovery of visual function can be 
expected. To restore higher visual ftinction such as acute vision, shape or velocity discrimina
tion, ftirther efforts should be directed to the foUowings: (1) to increase the number of surviv
ing RGCs, (2) to increase the number of regenerating RGC axons, and (3) to make retinotopic 
connection to the target neurons in visual centers. 

After intraorbital ON transection, rat's RGCs start to die on day 3 and the survival pro
portion rapidly decreases to 10% of the normal on day 14^^ and then after the decrease was 
gradual.^ The prevention of retrograde death of RGCs after ON transection is the first step for 
better recovery of visual ftmction after PN grafting. Intravitreal injections of various neurotrophic 
factors have been shown to rescue axotomized RGCs from retrograde cell death in adult rats: 
NGF,i5 BDNF,^^'^^ NT-4/5,^^'^^ CNTF,^^ FGF,^^ IGF,̂ ^ GDNF^^'^^ and Neurturin.^^ The 
effect of peptidic neurotrophic factor such as BDNF and CNTF on RGC survival was dra
matically enhanced by intracellidar elevation of cAMP.̂ ^ Other bioactive molecules such as 
TNF-a, macrophage/microglia inhibitory factor (MIF),'̂ '̂'̂ ^ caspase inhibitor ^ and Bax 
antisense oligonucleotide^^ were also reported to be effective. In addition, various molecules, 
cells and tissues derived from in vivo animal revealed promoting effect on RGC survival: PN, 
Schwann cells,^ activated macrophages,^^ coUicular proteoglycan,^ an artificial graft with 
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Figure 1. A) A schematic diagram of shuttle-box avoidance learning for hamsters. Turning the light on/off 
at the ceiling of shutde box (conditioned stimulus; CS), electrical shocks to the foot (unconditioned 
stimulus; US) and movement of animal between the rooms (Response; R) were controlled and monitored. 
B) Increase of the rate of successful trials for avoidance response in normal (N), blind (B), one-eyed (O) and 
PN-grafted (PN) hamsters. The numbers of each group indicate the intensity of electrical shock (100 or 300 
V) and the number of trials per day (30 or 50). The's' in B-300-50-S indicates that small-sized shutde box. 
PN-grafted hamsters showed statistically significant increase of avoidance scores to the same extent as 
one-eyed hamsters. Reprinted with permission from: Sasaki H, Inoue T, Iso H et al. Exp Neurol 1999; 
159:377-390. ©1999 Elsevier Science. 
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Schwann cells and trophic factors,^^ and unknown molecule(s) from injured lens.^ '̂̂ ^ Most of 
these factors, however, become less effective as the day proceeded after the drug administration. 
Even prolonged administration of caspase inhibitor or NT-4/5 showed reduction of survival 
promoting effect at longer survival time. ' A number of trials have been done to transfer 
genes for the purpose of long-term supplement of trophic factors with viral vector ' or cDNA 
electroporation. A combination of TrkB gene transfer to RGCs with adeno-associated virus 
and exogeneous BDNF supplement results in a marked enhancement of their survival in vivo. 

Sprouting and elongation of RGC axons is the next step for functional recovery of vision. 
Some of the neuroprotective factors administrated to the PN-grafted animals had also been 
reported to promote axonal regeneration in addition to survival of RCGs. The rate of axonal 
regeneration, however, could not be accurately estimated independendy from the survival rate 
of RGCs, because improvement of the survival rate by some drugs may inevitably raise the 
regeneration rate after the PN transplantation. To evaluate the net effect of axonal regenera
tion, an experimental design that could separate the regeneration rate from the survival rate has 
been thought necessary. According to Tip and his associates, ' intravitreal injections of CNTF 
did increase axonal regeneration of the rat RGCs which was induced by PN transplantation, 
whereas CNTF did not improve RGC survival in their experimental conditions. They showed 
that CNTF has promotive effect on axonal regeneration independendy from its survival pro
motive effect. However, in the case of factors with both effects on survival and axonal regenera
tion, their net promoting effect on axonal regeneration was difficult to evaluate. Does the RGC 
survival by itself promote axonal regeneration? To answer this, bcl-2 overexpressed mice were 
useful. Bcl-2 is one of the anti-apoptotic factors and bcl-l overexpressed mice have about twice 
RGCs as many as wild type mice because of the lack of apoptotic RGC death during develop
ment. '̂ ^ The relative survival of axotomized RGCs in bcl-2 overexpressed mice was enhanced 
to 653% as compared with 5.8% in wild type mice 4 weeks after ON transection. ' Using 
these bcl-2 overexpressed mice, we recently assessed regeneration ability of axotomized RGCs 
separately from their survival ability. To examine whether the surviving RGCs in bcl-2 
overexpressed mice can regenerate their axons, the surviving and regenerating RGCs were counted 
to evaluate the survival and regeneration rates separately. Four weeks after axotomy and PN 
transplantation, the regeneration rate of surviving RGCs in bcl-2 overexpressed mice was not 
enhanced from that of wild type mice, although the survival rate of RGCs was enhanced more 
than ten times in bcl-2 overexpressed mice. The failure in promotion of RGC axonal regenera
tion in bcl-2 overexpressed mice was also confirmed by another in vivo experiment using ON 
crush. These results clearly indicate that the survival is prerequisite, but not sufficient for 
axonal regeneration of RGCs. In a recent in vitro study using ^c/-2-transfected RGCs, Goldberg 
et al.̂ ^ have reported that many peptidic neurotrophic factors such as BDNF and CNTF 
promote the net axonal outgrowth. They also reported that intracellular cAMP elevation, as a 
result of depolarization by potassium or electrical stimulation via electrode allay on the culture 
dish, enhanced these peptidic neurotrophic factors' effect on axonal elongation. Given this, it is 
certain that various peptidic trophic factors stimulate net axonal regeneration into the PN 
graft, although in vitro neurite extension of CNS neurons may not be comparable to their 
axonal regeneration in vivo. 

How we could promote axonal regeneration of once damaged RGCs other than or in 
addition to PN grafting and previously known neurotrophic factors? Lens injury has been 
shown to induce massive axonal regeneration of damaged retinal axons. ' ' In the experi
ment of Fisher et al̂ ^ almost 30% of damaged axons can regenerate without PN-grafting along 
the entire original visual pathway and reinnervate visual centers which has been verified by 
recording visual evoked responses from the visual cortex. Lens injury induced retinal infiltra
tion of activated macrophages and these macrophages seemed to secrete factors that promote 
axonal regeneration.^^ Recently it was revealed that proteins under 30 kDa in the condi-
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tioned medium of activated macrophages have the regeneration-promoting activity on cul
tured RGCs. Especially, the presence of 14 kDa-protein was parallel to the regeneration-
promoting bioactivity on cultured RGCs. This protein was not identical to any of the tested 
several known trophic factors that can be secreted by activated macrophages. Further investiga
tion for this protein is desired. 

The final step is the reformation of specific synaptic connections with the target cells of 
the visual center. While Vidal-Sanz et al"̂  have previously reported that RGC axons regenerat
ing into the SC can find proper target neurons in upper visual layers of the SC, without grow
ing downwards into the multisensory layers underneath, Zwimpfer et al have reported that 
regenerating RGC axons, when guided into improper target neurons of the cerebellum, can 
also make synaptic connections. In a more recent study regenerating RGC axons could select 
their target nuclei, i.e., denervated retinorecipient nuclei, and eform persistent synapses for 
long time.^^ Thus, when regenerating RGC axons are allowed to select proper targets they 
prefer them and maintain proper synaptic connections. 

Can regenerating RGC axons form synapses with target SC cells in a precise topographic 
manner as in normal animals? To answer this, Sauve et al systematically mapped receptive filed 
positions of single SC neurons throughout its rostrocaudal and mediolateral extent of the 
reinnervated SC. Although there was a tendency that the RGCs arising from more nasal retina 
innervate more caudal parts of the SC, this retinotopic preference was much weaker in PN-grafiied 
hamsters than in intact ones. As to the ventral-dorsal axis of the retina, there was no significant 
tendency of retinotopic representation onto the SC afiier reinnervation. Sauve et al^ also noted 
some abnormal patterns of retinotopic projection such that single SC site is innervated by 
regenerating axons from a number of RGCs originating from multiple retinal loci and that a set 
of closely located RGCs innervate far distant parts on the SC surface. Thus, at present the 
precise retinotopic organization is not well established in reconstructed central visual pathway 
(see however, Thanos et al ). To improve this, at least two issues should be taken into account. 
First, by some additional means the survival of much more RGCs should be achieved so that 
more competitions occur among many regenerated axons to find out their own proper targets. 
Secondly, more extensive studies should be done on the expression of target finding molecules 
such as Eph receptors in regenerating RGC axons and ephrins on the surface of reinnervated 
SC.5 '̂57 Furthermore, in view of the recent studies that indicate the importance of rich envi
ronment or forced use of restored brain pathways for functional recovery, with such 
rehabilitational approach the reconstructed visual pathway in PN-grafted animals may regain 
specific synaptic reconnections of regenerating RGC axons with target cells in visual centers.^^'^^ 

RGC Survival and Their Axonal Regeneration in Adult Cats 
To achieve the recovery of higher visual function such as acute vision and shape recogni

tion, it is important to study on experimental animals having a well-developed visual system. 
In this section we will summarize our recent studies on axotomized RGCs and their axonal 
regeneration in adult cats. The cat's RGCs consist of three physiological types, termed Y, X and 
W cells, having different visual response properties.^^ Y and X cells were originally distin
guished by their response summation properties of receptive fields; X cells summate linearly 
whereas Y cells nonlinearly.'^ Y cells have brisk-transient responses to stationary light stimulus, 
large receptive field center and highest axonal conduction velocity. The corresponding mor
phological type, a cells, have a largest soma, thick primary dendrites and a wide dendritic 
field. X cells have a small receptive field center with brisk-sustained visual response and medium 
conduction velocity, and correspondingly P cells have a medium-sized soma and bushy den
drites which extend in a narrow area. The W cell is a heterogeneous group of smaller RGCs 
and they are all characterized with sluggish visual responses to centered light stimuli and have 
relatively slow conduction velocities than Y and X cells. The W cell includes various 
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Figure 2. The relative proportion of each type of cat RGCs. A) Intact retinas. B) RGCs with regenerated 
axons identified morphologically after PN transplantation. C) RGCs with regenerated axons identified 
electrophysiologically after PN transplantation.̂ ^ D) RGCs surviving after ON transection, 2 months after 
surgery.''̂  Both survival (D) and regeneration (C) rates of Y cells (a cells) were higher than those of X cells 
(P cells). 

morphological types such as gamma, delta and epsilon cells (see review ref. 65). Some W 
cells have been suggested to function in monitoring background light intensity. In the area 
centralis of cat retina, the density of X cells (p cells) is highest and they contribute to the visual 
acuity of cats vision. Because each cell type of the cat RGCs plays a specific role in visual 
information processing, it is important to investigate how different are the three types in the 
survival and axonal regeneration. 

Since 1991 we have shown that adult cat's RGCs can regenerate their axons into the PN 
graft like rodent RGCs. The type of RGCs with regenerated axons can be identified ac
cording to their dendritic morphology visualized by intracellular dye injection. All three major 
types (a, P and y cells) were found to regenerate their axons. The overall regeneration rate of 
cat RGCs at two months after surgery was 3-4% of total RGCs. The relative proportions of a, 
P and other cell types were approximately 24, 50 and 24%, respectively (Fig. 2B). The relative 
proportion of a cells was about 6 times higher than the proportion in intact retina (4.2%, see 
Fig 2A), indicating that the a cell has the best regenerating capacity among the cat RGCs. 
Although some RGCs revealed signs of degenerative or regrowing changes of dendrites, the 
dendritic morphology of many RGCs with regenerated axons were comparable to those of 
normal ones. Electron-microscopic analysis on regenerating axons revealed that about 20% 
of regenerated axons were myelinated but the rest were all unmyelinated two months after PN 
transplantation, thus axonal conduction velocity must be slower than normal. 

To reveal whether or not and how these regenerated axons transmit visual information 
through regenerated RGC axons in cats, we recorded single-unit activities from teased fibers 
within the PN graft about two months after surgery and analyzed their receptive field proper
ties.^^ Many unit activities that responded to visual stimuli were recorded from the PN graft 
and almost all these unit activities preserved typical visual response properties of Y, X or W cell 
(Fig. 3). The highest sampling of Y cells confirmed the best regeneration ability of a cells in 
morphological study (Fig. 2B and C). The receptive field centers of Y and W cells were larger 
than those of X cells at corresponding eccentricities from the area centralis as in intact retinas. 
The tendency that the receptive field centers of Y, X and W cells become larger at peripheral 
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Figure 3. Physiological responses of cat RGCs recorded from dieir regenerated axons in PN graft. A, B) 
Examples of single-unit activity responded to a stationary light spot on the receptive field center. Expanded 
trace of spikes during light spot on (A) and the long trace of the same unit to a stationary light spot for 5 
sec (B) are shown. C-E: Examples of peristimulus time histograms of ON-centerY cell with a brisk transient 
response (C), ON-center X cell with a brisk sustained response (D) and OFF-center W cell with sluggish 
sustained response (E) to stationary light spots centered on the receptive field center. The horizontal bar 
indicates the period of light on. The interruption in the bar of E indicates the period of light off. Reprinted 
widi permission from: Miyoshi T, Watanabe M, Sawai H et al. Exp Brain Res 1999; 124:383-390. ©1999 
Springer. 

retina was also preserved in P N grafted cats, though the variation of receptive field center size 
in regenerated Y or X cells was larger than that of intact ones. Within 10 degrees from the 
area centralis, however, the receptive field centers of X-cells with regenerated axons were larger 
than those in intact retinas. Another abnormalities in regenerating RGCs were low spontane
ous activities and weak surround visual responses. These results suggest that some rearrange
ment of retinal circuitry and/or changes in membrane properties must have occurred as a 
consequence of degeneration and regeneration. 

Does the difference of regeneration ability between Y cells ( a cells) and X cells (P cells) 
depend on the ability of their survival? To clarify this, the survival of each R G C type was 
compared after O N transection.'^^ Two months after O N transection, the same observation 
term as in regeneration study, OC cells comprised 16% of surviving RGCs whereas p cells only 
9 % (Fig. 2D) . Compared with the proportion in intact retina, a cells have better survival 
ability than P cells, whereas P cells are very vulnerable to axotomy. The two main types of cat 
RGCs were also quite different in the survival time course after axotomy.^^ Within 2 weeks 
after O N transection, the survival rate of P cells starts to decrease on day 3 and it rapidly falls 
to the level of about 2 0 % on day 7 (Fig. 4C).^^ Then after, the survival rate of p cells gradually 
decreases to 12% on day 14. O n the other hand, a cells do not have a rapid phase of death like 
P cells and the survival proportion gradually decreases to 6 4 % on day 14 (Fig 4A and 4B). We 
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Figure 4. Changes of survival rates of a cells (a), 
and p cells (c), and ratios of estimated total num
bers of a cells in ON-transected retinas to those 
in the intact retinas (b). Squares and vertical bars 
represent averages of normalized values of esti
mated cell number for the ON-transected retina 
to that in the intact retina with SD. Solid lines are 
regression lines calculated from original values 
between days 3-14 (a,b), or days 3-7 and days 
7-15 (c). Broken lines (a,c) draw the averages. 
Note that survival ratios of P cells decrease rapidly 
from day 3 to day 7, then slowly after day 7, while 
those of surviving a cells decreases slowly. Re
printed with permission from: Watanabe M, 
Inukai N, Fukuda Y, Vis Neurosci 2001; 
18:137-145. ©2001 Cambridge University Press. 
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have recently found that intraocular administration of caspase 3 inhibitor rescued P cells from 

rapid death after axotomy but did not affect the survival of a cells, indicating that the rapid cell 

death of p cells is due to apoptosis.^^ Because p cells contribute to the central vision, it is 
important to rescue P cells from rapid death for the recovery of higher visual ftmction after the 

O N damage in cats. 

Another question we asked was to what extent the cat's RGCs maintain their physiologi

cal properties after the O N transection. To answer this, we recorded single-unit activities from 

axotomized RGCs 5 and 14 days after O N transection.'^^ O n day 5 during which period P cells 

(X-cells) were dying rapidly, almost all recorded RGC activities kept their original visual re

sponse properties to light spot and also kept linear/non-linear response characteristics. O n 
day 14, when the rapid cell death period was over, the recording efficiency of X cells fell down. 

We also compared receptive filed center size as a function of eccentricity on 5 and 14 days after 
axotomy. O n day 5 receptive field centers of approximately two third of Y cells and one third of 

X cells were smaller than those of respective types in intact retinas (Fig. 5).^^ O n the other 
hand, on day 14 only a small number of Y cells had such shrunken receptive field centers. 
Spontaneous activity and response magnitude of axotomized R G C were significantly lower 

than those of intact RGCs. Taking the time course of X cells (p cells) death into consideration, 

X-cells' smaller receptive field centers on day 5 may have reflected some functional deteriora
tion of axotomized X-cells just before their death. 

Then we examined the effect of neurotrophic factors on the survival of a and p cells 14 

days after O N transection.'^^ Intravitreally injected BDNF, C N T F and G D N F were effective 

to promote the survival of p cells but not of a cells. Similar injections of N G F or NT-3 did not 
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Figure 5. Changes of receptive field center diameters of axotomized cat RGCs on day 5 and 14 afi;er ON 
transection. Open and filled circles indicate the receptive field centers of the intact and axotomized RGCs, 
respectively. A) day 5 axotomized Y-cells; B) day 14 axotomized Y-cells; C) day 5 axotomized X-cells; D) 
day 14 axotomized X-cells. In the axotomized retinas on day 5, Y- (A) and X-cells (C) tended to have smaller 
receptive field centers than those of intact RGCs throughout the eccentricity. By contrast, neither Y-cells 
nor X-cells on day 14 had such small receptive field centers (B and D), except for a few Y-cells. For each of 
the Y- and X-cells, ON-center and OFF-center subtypes were not distinguished because there was no 
consistent difference between these two subtypes. Reprinted with permission from: Takao M, Miyoshi T, 
Watanabe M et al. Exp Neurol 2002; 177:171-181. ©2002 Elsevier Science. 

promote the survival of any type of cat RGCs. Intravitreal injections of a mixture of BDNF, 
C N T F and forskolin which enhances intracellular level of cAMP had the greatest effect, 4.7 
folds increase, in promotion of p cell survival, whereas the same treatment had no eflFect on the 
survival of a cells.^ In physiological experiment on axotomized cat RGCs, we found that 
intravitreal administration of this mixture preserved their spontaneous activities and prevented 
them from receptive field shrinkages. 

Neuroprotection of RGCs by Electrical Stimulation 
In recent years it has been shown that electrical activity of C N S neurons plays an essential 

role in neural plasticity during development and even in adulthood. For example, to elicit 
long-term potentiation which is known to underlie learning and memory high frequency teta
nic stimulation with electrical pulses is essential (see review ref. 77). Another example is that 
electrical activities of afferent inputs are crucial for fine adjustment of specific synaptic connec
tions ' and also for dendritic morphology of postsynaptic cells. 
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During physiological studies on axotomized cat RGCs, we realized that the spontaneous 
discharge rate became quite low as the day proceeds after axotomy; on day 14 a majority of 
axotomized RGCs had no spontaneous activity/^ The fall of spontaneous activity in these 
RGCs may reflect deafferentation of synaptic inputs from bipolar or amacrine cells within the 
retina besides some deterioration in their membrane properties. It is also possible that low or 
no spontaneous activity of axotomized RGCs contributes to curtail their survival. In support of 
this, we previously reported that after dark rearing of ON-transected and PN-grafted cats, 
RGCs revealed degenerative changes in their soma and dendritic shafts such as swelling and 
vacuolization, indicating that light stimulus is necessary for the survival and axonal regenera
tion of RGCs. A similar observation has been made by Aigner et al̂ "̂  on axotomized rat RGCs. 

Given these correlations between the RGC survival and the electrical activity or visual 
inputs, we hypothesized that electrical stimulation of the ON may prevent axotomized RGCs 
from retrograde cell death. To test this, we examined the in vivo effect of electrical stimulation 
of the ON on the survival of rat RGCs one week after axotomy.^^ The left ON was completely 
transected 5 days after applications of a fluorescent dye to bilateral SCs to label RGCs retro-
gradely. Just after the ON transection a train of monophasic electrical pulses (50 jilsec in dura
tion and 50 jLlA in amplitude) was applied for two hours to the ON stump via a pair of silver 
ball electrodes. One week after ON transection, the survival rates of axotomized RGCs were 
surveyed by evaluating the mean densities of retrogradely labeled RGCs in the treated and 
control retinas. As a result, 83% of RGCs survived after electrical stimulation of the ON, 
whereas only 54% of RGCs survived without ON stimulation (Fig. 6). The effect depends on 
the intensity of electrical currents and the sham stimulation did not show any effect. The 
enhancement of RGC survival by electrical stimulation of the ON was still clear 2 weeks after 
axotomy, though absolute survival rate became lower in both treated and non-treated retinas 
(Morimoto et al., unpublished observation). 

It would be interesting to examine whether or not the activation of axotomized RGCs by 
electrical or light stimulation will promote in vivo axonal regeneration along the PN graft. As 
already mentioned in a preceding section, in a recent in vitro study, Goldberg et al̂ "̂  have 
shown a significant axonal growth from cultured RGCs after application of electrical currents 
in the culturing chamber in the medium with BDNF and CNTF. They further reported that 
the axonal growth promoting effect of electrical stimulation was mediated by elevation of in
tracellular level of cAMP and following activation of the downward pathway, i.e., protein ki
nase A (PKA)-mitogen activated protein kinase (MAPK) system. Although in vivo experi
ments may not directly reflect the observations made in in vitro experiments, we can expect 
that a similar intracellular signaling pathway is activated during stimuli of RGC with electrical 
pulses or flashing light. In fact, the cAMP responsive element binding protein (CREB) has 
recently been implicated as a candidate for nuclear pathway that controls neuronal plasticity 
during retinogeniculate development.^ 

In conclusion, various factors and methods are required to overcome the obstacles hin
dering the RGC survival, regeneration and the precise retinotopic connection of their axons to 
the central visual target. Functional restoration of the damaged visual pathway may be accom
plished by the combination of multiple strategies including PN transplantation, supplement of 
neurotrophic factors, controlling intracellular signaling, genetic alteration of cellular ftinction 
and activation of RGCs by electrical or light stimulation. Another important issue that should 
be taken into account would be the diversity of visual fiinctions among various types of RGCs 
especially in studies on animals with well-developed vision. 
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Figure 6. The effect of electrical stimulation on the survival of axotomized rat RGCs. A-C) The photomi
crographs of FG-labeled RGCs in corresponding regions of an intact retina (A), 7 days after ON transection 
without electrical stimulation (B) and with electrical stimulation of 50nA (C). More RGCs survived in the 
retina with electrical stimulation than those without electrical stimulation. Scale bar: 50 jim. D) The mean 
RGC densities of the groups with different current intensities of electrical stimulation. Electrical stimulation 
of over 30pA significandy increased the surviving RGC densities. Reprinted with permission from: Morimoto 
T, Miyoshi T, Fujikado T et al. Neuroreport 2002; 13:227-230. ©2002 Lippincott Williams & Wilkins. 
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CHAPTER 9 

Brain Repair: 

Experimental Treatment Strategies, Neuroprotective 
and Repair Strategies in the Lesioned Adult CNS 

Mathias Bahr and Paul Lingor 

Optic Nerve Transsection as Exemplary Model for CNS Lesions 

The RetinO'Tectal System 

Anumber of functional and structural features make the retino-tectal projection an 
excellent model system for the study of neurodegeneration and protective strategies in 
the CNS. The knowledge about developmental procecces yields important informa

tion in order to better understand degenerative processes and the point of action of 
neuroprotective agents in this system: During ontogenesis ventro-lateral parts of the prosen-
cephalic vesicle grow out to form the eye bud which stays attached to the forebrain by the optic 
stalk. Neuroblastic precursor cells located in the inner layer of the eye bud differentiate into 
retinal ganglion cells (RGCs) which project their axons to parts of the midbrain. Consequendy 
they replace the optic stalk and create the optic nerve. It bears the only axons projecting from 
the retina and—as part of the CNS—is myelinated by oligodendrocytes. 

In the human visual system, optic afferents project to the dorsal lateral geniculate nucleus 
(dLGN) and then to the primary visual cortex. In opposite, in the rat (one of the most com
mon animal models studied) RGCs send the majority of their axons to the superior colliculus 
(SC) in the tectum, and only about 30% of them have collaterals to the lateral geniculate 
nucleus (LGN) in the thalamus. 

Thus, the retina and it's projections can be considered as an externalized central nucleus 
with all properties of the CNS. At the same time, due to its anatomical localization the 
retino-tectal system has the advantage of being easily accessible for experimental procedures 
and evaluation. 

Experimental Axotomy 
The transection of the optic nerve (ON) in the rat is a classical lesion paradigm taking 

advantage of the characteristics of the retino-tectal system and is widely used in the study of 
neuronal cell death in the CNS. Since RGCs are the only neurons projecting via the optic 
nerve, it's lesioning leads to selective damage in this particular neuron population. 

In comparison to other lesion paradigms, optic nerve transection can be performed re-
producibly by a small surgical procedure and in a relatively short period of time: After 
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lateral geniculate nucleus 

•' superior collicutus 

Figure 1. A) Model of the optic nerve transection approach. RGCs are labelled by injection of dye into the 
superior colliculus or at the nerve stump direcdy. B and C) Flatmount and section of retina displaying 
labelled RGCs. 

narcotization of the animal and opening of the orbita, the optic nerve is transected close to the 
posterior eye pole. In order to later visualize the cell population of interest, different markers 
are used: fluorescent fast blue, fluorogold or Di-I can be applied direcdy at the ON stump after 
axotomy. Markers are then transported retrogradely and selectively label RGCs. In study setups 
requiring unlesioned animals as controls, RGCs alternatively can be labelled prior to lesioning 
by injection of Di-I into the superior colliculus. 

Due to it s close spatial relationship to the inner retinal layers, the vitreous space of the 
posterior chamber serves as a convenient reservoir for the injection of drugs which shall reach 
the RGCs. Nevertheless, the use of this natural space sometimes poses problems in the deter
mination of the biological half-life of applied substances and their concentration at the final 
destination. Factors like diffusion behaviour, interactions due to solvents and light-sensitivity 
of drugs may play important roles in the overall drug kinetics, and can be taken in account only 
approximatively. 

Usually animals are sacrificed about 2h to 14 days after axotomy, because most of the cell 
death induced by the lesion will have taken place by then. Retinas then can easily be extracted 
and prepared for further examination. For RGC survival studies, the retina is flattened by 
radial incisions and mounted for further microscopical analysis. The selective retrograde 
prelabelling allows counting RGCs without additional histochemical stainings: with the excep
tion of some endothelial or microglial cells, which can be distinguished by their morphology, 
only RGCs show characteristic fluorescence (see Fig. 1). 

Alternatively the tissue can be processed for additional immunohistochemistry, protein 
expression analysis, RNA extraction or biochemical tests. 

Post-Traumatic and Ontogenetic Cell Death in the Retino-Tectal 
System 

Cell Death after Axotomy 
Following transection of the ON a selective degeneration of RGCs can be witnessed. The 

number of viable ganglion cells initially stays stable for about 4 days post-lesioning but then 
continuously starts to decline. Nearly 50% of RGCs are dead by day 7 and the majority (80-90%) 
of this population perish 14 days after axotomy. It is to note that the number of surviving 
RGCs increases with the distance of the lesion from the eye pole indicating a putative trophic 
support from the remaining axon. Studies looking at longer time frames revealed that the 
initial rapid phase of cell death is followed by a second one peaking 6 months after lesion. 

Dying RGCs show characteristic morphological changes induced by axotomy with hall
marks such as a shrinkage of the cytoplasm, fragmentation of the nucleus and a degradation of 
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cell organelles. Other than in necrotic cell death which is accompanied by swelling and hy
drops of the cell soma, local inflammation and scar formation, post-axotomy cell death takes 
place in a well defined sequence and time range and does not lead to inflammation responses in 
surrounding tissue. In fact, there are numerous physiological and pathological conditions, when 
dying cells show similar morphological changes. While studying different types of cell death in 
cancer tissue, Kerr and colleagues already 1972 proposed to distinguish this morphologically 
very different cell death from necrosis and thus coined the term apoptosis. As has been learned 
since, these morphologically visible changes are only the last steps in a complex process and are 
preceded by a cascade of protein interactions, which shall be reviewed later. 

Cell Death during Ontogenesis 
Curiously, post-traumatic apoptotic cell death in it's morphology is very similar to pro

grammed cell death (PCD) during embryogenesis. In rats about 50% of RGCs die very soon 
after their axons reach their final targets in the superior coUiculus (SC) and lateral geniculate 
nucleus (LGN), within the first postnatal week. This, however, represents already the second 
wave of cell death during the development of the retinal projection, since many more of the 
RGC precursor cells die well before reaching the target region, in the stage of neurogenesis, 
migration and initial axon outgrowth. About 90% of all originally generated RGC precursor 
cells are eliminated during this first wave of developmental cell death. The reason for this 
initial precursor overproduction followed by massive demise is not yet completely understood. 
Hypotheses about the function of PCD during ontogenesis include an adjustment of neuron 
numbers to neuronal and nonneuronal targets, the elimination of neurons with aberrant con
nections or the removal of cells which have only transitory functions during ontogenesis. 

More interestingly, these embryonic neurons are not killed by external stimuli, but inter
nally launch a cascade of active enzymatic self-destruction, which, as we know now, is very 
similar in its regulation to cell death in RGCs damaged by axotomy and employs similar 
pathways. The elucidation of mechanisms of neuronal cell death during embryogenesis thus 
yields important clues for the understanding of processes in experimental neuronal degenera
tion and finally in the course of neurodegenerative diseases, where apoptosis also seems to play 
an important role in cell destruction. 

Key Players in Apoptotic Cell Death: 
Possible Targets for Therapeutic Strategies 

Intmediate-Early Genes (c-Fos/c-Jun) 
One of the earliest events in RGCs determined to die following axotomy is an alteration 

in the expression pattern of so-called immediate-early genes (lEGs), such as c-Fos and c-Jun and 
it has thus been proposed, that lEGs act as important players in the apoptotic cascade. The 
products of these rapidly expressed genes have the ability to hetero- or homodimerize. C-Fos/ 
c-Jun heterodimers lead to the formation of the transcription factor AP-1 (activator protein-1) 
which can bind to different promotor sites on the DNA and thus enhance the transcription of 
genes that encode growth promoting proteins. After phosphorylation by c-Jun N-terminal 
kinases QNKs) the transcriptional activity of c-jun is enhanced. ̂ ^ 

In RGCs Jun expression is not detectable under basal circumstances, but is rapidly in
duced following optic nerve transection. Expression of c-Jun is dependent on the lesion site: 
the shorter the remaining nerve stump the faster and longer an expression of c-Jun was ob
served and, as mentioned before, the number of surviving RGCs increased with the lenghth of 
the remaining axon.̂ ^ In this paradigm, c-Jun levels thus seem either to indicate or to promote 
decreased survival in the RGC population. In sympathetic neurons microinjection of specific 
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antibodies against c-Jun prevented apoptosis and recent results from axotomy of the nigrostriatal 
pathway also favor a deleterious c-Jun function, since apoptotic neuronal death was attenuated 
by expression of dominant negative c-Jun. ̂ ^ 

Results from optic nerve crush experiments, a lesion model where not all axons remain 
disconnected, however demonstrate the ambivalence of Jun signaling: strong Jun-immuno-
reactivity after the crush is seen in both disconnected as well as connected RGCs. Interestingly, 
only connected cells showed a strong coexpression of c-Jun and activating transcription factor 
2 (ATF-2), whereas completely axotomized cells (commited to death) show a suppression of 
basal ATF-2 in addition to high c-Jun levels.^ Combined c-Jun and ATF-2 expression there
fore is associated with cell survival after lesioning, but c-Jun expression alone precedes apoptosis. 

Experimental evidence from c-jun and c-fos null mutant mice further questions the role 
of these lEGs in neuronal apoptosis: other than could be expected, programmed cell death was 
observed in embryos lacking both c-fos and c-jun. It was thus postulated that, although fre-
quendy observed, lEG upregulation is only a secondary epiphenomenon in apoptotic cell death. 
Alternatively, the role of c-fos and c-jun in the knock-out animals could have been substituted 
by other proteins or even alternative pathways, which seems to be the more probable hypoth
esis. The significance of c-Jun signaling in neuronal apoptosis therefore remains to be further 
clarified. 

Caspases and Bcl-2 Family Members 
The nematode C.elegans was one of the first species where programmed cell death (PCD) 

was the subject of intensive studies. The development of the worm follows a strict scheme 
leading to the production of 1090 somatic cells. Among those, 131 cells undergo apoptotic cell 
death, mainly representing cells of ectodermal origin, such as neurons and neuron-associated 
cells. The study of mutations resulting in changes within the cell death pattern allowed the 
identification of several cell death related genes — the Ced^ene family (cell death abnormal). 
Ced-3 and Ced-4 turned out to be essential for programmed cell death, whereas Ced-9 acted in 
a protective manner enhancing cell survival. After the cloning of mammalian Gf^/homologues 
it became apparent that these genes are highly conserved between species and assume similar 
ftmctions in the cascade of apoptotic cell death. 

In mammals, the protease caspase 3 shows the closest homology to Ced-3. Caspase 3 and 
other caspases are members of a cysteinyl protease family, which share the common feature of 
cleaving substrates at aspartate residues. They reside as inactive forms in the cytoplasm and can 
be activated by proteolytic cleavage. Caspases 3,6 and 7 make up the so-called "effector" caspases 
and stand at the end of the apoptotic pathway. After activation by "initiator" caspases 8, 9, 10 
and 12, they are responsible for cleavage of cytoskeletal or nuclear proteins and thus degrada
tion of cellular structures (see Fig. 2). 

Knock-out animals for caspases underscore the significance of this protease family in de
velopmental neuron death: Caspase 3 deficient mice show hyperplasias and disorganization in 
the developing brain, finally leading to premature death during the first postnatal weeks. ̂ ^ 
Very similarly, caspase 9 knockout mice show cerebral malformations due to brain enlargement 
caused by apoptosis inhibition. Both proteases are closely connected within the apoptotic cas
cade, since activated caspase 9 is able to cleave and thus activate pro-caspase 3, the inactive 
form of the zymogen, which explains the similarity of both knockout phenotypes. Supporting 
the hypothesis that optic nerve transection initiates apoptotic cell death, an activation of caspase 
3 and caspase 9 could be demonstrated in axotomized RGCs. ̂ '̂̂ ^ Animals deficient for other 
members of the caspase family have less impressive neuronal phenotypes, but show dysfunc
tions in the execution of the cell death cascade in other cell types. For example, caspase 8'^' 
mutants have an impaired development of the heart and die in utero. Caspase 8, ftinctioning as 
an initiator caspase and standing at the very top of the apoptotic cascade, is activated by so-called 
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.Ligand 

Apoptosis 

Figure 2. Apoptotic pathway diagram displaying die key players mentioned. Ajfter ligand binding to the 
death receptor, caspase 8 participates in initiating two main ways of cell death. The mitochondrium 
associated cascade is activated by caspase 8 induced Bid cleavage, followed Bax oligomerization and resulting 
in cytochrome C release. Cytochrome C plays an active role in apoptosome formation and activation of 
effector caspases. Caspase 8, however, is also able to direcdy activate caspase 3 omitting the mitochondrium 
associated cascade. 

death receptors. At least six of these transmembrane receptors are known so far (e.g., 
TNF-receptor, CD95/Fas/Apol, TRAIL-receptors). Their natural ligands are members of the 
TNF family, but also neurotrophic factors, such as NGF.^^ Because of their ability to induce 
cellular death upon ligand binding, they were attributed the name "death receptor". Fibro
blasts derived from caspase 8 mutants did not show any apoptotic response after death recep
tor stimulation while other signaling pathways were not affected.'̂ ^ Only recently an involve
ment of caspase 8 signaling in the course of neuronal cell death could be established in a lesion 
model of focal cerebral ischemia. 

Our current knowledge suggests that there are two main pathways which are capable to 
activate effector caspases: The so-called extrinsic pathway is activated by ligand binding to the 
death receptor family receptors (e.g., CD95). Upon binding signaling proteins associate with 
the receptor, which itself does not contain any enzymatic activity, and form the death inducing 
signaling complex (DISC). The DISC then converts cytosolic pro-caspase 8 into active caspase 
8 subunits which then directly activate effector caspases by proteolysis. In fact, caspase 8 was 
first discovered when associated proteins of the CD95 DISC were analyzed and therefore has 
been known as FLICE (FADD-like ICE).^^ 

Alternatively, caspase 8 activates the intrinsic apoptotic pathway by cleaving Bid. The 
intrinsic pathway or death receptor-independent pathway is regulated by proteins of the Bcl-2 
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family and is closely associated with mitochondrial function, thus also termed mitochondrial 
pathway. 

The highest resemblance to Ced--4m mammals is found in the apoptosis pro tease-activated 
factor 1 (Apaf 1) and its knockout leads to a phenotype which mimicks those of caspases 3 and 
9. Via its caspase-recruitment domain (CARD) Apaf 1 binds to caspase 9 proenzyme (Apaf 3) 
and together with cytochrome c (Apaf 2) released from mitochondria forms the apoptosome. 
The apoptosome then allows proteolytic cleavage of pro-caspase 9 which in turn leads to acti
vation of downstream effector caspases. 

The third major member of the Ced gene family—Ced-9—relates to about 15 known 
mammalian homologues—the Bcl-2 gene family."̂ '̂̂  Whereas Ced'9 promotes cell survival in 
C.elegans, members of the Bcl-2 family in mammals have either pro- or anti-apoptotic proper
ties. Structurally, Bcl-2 family members all share at least one Bcl-2 homology (BH) domain 
and some of them are able to homodimerize (i.e., Bcl-2/Bcl-2) or heterodimerize (i.e., Bcl-xs/ 
Bcl-2 or BC1-XS/BC1-XL).^^ They can translocate to intracellular membranes and are capable of 
pore formation."^^ It has been further shown that Bcl-2 family members regulate the opening of 
the permeability transition pore (PTP). Very likely, regulation of the PTP is crucial for the 
maintenance of mitochondrial integrity by regulation of the mitochondrial transmembrane 
potential (A^ni)> as well as for downstream pro-apoptotic signaling by cytochrome c release 
from the mitochondrial intermembrane space. ' 

Amongst anti-apoptotic members we find Bcl-2, Bcl-w, BC1-XL, MC1-1 and A1. The proto
type of this group, Bcl-2 (which was first discovered as oncogene in human B-cell lymphomas), 
is membrane-bound and locates on the cytoplasmic side of the outer mitochondrial mem
brane, the endoplasmatic reticulum and the nuclear envelope. Members of this subfamily all 
share at least a BHl and BH2 domain. Bcl-2 as well as BC1-XL prevent the release of cytochrome 
c from the mitochondrium thus inhibiting apoptosome formation.^^ Transgenic mice deficient 
for Bcl-2 survive the embryonic development, but later show an increased cell death in differ
ent tissues, including neurons. Therefore Bcl-2 seems to play a survival promoting role in adult 
neurons rather than in embryogenesis.^"^ In opposite, BC1-XL knockouts exhibit a massive death 
of immature neurons and die in utero.^^ 

Apoptosis promoting proteins can be subdivided into multidomain and BH3 domain-only 
proteins. 

Bax is the prototype of the multidomain subfamily, which also includes Bak and Bok. It is 
able to oligomerize and forms pores in the outer mitochondrial membrane. This results in the 
release of mitochondrial proteins, such as cytochrome c, from the intermembrane space 
ultimatively leading to effector caspase activation and cell death.^ '̂ ^ Bax expression is regu
lated by p53, a sequence specific transcriptional activator, which in turn is activated by cellular 
stresses, such as growth factor deprivation or DNA damage. The role of Bax in developmental 
programmed cell death is demonstrated by knockout mice deficient for Bax: the numbers of 
surviving neuronal cells, including RGCs, as well as lymphoid cells is significantly increased. In 
adult RGCs Bcl-2, Bcl-x and Bax are expressed only at a basal level. Optic nerve transection, 
however, leads to loss of Bcl-2 and Bcl-x expression and an increase of pro-apoptotic Bax ex
pression. Even more, application of Bax antisense oligonucleotides in this lesion paradigm 
resulted in decreased apoptosis.^ 

At least 10 BH3-only proteins are known in mammals, including Bad, Bik/Nbk, Bid, 
Bim/Bod, Bmf, Noxa and PUMA/Bbc3, while in C. elegans only one member of this group— 
EGL-1—could be identified. The nine amino acid BH3 domain is required for binding to 
Bcl-2-like survival promoting proteins. Bid plays a key role in the apoptotic cascade and unlike 
several other Bcl-2 family members does not act as a poreforming protein itself Caspase 8 
activates Bid in response to death receptor signaling and which is then translocated to the 
mitochondrial membrane were it is involved in the induction of Bax and Bak oligomerization. '̂ ^ 
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An activation of Bid preceding caspase 3 activation could be shown in neurons in vitro and in 
vivo, while cytochrome c release was attenuated in Bid'' mice suggesting a role of Bid upstream 
of mitochondria. 

Even though the above presented molecules and pathways play evident and established 
roles in apoptotic cell death, their intersection with survival promoting pathways may lead to 
unexpected results depending on the lesion paradigm. As would be expected, TNF-alpha should 
induce neuronal apoptosis via the death receptor signaling cascade. However, application of 
TNF-alpha to the vitreous chamber resulted rather in an increased survival of RGCs following 
axotomy. An explication for this unexpected survival increase could be found in a 
TNF-mediated activation of iKBa and N F - K B followed by induction of LAP, an inhibitor of 
caspases 3,7 and 9. Thus, depending on the model used, identical cytokines can promote cell 
survival or cell death exploiting different signaling pathways. 

Calcium and Excitatory Amino Acids 
Calcium homeostasis is crucial in regulation of processes involved in the apoptotic cas

cade. Elevated levels of cytoplasmic calcium proved to be detrimental to cell survival and an 
influx of calcium can be observed in numerous lesion paradigms, such as trauma, ischemia or 
degenerative diseases and can be induced by exposure of cells to glutamate and other excitatory 
amino acids. Binding of glutamate to it's ionotropic or metabotropic receptors (iGluRs or 
mGluRs) eventually leads to excessive influx of extracellular calcium and can further release 
calcium from intracellular stores. Excess cytoplasmic calcium enters cell organelles, e.g., mito
chondria and nuclei, and leads to changes in phosphorylation states of proteins which in turn 
modulates signal transduction pathways or gene transcription and eventually may result in 
apoptotic cell death. ^ 

For the retinal paradigm time-lapse studies with explanted retinas of new-born rat pups 
showed that a rise in intracellular calcium was closely associated with the death of the observed 
cell.̂ 2 

Therapeutic Agents 

Caspase Inhibitors 
The enzymatic action of activated caspases can be blocked by synthetic tri- or tetrapeptide 

caspase inhibitors, like DEVD-fmk (specific for caspase 3), zLEHD-fmk (specific for caspase 
9) and zIETD-fmk (specific for caspase 8). Certain viruses have developed evolutionary strat
egies to escape elimination by apoptosis of the infected cells by expression of anti-apoptotic 
proteins, so-called inhibitor of apoptosis proteins (lAPs). Neuronal apoptosis inhibiting pro
tein (NAIP) was the first human LAP to be identified. Further members of the family are 
human lAPl (HIAPl), human IAP2 (HIAP2), the X-chromosome linked lAP (XLAP) and 
survivin. CrmA (isolated from cowpox virus) and p35 (from baculovirus) are also able to po
tently inhibit caspases. 

In the optic nerve transection model peptide inhibitors of apoptosis successfully were able 
to prevent RGC death after intraocular application. This effect was especially pronounced 
when looking at rescued RGC numbers at early time points. Liowever, this approach yields 
only a temporary delay of cell death rather than a definite protection as coidd be shown by 
studies looking at longer time frames (4 weeks) after axotomy. Direct caspase inhibition blocks 
the apoptotic cascade at a rather downstream level, therefore inhibiting the final execution step 
in the commited cell. Very likely, other—slower—pathways equally play a role in cell death 
induction thus eventually leading to cell death even after caspase inhibition. Therefore, spe
cific peptide caspase inhibitors are more likely to be of experimental than therapeutic value. 
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Neurotrophic Factors 
Neurotrophic factors are proteins which belong to several structurally different molecule 

families and play an outstanding role in the regulation of ontogenetic PCD: In the peripheral 
nervous system, developing neurons generated in surplus compete for a limited amount of 
these molecules and neurons with deficient supply in trophic factors eventually die (so-called 
neurotrophin hypothesis). This effect was shown first in pioneering experiments by 
Levi-Montalcini, Hamburger and Cohen in the 1950s when it became clear that a component 
of snake venom was able to promote the neurite growth of chick sympathetic neurons - the 
molecule was the first neurotrophin isolated and became known as nerve growth factor (NGF). 
While certain neuron populations in the PNS are dependent on one specific growth factor, 
survival of CNS neurons requires a variety of growth factors (so-called multifactorial hypoth-
esis).̂ 5 

The group of neurotrophins consists of 5 molecules known to date (NGF, BDNF, NT-3, 
NT-4/5, NT-6), which play different roles in the development of the retino-tectal system 
controlling numbers of RGCs and having effects on their functional differentiation. 

Neurotrophins use two kinds of receptor molecules for signaling — the high aflfinity recep
tors Trk A, B and C which are members of the tyrosin kinase family and the universal low 
affinity receptor p75^ , which was the first neurotrophin receptor described. Both recep
tor types can form homodimers Trk/Trk or p75/p75 as well as heterodimers Trk/p75. 

Each neurotrophin preferrably binds and signals through one of the high affinity recep
tors, but is also able to bind to low affinity receptor dimers. Neurotrophin signaling is therefore 
dependent on the receptor type utilized, which is examplified best by NGF signaling: whereas 
NGF binding to TrkA/TrkA or TrkA/p75 is able to promote cell survival, p75 dimer signaling 
induces apoptosis in neuron-like cell lines. ^ In the embryonic retina, cell death is enhanced by 
NGF binding to p75, which could be effectively prevented by application of antibodies to 
NGF or p75. Similarly, knock out mice lacking either NGF or p75 show a decreased embry
onic PCD. One believes that apoptosis induction by NGF-p75 interaction follows the same 
intracellular pathway as the death receptor signaling, since p75 belongs the TNF receptor/Fas/ 
CD40 superfamily. 

Brain derived neurotrophic factor (BDNF), originally derived from pig brain, exerts trophic 
effects on RGCs. Since it has been shown to be expressed during embryogenesis as well as in 
the SC of the adult, BDNF seems to have functions even beyond the developmental period. In 
vitro it is able to increase the survival of dissociated RGCs and in vivo exogenous BDNF 
applied to the developing SC reduces ontogenetic RGC death and promotes RGC axon ar
borization. Thus, a survival promoting action of BDNF was presumed for models of CNS 
trauma. Mey and Thanos showed that axotomized RGCs are indeed rescued by intraocular 
BDNF administration in vivo.̂ ^ Signaling of BDNF occurs in part through binding to its high 
affinity receptor TrkB and consecutive activation of the phosphatidylinositide-3'-OH kinase 
(PI3K). PI3K in turn activates protein kinase B (PKB/Akt) which can exert numerous down
stream effects, including survival promoting actions by its interference with apoptotic path
ways: PKB/Akt phosphorylates and inactivates caspase 9 thus blocking effector caspases. It is 
also able to phosphorylate pro-apoptotic Bad, which is then sequestered by 14-3-3 proteins in 
the cytosol thus counteracting cytochrome c release and cell death. 

In the chick retina, application of antibodies to NT-3 dramatically reduces numbers of 
surviving RGCs at embryonic day 6 already. However, a diminished supply in NT-3 does not 
directly lead to PCD. It rather seems that the number of division cycles of RGC precursor cells 
is increased, while generated RGCs are dependent on NT-3 and thus subsequendy die due to 
lack of trophic support. Interestingly, the knock out of NT-3 did not show any alterations in 
RGC numbers, which could be due to intrinsic compensatory mechanisms following gene 
ablation. 
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Very similarly, neurotrophin 4/5 (NT-4/5) decreases the PCD in developing RGCs and 
also is able to promote survival of RGCs following axotomy.^^ 

As is true for members of the neurotrophin family IGF-I equally promotes survival of 
RGCs in the axotomy model apparendy by decreasing caspase-3 activity. This effect can be 
blocked effectively by wortmannin (an inhibitor of PI3K). Thus, upon binding to it's receptor 
IGF-I also seems to utilize the PI3K/Akt pathway.^^ Several other factors (e.g., b-FGF, CNTF, 
GDNF) also proved efficient in prevention of degeneration of injured RGCs in the ONT 
model.54 

Calcium Inhibiting Drugs 
Based on the idea that excess calcium influx fosters cell death, pharmacological approaches 

focused on inhibiting glutamate release, antagonizing the NMDA receptors or blocking the 
calcium channels themselves. Several inhibitors of glutamate release, such as adenosine, 
BW619C89 (a lamotrigin derivative) and lubeluzole, have been tested experimentally and in 
clinical trials. But even lubeluzole, a benzothiazole derivative, which showed promising results 
among patients with mild to moderate ischaemic stroke was not able to keep up with it's 
expectations as has been shown by meta-analyses.^^ 

Amongst NMDA receptor antagonists the noncompetitive antagonist dizlocipine 
(MK-801) showed positive effects on infarct size in rodent ischemia models, but lead to con
troversial results in retinal lesion paradigms.^ Other clinical studies on NMDA receptor an
tagonists (such as Aptiganel/Cerestat/CNS 1102, selfotel, dextrorphan or eliprodil) had to be 
discontinued mosdy due to side effects such as hypertension and psychotic episodes. 

Nimodipine is the most widely evaluated calcium channel antagonist which acts on L-type 
calcium channels. It has been tested in different ischemic paradigms, but the latest data avail
able does not support the hypothesis of beneficial effects in stroke patients. Hypotension has 
been mentioned in several study groups upon nimodipine administration and might have lead 
to unfavorable results compared to placebo. 

Ways to Enter the Brain 

Blood-Brain Barrier 
Access to the central nervous system is limited due to a histological boundary between the 

systemic circulation and the brain parenchyma. Tight junctions between adjacent endothelial 
cells of the capillary walls as well as astrocytes form a highly selective blood-brain barrier and 
effectively prevent the transfer of numerous substances into the CNS. Whether a molecule can 
pass beyond this limit depends on it's electric charge, conformation and most importandy it's 
molecular weight, with an observed bioavailability limit of about 600 Da. This particular ana
tomical situation of the CNS is both friend and foe when it comes to experimental or therapeu
tical approaches: Penetration of certain systemically administered drugs is prevented and can 
be used therapeutically, for example in the control of brain edema. However, the availability of 
substances specifically targeting the CNS is equally restricted. 

Several approaches have been undertaken in order to overcome the blood-brain barrier by 
transient permeabilization: osmotic agents (like mannitol) or mediators of inflammation (like 
bradykinin) can increase it's permeability. The selective bradykinin receptor 2 agonist Labradimil 
(Cereport; also formerly referred to as RMP-7), might play a role in the future treatment of 
gliomas or metastatic CNS tumors and is currently tested in preliminary clinical trials. This 
approach might be useflxU for the application of chemotherapeutical drugs, but is not able to 
induce long term permeabilization and additionally may induce unwanted side effects. 
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Besides their inability to overcome the blood-brain barrier, numerous molecules of inter
est have a short half-life, which would require a continous administration and thus not negli
gible technical effort. Finally, systemic drug application is only partially able to target specific 
cell popidations, such as neurons. 

Transplantation Approaches 
In the search for local therapeutic strategies, transplantation of autologous or donor tissue 

to the lesion site assuming the function of a degenerated cell population seems to be a promis
ing approach. Parkinson's disease was one of the first neurodegenerative conditions where tis
sue grafts were to be evaluated: it shows a characteristic degeneration of one neuronal subtype, 
dopaminergic neurons of the substantia nigra, thus calling for a targeted stereotactical restora
tion of dopamine producing cells. 

Chromaffin cells from the patient s own adrenal medulla, also capable of dopamine syn
thesis, seemed to be a convenient graft source, but most studies showed only minor clinical 
improvements, possibly due to limited graft survival. Fetal ventral mesencephalic grafts showed 
significandy better results in animal models. However, the use of embryonic tissue, even though 
promising concerning clinical outcome, raises ethical concerns about the therapeutic use of 
fetuses. Additionally it requires a substantial amount of tissue - about 3-10 foetuses per graft, 
depending on different authors. Here, embryonic stem cells could open a new direction to
wards a less limited supply of transplanted tissue. Inspite of these perspectives, the develop
ment of vectors which are able to introduce proteins or genes into the living brain and ommiting 
transplantational approaches has as much of a priority as the search for therapeutic agents 
itself 

Gene Transfer by Viral Vectors 
Viral vectors have proven to be an extremely efficient way of gene transfer in vitro and in 

experimental animal models in vivo. The virus particle enters the cell either by binding to cell 
surface receptors and subsequent endocytosis or via nonreceptor mediated endocytosis. Upon 
entrance the capsid is disassembled and the genetic material, either DNA or RNA, is trans
ported to its final destination in the nucleus or cytoplasm. Some viruses, e.g., retroviruses, 
introduce their genome into the host genome and may persist life-long in the host cell, whereas 
others, as the adenovirus, stay episomally. The viral genome is then transcribed and the protein 
of interest is expressed by the cell's own translational machinery (see Fig. 3). 

In order to insert genes into the viral genome, certain viral genes have to be deleted. Thus, 
the cloning capacity in recombinant viruses—depending on their original genome size—is 
limited. Gene constructs therefore have to be designed as so-called mini-genes, which is usually 
cDNA reversely transcribed from mRNA lacking the intron sequences. Additionally, promoter 
sequences and regulatory sequences can be introduced, which is crucial in order to achieve a 
cell type specific expression pattern or for external regulation of gene expression. Promoters are 
able to influence kinetics, quantities and cell type specificity of expression: For example, the 
human cytomegalovirus (hCMV) promoter leads to fast and strong expression in most cell 
types, whereas the tubulin a l (Tal) promoter has a rather protracted expression start. Specific 
subpopulations of cells can be targeted by use of cell type specific promoters, such as the synapsin 
(SYN) promoter for neuronal expression. By inserting a tetracyclin (tet)-operator-sequence 
in front of a promoter, expression of proteins can be regulated depending on the presence of 
the antibiotic, either as tet-on or tet-off system. Finally, internal ribosome entry sites (IRES) 
—sequences where translation can be initiated outside a regular start codon—permit an ex
pression of multiple gene products by one viral vector. 
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Figure 3. How to enter the brain: viral vectors are versatile tools for introduction of genetic material into 
neuronal cells in order to overexpress genes of interest. Protein transduction domains use their "shutde" 
function and thus allow to enter desired proteins direcdy into the cell. By introduction of double stranded 
small interferring RNA mRNAs of interest are degraded thus producing a virtual knock out of a gene. 

One of the most widely used viral vector systems is recombinant adenovirus, with most 
vectors based on the numan Ad5 genome. The viral particle is built of an icosaedric capsid and 
harbors a double-stranded DNA-genome with a size of 36kb. In the course of normal infection 
a battery of early genes (El through E4) are expressed prior to D N A replication. Deletion of 
the El gene, which is required for the subsequent expression of all other genes, eventuates in 
the generation of replication defective virions. Since safety considerations regarding the han
dling of viruses play a pivotal role, the El gene deletion is essential for the use of adenovirus as 
an experimental vector system. Replication and thus virus formation can thus be performed 
only in cell lines substituting the deleted El gene product, as do HEK 293 cells. Other genes, 
like E3, convey virus persistance in vivo and thus are not necessarily required for virus growth 
in vitro. Gene regions like El and E3 can therefore be employed as cloning regions for the 
insertion of mini-genes of interest. 

Adenoviral constructs have been extensively used for transduction of RGCs in the axotomy 
model in vivo and in cell culture studies in vitro. For example, overexpression of trophic factors 
after intravitreal injection of adenoviral particles coding for GDNF, CNTF or BDNF resulted 
in an increased survival of axotomized RGCs. The antiapoptotic proteins p35 and XIAP 
could be overexpressed in RGCs after application of adenovirus on the optic nerve stump and 
similarly were able to effectively prevent neuronal apoptosis. ' 

Amongst other viruses that are used for gene transfer we find vector systems based on 
genomes from herpes simplex virus-1 (HSV-1), adeno-associated virus (AAV), Moloney mu
rine leukemia virus (MoMLV) - a retrovirus, or the sindbis/semliki forest virus (SFV). The 
later represents a convenient system for the evaluation of cellular localization and distribution 
of desired transgenes in cell culture and in vivo. In contrast to adenoviral vectors, even 
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attenuated forms of the semliki forest virus have a considerable cytotoxicity in primary neuron 
cultures. However, a quick cloning procedure and several safety features make it a usefull tool 
when long-term transgene expression is not desired (own unpublished observations). 

Introduction of Proteins Using Protein Transduction Domains (PTD) 
Although previously described limitations set by the blood-brain barrier apply to most 

molecules, there seems to be a small group of proteins which seem to ignore this biological 
obstacle. Initially Green and Frankel independendy showed that the HIV-l TAT protein was 
able to enter cultured cells when simply added to the culture medium.^^'^^ The protein not 
only entered the cells leaving the cellular membrane undisrupted, but also translocated to the 
nucleus (it s biological location) and was found to be functionally active. Some other proteins 
with similar capabilities have been discovered since, for example the Drosophila Antennapedia 
(Antp) homeotic transcription factor'̂ ^ and the Herpes-simplex-virus-1 DNA-binding protein 
VP22(HSVVP22).^^ 

The exact mechanism of cell entry employed by these peptides is not yet known, however 
it is clear that transduction of TAT, VP22 and Antp is not mediated by receptors, transporters 
or endocytosis. Most likely the presence of basic amino acids, as arginine and lysine, plays an 
important role in the interaction of PTD with negatively charged lipids of the cell membrane. 
TAT, for example, might directly penetrate the lipid bilayer when it's positive charge contacts 
the negatively charged outer membrane. It then translocates into the cytoplasm driven by it's 
momentum. 

More importandy, not only TAT itself but also covalendy attached "cargo"-proteins are 
equally transduced bypassing previous size limitations. It could be shown that fusion proteins 
with more than 1000 amino acids, like TAT-fi-gal, could be transduced in vitro and in vivo. 
After intra-peritoneal injection the active enzyme was found in all assayed tissue types, includ
ing the brain, without any indication for damage to the blood-brain barrier. 

There are numerous advantages in using protein transduction domains for protein deliv
ery: All eukaryotic cell types tested so far with the exception of yeast (likely because of a less 
permeable cell wall) are susceptible to transduction. Since transduced proteins enter cells within 
a short time span (approximately 15 min), timing issues can be addressed unlike in conven
tional transfection approaches. Also, the concentration of intracelltdar protein can be precisely 
controlled with all cells containing approximately the same amount of protein. 

Since the known PTDs do not show any selectivity for whatever cell type, one of the 
crucial questions remains the targeting of specific subpopulations. One possible approach could 
be the introduction of cleavage sites into the fusion protein which yields an active form of the 
fused protein only after proteolytic cleavage by cell type specific intracellular enzymes. 
TAT-caspase-3 with an HIV protease cleavage site, for example, was able to transduce into all 
cells, but only in cells infected by HIV and thus containing the HIV protease caspase-3 was 
processed into it's active form and induced apoptosis.^^ 

Numerous other pathogens utilizing specific proteases, such as hepatitis C virus or Plas
modium sp., could be targeted employing this so-called "Trojan horse" strategy. 

Gene Silencing by RNA Interference (RNAi) 
The introduction or overexpression of genes (by viral gene transfer) and fiinctional pro

teins (by protein transduction domains) in order to interfere with apoptotic death cascades are 
already well established methods. Similarly, the knock out of certain genes of interest is a usefull 
tool for the study of gene ftmction and can be accomplished by the creation of knock-out 
animals. However, the generation of knock-out animals is a laborious task and in some cases 
the phenotypes have only limited viability, forbidding the analysis of adult tissues. Further
more knock-outs do not allow for direct regulation of the deleted gene and mechanisms can be 



160 Brain Repair 

induced compensating for the loss of function, which compUcates the elucidation of the actual 
gene function. 

Only recently it has been learned that gene function can be effectively silenced by intro
ducing short double stranded RNA fragments into the cell - a process called RNA interference 
(RNAi). The phenomenon was first seen in plants and could be reproduced in a number of 
species including nematodes (C. elegans), insects {Drosophild} and recently even mammalian 
cells/^ 

When double stranded RNA (dsRNA) enters a cell in a natural context this is most likely 
caused by viral infection. In order to protect the organism, several pathways are activated in 
infected cells, such as the dimerization of PKR and phosphorylation of eIF2a resulting in a 
nonspecific shutdown of translation and the entire cellular metabolism. However, long dsRNA 
also can be cleaved by the so-called DICER enzyme (an ortholog of ribonuclease III), which 
results in the generation of small dsRNA fragments measuring about 21-25 bp, so-called 
siRNAs.^^ Upon binding to the RISC complex (a multicomponent enzyme complex including 
endo- and exonucleases) siRNAs then target the homologous mRNA which is then cleaved 
becoming unfunctional.'^^ Gene silencing by introduction of short interfering RNAs (siRNAs) 
virtually leads to knock-out phenotypes since it can silence up to 90% of the gene function at 
any time desired time point in transducible cell lines. 

Currently, RNAi is becoming a more and more widespread instrument for the analysis of 
gene function. However, it should be only a matter of time that siRNAs will be employed for 
experimental therapeutic approaches. The construction of vectors coding for siRNAs (such as 
the pSUPER-Vector) will certainly simplify the use of RNAi making chemical synthesis of 
siRNAs obsolete.^^ Such vector systems will also allow to be introduced into viral genomes and 
thus open new possibilities for the transduction of cells which can not be reached by conven
tional transfection techniques. 

RNAi together with gene transfer by viral vectors and protein transduction by PTD are 
thus tools which are already in wide current use when it comes to regulation of gene or protein 
function. They will possibly play important roles in therapeutic strategies, even though not all 
putative targets have yet been identified and unwanted side effects have to be considered when 
using these methods in the human beeing. 
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CHAPTER 10 

Neuroprotection by cAMP: 

Another Brick in the Wall 

Mariana S. Silveira and Rafael Linden 

Abstract 

P rogrammed cell death occurs in the nervous system both in normal development as well 
as in pathologic conditions, and is a key issue related to both brain repair and 
neurodegenerative diseases. Modulation of cell death in the nervous system may involve 

neurotrophic factors and other peptides, neurotransmitters and neuromodulators, that activate 
various signal transduction pathways, which in turn interact with the cell death execution 
machinery. Here we discuss the role of the second messenger cyclic adenosine 3'5'-monophos-
phate (cAMP) in cell death, and summarize current evidence that cAMP is a nodal point of 
neuroprotective signaling pathways. 

Programmed Cell Death and Signal Transduction Pathways 
Physiological mechanisms of cell death are effective in multicellular organisms both to 

control the number of cells and to remove seriously damaged, infected or mutated cells. ̂  De
regulation of programmed cell death may lead to several pathologies, such as cancer, autoim
mune diseases and neurodegenerative disorders. "̂  

The sensitivity to cell death is also a key issue related to repair of damaged tissues. In the 
nervous system, this affects the ability to maintain neurons alive until the re-establishment of 
connections that may provide neurotrophic support. It is also germane to the efforts to use 
stem cells in order to repopulate depleted areas. ' 

Cells in all tissues are constandy exposed both to a wealth of signaling molecules secreted 
by their neighbors, as well as to components of the extracellular matrix. These signals interact 
in the multivariate metabolic network that controls the decision to enter the cell death execu
tion pathways.^ Within the heterogeneous and highly organized cell populations that compose 
the nervous system, both neurons and glia constandy secrete neuroactive molecules that modulate 
various signal transduction pathways, many of which direcdy affect the cell death machinery. 
Distinct cell populations and specific repertoires of neuroactive molecules in the various areas 
of the nervous system produce complex scenarios with regard to the control of cell death execu
tion pathways. 

Cyclic adenosine 3',5' monophosphate, or cyclic AMP (cAMP) was the first second mes
senger described that mediates responses to extracellular hormones and other ligands of a vari
ety of cell membrane receptors. ' ^ This cyclic nucleotide is generated through the activity of 
adenylyl cyclases, which are encoded by a large number of genes and show differences in both 
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distribution and regulation. ̂ ^ Degradation of cAMP is achieved by phosphodiesterases, of which 
at least 11 distinct families have been identified so far.̂  Cyclic AMP binds to the regulatory 
subunits of cAMP-dependent protein kinases (PKA), thus releasing the catalytic subunits from 
inhibition, and allowing the phosphorylation of various downstream substrates. 

The purpose of this article is to review evidence that signal transduction pathways medi
ated by the ubiquitous second messenger cAMP are critically involved in the modulation of cell 
death, and particularly that several neuroactive molecules may have a cAMP-dependent 
neuroprotective role. 

Cell Death by Apoptosis and the Role of cAMP-Dependent Protein 
Kinase in Apoptotic Execution Pathways 

Notwithstanding the increasing evidence for a variety of cell death programs, '̂ ^ the best 
known form of physiological cell death is apoptosis. This form of programmed cell death was 
initially described on morphological grounds, by the blebbing of the plasma membrane and 
condensation of both the cytoplasm and the chromatin, followed by fragmentation of the cell 
into multiple membrane-enclosed corpses dubbed apoptotic bodies.'̂ '̂  These morphological 
hallmarks were highlighted in contrast with necrotic cell death, which is characterized by cell 
swelling and rupture of the plasma membrane. 

In recent years, a detailed account of biochemical pathways of apoptosis has emerged 
from experimental studies. Key components of the apoptotic cell death pathways are the 
aspartate-directed cysteine proteases called caspases. These enzymes selectively cleave a plethora 
of substrates,"^^ and their activation is precisely regulated."^ Caspases may be classified as either 
initiator or effector (Fig. 1). For example, caspases 2, 8, 9 and 10 are classified as initiator 
caspases, and are responsible for the transduction of various signals into the proteolytic activa
tion of downstream effector caspases 3, 6 and 7. The latter enzymes target most of the apoptotic 
substrates described to date. 

Biochemical and genetic analyses showed that mitochondria-based pathways of activation 
of caspases are regulated by the Bcl-2 protein family.'̂ ^ This family is composed of proteins 
characterized by the presence of one or more Bcl-2 homology (BH) domains, which play either 
pro-survival or pro-apoptotic roles.'̂ '̂'̂ ^ The mechanisms by which Bcl-2 family proteins func
tion are still a matter of controversy. However, their ability to either homo- or heterodimerize 
has led to the hypothesis that the balance between pro-survival and pro-apoptotic proteins 
determines whether a cell will live or die.^^ 

According to this hypothesis, survival is favored when pro-apoptotic Bcl-2 family mem
bers are prevented from interacting with, and therefore fail to inactivate pro-survival members. 
Among the pro-apoptotic Bcl-2 family members a major component is the BH3-only protein 
BAD. Inactivation of BAD is considered a key step in the transduction of various survival 
signals. In the absence of survival factors, endogenous BAD is dephosphorylated and this fa
vors its binding, through the BH3 domain, to anti-apoptotic Bcl-2 family members, such as 
BC1-XL, whereupon BAD is targeted to the outer mitochondrial membrane. In contrast, the 
activation of certain kinases in response to survival factors leads to the phosphorylation of one 
or more sites in BAD. This results in translocation of BAD from the mitochondria to the 
cytoplasm bound to 14-3-3 adapter proteins, thus blocking its pro-apoptotic action (Fig. l)?'^ 

Four distinct phosphorylation sites in BAD have been associated with the control of 
apoptosis: Serl 12, Serl36, Serl55, and Serl70. The contribution of each of these sites to the 
prevention of the pro-apoptotic function of BAD is still in debate. Initially, inhibition of 
BAD-dependent cell death was ascribed to phosphorylation of either Serl 36 by Akt/PKB,^^ or 
of Serl 12 by a cyclic AMP-dependent protein kinase (PKA) anchored to mitochondria. 
However, other enzymes were also defined as BAD kinases, such as MAPK-activated p90 ribo-
somal SG kinase (Rsk)^ '̂̂  for Serl 12, and the 70-kDa ribosomal protein SG kinase (p70S6K) 
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Figure 1. Schematic diagram of the major components of the apoptosis execution pathways, with emphasis 
on the Bcl-2 family members subject to regulation by cAMP-dependent protein kinase. Signals from either 
the plasma membrane or the mitochondria activate initiator caspases that, in turn, activate effector caspases, 
such as caspase-3. The latter cleave a variety of nuclear, cytoskeletal and membrane substrates to produce 
the morphological features of apoptosis. The effects of Bcl-2 family members are based on a balance of pro-
and anti-apoptotic members. A key component of this balance is the protein BAD, that can be phospho-
rylated by various protein kinases, including PKA. Phosphorylation of BAD leads to its binding to 14-3-3 
and cytoplasmic retention. In its dephosphorylated form, BAD can interact with anti-apoptotic proteins 
such as Bcl-Xl, and prevent the latter to heterodimerize with the pro-apoptotic Bax protein. Free Bax, in 
turn, can induce mitochondrial-mediated apoptosis. Phosphorylation of BAD, therefore, prevents apoptosis. 

for Serl36. Serl55 was described by several groups as the most important phosphorylation 
site,^^' ^ and a cooperative model was proposed, according to which phosphorylation at Serl 55 
is needed for the dissociation of BAD from BC1-XL, but the availability of Serl 55 to kinases 
depends in turn on the phosphorylation of either Serl 12 and/or Serl36, which leads to interacton 
of BAD with 14-3-3. More recently, an additional phosphorylation site has been found in 
Serl 70, which seems to be important for the modulation of BAD pro-apoptotic activity by 
cytokines, but the kinase involved was not identified. ^ 

Within the context of the role of cyclic AMP-activated pathways, it is particularly relevant 
that both Serl 12 and Serl 55 in the BAD protein were described as sites phosphorylated by 
PKA, therefore resulting in protection from apoptosis. These findings raise the hypothesis that 
modulation of the intracellular concentration of cAMP may play a major role in the control of 
sensitivity to programmed cell death. 

Cyclic AMP and Cell Death 
Experiments with various cell types have implicated cAMP in the control of cell death. In 

early studies, it was shown that a variety of cAMP analogues, as well as cholera toxin and 
prostaglandins, both of which increased intracellular cAMP, induce apoptosis in a myeloid 
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leukemia cell line, depending on activation ofPKA.^^Bothforskolin, an activator of adenylyl 
cyclases that induces a large increase in intracellular cAMP, and cell-permeant cAMP analogues 
also induced apoptotic cell death in resting human B lymphocytes, and evidence was pre
sented for teophylline-induced cell death in chronic lymphocytic leukemia cells through acti
vation of PKA due to increased cAMP. 

In contrast, elevated cAMP was shown to protect certain cells from induced cell death. 
For example, cAMP analogues prevented apoptosis of osteoclasts in vitro, and nitric 
oxide-induced apoptosis of macrophages. Apoptosis of pancreatic cancer cells induced by 
inhibition of the Erk pathway was prevented by either a combination of the adenylyl cyclase 
activator forskolin plus the wide-spectrum phosphodiesterase inhibitor 3-isobutyl-
1-methylxanthine (IBMX), or with the cell-permeant analogue 8-bromo-cAMP (8-Br-cAMP).^^ 
In addition, di-butyryl cyclic AMP (db-cAMP) also protected the livers of mice from apoptosis 
induced in vivo by TNF-a. 

Db-cAMP protected NGF-pretreated PC 12 cells from cell death induced by withdrawal 
of both NGF and serum, an effect that was also produced by the Pituitary Adenylyl Cyclase 
Activating Polypeptide (PACAP). The protective effect of PACAP was abrogated by the PICA 
inhibitor Adenosine-3'-5'-cyclic Monophosphorothioate-Rp isomer (Rp-cAMPS).^^These data 
indicated that PACAP-induced elevation of intracellular cAMP may protect neuron-like cells 
from degeneration induced by trophic factor withdrawal. 

Neuroprotection by Cyclic AMP 
Neurotrophins of the Nerve Growth Factor (NGF) family are the best known extracellu

lar neuroprotective agents. ' However, an increasing number of studies have addressed the 
effects upon cell death of other growth factors as well as neurotransmitters and 
neuromodulators.^^'^ Many of the latter bind to Gs-protein coupled receptors that stimulate 
adenylyl cyclase to increase the concentration of intracellular cAMP.̂ '̂  

Early evidence for a role of cAMP as a neuroprotective second messenger was gathered 
with the use of either forskolin or with cell permeant cAMP analogues, such as db-cAMP, 
8-bromo-cAMP (8-Br-cAMP), and chlorophenylthio-cAMP (CPT-cAMP). In dissociated cell 
cultures from the spinal cord and dorsal root ganglion, cell death induced by blockade of 
electrical activity with tetrodotoxin (TTX) was attenuated with 8-Br-cAMP, whereas treatment 
with TTX decreased intracellular cAMP.̂ ^ A similar protective role of either forskolin or cAMP 
analogues was described for sympathetic and sensory neurons deprived of NGF,^^' develop
ing septal cholinergic neurons deprived of NGF in low-potassium medium, and mesencephalic 
dopaminergic neurons exposed to the toxin l-methyl-4-phenyl-pyridinium ion (MPP+). 

The search for physiological modulators of cAMP involved in the control of sensitivity to 
cell death took advantage of various experimental models. An early study showed that either 
Vasoactive Intestinal Peptide (VIP) or 8-Br-cAMP prevented the death of retinal ganglion cells 
induced by TTX in dissociated cell cultures of postnatal rat retinae. TTX reduced the concen
tration of cAMP in the culture, an effect that was antagonized by VIP, whereas an antagonist of 
VIP that prevents the peptide-induced increase in cAMP also reduced the number of surviving 
ganglion cells. These data are consistent with a cAMP-dependent neuroprotective role of VIP. 

A similar protective effect of VIP was observed in spinal cord-dorsal root ganglion cul
tures, in which 8-bromo-cAMP had a neuroprotective effect. Nonetheless, in the latter, the 
effect of VIP upon spinal cord neurons was indirectly mediated by non-neuronal cells. 

CPT-cAMP as well as the neuropeptide PACAP protected cerebellar granule neurons in 
dissociated cell cultures from cell death induced by low potassium. Distinct from the previ
ous work in retinal cell cultures, it was concluded that the drop in cAMP content that oc
curred during programmed cell death of cerebellar granule cells following potassium with
drawal was a passive event. However, the increased levels of cAMP associated with treatment 
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with PACAP are consistent with a cAMP-mediated trophic effect of the peptide. Indeed, it 
was shown that inhibition of cAMP-dependent protein kinase prevented the protection of 
granule cells by PACAP in a low potassium medium. 

Both PACAP and CPT-cAMP were also able to protect NGF-deprived sympathetic neu
rons from cell death. The effect of PACAP was dose-dependent, and neuroprotection with 
low doses of PACAP was potentiated by concurrent incubation with IBMX, that blocks the 
degradation of cAMP. Although these data seem to imply the PACAP-induced increase of 
cAMP as the neuroprotective signal, the authors failed to examine the effects of IBMX alone, 
which by itself was shown to have neuroprotective effects in other cells. 

Both PACAP and db-cAMP protected dissociated cerebral cortical neurons from glutamate 
cytotoxicity, and it was suggested that a PACAP-induced elevation of cAMP caused the 
neuroprotective effect. Protection against excitotoxic insults was also investigated in dissoci
ated cell cultures from the retina of neonatal rats,^^ and it was found that VIP, forskolin and 
8-Br-cAMP reduced cell death induced by high concentrations of glutamate. The protective 
effect of the neuropeptide was prevented either by a VIP receptor antagonist or by the PKA 
inhibitor N-[2-(p-Bromocinnarnylamino)ethyl]-5-isoquinolinesulfonamide (H89), showing that 
an increase in cAMP produced by VIP receptor activation results in PKA-mediated protection 
against excitotoxicity. Interestingly, the VIP-induced increase in cAMP in the retinal cell cul
tures was potentiated by concurrent glutamate. In another study, adenosine, as well as agonists 
of its A2a receptors protected dissociated chick retinal cells from glutamate excitotoxicity.^^ 
The A2a adenosine receptors are coupled to Gs proteins and stimulate adenylyl cyclase, and 
accordingly, cAMP analogues mimicked the effect of the A2a agonists. These data suggest that 
adenosine inhibits glutamate neurotoxicity through elevation of cAMP levels. 

Recently, it was shown that the stress-related neuropeptides corticotropin-releasing hor
mone (CRH) and urocortin (URC), protect hippocampal neurons in dissociated cell cultures 
from cell death induced by various insults. Among the various signal transduction pathways 
activated by these peptides, the protective effects of both CRH and URC were blocked by 
H89, showing the involvement of cAMP-dependent protein kinase in the neuroprotection.^^'^^ 

In cultures of purified retinal ganglion cells, an increase in intracellular cAMP was re
quired for responsiveness to various trophic factors.^ One mechanism for the enhanced re
sponsiveness of these neurons to the neurotrophins Brain-Derived Neurotrophic Factor (BDNF) 
and Neurotrophin-4 (NT4) is the recruitment of their high-affinity TrkB neurotrophin recep
tors to the plasma membrane by translocation from intracellular stores.'̂  In contrast, forskolin 
plus IBMX alone were sufficient to protect cultures of highly purified spinal motor neurons in 
vitro, with a potency that could only be matched by combinations of more than 5 trophic 
factors. These data highlight the distinct requirements of intracellular cAMP for the survival 
of various neuron types, but they may be determined by conditions of the purified neuron 
cultures. 

Studies in our laboratory have been directed at the effects of cAMP upon the sensitivity to 
cell death within the organized retinal tissue. Using histotypic retinal explants in vitro,"^^ we 
have shown that the protein synthesis inhibitor anisomycin induces apoptosis in undifferenti
ated cells that recendy left the cell cycle, within the neuroblastic (ventricular) layer (NBL) of 
the retina of neonatal rodents.^^'^^ Cell death in the NBL was blocked by concurrent incuba
tion of the explants with forskolin, suggesting that cAMP might have a protective effect in 
retinal tissue. Indeed, both 8-Br-cAMP, as well as IBMX and the cAMP-phosphodiesterase 
specific inhibitor 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro-20I724) prevented 
cell death in the NBL, whereas the cGMP-phosphodiesterase inhibitor 1,4-Dihydro-
5-(2-propoxyphenyl)-7H-l,2,3-triazolo[4,5-d]pyrimidine-7-one (Zaprinast) had no ef
fect. These data strongly supported the hypothesis that cAMP has a neuroprotective role 
within the developing retina.^^ It was also shown that the PKA inhibitor H89 abrogated the 
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protective effect of forskolin, thus implying PKA in the protective pathway. Further studies 
showed that, while cell death induced in proliferating retinal cells by the topoisomerase II 
inhibitor etoposide was insensitive to forskolin, the activation of adenylyl-cyclase prevented 
cell death of photoreceptors induced by thapsigargin. ^ These data suggest that the neurotrophic 
response of retinal cells to cAMP is developmentally regulated. 

In contrast with either TTX-induced cell death in clusters of retinal cells following disso
ciation, or with the death of purified retinal ganglion cells,^ neither forskolin nor neuroac-
tive molecules such as dopamine or PACAP that increase intracellular cAMP, prevented the 
degeneration of axotomized ganglion cells in retinal explants. The reason for this discrepancy is 
not known. However, the data showing that electrical blockade of neural activity with TTX 
leads to a decrease in intracellular cAMP^^' raises the hypothesis that in the histotypical reti
nal explants, ganglion cells may sustain higher concentrations of cAMP than in dissociated cell 
cultures due to synaptic action of growing afferent inputs, even though synaptic profiles are 
still rudimentary at early postnatal stages.̂ '̂  This, in turn, could obviate the need for either 
depolarization or cAMP as ancillary survival factors.^^ 

The protective effect of the phosphodiesterase inhibitors alone indicated that endog
enous neuroactive molecules are involved in cAMP-mediated neuroprotection within the retina. 
We investigated the effects of dopamine, a retinal neurotransmitter present in the retina of 
neonatal rats together with Dl-like fiinctional receptors, which stimulate adenylyl cyclase 
and mediate the fiinctions of many dopaminergic inputs.^'^ Indeed, dopamine also prevented 
anisomycin-induced cell death in this model. ^ The protection by dopamine was mimicked by 
the Dl-like receptor agonists SBCF 38393, 6-Chloro-PB and ADTN, but the Dl-like receptor 
antagonist SCH 23390 did not prevent protection by the agonists. Distinct from the complete 
antagonism revealed in chick retinal tissue, even high concentrations of SCH 23390 were 
unable to completely block the increase of intracellular cAMP induced by either dopamine or 
6-Cl-PB in neonatal rat retinas. In addition, H89 again blocked the protective effect of Dl-like 
receptor agonists. Therefore, the data indicated that activation of a Dl-like receptor by dopam
ine in retinal tissue induced an increase in intracellular cAMP with a consequent neuroprotective 
effect mediated by PKA.̂ ^ 

We also showed that PACAP has a strong neuroprotective effect in retinal tissue. Low 
concentrations of the peptide prevented both the anisomycin-induced degeneration of undif
ferentiated cells within the NBL, as well as photoreceptor cell death induced by thapsigargin in 
the outer nuclear layer.̂ ^ In both cases, forskolin had a similar neuroprotective effect.̂ ^ The 
neuroprotective effect of PACAP is mediated at least in part through the PACl receptor (PACIR), 
which is expressed in the neonatal retina. Accordingly, PACIR antagonists prevented the 
neuroprotection by the peptide. We also demonstrated that PACAP induces an increase in the 
intracellular concentration of cAMP in the retina, and that the PKA inhibitor Rp-cAMPS 
prevented neuroprotection by PACAP. The data show, therefore, that an increased concentra
tion of cAMP induced by PACAP through PACIR, lowers the sensitivity to cell death in 
retinal tissue through activation 

A fiirther example of cAMP-dependent neuroprotection was obtained with engagement 
of the cellular prion protein—PrP^. ^̂ '̂ ^ We found that treatment of retinal explants with 
several PrP^-binding peptides or with the PrP'^-binding protein STI-1 induced an increase in 
intracellular cAMP, and protected cells within the NBL from anisomycin-induced cell death in 
wild-type rodents but not in PrP*^-knockout mice. Similar cytoprotection was also observed 
upon other cell types under distinct inducers of cell death. The neuroprotection mediated by 
PrP^ was blocked by Rp-cAMPS, thus suggesting a neuroprotective cascade composed in suc
cession by STI-1, PrP^ cAMP and PKA.̂ '̂̂ ^ 

The overall data reviewed above support the hypothesis that an increase in the concentra
tion of cAMP has, in general, a protective effect upon cells within the nervous system. Among 
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Figure 2. Cyclic AMP is a nodal point for neuroprotective signaling pathways. Various neurotransmitters 
(circles), neuropeptides (squares) or even proteins bind to their receptors or membrane ligands, and induce 
an increase in the intracellular concentration of cAMP. One major consequence of this increase is the 
activation of PKA, which leads to blockade of apoptosis. The exact level at which PKA blocks the apoptotic 
execution pathways is not known, but may be related to the interplay of Bcl-2 family members shown in 
Figure 1. Other pathways are also activated by cAMP, but their relationship with the apoptotic execution 
pathways is not known. 

the neuroactive molecules that modulate the production of cAMP, neurotransmitters, neu
ropeptides and at least one protein may be involved in physiological neuroprotection mediated 
by cAMP-PKA signal transduction pathways (Fig. 2). 

Signal Transduction Pathways Regulated by cAMP 
The classical target of cAMP is the cyclic AMP-dependent protein kinase, or PKA.^^ The 

data showing PKA-dependent neuroprotection by various neuroactive molecules that increase 
the concentration of cAMP, raise the hypothesis that this neuroprotection may be mediated by 
direct phosphorylation of either Serl 12 or Serl55 in BAD. 

An additional substrate of PKA that may be involved in neuroprotection is the 
cAMP-reponsive element binding protein (CREB), a transcription factor that is phosphory-
lated by PKA, among other kinases. CREB-dependent induction of Bcl-2 has been found 
associated with the NGF-dependent survival of sympathetic neurons,^^ and CREB-mediated 
transcription has been implicated in BDNF-induced cerebellar neuron survival, although in 
the latter case, the survival promoting activity was associated with phosphorylation of both 
CREB as well as BAD by the pp90 ribosomal SG kinase Rsk2, which is activated by mitogen 
activated protein (MAP) kinases independent of PKA. It is also noteworthy that deletion of 
CREB has been reported to impair the survival of peripheral, but not of central neurons.^^ 

Cross talk between cAMP and MAP kinase signaling pathways has been examined in 
various biological responses.^^ Cyclic AMP may lead to either activation or inhibition of 
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extracellular signal-regulated kinase (Erk), depending on cell type. In the context of cell death, 
it has been reported that activation of PKA by cAMP analogues protected a hypothalamic 
neuronal cell line transfected with TrkA from NGF withdrawal, through activation of Erk 
mediated by B-Raf. Consistent with these data, the protection of granule cells by PACAP in 
a low potassium medium was blocked by inhibition of the Erk pathway, whereas inhibition of 
PKA blocked the activation of Erk. This pathway, however, is unlikely to apply to every cell 
type in the nervous system, because, for example, the anisomycin-induced cell death that is 
blocked by cAMP is also prevented by inhibition, rather than activation of the Erk pathway, 
and the neuroprotective effect of engagement of PrP*̂  was potentiated by concurrent inhibition 
of the Erk pathway. 

Cyclic AMP also binds to and modulates the activity of cyclic nucleotide-gated mem
brane channels.^ '̂  ^ These are non-selective cation channels that conduct both Ca"̂ ,̂ which in 
turn may activate intracellular pathways associated with cell death,^^^ as well as Na^ and K^ 
which may alter the membrane potential and disturb ionic balance, also affecting cell death. ̂ "̂̂  
Both depolarization and calcium fluxes have been associated with neuroprotection in certain 
systems, but there is so far no evidence that cAMP-gated membrane channels are involved in 
neuroprotection. 

More recendy, it was described that cAMP direcdy modulates GTP-exchange faaors (GEFs) 
for the small GTPases Rapl and Ras. The protein Epac (Exchange Protein Activated by cAMP) 
binds cAMP in vitro and has a strong GEF activity towards Rapl.^^^'^^^ Also, a Ras GEF that 
responds to both cAMP and cGMP was described to activate Rapl constitutively, and Ras in 
response to cyclic nucleotide binding. These small GTPases are known to modulate MAP 
Kinase signal transduction pathways. Thus, GEFs direcdy responsive to cAMP may be linked 
to cell death pathways through their interaction with MAP kinases independendy of PKA. 
However, to date the only study of Epac in the context of cytoprotective pathways was done 
following treatment of HEK293 cell lines with forskolin, and suggested opposing effects of 
PKA and Epac upon the activity of PKB/Akt.^^^ 

Thus, current data show that some cytoprotective effects of cAMP may be mediated by 
Erk pathways, and that kinases involved in cytoprotection may be modulated independent of 
PKA. Still, the hypothesis of a direct link from cAMP to apoptosis execution pathways through 
phosphorylation of BAD by PKA remains a major possibility. 

Conclusion and Perspectives 
The overall data reviewed in this chapter indicates that an increase in the intracellular 

concentration of cAMP is generally associated with cytoprotection in the nervous system, es
sentially through the activation of PKA. Elevated levels of cAMP may be the consequence of 
activation of membrane receptors by certain classical neurotransmitters, neuropeptides or by 
other protein-ligand interactions. The pathways that link the extracellular neuroactive mol
ecules with the cAMP/PBCA-mediated neuroprotection are likely an integral part of the control 
of sensitivity to cell death within the nervous system. In turn, the neuroprotective events down
stream of PKA remain to be clarified. 

Recent studies of the kinetics of cell loss in models of neurodegenerative disease suggest 
that cells constantly integrate the activity of various metabolic pathways that converge upon 
the cell death execution machinery. This leads each individual cell to a homeostatic state upon 
which single catastrophic events may induce cell death depending on the balance between 
pro-apoptotic and pro-survival components. ̂ ^̂  The cAMP/PKA pathway feeds into this meta
bolic network as a neuroprotective component, and therefore the state of the various extracel
lular mediators that signal through cAMP are of major concern in issues related to brain repair 
as well as to neural cell survival in general. 
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Most of the available data on the intracellular pathways were, however, obtained either 
from gene overexpression in cell lines or from studies of primary cultures of dissociated cells, 
and must be confirmed both in tissue models and in situ. The growing evidence for alternative 
cell signaling pathways mediated by cAMP^^^ warrants further examination of the mechanisms 
of control of cell death by cyclic nucleotides. In addition, the cross-talk between cAMP-mediated 
pathways and the classical neurotrophic factor-induced signaling pathways deserves particular 
attention. 

Current tools available for experimentation should allow progress in studies of the meta
bolic pathways that control cell death related both with neural development and repair, as well 
as with neurodegeneration. Further work shall lead to the understanding of the integration of 
individual signaling cascades into the network of cell survival control, both in health and dis
ease, much like the metaphoric construction and eventual deconstruction of Pink Floyd s wall. 
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CHAPTER 11 

The G)llagenous Wound Healing Scar 
in the Injured Central Nervous System 
Inhibits Axonal Regeneration 

Susanne Hermanns, Nicole Klapka, Marcia Gasis and Hans Werner Mtiller 

Abstract 

F ollowing traumatic injuries of the central nervous system (CNS) a wound healing scar, 
resembling the molecular structure of a basement membrane and mainly composed of 
Collagen type IV and associated glycoproteins and proteoglycans, is formed. It is well 

known that CNS fibers poorly regenerate after traumatic injuries. In this article we summarize 
data showing that prevention of collagen scar formation enables severed axons in brain and 
spinal cord to regrow across the lesion site and to elongate in uninjured CNS tissue. We ob
served that regenerating fibers grow back to their former target where they develop chemical 
synapses, become remyelinated by resident oligodendrocytes and conduct action potentials. 

Peripheral and Central Nervous System Responses to Axotomy 
The peripheral nervous system (PNS) and the CNS respond differently to traumatic inju

ries (Fig. 1). Following axotomy Wallerian degeneration of the distal stump of the lesioned 
nerve occurs in both, PNS and CNS, but PNS axons initiate regenerative sprouting and elon
gate through the Bands of Biingner towards the peripheral target. 

In CNS tissue neurons either die, if the lesion is close to the cell bodies, or the proximal 
axon stumps retract for a short distance (approx. 2-500 |lm) from the lesion zone. Subse-
quendy, the injured axons grow back but fail to cross the lesion site. These observations lead to 
the hypothesis that a molecular barrier at the lesion site may impede axonal regeneration. 

Factors in the Lesion Area Impede Axonal Regeneration 
In recent literature many factors impeding axonal regeneration at the CNS lesion site 

could be identified. Myelin constituents^'^ as well as the presence of a glial scar were shown 
to contribute to the regenerative failure of adult CNS axons. Guidance molecules like, e.g., 
semaphorins,'^ and ephrins are present at the lesion site and are considered to repel regenerat
ing axons in the CNS. 

Other putative neurite outgrowth inhibitors, especially extracellular matrix (ECM) com
ponents become increasingly important in the field of CNS repair. Recent in vitro and in vivo 
studies identified a variety of ECM molecules that show inhibitory properties for axonal 
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Figure 1. Different responses following axotomy in the peripheral and the central nervous system of adult 
mammals. 

regeneration.^' Some of these proteins are associated with the collagenous basement mem
brane (BM) that develops at the lesion site in the injured CNS.^' The role of the lesion-induced 
collagenous BM as regeneration barrier will be described in this article. 

Basement Membrane Formation in the Injured CNS Coincides 
with Axonal Growth Arrest 

Regeneration studies were performed in the transected postcommissural fornix of the 
adidt rat. This unidirectional fiber tract projects from the subiciJum to the mammillary body. 
The lesion was performed with a Scouten wire knife as illustrated in Figure 2. A preshaped 
tungsten wire is located in a guidance cannula and the cannula is stereotactically placed into 
the rat brain below the transection level, then the wire is pushed out and the knife is lifted up 
to transect the fornix approximately 1,2 mm rostral to the target area. 

Four days after transection some basement membrane (BM) sheets appeared in the lesion 
zone. After 6 days the BM became more dense and at 7 to 14 days an extensive BM was 
deposited at the lesion site (Fig. 3). 

Scouten wire knife 

M8 - mammHIary ix>dy 
pF - postcommJssurai fornix 
S - subiculum 

Qzii: 

LESION SITE 
f MB 

) i i> 

proximal distai 

Figure 2. Transection of postcommissural fornix with a Scouten wire knife. 
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Figure 3. Time course of BM formation in the transected postcommissural fornix. First collagen type IV 
inmiunopositive structures are detectable at 4 days post lesion. Arrows mark the lesion site. Magnification 
bar in D for A-D: 50 [Im, in H for E-H: 10 |lm. 

The extracellular localization of lesion-induced collagenous BM coincided exactly with 
the region of growth arrest of sprouting fibers, thus suggesting a role as barrier for axonal 
regeneration (Fig. 4). 

The lesion scar was previously considered an obstacle for axonal regeneration by other 
researchers. Ramon y Cajal noted at the beginning of the last century that scar formation in the 
injured CNS contributes somehow to the regenerative failure of severed axons. Thus it was 
not surprising that the lesion-induced BM has been targeted in CNS lesions before. In the early 
seventies of the last century Russian scientists reported a functional recovery in spinal cord 
injured animals treated with proteolytic enzymes.^^ Attempts of other groups to reproduce 
these experiments failed due to extensive bleeding following degradation of the intact BM of 
blood vessels by the enzymes used, thus enhancing secondary damage markedly. 

Inhibition of Col leen Biosynthesis in the Injured CNS 
Our approach to suppress BM formation was based on two alternative treatments. The 

pharmacological approach comprised the inhibition of a key enzyme of collagen biosynthesis, 
prolyl 4-hydroxylase (PH). This enzyme catalizes hydroxylation of prolyl residues, a step in 
collagen biosynthesis that is crucial for thermal stability of procollagen triplehelices.^^ Since 
PH requires bivalent iron as a cofactor we injected the iron chelator 2,2'-bipyridine (BPY) 
stereo tactically into the injury site. An alternative treatment to prevent BM formation was 
based on an immunochemical approach including injection of anti-collagen IV antibodies to 
neutralize secreted tropocoUagen (Fig. 5). 
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Figure 4. Neurofilament stained regrowing fornix fibers (A) stop elongating at the lesion-induced Collagen 
type IV immunopositive BM (B). Arrows mark the lesion site. 

Both approaches were successful in preventing BM formation after fornix transection 
without affecting pre-existing blood vessels (Fig. 6). 

In contrast to earlier attempts to remove the lesion-induced fibrous scar proteolytically 
the present approach allows a transient suppression of BM formation at the lesion site for 
approximately 14 days without destroying already existing functional BM in the brain paren
chyma. 

Suppression of BM Formation Leads to Extensive Axonal 
Regeneration of Severed Fibers 

Suppression of BM formation after transection of the postcommissural fornix had an 
enormous effect on outgrowing fibers. The proximal stump of fibers in control animals re
tracted for a short distance after lesion, grew out again and stopped elongation at the lesion site 
(Fig. 4A and Fig. 7A). Treated animals in which collagen biosynthesis has been inhibited by 
injection of BPY or anti-collagen type IV antibodies showed a massive axonal regeneration 
across the lesion site (Fig. 7B). 

The regenerating fornix fibers grew up to their former target, the mammillary body, de
veloped chemical synapses and became remyelinated (Fig. 8). 

We further investigated this therapeutic approach in another, clinically more relevant ani
mal model, the injured spinal cord of the adult rat. 

Transection of Rat Dorsal Corticospinal Tract 
The dorsal corticospinal tract (CST) of the adult rat was transected at the level of Th8 

using a Scouten wire knife (Fig. 9). We chose this kind of lesioning mainly because the partial 
wire knife transection created a cavity that allowed controlled application of solutions. 



Collagenous Wound Healing Scar in the Injured Central Nervous System 181 

frop^^^lteg^n 

Um^mk 

Intracailiilar 

ssO 
: ^ 

^ 
Hfdr^^flmi^fi 

i 

Exiracelltilar 

Iron Chtftlor 

BPTJ 

ilnti» Cull l ien i¥ 
i n l l i i i i i l e i 

Figure 5. Biosynthesis of collagen and formation of the collagen IV network, a major component of the 
basement membrane acting as a scaffold to which numerous other glycoproteins and proteoglycans attach. 
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Figure 6. Immunohistochemical staining for Collagen type IV. In control animals receiving an immediate 
injection of saline, a massive BM forms 14 days post lesion (A). In animals that received BPY- (B) or anti 
Collagen type IV antibody injections (C) BM formation could be suppressed. Arrowheads mark the lesion 
site. Arrows mark Collagen type IV immunopositive BM surrounding blood vessels. 
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Figure 7. In control animals A) neurofilament stained fornix fibers stop growing when reaching the collag
enous BM in the lesion core (arrowhead). Regrowing fibers even turn at the growth barrier (arrow). After 
pharmacological inhibition of BM formation severed fornix fibers traverse the lesion site and elongate in 
their former pathway B). Arrowheads mark the lesion site. 

Detection of Basement Membrane in the Injured Spinal Cord 
Depends on the Method of Tissue Processing 

Apparently, the detection of the lesion-induced collagenous BM was more difficult in 
spinal cord tissue than in the lesioned fornix. Using fresh frozen spinal cord tissue specimen, as 
we did in the fornix lesion, the basement membrane was completely washed out at the lesion 

I^A-traced reaeneratina fibers 

Figure 8. A) Regenerating fornix fibers (arrow in A marks the lesion site) traced with BDA, which was 
injected into the subiculum, grow distally (d) from the lesion site into their former target area, the mam-
millary body (MB). B) Ultrastructural evidence for myelination of regenerated traced axon distal to the 
lesion site. (C, D) Ultrastructural images of traced presynaptic endings in the mammillary body. 
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dorsal CST 

damaged area 

Figure 9. Transection of the dorsal corticospinal tract and dorsal columns in rat with a Scouten wire knife. 

site during tissue processing. While BM of blood vessels was nicely stained, the fibrous scar in 
the lesion core could not be detected (Fig. lOA). In perfused tissue, stained free floating like 
most laboratories do, the lesion site was immunopositive for Collagen IV, but no blood-vessel 
staining could be detected in the surrounding spinal cord parenchyma. In order to determine 
suppression of BM formation at the lesion site, it was indispensable to use an internal reference 
for staining intensity. On the other hand, the fixative paraformaldehyde masked the collagen 
IV-antigen in regions where protein expression was not upregulated. To reveal a correct stain
ing pattern we had to retrieve the antigen either by protease digestion or microwave treatment, 
which was problematic in free-floating sections. This is did not work well in free-floating sec
tions. Additionally, we always observed some tissue loss in free-floating sections (Fig. lOB). 

Therefore, we changed the tissue processing procedure to paraffin-embedding. This method 
required antigen retrieval by protease but led to reliable results with respect to tissue and base
ment membrane preservation as well as the detection of all Collagen type IV positive structures 
(Fig. 10 C, Ref. 22). 

The Lesion-Induced BM Is an Extracellular Structure Not Associated 
with Blood Vessels 

The collagenous scar or lesion-induced BM represents an unique structure of wound heal
ing scars and should not be confounded with the glial scar, glia limitans or BM of newly 
formed blood vessels. In traumatic CNS lesions we find extracellular sheet-like structures that 
are not associated with blood vessels and which are immunopositive for the typical BM pro
teins collagen IV, laminin and nidogen. The endothelial marker von Willebrandt factor, how
ever, does not stain extracellular sheet-like BM (Fig. 11). 

Extent of the Collagenous Scar Is Much Larger in Spinal Cord 
as Compared to Brain (Fornix) Lesions 

Due to the close proximity of meningeal cells that invade spinal lesions '̂ ^ and secrete 
large amounts of collagen type IV,̂  the lesion induced BM is much more extensive in the 
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Figure 10. Collagen type IV immunostaining in transected spinal cord: A) fresh frozen tissue, B) paraform
aldehyde fixed followed by free-floating immunostaining, and C) paraformaldehyde fixed and paraffin 
embedding. Arrowheads mark the lesion site, arrows point to stained BM of blood vessels and asterisks 
indicate tissue loss. Magnification bar in C for A-C: 100 jIm. 

spinal cord than the collagenous scar in fornix lesions (Fig. 12)}^''^^ The fornix lesion was 
performed deeply in the brain (hypothalamus) which could not be invaded by meningeal cells 
from the brain surface. The collagenous BM in the postcommissural fornix lesion was probably 
produced by proliferating endothelial cells and/or astrocytes that have recently been described 
to express collagen type IV following CNS injury.'^^ In lesioned spinal cord, however, leptom-
eningeal cells contribute significantly to lesion scarring. ^ 

Because of this massive collagen expression, a single immediate injection of the formerly 
used iron chelator BPY turned out not to be successful in preventing scar formation after spinal 
cord lesions. Even continuous application of BPY by substance-soaked gelfoam and osmotic 
minipumps failed to reduce scar formation in the injured spinal cord (Fig. 13). 
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Figure 11. Immunohistochemical staining of the lesion scar for collagen type IV (A,a), Laminin (B,b), 
Nidogen (C,c) and von Willebrandt factor (D,d). The BM markers stain BM of blood vessels (black arrows 
in a-c) but also sheet-like immunopositive structures that are not associated with blood vessels (open arrows 
in a-c). The endothelial cell marker von Willebrandt factor solely stains blood vessels. Magnification bar in 
D for A-D and in d for a-d: 100 )J,m 

Fibroblast proliferation and extracellular matrix production following traumatic injuries 
can be prevented by elevation of intracellular cAMP levels 

Traumatic injuries lead to an inflammatory response at the lesion site which involves 
release of certain cytokines in the lesion area. Transforming growth factor p (TGPP) is known 
as a primary regulatory factor in the formation of connective tissue in wound healing pro
cesses.^^ Its secretion results in an increased proliferation of fibroblasts, an increased E C M 
production, and a decreased E C M degradation mediated by direct inhibition of protease activ
ity and stimulation of protease-inhibitor synthesis.^^'^'^ The release of the cytokine T G p p by 
immunocompetent cells results in transcription of the C T G F gene in fibroblasts (Fig. 14A). 
C T G F or connective tissue growth factor is a mitogen and a chemotactic agent for fibroblasts 
and stimulates their collagen- and fibronectin synthesis.^ The protein is secreted by fibroblasts 

Figure 12. Immunohistochemical staining against Collagen type IV showing the much greater extent of the 
lesion-induced BM in spinal cord (B) as compared to fornix lesions (A). Magnification bar in B: for A 50 
jlmforB 100 [im. 
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Figure 13. Immunohistochemical staining for collagen type IV. In the unlesioned cord A)Only BM of blood 
vessels are stained. Note that blood vessel B) distribution is more dense in gray matter (gm) than in white 
matter (wm). Application of BPYdoes not reduce BM formation: vehicle injection B), immediate injection 
of BPY 10 mM C), immediate injection of BPY 10 mM plus topical application of DPY-soaked gelfoam 
D), immediate injection of DPY40mM plus continuous infusion of DPY (40 mM) by an osmotic minipump 
(E). Magnification bar in E for A-E: 100 }lm. 

in the presence of T G F p and stimulates its own release via an autocrine mechanism. This 
TGpp-mediated mechanism can be influenced by elevation of the intracellular cyclic AMP 
level (Fig. 14B). 
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Figure 14. TGpp release following traumatic injuries results in an increased fibroblast proliferation and 
ECM production that can be reduced by enhancing intracellular cAMP levels. 
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Figure 15. In control animals (A) a massive collagenous scar was formed 7 days post lesion. After combined 
application of an iron chelator and cAMP BM formation could be prevented (B). Arrowheads mark the 
lesion site and the asterix marks an extraspinal callus. Magnification bar in B for A + B: 100 jim. 

An elevated quelle AMP level in fibroblasts results in reduced transcription of the CTGF 
gene and, therefore, in reduced fibroblast proliferation and extracellular matrix production. 
The mechanism of this effect is not completely understood yet. 

Combined Application of Iron Chelator and cAMP Prevents BM 
Formation in the Lesioned Spinal Cord 

To reduce BM deposition in the spinal cord a combined treatment of more than one 
factor was required. The effective treatment consists of (1) multiple injections of dicarboxylated 
BPY (BPY-DCA), a very potent PH inhibitor, (2) topical application of solid 8-Br-cAMP to 
reduce fibroblast proliferation and ECM production and (3) continuous release of BPY-DCA 
from chelator-loaded Elvax copolymers. This treatment finally resulted in a complete reduc
tion of lesion-induced BM in the spinal cord (Fig. \5)P'^^ 

Suppression of BM Formation in the Lesioned Spinal Cord Promotes 
Corticospinal Fiber Outgrowth 

We provide first evidence that suppression of BM formation in the injured spinal cord 
strongly supports corticospinal fiber regeneration. In treated animals anterogradely BDA traced 
corticospinal fibers could be detected within the lesion zone as well as in the distal cord (Fig. 
16)23 

The traced CST fibers differed in morphology compared to unlesioned fibers. While 
noninjured fibers appeared straight, regenerating axons showed a winding growth. 

Numerous regenerating fibers grew along meningeal interfaces. To confirm that no false 
immunopositive staining at tissue borders occurred, we performed immunofluorescent double 
staining for BDA and neurofilament. Confocal images showing that BDA and neurofilament 
colocalize confirmed that regenerating corticospinal fibers are growing along the spinal cord / 
meningeal interface. These experiments are still in progress and are currently analyzed in 
detail. 

We showed that the collagenous lesion scar plays an important role as a hurdle for axonal 
regeneration in traumatic CNS lesions. Since it is well known that collagen IV is a good sub
strate for outgrowing fibers in vitro, it is unlikely that the collagen IV protein itself inhibits 
axonal regeneration. Further, the mere presence of fibroblasts / meningeal cells is probably not 
impeding axonal growth, because it has been shown that regenerating CST fibers grow along 
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Figure 16. Regenerating BDA-traced corticospinal axons. A-C) Photomicrographs taken from the lesion 
site (region a in the schematic drawing on top). Higher magnification in (C) shows the winding morphology 
of a regenerating axon. D, E) Photomicrographs taken 2 mm distal to the lesion core (region b). F) 
Photomicrograph taken 5 mm distal to the lesion core (region c). Magnification bars in (A-C) and (F) 100 
p,m. Magnification bars in (D, E) 50 |Im. 

meningeal interfaces in vivo in different lesion and regeneration models.^^'^^ However, it is 
much more likely that the lesion-induced collagenous basement membrane acts as a scaffold or 
anchor for a variety of growth inhibitory molecules including, e.g., certain proteoglycans and 
repulsive guidance molecules. 
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CHAPTER 12 

Role of Endogenous Neural Stem Cells 
in Neurological Disease and Brain Repair 

Jorg Dietrich and Gerd Kempermann 

Introduction 

There is abundant evidence diat neural stem cells persist in the adult mammalian brain— 
including humans—throughout lifetime and support ongoing neurogenesis in re
stricted regions of the central nervous system (CNS). The potential role of neural stem 

cells not only in normal brain function, but also in neurological disease and repair now appears 
to be larger than anticipated only a few years ago. The question, however, remains whether the 
persistence of adult stem cells, their proliferation, and neurogenesis from these progenitors 
reflect the ability for self-repair in the mammalian brain. We here discuss recent advances in the 
understanding of the role of endogenous stem cells in normal brain function and under cir
cumstances of neurological disease. 

Neural Stem Cells in the Mammalian CNS 
Neural stem cells (NSCs) are defined by their potential for theoretically unlimited 

self-renewal, and their ability to generate cells of both neuronal and glial lineages. During 
development, stem cells are found in the ventricular zone of the CNS.^'^ In the adult brain, 
neural stem cells are primarily restricted to two brain regions, the subventricular zone of the 
lateral ventricles^'^ and the subgranular zone of the dentate gyrus^'^^—both regions in which 
neurogenesis persists throughout adulthood (Fig. 1). In low numbers, stem or progenitor cells 
have also been derived from many other brain regions, including septum, striatum,^"^ cortex,^^ 
optic nerve,̂ "̂ '̂ ^ spinal cord and retina.^ ̂ 'Apparently, these cells comprise a quiescent popu
lation of stem cells with as yet unknown fimctional relevance for the brain. 

Stem cells of the adult brain have traditionally been classified as "multipotent". This term 
reflects their potential for differentiation into multiple neuroectodermal lineages, but not be
yond this tissue-specificity. More recent evidence, however, suggests that cells with greater dif
ferentiation potential ("pluripotency") can be derived from the adult brain.̂ '̂ " '̂̂ ^ Moreover, 
stem cells from outside the brain can give rise to neurons in vivo (Fig. 2), at least under specific 
experimental conditions. '^^ 

The field of neural stem cell biology is currently undergoing dramatic changes in its con
cepts of "stemness", tissue-specificity, and developmental potential.'̂ '̂'̂  For the purpose of this 
review we adhere to the classical concepts of neural stem cell biology. However, much of what 
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Figure 1. New neurons in the adult hippocampus. Confocal microscopic image of the hippocampus of an 
adult mouse, demonstrating neurogenesis in the granule cell layer of the dentate gyrus. A) Dividing cells 
in the subgranular zone (the border between granule cell layer and hilus) are labeled with proliferation 
marker bromodeoxyuridine (BrdU). B) Four to five weeks after cell division, newly generated neurons can 
be found throughout the granule cell layer. They are identified by their colocalization of immunoreactivity 
with antibodies against BrdU and neuronal marker NeuN. Astrocytes are identified by their expression of 
SlOOp. Scale bar (in A) equals lOOjlm for (A) and 20 |im for (B). Image from Kempermann, Bipolar 
Disorders 2002; 4:17-33, with kind permission of Munksgaard, Copenhagen, Denmark, ©2002. 

will be discussed reflects a rather preliminary and probably simplifying view on the principles 
underlying stem cell biology in the adult brain. 

Progeny from neural stem cells of the subventricular zone migrate alone the rostral migra
tory stream to the olfactory bulb to diflPerentiate into local interneurons.^^' In the hippocam
pus, neural stem cells give rise to new granule cells that extend their axons to area CA3 along 
the mossy fiber tract, as do all other granule cells of the dentate gyrus. The new granule 
cells are electrophysiologically indistinguishable from older granule cells, suggesting their 
functional integration. 

Numerous factors that regulate adult hippocampal neurogenesis have been identified, but 
at present we are far from a unifying theory on which principles govern this regulation and 
which functional consequences it has (as reviewed in e.g., ref. 35). 

Cells with stem-cell-like properties, dissected from diverse regions of the adult mamma
lian brain, can be induced to proliferate and diflPerentiate in vitro in the presence of various 
growth factors, such as epidermal growth factor (EGF) or fibroblast growth factor 
(FGF-2).^'^^' Clonal analysis of these cells derived from the embryonic and adult brain has 
demonstrated their multipotency by giving rise to neurons, astrocytes and oligodendrocytes. 
This multipotency can also be detected in so-called neurospheres, a three-dimensional cell 
aggregates that are widely used to study neural stem cells in vitro. ̂ '̂̂ ^ With multiple neural 
stem cell populations loosely identified, questions arise where exactly these cells are located in 
the adult CNS and whether these stem cell populations are actually distinct cell types sharing 
similar potentials ^ or reflect diflFerent developmental stages that can be traced back to one 
unifying stem cell population. Interestingly, the isolation and characterization of neurospheres 
from diflFerent regions of the human embryonic CNS reveals a regionally specific pattern of 
growth and diflPerentiation characteristics, suggesting the possible existence of distinct neural 
stem cell populations. Consistent with these observations, there is evidence that stem cells 
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Figure 2. New neurons from bone marrow. Confocal microscopic image of bone marrow-derived Purkinje 
cells. One year after transplantation of bone marrow transduced with a retrovirus carrying green flourescent 
protein (GFP), donor-derived Purkinje cells were visualized by confocal microscopy. The surrounding 
staining is GAD (glutamate decarboxylase), identifying the neighboring GAD-expressing Purkinje cells (see 
Priller et al. J Cell Biol 2001; 155:733-738 for details. Image courtesy of Josef Priller, Berlin). 

isolated from different brain regions maintain their regionally specific expression pattern of 
homeobox genes in vitro. These results suggest that the identity of a particidar stem or pro
genitor cell might be regionally and temporally specified depending on local environmental 
cues. However, in many respects, the behavior of the adult-derived stem and progenitor cells is 
indistinguishable from that of similar cells of the embryonic brain, suggesting some lineage 
continuity between the embryogenic and the adult CNS. ^ 

Neural Stem Cells in Neurological Disease and Repair 
The very existence of stem cells and neurogenesis in the adult brain throughout lifetime 

has shed new light on the potential of the brain for regeneration in the context of a variety of 
neurological diseases. In fact, several pathological conditions of the CNS have been associated 
with alterations in progenitor and stem cells - either as a consequence or as a cause of disease. 
In general, the following concepts for a stem cell-based therapy in the brain exist: 

1. NSCs for direct replacement of lost cells from an identified neuronal population, 
2. NSCs for replacement of glial or other cells with indirect effects on neurons (e.g., in spinal 

cord injury or multiple sclerosis), 
3. NSCs for replacement of diffuse and complex cell losses (e.g., in stroke or trauma), 
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4. NSCs as vehicles for growth factor or gene delivery, 
5. NSCs as basis of regeneration in situ, and 
6. NSCs as target cells for other therapies based on the assumption that stem cells are involved 

in the pathology of a particular disease (e.g., depression, brain tumors). 
In the following paragraphs we will discuss recent developments in which the concept of 

neural stem cells has been of special importance in changing the current understanding of 
neurological and psychiatric disease. 

The Injured CNS 
In contrast to other self-repairing tissues, such as the liver, skin or blood, the mammalian 

brain apparently lacks the regenerative potential to compensate adequately for neuronal and 
glial cell death, making this tissue particularly vulnerable to injury and disease. 

Repair strategies following CNS injury consist of different aspects of regeneration, includ
ing cellular replacement (by means of cell transplantation or endogenous stem cell activation), 
neurotrophic factor delivery, axon guidance and removal of growth inhibition, manipulation 
of intracellular signaling, bridging and artificial substrates, and modulation of the immune 
response (as reviewed in e.g., ref. 45). 

For the purpose of this review we will specifically focus on recent findings in the contribu
tion of endogenous neural stem cells to repair mechanisms. 

Brain injury induced by traumatic lesions can cause a transient increase in proliferation of 
neural stem cells in the ventricle wall. ^ However, these studies could not clearly demon
strate any neuronal contribution of stem cells to the lesioned CNS. 

As multipotent neural stem cells have been isolated from various regions of the adult 
mammalian brain, the failure of the normal brain to sufficiendy regenerate under pathological 
conditions (e.g., traumatic brain injury) does not appear to be an intrinsic deficit of neural 
stem cells, but rather a characteristic feature of the damaged environment that does not suffi
ciently promote fiinctional repair. 

Nevertheless, the adult brain appears to be able to reorganize itself after/>en/>^^m/injury 
and initial deficits in behavior, perception or cognition can be followed by a spontaneous 
recovery. '̂̂ ^ At least on a cortical level, this has been explained by the ability of the mamma
lian brain for cortical reorganization and plasticity. From these studies, however, it cannot be 
concluded whether or to what extent adidt neurogenesis contributes to such re-organizational 
processes. 

In a more recent study Macklis and co-workers have demonstrated that neurogenesis can 
be induced in the lesioned neocortex of adult mice.^^ Endogenous precursor cells were stimu
lated by selective pyramidal cell apoptosis to generate cortical neurons that established appro
priate corticothalamic connections. It has been speculated that either neural stem cells from 
the subventricular zone or resident cortical progenitors might have represented the source of 
these newborn neurons. Thus, it seems possible that cells with stem-cell-like properties exist 
throughout the adult CNS. However, physiologically, these cells appear to give rise to neurons 
only in restricted neiu*ogenic areas. Accordingly, it has also been suggested that adult neurogenesis 
represents the dormant capacity of the brain for a limited self-regeneration. However, direct 
evidence is still missing that would clearly demonstrate the replacement of degenerated or 
dying neurons by newborn neurons. If this were the case, it would be important to know about 
the sequence of signals (e.g., released by apoptotic cell death) that are involved in the neuro
genic response and that might direct newborn cells towards the lesioned area. 

While the persistent neurogenesis in the brain with its apparent responsiveness to injury 
might reveal a possible endogenous repair program, the situation in the spinal cord seems to be 
somewhat different. A few studies report the existence of multipotent neural stem cells derived 
from adult spinal cord.^ '̂̂ ^ At present there is no convincing report on neurogenesis in the 
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adult mammalian spinal cord. Progenitor cells in the adult rodent spinal cord produce glial 
cells. Although there is increased proliferation of parenchymal progenitor cells^^ and 
nestin-expressing ependymal cells in the spinal cord after traumatic injury, neurogenesis as a 
response to injury has not been found. This suggests that in case of spinal cord injury mobiliz
ing endogenous neural stem cells to initiate neuronal repair remains a relatively distant possi
bility. However, at present no study on spinal cord injury has used such a highly specific and 
local induction of cell death as in the described study by Macklis and co-workers.^^ 

Spinal cord injury is usually followed by a combination of neuronal and axonal damage, 
inflammation and demyelination. Thus, mobilizing more restricted progenitor cell pools (e.g., 
oligodendrocyte precursors) after spinal cord injury might—under appropriate conditions— 
contribute to myelin repair, regeneration of conduction velocity, and ftinctional improvement 
(see ref 59). Functional recovery frequendy observed after spinal cord trauma in rodents and 
humans appears to be a consequence rather of axonal plasticity than of neural stem cell activa
tion. Nevertheless, the stimulation of local progenitor pools and the enhancement of ax
onal plasticity, e.g., by local application of growth factors ^ and neuroprotective factor, or 
other compounds ' might become a useftil approach to promote recovery after adidt spinal 
cord injury. 

Thus far, cell transplantation strategies for the injured brain and spinal cord have been 
performed using a variety of cell types and tissues, such as neuronal cell lines, embryonic 
neuroblasts,^^''^^ neural precursors,'^^ oligodendrocyte precursors'"^ and spinal cord tissue.'̂ ^ 

In many of these studies, the expression of appropriate neurotransmitters by the grafted 
cells, the receiving of synaptic inputs from host neurons, or the establishment of long-distance 
projections could be demonstrated. In addition, ftxnctional improvements have been observed. 
Thus, cellular replacement of the injured CNS via transplantation might be possible, however, 
it seems to be critically dependent on the molecular host environment and the ftxnctional 
integration of the grafted tissue into the neuronal synaptic circuitry. 

Taken together, in the field of spinal cord injury, stem cell research and the potential 
recruitment of endogenous cellular repair mechanisms hold great promises, but at present only 
few data exist that substantiate this optimism. However, the existence of neural stem cells in 
the adult mammalian brain and the positive effects of physical activity or the exposure to a 
complex environment on adult hippocampal neurogenesis suggest a potential practical impact 
of this research for neurorehabilitation.^"^ 

Neurodegenerative Diseases 
Neurodegenerative diseases are characterized by a continuous loss of neurons with specific 

patterns of neuronal cell death associated with distinct disturbances in the neuronal network. 
Examples are the loss of dopaminergic input to the striatum from the substantia nigra in 
Parkinsons disease or the degeneration of cortical neurons with a cholinergic deafferentation in 
Alzheimer's disease. 

In the light of our current understanding of the limited regenerative capacity of the adult 
mammalian CNS, the hypothesis has emerged that neurodegenerative diseases might actually 
reflect a failure of endogenous neural stem cells to replace lost neurons. This "malfunction" of 
neuro-regeneration could be due to a primary failure of stem cell proliferation, migration, 
appropriate differentiation or a combination of all three, resiJting in a lack of neurons at criti
cally important topographical locations. At present there is no experimental evidence that a 
generalized theory of this kind could hold true, because with extremely few well-documented 
exceptions adult neurogenesis is restricted to the olfactory system and the hippocampal dentate 
gyrus. 

Neurogenesis within neurogenic regions can be stimulated in vivo after exogenous admin
istration of various growth factors and cytokines, including erythropoietin,'^ brain derived 
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neurotrophic factor (BDNF), Insulin-like growth factor I (IGF)/"^ epidermal growth factor 
(EGF) and basic fibroblast growth factor (bFGF)/^'^^ Moreover, cytokine infiision has been 
shown to stimulate neurogenesis in animal models of neurological disease. For example, infu
sion of transforming growth factor alpha (TGFa) to the forebrain of 6-hydroxydopamine 
lesioned rats (a model for Parkinsons disease) resulted in increased cell proliferation, directed 
migration of newly generated cells toward the infusion site and increased numbers of neurons 
in the striatum. This increase of neurons was associated with improvements in 
apomorphine-induced rotations of the animals (indicative of motor improvement). This re
sult fits well with data from the first study using transplantation of embryonic stem cells into a 
model of Parkinsons disease. 

Although very litde is known about what signals direct newborn cells towards a particular 
CNS lesion and what factors orchestrate the appropriate site-specific differentiation of neural 
progenitors, the activation of endogenous stem cells to induce neurogenesis might be a possible 
means to overcome neuronal cell loss that occurs during the course of neurodegenerative dis
ease. Despite encouraging first findings, this strategy remains speculative at the present time. 

Most experiences in using neural stem cells for treatment of neurological disease have 
been made in Parkinsons disease.^^ Fetal cells have already been transplanted to severely im
paired patients in clinical trials^^'^ and demonstrate that fetal human mesencephalic cells con
taining dopaminergic neurons can survive after transplantation, restore striatal dopamine re
lease, and ameliorate motor behavior impairments. However, clinical and experimental studies 
have shown that functional integration of the grafted neurons within the host brain is neces
sary to produce substantial recovery.̂ '̂̂ ^ 

In Huntington's disease, a genetic disease characterized by a progressive neurodegeneration 
in the striatum and cerebral cortex, transplantation of fetal neural tissue has also offered a 
therapeutic opportunity. ' In animal models of Huntington's disease, transplantation of fetal 
striatal neuroblasts to the striatum have been shown to be functionally integrated into the host 
environment and to restore striatal connections. Reconstruction of neuronal circuitry by 
grafted tissue into the striatum could also be demonstrated in primates.^^'^^ Moreover, trans
plantation of fetal striatal tissue has also been applied in patients with Huntington's disease. ̂ '̂̂  
In a clinical study, five patients with Huntington's disease who received fetal grafts were as
sessed for therapeutic outcome one year after transplantation. Patients with presumed surviv
ing grafts (demonstrated by positron-emission tomography) showed improvements in motor 
and cognitive functions, and functional benefits were seen in daily-life activities. 

Due to a number of limitations using fetal grafts (e.g., ethical problems, survival of grafted 
cells, and problems in standardization and quality control), future efforts will also focus on the 
in vitro expansion and differentiation of neural stem cells as alternative sources to primary fetal 
CNS tissue for replacement therapy in neurodegenerative diseases. ' ' 

A cell-mediated gene therapy of the diseased CNS offers an alternative approach for the 
treatment of neurodegenerative diseaes. For example, specific neurotransmitter release 
(e.g., y-aminobutyric acid or dopamine) by transplanted neurotransmitter-synthesizing cells 
into the affected regions of the CNS has been shown to improve disease-related symptoms. ' 

Taken together, neurodegenerative diseases in which a defined cell type is being lost or 
damaged, such as Parkinson's disease, might be good candidates for a targeted stem cell therapy. 
In contrast, owing to the diffuse nature of neuronal and glial cell death that is associated with 
other neurodegenerative diseases such as Alzheimer's disease, repair of such disorders represents 
a potentially different category of problem than the repair of focal degeneration. Assuming that 
there is no primary deficit in the neural stem cells themselves as a cause of disease, a direct 
stimulation of endogenous neural stem cells through pharmaceutical or behavioral manipula
tion might increase brain plasticity and repair. Regardless, the continued cell loss during the 
course of neurodegenerative diseases will be challenging to overcome. It seems substantial. 
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however, to define more clearly the cellular compartments affected in those disorders as a pre
lude to the analysis of cell protection or cell replacement strategies. It seems more likely that 
future therapies of neurodegenerative diseases will be advanced by general lessons on cellular 
development, survival and plasticity learned from stem cell biology than by the direct applica
tion of stem cells in these conditions. 

Brain Tumors 
Compelling theories are linking neural stem cell biology to neurological disease in the 

field of neuro-oncology. An increasing knowledge about neural stem and progenitor cells has 
started to shed light on the potential role of these cells in respect to tumorigenesis, brain tumor 
classification, and the treatment of brain tumors. Moreover, understanding the vulnerability of 
CNS precursor cells towards drug toxicity or irradiation might help to reveal the biological 
basis for brain damage frequently associated with cancer treatments. 

Consistent with experiences in the treatment of tumors of the hematopoietic system, the 
diagnosis of brain tumors based on cell lineage appears to be of great potential value. In 
hemato-oncology, the normal cellular lineage to which a tumor is related seems to be closely 
correlated with treatment response and prognosis.^^^'^^^ 

At present, various precursor cell populations have been identified in the developing and/ 
or mature CNS: EGF-dependent and FGF-dependent neuroepithelial stem cells 
(NSCs), '̂̂ '̂̂ '̂̂ ^ '̂̂ ^^ Uneage-restricted precursor cells,̂ ^ '̂̂ ^^ including neuron-restricted pre
cursor (NRP) cells ^ '̂  ̂ ^ and glial-restricted precursor (GRP) cells, and oligodendrocyte-type-2 
astrocyte (02A) progenitor cells.̂  ̂ '̂̂  In addition, a number of astrocyte precursor cells ^̂  ' ^ 
and a pre-02A progenitor cell have been reported in the literature.^ Both multipotent neural 
stem cells and lineage restricted precursor cells have also been identified in the adult mamma
lian brain, including humans.^ '̂̂ ^ '̂̂ ^^ 

To make matters even more complex, there have been recent reports on stem cells with an 
overlapping developmental potential between the CNS and the hematopoetic system, which 
could give rise to both neural cells and blood cells. '̂̂ -̂̂ '̂ ^ Harriett and coUeages have isolated 
a more-than-multipotent stem cell from the adult mouse brain, whose developmental poten
tial approached that of pluripotent embryonic stem cells. ̂  Similar data exist for stem cells from 
bone marrow and skin. These data question the validity of the term "tissue specificity" of 
stem or progenitor cells and elucidate that we are far from a final systematic of stem cell biology 
in the adult. 

All of the described cells could be potential targets of transformation events to initiate the 
development of a tumor in the CNS.^^^ Thus, a lineage-based classification system for brain 
tumors might lead to the establishment of better prognostic criteria and might also help to 
define patient populations that would benefit from a particular treatment. ̂ ^̂ '̂  ^ 

Establishment of brain tumor models on the basis of CNS precursor cells will not only 
increase our understanding of potential genomic alterations during tumorigenesis, but will also 
provide helpful information on the relation between transformed precursor cells and the (het
erogeneous) tumors they create in vivo.^ ' In this regard, the cell lineage appears to be 
important in determining whether or not a particular genetic lesion will have functional conse
quence. For example, a specific genetic alteration could result in a different tumor-forming 
ability or tumor phenotype, depending on the precursor cell that was targeted. 

Several studies have described the expression of glial and neuronal markers in brain tu
mors, including astrocytomas, oligodendrogliomas, meduUoblastomas and primitive neuroec
todermal tumors 

(PNETS).i^7-^5i^Q 
date no markers are available that specifically and unam

biguously label neural stem or precursor cells, only the development of antibodies to new cell 
type specific antigens, e.g., by gene expression analysis and microarray technology, might help 
to assign particular brain tumors to their lineages of origin. ^̂ '̂̂ ^ For some tumor populations 
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such analysis has already been successfully applied in order to cluster tumors with a similar 
prognosis. ̂ ^̂ " 

Neural stem cells might become useful as possible means of brain tumor treatment. To 
achieve this it will be important to understand to what extend endogenous stem and precursor 
cells influence or modulate tumor cells in the CNS. The most straightforward approach is to 
use stem cells as vehicle cells in gene therapy, building on the readiness of these cells to develop 
tissue specificity and become functionally integrated in the host organism. For example, neural 
stem cells genetically modified to produce interleukin-4 promoted tumor regression and pro
longed survival in mice injected intracranially with a mouse glioma cell line. In another 
study, implantation of a neural stem cell line, engineered to produce cytosine deaminase (which 
converts 5-fluorocytosine to the oncolytic drug 5-fluorouracil), into the CNS of mice harbor
ing a tumor resulted in a reduction of the tumor mass in vivo, when animals were treated with 
5-fluorocytosine.^^^ Interestingly, implanted neural stem cells were detected in the primary 
tumor mass when injected at a distance from the tumor and were also seen to co-cluster with 
tumor cells at distances remote from the tumor injection site. This result is exciting since one of 
the most important impediments to the treatment of malignant brain tumors has been the 
invasion of tumor cells into the surrounding normal brain tissue, which makes their treatment 
particularly challenging.^ ' Many more experiments will be required and many questions 
will have to be answered before it is clear whether neural stem cells can be used for the treat
ment of brain tumors (as reviewed in refs. 162,163). For example, do neural stem cells really 
migrate towards dispersed tumor cells or are they simply using the same migratory substrates 
leading to an occasional juxtaposition? Do endogenous or transplanted neural stem cells change 
their biological properties (e.g., differentiation and proliferation) in case of a present tumor 
mass? What are potential adverse effects of transplanting neural stem cells into the human 
brain? And would it be possible to visualize and monitor transplanted stem cells in vivo to 
design controlled clinical studies? In this regard, there have already been promising results with 
labeling neural stem or progenitor cells in order to make them detectable by magnetic reso
nance imaging after transplantation. ' 

A different aspect relating neural stem cells to oncology has been raised in regard to the 
vulnerability of the CNS to conventional cancer treatment. In fact, traditional approaches to 
cancer therapy are often associated with severe neurotoxicity. For example, radiation-induced 
neurological complications include leukoencephalopathy, radionecrosis, myelopathy, cranial 
nerve damage and cognitive impairment.^ 

Moreover, it has been well known that many chemotherapeutic regimens may be associ
ated with severe neurotoxicity. For example, midtiple reports have confirmed cognitive impair
ment in children and adults after chemotherapy. Neurotoxicity of chemotherapy may be par
ticularly hazardous when combined with radiotherapy.^ '̂ ^^ For example, computed 
tomography (CT) studies of patients receiving both brain radiation and chemotherapy showed 
that all patients surviving a malignant glioma for more than 4 years developed 
leukencephalopathy and brain atrophy. ̂ ^̂  

Thus, improvements in survival for children with leukemias or brain tumors treated 
with radiotherapy and chemotherapy have led to increasing concerns on quality-of-life issues 
for long-term survivors, in which neuropsychological testing has revealed a high frequency of 
cognitive deficits.>68'i72-i75 

Potential clues to the biological basis of neurotoxicity, such as cognitive impairment, 
have come from studies on the effects of radiation on the brain. On a cellular basis, radiation 
appears to cause damage to both dividing and non-dividing CNS cells. Irradiation has been 
shown to cause apoptosis in the subgranular zone of the hippocampal dentate gyrus ^̂ '̂̂ ^̂  and 
in the subependymal zone, both of which are sites of continuing stem or progenitor cell 
proliferation in the adult CNS. Such damage also is associated with long-term impairment of 
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subependymal repopulation,^^^ indicating diat surviving stem cells are unable to regenerate 
the subependymal zone. This could in fact lead to a profound impairment of the overall cellu
lar plasticity in the CNS. 

Furthermore, non-dividing cells, such as oligodendrocytes, are also killed by irradiation, 
which seems to be consistent with clinical evidence, where irradiation induces diffuse myelin 
and axonal loss, tissue necrosis and diffuse spongiosis of the white matter. There is consider
able discussion whether the damage caused by irradiation represents a direct or indirect effect 
on the brain. Although some damage in vivo might be secondary to vascular damage, radiation 
is also directly damaging important CNS populations, such as oligodendrocyte precursor cells. ̂ ^̂  

Recent studies have indicated that carmustine (BCNU), a lipophilic alkylating agent, is 
toxic for oligodendrocytes at doses that woidd be routinely achieved in patients. In contrast, 
astrocytes appear to be relatively resistant to BCNU, and 0-2A cells showed intermediate 
levels of sensitivity. ̂ ^̂  The sensitivity of oligodendrocytes to BCNU raises the disturbing issue 
of whether the normal cells of the brain are damaged by exposure to chemotherapeutic agents. 
Preliminary results raise the concern that multiple types of neural precursor cells are at least as 
sensitive to death induced by chemotherapeutic agents as are cancer cells themselves (J. Dietrich 
and M. Noble, unpublished observations). 

Taken together, in the field of neuro-oncology various intersections between neural stem 
cells and tumors of the CNS seem to emerge. An increasing knowledge about the lineage 
relationships and biological properties of different neural stem and precursor cells might help 
to better understand the process of tumorigenesis in the CNS and might also help to develop 
novel treatment options for future cancer therapies. 

Demyelinating Diseases 
Demyelination is a common feature of various neurological diseases with different under

lying causes such as inflammation, automimmune reactions, degeneration, and trauma.^^^'^^ 
Multiple sclerosis (MS), as the most prominent example of a demyelinating disease, is charac
terized by chronic inflammatory focal demyelination associated with a variable degree of ax-
onal loss.'»7-l89 

The appearance of demyelination and axonal loss very early in the course of the dis
ease ' suggests that strategies of myelin repair might be a possible means of protecting 
axons from further immunological insults. 

In general, therapeutic strategies to promote myelin repair have focused on two major 
avenues: (1) cell transplantation to provide an exogenous source of cells which are competent 
to form myelin producing cells, and (2) recruitment of endogenous cell populations that are 
capable to produce myelin. 

Experimentally, the transplantation of certain types of cells, including oligodendrocyte 
precursor cells or multipotent stem cells, which are able to generate myelin-producing oligo
dendrocytes, can lead to remyelination of chronic demyelinated tissue. ̂ ^̂ '̂ ^̂  Promising results 
in myelin repair and re-establishment of nerve conduction have come from the use of embry
onic neural stem cells that were expanded in vitro and induced to the oligodendroglial lineage 
prior to transplantation. ^ '̂ ' However, regardless of the potential of transplanted cells to 
produce myelin, poor survival of grafted cells, lack of migration of these cells beyond the lesion 
site and therefore an unpredictable therapeutic outcome are current limitations to this ap
proach. ̂ ^̂  

In demyelinated CNS regions a certain amount of remyelination occurs,'^^^'^^ but 
remyelination in the adult damaged brain remains incomplete.'̂ '̂̂ '̂ ^ '̂̂ '̂̂  

The identity and origin of cells, that participate in endogenous remyelination has been 
unraveled to some degree. Multipotential stem cells, oligodendrocytes, or oligodendrocyte pre
cursor cells are possible candidates involved in the remyelination process. Multipotent neural 
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stem cells have been implicated in myelin repair. For example, in a lysolecithin-induced 
demyelination of the corpus callosum progenitors of the rostral subventricular zone (SVZ) 
expressing the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) prolifer
ate and seem to migrate towards the lesion site and differentiate into glia but not neurons. 

Whereas oligodendrocytes of the adult forebrain are primarily postmitotic, persistent 
cycling oligodendrocyte precursor cells (OPCs) might represent the most likely population and 
source for myelin repair. ' 

OPCs are not only present in the developing but also in the adult mammalian 
brain. ' Their specific function in the normal brain is largely unknown. It has been 
hypothesized that they play a role in influencing neuronal activity'̂ ^ '"̂ ^̂  and synaptic 

In the injured brain or in case of demyelination, oligodendrocyte precursor cells might 
form a glial population that can be activated to proliferate and to become involved in repair 
mechanisms by giving rise to myelinating oligodendrocytes. This exciting potential has 
initiated research on the exact meachnisms that induce oligodendrocyte precursor cells migra
tion, proliferation and differentiation to promote myelin repair. 

Several studies have also indicated the persistence of mitotic oligodendrocyte precursor 
cells in the adult human subcortical white matter. ̂ ^ '̂̂  However, only small numbers of oligo
dendrocytes are generated in the intact adult mammalian brain.^^^ Thus, subcortical white 
matter progenitors appear to be a quiescent population, and oligodendrocyte differentiation 
from these cells to a myelinating stage is considered to be a rare event. 

In contrast, glial progenitor proliferation can be found after injury and in several animal 
studies of induced demyelination. ̂ ^̂ '̂  ' Moreover, oligodendrocyte precursor cells have 
also been identified in multiple sclerosis lesions.̂ ^ '̂"^^^ 

However, they apparently fail to proliferate and to differentiate during chronic stages of 
the disease. Reasons for the incomplete repair might lie in a profound axonal loss, the lack of 
sufficient precursor migration towards a lesion, insufficient precursor pools that could be mo
bilized or the lack of permissive environmental cues (e.g., growth factors and cytokines) to 
activate precursor cells. 

For example, immature cycling progenitor cells of the adult subcortical white matter can 
be recruited to give rise to myelin-producing oligodendrocytes in response to experimental 
focal demyelination by lysolecithin,^^^ but do not migrate towards the lesioned area so that 
only cells present at the site of demyelination can participate in remyelination. Consequendy, 
severe demyelination might damage all resident progenitors at one particular lesion site—as it 
is to be assumed in chronic MS lesions—and thus profoundly reduce the capacity for myelin 
repair in that region. 

Therefore it would be a useful approach to direct the migration of cycling precursor cells 
towards a demyelinated area that has suffered depletion of its own precursor population. 

Since oligodendrocyte precursors fail to survive and migrate when transplanted into the 
intact mammalian brain,"̂ ^̂ '"̂ ^̂  multiple environmental factors might be important to trigger 
progenitor cells to proliferate and differentiate. In fact, the balance between cell proliferation 
and differentiation appears to be mediated by local environmental cues, such as growth factors 
locally synthesized by surrounding neurons and glia. For example, glial growth factor 2 (a 
neuroregulin isoform) or Insulin-Growth-Factor 1, have been shown to promote remyelination 
in animal models of inflammatory demyelination."^^^ 

The immune system itself is likely to influence myelin repair. For example, there is 
evidence that circulating immunoglobulins bind to oligodendrocyte surface antigens to pro
mote remyelination,"^^ and that antigen-antibody binding may facilitate the opsonization of 
myelin debris allowing repair to proceed."^^ 
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Taken together, it remains to be determined to what extent cell types such as neural stem 
or progenitor cells can contribute to myelin repair. It is a substantial scientific challenge to 
determine the signals involved in the activation of oligodendrocyte precursor cells and in the 
induction of multipotent CNS precursor cells to proliferate and differentiate into migratory 
oligodendrocyte precursor cells to enhance remyelination and to improve neurological deficits. 

Seizures 
Epilepsy is a common neurological condition that is characterized by recurrent seizures 

due to hyperactivity and synchronization of activity within neuronal populations (as reviewed 
e.g., in refs. 237-240). Animal models of induced seizure activity attempt to mimic these char
acteristic features of epilepsy. For example, kindling is a widely used model, in which repeated 
electrical stimulation of limbic areas leads to a stimulus-induced stable seizure activity, that 
resembles the temporal lobe epilepsy in humans. ' Other commonly used seizure models 
are based on the stimulation of glutamatergic or cholinergic receptors by drugs such as kainate 
and pilocarpine. ^ For review on other widely used seizure models, see e.g., ref. 245. 

Epileptic activity has been reported to result in a number of long-term alterations, such as 
altered gene and growth factor expressions, "̂  neuronal cell loss in the hippocampus,"^ '"̂ ^̂  
Ammons horn sclerosis, ' dendritic abnormalities of pyramidal cells, and synaptic reor
ganizations within the hippocampus, '^ ^ all of which have a potential impact on the neu
ronal circuits. These effects might induce a cascade of consequences, including alterations of 
glutamate receptor expression, glial hypertrophy, axonal growth and formation of new syn
apses that might contribute to an increased susceptibility to further seizures. 

In patients with temporal lobe epilepsy, nests of ectopic granule cells have been de
scribed. ' Similarly, Houser and co-workers found aberrant sprouting of mossy fibers, the 
axons of granule cells, in the brains of these subjects. These findings were first interpreted as 
reflecting a deranged development and thus a cause of the seizures. Research on adult hippoc-
ampal neurogenesis has allowed the alternate hypothesis that these changes are a direct conse
quence of seizures."^ '̂"̂ ^̂  Parent et al were the first to report that pilocarpine induced seizures 
in rats lead to a transient increase in cell proliferation in the dentate gyrus. '^^ Others have 
extended on these findings with similar models and similar findings. ^ '̂ '^ Such increased 
proliferation corresponds to the up-regulation of several cytokines and mitogens, as described 
elsewhere."^^^'^^^ Interestingly, it appears that stimulation of neurogenesis following 
kainate-induced seizures requires endogenously synthesized FGF-2, since this result cannot be 
seen in FGF-2 knockout mice. ^^ While the induction of cell proliferation has been convinc
ingly documented in several studies, less attention has been given to the question, whether a 
greater number of mature, functionally relevant neurons develop from these dividing cells and 
what their ultimate fate is. Parent et al have initially speculated that it might be the new cells 
that produce aberrant connections considered to sustain seizure activity,"̂ "̂ ^ but later provided 
arguments that this might not be the case (see below). 

Activity-induced cell proliferation in the dentate gyrus—and in some cases neurogenesis— 
has been demonstrated in both electrical ' ^ and chemically induced seizures, ^ ' ' '̂ '̂ ' 
suggesting a fundamental response mechanism as a result of synchronized neuronal activity. 
However, it remains to be shown, whether altered neurogenesis is a cause or consequence of 
increased seizure activity. 

Bliimcke et al reported an increased proliferation index as assessed by IG-67 immunoreac-
tivity in the dentate gyrus of children with early-onset temporal lobe epilepsy who had under
gone surgery to remove the epileptogenic focus in the hippocampus. They found an increase 
in nestin-labeled cells as a putative marker of progenitor cells in the dentate gyrus. Although 
the further development of the proliferating cells remains unclear, these finding are suggestive 
that the response of the human hippocampus is similar to the rodent hippocampus. Scharfman 
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et al demonstrated that pilocarpine- and kainate-induced seizures in rats cause proliferation of 
hippocampal neural stem or progenitor cells whose progeny can migrate to the CA3 region of 
the hippocampus to give rise to ectopic NeuN^ and Calbindin^ granule cells."̂ ^̂  This would be 
consistent with the observation by Houser et al in humans."^^^ However, despite exhibiting 
granule cell specific intrinsic properties (e.g., membrane properties, firing behavior and mor
phology), these cells seem to be abnormally integrated into the CA3 network. 

Interestingly, conditions known to be able to induce neurogenesis, such as living in an 
enriched environment,^^ ̂  have not only been shown to be associated with reduced spontane
ous apoptotic cell death in the rat hippocampus, but also to protect from kainate-induced 
seizure activity itself ̂ "̂̂  The relation between these two separate observations that is suggested 
by Young et al remains to be proven, but raises the question whether seizure-induced structural 
changes in the brain might be linked to altered stem cell activity. 

It appears, however, that there are fundamental differences between the immature and the 
aged brain in regard to susceptibility to seizures and the functional consequences of seizures. 
Despite the evidence that seizures result in a more profound cell death in aged animals com
pared to young animals, ' seizures might have deleterious effects in the neonatal brain. For 
example, seizures in the developing brain can result in irreversible alterations in neuronal con
nectivity, as reviewed in 295. It has been reported that newborn animals receiving 10 daily 
electroconvulsive seizures have significandy smaller brains than controls."^^^ Furthermore, sei
zures in the neonatal brain result in a reduced neurogenesis in the dentate gyrus, measured by 
BrdU incorporation and phenotypical characterization of newborn cells by the neuronal marker 
NeuN. In contrast, aged animals exposed to the same number of seizures show a significant 
increase in hippocampal neurogenesis. While the underlying cause of the age-related differ
ences is not exactly known, it has been speculated that increased glutamate release following 
seizures or a pronounced level of sensitivity to hypoxia in the neonatal brain might be pardy 
responsible for altering the balance between cell death and birth."^^^ 

These observations are intriguing, because recurrent neonatal seizures could therefore— 
even in the absence of cell loss—have profound effects on brain development and might ex
plain some of the late neurological impairments following recurrent seizure activity.^^ ,300-302 

In addition, recurrent seizures in the neonatal brain cause sprouting of mossy fibers into 
the inner molecular layer of the dentate gyrus and pyramidal layer of CA3 in rats. ^̂ ^ While 
seizure-induced progenitor proliferation in the dentate gyrus can be inhibited by irradiation, 
synaptic remodeling of the mossy fiber pathway appears not to be altered. Thus, it seems 
likely that mossy fiber synaptic reorganization is independent of neurogenesis, suggesting that 
sprouting arises from mature granule cells. 

A completely different question is whether the use of neural stem cells (either as trans
planted cells or as recruitment of endogenous cells) might provide a possible means for the 
treatment of epilepsy.̂ "̂  For example, there have been several studies trying to circumvent the 
imbalance between excitatory and inhibitory neurotransmission in seizures by transplanting 
embryonic cells that release inhibitory neurotransmitters such as GABA. Although successful 
transplants resulted in seizure suppression, the underlying mechanisms of the graft action are 
mostly unclear and seizure suppression has so far only been transient. 

It remains to be established whether there is any potential therapeutic benefit to be de
rived from endogenous stem cell activity in response to seizures, and whether the seen effects 
are part of the epileptogenic pathology or attempts of endogenous regeneration. 

In summary, repetitive seizures have been shown to lead to well-described neuropatho-
logical changes such as neuronal cell death, reactive gliosis, enhanced neurogenesis and axonal 
sprouting. Most of these damages seen in animal models are similar to those seen in hu
mans, e.g., in cases of intractable temporal lobe epilepsy. Many questions about the molecular 
mechanisms involved in these changes remain to be elucidated, as reviewed in e.g., ref. 309). 
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Better understanding the exact mechanisms that modulate proliferation and differentiation of 
neural stem and progenitor cells following seizure activity might offer potential targets for 
future therapies. 

Ischemia 
Cerebrovascular insults are a major cause for permanent neurological impairment. After 

cerebral infarction, necrotic tissue is usually not replaced and functional recovery of the patient 
is very limited. As in other areas, neural stem cell activity and neurogenesis in the adult brain 
might play a role in the clinical outcome of CNS disease such as cerebral infarction. Unfortu
nately, much of this general optimism is as yet backed by only limited experimental evidence. 
Nevertheless, the use of neural stem cells might offer future treatment options either as vehicle 
systems to deliver neurotrophic factors or as cell replacement therapy via transplantation. Re
cent studies have described a significant increase of cell proliferation in the subventricular zone 
and the dentate gyrus of the mammalian brain in response to vascular injury, such as global and 
focal ischemia in experimental models.^^ '̂̂ ^^ 

Thus, transient ischemia could be a potent signal for inducing neural stem cell prolifera
tion (as measured by BrdU-incorporation) and differentiation into neuronal and astroglial 
phenotypes (by co-labeling BrdU-positive cells with lineage specific markers). However, it is 
not known, what is actually reflected by the increase in the number of BrdU-labeled cells, 
which is interpreted as increased cell proliferation, because most conclusions are indirect. No 
specific positive markers for neural stem cells in vivo are known and most studies lack the 
examination of long survival periods in order to assess the net and long-term effects. Also, at 
least in the hippocampus, prolonged periods of global ischemia (> 2 minutes) seem to be 
necessary to significandy increase BrdU incorporation. ̂ "̂̂  Despite several reports describing 
the proliferation and differentiation of hippocampal progenitors following global ischemia, 
further quantitative studies will be required to determine whether this also results in an sus
tained increase of granule neurons. Interestingly, BrdU incorporation in the subgranular zone 
of the dentate gyrus has been described to a more pronounced degree on the ipsilateral side, in 
case focal cerebral ischemia was applied,^^^ suggesting that signals associated with cell death 
might locally stimulate cell proliferation. 

Increased cell proliferation has also been described in the rat neocortex following transient 
global^ and focal ischemia.^^^ Newborn cells were distributed randomly in cortical layers 
II-Vl with highest densities in the ischemic boundary zone.^ Reactive neurogenesis in a 
photo thrombotic stroke model has been reported, which seems to fit well with cortical 
neurogenesis after phototoxic lesions ^̂  and the controversial report of spontaneous neurogenesis 
in cortical areas of the primate brain.^^^ Photothrombotic stroke is an interesting model system 
that however lacks several features characterizing normal embolic or thrombotic ischemia. It 
remains generally conceivable that some ischemia-induced neurogenesis might also be present 
in the human brain in various brain areas and might even be a potential means for brain repair 
after stroke. However, the unequivocal demonstration of functional and lasting neurogenesis 
following ischemia has still to be made. 

Mechanisms that have been shown to reduce vascular damage and ischemia-induced cell 
death, such as glutamate receptor blockade, have also been demonstrated to positively influ
ence stem or progenitor cell proliferation.^^^ Several mechanisms have been controversially 
discussed that might influence hippocampal neurogenesis after ischemia. Potential signals in
clude changes of NMDA receptor signaling, death of glutamatergic neurons that project 
into the granule cell layer,̂ "̂ '̂̂  dying hippocampal neurons,'̂ ^ '̂'̂ '̂ '̂̂ ^ '̂̂ ^^ growth factors or 
mitogenic factors such as FGF^^ '̂̂ ^^ and erythropoietin.^^ 

In addition, age-related differences in stem or progenitor cell activity following ischemic 
insults appear to be important. While neurogenesis in the dentate gyrus following global 
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ischemia seems to be less accelerated in aged and more pronounced in young animals,^^^ 
young animals seem also to be more vulnerable to ischemic insults. Neonatal rats exposed to 
cerebral ischemia show a severe and sustained damage of the subventricular zone (SVZ) with 
necrotic and apoptotic cell death.^^ More specifically, oligodendrocyte precursor cells and 
neural stem cells appear to be particularly vulnerable resulting in subcortical white matter 
demyelination and profound cell loss in the SVZ three weeks after the insult.^^ Moreover, 
there is evidence for a maturation-dependent vulnerability of oligodendrocyte precursors to 
hypoxia and ischemia, which might explain the selective vulnerability of the periventricular 
white matter to hypoxia and ischemia seen in the premature infant. ̂ ^ 

Thus, neurological impairment (e.g., cognitive and motor dysfunction) caused by asphyxia 
of the newborn might be due to damage to progenitors and stem cells of the CNS. 

It has been hypothesized that grafted neural tissue may be a possible means for therapy of 
brain ischemia by either direct cell replacement or by releasing neurotrophic factors to the 
damaged brain, as reviewed e.g., in refs. 82,335. A variety of grafted cell types have been stud
ied in ischemic brain models, including fetal cells and tissues,^^ immortalized cells and 
genetically modified cells, as reviewed in e.g., 338. Numerous reports have demonstrated that 
transplanted cells were able to survive, to migrate preferentially toward the lesioned area, to 
differentiate into neuronal cells, to re-establish functional connections within the host animal, 
and to restore functional deficits.̂ ^ '̂̂ ^ '̂̂ ^^ A first clinical study by Kondziolka et al is an initial 
indication that transplanting cultured neuronal cells into the brains of humans after stroke is 
safe and could have functional benefits. ^ In general, however, clinical application of this 
strategy appears premature, because risks and potential benefits cannot yet be reasonably judged. 

The establishment of a functional neuronal circuitry between the host and the grafted 
tissue is dependent on many variables, including the availability of trophic factors. Neurotrophic 
factors are essential to maintain the physiological function of glia and neuronal cells. ̂  '̂  
Furthermore, proliferation and differentiation of endogenous stem and progenitor cells is also 
dependent on appropriate neurotrophic signals. ' 

In pathological situations, as in the ischemic brain, neurotrophic factors protect brain 
tissue from experimentally induced damage. For example, gene delivery of the glial cell 
line-derived neurotrophic factor (GDNF) into the rat brain one day before a transient middle 
cerebral artery occlusion resulted in a significandy smaller infarct volume and was associated 
with a reduction of apoptosis. ^̂ "̂  Consistent with these reports, neurotrophin receptors are 
up-regulated in cholinergic striatal interneurons after global cerebral ischemia, suggesting that 
neurotrophin signaling might be important for the survival and function of these cells. 

In summary, recent findings have raised hopes for novel treatment approaches of ischemic 
brain damages, including activation of endogenous neural stem cells and transplantation of 
neural grafts. However, the use of neural transplants for the treatment of CNS ischemia has to 
be considered with caution and further pre-clinical studies are needed to validate the safety and 
efficacy of such an approach before neural stem cells could be applied to stroke patients. Alter
natively, there is evidence that endogenous progenitors and stem cells are activated and might 
be involved in repair mechanisms following ischemic brain injury. As of yet, the plasticity of 
the adult human brain in acute and chronic ischemic conditions is poorly understood. For 
example, compensatory reactions and functional recovery (as it can be seen in stroke patients) 
that have been thus far explained by synaptic or functional plasticity might in fact include a 
limited neuronal replacement, potentially far from the injury site. 

Mood Disorders 
Adult hippocampal neurogenesis affects hippocampal function and is thus potentially 

involved in higher cognitive functions. Some of the known factors that are able to induce 
neuronal cell death and to potently suppress hippocampal neurogenesis are psychosocial 
stress^^ '̂̂ ^ and glucocorticoid hormones. 
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Major depression, although not a hippocampal disease in a strict sense, shows hippocam-
pal impairment, for example with regard to symptoms of dementia and memory loss.̂ ^ '̂̂ ^^ 
Recent studies have indicated that the pathogenesis and treatment of depression is likely to 
involve the impaired plasticity of neuronal circuits within the hippocampal formation. Thus, 
stress-induced impairment of dentate gyrus neurogenesis has been linked to the onset of clini
cal phases of depression ' 

In accordance with this hypothesis, studies using magnetic resonance imaging demon
strated selective atrophies in the limbic-cortical-striatal-pallidal~thalamic tract, which consis
tently includes a volume loss of the hippocampus in various psychiatric disorders, like in 
long-standing depression.^ These findings were complemented by postmortem observations 
of hippocampal atrophy and cell loss in patients with mood disorders.^ These structural 
changes correlate with deficits in declarative, spatial and contextual memory performance, 
supporting a link between hippocampal dysfunctions and the development and clinical ap
pearance of certain psychiatric conditions.^ 

This hypothesis has led to the assumption that remodeling the hippocampal network, 
e.g., by increased neurogenesis, might be a possible means to influence the outcome of 
stress-related mood disorders.^^ '̂̂  Hence, circumstantial evidence to support this hypothesis 
has come from several studies showing that drugs used for treatment of depression, including 
tricyclic antidepressants and serotonin re-uptake inhibitors, as well as electroconvulsive therapy 
and physical activity stimulate adult hippocampal neurogenesis.'̂ '̂̂ '̂  '̂̂ ^^ 

It has been suggested that antidepressants might therefore exert their therapeutic effects 
by stimulating changes in neuronal systems, such as by an increase in neurogenesis - possibly 
by enhancing the expression of growth and survival promoting factors like neurotrophins. 
Interestingly, in the case of serotonin re-uptake inhibitors, stimulation of neurogenesis requires 
long-term treatment, which is consistent with the clinical experience of a long latency pe
riod before onset of an anti-depressive eff̂ ect. 

Furthermore, lithium (in clinical use for the treatment of bipolar disorders) has an effect 
on adult hippocampal neurogenesis, too.̂ '̂ ^ This effect is possibly mediated through the 
upregulation of the anti-apoptotic protein bcl-2. 

Stimulation of neurogenesis (e.g., by antidepressants) might thus inhibit or reverse the 
effects of stress-induced downregulation of hippocampal neurogenesis and hippocampus atro-
pj^^370,374376 

At present, however, it remains unknown, whether a disturbance in adult hippocampal 
neurogenesis is a consequence, cause or correlate of major depression and bipolar disorders. 
Several recent reviews have speculated about this potential pathogenic link.̂ ^ '̂̂ ^ '̂̂ '̂̂  As of yet, 
this relation remains an interesting hypothesis that still has to be substantiated by empiric and 
experimental evidence. Intriguingly, major depression and schizophrenia share some character
istic features such as hippocampal involvement. Whether an impairment of cellular plasticity 
within the hippocampus is involved in schizophrenia has been suggested,^^ '̂̂ ^^ but at present, 
this hypothesis is even more speculative than in the case of major depression. 

Summary 
These examples show that stem-cell-based therapy of neuro-psychiatric disorders will not 

follow a single scheme, but rather include widely different approaches. This is in accordance 
with the notion that the impact of stem cell biology on neurology will be fundamental, provid
ing a shift in perspective, rather than introducing just one novel therapeutic tool. Stem cell 
biology, much like genomics and proteomics, offers a "view from within" with an emphasis on 
a theoretical or real potential and thereby the inherent openness, which is central to the con
cept of stem cells. Thus, stem cell biology influences many other, more traditional therapeutic 
approaches, rather than introducing one distinct novel form of therapy. 
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Substantial advances have been made in neural stem cell research during the past few 
years. With the identification of stem and progenitor cells in the adult brain and the complex 
interaction of different stem cell compartments in the CNS—both, under physiological and 
pathological conditions—new questions arise: What is the lineage relationship between the 
different progenitor cells in the CNS and how much lineage plasticity exists? What are the 
signals controlling proliferation and differentiation of neural stem cells and can these be uti
lized to allow repair of the CNS? Insights in these questions will help to better understand the 
role of stem cells during development and aging and the possible relation of impaired or dis
rupted stem cell function and their impact on both the development and treatment of neuro
logical disease. A number of studies have indicated a limited neuronal and glial regeneration in 
certain pathological conditions. These fundamental observations have already changed our 
view on understanding neurological disease and the brains capacity for endogenous repair. The 
following years will have to show how we can influence and modulate endogenous repair mecha
nisms by increasing the cellular plasticity in the young and aged CNS. 
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CHAPTER 13 

Transplantation in Parkinsons Disease: 

The Future Looks Bright 

Gesine Paul, Young Hwan Ahn, Jia-Yi Li and Patrik Brundin 

Introduction 

P arkinsons disease (PD) is the second most common neurodegenerative disorder and 
affects almost 1% of the population above the age of 50. Early in the course of the 
disease, patients primarily display motor symptoms, including bradykinesia, rigidity 

and resting tremor. ̂ '̂  These symptoms worsen over time and, in addition, most patients even
tually exhibit vegetative disturbances, and almost 40% of PD patients are affected by depres
sion. Dementia is also increasingly recognized as an important feature of PD, especially in the 
elderly cases ' and approximately 25-35% of the patients exhibit cognitive decline. 

The most conspicious neuropathologic finding in PD is the loss of dopaminergic (DA) 
neurons in the substantia nigra pars compacta, which leads to a reduction of striatal DA lev-
els. '̂̂  As expected, there is also a loss of striatal DA transporter (DAT), a marker for nigrostriatal 
nerve terminals, which correlates inversely with the severity of motor symptoms. ' 

It is unlikely that the pathological event that triggers neurodegeneration is identical in all 
patients classified as idiopathic PD cases. Thus, there might be several different causes underly
ing PD, but despite differing etiologies, crucial components of the pathogenetic process may 
be similar in all patients.^^ Several interesting hypotheses regarding pathogenetic mechanisms 
in PD such as mitochondrial dysfunction, oxidative stress, exogenous toxins, intracellular ac
cumulation of toxic metabolites, viral infections, excitotoxicity, deficient trophic support and 
immune mechanisms have been proposed (for review see refs. 12-15). The neuropathological 
hallmark of PD is an intracytoplasmic hyaline inclusion called "Lewy body', which is found in 
some of the remaining degenerating DA neurons. The inclusions are rich in the synaptic pro
tein alpha-synuclein. '^^The observation that a small number of cases of autosomal dominant 
PD exhibit mutations in the alpha-synuclein gene '̂ ^ has implicated this protein as a potential 
key player in the pathogenesis of PD, but its role is clearly not yet understood. ̂ '̂̂ ^ 

Two further genes (encoding for ubiquitin carboxy terminal hydroxylase 1 and a ubiquitin 
protein ligase named parkin) have been found to be mutant in some PD families. These pro
teins are both involved in the ubiquitin pathway of protein degradation^ '̂'̂ ^ and it has been 
suggested that neurons in PD patients may be impaired in their ability to handle misfolded and 
damaged proteins."^^ Additionally, at least two other chromosomal loci (2p and 4p) that may 
harbour mutations in rare forms of inherited PD have been identified (for review see re£ 23). 

In the absence of an understanding of PD etiology and pathogenesis, there is no treatment 
that can prevent or retard progression of the disease. Since the late 1960s, the main approach to 
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treating PD has been the pharmacological alleviation of the striatal DA deficit. This can be 
achieved by administration of the DA precursor L-Dopa in its standard or controlled release 
formulations in association with drugs that inhibit L-Dopa breakdown (dopa-decarboxylase 
inhibitors, carbidopa and benzeraside) and drugs enhancing dopaminergic transmission by 
blocking the breakdown of DA, monoamine-oxidase-B (MAO-B) and catechol-
O-methyltransferase (COMT) inhibitors. There are also several DA agonists that act by direct 
binding on postsynaptic receptor sites. Nondopaminergic medications are less frequendy used 
today and typically of limited benefit. They include anticholinergic agents, and amantadine 
which is a blocker of a class of glutamatergic receptors (for review see Ref. 24). 

On the whole, the pharmacological treatment of PD has been remarkably successful in 
reducing clinical symptoms in PD. This motivated the award of the Nobel prize in medicine 
and physiology to Arvid Carlsson in 2000 for his work on signal transduction in the nervous 
system, in particular his suggestion that L-dopa could be used as a treatment for PD. L-Dopa 
treatment is usually highly effective early in the course of the disease, but at later stages patients 
may develop one or more of several treatment complications: The loss of drug efficacy is appar
ent in "wearing-off" symptoms, which are related to a loss of capacity to store L-Dopa presyn-
aptically. As a result, increasing and more frequent doses of medication are required. Later, 
psychiatric disturbances such as hallucinations may develop, probably as a consequence of 
stimulation of DA receptors outside the striatum. Another major problem are the pardy unpre
dictable fluctuations between immobility and an increased ability to move (the so called "on-off 
phenomenon"). During the "on" phases, when the drug allows the patients to move, the pa
tients typically exhibit disturbing involuntary movements, termed dyskinesias. 

Due to the problems associated with pharmacological DA replacement therapy, it is clear 
that new treatments are needed. Recent years have seen the development of novel neurosurgical 
methods for PD. Three different neurosurgical approaches have been successfully tested in PD 
patients. First, ablative procedures, thalamotomy and pallidotomy, and recently also 
subthalamotomy have been employed. Second, lesions using electrical currents (deep brain 
stimulation, DBS), aiming at the ventral intermediate nucleus (VIM) of the thalamus for the 
treatment of tremor,^^ the subthalamic nucleus (STN) to reduce tremor, bradykinesia and 
rigidity; or the internal segment of the globus pallidus (Gpi) for the reduction of mainly 
L-Dopa-induced dyskinesias besides other motor symptoms. ' ^ Third, restorative strategies, 
i.e., transplantation of different cell types to the brain have been tested during the past 15 

28 

years. 
Ablative and functional interventions attempt to restore functional imbalance in the basal 

ganglia and are based on observations that imply a hyperactivity of structures such as the STN 
and the GPi as a result of the dopaminergic deficit. '̂ ^ Neural transplantation, in contrast, 
aims at the replacement of the lost dopaminergic cells by grafting dopaminergic neurons or 
precursors into the target site, the striatum.^^ The ultimate role of these surgical methods in 
clinical practice is not firmly established and essentially they all still remain experimental. 

In this chapter, we focus on cell replacement therapies in PD. We describe the methodol
ogy and efficacy of grafts of human embryonic nigral tissue in patients with PD, and highlight 
some of the clinical problems the procedure presents. We also discuss the technical aspects of 
neural transplantation in patients in more detail, including the importance and difficulties in 
achieving good graft survival. Finally, we will consider future alternative sources of donor tis
sue, including xenografts and various forms of stem cells. 

Neurotransplantation: What History Has Taught Us 
The adult central nervous system has a limited capacity for endogenous cell replacement. 

Cell therapies in PD are currendy aimed at the replacement of lost dopaminergic neurons by 
grafting immature neurons into the target striatum. This treatment option for PD is especially 
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promising since the cell loss in PD is primarily focused, albeit not exclusively, on the substantia 
nigra. Cell-based therapies for experimental and clinical PD have undergone a considerable 
development over the past three decades. ̂ ^ 

Olson and coworkers were the first to graft embryonic dopaminergic neurons into the 
anterior eye chamber of the rat.̂ "̂ '̂ ^ These studies revealed that developing neurons are needed 
to achieve survival and neurite outgrowth from grafted neurons; cells therefore have to be 
dissected during a critical stage of development. 

A few years later, Bjorklund and colleagues demonstrated that embryonic DA neurons 
could also be grafi;ed to the brain, although these pioneering studies only focused on morpho
logical aspects of the grafts and did not address their possible fiinctional implications.^ '̂ ^ 

At the end of the 1970s the first reports on fiinctional recovery due to neural grafts in 
hemiparkinsonian rats appeared.^ '̂ ^ The rats were injected unilaterally into the nigrostriatal 
pathway with 6-hydroxydopamine (6-OHDA) causing an ipsilateral depletion of striatal DA 
due to cell loss in the substantia nigra. As a consequence, such rats exhibit motor asymmetry 
that can be amplified into an overt rotational behavior following administration of drugs af
fecting the DA system. Thus, administration of the DA-releasing agent amphetamine causes 
DA release in the intact striatum and rotation ipsilateral to the lesion. In contrast, systemic 
injection of a low dose of apomorphine, a directly-acting DA receptor agonist, results in stimu
lation of supersensitive DA receptors in the denervated striatum and rotation contralateral to 
the lesion. In these pioneering studies, graft tissue was dissected from the ventral mesencepha
lon (VM) of rat embryos, a region containing large numbers of immature dopaminergic neu
rons in the developing substantia nigra and ventral tegmental area. The rats received grafts of 
solid nigral tissue pieces into the lateral ventricle adjacent to the denervated striatum^ or 
premade cortical cavities, that had been allowed to develop well vascularized pial scar tissue, 
overlying the striatum.^^ These early landmark papers described that the transplants of nigral 
tissue reversed the motor asymmetry in the rats and that they extended axons into the dener
vated host striatum. Shordy thereafter a series of papers used a novel cell suspension grafting 
technology, emulating the dissociated neuronal culture technique. With this method, the do
nor tissue is enzymatically digested and mechanically dissociated resulting in a cell suspension 
that can be drawn into a microsyringe and stereotactically injected into any desired brain re
gion. Using this grafting technique it was easier to reveal the fiinctional importance of placing 
the cells into different subregions of the striatum. ' Reinnervation of different parts of the 
striatum is essential to reverse specific parts of the behavioral syndrome that is the consequence 
of unilateral striatal DA depletion. ' ^Thus, reversal of drug-induced rotation was associated 
with grafts innervating the central and dorsal parts of the striatum, while reversal of "sensory 
neglect" occurred when the implants innervated the ventrolateral striatum.^^' '̂ ^ The grafted 
DA neurons were shown to make synaptic contacts with the host striatum ' ^ and to release 
DA in a regulated fashion. ' ^ Moreover, transplanted neurons can receive inputs from host 
neurons '̂ ^ and partially reverse several different motor deficits in animal models of PD. While 
the grafts are able to reverse many of the simple sensorimotor deficits that follow unilateral 
striatal DA depletion in the rat, more complex motor behaviors have not been as readily ame
liorated. The details of these behavioral studies have been the subject of several review articles 
that can be recommended for fiirther reading."̂ '̂̂ "̂̂ ^ 

Before the first systematic transplantation trials using embryonic dopaminergic neurons 
in patients with PD were performed in the mid-1980s,^^'^^ adrenal medulla chromaffin cells 
had been used as autografts in attempts to provide a source of catecholamine in the striatum. 
Initial reports on stereotactic implants of chromaffin cells, performed in Sweden, indicated 
that the procedure was relatively safe, but did not report of any significant beneficial effects. ̂ '̂̂ ^ 
In contrast, the Mexican group headed by Madrazo used "open microsurgery" to access the 
caudate nucleus via the lateral ventricle and implanted adrenal medidla.^'^' They reported 
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significant amelioration of symptoms in one patient and the paper was followed, within a 
couple of years, by surgery using a similar technique in several hundred patients worldwide. 
However, these surgeries not only failed to reproduce the reported beneficial effects, but were 
also accompanied by an unacceptable level of mortality and morbidity. In conclusion, adre
nal medullary graft tissue proved ineffective and the procedure is no longer considered an 
acceptable option. 

Other sources of donor cells, such as, carotid body cells, ' superior cervical ganglion ' 
and retinal pigment epithelium ^ have been investigated in human experiments. However, the 
data available so far do not suggest that there are major clinical benefits. 

At present, results obtained using grafts of embryonic ventral mesencephalic neurons have 
been most impressive. The first surgeries reported in the scientific literature are from 1988. ' 
Two years later, the first evidence for graft survival and function was reported. It is estimated 
that over 300 PD patients have been operated with grafts of nigral tissue. Only a minority of 
these cases has been reported in the scientific literature. Nonetheless, there are multiple reports 
of long lasting symptomatic improvement. Functional improvement seems to correlate 
with neuroradiological evidence of surviving graft tissue. A more detailed description of 
the clinical outcome follows later in the "Graft Effects" section. 

Methodology for Nigral Tissue Transplantation in Parkinson's 
Disease Patients 

The neural transplantation surgery protocol varies significandy between different centers 
regarding several parameters, e.g., age of donor tissue; tissue storage and preparation; numbers 
and location of injections; use of immunosuppression etc. The protocol described in this re
view is based on the one employed at Lund University. Cells are taken from the ventral mid
brain during embryonic development at a time when the neurons are undergoing terminal 
differentiation between the 5̂  and 8̂  week post-fertilization.^^'^^ The embryos are collected 
from routine elective abortions using ultrasound-guided suction technique with informed con
sent of the woman undergoing abortion, in accordance with strict ethical guidelines. A set of 
ethical guidelines recommended by a transnational European organization has been published. 
Soon after the abortion the embryo is rinsed in sterile balanced salt solution and the VM 
dissected. Some centers have employed a tissue storage step, to separate donor tissue procure
ment and transplantation surgery in time. This storage has either taken place in explant culture 
for 1-4 weeks^^ or at 4*C in a hibernation medium for 1-8 days. Typically the VM from 
multiple embryonic donors are collected, each cut into 6-16 pieces, and enzymatically digested 
(0.1% trypsin and 0.05% deoxyribonuclase) in the balanced salt solution at 37°C for 20 min. 
They are then mechanically dissociated, using a firepolished Pasteur pipette, into a suspension 
consisting of single cells and small aggregates. Using MRI-guided stereotactic neurosurgery, 
grafts are placed along multiple (3-7) trajectories, in the coronal plane, in the putamen and in 
some cases along two trajectories into the head of the caudate nucleus. 

Depending on the design of the surgical program and the expected availability of the 
donor tissue, different centers have opted for different policies on the use of immunosuppres
sion (see "Is Immunosuppression Necessary?" section) (Fig. 1). 

Technical Aspects of Graft Preparation: Donor Age and Cell Number 
Several lines of evidence suggest that survival of dopaminergic neurons is crucial for nigral 

grafts to be effective. The age of the embryonic donor tissue constitutes one vital parameter 
that affects survival of grafted DA neurons (for review see refs. 79,80). The optimal donor age 
is governed by the tissue preparation method. When the embryonic mesencephalon is me
chanically dissociated, tissue from younger embryos has to be used in contrast to when solid 
tissue pieces are transplanted.^^'^^ Based on data from human-to-rat xenograft trials, donor 
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Figure 1. Methodology of nigral transplants: The ventral mesencephalon (VM) from human embryos 
between the 5 and 8 week of gestation is dissected, enzymatically and mechanically dissociated into a 
mixture of single cells and small aggregates and grafted along several trajectories into the caudate and 
putamen of an immunosuppressed patient. Multiple donors, according to some sources as many as 4-8 
donors per side of the brain, are necessary to obtain sufficient tissue. 

tissue from early embryonic stages of around 5.5 to 8 weeks post-conception is most suitable 
when the tissue is subjected to dissociation.^^ Slightly older tissue can probably be used suc
cessfully if it is not dissociated into a cell supension, but cut into small pieces before surgery 
instead.^^ 

Careful donor tissue dissection is another vital aspect of the graft surgery. If the mesenchy
mal membranes covering the embryonic central nervous tissue are not removed, they may be 
the source of undesirable growth of nonneuronal tissue in the host brain. Indeed, in two 
post-mortem cases nonneuronal tissue was found in the grafted area^ '̂ '̂  and in at least one of 
the cases it was probably directly related to the cause of death of the patient (for review see Ref. 
79). 

Each human mesencephalon has been estimated to contain about 500.000-1.000.000 
dopaminergic neurons and it is likely that these cells have already begun differentiation in the 
embryonic mesencephalon at the time of donor tissue procurement. Only approximately 
20.000-40.000 of DA neurons from a single human embryo survive when xenografted to 
immunosuppressed rats.^^ A similar survival rate seems to apply also when the cells are grafted 
to P D patients with a similar protocol.^^ Therefore, to achieve complete replacement of 
DA-containing neurons it may be necessary to transplant mesencephalic tissue from multiple 
donors into each putamen.^^''^^ Results from rat experiments clearly illustrate that the recovery 
in drug-induced rotation is greater when more grafted DA neurons survive. Eventually a ceil
ing effect is attained, and higher cell numbers have no additional impact on the assessed func-
tion^^ (for review see Ref. 50). So far, different surgical centers have implanted different amounts 
of donor tissue, ranging from one to seven donors per side of the brain (for review see Ref. 79). 
Due to the fact that treatment of grafted tissue (donor age, tissue preparation and storage, and 
surgical technique) differs considerably between centers, definite conclusions are currently dif
ficult to make regarding the importance of the amount of implanted tissue. W h e n 35 patients 
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from six different centers were compared regarding clinical outcome and the amount of tissue 
transplanted, there was a trend favouring better clinical outcome when more tissue was grafted. 
However, this trend did not reach statistical significance.^^ 

Tissue storage is another issue of debate. At Lund University we have recently introduced 
storage at 4°C prior to transplantation up to 8 days in hibernation medium supplemented with 
a lipid peroxidation inhibitor and a growth factor. Other centers also subject the tissue to 
cool storage or alternatively grow the tissue in explant culture for up to 4 weeks.^ '̂  Al
though there are reports on the impact of such tissue storage on graft survival in rats,^ '̂ '̂̂  it 
is not clear whether a tissue storage step could affect the clinical outcome in grafted patients 
and whether there is a greater risk of development of dyskinesias in patients when the donor 
tissue is stored prior to surgery. 

Technical Aspects of Graft Implantation: Graft Placement 
The human striatum is approximately 200 times bigger in volume than that of rats. It is 

believed that the diffusion of DA released from graft-derived terminals is limited.^^'^^^ There
fore it has been suggested that grafts need to be implanted along multiple injections tracts 
placed as close as 5 mm apart (6-8 needle tracks in the coronal plane) throughout the puta-
men.^ '̂̂ ^ Bilateral transplants ought to be more effective than unilateral grafts, although there 
are some bilateral^t^Sx. effects in unilaterally grafted patients. '^^''^^^'^^^ There is no prospec
tive study comparing unilateral versus bilateral implants, but in patients with a functional graft 
on one side of the brain, implantation into the contralateral striatum provides some additional 
benefit.^^ 

In PD, the reduction of DA in the putamen, rather than the caudate nucleus, seems to 
underlie the motor symptoms. Studies in normal individuals indicate that the dorsal and inter
mediate subdivisions of the putamen are primarily involved in motor function, whereas the 
caudate nucleus plays an important role for cognition and for visual cues important for motor 
function and correction of balance.^ ' However, the caudate may still be important as an 
additional implantation target since motor symptoms are improved following transplantation 
into the caudate in a marmoset model of PD.^^^ It has been suggested that better results should 
be obtained following implantation into both the putamen and the caudate, than putamen 
alone,^ '̂'̂  although there is still insufficient clinical proof 

Is Immunosuppression Necessary? 
Little is known about immunological aspects of intracerebral grafting in patients. Some 

confusion has arisen from the concept of the brain being immunologically privileged. The 
"immune privilege" infers that histoincompatible grafts survive longer when implanted into 
the brain in comparison with another site, e.g., the skin. However, it does not necessarily imply 
that there is indefinite survival. ̂ ^̂  Many factors contribute to the immune privilege, including 
a complex set of barriers (e.g., blood-brain barrier) that restrict passage of immunocompetent 
cells into the brain. Only activated lymphocytes pass endothelial cells in brain capillaries. In 
addition, the antigen-presenting capacity of the brain is reduced in comparison to other sites. 
The regulation of the immune response is also dependent on the local response of cytokines 
and chemokines, which are produced in response to various stimuli and traumata, such as the 
implantation trauma. ̂  ̂ '̂ ̂  ̂ ^ 

Allografted (same species, but different genetic background) nigral tissue seems to survive 
indefinitely in the striatum of experimental rodents.^^ However, several studies in rats have 
shown that allografted DA neurons can undergo rejection from the brain if the host immune 
system is challenged by an orthotopic skin allograft^ ^ or if the neural cells are cografted with 
allogeneic spleen cells.̂ ^^ So there is no doubt that, under certain conditions, the rat immune 
system can effectively reject neurons allografted to the brain. Interestingly, the same may also 
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be true for humans. Brains obtained from two post-mortem cases of patients grafted with 
human allogeneic tissue were found to contain macrophages, B-cells and T-cells around the 
implant sites, ' suggesting that human allografts can evoke an immune reaction. 

Depending on the design of the surgical program and the expected availability of the 
donor tissue, different centers have opted for different policies on the use of immunosuppres
sion. As an example, the Lund program has performed two surgeries separated by 2 weeks up to 
3-5 years.'̂ ^ As the first graft may immunize the patient to human antigens, the current proto
col in Lund uses a triple combination of cyclosporin, azathioprin and prednisolone for immu
nosuppression during the time between the surgeries. The immunosuppression has also been 
given for 12 months after the second and final implantation, and then tapered off over a 3-month 
period. There have been very few side effects of this treatment.^^^ After withdrawal of the 
immunosuppression there has not been any sign of rejection, neither clinically nor as assessed 
by PK 11195 PET scanning (Widner H, personal communication).^^^'^^^ 

Despite the possibility for immune rejection of human allografts, clinical data obtained so 
far suggest that long-term, continuous immunosuppression may not be necessary for survival 
of intracerebral allografts.'̂ '̂'̂ '̂̂ ^ '̂̂ '̂̂  Therefore, other surgical centers have opted for different 
policies, e.g., the Denver/New York group used no immunosuppression at all.^^ However, it is 
unclear if the survival is optimal under these conditions. For example, a recent report described 
that some grafted human neurons survived for at least 7 months-8 years in patients who had 
not received immunosuppression. '̂ ^̂  The number of surviving DA neurons reported in two 
of these patients was considerably lower compared to other autopsy cases. ' Because the 
amounts of implanted tissue and graft preparation also differed between these two sets of pa
tients, it is difficult even to speculate whether the reduced survival is due to an immune rejec
tion. The Tampa program uses an immunosuppressive treatment with cyclosporin A alone for 
6 months after surgery.^^ As mentioned briefly in an earlier section, lymphocytes have been 
observed in an autopsy case after 18 months after grafting (12 months without immunosup
pression) from this series.̂ '̂ ^ 

In summary, there is currently no consensus between centers on how and for how long 
allografted PD patients should be immunosuppressed to achieve lasting graft survival. 

Graft EflFects 

Patient Selection 
Patients have to be carefully selected and undergo detailed clinical evaluation before and 

after neurotransplantation. Preferably, this should be done according to the "Core Assessment 
Program for Surgical interventions and Transplantation" (CAPSIT), which is a revised ver
sion of the "Core Assessment Program for Intracerebral Transplanation" CAPIT.̂ "̂ ^ These pro
tocols allow comparisons between clinical studies at different centers. ̂ '̂̂  They includes diag
nostic criteria, exclusion criteria and suggestions on preoperative and post-operative follow-ups. 
In order to reduce the level of placebo effects, CAPSIT suggests three preoperative investiga
tions and neuro-imaging. It also allows for comparison between DBS and transplantation studies. 

The clinical assessement part of CAPIT comprises 
• Patient-derived "on/off diaries" to assess daily motor fluctuations. 
• L-dopa-test which tests the effect of a single dose of L-dopa on motor symptoms. 
• Activities of daily living, although the value of this measure has been questioned. ̂ -̂ '̂̂ -̂ ^ 
Bradykinesia, rigidity and motor fluctuations are the most disabling motor PD symptoms 

of patients treated pharmacologically, and they are all effectively ameliorated by intrastriatal 
VM grafts.̂ '̂̂ '̂̂  Therefore, primarily patients in whom these symptoms predominate should 
be considered for grafting. A recent study suggested that the L-Dopa-response before trans
plantation is predictive for the outcome of the transplantation.^ ̂ ^ This finding, however, is not 



228 Brain Repair 

surprising, since L-Dopa-responsiveness is the main predictor for PD, irrespective of the stage 
of the disease. Unless a clear L-dopa response can be determined, transplantation surgery is not 
warranted. 

Except for one single case, no significant improvement of Parkinsonian tremor has 
been demonstrated following transplantation (for review see Re£ 117). Although most patients 
grafted so far have not had tremor as a dominant symptom, there is currently little support for 
selecting such patients for transplantation surgery. 

Also patients with cognitive impairment are probably not suitable for grafting. 
Only mild improvement of motor symptoms was observed in PD patients with impair

ment of cognitive function. These patients also stand a greater risk for developing 
post-surgical complications with transient worsening of cognitive functions. ̂ ^̂  

Motor Assessment 
In successful cases, transplants of embryonic nigral tissue markedly improve bradykinesia 

and rigidity contralateral, and to some extent also ipsilateral, to the implanted side. Motor 
fluctuations are also reduced markedly by the procedure (for review see refs. 113,117). 

In most cases, there is a gradual increase of clinical benefit during the first 1-2 years (in 
some patients apparent already after 3-6 months), and the effects seem to plateau after 3-4 
years at the latest.^^ 

Most patients evaluated according to the CAPIT criteria have experienced long-lasting 
improvements of 30-50% on the motor score of the UPDRS scale (for review see refs. 113,117). 
The 18 patients transplanted in Lund in collaboration with centers in San Jos^, London and 
Munich/Marburg^ ^ have been followed up for 10 years. The majority of these patients spent 
significandy more time in the "off"-phase and less time in the "on" phase before surgery, and 
after surgery the relationship was reversed. When patients were tested in defined "off" (12 
hours without any anti-parkinson medication), the speed and accuracy of movement was evalu
ated in timed series of pronation/supination movements of the hand and found to improve 
significandy. The L-dopa medication could be reduced progressively or even terminated in 
somecases.68-7 -̂̂ 5.n6.12 ,̂127 

As mentioned earlier, not all symptoms are clearly improved by transplantation. For ex
ample, impaired postural function, swallowing and speech do not seem to improve as dramati
cally as limb hypokinesia and rigidity (Fig. 2)}^^'^^^ 

In Vivo hnaging of Brains Containing Grafted Dopamine Neurons 
Many clinical transplantation programs include assessment of graft survival using positron 

emission tomography (PET) with ^^Fluorodopa (FD) as a marker for dopaminergic neurons. 
The FD-PET scans provide an index of the number of viable striatal dopaminergic termi
nals. ̂ ^̂  In PD, the FD uptake in the putamen correlates inversely with the degree of motor 
impairment^^^'^^^ and with numbers of remaining nigral DA neurons at autopsy, as well as 
with striatal DA levels. ̂ '̂̂  Using a ligand for postsynaptic D2-receptors such as C-raclopride, 
it has been possible to monitor upregulation of striatal D2 DA-receptors in PD patients^^^'^ 
reflecting compensatory hypersensitivity due to the loss of striatal DA. 

Histological studies have shown that the postoperative increase in FD-uptake in PET 
studies reflects survival of dopaminergic grafts reinnervating the striatum. ''̂ '̂̂ ^̂ '̂ ^̂  The 
FD-PET signal has been found to be significandy elevated at around A:-^ months after trans
plantation in several patients ' ' and in some cases it shows a continued progressive in
crease for 2-3 years,'̂ ^ while in others it does not continue to increase between 6.5 and 18.3 
months.^^ 

In one cohort of patients, movement-related activation in the supplementary motor cor
tical area and dorsolateral prefrontal cortex were studied. These cortical areas are activated in 
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Figure 2. Percentage of the daily time spent in "off" by one patient and the changes in the UPDRS motor 
score (measured in the defined"ofiF", when the patient had not received any anti-parkinson medication for 
12 hours). First effects are clearly seen one year after grafting, but symptoms continue to improve up to 4 
years after transplantation. The diagram is based on data from.̂ ^ 

normal subjects in conjunction with movement, whereas unmedicated PD patients do not 
exhibit the same activation pattern. Grafted PD patients exhibited restoration of this cortical 
activation at 18.3 months after surgery, but not at 6.5 months post-grafting.''' Interestingly, 
the same patients displayed a partial and significant restoration of striatal FD-PET signals at 
the first time-point with no further increase by the second later time-point. Nevertheless the 
clinical improvement, monitored as a decrease in a motor impairment scale, continued be
tween the two time-points.'^^ These data suggest that improvement of clinical symptoms con
tinues gradually even after the dopaminergic neurons have begun to produce DA, and that it 
may depend on protracted development of a functional integration between the graft and host 
brain, or be related to plastic changes in the host brain as the newly developed dopaminergic 
innervation exerts its effect. 

Post-Mortem Histological Examination of Embryonic Dopaminergic 
Transplants 

At least 14 PD patients who have received a neural transplant and subsequently died (all 
of them of unrelated causes), have come to autopsy (for review see Ref. 79). The first published 
case described the histological findings in a patient operated at the Yale University surgical 
center, 4 months after implantation of tissue from one embryo and with immunosuppressive 
treatment lasting for 7 weeks. No surviving TH-positive graft-derived cells were identified at 
autopsy. In a series of five patients who had each been grafted with tissue from one donor 
(no immunosuppressive therapy) in Birmingham, United Kingdom, only few cells were found 
in three out of five cases 18-40 month after surgery.^ '̂̂ ^ '̂ ^̂  Another three post-mortem cases 
operated by the Denver surgical center were given no immunosuppressive treatment and were 
each grafted with tissue from 2 donors into each putamen.^^ The numbers of surviving 
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TH- positive neurons were between 6.840-38.392 per putamen."^ The survival was better in 
the cases operated in Tampa and was reported in great detail \yy^^^ (for review see Ref. 90). 
These latter two patients died 18 and 19 months after grafting and had received tissue from 3-4 
donors per putamen. Immunosuppression was continued ft)r six month after surgery. Follow
ing cell counting, 81.905 and 126.162 TH-positive neurons were ft)und in the left and right 
putamen, respectively, of the first patient, whereas the second patient had 138.000 surviving 
TH-positive cells in one putamen (other side not analysed).^ ' In both cases extensive rein-
nervation of the host striatum was described, without any evidence for sprouting of host-derived 
TH-positive fibers.^^^ Numerous macrophages and lymphocytes were also found infiltrating 
the graft area,̂ ^^ suggestive of an ongoing immune response. Both of these patients also exhib
ited marked increases in striatal FD uptake (for review see Ref. 79). 

Available autopsy and clinical data suggest that a graft survival has to exceed a threshold 
number of TH-positive neurons for functional effects to develop. This view is supported by the 
lack of documented clinical improvement in cases with virtually no graft survival (for review 
see Re£ 79). Based on animal experiments and available clinical data, it has been suggested that 
approximately 100.000 surviving grafted DA neurons per putamen are necessary to elicit sig
nificant clinical improvement (for review see Ref. 79). 

Problems Facing Neural Grafting in Parkinson's Disease 

Dyskinesias and Dystonia 
In March 2001, the first double-blind placebo-controlled trial of neural transplantation 

was published by the Denver/New York group, and stimulated widespread media interest and 
scientific debate. 

This attention was partly due to the brief description of severe disabling and uncontrol
lable dyskinesias and dystonia (abnormal involuntary movements and postures) in 15% (5/33) 
of the grafted patients. The involuntary movements appeared more than one year post-grafting, 
even though the parkinsonian symptoms were reported to have undergone improvement dur
ing the first year after transplantation in these patients, allowing substantial reductions in L-Dopa 
medication. The authors attributed this adverse effect to a 'relative excess of DA' released 
from the grafts and in order to avoid dyskinesias in ftiture operations, it was suggested to graft 
less tissue.^ However, this interpretation has been discussed and challenged repeatedly.̂ '̂'̂ '̂̂  '̂̂  ^ 
Most critics had the impression that patients from other centers using open-labeled trials had 
larger grafts, but still did not display disabling dyskinesias/dystonia of the same frequency or 
magnitude as those reported by the Denver/New York team. In 14 patients operated in Lund, 
who had been followed for up for up to 11 years after surgery, dyskinesias increased during 
"defined off" after grafting. However, the involuntary movements were generally mild or mod
erate. The relationship between graft size and dyskinesias in "defined off" is potentially impor
tant. In the Lund retrospective study, there was no correlation between the severity of dyskinesias 
in "defined off" and the extent of graft-induced symptomatic relief ^ The development of 
dyskinesias in "defined off" seems to follow the clinical improvement with a delay of more than 
one year, suggesting a different mechanism to that underlying clinical improvement. Fur
thermore, the severity of postoperative off-phase dyskinesias tended to correlate negatively 
with the preoperative FD-uptake in the putamen, which indicates that the severity of the 
dyskinesias in "defined off" may be related to the extent of striatal dopaminergic denerva-
tion.^^^ 

The Tampa/Mount Sinai surgical trial was the second randomized, double blind, placebo-
controlled study to be performed. In this study, solid pieces of embryonic VM from one or four 
donors were grafted and patients were immunosuppressed with cyclosporine A for 6 months. 
No significant improvement in the UPDRS was found after two years. Patients who had 
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received cells from four donors showed progressive improvement up to 6 months that was lost 
at the same time the immunosuppression was discontinued. This could suggest an 
immunresponse against the graft and maybe a late rejection. Striatal F-DOPA uptake was 
significandy increased after transplantation and good survival of dopamine neurons was also 
observed at postmortem examination. However, in this study, fifty-six percent of the trans
planted patients developed ofF-dyskinesias that persisted upon drug withdrawl. Four cases 
have come to autopsy and show activated microglia in and around the graft deposits. It has 
been suggested that the observed dyskinesias may reflect partial, but inadequate graft survival. 
The graft produces, stores and releases low levels of dopamine, but may not be sufficient to 
induce an antiparkinsonian response.^ 

The Lund data do not support the suggestion by the Denver/New York group, that off 
dyskinesias may be a result of excess DA being produced by the grafts. However, differences in 
placement of graft tissue within the putamen, and the lack of immunosuppression and longer 
preoperative tissue storage time in the Denver/New York study may account for discrepancies 
in outcome between the two surgical centers. 

In summary, there is no evidence that severe off phase dyskinesias are characteristic for 
DA cell replacement therapy per se. However, they can occur, and when they do, there is no 
evidence that they are the result of an excess of DA. The underlying mechanism is simply not 
well understood yet. Paradoxically, grafts have actually been described to ameliorate on-phase 
dyskinesias in some patients ' and in rats with experimental parkinsonism. In these cases, 
it has been suggested that the grafts provide the denervated striatum with a renewed capacity to 
buffer fluctuations in dopa levels. The sham controlled double blind studies illustrate that the 
present cell replacement procedures are far from optimal and that further research is necessary 
to optimize selection of patients and transplantation procedures. 

Cell Death 
There is a positive relationship between the number of surviving DA neurons and the 

extent of behavioral recovery. This is true for a certain window of graft sizes, beyond which 
there is a saturation effect such that additional surviving neurons do not give rise to further 
clinical relief (see also "Technical Aspects of Graft Preparation: Donor Age and Cell Number" 
section). In the unilateral 6-OHDA rat model of PD, around 2000 TH-positive neurons need 
to survive to reverse amphetamine-induced rotational behavior about 6 weeks after surgery (see 
review by Ref. 50). Whilst achieving large grafts may seem like a trivial surgical problem, most 
studies in rodents and humans report survival rates of transplanted DA neurons as low as 
1-20%.̂ '̂ ' It has been suggested that nigral tissue from at least 4 human embryos has to 
be grafted to each side of the brain to obtain reliable functional effects in PD, even when using 
optimized transplantation protocols. 

One major practical limitations of neural transplantation as a therapy for PD patients is 
therefore the need for multiple donors per patients. The use of tissue from very large number of 
embryos per patient can also be argued to raise specific ethical concerns. 

During the transplantation procedure, DA neurons are subjected to several types of in
sults causing both apoptotic, necrotic and intermediate forms of cell death. The cell death in 
grafts is most likely triggered by one or more of the following mechanisms: hypoxia, hypogly
cemia, mechanical trauma, free radicals and lack of appropriate growth factor stimulation. The 
cell death appears to begin already during retrieval of the donor tissue and has subsided after a 
few days in the new host brain (for reviews see refs. 145,146). Hypoxia and glucose deprivation 
during the removal of the embryo can result in oxidative stress ^ and may cause death in as 
many as 20% of the cells even prior to mechanical dissociation of the tissue. '̂ ^ During the 
tissue preparation, donor tissue is inevitably subjected to severe mechanical trauma, resulting 
in the death of another 30% of the neurons.^ '̂̂ ^^ Cell death continues during the trans-
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plant injection and immediate period (around 7 days) thereafter.̂ ^ '̂̂ ^^ However, during the 
graft maturation, i.e., beyond the first postoperative week up to several months, the total num
ber of surviving cells does not change^^^ (see for review Ref. 145). 

In summary, cell death occurs during the entire transplantation procedure up to one week 
after grafting. Therefore neuroprotective strategies should primarily focus on the tissue prepa
ration steps and the first few days after graft surgery. 

Methods to Improve Graft Survival 
Several pharmacological approaches have been used to promote survival of transplanted 

neurons in animal experiments. In this chapter we focus on those that can be applied clinically. 
Flunarizine, an antagonist of voltage-gated calcium channels and also potent antioxidant,^ ̂ '̂  

has been shown to improve survival of grafted embryonic rat DA neurons. ̂ ^̂ '̂ ^̂  To reduce 
oxidative stress in nigral grafts, lazaroids, a heterogeneous group of compounds that inhibit 
radical-evoked lipid peroxidation are effective. Treatment with different experimental lazaroids 
improves survival of grafted DA neurons in rats,^ '̂̂ ^^ and the clinically approved tirilazad 
mesylate has been used in an attempt to enhance graft survival in the clinical transplantation 
program in Lund. 

Apoptotic cell death occurs at least in some cells starting from the step of tissue prepara
tion until 4 days after grafting.^ '̂̂ ^ Caspases, a family of proteases, play a central role in the 
apoptotic process ̂ '̂̂  and caspase inhibitors have been shown to effectively block apoptosis in 
cultures of DA neurons and in nigral grafts^ ̂  (for review see Ref 145). The effects of lazaroids 
and caspase inhibition are at least partially additive^ ̂ ^ suggesting that different populations of 
dopaminergic neurons in the graft are killed by different mechanisms. Although caspase in
hibitors have been found to reduce DNA fragmentation and caspase 3 activity in nigral cell 
suspensions, it is possible that they also inhibit other proteases important for neuronal death, 
such as cathepsin,^^^ indicating that the high concentrations of caspase inhibitors employed in 
neural grafting experiments may act through multiple mechanisms. Finally, treatment of nigral 
cell suspensions with immunophilin ligands that inhibit calcineurin, namely cyclosporin A and 
FK506, can also improve the survival of DA neurons following implantation into an adult 
striatum. ̂ ^̂  

Different families of growth factors have also been investigated regarding their ability to 
improve survival of nigral grafts. Treatment with basic fibroblast growth factor (bFGF) signifi-
candy increases the survival of grafted neurons. Glial cell line-derived neurotrophic fac
tor (GDNF) was first described to have a survival-promoting effect on nigral grafts in 1996'^^^ 
and several subsequent studies have substantiated these findings (for review see Ref 145). Of 
particular relevance to clinical trials, human GDNF can improve both survival and fiber out
growth from transplanted human dopaminergic neurons in hemiparkinsonian rats. Recently, 
the focus has been on how to improve graft survival by modifying the transplant procedure 
during the first few hours after implantation into the adult brain. Thus, we have found that 
treating the graft recipient with systemic injections of the lazaroid tirilazad mesylate increases 
survival of DA neurons. Similarly treatment of the host with synthetic fibronectin peptide V 
improved the survival of grafted DA neurons. Reducing the body temperature of the host to 
32-33°C, causing hypothermia in the brain that receives the graft tissue also improves cell 
survival.^ ^ When combining pretreatment of rat embryonic graft tissue with two drugs—one 
lazaroid and one caspase inhibitor—and simultaneously cooling the body temperature of the 
graft recipient, it is possible to attain a survival rate around 55%.^^^ While this particular 
combination of treatments may be difficult to apply clinically, the results demonstrate that 
around half of the grafted neurons may be possible to rescue. Should this be achieved in clinical 
trials, it would most probably be sufficient to graft mesencephalic tissue from one human 
embryo to each side of the patient's brain (Fig. 3). 
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Figure 3. Already at the time-point of dissection of the donor tissue (phase I), some of the neurons are 
damaged (yellow) or dead (red), but a significant proportion are still viable (blue). During the dissociation 
step (phase II), there is a progressive increase in the number of damaged and dead neurons. If no intervention 
is made, with e.g., administration of neuroprotective drugs, there will only be around 10% surviving 
dopaminergic neurons in the grafts (right part of diagram). On the other hand, if neuroprotective measures 
are taken, a large proportion of damaged neurons can be rescued and a survival rate of around 50% can be 
attained (left part of diagram). 

Alternative Sources of Donor Tissue 
There is no doubt that the cell replacement strategy can give rise to symptomatic relief in 

P D . However, due to logistic and ethical problems connected with the use of human embry

onic tissue the search for alternative cells for transplantation in P D is essential. In this section 

we will discuss cells that could eventually replace human embryonic D A neurons as a source for 

grafting in PD. We focus on cells that have either entered clinical trials or show promise that 

they could be developed into part of a clinical protocol in the foreseeable future. 

Almost every existing type of DA-producing cell has at some point been considered for 

neural grafting in P D . However, it may not be sufficient for a cell to produce and secrete DA. 

Dopaminergic neurons also have the ability to reinnervate the host striatum over long dis

tances, form synapses and possibly respond to host signals. The ideal cell for grafting in P D 
should fulfill those criteria. In addition, it should be available in imlimited amounts. Ideally, 

the supply of cells should also be possible to standardize, i.e., with large batches of identical 
cells being available at surgeries separated in time, and it should be possible to screen for infec

tions before transplantation. 

Neural Xenotransplants 
Neural xenotranplantation, the grafting of embryonic neuroblasts from the nervous sys

tem of a different mammalian species, has been considered early on.^'^^ The use of porcine 
tissue to replace human embryonic tissue as opposed to embryonic nonhuman primate tissue 
has some advantages; pigs are easy to bread and produce large litters, they are not an endan
gered species. Therefore, xenotransplantat ion could potential ly circumvent many of the 
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logistic problems associated with the use of fresh embryonic tissue. ̂ ^̂ '̂ ^ ' Porcine tissue has 
already been considered for other organ transplants before, donor tissue can be genetically 
modified to e.g., increase cell survival or to knock out some of the dominating antigens 
responsible for the acute immunorejection (saccaride epitopes of the a-Gal on pig tissue) by 
naturally occurring xenoreactive antibodies. 

Embryonic porcine neural tissue transplanted into hemiparkinsonian immunosuppressed 
rats not only grows anatomical correct connections,^'^^ but also restores behavioral deficits.^^ '̂ ^̂  
Although these are encouraging results, before xenotransplantation of neural tissue ought to 
enter large scale clinical trials, certain critical issues need to be clarified in animal experiments. 
First, there is a potential risk of infection by zoonotic organisms, especially in the context of 
immunosuppression.^^^ In xenotransplantation, however, donor tissue can be screened exten
sively for pathogens and animals can even be bread under pathogen-free conditions. The main 
concern is for the risk of infection by porcine endogenous retrovirus (PERV). However, several 
patients who have been transplanted with porcine pancreatic islets^^^ or had been otherwise 
exposed to porcine tissue had no evidence of infections. ̂ ^̂  Possibly, protection against PERV 
can be reached by vaccination of recipients of porcine tissue against PERV, treatment with 
anti-retroviral drugs or elimination of the virus by knocking out the gene (for review see refs. 
108,181). 

Secondly, the major problem associated with the use of xenogeneic tissue is the immune 
host response. An immunosuppressive regimen needs to be established which ensures long-term 
graft survival while minimizing the risk of side effects associated with such therapy. Currendy, 
the immunosuppressive regime may have to be administered lifelong. Several immunoprotection 
strategies have been devised, such as masking xenogeneic MHC class I antigens or altering the 
donor tissue, but none of them have proven very effective (for review see Re£ 173). 

Clinical studies with porcine neural xenografts have already started. Twelve patients with 
PD were transplanted in a phase I study, testing the safety of the approach and a technique 
called "immunomasking", which was promoted by the company Diacrin in collaboration with 
an academic center. In the clinical study, 50% of the patients received the compound, a cell 
with anti-pig class I MHC F(ab) fragments to reduce the antigenicity of the tissue, ̂ ^̂  whereas 
the others received a low dose of cyclosporin A treatment.^ Two or 3 patients experienced 
some benefit 1-2 years after grafi:ing, however, this did not correspond to any positive changes 
in FD-PET^^^One patient in this trial died from unrelated causes about 8 month after he had 
received a porcine transplant. Post-mortem analysis showed only about 600 cells surviving, 
even though each patient had received 12 million pig cells at the time of implantation. Lym
phocytes were found around the remaining cells, indicating a chronic rejection. A second 
clinical study was initiated in 1999 (Genzyme/Diacrine.com, phase Il-study) using another 
immunosuppressive schedule and no immunomasking. In this study, 18 patients were ran
domly assigned to be either grafted or to receive sham surgery. Each of the treated patients in 
this trial received approximately 48 million cells (from 11 embryos) transplanted bilaterally. At 
18 months after surgery, there was no significant difference between the transplanted and the 
placebo group with respect to the primary endpoint measure, the "UPDRS-off-score". There 
were no disabling dyskinesias reported in these patients. ̂ ^̂  Even though the clinical data for 
porcine neural xenografts are disappointing so far, porcine tissue still remains a promising 
alternative cell source for neurotranspantation in PD. 

Stem Cells 
Perhaps the most attractive alternative to embryonic tissue grafts would be a stem cell that 

could be proliferated in an unlimited fashion and then differentiated into a DA-producing cell 
with a full repertoire of neuronal features. Stem cells are cells characterized by the capacity of 
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self-renewal and multipotentiality. There are several types of stem cells—the term being used 
liberally here, since some of these cells are committed precursors rather than true stem cells— 
that have been investigated regarding their prospective use for neurotransplantation. 

1. Embryonic stem (ES) cells 
2. Adult-derived stem cells 
3. Neural progenitor cells 

ES Cells 
ES cells are derived from the inner cell mass of the blastocyst and can develop into virtu

ally any cell type. Therefore this cell type is perhaps the ideal source to produce a specific cell 
type. ES cells spontaneously differentiate into all cell types derived from the three embryonic 
germ layers. Efforts are currently being made to isolate epigenetic factors, which stimulate the 
development of a certain cell type such as dopaminergic cells for transplantation in PD. To 
control cell growth and differentiation of these cells is one of the major challenges science is 
currently facing. 

Several authors have reported a derivation of significant amounts of dopaminergic cells 
gained from ES cells in vitro: Different in vitro induction procedures have been most success
ful, so far using either mouse^^ '̂ "̂̂  or primate ES cells. ̂ ^̂  Both methods have led to the induc
tion of cells expressing a dopaminergic phenotype in vitro varying between 25% or 16% 
dopaminergic neurons out of the total number of cells. ̂ '̂̂  A third group has established an ES 
cell line transfected with a rat nuclear receptor related-1 (Nurrl) gene, coding for a transcrip
tion factor that has a role in the differentiation of midbrain precursors into DA neurons. ̂ ^̂  
Using stable Nurrl-ES cells in combination with defined culture conditions, as many as 7S% 
of the neurons were generated under in vitro condition were TH-positive. These cells were also 
elegantly shown to posses several characteristics of differentiated DA neurons and to be func
tional in vitro and in vivo. Most importantly when grafted to the striatum, they could reverse 
both drug-induced and spontaneous motor deficits in the unilateral 6-OHDA-lesion rat model 
of PD. Importantly, there was no teratoma formation in contrast to grafting undifferenti
ated mouse ES cells in another study. ̂ ^ In this latter study, undifferentiated mouse ES cells 
were transplanted in low cell numbers into hemiparkinsonian rats. In some cases the implants 
developed into relatively large grafts with many cells with a dopaminergic phenotype. These 
data were intriguing because there was no special protocol to induce differentiation of dopam
inergic neurons from the ES cells. However, the study reported a troubling high 25% fre
quency of teratomas in animals with a surviving graft, and a further 16% of the grafted animals 
contained nonneuronal cells that were positive for mesodermal markers.^^^ Dopaminergic dif
ferentiation of human ES cells has now also been shown in vitro. Cells can be differentiated 
using a co-culture system with mouse stromal cell lines^^ '̂̂ ^^ or other epigenetic factors such as 
transforming growth factor a (TGFa)^^^ or a more complex sequence of different factors.^^^ 
However, studies showing that human ES cell-derived dopaminergic neurons can survive graft
ing, express TH in vivo, integrate into the host brain without forming tumors, release DA in a 
regulated fashion and reverse behavioral deficits in animal models of PD have to be awaited. 

Clearly, several safety aspects need to be addressed before grafts from ES cells can be 
considered for clinical trials. 

Furthermore, there are ethical concerns associated with the use of human ES cells. Hu
man ES cells are derived from the inner cell mass of human embryos about 4 days after fertili
zation, most of which are generated in in vitro fertilization clinics. ̂ ^ In August 2001, US 
president George Bush allowed govermental funding to be used for research involving the 
already established human ES cell lines (71 reported worldwide to the NIH so far) (for review 
see Re£ 195), but not for the derivation of new human cell lines. 
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Fetal Derived Neural Progenitors 
In contrast to ES cells, neural progenitor cells are isolated from the developing embryo at 

later stages. They have a limited proliferative potential and a restricted differentiation capacity. 
They are characteristic for the tissue they derive from and can probably only give rise (as far as 
we currently know) to cell types present in the respective tissue. Thus, neural precursors have 
the ability to differentiate into neurons, oligodendrocytes and astrocytes. 

Neural progenitor cells have been investigated regarding their use for cell replacement in 
PD. The goal is to proliferate neural progenitors in culture and subsequently differentiate these 
cells along the dopaminergic line. 

Several groups have tried to optimize dopaminergic differentiation of mouse neural pre
cursors of different brain regions ' mouse striatum, ̂ ^̂  of precursor cells from rat and hu
man cortex, ̂ ^̂  and rat mesencephalic precursors,̂ ^ '̂"^^^ using different in vitro protocols and 
achieving up to 40% TH-positive cells out of all cells, or even up to 73-98% using a rat 
mesencephalic dopaminergic progenitor clone. 

Mesencephalic precursor cells transplanted into a PD rat model have led to partial recov
ery of behavior.^^ '̂̂ ^ However, the main problem connected with the use of progenitor cells 
for transplantation purposes is currently the poor survival of these cells. The relative rate of 
survival was only about 3-5%,^^^or even lower. 

Human midbrain presursor cells can be expanded under conditions using low oxygen, 
using similar protocols. About 0.93% of the cells expressed markers of a DA phenotype if 
cultured under certain conditions. Upon transplantation human neural progenitor cells gave 
rise to mainly astrocytes and few cells expressing neuronal markers. Cells that were TH-positive, 
and therefore probably dopaminergic neurons, were only rarely found. ^^ 

Adult-Derived Stem Cells 
Stem cells have also been identified in a variety of adult tissues such as bone marrow, 

blood as well as within the skin, liver, muscle and even the adult brain. These adult derived 
stem cells (ASC) are pluripotent and have the ability of self-renewal. Furthermore, in compari
son to ES cells, ASCs are easier to access and devoid of serious ethical issues because they can, 
e.g., be harvested from the patient, which would also make immunosuppressive treatment after 
transplantation unnecessary. In this section, we discuss the possible differentiation potential of 
ASC s and highlight some recent advances on ASC research. 

Adult-derived neural stem cells could be isolated from various brain regions such as the 
subgranular zone of the dentate gyrus of the hippocampus, the ependymal/subventricular zone 
and the spinal cord.^^^ Even the adult rat substantia nigra as been discussed as a site of ongoing 
neurogenesis and continous formation of newly differentiated DA neurons, ^ that even fur
ther increases in a lesion model of PD. Carefully conducted studies,̂ ^ '̂̂ ^^* question this find
ings, so that the occurence of neurogenesis in the adult substantia nigra is currendy debated. In 
other studies, only a glial response in the SNc was observed after lesioning the nigrostriatal 
system."̂ ^^ Adult-derived neural stem cells can be grown as neurospheres in culture and differ
entiate into all three major CNS cell types (neurons, astrocytes and oligodendrocytes). They 
have also been shown to differentiate into multiple nonneural cell types, ^^^'^^^ (for review see 
Re£ 196). In humans, it has been possible to isolate stem cells with proliferative capacity from 
a variety of post-mortem brain regions, including the hippocampus, ventricular zone, motor 
cortex, temporal cortex and corpus callosum. 

Given their expected capacity to self-renew and differentiate efficiendy into a desired cell 
type, clonal populations of neural stem cells promise to produce high numbers of DA neurons 
if they can be propagated, enriched and manipulated to differentiate along the DA lineage. 
However, it is not clear whether and to which extent this is possible. 
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The ability of adult neural stem cells to adopt a certain phenotype in vitro does still not 
necessarily guarantee that cells, once transplanted, incorporate into the host tissue and func
tion in the expected way. So far it seems that site-specific differentiation in the embryonic as 
well as the adult brain only occurs in neurogenic regions. This could be especially true since a 
study showed that astrocytes from the hippocampus and the neonatal spinal cord have the 
ability to instruct neurogenesis in adult neural stem cells, whereas astryocytes from other re
gions than neurogenic regions fail to do so. ^ So the presence of endogenous neurogenic cues 
seems to be a prerequisite for neuronal differentiation and integration of donor cells (for review 
see Re£ 217). Neurogenic activity persists in the ventricular/subventricular zone, the olfactory 
bulb and the dentate gyrus of the hippocampus in the adult brain. 

Efforts to induce dopaminergic phenotypes in neurons derived from adult neural stem 
cells which have been propagated in vitro are currently made and transplantation experiments 
need to be awaited. 

Evidence suggests that adult bone marrow may contain stem cells that can be pluripotent 
under appropriate conditions. After systemic infusion of bone marrow stem cells, low numbers 
of neuronal marker-positive (such as NeuN, b-III tubulin or MAP2) cells were detected in 
different regions of the brain.^^ '̂̂ ^^ In addition, BMSCs transplanted into lesioned spinal cord 
or cortical ischemic brain could differentiate into myelin-forming cells and repair the demyeli-
nated CNS^^^ or become neuronal marker-positive and improve functional recovery of the 
ischemic brain. '̂̂ ^ Most interestingly, a very recent study showed that cells copurified with 
mesenchymal stem cell from adult mouse or rat bone marrow differentiate into not only mes
enchymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm character
istics in vitro and in vivo.'̂ '̂ ^ Remarkably, in vitro as many as 30% of these cells can differenti
ate into DA (TH-positive) neurons. When a single cell was introduced into a blastocyst, 33% 
of the mice formed chimaeras, and exhibited stem cell-derived cells in brain, lung, myocar
dium, skeletal muscle, liver, intestine, kindey, spleen, bone marrow, blood and skin. In addi
tion, after intravenous systemic infusion, these cells differentiate into various tissue-specific 
cells, including bone marrow stem cells, but not neuronal cells. Importandy, human bone 
marrow stromal cells have been shown to generate a neural stem cell-like population that dif
ferentiates into neurons and glial cells. Some of these cells express TH and seem to release 
dopamine upon stimulation with KCl.^ These exciting findings suggest that mesenchymal 
stem cells are pluripotent and could serve as an ideal cell source for neurotransplantation in 
PD. 

Besides bone marrow-derived stem cells, other stem cells derived from skin ' ^ and fat 
tissue"̂ "̂ ^ e.g., have been discussed as a possible source for neurons. However, none of the data 
gives evidence for the derivation of TH-positive neurons (Fig. 4). 

Concluding Remarks 
Neural transplantation using nigral embryonic tissue has proven successful in animal ex

periments and clinical studies in PD patients. However, the relative shortage of suitable donor 
tissue, as well as ethical issues have lead to the demand of improved survival of grafi:ed tissue or 
new tissue sources for neural transplantation. Several measures regarding a better survival of 
transplanted cells have been investigated and partially translated into the clinical situation. 
However, the use of xenogeneic tissue or, alternatively, dopaminergic cells derived from stem 
cells may solve problems with donor tissue in the foreseeable future. Overall, the fast develop
ing field of neural transplantation gives the hope, that a standardized transplantation strategy 
for a larger number of patients can be expected in the not to distant future. 
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Figure 4. Dopaminergic neurons can be derived from different types of stem cellslprogenitor cells. Embry- 
onic stem (ES) cells are derived from the inner cell mass of the blastocyst stage of an embryo; and, after 
selection, can be differentiated into neural precursors. Neural precursors can also be derived from later stages 
of embryonic development or from stem cells residing in adult tissues, such as bone marrow stem cells. 
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