
9 Electron–Positron Pair Production in
Superstrong Laser Fields

Considering the interaction of charged particles with strong radiation fields
in vacuum we looked at the non-quantum electrodynamic (QED) properties
of electromagnetic vacuum. At such consideration, vacuum stipulates only
the classical dispersion properties of EM waves propagating with the speed of
light c. However, the latter is valid for radiation fields that are not superstrong
(ξ0 < 1), otherwise the excitation of QED vacuum and production of electron–
positron pairs becomes possible.

As follows from the physical meaning of the wave intensity parameter
ξ0, at values of ξ0 > 1 the energy acquired by an electron over a wavelength
of a coherent radiation field exceeds the electron rest energy mc2. On the
other hand, the energetic width of the vacuum gap or the threshold value for
the electron–positron pair production is 2mc2. This means that electrons of
the Dirac vacuum acquiring the energy E > 2mc2 at the interaction with the
wave field of intensity ξ0 > 1 will pass from negative energy states to positive
ones (excitation of the Dirac vacuum) and electron–positron pair production
becomes a fact (with the presence of a third body for the satisfaction of the
conservation laws for this process).

The production of electron–positron pairs by plane EM waves of relativistic
intensities ( ξ0 >> 1) is essentially a multiphoton process, which principally
differs from the known “Klein paradox” — production of electron–positron
pairs in stationary and homogeneous electric field proceeding over the elec-
tron Compton wavelength. The latter corresponds to the tunnel effect through
the effective energetic barrier of finite width formed from the vacuum gap of
infinite width by the presence of a uniform electric field (Schwinger mecha-
nism). The physical mechanisms are similar to two different limits of Above
Threshold Ionization of atoms in strong radiation fields — multiphoton and
tunnel ionization.

This chapter considers the excitation of the Dirac vacuum in superstrong
EM fields and the electron–positron pair production process in the presence
of a diverse type third body.
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9.1 Vacuum in Superstrong Electromagnetic Fields.
Klein Paradox

It has long been well known that in the background of a stationary and
homogeneous electric field the QED vacuum is unstable and electron–positron
(e−, e+) pair production from the vacuum occurs (this mechanism is often
referred to as the Schwinger mechanism). However, a measurable rate for pair
production requires extraordinarily strong electric field strengths comparable
to the critical vacuum field strength

Ec =
m2c3

e�
, (9.1)

the work of which on an electron over the Compton wavelength λc = �/mc
equals the electron rest energy. As we will see the probability of this process
reaches optimal values when

ζ =
E0

Ec
� 1, (9.2)

where E0 is the magnitude of a uniform electric field strength.
Fortunately, it seems possible to produce EM fields with electric field

strengths of the order of the Schwinger critical field in the focus of expected
X-ray FEL and consideration of this problem is theoretically important, since
it requires one to go beyond perturbation theory, and its experimental obser-
vation would verify the validity of theory in the domain of strong fields.

To solve the problem of e−, e+ pair production in the given electric field
we shall make use of the Dirac model — all vacuum negative energy states
are filled with electrons and e−, e+ pair production by the electric field oc-
curs when the vacuum electrons with initial negative energies E0 < 0 due to
“acceleration” pass to the final states with positive energies E > 0. To dis-
tinguish the free particle states we will switch on and switch off the electric
field elaborating on a model which retains the main features of the spatially
uniform electric field and allows one to obtain an exact solution for the Dirac
equation and final expressions for the pair production rate in closed form.
Thus, we will assume an electric field of the form

E(t) =
E0

cosh2 ( t
T

) ẑ, (9.3)

where T is the characteristic period of the field and ẑ is the unit vector along
the field strength. The vector potential corresponding to this field may be
written as
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A(t) = −c
t∫

−∞
E(t)dt = −cE0T ẑ

[
tanh

(
t

T

)
+ 1
]
. (9.4)

We will solve the Dirac equation in the spinor representation (see Eqs.
(1.77), (1.78)). Since the interaction Hamiltonian does not depend on the
space coordinates, the generalized momentum p0 is conserved. Hence, the
solution of Eq. (1.77) may be represented in the form

Ψ(r,t) = Ψp0 (t) e
i
�
p0r, (9.5)

and from Eq. (1.77) for the function Ψp0(t) we obtain the following equation:

i�
dΨp0

dt
=
[
cα
(
p0+

e

c
A (t)

)
+mc2β

]
Ψp0 . (9.6)

In this section the electron charge will be assumed to be −e. Since A(−∞) =
0 the solution of Eq. (9.6) at t → −∞ should be superposition of the free
particle solutions ψ(κ)

p0,σ with negative (κ = −1) and positive (κ = 1) energies
and polarizations σ = ± 1

2 (spin projections Sz = ± 1
2 in the rest frame of the

particle):

ψ
(κ)
p0,1/2 =

√
1

2E0 (E0 − κcp0z)

⎛⎝κmc2w(1/2)

(E0 − κcσp0)w(1/2)

⎞⎠ e− i
�

κE0t, (9.7)

ψ
(κ)
p0,−1/2 =

√
1

2E0 (E0 + κcp0z)

⎛⎝ (E0 + κcσp0)w(−1/2)

κmc2w(−1/2)

⎞⎠ e− i
�

κE0t, (9.8)

where E0 =
√
c2p2

0 +m2c4, σ are Pauli matrices, and the spinors w(±1/2)are

w(1/2) =
(

1
0

)
; w(−1/2) =

(
0
1

)
.

At t → ∞, the electric field E(∞) = 0 but

A(∞) = −2cE0T ẑ, (9.9)

and the solution of Eq. (9.6) at t → ∞ should be superposition of the free
particle solutions (9.7), (9.8) where the “final momentum”
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p = p0 − e

∞∫
−∞

E(t)dt = p0 +
e

c
A(∞) (9.10)

stands for p0. Equation (9.6) in the quadratic form (see Eqs. (1.82), (1.83))
for the bispinor components

Ψp0 (t) =

⎛⎜⎜⎝
f1
f2
f3
f4

⎞⎟⎟⎠ (9.11)

gives the following set of equations:{
�

2 d
2

dt2
+ E2

0 + e2A2(t) + 2ecp0zA (t) ∓ iec�E(t)
}
f1,2 = 0, (9.12)

{
�

2 d
2

dt2
+ E2

0 + e2A2(t) + 2ecp0zA (t) ± iec�E(t)
}
f3,4 = 0. (9.13)

Thus, solving the equation{
�

2 d
2

dt2
+ E2

0 + e2A2(t) + 2ecp0zA (t) − δiec�E(t)
}
Φ = 0 (9.14)

with δ = ±1 one can construct the whole bispinor (9.11). Passing in Eq.
(9.14) to the new variable

z = −e2 t
T ,

and seeking the solution in the form

Φ (t) = (−z)i
E0T
2� (1 − z)iδ

eE0T2c
� F (z), (9.15)

we obtain the equation for hypergeometric function F (α, β, γ, z):

z (1 − z)F ′′ + (γ − (α+ β + 1) z)F ′ − αβF = 0. (9.16)

The parameters α, β, γ are defined as follows:

α (E0, δ) = i
E0 + E + 2iδeE0cT

2�
T,
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β (E0, δ) = i
E0 − E + 2iδeE0cT

2�
T, (9.17)

γ (E0) = 1 + i
E0

�
T,

where according to Eqs. (9.10) and (9.9)

E =
√
c2 (p0 − 2eE0T ẑ)2 +m2c4.

The general solution for hypergeometric equation (9.16) is

F (z) = F (α, β, γ, z) + z1−γF (α− γ + 1, β − γ + 1, 2 − γ, z) . (9.18)

Taking into account the relations

α (E0, δ) − γ (E0) + 1 = α (−E0, δ) ,

β (E0, δ) − γ (E0) + 1 = β (−E0, δ) ,

2 − γ = γ (−E0) ,

i
E0

2�
T + 1 − γ (E0) = −iE0

2�
T,

the general solution for bispinor Ψp0 (t) can be written as follows:

Ψp0 (t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1Φ (E0, 1; z) +A2Φ (−E0, 1; z)

B1Φ (E0,−1; z) +B2Φ (−E0,−1; z)

C1Φ (E0,−1; z) + C2Φ (−E0,−1; z)

D1Φ (E0, 1; z) +D2Φ (−E0, 1; z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9.19)

where

Φ (E0, δ; z) = (−z)i
E0
2�

T (1 − z)iδ
eE0c

�
T 2

×F (α (E0, δ) , β (E0, δ) , γ (E0) , z) , (9.20)

and the coefficients A1,2, B1,2, C1,2, D1,2 should be defined from the initial
condition.
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To determine the probability of e−, e+ pair production we use the initial
condition: at t → −∞ when A(−∞) = 0 this wave function must turn into
the free Dirac equation solution with negative energy in accordance with the
Dirac model. Then taking into account that at

t → −∞; z → 0,

Φ (E0, δ; z → 0) = (−z)i
E0
2�

T = e
i
�

E0t,

we obtain

Ψ
(−1)
p0,1/2 =

√
1

2E0 (E0 + cp0z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−mc2Φ (E0, 1; z)

0

(E0 + cp0z)Φ (E0,−1; z)

(cp0x + icp0y)Φ (E0, 1; z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9.21)

Ψ
(−1)
p0,−1/2 =

√
1

2E0 (E0 − cp0z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−cp0x + icp0y)Φ (E0, 1; z)

(E0 + cp0z)Φ (E0,−1; z)

0

−mc2Φ (E0, 1; z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9.22)

After the interaction at t → +∞; z → −∞ these wave functions become the
superposition of the free Dirac equation solutions. To determine the asymp-
totes of these functions we will use the following property of the hypergeo-
metric function:

F (α, β, γ, z) =
Γ (γ)Γ (β − α)
Γ (β)Γ (γ − α)

(−z)−α
F

(
α, α+ 1 − γ, α+ 1 − β,

1
z

)

+
Γ (γ)Γ (α− β)
Γ (α)Γ (γ − β)

(−z)−β
F

(
β, β + 1 − γ, β + 1 − α,

1
z

)
. (9.23)

Hence, for the function Φ we obtain

Φ (E0, δ; z → −∞) = e− i
�

EtΓ (γ (E0))Γ (β (E0, δ) − α (E0, δ))
Γ (β (E0, δ))Γ (γ (E0) − α (E0, δ))
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+e
i
�

EtΓ (γ (E0))Γ (α (E0, δ) − β (E0, δ))
Γ (α (E0, δ))Γ (γ (E0) − β (E0, δ))

. (9.24)

Taking into account the relations

E − E0 + 2eE0cT

E0 − E + 2eE0cT
=

E − cpz

E0 + cp0z
,

p0z − pz = 2eE0T,

for the bispinor wave function (9.21) we obtain

Ψ
(−1)
p0,1/2 (t → +∞) = C (E)ψ(1)

p,1/2 + C (−E)ψ(−1)
p,1/2, (9.25)

where

C (E) =

√
EE0

(E0 − E + 2eE0cT ) (E − E0 + 2eE0cT )

× 2Γ
(
iE0

�
T
)
Γ
(−iE

�
T
)

Γ
(
iE0−E+2eE0cT

2�
T
)
Γ
(
iE0−E−2eE0cT

2�
T
) . (9.26)

The probability of the e−, e+ pair production summed over the spin states
is

W (E) = 2 |C (E)|2 . (9.27)

Taking into account that

|Γ (iy)|2 =
π

y sinπiy
,

for the probability (9.27) we obtain

W (E) = 2
cosh

(
π 2eE0cT 2

�

)
− cosh

(
π E−E0

�
T
)

cosh
(
π E+E0

�
T
)− cosh

(
π E−E0

�
T
) . (9.28)

The number of created e−, e+ pairs per unit space volume is

N =
∫
W (E)

dp0

(2π�)3
,

which with Eq. (9.28) is written as
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N =
2

(2π�)3

∫ cosh
(
π 2eE0cT 2

�

)
− cosh

(
π E−E0

�
T
)

cosh
(
π E+E0

�
T
)

− cosh
(
π E−E0

�
T
) dp0zdp0xdp0y. (9.29)

The probability (9.28) has a maximum at p0z = eE0T (the electrons and
positrons are created with the same energy, i.e., pz = −eE0T ). In the limit
T → ∞ the electric field (9.3) tends to a constant one: E(t) → E0ẑ and from
Eq. (9.28) one can obtain the probability of the e−, e+ pair production in
the static, spatially uniform electric field. In this case in the integral (9.29)
over p0z the main contribution gives the maximum point with the width
δp0z ≈ eE0T . Hence, at

(ceE0T )2 >> m2c4 + c2p2
0⊥; p0⊥ =

√
p2
0x + p2

0y,

we have

E0 ≈ E ≈ ceE0T +
m2c4 + c2p2

0⊥
2ceE0T

,

and for the number of e−, e+ pairs created per unit time and unit space
volume we obtain

N

T
≈ 2

(2π�)3
eE0

∫
exp
[
−πm

2c4 + c2p2
0⊥

ceE0�

]
dp0xdp0y. (9.30)

Integrating in Eq. (9.30) over transversal momentum we obtain the Schwinger
formula:

NSch

T
=

e2E2
0

4π3�2c
exp
[
−πm

2c3

e�E0

]
, (9.31)

or in the terms of critical field

NSch

T
=

ζ2

4π3λ3
c

mc2

�
exp
[
−π

ζ

]
. (9.32)

If ζ << 1 the probability of pair production is exponentially suppressed and
reaches the optimal values when ζ � 1 at which

NSch

T
� 1049cm−3c−1.
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9.2 Electron–Positron Pair Production by Superstrong
Laser Field and γ-Quantum

For the electron–positron pair production by superstrong laser fields of rela-
tivistic intensities as a third body for the satisfaction of conservation laws in
physically more interesting cases can serve a γ-quantum or a nucleus/ion.

Fig. 9.1. Feynman diagram for electron–
positron pair production by laser field and γ-
quantum.

The e−, e+ pair production process by a plane monochromatic radiation
field and a γ-quantum in the scope of QED is described by the first order
Feynman diagram (Fig. 9.1) where wave functions (1.94) correspond to elec-
tron/positron lines. As in QED the production of electron and positron with
quasimomentums Π− and Π+ respectively is interpreted as a transition of an
electron from the vacuum state “−Π+” to state Π−. The Feynman diagram
is topologically equivalent to that of the Compton effect. Hence, the S-matrix
amplitude of this process can be obtained from the Compton-effect S-matrix
amplitude (1.114) by the substitutions: ε∗µ → εµ, k′ → −k′, Π → −Π+,
Π ′ → Π−:

Sfi = −i (2π�)4
√

πα0

2ω′cΠ0+Π0−V 3uσ′(p−)

×M̂ (Compton)
fi (ε∗ → ε, k′ → −k′, Π → −Π+, Π

′ → Π−)uσ(−p+). (9.33)

We will assume that the γ-quantum is nonpolarized and corresponding
summation over the electron and positron polarizations will be made. Taking
into account that at the summation over the positron polarizations one should
replace u(−p+)u(−p+) by c2(p̂+ −mc) one can see that

1
2

∑
σ′,σ,ε

|Sfi|2
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= −1
2

∑
σ′,σ,ε,ε

|Sfi|2(Compton) (k′ → −k′, Π → −Π+, Π
′ → Π−) . (9.34)

For the differential probability of e−, e+ pair production per unit time we
have

dW =
1

2∆t

∑
σ′,σ,ε

|Sfi|2 V dΠ−
(2π�)3

V
dΠ+

(2π�)3
. (9.35)

Hence, using Eqs. (1.114) for the Compton effect and taking into account
relation (9.34) for the differential probability (9.35) we obtain

dW =
∞∑

s>sm

W (s)δ (Π− +Π+ − �k′ − s�k) dΠ−dΠ+, (9.36)

where

W (s) =
α0m

2c6

2πω′�2Π0+Π0−

[
|Gs|2 −

(
1 − �

2 (kk′)2

2 (p+k) (p−k)

)

×
(

(1 + g2)ξ20
4

(
|Gs−1|2 + |Gs+1|2 − 2 |Gs|2

)

+
(1 − g2)ξ20

4
Re
[
2G∗

s−1Gs+1 −G∗
s (Gs−2 +Gs+2)

])]
. (9.37)

The arguments of the functions Gs (α, β, ϕ) in this case are

α =
eA0

�c

[(
e1p−
p−k

− e1p+

p+k

)2

+ g2
(

e2p−
p−k

− e2p+

p+k

)2
]1/2

, (9.38)

β = −e2A2
0

8�c2
(1 − g2)

(
1
p+k

+
1

p−k

)
, (9.39)

tanϕ =
g
(

e2p−
p−k − e2p+

p+k

)
(

e1p−
p−k − e1p+

p+k

) . (9.40)

Since the pair production is a threshold effect, the number of photons ab-
sorbed from the strong wave must exceed the threshold value
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sm =
2m∗2c2

�2 (k′k)
, (9.41)

which follows from the conservation law of this process expressed by the
δ-function in Eq. (9.36) and the dispersion law for quasimomentum (1.96).
Note that in Eq. (9.41) the effective mass appears which depends on the laser
intensity. If sm > 1 (for low photon energies), production of the electron–
positron pair may only proceed by nonlinear channels (even for ξ0 << 1).
Besides, this process does not have a classical limit and the quantum recoil
is always essential.

For the concreteness we will investigate the case of circular polarization
of the incident wave (g = ±1). In this case |Gs|2 = J2

s (α) and from Eq. (9.37)
for the partial probabilities we have

W (s) =
e2m2c5

2πω′�3Π0+Π0−

[
J2

s (α) − ξ20

(
1 − �

2 (kk′)2

2 (p+k) (p−k)

)

×
((

s2

α2 − 1
)
J2

s (α) + J ′2
s (α)

)]
. (9.42)

Taking into account the conservation laws, as well as the relations p−k = Π−k
and p+k = Π+k, the argument of the Bessel function can be written as

α = ξ0
mc2

�ω

∣∣∣∣[k( p−
p−k

− p+

p+k

)]∣∣∣∣
= ξ0

mc

�

[
2s�
(

1
Π−k

+
1

Π+k

)
−m2

∗c
2
(

1
Π−k

+
1

Π+k

)2
]1/2

. (9.43)

For a weak EM wave: ξ0 << 1 and sm < 1 (linear theory) the argument of
the Bessel function α << 1 and the main contribution to the probability of
the pair production is the one-photon process. In this case J2

1 (α1) 
 α2
1/4,

J ′2
1 (α1) 
 1/4, Π0+ 
 E+, Π0− 
 E− and taking into account that

1 − (kk′)2

2 (p+k) (p−k)
= −1

2

[
p−k
p+k

+
p+k

p−k

]
,

we obtain the G. Breit, A. Wheeler formula:

W (1) =
e2m2c5

8πω′�3E+E−
ξ20

[
2
(
m2c2

�p−k
+
m2c2

�p+k

)
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−
(
m2c2

�p−k
+
m2c2

�p+k

)2

+
[
p−k
p+k

+
p+k

p−k

]]
. (9.44)

For a strong EM wave it is more convenient to choose the quantum recoil
parameter as an integration variable:

ρ =
�

2 (kk′)2

2 (p+k) (p−k)
=

�
2 (kk′)2

2 (Π+k) (Π−k)
. (9.45)

Taking into account the azimuthal symmetry with respect to the wave prop-
agation direction one can make the following replacement:

δ (Π− +Π+ − �k′ − s�k)
dΠ−dΠ+

Π0+Π0−
=>

2π
c2

1

ρ
√
ρ2 − 2ρ

dρ, (9.46)

and we obtain

W =
e2m2c3

ω′�3

∞∑
s>sm

2s/sm∫
2

[
J2

s (αs (ρ)) + ξ20 (ρ− 1)

×
((

s2

α2
s (ρ)

− 1
)
J2

s (αs (ρ)) + J ′2
s (αs (ρ))

)]
dρ

ρ
√
ρ2 − 2ρ

, (9.47)

where the argument of the Bessel function is

αs (ρ) =
ξ0√

1 + ξ20
sm

[
2s
sm

ρ− ρ2
]1/2

. (9.48)

The latter reaches its maximal value

αs max =
ξ0√

1 + ξ20
s (9.49)

at ρ = s/sm. This value is in the integration range when s > 2sm. If sm >>
1, which is possible for not so hard γ-quantum, and at ξ0 � 1 one can
approximate the Bessel function by the Airy one (see Eq. (1.69) for Compton
effect) and for the probability of the pair production we obtain

W 
 e2m2c3

ω′�3

∞∑
s>sm

2s/sm∫
2

{[
1 + ξ20 (ρ− 1)

(
s2

α2 (ρ)
− 1
)](

2
s

)2/3

Ai2 (Z)
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+ξ20 (ρ− 1)Ai′2 (Z)
(

2
s

)4/3
}

dρ

ρ
√
ρ2 − 2ρ

, (9.50)

where

Z =
1

1 + ξ20

(s
2

)2/3
(

1 + ξ20

(
1 − sm

s
ρ
)2
)
. (9.51)

As far as the Airy function exponentially decreases with increasing of
the argument one can conclude that the optimal parameters for the pair
production process are determined from the condition Zmin ∼ 1, where

Zmin =
(s

2

)2/3
(

1 − α2
s max

s2

)


(

s

2ξ30

)2/3

,

which gives

2ξ30 � sm.

For ξ0 >> 1, sm 
 2m2c2ξ20/(�
2k′k) we obtain

ζ =
�

2k′k
m2c2

ξ0 � 1. (9.52)

The latter means that in the rest frame of created electron the electric field
strength of the EM wave exceeds the critical vacuum field (9.1). Hence, ζ
is the quantum parameter of interaction in the scale of the critical vacuum
field.

For Zmin >> 1 or ζ << 1 (so called tunneling regime of the pair pro-
duction process) one can use the following asymptotic formula for the Airy
function:

Ai(Z) 
 1
2
√
π
Z−1/4 exp

(
−2Z3/2

3

)
.

Hence, the probability of the electron–positron pair production

W ∝ exp
(

− 4
3ζ

)
(9.53)

is exponentially suppressed.
For the moderate relativistic intensities ξ0 ∼ 1 to show the dependence of

the probability on the wave intensity and quantum parameter of interaction
ζ the normalized probability

W̃ =
ω′

�
3

e2m2c3
W (9.54)
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Fig. 9.2. The normalized probability ˜W = �
3ω′W/(e2m2c3) as a function of rela-

tivistic parameter of intensity ξ0 for various ζ.

is displayed in Fig. 9.2 as a function of ξ0 for various ζ.

9.3 Pair Production via Superstrong Laser Beam
Scattering on a Nucleus

Fig. 9.3. Feynman diagram for electron–
positron pair production via laser beam scat-
tering on a nucleus.

The electron–positron pair production via superstrong laser beam scatter-
ing on a nucleus can be described again by the first-order Feynman diagram
(Fig. 9.3) where wave functions (1.94) correspond to electron/positron lines.
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The Feynman diagram is topologically equivalent to that of the stimulated
bremsstrahlung (SB) effect. As in the previous section the S-matrix amplitude
of this process can be obtained from the S-matrix amplitude of SB (1.128)
by the substitutions: Π → −Π+, Π ′ → Π−:

Sfi =
−iπe

V c
√
Π0+Π0−

uσ′(p−)M̂ (SB)
fi (Π → −Π+, Π

′ → Π−)uσ(−p+).

(9.55)
Making the summation over the electron and positron polarizations one can
see that ∑

σ′,σ

|Sfi|2 =
∑
σ′,σ

|Sfi|2SB (Π → −Π+, Π
′ → Π−) . (9.56)

The differential probability of e−, e+ pair production per unit time is written
as

dW =
1
∆t

∑
σ′,σ

|Sfi|2 V dΠ−
(2π�)3

V
dΠ+

(2π�)3
. (9.57)

Hence, using Eq. (1.129) for the SB process and taking into account Eq. (9.56)
for the differential probability of pair production per unit time we obtain

dW =
∞∑

s>sm

W (s)δ (Π0+ +Π0− − s�ω) dΠ−dΠ+, (9.58)

where

W (s) =
4π

Π0+Π0−
e2 |ϕ (qs)|2
(2π�)6 �

{
�

2q2
sc

2

4
|Bs|2 +

e2�
2 [kqs]

2

4(kp−)(kp+)

×
[
|B1s|2 −ReB2sB

∗
s

]
−
∣∣∣∣E+Bs +

e (p+B1s)ω
(kp+) c

+
e2ω

2c2(kp+)
B2s

∣∣∣∣2
}
, (9.59)

and

�qs= Π− + Π+ − s�k.

The threshold value of the photon number for this process is defined as fol-
lows:

sm =
2m∗c2

�ω
. (9.60)

The arguments α, β, ϕ of the functions Bs, B1s, B2s are defined according to
Eqs. (9.38)–(9.40).
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In the case of circular polarization of an incident strong wave (g = 1) we
have

Gs(α, 0, ϕ) = (−1)s
Js(α)eisϕ.

Taking into account the azimuthal symmetry with respect to the wave prop-
agation direction one can make the following replacement:

δ (Π0+ +Π0− − s�ω) dΠ−dΠ+ → 2πm∗Π0− |Π−|Π0+ |Π+|
c2

× sin θ+ sin θ−dθ−dθ+dφdγ+, (9.61)

where γ+ = Π0+/(m∗c2), θ+, θ− are the scattering angles of positron and
electron with respect to the EM wave propagation direction and φ is the angle
between the planes formed by Π−, k and Π+, k. Hence, for the differential
probability of e−, e+ pair production per unit time we have

dW =
2π2α0m

∗

(2π�)6 c

∞∑
s>sm

|Π−| |Π+| |ϕ(qs)|2

×
⎧⎨⎩
⎡⎣�

2q2
sc

2 − 4

(
Π0+ − s�ω

(kp+)
κ
[
kp+

]
κ2

)2
⎤⎦J2

s (αs)

+
�

2e2A2
0

(kp−)(kp+)
[kqs]

2
[(

s2

α2
s

− 1
)
J2

s (αs) + J ′2
s (αs)

]

− 4e2A2
0

(kp+)2

[
κ
[
kp+

]]2
κ2 J ′2

s (αs)

}
sin θ+ sin θ−dθ−dθ+dφdγ+. (9.62)

In this equation the electron quasienergy and quasimomentum are defined
via Π0+ according to conservation law and

κ =

[
kp+

]
p+k

−
[
kp−

]
p−k

. (9.63)

The Bessel function argument in Eq. (9.62)

αs =
eA0

�ω
|κ|

can be represented in the form
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αs =
ξ0sm

2
√

1 + ξ20

[
β2

+ sin2 θ+

(1 − β+ cos θ+)2
+

β2
− sin2 θ−

(1 − β− cos θ−)2

−2
β−β+ sin θ+ sin θ− cosφ

(1 − β+ cos θ+) (1 − β− cos θ−)

]1/2

, (9.64)

where

β± =
c |Π±|
Π0±

; Π0− = s�ω −Π0+.

In this particular case we utilize Eq. (9.62) in order to obtain the electron–
positron pair production probability on the Coulomb potential for which the
Fourier transform is

ϕ (qs) =
4πZae

q2
s

. (9.65)

Then taking into account Eq. (9.65) for the differential probability of e−, e+

pair production by a strong plane monochromatic wave per unit time at the
scattering on the Coulomb field we will have

dW = α2
0
Z2

am
∗

2π2�

∞∑
s>sm

|Π−| |Π+|
�4q4

s

{[
�

2q2
sc

2 − 4
κ4

(
κ

(
Π0− [kΠ+]

Π+k
+
Π0+ [kΠ−]

Π−k

))2
]
J2

s (αs)

−4e2A2
0

κ2

(
[[kΠ−] [kΠ+]]
(kΠ−) (kΠ+)

)2

J ′2
s (αs) +

e2A2
0

(kΠ−) (kΠ+)
[k (Π− + Π+)]2

×
[(

s2

α2
s

− 1
)
J2

s (αs) + J ′2
s (αs)

]}
sin θ+ sin θ−dφdθ−dθ+dγ+. (9.66)

For a weak EM wave the main contribution in this process is the one-
photon process. Dividing the differential probability (9.66) by the initial flux
density

J =
1

�ω

c

4π
E2

0

we obtain the H.A. Bethe, W. Heitler formula:



308 9 Electron–Positron Pair Production

dσ = α3
0
Z2

a

2π
|p−| |p+|

�4q4
1

1
�ω3

×
{

�
2q2

1c
2

([
kp+

]
p+k

−
[
kp−

]
p−k

)2

− 4

(
E−
[
kp+

]
p+k

+
E+
[
kp−

]
p−k

)2

+
2�

2ω2

(kp−) (kp+)
[k (p− + p+)]2

}
sin θ+ sin θ−dφdθ−dθ+dE+. (9.67)

In general the expression for the differential probability of e−, e+ pair pro-
duction by strong radiation field (9.66) is very complicated (one should per-
form four-dimensional integration and summation over photon numbers) but
without integration one can make conclusions about optimal values of laser
parameters for the measurable pair production probability using the prop-
erties of the Bessel function. The Bessel function argument in Eq. (9.66)
αs(γ+, θ+, θ−, φ) as a function of θ+, θ−, φ reaches its maximal value at

cos θ+ = β+, cos θ− = β−, cosφ = −1,

and is equal to

αs (γ+) =
ξ0sm

2
√

1 + ξ20

⎛⎝√γ2
+ − 1 +

√(
2s
sm

− γ+

)2

− 1

⎞⎠ . (9.68)

The latter is always small compared with the Bessel function index. Indeed,
as follows from the conservation law

1 ≤ γ+ ≤ 2s
sm

− 1,

and in this range αs (γ+) reaches its maximal value

αs max =
ξ0√

1 + ξ20

√
s2 − s2m < s (9.69)

at the γ+ = s/sm. Hence, for ξ0 � 1 and sm >> 1 the main contribution to
the differential probability will give the number of photons s >> sm and as
in the previous section one can approximate the Bessel function by the Airy
one (1.69). The Airy function argument for α 
 αs max will be

Z(s) 
 1
22/3ξ20

s2/3
(

1 + ξ20
s2m
s2

)
. (9.70)
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As the Airy function exponentially decreases with increasing of the argu-
ment one can conclude that the optimal parameters for the pair production
process are determined from the condition Zmin ∼ 1, Zmin being the minimum
value of Z(s). The latter corresponds to the number of photons s =

√
2ξ0sm

at which

Zmin = Z
(√

2ξ0sm

)
= 3
(
Ec

2E0

)2/3

, (9.71)

where Ec is the vacuum critical field strength (9.1). Hence, at ξ ≥ 1 the
probability reaches optimal values when ζ ≡ Ec/E0 ≥ 1 (at ξ0 << 1 quantum
effects are optimal when ζ ∼ ξ0, which corresponds to linear theory, that is,
the perturbation theory of QED). When ζ << 1 according to Eq. (9.53) the
probability is exponentially suppressed:

W ∝ exp(−2
√

3/ζ), (9.72)

as in the Schwinger mechanism for e−, e+ pair production in the uniform
electrostatic field, where W ∝ exp(−π/ζ). For the available superstrong op-
tical lasers ζ ∼ 10−4, which practically does not allow for measurable pair
creation probability. As was argued, one can achieve ζ ∼ 10−1 at the focus of
expected X-ray FEL facilities, which will allow for measurable pair creation
probability by the Schwinger mechanism.

Note that in the considered process of pair production on a nucleus one
can achieve the condition ζ ≥ 1 (even ζ >> 1) in the scheme of counterprop-
agating nucleus beam and X-ray FEL. Then, in the rest frame of the nucleus
we will have ζ 
 2ζLγL, where γL is the Lorenz factor of nucleus and ζL is
the field parameter in the laboratory frame. Since ξ0 is the Lorenz invariant,
then if ξ0 ≥ 1 and γL > Ec/2E0 in the laboratory frame, the probability of
multiphoton e−, e+ pair production reaches its optimal value.

9.4 Nonlinear e−, e+ Pair Production in Plasma by
Strong EM Wave

As was shown in Chapter 6 for electron–positron pair production by a γ-
quantum or a plane monochromatic EM wave, a macroscopic medium with a
refractive index n0(ω0) < 1 may serve as a third body for the satisfaction of
conservation laws. In such a plasmalike medium the multiphoton production
of e−, e+ pairs by a strong laser radiation field is possible at ordinary densities
of plasma, in contrast to single-photon production γ → e−+e+, which is only
accessible in a superdense plasma with the electron density ρ � 3 ·1034cm−3.

In laser fields with ξ0 ∼ 1 when the energy of the interaction of an electron
(of the Dirac vacuum) with the field over a wavelength becomes comparable
to the electron rest energy (eE0λ0 ∼ mc2) the multiphoton pair-production
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process goes in through nonlinear channels. At such intensities, in general,
the dispersion law of a plasma becomes nonlinear, too; i.e., the refractive
index depends on the wave intensity: n0 = n0(ω0, ξ

2
0). As is known, because

of the intensity effect, the transparency range of a plasma widens and the
dispersion law n0(ω0, ξ

2
0) < 1, which is necessary for the production of e−, e+

pairs, holds all the more. But the intensities required for the appearance of
a real nonlinearity in dispersion become essential when ξ0 >> 1. Hence, in
considering fields ξ0 ∼ 1 the dispersion law of a plasma can be regarded as
linear (n2

0(ω0) = 1 − 4πρe2/mω2
0).

Let a plane transverse linearly polarized EM wave with frequency ω0 and
vector potential

A (r, t) = A0 cos (ω0t− k0r) ; |k0| = n0
ω0

c
(9.73)

propagate in a plasma. The multiphoton degree s for the e−, e+ pair produc-
tion in the light fields is defined by the condition (reaction threshold)

s�ω0 � 2mc2√
1 − n2

0

. (9.74)

To determine the multiphoton probabilities of this process it is convenient
to solve the problem in the center-of-mass frame of the produced pair (C
frame), in which the wave vector of the photons is k′ = 0 (the refractive
index of the plasma in this frame is n′ = 0). The velocity of the C frame with
respect to the laboratory frame (L frame) is v = cn0. The traveling EM wave
is transformed in the C frame into a varying electric field (the magnetic field
H ′ = 0) with a vector potential

A′ (t′) =
A0

2
[exp(iω′t′) + exp(−iω′t′)], ω′ = ω0

√
1 − n2

0. (9.75)

It is easily noted that with Eq. (9.75) taken into account the reaction
threshold condition (9.74) is obtained from the laws of the conservation of
energy E ′

− + E ′
+ = s�ω′ and momentum p′

− + p′
+ = s�k′ = 0 in the C

frame (E ′
−, p′

− and E ′
+, p′

+ are the energy and momentum of the electron
and positron, respectively, in the C frame).

To solve the problem of s-photon production of an e−, e+ pair in the
given radiation field (9.73), we shall make use of the Dirac model (all vac-
uum negative-energy states are filled with electrons and the interaction of
the external field proceeds only with this vacuum: on the other hand, the
interaction with the plasma electrons reduces to a refraction of the wave
only).

The Dirac equation in the field (9.75) has the form
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i�
∂Ψ

∂t
=
[
cα̂ (p′ − eA′ (t′)) + β̂mc2

]
Ψ, (9.76)

where the Dirac matrices α̂, β̂ will be chosen in the standard representation,
with σ the Pauli matrices. Since in the C frame the interaction Hamiltonian
does not depend on the space coordinates, the solution of Eq. (9.76) can be
represented in the form of a linear combination of free solutions of the Dirac
equation with amplitudes ai(t′) depending only on time:

Ψp′ (r′, t′) =
4∑

i=1

ai(t′)Ψ
(0)
i (r′, t′) . (9.77)

Here

Ψ
(0)
1,2 (r′, t′) =

√
E ′ +mc2

2E ′

⎛⎝ ϕ1,2

cσp′

E′+mc2ϕ1,2

⎞⎠ e
i
� (p′r′−E′t′),

Ψ
(0)
3,4 (r′, t′) =

√
E ′ +mc2

2E ′

⎛⎝ −cσp′

E′+mc2χ3,4

χ3,4

⎞⎠ e
i
� (p′r′+E′t′), (9.78)

where

E ′ =
√
c2p′2 +m2c4, ϕ1 = χ3 =

(
1
0

)
, ϕ2 = χ4 =

(
0
1

)
. (9.79)

The solution of Eq. (9.76) in the form Eq. (9.77) corresponds to an
expansion of the wave function in a complete set of orthonormal func-
tions of the electrons (positrons) with specified momentum (with energies
E ′ = ±

√
c2p′2 +m2c4 and spin projections Sz = ±1/2). The latter are nor-

malized to one particle per unit volume. According to the assumed model
only the Dirac vacuum is present prior to the turning on of the field, i.e.,

|a3(−∞)|2 = |a4(−∞)|2 = 1, |a1(−∞)|2 = |a2(−∞)|2 (9.80)

(the field is turned on adiabatically at t = −∞). From the condition of
conservation of the norm we have

4∑
i=1

|ai(t′)|2 = 2, (9.81)

which expresses the equality of the number of created electrons and positrons,
whose creation probability is, respectively, |a1,2(t′)|2 and 1 − |a3,4(t′)|2.
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Substituting Eq. (9.77) into Eq. (9.76), multiplying by the Hermitian
conjugate functions Ψ

(0)†

i (r′, t′), and taking into account orthogonality of
the eigenfunctions (9.78) and (9.79), we obtain a set of differential equations
for the unknown functions ai(t′). Since in the C frame there is symmetry
with respect to the direction A′

0 (the OY axis), we can take, without loss
of generality, the vector p′ to lie in the x′y′ plane (p′

z = 0). Further, having
introduced, to simplify the notation, the new symbols

a1(t′) ≡ b1(t′),

a4(t′) ≡ b4(t′)

[
1 − c2p′2

y

E ′2

]−1/2 [
c2p′

xp
′
y

E ′(E ′ +mc2)

+i

(
1 − c2p′2

y

E ′(E ′ +mc2)

)]
, (9.82)

we obtain for the amplitudes b1(t′) and b4(t′) (|b4(t′)| = |a4(t′)|) the following
set of equations:

db1(t′)
dt′

= i
ecp′

yA
′
y(t′)

�E ′ b1(t′)

+i
eA′

y(t′)
�

√
1 − c2p′2

y

E ′2 b4(t′) exp
(

2iE ′t′

�

)
,

db4(t′)
dt′

= −iecp
′
yA

′
y(t′)

�E ′ b4(t′)

+i
eA′

y(t′)
�

√
1 − c2p′2

y

E ′2 b1(t′) exp
(

−2iE ′t′

�

)
. (9.83)

A similar set of equations is also obtained for the amplitudes b2(t′) and b3(t′).
To solve the system (9.83), we make the transformations

b1(t′) = c1(t′) exp

⎡⎣iecp′
y

�E ′

t′∫
−∞

A′
y(η)dη

⎤⎦ ,

b4(t′) = c4(t′) exp

⎡⎣−iecp
′
y

�E ′

t′∫
−∞

Ay(η)dη

⎤⎦ , (9.84)
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where c1(t′) and c4(t′) satisfy the initial conditions, according to Eqs. (9.80)
and (9.82), |c1(−∞)| = 0 and |c4(−∞)| = 0.

For the new amplitudes c1(t′) and c4(t′) from Eqs. (9.83), we obtain the
set of equations

dc1(t′)
dt′

= f(t′)c4(t′),

dc4(t′)
dt′

= −f∗(t′)c1(t′), (9.85)

where

f(t′) = i
e

�
A′

y(t′)

√
1 − c2p′2

y

E2 exp

⎡⎣2i
�

E ′t′ − 2iecp′
y

�E ′

t′∫
−∞

A′
y(η)dη

⎤⎦ . (9.86)

We can obtain the solution of Eqs. (9.83), which satisfies the initial con-
ditions of the problem (9.80), with the help of successive approximations,
if ∣∣∣∣∣∣

t′∫
−∞

f(τ)dτ

∣∣∣∣∣∣ << 1. (9.87)

Then, for the transition amplitude c1(t′), we have

c1(t′) =
∞∑

j=0

B2j+1(t′), (9.88)

where

B2j+1(t′) = (−1)j

t′∫
−∞

f(τ1)dτ1

τ1∫
−∞

f∗(τ2)dτ2

τ2∫
−∞

f∗(τ3)dτ3 · · ·

×
τ2j−1∫
−∞

f∗(τ2j)dτ2j

τ2j∫
−∞

f∗(τ2j+1)dτ2j+1. (9.89)

We are interested in nonlinear pair production process in the strong wave
field. For that let us calculate the first term of the sum (9.88):
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B1(t′) =

t′∫
−∞

f(τ1)dτ1,

substituting the concrete form of the wave vector potential A′
y(η) from Eq.

(9.75) into Eq. (9.86) and carrying out the integration. Then for B1(t′) we
obtain

B1(t′) =
E ′

2cp′
y

(
1 − c2p′2

y

E ′2

)1/2 +∞∑
l=−∞

l�ω′

2E ′ − l�ω′ Jl(α)e
i
� (2E′−l�ω′)t′

, (9.90)

where Js(z) is the Bessel function,

α ≡ 2ξ0
mc2

E ′
cp′

y

�ω′ , ξ0 =
eE′

0

mcω′ , E′
0 =

ω′

c
A0.

As ξ0 is a relativistic invariant parameter, in Eqs. (9.90) ξ0 = eE0/mcω0,
where ω0 and E0 are the frequency and amplitude of the electric field of the
wave in the L frame.

For the considered fields, when ξ0 � 1, condition (9.87) always satisfies:
|B1(t′)| << 1, but the latter is not enough, yet, in order to be confined to
that term in determination of the amplitude c1(t′). Because the resonant term
l = s = 2E ′/ (�ω′) (s >> 1) gives a real contribution in the multiphoton pair
production process and in Eq. (9.90), the maximal value of the Bessel function
can be shifted from the resonant value. Since s >> 1, that shift will be as
small and negligible as possible when the argument of the Bessel function is
α ∼ s >> 1. Thus, the condition, when the pair production process will have
an essential nonlinear character, is

α = 2ξ0
mc2

E ′
cp′

y

�ω′ >> 1. (9.91)

If condition (9.91) is satisfied, we can be restricted to the first term of the
sum (9.88) for the amplitude c1(t′):

c1(t′) = B1(t′). (9.92)

The obtained approximate solution of the Dirac equation is thus applicable
with such intensities of EM wave, when conditions (9.87) and (9.91) are
satisfied simultaneously:

1
s
<< ξ0 � 1. (9.93)
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According to Eqs. (9.82) and (9.84), for the transition amplitude of the
electron from the Dirac vacuum to the state with positive energy (in a definite
spinor state) in the wave field we have

|a1(t′)|2 = |b1(t′)|2 = |c1(t′)|2 .

To obtain the probability amplitude for the production of electrons and
positrons after the wave has been turned off we introduce a small detuning of
the resonance in Eq. (9.90), corresponding to an s-photon transition: 2E ′ =
s�ω′ + �Γ (Γ << ω′).

The production probability of the e−, e+ pair, summed over the spin
states, is determined by the quantity

|a1(t′)|2 + |a2(t′)|2 = 2 |a1(t′)|2 ≡ 2 |C1(t′)|2 .

The differential probability of the s-photon process per unit time and
phase-space volume dp′/(2π�)3 (the normalization volume V = 1) in the
center-of-mass frame of the produced particles is given by

dwC
s =

dWC
s (t′)
t′

= 2 lim
t′→∞

|c1(t′)|2
t′

dp′

(2π�)3
. (9.94)

Substituting Eq. (9.90) into Eq. (9.94) and making use of the definition of
the δ-function in the form

lim
t′→∞

sin2 Γt′

πΓ 2t′
= δ (Γ ) = �δ (2E ′ − s�ω′) ,

we obtain

dwC
s =

s2ω′2 (E ′2 − c2p′2
y

)
16π2�2c2p′2

y

J2
s

(
2eA0cp

′
y

�ω′E ′

)
δ

(
E ′ − s�ω′

2

)
dp′. (9.95)

Integrating Eq. (9.95) over dp′, we obtain the total probability of the
s-photon e−, e+ pair production in a plasma by the strong EM wave:

wC
s =

�s5ω′5

32πc4p′

{[
2α2

s

4s2 − 1
− 1
]
J2

s (αs) +
α2

sJ
2
s−1 (αs)

2s(2s− 1)

+
α2

sJ
2
s+1 (αs)

2s(2s+ 1)
− 4c2p′2

s2�2ω′2
α2s

s

22s(2s+ 1) (s!)2
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×2F3

(
s+

1
2
, s+

1
2
, s+ 1, 2s+ 1, s+

3
2
; −α2

s

)}
, (9.96)

where 2F3
(
s+ 1

2 , s+ 1
2 , s+ 1, 2s+ 1, s+ 3

2 ; −α2
s

)
is the generalized hyperge-

ometric function and

αs =
2mc2ξ0

�ω′

(
1 − 4m2c4

s2�2ω′2

)1/2

.

As is seen from Eq. (9.95), the pair production probability decreases
highly in the directions perpendicular to the field (p′

y = 0), and the obtained
approximate nonlinear solution describes the process behavior well at the
angles not too close to π/2. Thus, Eq. (9.96), which is a result of integration
over all angles, does not contain a large error.

The quantity Ws is a relativistic invariant, and so Eq. (9.96) defines the
pair production probability in the L frame as well. As for the angular dis-
tribution of the probability of s-photon pair production in the L frame, it
can be obtained from the expression dWC

s (t′) for the differential probability
in the C frame by a Lorentz transformation. Here the quantity multiplying
dp′ is the expression of dWC

s (t′) (see Eq. (9.94)) transforms like the time
component of the current density four-vector of the electrons in the Dirac
vacuum (E ′ < 0). One must here take into account that the momentum
of real electrons coincides with the momentum of the vacuum electron p′,
while the momentum of a positron equals −p′ and the vacuum phase-space
volume element dp′/(2π�)3 (in unit volume) goes over correspondingly into
the volume element in momentum space of electrons and positrons. Further,
transforming the quantities in Eq. (9.95) from the C frame to the L frame,
we obtain for the differential probability of s-photon pair production per unit
time in the L frame:

dwL
s =

dWL
s (t)
t

=
s2ω2

0
(
1 − n2

0
)
(E − n0cpx)

16π2�2c2p2
yE

[
(E − n0cpx)2

1 − n2
0

− c2p2
y

]

×J2
s

(
2eA0cpy

�ω0 (E − n0cpx)

)
δ

(
E − n0cpx − s�ω0

(
1 − n2

0
)

2

)
dp′, (9.97)

where E and p are the energy and momentum of the produced electron or
positron. Integrating Eq. (9.97) over the electron (positron) energy, we obtain
the angular distribution of the probability of the s-photon production of
electrons (positrons) per solid angle element, do = sinϑdϑdϕ (the azimuthal
asymmetry of the probability in the L frame is due to the linear polarization
of the wave: in the case of circular polarization the probability distribution
has azimuthal symmetry):



9.4 Nonlinear e−, e+ Pair Production in Plasma by Strong EM Wave 317

dwL
s =

2∑
v=1

s3ω3
0
(
1 − n2

0
)2

32π2�c3 (cpv − n0Ev cosϑ) sinϑ cos2 ϕ

×
[
s2�

2ω2
0
(
1 − n2

0
)

4
− c2p2

v sin2 ϑ cos2 ϕ

]

×J2
s

[
4mc3ξ0pv sinϑ cosϕ
s�2ω2

0 (1 − n2
0)

]
dϑdϕ, (9.98)

where

p1,2 =
1

2c (1 − n2
0 cos2 ϑ)

{
sn0�ω0

(
1 − n2

0
)
cosϑ

±
[
s2�

2ω2
0
(
1 − n2

0
)2 − 4m2c4

(
1 − n2

0 cos2 ϑ
)]1/2

}
,

E1,2 =
1

2 (1 − n2
0 cos2 ϑ)

{
s�ω0

(
1 − n2

0
)

±n0 cosϑ
[
s2�

2ω2
0
(
1 − n2

0
)2 − 4m2c4

(
1 − n2

0 cos2 ϑ
)]1/2

}
. (9.99)

The angle ϕ varies from 0 to 2π, while ϑ varies from 0 to ϑmax, which is
determined from the energy and momentum conservation laws (9.99). Fur-
ther, depending on the value of the plasma refractive index n0, the electron
(positron) production at the given angle is possible for a particular momen-
tum or for one of two momenta with different magnitude. For values

n0 <

√
1 − 2mc2

s�ω0

(in this case the threshold condition (9.74) for the process is certainly sat-
isfied), we should take in Eqs. (9.99) only the upper sign, corresponding to
the fact that in the probability (9.98) only ν = 1 (p1) remains and ϑmax = π;
i.e., particles are produced in all directions for the given angle ϑ with definite
momentum. In the opposite case we must also take into account the reaction
threshold condition in the region of values of the index of refraction,√

1 − 2mc2

s�ω0
< n0 <

√
1 − 4m2c4

s2�2ω2
0
,
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and an electron (positron) is produced in a given direction with one of two
different values of momentum p1 and p2 in a cone, opened forward, whose
opening angle is

ϑmax = arcsin
{[(

1 − n2
0
) (
s2�

2ω2
0
(
1 − n2

0
)− 4m2c4

)]1/2
/2mc2n0

}
.

The problem of e−, e+ pair production by the photon field is solved in
the C frame and the probability expressions (9.94)–(9.96) in that frame are
adduced with express purpose. This is of independent physical interest, since
Eqs. (9.94)–(9.96) describe the process of pair production in vacuum by a
uniform periodic electric field (electric undulator)

E(t) = E0 cosω0t, (9.100)

with the reaction threshold (see Eq. (9.74) when n′ = 0)

s�ω0 � 2mc2. (9.101)

By integrating over the electron (positron) energy, we obtain the angular
distribution of the nonlinear production of electrons (positrons) in the pe-
riodic electric field (in contrast to the pair production by the photon field
(9.98), here there is azimuthal symmetry):

dws =
s3ω3

0

32π�c3
4m2c4 cos2 ϑ+ �

2s2ω2
0 sin2 ϑ

(�2s2ω2
0 − 4m2c4)1/2 cos2 ϑ

×J2
s

[
2ceE0

(
�

2s2ω2
0 − 4m2c4

)1/2 cosϑ
s�2ω3

0

]
sinϑdϑ, (9.102)

where ϑ is the angle between the directions of the momentum of produced
electrons (positrons) and the electric field.

Finally, we consider the case of weak fields, eA/ (�ω0) << 1 (ξ0 << 1/s),
when perturbation theory is applicable. In this case, as was noted above,
we cannot be confined to the first term of the sum (9.88), since every term
B2l+1(t′) of the sum at α << 1 (see Eq. (9.90) for the expression of α) includes
a resonant multiplier ∼ ξs

0 (at 2l+ 1 � s) in the lowest order of perturbation
theory. Then from Eq. (9.88) we obtain the formula of perturbation theory
for the pair production probability in the C frame, which has a more compact
analytical form (here we could get free of the sum of unwieldy products):

dwC
s = 2π�Φ2δ (2E ′ − s�ω′)

dp′

(2π�)3
, (9.103)
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where

Φ = β
(α

2

)s

ω′
[

1
(s− 1)!

+
[(s−1)/2]∑

K=1

s−2K∑
S1=1

...

s−1−(S1+...+Sj−1)−2K+j∑
Sj=1

...

s−1−(S1+...+S2K−1)∑
S2K=1

(9.104)

{
(−1)S2+S4+...+S2K

(s− S1) (S1 + S2) ... [s− (S1 + S2 + ...+ S2K−1)] (S1 + S2 + ...+ S2K)

× β2K

(S1 − 1)! (S2 − 1)!... (S2K − 1)! [s− 1 − (S1 + S2 + ...+ S2K)]!

}]
.

Here s � 3, and parameters

β =
E ′

2cp′
y

(
1 − c2p′2

y

E ′2

)1/2

, α = sξ0
mc3p′

y

E ′2 ; ξ0 <<
1
s
.

9.5 Pair Production by Superstrong EM Waves in
Vacuum

As we saw in the previous section the conservation laws for the pair pro-
duction in the field of a plane monochromatic wave can be satisfied in a
plasmalike medium where EM waves propagate with a phase velocity larger
than the speed of light in vacuum. In this case

ω2

c2
− k2 > 0, (9.105)

which means that we have a “photon with nonzero rest mass” providing the
creation of the particles with the rest masses. The satisfaction of conservation
laws for the e−, e+ pair production process in the EM field is equivalent to
the satisfaction of the condition

E2 − H2 > 0, (9.106)

where E, H are the electric and magnetic strengths of the field. The latter is
obvious in the frame of reference where there is only an electric field that pro-
vides the pair creation (in the opposite case we would have only a magnetic
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field that cannot produce a pair). The condition (9.106) can be satisfied in
the stationary maxima of a standing wave being formed by two counterprop-
agating waves (opposite laser beams) of the same frequencies. It can also be
satisfied in the field of a plane monochromatic wave in a wiggler. Thus, these
processes of multiphoton pair production via nonlinear channels in vacuum
by superstrong laser fields are of special interest.

Let plane transverse linearly polarized EM waves with frequency ω and
amplitude of vector potential A0

A1 = A0 cos(ωt− kr), A2 = A0 cos(ωt+ kr), (9.107)

propagate in opposite directions in vacuum. To solve the problem of s-photon
production of an e−, e+ pair in the given radiation fields (9.107) we shall make
use of the Dirac model for electron–positron vacuum. The Dirac equation in
the field (9.107) has the form

i�
∂Ψ

∂t
=
[
cα̂(p̂ − e

c
A0 cos(ωt− kr)−e

c
A0 cos(ωt+ kr)) + β̂mc2

]
Ψ. (9.108)

Then we have stationary maxima of a standing wave and Eq. (9.108) may be
rewritten in the form

i�
∂Ψ

∂t
=
[
cα̂(p̂ − 2

e

c
A0 coskr cosωt) + β̂mc2

]
Ψ. (9.109)

According to the Dirac model the electron–positron pair production by
the EM wave field occurs when the vacuum electrons with initial negative
energies E0 < 0 due to s-photon absorption pass to the final states with
positive energies E = E0 + s�ω > 0. Since we study the case of superstrong
laser fields in which the pairs are essentially produced at the length l << λ (λ
is the wavelength of laser radiation) and on the other hand the Hamiltonian
of the interaction Hint ∼ p(A1 +A2), then the significant contribution in the
process of e−, e+ pair creation will be conditioned by the areas of stationary
maxima in the direction along the electric field strength of the standing wave.
Consequently, we can neglect the inhomogeneity of the field in the considered
problem, i.e., Eq. (9.109) will reduce to the following equation:

i�
∂Ψ

∂t
=
[
cα̂(p̂ − 2

e

c
A0 cosωt) + β̂mc2

]
Ψ. (9.110)

In this approximation the magnetic fields of the counterpropagating waves
cancel each other. In the case of e−, e+ pair production in a plasma we had
a similar equation in the center-of-mass frame of created particles (9.76).
Thus, we will follow the approach developed in the previous section. Since
the interaction Hamiltonian does not depend on the space coordinates, the
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solution of Eq. (9.110) can be represented in the form of a linear combination
of free solutions of the Dirac equation with amplitudes ai(t) depending only
on time (9.77). The application of the unitarian transformations (9.82) and
(9.84) yields the set of equations

dc1(t)
dt

= f(t)c4(t), (9.111)

dc4(t)
dt

= −f∗(t)c1(t). (9.112)

Here the function f(t) (see Eq. (9.86)) is expanded into series

f(t) = i
∞∑

s′=−∞
fs′ exp

[
i

�
(2E − s′

�ω)t
]
, (9.113)

where

fs′ =
E

2cpy

(
1 − c2p2

y

E2

) 1
2

s′ωJs′

(
4ξ0

mc2

E
pyc

�ω

)
, (9.114)

and Js is the ordinary Bessel function. The new amplitudes c1(t) and c4(t)
satisfy the initial conditions

|c1(−∞)| = 0, |c4(−∞)| = 1.

Because of space homogeneity the generalized momentum of a particle is
conserved so that the real transitions in the field occur from a −E negative
energy level to positive +E energy level (in the assumed approximation) and,
consequently, the multiphoton probabilities of e−, e+ pair production will
have maximal values for the resonant transitions 2E 
 s�ω. The latter just is
the conservation law of the pair production process at which both electrons
and positrons will be created back-to-back according to zero total momentum:
pe− + pe+ = 0, since the considered field is only time dependent. Thus, we
can utilize the resonant approximation, as in a two-level atomic system in
the monochromatic wave field.

The probabilities of multiphoton e−, e+ pair production will have maximal
values for the resonant transitions

2E − s�ω 
 0. (9.115)

In this case the function f(t) can be represented in the following form:

f(t) = Fs + Φ(t), (9.116)
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where

Fs = ifse
iδst (9.117)

is the slowly varying function on the scale of the wave period and

Φ(t) = ieiδst
∞∑

s′ �=s,s′=−∞
fs′ei(s−s′)ωt (9.118)

is the rapidly oscillating function. Here we have introduced resonance detun-
ing

�δs = 2E − s�ω. (9.119)

As a consequence of this separation the probability amplitudes can be repre-
sented in the form

c1(t) = c
(s)
1 (t) + β1(t), (9.120)

c4(t) = c
(s)
4 (t) + β4(t), (9.121)

where c(s)1 (t) and c
(s)
4 (t) are the slowly varying amplitudes corresponding to

c1(t) and c4(t). The functions β1(t) and β4(t) are rapidly oscillating functions.
Substituting Eqs. (9.120), (9.121) into Eqs. (9.111), (9.112) and separating
slow and rapid oscillations, taking into account Eq.(9.116), we will obtain the
following set of equations for the slowly varying amplitudes c(s)1,4(t):

dc
(s)
1

dt
= Fsc

(s)
4 + Φ (t)β4(t), (9.122)

dc
(s)
4

dt
= −Fsc

(s)
1 − Φ∗ (t)β1(t), (9.123)

and for the rapidly oscillating functions β1,4:

dβ1

dt
= Φ (t) c(s)4 , (9.124)

dβ4

dt
= −Φ∗ (t) c(s)1 . (9.125)

In Eqs. (9.122) and (9.123) the bar denotes averaging over time much
larger than wave period. In the set of Eqs. (9.124) and (9.125) we have ne-
glected the terms ∼ Fs β1,4(t) due to the rapid oscillations
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|Fsβη(t)| <<
∣∣∣∣dβ1

dt

∣∣∣∣ . (9.126)

Solving the set of Eqs. (9.124) and (9.125), taking into account that c(s)1,4 are
slowly varying functions, we obtain

β1 = c
(s)
4

t∫
0

Φ (t′) dt′,

β4 = −c(s)1

t∫
0

Φ∗ (t′) dt′.

Then substituting β1,4(t) into Eqs. (9.122) and (9.123), we will have the
following equations for the functions c(s)1,4:

dc
(s)
1

dt
= Fsc

(s)
4 − i

δf

2
c
(s)
1 , (9.127)

dc
(s)
4

dt
= −Fsc

(s)
1 + i

δf

2
c
(s)
4 , (9.128)

where

δf = −2iΦ (t)

t∫
0

Φ∗ (t′) dt′ =
2
ω

∞∑
s′ �=s,s′=−∞

|fs′ |2
s− s′ . (9.129)

The set of Eqs. (9.127) and (9.128) can be solved in the general case of
arbitrary wave envelope A0(t) only numerically. But it admits an exact so-
lution for a monochromatic wave describing “Rabi oscillations” of the Dirac
vacuum. In this case the set of Eqs. (9.127) and (9.128) for the phase trans-
formed amplitudes c(s)1 exp (−iδst/2) and c

(s)
4 exp (iδst/2) is a set of ordinary

linear differential equations with fixed coefficients. The general solution of
the latter is given by a superposition of two linearly independent solutions
which with the initial condition is

c
(s)
1 (t) = i

|fs|
Ωs

ei δs
2 t sin (Ωst) , (9.130)
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c
(s)
4 = e−i δs

2 t

[
cos (Ωst) +

i∆s

2Ωs
sin (Ωst)

]
, (9.131)

where

∆s = δf + δs (9.132)

is the resulting detuning and

Ωs =

√
|fs|2 +

∆2
s

4
(9.133)

is the “Rabi frequency” of the Dirac vacuum at the interaction with a peri-
odic EM field. As is seen from Eq. (9.130) with this frequency the probability
amplitude of e−, e+ pair production oscillates in the standing wave field dur-
ing the whole interaction time similar to Rabi oscillations in two-level atomic
systems. In this case the “Rabi frequency” has a nonlinear dependence on the
amplitudes of the opposite EM wave fields. Considerable number of electron–
positron pairs can be produced by a proper choice of intensity and duration
of laser pulses.

The set of Eqs. (9.127) and (9.128) has been derived using the assumption
that the amplitudes c(s)1,4(t) are slowly varying functions on the scale of the
EM wave period, i.e., ∣∣∣∣∣dc

(s)
1,4(t)
dt

∣∣∣∣∣ << ∣∣∣c(s)1,4(t)
∣∣∣ω. (9.134)

These conditions with Eq.(9.126) define the condition of applicability of the
applied resonant approximation which is equivalent to the condition

Ωs << ω. (9.135)

The probability of the s-photon e−, e+ pair production with the certain
energy E , summed over the spin states, is

Ws = 2
∣∣∣c(s)1 (t)

∣∣∣2 =
2 |fs|2
Ω2

s

sin2(Ωst). (9.136)

Hence, from Eq. (9.114) we have

Ws =
s2ω2

(
p2 sin2 ϑ+m2c2

)
2p2 cos2 ϑ

J2
s

(
4ξ0

mc3p cosϑ
�ωE

)
sin2(Ωst)

Ω2
s

, (9.137)

where ϑ is the angle between the directions of the momentum of produced
electrons (positrons) and the amplitude of the total field electric strength.
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Let us consider the case of short interaction time when

Ωst << 1. (9.138)

In this case we can determine a probability of multiphoton pair production
per unit time according to the following definition of the Dirac δ-function:

sin2(Ωst)
Ω2

s

→ 2π�tδ(2E − s�ω).

The differential probability of an s-photon e−, e+ pair production process per
unit time and unit space volume, summed over the spin states, is given by
the following formula:

dws =
s2ω2(p2 sin2 ϑ+m2c2)

16�2π2p2 cos2 ϑ

×J2
s

(
4ξ0

mc3p cosϑ
�ωE

)
δ

(
E − s�ω

2

)
dp. (9.139)

By integrating over the electron (positron) energy we obtain the angular
distribution of the s-photon differential probability density of created elec-
trons (positrons):

dws

do
=

s3ω3

64π2�c3
4m2c4 + �

2s2ω2 tan2 ϑ

(�2s2ω2 − 4m2c4)1/2

×J2
s

(
4ceE0

(
�

2s2ω2 − 4m2c4
)1/2 cosϑ

s�2ω3

)
, (9.140)

where do = sinϑdϑdϕ is the differential solid angle.
Analogously one can describe the multiphoton pair production process

in a wiggler by a superstrong laser pulse of relativistic intensities. Thus, as
we saw in Section 5.4 at the induced interaction of a charged particle with
a plane EM wave in an undulator, or with the counterpropagating waves
of different frequencies (Section 5.3) the two interference waves are formed
which propagate with the phase velocities vph > c and vph < c. According
to the conditions (9.105) and (9.106) the wave propagating with the phase
velocity vph > c will be responsible for the pair production process. By the
appropriate transformations the processes of e−, e+ pair production in these
EM field configurations can be reduced to the considered pair production
process (as in the case of plasma) in this section. Namely, one should solve
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the problem in the center-of-mass frame of the produced pair moving with
respect to the laboratory frame with the velocity v = c2/vph.
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