
6 Induced Nonstationary Transition Process

How will the nonstationarity of a medium reflect on the process of charged
particle interaction with strong laser radiation?

In the current laser fields of ultrashort pulse duration and relativistic in-
tensities any medium turns instantaneously (on a time span much smaller
than one wave cycle) into a plasma, that is, abrupt change of the medium
properties, particularly the dielectric permittivity, occurs in time.

On the other hand, with the abrupt change in time of the dielectric per-
mittivity of a medium, charged particle radiation occurs similar to transition
radiation on the boundary of two media with different dielectric permittivity.

In the presence of an external EM radiation field this nonstationary tran-
sition process acquires induced character and the inverse process of radiation
absorption by a charged particle is actualized, particularly in plasmas where
in the stationary states the radiation or absorption of quanta of a transversal
EM radiation field (monochromatic radiation such as a laser one) by a free
particle cannot proceed.

With the abrupt change in time of the medium dielectric permittivity the
production of hard quanta of relativistic energies from the laser radiation is
possible and, consequently, electron–positron pair creation in nonstationary
plasma of common densities is available. Meanwhile, for electron–positron
pair production in a stationary plasma (a medium should be plasmalike for
this process) by a γ-quantum a superdense plasma with electron densities
greater than 10 34cm−3 is necessary. Such superdense matter exists in astro-
physical objects (in the core of neutron stars — pulsars), leading to special
interest in the processes of electron–positron pair production and annihilation
in superdense plasma. On the other hand, the matter in the astrophysical ob-
jects may also be in a strongly nonstationary state.

Hence, it is important to study the induced nonstationary transition pro-
cess in the strong EM radiation field in a medium with an arbitrary dielectric
permittivity changing abruptly in time.
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6.1 Effect of Abrupt Temporal Variation of Dielectric
Permittivity of a Medium

In the investigation of charged particle interaction with strong EM radiation
in a medium, overall it was supposed that the electromagnetic properties of
the latter, i.e., the dielectric (ε0) and magnetic (µ0) permittivities and, con-
sequently, refractive index n0, are not changed in the field and the medium
being initially in the stationary state maintains its electromagnetic charac-
teristics n0 =

√
ε0µ0 = const.

Consider now how the nonstationarity of a medium will reflect on the
process of charged particle interaction with strong EM radiation. From the
physical point of view it is clear that the effects that arise here because of
the nonstationarity of a medium will be essential at the abrupt temporal
change of the dielectric permittivity (as it is generally assumed the magnetic
permittivity of the medium will be taken as µ0 = 1). Under the abrupt
change of ε here we mean its change at the time ∆t << 2π/ω, where ω is
the characteristic frequency because of the nonstationarity of a medium (then
radiation frequency by a charged particle in this process). Such abrupt change
of the dielectric permittivity occurs with the propagation of ultrashort laser
pulses of relativistic intensities in a medium when the tunneling ionization of
atoms on a time span smaller than a few femtoseconds/attoseconds occurs
and the medium instantaneously becomes a plasma.

Let a charged particle with constant initial velocity v0 move in a spatially
homogeneous and isotropic medium whose dielectric permittivity ε changes
abruptly at the time from a value ε1 to ε2

ε =

⎧⎨⎩ ε1, t < 0,

ε2, t > 0,
(6.1)

and let a strong EM wave propagate in this medium. To determine the elec-
tromagnetic field in that type of nonstationary medium one should solve the
macroscopic Maxwell equations

rotH (r, t) =
1
c

∂D (r, t)
∂t

+
4π
c

J (r, t) , (6.2)

rotE (r, t) = −1
c

∂B (r, t)
∂t

(6.3)

for t < 0 and for t > 0, then the obtained solutions should be laced at
the instant of time t = 0. At the discontinuity of the dielectric permittivity
(in general, properties of the medium) only the derivatives of the physical
quantities can have large values. Hence, the conditions of the lacing can be
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obtained by the integration of the Maxwell equations (6.2) and (6.3) over t
in the arbitrary small region including the instant of time t = 0 at which the
stepwise discontinuity of the dielectric permittivity (6.1) occurs. The latter
means that the integration should be made between the moments t1 = −∆t
and t2 = ∆t and then one should take the limit ∆t → 0. Taking into account
that the quantities rotH, rotE, and J are finite, after this procedure we obtain

D (r, t)|t=−0 = D (r, t)|t=+0 ,

B (r, t)|t=−0 = B (r, t)|t=+0 .

These equations can be written in terms of electric and magnetic field
strengths with the help of the constitutive equations

D (r, t) = ε (t)E (r, t) ; B (r, t) = H (r, t) ,

which yield to “boundary conditions”

ε1 E (r, t)|t=−0 = ε2 E (r, t)|t=+0 , (6.4)

H (r, t)|t=−0 = H (r, t)|t=+0 . (6.5)

Under the conditions (6.4) and (6.5) the charged particle radiation will
occur in the nonstationary medium similar to transition radiation on the
boundary of two media with different dielectric permittivity. This sponta-
neous radiation field can be obtained from the Maxwell equations (6.2), (6.3)
with the corresponding current density of a charged particle J (r, t) under the
conditions (6.4) and (6.5). However, we will not describe here the spontaneous
nonstationary transition radiation effect and refer the reader interested in this
process to the original work presented in the bibliography of this chapter. We
will consider the induced nonstationary transition process in the external EM
wave field. For the latter one needs also to clear up the question of how the
change of the dielectric permittivity (6.1) of the medium affects the external
monochromatic wave.

If a plane monochromatic wave of frequency ω0, wave vector k0, and elec-
tric field amplitude E0 propagates in a medium with the mentioned proper-
ties, then at t < 0 when ε = ε1

E (r, t) = E0e
i(ω0t−k0r) + c.c.; t < 0 (6.6)

and at t > 0 when ε = ε2 there are two waves — transmitted and reflected:

E (r, t) = E1e
i(ω1t−k1r) + E2e

i(−ω2t−k2r) + c.c.; t > 0. (6.7)
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Here ω1, k1, E1 and ω2, k2, E2 are the frequencies, wave vectors, and ampli-
tudes of the electric fields of the transmitted and reflected waves, respectively.
Since the medium is assumed to be spatially homogeneous, for the wave vec-
tors the condition takes place:

k0 = k1 = k2 = const, (6.8)

and the nonstationarity of the medium leads to a change of frequency. From
the condition for the wave vectors (6.8) follows the relations between the
frequencies of the incident, transmitted, and reflected waves:

ω0
√
ε1 = ω1

√
ε2 = ω2

√
ε2. (6.9)

Let the wave propagate along the axis OX with the vector of electric
field amplitude E0 directed along the OY axis. Then using conditions (6.4),
(6.5) and Maxwell equations (6.2), (6.3) for the field (6.6), (6.7) in the case
of the wave linear polarization, for the amplitudes of the electric field of the
transmitted and reflected waves we obtain

E1 =
√
ε1(

√
ε1 +

√
ε2)

2ε2
E0, (6.10)

E2 =
√
ε1(

√
ε1 − √

ε2)
2ε2

E0. (6.11)

Equations (6.10), (6.11) with the analogous equations for the magnetic
strengths, and Eqs. (6.8), (6.9) determine the electromagnetic fields of the
transmitted and reflected waves at the propagation of a plane monochromatic
EM wave in a medium the dielectric permittivity of which changes abruptly
at the time.

6.2 Classical Description of Induced Nonstationary
Transition Process

As was mentioned above in the presence of an external EM radiation field the
nonstationary transition process acquires induced character and the interac-
tion of a charged particle with the incident plane monochromatic wave in a
medium will proceed with the actual energy change and the acceleration of
the particles or induced coherent radiation will take place. It is of special in-
terest, in particular, in plasmas where for the stationary states the real energy
change between a charged particle and a transversal EM wave cannot proceed
because of the violation of the conservation law of energy-momentum for the
absorption/emission of quanta in the field of a plane monochromatic wave by
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a free charged particle. Hence, we will study the classical and quantum dy-
namics of the induced nonstationary transition process in the external wave
field on the basis of relativistic equations of motion for a charged particle.

Consider first the classical dynamics of the particle–wave interaction in a
medium with the abrupt temporal change of the dielectric permittivity. Then,
the initial monochromatic wave is transformed into a continuous wave spec-
trum (in general, finite since the change of ε actually occurs in finite time).
This spectrum of frequencies (ω) depends on the time during which the elec-
tromagnetic properties of the medium are changed. If the characteristic time
τ << 2π/ω, then the abrupt temporal change of the dielectric permittivity
can be described by the stepwise function ε (6.1).

With the stepwise discontinuity of the dielectric permittivity (6.1) the ini-
tial monochromatic wave (of linear polarization) is transformed into a spec-
trum that can be found via Fourier transformation over t

Ey (x,t) =
∫ ∞

−∞
Ey (x,ω) eiωtdω. (6.12)

Then for the field (6.6), (6.7) the Fourier transformEy (x,ω) may be presented
in the form

Ey (x,ω) =
e−ik0x

2π

{
E0

∫ 0

−∞
eεtei(ω0−ω)tdt+ E1

∫ ∞

0
e−εtei(ω1−ω)tdt

+ E2

∫ ∞

0
e−εte−i(ω1+ω)tdt

}
+
eik0x

2π

{
E0

∫ 0

−∞
eεte−i(ω0+ω)tdt

+ E1

∫ ∞

0
e−εte−i(ω1+ω)tdt+ E2

∫ ∞

0
e−εtei(ω1−ω)tdt

}
, (6.13)

where we have introduced an arbitrarily small damping factor ε → 0 to switch
on/off adiabatically the wave at t = ∓∞. After the integration in Eq. (6.13)
for the Fourier transform of the field we obtain

Ey (x,ω) =
e−ik0x

2πi

{
E2

ω + ω1 − iε
+

E1

ω − ω1 − iε
− E0

ω − ω0 + iε

}

+
eik0x

2πi

{
E2

ω − ω1 − iε
+

E1

ω + ω1 − iε
− E0

ω + ω0 + iε

}
. (6.14)

The infinitesimal quantity iε in the poles of Eq. (6.14) indicates the path
that should be chosen at the integration over ω (at the inverse Fourier trans-
formation as well). Taking into account Eqs. (6.9), (6.10), and (6.11) for the
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Ey (x,ω) we will have

Ey (x,ω) = E(ω)e−ik0x − E(−ω)eik0x, (6.15)

where

E(ω) =
E0

2πi

(
ε1
ε2

− 1
)

ω2

(ω − ω0)
(
ω2 − ω2

0
ε1
ε2

) . (6.16)

Here we have omitted the infinitesimal iε bearing in mind the role of the
poles bypass.

The analogous equations can be obtained for the magnetic field strength:

Hz (x,ω) = H(ω)e−ik0x −H(−ω)eik0x, (6.17)

H(ω) =
√
ε1ω0

ω
E(ω).

Now the problem of the particle–wave interaction in a nonstationary
medium with the abrupt temporal change of the dielectric permittivity re-
duces to the particle interaction with the EM field possesing the spectral
components (6.15), (6.17). Consequently, the relativistic classical equations
of motion of the particle take the form

dpx

dt
=
e

c
vy

∫ ∞

−∞

[
H(ω)e−ik0x −H(−ω)eik0x

]
eiωtdω, (6.18)

dpy

dt
= e

∫ ∞

−∞

[
E(ω)e−ik0x − E(−ω)eik0x

]
eiωtdω

−e

c
vx

∫ ∞

−∞

[
H(ω)e−ik0x −H(−ω)eik0x

]
eiωtdω, (6.19)

dpz

dt
= 0. (6.20)

The energy change of the particle is given by the equation

dE
dt

= evy

∫ ∞

−∞

[
E(ω)e−ik0x − E(−ω)eik0x

]
eiωtdω. (6.21)

The equations of motion (6.18)–(6.20) can be presented in the form
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dpx

dt
= −ie

c
k0

∫ ∞

−∞
vyF (ω, x, t)dω, (6.22)

dpy

dt
= i

e

c

∫ ∞

−∞
(k0vx − ω)F (ω, x, t)dω , (6.23)

dpz

dt
= 0, (6.24)

where the kernel in the integrals (6.22), (6.23)

F (ω, x, t) = A (ω) exp [i (ωt− k0x)] −A∗ (ω) exp [−i (ωt− k0x)] ,

and

A (ω) =
cE0

2π

(
ε1
ε2

− 1
)

ω

(ω − ω0)
(
ω2 − ω2

0
ε1
ε2

) (6.25)

is the spectral amplitude of the vector potential of the field (6.12).
We shall solve the set of equations (6.22)–(6.24) in the approximation

of the perturbation theory by the field. The parameter of the perturbation
theory is ξ0 = eE0/mcω0 << 1. As long as the particle motion along the z
axis remains free we can choose the initial velocity of the particle in the xy
plane: v0 = {v0 cos θ, v0 sin θ, 0}. According to perturbation theory

p = p0 +∆p; |∆p| << |p0| ,

and from the Eqs. (6.22), (6.23) in first-order approximation by ξ0 (keeping
only the uniform part of motion x(t) = x0 + v0xt on the right-hand side of
the equations) for the changes of the particle momentum in the field ∆p we
will obtain the following equations:

d∆px

dt
= −ie

c
k0

∫ ∞

−∞
v0yF (ω, x0 + v0xt, t)dω, (6.26)

d∆py

dt
= i

e

c

∫ ∞

−∞
(k0v0x − ω)F (ω, x0 + v0xt, t)dω . (6.27)

Integrating Eqs. (6.26) and (6.27) over t from −∞ to +∞ we obtain
in first-order approximation by ξ0 the following expressions for the particle
momentum change after the interaction:

∆px = −i2πek0

c
v0y

∫ ∞

−∞

[
A (ω) e−ik0x0
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−A∗ (ω) eik0x0
]
δ (ω − k0v0x) dω, (6.28)

∆py = i
2πe
c

∫ ∞

−∞
(k0v0x − ω)

[
A (ω) e−ik0x0

−A∗ (ω) eik0x0
]
δ (ω − k0v0x) dω. (6.29)

The δ-function in these expressions defines the condition of induced ra-
diation/absorption by a free charged particle in the field of a transversal
monochromatic EM wave under the nonstationary transition process:

ω − k0v0 = 0. (6.30)

Integrating in the same way Eqs. (6.21) and taking into account Eq. (6.30) for
the particle momentum and energy changes after the interaction we obtain
the following ultimate formulas:

�py = �pz = 0, �px =
�E

v0 cos θ
, (6.31)

�E=2mc2ξ0
v3
0

c3
(ε1 − ε2)

sin θ cos2 θ(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
)

× sin
(
ω0

√
ε1

v0 cos θ
c

t0

)
. (6.32)

Here t0 is the instant of time corresponding to the initial phase of the particle
in the external EM wave. Note that Eq. (6.32) besides the induced nonsta-
tionary transition process describes generally the induced Cherenkov effect as
well (see the denominator) if a medium initially (at t < 0) was dielectriclike
(in principle, it includes also the Cherenkov effect at t > 0 if ε2 > 1, but
for actual physical cases we assume that the stepwise discontinuity of ε (6.1)
may be realistic at the abrupt transformation of a dielectriclike medium into
a plasma for which ε2 < 1 and the induced Cherenkov effect is excluded).

As is seen from Eq. (6.32) depending on the initial phase

Φ0 = ω0t0
√
ε1 (v0/c) cos θ

the particle is either accelerated after the interaction or is decelerated radi-
ating coherently into the wave. This real energy exchange is due to the direct
and inverse induced nonstationary transition effect. In the case of a particle
beam, various particles situated initially in the diverse phases Φ0 will acquire
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or lose different energies in the field and the particles’ free drift after the
interaction will result in bunching of an initially homogeneous particle beam.

6.3 Quantum Description of Multiphoton Interaction

Consider now the quantum dynamics of the induced nonstationary transi-
tion process. Quantitative analysis of Eqs. (6.31) and (6.32) shows that the
classical energy exchange of a particle with strong EM radiation in a non-
stationary medium as a result of the induced nonstationary transition effect
corresponds to absorption and emission of a large number of photons. On the
basis of the quantum theory such multiphoton process can be described by
the quasiclassical-type wave function neglecting, in fact, the quantum recoil
at the absorption/emission of photons by the particle. The latter corresponds
to a slowly varying wave function for which the derivatives of the second order
of the particle wave function can be neglected with respect to the first order
ones that have been made in the consideration of the multiphoton processes in
the previous chapters. The role of the particle spin is inessential here, hence
by neglecting the spin interaction the Dirac equation in quadratic form is
written as the Klein–Gordon equation (3.30) for the particle in the specified
EM field. Assuming the same geometry as in Section 6.1 the latter takes the
form

−�
2 ∂

2Ψ

∂t2
=
[−�

2c2�2 + 2iec� �y Ay(x, t) + e2A2
y(x, t) +m2c4

]
Ψ, (6.33)

where

Ay(x, t) =
∫ ∞

−∞

[
A(ω)e−ik0x +A(−ω)eik0x

]
eiωtdω (6.34)

is the vector potential of the field (6.12) expressed via the spectral amplitude
A(ω) (6.25).

Equation (6.33) will be solved in the mentioned approximation by the
particle wave function

Ψ (r, t) =
√

N0

2E0
f(x, t) exp

[
i

�
(p0r−E0t)

]
, (6.35)

where f(x, t) is a slowly varying function with respect to the free-particle wave
function (see Section 3.5). Taking into account the conditions (3.92) and Eq.
(6.35) from Eq. (6.33) for f(x, t) we will obtain the differential equation of
the first order:

∂f

∂t
+ v0x

∂f

∂x
=

i

2�E0

[
2ecp0yAy(x, t) + e2A2(x, t)

]
f(x, t). (6.36)
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The conditions (3.92) correspond to a small change of the momentum and
energy of the electron in the field compared with the initial values �p << p0
and �E << E0, that is, the approximation made in the classical consid-
eration, where the intensity of the EM wave is restricted by the condition
ξ0 << 1. Then for actual values of parameters p0y/mc >> ξ0 and the last
term ∼ A2 in Eq. (6.36) will be neglected.

Passing from x, t to characteristic coordinates τ ′ = t− x/v0x, η
′ = t and

integrating Eq. (6.36) we obtain

f (τ ′, η′) = exp

{
iev0y

�c

∫ η′

−∞
Ay(v0x (η′′ − τ ′) , η′′)dη′′

}
. (6.37)

Then after the interaction (η′ → +∞) taking into account Eq. (6.34) we
obtain

f (τ) = exp
{
i4πev0y

�c
A
(
ω0

√
ε1

v0x

c

)
cos
(
ω0

√
ε1

v0x

c
τ
)}

. (6.38)

The spectral amplitude in Eq. (6.38) is determined by Eq. (6.25):

A
(
ω0

√
ε1

v0x

c

)
=

E0

2πω2
0

ε1 − ε2√
ε1

v0 cos θ(√
ε1

v0
c cos θ − 1

) (
ε2

v2
0

c2 cos2 θ − 1
) . (6.39)

Returning to coordinates x, t and expanding the exponential (6.38) into
a series by the Bessel functions and taking into account Eq. (6.39) for the
total wave function (6.35) we will have

Ψ (r, t) =
√

N0

2E0
exp
[
i

�
p0yy

] +∞∑
s=−∞

isJs (α)

× exp
{
i

�

[
p0x − s�

√
ε1
ω0

c

]
x− i

�

[
E0 − s�ω0

√
ε1

v0

c
cos θ

]
t

}
, (6.40)

where the argument of the Bessel function is

α = 2ξ0
mv2

0

�ω0

ε1 − ε2√
ε1

sinθ cos θ(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
) . (6.41)

As is seen from Eq. (6.40), due to the induced nonstationary transition
effect the particle absorbs or emits s photons, as a result of which the mo-
mentum and energy after the interaction are changed:
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�px = s�
ω0

c

√
ε1, �py = 0, �E =s�ω0

√
ε1

v0

c
cos θ. (6.42)

The probability of the induced s-photon process is

Ws = J2
s

⎛⎝ 2ξ0mv2
0 (ε1 − ε2) sinθ cos θ

�ω0
√
ε1
(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
)
⎞⎠ . (6.43)

The comparison of the expression for α with the amplitude of the classical
change of the particle momentum (�px)max (6.31) and energy (�E)max (6.32)
shows that

α =
(�px)max

�k0
, (6.44)

in accordance with the correspondence principle (s ∼ α >> 1).
At the small value of α or small number of photons s when the interac-

tion has entirely quantum character it is necessary to take into account the
quantum recoil as well. It is especially important in this process, because at
the abrupt temporal variation of the dielectric permittivity the hard quanta
in the spectrum of the initial radiation arise. We will solve for this purpose
Eq. (6.33) keeping also the derivatives of the second order of the particle
wave function for a single-photon absorption or emission. Correspondingly,
in first-order approximation of the perturbation theory from Eq. (6.33) we
have the following equation for the particle wave function at the single-photon
interaction with the field (6.35) in the nonstationary transition process:

∂2Ψ1

∂x2 − 1
c2
∂2Ψ1

∂t2
− 1

�2c2
(
m2c4 + c2p2

0y

)
Ψ1

= −2
ep0y

c�2

[
Ay (t) e−ik0x +A∗

y (t) eik0x
]
Ψ0, (6.45)

where

Ψ0 (r, t) =
√

N0

2E0
exp
[
i

�
(p0r − E0t)

]
(6.46)

is the initial wave function of the particle (normalized on N0 particles per
unit volume). The solution of Eq. (6.45) is sought in the form

Ψ1 (r, t) =
[
Φ1(t)e−ik0x + Φ2(t)eik0x

]
exp
[
i

�
(p0r − E0t)

]
. (6.47)

Substituting Eq. (6.47) in Eq. (6.45) for the functions Φ1(t) and Φ2(t) we
obtain the equations:
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d2Φ1

dt2
− 2i

E0

�

dΦ1

dt
− c2k0

(
2
p0x

�
− k0

)
Φ1 = 2

√
N0

E0

ecp0y

�2 Ay (t) , (6.48)

d2Φ2

dt2
− 2i

E0

�

dΦ2

dt
+ c2k0

(
2
p0x

�
+ k0

)
Φ2 = 2

√
N0

E0

ecp0y

�2 A∗
y (t) . (6.49)

The solution of Eq. (6.48) is

Φ1(t) = −2i
√
N0

E0

ecp0y

�2 (Ω1 −Ω2)

×
[
eiΩ1t

∫ t

−∞
e−iΩ1t′

Ay (t′) dt′ − eiΩ2t

∫ t

−∞
e−iΩ2t′

Ay (t′) dt′
]
, (6.50)

where the characteristic frequencies Ω1 and Ω2 are given by the expressions

Ω1,2 =
E0

�
∓
[(E0

�
− ω0

√
ε1

v0x

c

)2

+ ω2
0ε1

(
1 − v2

0x

c2

)]1/2

(6.51)

with the signs “∓” correspondingly.
Passing from Ay (t) to the Fourier component of the field we obtain for

Φ1(t) after the interaction (t → +∞)

Φ1(t) = −4i
√
N0

E0

πecp0y

�2 (Ω1 −Ω2)
[
A (Ω1) eiΩ1t −A (Ω2) eiΩ2t

]
, (6.52)

where the spectral amplitudes of the wave vector potential A (Ω1) and A (Ω2)
are determined by Eq. (6.25).

Solving Eq. (6.49) in an analogous way for the function Φ2(t) we obtain

Φ2(t) = −4i
√
N0

E0

πecp0y

�2 (Ω′
1 −Ω′

2)

[
A∗ (−Ω′

1) e
iΩ′

1t −A∗ (−Ω′
2) e

iΩ′
2t
]
, (6.53)

with the characteristic frequencies

Ω′
1,2 =

E0

�
∓
[(E0

�
+ ω0

√
ε1

v0x

c

)2

+ ω2
0ε1

(
1 − v2

0x

c2

)]1/2

. (6.54)

Equations (6.51) and (6.54) correspond to the energy-momentum conser-
vation law for a particle in the induced nonstationary transition process: the
particle can emit only the photons with frequencies Ω1,2 and absorb photons
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with frequencies Ω′
1,2. As long as E0/� >> ω0

√
ε1v0x/c for the frequencies of

a strong coherent radiation field we expand the square roots in Eqs. (6.51),
(6.54) in a series and retain only the small terms of first order. We then
obtain for the radiation frequencies:

Ω1 
 ω0
√
ε1

v0x

c
− ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
,

Ω2 
 2
E0

�
− ω0

√
ε1

v0x

c
+ ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
(6.55)

and for the absorption frequencies:

Ω′
1 
 −ω0

√
ε1

v0x

c
− ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
,

Ω′
2 
 2

E0

�
+ ω0

√
ε1

v0x

c
+ ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
. (6.56)

These expressions show that the emission of a photon with frequency Ω2
and absorption with frequency Ω′

2 has a clearly quantum character, and its
probability, as is seen from Eq. (6.25), depends on the change of the dielectric
permittivity of the medium ε1−ε2. We therefore consider two cases: ε1/ε2 � 1
and ε1/ε2 >> 1.

If ε1/ε2 � 1 we get from Eq. (6.25)

A (Ω2) 
 A

(
2
E0

�

)
<< A (Ω1) 
 A

(
ω0

√
ε1

v0x

c

)
, (6.57)

so that in this case we can neglect in Eqs. (6.52) and (6.53) the pure quantum
process of emission and absorption of hard quanta Ω2 
 2E0/�. Then for
the amplitudes of the particle wave function Φ1(t) and Φ2(t) we will have
correspondingly

Φ1,2(t) = i

√
N0

E0

ev2
0E0

�ω2
0c

ε1 − ε2√
ε1

sinθ cos θ(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
)

× exp
{
iω0

[
±√

ε1
v0

c
cos θ − ε1�ω0

2E0

(
1 − v2

0

c2
cos2 θ

)]
t

}
(6.58)

with the signs “±” correspondingly. Equation (6.58) with Eq. (6.47) deter-
mines the particle’s wave function after the single-photon interaction with the
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field (6.35) in the nonstationary transition process. In this case (ε1/ε2 � 1)
we obtain for the current density (∼ |Ψ0 + Ψ1|2) of the particles after the
interaction

j(x, t) = j0

{
1 + 2α sin

[
ε1

�ω2
0

2E0

(
1 − v2

0

c2
cos2 θ

)
t

]

× cos
[
ω0

√
ε1

v0 cos θ
c

(
t− x

v0 cos θ

)]}
, (6.59)

where j0 = const is the particle’s initial current density and α is defined by
Eq. (6.41) or (6.44). As is seen from Eq. (6.59) as a result of the stimulated
absorption and emission of the photons of frequency

Ω1 = ω0
√
ε1

v0

c
cos θ

the quantum modulation of the particle’s probability density and, conse-
quently, current density at this frequency occurs with a depth Γ1 = 2α. Also,
in contrast to the effect of quantum modulation in coherent processes con-
sidered in previous chapters, the pure temporal modulation here takes place
as well that is caused by the nonstationarity of the medium. The period of
this temporal modulation is

T1 =
4πE0

�ω2
0ε1

(
1 − v2

0
c2 cos2 θ

) .
If we derive the particle’s wave function in the next orders of perturba-

tion theory, then we obtain the modulation at higher harmonics of the wave
frequency. The modulation depth at the s-th harmonic will be Γs ∼ Γ s

1 .
For ε1/ε2 >> 1, it is necessary to also take into account in Eqs. (6.52),

(6.53) the pure quantum process of emission and absorption of hard quanta
Ω2 
 2E0/�. The spectral amplitude of the wave vector potential A (Ω2) at
such frequencies is

A (Ω2) 
 cE0

8π
ε1
ε2

(E2
0

�2 − ε1
ε2

ω2
0

4

)−1

. (6.60)

In an analogous way for the particles current density after the interaction we
will have

j(x, t) = j0

{
1 + Γ1 sin

[
ε1

�ω2
0

2E0

(
1 − v2

0

c2
cos2 θ

)
t

]
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× cos
[
ω0

√
ε1

v0 cos θ
c

(
t− x

v0 cos θ

)]

+Γ2 sin
(

2
E0

�
t

)
cos
[
ω0

√
ε1

v0 cos θ
c

(
t+

x

v0 cos θ

)]}
, (6.61)

where Γ1 = 2α, and the modulation depth Γ2 due to the absorption-emission
of hard quanta Ω2 is

Γ2 = ξ
mv0c�ω0

E2
0

ε1
ε2

sin θ

1 − ε1
ε2

(
�ω
2E0

)2 . (6.62)

The period of temporal modulation in this case is T2 = π�/E0.
As the modulated particle beam radiates coherently this mechanism can

be of interest in astrophysics where the radiating matter may be in a strongly
nonstationary state.

6.4 Electron–Positron Pair Production by a γ-Quantum
in a Medium

The formation of hard γ-quanta of frequencies ∼ E0/� in the spectrum of a
strong monochromatic EM wave propagating in a nonstationary medium, the
dielectric permittivity of which abruptly changes in time, makes available the
single-photon production of electron–positron (e−, e+) pairs from the intense
light fields in a nonstationary medium.

In general, the single-photon reaction γ → e− + e+ as well as the inverse
reaction of the electron–positron annihilation (e− + e+ → γ) can proceed
in a medium that must be plasmalike (for the satisfaction of conservation
laws for these reactions one needs n(ω) < 1). However, as will be shown
below, excessively large densities of the plasma in this case are required.
Meanwhile, the single-photon production of e−, e+ pairs in a nonstationary
plasma is possible at ordinary densities. Moreover, this process can proceed
in the strong light fields in an arbitrary medium turning abruptly into a
plasma (with the temporal variation law of ε (6.1)). Hence, we will consider
both single-photon reactions γ � e− + e+ in a stationary plasma and the
production of e−, e+ pairs from the intense light beam in a nonstationary
medium.

Consider first the production of electron–positron pairs by a γ-quantum
and its annihilation in a stationary medium. It is easy to see from the con-
servation laws of the energy and momentum for the single-photon reactions
γ � e− + e+

�k = p1 + p2; �ω = E1 + E2 (6.63)
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(ω, k are the γ-quantum frequency and wave vector, |k| = n(ω)ω/c, p1,2 and
E1,2 are the momenta and energies of the electron and positron, respectively)
that the phase velocity of a γ-quantum vph = c/n(ω) must be larger than c,
i.e., a medium for these processes must be plasmalike: n(ω) < 1. The latter
restricts the energy of a γ-quantum because of the dispersive properties of
a medium. Indeed, for the macroscopic meaning of the refractive index of a
medium for a γ-quantum at least one particle within a distance of the order of
λ/2 is required (λ is the wavelength of the γ-quantum), that is, the condition
λ/2 � l must be satisfied, where l is the distance between the electrons in
a plasma. Therefore, besides the threshold condition that follows from the
conservation laws (6.63):

�ω >
2mc2√

1 − n2(ω)
, (6.64)

for the reactions γ � e− + e+ in a medium the following requirement on the
plasma density N/V for a specified frequency ω of a γ-quantum arises:

ω � π

(
N

V

)1/3

≡ ωlim. (6.65)

Hence, condition (6.65) determines the lower bound for the density of the
medium or the upper bound for the energy of the γ-quantum, while threshold
condition (6.64) determines the lower bound for the energy of the γ-quantum
to cause the reactions γ � e− + e+ to proceed in a medium.

From the standpoint of single-photon pair creation and annihilation in
plasma, the latter must compensate the longitudinal momentum �p = [1 −
n(ω)]�ω/c transferred in these processes. Consequently, the characteristic
length in the macroscopic description of the dispersion of the medium is
the wavelength �/�p, which corresponds to the transferred momentum, and
the condition necessary for this is �/�p > (V/N)1/3. Since n(ω) < 1, this
condition is satisfied automatically when condition (6.65) is satisfied.

The plasma densities satisfying conditions (6.64) and (6.65) are at least:
N/V > 1033cm−3. Such superdense matter exists only in astrophysical ob-
jects, particularly in the core of the neutron stars (pulsars). At these densities
the electron component of the superdense plasma is highly degenerate (the
dispersion of the transverse electromagnetic waves is determined by elec-
trons). Actually, the degeneracy temperature of the electron component of
such plasma is TF > 1010 K. On the other hand, because of neutrino energy
losses, the physically attainable temperatures in an equilibrium system are
much lower than this: T << TF and the superdense plasma is fully degener-
ate.

Since the Fermi energy at the densities N/V > 1033cm−3 is EF > mc2

we need the dispersion law of the fully degenerate relativistic plasma. To
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determine the dispersion relation n = n (ω) of the latter we shall solve the self-
consistent set of Maxwell–Vlasov equations for the transverse monochromatic
EM wave in the relativistic collisionless plasma with the distribution function
f (p, r, t) (we will not consider the ions’ motion).

The characteristic equations of f (p, r, t) coincide with the single particle
equation of motion. The latter has been solved for an arbitrary medium in
Section 2.1 and in the case of plasma we have the following solutions in the
wave field with the vector potential A = {0, A0 cos (ωt− n (ω)ωx/c) , 0}:

px = p0x − n (ω)
c (1 − n2 (ω))

{
E0 − n (ω) cp0x

−
√

(E0 − n (ω) cp0x)2 + (1 − n2 (ω))
[
e2A2

y − 2ecp0yAy

]}
, (6.66)

py = p0y − e

c
Ay; pz = p0z, (6.67)

and for the energy of the particle in the field:

E = E0 − 1
1 − n2 (ω)

{
E0 − n (ω) cp0x

−
√

(E0 − n (ω) cp0x)2 + (1 − n2 (ω))
[
e2A2

y − 2ecp0yAy

]}
. (6.68)

The density of the electric current induced in the plasma can be defined by
the equation

j (r, t) = e

∫
vf (p, r, t) dp, (6.69)

where v =c2p/E is the velocity of the electrons with the distribution function
in the field f (p, r, t). According to the Liouville theorem for the collisionless
plasma we have

f (p, r, t) = f0 (p0, r0, t0) = f0 (p0) , (6.70)

since the electrons before the interaction were distributed stationary, uni-
formly and isotropic.

Defining from Eqs. (6.66)–(6.68) the velocity of the electrons as a function
of the p0, r, and t and then passing from the integration over p to integration
over p0 (taking into account Eq. (6.70)), Eq. (6.69) may be presented in the
form
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j (r, t) = ec2
∫

p (p0, r, t)
E (p0, r, t)

f0 (p0)J(p0, r, t)dp0, (6.71)

where

J(p0, r, t) =
∂(px, py, pz)
∂(p0x, p0y, p0z)

is the Jacobian of transformation. From Eqs. (6.66), (6.67) for the latter we
have

J(p0, r, t) = 1 − n (ω)
1 − n2 (ω)

(
cp0x

E0
− n (ω)

)

×
⎡⎣1 − E0 − n (ω) cp0x√

(E0 − n (ω) cp0x)2 + (1 − n2 (ω))
[
e2A2

y − 2ecp0yAy

]
⎤⎦ . (6.72)

In the linear approximation by a weak wave field (since it will be applied for
a γ-quantum) Eq. (6.72) can be written as follows:

J(p0, r, t) = 1 +
n (ω)

(E0 − n (ω) cp0x)2

(
cp0x

E0
− n (ω)

)
ecp0yAy. (6.73)

The components of the electric current density (6.71) in this linear regime of
interaction can be expressed in the form

jy (r, t) = ec2
∫ {

p0y

E0

(
1 +

(
1 − n2 (ω)

)
cp0yeAy

(E0 − n (ω) cp0x)2

)
− eAy

E0

}

×f0 (p0) dp0, (6.74)

jx = jz = 0. (6.75)

Then turning to spherical coordinates in Eq. (6.71)

p0x = p0 cos θ; p0y = p0 sin θ cosϕ; p0z = p0 sin θ sinϕ,

and taking into account that the initial distribution of the electrons in a
plasma is isotropic, after the integration in the equation

jy (r, t) = −e2cAy

∫ {
1 −

(
1 − n2 (ω)

)
c2p2

0y

(E0 − n (ω) cp0x)2

}
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×f0 (p0) p2
0

E0
sin θdθdϕdp0 (6.76)

by the angles, for the electric current density induced by a wave field in the
plasma we will have

jy (r, t) = −4πe2cAy

n2 (ω)

∫
f(p0)p2

0

E0

×
{

1 − E0
(
1 − n2 (ω)

)
2n (ω) cp0

ln
{E0 + n (ω) cp0

E0 − n (ω) cp0

}}
dp0. (6.77)

The Maxwell equation for the vector potential[
�2 − 1

c2
∂2

∂t2

]
Ay (r, t) = −4π

c
jy (r, t) (6.78)

with the current density (6.77) gives the following equation for the refractive
index of a relativistic plasma:

n2 (ω) = 1 − 16π2e2c2

n2 (ω)ω2

∫
f(p0)p2

0

E0

×
{

1 − E0
(
1 − n2 (ω)

)
2n (ω) cp0

ln
{E0 + n (ω) cp0

E0 − n (ω) cp0

}}
dp0. (6.79)

Equation (6.79) describes in general the dispersion law of a relativistic plasma
for an arbitrary electron distribution function. In principle, it is also valid for a
nondegenerate (relativistic and Maxwellian) electron plasma if an equilibrium
distribution with temperature T � TF can be realized in nature.

Now consider the production of electron–positron pairs by a γ-quantum
in a stationary medium (homogeneous and isotropic) with a refractive index
n(ω) < 1 (6.79). As this process is a QED effect of the first order, then
using the general rules for constructing the matrix element of a single-vertex
γ → e− + e+ diagram in a dispersive medium the probability amplitude will
be written in the form

Sif = −e
√

1
2ωaωn2 (ω)

∫
ψ1ε̂

(λ)eikxψ2d
4x. (6.80)

Here
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aω = 1 +
ω

n (ω)
dn (ω)
dω

,

ki(ω,k) is the 4-dimensional wave vector of the photon, quantization volume
V = 1, ε(λ) is the four-dimensional polarization vector of the photon (ε̂(λ) =
ε
(λ)
µ γµ), and

ψ1 = u1 (p1) ei(p1r−E1t); ψ2 = u2 (−p2) e−i(p2r−E2t) (6.81)

are the free electron and positron wave functions. Here the units � = c = 1
are used.

Performing integration in Eq. (6.80) with the wave functions (6.81) by the
standard method for the differential probability of the γ → e− + e+ process
per unit time and unit space volume (in the momentum volumes dp1/ (2π)3

of the electrons and dp2/ (2π)3 of the positrons, respectively) we will have

dW =
e2

8π2ωaωn2 (ω)

∣∣∣u1 (p1) ε̂(λ)u2 (−p2)
∣∣∣2 δ (ω − E1 − E2)

×δ (k − p1 − p2) dp1dp2. (6.82)

We will assume that the γ-quantum is nonpolarized and perform averaging by
the polarization states of the γ-quantum and summation over the electron and
positron spin projections. Then the probability of the e−, e+ pair production
per unit time is given by the expression

W =
e2

8π2aωωn2(ω)

∫ E1E2 +m2 − p1p2 cosϑ1 cosϑ2

E1E2
δ (ω − E1 − E2)

×δ (k − p1 − p2) dp1dp2, (6.83)

where ϑ1,2 is the angle between the vectors k and p1,2, respectively.
Integrating Eq. (6.83) over the positron momentum p2 we obtain the

following expression for the pair production probability:

W =
e2

8π2aωωn2(ω)

∫ (
1 +

m2 + p1 cosϑ1 (p1 cosϑ1 − k)
E1
√

E2
1 + k2 + kp1 cosϑ1

)

×δ
(
ω − E1 −

√
E2
1 + k2 + kp1 cosϑ1

)
dp1. (6.84)

For the integration over the electron momentum p1 note that because of
azimuthal symmetry
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dp1 = 2πp1E1dE1 sinϑ1dϑ1

and the integration over ϑ1 reduces formally to the following replacement in
Eq. (6.84):

δ

(
ω − E1 −

√
E2
1 + k2 + kp1 cosϑ1

)
sinϑ1dϑ1

→ ω − E1

kp1
[H (E1 − Emin(ω)) −H (E1 − Emax(ω))] ,

where H(x) is the Heaviside function

H(x) =

⎧⎨⎩1, x ≥ 0,

0, x < 0.

After the integration over ϑ1, Eq. (6.84) becomes

W =
e2

4πaωω2n5(ω)

∫ Emax(ω)

Emin(ω)

[(
1 − n2(ω)

) (E2
1 − ωE1

)
+ n2(ω)m2

+
1 − n4(ω)

4
ω2
]
dE1. (6.85)

The limits of integration over E1 ∈ [Emin, Emax] in Eq. (6.85)

Emin,max(ω) =
ω

2
∓ n(ω)

2

[
ω2 − 4m2

1 − n2(ω)

]1/2

(6.86)

are determined by the conservation laws for the γ � e− + e+ processes in
a medium (6.63) with the threshold value (6.64). Taking into account Eq.
(6.86) after the integration over the electron energy in Eq. (6.85) we obtain
the total probability for the single-photon e−, e+ pair production in a plasma:

W =
e2m2

6πω2aωn2(ω)

[
ω2 − 4m2

1 − n2(ω)

]1/2

×
{

1
2

( ω
m

)2 [
1 − n2(ω)

]
+ 1
}
. (6.87)
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Equation (6.86) with the dispersion law (6.79) of a relativistic plasma for
an arbitrary electron distribution function determine the probability of the
electron–positron pair production by a γ-quantum. As the electron compo-
nent the of superdense plasma required for this process is fully degenerate the
Pauli principle must also be taken into account that imposes an additional
restriction on the γ → e− + e+ reaction. The general picture of this process
taking into account the conditions (6.64), (6.65) and the Pauli principle will
be analyzed together with the electron–positron annihilation process in the
next section.

6.5 Annihilation of Electron–Positron Pairs in a
Medium

Now we will consider the inverse process of a single-photon annihilation of
an electron–positron pair in a stationary plasma. This process is also a QED
effect of the first order and the matrix element of a single-vertex e− + e+

→ γ diagram is the complex conjugate to the γ → e− + e diagram matrix
element:

S′
if = −e

√
1

2ωaωn2 (ω)

∫
ψ2ε̂

(λ)e−ikxψ1d
4x. (6.88)

The differential probability of the annihilation process per unit time and unit
space volume, summed by the polarization states of the created γ -quantum
in the momentum volume dk/ (2π)3, is given by the expression

dWγ =
πe2

2ωaωn2(ω)
E1E2 +m2 − p1p2 cosϑ1 cosϑ2

E1E2

×δ (ω − E1 − E2) δ (k − p1 − p2) dk. (6.89)

Equation (6.89) determines the annihilation probability for a single e−, e+

pair in plasma. To obtain the total probability of annihilation of an initial
positron with the plasma electrons one must define the probability of annihi-
lation of a positron of specified energy E2 with the electrons of the medium
in the momentum range p1,p1 + dp1:

Wγ =
πe2

2ωaωn2(ω)

∫
f (p1)

E1E2 +m2 − p1p2 cosϑ1 cosϑ2

E1E2

×δ (ω − E1 − E2) δ (k − p1 − p2) dkdp1, (6.90)

where f (p1) is the distribution function of the plasma electrons. We first
integrate over k in Eq. (6.90) and then over p1 taking into account that
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dp1 = 2πp1E1dE1 sinϑdϑ, where ϑ is the angle between the vectors p1 and
p2. The integration over ϑ reduces formally to the following replacement in
Eq. (6.90):

δ (ω − E1 − E2) sinϑdϑ

→ ωaωn
2(ω)

p1p2
[H (E1 − Emin(ω)) −H (E1 − Emax(ω))] ,

where the quantities Emin(max)(ω) are given by Eq. (6.86) and ω must be
replaced by E1 + E2 according to conservation law (6.63). Then for the prob-
ability of annihilation of a positron (with an energy E2) with the electrons of
the medium we will have

Wγ =
πe2

p2E2

∫
f (p1)

{
m2 + (E1 + E2)

2 1 − n4(ω)
4n2(ω)

− 1 − n2(ω)
n2(ω)

E1E2

}

× [H (E1 − Emin(ω)) −H (E1 − Emax(ω))] dE1. (6.91)

In contrast to the pair-production process (its probability can be obtained
without resorting to the explicit form of n(ω)), here we must have the explicit
form of the function n = n(ω) in order to be able to integrate over the electron
energy E1 (ω is now a function of E1, since ω = E1 + E2).

As the considered processes γ � e− + e+ are possible in the superdense
plasma where the electrons are fully degenerate, then the dispersion law of
such relativistic plasma can be obtained substituting the Fermi distribution
function for a fully degenerate electron gas

f(p1) =

⎧⎨⎩
1

4π3 , p1 ≤ pF

0, p1 > pF

(6.92)

in Eq. (6.79), describing in general the dispersion law of a relativistic plasma
for an arbitrary distribution function of electrons f(p0). Here pF is the bound-
ary Fermi momentum:

pF =
(
3π2ρe

)1/3
, (6.93)

and ρe is the electron density of a degenerate Fermi gas.
Integrating in Eq. (6.79) with the distribution function (6.92) over the

electron momenta we obtain the following dispersion law of a relativistic
degenerate plasma:

n2 (ω) = 1 − 2e2

n2 (ω)πω2
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×
{
pF EF − E2

F − n2 (ω) p2
F

2n (ω)
ln
{EF + n (ω) pF

EF − n (ω) pF

}}
, (6.94)

where EF is the relativistic Fermi energy corresponding to boundary momen-
tum (6.93). Inserting the dimensionless parameter

β =
n (ω) pF

EF

Eq. (6.94) can be written in the form

n2 (ω) = 1 − 2e2pF EF

n2 (ω)πω2

{
1 − 1 − β2

2β
ln
{

1 + β

1 − β

}}
, (6.95)

or in the form more convenient for further investigation

n2 (ω) = 1 − 2e2p3
F

ω2πEF
φ (β) , (6.96)

where the function φ (β) is

φ (β) =
1
β2

{
1 − 1 − β2

2β
ln

1 + β

1 − β

}
. (6.97)

By analogy with the usual determination of a plasma frequency, from
the equation n (ωp) = 0 we obtain the plasma frequency for a relativistic
degenerate one

ωp =

√
4e2p3

F

3πEF
. (6.98)

The frequency range corresponding to transverse waves that can propa-
gate in a superdense relativistic degenerate plasma — ωp ≤ ω < ∞ — can
then be obtained by varying the refractive index in the range 0 ≤ n < 1.
Therefore, we present the dispersion relation (6.96) in the inverted form
ω = ω(n):

ω2 =
2e2

π

p3
F

EF

1
1 − n2φ (β) . (6.99)

The parameter β in Eq. (6.99) then varies in the range 0 � β < pF /EF .
The analysis of the function φ (β), which can be expressed in the form

φ (β) = 2
∞∑

s=1

β2s−2

4s2 − 1
,
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shows that throughout the physically admissible range 0 ≤ β < 1 (for super-
dense ultrarelativistic plasma pF /EF ∼ 1) the function φ (β) varies monoton-
ically between the values 2/3 and 1.

The problem now reduces to the determination of the range of variation of
the energies of electrons that actually participate in the annihilation process
taking account of conditions (6.64), (6.65) and E1 ≤ EF for the annihilation
process. The situation may be clarified by defining this region graphically.
Figure 6.1 shows the Emin(max)(ω) curves and the lines corresponding to fre-
quencies ω = ωlim = (π/3)1/3pF (see Eq. (6.65)) and ω = ωmax = EF +E2. The
energies of the particles and γ-quantum can vary within the region ABCA,
and the limits of integration with respect to the electron energy E1 min and
E1 max are determined by the points at which the E1 = ω − E2 line cuts the
boundaries of this region.

Evaluating the integral in Eq. (6.91) with the dispersion law (6.99) we
obtain a bulky expression for the total probability of the annihilation process.
However, for the admissible values of n(ω) and electron density ρe with a great
accuracy for the function φ (β) we have: φ(npF /EF ) ≈ 2/3 and the ultimate
expression for the probability of the e− +e+ → γ process is rather simplified.

Fig. 6.1. Curves of Emin(ω), Emax(ω) and the lines corresponding to frequencies
ω = ωlim = (π/3)1/3pF and ω = ωmax = EF + E2. The energies of the particles and
γ-quantum can vary within the region ABCA, and the limits of integration with
respect to the electron energy E1 min and E1 max are determined by the points at
which the E1 = ω − E2 line cuts the boundaries of this region.
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The points of intersection of the line E1 = ω − E2 and the boundaries of the
region ABCA then correspond to

ω1 =
ωp

2m2

[
ωpE2 − p2

(
ω2

p − 4m2)1/2
]
,

ω2 =

⎧⎪⎨⎪⎩
ωp

2m2

[
ωpE2 + p2

(
ω2

p − 4m2
)1/2
]
, E2 ≤ Emin (ω = ωlim) ,

ωlim, Emin (ω = ωlim) < E2 < Emax (ω = ωlim) .
(6.100)

Finally, the total probability of the annihilation process is

Wγ =
e2

4πp2E2

[(
m2 +

ω2
p

2

)
(ω2 − ω1) +

1
2
ωp

(
E2
2 +

ω2
p

4

)

× ln
(ω2 − ωp) (ω1 + ωp)
(ω2 + ωp) (ω1 − ωp)

− E2ω
2
p

2
ln

(ω2 − ωp) (ω2 + ωp)
(ω1 − ωp) (ω1 + ωp)

]
. (6.101)

The lower limit for the density of the medium, above which pair annihilation
is possible, can be defined from the reaction threshold condition (6.64) and
the dispersion law (6.96). Thus, we obtain ωp > 2m, which is equivalent to
EF >

√
3πm/e ≈ 36m. The electron density of the plasma corresponding to

this value of EF is ρe > p3
F /3π

2 ≈ 3 · 1034cm−3.
For a nonrelativistic positron annihilation in an electron plasma we have

a simple formula for the total probability:

Wγ =
e2ω3

p

8πm3

(
ω2

p − 4m2)1/2
, p2 << m. (6.102)

Let us now analyze the results for the electron–positron pair production
in a superdense relativistic degenerate plasma with the dispersion law (6.96).
The Pauli principle in this case demands the satisfaction of the condition E1 >
EF which together with conditions (6.64) and (6.65) substantially reduces the
range of parameter values for this process to proceed even in the required
superdense plasma. The range of integration with respect to E1 in Eq. (6.85)
shrinks to a point and the probability of the process γ → e− + e+ tends
practically to zero. With the increase of the electron density when EF �
150m (Emax(ωlim) > EF , see Fig. 6.1), a narrow region appears and Eqs.
(6.65), (6.100) show that the creation of a pair by a γ-quantum with energy
ω1(E2 = EF ) < ω < ωlim becomes possible in this region. As a result, the
lower bound of the energy of a created electron instead of Emin (ω) should be
EF and from Eq. (6.85) we obtain
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W =
e2 (Emax(ω) − EF )

4πaωω2n5(ω)

{
1 − n2(ω)

3
(E2

max (ω) + EF Emax(ω) + E2
F

)

−1 − n2(ω)
2

ω (Emax(ω) + EF ) + n2(ω)m2 +
1 − n4(ω)

4
ω2
}
. (6.103)

However, it is important to recall that this region ω 
 ωlim lies at the limit of
validity of the macroscopic concept for a refractive index of a medium (one
particle within the length λ/2).

6.6 Electron–Positron Pair Production by Strong EM
Wave in Nonstationary Medium

As the probability of the single-quantum production of an electron–positron
pair in a stationary plasma, as a macroscopic dispersive medium, practically
equals zero (even at the required superdensities of electrons) it is reasonable
to consider an exclusive possibility for a single-photon pair production in a
nonstationary medium of ordinary densities by strong light fields. Namely,
we assume the abrupt temporal change of the dielectric permittivity of a
medium which may be described by the stepwise function ε (6.1).

In order to describe pair production in the field (6.6), (6.7) we shall employ
the Dirac model (all negative-energy states of the vacuum are filled with
electrons). The Dirac equation in the field (6.6), (6.7) has the form ( � = c =
1)

i
∂Ψ

∂t
=
[
α̂(p − eA) + β̂m

]
Ψ, (6.104)

where

A(r, t) =

⎧⎨⎩
iE0

ω0
ei(ω0t−k0r) + c.c., t < 0

iE1
ω1
eiω1t−k0r − iE2

ω1
e−iω1t−k0r + c.c., t � 0

(6.105)

is the vector potential of the EM field and α̂, β̂ are the Dirac matrices in the
standard representation (3.2).

We solve Eq. (6.104) by perturbing in the field of the wave. This method
is valid if [

1 +
(
ε1
ε2

)1/2
]
ξ0 << 1, ξ0 =

eE0

mω0
. (6.106)

We expand the perturbed first-order wave function Ψ1(r, t) in a complete
set of orthonormalized wave functions of the electrons (positrons) with mo-
menta p − k0 and p + k0:
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Ψ1(r, t) = Ψ
(−)
1 (t)ei(p−k0)r + Ψ

(+)
1 (t)ei(p+k0)r,

Ψ
(−)
1 (t) =

4∑
l=1

al(t)ul (p − k0, t) , (6.107)

Ψ
(+)
1 (t) =

4∑
j=1

bj(t)uj (p + k0, t) .

Here al(t) and bj(t) are unknown functions and ui (p′, t) are orthonor-
malized bispinor functions which describe the particle states with energies
±E ′ = ±

√
p′2 +m2:

u1,2 (p′, t) =
(E ′ +m

2E ′

)1/2
⎛⎝ ϕ1,2

σp′

E′+mϕ1,2

⎞⎠ exp (−iE ′t) , (6.108)

u3,4 (p′, t) =
(E ′ +m

2E ′

)1/2
⎛⎝ −σp′

E′+mχ3,4

χ3,4

⎞⎠ exp (iE ′t) . (6.109)

These functions are normalized to one particle per unit volume: u+
i uj = δij ;

the constant spinors ϕ1,2 and χ3,4 are

ϕ1 = χ3 =
(

1
0

)
, ϕ2 = χ4 =

(
0
1

)
.

Under the transformations (6.107)–(6.109) the Dirac equation for the per-
turbed wave function Ψ = Ψ0 + Ψ1 + · · · , (|Ψ1| << |Ψ0|):(

i
∂

∂t
− α̂p − β̂m

)
Ψ1 = −eα̂AΨ0 (6.110)

transforms into a system of 16 equations for the unknown functions al(t) and
bj(t): (

i
∂

∂t
− α̂p − β̂m

)[ 4∑
l=1

al(t)ul (p − k0, t) ei(p−k0)r

+
4∑

j=1

bj(t)uj (p + k0, t) ei(p+k0)r

]
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= −eα̂ [A(−)(t)e−ik0r + A(+)(t)eik0r
]
us (p, t) eipr, (6.111)

where s = 3, 4 and

A(−)(t) =

⎧⎨⎩
iE0

ω0
eiω0t, t < 0,

iE1
ω1
eiω1t − iE2

ω1
e−iω1t, t � 0,

A(+)(t) = A∗
(−)(t). (6.112)

The bispinor functions us (p, t) in Eq. (6.111) correspond to the unper-
turbed states of the Dirac vacuum (they are determined by Eq. (6.109) with
s = 3 and s = 4, where p′ = p and E ′ = E are the momenta and energies
of the free vacuum electrons). According to this model, a pair is produced
because of the interaction of the external field with the electrons of negative
energies of the Dirac vacuum. In the first-order perturbation theory in the
field this leads to electron states in the region of positive energies with the
values

E(−) =
√

(p − k0)
2 +m2, E(+) =

√
(p + k0)

2 +m2.

The probabilities of these transitions are determined by the amplitudes a1,2
and b1,2, respectively (the indices 1 and 2 correspond to two different spin
states). Therefore the problem reduces to determining the functions a1,2(t)
and b1,2(t) by integrating the set of Eqs. (6.111). From the latter we obtain
the following set of equations:

4∑
l=1

i
dal

dt
ul (p − k0, t) = −eα̂A(−)(t)us (p, t) , (6.113)

4∑
j=1

i
dbj
dt

uj (p + k0, t) = −eα̂A(+)(t)us (p, t) . (6.114)

Multiplying Eq. (6.113) on the left by u†
l (p − k0, t) and Eq. (6.114) by

u†
j (p + k0, t) and taking into account that the bispinors are orthonormal

(u†
lum = δlm) we obtain eight equations for the transitions amplitudes al(t)

and bj(t) for a given spinor state s of a vacuum electron (s = 3 or s = 4) :

dal(t)
dt

= ieu†
l (p − k0, t) α̂A(−)(t)us (p, t) , l = 1, ..., 4, (6.115)

dbj(t)
dt

= ieu†
j (p + k0, t) α̂A(+)(t)us (p, t) , j = 1, ..., 4. (6.116)
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Orienting the z axis parallel to the electric field E0 of the wave and the x
axis parallel to the wave vector k0, we obtain for the amplitudes a1,2 and b1,2

a1,2(t) = ieu†
1,2 (p − k0)αzus (p)

∫ t

−∞
A(−)(t′)e

i(E+E(−))t′
dt′, (6.117)

b1,2(t) = ieu†
1,2 (p + k0)αzus (p)

∫ t

−∞
A(+)(t′)e

i(E+E(+))t′
dt′, (6.118)

where u†
1,2 (p ∓ k0) and us (p) are constant bispinors determined by Eqs.

(6.108) and (6.109) (preexponential factors in Eqs. (6.108), (6.109)) .
The probability of electron production from a definite vacuum state p,

s is determined by the quantity |a1(t)|2 + |a2(t)|2 + |b1(t)|2 + |b2(t)|2 (the
probability of the production of a positron with a momentum p in a definite
spinor state s). The differential probability of pair production, summed over
the initial spin states of the Dirac vacuum, in an element of the phase volume
dp/(2π)3 (the spatial normalization volume V = 1), is

dW = 2
[|a1(t)|2 + |a2(t)|2 + |b1(t)|2 + |b2(t)|2

] |t→+∞
dp

(2π)3
. (6.119)

Integrating Eqs. (6.117), (6.118) over time with Eq. (6.112) and assuming
that the EM wave is switched on and switched off adiabatically: E0(t =
−∞) = E1(t = +∞) = E2(t = +∞) = 0 (the amplitudes of the incident,
transmitted, and reflected waves are assumed to be slowly varying functions
of time), we obtain the following expressions for the amplitudes a1,2 and b1,2
after the wave interaction with the Dirac vacuum:

a1,2(t = +∞) =
ieE0 (ε1 − ε2)

(E + E(−)
)

ε2
(E + E(−) + ω0

) ((E + E(−)
)2 − ω2

0
ε1
ε2

)

×
[
u†

1,2 (p − k0)αzus (p)
]
, (6.120)

b1,2(t = +∞) =
ieE0 (ε1 − ε2)

(E + E(+)
)

ε2
(E + E(+) − ω0

) ((E + E(+)
)2 − ω2

0
ε1
ε2

)
×
[
u†

1,2 (p + k0)αzus (p)
]
. (6.121)

Evaluating the transition matrix elements in Eqs. (6.120), (6.121), we ob-
tain with the help of Eq. (6.119) the differential probability of pair production
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by a strong EM wave in a nonstationary medium:

dW =
e2

(2π)3
E2

0

E
(
ε1
ε2

− 1
)2

×

⎧⎪⎨⎪⎩
(E + E(−)

)2 [EE(−) +m2 + px(px − k0) + p2
y − p2

z

]
E(−)

(E + E(−) + ω0
)2 [(E + E(−)

)2 − ω2
0

ε1
ε2

]2

+

(E + E(+)
)2 [EE(+) +m2 + px(px + k0) + p2

y − p2
z

]
E(+)

(E + E(+) − ω0
)2 [(E + E(+)

)2 − ω2
0

ε1
ε2

]2
⎫⎪⎬⎪⎭ dp. (6.122)

As one can see from Eq. (6.122), the process exhibits azimuthal asymmetry
with respect to the direction of propagation of the wave. Orienting the polar
axis in this direction (dp = pEdE sin θdθdϕ, where θ is the angle between
the vectors p and k0 and ϕ is the azimuthal angle relative to the direction
of polarization of the wave) and integrating over the energy, we obtain the
angular distribution of the produced electrons (positrons). As the case of
physical interest is an EM wave of frequencies ω << m, Eq. (6.122) simplifies
greatly and takes the form

dW =
e2E2

0

2π3

(
ε1
ε2

− 1
)2 √E2 −m2

E

×m2 sin2 θ cos2 ϕ+ E2
(
1 − sin2 θ cos2 ϕ

)(
4E2 − ω2

0
ε1
ε2

)2 sin θdθdϕdE . (6.123)

Integrating Eq. (6.123) over the energy we obtain the number of pairs
produced in the element of solid angle do = sin θdθdϕ:

dW (θ, ϕ) =
e2E2

0

128π2m

(
ε1
ε2

− 1
)2 [

F

(
2;

1
2
; 2;

ω2
0ε1

4m2ε2

)

× (1 − sin2 θ cos2 ϕ
)

+
1
4
F

(
2;

3
2
; 3;

ω2
0ε1

4m2ε2

)
sin2 θ cos2 ϕ

]
do, (6.124)

where F (ν;µ;λ; z) is the hypergeometric function.
For the energy distribution of the produced electrons (positrons) we have
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dW (E) =
2e2E2

0

3π2

(
ε1
ε2

− 1
)2 √E2 −m2

(
2E2 +m2

)(
4E2 − ω2

0
ε1
ε2

)2 dE . (6.125)

Integrating Eq. (6.124) over the angles θ and ϕ (or Eq. (6.125) over the
energy) we obtain the total number of electron–positron pairs produced by a
strong EM wave in a nonstationary medium:

W =
2e2E2

0

48πm

(
ε1
ε2

− 1
)2 [

F

(
2;

1
2
; 2;

ω2
0ε1

4m2ε2

)

+
1
8
F

(
2;

3
2
; 3;

ω2
0ε1

4m2ε2

)]
. (6.126)

Note that in Eqs. (6.123) and (6.125) the denominators become zero for
ω0
√
ε1/ε2 = 2E . This is the conservation law for the single-photon pair pro-

duction by a wave of the frequency ω1 = ω0
√
ε1/ε2 (by the transmitted and

reflected waves) in a medium with the index of refraction n2 =
√
ε2 < 1

(plasma). Since Eqs. (6.123)–(6.126) correspond to the case ω << m, the
pole in Eq. (6.123) can be reached, i.e., the conservation laws of energy and
momentum for the process γ → e− + e+ can be satisfied only if ε1/ε2 >> 1.
Actually this is possible if ε2 << 1, in agreement with the fact that pair
production by a photon field requires a plasmalike medium. It is obvious
from Eq. (6.126) that the total probability of the process diverges when
ω2

0ε1/4m
2ε2 = 1. The latter is associated with the fact that these probabili-

ties were determined for an infinitely long interaction time. In perturbation
theory probabilities are proportional to the interaction time (under station-
ary conditions) and diverge as t → ∞. Thus, this divergence is not associated
with the process studied here, which is governed by the time dependence of
the medium, and it can be eliminated by assuming ω2

0ε1/ε2 < 4m2. More-
over, for laser frequencies and realistic values of the dielectric permittivities
ω0
√
ε1/ε2 << 2E and from Eq. (6.126) we obtain the following expression

for the total number of e−, e+ pairs produced in the volume V due only to
the medium nonstationary properties:

W =
3e2E2

0V

128πm

(
1 − ε1

ε2

)2

. (6.127)

In the general case, for arbitrary frequency of EM wave and temporal
variation of the dielectric permittivity of the medium ε1/ε2 from Eq. (6.122)
the following formula for the pair’s probability distribution over the total
energy Et = Ee− +Ee+ of the produced particles can be derived:
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dW

dEt
=
e2E2

0

6π2

(
1 − ε1

ε2

)2(
1 − 4m2

E2
t − k2

0

)1/2

×E2
t

(E2
t + ω2

0
) (E2

t + 2m2 − k2
0
)

(E2
t − ω2

0)
(
E2

t − ω2
0

ε1
ε2

)2 . (6.128)
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