
5 Nonlinear Dynamics of Induced Compton
and Undulator Processes

In this chapter we will consider the interaction of charged particles with super-
strong radiation fields of relativistic intensities in induced coherent processes
in vacuum where there is no restriction on the field intensity taking place
at the induced Cherenkov interaction in dielectriclike media. Those are the
induced Compton and undulator processes.

In the presence of a second wave of different frequency, the Compton
scattering, as well as spontaneous undulator radiation in the external EM
wave field acquire induced character. Because of its coherent nature (as the
Cherenkov one) these induced processes have the same peculiarity and, con-
sequently, the nonlinear interaction of charged particles with the mentioned
fields leads to analogous threshold phenomena of particle “reflection” and
capture by the plane EM waves in vacuum.

On the other hand, it is clear that the second wave in the induced Comp-
ton process or the undulator field perform the role of the third body for the
real radiation/absorption of photons by the free electrons in vacuum. Hence,
irrespective of revelation of new phenomena the consideration of nonlinear dy-
namics of induced Compton and undulator processes in current superstrong
laser fields is of great interest, especially from the point of view of FEL and
laser accelerators. Further, the significance of the undulator (wiggler) is great
enough as the unique version of the current FEL and expected X-ray laser
due to its large coherent length and effective power of the static magnetic field
for relativistic particles.

To achieve relatively large coherent lengths in the induced Compton pro-
cess we will consider the case of counterpropagating waves.

5.1 Interaction of Charged Particles with Superstrong
Counterpropagating Waves of Different Frequencies

Consider the classical dynamics of a charged particle at the interaction with
two counterpropagating (along the axis OX) plane EM waves having ar-
bitrary electric field strengths E1

(
t− x

c

)
and E2

(
t+ x

c

)
in vacuum. The

relativistic equation of motion in components is written as
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dpx

dt
=
e

c
(vE1 − vE2) , (5.1)

dpy
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= e
(
1 − vx

c

)
E1y + e

(
1 +

vx

c

)
E2y,

dpz

dt
= e
(
1 − vx

c

)
E1z + e

(
1 +

vx

c

)
E2z. (5.2)

This set of equations allows exact solution when the particle initial velocity is
directed along the axis OX and the waves are monochromatic with circular
polarization:

E1 (x, t) =
{

0, E1 cosω1

(
t− x

c

)
, E1 sinω1

(
t− x

c

)}
,

E2 (x, t) =
{

0, E2 cosω2

(
t+

x

c

)
, E2 sinω2

(
t+

x

c

)}
. (5.3)

From Eq. (5.2) in the field (5.3) we obtain

py =
eE1

ω1
sinω1

(
t− x

c

)
+
eE2

ω2
sinω2

(
t+

x

c

)
,

pz = −eE1

ω1
cosω1

(
t− x

c

)
− eE2

ω2
cosω2

(
t+

x

c

)
(5.4)

(the waves are turned on and turned off adiabatically at t → ∓∞).
For the integration of Eq. (5.1) we will use the equation for the particle

energy exchange in the field

dE
dt

= e (vE1 + vE2) . (5.5)

Thus, defining the particle transverse velocity in the field by Eqs. (5.4), from
Eqs. (5.1) and (5.5) we obtain the following integral of motion in the induced
Compton process:

E − c
ω1 − ω2

ω1 + ω2
px = const. (5.6)

The latter together with Eq. (5.4) determines the particle energy in the field

E =
E0

n2
1 − 1

{
n2

1

(
1 − v0

cn1

)
∓
[(

1 − n1
v0

c

)2
− (n2

1 − 1
)(mc2

E0

)2



5.1 Interaction of Charged Particles with Counterpropagating Waves 147

×
[
ξ21 + ξ22 + 2ξ1ξ2 cos (ω1 − ω2)

(
t− n1

x

c

)]]1/2
}
. (5.7)

The parameter n1 included in Eq. (5.7) is

n1 =
ω1 + ω2

|ω1 − ω2| , (5.8)

and the parameters ξ1,2 ≡ eE1,2/mcω1,2.
As is seen from Eq. (5.7) due to the effective interaction of the particle

with the counterpropagating waves a slowed traveling wave in vacuum arises.
The parameter n1 denotes the refractive index of this interference wave and
since n1 > 1 (see Eq. (5.8)) the phase velocity of the effective traveling wave
vph = c/n1 < c. Then the expression under the root in Eq. (5.7) evidences
the peculiarity in the interaction dynamics like the induced Cherenkov one
that causes the analogous threshold phenomena of particle “reflection” and
capture by the interference wave in the induced Compton process. Hence,
omitting the same procedure related to bypass of the multivalence and com-
plexity of Eq. (5.7), which has been made in detail for the analogous expres-
sion in the Cherenkov process, we will present the final results for particle
“reflection” and capture by the effective interference wave in the induced
Compton process. The threshold value of the “reflection” phenomenon or the
critical field for nonlinear Compton resonance is

ξcr (ω1,2) ≡ (ξ1 + ξ2)cr =
E0

mc2

∣∣ω1
(
1 − v0

c

)− ω2
(
1 + v0

c

)∣∣
2
√
ω1ω2

. (5.9)

If one knows the longitudinal velocity vx of the particle in the field, then it
is easy to see that ξcr (ω1,2) is the value of the total intensity of counter-
propagating waves at which vx becomes equal to the phase velocity of the
effective interference wave: vx = vph = c/n1 irrespective of the magnitude of
particle initial velocity v0. The latter is the condition of coherency of induced
Compton process

ω1

(
1 − vx

c

)
= ω2

(
1 +

vx

c

)
. (5.10)

Under condition (5.10) the nonlinear resonance in the field of counterpropa-
gating waves of different frequencies occurs and because of induced Compton
radiation/absorption the particle velocity becomes smaller or larger than the
phase velocity of the interference wave and the particle leaves the slowed
effective wave. In the rest frame of the latter the particle swoops on the mo-
tionless barrier (if ξ1+ξ2 > ξcr (ω1,2)) and the elastic reflection occurs. In the
laboratory frame it corresponds to inelastic “reflection” and from Eq. (5.7)
for particle energy after the “reflection” (ξ1,2 → 0 adiabatically at t → +∞)
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we have

E = E0
ω2

1
(
1 − v0

c

)
+ ω2

2
(
1 + v0

c

)
2ω1ω2

. (5.11)

From this equation it follows that the energy of the particle with the initial
velocity v0 = c |ω1 − ω2| / (ω1 + ω2) corresponding to the resonance value of
the induced Compton process does not change after the interaction (E =
E0). For such particle ξcr (ω1,2) = 0, i.e., it cannot enter the field: ξ1 =
ξ2 = 0. The particle with the initial velocity v0 > c |ω1 − ω2| / (ω1 + ω2)
after the “reflection” is decelerated, while at v0 < c |ω1 − ω2| / (ω1 + ω2) it
is accelerated because of direct and inverse induced Compton processes. At
the acceleration the particle absorbs photons from the wave of frequency
ω1 and coherently radiates into the wave of frequency ω2 if ω1 > ω2 and
at the deceleration the inverse process takes place. Hence, at the particle
acceleration the amplification of the wave of a smaller frequency holds, while
at the deceleration the wave of a larger frequency is amplified.

In the case of ω1 = ω2 ≡ ω the refractive index of the interference wave
n1 = ∞ and nonlinear interaction of the particle with the strong standing
wave occurs. It is evident that in this case the process is elastic: E = E0 =
const (see Eq. (5.11)) and for the longitudinal momentum of the particle in
the field we have

px = ±
√
p2
0 −m2c2

(
ξ21 + ξ22 + 2ξ1ξ2 cos

2ω
c
x

)
. (5.12)

From this equation it is seen that at ξ1 +ξ2 > ξcr (ω) = |p0| /mc the standing
wave becomes a potential barrier for the particle and elastic reflection occurs:
the root changes its sign and px = −p0 (if ξ1 + ξ2 < ξcr (ω) we have px = p0).

Consider now the nonlinear dynamics of a particle with the arbitrary
direction of velocity v0 initially situated in the field of counterpropagating
waves (internal particle). It is clear that at the wave intensities ξ1 + ξ2 >
ξcr (ω1,2) when the “reflection” of an external particle from the slowed trav-
eling wave holds, an internal particle under the specified conditions may be
captured by the such slowed wave. Consequently, one needs to define the con-
ditions for the particle capture by the effective field in the induced Compton
process.

Let a particle with velocity v0 be situated in the initial phases φ10 =
ω1(t0 −x0/c) and φ20 = ω2(t0 +x0/c) of linearly polarized along the axis OY
counterpropagating waves (in Eq. (5.3) E1z = E2z = 0, so the coordinate z is
free and one can assume v0z = 0). The solution of Eqs. (5.1) and (5.2) under
these initial conditions for the particle momentum in the field gives

px = p0x +
n2

1

n2
1 − 1

E0

c

{
1 − n1

v0x

c
∓
[(

1 − n1
v0x

c

)2
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− (n2
1 − 1

)(mc2
E0

)2 [1
2
(
ξ21 + ξ22

)
+ (ξ1 sinφ10 + ξ2 sinφ20)

(
ξ1 sinφ10

+ξ2 sinφ20 − 2
P0y

mc

)
+ ξ1ξ2 cos (φ1 − φ2)

]]1/2
}
, (5.13)

py = p0y +mcξ1 (sinφ1 − sinφ10) +mcξ2 (sinφ2 − sinφ20) , (5.14)

where

φ1 − φ2 = (ω1 − ω2)
(
t− n1

x

c

)
.

In the derivation of Eq. (5.13) the averaging over fast oscillations of separate
waves with respect to the interference wave (in the intrinsic frame of which
only a static magnetic field acts on the particle) in Eqs. (5.1) and (5.5)
has been made. Physically it corresponds to time averaging of noncoherent
interaction with separate waves in relation to coherent interaction due to
induced Compton resonance. In this approximation the integral of motion
(5.6) remains applicable and with Eq. (5.13) it determines the energy of the
particle at the coherent interaction with the counterpropagating waves of
different frequencies.

The equilibrated phases for the particle capture in this process correspond
to extrema of the interference wave and the motion of the particle is stable
in the phases

(φ1 − φ2)s = (ω1 − ω2)
(
t− n1

x

c

)
s

= π (2k + 1) ; k = 0,±1, . . . . (5.15)

Equation (5.15) shows that the particle situated in the equilibrated phases
moves with the velocity

vxs = c (ω1 − ω2) / (ω1 + ω2) .

Let the particle initial longitudinal velocity be equilibrated: v0x = vxs.
If p0y = 0 as well, then the analysis of Eq. (5.13) shows that the capture
of such particle is possible at ξ1 = ξ2 (eE1/ω1 = eE2/ω2, i.e., the waves
should transfer to the particle equal momenta) and (φ1 − φ2)0 = π (2k + 1) =
(φ1 − φ2)s. From Eq. (5.14) for equilibrated transverse momentum in this
case we have pys = p0y = 0. If v0x = vxs+ �v and p0y = 0, then we have the
following condition for the particle capture:

|�v| < c

n1

mc2

E0
ξ

√
(n2

1 − 1)
[
2 + (sinφ10 + sinφ20)

2
]
, (5.16)
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from which one can define the tolerance for divergences of initial phases and
velocity of a nonequilibrium particle. On the other hand, condition (5.16) de-
fines the threshold value of the wave intensities for the capture of a nonequi-
librium particle, which coincides with the critical intensity for the “reflection”
of an external particle (5.9) at ξ1 = ξ2 ≡ ξ and φ10 = φ20 = 0 (coefficient

√
2

arises because of different polarization of the waves).
Now let v0x = vxs but p0y �= 0. If at that (φ1 − φ2)0 �= π (2k + 1), then

the motion of the particle will be stable at the condition

p0y (sinφ10 + sinφ20) > 0;
|p0y|
mcξ

> 1. (5.17)

The condition for the capture in this case is |p0y| /mcξ < 3/2, which with the
condition of stability (5.17) strictly restricts the transverse momentum of the
particle. Meanwhile the conditions of stability and capture in the minimums
of the interference wave (φ1 − φ2)0 = π (2k + 1) are automatically satisfied.
Hence, these phases are equilibrated at the arbitrary transverse momentum
of the particle (p0y = pys).

If the particle initial velocity differs from the equilibrated one (v0x �= vxs)
and p0y �= 0, the tolerance for the capture of a nonequilibrium particle is
defined analogously to condition (5.16).

5.2 Interaction of Charged Particles with Superstrong
Wave in a Wiggler

Consider the nonlinear dynamics of a charged particle at the interaction with
a strong EM wave in a magnetic undulator. Let a particle with an initial
velocity v0 = v0x enter into a magnetic undulator with circularly polarized
field

H(x) =
{

0,−H cos
2π
l
x,H sin

2π
l
x

}
(5.18)

(l is the space period or step of an undulator) along the axis of which prop-
agates a plane monochromatic EM wave of circular polarization with the
electric field strength

E(x, t) =
{

0, E0 sinω0(t− x

c
), E0 cosω0(t− x

c
)
}
. (5.19)

The equation of motion of the particle in the fields (5.18) and (5.19) in
components is written as

dpx

dt
=
e

c
E0

[
vy sinω0(t− x

c
) + vz cosω0(t− x

c
)
]
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+
e

c
H

[
vy sin

2π
l
x+ vz cos

2π
l
x

]
, (5.20)

dpy

dt
= eE0

(
1 − vx

c

)
sinω0(t− x

c
) − e

vx

c
H sin

2π
l
x,

dpz

dt
= eE0

(
1 − vx

c

)
cosω0(t− x

c
) − e

vx

c
H cos

2π
l
x. (5.21)

Integration of Eqs. (5.21) under the assumed initial conditions (at t = −∞
the particle has only longitudinal velocity, i.e., p0y = p0z = 0) gives

py = −eE0

ω0
cosω0(t− x

c
) +

elH

2πc
cos

2π
l
x,

pz =
eE0

ω0
sinω0(t− x

c
) − elH

2πc
sin

2π
l
x. (5.22)

The integration of Eq. (5.20) is made analogously to the integration of Eq.
(5.1). Using the equation for the particle energy exchange in the field

dE
dt

= eE0

[
vy sinω0(t− x

c
) + vz cosω0(t− x

c
)
]
, (5.23)

with the help of Eqs. (5.1), (5.22), and (5.23) we obtain the integral of motion
in the induced undulator process

E− c

1 + λ
l

px = const. (5.24)

Equations (5.22) and (5.24) determine the particle energy

E =
E0

n2
2 − 1

{
n2

2

(
1 − v0

cn2

)
∓
[(

1 − n2
v0

c

)2
− (n2

2 − 1
)(mc2

E0

)2

×
[
ξ20 + ξ2H − 2ξ0ξH cosω0(t− n2

x

c
)
]]1/2}

(5.25)

in the field of a strong EM wave in the magnetic undulator, which is charac-
terized by relativistic parameter

ξH =
elH

2πmc2
(5.26)
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(for large magnitudes of undulator field strength H and space period l when
ξH > 1 such undulator is called a wiggler).

From Eq. (5.25) it follows that at the particle–wave nonlinear resonance
interaction in the undulator an effective slowed traveling wave is formed as
in the induced Compton process. The parameter

n2 = 1 +
λ

l
(5.27)

is the refractive index of this slowed wave, which causes the analogous thresh-
old phenomenon of particle “reflection”% in the induced undulator process.
The effective critical field at which the nonlinear resonance and then the
particle “reflection” take place in the undulator, is

ξcr

(
λ

l

)
≡ (ξ0 + ξH)cr =

∣∣1 − (1 + λ
l

) v0
c

∣∣√
2λ
l

(
1 + λ

2l

) E0

mc2
. (5.28)

At this value of the resulting field the longitudinal velocity of the particle vx

reaches the resonant value in the field at which the condition of coherency in
the undulator

2π
l

vx = ω0

(
1 − vx

c

)
(5.29)

is satisfied. The latter has a simple physical explanation in the intrinsic frame
of the particle. In this frame of reference the static magnetic field (5.18)
becomes a traveling EM wave with the frequency

ω =
2π
l

vx√
1 − v2

x

c2

and phase velocity vph = vx. For coherent interaction process this frequency
must coincide with the Doppler-shifted frequency of stimulated wave.

The energy of the particle after the “reflection” (in Eq. (5.25) ξ0 = ξH = 0
at the sign “+” before the root) is

E = E0

[
1 +

1 − (1 + λ
l

) v0
c

λ
l

(
1 + λ

2l

) ]
. (5.30)

From this equation it follows that the particle with the initial velocity v0 <
c/(1 + λ/l) after the “reflection” accelerates, while at v0 > c/(1 + λ/l) it
decelerates because of induced undulator radiation.
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If a particle is initially situated in the field, under the certain conditions
it may be captured by the slowed-in-the-undulator effective wave. We shall
define those conditions.

Let a particle with the velocity v0 be situated in the initial phases φ10 =
ω0(t0−x0/c) and φ20 = 2πx0/l of a linearly polarized EM wave and undulator
field

Ey(x, t) = −E0 cosω0(t− x

c
); Hz(x) = H cos

2π
l
x. (5.31)

The solution of Eqs. (5.1) and (5.2) under these initial conditions for the
particle momentum in the field gives

px = p0x +
n2

n2
2 − 1

E0

c

{
1 − n2

v0x

c
∓
[(

1 − n2
v0x

c

)2

− (n2
2 − 1

)(mc2
E0

)2 [1
2
(
ξ20 + ξ2H

)
+ (ξ0 sinφ10 + ξH sinφ20)

×
(
ξ0 sinφ10 + ξH sinφ20 − 2

P0y

mc

)
+ ξ0ξH cosω0(t− n2

x

c
)
]]1/2

}
, (5.32)

py = p0y +mcξ0

[
sinω0(t− x

c
) − sinφ10

]

+mcξH

(
sin

2π
l
x− sinφ20

)
. (5.33)

Note that at the derivation of Eq. (5.32) in Eqs. (5.20) and (5.23) the time
averaging of noncoherent interaction with respect to coherent interaction has
been made. In this approximation the integral of motion (5.24) remains ap-
plicable and with Eq. (5.32) determines the energy of the particle at the
coherent interaction with the strong EM wave in a wiggler.

The equilibrated phases for the particle capture correspond to extrema
of slowed-in-the-undulator effective wave and the motion of the particle is
stable in the phases

φs = ω0

[
t−
(

1 +
λ

l

)
x

c

]
s

= π (2k + 1) ; k = 0,±1, . . . . (5.34)

From Eq. (5.34) one can define the particle velocity in the equilibrated phase:
vxs = c/(1 + λ/l). If the initial velocity of the particle v0x = vxs and p0y =
0 the capture of such particle is possible at ξ0 = ξH that is λE0 = lH,
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i.e., the strong wave and wiggler field should transfer to the particle equal
momenta and φ10 − φ20 = φs (at that pys = 0). If the initial velocity of
the particle differs from the equilibrated one (v0x �= vxs) and p0y = 0 the
tolerance for the capture of nonequilibrium particles is defined analogously
to condition (5.16) in the induced Compton process. If p0y �= 0, then as in the
case of counterpropagating waves the phases φ0 = π (2k + 1) automatically
are equilibrated for the arbitrary p0y (p0y = pys). In the other cases the
conditions for particle capture by the effective slowed wave in the regime of
stable motion in the wiggler are defined as for those in the induced Compton
interaction.

The “reflection” phenomenon of charged particles from a plane EM wave,
as was shown in the induced Cherenkov process, may be used for monochrom-
atization of the particle beams. Note that the considered vacuum versions of
this phenomenon are more preferable for this goal taking into account the
influence of negative effects of the multiple scattering and ionization losses
in a medium. On the other hand, the refractive index of the effective slowed
waves in vacuum n1 or n2 in corresponding induced Compton and undulator
processes may be varied choosing the appropriate frequencies of counter-
propagating waves or wiggler step. In particular, for monochromatization of
particle beams with moderate or low energies via the induced Cherenkov pro-
cess one needs a refractive index of a medium n0 − 1 ∼ 1 that corresponds
to solid states. Meanwhile, such values of effective refractive index may be
reached in the induced Compton process at the frequencies ω1 ∼ ω2 of the
counterpropagating waves. However, we will not consider here the possibility
of particle beam monochromatization on the basis of the vacuum versions
of “reflection” phenomenon since the principle of conversion of energetic or
angular spreads is the same. To study the subject in more detail we refer the
reader to original papers listed in the bibliography of this chapter.

5.3 Inelastic Diffraction Scattering on a Moving Phase
Lattice

Consider now the quantum dynamics of a particle coherent interaction with
the counterpropagating waves of different frequencies in the induced Compton
process. Neglecting the spin interaction (with the same justification that has
been made in the above-considered processes) we will derive from the Klein–
Gordon equation in the field of quasimonochromatic waves with the vector
potentials A1(t− x/c) and A2(t+ x/c) which is written as

−�
2 ∂

2Ψ

∂t2
=
{

−�
2c2�2 +m2c4 + e2

[
A1(t− x

c
) + A2(t+

x

c
)
]2
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+2ie�c
[
A1(t− x

c
) + A2(t+

x

c
)
]
�
}
Ψ. (5.35)

As we saw in the classical consideration of the dynamics of the induced Comp-
ton process the effective interaction occurs with the slowed interference wave.
At the intensities of the waves ξ1 + ξ2 < ξcr (ω1,2) when the particle can pen-
etrate into the interference wave the latter will stand for a phase lattice for
the particle (at the satisfaction of the condition of coherency (5.10)) and the
coherent scattering will occur as for the diffraction effect on a crystal lattice.
However, in contrast to diffraction on a motionless lattice (elastic scattering)
the diffraction scattering on the moving phase lattice has inelastic charac-
ter. To determine this quantum effect we will solve Eq. (5.35) in the eikonal
approximation by the particle wave function (3.91) corresponding to multi-
photon processes in strong fields. In accordance with the latter the solution
of Eq. (5.35) for the waves of linear polarizations (along the axis OY )

A1(t− x/c) = A1(t) cosω1(t− x/c),

A2(t+ x/c) = A2(t) cosω2(t+ x/c)

we look for in the form Eq. (3.91) and for the slowly varying function f(x, t)
(see Eq. (3.92)) we obtain the following equation:

∂f

∂t
+ v0x

∂f

∂x
=
{

− ie2

2�E0

[
A2

1(t) cos2 ω1(t− x

c
) +A2

2(t) cos2 ω2(t+
x

c
)

+A1(t)A2(t) cos(ω1 + ω2)
(
t− ω1 − ω2

ω1 + ω2

x

c

)

+A1(t)A2(t) cos(ω1 − ω2)
(
t− ω1 + ω2

ω1 − ω2

x

c

)]

+
iecp0y

�E0

[
A1(t) cosω1(t− x

c
) +A2(t) cosω2(t+

x

c
)
]}
f(x, t). (5.36)

As is seen from Eq. (5.36) at the interaction with the counterpropagating
waves of different frequencies two interference waves are formed — third
and fourth terms on the right-hand side — which propagate with the phase
velocities

vph = c
ω1 + ω2

|ω1 − ω2| > c

and
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vph = c
|ω1 − ω2|
ω1 + ω2

< c,

respectively. It is clear that the interaction of the particle with the wave prop-
agating with the phase velocity vph > c, as well as with the incident separate
waves propagating in the vacuum with the phase velocity c (remaining four
terms on the right-hand side of Eq. (5.36)), cannot be coherent. These terms
correspond to noncoherent scattering of the particle in the separate wave
fields which vanish after the interaction. Coherent interaction in this process
occurs with the slowed interference wave (fourth term), in accordance with
the classical results (see Eqs. (5.8) and (5.10)).

For the integration of Eq. (5.36) we will pass to characteristic coordinates
τ ′ = t− x/v0x and η′ = t. Then, if one directs the particle velocity v0 at the
angle ϑ0 with respect to the waves’ propagation axis providing the condition
of coherency of the induced Compton process (resonance between the waves’
Doppler-shifted frequencies) for the free-particle velocity

v0 cosϑ0 = c
|ω1 − ω2|
ω1 + ω2

, (5.37)

the traveling interference wave in this frame of coordinates becomes a stand-
ing phase lattice over the coordinate τ ′ and diffraction scattering of the par-
ticle occurs. From Eq. (5.36) for the amplitude of the scattered particle wave
function we obtain

f(τ ′) = exp
{

− ie2

2�E0
cos(ω1 − ω2)τ ′

∫ η2

η1

A1(η′)A2(η′)dη′
}
, (5.38)

where η1 and η2 are the moments of the particle entrance into the field and
exit, respectively.

If one expands the exponential (5.38) into a series by Bessel functions and
returns again to coordinates x, t with the help of Eq. (3.91) for the total wave
function we will have

Ψ (r, t) =
√

N0

2E0
exp
[
i

�
(p0 sinϑ0) y

] +∞∑
s=−∞

(−i)sJs(α)

× exp
{
i

�

[
p0 cosϑ0 + s�

ω1 + ω2

c

]
x− i

�
[E0 + s� (ω1 − ω2)] t

}
, (5.39)

where the argument of the Bessel function

α =
e2c2

2�E0ω1ω2

∫ t2

t1

E1(η′)E2(η′)dη′ (5.40)
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(E1 and E2 are the amplitudes of the waves’ electric field strengths).
Equation (5.39) shows that the diffraction scattering of the particles in

the field of counterpropagating waves of different frequencies is inelastic. Due
to the induced Compton effect the particle absorbs s photons from the one
wave and coherently radiates s photons into the other wave and vice versa
(resonance between the Doppler-shifted frequencies in the intrinsic frame of
the particle), i.e., the conservation of the number of photons in the induced
Compton process takes place in contrast to spontaneous Compton effect in
the strong wave field where after the multiphoton absorption a single photon
is emitted. However, because of the different photon energies the scattering
process is inelastic. From Eq. (5.39) for the change of the particle energy-
momentum we have

∆E = s� (ω1 − ω2) ; ∆px = s� (ω1 + ω2) /c ; ∆py = 0; s = 0,±1, . . . .
(5.41)

The probability of inelastic diffraction scattering is

Ws = J2
s

[
e2c2

2�ω1ω2E0

∫ t2

t1

E1(η′)E2(η′)dη′
]
. (5.42)

According to the condition of eikonal approximation (3.92): |∆p| << p0 and
|∆E|<< E0 from Eq. (5.41) we have the condition of applicability of the
obtained results: |s| � (ω1 + ω2) /c << p0.

In the case of monochromatic waves

Ws = J2
s

(
e2c2E1E2t0
2�E0ω1ω2

)
, (5.43)

where t0 = t2 − t1 is the time duration of the particle motion in the in-
terference wave (lc = v0t0 cosϑ0 is the coherent length of the process). For
the actual values of the parameters including in Eq. (5.43) the argument
of the Bessel function α >> 1, consequently the most probable number of
absorbed/radiated photons

s 
 1
2
ξ1ξ2

mc2

E0

mc2

�
t0. (5.44)

The energetic width of the main diffraction maximums

Γ (s) 
 s1/3
� (ω1 − ω2)

and since s >> 1 then

Γ (s) << |E − E0| .
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The scattering angles of s-photon diffraction on the counterpropagating
waves are

tanϑs =
s� (ω1 + ω2) sinϑ0

cp0 + s� (ω1 + ω2) cosϑ0
; s = 0,±1, . . . . (5.45)

As in the Cherenkov process at the inelastic diffraction there is an asymmetry
in the angular distribution of the scattered particle: |ϑ−s| > ϑs, i.e., the main
diffraction maximums are situated at the different angles with respect to the
direction of particle initial motion. However, since |s| � (ω1 + ω2) /c << p0
this asymmetry can be neglected, i.e., |ϑ−s| 
 ϑs and the scattering angles
of the main diffraction maximums will be determined by the equation

ϑ±s = ±s� (ω1 + ω2)
cp0

sinϑ0. (5.46)

In the case of counterpropagating waves of equal frequencies (ω1 = ω2 ≡
ω) the phase velocity of the interference wave vph = 0 and the coherent scat-
tering on the motionless phase lattice takes place, which is elastic:∆E = 0 and
∆px = 2s�ω/c. This is the known Kapitza–Dirac effect for electron diffraction
on a standing wave (in the one-photon approximation for the weak waves). As
follows from Eq. (5.37) the coherent scattering in this case is possible at the
incident angle ϑ0 = π/2, i.e., if the particle velocity is perpendicular to the
axis of waves’ propagation, to exclude the Doppler shift of waves frequencies
because of its counterpropagation (a longitudinal component of the particle
velocity will result in different Doppler shifts of equal laboratory frequencies
because of different wave vectors k and −k of counterpropagating waves and,
consequently, will violate the resonance between the waves).

5.4 Inelastic Diffraction Scattering on a Traveling Wave
in an Undulator

Charged particles diffraction scattering is also possible on a plane EM wave
propagating in vacuum if the interaction proceeds in an undulator. As the
diffraction effect is the result of particle coherent interaction with the periodic
wave field the effective field in the undulator should be smaller than the
threshold value of “reflection” phenomenon: ξ0 + ξH < ξcr (λ/l) (to prohibit
the nonlinear resonance in the field at which the periodic EM field becomes
a potential barrier for the particle and coherent interaction with the periodic
wave field impossible). Under this condition we will solve the relativistic
quantum equation of motion

−�
2 ∂

2Ψ

∂t2
=
{

−�
2c2�2 +m2c4 + e2

[
A1(t− x

c
) + A2(x)

]2
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+2ie�c
[
A1(t− x

c
) + A2(x)

]
�
}
Ψ, (5.47)

where A1(t − x/c) is the vector potential of the quasimonochromatic EM
wave and A2(x) is the vector potential of the undulator magnetic field. For
the linear undulator

Hz(x) = H cos
2π
l
x

the vector potential will be described by the equation

A2y(x) =
lH

2π
sin

2π
l
x,

and correspondingly the EM wave will be assumed linearly polarized along
the axis OY

A1y(t− x/c) = A(t) sinω0(t− x/c).

To determine the multiphoton diffraction effect Eq. (5.47) will be solved again
in the eikonal approximation. In accordance with the latter we present the
solution of Eq. (5.47) in the form of Eq. (3.91). Then taking into account the
condition (3.92) for the slowly varying function f(x, t) we obtain the equation

∂f

∂t
+ v0x

∂f

∂x
=
{

− ie2

2�E0

[
A2(t) sin2 ω0(t− x

c
) +

l2H2

4π2 sin2 2π
l
x

+
lH

2π
A(t) cosω0

(
t−
(

1 +
λ

l

)
x

c

)
− lH

2π
A(t) cosω0

(
t−
(

1 − λ

l

)
x

c

)]

+
iecp0y

�E0

[
A(t) sinω0(t− x

c
) +

lH

2π
sin

2π
l
x

]}
f(x, t). (5.48)

As is seen from Eq. (5.48) under the induced interaction in the undulator,
traveling waves propagating with the phase velocities vph = c/ (1 + λ/l) < c
and vph = c/ (1 − λ/l) > c arise. We will not repeat here the analogous
interpretation of the terms in Eq. (5.48) which correspond to interaction of
the particle with the waves propagating with the phase velocities vph � c that
has been done for the above-considered induced Compton process. Note only
that coherent interaction in this process occurs with the slowed interference
wave propagating with the phase velocity vph = c/ (1 + λ/l) < c (third term
on the right-hand side of Eq. (5.48)), in accordance with the classical results
for the induced interaction in the magnetic undulator (see Eqs. (5.27) and
(5.29)).
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The integration of Eq. (5.48) is simple if we pass to characteristic coor-
dinates τ ′ = t − x/v0x and η′ = t. Then, if one directs the particle velocity
v0 at the angle ϑ0 with respect to the wave propagation direction (undula-
tor axis) thus providing the condition of coherency in the undulator for the
free-particle velocity

v0 cosϑ0 =
c

1 + λ
l

, (5.49)

the slowed traveling wave in this frame of coordinates becomes a motionless
phase lattice (over the coordinate τ ′) and diffraction scattering of the particle
occurs. For the amplitude of the scattered particle wave function we obtain

f(τ ′) = exp
{

− ie2lH

4π�E0
cosω0τ

′
∫ η2

η1

A(η′)dη′
}
, (5.50)

where η1 and η2 are the moments of the particle entrance into the undulator
and exit, respectively.

Expanding the exponential in Eq. (5.50) into a series by Bessel functions
with the help of Eq. (3.91) for the final wave function of the scattered particle
we will have

Ψ (r, t) =
√

N0

2E0
exp
[
i

�
(p0 sinϑ0) y

] +∞∑
s=−∞

(−i)sJs(α)

× exp
{
i

�

[
p0 cosϑ0 + s�

ω0

c

(
1 +

λ

l

)]
x− i

�
(E0 + s�ω0) t

}
, (5.51)

where the argument of the Bessel function

α =
e2lH

4π�E0

∫ t2

t1

A(η′)dη′. (5.52)

The expression for the particle wave function (5.51) shows that the initial
plane wave of the free particle as a result of the induced undulator effect
is expanded into the envelope of plane waves with all possible numbers of
absorbed and emitted photons — the inelastic diffraction scattering occurs.
The energy and momentum of the particle after the scattering are

E = E0 + s�ω0; px = p0 cosϑ0 +
(

1 +
λ

l

)
s�ω0

c
;

py = const; s = 0,±1, . . . . (5.53)
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According to the condition of eikonal approximation (3.92) s�ω0 << E0.
The probability of inelastic diffraction scattering in the undulator is

Ws = J2
s

[
e2lH

4π�E0

∫ t2

t1

A(η′)dη′
]
. (5.54)

If the incident strong EM wave is monochromatic, the probability of this
process is

Ws = J2
s

(
e2cE0lH

4π�ω0E0
t0

)
, (5.55)

where t0 = t2−t1 is the time duration of the particle motion in the undulator,
and E0 is the amplitude of the electric field strength of stimulating wave.

For the actual values of the parameters the argument of the Bessel func-
tion α >> 1, consequently the inelastic diffraction scattering in the undulator
is essentially multiphoton as in the Cherenkov and Compton processes. The
main diffraction maximums correspond to the most probable number of ab-
sorbed/radiated photons

s 
 ξ0
mc2

E0

elH

4π�
t0 (5.56)

with the energetic width Γ (s) 
 s1/3
�ω0.

The scattering angles of s-photon diffraction in the undulator are

tanϑs =
s�ω0

(
1 + λ

l

)
sinϑ0

cp0 + s�ω0
(
1 + λ

l

)
cosϑ0

; s = 0,±1, . . . . (5.57)

The main diffraction maximums are situated at the angles (taking into ac-
count the condition of applied eikonal approximation)

ϑ±s = ±
(
1 + λ

l

)
s�ω0

cp0
sinϑ0, (5.58)

with respect to the direction of the particle initial motion.

5.5 Quantum Modulation of Particle Beam in Induced
Compton Process

Consider the effect of a particle beam quantum modulation at the interac-
tion with the counterpropagating waves of different frequencies and intensities
smaller than the threshold value for nonlinear Compton resonance or the crit-
ical value of the particle “reflection” phenomenon (5.9) (since the quantum
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modulation of the particle state is the result of coherent interaction with
the periodic wave field, while at values larger than the critical one the latter
becomes a potential barrier for the particle).

Neglecting the spin interaction the quantum equation of motion (5.35) for
the plane waves of circular polarization

A1 = {0, A1 cosω1

(
t− x

c

)
, A1 sinω1

(
t− x

c

)
},

A2 = {0, A2 cosω2

(
t+

x

c

)
, A2 sinω2

(
t+

x

c

)
}

may be presented in the form

�
2c2∆Ψ − �

2 ∂
2Ψ

∂t2
=
{
e2
(
A2

1 +A2
2
)

+m2c4 + 2ie�c
[
A1

(
t− x

c

)

+A2

(
t+

x

c

)]
� + 2e2A1A2 cos (ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)}
Ψ. (5.59)

If the initial velocity of the particle is directed along the axis of wave propa-
gation (p0⊥ = 0) the noncoherent interaction with the separate waves ∼ A1
and A2 vanishes and we have the equation

�
2c2∆Ψ − �

2 ∂
2Ψ

∂t2
=
{
e2
(
A2

1 +A2
2
)

+m2c4

+2e2A1A2 cos (ω1 − ω2)
(
t− ω1 + ω2

ω1 − ω2

x

c

)}
Ψ, (5.60)

which describes the coherent interaction with the slowed interference wave of
frequency ω1 − ω2 (corresponding to Compton resonance between the coun-
terpropagating waves) and constant renormalization of the particle mass in
the field because of the intensity effect of strong waves ∼ A2

1 +A2
2. To deter-

mine the effect of quantum modulation at the harmonics of the fundamental
frequency ω1 −ω2 the problem will be solved in the approximation of pertur-
bation theory (besides, the wave intensities should be smaller than the critical
value in the induced Compton process). It is found this renormalization in
the field is rather small and since it vanishes after the interaction as well,
we will omit this term. Then one needs to take into account the quantum
recoil which has been vanished by consideration of the diffraction effect on
the basis of eikonal-type wave function, when the second-order derivatives of
the wave function have been neglected. Hence, we will keep the second-order
derivatives in Eq. (5.59) and solve it within perturbation theory by the wave
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function. Then the solution of Eq. (5.60) is sought by the series of harmonics
of the fundamental frequency ω1 − ω2:

Ψ(r, t) =
√

N0

2E0
exp
[
i

�
(p0x− E0t)

]

×
+∞∑

s=−∞
Ψs exp

[
is(ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)]
. (5.61)

(for N0 particles per unit volume) corresponding to s-photon absorption by
the particle from the wave of frequency ω2 and s-photon coherent radiation
into the wave of frequency ω1 and vice-versa (induced Compton effect with
the conservation of the number of interacting photons). Substituting the wave
function (5.61) into Eq. (5.60) we obtain the following recurrent equation for
the amplitudes Ψs:[

4�
2s2ω1ω2 + 2E0s�

(
ω1 − ω2 − (ω1 + ω2)

v0

c

)]
Ψs

= −e2A1A2 [Ψs−1 + Ψs+1] . (5.62)

Equation (5.62) will be solved in the approximation of perturbation theory
by the wave function:

|Ψ±1| << |Ψ0| ; |Ψ±2| << |Ψ±1| , . . . .

Thus, for the amplitude of the particles’ wave function corresponding to ab-
sorption of s photons of frequency ω2 and induced radiation of s photons of
frequency ω1 we obtain

Ψs =
(−1)s

s!

(
e2A1A2

2�E0

)s s∏
s1=1

1
ω1 − ω2 − (ω1 + ω2) v0

c + 2s1 �ω1ω2
E0

, (5.63)

and for the inverse process (absorption of s photons of frequency ω1 and
induced radiation of s photons of frequency ω2):

Ψ−s =
1
s!

(
e2A1A2

2�E0

)s s∏
s1=1

1
ω1 − ω2 − (ω1 + ω2) v0

c − 2s1 �ω1ω2
E0

. (5.64)

Hence, for the total wave function of the particles after the interaction we
have the equation
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Ψ(r, t) =
√
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2E0
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⎤⎦⎫⎬⎭ e
i
�
(p0x−E0t). (5.65)

Here the dimensionless parameter of one-photon absorption-radiation is the
small parameter of applied perturbation theory

e2A1A2

2�E0

∣∣∣ω1 − ω2 − (ω1 + ω2) v0
c ± 2�ω1ω2

E0

∣∣∣ << 1. (5.66)

The denominators in Eq. (5.65) become zero at the fulfillment of exact reso-
nance (with the quantum recoil 2�ω1ω2/ E0) corresponding to the conserva-
tion law for the induced Compton process

ω1 = ω2
1 + v0

c

1 − v0
c ± 2s�ω2

E0

. (5.67)

In this case, perturbation theory is not applicable and consideration must be
given to secular perturbation theory.

Corresponding to wave function (5.65) the current density of the particles
after the interaction will be expressed by the equation

j(t, x) = j0

{
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1
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(
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]
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× cos
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, (5.68)

where j0 = const is the initial current density of the particles.
We present in explicit form the expression of modulated current density

of the particles for the first three harmonics

j(t, x) = j0

{
1 +B (ω1,2) cos (ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)

+
3
4
B2 (ω1,2) cos 2 (ω1 − ω2)
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)

+
5
8
B3 (ω1,2) cos 3 (ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)
+ · · · , (5.69)

where the modulation depth at the fundamental frequency ω1 − ω2

B (ω1,2) =
ξ1ξ2

ξ2cr (ω1,2)
(5.70)

is represented by the parameter of critical field (5.9) in the induced Compton
process. As was mentioned above for quantum modulation of the particle
state at the harmonics of interference wave the intensity of the latter should
be smaller than the threshold value of nonlinear resonance in the field or the
critical value in the induced Compton process. Equation (5.70) shows that
this requirement (ξ1ξ2 < ξ2cr (ω1,2)) holds in any case since in accordance
with perturbation theory (condition (5.66)) ξ1ξ2 << ξ2cr (ω1,2). Note that
for the representation of modulation depth in the form of Eq. (5.70) it was
assumed that the quantum recoil is smaller than the Compton resonance
width because of nonmonochromaticity of actual particle beams.
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5.6 Quantum Modulation of Particle Beam in the
Undulator

If in the induced Compton process the particles’ quantum modulation takes
place at the difference of frequencies (and harmonics) of two waves, the in-
duced interaction in the undulator leads to particles’ quantum modulation
at the stimulating wave frequency and its harmonics. The latter is similar to
Cherenkov modulation, but it is important that in this case the modulation
takes place in the vacuum.

The quantum equation of motion of the particle (5.47) in the undulator
with circular polarization of the magnetic field in the presence of a plane
monochromatic EM wave of circular polarization with vector potentials re-
spectively

A2(x) =
{

0,− lH

2π
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2π
l
x,
lH

2π
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2π
l
x

}
,
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{
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c
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c
)
}

is written as
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)}
Ψ. (5.71)

The coherent interaction in this process which leads to particles’ quantum
modulation proceeds with the effective slowed wave ∼ HA0 (last term on the
right-hand side of Eq. (5.71)). If the free-particle initial velocity is directed
along the undulator axis (p0⊥ = 0) the noncoherent interaction with the EM
wave ∼ A1 and magnetic field of the undulator ∼ A2 vanishes and we have
the equation

�
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)}
Ψ, (5.72)

which describes the particle coherent interaction with the effective slowed
wave in the undulator and constant renormalization of the particle mass in
the field due to the intensity effect of strong wave ∼ A2

0 and powerful magnetic
field of the wiggler ∼ H2l2. With the same justification made at the solution
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of this problem in the induced Compton process these constant terms will be
neglected and the solution of Eq. (5.72) will be sought in the form

Ψ(r, t) =
√

N0

2E0
exp
[
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×
+∞∑
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)]
. (5.73)

Substituting the wave function (5.73) into Eq. (5.72) we obtain the recurrent
equation for the amplitudes Ψs corresponding to s-photon induced absorption
by the particle from the effective slowed wave (s < 0) and induced undulator
radiation (s > 0)[
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)]
Ψs
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4πE0�ω0
[Ψs−1 + Ψs+1] , (5.74)

which will be solved in the approximation of perturbation theory by the wave
function:

|Ψ±1| << |Ψ0| ; |Ψ±2| << |Ψ±1| , . . . .

For the amplitude of the particle wave function corresponding to s-photon
induced radiation we obtain

Ψs =
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and for s-photon absorption
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Hence, for total wave function of the particles after the interaction we have

Ψ(r, t) =
√
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The small parameter of applied perturbation theory (dimensionless parame-
ter of induced one-photon absorption-radiation in the undulator) is

e2lHA0

4πE0�ω0

∣∣∣1 − (1 + λ
l

) v0
c ± 2πc�

lE0

(
1 + λ

2l

)∣∣∣ << 1. (5.78)

The denominators in Eq. (5.77) become zero at the fulfillment of exact reso-
nance (with the quantum recoil) between the EM wave and undulator fields

λ

l
=

c

v0
− 1 ± 2s

π�c2

lE0v0

(
1 +

λ

2l

)
, (5.79)

for which the perturbation theory is not applicable and the consideration
should be made in the scope of secular perturbation theory.

With the help of the wave function (5.77) for the current density of the
particles after the interaction we obtain the equation

j(t, x) = j0

{
1 + 2

∞∑
s=1

1
s!

(
e2lHA0

4πE0�ω0

)s

×
[

s∏
s1=1

1
1 − (1 + λ

l

) v0
c + 2s1 πc�

lE0

(
1 + λ

2l

)

+
s∏

s1=1

(−1)s

1 − (1 + λ
l

) v0
c − 2s1 πc�

lE0

(
1 + λ

2l

)]× cos
[
sω0

(
t−
(

1 +
λ

l

)
x

c

)]

+2
∞∑

s=1

∞∑
s′=1

(−1)s′

s!s′!

(
e2lHA0

4πE0�ω0

)s+s′

cos
[
(s+ s′)ω0

(
t−
(

1 +
λ

l

)
x

c

)]

×
s∏

s1=1

s′∏
s2=1

1
1 − (1 + λ

l

) v0
c + 2s1 πc�

lE0

(
1 + λ

2l

)
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× 1
1 − (1 + λ

l

) v0
c − 2s2 πc�

lE0

(
1 + λ

2l

)} . (5.80)

From Eq. (5.80) for the modulation at the fundamental frequency of the
stimulating wave we have

j1(t, x) = j0

{
1 −B(λ/l) cosω0

(
t−
(

1 +
λ

l

)
x

c

)}
, (5.81)

where the modulation depth

B(λ/l) = 2ξ0ξH

(
mc2

E0

)2 λ
l

(
1 + λ

2l

)[
1 − (1 + λ

l

) v0
c

]2 − 4π2c2�2

l2E2
0

(
1 + λ

2l

)2 . (5.82)

The depth of quantum modulation can be represented by the parameter of
critical field (5.28) in the induced undulator process. As the resonance width
because of nonmonochromaticity of actual particle beams is rather larger than
the quantum recoil, then neglecting the latter, for the modulation depth we
will have

B(λ/l) =
ξ0ξH

ξ2cr(λ/l)
. (5.83)

In accordance with perturbation theory the modulation depth B(λ/l) � 1
(condition (5.78)) and Eq. (5.83) shows that ξ0ξH < ξ2cr(λ/l), i.e., the effective
field in the undulator for the considered regime of coherent interaction holds
under the threshold of nonlinear resonance or critical value in the undulator
(above which the quantum modulation of particles, as well as the above-
considered diffraction scattering, do not proceed).
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