
7 Induced Channeling Process in a Crystal

It is known that due to the relativistic motion of a charged particle in a crystal
an exotic situation takes place when the effective potential of the crystal planes
or axes becomes a potential well for the particle in the transversal direction
with respect to its initial motion, and so-called channeling of the particle
occurs accompanied by spontaneous channeling radiation.

The channeling radiation of ultrarelativistic electrons and positrons in a
crystal is of great interest for two major reasons: the radiation is in the short-
wave region (X-ray and γ-ray domains), and its spectral intensity considerably
exceeds that of other types of radiation in this range of frequencies.

Induced channeling radiation in the presence of an external coherent ra-
diation field becomes important as a potential source for short-wave coherent
radiation, which may be considered as a version of a free electron laser.

As a periodic system with high coherency and owing to the similar periodic
character of particle motion, the crystal channel may be compared with an
undulator — it is a “micro-undulator” with the space period much smaller
than that of an undulator.

On the other hand, the particle–external coherent EM wave interaction
process in the channel of a crystal proceeds with the inverse stimulated effect
reducing the particle acceleration and other classical and quantum coherent
effects.

Hence, this chapter will consider the induced channeling process with re-
gard to general aspects of coherent interaction of relativistic electrons and
positrons with a plane transversal EM wave in a crystal.

7.1 Positron–Strong Wave Interaction at the Planar
Channeling in a Crystal

If a charged particle with relativistic velocity enters a crystal at the angle
with respect to a crystal plane or crystallographic axis smaller than some
specified angle (Lindhard angle)

θα =

√
2U0

E , (7.1)
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then the effective electrostatic field of the crystal becomes a transversal po-
tential well related to the particle motion and the latter moves in the crystal
channel — the channeling of the particle occurs. Here U0 is the depth of the
potential well and E is the particle energy. In the most interesting case of ul-
trarelativistic energies for channeling phenomenon the transversal de Broglie
wavelength of the particle

λD =
�c√
2U0E

(7.2)

is much smaller than the interplanar or interaxial distance d in a crystal
(U0 is of the order of the kinetic energy of the particle transversal motion)
and consequently d/λD >> 1. On the other hand, the quantity d/λD with
the coefficient coincides with the number of bound states l of the particle
transversal motion in the crystal channel. Hence, in the most important region
of energies l >> 1 and the particle motion at the channeling can be described
classically.

We will study the induced interaction of a charged particle channeled
in a crystal with the external coherent radiation field within the scope of
the classical theory. In this section the case of the planar channeling will be
considered.

As is known for a positron planar channeling the effective electrostatic
potential of the crystal planes within the channel is well enough described by
the parabolic law

U (x) = 4
U0

d2 x
2, (7.3)

where d is the distance between the crystal planes, and the transversal coordi-
nate x is evaluated from the median plane. The classical relativistic equation
of motion for a positron in the fields (7.3) and an external plane monochro-
matic EM wave

E = E0 cos (ω0t− k0r) ; k0= ν
n0ω0

c
(7.4)

(n0 = n0(ω0) is the refractive index of the crystal on the wave frequency) is
written as

dp
dt

= eE+
e

c
[vH] − ∇U (x) . (7.5)

As for the permitted maximal values of the wave intensities in the dielectric
media the characteristic interaction parameter ξ0 = eE0/mcω0 << 1 (see
Section 2.2), then for the ultrarelativistic energies of the channeled particles
the interaction with the EM wave in a crystal with great accuracy can be
described by the classical perturbation theory over the field (7.4). Conse-
quently, in the zero order over the EM wave field from Eq. (7.5) we have the
equations
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dpx

dt
= −dU (x)

dx
, (7.6)

dpy

dt
= 0;

dpz

dt
= 0. (7.7)

Choosing the axis z along the initial motion of the particle from Eqs. (7.6)
and (7.7) for the particle energy and momentum we obtain respectively

E =
mc2√

1 − (v2
x + v2

z) /c2
+ U (x) , (7.8)

py = 0; pz =
mvz√

1 − (v2
x + v2

z) /c2
. (7.9)

For the transversal velocity of the particle from Eqs. (7.8) and (7.9) we have

v2
x = c2

[E−U (x)]2 − E2
�

[E−U (x)]2
, (7.10)

where

E� = c
√
p2

�
+m2c2 (7.11)

is the energy of the longitudinal motion. Equation (7.10) is the exact equation
for the particle transversal motion. One can make some simplification of this
equation taking into account the smallness of the potential energy related to
the energy of the ultrarelativistic particle:

Umax (x) � E .

Representing the particle energy in the form

E = E� + E⊥,

where E⊥ is the energy of the transversal motion, and taking into account
that for the channeled particles

E⊥ �Umax (x) � E�,

then the equation for the particle transversal motion (7.10) with the accuracy
of the small quantity E⊥/E� <<1 will take the form
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v2
x =

2c2

E�

[E⊥−U (x)] . (7.12)

Formally Eq. (7.10) has a nonrelativistic character where instead of particle
rest mass, the relativistic mass mrel 
 E�/mc

2 stands.
The longitudinal velocity of the particle is determined from Eq. (7.9) and

has the form

vz (t) 
 c

{
1 − 1

2

[
v2

x

c2
+
(
mc2

E�

)2
]}

. (7.13)

In the case of planar channeling of a positron when the effective elec-
trostatic potential of the crystal may be approximated by Eq. (7.3), the
integration of Eq. (7.12) gives the following law for the transversal motion:

x (t) = xm sin [Ω (t− t0) + ϕ] . (7.14)

Here

Ω =
2c
d

√
2U0

E�

(7.15)

is the frequency of the positron transversal oscillations in the potential well
of the crystal channel,

xm =
d

2

√E⊥
U0

(7.16)

is the amplitude and ϕ is the phase of the transversal oscillations at the
moment t0 when the positron enters into the crystal. Corresponding to Eq.
(7.14) the transversal velocity of the positron is

vx (t) = vxm cos [Ω (t− t0) + ϕ] , (7.17)

where

vxm =
dΩ

2

√E⊥
U0

(7.18)

is the maximal velocity of the transversal motion of the positron in the crystal
channel. Then using Eq. (7.17) after the integration of Eq. (7.13) we will have

z (t) = vzt− zm sin [2Ω (t− t0) + 2ϕ] + zm sin 2ϕ, (7.19)

where
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vz = c

{
1 − 1

2

[(
mc2

E�

)2

+
E⊥
E�

]}
(7.20)

is the mean longitudinal velocity of the positron, and the amplitude of the
longitudinal oscillations zm is

zm =
cE⊥
4ΩE�

. (7.21)

Now we can evaluate the induced channeling effect in the field of an
external EM wave, by the classical perturbation theory in the first order over
the field (7.4). The energy change of the channeled positron at the interaction
with the plane transverse EM wave is given by

∆E = e

t2∫
t1

E(t− νrn0/c)v(t)dt, (7.22)

where the law of motion r = r(t) and velocity v(t) of the positron in the
crystal channel are determined by Eqs. (7.14), (7.19) and Eqs. (7.13), (7.17),
respectively. The induced interaction time ∆t = t2 −t1 actually will be deter-
mined by the length of the channel (t1and t2 are correspondingly the moments
of the wave entrance in the crystal and exit from the channel).

For the concreteness and evaluation of the energy change (7.22) we in-
troduce a new Cartesian coordinate system x′, y′, z′ and assume that a
quasi-monochromatic EM wave linearly polarized along the axis x′ propa-
gates along the axis z′, at a small angle with respect to a crystal plane (see
Eq. (7.1)). The coordinate system x′, y′, z′ is related to the system x, y, z
via Eulerian angles α, β, γ as follows:⎛⎝x′

y′

z′

⎞⎠ =

⎛⎝ cos γ sin γ 0
− sin γ cos γ 0
0 0 1

⎞⎠⎛⎝ cosβ 0 − sinβ
0 1 0
sinβ 0 cosβ

⎞⎠

×
⎛⎝ 1 0 0

0 cosα sinα
0 − sinα cosα

⎞⎠⎛⎝x
y
z

⎞⎠ . (7.23)

At the motion of the positron in the crystal channel by the trajectory
(7.14), (7.19), the wave phase in Eq. (7.22) corresponding to induced inter-
action is

φ = ω0t− k0r =ωt− κ1 sin [Ω (t− t0) + ϕ]
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+κ2 sin 2 [Ω (t− t0) + ϕ] + ψ, (7.24)

where

ω = ω0

(
1 − n0vz

c
cosα cosβ

)
(7.25)

is the Doppler-shifted wave frequency, and the parameters κ1, κ2, ψ are

κ1 = n0ω0
xm

c
sinβ; κ2 = n0ω0

zm

c
cosα cosβ,

ψ = −n0
ω0

c
cosα cosβ (zm sin 2ϕ− vzt0) . (7.26)

Substituting Eq. (7.24) as well as Eqs. (7.13) and (7.17) in Eq. (7.22) for the
energy change of the positron due to the induced channeling effect, in the
first order by the wave field we will have

∆E =
∞∑

s=−∞

e

ω − sΩ
{E0xvxmA1 (s,κ1,κ2) + E0z (vz + vzm)A0 (s,κ1,κ2)

−2E0zvzmA2 (s,κ1,κ2)} {sin [(ω − sΩ) t2 + sΩt0 − sϕ+ ψ]

− sin [(ω − sΩ) t1 + sΩt0 − sϕ+ ψ]} , (7.27)

where

An (s, α, β) =
1
2π

π∫
−π

cosn ϕ′ei(α sin ϕ′−β sin 2ϕ′−sϕ′)dϕ′

is the generalized Bessel function with the definitions

A0 (s, α, β) =
∞∑

k=−∞
Js+2k (α)Jk (β) ,

A1 (s, α, β) =
1
2

[A0 (s− 1, α, β) +A0 (s+ 1, α, β)] ,

A2 (s, α, β) =
1
4

[A0 (s− 2, α, β) + 2A0 (s, α, β) +A0 (s+ 2, α, β)] ,

and
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vzm =
cE⊥
2E�

(7.28)

is the amplitude of the positron longitudinal velocity oscillations.
Equation (7.27) shows that the energy change of the positron after the

interaction differs from zero (will have nonoscillating character in the time)
if the condition

ω0

(
1 − n0

vz

c
cosα cosβ

)
= sΩ; s = 0,±1,±2, ... (7.29)

is satisfied for a specified s. The latter is the condition of the resonance be-
tween the transversal oscillations of the positron in the potential well of the
crystal channel and EM wave. Only at the fulfillment of this condition does
the coherent energy exchange of the channeled positron with the monochro-
matic wave become real. Then for the energy change of the positron after the
interaction we have

∆E = eE0∆t {vxm cosβ cos γA1 (s,κ1,κ2) + (sinα sin γ − cosα sinβ cos γ)

× [(vz + vzm)A0 (s,κ1,κ2) − 2vzmA2 (s,κ1,κ2)]}

× cos
[
sΩt0 − sϕ+ n0

ω0

c
cosα cosβ (vzt0 − zm sin 2ϕ)

]
. (7.30)

Expressing the functions A0,1,2 (s,κ1,κ2) via the ordinary Bessel functions,
Eq. (7.30) can be presented in the form

∆E = eE0∆t

∞∑
k=−∞

{
1
2
vxm cosβ cos γ [Js−1+2k (κ1) + Js+1+2k (κ1)]

+vz (sinα sin γ − cosα sinβ cos γ)Js+2k (κ1)

−vzm (sinα sin γ − cosα sinβ cos γ) [Js−2+2k (κ1) + Js+2+2k (κ1)]
}
Jk (κ2)

× cos
[
sΩt0 − sϕ+ n0

ω0

c
(vzt0 − zm sin 2ϕ) cosα cosβ

]
. (7.31)

For the X-ray and γ-ray frequencies when n0 (ω0) � 1 the resonance condition
(7.29) corresponds to the normal Doppler effect at which the energy absorp-
tion from the EM wave is accompanied by enhancement of the transversal
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oscillations of the positron (in these cases s > 0 in Eq. (7.31)). For the opti-
cal frequencies when n0 (ω0) > 1 the anomalous Doppler effect is possible as
well:

1 − n0
vz

c
cosα cosβ < 0, (7.32)

which corresponds to enhancement of transversal oscillations of the positron
at the induced radiation (in Eq. (7.31) in this case s < 0). Under the condition

1 − n0
vz

c
cosα cosβ = 0, (7.33)

that is, the Cherenkov condition in the crystal channel corresponding to s =
0, Eq. (7.29) expresses the real energy exchange at the positron–wave induced
Cherenkov interaction.

Equation (7.31) for the general geometry of the positron planar channeling
at the arbitrary propagation and polarization directions of the wave is very
bulky. It can be simplified in the case of a particular geometry of the induced
interaction — if the EM wave propagates along the direction of the positron
motion in the channel (axis z) with the electric field directed along the axis x
— and the positron energy E� � m2c4/E⊥. Then, for the number of harmonic
s we have: s = 0, ±1 (for the coherent accumulation of energy exchange), and
for the frequencies satisfying the resonance condition (7.29) one can suppose
n0 (ω0) 
 1. The latter excepts the possibility of the induced Cherenkov effect
( s = 0) and the anomalous Doppler effect (s = −1) as well. Thus, for the
induced energy exchange we have a simple formula

∆E =
eE0vxm

2
∆t cos

[(
Ω + ω0

vz

c

)
t0 − ϕ

]
. (7.34)

As is seen from Eqs. (7.31) and (7.34) depending on the initial conditions-
a moment t0 when the positron enters into the crystal and a phase ϕ of the
transversal oscillations — either the direct or the inverse induced channeling
effect occurs, i.e., positron deceleration or acceleration, respectively. Hence,
at the interaction of the channeled positron beam with the monochromatic
EM wave the diverse particles entering into a crystal at the different moments
and in the different oscillation phases will acquire or lose different energies.
As a result, the modulation of the particles’ velocities will take place leading
to beam bunching if the longitudinal size of the latter lz > πvz/ω0.
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7.2 Induced Interaction of Electrons with Strong EM
Wave at the Axial Channeling

As is known, for an electron axial channeling the effective electrostatic po-
tential of the atomic chain along the crystal axis is well enough described by
the two-dimensional Coulomb potential

U (ρ) = −αc

ρ
, (7.35)

where αc is a constant depending on the type of crystal and the particular
geometry, and ρ is the distance from the crystal axis. The transversal motion
of the electron in the field (7.35) with a nonzero momentum occurs by the
Keplerian elliptic trajectory. If one directs the coordinate axes OX and OY
correspondingly along the major and minor semiaxes of the ellipse and the
axis OZ along the crystal axis, and if at the moment t = t0 the electron
is situated in the perihelion of the orbit of the transversal motion with the
coordinate z = z0, then the electron trajectory may be presented in the
known parametric form

x = a (cos ζ − ε) ; y = (−1)s′
b sin ζ,

z = vz (t− t0) − a2 εΩ

c
sin ζ + z0, (7.36)

t =
ζ − ε sin ζ

Ω
+ t0,

where for a full rotation of the electron by the elliptic orbit the parameter ζ
varies from zero to 2π. Here the parameters

a =
αc

2 |E⊥| ; b = a
√

1 − ε2 (7.37)

are the major and minor semiaxes of the ellipse,

ε =

√
1 − 2 |E⊥|M2

z c
2

E�α2
c

(7.38)

is the eccentricity (Mz is the z-component of the orbital moment),

Ω = c
(2 |E⊥|) 3

2

αc

√E�

(7.39)
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is the rotation frequency, and

vz = c

(
1 − m2c4

2E2
�

)
− c |E⊥|

E�

(7.40)

is the mean longitudinal velocity of the electron. The parameter s′ in Eq.
(7.36) determines the right-hand or left-hand rotation of the electron by the
elliptic orbit:

s′ =

⎧⎪⎨⎪⎩
0, Mz

|Mz| > 0,

1, Mz

|Mz| < 0.
(7.41)

As the electron trajectory at the axial channeling is of helical type from
the point of view of the symmetry in this issue we will suppose that an EM
wave has a circular polarization:

Ex′ = E0 cos (ω0t− k0r) ; Ey′ = E0 (−1)s′′
sin (ω0t− k0r) (7.42)

correspondingly with the left-hand and right-hand rotations:

s′′ =
{

0,
1,

left-hand,
right-hand.

The coordinate system x′y′z′ relates to the xyz one in accordance with Eq.
(7.23) and in the case of the wave circular polarization one can assume that
the Eulerian angle γ = 0.

We will evaluate the induced effect at the axial channeling by Eq. (7.22)
again in the first order by the EM wave field. As far as the particle velocity
and law of motion in the channel in this case are determined in parametric
form (Eq. (7.36)) it is necessary to pass in Eq. (7.22) from the variable t to ζ.
Then the induced energy exchange between the channeled electron and EM
wave will be written in the form

∆E = e

ζ(t2)∫
ζ(t1)

E(φ (ζ))
dr(ζ)
dζ

dζ, (7.43)

where ∆t = t2 − t1 is the duration of electron–wave coherent interaction at
the axial channeling. In the first-order approximation for the wave phase in
the integral (7.43) with the help of Eqs. (7.36)–(7.41) we have

φ (ζ) = ω0t− k0r =
ω0 − k0zvz

Ω
ζ − κ1 sin ζ − κ2 cos ζ + ψ, (7.44)



7.2 Induced Interaction of Electrons at the Axial Channeling 215

where

k0 = n0
ω0

c
(sinβ,− sinα cosβ, cosα cosβ) ,

and the parameters κ1, κ2, ψ in this case are

κ1 =
ε

Ω
(ω0 − k0zvz) + (−1)s′

k0yb− k0za
2ε
Ω

c
; κ2 = ak0x,

ψ = ω0t0 + k0xaε− k0zz0.

Performing integration in Eq. (7.43) with the help of Eqs. (7.36) and (7.44)
we obtain the following ultimate equation for the coherent energy exchange
between the electron and external strong EM wave at the axial channeling:

∆E = −eE0Ω∆t

{
Js (κ)

[
(−1)s′′

sinα sinϕ− cosα sinβ cosϕ
] vz

Ω

+
s

κ
Js (κ)

[
a cosβ sinϕ1 cosϕ+ (−1)s′

b sinα sinβ cosϕ cosϕ1

+ (−1)s′+s′′
b cosα sinϕ cosϕ1 +

(
1 +

2c |E⊥|
vzE�

)
εvz

Ω

(
cosα sinβ cosϕ cosϕ1 − (−1)s′′

sinα sinϕ cosϕ1

)]

+J ′
s (κ)

[
a cosβ sinϕ cosϕ1 + (−1)s′

b sinα sinβ sinϕ sinϕ1

+ (−1)s′+s′′
b cosα cosϕ sinϕ1 −

(
1 +

2c |E⊥|
vzE�

)
εvz

Ω

×
(
cosα sinβ sinϕ sinϕ1 + (−1)s′′

sinα sinϕ1 cosϕ
)]}

, (7.45)

where the parameters κ, ϕ1, and ϕ are

κ =
√

κ2
1 + κ2

2 ,
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ϕ1 =
κ1

|κ1| arcsin
κ2

κ
, (7.46)

ϕ = ω0t0 − n0
ω0

c
z0 cosα cosβ + aεn0

ω0

c
sinβ − sϕ1.

The physical analysis of Eq. (7.45) is the same as was made for the positron
planar channeling. So, we will not repeat the analogous analysis, noting only
that the condition of resonance at the axial channeling for coherent energy
exchange (7.45) is given by Eq. (7.29), where the frequency of transversal
oscillations Ω of the electron is determined by Eq. (7.39).

Equation (7.46) corresponding to general geometry of the electron axial
channeling in the arbitrary propagation and polarization directions of the
wave is very bulky. It is rather simplified if the wave propagates along the
direction of the electron motion in the channel (axis z) with the components
of the electric field strength directed along the axes x and y, as well as the
electron energy should not exceed the value m2c4/E⊥. For the induced energy
exchange we have the following ultimate equation:

∆E = −eE0Ω∆t
{
aJ ′

s (κ) + b (−1)s′+s′′ s

κ
Js (κ)

}

× sin
(
ω0t0 − n0

ω0

c
z0

)
. (7.47)

The existence of diverse harmonics in Eq. (7.47) is related to the anharmonic
character of the electron transversal oscillations in the field (7.35) (in contrast
to Eq. (7.34) for the planar channeling, at which the positron is a harmonic
oscillator in the channel).

In addition, note that Eqs. (7.45) and (7.47) due to their coherent de-
pendence on the interaction phase lead to the electron beam classical mod-
ulation and bunching after the interaction with the stimulating wave at the
axial channeling analogously to the positron beam bunching at the planar
channeling.

7.3 Quantum Description of the Induced Planar
Channeling Effect

Consider the interaction of the particles channeled in a crystal and a plane
monochromatic EM wave in the scope of the quantum theory. First we will
study the case of a weak wave when the one-photon absorption and emis-
sion processes dominate and the induced channeling effect may be described
within the quantum perturbation theory by the particle wave function in
the linear over the field approximation with respect to the initial state in
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the potential field of the crystal channel. It means that the latter should be
described exactly.

We will start from the Dirac equation which in the case of the planar
channeling of a positron in the field of an external EM wave is written as

i�
∂Ψ

∂t
=
(
Ĥ0 + V̂

)
Ψ, (7.48)

Ĥ0 = cα̂p̂ + β̂mc2 + U (x) ; V̂ = −eα̂A, (7.49)

where α̂, β̂ are the Dirac matrices in the standard representation (3.2). Ac-
cording to perturbation theory we seek the solution of Eq. (7.49) in the form

Ψ = Ψ0 + Ψ1 + · · · ; |Ψ1| � |Ψ0| , ...,

where Ψ0 satisfies the following equation for the positron in the electrostatic
field of the crystal channel:

i�
∂Ψ0

∂t
=
[
cα̂p̂ + β̂mc2 + U (x)

]
Ψ0 (7.50)

with the effective potential U (x) (7.3). The particular solution of Eq. (7.50)
may be presented in the form

Ψ0 (r, t) = b

⎛⎝ϕ

χ

⎞⎠ e− i
�

Et, (7.51)

where ϕ and χ are spinor functions, E is the total energy of the positron in
the potential field of the channel, and b is the normalization coefficient. From
Eq. (7.50) for the spinor functions ϕ and χ we obtain the following set of
equations:

Eϕ = c (σp̂)χ+mc2ϕ+ U (x)ϕ,

Eχ = c (σp̂)ϕ−mc2χ+ U (x)χ, (7.52)

where σ = (σx, σy, σz) are the Pauli matrices (1.79). Eliminating χ from the
first equation (7.52):

χ =
cσp̂

E +mc2 − U (x)
ϕ, (7.53)

for the spinor function ϕ we obtain a differential equation of the second order:
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∆ϕ+
1

�2c2

(
[E − U (x)]2 −m2c4

)
ϕ+

σ∇U (x)
E +mc2 − U (x)

(σ∇)ϕ = 0. (7.54)

The solution of Eq. (7.54) is sought in the form

ϕ = wψ (x) e
i
�
p�r =

⎛⎝w1

w2

⎞⎠ψ (x) e
i
�
p�r, (7.55)

where ψ (x) is the positron wave function corresponding to the transversal
motion in the potential well of the channel, and w is a constant spinor which
should be defined from the wave function normalization condition

w†w = w∗
1w1 + w∗

2w2 = 1.

Neglecting the small terms of the order Umax/E << 1 (or E⊥/E << 1) in
Eq. (7.54), for the positron wave function describing the transversal motion
in the crystal channel we obtain a one-dimensional Schrödinger equation in
the potential field U (x)

d2ψ (x)
dx2 +

2meff

�2 [E⊥ − U (x)]ψ (x) = 0, (7.56)

with the effective mass meff corresponding to the energy E� of relativistic
longitudinal motion

meff =
E�

c2
=

√
p2

�

c2
+m2. (7.57)

In Eq. (7.56) E⊥ = E − E� is the energy of transversal motion, which para-
metrically depends on the energy of longitudinal motion E⊥ = E⊥ (E�) . In
the case of planar channeling of positrons with the harmonic potential (7.3),
Eq. (7.56) describes the quantum harmonic oscillator the solution of which
is given by

ψn (x) =
( E�Ω

π�c2

) 1
4 1√

2nn!
e− E�Ω

2�c2
x2Hn

(√
E�Ω

�c2
x

)
, (7.58)

where

Hn (ξ) = (−1)n
eξ2 dne−ξ2

dξn
(7.59)

are the Hermit polynomials, and the quantization law for the positron
transversal energy is
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E⊥ (n, E�) =
(
n+

1
2

)
�Ω, (7.60)

where Ω is given by Eq. (7.15).
Finally, with the help of Eqs. (7.55) and (7.51) the solution of Eq. (7.48)

for the positron wave function with the longitudinal momentum p� in the
n-th bound state of the transversal motion and spin state σ can be written
as

Ψp�,n,σ (r, t) =

√
E� +mc2

2E�

⎛⎝ϕσ

cσp̂
E+mc2−U(x)ϕσ

⎞⎠ψn (x) e
i
�
(p�r−Et), (7.61)

where ϕσ are the spinors (3.11), and the total energy E is given by the relation

E (p�, n) =
√
c2p2

�
+m2c4 +

(
n+

1
2

)
�Ω. (7.62)

Now we can evaluate the wave function of the channeled positron at the
induced interaction with an external EM wave in the first approximation of
perturbation theory (Ψ1) on the basis of Eqs. (7.61), (7.62) for unperturbed
(by the wave) state in the crystal channel (Ψ0).

Before the interaction with a plane monochromatic EM wave assume that
a positron with an initial longitudinal momentum p� = (0, py, pz) is situated
in the bound state of the crystal channel characterized by the quantum num-
bers n, σ, that is, the initial state is described by the wave function

Ψ0 (r, t) = Ψp�,n,σ (r, t) . (7.63)

The positron wave function Ψ1 perturbed by the EM wave will be expanded
in terms of the full basis of the eigenstates (7.63) with Eqs. (7.61), (7.62):

Ψ1 (r, t) =
∑

p′
�
,n′,σ′

ap′
�
,n′,σ′ (t)Ψp′

�
,n′,σ′ (r, t) , (7.64)

where ap′
�
,n′,σ′ (t) are unknown functions, and the summation is made over

all possible states of the positron transversal motion in the potential well
corresponding to planar channeling. Substituting the wave function Ψ = Ψ0+
Ψ1 with Eqs. (7.63) and (7.64) in the Dirac equation (7.48) and neglecting
the small terms of the second order by the quantity ∼ eα̂AΨ1 (in accordance
with the perturbation theory) we obtain the following differential equation
for the expansion coefficients ap′

�
,n′,σ′ :
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p′

�
,n′,σ′′

�
∂ap′

�
,n′,σ′

∂t
Ψp′

�
,n′,σ′ (r, t) = ieα̂A (r, t)Ψp�,n,σ (r, t) . (7.65)

Multiplying Eq. (7.65) on the left-hand side by Ψ †
p′

�
,n′,σ′ (r, t) and integrating

over drdt one can present the solution of Eq. (7.65) in the form

ap′
�
,n′,σ′ = i

eA0

4

√
2�Ω

E�

δσ′σ
[√

nδn′+1,n − √
n+ 1δn′−1,n

]

×
[
δ
p′

�
,p�+�k0

e− i
� (E(p�,n)−E(p′

�
,n′)+�ω0)t

E (p�, n) − E (p′
�
, n′)+ �ω0

+δ
p′

�
,p�−�k0

e− i
� (E(p�,n)−E(p′

�
,n′)−�ω0)t

E (p�, n) − E (p′
�
, n′)− �ω0

]
. (7.66)

In Eq. (7.66) it was assumed that the wave propagates in the plane yz with
the vector potential directed along the axis x:

Ax = A0 cos (ω0t− k0r) ,

and was taken into account that for actual cases �ω0/E� << 1 and the
positron energies E < m2c4/U0 as well.

As is seen from Eq. (7.66) only the following expansion coefficients differ
from zero

ap�+�k0,n−1,σ (t) = D√
n
e−i(ω+Ω)t

ω +Ω
,

ap�+�k0,n+1,σ (t) = −D√
n+ 1

e−i(ω−Ω)t

ω −Ω
,

ap�−�k0,n−1,σ (t) = −D√
n
ei(ω−Ω)t

ω −Ω
, (7.67)

ap�−�k0,n+1,σ (t) = D√
n+ 1

ei(ω+Ω)t

ω +Ω
,

where the quantity D is

D = i
eA0

2�

√
�Ω

2E�

, (7.68)
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and the Doppler-shifted wave frequency ω is

ω = ω0 − k0v�; v� =
c2p�

E�

. (7.69)

The expressions in Eq. (7.67) show that the second and third coefficients have
a resonance character due to which the induced channeling effect occurs —
resonance absorption of the wave photons by a channeled particle and coher-
ent emission of the photons into the wave. Hence, neglecting in Eq. (7.64) the
small terms with nonresonant expansion coefficients (first and fourth ones in
Eq. (7.67)) of the perturbed wave function for the probability density of the
positron at the planar channeling we will have

W (r, t) = ϕ2
n (x) +

eA0

� (ω −Ω)

√
�Ω

2E ϕn (x)

× [√n+ 1ϕn+1 (x) − √
nϕn−1 (x)

]
sin (k0r − ω0t) . (7.70)

In the case of the exact resonance (ω = Ω) Eq. (7.70) is not applicable. In
this case the solution of Eq. (7.65) for the probability density of the positron
gives

W (r, t) = ϕ2
n (x) +

eA0

�

√
�Ω

2E ϕn (x)

× [√nϕn−1 (x) − √
n+ 1ϕn+1 (x)

]
∆t cos (k0r − ω0t) , (7.71)

where ∆t is the period of channeled positron interaction with EM wave.
As is seen from the Eqs. (7.70) and (7.71) the probability density of the

positron due to the induced channeling effect is modulated at the stimulat-
ing wave frequency (in the one-photon approximation; in the next orders of
perturbation theory we will obtain modulation at the harmonics of the wave
fundamental frequency).

The condition of validity of the perturbation theory at which the obtained
formulas are applicable we can obtain from Eq. (7.71):

eE0vxm∆t

�ω0
� 1, (7.72)

where vxm is the maximal velocity of transversal motion of the positron in
the channel of the crystal (see Eq. (7.18)):

vxm = c

√
2n�Ω

E�

= c

√
2E⊥
E�

. (7.73)
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7.4 Quantum Description of the Induced Axial
Channeling Effect

At the axial channeling the state of the electron is characterized by the pro-
jection of the momentum pz on the crystal axis z, and due to the axial
symmetry of the effective electrostatic potential of an atomic chain within
the channel the projection of the orbital moment of the electron on the same
axis is conserved.

The Dirac equation for an electron at the axial channeling is written in
the form (7.48) with the Hamiltonian

Ĥ0 = cα̂p̂ + β̂mc2 + U (ρ) , (7.74)

where U (ρ) is given by Eq. (7.35). The interaction of the electron with the
external EM wave will again be taken into account by perturbation theory
(in the one-photon approximation):

Ψ = Ψ0 + Ψ1; |Ψ1| � |Ψ0| ,

where Ψ0 is the electron wave function in a crystal at the axial channeling,
which satisfies the equation

i�
∂Ψ0

∂t
=
[
cα̂p̂ + β̂mc2 + U (ρ)

]
Ψ0. (7.75)

The solution of Eq. (7.75) may be presented in the form

Ψ0 (r, t) = b

(
Φ
χ

)
e

i
�
(pzz−Et), (7.76)

where E is the total energy of the electron and b is the normalization coeffi-
cient. The bispinors Φ and χ are connected by the relation

χ =
cpzσz + cp̂σ

E +mc2 − U (ρ)
Φ. (7.77)

From Eq. (7.75) for the wave function of the electron transversal motion in
the channel with the accuracy of a small term ∼ U0/E we obtain the equation

∆ρ,ϕΦ (ρ, ϕ) +
2E�

�2c2
[E⊥ − U (ρ)]Φ (ρ, ϕ) = 0, (7.78)

where
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∆ρ,ϕ =
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2

is the two-dimensional Laplacian,

E� =
√
c2p2

z +m2c4

is the energy of the electron longitudinal motion, and E⊥ = E−E� is the
transversal one.

As is seen from Eq. (7.78) for wave function Φ (ρ, ϕ) the variables are
separated and the eigenvalue of the operator

L̂z = −i� ∂

∂ϕ

— the projection of the orbital moment of the electron on the z axis is
conserved. Then the wave function Φ (ρ, ϕ) can be represented in the form

Φ (ρ, ϕ) = Φ (ρ) eimϕ; m = 0,±1,±2, ..., (7.79)

where m is the azimuthal quantum number, and from Eq. (7.78) for the
function

R (ρ) =
Φ (ρ)√
ρ

(7.80)

we obtain the equation

R′′ +
2
ρ
R′ +

[
2E�

�2c2

(
E⊥ +

αc

ρ

)
− m2 − 1/4

ρ2

]
R = 0. (7.81)

For the solution of Eq. (7.81) we pass from ρ to a new variable

r =
2
�c

√
2E� |E⊥|ρ, (7.82)

and making a notation

n =
αc

�c

√
E�

2 |E⊥| , (7.83)

then introducing the function R (r) in the form

R (r) = r|m|−1/2e−r/2w (r) , (7.84)

for the new function w (r) we obtain the equation
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rw′′ +
[
2
(

|m| − 1
2

)
+ 2 − r

]
w′ +

(
n− |m| − 1

2

)
w = 0. (7.85)

The solution of Eq. (7.85) should not diverge at infinity more quickly than a
limited power r and must be confined at r = 0. The function satisfying the
second condition is the degenerated hypergeometric function

w (r) = F

(
−n+ |m| +

1
2
, 2 |m| + 1, r

)
, (7.86)

and the solution satisfying the first condition at infinity will be obtained only
at the integer negative (or equal to zero) values of the argument −n+|m|+1/2
when the function (7.86) turns to polynomial with the power n− |m| − 1/2.
Otherwise it diverges at infinity as er. Hence, the number n must be a positive
half-integer, and at the specified number m it is necessary that

n ≥ |m| +
1
2
; n = |m| +

1
2

+ nρ; nρ = 0, 1, 2, . . . . (7.87)

These conditions determine the quantization law of the electron transversal
motion in the potential well of the crystal at the axial channeling. Thus,
from Eq. (7.83) for the spectrum of the transversal energy eigenvalues of the
electron bound states in the potential field (7.35) we obtain

E⊥ = − α2
cE�

2�2c2n2 . (7.88)

With the help of Eqs. (7.77), (7.79), (7.84) and (7.86) for the wave function
of the channeled electron (7.76), normalized for one particle per unit volume,
we will have the equation

Ψ0 (r, t) = Ψpz,n,m,σ (r, t) =

√
E� +mc2

2E�

⎛⎝ϕσ

cσp
E+mc2−U(ρ)ϕσ

⎞⎠

×
√

ρ

2π
Rn,|m|−1/2 (ρ) eimϕe

i
�
(pzz−Et), (7.89)

where ϕσ is a constant spinor determined in Eq. (7.61), and the function
Rn,|m|−1/2 (ρ) is

Rn,|m|−1/2 (ρ) =
(E�αc

�2c2

)3/2 4
n|m|+3/2

√
2 (n+ |m| − 1/2)!
(n− |m| − 1/2)!

(
4E�αcρ

�2c2

)|m|−1/2
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× exp
{

−2E�αc

n�2c2
ρ

}
F

(
−n+ |m| + 1/2, 2 |m| + 1,

4E�αc

n�2c2
ρ

)
. (7.90)

The total energy E in Eq. (7.89) is given by the relation

E (pz, n) =
√
c2p2

z +m2c4 − 2α2
cE�

�2c2n2 . (7.91)

To determine the electron wave function Ψ1 perturbed by the EM wave in
the next approximation of perturbation theory one needs the concrete form
of the wave vector potential. Let it have the form

Ax = A0 cos (ω0t− k0z) ,

Ay = A0 sin (ω0t− k0z) . (7.92)

Expanding Ψ1 in terms of the full basis of the eigenstates (7.89)

Ψ1 (r, t) =
∑

p′
z,n′,m′,σ′

cp′
z,n′,m′,σ′ (t)Ψp′

z,n′,m′σ′ (r, t) , (7.93)

and substituting the wave function in the first approximation of perturbation
theory Ψ0+ Ψ1 into Eq. (7.48) with Eqs. (7.89)–(7.92), then after the solution
of the obtained equation for unknown expansion coefficients cp′

z,n′,m′ (t) we
will have

cp′
z,n′,m′,σ′ = −ieA0

2c
Ωn′nDm′m

n′n δσσ′

{
e− i

� (E(pz,n)−E(p′
z,n′)+�ω0)t

E (pz, n) − E (p′
z, n

′) + �ω0
δm′,m+1

×δp′
z,pz+�k0 +

e− i
� (E(pz,n)−E(p′

z,n′)−�ω0)t

E (pz, n) − E (p′
z, n

′) − �ω0
δm′,m−1δpz,pz−�k0

}
, (7.94)

where

Dm′m
n′n =

∫ ∞

0
ρ3Rn′,|m′|−1/2 (ρ)Rn,|m|−1/2 (ρ) dρ, (7.95)

and

Ωn′n =
E⊥n′ − E⊥n

�
= − 2E�α

2
c

�3c2n′2n2 (n′ + n) (n′ − n) (7.96)

is the transition frequency between the initial and excited states of the
transversal motion of the electron in the crystal channel.
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Equations (7.93) and (7.94) determine the wave function of the one-
photon induced axial channeling effect. With the help of the latter the prob-
ability density (Ψ+Ψ) of the electron after the interaction can be presented
in the form

W =
ρ

2π
R2

n,|m|−1/2 (ρ) +
eA0ρ

2π�
Rn,|m|−1/2 (ρ)

×
⎧⎨⎩ ∑

n′�|m+1|+1/2

Ωn′n
Rn,|m+1|−1/2 (ρ)

ω −Ωn′n
Dm+1m

n′n

+
∑

n′�|m−1|+1/2

Ωn′n
Rn′,|m−1|−1/2 (ρ)

ω +Ωn′n
Dm−1m

n′n

⎫⎬⎭ sin (k0z − ω0t+ ϕ) , (7.97)

where the Doppler-shifted wave frequency ω is

ω = ω0

(
1 − n0

cpz

E�

)
. (7.98)

As in the case of the planar channeling the electron probability density is
modulated at the wave frequency. Consequently, the electric current density
in the case of an electron beam will be modulated at the stimulating wave
frequency and its harmonics (corresponding equations for the modulation
at the harmonics can be found in the next approximation of perturbation
theory). Equation (7.97) is complicated enough for general forms of the func-
tions Rn,m (ρ) and Dm′m

n′n . It is rather simplified for resonant transitions of
the electron from the initial bound state of transversal motion to the neigh-
bor ones. Thus, from Eqs. (7.88), (7.95), and (7.96) we obtain that in the
expression of the modulation depth quantity Ωn′nDm′m

n′n ∼√E⊥/E�. The lat-
ter is the amplitude of the velocity of the electron transversal motion in the
channel v⊥m. Besides, the resonant denominators in Eq. (7.97) define the pe-
riod of coherent interaction of the electron with the EM wave in the channel:
(ω −Ωn′n)−1 → ∆t. Hence, the modulation depth ∼ eE0v⊥m∆t/ω << 1 in
accordance with the perturbation theory.

Note that in general the function Dm′m
n′n determined by Eq. (7.95) may be

presented in the form

Dm′m
n′n =

�
2c2

E�αc

2|m|+|m′|
n|m|+3/2n′|m′|+3/2 (2 |m|)! (2 |m′|)!

×
√

(n+ |m| − 1/2)! (n′ + |m′| − 1/2)!
(n− |m| − 1/2)! (n′ − |m′| − 1/2)!

∫ ∞

0
z|m|+|m′|+2e−(1/n′+1/n)z (7.99)
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×F
(

−n+ |m| +
1
2
, 2 |m| + 1,

2z
n

)
F

(
−n′ + |m′| +

1
2
, 2 |m′| + 1,

2z
n′

)
dz.

In Eq. (7.95) integral is known as a function

J sp
γ (α, α′) =

∞∫
0

e− κ+κ
′

2 zzγ−1+sF (α, γ,κz)F (α′, γ − p,κ′z) dz,

which is expressed via J 00
γ (α, α′) by the recurrent relations.

7.5 Multiphoton Induced Channeling Effect

In the quantum description of the induced channeling effect in the previous
two sections the wave field was weak enough so that the interaction process
had mainly one-photon character. The coherent (resonant) interaction of the
channeled particles with a strong EM wave from the quantum point of view
has multiphoton character. Here we will consider the induced channeling
effect in the strong wave fields in the scope of quantum theory, that is, we will
solve the quantum equations of motion for channeled electrons or positrons
in the strong plane EM wave field.

We will assume that the wave propagates in the yz plane of a crystal and
is polarized in the xy plane with the vector potential

A =
{
Ax

(
t− n0

z

c

)
, Ay

(
t− n0

z

c

)
, 0
}
, (7.100)

where n0 ≡ n(ω0) is the refractive index of the medium at the carrier fre-
quency of the wave. We will consider the case when averaged potential of
the crystal for a plane channeled particle is satisfactorily described by the
harmonic potential

U(x) = κ
x2

2
. (7.101)

For the positron at the planar channeling

κ =
8U0

d2 (7.102)

(see the potential (7.3)), while for the electrons the approximate potential of
the channel is actually not harmonic and described by the potential

U(x) = − U0

cosh2 (x
b

) . (7.103)
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Nevertheless, for the high energies it can be approximated by the harmonic
potential (7.101). As we saw in previous sections, for the channeled particles
the depth of the potential hole U0 << E , where E is the particle energy. The
spin interaction, which is ∼ �U(x), is again less than E . For this reason the
transverse motion of the channeled particle is described by the Schrödinger
equation (7.56) with the effective mass meff = E�/c

2. On the other hand,
the spin interaction can play a role in the particle–wave interaction process
at the energy of the photon comparable with the particle one: �ω0 ∼ E . If
the particle energy is not high enough, i.e., E << m2c4/E⊥ (optimal cases
for the channeling), then the resonant interaction of the channeled particles
with an external EM wave takes place at �ω0 << E and the spin effects are
not essential. Hence, one may ignore the spin interaction and instead of the
Dirac equation solve the Klein–Gordon equation[

i�
∂

∂t
− U (x)

]2
Ψ =

[
c2
(
p̂ − e

c
A
(
t− n0

z

c

))2
+m2c4

]
Ψ. (7.104)

As we saw in Section 7.3 the channeled particle initial motion (before the
interaction with EM wave) is separated into longitudinal (y, z) and transver-
sal (x) degrees of freedom. For the longitudinal motion we assume an initial
state with a momentum p� = {0, py, pz}, while for the transversal motion we
assume a quantum state {n}, where by n we indicate the energy levels in
the harmonic potential (7.101). As the plane wave field depends only on the
retarding coordinate τ = t − n0z/c, then using the problem symmetry the
wave function of a channeled particle can be sought in the form

Ψ(r, t) = f(x, τ)e
i
�
(p�r−Et). (7.105)

The multiphoton interaction of the charged particles with a strong EM wave,
in general, as was shown in diverse processes is well enough described by
the eikonal-type wave function corresponding to a slowly varying function
f(x, τ) on the wave coordinate τ . Hence, neglecting the second derivatives
of this function compared with the first-order ones in accordance with the
conditions (3.92) for the function f(x, τ) we will obtain the equation[

�
2 ∂2

∂x2 +
2E�

c2
(E⊥ − U(x)) + 2i

p̃�

c

∂

∂τ
− 2i

e�

c
Ax (τ)

∂

∂x

+2
e

c
pyAy (τ) − e2

c2
A2 (τ)

]
f(x, τ) = 0, (7.106)

where

p̃ =
1
c

(E� − n0cpz) . (7.107)



7.5 Multiphoton Induced Channeling Effect 229

In Eq. (7.106) the transversal and longitudinal motions are not separated.
But after the definite unitarian transformation for the transformed function
the variables are separated. The corresponding unitarian transformation op-
erator is

Ŝ = e
i
�

{g1(τ)x−g2(τ)p̂x}, (7.108)

where the functions g1(τ), g2(τ) will be chosen to separate the transversal and
longitudinal motions and to satisfy the initial condition. Taking into account
Eq. (4.54) for transformed function

Φ(x, τ) = Ŝf(x, τ) (7.109)

we obtain the equation[
�

2 ∂2

∂x2 +
2E�

c2
(E⊥ − U(x)) + 2i�

(
p̃

c

dg2 (τ)
dτ

− g1(τ) − e

c
Ax (τ)

)
∂

∂x

+
2
c

(
p̃
dg1 (τ)
dτ

+
E�κ

c
g2(τ)

)
x+

2ip̃�
c

∂

∂τ
+Q (τ)

]
Φ(x, τ) = 0, (7.110)

where

Q (τ) =
p̃

c

(
dg2 (τ)
dτ

g1(τ) − dg1 (τ)
dτ

g2(τ)
)

− g2
1(τ) − E�κ

c2
g2
2(τ)

−2e
c
Ax (τ) g1(τ) +

2e
c
pyAy (τ) − e2

c2
A2 (τ) . (7.111)

Let us choose g1(τ) and g2(τ) in such a form that the coefficients of x and
∂/∂x in Eq. (7.110) become zero. Then for the functions g1(τ) and g2(τ) we
will obtain a classical equation of motion describing stimulated oscillations
in the harmonic potential:

dg1 (τ)
dτ

= −E�κ

cp̃
g2(τ), (7.112)

dg2 (τ)
dτ

=
c

p̃
g1(τ) +

e

p̃
Ax (τ) . (7.113)

The solutions of Eqs. (7.112) and (7.113) can be written as
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g1 (τ) =
eΩ′

c
Im

⎡⎣e−iΩ′τ

τ∫
−∞

Ax (τ) eiΩ′τ ′
dτ ′

⎤⎦ , (7.114)

g2 (τ) =
e

p̃
Re

⎡⎣e−iΩ′τ

τ∫
−∞

Ax (τ) eiΩ′τ ′
dτ ′

⎤⎦ , (7.115)

where

Ω′ =
Ω

1 − n0
vz

c

; Ω = c
√
κ/E�. (7.116)

In Eqs. (7.114) and (7.115) we have taken into account the initial condition

g1(−∞) = g2(−∞) = 0.

After the unitarian transformation (7.109) for the function Φ(x, τ) the
following equation is obtained:[

�
2 ∂2

∂x2 +
2E�

c2
(E⊥ − U(x)) +

2ip̃�
c

∂

∂τ
+Q (τ)

]
Φ(x, τ) = 0. (7.117)

Now in Eq. (7.117) the variables are separated and the solution can be written
as follows:

Φ(x, τ) = Nϕn (x) exp

⎧⎨⎩i c

2�p̃

τ∫
−∞

Q (τ) dτ ′

⎫⎬⎭ , (7.118)

where ϕn (x) coincides with the harmonic oscillator wave function (7.58) and
N = 1/

√
LyLzis the normalization constant (Ly and Lz are the quantization

lengths). By inverse transformation

f(x, τ) = Ŝ†Φ(x, τ),

with the help of Eq. (4.66) we obtain the solution of the initial equation
(7.104) (taking into account Eq.(7.105)):

Ψ(r, t) = N exp
{
i

�
(p�r−Et)

}
ϕn (x+ g2 (τ))

× exp

⎧⎨⎩ i

�

⎡⎣ c

2p̃

τ∫
−∞

Q (τ) dτ ′ − 1
2
g1(τ)g2 (τ) − g1(τ)x

⎤⎦⎫⎬⎭ , (7.119)
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where the function Q (τ) can be represented in the form

Q (τ) =
2e
c
pyAy (τ) − e

c
Ax (τ) g1(τ) − e2

c2
A2 (τ) . (7.120)

This wave function describes the multiphoton interaction of the channeled
particle with the strong EM radiation field. Thus, for a monochromatic wave

A = {A0 cos (ω0t− k0z) , 0, 0} ,

from Eqs. (7.114) and (7.115) for the functions g1(τ) and g2(τ) we obtain

g1 (τ) =
e

c
A0

Ω′2

∆
cosω0τ,

g2 (τ) =
eA0

p̃

ω0

∆
sinω0τ, (7.121)

and we will have the following wave function for the particle in the field of a
strong EM wave at the planar channeling:

Ψ(r, t) = N exp
{
i

�

(
p�r−Et− e2A2

0ω
2
0

4cp̃∆
τ

)}
ϕn

(
x+

eA0ω0

p̃∆
sinω0τ

)

× exp

{
− i

�

[
eA0Ω

′2

c∆
x cosω0τ +

e2A2
0ω0
(
ω2

0 +Ω′2)
8cp̃∆2 sin (2ω0τ)

]}
, (7.122)

where

∆ = ω2
0 −Ω′2

is the resonance detuning.
On the basis of the obtained wave function (7.119) consider the possibility

of multiphoton excitation of transversal levels by the strong EM wave at the
resonance

ω0 
 Ω∣∣1 − n0
vz

c

∣∣ . (7.123)

The Doppler factor 1−n0vz/c may be positive as well as negative — anoma-
lous Doppler effect at n0 > 1. We will consider the actual case of a quasi-
monochromatic EM wave with a slowly varying amplitude A0(τ). After the
interaction with the wave (t → +∞ ) from Eqs. (7.114) and (7.115) at the
resonance condition (7.123) we have
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g1 (τ) =
eA0TΩ

′

2c
sinω0τ, (7.124)

g2 (τ) =
eA0T

2p̃
cosω0τ, (7.125)

where T is the coherent interaction time (for actual laser radiation T is the
pulse duration) and A0 is the average value of the slowly varied envelope.
Substituting Eqs. (7.124) and (7.125) into the expression for the wave func-
tion (7.119) and expanding the latter in terms of the full basis of the particle
eigenstates

Ψ (r, t) =
∑
p′

�
,n′
ap′

�
,n′ (t)Ψp′

�
,n′ (r, t) , (7.126)

we find the probabilities of the multiphoton induced transitions between the
transversal levels. To calculate the expansion coefficients

ap′
�
,n′ (t) =

∫
Ψ∗

p′
�
,n′ (r, t)Ψ (r, t) dr, (7.127)

we will take into account the result of the integration (4.73). Taking into
account Eqs.(7.124), (7.125), (7.119), and (7.127) we get the following ex-
pansion coefficients:

ap′
�
,n′ (t) = In,n′ (α) δp′

y,py
δp′

z,pz+µ�k0(n′−n)

× exp
{
i

�
(E(p′

�, n
′) − E(p�, n) − µ�ω0(n′ − n))t+ iφ

}
, (7.128)

where

µ =
1 − n0

vz

c∣∣1 − n0
vz

c

∣∣ ,
and

φ ≡ c

2�p̃

∞∫
−∞

Q (τ) dτ ′

is the constant phase. Here the argument of the Lagger function In,n′ (α) is

α =
e2A

2
0T

2

8�

Ω′

cp̃
. (7.129)
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According to Eq. (7.128) the transition of the particle from an initial state
{py, pz, n} to a state {p′

y, p
′
z, n

′} is accompanied by the emission or absorption
of |n− n′| number of photons. Consequently, substituting Eq. (7.128) into Eq.
(7.126) we can rewrite the particle wave function in the form

Ψ (r, t) = N

∞∑
n′=0

In,n′ (α) exp
{
i

�
(pyy + (pz + µ�k0(n′ − n))z)

}

× exp
{

− i

�
(E(p�, n) + µ�ω0(n′ − n)) t+ iφ

}
ϕn′ (x) . (7.130)

Hence, the probability of the induced transitions n → n′ between the energy
levels of the particle transversal motion in the channel finally is defined from
Eq. (7.130):

Wn,n′ = I2
n,n′

(
e2A

2
0T

2Ω′

8�cp̃

)
. (7.131)

Equation (7.130) shows that in the field of a strong EM wave the transver-
sal levels are excited at the absorption of the wave quanta if 1 − n0vz/c > 0
and µ = 1, corresponding to the normal Doppler effect, while in the case
1 − n0vz/c < 0 and µ = −1 the transversal levels are excited at the emission
of coherent quanta due to the anomalous Doppler effect.

Let us now estimate the average number of emitted (absorbed) photons
by the particle at the resonance for the high excited levels (n >> 1) and for
the strong EM wave. In this case the most probable number of photons in the
strong wave field corresponds to the quasiclassical limit (|n− n′| >> 1) when
multiphoton processes dominate and the nature of the interaction process is
very close to the classical one. In this case the argument of the Lagger function
can be represented as

α =
1
4n

(�Ecl

�ω0

)2

, (7.132)

where

�Ecl =
eE0T

2
v⊥∣∣1 − n0

vz

c

∣∣
is the maximal energy change of the particle according to classical pertur-
bation theory (E0 is the amplitude of the electric field strength of the EM
wave, v⊥ 
 c

√
2n�Ω/E� is the particle mean transversal velocity). Note

that according to conditions (3.92) of the considered eikonal approximation
∆E << E .
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The Lagger function is maximal at α → α0 =
(√

n′ − √
n
)2

, expo-
nentially falling beyond α0. Hence, for the transition n → n′ and when
|n− n′| << n we have

α0 
 (n′ − n)2

4n
.

The comparison of this expression with Eq. (7.132) shows that the most
probable transitions are

|n− n′| 
 �Ecl

�ω0
,

in accordance with the correspondence principle.
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