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Preface

With the appearance of lasers have come real possibilities of revealing numer-
ous nonlinear phenomena of diverse nature resulting from the interaction of
strong electromagnetic field either with matter or with free charged particles.
First attempts of investigators, especially experimentalists, were directed to-
ward studying the processes of interaction of laser radiation with matter,
which led to the rapid formation of a new field — Nonlinear Optics. The
numerous published monographs on this subject are evidence of that. The
situation regarding the processes of interaction of laser radiation with free
charged particles (free–free transitions) is different. Whereas the experimen-
tal results on atomic systems frequently had preceded the theoretical ones,
the experimental investigations on free electrons began gathering power only
recently. It is enough to mention that the first experiments on the observation
of multiphoton exchange between free electrons and laser radiation started
in 1975 (the Cherenkov and bremsstrahlung processes) whereas, due to the
progress of Nonlinear Optics, the precision laser spectroscopy of superhigh
resolution on atomic systems had already been established. This situation
is explained by two objective factors. Whereas the experiments on atoms
require only laser devices in common laboratories, the experiments on free
electron beams require accelerators of charged particles and laser laborato-
ries, i.e., this field is a synthesis of Accelerator and Laser Physics. The second
major factor is the smallness of the photon–electron interaction cross section
in comparison with the photon–atom one; revealing nonlinear phenomena on
free electrons thus requires laser fields of relativistic intensities (e.g., even the
observation of the second harmonic in nonlinear Compton scattering). Such
superpower femtosecond laser sources have appeared only recently. Hence,
the time for experimental development of this branch of Nonlinear Electro-
dynamics — interaction of charged particles with laser fields of relativistic
intensities — has come. In presenting the current state-of-the-art in this field
and gathering up-to-date theoretical material in this book we have pursued
the goal of stimulating the laser driven experiments on relativistic electron
beams and comprehensive theoretical investigations of nonlinear electromag-
netic processes in currently available coherent radiation fields of relativistic
intensities.



VI Preface

Increasing interest in free–free transitions is connected with the realiza-
tion of the two most important problems of modern physics, namely, the
creation of shortwave coherent radiation sources — X-ray and γ-ray lasers
— and high energy laser accelerators of charged particles. It is noteworthy
that a great deal of the works on free–free transitions is related to the Free
Electron Laser (FEL) problem, i.e., to the discussion of concrete schemes of
relativistic electron beam radiation amplification in coherent systems, such
as the undulator, and to the search for their optimization. A small number
of monographs and large number of reviews are devoted to this problem in
the linear regime of amplification. However, particularly for the implemen-
tation of X-ray lasers, the most promising candidate of which at the present
time are FEL devices, the need for nonlinear mechanisms of generation of
coherent radiation due to induced interaction of electron beam with strong
laser fields may be crucial, compared with the current undulator-based FELs
in the linear regime of amplification. On the other hand, the present FELs
operate in the classical regime where the electron wave packet size over the
interaction length is less than a wavelength of radiation. This means that
the photon frequency shift due to the electron quantum recoil must be less
than the gain bandwidth. This condition is satisfied for current FELs typ-
ically operating at optical or smaller frequencies. For the X-ray photons in
expected X-ray FELs, the downshift in frequency as well as other quantum
effects become important. Thus, because of the absence of mirrors (resonator)
or other drivers operable at these wavelengths, FEL systems currently un-
der consideration for X-ray sources, operate in the so-called Self-Amplified
Spontaneous Emission (SASE) regime in which the initial shot noise on an
electron beam is amplified over the course of propagation through a long
wiggler. In turn, large pulse-to-pulse variations arise in both output power
and radiation spectrum, and quantum effects on the start-up from noise will
be important. Finally, the absence of resonators at X-ray wavelengths re-
quires a single-pass high-gain FEL, which in the linear regime will have an
extremely large size. Hence, to reach the required gain on distances much
smaller than the coherent length in the linear regime of amplification, which
would reduce greatly the present size of projected X-ray lasers (several kilo-
meters), nonlinear quantum mechanisms of generation due to laser induced
coherent interaction becomes of prime importance. On the other hand, the
inverse problem of laser induced nonlinear FEL schemes is the problem of
creation of novel accelerators of charged particles of superhigh energies —
laser accelerators. Therefore, the nonlinear interaction of charged particles
with strong laser fields will be considered in general aspects from the point of
view of both nonlinear quantum FEL schemes and classical laser accelerator
problems. At the same time, we will not overload the material of this book,
the subject of which is nonlinear electromagnetic processes, with the consid-
eration of linear schemes of FELs taking also into account the existence of
well-known monographs by T. Marshall (1987), C. Brau (1990), H. Freund
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and T. Antonsen (1996), and E. Saldin, E. Schneidmiller, and M. Yurkov
(1999) devoted especially to this problem.

Besides the mentioned problems there is a third important problem con-
cerning the quantum electrodynamic vacuum in superstrong laser fields. With
the appearance of superpower lasers of relativistic intensities in recent years,
for which the energy of an electron acquired at a wavelength of laser radiation
exceeds the electron rest energy, multiphoton excitation of the Dirac vacuum
via nonlinear channels becomes real and, consequently, electron–positron pair
production becomes available. It is a strongly nonlinear process in superin-
tense laser fields, which occurs inevitably in all processes where the conser-
vation laws for the pair production are permitted. Thus, while considering
such nonlinear processes we will give special consideration to the multiphoton
electron–positron pair production from superintense laser fields.

Among the considered processes and, in general, stimulated processes with
the charged particles the coherent processes like Cherenkov, Compton, and
undulator essentially differ due to a peculiarity, which fundamentally changes
the common picture of electromagnetic processes in dielectric media, and in
vacuum — the presence of a second wave or an undulator. Because of the
coherent character of the corresponding spontaneous radiation process (the
existence of coherence condition for radiation) in the presence of an external
electromagnetic wave a critical value of the wave field exists above which
a plane wave becomes a potential barrier or well for a particle and specific
threshold nonlinear phenomena arise. The latter open new possibilities for
laser acceleration and FEL, since in these regimes the induced process pro-
ceeds only in one direction: the inverse concurrent process of radiation in
acceleration regime, and absorption process for the FEL regime are absent.
Therefore, we expect that this book will help to direct the attention of ex-
perimentalists to nonlinear phenomena of “reflection” and capture of charged
particles by a plane electromagnetic wave in Cherenkov, Compton, and un-
dulator processes, which have been left in the shadows for more than three
decades. This especially relates to the experiments on the induced Cherenkov
process made at SLAC by R. Pantell and collaborators since 1975 where the
laser intensities were left below the critical value for the induced nonlin-
ear Cherenkov process. It was necessary to increase the laser intensity a bit
to reveal the existence of critical intensity and electron acceleration due to
the “reflection” phenomenon, proving thereby the peculiarity of the induced
Cherenkov process with its nonlinear threshold nature.

It is worth emphasizing another threshold phenomenon of nonlinear cy-
clotron resonance in an arbitrary medium (dielectric or plasma). That is
so-called electron hysteresis, which can serve as an actual mechanism for
laser acceleration of charged particle beams in plasma media where the use
of superpower laser fields is not restricted and significant acceleration may
be reached.



VIII Preface

As is known, the spontaneous radiation of relativistic electrons and
positrons channeled in a crystal is of great interest due to two major factors:
the radiation is in the X-ray and γ-ray domains, and its spectral intensity
noticeably exceeds that of other radiation sources in the short-wave range.
Thus, induced channeling radiation in the presence of an external wave field
becomes important as a potential source for short-wave coherent radiation.
On the other hand, due to the induced channeling effect the inverse process
— absorption of the wave photons by the particles — will also take place
reducing the particles’ acceleration and other coherent classical and quan-
tum effects. As a periodic system with high coherency and having the same
character of a particle motion, the crystal channel may be compared with an
undulator — it is a “micro-undulator” with the space period much smaller
than the undulator one. We thus give consideration to the induced channeling
process in general aspects of coherent interaction of relativistic electrons and
positrons with a plane electromagnetic wave in a crystal.

Concerning the consideration of induced noncoherent processes, please
note that in the present book we included only induced processes related
to plasma media where they provide actual energy conversion between the
particles and transverse electromagnetic wave and, due to the nonlinear in-
teraction, one can reach the effective outgrowth from the point of view of the
above-mentioned problems. In particular, Stimulated Bremsstrahlung (SB)
is of interest in plasma in the presence of an electromagnetic radiation field,
since bremsstrahlung is one of the major electrodynamic processes in plasma,
and is the actual mechanism for plasma heating (a scattering center performs
the role of a third body for actual absorption/radiation of the wave photons
by a charged particle). Besides, the role of SB is significant in the process of
particle acceleration with plasma/laser fields, as well as in the process of high
harmonics generation in atomic/ionic systems through the continuum states
in strong laser fields as an alternative means for implementation of coherent
X-ray sources, which has witnessed significant experimental advancement in
recent years. However, the consideration of these processes is beyond the
scope of this book. We will consider here the relativistic SB in strong and
superstrong radiation fields in regard to general aspects with nonlinear effects
(nonrelativistic SB in various approximations has been considered in many
monographs). We will also consider the coherent SB in crystals, which is of
relativistic nature in itself, having in mind consideration of a high-gain X-ray
FEL scheme based on coherent bremsstrahlung in a crystal.

A separate chapter has been devoted to the so-called induced nonstation-
ary transition effect based on the spontaneous transition radiation effect in
a medium at the abrupt variation of its properties, to describe the nonlinear
particle–strong wave interaction processes in plasma. Such a situation takes
place inevitably at the interaction of superintense femtosecond laser pulses
with any medium, which instantly turns into plasma. It is thus of certain in-
terest to study the nonlinear processes at the formation of laser plasma. This
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process may also be of great interest in astrophysics related to conversion of
electromagnetic radiation frequencies in nonstationary plasma, in particular
formation of hard γ-quanta of relativistic energies, electron–positron pair pro-
duction, and other nonlinear processes at the abrupt variation of the matter
properties in cosmic objects.

In order not to overload the reader, the references on a given subject are
presented separately in each chapter. My apologies go to all authors whose
works are not covered in this book. I included only the ones that are most
directly related to this monograph.

Indeed, the problems discussed in this monograph do not exhaust the
frame of induced nonlinear phenomena at the interaction of charged parti-
cles with strong electromagnetic radiation. By considering a certain class of
induced processes, we have aimed at revealing principal features of nonlinear
behavior of a particle–strong wave interaction in coherent and noncoherent
induced processes, which are of primary importance for the implementation
of contemporary problems of FEL, laser accelerators, and electron–positron
pair production from superintense laser fields. And if the consideration of
these nonlinear processes based on relativistic classical and quantum theories
and the presentation of the main results are helpful to specialists in this field,
then the publication of this monograph will be justified.

In closing, I would like to thank Dr. G. Mkrtchian for assistance in prepa-
ration of the manuscript, Dr. H. Koelsch, physics editor Springer-Verlag New
York, and associate editor V. Lipscy, for their patience and encouragement
in the writing and publishing of the book.

Yerevan, Armenia Hamlet K. Avetissian
June 2005
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1 Interaction of a Charged Particle with
Strong Plane Electromagnetic Wave in
Vacuum

What can we expect from particle–strong wave interaction in vacuum?
It is well known that the radiation or absorption of photons by a free

electron in vacuum is forbidden by the energy and momentum conservation
laws, which means that the real energy exchange between a free electron and
plane monochromatic wave in vacuum is impossible, isn’t it?

Then, is it worth considering the interaction of a free electron with strong
monochromatic wave in vacuum? In other words, what can we expect from the
strong wave fields in nonlinear theory with respect to the weak ones described
by the linear theory?

For example, what are the changes in cross section of the major electrody-
namic process of electron–photon interaction, that is, Compton effect (which
in the one-photon approximation within quantum electrodynamics is described
by the Klein–Nishen formula) at a high density of incident photons?

Lastly, how strong should a wave field be for revelation of nonlinear effects
in vacuum? What are the criteria of the strong field?

To answer these questions one must first study the dynamics of a charged
particle in the field of a plane electromagnetic wave of arbitrary high intensity
in vacuum on the basis of the classical and quantum equations of motion.
Then, with the help of the classical trajectory of the particle and dynamic
wave function in the quantum description, the nonlinear radiation in the
scope of the classical and quantum theories — the Compton effect in the field
of electromagnetic waves of arbitrary high intensity — will be treated.

We will start from the relativistic equations, because in the field of a strong
wave even a particle initially at rest becomes relativistic. Then, the amplitude
of a strong wave will be assumed invariable, i.e., the radiation effects do not
influence the magnitude of a given strong wave field.

1.1 Classical Dynamics of a Particle in the Field of
Strong Plane Electromagnetic Wave

Let a particle with a mass m and a charge e (let e > 0) interact with a
plane electromagnetic (EM) wave of arbitrary form and intensity propagating
in vacuum along a direction ν0 (|ν0| = 1). Then, for the electric (E) and
magnetic (H) field strengths we have
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E(t, r) = E(t− ν0r/c); H(t, r) = H(t− ν0r/c); H = [ν0E] . (1.1)

Relativistic classical equation of motion of the particle in the field (1.1)
will be written in the form

dp
dt

= eE +
e

c
[vH] , (1.2)

where p and v are the particle momentum and velocity in the field and c is
the speed of light in vacuum.

For the integration of the equation of motion (1.2) the latter should be
written in components:

ν0
dp
dt

=
e

c
(vE), (1.3)

dp⊥
dt

= e
(
1 − vν0

c

)
E. (1.4)

Then the integration of Eqs. (1.4) is very simple if one takes into account that
E is the function of the variable τ = t − ν0r/c and passes on the left-hand
side of (1.4) from the variable t to τ . So, for the transversal components of
the particle momentum we will have

p⊥ = p0⊥ + e

τ∫
τ0

E(τ)dτ, (1.5)

where p0⊥ is the particle initial transversal momentum at τ = τ0 when
E(τ) |τ=τ0= H(τ) |τ=τ0= 0 corresponding to the free particle state before
the interaction. Such definition of the particle free state at the finite moment
τ0 at the interaction with the EM wave is justified when we consider the
general case of a plane wave of arbitrary form, which actually corresponds to
wave pulses of finite duration, let here τf− τ0. Then, the interaction will be
automatically turned on at τ = τ0 and turned off at τ = τf , when E(τ) |τ=τf

=
H(τ) |τ=τf

= 0 too, and the free particle states before the interaction will
correspond to τ ≤ τ0 and after the interaction to τ ≥ τf . Such approach also
allows passing from the wave pulses of finite duration to quasi-monochromatic
or monochromatic waves by extending τ0 → −∞ and τf → +∞.

The expressions (1.5) can be written in a simpler form through the vector
potential (A) of the field according to known relations with the electric and
magnetic field strengths for radiation field in the Lorentz gauge

E = −1
c

∂A
∂t

; H =rotA; divA = 0, (1.6)
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consequently

A(τ) = −c
τ∫

τ0

E(τ)dτ. (1.7)

The condition divA = 0 in Eq. (1.6) is the condition of transversality of a
plane wave: ν0A(τ) = 0.

So, the particle transversal momentum (1.5) can be represented in the
form

p⊥ = p0⊥ − e

c
A(τ), (1.8)

where A(τ) |τ=τ0= 0 according to Eq. (1.7) (A(τ) |τ=τf
= 0 as well because

of E(τ) |τ=τf
= H(τ) |τ=τf

= 0).
Note that Eq. (1.8) may be written without integration of the equation

of motion taking into account the space properties in this issue. Thus, the
existence of a plane wave does not violate the homogeneity of the space in the
plane of the wave polarization. Consequently, the corresponding transversal
components of generalized momentum are conserved: p⊥+(e/c)A(τ) = const
and we come at once to Eq. (1.8).

For the integration of Eq. (1.3) for the longitudinal component of the
particle momentum we will use the additional equation for the particle energy
variation in the field

dE
dt

= e (vE) . (1.9)

From Eqs. (1.3) and (1.9) follows the integral of motion for the charged
particle in the field of a plane EM wave:

E − cpν0 = const ≡ Λ. (1.10)

Now we can define the particle momentum and energy in the field with
the help of Eqs. (1.8) and (1.10), utilizing the dispersion law of the particle
energy-momentum as well:

E2 = p2c2 +m2c4. (1.11)

The following formulas in the field of a plane EM wave of arbitrary form and
polarization are obtained:

p = p0 − e

c
A(τ) + ν0

e2A2(τ) − 2ec (p0A(τ))
2c(E0 − cp0ν0)

, (1.12)
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E = E0 +
e2A2(τ) − 2ec (p0A(τ))

2(E0 − cp0ν0)
, (1.13)

where p0 and E0 are the initial momentum and energy of a free particle
(Λ = E0 − cp0ν0).

Then, to obtain the law of the particle motion r = r(t) one must integrate
the equation

dr(t)
dt

= v(t) =
c2p(t)
E(t)

. (1.14)

However, since the general expressions of particle momentum and energy
in the field of a plane EM wave depend only on retarding time τ , the last
equation allows exact analytical solution in the parametric form r = r(τ).
Thus, passing in Eq. (1.14) from the variable t to τ and taking into account
the integral of motion (1.10) we obtain

dr(τ)
dτ

=
c2p(τ)

E0 − cp0ν0
. (1.15)

Integration of Eq. (1.15) with the help of Eq. (1.12) gives

r(τ) = r0 +
c2p0

(E0 − cp0ν0)
(τ − τ0) +

c

(E0 − cp0ν0)

×
τ∫

τ0

{
ν0

2(E0 − cp0ν0)
(
e2A2(τ ′) − 2ecp0A(τ ′)

)− eA(τ ′)
}
dτ ′, (1.16)

where r0(x0, y0, z0) is the particle initial position at t = t0 (τ = τ0).

1.2 Intensity Effect. Mass Renormalization

Equations (1.12), (1.13), and (1.16) describe the particle motion in the field
of a strong plane EM wave of arbitrary form and polarization. They show
that after the interaction (τ ≥ τf ) p = p0, E = E0, i.e., the particle remains
with the initial energy-momentum, which means that real energy exchange
between a free charged particle and a plane EM wave in vacuum is impos-
sible. This result is in congruence with the fact that the real absorption or
emission of photons by a free electron in vacuum is forbidden by the energy
and momentum conservation laws, which will be discassed in regard to the
quantum consideration of this process. Nevertheless, in vacuum the wave in-
tensity effect in the field exists, for revealing of which it should be taken into
account the oscillating character of periodic wave field, for which A(τ) = 0.
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Then, averaging the expressions in Eqs. (1.12) and (1.13) over time we obtain
the following formulas for the particle average momentum and energy in the
field:

p = p0 + ν0
e2A2(τ)

2c(E0 − cp0ν0)
; E = E0 +

e2A2(τ)
2(E0 − cp0ν0)

. (1.17)

Taking into account the dispersion law of the particle energy-momentum
(1.11) for these average values we can introduce the “effective mass” of the
particle due to the intensity effect of strong wave:

m∗ = m

√
1 + ξ2(τ). (1.18)

This formula describes the renormalization of the particle mass in the
field. Here we introduced a relativistic invariant dimensionless parameter of
a plane EM wave intensity

ξ2(τ) =
(
eA(τ)
mc2

)2

. (1.19)

The parameter ξ is the basic characteristic of a strong radiation field at the
interaction with the charged particles, which represents the work of the field
on the one wavelength in the units of the particle rest energy, i.e., it is the
energy (normalized) acquired by the particle on a wavelength of a coherent
radiation field.

As strong radiation fields actually relate to laser sources of high coherency,
we will consider the case of quasi-monochromatic or monochromatic wave
fields (we look aside from the actual intensity profiles of laser beams over
space coordinates — deviation from a plane wave because of their finite sizes).

Let us consider the case of a monochromatic wave. Without loss of gen-
erality we will direct vector ν0 along the OX axis of a Cartesian coordinate
system: ν0 = {1, 0, 0}, then retarding wave coordinate: τ = t − x/c. In the
general case of elliptic polarization the vector potential of a monochromatic
wave with a frequency ω0 and amplitude A0 may be presented in the form

A(τ) = {0, A0 cos(ω0τ), gA0 sinω0τ}, (1.20)

where g is the parameter of ellipticity; g = 0 corresponds to a linear polariza-
tion, while g = ±1 describes a wave of a circular polarization (right or left).
Let g = 1 and the initial velocity of the particle is parallel to the wave propa-
gation direction (v0 = v0x). In such geometry and circular polarization of the
wave the intensity effect becomes apparent (only the latter exists with invari-
able magnitude, because p0A(τ) = 0). In the future we will mainly consider
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this case of interaction at which the energy and longitudinal velocity of the
particle in the field are invariable, which allows, first, a more simple picture
of a particle–wave nonlinear interaction, and second, exact solutions in many
processes where the existence of the particle initial transverse momentum
prevents obtaining exact analytical solutions.

Concerning the definition of the particle initial and final free states at the
interaction with a monochromatic wave of infinite duration we will assume an
arbitrarily small damping for the amplitude A0 to switch on adiabatically the
wave at τ = −∞ and switch off at τ = +∞, i.e., A(τ) |τ=±∞= 0 (according
to the above-mentioned conditions for a plane wave of finite duration τf− τ0 it
should be extended to τ0 → −∞ and τf → +∞). For a quasi-monochromatic
wave (spectral width ∆ω � ω0) it should be A0 ⇒ A0(τ), where A0(τ) is a
slowly varying amplitude with respect to the phase oscillations over the ω0τ
and the conditions of adiabatic switching on and switching off will take place
automatically.

Hence from Eqs.(1.12) and (1.13) we have simple formulas for the parti-
cle momentum and energy in the field of a monochromatic wave of circular
polarization:

px = p0

[
1 +

1
2
c

v0

(
1 +

v0

c

)
ξ20

]
, (1.21)

py = −mcξ0 cosω0τ, (1.22)

pz = −mcξ0 sinω0τ, (1.23)

E = E0

[
1 +

1
2

(
1 +

v0

c

)
ξ20

]
, (1.24)

where the relativistic parameter of the wave intensity (1.19) ξ2(τ) = ξ20 =
const and, consequently, one can represent it by the amplitude of the vector
potential A0 or electric field strength E0:

ξ0 =
eA0

mc2
=

eE0

mcω0
. (1.25)

Equation (1.24) shows that for the significant energy change of a particle
in the field of a plane wave in vacuum the superpower laser beams of rela-
tivistic intensities ξ0 >> 1 are necessary. Such intensities corresponding to
gigantic femtosecond laser pulses became available in recent years.

To elucidate the law of particle motion in the field of a monochromatic
wave we will choose the frame of reference for the free particle initial position,
in which the coordinates r0 at the moment t = t0 correspond to r0 = v0t0. By
that we exclude the infinities in the expression r = r(τ) connected with the
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initial infinity values of the parameters t0 and r0, which have no physical
meaning. Then one can extend t0 → −∞ and, consequently, τ0 = (1 −
v0x/c)t0 → −∞ in Eq. (1.16) providing the particle free state before the
interaction (t0 → −∞) at infinity (r0 → −∞) with the adiabatic switching
on the monochromatic (quasi-monochromatic) wave due to A0(−∞) = 0.
Hence, from Eq. (1.16) follows the particle law of motion in the field (1.20) in
parametric form. However, considering special cases it is analytically available
to represent directly the law of motion r = r(t) because of the invariability
of longitudinal velocity of the particle in the field

vx = v0
1 + 1

2
c
v0

(
1 + v0

c

)
ξ20

1 + 1
2

(
1 + v0

c

)
ξ20

, (1.26)

which is exposed only to permanent renormalization due to the intensity effect
of the strong wave. Then, with the help of Eq. (1.26) we have the following
formulas for the particle law of motion:

x(t) = vxt, (1.27)

y(t) = − mc3ξ0
E0ω0(1 − v0

c )
sinω0(1 − vx

c
)t, (1.28)

z(t) =
mc3ξ0

E0ω0(1 − v0
c )

cosω0(1 − vx

c
)t. (1.29)

Equations (1.27)–(1.29) show that the particle performs circular motion

y2(t) + z2(t) = const (1.30)

in the plane of the wave polarization (yz) with the radius

ρ⊥ =
mc3ξ0

E0ω0(1 − v0
c )

(1.31)

and translational uniform motion along the wave propagation direction (OX
axis), i.e., performs a helical motion (Fig. 1.1). Consider now the case of
linear polarization of the wave

A(τ) = {0, A0 cos(ω0τ), 0}. (1.32)

From Eqs. (1.12) and (1.13) for the particle momentum and energy in the
field (1.32) we have
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Fig. 1.1. Trajectory of the particle (initially at rest) in the field of circularly
polarized EM wave. The relativistic parameter of intensity is taken to be ξ0 = 1.

px = p0

[
1 +

1
2
c

v0

(
1 +

v0

c

)
ξ20 cos2 (ω0τ)

]
, (1.33)

py = −mcξ0 cosω0τ, (1.34)

pz = 0, (1.35)

E = E0

[
1 +

1
2

(
1 +

v0

c

)
ξ20 cos2 (ω0τ)

]
. (1.36)

In contrast to the case of circular polarization, in the field of linearly polarized
wave the intensity effect has the oscillating character (at the second harmonic
2ω0, as follows from Eqs. (1.33) and (1.36)) and the representation of the
particle trajectory analytically is unavailable. The latter may be performed
in parametric form with the help of the particle law of motion r = r(τ), which
in the field (1.32) has the following form

x(τ) =
[
1 +

1
4
c

v0

(
1 +

v0

c

)
ξ20

]
v0τ

(1 − v0
c )

+ ρ� sin(2ω0τ), (1.37)

y(τ) = −ρ⊥ sin(ω0τ), (1.38)

z = 0, (1.39)

where

ρ� =
1
8
c

ω0

1 + v0
c

1 − v0
c

ξ20 (1.40)
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is the amplitude of longitudinal oscillations of the particle along the wave
propagation direction.

To determine the particle trajectory we pass to an inertial system of
coordinates connected with the uniform motion of the particle along the axis
OX with the velocity

V = v0
1 + 1

4
c
v0

(
1 + v0

c

)
ξ20

1 + 1
4

(
1 + v0

c

)
ξ20

, (1.41)

to exclude the uniform part of translational movement in the direction of
the wave propagation. After the Lorentz transformations for coordinates and
wave frequency we have the following law of motion in this system:

x
′
(τ ′) =

1
8
c

ω′
ξ20

1 + ξ2
0
2

sin(2ω′τ ′), (1.42)

y′(τ ′) = y(τ) = − c

ω′
ξ0√

1 + ξ2
0
2

sin(ω′τ ′), (1.43)

z′ = 0, (1.44)

where

ω′ =
ω0√

1 + ξ2
0
2

√
1 − v0

c

1 + v0
c

(1.45)

is the Doppler-shifted frequency of the wave in the system moving with the
velocity (1.41).

Now from Eqs. (1.42) and (1.43) one can obtain the trajectory of the
particle in the plane XY(

x′

2ρ′
�

)2

=
(
y′

ρ⊥

)2

−
(
y′

ρ⊥

)4

(1.46)

with the parameters ρ′
� and ρ⊥:

ρ′
� =

c

8ω′
ξ20

1 + ξ2
0
2

; ρ
′
⊥ = ρ⊥ =

c

ω′
ξ0√

1 + ξ2
0
2

. (1.47)

Equation (1.46) performs a symmetric 8-form figure with the longitudinal
axis along the OY (Fig. 1.2).
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Fig. 1.2. Trajectory of the particle in the field of linearly polarized EM wave
(excluding the uniform part of translational movement in the direction of the wave
propagation) for the various ξ0.

1.3 Radiation of a Particle in the Field of Strong
Monochromatic Wave

Let us now consider the radiation of a charged particle in the specified wave
field (1.20) of arbitrary high intensity in the scope of the classical theory.
In the strong wave field the radiation of a particle is of nonlinear nature —
radiation of high harmonics — which in quantum terminology means that the
multiphoton absorption by the particle from the incident wave takes place
with subsequent radiation of the corresponding photon. Taking into account
certain dependence of harmonics radiation on the direction of particle motion
with respect to the initial strong wave propagation and its polarization we
will consider the general case of a particle–wave interaction geometry and
arbitrary polarization of monochromatic wave (elliptic)

A(τ) = A0{e1 cosω0τ + e2g sinω0τ}; (1.48)

τ = t− ν0r
c

; e1ν0 = e2ν0 = e1e2 = 0,

where e1,2 are the unit polarization vectors.
The energy radiated by a charged particle in the domain of solid angle dO

and interval of frequencies dω in the direction of the wave vector k (summed
by all possible polarizations) is given by the formula
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dεk =
e2

4π2c

∣∣∣∣∣∣
∞∫

−∞
[kv] ei(kr−ωt)dt

∣∣∣∣∣∣
2

dωdO, (1.49)

where v = v(t) and r = r(t) are the particle velocity and law of motion in the
wave field (1.20), which are determined by Eqs. (1.12), (1.13), and (1.16) in
parametric form. The latter requires passing in Eq. (1.49) from the variable
t to the wave coordinate τ . Then the equation for the radiation energy will
be written in the form

dεk =
e2c3

4π2Λ2

∣∣∣∣∣∣
∞∫

−∞
[kp (τ)] eiψ(τ)dτ

∣∣∣∣∣∣
2

dωdO, (1.50)

where

ψ(τ) = ωτ + k(ν0 − ν)r(τ) (1.51)

is the phase of radiated wave (kr − ωt) as a function of the incident strong
wave coordinate τ and the unit vector ν in Eq. (1.49) is ν = k/k .

Using Eqs. (1.12), (1.13) and introducing the functions

G0 =

∞∫
−∞

eiψ(τ)dτ,

G1 =

∞∫
−∞

A(τ)eiψ(τ)dτ, (1.52)

G2 =

∞∫
−∞

A2(τ)eiψ(τ)dτ,

after the long but straightforward transformations for the radiation energy
we obtain

dεk =
e2m2c3ω2

4π2Λ2

(
e2

m2c4

(
|G1|2 −Re (G0G

∗
2)
)

− |G0|2
)
dωdO. (1.53)

This is the general formula of the spectral-angular distribution of radia-
tion energy for the arbitrary plane EM wave field. Considering the case of
monochromatic wave (1.48) with the corresponding law of motion (1.16) for
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the phase of radiated wave (1.51), which determines the functions (1.52) and,
consequently, the energy of radiation (1.53), we have

ψ(τ) =
(E − cνp

Λ

)
ωτ + α sin(ω0τ − ϕ) − β sin 2ω0τ, (1.54)

where the parameters α, β, and ϕ are

α = ρ⊥k

√(
νe1 + (νν0 − 1)

cp0e1

Λ

)2
+ g2

(
νe2 + (νν0 − 1)

cp0e2

Λ

)2
,

β = (νν0 − 1)ρ�k, (1.55)

tanϕ =
g
(
νe2 + (νν0 − 1) cp0e2

Λ

)
νe1 + (νν0 − 1) cp0e1

Λ

.

In these expressions the quantities ρ⊥and ρ� are determined by Eqs. (1.31)
and (1.40). Here we have omitted the terms with r0 and τ0 as these terms
(constant phase factor) do not contribute to the single-particle radiation en-
ergy. All functions in Eq. (1.53) can be expressed by the series of Bessel
function production using the following expansion:

eiα sin(ω0τ−ϕ)−iβ sin 2ω0τ =
∞∑

n,k=−∞
Jn(α)Jk(β)e−inϕei(n−2k)ω0τ .

The latter in turn can be expressed by the so-called generalized Bessel func-
tion Gs(α, β, ϕ):

Gs(α, β, ϕ) =
∞∑

k=−∞
J2k−s(α)Jk(β)ei(s−2k)ϕ. (1.56)

Then the functions (1.52) will be written by the function Gs(α, β, ϕ) as fol-
lows:

G0 = 2π
∞∑

s=−∞
Gs(α, β, ϕ)δ

(E − cνp
Λ

ω − sω0

)
,

G1 = πA0

∞∑
s=−∞

{e1 (Gs−1(α, β, ϕ) +Gs+1(α, β, ϕ))
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+e2ig (Gs−1(α, β, ϕ) −Gs+1(α, β, ϕ))} δ
(E − cνp

Λ
ω − sω0

)
, (1.57)

G2 =
A2

0

2
(1 + g2)G0 + πA2

0(1 − g2)

×
∞∑

s=−∞
(Gs−2(α, β, ϕ) +Gs+2(α, β, ϕ)) δ

(E − cνp
Λ

ω − sω0

)
.

The function δ(x) in Eqs. (1.57) is the Dirac δ-function expressing the
resonance condition between the particle oscillation frequency in the in-
cident strong wave field and radiation frequency (conservation law of the
Compton effect in quantum terminology). According to Eqs. (1.57) the radi-
ation energy (1.53) is proportional to the δ2-function, which should be repre-
sented via particle–strong wave interaction time ∆t (in the wave coordinate
∆τ = ∆tΛ/E)

δ

(E − cνp
Λ

ω − sω0

)
δ

(E − cνp
Λ

ω − s′ω0

)

=

⎡⎢⎣0, if s �= s′,

∆τ
2π δ
(

E−cνp
Λ ω − sω0

)
, if s = s′.

(1.58)

Then instead of the radiation energy (1.53) one can determine the radiation
power

dPk =
dεk
∆t

.

Substituting Eqs. (1.57) into Eq. (1.53) taking into account Eq. (1.58) for the
radiation power we obtain (from ω > 0 follows s > 0)

dPk =
e2m2c3ω2

2πΛE
∞∑

s=1

{
ξ20
4

[
(1 + g2)

(
|Gs−1|2 + |Gs+1|2

)

+2(1 − g2)Re
(
G∗

s−1Gs+1 − 1
2
G∗

s (Gs−2 +Gs+2)
)]

−
(

1 +
ξ20
2

(1 + g2)
)

|Gs|2
}
δ

(E − cνp
Λ

ω − sω0

)
dωdO. (1.59)
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In the case of the circular polarization of an incident strong wave (g = ±1)
the second argument of the generalized Bessel function Gs(α, β, ϕ) is zero and
|Gs|2 = J2

s (α), so that for the radiation power we have

dPk =
e2m2c3ω2

2πΛE
∞∑

s=1

[
ξ20
2
(
J2

s−1(α) + J2
s+1(α)

)− (1 + ξ20
)
J2

s (α)
]

×δ
(E − cνp

Λ
ω − sω0

)
dωdO. (1.60)

Using the known recurrent relations for the Bessel functions

Js−1(α) + Js+1(α) =
2s
α
Js(α),

Js−1(α) − Js+1(α) = 2J ′
s(α),

Eq. (1.60) can be represented in the following form:

dPk =
e2m2c3ω2

2πE(E − cνp)
ξ20

∞∑
s=1

[(
s2

α2 − 1 − ξ−2
0

)
J2

s (α) + J ′2
s (α)

]

×δ
(
ω − sω0(E − cν0p)

E − cνp

)
dωdO. (1.61)

For the linear polarization of an incident strong wave (g = 0) the third ar-
gument of the generalized Bessel function Gs(α, β, ϕ) is zero and Gs functions
become real. Then for the radiation power in this case we have

dPk =
e2m2c3ω2

2πE(E − cνp)

∞∑
s=1

[
ξ20
4

(
(Gs−1 +Gs+1)

2 −Gs (Gs−2 +Gs+2)
)

−
(

1 +
ξ20
2

)
G2

s

]
δ

(
ω − sω0(E − cν0p)

E − cνp

)
dωdO. (1.62)

1.4 Nonlinear Radiation Effects in Superstrong Wave
Fields

Equations (1.59)–(1.62) for the radiation power of a charged particle show
that as a result of the particle–strong wave nonlinear interaction in vacuum,
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numerous harmonics in the radiation spectrum arise, i.e., the radiation pro-
cess is also nonlinear. In quantum terminology this means that due to multi-
photon absorption by a particle from the strong wave the nonlinear Compton
effect takes place. The power of harmonics radiation nonlinearly depends on
incident strong wave intensity and for its considerable value, laser fields must
have relativistic intensities ξ > 1.

Up to the last decade such intensities practically were unachievable (even
then the strongest laser fields were ξ < 1) and to expect to reach high har-
monics radiation via nonlinear Compton channels in vacuum with laser fields
of intensities ξ < 1 (or any other nonlinear effect at the charge particle–EM
wave interaction in vacuum, particularly laser acceleration), as will be shown
below, was unreal. For this reason, actual interest in the nonlinear Compton
effect until recently was only theoretical. However, the rapid development
of laser technology in the last decade made available laser sources of su-
pershort duration — femtosecond pulses, the intensity of which today much
exceeds its relativistic value in the optical domain: Irel ∼ 1018 W/cm2 (ξ ∼
1), laser fields with ξ >> 1 became available. The latter has provided the
necessary intensities for actual radiation of high harmonics in the Compton
process. Therefore, we will analyze the process of high harmonics radiation
in the nonlinear interaction of a charged particle with superstrong laser fields
(ξ >> 1) on the basis of Eqs. (1.59)–(1.62).

We will analyze the cases of circular and linear polarizations of the inci-
dent wave taking into account the specific dependence of harmonics radiation
on the strong wave polarization and when the initial velocity of the particle
is parallel to the wave propagation direction. This case of particle–wave par-
allel propagation is of interest since in this case the interaction length with
actual laser beams (or, e.g., wiggler field, which in relation to the relativistic
particle is equivalent to a counterpropagating laser field) is maximal, which
is especially important for the problem of free electron lasers.

In the case of circular polarization of an incident strong wave (g = ±1)
and p0e1 = 0, p0e2 = 0, carrying out the integration over ω and turning to
spherical coordinates in Eq. (1.61) (OZ axis directed along the vector p) for
the angular distribution of the radiation power for the s-th harmonic we have

dP (s)

dO
=

e2m2c3ω2
s

2πE2
(1 − v

c cosϑ)
ξ20

[(
s2

α2
s

− 1 − ξ−2
0

)
J2

s (αs) + J ′2
s (αs)

]
, (1.63)

where

ωs = sω0
E − cν0p
E − cνp

= sω0
1 − v

c cosϑ0

1 − v
c cosϑ

(1.64)

is the radiated frequency and
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αs =
smc2

E (1 − v
c cosϑ

)ξ0 sinϑ (1.65)

is the parameter characterizing nonlinear interaction with the strong EM
wave. ϑ0 and ϑ are the incident and scattering angles of the strong and
radiated waves with respect to the direction of the particle mean velocity
v = c2p/E .

For a weak EM wave: ξ0 << 1 (linear theory) the argument of the Bessel
function αs << 1 and as is known for such values of the argument Js(αs) ∼
αs

s and P (s) ∼ ξ2s
0 . Therefore, in the linear theory the main contribution

to the radiation power gives the first harmonic. In this case J2
1 (α1) 
 α2

1/4,
J ′2

1 (α1) 
 1/4, E 
 E0, v 
 v0, and

dP (1)

dO
=

e2m2c3ω2
1

8πE2
0 (1 − v0

c cosϑ)
ξ20

[
2 − α2

1

ξ20

]

=
e2m2c3ω2

1

8πE2
0 (1 − v0

c cosϑ)
ξ20

[
2 −
(
mc2

E0

)2 sin2 ϑ(
1 − v0

c cosϑ
)2
]
. (1.66)

Particularly for the particle initially at rest we have the Thomson formula

dP (1)

dO
=
e2ω2

0

8πc
ξ20
[
1 + cos2 ϑ

]
,

P (1) =
e2ω2

0

4c
ξ20

1∫
−1

[
1 + cos2 ϑ

]
d cosϑ =

2e2ω2
0

3c
ξ20 . (1.67)

For the moderate relativistic intensities ξ0 ∼ 1 (moderate nonlinearity)
the power of the low harmonics (s ∼ 10) exceeds the radiation power of the
fundamental frequency ω1. To show the dependence of the radiation power
on the harmonics number the relative differential power

P
(s)
rel =

dP (s)

dO
/
dP (1)

dO
=
s2
[(

s2

α2
s

− 1 − ξ−2
0

)
J2

s (αs) + J ′2
s (αs)

]
(

1
α2

1
− 1 − ξ−2

0

)
J2

1 (α1) + J ′2
1 (α1)

(1.68)

is displayed in Fig. 1.3 for the different harmonics. In Fig. 1.4 the relative
differential power is plotted as a function of radiation angle for various har-
monics.

For the superstrong EM waves of relativistic intensities (strict nonlinear-
ity): ξ0 � 1 a relatively simple analytic formula for the radiation power can
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Fig. 1.3. The envelope of the relative differential power of the radiation for the
different harmonics is plotted at ξ0 = 1 and ϑγ = 1 (γ = E/(m∗c2) = 10).

Fig. 1.4. The relative differential power is plotted as a function of radiation angle
for various harmonics. The relativistic parameter of intensity is taken to be ξ0 = 2
and γ = 10.

be obtained utilizing the properties of the Bessel function. The argument of
the latter in Eq. (1.63) reaches its maximal value

αs max =
ξ0√

1 + ξ20
s
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at the angle cosϑm = v/c. Therefore, at ξ0 � 1 the harmonics with s ∼ αs

>> 1 furnish the main contribution to the radiation power. At the angle
θ = θm we have a peak in angular distribution of the radiation power. Besides,
in this limit (always αs < s ) one can approximate the Bessel function by the
Airy one

Js(αs) 

(

2
s

)1/3

Ai (Z) ; Z =
(s

2

)2/3
(

1 − α2
s

s2

)
, (1.69)

J ′
s 
 −

(
2
s

)2/3

Ai′ (Z) ,

and taking into account that

E =
m∗c2√
1 − v2

c2

for the angular distribution of the radiation power we have

dP (s)

dO



e2ω2
s

(
1 − v2

c2

)
2πc(1 − v

c cosϑ)

(
2
s

)4/3

×
[(

s2

α2
s

− 1 − ξ−2
0

)(s
2

)2/3
Ai2 (Z) +Ai′2 (Z)

]
. (1.70)

As far as the Airy function exponentially decreasing with increasing of the
argument, one can conclude that the cutoff harmonic sc is determined from
the condition Zmin ∼ 1, where

Zmin =
(s

2

)2/3
(

1 − α2
s max

s2

)


(

s

2ξ30

)2/3

,

which gives sc ∼ ξ30 .
Consider now the case of linear polarization of the incident strong EM

wave. Taking into account the recurrence relation in Eq. (1.62)

Gs−2(α, β) +Gs+2(α, β) =
s

β
Gs(α, β) +

α

2β
[Gs−1(α, β) +Gs+1(α, β)] ,

the differential radiation power in this case can be represented in the form
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dP (s)

dO
=

e2m2c3ω2
s

8πE2
(1 − v

c cosϑ)
ξ20

×
[
(Gs−1 +Gs+1)

(
Gs−1 +Gs+1 − α

2β
Gs

)
−
(

2 +
4
ξ20

+
s

β

)
G2

s

]
. (1.71)

The arguments of the generalized Bessel functions when p0e1 = 0 are

αs =
smc2

E (1 − v
c cosϑ

)ξ0 |νe1| ,

βs =
sξ20

8 + 4ξ20

1 − v2

c2

1 − v
c cosϑ0

cosϑr − 1
1 − v

c cosϑ
, (1.72)

where ϑr is the angle between the incident and radiated EM waves.
For the weak EM wave ξ0 << 1 the arguments of the generalized Bessel

function αs, βs << 1 and P (s) ∼ ξ2s
0 , therefore the main contribution to the

radiation power gives the first harmonic. In this case

dP (1)

dO
=

e2m2c3ω2
1

8πE2
0 (1 − v0

c cosϑ)
ξ20

[
1 − α2

1

ξ20

]
. (1.73)

For the particle initially at rest we have the Thomson formula

dP (1)

dO
=
e2ω2

0

8πc
ξ20

[
1 − (νe1)

2
]
,

P (1) =
e2ω2

0

3c
ξ20 . (1.74)

In contrast to the circular polarization of the strong wave, for the lin-
ear polarization there is no azimuthal symmetry and the asymmetry upon
the harmonics parity appears. In particular, in the direction opposite to the
strong wave propagation (νe1 = 0 and ϑr = π) only odd harmonics exist.
This is a consequence of the particle dynamics in the strong wave field consid-
ered in section 1.2. For this case the generalized Bessel function is reduced to
the ordinary Bessel function and we have a relatively simple formula. Thus,

Gs(0, β, 0) =
∞∑

k=−∞
J2k−s(0)Jk(β)
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=
∞∑

k=−∞
δ2k−s,0Jk(β) =

[
0, if s odd
Js/2(β), if s even (1.75)

and for the angular distribution of the radiation power we obtain

dP (s)

dO

∣∣∣∣
ϑr=π

=
e2m2c3ω2

sξ
2
0

8πE2
(1 − v

c cosϑ)

[
J s+1

2

(
sξ20

4 + 2ξ20

)
− J s−1

2

(
sξ20

4 + 2ξ20

)]2
.

(1.76)

Fig. 1.5. The partial differential power is shown for on axis radiation as a function
of ξ0 for various harmonics (γ = 10).

At ξ0 � 1 the argument of the Bessel function tends to the value of the
index and as in the case of a wave circular polarization the high harmonics
s >> 1 give the main contribution to the radiation power and the cutoff
harmonic sc ∼ ξ30 . In Fig. 1.5 the partial differential power is shown for
on axis radiation. To show the dependence of the process on the incident
wave intensity the relative differential power is plotted as a function of ξ0 for
various harmonics. As we see, with increasing of the wave intensity the power
of harmonics well exceeds the power of the fundamental frequency.

1.5 Quantum Description. Volkov Solution of the Dirac
Equation

The description of the quantum dynamics of a spinor charged particle (say,
electron) in the field of a strong EM wave in vacuum in the scope of rel-
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ativistic theory requires solution of the Dirac equation, which in the field
of arbitrary plane wave allows an exact solution, first obtained by Volkov
(1933). This Volkov wave function has the basic role in quantum description
of diverse nonlinear electromagnetic processes in superstrong laser fields in
vacuum, in particular, major quantum electrodynamic phenomena such as
the Compton effect, stimulated bremsstrahlung, and electron–positron pair
production, which will be considered in this book. Therefore, this section will
be devoted to a description of relativistic wave function of a spinor charged
particle in the field of a plane EM wave of arbitrary form and intensity.

The Dirac equation for a spinor particle in a given plane EM wave with
arbitrary form of the vector potential A = A(τ) (see Eq. (1.7)) is written as
follows:

i�
∂Ψ

∂t
=
[
cαP̂+mc2β

]
Ψ, (1.77)

where

α =
(
σ 0
0 −σ

)
, β =

(
0 1
1 0

)
(1.78)

are the Dirac matrices in the spinor representation, σ = (σx, σy, σz) are the
Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.79)

and

P̂ = p̂ − e

c
A

is the operator of the kinetic momentum (p̂ = −i�∇ is the operator of the
generalized momentum).

Looking for the solution of Eq. (1.77) in the form

Ψ =
(
Ψ1
Ψ2

)
, (1.80)

for the spinor functions Ψ1,2 we obtain the equations

i�
∂Ψ1

∂t
− cσP̂Ψ1 = mc2Ψ2,

i�
∂Ψ2

∂t
+ cσP̂Ψ2 = mc2Ψ1. (1.81)
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Then acting on the first equation by the operator i�∂/∂t + cσP̂ and taking
into account the relation

(σa) (σb) = (ab) + iσ [ab]

we obtain the Dirac equation in quadratic form:{
�

2 ∂
2

∂t2
− �

2c2
(
ν0

∂

∂r

)2

+ c2P̂2
⊥ +m2c4 − ec�σ(H − iE)

}
Ψ1 = 0. (1.82)

A similar equation is obtained for Ψ2:{
�

2 ∂
2

∂t2
− �

2c2
(
ν0

∂

∂r

)2

+ c2P̂2
⊥ +m2c4 − ec�σ(H + iE)

}
Ψ2 = 0, (1.83)

where E and H are the electric and magnetic field strengths of the plane
EM wave determined by Eq. (1.6). The last terms in these equations σ(H ∓
iE) describe the spin interaction (for the scalar particles Eqs. (1.82), (1.83)
without these terms are reduced to the Klein–Gordon equation). To solve the
problem it is more convenient to pass to the retarding and advanced wave
coordinates

τ = t− ν0r/c; η = t+ ν0r/c,

then Eq. (1.82) is written as{
4�

2 ∂2

∂τ∂η
+ c2P̂2

⊥ +m2c4 − ec�σ(H − iE)
}
Ψ1 = 0. (1.84)

As the existence of a plane wave does not violate the homogeneity of
the space in the plane of the wave polarization (r⊥) and the interaction
Hamiltonian does not depend on the wave advanced coordinate η, i.e. the
variables r⊥, η are cyclic and the corresponding components of generalized
momentum p⊥ and pη are conserved. Then the solution of Eq.(1.84) can be
represented in the form

Ψ1 (τ, η, r⊥) = F1(τ) exp
{
i

�
(p⊥r⊥+pηη)

}
. (1.85)

From the initial condition A(τ = −∞) = 0 it follows that p⊥ is the free
particle initial transverse momentum and the quantity

pη =
1
2

(cpν0 − E) , (1.86)
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where E and p are the free particle initial energy and momentum. Note that
this quantity coincides with the classical integral of motion (1.10) (with a
coefficient).

Substituting Eq.(1.85) into Eq. (1.84) for the function F1(τ) yields the
equation{

∂

∂τ
− ic2

4�pη

[(
p⊥ − e

c
A
)2

+m2c2 − e�

c
σ(H − iE)

]}
F1(τ) = 0. (1.87)

The solution of Eq. (1.87) can be written in the operator form

F1 = exp

{
ic2

4�pη

τ∫
−∞

[(
p⊥ − e

c
A
)2

+m2c2
]
dτ ′

+
e (σν0 + 1)σA

4pη

}
w1, (1.88)

where w1 is an arbitrary spinor amplitude.
The operator in the exponent should be understood as a expansion into

series

eĜ = 1 + Ĝ+
Ĝ2

2!
+ · · ·.

Then it is easy to see that all powers greater than 1 of the operator
(σν0 + 1)σA in Eq. (1.88) are zero because

[(σν0 + 1)σA]2 = A2 (1−ν2
0
)

= 0.

So, the spinor function (1.88) can be written in the form

F1(τ) = exp

⎧⎨⎩ ic2

4�pη

τ∫
−∞

[(
p⊥ − e

c
A
)2

+m2c2
]
dτ ′

⎫⎬⎭
×
[
1 +

e

4pη
(σν0 + 1)σA

]
w1. (1.89)

In the same way an analogical expression can be written for the spinor func-
tion F2(τ).

The spinor components of the bispinor wave function of a particle (1.77)
will be written as
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Ψ1 = exp
{
i

�
S (r, t)

}[
1 +

e

4pη
(σν0 + 1)σA

]
w1,

Ψ2 = exp
{
i

�
S (r, t)

}[
1 +

e

4pη
(σν0 − 1)σA

]
w2, (1.90)

or the ultimate bispinor wave function can be represented via Dirac matrices
α

Ψ (r, t) = exp
{
i

�
S (r, t)

}[
1 +

e

4pη
(αν0 + 1)αA

]
w. (1.91)

The scalar function S (r, t) in Eqs. (1.90) and (1.91)

S (r, t) =
c2

4pη

τ∫
−∞

[
e2

c2
A2(τ ′) − 2

e

c
pA(τ ′)

]
dτ ′ + pr−Et (1.92)

is the classical action of a charged particle in the plane EM wave field and

w =
(
w1
w2

)
is a constant bispinor, which should be defined from the condition of the
particle wave function normalization according to the above stated initial
conditions. Namely, we will demand that at τ = −∞ this wave function
should be reduced to the free Dirac equation solution and for a constant
bispinor we will set

w =
uσ√
2E ,

where uσ is the bispinor amplitude of a free Dirac particle with polarization
σ. It is assumed that

uu = 2mc3,

where u = u†β; u† denotes the transposition and complex conjugation of u
(in what follows we will set the volume of the normalization V = 1).

In future consideration of the quantum electrodynamic processes it will
be reasonable to use the four-dimensional presentation of the Volkov wave
function. Therefore, we will represent the wave function (1.91) in the equiva-
lent four-dimensional form. Here and in what follows for the four-component
vectors we chose the metric a ≡ aµ = (a0,a) and ab ≡ aµbµ for the relativis-
tic scalar product. The vector potential and the phase of the plane EM wave
can be written as
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A = (0,A); τ = t− ν0r/c =
kµx

µ

k0c
,

where

k = (k0, ν0k0)

is the four-vector with k2 = 0 and x = (ct, r) is the four-radius vector.
Introducing the known γµ = (γ0, γ) matrices

γ =βα, γ0 = β

and taking into account that

pη = − c

2k0
pk; p =

(E
c
,p
)
,

e

4pη
(αν0 + 1)αA =

e

2c(pk)
(γk) (γA) ,

the Volkov wave function may be written as

Ψ (x) = exp
{
i

�
S (x)

}[
1 +

e (γk) (γA)
2c(pk)

]
u,

S (x) = −px− k0c

2pk

τ∫
−∞

[
2
e

c
pA(τ ′) − e2

c2
A2(τ ′)

]
dτ ′. (1.93)

Consider the Volkov wave function of a spinor particle in the field of the
monochromatic wave (1.48). The latter can be presented in the form

Ψpσ =
[
1 +

e (γk) (γA)
2c(kp)

]
uσ(p)√

2E exp
[
− i

�

{
Πx− eA0

c(pk)

×(e1p sinω0τ − ge2p cosω0τ) +
e2A2

0

8c2(pk)
(1 − g2) sin(2ω0τ)

]}
, (1.94)

where k = (ω0/c,k0) is the four-wave vector and Π = (Π0/c,Π) is the aver-
age four-kinetic momentum or “quasimomentum” of the particle in the peri-
odic field, which is determined via free particle four-momentum p = (E/c,p)
and relativistic invariant parameter of the wave intensity ξ0 by the equation

Π = p+ k
m2c2

4kp
(1 + g2)ξ20 . (1.95)
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From this equation it follows that

Π2 = m∗2c2; m∗ = m

(
1 +

1 + g2

2
ξ20

)1/2

, (1.96)

where m∗ is the effective mass of the particle in the monochromatic EM
wave introduced in Section 1.2 (see Eq. (1.18)). It is seen that quasimomen-
tum Π=p and quasienergy Π0 = E according to Eq. (1.17). The notion of
quasimomentum is connected with the space-time translational symmetry -
periodicity of the plane wave field as for the electron states in the crystal
lattice.

The states (1.94) are normalized by the condition

1
(2π�)3

∫
Ψ †

p′σ′Ψpσdr = δ(p − p′)δσ,σ′ ,

where δσ,σ′ is the Kronecker symbol.
By the analogy of the electron states in the crystal lattice the state of

a particle in the monochromatic wave can be characterized by the quasimo-
mentum Π and polarization σ as well:

1
(2π�)3

∫
Ψ †

Π′σ′ΨΠσdr = δ(Π − Π′)δσ,σ′ .

In this case the normalization constant should be changed as follows

ΨΠσ =
√ E
Π0

Ψpσ. (1.97)

1.6 Nonlinear Compton Effect

With the help of the Volkov wave function (1.94) one can describe the major
quantum process of electron scattering in the field of a strong monochro-
matic wave — nonlinear Compton effect — as a photon radiation by the
electron due to the transitions between the “stationary states” of different
quasimomentum Π and polarization σ. The spontaneous radiation of a pho-
ton by the electron may be considered by the perturbation theory in the
scope of quantum electrodynamics (QED). The first-order Feynman diagram
(Fig. 1.6) describes the electron–EM wave scattering process, where the elec-
tron lines are described via dynamic wave functions in the strong wave field
(1.94) (dressed electron). The probability amplitude of transition from the
state with a definite quasimomentum and polarization ΨΠσ to the state ΨΠ′σ′
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Fig. 1.6. Feynman diagram for nonlinear
Compton effect.

with the emission of a photon with the frequency ω′ and wave vector k′ is
given by

Sif = − ie

�c2

∫
jif (x)A∗

ph (x) d4x, (1.98)

where

Aµ
ph (x) =

√
2π�c2

ω′ εµe−ik′x (1.99)

is the four-dimensional vector potential of quantized photon field (quanti-
zation volume V = 1), εµ is the four-dimensional polarization vector of the
photon, and

jµ
if = ΨΠ′σ′γµΨΠσ

is the four-dimensional transition current (ΨΠ′σ′ = Ψ †
Π′σ′γ0 and A∗ is the

complex conjugate of A ).
Hence, for the probability amplitude we have

Sif = −ie
√

2π
�ω′c2

∫
ΨΠ′σ′ ε̂∗ΨΠσe

ik′xd4x. (1.100)

Here and in what follows for arbitrary four-component vector â = γµaµ. The
probability amplitude can be expressed by the generalized Bessel functions
Gs(α, β, ϕ) introduced in Section 1.3. Thus, taking into account the properties
of Dirac γ matrices (k̂k̂ = 0 Âk̂ = −k̂Â) and Eq. (1.94) one will obtain

Sif = −ie
c

√
π

2�ω′Π0Π ′
0

∫
uσ′(p′)

[
ε̂∗ +

(
eÂk̂ε̂∗

2c(kp′)
+
eε̂∗k̂Â
2c(kp)

)

− e2(kε∗)A2

2c2(kp′)(kp)
k̂

]
uσ(p)eiψ(x)d4x. (1.101)
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Here

ψ(x) =
1
�

(Π ′ −Π + �k′)x+ α sin(kx− ϕ) − β sin 2kx, (1.102)

and the parameters α, β, and ϕ are

α =
eA0

�c

[(
e1p
pk

− e1p′

p′k

)2

+ g2
(

e2p
pk

− e2p′

p′k

)2
]1/2

, (1.103)

β =
e2A2

0

8�c2
(1 − g2)

(
1
pk

− 1
p′k

)
, (1.104)

tanϕ =
g
(

e2p
pk − e2p′

p′k

)
(

e1p
pk − e1p′

p′k

) . (1.105)

After the integration the probability amplitude (1.101) can be represented in
the form

Sif = −ie
c

(2π�)4
√

π

2�ω′Π0Π ′
0
uσ′(p′)M̂ifuσ(p), (1.106)

where

M̂if =

[
ε̂∗Q0 +

(
eQ̂1k̂ε̂∗

2c(kp′)
+
eε̂∗k̂Q̂1

2c(kp)

)
+

e2(kε∗)Q2

2c2(kp′)(kp)
k̂

]
(1.107)

with the functions Q0, Q
µ
1 , and Q2:

Q0 =
∞∑

s=−∞
Gs(α, β, ϕ)δ (Π ′ −Π + �k′ − s�k) , (1.108)

Qµ
1 = (0,Q1) ,

Q1 =
A0

2

∞∑
s=−∞

{e1 (Gs−1(α, β, ϕ) +Gs+1(α, β, ϕ))

+ie2g (Gs−1(α, β, ϕ) −Gs+1(α, β, ϕ))} δ (Π ′ −Π + �k′ − s�k) , (1.109)
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Q2 =
A2

0

2
(1 + g2)Q0 +

A2
0

2
(1 − g2)

×
∞∑

s=−∞
(Gs−2(α, β, ϕ) +Gs+2(α, β, ϕ)) δ (Π ′ −Π + �k′ − s�k) . (1.110)

From the definition of the functions (1.108)–(1.110) follows the useful relation

E ′ − E + �ω′

ω
Q0 +

e

c

(
p′Q1

kp′ − pQ1

kp

)
+

e2

2c2

(
1
kp′ − 1

kp

)
Q2 = 0 (1.111)

We will assume that the Dirac particle is nonpolarized and summation
over the final particle polarizations (photon and electron) will be made. Then
we need to calculate the sum

1
2

∑
σ′,σ,ε

|Sif |2 =
(2π�)8 πe2

4�ω′c2Π0Π ′
0

∑
σ′,σ,ε

∣∣∣uσ′(p′)M̂ifuσ(p)
∣∣∣2

=
(2π�)8 πe2c2

4�ω′Π0Π ′
0

∑
ε

Sp
[
(p̂′ +mc)M̂if (p̂+mc)M̂ if

]
, (1.112)

where

M̂ if = γ0M̂
†
ifγ0.

Taking into account that spur of the product of odd number γ matrices is
zero we will obtain

1
2

∑
σ′,σ,ε

|Sif |2 =
(2π�)8 πe2c2

4�ω′Π0Π ′
0

∑
ε

{
Sp
[
p̂′M̂if p̂M̂ if

]
+m2c2Sp

[
M̂ifM̂ if

]}
.

The summation over the photon polarizations is equivalent to the replace-
ments

ε∗υεµ → −gυµ, ε̂∗âε̂ → 2â, ε̂∗âb̂ĉε̂ → 2ĉb̂â, (1.113)

where gυµ is the metric tensor. So,

Sp
[
M̂ifM̂ if

]
= −16 |Q0|2

and

Sp
[
p̂′M̂if p̂M̂ if

]
= 8(p′p) |Q0|2
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+
8e
c

(pk − p′k)Re
((

p′Q1

kp′ − pQ1

kp

)
Q∗

0

)

−4e2

c2

[
kp

kp′ +
kp′

kp

]
|Q1|2 − 8e2

c2
Re (Q0Q

∗
2) .

Then using the relation (1.111) we obtain

1
2

∑
σ′,σ,ε

|Sif |2 =
2 (2π�)8 πe2c2

�ω′Π0Π ′
0

[
−m2c2 |Q0|2

−e2

c2

(
1 +

�
2 (kk′)2

2 (pk) (p′k)

)(
|Q1|2 +Re (Q0Q

∗
2)
)]
. (1.114)

For the differential probability per unit time we have

dW =
1

2T

∑
σ′,σ,ε

|Sif |2 dΠ′

(2π�)3
dk′

(2π)3
, (1.115)

where T is the interaction time. Then taking into account Eqs. (1.108)–(1.110)
and the relation

δ (Π ′ −Π + �k′ − s�k) δ (Π ′ −Π + �k′ − s′
�k)

=

⎡⎣0, if s �= s′,

cT
(2π�)4 δ (Π ′ −Π + �k′ − s�k) , if s = s′,

(1.116)

for the differential probability of the nonlinear Compton effect we obtain

dW =
∞∑

s=1

W (s)δ (Π ′ −Π + �k′ − s�k) dΠ′dk′, (1.117)

W (s) =
e2m2c5

2πω′Π0Π ′
0

[
− |Gs|2 +

ξ20
4

(
1 +

�
2 (kk′)2

2 (pk) (p′k)

)

×
(

(1 + g2)
(
|Gs−1|2 + |Gs+1|2 − 2 |Gs|2

)
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+(1 − g2)Re
[
2G∗

s−1Gs+1 −G∗
s (Gs−2 +Gs+2)

])]
. (1.118)

The four-dimensional δ-functions in Eq. (1.117) for differential probability
express the conservation laws for quasimomentum and quasienergy of the
particle in the nonlinear Compton process. Different s correspond to partial
scattering processes with fixed photon numbers and W (s) are the partial
probabilities of s-photon absorption by the particle in the strong wave field.

The spectrum of emitted photons is determined from the conservation
laws. Taking into account Eqs. (1.95) and (1.96) we will have the following
expression for the radiated frequency:

ω′ = sω
1 − v

c cosϑ0

1 − v
c cosϑ+ s�ω

Π0
(1 − cosϑr)

, (1.119)

where ϑ0, ϑ are the incident and scattering angles of incident strong wave and
radiated photon with respect to the direction of the particle mean velocity
v = c2Π/Π0 and ϑr is the angle between the incident wave and radiated
photon propagation directions. The quantum conservation law of nonlinear
Compton effect (1.119) differs from the classical formula (1.64) by the last
term in the denominator ∼ s�ω/Π0, which is the quantum recoil of emitted
photon.

Making the integration over Π′ in Eq. (1.117) and multiplying by the
photon energy we obtain the radiation power. In the case of circular polar-
ization of an incident strong wave (g = ±1) we have |Gs|2 = J2

s (α) and the
radiation power is

dP
(s)
k′ =

ω′2e2m2c3

2πΠ0Π ′
0

[
−J2

s (α) + ξ20

(
1 +

�
2 (kk′)2

2 (pk) (p′k)

)

×
[(

s2

α2 − 1
)
J2

s (α) + J ′2
s (α)

]]
× δ

(
Π ′

0 −Π0

�
+ ω′ − sω

)
dω′dO,

where the Bessel function argument

α =
eA0

�ω

∣∣∣∣[k( p
pk

− p′

p′k

)]∣∣∣∣ . (1.120)

Taking into account that

δ

(
Π ′

0 −Π0

�
+ ω′ − sω

)
dω′ →

∣∣∣∣ ∂∂ω′

(
Π ′

0

�
+ ω′

)∣∣∣∣−1

=
Π ′

0ω
′

c2 (Π ′k′)
,
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for the angular distribution of radiation power we obtain

dP (s)

dO
=

ω′3e2m2c

2πΠ0 (Π ′k′)

[
−J2

s (α) + ξ20

(
1 +

�
2 (kk′)2

2 (pk) (p′k)

)

×
((

s2

α2 − 1
)
J2

s (α) + J ′2
s (α)

)]
. (1.121)

This formula differs from the classical one (1.63) only by the terms of quantum
recoil, which are of the order of �kk′/ (Π ′k). The maximal value of this
parameter is 2s� (Πk) /m∗2c2 and if

2s� (Πk)
m∗2c2

<< 1,

one can omit the quantum recoil and taking into account that in this case

Π ′k′ 
 Πk′; α 
 αclassic;
�

2 (kk′)2

2 (pk) (p′k)
<< 1,

from Eq. (1.121) we obtain the classical formula for radiation power.
In the limit of weak EM wave when ξ0 << 1 (linear theory) the ar-

gument of the Bessel function α << 1 and the main contribution to the
radiation power gives the first harmonic (as in the classical theory). In this
case J2

1 (α1) 
 α2
1/4, J ′2

1 (α1) 
 1/4, Π0 
 E , Π ′
0 
 E ′, and

dP

dO
=

ω′3e2m2c

8πE (p′k′)

[
−α2 + 2ξ20

(
1 +

�
2 (kk′)2

2 (pk) (p′k)

)]
.

Then, using conservation laws, it is easy to see that∣∣∣∣[k( p′

p′k
− p
pk

)]∣∣∣∣2 = 2�
ω2

c2

(
1
p′k

− 1
pk

)
− ω2m2

(
1
pk

− 1
p′k

)2

,

(
1 +

�
2 (kk′)2

2 (pk) (p′k)

)
=

1
2

[
pk

p′k
+
p′k
pk

]
,

and for the one-photon Compton effect we obtain

dP

dO
=

ω′3e2m2c

8πE (p′k′)
ξ20

[(
m2c2

� (p′k)
− m2c2

� (pk)

)2



1.6 Nonlinear Compton Effect 33

−2
(
m2c2

� (p′k)
− m2c2

� (pk)

)
+

pk

p′k
+
p′k
pk

]
. (1.122)

For the differential cross section

dσ

dO
=

1
�ω′J

dP

dO

one should make the replacement

A2
0 → 4π�c2

ω
, (1.123)

corresponding to photon field quantization and

J =
c3pk

ωE
is the initial flux density (quantization volume V = 1). Hence, for the differ-
ential cross section of the one-photon Compton effect we obtain

dσ

dO
=

ω′2e4

2c4 (pk)2

[(
m2c2

� (p′k)
− m2c2

� (pk)

)2

−2
(
m2c2

� (p′k)
− m2c2

� (pk)

)
+

pk

p′k
+
p′k
pk

]
. (1.124)

For a particle initially at rest

pk = mω, pk′ = mω′,
mc2

�ω′ − mc2

�ω
= 1 − cosϑr,

and the differential cross section of the one-photon Compton effect may be
written in the known form of Klein and Nishina formula

dσ

dO
=
r2e
2

(
ω′

ω

)2 [
ω

ω′ +
ω′

ω
− sin2 ϑr

]
, (1.125)

where re = e2/mc2 is the classical radius of the electron.
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1.7 Bremsstrahlung in Superstrong Wave Fields

The other major radiation process with the free electrons in vacuum is
bremsstrahlung. In the presence of an external coherent radiation field the
bremsstrahlung acquires induced character and stimulated bremsstrahlung
(SB) takes place. In the laser fields of relativistic intensities SB becomes es-
sentially multiphoton and the description of nonlinear SB requires relativistic
quantum consideration. The latter may be made again via Volkov wave func-
tion (1.94), at the electron scattering on a static potential field in the first
Born approximation. This process can be described by the first-order Feyn-
man diagram (Fig. 1.7), where the “dressed electron” initial and final states
are described by corresponding wave functions (1.94) and the dashed line
corresponds to pseudophotons of scattering potential field.

Fig. 1.7. Feynman diagram for bremsstrah-
lung in superstrong wave field.

For the probability amplitude of the transition i → f at SB process we
have

Sif = − ie

�c2

∫
ΨΠ′σ′Â(e) (x)ΨΠσd

4x, (1.126)

where A(e) (x) is the four-dimensional vector potential of the scattering field.
Upon Fourier transformation

A(e)(x) =
1

(2π)4

∫
A(e) (q′) e−iq′xd4q′,

Eq. (1.126) will have the form

Sif = − ie

�c2 (2π)4

∫
ΨΠ′σ′Â(e) (q′) e−iq′xΨΠσd

4q′d4x. (1.127)
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The static potential field (for nucleus/ion — as a scattering center — the
recoil momentum is neglected) will be described by the scalar potential ϕ (r)

A(e) (x) = (ϕ (r) , 0)

and for the Fourier transform of A(e) (x) we have

A(e) (q′) = (2πδ (q′
0)ϕ (q′) , 0) .

Then one can conclude that the S-matrix amplitude of this process may
be obtained from the S-matrix amplitude of the Compton effect (1.106) by
substitutions of the amplitude of vector potential of quantized photon field,
as well as four-dimensional polarization and wave vectors of the photon as
follows: √

2π�c2

ω′ → 1
(2π)3

δ (q′
0)ϕ (q′) d4q′,

ε∗ → ε0 = (1, 0, 0, 0) , k′ → −q′.

Hence, making these substitutions in Eq. (1.107) and using δ functions of
Eqs. (1.108)–(1.110) for the integration over q′, the probability amplitude of
SB may be represented in the form

Sif = −iπ e

V c
√
Π0Π ′

0

uσ′(p′)M̂ifuσ(p) (1.128)

with

M̂if =
∞∑

s=−∞
ϕ(qs)

[
ε̂0Bs +

(
eB̂1sk̂ε̂0
2c(kp′)

+
eε̂0k̂B̂1s

2c(kp)

)

+
e2(kε0)B2s

2c2(kp′)(kp)
k̂

]
δ (Π ′

0 −Π0 − s�ω) , (1.129)

where the vector functions Bµ
1s = (0,B1s) and scalar functions Bs, B2s are

expressed via generalized Bessel functions Gs(α, β, ϕ):

B1s =
A0

2

∞∑
s=−∞

{e1 (Gs−1(α, β, ϕ) +Gs+1(α, β, ϕ))

+ie2g (Gs−1(α, β, ϕ) −Gs+1(α, β, ϕ))} , (1.130)
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Bs = Gs(α, β, ϕ), (1.131)

B2s =
A2

0

2
(1 + g2)G0 +

A2
0

2
(1 − g2)

×
∞∑

s=−∞
(Gs−2(α, β, ϕ) +Gs+2(α, β, ϕ)) , (1.132)

and

�qs= Π′ − Π − s�k (1.133)

is the recoil momentum. The definitions of arguments α, β, ϕ are the same as
in Eqs. (1.103)–(1.105).

The differential probability of SB process per unit time, summed over the
electron final polarization states and averaged over the initial polarization
states, is

dW =
1

2T

∑
σ′,σ

|Sif |2 dΠ′

(2π�)3
. (1.134)

The calculation of spur will be made in the same way as has been made for
the Compton effect using Eq. (1.111) and the following relations:

ε̂0 = γ0, ε̂0b̂ε̂
∗
0 = b̂, b = (b0,−b),

δ (Π ′
0 −Π0 − s�ω) δ (Π ′

0 −Π0 − s′
�ω)

=

⎡⎣0, if s �= s′,

T
2π�

δ (Π ′
0 −Π0 − s�ω) , if s = s′.

Then we obtain

1
2

∑
σ′,σ

|Sif |2 =
2πe2T
�Π ′

0Π0

∑
s

|ϕ (qs)|2
{∣∣∣∣EBs − e (pB1s)ω

(kp) c
+
e2ωB2s

2c2(kp)

∣∣∣∣2

+
e2�

2 [kqs]
2

4(kp′)(kp)

[
|B1s|2 −Re (B2sB

∗
s )
]

−�
2q2

sc
2

4
|Bs|2

}
δ (Π ′

0 −Π0 − s�ω) . (1.135)
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Dividing the differential probability of the process (1.134) by initial flux den-
sity |Π| c2/Π0, and integrating overΠ ′

0 we obtain the differential cross section
of multiphoton SB process

dσ

dO
=

∞∑
s>−sm

dσ(s)

dO
, (1.136)

where

dσ(s)

dO
=
e2 |ϕ (qs)|2 |Π′|

4π2�4c4 |Π|

{∣∣∣∣EBs − e (pB1s)ω
(kp) c

+
e2ω

2c2(kp)
B2s

∣∣∣∣2

−�
2q2

sc
2

4
|Bs|2 +

e2�
2 [kqs]

2

4(kp′)(kp)

[
|B1s|2 −Re (B2sB

∗
s )
]}

(1.137)

is the partial differential cross section, which describes the s-photon SB pro-
cess. The final quasimomentum of the electron corresponding to s-photon
absorption (s > 0) or emission (s < 0) processes in the strong wave field is

Π ′ =

√
Π2 +

s�ω

c2
(2Π0 + s�ω), (1.138)

and sm is the maximum number of emitted photons:

sm =
Π0 −m∗c2

�ω
. (1.139)

For circular polarization of the incident EM wave

Gs(α, 0, ϕ) = (−1)s
Js(α)eisϕ,

and taking into account (1.130)–(1.132), for the partial differential cross sec-
tion of SB we have

dσ(s)

dO
=
e2 |ϕ (qs)|2 |Π′|

4π2�4c4 |Π|

{[(
Π0 +

s�ω

(kp)
κ [kp]

κ2

)2

− �
2q2

sc
2

4

]
J2

s (α)

+
�

2e2A2
0

4(kp′)(kp)
[kqs]

2
[(

s2

α2 − 1
)
J2

s (α) + J ′2
s (α)

]
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+
e2A2

0

(kp)2
[κ [kp]]2

κ2 J ′2
s (α)

}
, (1.140)

where

κ =
[
k
(

p
pk

− p′

p′k

)]
(1.141)

and the Bessel function argument is

α=
eA0

�ω
|κ| . (1.142)

At the absence of incident EM wave (A0 = 0) from Eq. (1.140) we obtain
the Mott formula for elastic scattering of the electron in the Coulomb field,
which corresponds to s = 0 harmonic. Thus, taking into account the Fourier
transform of Coulomb potential

ϕ (q) =
4πZae

q2 , (1.143)

where Za is the charge number of the nucleus, and Eq. (1.133) for q0, Eq.
(1.140) becomes

dσMott

dO
=

4Z2
aα

2
0

�2c2q4
0
E2
[
1 − �

2q2
0c

2

4E2

]
, (1.144)

where α0 ≡ e2/(�c) = 1/137 is the fine structure constant.
Concerning the applied approximation for description of multiphoton SB

note that the condition of validity of obtained cross sections (1.137) in the first
Born approximation by static potential field holds for electron renormalized
velocities in the incident wave field. In particular, for Coulomb potential the
known condition for the Born approximation turns into conditions

Zae
2

�v
<< 1,

Zae
2

�v′ << 1, (1.145)

where v = c2 |Π| /Π0, v′ = c2 |Π′| /Π ′
0 are the electron initial and final mean

velocities in the EM wave field.
For α << 1 the main contribution to the SB cross section produces one-

photon emission and absorption processes. In particular, for one-photon stim-
ulated radiation from Eq. (1.140) we have

dσ(−1)

dO
=
e2 |ϕ (q−1)|2 |p′|

16π2�4c4 |p|
e2A2

0

�2ω2

{[
k
(E ′p
pk

− Ep′

p′k

)]2
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−�
2q2

−1c
2

4

[
k
(

p′

p′k
− p
pk

)]2
+

�
4ω2
[
kq−1

]2
2(kp′)(kp)

}
. (1.146)

From this formula one can obtain the Bethe–Heitler formula for spontaneous
bremsstrahlung (one-photon emission) in the Coulomb field. For the latter
one needs to make the replacement (1.123) in Eq. (1.146) and multiply the
cross section of bremsstrahlung by the density of photon states

2
ω2

c3
dω

do

(2π)3
,

then we will have the Bethe–Heitler formula

dσBH =
α3

0Z
2 |p′|

π2�2c2ω |p|q4
−1

{[
k
(Ep′

p′k
− E ′p

pk

)]2

−�
2q2

−1c
2

4

[
k
(

p′

p′k
− p
pk

)]2
+

�
4ω2
[
kq−1

]2
2(kp′)(kp)

}
dωdodO. (1.147)

For multiphoton SB in the nonrelativistic limit (v << c) one can make
dipole approximation for EM wave and omit the terms proportional to k2

and q2 in Eq. (1.140). Then we obtain the nonrelativistic factorized cross
section of multiphoton SB

dσ(s)

dO
=
dσR

dO
J2

s

(
eA0

�ω

∣∣∣∣[kω (v − v′)
]∣∣∣∣) ,

where

dσR

dO
=
m2e2 |ϕ (qs)|2 |p′|

4π2�4 |p| (1.148)

is the Reserford cross section.
Comparing the nonrelativistic cross section (1.148) with the relativistic

one (1.140) it is easy to see that besides the additional terms, which re-
sult from spin–orbital and spin–laser interaction (∼ q2s), as well as from the
intensity effect of strong EM wave (∼ ξ20), the relativistic contribution is
conditioned by arguments of the Bessel functions. Because of sensitivity of
the Bessel function to the relationship of its argument and index the most
probable number of emitted or absorbed photons is determined by the con-
dition |s| ∼ |α|. For this reason the contribution of relativistic effects to
the scattering process is already essential for intensities ξ0 ∼ 0.1. Hence, the
dipole approximation is violated for nonrelativistic parameters of interaction.
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Besides, the state of an electron in the field of a strong EM wave and, con-
sequently, the cross section of SB essentially depends on the polarization of
the wave. In particular, the cross section for linear polarization of the wave
is described by the generalized Bessel function. The cross sections in both
cases are complicated and to show some features of multiphoton SB process
we present the results of numerical investigation. For the numerical calcula-
tions we have chosen the initial electron momentum p to be colinear with
the laser propagation direction. In this case for circular polarization of the
wave there is an azimuthal symmetry with respect to propagation direction,
which simplifies the calculation of integral quantities. Then we have taken
moderate initial electron kinetic energy Ek = 2.7 keV (100 a.u.), neodymium
laser (�ω 
 1.17 eV ), screening Coulomb potential

ϕ (q) =
4πZae

q2 + χ2 ,

with radius of screening χ−1 = 4 a.u. and Za = 1.
In Fig. 1.8a the envelopes of partial differential cross sections as a function

of the number of emitted or absorbed photons for circular polarization of
EM wave are shown for the deflection angle ϑ ≡ ∠ΠΠ ′ = 10 mrad. The
relativistic parameter of intensity is taken to be ξ0 
 0.1. The dotted and
dashed lines correspond to initial electron momentum parallel and antiparallel
to the laser propagation direction k, respectively, and the solid line gives the
nonrelativistic result. The energy change of a particle is characterized by the
absorption/emission (AE) cross section. Partial AE differential cross section
will be

dσ
(s)
ae

dO
= s

(
dσ(s)

dO
− dσ(−s)

dO

)
. (1.149)

In Fig. 1.8b the envelopes of partial AE differential cross sections for circular
polarization of EM wave are shown for the same parameters. It is seen from
Fig. 1.8 that the differences between the cases of initial electron momentum
parallel or antiparallel to the laser propagation direction k on the one hand
and between nonrelativistic result on the other hand are notable already for
ξ0 
 0.1. In particular, the absorption and emission edges and the magnitudes
of the peaks are different.

To show the dependence of the SB process on laser intensity in Fig. 1.9a
the summed differential cross section

dσ

dO
=

∞∑
s>−sm

dσ(s)

dO
(1.150)
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Fig. 1.8. (a) Envelopes of partial differential cross sections in atomic units as a
function of the number of emitted or absorbed photons for circular polarization of
EM wave for the deflection angle ϑ ≡ ∠ΠΠ ′ = 10 mrad. The relativistic parameter
of intensity is ξ0 � 0.1. (b) Envelopes of partial absorption/emission differential
cross sections for the same parameters. The dotted and dashed lines correspond
to initial electron momentum parallel and antiparallel to the laser propagation
direction k, respectively, and the solid line gives the nonrelativistic result.
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Fig. 1.9. The summed differential cross sections for circular polarization of EM
wave are plotted as a function of relativistic parameter of intensity ξ0 in the range
0 ≤ ξ0 ≤ 1. The initial electron momentum is parallel to the laser propagation
direction k. (a) SB differential cross section dσ/dΩ; (b) absorption/emission differ-
ential cross section dσae/dΩ. Numbers denote different values of deflection angle:
1, ϑ = 6 mrad; 2, ϑ = 5 mrad; 3, ϑ = 4 mrad.

is plotted for various deflection angles as a function of relativistic param-
eter of intensity ξ0. The initial electron momentum is parallel to the laser
propagation direction k. In Fig. 1.9b summed AE differential cross section is
shown. We see from Fig. 1.9 that SB as well as AE cross sections decrease
with increasing wave intensity. This is a consequence of the SB process being
essentially nonlinear in contrast to perturbation theory where s-photon SB
cross section ∼ ξ2s

0 .
For the integral quantities such as the total scattering cross section σ and

total emission/absorption cross section (σT ) which characterizes net energy
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change, one should integrate partial differential cross section of SB process
dσ(s)/dO over solid angle and perform summation over photon numbers:

σ =
∞∑

s>−sm

σ(s), (1.151)

and total AE cross section (σT ) will be

σT =
∞∑

s>−sm

sσ(s). (1.152)

Note that for these quantities in the optical range of frequencies one can

Fig. 1.10. The envelopes of integrated absorption/emission partial cross sections
σ

(s)
ae for circular polarization of EM wave as a function of photon number in the

range 0 ≤ s ≤ 500 for various laser intensities. The initial electron momentum
is parallel to the laser propagation direction k. Negative values correspond to net
emission, while positive values correspond to net absorption.

neglect the contribution from the spin interaction. The latter is essential for
large angle scattering which produces a minor contribution to the total cross
sections (for optical frequencies the quantum recoil is negligibly small). For
the strong laser fields one should take into account a large number of terms
in Eqs. (1.151) and (1.152) since multiphoton absorption/emission processes
already play a significant role for moderate laser intensities (ξ0 � 1) in
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contrast, for example, to nonlinear Compton scattering where multiphoton
processes become essential for ξ0 ∼ 1 and the cutoff number of absorbed
photons ∼ ξ30 . This essentially complicates the analysis of total cross sections
(1.151) and (1.152). As a first step to exhibit the dependence of SB process
on laser intensity, Fig. 1.10 plots the envelopes of integrated AE partial cross
sections σ(s)

ae for various laser intensities as a function of the photon number in
the range 0 ≤ s ≤ 500. The initial electron momentum is parallel to the laser
propagation direction k. Negative values correspond to net emission, while
positive values correspond to net absorption. Figure 1.10 reveals that for this
initial geometry the absorption process is dominant but with increasing wave
intensity the AE cross section decreases.
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R.H. Melburn, Phys. Rev. Lett. 10, 75 (1963)
F.R. Harutyunyan, V.A. Tumanyan, Zh. Éksp. Teor. Fiz. 44, 2100 (1963)
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2 Interaction of Charged Particles with Strong
Electromagnetic Wave in Dielectric Media.
Induced Nonlinear Cherenkov Process

What can we expect from particle–strong wave interaction in a medium es-
sentially different from that of a vacuum?

It is well known that in a medium with the refractive index n(ω) > 1 (di-
electric media) the Cherenkov effect takes place — charged particle moving
with a velocity v = const radiates spontaneously transverse EM wave of fre-
quency ω at the angle θ satisfying the condition of coherency cosθ = c/vn(ω).
This means that in the presence of an external plane EM wave of the same
frequency ω propagating at this angle with respect to the particle motion the
spontaneous Cherenkov radiation of the particle will acquire induced charac-
ter and the inverse process of Cherenkov absorption from the incident wave
by the particle is possible as well. This is the general character of arbitrary
type spontaneous radiation process in corresponding induced one. However, in
contrast to the noncoherent process (e.g., bremsstrahlung), if the spontaneous
process is of coherent nature, such as the Cherenkov process, for the satisfac-
tion of the condition of coherency the external wave should be weak enough
to not change considerably the particle initial velocity v and violate the men-
tioned condition of coherency of the spontaneous process. Consequently, this
explanation of formation of induced process with the charged particles (in-
duced free–free transitions in quantum terminology) corresponds to the linear
theory.

The behavior of induced Cherenkov process in the strong EM wave field is
quite different from the mentioned one. The existence of the threshold value
of the particle velocity for the spontaneous Cherenkov radiation ( v > c/n(ω))
stipulates for the threshold value of the wave intensity essentially changing
the character of the dynamics of the particle–wave interaction in a medium
and, consequently, the character of electromagnetic processes in dielectriclike
media, proceeding in the presence of strong radiation fields. As we will see
later, the peculiarities which arise at the nonlinear interaction of charged
particles with strong EM waves are the general features of coherent processes
like the Cherenkov one.

To reveal the nonlinear behavior and principal peculiarities of a particle–
strong wave interaction in a medium, this chapter will present the nonlinear
classical theory of induced Cherenkov process.
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2.1 Particle Classical Motion in the Field of Strong
Plane EM Wave in a Medium

A plane quasi-monochromatic EM wave in a medium may be described by the
vector potential A(t, r) = A(t−n0ν0r/c), where n0 ≡ n(ω0) is the refractive
index of the medium at the carrier frequency of the wave (actually laser
radiation). For the electric and magnetic fields we will have respectively

E(t, r) = E(t− n0ν0r/c); H(t, r) = H(t− n0ν0r/c); H =n0 [ν0E] . (2.1)

Hereafter we will assume that the frequency ω0 is far from the main
resonance transitions between the atomic levels of the medium to prohibit the
wave absorption and nonlinear optical effects in the medium and consequently
n0 =

√
ε0µ0 = const will correspond to the linear refractive index of the

medium (ε0 and µ0 are the dielectric and magnetic permittivities of the
medium, respectively).

Without loss of generality we will direct vector ν0 along the OX axis of
a Cartesian coordinate system: ν0 = {1, 0, 0} and the relativistic classical
equations of motion of a charged particle in the field (2.1) will be written in
the form

dpx

dt
= n0

e

c
[vyEy(τ) + vzEz(τ)] , (2.2)

dpy

dt
= e
(
1 − n0

vx

c

)
Ey(τ);

dpz

dt
= e
(
1 − n0

vx

c

)
Ez(τ), (2.3)

where τ = t−n0x/c is the retarding wave coordinate of the quasi-monochro-
matic plane EM wave in a medium.

The integration of Eqs. (2.2) and (2.3) is carried out as was done for Eqs.
(1.3) and (1.4) and with Eq. (1.9) one can obtain the particle transversal
momentum

py = p0y − e

c
Ay(τ); pz = p0z − e

c
Az(τ) (2.4)

and integral of motion

K ≡ E− c

n0
px = const, (2.5)

which together with the relation E2 = p2c2 +m2c4 determine the energy of
the particle in the field of strong quasi-monochromatic plane EM wave in a
medium:

E =
E0

n2
0 − 1

{
n2

0

(
1 − v0x

cn0

)
∓
[(

1 − n0
v0x

c

)2
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−
(
n2

0 − 1
)

E2
0

(
e2A2 (τ) − 2ecp0A (τ)

)]1/2
⎫⎬⎭ . (2.6)

Here p0 = {p0x, p0y, p0z}, E0, and v0x are the particle initial momentum,
energy, and longitudinal velocity, respectively, at τ = −∞ (A(τ) |τ=−∞= 0
according to unique definition of the vector potential of the wave (1.7)).

Equation (2.6) describes the energy exchange between the charged particle
and plane transverse EM wave of arbitrary intensity in a medium in the
general case. However, besides the formula of the energy for the description
of the particle nonlinear dynamics in this process we will need the formula for
the longitudinal velocity of the particle in the field — a major characteristic of
the induced Cherenkov process. The latter can be defined from the relation
vx = c2px/E within the expression for the longitudinal momentum of the
particle px, which is determined by the integral of motion (2.5) and Eq.
(2.6). Then for the longitudinal velocity of the particle we will have

vx = cn0
1 − v0x/cn0 ∓ √

D

n2
0 (1 − v0x/cn0) ∓ √

D
, (2.7)

where

D ≡ (1 − n0v0x/c)
2 − ((n2

0 − 1
)
/E2

0
) (
e2A2 (τ) − 2ecp0A (τ)

)
. (2.8)

Further, for the consideration of radiation processes we will need the formulas
for transversal velocities of the particle, which can be defined from Eqs. (2.4)
and (2.6):

vy,z =
c

E0

(
n2

0 − 1
)
(cp0y,z − eAy,z (τ))

n2
0 (1 − v0x/cn0) ∓ √

D
. (2.9)

As is seen from Eqs. (2.6)–(2.9) the expressions determining the particle
energy or velocity in the wave field are, first, not single-valued and, second,
may become imaginary depending on particle and wave parameters. The pe-
culiarity arising in the induced Cherenkov process because of particle–strong
wave nonlinear interaction is connected with this fact. Hence, treatment of
the particle dynamics in this process should start by clarification of these
questions.

2.2 Nonlinear Cherenkov Resonance and Critical Field.
Threshold Phenomenon of Particle “Reflection”

To consider the behavior of a particle upon nonlinear interaction with a strong
wave in a medium on the basis of Eq. (2.6) we will analyze the case where the
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initial velocity of the particle is directed along the wave propagation direction
for which the picture of the particle nonlinear dynamics is physically more
evident. In this case Eq. (2.6) becomes

E =
E0

n2
0 − 1

⎡⎣n2
0

(
1 − v0

cn0

)

∓
√(

1 − n0
v0

c

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ2 (τ)

⎤⎦ , (2.10)

where ξ2 (τ) is the relativistic invariant parameter of a plane EM wave inten-
sity, determined by Eq. (1.19).

As is seen, Eq. (2.10) is twovalence and, at first, we shall provide the
unique definition of the particle energy in accordance with the initial con-
dition. In the case of plasma (n0 < 1 ) or vacuum ( n0 = 1 ) the term
under the root is always positive, hence, in these cases one has to take before
the root only the upper sign (−) to satisfy the initial condition E (τ) = E0
when ξ(τ) = 0. In the case of a vacuum, Eq. (2.10) yields results obtained in
Chapter 1 (see Eq. (1.13) or Eqs. (1.24) and (1.36) for the circular and linear
polarizations of the wave).

Further investigation is devoted to the case of a medium with refractive
index n0 > 1. In this case the nature of the particle motion essentially depends
on the initial conditions and the value of the parameter ξ (τ) as far as the
expression under the root in Eq. (2.10) may become negative, while the energy
of the particle should be a real quantity and uniquely defined as well. To
solve this problem one needs to pass the complex plane, according to which
we represent Eq. (2.10) in the form of known inverse Jukowski function (to
determine also the sign before the root corresponding to initial condition
E (τ) |τ=−∞ = E0 since at n0 > 1 the quantity 1−n0v0/c under the root may
be negative as well):

E =
E0

n2
0 − 1

[
n2

0

(
1 − v0

cn0

)
∓
(
1 − n0

v0

c

)√
1 − ξ2 (τ)

ξ2cr

]
, (2.11)

where

ξcr ≡ E0

mc2
|1 − n0

v0
c |√

n2
0 − 1

. (2.12)

If ξmax < ξcr (ξmax is the maximum value of the parameter ξ(τ)) the
expression under the root in Eq. (2.11) is always positive and in front of the
root one has to take the upper sign (−) according to the initial condition.
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Then E = E0 after the interaction (ξ(τ) → 0) and the particle energy remains
unchanged.

If ξmax > ξcr the particle is unable to penetrate into the wave, i.e., into
the region ξ > ξcr since at ξ > ξcr the root in Eq. (2.11) becomes a complex
one. This complexity now is bypassed via continuously passing from one Rie-
mann sheet to another, which corresponds to changing the inverse Jukowski
function from “−” to “+” before the root. Hence, the upper sign (−) in
this case stands up to the value of the wave intensity ξ(τ) < ξcr, then at
ξ (τ) = ξcr the root changes its sign from “−” to “+”, providing continuous
value for the particle energy in the field. The intensity value ξ (τ) = ξcr of
the wave is a turn point for the particle motion, so that we call it the critical
value.

Thus, when the maximum value of the wave intensity exceeds the critical
value a transverse plane EM wave in the medium becomes a potential barrier
and the “reflection” of the particle from the wave envelope (ξ(τ)) takes place.
If now ξ(τ) → 0, we obtain after the “reflection” for the particle energy

E = E0

[
1 + 2

1 − n0
v0
c

n2
0 − 1

]
. (2.13)

If the initial conditions are such that the wave pulse overtakes the particle
( v0 < c/n0 ), then after the “reflection” E > E0 and the particle is acceler-
ated. But if the particle overtakes the wave ( v0 > c/n0), then E < E0 and
particle deceleration takes place.

This nonlinear threshold phenomenon is bounded on the stimulated
Cherenkov process. The coherent nature of the Cherenkov process is related
to the existence of the critical intensity of the wave ξcr. Indeed, from Eq.
(2.7) it follows that when ξ = ξcr the longitudinal velocity of the particle in
the field becomes equal to the phase velocity of the wave: vx(ξ) |ξ=ξcr

= c/n0
irrespective of its initial velocity v0. The latter is the Cherenkov condition of
coherency in a dielectric medium. Fulfillment of the Cherenkov condition in
the strong wave field leads to the nonlinear Cherenkov resonance, at which
the induced absorption or emission of Cherenkov photons becomes essentially
multiphoton. As a result, the particle velocity becomes greater or smaller (de-
pending on initial velocity v0) than the wave phase velocity and it leaves the
wave, i.e., the “reflection” from the wave front occurs. In addition, the energy
lost by the particle at the deceleration (v0 > c/n0) is coherently transferred
to the wave via induced Cherenkov radiation. As is seen from Eq. (2.13), for
the initial “Cherenkov velocity” v0 = c/n0 the energy of the particle after
the “reflection” does not change: E = E0 , which is in congruence with the
critical value of the field: ξcr = 0 at the initial Cherenkov velocity of the par-
ticle (see Eq. (2.7)). The latter confirms the nonlinear character of Cherenkov
resonance in the strong wave field. In this case the induced Cherenkov effect
will occur at vx = v0 = const, i.e., the wave field should not change the
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particle initial velocity, which can take place approximately, only in the weak
fields — induced Cherenkov effect in the linear theory (in accordance with
the initial condition ξ(τ) |τ=−∞= 0 — the wave is turned on adiabatically
— it is evident that in this case the linear induced Cherenkov effect is absent
as well).

This threshold phenomenon of the particle “reflection” can be more clearly
presented in the frame of reference connected with the wave. In this frame
the electric field of the wave vanishes (E′ ≡ 0) and there is only the static
magnetic field (|H′| = |H|

√
n2

0 − 1/n0 ). For not very large particle velocities
in this frame the magnetic field will turn the particle back — elastic reflection
from the standing wave barrier. In the opposite case the particle slips through
the magnetic field. Such behavior of the particle in the intrinsic frame of the
wave corresponds to the cases ξ > ξcr (large velocities close to the Cherenkov
one at which ξcr is small and the condition ξ > ξcr is achievable) and ξ < ξcr

in the laboratory frame of reference, respectively (see Eq. (2.7)). Note that
because of the particle reflection from the standing barrier in the frame of
reference of the slowed wave we term the revealed nonlinear phenomenon a
“reflection” one.

Hence, the threshold-coherent nature of spontaneous Cherenkov effect
over the particle velocity (vth = c/n0) causes the threshold for the external
wave intensity (ξth ≡ ξcr), which in turn causes the phenomenon of particle
“reflection” from the plane EM wave. It is worth emphasizing that the latter
may be very small (ξcr → 0) if the particle initial velocity is close to the
wave phase velocity (v0 → c/n0), which means that in this case the linear
theory is not applicable even for very weak wave fields (ξ → 0), since the
nonlinear phenomenon of particle “reflection” will take place (ξ > ξcr → 0).
Also, it is important that due to this phenomenon the induced process at ξ >
ξcr proceeds strictly in a certain direction — either radiation or absorption
(inverse induced process), which has a principal meaning for induced free–
free transitions related especially to problems of laser acceleration and free
electron lasers.

Let us estimate the particle energy change due to “reflection”. Note, at
first, that the latter does not depend on interaction length or magnitude
of the field (it is necessary only that ξ > ξcr). It is a nonlinear acceler-
ation/deceleration of the shock character, which proceeds in short enough
time — smaller than the wave pulse duration. As is seen from Eq. (2.13),
for a certain value of the refractive index of the medium the stronger the
initial velocity of the particle differs from the Cherenkov one and the closer
to 1 (n0 − 1 << 1), the larger is the energy change. As follows from Eq.
(2.12) in these cases the strong wave fields are necessary. However, as the
medium is to be dielectriclike (n0 > 1) the wave intensity is confined to the
threshold ionization of the medium. As is known in nonionized media a wave
of intensity ξ2 < I/mc2 , where I is the first ionization energy of the medium
atoms (for dielectrics, the width of the forbidden zone), can propagate. In the
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opposite case a tunnel ionization of the atoms can take place. Consequently,
the region of intensities where the “reflection” phenomenon in dielectriclike
media can be applied is ξ2 < ξ2max < I/mc2. For typical values I ∼ 10 eV we
have ξmax ∼ 5×10−3. To such values of the wave critical intensity correspond
particle velocities near the Cherenkov one, which is possible in the case of
relativistic particles in the gases (n0 − 1 << 1), whereas for nonrelativistic
ones, in solids (n0 − 1 ∼ 1). However, in the last case the negative effects
of multiple scattering and ionization loss of the particle in solids also can
influence. Thus, this phenomenon can be realized in the gases for relatively
low densities. The optimal values of the refractive index of the gaseous media
for this phenomenon are n0 − 1 ∼ 10−3 ÷ 10−5 (e.g., for CO2 and He at
standard pressure and temperature n0 − 1 ∼ 4.48 × 10−4 and ∼ 3.47 × 10−5,
respectively).

As the application of large intensities is restricted with ionization thresh-
old of the medium, we express the particle energy change due to “re-
flection” through the wave critical intensity. If n0 − 1 ≡ µ1 << 1 and
1 − v0/c ≡ µ2 << 1 from Eqs. (2.12) and (2.13) we have

ξcr 
 |µ1 − µ2|
2
√
µ1µ2

; |∆E| 
 ξcrmc
2
√

2
µ1

. (2.14)

Estimations show that an electron with initial energy E0 ∼ 10 MeV after
the “reflection” from a laser pulse with ξ ∼ 5 × 10−4 (which corresponds to
the neodymium laser radiation strength E ∼ 107 V/cm ) in a medium with
n0−1 ∼ 10−3 acquires (v0 < c/n0) or loses (v0 > c/n0) energy |∆E| ∼ 10 keV.
As the particle deceleration occurs because of stimulated Cherenkov radiation
in this case the wave amplification takes place. Hence, as a result of the
“reflection” of a beam with electron total number ∼ 5 × 1014 an energy of
∼ 1 J coherently will be radiated into the wave.

The phenomenon of charged particle “reflection” from a plane EM wave
may also be used for the monochromatization of particle beams. The fact
that above the critical intensity value the induced Cherenkov process occurs
in only one direction — either emission or absorption — and for the initial
Cherenkov velocity v0x = c/n0 the energy of the particle after the “reflection”
does not change, in principle enables conversion of the energetic or angular
spreads of charged particle beams due to “reflection.” The latter requires
considering the general case of interaction at the arbitrary direction of par-
ticle initial motion with respect to wave propagation. So, without repeating
the analysis, which has been made in the case of particle–wave parallel prop-
agation we will present the ultimate results of the “reflection” phenomenon
in the general case.

Thus, when the particle initial velocity is directed at an angle (ϑ) to the
wave propagation direction the energy of the particle is given by Eq. (2.6),
which at the linear polarization of the wave reads
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E (τ) =
E0

n2
0 − 1

{
n2

0

(
1 − v0

cn0
cosϑ

)
∓
[(

1 − n0
v0

c
cosϑ

)2
− (n2

0 − 1
)

×
(
mc2

E0

)2 [
ξ2 (τ) cos2 ω0τ − 2

p0 sinϑ
mc

ξ (τ) cosω0τ
]]1/2

}
(2.15)

(the wave is linearly polarized along the axis OY with vector potential Ay =
A(τ) cosω0τ and one can assume p0 = {p0 cosϑ; p0 sinϑ; 0}, as far as the
coordinate z is free). As is seen from Eq. (2.15), in this case the “reflection”
occurs from certain planes of equal phases but from the front of the wave
intensity envelope as in the case ϑ = 0. At the actual values of the parameters
for induced Cherenkov process (ultrarelativistic particles in gaseous media
with refractive index n0 − 1 << 1 and not very small angles ϑ, as well as
the wave intensity being confined to ionization threshold of the medium)
the second term under the root is much smaller than the third one, that is,
2p0| sinϑ|/mc >> ξmax and for the critical field in this case we have

ξcr(ϑ) =
c

2v0

E0

mc2

(
1 − n0

v0
c cosϑ

)2
(n2

0 − 1) | cosϑ| ; ϑ �= 0 (2.16)

(in the case ϑ = 0, ξcr is determined by Eq. (2.12)).
If the maximal value of the wave intensity ξmax > ξcr(ϑ), then the particle

energy after the “reflection” is

E (ϑ) = E0

[
1 +

2
(
1 − n0

v0
c cosϑ

)
n2

0 − 1

]
. (2.17)

Let the charged particle beam with an initial energetic ( ∆0) and an-
gular (δ0) spread interact with a plane transverse EM wave of intensity
ξmax > ξcr(ϑ) in a gaseous medium. To keep the mean energy E0 of the beam
unchanged after the interaction (at the adiabatic turning on and turning off
of the wave) the axis of the beam with mean velocity v0 must be pointed at
the Cherenkov angle (ϑ0) to the laser beam, i.e., n0(v0/c) cosϑ0 = 1. Under
this condition the particles with velocities v0 cosϑ < c/n0 will acquire an
energy and the other particles for which the longitudinal velocities exceed
the phase velocity of the wave (v0 cosϑ > c/n0) will loss an energy according
to Eq. (2.17). As a result the energies of the particles E (ϑ) will approach
close to the mean energy E0 of the beam (E (ϑ) → E0 ) and the final energetic
width of the beam will become less than the initial one. As there is one free
parameter (for a specified velocity v0 the parameters ϑ0 and n0 are related
by Cherenkov condition) it is possible to use it to control the exchange in the
energy of the particles after the “reflection” (2.17) and to reach the minimal
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final energy spread of the beam ∆ << ∆0 — monochromatization. Depend-
ing on the relation between the initial energetic and angular spreads and
mean energy of the beam, the opposite process may occur, namely angular
narrowing of the beam. Physically it is clear that with the monochromati-
zation the angular divergence of the beam will increase and the opposite —
the angular narrowing of the beam — leads to demonochromatization (in ac-
cordance with Liouville’s theorem). More detailed consideration of this effect
with the quantitative results can be found in the bibliography of this chapter.

To illustrate the typical picture of nonlinear interaction of a charged parti-
cle with a strong EM wave in a medium we present the graphics of numerical
solutions of the Eqs. (2.2) and (2.3) for the laser pulse of finite duration,
showing the behavior of particle dynamics below and above critical intensity,
with the effect of acceleration. At first we will not take into account the de-
pendence of the slowly varying intensity envelope of a laser beam from the
transversal coordinates. Thus, a laser beam may be modeled as

Ex = 0, Ez = 0, Ey =
E0

cosh
(

τ
δτ

) cosω0τ, (2.18)

where δτ characterizes the pulse duration. The particle initial energy is taken
to be E0 = 40 MeV and the initial velocity is directed at the angle ϑ = 9×10−3

rad to the wave propagation direction (p0z = 0). The refractive index of
the gaseous medium for this calculation has been chosen to be n0 − 1 =
10−4. Figure 2.1 illustrates the evolution of the particle energy: the energy
versus the position x is plotted for a neodymium laser (�ω0 
 1.17 eV) with
electric field strength E0 = 3 × 108 V/cm and δτ = 4T (T is the wave
period). For these parameter values the wave intensity is above the critical
point and, as we see from this figure, the particle energy is abruptly changed

Fig. 2.1. “Reflection” of the particle. The energy versus the position x is plotted
when the wave intensity is above the critical point.
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corresponding to the “reflection” phenomenon. Figure 2.2a illustrates the
evolution of the energies of particles with different initial interaction angles.
The initial energies for all particles are E0 
 40 MeV. Figure 2.2b illustrates
the role of initial conditions: the final energy versus the interaction angle is
plotted. As follows from Eq. (2.16) the critical intensity, as well as the final
energy (2.17), depend on the initial interaction angle and as a consequence
we have this picture. Note that the acceleration rate neither depends on the
field magnitude (only should be above threshold field) nor on the interaction
length.

Fig. 2.2. “Reflection” of the particles with different initial interaction angles. Panel
(a) displays the evolution of the energies of particles. In (b) the final energy versus
the interaction angle is plotted.

To demonstrate the dependence of the considered process on transversal
profile of the laser intensity for actual beams in Fig. 2.3 the evolution of the
energies of particles with various initial phases (with initial energies E0 
 40
MeV) is illustrated. The laser beam transversal profile is modeled by the
Gaussian function
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Fig. 2.3. The evolution of the energies of particles with various initial phases are
shown for the laser beam with transversal intensity profile for the various entrance
cordinates: (a) z = 0, (b) z = d/4, and (c) z = d/2.

Ey = E0 exp
(

− 4
d2

(
y2 + z2)) cosω0τ

cosh
(

τ
δτ

) (2.19)

with d = 103λ, δτ = 50T . As we see from this figure the acceleration picture
is essentially changed depending on the entrance coordinates of the parti-
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cles. This is the manifestation of the threshold nature of the “reflection”
phenomenon.

2.3 Particle Capture by a Plane Electromagnetic Wave
in a Medium

If for the intensity exceeding the critical value a plane EM wave becomes a
potential barrier for the external particle (with respect to the wave), then for
the particle initially situated in the wave it may become a potential well and
particle capture by the wave will take place. As the particle state in the wave
depends on wave phases we will assume in this case a certain polarization of a
monochromatic wave. Let it be linearly polarized with electric field strength
along the axis OY :

Ey = E0 cosφ; φ = ω0

(
n0
x

c
− t
)
. (2.20)

The solution of equations of motion (2.2) and (2.3) in the field (2.20) may
be presented in the form

px(φ) =
n0

n2
0 − 1

E0

c

{(
1 − v0x

cn0

)
∓
[(

1 − n0
v0x

c

)2
− (n2

0 − 1
)(mc2

E0

)2

×ξ20 (sinφ− sinφ0)
(

sinφ− sinφ0 − 2
p0y

mcξ0

)]1/2
}
, (2.21)

py(φ) = p0y −mcξ0(sinφ− sinφ0) ,

E(φ) =
c

n0
px(φ) + E0

(
1 − v0x

cn0

)
, (2.22)

where ξ0 = eE0/mcω0 is the intensity parameter of the monochromatic wave
(see Eq. (1.25)), φ0 = ω(n0x0/c − t0) is the initial phase of the particle in
the wave. Here without loss of generality it is assumed that the z component
of the particle initial momentum p0z = 0 as far as the coordinate z is free.

It is seen from Eq. (2.21) that the particle can be in the field region where

W (φ) ≡ (sinφ− sinφ0)
(

sinφ− sinφ0 − 2
p0y

mcξ0

)
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≤
( E0

mc2

)2 (1 − n0v0x/c)
2

(n2
0 − 1) ξ20

. (2.23)

If the maximum value of the function W (φ)

Wmax(φ) >
( E0

mc2

)2 (1 − n0v0x/c)
2

(n2
0 − 1) ξ20

, (2.24)

then the region (2.23) will be a potential well for the particle and the capture
of the latter by the transverse EM wave will take place. The equilibrium
phases of the wave (φs) correspond to the extrema of the function W (φ):

sinφs = sinφ0 +
p0y

mcξ0
; cosφs �= 0 , (2.25)

cosφs = 0 ; sinφs �= sinφ0 +
p0y

mcξ0
. (2.26)

The particle moves with a Cherenkov velocity vxs = c/n0 when it is in the
equilibrium phases φs. Equation (2.22) together with Eqs. (2.25) and (2.26)
determine the equilibrated values of the particle transverse momentum pys.
In particular, pys = 0 corresponds to the case (2.25). The motion of the
particle in these phases will be stable when

| sinφ0 +
p0y

mcξ0
| < 1. (2.27)

If the initial velocity of the particle is equal to the Cherenkov one (v0x =
c/n0 = vxs), then from Eq. (2.24) we have the following condition for the
particle capture by the wave:

p0y

mcξ0
< 1 + | sinφ0 +

p0y

mcξ0
|. (2.28)

At the fulfillment of Eq. (2.27) the condition of particle capture (2.28) always
holds, and therefore the condition of stable motion (2.27) thus determines
the capture of the particle in the considered regime. In particular, as is seen
from Eqs. (2.25) and (2.27), when py0 = 0, then φs = φ0 and any phase is
equilibrated. In this case the phase cosφ0 = 0 (Ey = 0) is unstable. This
is physically clear in the wave frame where the magnetic field of the wave
corresponding to this phase is zero: H′ = 0, while the stability in the capture
regime is due to particle rotation around the vector of the magnetic field
(when pys = 0). If the particle initial velocity differs from the Cherenkov
value v0x = v0 = c/n0 + ∆v, then in the capture regime the particle will
undergo stable oscillations close to the equilibrated Cherenkov value. From
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Eq. (2.24) one can obtain the following condition for the capture of such
particle:

|∆v| < c

n0

mc2

E0
ξ0
√

(n2 − 1) (1 + | sinφ0|) . (2.29)

The spread tolerances of the unequilibrated particle’s initial phase and
velocity can be defined from the condition (2.29) (∆v = (c/n0ω0)|dφ/dt|).

Note that the needed value of the field for the particle capture by the
wave defined from Eq. (2.29) is the critical value of the field (2.12) for the
“reflection” of the external particle (φ0 = 0 ).

Consider now the particle capture in equilibrium phases (2.26). With the
help of Eqs. (2.22) and (2.23) one can show that the particle motion at the
phases cosφ0 = 0 will be stable when

pys sinφs > 0 ; φs = (2k + 1)π/2 ; k = 0;±1; ±2; . . . . (2.30)

For the capture of initial Cherenkov particle (v0x = c/n0) at the phases
φs = (2k + 1)π/2 from Eq. (2.24) one can obtain the following condition:

Wmax(φ) = 4| sinφ0 +
p0y

mcξ0
| > 0,

which always holds. Therefore, the particle capture in this case is determined
by condition (2.30). If py0 sinφ0 > 0, the phase φ0 is an equilibrated one for
any value of the particle transverse momentum (p0y = pys). But if v0x =
c/n0 +∆vx the condition for capture is

|∆vx| < 2c
n0

√
n2 − 1

mc2

E0
ξ0| sinφ0 +

p0y

mcξ0
|1/2. (2.31)

From Eq. (2.31) the critical value of the field can be defined for unequilibrated
particle “capture” at the wave phases φ0 = (2k + 1)π/2.

If cos φ0 �= 0 from Eq. (2.24) one can obtain that when p0y/mcξ0 > 2 the
Cherenkov particle capture is defined again by condition (2.30).

2.4 Laser Acceleration in Gaseous Media. Cherenkov
Accelerator

The phenomenon of charged particle “reflection” and capture by a trans-
verse EM wave can be used for particle acceleration in laser fields. As the
application of large intensities in this process is restricted because of the
medium ionization the acceleration owing to “reflection” in the medium with
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refractive index n0 = const — single “reflection” — is relatively small. How-
ever, if the refractive index decreases along the wave propagation direction in
such a way that the condition of particle synchronous motion with the wave
vx(x) = c/n0(x) takes place continuously, the phase velocity of the wave will
increase all the time and the particle being in front of the wave barrier (at
ξ > ξcr) will continuously be “reflected”, i.e., continuously accelerated. The
law n0 = n0(x) must have an adiabatic character not to allow the particle to
leave the wave after the single “reflection”. Such variation law of the refrac-
tive index can be realized in a gaseous medium adiabatically decreasing the
pressure.

For particle acceleration one can also use the capture regime. In this
case in the medium with n0 = const the particle energy does not change
on average (particle makes stable oscillations around the equilibrium phases
in the wave moving with average velocity < vx >= c/n0). However, if one
decreases the refractive index along the propagation direction of the wave,
so that the particle does not leave the equilibrium phases, then the wave
will continuously accelerate the particle. Then, to realize the capture regime
(2.25) one needs p0y/mcξ0 < 2. For not very strong fields this is sufficiently
strict confinement on the transverse momentum of the particle. On the other
hand, to accelerate the particle significantly large transverse momenta are
needed. Therefore, this regime can be used to pass the particles through the
matter and, also, to separate the particles by velocities (parameter ξ defines
the region of particle velocities captured by the wave (see Eq. (2.29)).

For particle acceleration by laser fields one can use the capture regime
(2.26) corresponding to large transverse momenta of the particle p0y/mcξ0 >
2. So, we will consider the general case of particle capture with arbitrary
initial momentum p0 and laser acceleration in gaseous medium with varying
refractive index n0(x).

We will use the particle equations of motion (2.2) and (2.3) in the field
(2.20) where the refractive index n0 → n0(x) and consequently the wave
phase is determined as follows:

φ(x, t) =
ω0

c

∫
n0(x)dx− ω0t. (2.32)

Then from the equations

dφs

dt
= 0 ,

d2φs

dt2
= 0 (2.33)

defining wave equilibrium phases we obtain the variation laws for equilibrium
velocity of the particle and refractive index of the medium, respectively:

vxs(x) =
c

n0(x)
, (2.34)
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dn0(x)
dx

= −n3
0(x)
c2

(
dvx

dt

)
s

. (2.35)

From Eq. (2.2) and the equation for the particle energy variation

dE
dt

= evyE0 cosφ(x, t) (2.36)

one can obtain the acceleration of the particle in the longitudinal direction

dvx

dt
=
ecn0(x)

E
[
1 − vx

cn0(x)

]
vyE0 cosφ(x, t). (2.37)

The equation of motion (2.3) determines in general for an arbitrary n0(x)
the integral of motion (2.5), from which for the equilibrium transverse mo-
mentum of the particle we have (again without loss of generality it is assumed
that the z component of the particle initial momentum p0z = 0 since the co-
ordinate z is free)

pys = p0y −mcξ0 (sinφs − sinφ0) . (2.38)

Defining within Eq. (2.38) the equilibrium transverse velocity of the particle
vys(x) = c2pys/Es(x) and substituting together with Eq. (2.34) into Eq.
(2.37) for the equilibrium value of the particle longitudinal acceleration we
obtain (

dvx

dt

)
s

= cω0ξ0
pys

mc
cosφs

(
mc2

Es(x)

)2
n2

0(x) − 1
n0(x)

. (2.39)

Substituting Eq. (2.39) into Eq. (2.35) we will have the equation which de-
termines the variation law of the medium refractive index:

dn0(x)
dx

= −ω0

c
ξ0
pys

mc
cosφs

(
mc2

Es(x)

)2

n2
0(x)

[
n2

0(x) − 1
]
. (2.40)

It is seen from this equation that for the particle acceleration in the cap-
ture regime via decreasing refractive index of the medium (dn0(x)/dx < 0)
one needs pys cosφs > 0 (equilibrium transverse momentum of the particle
must be directed along the vector of the wave electric field). In the opposite
case the continuous deceleration of the particle will take place accompanied
by induced Cherenkov radiation (regime of continuous amplification of the
wave by the particle beam at dn0(x)/dx > 0).

The energy of equilibrium particle acquired on the distance x is defined
by
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E2
s (x) =

n2
0(x)

n2
0(x) − 1

(
m2c4 + c2p2

ys

)
. (2.41)

Integrating Eq. (2.40) within Eq. (2.41) the ultimate formula for the vari-
ation law of the medium refractive index becomes

1
2

[
n0(0)

n2
0(0) − 1

− n0(x)
n2

0(x) − 1

]
+

1
4

ln
[
n0(x) + 1
n0(x) − 1

· n0(0) − 1
n0(0) + 1

]

= −mc2ξ0ω0pys cosφs

m2c4 + c2p2
ys

x . (2.42)

Equation (2.41) in the general case defines the particle acceleration in
the capture regime when the medium refractive index falls along the wave
propagation according to law (2.42). It defines the longitudinal dimension of
such “Cherenkov accelerator” as well. The transverse dimension of the latter
is defined by

Es(y) = Es(0) +mcω0ξ0(y − y0) cosφs. (2.43)

Here Es(0) and y0 are the initial equilibrium values of the energy and
transverse coordinate of the particle (y − y0 is the transverse dimension of
“Cherenkov accelerator”). As is seen from Eq. (2.43) the particle acceleration
takes place if (y−y0) cosφs > 0, and in the opposite case deceleration occurs
(Es(y) < Es(0)) in accordance with what was mentioned above. For relativistic
particles, when n0(x) ∼ 1 and n0(x) − 1 << n0(0) − 1, from Eq. (2.42) we
have

n0(x) − 1 
 m2c4 + c2p2
ys

4mc2ξ0ω0pys cosφs

1
x
. (2.44)

As as this formula is valid at the large variation of the medium refractive index
n0(x)−1, then according to Eq. (2.41) it corresponds to large acceleration of
the particle: Es(x) >> Es(0). In particular, Eq. (2.41) determines the initial
value of the refractive index n0(0) as a function of the initial value of the
equilibrium energy of the particle Es(0):

n0(0) − 1 =
Es(0) −

√
E2

s (0) − c2p2
ys −m2c4√

E2
s (0) − c2p2

ys −m2c4
(2.45)

(since φs = const, then pys = const according to Eq. (2.38)). From the
comparison of Eqs. (2.44) and (2.45) (n0(x)−1 << n0(0)−1; n0(0) ∼ 1) one
can find the longitudinal dimension of acceleration on which the decreasing
law of refractive index (2.44) is valid:
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x >>
E2

s (0) − c2p2
ys −m2c4

2mc2ξ0ω0pys cosφs
. (2.46)

The energy of the equilibrium particle acquired on such distances is

Es(x) 

√

2mc2ξ0ω0|pys cosφs|x ; Es(x) >> Es(0). (2.47)

The estimations show that, for example, at electric field strengths of laser
radiation E ∼ 108 V/cm an electron with initial energy Es(0) ∼ 5 MeV
acquires energy Es(x) ∼ 50 MeV already at the distance x ∼ 1 cm. The
transverse dimension of acceleration y−y0 is of the order of a few millimeters
and the longitudinal dimension of the system is of the order of the transverse
one (a few times larger). At the distance x ∼ 1 m the particle energy gain is
of the order of 1 GeV . Note that because of multiple scattering on the atoms
of the medium the particles can leave the regime of stable motion as a result
of change of pys. The analysis shows that the multiple scattering essentially
falls in the above-mentioned gaseous media (see Section 2.2) for laser field
strengths E > 107 V/cm.

To illustrate the particle acceleration in the capture regime we will rep-
resent the results of numerical solution of Eqs. (2.2) and (2.3) in the field of
an actual laser beam with the electric field strength

Ey = E0 exp
(

− 4
d2

(
y2 + z2)) cos

(
ω0
c

∫
n0(x)dx− ω0t+ ϕ0

)
cosh

( 1
c

∫
n0(x)dx−t+ϕ0/ω0

δτ

) , (2.48)

Ex = 0, Ez = 0,

where δτ characterizes the pulse duration and ϕ0 is the initial phase. Simula-
tions have been made for neodymium laser (�ω0 
 1.17 eV) with electric field
strength E0 = 3 × 108 V/cm and δτ = 1000T, d = 5 × 103λ. The variation
law for the refractive index of the medium is defined in self-consistent manner
(see Eqs. (2.35) and (2.37)), that may be approximated by the function

n(x) =
n0 + nf

2
+

(nf − n0)
2

tanh (κx) , (2.49)

where n0, nf are the initial and final values of the refractive index and κ
characterizes the decreasing rate.

Figure 2.4 illustrates the evolution of the particle energy in the capture
regime. The particle initial energy is taken to be E0 = 50.5 MeV and the initial
velocity is directed at the angle ϑ = 9 × 10−3 rad to the wave propagation
direction (p0z = 0). The initial value of the refractive index has been chosen
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Fig. 2.4. The evolution of the particle energy in the capture regime with variable
refractive index.

Fig. 2.5. Acceleration of the particles in the capture regime. Panel (a) displays the
evolution of the energies of particles with various initial phases. The initial entrance
coordinate is z = 0. In (b) the final energy versus the initial phase is plotted.
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to be n0 − 1 
 10−4. As we see in the capture regime with variable refractive
index, one can achieve considerable acceleration.

To show the role of initial conditions in Fig. 2.5a the evolution of the
energies of particles with the same initial energies E0 = 50.5 MeV (ϑ =
9 × 10−3 rad) and various initial phases is illustrated. The initial entrance
coordinate is z = 0. Figure 2.5b displays the role of initial conditions: the
final energy versus the initial phase is plotted. In Fig. 2.6 the parameters
are the same as in Fig. 2.5a except the initial entrance coordinate, which is
taken to be z = 0.25 mm. As we see from these figures the captured particles
are accelerated, while the particles situated in the unstable phases (or if the
conditions for capture are not fulfilled) after the interaction remain with the
initial energy.

Fig. 2.6. Acceleration of the particles in the capture regime. Panel (a) displays the
evolution of the energies of particles with various initial phases. The initial entrance
coordinate is z = 0.25 mm. In (b) the final energy versus the initial phase is plotted.
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2.5 Nonlinear Compton Scattering in a Medium

“Reflection” and capture phenomena are essentially changing the picture of
Compton scattering in a medium. The existence of the critical field in a
medium with refractive index n(ω) > 1 confines the intensity of external
wave on which Compton scattering of a charged particle proceeds. Therefore,
one can consider the Compton effect in dielectriclike media only if the wave
intensity does not exceed the critical value. On the other hand, as was men-
tioned above the multiphoton absorption and radiation due to the nonlinear
Cherenkov resonance in the field just occurs at wave intensities close to the
critical one. Hence, it is important to consider the nonlinear Compton effect
in a gaseous medium where the induced Cherenkov radiation will accompany
and interfere with the Compton radiation at external wave intensities close
to the critical value. At the latter the nonlinear Compton effect (high har-
monic radiation) will take place even in very weak wave fields (ξ � ξcr << 1)
in contrast to nonlinear Compton effect in vacuum where for the radiation
already of the second harmonic with considerable intensity, superstrong fields
(ξ > 1) are required, as has been shown in Chapter 1.

The energy radiated by a charged particle in a medium at a frequency ω
in the domain dω and solid angle dO is given by

dεk =
e2n (ω)
4π2c3

ω2dωdO

∣∣∣∣∫ +∞

−∞
[νv] exp [ikr(t) − iωt] dt

∣∣∣∣2 , (2.50)

where k = νn (ω)ω/c is the radiation wave vector in the medium (ν is a unit
vector along the radiation direction) and n (ω) is the refractive index of the
medium at frequency ω.

The particle law of motion r(t) in the plane monochromatic EM wave of
circular polarization is determined by analogy with Eqs. (1.27)–(1.29) and is
written as

x(t) = vxt,

y(t) = −ξ c

ω0

mc2

E (1 − n0
vx

c

) cosω0

(
1 − n0

vx

c

)
t, (2.51)

z(t) = ξ
c

ω0

mc2

E (1 − n0
vx

c

) sinω0

(
1 − n0

vx

c

)
t.

Here it is assumed that the initial velocity of the particle is directed along the
wave propagation (v0 = v0x) at which the particle longitudinal velocity vx

and energy E do not vary in time since it depends only on the wave intensity
ξ2 (see Eqs. (2.7) and (2.10)) and for the circular polarization of the wave
ξ2 = const (the strong wave intensity effect is responsible for permanent
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renormalization of these quantities in the field). Then, in the equations for
particle energy and velocity (2.7)–(2.10) one should take only the sign minus
before the root in accordance with the above discussion.

Substituting Eqs. (2.7), (2.9), and (2.51) into Eq. (2.50) and integrat-
ing, the following ultimate formula for the spectral power of the Compton
radiation of the s-th harmonic in a medium is obtained:

dP
(s)
k =

e2n (ω)
2πc

ω2

ω0
(
1 − n0

vx

c

){[n (ω)
vx

c
− cos θ

]2 J2
s (α)

n2 (ω) sin2 θ

+ξ2
(
mc2

E
)2

J ′2
s (α)

}
δ

[
ω

1 − n(ω)vx

c cos θ
ω0
(
1 − n0

vx

c

) − s

]
dωdO, (2.52)

where θ is the angle between the radiation direction and axis OX , and the
argument of the Bessel function

α = ξ
mc2

E
ωn(ω) sin θ

ω0
(
1 − n0

vx

c

) . (2.53)

The δ-function in Eq. (2.52) determines the conservation law of the Comp-
ton radiation process in a medium (radiation spectrum)

ω = sω0
1 − n0

vx

c

1 − n(ω)vx

c cos θ
. (2.54)

First, let us consider the cases of limit intensities of the wave ξ = 0 and
ξ = ξcr. If in Eq. (2.52) ξ → 0, then the radiation power will differ from zero
only for the s = 0 harmonic. In that case, the conservation law of Compton
process (2.54) becomes the condition of Cherenkov radiation (vx → v0x = v0)
and Eq. (2.52) after the integration over θ passes to the Tamm–Frank formula

dP (0)
ω =

e2v0

c2

(
1 − c2

n2(ω)v2
0

)
ωdω. (2.55)

In the other limit case of ξ = ξcr, the longitudinal velocity of the particle
vx = c/n0 and Eq. (2.54) allows the nonzero frequencies of radiation either
for infinitely large harmonics (s = ∞ ) or when the condition

1 − n(ω)
vx

c
cos θ = 0 (2.56)

is fulfilled. However, it is easy to see that at the satisfaction of condition
(2.56) the radiation power becomes zero. Hence, at the value of external
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wave intensity ξ = ξcr only the harmonics s = ∞ are radiated the power of
which differs from zero at the value of the Bessel function argument α = s,
which gives

1 − kvcr

ω
= 0 ; k = νn(ω)

ω

c
,

where

vcr =

⎧⎨⎩ c

n0
, 0, c

√
n2

0 − 1
1 − n0

v0
c

n2
0

(
1 − v0

cn0

)
⎫⎬⎭ .

In that case, Eq. (2.52) again passes to the Tamm–Frank formula (2.55) for a
particle moving with the velocity v0 = vcr > c/n(ω). In this case the radiation
of fundamental frequency ω0 exists as well. So, only in limit cases ξ = 0 and
ξ = ξcr does Compton radiation fully turn into Cherenkov radiation and at
the values of external wave intensity 0 < ξ < ξcr the radiation of the particle
involves superposition of Compton and Cherenkov radiation.

The nonlinear scattering in laser fields of moderate intensities, that is, ra-
diation of high harmonics at ξ << 1, is of great interest. In considering this
process it is possible even at weak wave fields of intensities ξ ≈ ξcr << 1 due
to the Cherenkov resonance, i.e., when the radiation is close to the Cherenkov
cone with the incident wave. In accordance with Eq. (2.52) significant nonlin-
earity in the radiation process arises when the argument of the Bessel function
α ∼ s (s >> 1). As is seen from Eqs. (2.53) and (2.54) such large values of α
can be reached due to vx → c/n0, i.e., if the intensity of an incident wave is
close to the critical value (ξ → ξcr) and radiation is close to the Cherenkov
cone (1 − n(ω)(vx/c) cos θ → 0).

To determine the conditions and quantitative results for high harmonics
(s >> 1) radiation, one should substitute in Eq. (2.53) the concrete expres-
sions of the particle longitudinal velocity vx and energy E in the field. From
Eqs. (2.7) and (2.10) we have

α =
mc2

E0

n(ω)ω sin θ

ω0
(
1 − n0

v0
c

)√
1 − ξ2

ξ2
cr

ξ. (2.57)

In Eq. (2.57), the radiation angle (sin θ) should be defined from the con-
dition θ 
 θc, where θc is the Cherenkov angle. At fundamental frequency
ω0 the Cherenkov angle θc << 1, whereas at other frequencies ω it may not
be small depending on the medium dispersion and, consequently, the con-
ditions of nonlinearity will be different. However, the number of harmonics
at all frequencies is large enough. The harmonic s = 0 at fundamental fre-
quency ω0 cannot be radiated since vx < c/n0. The first harmonic (s = 1)
at frequency ω0 is radiated at the angle θ = 0 . The negative harmonics
(s = −1, −2, ...) correspond to anomalous Compton scattering in a medium
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with refractive index n(ω) > 1. At frequencies ω �= ω0 the harmonic s = 0
corresponds to Cherenkov radiation; however, the power of the radiation dif-
fers from the Tamm–Frank formula because of the oscillatory character of
the particle motion in the wave field (influence of Compton effect).

2.6 Radiation of a Particle in Capture Regime.
Cherenkov Amplifier

Consider the radiation of the particle captured by a plane monochromatic
wave in a gaseous medium. We will assume that the particle initial velocity is
directed along the wave propagation and has a value close to the Cherenkov
one:

v0 = v0x =
c

n0
(1 + µ) ; µ << 1. (2.58)

From the equations of motion (2.2) and (2.3) it follows that at µ = 0

vx = vx0 =
c

n0
, vy = 0 , x = x0 +

c

n0
t, (2.59)

where x0, y0 = 0, z0 = 0 are the initial coordinates of the particle at the
moment t = 0 in the wave of linear polarization

E = Ey = E0 cos
(
ω0n0

x

c
− ω0t

)
. (2.60)

The solution of Eqs. (2.2) and (2.3) at µ << 1 can be represented as

vx(t) =
c

n0
(1 + µux(t)) , vy(t) = cµuy(t) (2.61)

and after the linearization of these equations by parameter µ we have the
following set of equations for the functions ux(t) and uy(t):

dux

dt
=
e
(
n2

0 − 1
)3/2

n2
0mc

E0 cosφ0 · uy ,

duy

dt
= −e

(
n2

0 − 1
)1/2

mc
E0 cosφ0 · ux . (2.62)

Integrating this set of equations at the initial conditions ux0 = 1 and uy0 = 0
in accordance with Eq. (2.59), for the particle velocity in the capture regime
we obtain
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vx(t) =
c

n0
(1 + µ cosΩ0t) ,

vy(t) = − c

(n2
0 − 1)1/2µ sinΩ0t, (2.63)

Ω0 =
e
(
n2

0 − 1
)
E0| cosφ0|

n0mc
. (2.64)

In the derivation of Eqs. (2.63) and (2.64) the following approximation has
been made (due to the small parameter µ):

µ
ω0

Ω0
<< 1, (2.65)

which is violated for the wave phase cosφ0 = 0. This is connected with the
fact that the stability in the capture regime is provided by the action of
magnetic field H′ in the frame of reference connected with the wave and
H′ = 0 in the phase cosφ0 = 0, so that this phase is unstable.

As is seen from Eq. (2.63) the particle velocity in the wave oscillates with
the frequency Ω0, which depends on the initial phase φ0. In the particle beam
case the various particles being initially in different phases of the wave well
will have diverse velocities and space bunching of the particles will occur as a
result of which the current density of the beam will be modulated. Equation
(2.64) shows that the modulation frequency Ω0 
 ω0

(
n2

0 − 1
)
ξ| cosφ0| and

as even for the strong laser fields ξ << 1 (and n2
0 − 1 << 1), then Ω0 << ω0.

To calculate the power of noncoherent radiation by Eq. (2.50) one needs
the particle law of motion r(t) in the capture regime. Defining the latter by
integration of Eq. (2.63) with the initial conditions x(t) |t=0= x0, y(t) |t=0= 0

x(t) = x0 +
c

n0
t+ µ

c

n0Ω0
sinΩ0t ,

y(t) = −µ c

(n2
0 − 1)1/2

Ω0

(1 − cosΩ0t) (2.66)

and expanding the exponent of Eq. (2.50) into the series over the small pa-
rameter µ (taking into account as well that µω/Ω0 << 1), after the calcula-
tions we will have the following formula for differential power of noncoherent
radiation in the capture regime:

dPk = dP
(0)
k + dP

(+)
k + dP

(−)
k , (2.67)
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dP
(0)
k =

e2n(ω)
2πcn2

0
ω2 sin2 θ · δ

[
ω
n(ω)
n0

cos θ − ω

]
dωdO, (2.68)

dP
(±)
k = µ2 e

2n(ω)
8πc

ω2

n0 (n2
0 − 1)

δ

[
ω
n(ω)
n0

cos θ − ω ±Ω0

]

×
{[

n2
0 +
(
n2

0

2
− 1
)

sin2 θ

]
± 2

n(ω)
n0

(
n2

0

2
− 1
)

ω

Ω0
cos θ sin2 θ

+
n2(ω)
n2

0

ω2

Ω2
0

sin2 θ

[
n2

0

2
+
(
n2

0

2
− 1
)

cos2 θ
]}

dωdO, (2.69)

where θ is the angle between the radiation direction and axis OX. The term
dP

(0)
k corresponds to Cherenkov radiation by the particle moving with the

velocity v = c/n0 in the wave and the terms dP (±)
k determine the radiation

due to oscillatory motion of the particle. According to the δ-functions in Eqs.
(2.68) and (2.69) for the radiation angles we have

cos θ0 =
n0

n(ω)
, cos θ± =

n0

n(ω)

(
1 ∓ Ω0

ω

)
. (2.70)

Note that the approximation µω/Ω0 << 1 applied in the calculations is
necessary only to obtain ultimate analytical formulas (in the general case the
particle velocity is expressed by elliptic functions and analytical solution of
the problem is complicated).

Integrating Eqs. (2.68) and (2.69) over the solid angle for the spectral
distribution of the radiation we obtain

dP (0)
ω =

e2

cn0

[
1 − n2

0

n2(ω)

]
ωdω , (2.71)

dP (±)
ω = µ2 e

2

4c
1

n0 (n2
0 − 1)

{
n2

0 +
n2

0 + n2(ω) − 2
2

×
[
ω2

Ω2
0

− n2
0

n2(ω)

(
1 ∓ Ω0

ω

)2
]}

ωdω. (2.72)

In Eq. (2.72)

ω = ± Ω0

1 − n(ω)
n0

cos θ
. (2.73)
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As Ω0 depends on initial phase φ0 (see Eq. (2.64)), in the case of a particle
beam captured by a wave of linear polarization at a certain angle θ a whole
spectrum of frequencies will be radiated, in contrast to common Cherenkov
radiation at which only a definite frequency is radiated at that certain angle.

Let us compare the radiation at the fundamental frequency ω0 with the
common Cherenkov radiation at the same frequency (in the absence of the
external wave). In this case dP (0)

ω0 = 0 and for dP (−)
ω the conservation law for

the radiation of frequency ω0 is violated (see the second expression in Eq.
(2.70)). From Eq. (2.72) at ω = ω0 we have

dP (+)
ω0

=
e2

2cn0
µ2 ω0

Ω0
ω0dω. (2.74)

If one substitutes v = c(1 + µ)/n0 in the Tamm–Frank formula (2.55), then
with the linear approximation by parameter µ we will have

dPω0 =
2e2

cn0
µω0dω. (2.75)

A comparison of Eqs. (2.74) and (2.75) shows that the radiation of the particle
at the fundamental frequency ω0 in the capture regime is much smaller than
the spontaneous Cherenkov radiation (because of condition (2.65)). Such a
decrease of radiation is connected with the violation of coherency due to
oscillation of particle velocity in the wave field.

The fundamental frequency ω0 in the capture regime is radiated at the
angle θ 
 √2Ω0/ω0 (see Eq. (2.73)). The common Cherenkov angle is θc 
√
µ/2 and as far as µ << Ω0/ω0 then θ >> θc, i.e., the radiation angle at

the frequency of stimulating wave in the capture regime is much larger than
the spontaneous Cherenkov angle in the absence of the external wave.

At the other frequencies ω �= ω0 the radiation is mainly determined by
dP

(0)
ω , which practically coincides with the Tamm–Frank formula.
Consider now the case of circular polarization of the incident wave

Ey = E0 cos
(ω0n0

c
x− ω0t

)
, Ez = E0 sin

(ω0n0

c
x− ω0t

)
. (2.76)

Linearizing the equations of motion (2.2) and (2.3) in the field (2.76) under
the condition (2.58) for the particle velocity in the capture regime we obtain

vx =
c

n0
(1 + µ cosΩ′

0t) ,

vy = −µ c

(n2
0 − 1)1/2 cosφ0 · sinΩ′

0t , (2.77)
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vz = −µ c

(n2
0 − 1)1/2 sinφ0 · sinΩ′

0t ,

where the oscillation frequency in the wave well Ω′
0 does not depend on the

initial phase φ0 in contrast to the case of the linearly polarized wave. If we
calculate the radiation power by Eqs. (2.77), then the same formulas (2.67)–
(2.73) for the case of wave linear polarization will be obtained. The only
difference is that Ω′

0 is constant for all particles situated at the difference
phases in the wave well, and at the certain angle only one frequency will be
radiated in this case.

Equations (2.63) and (2.77) show that the energy of the particle in the
field

E = E0 + µ
E0

n2
0 − 1

cosΩ0t ; E0 =
mc2n0

(n2
0 − 1)1/2 (2.78)

oscillates between the values

Emin = E0

(
1 − µ

n2
0 − 1

)
; Emax = E0

(
1 +

µ

n2
0 − 1

)
,

consequently the exchange of the energy is

∆E =2µ
mc2n0

(n2
0 − 1)3/2 . (2.79)

According to Eqs. (2.78) the particle captured by the wave periodically ac-
quires and loses such energy ∆E . Due to the induced Cherenkov effect the
energy lost by the particle is coherently radiated into the wave (particularly
for this reason the above-considered noncoherent radiation at the frequency
of stimulating wave ω0 is sufficiently suppressed) and the amplification of
the initial wave will take place. Hence, the particle capture phenomenon may
in principle serve as a FEL mechanism (Cherenkov amplifier). For the lat-
ter one needs to solve the self-consistent problem on the basis of the set of
Maxwell–Vlasov equations.

Let us now consider the amplitude of the wave field to be a slowly varying
function of the space-time coordinates (x, t) with respect to the phase. The
problem will be investigated first for the circular polarization of the wave

Ey(x, t) = E(x, t) cos
(ω0n0x

c
− ω0t

)
,

Ez(x, t) = E(x, t) sin
(ω0n0x

c
− ω0t

)
(2.80)

with the boundary conditions
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Ey(0, t) = E0 cosω0t , Ez(0, t) = −E0 sinω0t. (2.81)

Related to particles we will assume that it crosses the boundary of the
medium x = 0 at the moment t = t0 with the initial velocity (2.58). Lin-
earizing the equations of motion (2.2) and (2.3) in the field (2.80) for a single
particle velocity in the field we obtain

vy = − c

(n2
0 − 1)1/2µ cos(ω0t0) sin

[
e
(
n2

0 − 1
)

mcn0

∫ t

t0

E(t′, x)dt′
]
,

vz =
c

(n2
0 − 1)1/2µ sin(ω0t0) sin

[
e
(
n2

0 − 1
)

mcn0

∫ t

t0

E(t′, x)dt′
]
. (2.82)

To define the electric current of the particle stream we assume that the space
is continuously filled with the charged particles. Then at the moment t0 in
the point x will be situated only the particles for which t0 = t− n0x/c (with
accuracy µω0/Ω0 << 1). Hence, for the electric current of the particle stream
we will have

jy(x, t) = −µ ecρ0

(n2
0 − 1)1/2 cos

(ω0n0x

c
− ω0t

)

× sin

[
e
(
n2

0 − 1
)

mcn0

∫ t

t−n0x/c

E(t′,
c

n0
(t′ − t) + x)dt′

]
, (2.83)

jz(x, t) = −µ ecρ0

(n2
0 − 1)1/2 sin

(ω0n0x

c
− ω0t

)

× sin

[
e
(
n2

0 − 1
)

mcn0

∫ t

t−n0x/c

E(t′,
c

n0
(t′ − t) + x)dt′

]
,

where ρ0 is the mean density of the particles in the initial stream, which
will be assumed constant (since µ << 1 the variation ρ0 is small and can be
neglected).

Because we are investigating the induced radiation, the field of the scalar
potential and longitudinal radiation field along the axis OX will not be con-
sidered here. Substituting Eqs. (2.83) into the Maxwell equation and taking
into account the slow variation of the radiation field amplitude:∣∣∣∣∂E∂t

∣∣∣∣ << ω0|E| ,
∣∣∣∣∂E∂x

∣∣∣∣ << ω0n0

c
|E| ,
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we obtain the equation of the self-consistent field:

∂E

∂x
+
n0

c

∂E

∂t
=

2πeρ0

n0 (n2
0 − 1)1/2µ

× sin

[
e
(
n2

0 − 1
)

mcn0

∫ t

t−n0x/c

E(t′,
c

n0
(t′ − t) + x)dt′

]
. (2.84)

Equation (2.84) has a simpler form over wave coordinates τ = t− n0x/c,
η = x. Then, for the field amplitude E(t, x) = f(τ, η) we have

∂

∂η
f(τ, η) =

2πeρ0

n0 (n2
0 − 1)1/2µ sin

[
e
(
n2

0 − 1
)

mc2

∫ η

0
f(τ, η′)dη′

]
. (2.85)

The simple analytic solution can be received at the incident monochromatic
wave: f(τ, 0) = E0. In this case, it follows from Eq. (2.84) that f(τ, η) does
not depend on τ , i.e., f(τ, η) = f(η), and for the quantity

ϕ =
e
(
n2

0 − 1
)

mc2

∫ η

0
f(η′)dη′ (2.86)

we have the nonlinear equation of anharmonic oscillator

ϕ′′ =
2πe2ρ0

(
n2

0 − 1
)1/2

mc2n0
µ sinϕ, (2.87)

the general solution of which is the incomplete elliptic integral of the first
kind

1
2
(
n2

0 − 1
) eE0x

mc2
=
∫ ϕ/2

0

dz√
1 + ζ2 sin2 z

,

ζ2 =
8πµ

n0 (n2
0 − 1)3/2

mc2ρ0

E2
0

. (2.88)

In the linear case when ϕ << 1 from Eq. (2.88) we have

E(x) = E0

⎡⎣ cosh
(

x
lc

)
, µ > 0,

cos
(

x
lc

)
, µ < 0.

(2.89)
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Hence, for µ > 0, which corresponds to particles’ initial velocity v0 > c/n0,
exponential amplification of the incident wave occurs. For µ < 0, that is,
v0 < c/n0, the amplification vanishes on average. The quantity in Eq. (2.89)

lc =

(
mc2n0

2πe2µρ0 (n2
0 − 1)1/2

)1/2

(2.90)

is the coherent length of amplification. Equation (2.85) is an analogue of
the equation of the quantum amplifier. The role of inverse population in
atomic systems here performs detuning of the Cherenkov resonance v0 −c/n0
(parameter µ).

Analysis of the obtained formulas shows that the linear regime takes place
at the electric field strengths of amplifying radiation

E � eλ0ρ0

(
mc2

E0

)3

(λ0 is the wavelength of incident wave) and at the coherent length of ampli-
fication

lc � mc2

e2λ0ρ0

( E0

mc2

)2

.

In the saturation regime from Eq. (2.85) we have

E(x) = E0 + µ
2πmc2ρ0

n0 (n2
0 − 1)3/2

1
E0

{
1 − cos

[(
n2

0 − 1
) eE0x

mc2

]}
. (2.91)

The wave energy gain found from Eq. (2.91) corresponds to the particle
energy exchange in the capture regime (in a unit volume) according to Eq.
(2.79):

∆W = ρ0∆E =
2µρ0E0

n2
0 − 1

. (2.92)

The saturation regime and Eq. (2.91) is valid when the electric field
strengths of amplifying radiation

E � eλ0ρ0
E0

mc2
.

Consider now the case of linear polarization of incident wave

Ey = E(x, t) cos
(ω0n0x

c
− ω0t

)
. (2.93)
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By analogy with the previous case for the velocity of a single particle in the
field (2.93) we obtain

vx =
c

n0

(
1 + µ cos

[∫ t

t0

Ω0(t′, x)dt′
])

,

vy = − c

(n2
0 − 1)1/2µ sin

[∫ t

t0

Ω0(t′, x)dt′
]
, (2.94)

where the modulation frequency

Ω0(t, x) =
e
(
n2

0 − 1
)

mcn0
E(x, t) cosω0t0 (2.95)

already depends on initial phase φ0 = ω0t0. Therefore, in the particle beam
case, all harmonics will be radiated in contrast to circular polarization of the
wave. By calculating the electric current of the particle stream and expanding
into series over Bessel functions we find that the induced radiation stipulated
by the y component of the current (coherent radiation) will include only the
odd harmonics and the noncoherent part of the radiation stipulated by the x
component of the current (longitudinal field along the axis OX) will include
only the even harmonics. As in the previous case we will consider the coherent
radiation. Then, substituting y component of the current

jy(x, t) = −µ ecρ0

(n2
0 − 1)1/2

+∞∑
s=−∞

is−1Js(α) exp
[
isω0

(n0x

c
− t
)]

,

s = 2k − 1 ; k = 0,±1,±2, . . . ,

α(x, t) =
e
(
n2

0 − 1
)

mcn0

∫ t

t−n0x/c

E(t′,
c

n0
(t′ − t) + x)dt′ (2.96)

into the Maxwell equation for the slowly varying amplitude of the self-
consistent field we will have the equation

2isω0

(
n0

c

∂Es

∂x
+
n2

s

c2
∂Es

∂t

)
+
s2ω2

0

c2
(
n2

s − n2
0
)
Es

= is
4πeρ0sω0

c (n2
0 − 1)1/2µJs(α), (2.97)
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where ns is the medium refractive index at the s-th harmonic of the funda-
mental frequency ω0 (ns ≡ n(sω0)).

Consider Eq. (2.97) with regard to the presence and absence of synchro-
nism. In the last case, when ns �= n0 taking into account the slow variation
of the field amplitude from Eq. (2.97) we obtain

Es = isµ
4πecρ0

(n2
0 − 1)1/2

1
sω0

1
n2

s − n2
0
Js(α). (2.98)

As is seen from this formula in the absence of synchronism, there is a weak
dependence of radiation field on harmonics’ number.

In the case of synchronism (ns = n0), Eq. (2.97) becomes

∂Es

∂x
+
n0

c

∂Es

∂t
= is−1µ

2πeρ0

n0 (n2
0 − 1)1/2 Js(α). (2.99)

For the first harmonic (fundamental coherent radiation) the results repeat
almost exactly the case of wave circular polarization (Eqs. (2.88)–(2.90)), the
only difference being that the coherence length in this case is

√
2lc.

To determine the radiation on the other harmonics in the case of synchro-
nism consider the problem in the given field. Then, for large x when

e
(
n2

0 − 1
)
E0x

mc2
>> 1

for the harmonics’ amplitudes we have

Es = is−1µ
2πmc2ρ0

n0 (n2
0 − 1)3/2

1
E0

. (2.100)

Hence, the radiation intensity on the harmonics

Is =
c

8π
|Es|2 
 e2c

(λ3
0ρ0)2

λ4
0

( E0

mc2

)2

. (2.101)

Equation (2.101) as well as Eq. (2.92) and estimation formulas are ob-
tained when µ ∼ ξ(mc2/E0)2, which is defined from the condition of particle
capture. As in the linear regime the coherence length increases as energy
squared, and the losses of the particles in the medium depend on energy
logarithmically, then the energy increase for amplification of weak signals
does not give an essential advantage. The optimal energy is E0 ∼ mc2. Then
lc ∼ (r0λ0ρ0)−1, where r0 = e2/mc2 is the electron classical radius. The es-
timations show that for the amplification of optical radiation in the capture
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regime with n0 = const, electron beams of large densities are necessary. The
situation considerably will be improved if media with varying refractive index
n0(x) are used. Then along the direction of increase of n0(x) the particles will
be continuously decelerated, and the wave continuously amplified (a regime
inverse to the one considered in Section 2.4).
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3 Quantum Theory of Induced Multiphoton
Cherenkov Process

The existence of critical intensity in the induced Cherenkov process at which
nonlinear resonance with a given coherent radiation field takes place leading
to threshold phenomena of particle “reflection” and capture, in the quantum
description, corresponds to multiphoton absorption/radiation of the particle
at free–free transitions. Hence, first it is important to determine the probabil-
ities of induced Cherenkov radiation and absorption below the critical value
and close to this one when these probabilities considerably increase. As a
result of the multiphoton absorption/radiation the particle quantum state is
modulated at the wave harmonics.

Then one should elucidate the role of particle spin in these phenomena
since in dielectriclike media the wave periodic electromagnetic field in the in-
trinsic frame of reference becomes a static magnetic field and spin interaction
with such a field should resemble the Zeeman effect.

What other quantum effects may be expected in induced Cherenkov process
taking into account that spontaneous Cherenkov effect is of classical nature
and has no quantum peculiarity?

The particle “reflection”effect from the wave envelope is also of classical
nature, but the quantum state of the reflected particle after the interaction
becomes modulated at X-ray frequencies.

The classical phenomenon of particle capture by the wave leads to quantum
effect of zone structure of particle states like the particle states in a crystal
lattice.

The inelastic diffraction scattering of the particles on the traveling EM
wave of intensity below the critical value in induced Cherenkov process takes
place like Bragg diffraction (elastic) on a crystal lattice.

The consideration of these quantum problems is the subject of this chapter.

3.1 Quantum Description of Induced Cherenkov Process
in Strong Wave Field

The multiphoton interaction of a charged spinor particle with a plane EM
wave in induced Cherenkov process should be described in general by the
Dirac equation. As will be shown below, the exact solution of the Dirac
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equation can be obtained only for the particular case when the particle ini-
tial velocity is parallel to the wave propagation direction, which is monochro-
matic and is of circular polarization. In other cases the quantum equations
of motions (both nonrelativistic and relativistic) are reduced to ordinary dif-
ferential equations of the second order of Hill or Mathieu type, the exact
solution of which are unknown. In these cases one needs to develop adequate
approximations for the quantum description of particle–wave nonlinear in-
teraction.

The Dirac equation for the spinor particle in the given coherent radiation
field in a medium is written as

i�
∂Ψ

∂t
=
[
cα̂(p̂ − e

c
A(t− n0x/c)) + β̂mc2

]
Ψ. (3.1)

In contrast to the case of interaction in a vacuum where the Dirac equation
has been solved in the spinor representation (see Eqs. (1.78) and (1.78)) here
it is convenient to solve the problem in the standard representation with the
Dirac matrices

α̂ =
(

0 σ
σ 0

)
; β̂ =

(
I 0
0 −I

)
. (3.2)

Here σ = (σx, σy, σz) are the Pauli matrices (1.79), and I is a two-dimensional
unit matrix. In Eq. (3.1) A = A(t − n0x/c) is the vector potential of a lin-
early polarized plane quasi-monochromatic EM wave propagating in the OX
direction in a medium

A = {0, A0(τ) cosω0τ, 0} ; τ = t− n0x/c. (3.3)

As in previous considerations we shall assume that the EM wave is adiabat-
ically switched on at τ = −∞ and switched off at τ = +∞.

To solve Eq. (3.1) it is more straightforward to pass to the frame of
reference of the rest of the wave (R frame moving with velocity V = c/n).
As has been shown in Chapter 2, in the R frame there is only the static
magnetic field that will be described according to Eq. (3.3) by the following
vector potential:

AR = {0, A0(x′) cos k′x′, 0} , (3.4)

where

k′ =
ω0

c

√
n2

0 − 1. (3.5)

The wave function of a particle in the R frame is connected with the wave
function in the laboratory frame L by the Lorentz transformation of the
bispinors
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Ψ = Ŝ(ϑ)ΨR, (3.6)

where the transformation operator

Ŝ(ϑ) = ch
ϑ

2
+ αxsh

ϑ

2
; thϑ =

V
c

=
1
n
. (3.7)

For ΨR we have the equation

i�
∂ΨR

∂t′
=
[
cα̂(p̂′ − e

c
AR(x′)) + β̂mc2

]
ΨR. (3.8)

Since the interaction Hamiltonian does not depend on the time and transverse
(to the direction of the wave propagation) coordinates the eigenvalues of the
operators Ĥ ′, p̂′

y, p̂′
z are conserved: E ′ = const, p′

y = const, p′
z = const and

the solution of Eq.(3.8) can be represented in the form of a linear combination
of free solutions of the Dirac equation with amplitudes ai(x′) depending only
on x′:

ΨR(r′,t′) =
4∑

i=1

ai(x′)Ψ (0)
i . (3.9)

Here

Ψ
(0)
1,2 =

√
E ′ +mc2

2E ′

⎡⎢⎣ϕ1,2

σxcp′
x+σycp′

y

E′+mc2 ϕ1,2

⎤⎥⎦

× exp
[
i

�
(p′

xx
′ + p′

yy
′−E ′t)

]
,

Ψ
(0)
3,4 =

√
E ′ +mc2

2E ′

⎡⎢⎣ϕ1,2

−σxcp′
x+σycp′

y

E′+mc2 ϕ1,2

⎤⎥⎦

× exp
[
i

�
(−p′

xx
′ + p′

yy
′−E ′t)

]
, (3.10)

where

p′
x =

(
E ′2

c2
− p

′2
y −m2c2

) 1
2

, ϕ1 =
(

1
0

)
, ϕ2 =

(
0
1

)
. (3.11)
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The solution of Eq. (3.8) in the form (3.9) corresponds to the expansion of
the wave function in a complete set of the wave functions of a particle with
certain energy and transverse momentum p′

y (with longitudinal momenta
±(E ′2/c2 − p

′2
y − m2c2)1/2 and spin projections Sz = ±1/2). The latter are

normalized to one particle per unit volume. Since there is symmetry with
respect to the direction AR (the OY axis), we have taken, without loss of
generality, the vector p′ in the XY plane (p′

z = 0).
According to Eqs. (3.9) and (3.10) the induced Cherenkov effect in the

R frame corresponds to elastic scattering process by which the reflection of
the particle from the wave field occurs: p′

x → −p′
x. However, in contrast to

classical reflection when the periodic wave field becomes a potential barrier
for the particle at the intensity ξ > ξcr, this quantum above-barrier reflection
takes place regardless of how weak the wave field is. Hence, the probability
of multiphoton absorption/radiation of the incident wave photons by the
particle in the L frame, that is, induced Cherenkov effect, will be determined
by the probability of particle elastic reflection in the R frame.

Substituting Eq. (3.9) into Eq. (3.8) and then multiplying by the Her-
mitian conjugate functions and taking into account Eqs. (3.10) and (3.2) we
obtain a set of differential equations for the unknown functions ai(x′). The
equations for a1, a3 and a2, a4 are separated and for these amplitudes we
have the following set of equations:

p′
x

da1(x′)
dx′ =

iep′
y

�c
Ay(x′)a1(x′)

−e
(
p′

x − ip′
y

)
�c

Ay(x′) exp
(

−2i
�
p′

xx
′
)
a3(x′),

p′
x

da3(x′)
dx′ = − ie

�c
p′

yAy(x′)a3(x′)

−e
(
p′

x + ip′
y

)
�c

Ay(x′) exp
(

2i
�
p′

xx
′
)
a1(x′). (3.12)

A similar set of equations is also obtained for the amplitudes a2(x′) and
a4(x′). For simplicity we shall assume that before the interaction there are
only particles with specified longitudinal momentum and spin state, i.e.,

|a1(−∞)|2 = 1, |a3(+∞)|2 = 0, |a2(−∞)|2 = 0, |a4(+∞)|2 = 0. (3.13)

From the condition of conservation of the norm we have

|a1(x′)|2 − |a3(x′)|2 = const (3.14)
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and the probability of reflection is |a3,4(−∞)|2.
The application of the unitarian transformation

a1(x′) = b1(x′) exp

(
i
ep′

y

�cp′
x

∫ x′

−∞
Ay(η)dη − i

ϑ′

2

)
,

a3(x′) = b3(x′) exp

(
−i ep

′
y

�cp′
x

∫ x′

−∞
Ay(η)dη + i

ϑ′

2

)
(3.15)

simplifies Eq. (3.12). Here ϑ′ is the angle between the particle momentum
and the direction of the wave propagation in the R frame. The new ampli-
tudes b1(x′) and b3(x′) satisfy the same initial conditions: |b1(−∞)|2 = 1,
|b3(+∞)|2 = 0, according to Eq. (3.13).

From Eqs. (3.12) and (3.15) for b1(x′) and b3(x′) we obtain the following
set of equations:

db1(x′)
dx′ = −f(x′)b3(x′),

db3(x′)
dx′ = −f∗(x′)b3(x′), (3.16)

where

f(x′) =
eAy(t)p′

�cp′
x

exp

(
−2i

�
p′

xx
′ − i

2epy

�cp′
x

∫ x′

−∞
Ay(η)dη

)
, (3.17)

p′ =
√
p′2

y + p′2
x .

Using the following expansion by the Bessel functions

exp (−iα sin k′x′) =
∞∑

N=−∞
JN (α) exp (−iNk′x′) ,

we can reduce Eq. (3.16) to the form

db1(x′)
dx′ = −

∞∑
N=−∞

fN exp
[
− i

�
(2p′

x −N�k′)x′
]
b3(x′),

db3(x′)
dx′ = −

∞∑
N=−∞

fN exp
[
i

�
(2p′

x −N�k′)x′
]
b1(x′), (3.18)
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where

fN =
p′

2p′
y

Nk′JN

(
2ξ
mc

p′
x

p′
y

�k′

)
. (3.19)

Because of conservation of particle energy and transverse momentum (in
R frame) the real transitions in the field will occur from a p′

x state to the
−p′

x one and, consequently, the probabilities of multiphoton scattering will
have maximal values for the resonant transitions

2p′
x = s�k′ (s = ±1,±2...). (3.20)

The latter expresses the condition of exact resonance between the particle
de Broglie wave and the incident “wave lattice”. In the L frame the inelastic
scattering of the particle on the moving phase lattice takes place and Eq.
(3.20) corresponds to the known Cherenkov conservation law

2E0(1 − n0
v0
c cosϑ)

(n2
0 − 1)

= s�ω0, (3.21)

where ϑ is the angle between the particle momentum and the wave propaga-
tion direction (the Cherenkov angle), and v0 and E0 are the particle initial
velocity and energy in the L frame.

So, we can utilize the resonant approximation keeping only resonant terms
in Eq. (3.18). Generally, in this approximation, at the detuning of resonance
|δs| =

∣∣∣2p′
x

�
− sk′

∣∣∣ << k′, we have the following set of equations for the

particular s-photon transition amplitudes b(s)1 (x′) and b
(s)
3 (x′):

db
(s)
1 (x′)
dx′ = −fs exp [−iδsx′] b(s)3 (x′),

db
(s)
3 (x′)
dx′ = −fs exp [iδsx′] b(s)1 (x′). (3.22)

This resonant approximation is valid for the slow varying functions b(s)1 (x′)
and b

(s)
3 (x′), i.e., by the condition∣∣∣∣∣db

(s)
1,3(x

′)
dx′

∣∣∣∣∣ << ∣∣∣b(s)1,3(x
′)
∣∣∣ · k′. (3.23)

First we shall solve the case of exact resonance (δs = 0). According to the
boundary conditions (3.14) we have the following solutions for the amplitudes
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b
(s)
1 (x′) =

cosh
[∫∞

x′ fsdη
]

cosh
[∫∞

−∞ fsdη
] , b

(s)
3 (x′) =

sinh
[∫∞

x′ fsdη
]

cosh
[∫∞

−∞ fsdη
] (3.24)

and for the reflection coefficient

R(s) =
∣∣∣b(s)3 (−∞)

∣∣∣2 = tanh2 [fs�x′] , (3.25)

where �x′ is the coherent interaction length. The reflection coefficient in the
laboratory frame of reference is the probability of absorption at v0 < c/n0 or
emission at v0 > c/n0. The latter can be obtained expressing the quantities
fs and �x′ by the quantities in this frame since the reflection coefficient is
Lorentz invariant. So

R(s) = tanh2 [Fs�τ ] , (3.26)

where

Fs =
[
(1 − n0

v0
c cosϑ)2

n2
0 − 1

+
v2
0

c2
sin2 ϑ

]1/2

× sω0c

2v0 sinϑ
Js

(
ξ

2mv0c sinϑ
�ω0(1 − n0

v0
c cosϑ)

)
(3.27)

and �τ for actual cases is the laser pulse duration in the L frame. The
condition of applicability of this resonant approximation (3.23) is equivalent
to the condition

|Fs| << ω0, (3.28)

which restricts the intensity of the wave as well as the Cherenkov angle. Be-
sides, to satisfy condition (3.28) we must take into account the very sensitivity
of the parameter Fs toward the argument of the Bessel function, according to
Eq. (3.27). For the wave intensities when Fs�τ � 1 the reflection coefficient
is of the order of one that can occur for a large number of photons s >> 1
for the argument of the Bessel function α ∼ s � 1 in Eq. (3.27) (according
to the asymptotic behavior of Bessel function Js(α) at α 
 s � 1).

For the off resonant solution, when δs �= 0, but f2
s > δ2s/4 from Eq. (3.22)

we obtain the following expression for R(s):

R(s) =
f2

s

Ω2
s

sinh2[Ωs�x′]

1 + f2
s

Ω2
s

sinh2[Ωs�x′]
; Ωs =

√
f2

s − δ2s/4, (3.29)

which has the same behavior as in the case of exact resonance. In the opposite
case when f2

s ≤ δ2s/4 the reflection coefficient is an oscillating function of
interaction length.
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3.2 Quantum Description of “Reflection” Phenomenon.
Particle Beam Quantum Modulation at X-Ray
Frequencies

Though the phenomenon of particle “reflection” from the front of a plane
EM wave is of classical nature, which means that quantum effects of tunnel
passage and above-barrier reflection should be small enough, nevertheless the
quantum consideration of this phenomenon is worthy of note in relation to the
appearance of an important coherent quantum effect as a result of classical
“reflection” of particles. The influence of spin interaction is not essential here;
on the other hand, it is quantitatively small enough in the induced Cherenkov
process (for optical frequencies) and may be neglected. The qualitative aspect
of spin effects in the induced Cherenkov process will be considered below.

Neglecting the spin interaction, the Dirac equation in quadratic form be-
comes the Klein–Gordon equation, so we will consider the problem on the
basis of the equation

−�
2 ∂

2Ψ

∂t2
=
{
c2
[
−i��−e

c
A(t−n0

x

c
)
]2

+m2c4
}
Ψ. (3.30)

Equation (3.30) over wave coordinates τ = t − n0x/c and η = t + n0x/c is
written as

�
2 (n2

0 − 1
) ∂2Ψ

∂τ2 − 2�
2 (n2

0 + 1
) ∂2Ψ

∂τ∂η
+ �

2 (n2
0 − 1

) ∂2Ψ

∂η2

= c2
[
−i��−e

c
A(τ)

]2
Ψ +m2c4Ψ. (3.31)

As the coordinate η is cyclic (as the transverse coordinates r⊥), then the
corresponding component of generalized momentum pη is conserved

pη =
1
2

(
c

n0
px − E

)
= const, (3.32)

which coincides (with a coefficient) with the classical integral of motion (2.5).
Hence, the solution of Eq. (3.30) may be sought in the form

Ψ(τ, η, r⊥) = Φ (τ) exp
[
i

�
p⊥0r⊥ +

i

�
pηη

]
, (3.33)

where p⊥0 is the initial transverse momentum of the particle in the plane of
wave polarization. Then for Φ (τ) we have the equation
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�
2 (n2

0 − 1
) d2Φ

dτ2 − 2i�pη

(
n2

0 + 1
) dΦ
dτ

− p2
η

(
n2

0 − 1
)
Φ

= c2
[
p⊥0−e

c
A(τ)

]2
Φ+m2c4Φ, (3.34)

which within the transformation

Φ (τ) = U (τ) exp
(
i

�

n2
0 + 1
n2

0 − 1
pητ

)
(3.35)

turns into the one-dimensional Schrödinger equation for the introduced new
function U (τ)

d2U

dτ2 +
1
�2

1

(n2
0 − 1)2

{
4n2

0p
2
η − (n2

0 − 1
)
c2
[
p⊥0−e

c
A(τ)

]2

− (n2
0 − 1

)
m2c4

}
U = 0. (3.36)

The exact solution of Eq. (3.36) can be obtained when the particle initial
velocity is parallel to the wave propagation direction (p⊥0 = 0) and the latter
is monochromatic of circular polarization (A2(τ) =const):

U (τ) = C1 exp

⎡⎣iτ E0

� (n2
0 − 1)

√(
1−n0

v0

c

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ2

⎤⎦

+C2 exp

⎡⎣−iτ E0

� (n2
0 − 1)

√(
1−n0

v0

c

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ2

⎤⎦ , (3.37)

One can define constants C1 and C2 by introducing an envelope for the
monochromatic wave.

Equations (3.33), (3.35), and (3.37) determine the complete wave function
of the particle

Ψ(τ, η) = exp
[
−iE0

2�

(
1− v0

cn0

)(
η +

n2
0 + 1
n2

0 − 1
τ

)]

×
⎧⎨⎩C1 exp

⎡⎣iτ E0

� (n2
0 − 1)

√(
1−n0

v0

c

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ2

⎤⎦
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+C2 exp

⎡⎣−iτ E0

� (n2
0 − 1)

√(
1−n0

v0

c

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ2

⎤⎦⎫⎬⎭ , (3.38)

that is the superposition of two waves — incident and reflected — with the
different energy values. If one moves from coordinates τ , η to t, x, these two
values of particle energy will coincide with the classical expressions (2.10)
that comprise the “reflection” phenomenon, where the sign “+” before the
root corresponds to an incident particle, and the sign “−” to a reflected one.

To calculate the probability of reflection from the wave barrier one needs
to consider an EM pulse with the envelope of intensity damped asymptotically
at infinity. Let it have the form

ξ2 (τ) =
ξ20

cosh2 τ
τ0

, (3.39)

where ξ20 is the maximal value of intensity and τ0 is the half-width of the
pulse.

The wave function of the particle at the interaction with the field (3.39)
is expressed by the hypergeometric function and for the passage coefficient
we obtain

D =
sinh2

(
π
2 Ω̃τ0

)
sinh2

(
π
2 Ω̃τ0

)
+ cos2

(
π
2

√
1 −
(
Ω̃τ0

)2
ξ2
0

ξ2
cr

) if Ω̃τ0
ξ0
ξcr

< 1,

D =
sinh2

(
π
2 Ω̃τ0

)
sinh2

(
π
2 Ω̃τ0

)
+ cosh2

(
π
2

√(
Ω̃τ0

)2
ξ2
0

ξ2
cr

− 1

) if Ω̃τ0
ξ0
ξcr

> 1.

(3.40)
Here

Ω̃ = 2
E0

� (n2
0 − 1)

∣∣∣1 − n0
v0

c

∣∣∣ (3.41)

is the quantum frequency corresponding to particle classical energy change
due to “reflection” (see Eq. (2.13)) and ξcr is the classical value of critical
intensity (2.12).

The major quantity Ω̃τ0 in Eqs. (3.40) Ω̃τ0 >> 1 (for actual parameters
of electron and laser beams in a medium with refractive index n0 − 1 ∼ 10−4

the parameter Ω̃τ0 ∼ 1015÷1011 for laser pulse duration τ0 ∼ 10−8÷10−12 s),
hence at ξ0 > ξcr for the coefficient of reflection we have
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R =
exp
[
πΩ̃τ0

(
ξ0
ξcr

− 1
)]

1 + exp
[
πΩ̃τ0

(
ξ0
ξcr

− 1
)] . (3.42)

This equation shows that R = 1 with great accuracy (the coefficient of tunnel
passage in this case is of the order exp

[
(−1015) ÷ (−1011)

]
). If ξ0 < ξcr

then the coefficient of reflection R = 0 with the same accuracy, i.e. the
above barrier reflection is negligibly small in this case. Thus, the quantum
effects of tunnel passage and above barrier reflection do not impact on the
classical phenomenon of particle “reflection” from the plane EM wave. This
is physically clear since the Compton wavelength of a particle (electron) is
much smaller than the space size of actual EM pulses. Nevertheless, due to
the particle quantum feature as a result of classical reflection the coherent
effect of quantum modulation of the free particle probability density and,
consequently, electric current density occurs because of superposition of an
incident and reflected particle’s waves.

Thus, the particle free state after the reflection (ξ (τ) = 0) will be de-
scribed by the asymptotic expression of Eq. (3.38), that is,

Ψ(x, t) = C1

{
exp
[
i

�
(p0x− E0t)

]

+ exp

[
i

�

(
p0 ± n0�Ω̃

c

)
x− i

�

(
E0 ± �Ω̃

)
t+ iϕ0

]}
. (3.43)

Here we have taken into account that the coefficient of reflection R =
|C2|2 / |C1|2 = 1 and the constant phase ϕ0 = arg (C2/C1); constant C1
is determined by the normalization condition. The signs (±) in the exponent
correspond to cases v0 < c/n0 and v0 > c/n0, respectively.

The density of electric current of the particle beam defined by Eq. (3.43)
is modulated at frequency Ω̃

J(x, t) = J0

{
1 + cos

[
Ω̃
(
t− n0

x

c

)
− ϕ0

]}
, (3.44)

where J0 = const is the electric current density of the initially homogeneous
and monochromatic particle beam. The modulation frequency Ω̃ in actual
cases lies in the X-ray domain as follows from the estimation of particle
classical energy change due to “reflection” ∆E in Chapter 2 (Ω̃ = ∆E /�).

Note that quantum modulation in contrast to classical modulation is ex-
ceptionally the feature of a single particle and so is conserved after the inter-
action.
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3.3 Exact Solution of the Dirac Equation for Induced
Cherenkov Process

Consider the nonlinear quantum dynamics of a spinor particle in the field
of a plane monochromatic EM wave in a medium. The exact solution of the
Dirac equation can be found for the above-considered case when the particle
initial velocity is parallel to the wave propagation direction and the latter is
of circular polarization:

Ay = A0 sinω0

(
t− n0

x

c

)
; Az = A0 cosω0

(
t− n0

x

c

)
. (3.45)

The Dirac equation in quadratic form for the spinor wave function

f =

⎛⎝f1

f2

⎞⎠
in the field (3.45) is written as{

�
2 ∂

2

∂t2
+ c2

(
p̂−e

c
A
)2

− �ecσ (H+iE) +m2c4
}
f = 0. (3.46)

The complete wave function of the particle is determined by the spinor f as
follows:

Ψ =
1

mc2

[
i�β̂

∂

∂t
− cβ̂α̂

(
p̂−e

c
A
)

+mc2
]⎛⎝ f

−f

⎞⎠ , (3.47)

where α̂, β̂ are the Dirac matrices in the standard representation (3.2).
Equation (3.46) is a set of two differential equations of the second order

for the spinor components f1 and f2. Passing from variables x, t to wave
coordinates τ = t− n0x/c, η = t+ n0x/c and looking for the solution of Eq.
(3.46) in the form

f = e
i
�

pηη

⎛⎝f1(τ)eiω0τ

f2(τ)

⎞⎠ (3.48)

(the quantity pη = const is given by Eq. (3.32)), then the variables τ , η are
separated and we obtain the following set of equations for f1 and f2:

d2f1

dτ2 + 2i
(
ω0 − pη

�

n2
0 + 1
n2

0 − 1

)
df1

dτ
−
[
ω2

0 − 2ω0
pη

�

n2
0 + 1
n2

0 − 1
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+

(
n2

0 − 1
)
p2

η + e2A2
0 +m2c4

�2 (n2
0 − 1)

]
f1 = − iecH0

�n0 (n0 + 1)
f2, (3.49)

d2f2

dτ2 − 2i
pη

�

n2
0 + 1
n2

0 − 1
df2

dτ
−
(
n2

0 − 1
)
p2

η + e2A2
0 +m2c4

�2 (n2
0 − 1)

f2 =
iecH0

�n0 (n0 − 1)
f1.

Here H0 is the amplitude of the wave magnetic field strength: H0 =
n0ω0A0/c.

This set of differential equations of the second order is equivalent to one
differential equation of the fourth order the characteristic equation of which
may be reduced to a biquadratic algebraic equation. The roots of the latter
are

Ω1,2,3,4 = −ω0

2
+
pη

�

n2
0 + 1
n2

0 − 1
± E0

� (n2
0 − 1)

×
√[

1 − n0
v0

c
± �ω0

2E0
(n2

0 − 1)
]2

− (n2
0 − 1)

(
mc2

E0

)2

ξ2, (3.50)

where the signs “±” before the root correspond to an incident and reflected
particle analogously to Eq. (3.38). However, due to relativistic quantum ef-
fects (spin–field interaction and quantum recoil of photons) two different
values of Ω arise as for the incident particle (Ω1,2) as well as for the reflected
one (Ω3,4) corresponding to the signs “±” under the root. Consequently, two
critical values of intensity appear here corresponding to different initial spin
projections along the direction of particle motion:

ξ2cr1,2 =
( E0

mc2

)2
[
1 − n0

v0
c ± �ω0

2E0

(
n2

0 − 1
)]2

(n2
0 − 1)

. (3.51)

From Eq. (3.47), within Eqs. (3.48) and (3.50) we obtain the complete
wave function of a spinor particle. We present the ultimate equations for
spin projections −1/2 and 1/2. If the particle spin before the interaction is
directed opposite to axis OX (σx = −1) we have

Ψ1 (x, t) = C1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a1 + a2) eiω0(t−n0
x
c )

a3 + 1

(a1 − a2) eiω0(t−n0
x
c )

a3 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e

i
�
(p1x−E1t), (3.52)
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where

E1 = E0 +
E0

n2
0 − 1

(
1 − n0

v0

c
+

�ω0

2E0

(
n2

0 − 1
))(

1 −
√

1 − ξ20
ξ2cr1

)
, (3.53)

and p1 is determined by E1 via conserved quantity pη. The quantities in the
bispinor (3.52) are

a1 = a2
n0 + 1
n0 − 1

E0 − cp0

mc2
; a2 = i (n0 − 1)

E1 − E0

mc2ξ0
; a3 =

E0 − cp0

mc2

and the coefficient of normalization (one particle in the unit volume)

C1 =
1√
2

(
1 + |a1|2 + |a2|2 + |a3|2

)−1/2
.

In the case of σx = +1 we have

Ψ2 (x, t) = C2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b3 + 1

(b1 + b2) e−iω0(t−n0
x
c )

b3 − 1

(b1 − b2) e−iω0(t−n0
x
c )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e

i
�
(p2x−E2t), (3.54)

where

E2 = E0 +
E0

n2
0 − 1

(
1 − n0

v0

c
− �ω0

2E0

(
n2

0 − 1
))(

1 −
√

1 − ξ20
ξ2cr2

)
. (3.55)

The bispinor (3.54) is determined by the quantities

b1 = b2
n0 − 1
n0 + 1

E0 + cp0

mc2
; b2 = i (n0 + 1)

E2 − E0

mc2ξ0
; b3 =

E0 + cp0

mc2
,

and the normalization coefficient

C2 =
1√
2

(
1 + |b1|2 + |b2|2 + |b3|2

)−1/2
.
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The wave functions of reflected particles Ψ3 and Ψ4 corresponding to spin
projections σx = +1 and σx = −1, respectively, are obtained from the ex-
pressions Ψ2 and Ψ1 by the replacement Ω2 → Ω3 and Ω1 → Ω4 and for E3,4
we have

E3,4 = ∓�ω0 + E0 +
E0

n2
0 − 1

(
1 − n0

v0

c
± �ω0

2E0

(
n2

0 − 1
))

×
(

1 +

√
1 − ξ20

ξ2cr1,2

)
(3.56)

In particular, from this equation it follows that in Eq. (3.51) ξcr2 corresponds
to a particle with the spin directed along the axis OX, while ξcr1 corresponds
to the opposite one. The normalization coefficients can be defined by intro-
ducing the wave envelope as was stated in Section 3.2.

The expressions of particle wave functions show that the degeneration of
particle states over the spin projection that takes place in vacuum (Volkov
states) vanishes in a dielectriclike medium. In that case the wave function
Ψ1 corresponds to superposition state with energies E1 and E1 − �ω0, while
Ψ2 corresponds to energies E2 and E2 + �ω0. The removal of degeneration of
Volkov states is related to the fact that in a medium with refractive index
n0 > 1 in the intrinsic frame of reference of the wave there is only a static
magnetic field and the spin interaction with such a field results in the splitting
of the particle states as by the Zeeman effect. The splitting value (∆E =
|E1 − E2| = |E4 − E3|) is

∆E =
E0

n2
0 − 1

∣∣∣∣∣
(

1 − n0
v0

c
+

�ω0

2E0

(
n2

0 − 1
))(

1 −
√

1 − ξ20
ξ2cr1

)

−
(

1 − n0
v0

c
− �ω0

2E0

(
n2

0 − 1
))(

1 −
√

1 − ξ20
ξ2cr2

)∣∣∣∣∣ . (3.57)

As is seen from Eqs. (3.52)–(3.55), in vacuum this splitting vanishes and the
wave functions Ψ1 and Ψ2 pass into Volkov wave function (1.93).

The spin interaction in a medium within the nonlinear threshold phe-
nomenon of particle “reflection” may lead to particle beam polarization since
the critical intensity (3.51) depends on spin projection along the direction of
particle motion. Thus, if the condition ξ2cr2 < ξ2 < ξ2cr1 holds, then only the
particles with certain direction of the spin (along the axis OX) will be re-
flected. Since the velocities of reflected particles are different from the nonre-
flected ones, then by separating the particles after the interaction a polarized
beam may be obtained.
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3.4 Secular Perturbation at Nonlinear Cherenkov
Resonance

The multiphoton induced Cherenkov interaction in the capture regime cor-
responding to transitions between the particle bound states occurs at the
nonzero initial angles of particle motion with respect to the wave propaga-
tion direction, at which, as mentioned above, the Dirac or Klein–Gordon
equations are of Hill or Mathieu type and unable to solve it exactly. How-
ever, as was shown in the quantum description of “reflection” phenomenon
(free–free transitions), the interaction at the arbitrary initial angle resonantly
connects two states of the particle (in the intrinsic frame of reference of the
wave the states with longitudinal momenta px of the incident particle and
px + s�k of the scattered particle; s is the number of absorbed or radiated
photons with a wave vector k), which makes available the application of res-
onant approximation to determine the multiphoton probabilities of free–free
transitions in induced nonlinear Cherenkov process. Concerning the quantum
description of the particle’s bound states in the capture regime one must take
into account the degeneration of initial states of free particles in the “longi-
tudinal momentum”. Therefore, regardless of how weak the field of the wave
is, the usual perturbation theory in stimulated Cherenkov process is not ap-
plicable because of such degeneration of the states and the interaction near
the resonance is needed for description by the secular equation. The latter,
in particular, reveals the zone structure of the particle states in the field of a
transverse EM wave in a dielectriclike medium. Note that in contrast to the
zone structure for the energy of electron states in a crystal lattice, the zone
structure in this process holds for the conserved quantity pη, as the energy
could not be quantum characteristic of the state in the nonstationary field of
the wave.

First we will solve the Klein–Gordon equation for a scalar particle (3.30)
in the given coherent radiation field in a medium (3.45) or the equivalent one-
dimensional equation of the Schrödinger type (3.36) in the wave coordinate
τ .

Within Eq. (3.30) the state parameter pη can be expressed by the initial
parameters of a free particle:

4n2
0p

2
η − (n2

0 − 1)(p2
⊥0c

2 +m2c4) = E2
0

(
1 − n0

v0

c
cosϑ

)2

and for the circular polarization of the wave (3.45), Eq. (3.36) may be repre-
sented in the form

d2U(τ)
dτ2 +

E2
0

�2(n2
0 − 1)2

[(
1 − n

v0

c
cosϑ

)2
+ 2(n2

0 − 1)
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×
(
mc2

E0

)2
p0

mc
ξ0 sinϑ cosωτ − (n2

0 − 1)
(
mc2

E0

)2

ξ20

]
U(τ) = 0. (3.58)

(E0, p0, v0 are the initial values of energy, momentum, and velocity of a free
particle, ϑ is the angle between the initial momentum of a particle and the
wave vector of the wave; due to the azimuthal symmetry in the direction of
the wave propagation OX, without loss of generality, the initial momentum
of the particle is chosen in the plane XZ.)

According to Floquet’s theorem the solution of Eq.(3.58) is sought in the
form

U(τ) = ei pτ
�

τ
∞∑

s=−∞
Φse

−isω0τ , (3.59)

where

p2
τ ≡ E2

0

(n2
0 − 1)2

[(
1 − n0

v0

c
cosϑ

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ20

]
(3.60)

is the major quantity in the induced nonlinear Cherenkov process, which is the
renormalized (because of intensity effect) generalized momentum of the par-
ticle in the laboratory frame conjugate to wave coordinate τ . It connects the
“width of initial Cherenkov resonance” 1− n0v0/c and wave intensity (ξ20) as
the main relation between the physical quantities of this process determining
also the condition of nonlinear resonance (see Chapter 2; vx(ξ) |ξ=ξcr= c/n0).
In the intrinsic frame of reference of the wave pτ corresponds to longitudinal
momentum px of the particle on which the degeneration exists.

From Eqs. (3.58) and (3.59) for the coefficients Φs we obtain the recurrent
equation

(s2�
2ω2

0 − 2s�ω0pτ )Φs =
mc3p0ξ0 sinϑ

(n2
0 − 1)

[Φs−1 + Φs+1] , (3.61)

which can be solved in approximation of the perturbation theory by the wave
function:

|Φ1| << |Φ0| , |Φ2| << |Φ1| , . . . . (3.62)

Then from Eq. (3.61) we find the amplitudes of the particle wave function,
corresponding to an s photon process. But for condition (3.62) to hold, it is
necessary that

∣∣s2�
2ω2

0 − 2s�ω0pτ

∣∣ >> ∣∣∣∣ mc3

(n2
0 − 1)

p0ξ0 sinϑ
∣∣∣∣ . (3.63)
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Regarding those values pτ for which condition (3.63) does not hold, the
usual perturbation theory is already not applicable. In particular, if the ex-
pression on the left-hand side of this condition is zero, i.e., at s = 0 and s = �
(� = 1, 2, 3, ... ), when

2
pτ

�
= �ω0, (3.64)

from Eqs. (3.58) and (3.59) it is evident that we already have two states
Φ0 and Φ�, which are degenerated in the “longitudinal momentum” pτ , since
p2

τ = (pτ −��ω0)2. Because of this double degeneration in the state parameter
pτ for the definite pη of the initial unperturbed system it is necessary to use
perturbation theory for the degenerated states on the basis of the secular
equation.

Thus, under condition (3.64), Eq.(3.58) within perturbation theory should
be solved on the basis of the secular equation, according to which we search
the solution in the form

U(τ) = ei pτ
�

τ
(
Φ0 + Φ�e

−i�ω0τ
)

= Φ0e
i

�ω0
2 τ + Φ�e

−i
�ω0
2 τ (3.65)

and the conserved quantity pη = p
(0)
η + p

(1)
η , where p(0)

η is the value corre-
sponding to the Bragg resonance condition (3.64).

In the case of one-photon interaction (� = 1), substituting Eq. (3.65) in
Eq. (3.58), we obtain

∆τΦ0e
i

ω0
2 τ +∆τΦ1e

−i
ω0
2 τ + 2α1Φ0e

i
ω0
2 τ cosω0τ

+2α1Φ1e
−i

ω0
2 τ cosω0τ = 0, (3.66)

where ∆τ is the correction to the value p2
τ at the fulfillment of condition

(3.64) for � = 1:

∆τ ≡ 8n2
0p

(0)
η

(n2
0 − 1)2

p(1)
η ; α1 ≡ mc3p0ξ0 sinϑ

(n2
0 − 1)

. (3.67)

By the standard method from Eq.(3.67) one can obtain the following set of
equations for the amplitudes Φ0 and Φ1:⎧⎨⎩∆τΦ0 + α1Φ1 = 0,

∆τΦ1 + α1Φ0 = 0.
(3.68)

From the compatibility of Eqs. (3.68) we have ∆τ = ±α1. The signs “+” and
“−” relate to p2

τ > �
2ω2

0/4 and 0 < p2
τ < �

2ω2
0/4, respectively. Thus, at the
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fulfillment of condition (3.64) we have a jump in the value of p2
τ , which is

equal to 2α1, i.e.,

E2
0

(n2
0 − 1)2

{(
1 − n0

v0

c
cosϑ

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ20

}
≥ �

2ω2
0

4
+ α1,

0 ≤ E2
0

(n2
0 − 1)2

{(
1 − n0

v0

c
cosϑ

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ20

}

≤ �
2ω2

0

4
− α1. (3.69)

For � = 1 the matrix element of transition from state Φ0 to state Φ1 (here
we note the state without a phase) is equal to α1, which is also evident from
Eq. (3.68). For large � (� ≥ 2) the matrix element of transition Φ0 ←→ Φ� is
equal to zero in the first order of perturbation theory. In this case it makes
sense to take into account the transitions to the states with other energies in
higher order. For example, for � = 2 it is necessary to consider the transitions
Φ0 → Φ1 and Φ0 → Φ2. For arbitrary � the matrix element of transition is
defined by

α� =
α�

1

((�− 1)!)2 (�ω0)
2(�−1) . (3.70)

It should be noted that here it is also necessary to take into account the
corrections to the energy eigenvalue of state Φ0 in the appropriate order,
however, the latter are only of quantitative character, unlike the qualitative
corrections (3.70), and will be omitted.

As is seen from Eq. (3.69), the permitted and forbidden zones arise for
the particle states in the wave. The widths of permitted zones in the general
case of �-photon resonance are defined from the condition

�2�
2ω2

0

4
+ α� ≤ E2

0

(n2
0 − 1)2

{(
1 − n0

v0

c
cosϑ

)2
− (n2

0 − 1)
(
mc2

E0

)2

ξ20

}

≤ (�+ 1)2�
2ω2

0

4
− α�+1. (3.71)

Such zone structure for the particle states in the wave arises in dielectriclike
media because of particle capture by the wave and periodic character of the
field — quantum influence of infinite “potential” wells on the particle states
similar to zone structure of electron states in a crystal lattice.
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To investigate the particle wave functions on the edges of the forbidden
zones we turn to the set of equations (3.68). The latter has two solutions
and, hence, from Eq. (3.65) we obtain two wave functions corresponding to
the top and bottom borders of the forbidden zone (3.71). Thus, for ∆τ = α1
we obtain

U+(τ) = 2iΦ0 sin
ω0

2
τ, (3.72)

and at ∆τ = −α1

U−(τ) = 2Φ0 cos
ω0

2
τ. (3.73)

With the help of Eqs. (3.72) and (3.73) the particle wave function is deter-
mined by

Ψ±(r, t) = U± (τ) exp
[
i

�
p⊥0r +

i

�
pηη +

i

�

n2
0 + 1
n2

0 − 1
pητ

]
. (3.74)

The condition at which secular perturbation theory is valid taking into
account the above-stated degeneration, is α1 << �

2ω2
0/4, or

4mc3p0ξ0 sinϑ
�2ω2

0(n2
0 − 1)

<< 1. (3.75)

Thus, it can be concluded that in the induced Cherenkov process there
exists zone structure for the quantum parameters pη, p⊥0 (or quantity pτ

(3.60) corresponding to multiphoton “Bragg resonance” (3.64)) of the particle
state in the wave. The permitted zones for this quantity are determined by
condition (3.71).

Consider now the case of spinor particles. Proceeding from the Dirac
equation, the wave function of a particle can be presented in the form

Ψ =
1

mc2

[
i�β̂

∂

∂t
− cβ̂α̂(p̂ − e

c
A) +mc2

]⎛⎝ Uσ

−Uσ

⎞⎠

× exp
[
i

�
p⊥0r +

i

�
pηη +

i

�

n2
0 + 1
n2

0 − 1
pητ

]
, (3.76)

where α̂, β̂ are the Dirac matrices (3.2) in the standard representation. The
spinor function Uσ satisfies the equation

d2Uσ (τ)
dτ2 +

1
�2(n2

0 − 1)2

[
4n2

0p
2
η − (n2

0 − 1)c2
(
p⊥0 − e

c
A(τ)

)2
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−(n2
0 − 1)m2c4 + (n2

0 − 1)�ecσ(H + iE)
]
Uσ (τ) = 0, (3.77)

where E = −∂A/c∂t and H = rotA are the electric and magnetic field
strengths of the wave. In the case of a linearly polarized wave (Eq.(3.45) at
Az = 0), with the help of a unitarian transformation of spinor wave function
it is possible to obtain a system of two independent equations of second order
for the components of new spinor function from Eq.(3.77). For the other po-
larizations of the wave, in particular, circular polarization, the components
of spinor function are not separated and Eq.(3.77) is equivalent to a differ-
ential equation of fourth order (it is related to the absence of a definite field
direction, for which the spin projection could have a definite value, as occurs
for linear polarization). The above stated spinor transformation, in the case
of a linearly polarized wave, is

Uσ (τ) =
(

cosh
δ

2
− σx sinh

δ

2

)⎛⎝V1 (τ)

V2 (τ)

⎞⎠ ; tanh δ =
E

H
=

1
n0
, (3.78)

which represents the transformation of the spinor in four-dimensional space
(r,t ) at a rotation by angle δ. The latter has a simple physical interpretation.
It corresponds to the Lorentz transformation in a system of reference moving
with a velocity V = c/n0, where the wave electric field E

′
= 0 and there

is only a static magnetic field H
′
, directed along the axis Z and the spin

projection on it has a definite value, since in the chosen representation the
matrix σz is diagonal.

Thus, after the transformation (3.78), Eq. (3.77) will be transformed into
the following independent equations for the spinor components V1, V2:

d2V1 (τ)
dτ2 +

1
�2(n2

0 − 1)2

{
4n2

0p
2
η − (n2

0 − 1)c2
(
p⊥0 − e

c
A(τ)

)2

−(n2
0 − 1)m2c4

}
V1 (τ) +

ecH

�n0
√
n2

0 − 1
V1 (τ) = 0, (3.79)

d2V2 (τ)
dτ2 +

1
�2(n2

0 − 1)2

{
4n2

0p
2
η − (n2

0 − 1)c2
(
p⊥0 − e

c
A(τ)

)2

−(n2
0 − 1)m2c4

}
V2 (τ) − ecH

�n0
√
n2

0 − 1
V2 (τ) = 0. (3.80)

The solution of Eq. (3.79) (or (3.80)) is sought in the form
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V1(τ) = ei pτ
�

τ
∞∑

s=−∞
Kse

−isω0τ , (3.81)

where

pτ ≡ E0

(n2
0 − 1)

[(
1 − n0

v0

c
cosϑ

)2
− 1

2
(n2

0 − 1)
(
mc2

E0

)2

ξ20

] 1
2

is the particle “longitudinal momentum” in the wave of linear polarization.
Repeating the procedure as in the case of scalar particles, we obtain the

Bragg condition (3.64), at which it is necessary to use the secular perturbation
theory for degenerated states. At � = 1 we obtain the following system of
equations for coefficients K0 and K1:⎧⎨⎩∆τK0 +

(−iα1 + 1
2µ
)
K1 = 0,(

iα1 + 1
2µ
)
K0 +∆τK1 = 0,

(3.82)

where

µ =
�ecH

n0
√
n2

0 − 1
. (3.83)

From Eq. (3.82) for the correction to p2
τ we obtain

∆τ = ±
(

1
4
µ2 + α2

1

) 1
2

. (3.84)

It is easy to see that K1 = ∓K0e
iϕ, where tgϕ = 2α1/µ. Hence, each spinor

component of particle wave function has two values corresponding to the top
and bottom borders of the first forbidden zone:

V +
1 (τ) = K0

(
ei

ω0
2 τ − e−i

ω0
2 τ+iϕ

)
,

V −
1 (τ) = K0

(
ei

ω0
2 τ + e−i

ω0
2 τ+iϕ

)
. (3.85)

For V2 (τ) we have the same expressions as (3.85), where it is only necessary
to replace ϕ by −ϕ.

At � = 2 we have already two channels for the transition from state K0
to state K2. The first is the result of the interaction described by a term
quadratic in the field (∼ A2), the matrix element of which at � = 2 is equal
to
(
mc2
)2
ξ20/4�

2(n2
0 − 1), and the second channel proceeds both in the case
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of scalar particles via transitions K0 → K1 and K0 → K2 , stipulated by
the charge interaction ∼ pA, as well as for the spin interaction, the matrix
elements of which at each transition are equal to −iα1 and µ/2, respectively.
Therefore, for two-photon transition

∆τ = ± 1
�2ω2

0

[(
1
4
µ2 − α2

1 +
�

2ω2
0(mc2)2ξ20

4(n2
0 − 1)

)2

+ α2
1µ

2

] 1
2

(3.86)

and on the borders of the second forbidden zone for the component of spinor
function V we obtain (for top and bottom borders accordingly)

V +
1,2 = K0

(
eiω0τ − eiω0τ±iϕ

)
; V −

1,2 = K0
(
eiω0τ + e−iω0τ±iϕ

)
, (3.87)

where

tgϕ =
α1µ

1
4µ

2 − α2
1 + �2ω2

0(mc2)2ξ2
0

4(n2
0−1)

. (3.88)

The obtained results for spinor particles are valid at the fulfillment of the
condition

|∆τ | << �
2ω2

4
. (3.89)

Thus, the quantum picture of induced Cherenkov interaction for charged
spinor particles does not differ qualitatively from the case of scalar particles,
i.e., the spin interaction results only in quantitative corrections to the quan-
tities describing the process. However, in the absence of charge interaction
(pA = 0) in the first order in the field, i.e., for one-photon interaction, the
first forbidden zone (� = 1) does not exist for scalar particles, but exists for
spinor particles due to the spin interaction.

3.5 Inelastic Diffraction Scattering on a Traveling Wave

Up to now we have considered the nonlinear phenomena in induced Cherenkov
process at the external wave intensities exceeding the critical one — the
threshold value of nonlinear Cherenkov resonance in the strong EM radi-
ation field. However, purely quantum effects at the wave intensities under
the critical value in induced Cherenkov process exist. Those are the inelastic
diffraction scattering of charged particles on a traveling wave in dielectriclike
media and quantum modulation of particle beams at the wave fundamental
frequency and its harmonics. This and the next section of the present chapter
will consider these effects.

Consider first the diffraction of particles on the phase lattice of a slowed
traveling wave in a dielectriclike medium. Neglecting the spin interaction, the
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Dirac equation in quadratic form is written as the Klein–Gordon equation
for the particle in the field of a plane EM wave with vector potential A(τ) :

−�
2 ∂

2Ψ

∂t2
=
{−�

2c2�2 +m2c4 + 2ie�cA(τ)� + e2A2 (τ)
}
Ψ. (3.90)

Equation (3.90) will be solved in the eikonal approximation by particle wave
function

Ψ (r, t) =
√

N0

2E0
f(x, t) exp

[
i

�
(p0r−E0t)

]
, (3.91)

according to which f(x, t) is a slowly varying function with respect to free–
particle wave function (the latter is normalized on N0 particles per unit vol-
ume): ∣∣∣∣∂f∂t

∣∣∣∣ << E0

�
|f | ;

∣∣∣∣∂f∂x
∣∣∣∣ << p0x

�
|f | . (3.92)

Choosing a concrete polarization of the wave (assume a linear one along
the axis OY ) and taking into account Eq. (3.90) for f(x, t) we will have a
differential equation of the first order:

∂f

∂t
+ v0 cosϑ0

∂f

∂x

=
i

2�E0

[
2ecp0 sinϑ0 ·A0(τ) cosω0τ − e2A2

0(τ) cos2 ω0τ
]
f(x, t), (3.93)

where A0(τ) is a slowly varying amplitude of the vector potential of quasi-
monochromatic wave and ϑ0 is the angle between the particle velocity and
wave propagation direction. As ξmax < ξcr << 1, then for actual values of
parameters p0 sinϑ0/mc >> ξmax and the last term ∼ A2

0 in Eq. (3.93) will
be neglected. Changing to characteristic coordinates τ ′ = t−x/v0 cosϑ0 and
η′ = t, it will be obvious that at the fulfillment of the induced Cherenkov
condition v0 cosϑ0 = c/n0 the traveling wave in this frame of coordinates
becomes a diffraction lattice over the coordinate τ ′ and for the scattered
amplitude of the particle wave function from Eq. (3.93) we have

f(τ ′) = exp
{
iecp0 sinϑ0

�E0
cosω0τ

′
∫ η2

η1

A(η′)dη′
}
, (3.94)

where η1 and η2 are the moments of the particle entrance into the wave
and exit, respectively. If one returns to coordinates x and t and expands the
exponential (3.94) into a series by Bessel functions for the total wave function
(3.91) we will have
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Ψ (r, t) =
√

N0

2E0
exp
(
i

�
yp0 sinϑ0

)

×
+∞∑

s=−∞
isJs(α) exp

(
i

�

[
p0 cosϑ0 − sn0�ω0

c

]
x− i

�
[E0 − s�ω0] t

)
, (3.95)

where the argument of the Bessel function

α =
ev0 sinϑ0

�ω0

∫ t2

t1

E(η′)dη′, (3.96)

and E is the amplitude of the wave electric field strength. The wave func-
tion (3.95) describes inelastic diffraction scattering of the particles on the
slowed traveling wave in a dielectriclike medium. The particles’ energy and
momentum after the scattering are

E = E0−s�ω0; px = p0 cosϑ0− sn0�ω0

c
; py = const; s = 0,±1, . . . . (3.97)

The probability of this process

Ws = J2
s

[
ec2p0 sinϑ0

�ω0E0

∫ t2

t1

E(η′)dη′
]
. (3.98)

The condition of the applied eikonal approximation (3.92) with Eq. (3.94)
is equivalent to the conditions |px−p0x| << p0x and |E − E0| << E0, which
with Eq. (3.97) gives: |s|n0�ω0/c << p0.

In the case of a monochromatic wave from Eq. (3.98) we have

Ws = J2
s

(
ξ
mc2

�

cp0 sinϑ0

E0
t0

)
, (3.99)

where t0 = t2 − t1 is the duration of the particle motion in the wave.
As is seen from Eq. (3.99) for the actual values of the parameters α >> 1,

that is, the process is essentially multiphoton. The most probable number of
absorbed/emitted Cherenkov photons is

s 
 ξ
mc2

�

v0

c
sinϑ0 · t0. (3.100)

The energetic width of the main diffraction maximums Γ (s) 
 s1/3
�ω0 and

since s >> 1 then Γ (s) << |E − E0|.
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The scattering angles of the s-photon Cherenkov diffraction are deter-
mined by Eq. (3.97):

tanϑs =
sn0�ω0 sinϑ0

cp0 + sn0�ω0 cosϑ0
. (3.101)

From Eq. (3.101) it follows that at the inelastic diffraction there is an asym-
metry in the angular distribution of the scattered particle: |ϑ−s| > ϑs, i.e.,
the main diffraction maximums are situated at different angles with respect
to the direction of particle initial motion. However, in accordance with the
condition |s|n0�ω0/c << p0 of the eikonal approximation this asymmetry is
negligibly small and for the scattering angles of the main diffraction max-
imums from Eq. (3.101) we have ϑ−s 
 −ϑs. Hence, the main diffraction
maximums will be situated at the angles

ϑ±s = ±sn0�ω0

cp0
sinϑ0 (3.102)

with respect to the direction of the particle initial motion.

3.6 Quantum Modulation of Charged Particles

Coherent interaction of charged particles with a plane EM wave of inten-
sity smaller than the critical one in the induced Cherenkov process leads to
quantum modulation of the particles’ probability density and, consequently,
current density after the interaction at the wave fundamental frequency and
its harmonics. In contrast to classical modulation of particles’ current den-
sity proceeding in the free drift region after the interaction and conserving
for short distances, the quantum modulation, being quantum feature of a sin-
gle particle, is conserved after the interaction unlimitedly long. To reveal this
quantum coherent effect it is necessary to take into account the quantum char-
acter of particle–wave interaction entirely in contrast to the above-developed
eikonal approximation for particle wave function. The mathematical point of
view requires taking into account in Eq. (3.90) the second-order derivatives
of the wave function as well, which have been neglected in the description of
the diffraction effect.

To describe the effect of particle quantum modulation with regard to
the wave harmonics we will solve Eq. (3.90) by perturbation theory in the
field of monochromatic wave (A(τ) = {0, A0 cosω0τ, A0 sinω0τ}) of intensity
ξ0 < ξcr << 1 at which one can neglect again the constant term ∼ A2

0. Then
we look for the solution of Eq. (3.90) in the form

Ψ(r, t) =
√

N0

2E0
exp
[
i

�
(p0xx− E0t) +

i

�
p0yy

]
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+∞∑
s=−∞

Ψs exp
[
isω0

(
t− n0

x

c

)]
, (3.103)

where N0 = const is the density of initially uniform particle beam. Substi-
tuting Eq. (3.103) into Eq. (3.90) we obtain the recurrent equation[(

n2
0 − 1

)
�

2s2ω2
0 + 2E0s�ω0

(
1 − n0

v0x

c

)]
Ψs

= ecp0yA0 [Ψs−1 + Ψs+1] , (3.104)

which will be solved in the approximation of perturbation theory by wave
function:

|Ψ±1| << |Ψ0| ; |Ψ±2| << |Ψ±1| , . . . .

Thus, for the amplitude of the particle wave function corresponding to s-
photon induced radiation (s > 0) we obtain

Ψs =
1
s!

bs

(µ+ ��) (µ+ 2��) · · · (µ+ s�)
, (3.105)

and for s-photon absorption

Ψ−s =
(−1)s

s!
bs

(µ− ��) (µ− 2��) · · · (µ− s�)
. (3.106)

Here the dimensionless parameter of one-photon interaction

b =
1
2
eA0

�ω0

v0

c
sinϑ0 (3.107)

is the small parameter of perturbation theory: |b| << 1 and

µ = 1 − n0
v0

c
cosϑ0; �� =

(
n2

0 − 1
) �ω0

2E0
(3.108)

are the dimensionless Cherenkov resonance width and quantum recoil pa-
rameter, respectively. Hence, for total wave function of the particle after the
interaction we have

Ψ(r, t) =
√

N0

2E0

{
1 +

∞∑
s=1

bs

s!

[
eisω0(t−n0x/c)

(µ+∆�) (µ+ 2��) · · · (µ+ s∆�)
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+(−1)s e−isω0(t−n0x/c)

(µ−∆�) (µ− 2��) · · · (µ− s∆�)

]}
e

i
�
(p0r−E0t). (3.109)

The current density of the particles after the interaction corresponding to
obtained wave function will be expressed by

j(t, x) = j0

{
1 + 2

∞∑
s=1

bs

s!

[
1

(µ+∆�) · · · (µ+ s∆�)

+
(−1)s

(µ−∆�) · · · (µ− s∆�)

]
cos sω0 (t− n0x/c)

+2
∞∑

s=1

∞∑
s′=1

(−1)s′ bs+s′

s!s′!
cos [(s+ s′)ω0 (t− n0x/c)]

× 1
(µ+∆�) · · · (µ+ s∆�) · (µ−∆�) · · · (µ− s′∆�)

}
, (3.110)

where j0 = const is the current density of initially uniform particle beam. As
is seen from Eq. (3.110) as a result of direct and inverse induced Cherenkov
effect the current density of initially uniform particle beam is modulated
at the wave fundamental frequency and its harmonics. This is a result of
coherent superposition of particle states with various energy and momentum
due to absorbed and emitted photons in the radiation field that remains after
the interaction unlimitedly long (for a monochromatic beam).

We present in explicit form the expression of modulated current density
for the first three harmonics

j(t, x) = j0

[
1 −B cosω0 (t− n0x/c) +

3
4
B2 µ

2 −∆2
�

µ2 − 4∆2
�

cos 2ω0 (t− n0x/c)

−5
8
B3

(
µ2 −∆2

�

)2
(µ2 − 4∆2

�
) (µ2 − 9∆2

�
)

cos 3ω0 (t− n0x/c) + · · · , (3.111)

where the modulation depth at the fundamental frequency of stimulating
wave

B =
eA

E0

v0
c (n2

0 − 1) sinϑ0(
1 − n0

v0
c cosϑ0

)2 − (n2
0 − 1)�2ω2

0
4E2

0

. (3.112)

The denominators in Eqs. (3.110)-(3.112) becomes zero at the fulfillment
of exact quantum conservation law for multiphoton Cherenkov process (3.21).
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In this case perturbation theory is not applicable and the consideration in
the scope of above-developed secular perturbation is required. However, in
actual cases because of nonmonochromaticity of particle beams the width of
Cherenkov resonance is rather larger than quantum recoil (∆� << µ) and
one can neglect the latter in Eqs. (3.111)–(3.112). Then the modulation depth
at the wave fundamental frequency (3.112) is expressed via critical intensity
(2.16):

B =
1
2

ξ

ξcr(ϑ)
(3.113)

and the current density of modulated beam (3.111) will be represented by
the parameter of critical field

j(t, x) = j0

[
1 − 1

2
ξ

ξcr(ϑ)
cosω0 (t− n0x/c) +

3
16

(
ξ

ξcr(ϑ)

)2

× cos 2ω0 (t− n0x/c) − 5
64

(
ξ

ξcr(ϑ)

)3

cos 3ω0 (t− n0x/c) + · · ·
]
. (3.114)

The equation for particle modulation being expressed in this form shows that
the effect of quantum modulation at the stimulating wave harmonics proceeds
at intensities smaller than the critical one when the induced Cherenkov in-
teraction of the particles with the periodic wave field (photons) occurs. In
the opposite case the interaction proceeds with the potential barrier, i.e.,
the particle does not “feel” photons (periodic wave field). Note that in the
last case the above-considered quantum modulation of the particles due to
“reflection” phenomenon (see Section 3.2) occurs at the frequency (actually
X-ray) corresponding to particles’ energy exchange as a result of the interac-
tion with the moving barrier. It is clear that a modulated particle beam is a
coherent source of EM radiation.
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H.K. Avetissian, Phys. Lett. A 58, 144 (1976)
H.K. Avetissian, Phys. Lett. A 63, 7 (1977)



110 3 Quantum Theory of Induced Multiphoton Cherenkov Process

C. Cronstrom, M. Noga, Phys. Lett. A 60, 137 (1977)
H.K. Avetissian, Phys. Lett. A 63, 9 (1977)
H.K. Avetissian et al., Phys. Lett. A 244, 25 (1998)
H.K. Avetissian et al., Phys. Lett. A 246, 16 (1998)
H.K. Avetissian, A. Kh.Bagdasarian, G.F.Mkrtchian, Zh. Éksp. Teor. Fiz.
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4 Cyclotron Resonance at the Particle–Strong
Wave Interaction

In this chapter we will consider a charged particle interaction with a strong
EM wave in the presence of a uniform magnetic field along the wave propaga-
tion direction when the resonant effect of the wave on the particle rotational
motion in the static magnetic field is possible.

In vacuum, as a result of the interaction of a charged particle with a
monochromatic EM wave and uniform magnetic field the resonance created at
the initial moment for the free-particle velocity automatically holds throughout
the interaction process due to the equal Doppler shifts of the Larmor and wave
frequencies in the field. This phenomenon is known as “Autoresonance”. This
property of cyclotron resonance in vacuum makes possible the creation of a
generator of coherent radioemission by an electron beam, namely, a cyclotron
resonance maser (CRM).

From the point of view of quantum theory the relativistic nonequidistant
Landau levels of the particle in the wave field become equidistant in the au-
toresonance due to the quantum recoil at the absorption/emission of photons
by the particle. In addition, the dynamic Stark effect of the wave electric field
on the transversal bound states of the particle does not violate the equidis-
tance of Landau levels in the autoresonance. Then the inverse process, that
is, multiphoton resonant excitation of Landau levels by strong EM wave and,
consequently, the particle acceleration in vacuum due to cyclotron resonance,
in principle, is possible.

In a medium with arbitrary refractive properties (dielectric or plasma)
because of the different Doppler shifts of the Larmor and wave frequencies in
the interaction process the autoresonance is violated. However, the threshold
(by the wave intensity) phenomenon of electron hysteresis in a medium due
to the nonlinear cyclotron resonance in the field of strong monochromatic
EM wave takes place. In contrast to autoresonance, the nonlinear cyclotron
resonance in a medium proceeds with a large enough resonant width. This
so-called phenomenon of electron hysteresis leads to significant acceleration
of particles, especially in the plasmalike media where the superstrong laser
fields of relativistic intensities can be applied.

The use of dielectriclike (gaseous) media makes it possible to realize cy-
clotron resonance in the optical domain (with laser radiation) due to an ar-
bitrarily small Doppler shift of a wave frequency close to the Cherenkov cone,
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in contrast to the vacuum case where the cyclotron resonance for the existing
maximal powerful static magnetic fields is possible only in the radio-frequency
domain.

4.1 Autoresonance in the Uniform Magnetic Field in
Vacuum

Let a charged particle move in the field of a plane EM wave in the presence
of a homogeneous static magnetic field directed along the wave propagation
direction ν0 = {1, 0, 0}:

H0 = ν0H0. (4.1)

Relativistic classical equation of motion of the particle in the fields (1.1),
(4.1) will be written in the form

dp
dt

= eE (τ) +
e

c
[vH (τ)] +

eH0

c
[vν0] . (4.2)

For the integration of the equation of motion (4.2) the latter should be written
in components:

ν0
dp
dt

=
e

c
(vE (τ) ), (4.3)

dp⊥
dt

= e
(
1 − vν0

c

)
E (τ) +

eH0

c
[v⊥ν0] , (4.4)

where p⊥ = {0, py, pz} and v⊥ = {0, vy, vz} are the transversal momentum
and velocity of the particle in the field.

As we see from Eq. (4.3) the existence of the uniform magnetic field (4.1)
does not change the equation for the longitudinal momentum of the particle
in the field of a plane EM wave (1.3), nor does the equation for particle
energy (1.9) change. Hence, in the considered process the integral of motion
Λ = E −cpν0 for a charged particle in the field of a plane EM wave in vacuum
(1.10) survives.

For integration of the equation for particle transversal momentum (4.4)
we pass from the variable t to wave coordinate τ = t− ν0r/c. Then Eq. (4.4)
becomes

dp⊥
dτ

+
Ω

1 − vν0
c

[ν0p⊥] = eE (τ) , (4.5)

where

Ω =
ecH0

E (4.6)
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is the Larmor frequency for a relativistic particle in the uniform magnetic
field.

From the integral of motion Λ = E − cpν0 follows the conservation of the
quantity in Eq. (4.5)

Ω

1 − vν0
c

= const ≡ Ω′. (4.7)

The set of equations (4.5) for the transversal components of the particle
momentum {py, pz} is equivalent to the equation

dp̃

dτ
+ iΩ′p̃ = eẼ (τ) . (4.8)

Here we have introduced the complex quantities related to particle momen-
tum and EM field:

p̃ (τ) = py (τ) + ipz (τ) , (4.9)

Ẽ (τ) = Ey (τ) + iEz (τ) . (4.10)

The solution of Eq. (4.8) will be

p̃ = p̃0e
−iΩ′(τ−τ0) + e

τ∫
τ0

Ẽ (τ ′) e−iΩ′(τ−τ ′)dτ ′, (4.11)

where p̃0 = p0y + ip0z is defined according to initial condition

p̃ |τ=τ0= p̃0. (4.12)

Separating the real and imagenary parts of the solution (4.11) we obtain the
transversal momentum of the particle:

py = p0y cosΩ′ (τ − τ0) + p0z sinΩ′ (τ − τ0)

+e

τ∫
τ0

[Ey (τ ′) cosΩ′ (τ − τ ′) + Ez (τ ′) sinΩ′ (τ − τ ′)] dτ ′, (4.13)

pz = p0z cosΩ′ (τ − τ0) − p0y sinΩ′ (τ − τ0)

+e

τ∫
τ0

[Ez (τ ′) cosΩ′ (τ − τ ′) − Ey (τ ′) sinΩ′ (τ − τ ′)] dτ ′. (4.14)
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Now we can define the particle longitudinal momentum (px) and energy
with the help of Eq. (4.11) utilizing the dispersion law of the particle energy-
momentum and the integral of motion Λ. We obtain the following equations
in the field of a plane EM wave of arbitrary form and polarization:

px = p0x + c
|p̃|2 − |p̃0|2

2Λ
, (4.15)

E = E0 + c2
|p̃|2 − |p̃0|2

2Λ
, (4.16)

where p0x and E0 are the initial longitudinal momentum and energy of the
free particle.

Let us consider the case of a monochromatic wave (1.20) of circular po-
larization (right- or left-hand) and when the initial velocity of the particle is
parallel to the wave propagation direction. For the field (1.20), when g = ±1
we have

Ẽ (τ) = −igE0e
igω0τ . (4.17)

Substituting Eq. (4.17) into Eq. (4.11) and assuming an arbitrarily small
damping for the amplitude E0 to switch on adiabatically the wave at τ0 =
−∞, we obtain

p̃ =
−geE0

Ω′ + gω0
eigω0τ (4.18)

and by the components

py =
−geE0

Ω′ + gω0
cosω0τ, (4.19)

pz =
−eE0

Ω′ + gω0
sinω0τ. (4.20)

As we see, for the left-hand circular polarization when g = −1 in Eqs. (4.19)
and (4.20) a resonant effect of the wave on the particle motion is possible
when Ω′ = ω0, or taking into account Eq. (4.7):

Ω

1 − vν0
c

= ω0. (4.21)

Condition (4.21) performs the equality of the Larmor and Doppler-shifted
wave frequency ω

′
:
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Ω = ω′; ω′ = ω0

(
1 − vν0

c

)
. (4.22)

The latter means that the particle and the wave electric field rotate in the
same direction with the same frequency and as a result coherent energy ex-
change between the particle and the wave takes place. In addition, the energy
exchange does not violate the resonance condition as the ratio of the Doppler-
shifted wave frequency to the Larmor frequency of the particle is conserved:

ω
′

Ω
=

ω0Λ

ecH0
= const (4.23)

and the resonance created at the initial moment automatically holds through-
out the interaction. This is the phenomenon referred to as “Autoresonance”.

According to Eqs. (4.15) and (4.16) the longitudinal momentum and en-
ergy of the particle in this case are given by

px = p0x +
m2c3

2Λ
ξ20(

1 − Ω
ω′
)2 , (4.24)

E = E0 +
m2c4

2Λ
ξ20(

1 − Ω
ω′
)2 . (4.25)

By analogy of the renormalization of the particle mass in the field of a plane
EM wave for these values of energy and momentum (the average transversal
momentum p⊥ = 0 in accordance with Eqs. (4.19) and (4.20)) one can in-
troduce the “effective mass” of the particle due to the intensity and resonant
effects of the strong wave:

m∗ = m

√
1 +

ξ20(
1 − Ω

ω′
)2 . (4.26)

The comparison of Eq. (4.26) with the analogous formula (1.18) in the absence
of a static magnetic field shows that instead of the parameter of nonlinear-
ity ξ20 in the strong wave field the effective nonlinearity in this process is
determined by the resonant parameter ξ20/

(
1 − Ω

ω′
)2
>> ξ20 .

At the exact resonance the solutions (4.19), (4.20) are not applicable. In
this case taking into account the resonance condition before the integration
in Eq. (4.11) we have

py = eE0τ sinω0τ, (4.27)

pz = eE0τ cosω0τ (4.28)
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and for the particle longitudinal momentum and energy we obtain

px = p0x +
e2E2

0c

2Λ
τ2, (4.29)

E = E0 +
e2E2

0c
2

2Λ
τ2. (4.30)

It is seen that at the resonance the energy of the particle monotonically
increases.

Then, taking into account Eq.(1.15) for the law of the particle motion in
the parametric form r = r(τ) we obtain

y(τ)=
c2eE0

Λω2
0

(sinω0τ − ω0τ cosω0τ) , (4.31)

z(τ)=
c2eE0

Λω2
0

(cosω0τ + ω0τ sinω0τ) , (4.32)

y2(τ) + z2(τ) =
(
c2eE0

Λω2
0

)2 (
1 + ω2

0τ
2) , (4.33)

x(τ) =
c2

Λ
p0xτ +

e2E2
0c

3τ3

6Λ2 . (4.34)

Fig. 4.1. Trajectory of the particle (initially at rest) in the field of circularly
polarized EM wave and uniform magnetic field at the cyclotron resonance. The
relativistic parameter of intensity is taken to be ξ0 = 1.
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Equations (4.31)–(4.34) show that the particle performs helical-like motion
(see Fig. 4.1) with increasing radius (in the plane of the wave polarization)
and increasing step along the wave propagation direction.

4.2 Exact Solution of the Dirac Equation for Cyclotron
Resonance

The quantum description of the dynamics of cyclotron resonance in vacuum
in the scope of relativistic theory requires solution of the Dirac equation. The
configuration of EM fields when a uniform magnetic field is directed along
the axis of propagation of a transverse EM wave is one of those specific cases
for which exact solution of the Dirac equation in vacuum has succeeded.
The latter has the basic role for quantum description of diverse nonlinear
electromagnetic processes in superstrong laser and magnetic fields.

Let a charged particle move in the field of a plane EM wave and uniform
magnetic field along the wave propagation direction (OX axis). The vector
potential of this configuration of EM fields can be represented in the form

A (r, t) = AH (y) + Aw (τ) , (4.35)

where

AH (y) = (0, 0, yH0) (4.36)

is the vector potential of uniform magnetic field with the strength H0 (4.1)
and

Aw (τ) =
{

0, Ay

(
t− x

c

)
, Az

(
t− x

c

)}
(4.37)

is the vector potential of a plane transverse EM wave (1.1). The Dirac equa-
tion in the field (4.35) is written as

i�
∂Ψ

∂t
=
{
cα
(
−i�� − e

c
AH (y) − e

c
Aw (τ)

)
+βmc2

}
Ψ. (4.38)

Here α, β are the Dirac matrices in the standard representation (3.2). As
the magnetic field is directed along the X axis for the Pauli matrices we will
assume the σx to be diagonal:

σx =
(

1 0
0 −1

)
, σy =

(
0 1
1 0

)
, σz =

(
0 −i
i 0

)
. (4.39)

Looking for the solution of Eq. (4.38) in the form
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Ψ =
1√
2

⎛⎝ϕ+ χ

ϕ− χ

⎞⎠ (4.40)

and eliminating the spinor ϕ from the equation for χ and passing to the
retarding and advanced wave coordinates

τ = t− x

c
; η = t+

x

c
,

we obtain the Dirac equation in the quadratic form for spinor function χ{
4�

2 ∂2

∂τ∂η
+ c2

[
P̂⊥ − e

c
Aw (τ)

]2
+m2c4

−ec�σ(H0 + H + iE)
}
χ = 0, (4.41)

where

P̂⊥ = −i��⊥ − e

c
AH (y) ; �⊥ =

{
0,

∂

∂y
,
∂

∂z

}
. (4.42)

The spinor function ϕ will be defined via χ as follows:

ϕ (r, t) =
1

mc2

{
i�
∂

∂t
− σ (ic�� + eA (r, t))

}
χ (r, t) . (4.43)

The particle quantum motion at t → −∞ when Aw(τ = −∞) = 0 and only
the uniform magnetic field exists is separated into the cyclotron (y, z) and
the longitudinal (x) degrees of freedom. Since the coordinate z is a cyclic in
this issue (also in the presence of a plane EM wave) the cyclotron motion will
be described by the set of quantum characteristics of the state {l, pz}, where
by the number l we indicate the Landau levels and by pz, the z component
of the generalized momentum. Then the longitudinal motion at t → −∞
will be described by the x component of the particle initial momentum px.
Concerning the particle transversal initial state we will assume that at t
→ −∞ the particle is situated in the l = s Landau level. In addition, there is
a fourth quantum number σ which describes the polarization of the particle:
σ = ± 1

2 (spin projections Sz = ± 1
2 on the direction of magnetic field H0).

So, the wave function of the particle at t → −∞ will be given by the equation

ψs,σ,px,pz (r, t) = ψs,σe
i
�
(pxx+pzz−Es(px)t), (4.44)
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where the bispinors ψs,σ, describing the states with the different spin polar-
izations, are

ψs,1/2 = N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Es(px) +mc2)Φs(y)

0

cpxΦs(y)

−i√2sc�eHΦs−1(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.45)

ψs,−1/2 = N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

(Es(px) +mc2)Φs−1(y)

i
√

2sc�eHΦs(y)

−cpxΦs−1(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.46)

and

N =
1

2π�
√

2Es(px)(Es(px) +mc2)
(4.47)

is the normalization constant. Here

Φs(y) =
√

a

2ss!
√
π

exp
[
−
(
ay − pz

�a

)2
]
Us

(
ay − pz

�a

)
,

a =

√
eH0

c�

are the Hermit functions and the dispersion law for the particle energy-
momentum is

E2
s (px) = m2c4 + p2

xc
2 + 2ec�H0s. (4.48)

For the spin projection σ = 1/2 the quantum numbers for s are: s = 0, 1, 2, . . .,
while for σ = −1/2 : s = 1, 2, . . ..

Due to the existence of a definite direction of the wave propagation the
variable η becomes a cyclic and the conjugate to coordinate η momentum
is conserved. This is the known integral of motion (1.10). Hence, the spinor
function χ(r, t) can be sought in the form

χ(r, t) = Nf exp
{

− i

2�
(p+τ + Λη)

}
χ0(x⊥, τ), (4.49)
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where

p+ = Es(px) + cpx; x⊥ = {0, y, z}. (4.50)

Taking into account the dispersion law (4.48) for the spinor function χ0(x⊥, τ)
we obtain the equation{

2i
�Λ

c2
∂

∂τ
−
[
P̂⊥ − e

c
Aw (τ)

]2
+ 2

e

c
�H0s

+
e�

c
σ(H0 + H + iE)

}
χ0(x⊥, τ) = 0. (4.51)

In Eq. (4.51) the transversal and longitudinal motions are not separated. But
after the unitarian transformation for the transformed function the variables
are separated. The corresponding unitarian transformation operator is

Û = e
i
�
K(τ)P̂⊥ , (4.52)

where the vector function

K(τ) = {0,Ky(τ),Kz(τ)} (4.53)

will be chosen to separate the cyclotron and longitudinal motions and to sat-
isfy the initial condition. Taking into account that for the Hermitian operator
F̂ = F̂ †

eiF̂ L̂e−iF̂ = L̂+ i
[
F̂ , L̂

]
− 1

2

[
F̂ ,
[
F̂ , L̂

]]
+ · · · , (4.54)

for the transformed operators in Eq. (4.51) we will obtain

ÛP̂⊥Û† = P̂⊥ +
e

c
[KH0] ,

Û
∂

∂τ
Û† =

∂

∂τ
− i

�

(
dK
dτ

P̂⊥

)
+ i

e

2c�

(
H0

[
K
dK
dτ

])
.

Let us choose the function K(τ) in such a form that the coefficient of the
term ∼ P̂⊥ in the equation for transformed function

χ′
0 = Ûχ0(x⊥, τ)

becomes zero. Then for the function K(τ) we will obtain the classical equation
of motion for transverse coordinates describing stimulated cyclotron rotation
in the EM wave field (see Eq. (4.5)):
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dK
dτ

+Ω′ [ν0K] = −ce

Λ
Aw (τ) , (4.55)

where Ω′ is the Doppler-shifted Larmor frequency (4.7). The solution of Eq.
(4.55) can be written with the help of the complex quantities

K̃ = Ky + iKz; Ã = Ay + iAz (4.56)

as follows:

K̃ = − exp {−iΩ′τ} ec
Λ

τ∫
−∞

Ã (τ ′) exp {iΩ′τ ′} dτ ′. (4.57)

In Eq. (4.57) we have taken into account the initial condition

Ky(−∞) = Kz(−∞) = 0.

Hence, for the transformed spinor function χ′
0 we obtain{

2i
�Λ

c2
∂

∂τ
− P̂2

⊥ + 2
e

c
�H0s+

eΛ

c3

(
dK
dτ

Aw

)

+
e�

c
σ(H0 + H + iE)

}
χ′

0 = 0. (4.58)

Looking for the solution of Eq. (4.58) in the form

χ′
0 =

⎛⎝χ1(x⊥, τ)

χ2(x⊥, τ)

⎞⎠ , (4.59)

we obtain the set of equations for the functions χ1 and χ2:{
2i

�Λ

c2
∂

∂τ
− P̂2

⊥ + (2s+ 1)
e

c
�H0 +

eΛ

c3

(
dK
dτ

Aw

)}
χ1 = 0, (4.60)

{
2i

�Λ

c2
∂

∂τ
− P̂2

⊥ + (2s− 1)
e

c
�H0 +

eΛ

c3

(
dK
dτ

Aw

)}
χ2

+2i
e�

c
(Ey(τ) + iEz(τ))χ1 = 0. (4.61)
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Now in Eq. (4.60) the variables are separated and the solution can be written
as

χ1 (x⊥, τ) = N
(σ)
1 Ts(x⊥) exp

⎡⎣i e

2�c

τ∫
−∞

(
dK
dτ ′ Aw (τ ′)

)
dτ ′

⎤⎦ , (4.62)

where

Ts(x⊥) = Φs(y)e
i
�

pzz

describes the free cyclotron motion of the particle. The solution for the second
function χ2 can be obtained in the same way (adding the particular solution
of the nonhomogeneous equation). Hence, for the spinor function χ′

0 we obtain

χ′
0 =

⎛⎜⎝N
(σ)
1 Ts (x⊥)

N
(σ)
2 Ts−1 (x⊥) −N

(σ)
1

1
c

dK̃
dτ Ts (x⊥)

⎞⎟⎠

× exp

⎡⎣i e

2�c

τ∫
−∞

(
dK
dτ ′ Aw (τ ′)

)
dτ ′

⎤⎦ . (4.63)

The coefficientsN (σ)
1 ,N (σ)

2 will be chosen to satisfy the initial condition. Thus,
for the different initial polarization states (σ = ± 1

2 ) we have

N
(1/2)
1 =

Λ+mc2

2mc2
; N

(1/2)
2 =

i
√

2sc�eH0

2mc2
, (4.64)

N
(−1/2)
1 = − i

√
2sc�eH0

2mc2
; N

(−1/2)
2 =

p+ +mc2

2mc2
. (4.65)

Using inverse transformation χ0 = Û†χ′
0(x⊥, τ), with the help of the relation

eF̂+L̂ = e− 1
2 [F̂ ,L̂]eF̂ eL̂ (4.66)

we obtain the solution of the initial equation (4.41) (taking into account
Eq.(4.49)):

χ (r, t) = Nf exp

[
i

�
(pxx− Es(px)t)



4.2 Exact Solution of the Dirac Equation for Cyclotron Resonance 123

+i
e

2�c

τ∫
−∞

(
dK
dτ ′ Aw (τ ′)

)
dτ ′ + i

e

�c
H0Kz

(
y − 1

2
Ky

)]

×

⎛⎜⎝N
(σ)
1 Ts (x⊥ − K)

N
(σ)
2 Ts−1 (x⊥ − K) −N

(σ)
1

1
c

dK̃
dτ Ts (x⊥ − K)

⎞⎟⎠ . (4.67)

Finally, with the help of Eq. (4.43) the solution of Eq. (4.38) for spinor particle
wave function can be written as

Ψs,σ,px,pz
(r, t) = Nf exp

[
i

�
(pxx− Es(px)t)

+i
e

2�c

τ∫
−∞

(
dK
dτ ′ Aw (τ ′)

)
dτ ′ + i

e

�c
H0Kz

(
y − 1

2
Ky

)]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
N

(σ)
1

(
p+ +mc2

)
+ iN

(σ)
2

√
2sc�eH0

)
Ts (x⊥ − K)

(
N

(σ)
2

(
Λ+mc2

)− iN
(σ)
1

√
2sc�eH0

)
Ts−1 (x⊥ − K)

(
N

(σ)
1

(
p+ −mc2

)
+ iN

(σ)
2

√
2sc�eH0

)
Ts (x⊥ − K)

(
N

(σ)
2

(
Λ−mc2

)− iN
(σ)
1

√
2sc�eH0

)
Ts−1 (x⊥ − K)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
N

(σ)
2 Λ− iN

(σ)
1

√
2sc�eH0

)
1
c

dK̃∗
dτ Ts−1 (x⊥ − K)

−N (σ)
1 mcdK̃

dτ Ts (x⊥ − K)(
N

(σ)
2 Λ− iN

(σ)
1

√
2sc�eH0

)
1
c

dK̃∗
dτ Ts−1 (x⊥ − K)

N
(σ)
1 mcdK̃

dτ Ts (x⊥ − K)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.68)

In particular, for the state with the spin projection σ = 1/2 from Eqs.
(4.68) and (4.64) we have

Ψs,1/2,px,pz
(r, t) = Nf exp

[
i

�
(pxx− Es(px)t)
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+i
e

2�c

τ∫
−∞

(
dK
dτ ′ Aw (τ ′)

)
dτ ′ + i

e

�c
H0Kz

(
y − 1

2
Ky

)]

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
mc2 + Es(px)

)
Ts (x⊥ − K) − i

√
s�eH0

2c
dK̃∗
dτ Ts−1 (x⊥ − K)

−Λ+mc2

2c
dK̃
dτ Ts (x⊥ − K)

cpxTs (x⊥ − K) − i
√

s�eH0
2c

dK̃∗
dτ Ts−1 (x⊥ − K)

−i√2sc�eH0Ts−1 (x⊥ − K) + Λ+mc2

2c
dK̃
dτ Ts (x⊥ − K)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.69)

For a quasi-monochromatic EM wave the states (4.68) can be normalized
by the condition∫

Ψ †
s′,σ′,p′

x,p′
z
Ψs,σ,px,pzdr = δ (p′

z − pz) δ (p′
x − px) δσ,σ′δs,s′ ,

where δl,l′ is the Kronecker symbol. Then for the normalization constant we
will have

Nf =
1

2π�

√
2Es(px)(Es(px) +mc2)

,

where

Es(px) = Es(px) +
Λ

2c2

∣∣∣∣∣dK̃dτ
∣∣∣∣∣
2

is the average energy of the particle in the field (4.35).

4.3 Multiphoton Excitation of Landau Levels by Strong
EM Wave

On the basis of the obtained wave function consider the possibility of mul-
tiphoton excitation of Landau levels by a strong quasi-monochromatic EM
wave at the cyclotron resonance in vacuum. We will consider the concrete
case of circularly polarized EM wave (1.20) with g = −1. For a quasi-
monochromatic wave it should be A0 ⇒ A0(τ), where A0(τ) is a slowly
varying amplitude with respect to the phase oscillations over the ω0τ and
the conditions of adiabatic switching on and switching off will take place
automatically.
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To determine the probabilities of the multiphoton induced transitions
between the Landau levels one must first define the function K(τ). After
the interaction with the wave (t → +∞ ) from Eq. (4.57) at the resonance
condition (4.21) we have

K̃ = −ecA0T

Λ
e−iω0τ , (4.70)

where T is the coherent interaction time (for actual laser radiation T is the
pulse duration) and A0 is the average value of the slowly varied envelope.
Substituting Eq. (4.70) into the expression for the wave function (4.68) and
expanding the latter in terms of the full basis of the particle eigenstates (4.44)

Ψs,σ,px,pz
(r, t) =

∫
dp′

xdp
′
z

∑
s′,σ′

Cσσ′
ss′ (p′

x, p
′
z)ψs′,σ′,p′

x,p′
z
(r, t) , (4.71)

we will find the probabilities of the multiphoton induced transitions between
the Landau levels (we expand only by positive energy solutions as in this case
the Dirac vacuum is not excited). To calculate the expansion coefficients

Cσσ′
ss′ (p′

x, p
′
z) =

∫
ψ†

s′,σ′,p′
x,p′

z
(r, t)Ψs,σ,px,pz

(r, t) dr, (4.72)

we will take into account the result of the following integration∫
exp(−ikx)Φs(a−1x+ ab)Φs′(a−1x+ ab′)dx

= exp {iµ+ i(s− s′)λ} Iss′ (α) , (4.73)

where Iss′(α) is the Lagger function and defined via generalized Lagger poly-
nomials Ll

n (α) as follows:

Is,s′ (α) =

√
s′!
s!
e− α

2 α
s−s′

2 Ls−s′
s′ (α) ,

Ll
n (α) =

1
n!
eαα−l d

n

dαn

(
e−ααn+l

)
. (4.74)

The characteristic parameters µ, λ, and α are determined by the expressions

µ =
ka2(b+ b′)

2
; λ = tan−1 k

b′ − b
; α = a2 k

2 + (b− b′)2

2
. (4.75)
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Taking into account Eqs.(4.68), (4.70), (4.72), and (4.73) we get the following
expansion coefficients:

Cσσ′
ss′ (p′

x, p
′
z) = wσσ′

ss′ (p′
x, p

′
z) exp

{
i

�
(Es′(p′

x) − Es(px) − �ω0(s′ − s))t
}

×δ(p′
z − pz)δ(p′

x − px − �
ω0

c
(s′ − s)). (4.76)

Here the Dirac δ-functions express the momentum conservation law. The
transition amplitudes wσσ′

ss′ (p′
x, p

′
z) for the spin projection of the particle σ =

1/2 are defined as follows:

w
1/2,1/2
ss′ (p′

x, p
′
z) = NfN

′ (2π�)2
[{
c2pxp

′
x +
(Es(px) +mc2

)
× (Es′(p′

x) +mc2
)}
Is,s′ (α) −Q

(
p′
+ +mc2

)√
2sc�eH0Is−1,s′ (α)

+2c�eH0
√
ss′Is−1,s′−1 (α) −Q

(
Λ+mc2

)√
2s′c�eH0Is,s′−1 (α)

]
, (4.77)

and the transition amplitudes with the spin flip 1/2 → −1/2 are

w
1/2,−1/2
ss′ (p′

x, p
′
z) = −iNfN

′ (2π�)2
[
Q
(
p′
+ +mc2

)
× (Λ+mc2

)
Is,s′−1 (α) − cp′

x

√
2sc�eH0Is−1,s′−1 (α)

+
√

2s′c�eH0cpxIs,s′ (α) − 2c�eH0Q
√
s′sIs−1,s′ (α)

]
. (4.78)

The analogous formula is obtained for σ = −1/2 :

w
−1/2,−1/2
ss′ (p′

x, p
′
z) = NfN

′ (2π�)2
[{
c2pxp

′
x +
(Es(px) +mc2

)
× (Es′(p′

x) +mc2
)}
Is−1,s′−1 (α) −Q

(
p′
+ +mc2

)√
2sc�eH0Is,s′−1 (α)

+2c�eH0
√
ss′Is,s′ (α) −Q

√
2s′c�eH0

(
Λ+mc2

)
Is−1,s′ (α)

]
, (4.79)

and the transition amplitudes with the spin flip −1/2 → 1/2 are

w
−1/2,1/2
ss′ (p′

x, p
′
z) = −iNfN

′ (2π�)2
[
Q
(
p′
+ +mc2

)
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× (Λ+mc2
)
Is−1,s′ (α) − cp′

x

√
2sc�eH0Is,s′ (α)

+
√

2s′c�eH0cpxIs−1,s′−1 (α) − 2Qc�eH0
√
ss′Is,s′−1 (α)

]
. (4.80)

Here the parameter

Q ≡ ω0eA0T

2Λ
(4.81)

and the argument of the Lagger function is

α ≡ ceH0

2�

(
eA0T

Λ

)2

. (4.82)

According to Eq. (4.76) the transition of the particle from an initial state
{s, σ, px, pz} to a state {s′, σ′, p′

x, p
′
z} is accompanied by the emission or ab-

sorption of s − s′ number of photons. Consequently, substituting Eq. (4.76)
into Eq. (4.71) and integrating over the momentum we can rewrite the par-
ticle wave function as

Ψs,σ,px,pz
(r, t) =

∞∑
s′=0

w
σ,1/2
ss′ exp

[
i

�
δSss′ (r, t)

]
ψs′,1/2

+
∞∑

s′=1

w
σ,−1/2
ss′ exp

[
i

�
δSss′ (r, t)

]
ψs′,−1/2, (4.83)

where

δSss′ (r, t) = pzz + (px +
�ω0

c
(s′ − s))x− (Es(px) + �ω0(s′ − s))t. (4.84)

Using Eqs. (4.77)–(4.80) and the momentum conservation law, and taking
into consideration the recurrent relations for the Lagger function

Is,s′−1 (α) =
√
α

s′

(
s− s′ − α

2α
Is,s′ (α) − I ′

s,s′ (α)
)
,

Is−1,s′ (α) =
√
α

s

(
s− s′ + α

2α
Is,s′ (α) + I ′

s,s′ (α)
)
,

Is−1,s′−1 (α) =
α√
ss′

(
s+ s′ − α

2α
Is,s′ (α) − I ′

s,s′ (α)
)
,
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the transition amplitudes wσσ′
ss′ (p′

x, p
′
z) can be written in the compact form

w
1/2,1/2
ss′ = Nss′

{
Is,s′ (α) +

√
ζs′�ω0

Es′(p′
x) +mc2

Is,s′−1 (α)
}
, (4.85)

w
1/2,−1/2
ss′ = −iNss′

(
Λ+mc2

)
Es′(p′

x) +mc2

√
�ω0

2Λ
αIs,s′−1 (α) (4.86)

and

w
−1/2,−1/2
ss′ = Nss′

{
Is−1,s′−1 (α) +

√
ζs′�ω0

Es′(p′
x) +mc2

Is−1,s′ (α)
}
, (4.87)

w
−1/2,1/2
ss′ = −iNss′

(
Λ+mc2

)
Es′(p′

x) +mc2

√
�ω0

2Λ
αIs−1,s′ (α) , (4.88)

where

Nss′ ≡
√

Es′(p′
x) (Es′(p′

x) +mc2)
Es(px)(Es(px) +mc2)

. (4.89)

Now let us consider the concrete case of initial spin polarization σ = 1/2.
The probability of the induced transition s → s′ between the Landau levels
is ultimately defined by Eqs. (4.85) and (4.86):

Wss′ =
∣∣∣w1/2,1/2

ss′

∣∣∣2 +
∣∣∣w1/2,−1/2

ss′

∣∣∣2

=
Es′(p′

x)
Es(px)

[
I2
s,s′ (α) +

s�ω0

Es(px) +mc2
(
I2
s−1,s′−1 (α) − I2

s,s′ (α)
)]
. (4.90)

For the particle initially situated in the ground state the Lagger function

I2
0,s′ (α) =

αs′

s′!
e−α,

and consequently for the probability of the induced transition 0 → s′ we have

W0s′ =
E0(px) + �ω0s

′

E0(px) + �ω0α

αs′

s′!
e−α. (4.91)

If �ω0 << E0(px) this is the well-known Poisson distribution:
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W0s′ (α) =
αs′

s′!
e−α,

at which the mean value of s′ is s′ = α and there is a maximum at α = s′.
The latter shows that the most probable transitions are

�ω0s
′ = �Ecl = E0(px) − E0(px), (4.92)

i.e., the energy change corresponds to classical dynamics. This is a conse-
quence of the fact that the Poisson distribution describes the coherent state
of harmonic oscillator which can be created from the ground state s = 0 (a
special case of coherent state). In the coherent state the probability distri-
bution in space retains its shape, and its center follows the trajectory of a
classical particle in a harmonic well (in the considered case the static mag-
netic field is equivalent to a harmonic well).

Let us now estimate the average number of emitted (absorbed) photons
by the electron at the cyclotron resonance for the high excited Landau levels
(s >> 1) and for the strong EM wave. In this case the most probable number
of photons in the strong EM wave field corresponds to the quasiclassical limit
(|s− s′| >> 1) when multiphoton processes dominate and the nature of the
interaction process is very close to the classical one. In this case the argument
of the Lagger function can be represented as

α ≡ 1
4s

(
ecA0p⊥T

�Λ

)2

, (4.93)

where p⊥ 
 √
2e�H0s/c is the particle mean transverse momentum. The

Lagger function is maximal at α → α0 =
(√

s′ − √
s
)2

, exponentially falling
beyond α0. Hence, for the transition s → s′ and when |s− s′| << s we have

α0 
 (s′ − s)2

4s
. (4.94)

The energy change of the particle according to classical perturbation theory
(when eA0ω0T/c << p⊥) is

�Ecl =
ecp⊥A0ω0T

Λ
. (4.95)

The comparison of this expression with Eqs. (4.93) and (4.94) shows that the
most probable transitions are
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|s− s′| 
 �Ecl

�ω0
, (4.96)

in accordance with the correspondence principle.

4.4 Cyclotron Resonance in a Medium. Nonlinear
Threshold Phenomenon of “Electron Hysteresis”

Consider now the dynamics of cyclotron resonance in the field of a strong
EM wave in a medium. In this case the problem can be solved analytically
only for the circular polarization of monochromatic wave and if the initial
velocity of the particle is directed along the axis of the wave propagation.
The particle equations of motion in components in this process are written
as

dpx

dt
= n0

e

c
[vyEy(τ) + vzEz(τ)] , (4.97)

dpy

dt
= e
(
1 − n0

vx

c

)
Ey(τ) + e

vz

c
H0, (4.98)

dpz

dt
= e
(
1 − n0

vx

c

)
Ez(τ) − e

vy

c
H0. (4.99)

As far as the equation for the particle longitudinal momentum (4.97) is not
changed in the presence of a uniform magnetic field with respect to Eq. (2.2)
in the field of a plane EM wave in a medium, and the equation for the particle
energy change in the field (1.9) remains unchanged, then we have the same
integral of motion (2.5) in this process. Hence, with the help of the latter one
can represent the particle longitudinal velocity

vx = cn0

(
1 − v0

cn0

)
− (1 − n0

v0
c

) [
1 ∓ p2

⊥(τ)
(mcζ)2

]1/2

n2
0

(
1 − v0

cn0

)
− (1 − n0

v0
c

) [
1 ∓ p2

⊥(τ)
(mcζ)2

]1/2 (4.100)

and energy

E =
E0

n2
0 − 1

⎧⎨⎩n2
0

(
1 − v0

cn0

)
−
(
1 − n0

v0

c

)[
1 ∓ p2

⊥(τ)
(mcζ)2

]1/2
⎫⎬⎭ (4.101)

via the transversal momentum p⊥(τ) = {0, py(τ), pz(τ)} in the field. Here
the parameter ζ is
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ζ ≡ E0

mc2

∣∣1 − n0
v0
c

∣∣√
|n2

0 − 1| . (4.102)

Note that ζ is the critical value of the wave intensity (2.12) (at n0 > 1) for
the particle “reflection” phenomenon in the absence of a static magnetic field
(H0 = 0). The sign “−”under the roots in Eqs. (4.100), (4.101) corresponds
to the case of the interaction in dielectriclike media with n0 > 1 and the
sign “+”, plasmalike media with n0 < 1. Note that in contrast to the case
H0 = 0 (induced Cherenkov process) in Eqs. (4.100), (4.101) before the root,
only the sign “−” is taken (in accordance with the initial conditions vx = v0
and E = E0 of the free particle) since, as will be shown below, in this case
the expression under the root is always positive and consequently the root
cannot change its sign. Formally, Eqs. (4.100) and (4.101) have the same
form as the analogous equations (2.7) and (2.10) if p2

⊥(τ)/m2c2 → ξ2(τ).
However, there is a principal difference between these equations because of
the above-mentioned fact. In particular, in the presence of a static magnetic
field the particle “reflection” and capture phenomena vanish — the particle
longitudinal velocity cannot reach the phase velocity of the wave (threshold
value for nonlinear Cherenkov resonance in the wave field) due to the particle
transversal rotation in the uniform magnetic field.

Now the considered problem reduces to definition of the particle transver-
sal momentum p⊥(τ). To integrate Eqs. (4.98) and (4.99) it is convenient to
pass from the variable t to wave coordinate τ = t− n0x/c. Then taking into
account Eqs. (4.100) and (4.101) for the particle transversal momentum we
will have the equations

dpy

dτ
= eEy(τ) +

ecH0

E0
(
1 − n0

v0
c

) [
1 ∓ p2

⊥(τ)
(mcζ)2

]1/2 pz(τ),

dpz

dτ
= eEz(τ) − ecH0

E0
(
1 − n0

v0
c

) [
1 ∓ p2

⊥(τ)
(mcζ)2

]1/2 py(τ). (4.103)

From the set of Eqs. (4.103) one can obtain the equation for the complex
quantity

Z (τ) =
py(τ) + ipz(τ)

mc
(4.104)

related to the dimensionless parameter of the particle transversal momentum.
It is written as

dZ (τ)
dτ

=
eE(τ)
mc

− i
Ω0(

1 − n0
v0
c

) [
1 ∓ |Z(τ)|2

ζ2

]1/2Z (τ) , (4.105)
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where

E(τ) = Ey(τ) + iEz(τ)

and

Ω0 =
ecH0

E0

is the Larmor frequency for the initial velocity of the particle.
For an arbitrary plane EM wave Eq. (4.105) is a nonlinear equation the

exact solution of which cannot be found. However, for the monochromatic
wave of circular polarization when

E(τ) = E0e
−iω0τ , (4.106)

one can find the exact solution of Eq. (4.105). The latter is sought in the
form

Z(τ) = Z0e
−iω0τ (4.107)

and for the transversal momentum of the particle we obtain the following
algebraic equation:(

1 − Ω0

ω0
(
1 − n0

v0
c

)√
1 ∓ β2

)
β = X, (4.108)

where the quantities E0, Z0 are expressed in the scale of the parameter ζ:

Z0

ζ
≡ iβ;

eE0

mcω0ζ
=
ξ0
ζ

≡ X. (4.109)

We will not represent here the exact solution of Eq. (4.108) for β. An in-
teresting nonlinear phenomenon exists in this process which can be found out
through the graphical solution of Eq. (4.108). Thus, depending on the ratio
of the Larmor and wave frequencies as well as on the initial velocity of the
particle (in the case of dielectriclike medium where v0 ≶ c/n0) the solution
of Eq. (4.108) is a single-valued or multivalent that essentially changes the
interaction behavior of the particle with a strong EM wave at the nonlinear
cyclotron resonance in a medium. Hence, we will consider separately the cases
Ω0 � ω′

0 and Ω0 < ω′
0 at v0 < c/n0 where

ω′
0 = ω0

(
1 − n0

v0

c

)
(4.110)

is the Doppler-shifted frequency of the wave for the initial velocity of the
particle. If v0 > c/n0 the effects considered here will take place with the
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opposite circular polarization of the wave (ω0 → −ω0) or in the opposite
direction of the uniform magnetic field (H0 → −H0).

Fig. 4.2. Dependence of normalized transversal momentum β on the normalized
EM wave amplitude X at n0 > 1.

Consider first the case of a medium with refractive index n0 > 1 (sign
“−”under the root) in Eq. (4.108). We will turn on the EM wave adiabatically
and draw the graphic of dependence of the particle transversal momentum
on the wave intensity β(X). For the case Ω0 � ω′

0 the latter is illustrated in
Fig. 4.2a. As is seen from this graphic with the increase of the wave intensity
the transversal momentum of the particle increases in the field (consequently
the energy as well) and vice versa: with the decrease of the wave intensity it
decreases in the field and after the passing of the wave (X = 0) the transversal
momentum becomes zero (β = 0), i.e., the particle momentum-energy remain
unchanged: p = p0 and E = E0.
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With the increase of the transversal momentum the longitudinal velocity
of the particle increases as well, but in contrast to the case H0 = 0 it always
remains smaller than the wave phase velocity if initially the wave overtakes
the particle (v0 < c/n0) and larger if the particle overtakes the wave (v0 >
c/n0). For this reason the particle “reflection” phenomenon vanishes in the
presence of a uniform magnetic field. Indeed, as is seen from Eq. (4.108)
for an arbitrary finite value of X we have β < 1 and from Eq. (4.100) it
follows that the longitudinal velocity of the particle in the field vx < c/n0 if
v0 < c/n0 and vx > c/n0 if v0 > c/n0. The value β = 1 may be reached only
at X = ∞ when the root in Eq. (4.100) becomes zero and vx = c/n0. So, the
expression under the roots in Eqs. (4.100), (4.101) cannot become zero for
finite intensities of the EM wave and, consequently, the root cannot change
its sign. According to the latter in Eqs. (4.100), (4.101) before the roots only
the sign “−” has been taken so as to satisfy the initial condition.

Consider now the case Ω0 < ω′
0. The graphic of dependence of the particle

transversal momentum on the wave intensity β(X) in this case is illustrated in
Fig. 4.2b. As is seen from this graphic β(X) is already a multivalent function:
for wave intensities smaller than the value corresponding to the maximum
point of the curve β(X) three values of the particle transversal momentum
exist for each value of the wave intensity. At the maximum point, which will
be called a critical one, the wave intensity has the value

Xcr =

[
1 −
(
Ω0

ω′
0

)2/3
]3/2

. (4.111)

There are two values β′
cr and β′′

cr which correspond to critical intensity
(4.111). The first one, β′

cr, is the value of the parameter β corresponding
to particle transversal momentum at the maximum point of the curve β(X).
From the extremum condition of Eq. (4.108) for β′

cr we have

β′
cr =

[
1 −
(
Ω0

ω′
0

)2/3
]1/2

. (4.112)

The second critical value for the parameter β corresponding to critical in-
tensity Xcr is situated on the left-hand side branch of the curve β(X). To
determine its value one needs the analytic solution β = β(X) of Eq. (4.108),
but there is no necessity here to present the bulk expression for β′′

cr.
We shall decide on that branch of the curve β(X) which corresponds to

real motion of the particle. Up to the critical point the particle transversal
momentum can be changed on that branch which corresponds to initial con-
dition β = 0 at X = 0. On this branch the particle momentum increases
with the increase of the wave intensity and vice versa. It is evident that with
further increase of the field the particle cannot be situated on the right-hand
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side from the critical point. Hence, it should pass to the left-hand side branch
of the curve β(X). Indeed, it is easy to see that the critical point is an unsta-
ble state for the particle, while all states on the left-hand side branch of the
curve β(X) are stable and at the critical point the particle changes instan-
taneously its transversal momentum and passes by jumping to that branch.
The further variation of the particle transversal momentum occurs already
on this branch. Note that the instantaneity here is related to the fact that
the solution of Eq. (4.105) has been found for the monochromatic wave. It
is clear that the momentum change actually occurs during finite time. This
jump variation of the particle momentum (energy) is due to the induced res-
onant absorption of energy from the wave at the critical point because of
which the particle state at this point becomes unstable and it leaves the reso-
nance point for a stable state that corresponds to the transversal momentum
β′′

cr on the left-hand side branch of the curve β(X). Indeed, if one draws a
graphic of the dependence of the particle transversal momentum on the ratio
of the Larmor and wave frequencies Ω0/ω

′
0 for a certain intensity of the wave

(Fig. 4.3), then it will be seen from the graphic β(Ω0/ω
′
0) that the cyclotron

resonance in the strong EM wave field takes place at the critical point with
the satisfaction of the condition Ω0 < ω′

0. The latter means that to reach
the cyclotron resonance in a medium, in contrast to vacuum autoresonance
it is necessary to be initially under the resonance condition, since due to the
effect of the strong wave field in a medium with refractive index n0 > 1 the
Larmor frequency increases in the field and then reaches the resonance value.
In vacuum the cyclotron resonance proceeds at Ω0 = ω′

0 which survives in-
finitely, because of which the energy of the particle turns to infinity. Thus,
from Eq. (4.108) in this case (n0 = 1) for the particle transversal momentum
we have

β =
X

1 − Ω0
ω′

0

, (4.113)

which diverges (consequently the energy as well) at Ω0 = ω′
0. As is seen from

Fig. 4.3 this divergence vanishes in a medium.
With the further increase of the field (X > Xcr) the transversal momen-

tum of the particle will continuously increase on the left-hand side branch of
the curve β(X) and tend to value −1 at X → ∞. With the decrease of the
field the transversal momentum decreases on this branch and at X = Xcr

already has only the value β′′
cr since the value β′

cr corresponds to the unstable
state at the resonance point and now there is no reason for inverse transition
from the stable state to the unstable one. With the further decrease of the
field the transversal momentum decreases, but as is seen from Fig. 4.2 after
the interaction (X = 0) the particle does not return to the initial state (β = 0
at X = 0) and remains with the final transversal momentum
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Fig. 4.3. Dependence of normalized transversal momentum on parameter Ω0/ω′
0 <

1 at n0 > 1.

βF = −
[
1 −
(
Ω0

ω′
0

)2
]1/2

. (4.114)

This is a nonlinear phenomenon of charged particle hysteresis in the cyclotron
resonance with a strong EM wave in a medium at intensities exceeding the
threshold value (4.111).

The longitudinal velocity of the particle corresponding to the value βF

(4.114) is

vx = cn0

1 − v0
cn0

− (1 − n0
v0
c

)
Ω0
ω′

0

n2
0

(
1 − v0

cn0

)
− (1 − n0

v0
c

)
Ω0
ω′

0

. (4.115)

The energy acquired by the particle due to hysteresis is given by

E = E0

⎡⎣1 +

(
1 − n0

v0
c

) (
1 − Ω0

ω′
0

)
n2

0 − 1

⎤⎦ . (4.116)

If the wave intensity is smaller than the critical value (4.111) the energy of the
particle oscillates in the field and after the interaction remains unchanged.

Equation (4.116) determines the particle acceleration due to a strong
transversal EM wave at the cyclotron resonance with the powerful static
magnetic field in a gaseous medium (n0 − 1 << 1). Because of the latter
one can achieve the cyclotron resonance using optical (laser) radiation in a
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medium with the refractive index n0 > 1, since the Doppler shift for a wave
frequency 1−n0v0/c (see Eq. (4.110)) in this case may be arbitrarily small in
contrast to vacuum, where the cyclotron resonance for the existing powerful
static magnetic fields is possible only in the radio-frequency domain. On the
other hand, the application of powerful laser radiation for large acceleration
of the particles in gaseous media is confined by the ionization threshold of
the medium.

Consider now the case of a plasmous medium (n0 < 1). In Eq. (4.108) this
case should take the sign “+”under the root at which the confinement for the
particle transversal momentum, existing in a dielectriclike medium, vanishes.
In addition, the above-considered behavior of the cyclotron resonance in a
plasmous medium takes place with the inverse relation between the initial
Larmor and wave frequencies Ω0/ω

′
0. Thus, at Ω0 � ω′

0 with the increase
of the wave intensity the transversal momentum of the particle increases in
the field and vice versa: with the decrease of the wave intensity it decreases
in the field and after the passing of the wave (X = 0) the transversal mo-
mentum becomes zero (β = 0), i.e., the particle momentum-energy remain
unchanged: p = p0 and E = E0. The nonlinear phenomenon of particle hys-
teresis in a plasmous medium takes place at Ω0 > ω′

0, since in a medium
with refractive index n0 < 1 the Larmor frequency decreases in the field and
then becomes equal to the resonance value. The graphic of dependence of
the particle transversal momentum on the wave intensity β(X) in this case is
illustrated in Fig. 4.4. As is seen from this graphic, in contrast to the case of
dielectriclike media the parameter β in the plasmas increases with no limit
at the increase of the field. The latter allows the large acceleration of the
particles achieved by the current superstrong laser fields of relativistic inten-
sities (ξ > 1) due to this phenomenon of hysteresis in the plasmas. The final
transversal momentum of the particle as a result of the hysteresis in this case
is

βF =

[(
Ω0

ω′
0

)2

− 1

]1/2

, (4.117)

the final energy of which will be determined by the same equation (4.116)
since both the numerator and denominator of the fraction in the expression
analogous to Eq. (4.116) for the particle energy in a plasma change sign.

Note an interesting effect at the cyclotron resonance in a medium as well.
At Ω0 = ω′

0 no matter how weak the EM wave field is — ξ0 << ζ (that is,
ξ0 << 1 even for ζ ∼ 1) — from Eq. (4.108) it follows that

|β| 

(

2ξ0
ζ

)1/3

, (4.118)
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Fig. 4.4. Dependence of normalized transversal momentum β on the normalized
EM wave amplitude X at n0 < 1.

that is, an essential nonlinearity (∼ ξ
1/3
0 >> ξ0) arises in a case where one

would expect a linear dependence on the field according to linear theory. It is
the consequence of nonlinear cyclotron resonance the width of which is large
enough in this case:

�ω 
 2−1/3 ·
(
ξ0
ζ

)2/3

ω′
0. (4.119)
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4.5 High Harmonics Radiation at Cyclotron Resonance

The considered phenomena at the cyclotron resonance in vacuum and in a
medium will resonantly enhance the efficiency of charged particle radiation in
the presence of a uniform magnetic field with respect to Compton radiation in
the strong wave field. Hence, here we will consider the radiation of a charged
particle in the field of a strong monochromatic EM wave in the presence of a
uniform magnetic field directed along the wave propagation direction in the
scope of the classical theory. We will analyze the case of circular polarization
of the incident wave and when the initial velocity of the particle is parallel
to the wave propagation direction. This case of particle–wave parallel propa-
gation is of certain interest since in this case the interaction length with the
actual laser beams is maximal which is especially important for the problem
of high harmonic generation.

To determine the radiation energy at the cyclotron resonance in vacuum
and in a medium we will consider the general case of radiation in a medium
and then we will move to the vacuum case substituting the refractive index
of a medium n0 = n(ω) = 1 in the ultimate equation for radiation energy.
The latter is given by Eq. (2.50) where the kinematic quantities v (t) and
r = r (t) for the cyclotron resonance in a medium will be defined by Eqs.
(4.100), (4.101), and (4.108). If in the considered case

p2
y(τ) + p2

z(τ) = p2
⊥ = const,

then the longitudinal velocity and the energy of the particle in the field

vx = const; E = const, (4.120)

and from Eqs. (4.104), (4.107), and (4.109) for the transversal components
of the particle momentum we will have

vy (t) =
mc3ζβ

E sinω0

(
1 − n0

vx

c

)
t,

vz (t) =
mc3ζβ

E cosω0

(
1 − n0

vx

c

)
t. (4.121)

The particle law of motion r = r (t) corresponding to Eqs. (4.120) and (4.121)
is

x (t) = vxt,

y (t) = − mc3ζβ

Eω0
(
1 − n0

vx

c

) cosω0

(
1 − n0

vx

c

)
t, (4.122)
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z (t) =
mc3ζβ

Eω0
(
1 − n0

vx

c

) sinω0

(
1 − n0

vx

c

)
t.

Substituting Eqs. (4.120)–(4.122) into Eq. (2.50) and integrating over t,
the following ultimate equation for the spectral power of the particle radiation
at the cyclotron resonance in a medium is obtained:

dPk =
e2n(ω)ω2

2πc3
v2

⊥
∞∑

s=−∞
δ
(
ω
(
1 − n(ω)

vx

c
cosϑ

)
− sω0

(
1 − n0

vx

c

))

×
[(

n2(ω)v2
x − c2

n2(ω)v2
⊥

+
( s
α

)2
)
J2

s (α) + J ′2
s (α)

]
dωdO. (4.123)

Here

v⊥ =
mc3ζβ

E (4.124)

is the amplitude of the transversal velocity of the particle in the field, and
the argument of the Bessel function α is

α = n(ω)
mc2ωζβ

Eω0
(
1 − n0

vx

c

) sinϑ. (4.125)

Noting that

n2(ω)v2 − c2

n2(ω)v2
⊥

= − 1
(ζβ)2

[
1 − E2

m2c4
n2(ω) − 1
n2(ω)

]
Eq. (4.123) may be written in the form

dPk =
e2n(ω)ω2

2πc
∣∣1 − n(ω)vx

c cosϑ
∣∣
(
ζβ

mc2

E
)2

×
∞∑

s=−∞

{[( s
α

)2
− 1 − 1

(ζβ)2

(
1 − E2

m2c4
n2(ω) − 1
n2(ω)

)]
J2

s (α) + J ′2
s (α)

}

×δ
(
ω − sω0

1 − n0
vx

c

1 − n(ω)vx

c cosϑ

)
dωdO. (4.126)

Consider first the case of vacuum. If n0 = n(ω) = 1 when the autoresonance
phenomenon takes place, parameters (4.124) and (4.125) become
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v⊥ =
mc3

E
ξ0

1 − Ω0
ω′

0

, α =
ωmc2

ω0Λ

ξ0

1 − Ω0
ω′

0

sinϑ,

where Λ is the integral of motion in vacuum (1.10) and ω′
0 = ω0 (1 − v0/c)

is the Doppler-shifted frequency of the incident strong wave for the initial
velocity of the particle. Then from Eq. (4.126) for the radiation power in
vacuum we obtain

dPk =
e2

2πc

(
mc2

E
)2

ω2

1 − vx

c cosϑ
ξ20(

1 − Ω0
ω′

0

)2

∞∑
s=1

δ

(
ω − sω0

1 − vx

c

1 − vx

c cosϑ

)

×

⎡⎢⎣
⎧⎪⎨⎪⎩
( s
α

)2
− 1 −

(
1 − Ω0

ω′
0

)2

ξ20

⎫⎪⎬⎪⎭J2
s (α) + J ′2

s (α)

⎤⎥⎦ dωdO. (4.127)

Note that in Eq. (4.127) the term s = 0 corresponds to ω = 0 (according to
the δ-function) for which the radiation power is zero, so that the summation
proceeds from s = 1. The s = 0 harmonic arises in a dielectriclike medium
which corresponds to Cherenkov radiation. Concerning the terms with the
negative s in the sum (4.127) then those are zero in vacuum according to the
argument of the δ-function taking into account that ω0, ω > 0.

In the absence of a static magnetic field (Ω0 = 0) Eq. (4.127) coincides
with the equation for the spectral power of nonlinear Compton radiation
(1.61). Comparison of Eq. (4.127) with the latter shows that the radiation
power at the cyclotron resonance in vacuum resonantly enhances with the
parameter of nonlinearity ξ0/ (1 −Ω0/ω

′
0) instead of the parameter of non-

linearity ξ0 for nonlinear Compton radiation. Hence, we will not repeat the
analysis of the conditions for revelation of nonlinearities in the considered
process that is the radiation of high harmonics, which has been done for non-
linear Compton radiation and the substitution of the strong wave intensity
parameter ξ0 → ξ0/ (1 −Ω0/ω

′
0) only should be made.

Consider now the radiation in a medium at the nonlinear cyclotron reso-
nance. In this case the Doppler factor 1−n0v0/c may be as positive as well as
negative — anomalous Doppler effect at n0 > 1. However, as has been shown
in the previous section, for the anomalous Doppler effect the considered pro-
cess of cyclotron resonance will take place at the opposite circular polarization
of the incident strong wave. Hence, we also assume here v0 < c/n0 at which
Eq. (4.110) has a meaning. In addition, since for v0 < c/n0 the longitudi-
nal velocity in the field always remains smaller than the wave phase velocity
(vx < c/n0), then the Doppler factor 1 − n0vx/c > 0 as well.

Taking into account Eqs. (4.124), (4.125), and (4.102) as well as using
the δ-function, which expresses the radiation spectrum of the process, the
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equation for radiation power (4.123) may be written in the form

dPk =
e2n(ω)ω2

2πc
1∣∣1 − n(ω)vx

c cosϑ
∣∣ ∞∑

s=−∞
δ

(
ω − sω0

1 − n0
vx

c

1 − n(ω)vx

c cosϑ

)

×
[(

n(ω)vx

c − cosϑ
n(ω) sinϑ

)2

J2
s (α) +

v2
⊥
c2
J ′2

s (α)

]
dωdO, (4.128)

where the argument of the Bessel function is

α = n(ω)
ω

ω0

sinϑ√
|n2

0 − 1|
β√

1 ∓ β2
. (4.129)

Concerning the terms with the negative s in Eq. (4.128), note that according
to the argument of the δ function the harmonics with s < 0 correspond to
the anomalous Doppler effect for radiated frequencies (as for the fundamental
frequency 1 − n0vx/c > 0) which is possible due to the dispersion of the
medium, if

1 − n(ω)
vx

c
cosϑ < 0,

i.e., the harmonics with s < 0 may be radiated inside the Cherenkov cone.
Arising from Eq. (4.108) one can express the argument of the Bessel func-

tion via the parameter of the cyclotron resonance Ω0/ω
′
0

α = n(ω)
ω

ω′
0

mc2

E0

ξ0√
1 ∓ β2 − Ω0

ω′
0

sinϑ, (4.130)

which evidences the resonant enhancement of the parameter of nonlinearity
and, consequently, the intensity of high harmonics radiation (α ∼ s >> 1). If
β2 << 1, which corresponds to linear cyclotron resonance, from Eq. (4.130)
we see that the radiation power in a medium resonantly enhances with the
parameter of nonlinearity ξ0/ (1 −Ω0/ω

′
0) as in the case of vacuum.

The radiation of high harmonics at the nonlinear cyclotron resonance in a
medium arises for the wave intensities in the area close to the critical value for
electron hysteresis phenomenon (4.111). Corresponding to this intensity the
transversal momentum of the particle β in Eq. (4.130) should be substituted
by the critical value β′

cr from Eq. (4.112). In the other case of particle–wave
nonlinear interaction at the cyclotron resonance in a medium that takes place
at Ω0 = ω′

0 and ξ0 << ζ (see Eq. (4.118)), the transversal momentum of the
particle β in Eq. (4.130) should be substituted from Eq. (4.118).
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5 Nonlinear Dynamics of Induced Compton
and Undulator Processes

In this chapter we will consider the interaction of charged particles with super-
strong radiation fields of relativistic intensities in induced coherent processes
in vacuum where there is no restriction on the field intensity taking place
at the induced Cherenkov interaction in dielectriclike media. Those are the
induced Compton and undulator processes.

In the presence of a second wave of different frequency, the Compton
scattering, as well as spontaneous undulator radiation in the external EM
wave field acquire induced character. Because of its coherent nature (as the
Cherenkov one) these induced processes have the same peculiarity and, con-
sequently, the nonlinear interaction of charged particles with the mentioned
fields leads to analogous threshold phenomena of particle “reflection” and
capture by the plane EM waves in vacuum.

On the other hand, it is clear that the second wave in the induced Comp-
ton process or the undulator field perform the role of the third body for the
real radiation/absorption of photons by the free electrons in vacuum. Hence,
irrespective of revelation of new phenomena the consideration of nonlinear dy-
namics of induced Compton and undulator processes in current superstrong
laser fields is of great interest, especially from the point of view of FEL and
laser accelerators. Further, the significance of the undulator (wiggler) is great
enough as the unique version of the current FEL and expected X-ray laser
due to its large coherent length and effective power of the static magnetic field
for relativistic particles.

To achieve relatively large coherent lengths in the induced Compton pro-
cess we will consider the case of counterpropagating waves.

5.1 Interaction of Charged Particles with Superstrong
Counterpropagating Waves of Different Frequencies

Consider the classical dynamics of a charged particle at the interaction with
two counterpropagating (along the axis OX) plane EM waves having ar-
bitrary electric field strengths E1

(
t− x

c

)
and E2

(
t+ x

c

)
in vacuum. The

relativistic equation of motion in components is written as
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dpx

dt
=
e

c
(vE1 − vE2) , (5.1)

dpy

dt
= e
(
1 − vx

c

)
E1y + e

(
1 +

vx

c

)
E2y,

dpz

dt
= e
(
1 − vx

c

)
E1z + e

(
1 +

vx

c

)
E2z. (5.2)

This set of equations allows exact solution when the particle initial velocity is
directed along the axis OX and the waves are monochromatic with circular
polarization:

E1 (x, t) =
{

0, E1 cosω1

(
t− x

c

)
, E1 sinω1

(
t− x

c

)}
,

E2 (x, t) =
{

0, E2 cosω2

(
t+

x

c

)
, E2 sinω2

(
t+

x

c

)}
. (5.3)

From Eq. (5.2) in the field (5.3) we obtain

py =
eE1

ω1
sinω1

(
t− x

c

)
+
eE2

ω2
sinω2

(
t+

x

c

)
,

pz = −eE1

ω1
cosω1

(
t− x

c

)
− eE2

ω2
cosω2

(
t+

x

c

)
(5.4)

(the waves are turned on and turned off adiabatically at t → ∓∞).
For the integration of Eq. (5.1) we will use the equation for the particle

energy exchange in the field

dE
dt

= e (vE1 + vE2) . (5.5)

Thus, defining the particle transverse velocity in the field by Eqs. (5.4), from
Eqs. (5.1) and (5.5) we obtain the following integral of motion in the induced
Compton process:

E − c
ω1 − ω2

ω1 + ω2
px = const. (5.6)

The latter together with Eq. (5.4) determines the particle energy in the field

E =
E0

n2
1 − 1

{
n2

1

(
1 − v0

cn1

)
∓
[(

1 − n1
v0

c

)2
− (n2

1 − 1
)(mc2

E0

)2
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×
[
ξ21 + ξ22 + 2ξ1ξ2 cos (ω1 − ω2)

(
t− n1

x

c

)]]1/2
}
. (5.7)

The parameter n1 included in Eq. (5.7) is

n1 =
ω1 + ω2

|ω1 − ω2| , (5.8)

and the parameters ξ1,2 ≡ eE1,2/mcω1,2.
As is seen from Eq. (5.7) due to the effective interaction of the particle

with the counterpropagating waves a slowed traveling wave in vacuum arises.
The parameter n1 denotes the refractive index of this interference wave and
since n1 > 1 (see Eq. (5.8)) the phase velocity of the effective traveling wave
vph = c/n1 < c. Then the expression under the root in Eq. (5.7) evidences
the peculiarity in the interaction dynamics like the induced Cherenkov one
that causes the analogous threshold phenomena of particle “reflection” and
capture by the interference wave in the induced Compton process. Hence,
omitting the same procedure related to bypass of the multivalence and com-
plexity of Eq. (5.7), which has been made in detail for the analogous expres-
sion in the Cherenkov process, we will present the final results for particle
“reflection” and capture by the effective interference wave in the induced
Compton process. The threshold value of the “reflection” phenomenon or the
critical field for nonlinear Compton resonance is

ξcr (ω1,2) ≡ (ξ1 + ξ2)cr =
E0

mc2

∣∣ω1
(
1 − v0

c

)− ω2
(
1 + v0

c

)∣∣
2
√
ω1ω2

. (5.9)

If one knows the longitudinal velocity vx of the particle in the field, then it
is easy to see that ξcr (ω1,2) is the value of the total intensity of counter-
propagating waves at which vx becomes equal to the phase velocity of the
effective interference wave: vx = vph = c/n1 irrespective of the magnitude of
particle initial velocity v0. The latter is the condition of coherency of induced
Compton process

ω1

(
1 − vx

c

)
= ω2

(
1 +

vx

c

)
. (5.10)

Under condition (5.10) the nonlinear resonance in the field of counterpropa-
gating waves of different frequencies occurs and because of induced Compton
radiation/absorption the particle velocity becomes smaller or larger than the
phase velocity of the interference wave and the particle leaves the slowed
effective wave. In the rest frame of the latter the particle swoops on the mo-
tionless barrier (if ξ1+ξ2 > ξcr (ω1,2)) and the elastic reflection occurs. In the
laboratory frame it corresponds to inelastic “reflection” and from Eq. (5.7)
for particle energy after the “reflection” (ξ1,2 → 0 adiabatically at t → +∞)



148 5 Induced Compton and Undulator Processes

we have

E = E0
ω2

1
(
1 − v0

c

)
+ ω2

2
(
1 + v0

c

)
2ω1ω2

. (5.11)

From this equation it follows that the energy of the particle with the initial
velocity v0 = c |ω1 − ω2| / (ω1 + ω2) corresponding to the resonance value of
the induced Compton process does not change after the interaction (E =
E0). For such particle ξcr (ω1,2) = 0, i.e., it cannot enter the field: ξ1 =
ξ2 = 0. The particle with the initial velocity v0 > c |ω1 − ω2| / (ω1 + ω2)
after the “reflection” is decelerated, while at v0 < c |ω1 − ω2| / (ω1 + ω2) it
is accelerated because of direct and inverse induced Compton processes. At
the acceleration the particle absorbs photons from the wave of frequency
ω1 and coherently radiates into the wave of frequency ω2 if ω1 > ω2 and
at the deceleration the inverse process takes place. Hence, at the particle
acceleration the amplification of the wave of a smaller frequency holds, while
at the deceleration the wave of a larger frequency is amplified.

In the case of ω1 = ω2 ≡ ω the refractive index of the interference wave
n1 = ∞ and nonlinear interaction of the particle with the strong standing
wave occurs. It is evident that in this case the process is elastic: E = E0 =
const (see Eq. (5.11)) and for the longitudinal momentum of the particle in
the field we have

px = ±
√
p2
0 −m2c2

(
ξ21 + ξ22 + 2ξ1ξ2 cos

2ω
c
x

)
. (5.12)

From this equation it is seen that at ξ1 +ξ2 > ξcr (ω) = |p0| /mc the standing
wave becomes a potential barrier for the particle and elastic reflection occurs:
the root changes its sign and px = −p0 (if ξ1 + ξ2 < ξcr (ω) we have px = p0).

Consider now the nonlinear dynamics of a particle with the arbitrary
direction of velocity v0 initially situated in the field of counterpropagating
waves (internal particle). It is clear that at the wave intensities ξ1 + ξ2 >
ξcr (ω1,2) when the “reflection” of an external particle from the slowed trav-
eling wave holds, an internal particle under the specified conditions may be
captured by the such slowed wave. Consequently, one needs to define the con-
ditions for the particle capture by the effective field in the induced Compton
process.

Let a particle with velocity v0 be situated in the initial phases φ10 =
ω1(t0 −x0/c) and φ20 = ω2(t0 +x0/c) of linearly polarized along the axis OY
counterpropagating waves (in Eq. (5.3) E1z = E2z = 0, so the coordinate z is
free and one can assume v0z = 0). The solution of Eqs. (5.1) and (5.2) under
these initial conditions for the particle momentum in the field gives

px = p0x +
n2

1

n2
1 − 1

E0

c

{
1 − n1

v0x

c
∓
[(

1 − n1
v0x

c

)2
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− (n2
1 − 1

)(mc2
E0

)2 [1
2
(
ξ21 + ξ22

)
+ (ξ1 sinφ10 + ξ2 sinφ20)

(
ξ1 sinφ10

+ξ2 sinφ20 − 2
P0y

mc

)
+ ξ1ξ2 cos (φ1 − φ2)

]]1/2
}
, (5.13)

py = p0y +mcξ1 (sinφ1 − sinφ10) +mcξ2 (sinφ2 − sinφ20) , (5.14)

where

φ1 − φ2 = (ω1 − ω2)
(
t− n1

x

c

)
.

In the derivation of Eq. (5.13) the averaging over fast oscillations of separate
waves with respect to the interference wave (in the intrinsic frame of which
only a static magnetic field acts on the particle) in Eqs. (5.1) and (5.5)
has been made. Physically it corresponds to time averaging of noncoherent
interaction with separate waves in relation to coherent interaction due to
induced Compton resonance. In this approximation the integral of motion
(5.6) remains applicable and with Eq. (5.13) it determines the energy of the
particle at the coherent interaction with the counterpropagating waves of
different frequencies.

The equilibrated phases for the particle capture in this process correspond
to extrema of the interference wave and the motion of the particle is stable
in the phases

(φ1 − φ2)s = (ω1 − ω2)
(
t− n1

x

c

)
s

= π (2k + 1) ; k = 0,±1, . . . . (5.15)

Equation (5.15) shows that the particle situated in the equilibrated phases
moves with the velocity

vxs = c (ω1 − ω2) / (ω1 + ω2) .

Let the particle initial longitudinal velocity be equilibrated: v0x = vxs.
If p0y = 0 as well, then the analysis of Eq. (5.13) shows that the capture
of such particle is possible at ξ1 = ξ2 (eE1/ω1 = eE2/ω2, i.e., the waves
should transfer to the particle equal momenta) and (φ1 − φ2)0 = π (2k + 1) =
(φ1 − φ2)s. From Eq. (5.14) for equilibrated transverse momentum in this
case we have pys = p0y = 0. If v0x = vxs+ �v and p0y = 0, then we have the
following condition for the particle capture:

|�v| < c

n1

mc2

E0
ξ

√
(n2

1 − 1)
[
2 + (sinφ10 + sinφ20)

2
]
, (5.16)
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from which one can define the tolerance for divergences of initial phases and
velocity of a nonequilibrium particle. On the other hand, condition (5.16) de-
fines the threshold value of the wave intensities for the capture of a nonequi-
librium particle, which coincides with the critical intensity for the “reflection”
of an external particle (5.9) at ξ1 = ξ2 ≡ ξ and φ10 = φ20 = 0 (coefficient

√
2

arises because of different polarization of the waves).
Now let v0x = vxs but p0y �= 0. If at that (φ1 − φ2)0 �= π (2k + 1), then

the motion of the particle will be stable at the condition

p0y (sinφ10 + sinφ20) > 0;
|p0y|
mcξ

> 1. (5.17)

The condition for the capture in this case is |p0y| /mcξ < 3/2, which with the
condition of stability (5.17) strictly restricts the transverse momentum of the
particle. Meanwhile the conditions of stability and capture in the minimums
of the interference wave (φ1 − φ2)0 = π (2k + 1) are automatically satisfied.
Hence, these phases are equilibrated at the arbitrary transverse momentum
of the particle (p0y = pys).

If the particle initial velocity differs from the equilibrated one (v0x �= vxs)
and p0y �= 0, the tolerance for the capture of a nonequilibrium particle is
defined analogously to condition (5.16).

5.2 Interaction of Charged Particles with Superstrong
Wave in a Wiggler

Consider the nonlinear dynamics of a charged particle at the interaction with
a strong EM wave in a magnetic undulator. Let a particle with an initial
velocity v0 = v0x enter into a magnetic undulator with circularly polarized
field

H(x) =
{

0,−H cos
2π
l
x,H sin

2π
l
x

}
(5.18)

(l is the space period or step of an undulator) along the axis of which prop-
agates a plane monochromatic EM wave of circular polarization with the
electric field strength

E(x, t) =
{

0, E0 sinω0(t− x

c
), E0 cosω0(t− x

c
)
}
. (5.19)

The equation of motion of the particle in the fields (5.18) and (5.19) in
components is written as

dpx

dt
=
e

c
E0

[
vy sinω0(t− x

c
) + vz cosω0(t− x

c
)
]
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+
e

c
H

[
vy sin

2π
l
x+ vz cos

2π
l
x

]
, (5.20)

dpy

dt
= eE0

(
1 − vx

c

)
sinω0(t− x

c
) − e

vx

c
H sin

2π
l
x,

dpz

dt
= eE0

(
1 − vx

c

)
cosω0(t− x

c
) − e

vx

c
H cos

2π
l
x. (5.21)

Integration of Eqs. (5.21) under the assumed initial conditions (at t = −∞
the particle has only longitudinal velocity, i.e., p0y = p0z = 0) gives

py = −eE0

ω0
cosω0(t− x

c
) +

elH

2πc
cos

2π
l
x,

pz =
eE0

ω0
sinω0(t− x

c
) − elH

2πc
sin

2π
l
x. (5.22)

The integration of Eq. (5.20) is made analogously to the integration of Eq.
(5.1). Using the equation for the particle energy exchange in the field

dE
dt

= eE0

[
vy sinω0(t− x

c
) + vz cosω0(t− x

c
)
]
, (5.23)

with the help of Eqs. (5.1), (5.22), and (5.23) we obtain the integral of motion
in the induced undulator process

E− c

1 + λ
l

px = const. (5.24)

Equations (5.22) and (5.24) determine the particle energy

E =
E0

n2
2 − 1

{
n2

2

(
1 − v0

cn2

)
∓
[(

1 − n2
v0

c

)2
− (n2

2 − 1
)(mc2

E0

)2

×
[
ξ20 + ξ2H − 2ξ0ξH cosω0(t− n2

x

c
)
]]1/2}

(5.25)

in the field of a strong EM wave in the magnetic undulator, which is charac-
terized by relativistic parameter

ξH =
elH

2πmc2
(5.26)
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(for large magnitudes of undulator field strength H and space period l when
ξH > 1 such undulator is called a wiggler).

From Eq. (5.25) it follows that at the particle–wave nonlinear resonance
interaction in the undulator an effective slowed traveling wave is formed as
in the induced Compton process. The parameter

n2 = 1 +
λ

l
(5.27)

is the refractive index of this slowed wave, which causes the analogous thresh-
old phenomenon of particle “reflection”% in the induced undulator process.
The effective critical field at which the nonlinear resonance and then the
particle “reflection” take place in the undulator, is

ξcr

(
λ

l

)
≡ (ξ0 + ξH)cr =

∣∣1 − (1 + λ
l

) v0
c

∣∣√
2λ
l

(
1 + λ

2l

) E0

mc2
. (5.28)

At this value of the resulting field the longitudinal velocity of the particle vx

reaches the resonant value in the field at which the condition of coherency in
the undulator

2π
l

vx = ω0

(
1 − vx

c

)
(5.29)

is satisfied. The latter has a simple physical explanation in the intrinsic frame
of the particle. In this frame of reference the static magnetic field (5.18)
becomes a traveling EM wave with the frequency

ω =
2π
l

vx√
1 − v2

x

c2

and phase velocity vph = vx. For coherent interaction process this frequency
must coincide with the Doppler-shifted frequency of stimulated wave.

The energy of the particle after the “reflection” (in Eq. (5.25) ξ0 = ξH = 0
at the sign “+” before the root) is

E = E0

[
1 +

1 − (1 + λ
l

) v0
c

λ
l

(
1 + λ

2l

) ]
. (5.30)

From this equation it follows that the particle with the initial velocity v0 <
c/(1 + λ/l) after the “reflection” accelerates, while at v0 > c/(1 + λ/l) it
decelerates because of induced undulator radiation.
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If a particle is initially situated in the field, under the certain conditions
it may be captured by the slowed-in-the-undulator effective wave. We shall
define those conditions.

Let a particle with the velocity v0 be situated in the initial phases φ10 =
ω0(t0−x0/c) and φ20 = 2πx0/l of a linearly polarized EM wave and undulator
field

Ey(x, t) = −E0 cosω0(t− x

c
); Hz(x) = H cos

2π
l
x. (5.31)

The solution of Eqs. (5.1) and (5.2) under these initial conditions for the
particle momentum in the field gives

px = p0x +
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∓
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}
, (5.32)

py = p0y +mcξ0

[
sinω0(t− x

c
) − sinφ10

]

+mcξH

(
sin

2π
l
x− sinφ20

)
. (5.33)

Note that at the derivation of Eq. (5.32) in Eqs. (5.20) and (5.23) the time
averaging of noncoherent interaction with respect to coherent interaction has
been made. In this approximation the integral of motion (5.24) remains ap-
plicable and with Eq. (5.32) determines the energy of the particle at the
coherent interaction with the strong EM wave in a wiggler.

The equilibrated phases for the particle capture correspond to extrema
of slowed-in-the-undulator effective wave and the motion of the particle is
stable in the phases

φs = ω0

[
t−
(

1 +
λ

l

)
x

c

]
s

= π (2k + 1) ; k = 0,±1, . . . . (5.34)

From Eq. (5.34) one can define the particle velocity in the equilibrated phase:
vxs = c/(1 + λ/l). If the initial velocity of the particle v0x = vxs and p0y =
0 the capture of such particle is possible at ξ0 = ξH that is λE0 = lH,
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i.e., the strong wave and wiggler field should transfer to the particle equal
momenta and φ10 − φ20 = φs (at that pys = 0). If the initial velocity of
the particle differs from the equilibrated one (v0x �= vxs) and p0y = 0 the
tolerance for the capture of nonequilibrium particles is defined analogously
to condition (5.16) in the induced Compton process. If p0y �= 0, then as in the
case of counterpropagating waves the phases φ0 = π (2k + 1) automatically
are equilibrated for the arbitrary p0y (p0y = pys). In the other cases the
conditions for particle capture by the effective slowed wave in the regime of
stable motion in the wiggler are defined as for those in the induced Compton
interaction.

The “reflection” phenomenon of charged particles from a plane EM wave,
as was shown in the induced Cherenkov process, may be used for monochrom-
atization of the particle beams. Note that the considered vacuum versions of
this phenomenon are more preferable for this goal taking into account the
influence of negative effects of the multiple scattering and ionization losses
in a medium. On the other hand, the refractive index of the effective slowed
waves in vacuum n1 or n2 in corresponding induced Compton and undulator
processes may be varied choosing the appropriate frequencies of counter-
propagating waves or wiggler step. In particular, for monochromatization of
particle beams with moderate or low energies via the induced Cherenkov pro-
cess one needs a refractive index of a medium n0 − 1 ∼ 1 that corresponds
to solid states. Meanwhile, such values of effective refractive index may be
reached in the induced Compton process at the frequencies ω1 ∼ ω2 of the
counterpropagating waves. However, we will not consider here the possibility
of particle beam monochromatization on the basis of the vacuum versions
of “reflection” phenomenon since the principle of conversion of energetic or
angular spreads is the same. To study the subject in more detail we refer the
reader to original papers listed in the bibliography of this chapter.

5.3 Inelastic Diffraction Scattering on a Moving Phase
Lattice

Consider now the quantum dynamics of a particle coherent interaction with
the counterpropagating waves of different frequencies in the induced Compton
process. Neglecting the spin interaction (with the same justification that has
been made in the above-considered processes) we will derive from the Klein–
Gordon equation in the field of quasimonochromatic waves with the vector
potentials A1(t− x/c) and A2(t+ x/c) which is written as

−�
2 ∂

2Ψ

∂t2
=
{

−�
2c2�2 +m2c4 + e2

[
A1(t− x

c
) + A2(t+

x

c
)
]2
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+2ie�c
[
A1(t− x

c
) + A2(t+

x

c
)
]
�
}
Ψ. (5.35)

As we saw in the classical consideration of the dynamics of the induced Comp-
ton process the effective interaction occurs with the slowed interference wave.
At the intensities of the waves ξ1 + ξ2 < ξcr (ω1,2) when the particle can pen-
etrate into the interference wave the latter will stand for a phase lattice for
the particle (at the satisfaction of the condition of coherency (5.10)) and the
coherent scattering will occur as for the diffraction effect on a crystal lattice.
However, in contrast to diffraction on a motionless lattice (elastic scattering)
the diffraction scattering on the moving phase lattice has inelastic charac-
ter. To determine this quantum effect we will solve Eq. (5.35) in the eikonal
approximation by the particle wave function (3.91) corresponding to multi-
photon processes in strong fields. In accordance with the latter the solution
of Eq. (5.35) for the waves of linear polarizations (along the axis OY )

A1(t− x/c) = A1(t) cosω1(t− x/c),

A2(t+ x/c) = A2(t) cosω2(t+ x/c)

we look for in the form Eq. (3.91) and for the slowly varying function f(x, t)
(see Eq. (3.92)) we obtain the following equation:
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+
iecp0y
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c
) +A2(t) cosω2(t+

x

c
)
]}
f(x, t). (5.36)

As is seen from Eq. (5.36) at the interaction with the counterpropagating
waves of different frequencies two interference waves are formed — third
and fourth terms on the right-hand side — which propagate with the phase
velocities

vph = c
ω1 + ω2

|ω1 − ω2| > c

and
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vph = c
|ω1 − ω2|
ω1 + ω2

< c,

respectively. It is clear that the interaction of the particle with the wave prop-
agating with the phase velocity vph > c, as well as with the incident separate
waves propagating in the vacuum with the phase velocity c (remaining four
terms on the right-hand side of Eq. (5.36)), cannot be coherent. These terms
correspond to noncoherent scattering of the particle in the separate wave
fields which vanish after the interaction. Coherent interaction in this process
occurs with the slowed interference wave (fourth term), in accordance with
the classical results (see Eqs. (5.8) and (5.10)).

For the integration of Eq. (5.36) we will pass to characteristic coordinates
τ ′ = t− x/v0x and η′ = t. Then, if one directs the particle velocity v0 at the
angle ϑ0 with respect to the waves’ propagation axis providing the condition
of coherency of the induced Compton process (resonance between the waves’
Doppler-shifted frequencies) for the free-particle velocity

v0 cosϑ0 = c
|ω1 − ω2|
ω1 + ω2

, (5.37)

the traveling interference wave in this frame of coordinates becomes a stand-
ing phase lattice over the coordinate τ ′ and diffraction scattering of the par-
ticle occurs. From Eq. (5.36) for the amplitude of the scattered particle wave
function we obtain

f(τ ′) = exp
{

− ie2

2�E0
cos(ω1 − ω2)τ ′

∫ η2

η1

A1(η′)A2(η′)dη′
}
, (5.38)

where η1 and η2 are the moments of the particle entrance into the field and
exit, respectively.

If one expands the exponential (5.38) into a series by Bessel functions and
returns again to coordinates x, t with the help of Eq. (3.91) for the total wave
function we will have

Ψ (r, t) =
√

N0

2E0
exp
[
i

�
(p0 sinϑ0) y

] +∞∑
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(−i)sJs(α)
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[
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�
[E0 + s� (ω1 − ω2)] t

}
, (5.39)

where the argument of the Bessel function

α =
e2c2

2�E0ω1ω2

∫ t2

t1

E1(η′)E2(η′)dη′ (5.40)
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(E1 and E2 are the amplitudes of the waves’ electric field strengths).
Equation (5.39) shows that the diffraction scattering of the particles in

the field of counterpropagating waves of different frequencies is inelastic. Due
to the induced Compton effect the particle absorbs s photons from the one
wave and coherently radiates s photons into the other wave and vice versa
(resonance between the Doppler-shifted frequencies in the intrinsic frame of
the particle), i.e., the conservation of the number of photons in the induced
Compton process takes place in contrast to spontaneous Compton effect in
the strong wave field where after the multiphoton absorption a single photon
is emitted. However, because of the different photon energies the scattering
process is inelastic. From Eq. (5.39) for the change of the particle energy-
momentum we have

∆E = s� (ω1 − ω2) ; ∆px = s� (ω1 + ω2) /c ; ∆py = 0; s = 0,±1, . . . .
(5.41)

The probability of inelastic diffraction scattering is

Ws = J2
s

[
e2c2

2�ω1ω2E0

∫ t2

t1

E1(η′)E2(η′)dη′
]
. (5.42)

According to the condition of eikonal approximation (3.92): |∆p| << p0 and
|∆E|<< E0 from Eq. (5.41) we have the condition of applicability of the
obtained results: |s| � (ω1 + ω2) /c << p0.

In the case of monochromatic waves

Ws = J2
s

(
e2c2E1E2t0
2�E0ω1ω2

)
, (5.43)

where t0 = t2 − t1 is the time duration of the particle motion in the in-
terference wave (lc = v0t0 cosϑ0 is the coherent length of the process). For
the actual values of the parameters including in Eq. (5.43) the argument
of the Bessel function α >> 1, consequently the most probable number of
absorbed/radiated photons

s 
 1
2
ξ1ξ2

mc2

E0

mc2

�
t0. (5.44)

The energetic width of the main diffraction maximums

Γ (s) 
 s1/3
� (ω1 − ω2)

and since s >> 1 then

Γ (s) << |E − E0| .
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The scattering angles of s-photon diffraction on the counterpropagating
waves are

tanϑs =
s� (ω1 + ω2) sinϑ0

cp0 + s� (ω1 + ω2) cosϑ0
; s = 0,±1, . . . . (5.45)

As in the Cherenkov process at the inelastic diffraction there is an asymmetry
in the angular distribution of the scattered particle: |ϑ−s| > ϑs, i.e., the main
diffraction maximums are situated at the different angles with respect to the
direction of particle initial motion. However, since |s| � (ω1 + ω2) /c << p0
this asymmetry can be neglected, i.e., |ϑ−s| 
 ϑs and the scattering angles
of the main diffraction maximums will be determined by the equation

ϑ±s = ±s� (ω1 + ω2)
cp0

sinϑ0. (5.46)

In the case of counterpropagating waves of equal frequencies (ω1 = ω2 ≡
ω) the phase velocity of the interference wave vph = 0 and the coherent scat-
tering on the motionless phase lattice takes place, which is elastic:∆E = 0 and
∆px = 2s�ω/c. This is the known Kapitza–Dirac effect for electron diffraction
on a standing wave (in the one-photon approximation for the weak waves). As
follows from Eq. (5.37) the coherent scattering in this case is possible at the
incident angle ϑ0 = π/2, i.e., if the particle velocity is perpendicular to the
axis of waves’ propagation, to exclude the Doppler shift of waves frequencies
because of its counterpropagation (a longitudinal component of the particle
velocity will result in different Doppler shifts of equal laboratory frequencies
because of different wave vectors k and −k of counterpropagating waves and,
consequently, will violate the resonance between the waves).

5.4 Inelastic Diffraction Scattering on a Traveling Wave
in an Undulator

Charged particles diffraction scattering is also possible on a plane EM wave
propagating in vacuum if the interaction proceeds in an undulator. As the
diffraction effect is the result of particle coherent interaction with the periodic
wave field the effective field in the undulator should be smaller than the
threshold value of “reflection” phenomenon: ξ0 + ξH < ξcr (λ/l) (to prohibit
the nonlinear resonance in the field at which the periodic EM field becomes
a potential barrier for the particle and coherent interaction with the periodic
wave field impossible). Under this condition we will solve the relativistic
quantum equation of motion
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∂t2
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+2ie�c
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A1(t− x
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) + A2(x)

]
�
}
Ψ, (5.47)

where A1(t − x/c) is the vector potential of the quasimonochromatic EM
wave and A2(x) is the vector potential of the undulator magnetic field. For
the linear undulator

Hz(x) = H cos
2π
l
x

the vector potential will be described by the equation

A2y(x) =
lH

2π
sin

2π
l
x,

and correspondingly the EM wave will be assumed linearly polarized along
the axis OY

A1y(t− x/c) = A(t) sinω0(t− x/c).

To determine the multiphoton diffraction effect Eq. (5.47) will be solved again
in the eikonal approximation. In accordance with the latter we present the
solution of Eq. (5.47) in the form of Eq. (3.91). Then taking into account the
condition (3.92) for the slowly varying function f(x, t) we obtain the equation

∂f

∂t
+ v0x

∂f

∂x
=
{

− ie2

2�E0

[
A2(t) sin2 ω0(t− x

c
) +

l2H2

4π2 sin2 2π
l
x

+
lH

2π
A(t) cosω0

(
t−
(

1 +
λ

l

)
x

c

)
− lH

2π
A(t) cosω0

(
t−
(

1 − λ

l

)
x

c

)]

+
iecp0y

�E0

[
A(t) sinω0(t− x

c
) +

lH

2π
sin

2π
l
x

]}
f(x, t). (5.48)

As is seen from Eq. (5.48) under the induced interaction in the undulator,
traveling waves propagating with the phase velocities vph = c/ (1 + λ/l) < c
and vph = c/ (1 − λ/l) > c arise. We will not repeat here the analogous
interpretation of the terms in Eq. (5.48) which correspond to interaction of
the particle with the waves propagating with the phase velocities vph � c that
has been done for the above-considered induced Compton process. Note only
that coherent interaction in this process occurs with the slowed interference
wave propagating with the phase velocity vph = c/ (1 + λ/l) < c (third term
on the right-hand side of Eq. (5.48)), in accordance with the classical results
for the induced interaction in the magnetic undulator (see Eqs. (5.27) and
(5.29)).
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The integration of Eq. (5.48) is simple if we pass to characteristic coor-
dinates τ ′ = t − x/v0x and η′ = t. Then, if one directs the particle velocity
v0 at the angle ϑ0 with respect to the wave propagation direction (undula-
tor axis) thus providing the condition of coherency in the undulator for the
free-particle velocity

v0 cosϑ0 =
c

1 + λ
l

, (5.49)

the slowed traveling wave in this frame of coordinates becomes a motionless
phase lattice (over the coordinate τ ′) and diffraction scattering of the particle
occurs. For the amplitude of the scattered particle wave function we obtain

f(τ ′) = exp
{

− ie2lH

4π�E0
cosω0τ

′
∫ η2

η1

A(η′)dη′
}
, (5.50)

where η1 and η2 are the moments of the particle entrance into the undulator
and exit, respectively.

Expanding the exponential in Eq. (5.50) into a series by Bessel functions
with the help of Eq. (3.91) for the final wave function of the scattered particle
we will have
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where the argument of the Bessel function

α =
e2lH

4π�E0

∫ t2

t1

A(η′)dη′. (5.52)

The expression for the particle wave function (5.51) shows that the initial
plane wave of the free particle as a result of the induced undulator effect
is expanded into the envelope of plane waves with all possible numbers of
absorbed and emitted photons — the inelastic diffraction scattering occurs.
The energy and momentum of the particle after the scattering are

E = E0 + s�ω0; px = p0 cosϑ0 +
(

1 +
λ

l

)
s�ω0

c
;

py = const; s = 0,±1, . . . . (5.53)
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According to the condition of eikonal approximation (3.92) s�ω0 << E0.
The probability of inelastic diffraction scattering in the undulator is

Ws = J2
s

[
e2lH

4π�E0

∫ t2

t1

A(η′)dη′
]
. (5.54)

If the incident strong EM wave is monochromatic, the probability of this
process is

Ws = J2
s

(
e2cE0lH

4π�ω0E0
t0

)
, (5.55)

where t0 = t2−t1 is the time duration of the particle motion in the undulator,
and E0 is the amplitude of the electric field strength of stimulating wave.

For the actual values of the parameters the argument of the Bessel func-
tion α >> 1, consequently the inelastic diffraction scattering in the undulator
is essentially multiphoton as in the Cherenkov and Compton processes. The
main diffraction maximums correspond to the most probable number of ab-
sorbed/radiated photons
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t0 (5.56)

with the energetic width Γ (s) 
 s1/3
�ω0.

The scattering angles of s-photon diffraction in the undulator are

tanϑs =
s�ω0
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)
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; s = 0,±1, . . . . (5.57)

The main diffraction maximums are situated at the angles (taking into ac-
count the condition of applied eikonal approximation)

ϑ±s = ±
(
1 + λ

l

)
s�ω0

cp0
sinϑ0, (5.58)

with respect to the direction of the particle initial motion.

5.5 Quantum Modulation of Particle Beam in Induced
Compton Process

Consider the effect of a particle beam quantum modulation at the interac-
tion with the counterpropagating waves of different frequencies and intensities
smaller than the threshold value for nonlinear Compton resonance or the crit-
ical value of the particle “reflection” phenomenon (5.9) (since the quantum
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modulation of the particle state is the result of coherent interaction with
the periodic wave field, while at values larger than the critical one the latter
becomes a potential barrier for the particle).

Neglecting the spin interaction the quantum equation of motion (5.35) for
the plane waves of circular polarization
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may be presented in the form
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Ψ. (5.59)

If the initial velocity of the particle is directed along the axis of wave propa-
gation (p0⊥ = 0) the noncoherent interaction with the separate waves ∼ A1
and A2 vanishes and we have the equation

�
2c2∆Ψ − �

2 ∂
2Ψ

∂t2
=
{
e2
(
A2

1 +A2
2
)

+m2c4

+2e2A1A2 cos (ω1 − ω2)
(
t− ω1 + ω2

ω1 − ω2

x

c

)}
Ψ, (5.60)

which describes the coherent interaction with the slowed interference wave of
frequency ω1 − ω2 (corresponding to Compton resonance between the coun-
terpropagating waves) and constant renormalization of the particle mass in
the field because of the intensity effect of strong waves ∼ A2

1 +A2
2. To deter-

mine the effect of quantum modulation at the harmonics of the fundamental
frequency ω1 −ω2 the problem will be solved in the approximation of pertur-
bation theory (besides, the wave intensities should be smaller than the critical
value in the induced Compton process). It is found this renormalization in
the field is rather small and since it vanishes after the interaction as well,
we will omit this term. Then one needs to take into account the quantum
recoil which has been vanished by consideration of the diffraction effect on
the basis of eikonal-type wave function, when the second-order derivatives of
the wave function have been neglected. Hence, we will keep the second-order
derivatives in Eq. (5.59) and solve it within perturbation theory by the wave
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function. Then the solution of Eq. (5.60) is sought by the series of harmonics
of the fundamental frequency ω1 − ω2:

Ψ(r, t) =
√

N0

2E0
exp
[
i

�
(p0x− E0t)

]

×
+∞∑

s=−∞
Ψs exp

[
is(ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)]
. (5.61)

(for N0 particles per unit volume) corresponding to s-photon absorption by
the particle from the wave of frequency ω2 and s-photon coherent radiation
into the wave of frequency ω1 and vice-versa (induced Compton effect with
the conservation of the number of interacting photons). Substituting the wave
function (5.61) into Eq. (5.60) we obtain the following recurrent equation for
the amplitudes Ψs:[

4�
2s2ω1ω2 + 2E0s�

(
ω1 − ω2 − (ω1 + ω2)

v0

c

)]
Ψs

= −e2A1A2 [Ψs−1 + Ψs+1] . (5.62)

Equation (5.62) will be solved in the approximation of perturbation theory
by the wave function:

|Ψ±1| << |Ψ0| ; |Ψ±2| << |Ψ±1| , . . . .

Thus, for the amplitude of the particles’ wave function corresponding to ab-
sorption of s photons of frequency ω2 and induced radiation of s photons of
frequency ω1 we obtain

Ψs =
(−1)s

s!

(
e2A1A2

2�E0

)s s∏
s1=1

1
ω1 − ω2 − (ω1 + ω2) v0

c + 2s1 �ω1ω2
E0

, (5.63)

and for the inverse process (absorption of s photons of frequency ω1 and
induced radiation of s photons of frequency ω2):

Ψ−s =
1
s!

(
e2A1A2

2�E0

)s s∏
s1=1

1
ω1 − ω2 − (ω1 + ω2) v0

c − 2s1 �ω1ω2
E0

. (5.64)

Hence, for the total wave function of the particles after the interaction we
have the equation
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Ψ(r, t) =
√

N0

2E0

{
1 +

∞∑
s=1

1
s!

(
e2A1A2

2�E0

)s

×
⎡⎣ s∏

s1=1

(−1)s exp
[
is(ω1 − ω2)

(
t− ω1+ω2

ω1−ω2

x
c

)]
ω1 − ω2 − (ω1 + ω2) v0

c + 2s1 �ω1ω2
E0

+
s∏

s1=1

exp
[
−is(ω1 − ω2)

(
t− ω1+ω2

ω1−ω2

x
c

)]
ω1 − ω2 − (ω1 + ω2) v0

c − 2s1 �ω1ω2
E0

⎤⎦⎫⎬⎭ e
i
�
(p0x−E0t). (5.65)

Here the dimensionless parameter of one-photon absorption-radiation is the
small parameter of applied perturbation theory

e2A1A2

2�E0

∣∣∣ω1 − ω2 − (ω1 + ω2) v0
c ± 2�ω1ω2

E0

∣∣∣ << 1. (5.66)

The denominators in Eq. (5.65) become zero at the fulfillment of exact reso-
nance (with the quantum recoil 2�ω1ω2/ E0) corresponding to the conserva-
tion law for the induced Compton process

ω1 = ω2
1 + v0

c

1 − v0
c ± 2s�ω2

E0

. (5.67)

In this case, perturbation theory is not applicable and consideration must be
given to secular perturbation theory.

Corresponding to wave function (5.65) the current density of the particles
after the interaction will be expressed by the equation

j(t, x) = j0

{
1 + 2

∞∑
s=1

1
s!

(
e2A1A2

2�E0

)s

×
[

s∏
s1=1

(−1)s

ω1 − ω2 − (ω1 + ω2) v0
c + 2s1 �ω1ω2

E0

+
s∏

s1=1

1
ω1 − ω2 − (ω1 + ω2) v0

c − 2s1 �ω1ω2
E0

]
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× cos
[
s(ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)]

+2
∞∑

s=1

∞∑
s′=1

(−1)s

s!s′!

(
e2A1A2

2�E0

)s+s′

cos
[
(s+ s′) (ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)]

×
s∏

s1=1

s′∏
s2=1

1
ω1 − ω2 − (ω1 + ω2) v0

c + 2s1 �ω1ω2
E0

× 1
ω1 − ω2 − (ω1 + ω2) v0

c − 2s2 �ω1ω2
E0

}
, (5.68)

where j0 = const is the initial current density of the particles.
We present in explicit form the expression of modulated current density

of the particles for the first three harmonics

j(t, x) = j0

{
1 +B (ω1,2) cos (ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)

+
3
4
B2 (ω1,2) cos 2 (ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)

+
5
8
B3 (ω1,2) cos 3 (ω1 − ω2)

(
t− ω1 + ω2

ω1 − ω2

x

c

)
+ · · · , (5.69)

where the modulation depth at the fundamental frequency ω1 − ω2

B (ω1,2) =
ξ1ξ2

ξ2cr (ω1,2)
(5.70)

is represented by the parameter of critical field (5.9) in the induced Compton
process. As was mentioned above for quantum modulation of the particle
state at the harmonics of interference wave the intensity of the latter should
be smaller than the threshold value of nonlinear resonance in the field or the
critical value in the induced Compton process. Equation (5.70) shows that
this requirement (ξ1ξ2 < ξ2cr (ω1,2)) holds in any case since in accordance
with perturbation theory (condition (5.66)) ξ1ξ2 << ξ2cr (ω1,2). Note that
for the representation of modulation depth in the form of Eq. (5.70) it was
assumed that the quantum recoil is smaller than the Compton resonance
width because of nonmonochromaticity of actual particle beams.
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5.6 Quantum Modulation of Particle Beam in the
Undulator

If in the induced Compton process the particles’ quantum modulation takes
place at the difference of frequencies (and harmonics) of two waves, the in-
duced interaction in the undulator leads to particles’ quantum modulation
at the stimulating wave frequency and its harmonics. The latter is similar to
Cherenkov modulation, but it is important that in this case the modulation
takes place in the vacuum.

The quantum equation of motion of the particle (5.47) in the undulator
with circular polarization of the magnetic field in the presence of a plane
monochromatic EM wave of circular polarization with vector potentials re-
spectively

A2(x) =
{

0,− lH

2π
cos

2π
l
x,
lH

2π
sin

2π
l
x

}
,

A1(x, t) =
{

0, A0 cosω0(t− x

c
),−A0 sinω0(t− x

c
)
}

is written as

�
2c2∆Ψ − �

2 ∂
2Ψ

∂t2
=
{
e2
(
A2

0 +
l2H2

4π2

)
+m2c4 + 2ie�c

[
A1

(
t− x

c

)

+A2 (x)
]
� − e2

lH

π
A0 cosω0

(
t−
(

1 +
λ

l

)
x

c

)}
Ψ. (5.71)

The coherent interaction in this process which leads to particles’ quantum
modulation proceeds with the effective slowed wave ∼ HA0 (last term on the
right-hand side of Eq. (5.71)). If the free-particle initial velocity is directed
along the undulator axis (p0⊥ = 0) the noncoherent interaction with the EM
wave ∼ A1 and magnetic field of the undulator ∼ A2 vanishes and we have
the equation

�
2c2∆Ψ − �

2 ∂
2Ψ

∂t2
=
{
e2
(
A2

0 +
l2H2

4π2

)
+m2c4

−e2 lH
π
A0 cosω0

(
t−
(

1 +
λ

l

)
x

c

)}
Ψ, (5.72)

which describes the particle coherent interaction with the effective slowed
wave in the undulator and constant renormalization of the particle mass in
the field due to the intensity effect of strong wave ∼ A2

0 and powerful magnetic
field of the wiggler ∼ H2l2. With the same justification made at the solution
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of this problem in the induced Compton process these constant terms will be
neglected and the solution of Eq. (5.72) will be sought in the form

Ψ(r, t) =
√

N0

2E0
exp
[
i

�
(p0x− E0t)

]

×
+∞∑

s=−∞
Ψs exp

[
isω0

(
t−
(

1 +
λ

l

)
x

c

)]
. (5.73)

Substituting the wave function (5.73) into Eq. (5.72) we obtain the recurrent
equation for the amplitudes Ψs corresponding to s-photon induced absorption
by the particle from the effective slowed wave (s < 0) and induced undulator
radiation (s > 0)[

2πc�
lE0

(
1 +

λ

2l

)
s2 + s

(
1 −
(

1 +
λ

l

)
v0

c

)]
Ψs

=
e2lHA0

4πE0�ω0
[Ψs−1 + Ψs+1] , (5.74)

which will be solved in the approximation of perturbation theory by the wave
function:

|Ψ±1| << |Ψ0| ; |Ψ±2| << |Ψ±1| , . . . .

For the amplitude of the particle wave function corresponding to s-photon
induced radiation we obtain

Ψs =
1
s!

(
e2lHA0

4πE0�ω0

)s s∏
s1=1

1
1 − (1 + λ

l

) v0
c + 2s1 πc�

lE0

(
1 + λ

2l

) , (5.75)

and for s-photon absorption

Ψ−s =
(−1)s

s!

(
e2lHA0

4πE0�ω0

)s s∏
s1=1

1
1 − (1 + λ

l

) v0
c − 2s1 πc�

lE0

(
1 + λ

2l

) . (5.76)

Hence, for total wave function of the particles after the interaction we have

Ψ(r, t) =
√

N0

2E0

{
1 +

∞∑
s=1

1
s!

(
e2lHA0

4πE0�ω0

)s
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×
[

s∏
s1=1

exp
[
isω0

(
t− (1 + λ

l

)
x
c

)]
1 − (1 + λ

l

) v0
c + 2s1 πc�

lE0

(
1 + λ

2l

)

+
s∏

s1=1

(−1)s exp
[−isω0

(
t− (1 + λ

l

)
x
c

)]
1 − (1 + λ

l

) v0
c − 2s1 πc�

lE0

(
1 + λ

2l

) ]} e i
�
(p0x−E0t). (5.77)

The small parameter of applied perturbation theory (dimensionless parame-
ter of induced one-photon absorption-radiation in the undulator) is

e2lHA0

4πE0�ω0

∣∣∣1 − (1 + λ
l

) v0
c ± 2πc�

lE0

(
1 + λ

2l

)∣∣∣ << 1. (5.78)

The denominators in Eq. (5.77) become zero at the fulfillment of exact reso-
nance (with the quantum recoil) between the EM wave and undulator fields

λ

l
=

c

v0
− 1 ± 2s

π�c2

lE0v0

(
1 +

λ

2l

)
, (5.79)

for which the perturbation theory is not applicable and the consideration
should be made in the scope of secular perturbation theory.

With the help of the wave function (5.77) for the current density of the
particles after the interaction we obtain the equation

j(t, x) = j0

{
1 + 2

∞∑
s=1

1
s!

(
e2lHA0

4πE0�ω0

)s

×
[

s∏
s1=1

1
1 − (1 + λ

l

) v0
c + 2s1 πc�

lE0

(
1 + λ

2l

)

+
s∏

s1=1

(−1)s

1 − (1 + λ
l

) v0
c − 2s1 πc�

lE0

(
1 + λ

2l

)]× cos
[
sω0

(
t−
(

1 +
λ

l

)
x

c

)]

+2
∞∑

s=1

∞∑
s′=1

(−1)s′

s!s′!

(
e2lHA0

4πE0�ω0

)s+s′

cos
[
(s+ s′)ω0

(
t−
(

1 +
λ

l

)
x

c

)]

×
s∏

s1=1

s′∏
s2=1

1
1 − (1 + λ

l

) v0
c + 2s1 πc�

lE0

(
1 + λ

2l

)
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× 1
1 − (1 + λ

l

) v0
c − 2s2 πc�

lE0

(
1 + λ

2l

)} . (5.80)

From Eq. (5.80) for the modulation at the fundamental frequency of the
stimulating wave we have

j1(t, x) = j0

{
1 −B(λ/l) cosω0

(
t−
(

1 +
λ

l

)
x

c

)}
, (5.81)

where the modulation depth

B(λ/l) = 2ξ0ξH

(
mc2

E0

)2 λ
l

(
1 + λ

2l

)[
1 − (1 + λ

l

) v0
c

]2 − 4π2c2�2

l2E2
0

(
1 + λ

2l

)2 . (5.82)

The depth of quantum modulation can be represented by the parameter of
critical field (5.28) in the induced undulator process. As the resonance width
because of nonmonochromaticity of actual particle beams is rather larger than
the quantum recoil, then neglecting the latter, for the modulation depth we
will have

B(λ/l) =
ξ0ξH

ξ2cr(λ/l)
. (5.83)

In accordance with perturbation theory the modulation depth B(λ/l) � 1
(condition (5.78)) and Eq. (5.83) shows that ξ0ξH < ξ2cr(λ/l), i.e., the effective
field in the undulator for the considered regime of coherent interaction holds
under the threshold of nonlinear resonance or critical value in the undulator
(above which the quantum modulation of particles, as well as the above-
considered diffraction scattering, do not proceed).
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J.K. McIver, M.V. Fedorov, Zh. Éksp. Teor. Fiz. 76, 1996 (1979)
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6 Induced Nonstationary Transition Process

How will the nonstationarity of a medium reflect on the process of charged
particle interaction with strong laser radiation?

In the current laser fields of ultrashort pulse duration and relativistic in-
tensities any medium turns instantaneously (on a time span much smaller
than one wave cycle) into a plasma, that is, abrupt change of the medium
properties, particularly the dielectric permittivity, occurs in time.

On the other hand, with the abrupt change in time of the dielectric per-
mittivity of a medium, charged particle radiation occurs similar to transition
radiation on the boundary of two media with different dielectric permittivity.

In the presence of an external EM radiation field this nonstationary tran-
sition process acquires induced character and the inverse process of radiation
absorption by a charged particle is actualized, particularly in plasmas where
in the stationary states the radiation or absorption of quanta of a transversal
EM radiation field (monochromatic radiation such as a laser one) by a free
particle cannot proceed.

With the abrupt change in time of the medium dielectric permittivity the
production of hard quanta of relativistic energies from the laser radiation is
possible and, consequently, electron–positron pair creation in nonstationary
plasma of common densities is available. Meanwhile, for electron–positron
pair production in a stationary plasma (a medium should be plasmalike for
this process) by a γ-quantum a superdense plasma with electron densities
greater than 10 34cm−3 is necessary. Such superdense matter exists in astro-
physical objects (in the core of neutron stars — pulsars), leading to special
interest in the processes of electron–positron pair production and annihilation
in superdense plasma. On the other hand, the matter in the astrophysical ob-
jects may also be in a strongly nonstationary state.

Hence, it is important to study the induced nonstationary transition pro-
cess in the strong EM radiation field in a medium with an arbitrary dielectric
permittivity changing abruptly in time.
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6.1 Effect of Abrupt Temporal Variation of Dielectric
Permittivity of a Medium

In the investigation of charged particle interaction with strong EM radiation
in a medium, overall it was supposed that the electromagnetic properties of
the latter, i.e., the dielectric (ε0) and magnetic (µ0) permittivities and, con-
sequently, refractive index n0, are not changed in the field and the medium
being initially in the stationary state maintains its electromagnetic charac-
teristics n0 =

√
ε0µ0 = const.

Consider now how the nonstationarity of a medium will reflect on the
process of charged particle interaction with strong EM radiation. From the
physical point of view it is clear that the effects that arise here because of
the nonstationarity of a medium will be essential at the abrupt temporal
change of the dielectric permittivity (as it is generally assumed the magnetic
permittivity of the medium will be taken as µ0 = 1). Under the abrupt
change of ε here we mean its change at the time ∆t << 2π/ω, where ω is
the characteristic frequency because of the nonstationarity of a medium (then
radiation frequency by a charged particle in this process). Such abrupt change
of the dielectric permittivity occurs with the propagation of ultrashort laser
pulses of relativistic intensities in a medium when the tunneling ionization of
atoms on a time span smaller than a few femtoseconds/attoseconds occurs
and the medium instantaneously becomes a plasma.

Let a charged particle with constant initial velocity v0 move in a spatially
homogeneous and isotropic medium whose dielectric permittivity ε changes
abruptly at the time from a value ε1 to ε2

ε =

⎧⎨⎩ ε1, t < 0,

ε2, t > 0,
(6.1)

and let a strong EM wave propagate in this medium. To determine the elec-
tromagnetic field in that type of nonstationary medium one should solve the
macroscopic Maxwell equations

rotH (r, t) =
1
c

∂D (r, t)
∂t

+
4π
c

J (r, t) , (6.2)

rotE (r, t) = −1
c

∂B (r, t)
∂t

(6.3)

for t < 0 and for t > 0, then the obtained solutions should be laced at
the instant of time t = 0. At the discontinuity of the dielectric permittivity
(in general, properties of the medium) only the derivatives of the physical
quantities can have large values. Hence, the conditions of the lacing can be
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obtained by the integration of the Maxwell equations (6.2) and (6.3) over t
in the arbitrary small region including the instant of time t = 0 at which the
stepwise discontinuity of the dielectric permittivity (6.1) occurs. The latter
means that the integration should be made between the moments t1 = −∆t
and t2 = ∆t and then one should take the limit ∆t → 0. Taking into account
that the quantities rotH, rotE, and J are finite, after this procedure we obtain

D (r, t)|t=−0 = D (r, t)|t=+0 ,

B (r, t)|t=−0 = B (r, t)|t=+0 .

These equations can be written in terms of electric and magnetic field
strengths with the help of the constitutive equations

D (r, t) = ε (t)E (r, t) ; B (r, t) = H (r, t) ,

which yield to “boundary conditions”

ε1 E (r, t)|t=−0 = ε2 E (r, t)|t=+0 , (6.4)

H (r, t)|t=−0 = H (r, t)|t=+0 . (6.5)

Under the conditions (6.4) and (6.5) the charged particle radiation will
occur in the nonstationary medium similar to transition radiation on the
boundary of two media with different dielectric permittivity. This sponta-
neous radiation field can be obtained from the Maxwell equations (6.2), (6.3)
with the corresponding current density of a charged particle J (r, t) under the
conditions (6.4) and (6.5). However, we will not describe here the spontaneous
nonstationary transition radiation effect and refer the reader interested in this
process to the original work presented in the bibliography of this chapter. We
will consider the induced nonstationary transition process in the external EM
wave field. For the latter one needs also to clear up the question of how the
change of the dielectric permittivity (6.1) of the medium affects the external
monochromatic wave.

If a plane monochromatic wave of frequency ω0, wave vector k0, and elec-
tric field amplitude E0 propagates in a medium with the mentioned proper-
ties, then at t < 0 when ε = ε1

E (r, t) = E0e
i(ω0t−k0r) + c.c.; t < 0 (6.6)

and at t > 0 when ε = ε2 there are two waves — transmitted and reflected:

E (r, t) = E1e
i(ω1t−k1r) + E2e

i(−ω2t−k2r) + c.c.; t > 0. (6.7)
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Here ω1, k1, E1 and ω2, k2, E2 are the frequencies, wave vectors, and ampli-
tudes of the electric fields of the transmitted and reflected waves, respectively.
Since the medium is assumed to be spatially homogeneous, for the wave vec-
tors the condition takes place:

k0 = k1 = k2 = const, (6.8)

and the nonstationarity of the medium leads to a change of frequency. From
the condition for the wave vectors (6.8) follows the relations between the
frequencies of the incident, transmitted, and reflected waves:

ω0
√
ε1 = ω1

√
ε2 = ω2

√
ε2. (6.9)

Let the wave propagate along the axis OX with the vector of electric
field amplitude E0 directed along the OY axis. Then using conditions (6.4),
(6.5) and Maxwell equations (6.2), (6.3) for the field (6.6), (6.7) in the case
of the wave linear polarization, for the amplitudes of the electric field of the
transmitted and reflected waves we obtain

E1 =
√
ε1(

√
ε1 +

√
ε2)

2ε2
E0, (6.10)

E2 =
√
ε1(

√
ε1 − √

ε2)
2ε2

E0. (6.11)

Equations (6.10), (6.11) with the analogous equations for the magnetic
strengths, and Eqs. (6.8), (6.9) determine the electromagnetic fields of the
transmitted and reflected waves at the propagation of a plane monochromatic
EM wave in a medium the dielectric permittivity of which changes abruptly
at the time.

6.2 Classical Description of Induced Nonstationary
Transition Process

As was mentioned above in the presence of an external EM radiation field the
nonstationary transition process acquires induced character and the interac-
tion of a charged particle with the incident plane monochromatic wave in a
medium will proceed with the actual energy change and the acceleration of
the particles or induced coherent radiation will take place. It is of special in-
terest, in particular, in plasmas where for the stationary states the real energy
change between a charged particle and a transversal EM wave cannot proceed
because of the violation of the conservation law of energy-momentum for the
absorption/emission of quanta in the field of a plane monochromatic wave by
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a free charged particle. Hence, we will study the classical and quantum dy-
namics of the induced nonstationary transition process in the external wave
field on the basis of relativistic equations of motion for a charged particle.

Consider first the classical dynamics of the particle–wave interaction in a
medium with the abrupt temporal change of the dielectric permittivity. Then,
the initial monochromatic wave is transformed into a continuous wave spec-
trum (in general, finite since the change of ε actually occurs in finite time).
This spectrum of frequencies (ω) depends on the time during which the elec-
tromagnetic properties of the medium are changed. If the characteristic time
τ << 2π/ω, then the abrupt temporal change of the dielectric permittivity
can be described by the stepwise function ε (6.1).

With the stepwise discontinuity of the dielectric permittivity (6.1) the ini-
tial monochromatic wave (of linear polarization) is transformed into a spec-
trum that can be found via Fourier transformation over t

Ey (x,t) =
∫ ∞

−∞
Ey (x,ω) eiωtdω. (6.12)

Then for the field (6.6), (6.7) the Fourier transformEy (x,ω) may be presented
in the form

Ey (x,ω) =
e−ik0x

2π

{
E0

∫ 0

−∞
eεtei(ω0−ω)tdt+ E1

∫ ∞

0
e−εtei(ω1−ω)tdt

+ E2

∫ ∞

0
e−εte−i(ω1+ω)tdt

}
+
eik0x

2π

{
E0

∫ 0

−∞
eεte−i(ω0+ω)tdt

+ E1

∫ ∞

0
e−εte−i(ω1+ω)tdt+ E2

∫ ∞

0
e−εtei(ω1−ω)tdt

}
, (6.13)

where we have introduced an arbitrarily small damping factor ε → 0 to switch
on/off adiabatically the wave at t = ∓∞. After the integration in Eq. (6.13)
for the Fourier transform of the field we obtain

Ey (x,ω) =
e−ik0x

2πi

{
E2

ω + ω1 − iε
+

E1

ω − ω1 − iε
− E0

ω − ω0 + iε

}

+
eik0x

2πi

{
E2

ω − ω1 − iε
+

E1

ω + ω1 − iε
− E0

ω + ω0 + iε

}
. (6.14)

The infinitesimal quantity iε in the poles of Eq. (6.14) indicates the path
that should be chosen at the integration over ω (at the inverse Fourier trans-
formation as well). Taking into account Eqs. (6.9), (6.10), and (6.11) for the



176 6 Induced Nonstationary Transition Process

Ey (x,ω) we will have

Ey (x,ω) = E(ω)e−ik0x − E(−ω)eik0x, (6.15)

where

E(ω) =
E0

2πi

(
ε1
ε2

− 1
)

ω2

(ω − ω0)
(
ω2 − ω2

0
ε1
ε2

) . (6.16)

Here we have omitted the infinitesimal iε bearing in mind the role of the
poles bypass.

The analogous equations can be obtained for the magnetic field strength:

Hz (x,ω) = H(ω)e−ik0x −H(−ω)eik0x, (6.17)

H(ω) =
√
ε1ω0

ω
E(ω).

Now the problem of the particle–wave interaction in a nonstationary
medium with the abrupt temporal change of the dielectric permittivity re-
duces to the particle interaction with the EM field possesing the spectral
components (6.15), (6.17). Consequently, the relativistic classical equations
of motion of the particle take the form

dpx

dt
=
e

c
vy

∫ ∞

−∞

[
H(ω)e−ik0x −H(−ω)eik0x

]
eiωtdω, (6.18)

dpy

dt
= e

∫ ∞

−∞

[
E(ω)e−ik0x − E(−ω)eik0x

]
eiωtdω

−e

c
vx

∫ ∞

−∞

[
H(ω)e−ik0x −H(−ω)eik0x

]
eiωtdω, (6.19)

dpz

dt
= 0. (6.20)

The energy change of the particle is given by the equation

dE
dt

= evy

∫ ∞

−∞

[
E(ω)e−ik0x − E(−ω)eik0x

]
eiωtdω. (6.21)

The equations of motion (6.18)–(6.20) can be presented in the form
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dpx

dt
= −ie

c
k0

∫ ∞

−∞
vyF (ω, x, t)dω, (6.22)

dpy

dt
= i

e

c

∫ ∞

−∞
(k0vx − ω)F (ω, x, t)dω , (6.23)

dpz

dt
= 0, (6.24)

where the kernel in the integrals (6.22), (6.23)

F (ω, x, t) = A (ω) exp [i (ωt− k0x)] −A∗ (ω) exp [−i (ωt− k0x)] ,

and

A (ω) =
cE0

2π

(
ε1
ε2

− 1
)

ω

(ω − ω0)
(
ω2 − ω2

0
ε1
ε2

) (6.25)

is the spectral amplitude of the vector potential of the field (6.12).
We shall solve the set of equations (6.22)–(6.24) in the approximation

of the perturbation theory by the field. The parameter of the perturbation
theory is ξ0 = eE0/mcω0 << 1. As long as the particle motion along the z
axis remains free we can choose the initial velocity of the particle in the xy
plane: v0 = {v0 cos θ, v0 sin θ, 0}. According to perturbation theory

p = p0 +∆p; |∆p| << |p0| ,

and from the Eqs. (6.22), (6.23) in first-order approximation by ξ0 (keeping
only the uniform part of motion x(t) = x0 + v0xt on the right-hand side of
the equations) for the changes of the particle momentum in the field ∆p we
will obtain the following equations:

d∆px

dt
= −ie

c
k0

∫ ∞

−∞
v0yF (ω, x0 + v0xt, t)dω, (6.26)

d∆py

dt
= i

e

c

∫ ∞

−∞
(k0v0x − ω)F (ω, x0 + v0xt, t)dω . (6.27)

Integrating Eqs. (6.26) and (6.27) over t from −∞ to +∞ we obtain
in first-order approximation by ξ0 the following expressions for the particle
momentum change after the interaction:

∆px = −i2πek0

c
v0y

∫ ∞

−∞

[
A (ω) e−ik0x0
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−A∗ (ω) eik0x0
]
δ (ω − k0v0x) dω, (6.28)

∆py = i
2πe
c

∫ ∞

−∞
(k0v0x − ω)

[
A (ω) e−ik0x0

−A∗ (ω) eik0x0
]
δ (ω − k0v0x) dω. (6.29)

The δ-function in these expressions defines the condition of induced ra-
diation/absorption by a free charged particle in the field of a transversal
monochromatic EM wave under the nonstationary transition process:

ω − k0v0 = 0. (6.30)

Integrating in the same way Eqs. (6.21) and taking into account Eq. (6.30) for
the particle momentum and energy changes after the interaction we obtain
the following ultimate formulas:

�py = �pz = 0, �px =
�E

v0 cos θ
, (6.31)

�E=2mc2ξ0
v3
0

c3
(ε1 − ε2)

sin θ cos2 θ(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
)

× sin
(
ω0

√
ε1

v0 cos θ
c

t0

)
. (6.32)

Here t0 is the instant of time corresponding to the initial phase of the particle
in the external EM wave. Note that Eq. (6.32) besides the induced nonsta-
tionary transition process describes generally the induced Cherenkov effect as
well (see the denominator) if a medium initially (at t < 0) was dielectriclike
(in principle, it includes also the Cherenkov effect at t > 0 if ε2 > 1, but
for actual physical cases we assume that the stepwise discontinuity of ε (6.1)
may be realistic at the abrupt transformation of a dielectriclike medium into
a plasma for which ε2 < 1 and the induced Cherenkov effect is excluded).

As is seen from Eq. (6.32) depending on the initial phase

Φ0 = ω0t0
√
ε1 (v0/c) cos θ

the particle is either accelerated after the interaction or is decelerated radi-
ating coherently into the wave. This real energy exchange is due to the direct
and inverse induced nonstationary transition effect. In the case of a particle
beam, various particles situated initially in the diverse phases Φ0 will acquire
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or lose different energies in the field and the particles’ free drift after the
interaction will result in bunching of an initially homogeneous particle beam.

6.3 Quantum Description of Multiphoton Interaction

Consider now the quantum dynamics of the induced nonstationary transi-
tion process. Quantitative analysis of Eqs. (6.31) and (6.32) shows that the
classical energy exchange of a particle with strong EM radiation in a non-
stationary medium as a result of the induced nonstationary transition effect
corresponds to absorption and emission of a large number of photons. On the
basis of the quantum theory such multiphoton process can be described by
the quasiclassical-type wave function neglecting, in fact, the quantum recoil
at the absorption/emission of photons by the particle. The latter corresponds
to a slowly varying wave function for which the derivatives of the second order
of the particle wave function can be neglected with respect to the first order
ones that have been made in the consideration of the multiphoton processes in
the previous chapters. The role of the particle spin is inessential here, hence
by neglecting the spin interaction the Dirac equation in quadratic form is
written as the Klein–Gordon equation (3.30) for the particle in the specified
EM field. Assuming the same geometry as in Section 6.1 the latter takes the
form

−�
2 ∂

2Ψ

∂t2
=
[−�

2c2�2 + 2iec� �y Ay(x, t) + e2A2
y(x, t) +m2c4

]
Ψ, (6.33)

where

Ay(x, t) =
∫ ∞

−∞

[
A(ω)e−ik0x +A(−ω)eik0x

]
eiωtdω (6.34)

is the vector potential of the field (6.12) expressed via the spectral amplitude
A(ω) (6.25).

Equation (6.33) will be solved in the mentioned approximation by the
particle wave function

Ψ (r, t) =
√

N0

2E0
f(x, t) exp

[
i

�
(p0r−E0t)

]
, (6.35)

where f(x, t) is a slowly varying function with respect to the free-particle wave
function (see Section 3.5). Taking into account the conditions (3.92) and Eq.
(6.35) from Eq. (6.33) for f(x, t) we will obtain the differential equation of
the first order:

∂f

∂t
+ v0x

∂f

∂x
=

i

2�E0

[
2ecp0yAy(x, t) + e2A2(x, t)

]
f(x, t). (6.36)
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The conditions (3.92) correspond to a small change of the momentum and
energy of the electron in the field compared with the initial values �p << p0
and �E << E0, that is, the approximation made in the classical consid-
eration, where the intensity of the EM wave is restricted by the condition
ξ0 << 1. Then for actual values of parameters p0y/mc >> ξ0 and the last
term ∼ A2 in Eq. (6.36) will be neglected.

Passing from x, t to characteristic coordinates τ ′ = t− x/v0x, η
′ = t and

integrating Eq. (6.36) we obtain

f (τ ′, η′) = exp

{
iev0y

�c

∫ η′

−∞
Ay(v0x (η′′ − τ ′) , η′′)dη′′

}
. (6.37)

Then after the interaction (η′ → +∞) taking into account Eq. (6.34) we
obtain

f (τ) = exp
{
i4πev0y

�c
A
(
ω0

√
ε1

v0x

c

)
cos
(
ω0

√
ε1

v0x

c
τ
)}

. (6.38)

The spectral amplitude in Eq. (6.38) is determined by Eq. (6.25):

A
(
ω0

√
ε1

v0x

c

)
=

E0

2πω2
0

ε1 − ε2√
ε1

v0 cos θ(√
ε1

v0
c cos θ − 1

) (
ε2

v2
0

c2 cos2 θ − 1
) . (6.39)

Returning to coordinates x, t and expanding the exponential (6.38) into
a series by the Bessel functions and taking into account Eq. (6.39) for the
total wave function (6.35) we will have

Ψ (r, t) =
√

N0

2E0
exp
[
i

�
p0yy

] +∞∑
s=−∞

isJs (α)

× exp
{
i

�

[
p0x − s�

√
ε1
ω0

c

]
x− i

�

[
E0 − s�ω0

√
ε1

v0

c
cos θ

]
t

}
, (6.40)

where the argument of the Bessel function is

α = 2ξ0
mv2

0

�ω0

ε1 − ε2√
ε1

sinθ cos θ(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
) . (6.41)

As is seen from Eq. (6.40), due to the induced nonstationary transition
effect the particle absorbs or emits s photons, as a result of which the mo-
mentum and energy after the interaction are changed:
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�px = s�
ω0

c

√
ε1, �py = 0, �E =s�ω0

√
ε1

v0

c
cos θ. (6.42)

The probability of the induced s-photon process is

Ws = J2
s

⎛⎝ 2ξ0mv2
0 (ε1 − ε2) sinθ cos θ

�ω0
√
ε1
(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
)
⎞⎠ . (6.43)

The comparison of the expression for α with the amplitude of the classical
change of the particle momentum (�px)max (6.31) and energy (�E)max (6.32)
shows that

α =
(�px)max

�k0
, (6.44)

in accordance with the correspondence principle (s ∼ α >> 1).
At the small value of α or small number of photons s when the interac-

tion has entirely quantum character it is necessary to take into account the
quantum recoil as well. It is especially important in this process, because at
the abrupt temporal variation of the dielectric permittivity the hard quanta
in the spectrum of the initial radiation arise. We will solve for this purpose
Eq. (6.33) keeping also the derivatives of the second order of the particle
wave function for a single-photon absorption or emission. Correspondingly,
in first-order approximation of the perturbation theory from Eq. (6.33) we
have the following equation for the particle wave function at the single-photon
interaction with the field (6.35) in the nonstationary transition process:

∂2Ψ1

∂x2 − 1
c2
∂2Ψ1

∂t2
− 1

�2c2
(
m2c4 + c2p2

0y

)
Ψ1

= −2
ep0y

c�2

[
Ay (t) e−ik0x +A∗

y (t) eik0x
]
Ψ0, (6.45)

where

Ψ0 (r, t) =
√

N0

2E0
exp
[
i

�
(p0r − E0t)

]
(6.46)

is the initial wave function of the particle (normalized on N0 particles per
unit volume). The solution of Eq. (6.45) is sought in the form

Ψ1 (r, t) =
[
Φ1(t)e−ik0x + Φ2(t)eik0x

]
exp
[
i

�
(p0r − E0t)

]
. (6.47)

Substituting Eq. (6.47) in Eq. (6.45) for the functions Φ1(t) and Φ2(t) we
obtain the equations:
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d2Φ1

dt2
− 2i

E0

�

dΦ1

dt
− c2k0

(
2
p0x

�
− k0

)
Φ1 = 2

√
N0

E0

ecp0y

�2 Ay (t) , (6.48)

d2Φ2

dt2
− 2i

E0

�

dΦ2

dt
+ c2k0

(
2
p0x

�
+ k0

)
Φ2 = 2

√
N0

E0

ecp0y

�2 A∗
y (t) . (6.49)

The solution of Eq. (6.48) is

Φ1(t) = −2i
√
N0

E0

ecp0y

�2 (Ω1 −Ω2)

×
[
eiΩ1t

∫ t

−∞
e−iΩ1t′

Ay (t′) dt′ − eiΩ2t

∫ t

−∞
e−iΩ2t′

Ay (t′) dt′
]
, (6.50)

where the characteristic frequencies Ω1 and Ω2 are given by the expressions

Ω1,2 =
E0

�
∓
[(E0

�
− ω0

√
ε1

v0x

c

)2

+ ω2
0ε1

(
1 − v2

0x

c2

)]1/2

(6.51)

with the signs “∓” correspondingly.
Passing from Ay (t) to the Fourier component of the field we obtain for

Φ1(t) after the interaction (t → +∞)

Φ1(t) = −4i
√
N0

E0

πecp0y

�2 (Ω1 −Ω2)
[
A (Ω1) eiΩ1t −A (Ω2) eiΩ2t

]
, (6.52)

where the spectral amplitudes of the wave vector potential A (Ω1) and A (Ω2)
are determined by Eq. (6.25).

Solving Eq. (6.49) in an analogous way for the function Φ2(t) we obtain

Φ2(t) = −4i
√
N0

E0

πecp0y

�2 (Ω′
1 −Ω′

2)

[
A∗ (−Ω′

1) e
iΩ′

1t −A∗ (−Ω′
2) e

iΩ′
2t
]
, (6.53)

with the characteristic frequencies

Ω′
1,2 =

E0

�
∓
[(E0

�
+ ω0

√
ε1

v0x

c

)2

+ ω2
0ε1

(
1 − v2

0x

c2

)]1/2

. (6.54)

Equations (6.51) and (6.54) correspond to the energy-momentum conser-
vation law for a particle in the induced nonstationary transition process: the
particle can emit only the photons with frequencies Ω1,2 and absorb photons
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with frequencies Ω′
1,2. As long as E0/� >> ω0

√
ε1v0x/c for the frequencies of

a strong coherent radiation field we expand the square roots in Eqs. (6.51),
(6.54) in a series and retain only the small terms of first order. We then
obtain for the radiation frequencies:

Ω1 
 ω0
√
ε1

v0x

c
− ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
,

Ω2 
 2
E0

�
− ω0

√
ε1

v0x

c
+ ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
(6.55)

and for the absorption frequencies:

Ω′
1 
 −ω0

√
ε1

v0x

c
− ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
,

Ω′
2 
 2

E0

�
+ ω0

√
ε1

v0x

c
+ ε1

�ω2
0

2E0

(
1 − v2

0x

c2

)
. (6.56)

These expressions show that the emission of a photon with frequency Ω2
and absorption with frequency Ω′

2 has a clearly quantum character, and its
probability, as is seen from Eq. (6.25), depends on the change of the dielectric
permittivity of the medium ε1−ε2. We therefore consider two cases: ε1/ε2 � 1
and ε1/ε2 >> 1.

If ε1/ε2 � 1 we get from Eq. (6.25)

A (Ω2) 
 A

(
2
E0

�

)
<< A (Ω1) 
 A

(
ω0

√
ε1

v0x

c

)
, (6.57)

so that in this case we can neglect in Eqs. (6.52) and (6.53) the pure quantum
process of emission and absorption of hard quanta Ω2 
 2E0/�. Then for
the amplitudes of the particle wave function Φ1(t) and Φ2(t) we will have
correspondingly

Φ1,2(t) = i

√
N0

E0

ev2
0E0

�ω2
0c

ε1 − ε2√
ε1

sinθ cos θ(
1 − √

ε1
v0
c cos θ

) (
1 − ε2

v2
0

c2 cos2 θ
)

× exp
{
iω0

[
±√

ε1
v0

c
cos θ − ε1�ω0

2E0

(
1 − v2

0

c2
cos2 θ

)]
t

}
(6.58)

with the signs “±” correspondingly. Equation (6.58) with Eq. (6.47) deter-
mines the particle’s wave function after the single-photon interaction with the



184 6 Induced Nonstationary Transition Process

field (6.35) in the nonstationary transition process. In this case (ε1/ε2 � 1)
we obtain for the current density (∼ |Ψ0 + Ψ1|2) of the particles after the
interaction

j(x, t) = j0

{
1 + 2α sin

[
ε1

�ω2
0

2E0

(
1 − v2

0

c2
cos2 θ

)
t

]

× cos
[
ω0

√
ε1

v0 cos θ
c

(
t− x

v0 cos θ

)]}
, (6.59)

where j0 = const is the particle’s initial current density and α is defined by
Eq. (6.41) or (6.44). As is seen from Eq. (6.59) as a result of the stimulated
absorption and emission of the photons of frequency

Ω1 = ω0
√
ε1

v0

c
cos θ

the quantum modulation of the particle’s probability density and, conse-
quently, current density at this frequency occurs with a depth Γ1 = 2α. Also,
in contrast to the effect of quantum modulation in coherent processes con-
sidered in previous chapters, the pure temporal modulation here takes place
as well that is caused by the nonstationarity of the medium. The period of
this temporal modulation is

T1 =
4πE0

�ω2
0ε1

(
1 − v2

0
c2 cos2 θ

) .
If we derive the particle’s wave function in the next orders of perturba-

tion theory, then we obtain the modulation at higher harmonics of the wave
frequency. The modulation depth at the s-th harmonic will be Γs ∼ Γ s

1 .
For ε1/ε2 >> 1, it is necessary to also take into account in Eqs. (6.52),

(6.53) the pure quantum process of emission and absorption of hard quanta
Ω2 
 2E0/�. The spectral amplitude of the wave vector potential A (Ω2) at
such frequencies is

A (Ω2) 
 cE0

8π
ε1
ε2

(E2
0

�2 − ε1
ε2

ω2
0

4

)−1

. (6.60)

In an analogous way for the particles current density after the interaction we
will have

j(x, t) = j0

{
1 + Γ1 sin

[
ε1

�ω2
0

2E0

(
1 − v2

0

c2
cos2 θ

)
t

]
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× cos
[
ω0

√
ε1

v0 cos θ
c

(
t− x

v0 cos θ

)]

+Γ2 sin
(

2
E0

�
t

)
cos
[
ω0

√
ε1

v0 cos θ
c

(
t+

x

v0 cos θ

)]}
, (6.61)

where Γ1 = 2α, and the modulation depth Γ2 due to the absorption-emission
of hard quanta Ω2 is

Γ2 = ξ
mv0c�ω0

E2
0

ε1
ε2

sin θ

1 − ε1
ε2

(
�ω
2E0

)2 . (6.62)

The period of temporal modulation in this case is T2 = π�/E0.
As the modulated particle beam radiates coherently this mechanism can

be of interest in astrophysics where the radiating matter may be in a strongly
nonstationary state.

6.4 Electron–Positron Pair Production by a γ-Quantum
in a Medium

The formation of hard γ-quanta of frequencies ∼ E0/� in the spectrum of a
strong monochromatic EM wave propagating in a nonstationary medium, the
dielectric permittivity of which abruptly changes in time, makes available the
single-photon production of electron–positron (e−, e+) pairs from the intense
light fields in a nonstationary medium.

In general, the single-photon reaction γ → e− + e+ as well as the inverse
reaction of the electron–positron annihilation (e− + e+ → γ) can proceed
in a medium that must be plasmalike (for the satisfaction of conservation
laws for these reactions one needs n(ω) < 1). However, as will be shown
below, excessively large densities of the plasma in this case are required.
Meanwhile, the single-photon production of e−, e+ pairs in a nonstationary
plasma is possible at ordinary densities. Moreover, this process can proceed
in the strong light fields in an arbitrary medium turning abruptly into a
plasma (with the temporal variation law of ε (6.1)). Hence, we will consider
both single-photon reactions γ � e− + e+ in a stationary plasma and the
production of e−, e+ pairs from the intense light beam in a nonstationary
medium.

Consider first the production of electron–positron pairs by a γ-quantum
and its annihilation in a stationary medium. It is easy to see from the con-
servation laws of the energy and momentum for the single-photon reactions
γ � e− + e+

�k = p1 + p2; �ω = E1 + E2 (6.63)
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(ω, k are the γ-quantum frequency and wave vector, |k| = n(ω)ω/c, p1,2 and
E1,2 are the momenta and energies of the electron and positron, respectively)
that the phase velocity of a γ-quantum vph = c/n(ω) must be larger than c,
i.e., a medium for these processes must be plasmalike: n(ω) < 1. The latter
restricts the energy of a γ-quantum because of the dispersive properties of
a medium. Indeed, for the macroscopic meaning of the refractive index of a
medium for a γ-quantum at least one particle within a distance of the order of
λ/2 is required (λ is the wavelength of the γ-quantum), that is, the condition
λ/2 � l must be satisfied, where l is the distance between the electrons in
a plasma. Therefore, besides the threshold condition that follows from the
conservation laws (6.63):

�ω >
2mc2√

1 − n2(ω)
, (6.64)

for the reactions γ � e− + e+ in a medium the following requirement on the
plasma density N/V for a specified frequency ω of a γ-quantum arises:

ω � π

(
N

V

)1/3

≡ ωlim. (6.65)

Hence, condition (6.65) determines the lower bound for the density of the
medium or the upper bound for the energy of the γ-quantum, while threshold
condition (6.64) determines the lower bound for the energy of the γ-quantum
to cause the reactions γ � e− + e+ to proceed in a medium.

From the standpoint of single-photon pair creation and annihilation in
plasma, the latter must compensate the longitudinal momentum �p = [1 −
n(ω)]�ω/c transferred in these processes. Consequently, the characteristic
length in the macroscopic description of the dispersion of the medium is
the wavelength �/�p, which corresponds to the transferred momentum, and
the condition necessary for this is �/�p > (V/N)1/3. Since n(ω) < 1, this
condition is satisfied automatically when condition (6.65) is satisfied.

The plasma densities satisfying conditions (6.64) and (6.65) are at least:
N/V > 1033cm−3. Such superdense matter exists only in astrophysical ob-
jects, particularly in the core of the neutron stars (pulsars). At these densities
the electron component of the superdense plasma is highly degenerate (the
dispersion of the transverse electromagnetic waves is determined by elec-
trons). Actually, the degeneracy temperature of the electron component of
such plasma is TF > 1010 K. On the other hand, because of neutrino energy
losses, the physically attainable temperatures in an equilibrium system are
much lower than this: T << TF and the superdense plasma is fully degener-
ate.

Since the Fermi energy at the densities N/V > 1033cm−3 is EF > mc2

we need the dispersion law of the fully degenerate relativistic plasma. To
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determine the dispersion relation n = n (ω) of the latter we shall solve the self-
consistent set of Maxwell–Vlasov equations for the transverse monochromatic
EM wave in the relativistic collisionless plasma with the distribution function
f (p, r, t) (we will not consider the ions’ motion).

The characteristic equations of f (p, r, t) coincide with the single particle
equation of motion. The latter has been solved for an arbitrary medium in
Section 2.1 and in the case of plasma we have the following solutions in the
wave field with the vector potential A = {0, A0 cos (ωt− n (ω)ωx/c) , 0}:

px = p0x − n (ω)
c (1 − n2 (ω))

{
E0 − n (ω) cp0x

−
√

(E0 − n (ω) cp0x)2 + (1 − n2 (ω))
[
e2A2

y − 2ecp0yAy

]}
, (6.66)

py = p0y − e

c
Ay; pz = p0z, (6.67)

and for the energy of the particle in the field:

E = E0 − 1
1 − n2 (ω)

{
E0 − n (ω) cp0x

−
√

(E0 − n (ω) cp0x)2 + (1 − n2 (ω))
[
e2A2

y − 2ecp0yAy

]}
. (6.68)

The density of the electric current induced in the plasma can be defined by
the equation

j (r, t) = e

∫
vf (p, r, t) dp, (6.69)

where v =c2p/E is the velocity of the electrons with the distribution function
in the field f (p, r, t). According to the Liouville theorem for the collisionless
plasma we have

f (p, r, t) = f0 (p0, r0, t0) = f0 (p0) , (6.70)

since the electrons before the interaction were distributed stationary, uni-
formly and isotropic.

Defining from Eqs. (6.66)–(6.68) the velocity of the electrons as a function
of the p0, r, and t and then passing from the integration over p to integration
over p0 (taking into account Eq. (6.70)), Eq. (6.69) may be presented in the
form
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j (r, t) = ec2
∫

p (p0, r, t)
E (p0, r, t)

f0 (p0)J(p0, r, t)dp0, (6.71)

where

J(p0, r, t) =
∂(px, py, pz)
∂(p0x, p0y, p0z)

is the Jacobian of transformation. From Eqs. (6.66), (6.67) for the latter we
have

J(p0, r, t) = 1 − n (ω)
1 − n2 (ω)

(
cp0x

E0
− n (ω)

)

×
⎡⎣1 − E0 − n (ω) cp0x√

(E0 − n (ω) cp0x)2 + (1 − n2 (ω))
[
e2A2

y − 2ecp0yAy

]
⎤⎦ . (6.72)

In the linear approximation by a weak wave field (since it will be applied for
a γ-quantum) Eq. (6.72) can be written as follows:

J(p0, r, t) = 1 +
n (ω)

(E0 − n (ω) cp0x)2

(
cp0x

E0
− n (ω)

)
ecp0yAy. (6.73)

The components of the electric current density (6.71) in this linear regime of
interaction can be expressed in the form

jy (r, t) = ec2
∫ {

p0y

E0

(
1 +

(
1 − n2 (ω)

)
cp0yeAy

(E0 − n (ω) cp0x)2

)
− eAy

E0

}

×f0 (p0) dp0, (6.74)

jx = jz = 0. (6.75)

Then turning to spherical coordinates in Eq. (6.71)

p0x = p0 cos θ; p0y = p0 sin θ cosϕ; p0z = p0 sin θ sinϕ,

and taking into account that the initial distribution of the electrons in a
plasma is isotropic, after the integration in the equation

jy (r, t) = −e2cAy

∫ {
1 −

(
1 − n2 (ω)

)
c2p2

0y

(E0 − n (ω) cp0x)2

}
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×f0 (p0) p2
0

E0
sin θdθdϕdp0 (6.76)

by the angles, for the electric current density induced by a wave field in the
plasma we will have

jy (r, t) = −4πe2cAy

n2 (ω)

∫
f(p0)p2

0

E0

×
{

1 − E0
(
1 − n2 (ω)

)
2n (ω) cp0

ln
{E0 + n (ω) cp0

E0 − n (ω) cp0

}}
dp0. (6.77)

The Maxwell equation for the vector potential[
�2 − 1

c2
∂2

∂t2

]
Ay (r, t) = −4π

c
jy (r, t) (6.78)

with the current density (6.77) gives the following equation for the refractive
index of a relativistic plasma:

n2 (ω) = 1 − 16π2e2c2

n2 (ω)ω2

∫
f(p0)p2

0

E0

×
{

1 − E0
(
1 − n2 (ω)

)
2n (ω) cp0

ln
{E0 + n (ω) cp0

E0 − n (ω) cp0

}}
dp0. (6.79)

Equation (6.79) describes in general the dispersion law of a relativistic plasma
for an arbitrary electron distribution function. In principle, it is also valid for a
nondegenerate (relativistic and Maxwellian) electron plasma if an equilibrium
distribution with temperature T � TF can be realized in nature.

Now consider the production of electron–positron pairs by a γ-quantum
in a stationary medium (homogeneous and isotropic) with a refractive index
n(ω) < 1 (6.79). As this process is a QED effect of the first order, then
using the general rules for constructing the matrix element of a single-vertex
γ → e− + e+ diagram in a dispersive medium the probability amplitude will
be written in the form

Sif = −e
√

1
2ωaωn2 (ω)

∫
ψ1ε̂

(λ)eikxψ2d
4x. (6.80)

Here
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aω = 1 +
ω

n (ω)
dn (ω)
dω

,

ki(ω,k) is the 4-dimensional wave vector of the photon, quantization volume
V = 1, ε(λ) is the four-dimensional polarization vector of the photon (ε̂(λ) =
ε
(λ)
µ γµ), and

ψ1 = u1 (p1) ei(p1r−E1t); ψ2 = u2 (−p2) e−i(p2r−E2t) (6.81)

are the free electron and positron wave functions. Here the units � = c = 1
are used.

Performing integration in Eq. (6.80) with the wave functions (6.81) by the
standard method for the differential probability of the γ → e− + e+ process
per unit time and unit space volume (in the momentum volumes dp1/ (2π)3

of the electrons and dp2/ (2π)3 of the positrons, respectively) we will have

dW =
e2

8π2ωaωn2 (ω)

∣∣∣u1 (p1) ε̂(λ)u2 (−p2)
∣∣∣2 δ (ω − E1 − E2)

×δ (k − p1 − p2) dp1dp2. (6.82)

We will assume that the γ-quantum is nonpolarized and perform averaging by
the polarization states of the γ-quantum and summation over the electron and
positron spin projections. Then the probability of the e−, e+ pair production
per unit time is given by the expression

W =
e2

8π2aωωn2(ω)

∫ E1E2 +m2 − p1p2 cosϑ1 cosϑ2

E1E2
δ (ω − E1 − E2)

×δ (k − p1 − p2) dp1dp2, (6.83)

where ϑ1,2 is the angle between the vectors k and p1,2, respectively.
Integrating Eq. (6.83) over the positron momentum p2 we obtain the

following expression for the pair production probability:

W =
e2

8π2aωωn2(ω)

∫ (
1 +

m2 + p1 cosϑ1 (p1 cosϑ1 − k)
E1
√

E2
1 + k2 + kp1 cosϑ1

)

×δ
(
ω − E1 −

√
E2
1 + k2 + kp1 cosϑ1

)
dp1. (6.84)

For the integration over the electron momentum p1 note that because of
azimuthal symmetry
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dp1 = 2πp1E1dE1 sinϑ1dϑ1

and the integration over ϑ1 reduces formally to the following replacement in
Eq. (6.84):

δ

(
ω − E1 −

√
E2
1 + k2 + kp1 cosϑ1

)
sinϑ1dϑ1

→ ω − E1

kp1
[H (E1 − Emin(ω)) −H (E1 − Emax(ω))] ,

where H(x) is the Heaviside function

H(x) =

⎧⎨⎩1, x ≥ 0,

0, x < 0.

After the integration over ϑ1, Eq. (6.84) becomes

W =
e2

4πaωω2n5(ω)

∫ Emax(ω)

Emin(ω)

[(
1 − n2(ω)

) (E2
1 − ωE1

)
+ n2(ω)m2

+
1 − n4(ω)

4
ω2
]
dE1. (6.85)

The limits of integration over E1 ∈ [Emin, Emax] in Eq. (6.85)

Emin,max(ω) =
ω

2
∓ n(ω)

2

[
ω2 − 4m2

1 − n2(ω)

]1/2

(6.86)

are determined by the conservation laws for the γ � e− + e+ processes in
a medium (6.63) with the threshold value (6.64). Taking into account Eq.
(6.86) after the integration over the electron energy in Eq. (6.85) we obtain
the total probability for the single-photon e−, e+ pair production in a plasma:

W =
e2m2

6πω2aωn2(ω)

[
ω2 − 4m2

1 − n2(ω)

]1/2

×
{

1
2

( ω
m

)2 [
1 − n2(ω)

]
+ 1
}
. (6.87)
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Equation (6.86) with the dispersion law (6.79) of a relativistic plasma for
an arbitrary electron distribution function determine the probability of the
electron–positron pair production by a γ-quantum. As the electron compo-
nent the of superdense plasma required for this process is fully degenerate the
Pauli principle must also be taken into account that imposes an additional
restriction on the γ → e− + e+ reaction. The general picture of this process
taking into account the conditions (6.64), (6.65) and the Pauli principle will
be analyzed together with the electron–positron annihilation process in the
next section.

6.5 Annihilation of Electron–Positron Pairs in a
Medium

Now we will consider the inverse process of a single-photon annihilation of
an electron–positron pair in a stationary plasma. This process is also a QED
effect of the first order and the matrix element of a single-vertex e− + e+

→ γ diagram is the complex conjugate to the γ → e− + e diagram matrix
element:

S′
if = −e

√
1

2ωaωn2 (ω)

∫
ψ2ε̂

(λ)e−ikxψ1d
4x. (6.88)

The differential probability of the annihilation process per unit time and unit
space volume, summed by the polarization states of the created γ -quantum
in the momentum volume dk/ (2π)3, is given by the expression

dWγ =
πe2

2ωaωn2(ω)
E1E2 +m2 − p1p2 cosϑ1 cosϑ2

E1E2

×δ (ω − E1 − E2) δ (k − p1 − p2) dk. (6.89)

Equation (6.89) determines the annihilation probability for a single e−, e+

pair in plasma. To obtain the total probability of annihilation of an initial
positron with the plasma electrons one must define the probability of annihi-
lation of a positron of specified energy E2 with the electrons of the medium
in the momentum range p1,p1 + dp1:

Wγ =
πe2

2ωaωn2(ω)

∫
f (p1)

E1E2 +m2 − p1p2 cosϑ1 cosϑ2

E1E2

×δ (ω − E1 − E2) δ (k − p1 − p2) dkdp1, (6.90)

where f (p1) is the distribution function of the plasma electrons. We first
integrate over k in Eq. (6.90) and then over p1 taking into account that
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dp1 = 2πp1E1dE1 sinϑdϑ, where ϑ is the angle between the vectors p1 and
p2. The integration over ϑ reduces formally to the following replacement in
Eq. (6.90):

δ (ω − E1 − E2) sinϑdϑ

→ ωaωn
2(ω)

p1p2
[H (E1 − Emin(ω)) −H (E1 − Emax(ω))] ,

where the quantities Emin(max)(ω) are given by Eq. (6.86) and ω must be
replaced by E1 + E2 according to conservation law (6.63). Then for the prob-
ability of annihilation of a positron (with an energy E2) with the electrons of
the medium we will have

Wγ =
πe2

p2E2

∫
f (p1)

{
m2 + (E1 + E2)

2 1 − n4(ω)
4n2(ω)

− 1 − n2(ω)
n2(ω)

E1E2

}

× [H (E1 − Emin(ω)) −H (E1 − Emax(ω))] dE1. (6.91)

In contrast to the pair-production process (its probability can be obtained
without resorting to the explicit form of n(ω)), here we must have the explicit
form of the function n = n(ω) in order to be able to integrate over the electron
energy E1 (ω is now a function of E1, since ω = E1 + E2).

As the considered processes γ � e− + e+ are possible in the superdense
plasma where the electrons are fully degenerate, then the dispersion law of
such relativistic plasma can be obtained substituting the Fermi distribution
function for a fully degenerate electron gas

f(p1) =

⎧⎨⎩
1

4π3 , p1 ≤ pF

0, p1 > pF

(6.92)

in Eq. (6.79), describing in general the dispersion law of a relativistic plasma
for an arbitrary distribution function of electrons f(p0). Here pF is the bound-
ary Fermi momentum:

pF =
(
3π2ρe

)1/3
, (6.93)

and ρe is the electron density of a degenerate Fermi gas.
Integrating in Eq. (6.79) with the distribution function (6.92) over the

electron momenta we obtain the following dispersion law of a relativistic
degenerate plasma:

n2 (ω) = 1 − 2e2

n2 (ω)πω2
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×
{
pF EF − E2

F − n2 (ω) p2
F

2n (ω)
ln
{EF + n (ω) pF

EF − n (ω) pF

}}
, (6.94)

where EF is the relativistic Fermi energy corresponding to boundary momen-
tum (6.93). Inserting the dimensionless parameter

β =
n (ω) pF

EF

Eq. (6.94) can be written in the form

n2 (ω) = 1 − 2e2pF EF

n2 (ω)πω2

{
1 − 1 − β2

2β
ln
{

1 + β

1 − β

}}
, (6.95)

or in the form more convenient for further investigation

n2 (ω) = 1 − 2e2p3
F

ω2πEF
φ (β) , (6.96)

where the function φ (β) is

φ (β) =
1
β2

{
1 − 1 − β2

2β
ln

1 + β

1 − β

}
. (6.97)

By analogy with the usual determination of a plasma frequency, from
the equation n (ωp) = 0 we obtain the plasma frequency for a relativistic
degenerate one

ωp =

√
4e2p3

F

3πEF
. (6.98)

The frequency range corresponding to transverse waves that can propa-
gate in a superdense relativistic degenerate plasma — ωp ≤ ω < ∞ — can
then be obtained by varying the refractive index in the range 0 ≤ n < 1.
Therefore, we present the dispersion relation (6.96) in the inverted form
ω = ω(n):

ω2 =
2e2

π

p3
F

EF

1
1 − n2φ (β) . (6.99)

The parameter β in Eq. (6.99) then varies in the range 0 � β < pF /EF .
The analysis of the function φ (β), which can be expressed in the form

φ (β) = 2
∞∑

s=1

β2s−2

4s2 − 1
,
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shows that throughout the physically admissible range 0 ≤ β < 1 (for super-
dense ultrarelativistic plasma pF /EF ∼ 1) the function φ (β) varies monoton-
ically between the values 2/3 and 1.

The problem now reduces to the determination of the range of variation of
the energies of electrons that actually participate in the annihilation process
taking account of conditions (6.64), (6.65) and E1 ≤ EF for the annihilation
process. The situation may be clarified by defining this region graphically.
Figure 6.1 shows the Emin(max)(ω) curves and the lines corresponding to fre-
quencies ω = ωlim = (π/3)1/3pF (see Eq. (6.65)) and ω = ωmax = EF +E2. The
energies of the particles and γ-quantum can vary within the region ABCA,
and the limits of integration with respect to the electron energy E1 min and
E1 max are determined by the points at which the E1 = ω − E2 line cuts the
boundaries of this region.

Evaluating the integral in Eq. (6.91) with the dispersion law (6.99) we
obtain a bulky expression for the total probability of the annihilation process.
However, for the admissible values of n(ω) and electron density ρe with a great
accuracy for the function φ (β) we have: φ(npF /EF ) ≈ 2/3 and the ultimate
expression for the probability of the e− +e+ → γ process is rather simplified.

Fig. 6.1. Curves of Emin(ω), Emax(ω) and the lines corresponding to frequencies
ω = ωlim = (π/3)1/3pF and ω = ωmax = EF + E2. The energies of the particles and
γ-quantum can vary within the region ABCA, and the limits of integration with
respect to the electron energy E1 min and E1 max are determined by the points at
which the E1 = ω − E2 line cuts the boundaries of this region.
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The points of intersection of the line E1 = ω − E2 and the boundaries of the
region ABCA then correspond to

ω1 =
ωp

2m2

[
ωpE2 − p2

(
ω2

p − 4m2)1/2
]
,

ω2 =

⎧⎪⎨⎪⎩
ωp

2m2

[
ωpE2 + p2

(
ω2

p − 4m2
)1/2
]
, E2 ≤ Emin (ω = ωlim) ,

ωlim, Emin (ω = ωlim) < E2 < Emax (ω = ωlim) .
(6.100)

Finally, the total probability of the annihilation process is

Wγ =
e2

4πp2E2

[(
m2 +

ω2
p

2

)
(ω2 − ω1) +

1
2
ωp

(
E2
2 +

ω2
p

4

)

× ln
(ω2 − ωp) (ω1 + ωp)
(ω2 + ωp) (ω1 − ωp)

− E2ω
2
p

2
ln

(ω2 − ωp) (ω2 + ωp)
(ω1 − ωp) (ω1 + ωp)

]
. (6.101)

The lower limit for the density of the medium, above which pair annihilation
is possible, can be defined from the reaction threshold condition (6.64) and
the dispersion law (6.96). Thus, we obtain ωp > 2m, which is equivalent to
EF >

√
3πm/e ≈ 36m. The electron density of the plasma corresponding to

this value of EF is ρe > p3
F /3π

2 ≈ 3 · 1034cm−3.
For a nonrelativistic positron annihilation in an electron plasma we have

a simple formula for the total probability:

Wγ =
e2ω3

p

8πm3

(
ω2

p − 4m2)1/2
, p2 << m. (6.102)

Let us now analyze the results for the electron–positron pair production
in a superdense relativistic degenerate plasma with the dispersion law (6.96).
The Pauli principle in this case demands the satisfaction of the condition E1 >
EF which together with conditions (6.64) and (6.65) substantially reduces the
range of parameter values for this process to proceed even in the required
superdense plasma. The range of integration with respect to E1 in Eq. (6.85)
shrinks to a point and the probability of the process γ → e− + e+ tends
practically to zero. With the increase of the electron density when EF �
150m (Emax(ωlim) > EF , see Fig. 6.1), a narrow region appears and Eqs.
(6.65), (6.100) show that the creation of a pair by a γ-quantum with energy
ω1(E2 = EF ) < ω < ωlim becomes possible in this region. As a result, the
lower bound of the energy of a created electron instead of Emin (ω) should be
EF and from Eq. (6.85) we obtain
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W =
e2 (Emax(ω) − EF )

4πaωω2n5(ω)

{
1 − n2(ω)

3
(E2

max (ω) + EF Emax(ω) + E2
F

)

−1 − n2(ω)
2

ω (Emax(ω) + EF ) + n2(ω)m2 +
1 − n4(ω)

4
ω2
}
. (6.103)

However, it is important to recall that this region ω 
 ωlim lies at the limit of
validity of the macroscopic concept for a refractive index of a medium (one
particle within the length λ/2).

6.6 Electron–Positron Pair Production by Strong EM
Wave in Nonstationary Medium

As the probability of the single-quantum production of an electron–positron
pair in a stationary plasma, as a macroscopic dispersive medium, practically
equals zero (even at the required superdensities of electrons) it is reasonable
to consider an exclusive possibility for a single-photon pair production in a
nonstationary medium of ordinary densities by strong light fields. Namely,
we assume the abrupt temporal change of the dielectric permittivity of a
medium which may be described by the stepwise function ε (6.1).

In order to describe pair production in the field (6.6), (6.7) we shall employ
the Dirac model (all negative-energy states of the vacuum are filled with
electrons). The Dirac equation in the field (6.6), (6.7) has the form ( � = c =
1)

i
∂Ψ

∂t
=
[
α̂(p − eA) + β̂m

]
Ψ, (6.104)

where

A(r, t) =

⎧⎨⎩
iE0

ω0
ei(ω0t−k0r) + c.c., t < 0

iE1
ω1
eiω1t−k0r − iE2

ω1
e−iω1t−k0r + c.c., t � 0

(6.105)

is the vector potential of the EM field and α̂, β̂ are the Dirac matrices in the
standard representation (3.2).

We solve Eq. (6.104) by perturbing in the field of the wave. This method
is valid if [

1 +
(
ε1
ε2

)1/2
]
ξ0 << 1, ξ0 =

eE0

mω0
. (6.106)

We expand the perturbed first-order wave function Ψ1(r, t) in a complete
set of orthonormalized wave functions of the electrons (positrons) with mo-
menta p − k0 and p + k0:
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Ψ1(r, t) = Ψ
(−)
1 (t)ei(p−k0)r + Ψ

(+)
1 (t)ei(p+k0)r,

Ψ
(−)
1 (t) =

4∑
l=1

al(t)ul (p − k0, t) , (6.107)

Ψ
(+)
1 (t) =

4∑
j=1

bj(t)uj (p + k0, t) .

Here al(t) and bj(t) are unknown functions and ui (p′, t) are orthonor-
malized bispinor functions which describe the particle states with energies
±E ′ = ±

√
p′2 +m2:

u1,2 (p′, t) =
(E ′ +m

2E ′

)1/2
⎛⎝ ϕ1,2

σp′

E′+mϕ1,2

⎞⎠ exp (−iE ′t) , (6.108)

u3,4 (p′, t) =
(E ′ +m

2E ′

)1/2
⎛⎝ −σp′

E′+mχ3,4

χ3,4

⎞⎠ exp (iE ′t) . (6.109)

These functions are normalized to one particle per unit volume: u+
i uj = δij ;

the constant spinors ϕ1,2 and χ3,4 are

ϕ1 = χ3 =
(

1
0

)
, ϕ2 = χ4 =

(
0
1

)
.

Under the transformations (6.107)–(6.109) the Dirac equation for the per-
turbed wave function Ψ = Ψ0 + Ψ1 + · · · , (|Ψ1| << |Ψ0|):(

i
∂

∂t
− α̂p − β̂m

)
Ψ1 = −eα̂AΨ0 (6.110)

transforms into a system of 16 equations for the unknown functions al(t) and
bj(t): (

i
∂

∂t
− α̂p − β̂m

)[ 4∑
l=1

al(t)ul (p − k0, t) ei(p−k0)r

+
4∑

j=1

bj(t)uj (p + k0, t) ei(p+k0)r

]
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= −eα̂ [A(−)(t)e−ik0r + A(+)(t)eik0r
]
us (p, t) eipr, (6.111)

where s = 3, 4 and

A(−)(t) =

⎧⎨⎩
iE0

ω0
eiω0t, t < 0,

iE1
ω1
eiω1t − iE2

ω1
e−iω1t, t � 0,

A(+)(t) = A∗
(−)(t). (6.112)

The bispinor functions us (p, t) in Eq. (6.111) correspond to the unper-
turbed states of the Dirac vacuum (they are determined by Eq. (6.109) with
s = 3 and s = 4, where p′ = p and E ′ = E are the momenta and energies
of the free vacuum electrons). According to this model, a pair is produced
because of the interaction of the external field with the electrons of negative
energies of the Dirac vacuum. In the first-order perturbation theory in the
field this leads to electron states in the region of positive energies with the
values

E(−) =
√

(p − k0)
2 +m2, E(+) =

√
(p + k0)

2 +m2.

The probabilities of these transitions are determined by the amplitudes a1,2
and b1,2, respectively (the indices 1 and 2 correspond to two different spin
states). Therefore the problem reduces to determining the functions a1,2(t)
and b1,2(t) by integrating the set of Eqs. (6.111). From the latter we obtain
the following set of equations:

4∑
l=1

i
dal

dt
ul (p − k0, t) = −eα̂A(−)(t)us (p, t) , (6.113)

4∑
j=1

i
dbj
dt

uj (p + k0, t) = −eα̂A(+)(t)us (p, t) . (6.114)

Multiplying Eq. (6.113) on the left by u†
l (p − k0, t) and Eq. (6.114) by

u†
j (p + k0, t) and taking into account that the bispinors are orthonormal

(u†
lum = δlm) we obtain eight equations for the transitions amplitudes al(t)

and bj(t) for a given spinor state s of a vacuum electron (s = 3 or s = 4) :

dal(t)
dt

= ieu†
l (p − k0, t) α̂A(−)(t)us (p, t) , l = 1, ..., 4, (6.115)

dbj(t)
dt

= ieu†
j (p + k0, t) α̂A(+)(t)us (p, t) , j = 1, ..., 4. (6.116)
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Orienting the z axis parallel to the electric field E0 of the wave and the x
axis parallel to the wave vector k0, we obtain for the amplitudes a1,2 and b1,2

a1,2(t) = ieu†
1,2 (p − k0)αzus (p)

∫ t

−∞
A(−)(t′)e

i(E+E(−))t′
dt′, (6.117)

b1,2(t) = ieu†
1,2 (p + k0)αzus (p)

∫ t

−∞
A(+)(t′)e

i(E+E(+))t′
dt′, (6.118)

where u†
1,2 (p ∓ k0) and us (p) are constant bispinors determined by Eqs.

(6.108) and (6.109) (preexponential factors in Eqs. (6.108), (6.109)) .
The probability of electron production from a definite vacuum state p,

s is determined by the quantity |a1(t)|2 + |a2(t)|2 + |b1(t)|2 + |b2(t)|2 (the
probability of the production of a positron with a momentum p in a definite
spinor state s). The differential probability of pair production, summed over
the initial spin states of the Dirac vacuum, in an element of the phase volume
dp/(2π)3 (the spatial normalization volume V = 1), is

dW = 2
[|a1(t)|2 + |a2(t)|2 + |b1(t)|2 + |b2(t)|2

] |t→+∞
dp

(2π)3
. (6.119)

Integrating Eqs. (6.117), (6.118) over time with Eq. (6.112) and assuming
that the EM wave is switched on and switched off adiabatically: E0(t =
−∞) = E1(t = +∞) = E2(t = +∞) = 0 (the amplitudes of the incident,
transmitted, and reflected waves are assumed to be slowly varying functions
of time), we obtain the following expressions for the amplitudes a1,2 and b1,2
after the wave interaction with the Dirac vacuum:

a1,2(t = +∞) =
ieE0 (ε1 − ε2)

(E + E(−)
)

ε2
(E + E(−) + ω0

) ((E + E(−)
)2 − ω2

0
ε1
ε2

)

×
[
u†

1,2 (p − k0)αzus (p)
]
, (6.120)

b1,2(t = +∞) =
ieE0 (ε1 − ε2)

(E + E(+)
)

ε2
(E + E(+) − ω0

) ((E + E(+)
)2 − ω2

0
ε1
ε2

)
×
[
u†

1,2 (p + k0)αzus (p)
]
. (6.121)

Evaluating the transition matrix elements in Eqs. (6.120), (6.121), we ob-
tain with the help of Eq. (6.119) the differential probability of pair production
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by a strong EM wave in a nonstationary medium:

dW =
e2

(2π)3
E2

0

E
(
ε1
ε2

− 1
)2

×

⎧⎪⎨⎪⎩
(E + E(−)

)2 [EE(−) +m2 + px(px − k0) + p2
y − p2

z

]
E(−)

(E + E(−) + ω0
)2 [(E + E(−)

)2 − ω2
0

ε1
ε2

]2

+

(E + E(+)
)2 [EE(+) +m2 + px(px + k0) + p2

y − p2
z

]
E(+)

(E + E(+) − ω0
)2 [(E + E(+)

)2 − ω2
0

ε1
ε2

]2
⎫⎪⎬⎪⎭ dp. (6.122)

As one can see from Eq. (6.122), the process exhibits azimuthal asymmetry
with respect to the direction of propagation of the wave. Orienting the polar
axis in this direction (dp = pEdE sin θdθdϕ, where θ is the angle between
the vectors p and k0 and ϕ is the azimuthal angle relative to the direction
of polarization of the wave) and integrating over the energy, we obtain the
angular distribution of the produced electrons (positrons). As the case of
physical interest is an EM wave of frequencies ω << m, Eq. (6.122) simplifies
greatly and takes the form

dW =
e2E2

0

2π3

(
ε1
ε2

− 1
)2 √E2 −m2

E

×m2 sin2 θ cos2 ϕ+ E2
(
1 − sin2 θ cos2 ϕ

)(
4E2 − ω2

0
ε1
ε2

)2 sin θdθdϕdE . (6.123)

Integrating Eq. (6.123) over the energy we obtain the number of pairs
produced in the element of solid angle do = sin θdθdϕ:

dW (θ, ϕ) =
e2E2

0

128π2m

(
ε1
ε2

− 1
)2 [

F

(
2;

1
2
; 2;

ω2
0ε1

4m2ε2

)

× (1 − sin2 θ cos2 ϕ
)

+
1
4
F

(
2;

3
2
; 3;

ω2
0ε1

4m2ε2

)
sin2 θ cos2 ϕ

]
do, (6.124)

where F (ν;µ;λ; z) is the hypergeometric function.
For the energy distribution of the produced electrons (positrons) we have
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dW (E) =
2e2E2

0

3π2

(
ε1
ε2

− 1
)2 √E2 −m2

(
2E2 +m2

)(
4E2 − ω2

0
ε1
ε2

)2 dE . (6.125)

Integrating Eq. (6.124) over the angles θ and ϕ (or Eq. (6.125) over the
energy) we obtain the total number of electron–positron pairs produced by a
strong EM wave in a nonstationary medium:

W =
2e2E2

0

48πm

(
ε1
ε2

− 1
)2 [

F

(
2;

1
2
; 2;

ω2
0ε1

4m2ε2

)

+
1
8
F

(
2;

3
2
; 3;

ω2
0ε1

4m2ε2

)]
. (6.126)

Note that in Eqs. (6.123) and (6.125) the denominators become zero for
ω0
√
ε1/ε2 = 2E . This is the conservation law for the single-photon pair pro-

duction by a wave of the frequency ω1 = ω0
√
ε1/ε2 (by the transmitted and

reflected waves) in a medium with the index of refraction n2 =
√
ε2 < 1

(plasma). Since Eqs. (6.123)–(6.126) correspond to the case ω << m, the
pole in Eq. (6.123) can be reached, i.e., the conservation laws of energy and
momentum for the process γ → e− + e+ can be satisfied only if ε1/ε2 >> 1.
Actually this is possible if ε2 << 1, in agreement with the fact that pair
production by a photon field requires a plasmalike medium. It is obvious
from Eq. (6.126) that the total probability of the process diverges when
ω2

0ε1/4m
2ε2 = 1. The latter is associated with the fact that these probabili-

ties were determined for an infinitely long interaction time. In perturbation
theory probabilities are proportional to the interaction time (under station-
ary conditions) and diverge as t → ∞. Thus, this divergence is not associated
with the process studied here, which is governed by the time dependence of
the medium, and it can be eliminated by assuming ω2

0ε1/ε2 < 4m2. More-
over, for laser frequencies and realistic values of the dielectric permittivities
ω0
√
ε1/ε2 << 2E and from Eq. (6.126) we obtain the following expression

for the total number of e−, e+ pairs produced in the volume V due only to
the medium nonstationary properties:

W =
3e2E2

0V

128πm

(
1 − ε1

ε2

)2

. (6.127)

In the general case, for arbitrary frequency of EM wave and temporal
variation of the dielectric permittivity of the medium ε1/ε2 from Eq. (6.122)
the following formula for the pair’s probability distribution over the total
energy Et = Ee− +Ee+ of the produced particles can be derived:
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dW

dEt
=
e2E2

0

6π2

(
1 − ε1

ε2

)2(
1 − 4m2

E2
t − k2

0

)1/2

×E2
t

(E2
t + ω2

0
) (E2

t + 2m2 − k2
0
)

(E2
t − ω2

0)
(
E2

t − ω2
0

ε1
ε2

)2 . (6.128)
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21 (1988)
H.K. Avetissian, A.K. Avetissian, Kh.V. Sedrakian, Zh. Éksp. Teor. Fiz. 100,
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7 Induced Channeling Process in a Crystal

It is known that due to the relativistic motion of a charged particle in a crystal
an exotic situation takes place when the effective potential of the crystal planes
or axes becomes a potential well for the particle in the transversal direction
with respect to its initial motion, and so-called channeling of the particle
occurs accompanied by spontaneous channeling radiation.

The channeling radiation of ultrarelativistic electrons and positrons in a
crystal is of great interest for two major reasons: the radiation is in the short-
wave region (X-ray and γ-ray domains), and its spectral intensity considerably
exceeds that of other types of radiation in this range of frequencies.

Induced channeling radiation in the presence of an external coherent ra-
diation field becomes important as a potential source for short-wave coherent
radiation, which may be considered as a version of a free electron laser.

As a periodic system with high coherency and owing to the similar periodic
character of particle motion, the crystal channel may be compared with an
undulator — it is a “micro-undulator” with the space period much smaller
than that of an undulator.

On the other hand, the particle–external coherent EM wave interaction
process in the channel of a crystal proceeds with the inverse stimulated effect
reducing the particle acceleration and other classical and quantum coherent
effects.

Hence, this chapter will consider the induced channeling process with re-
gard to general aspects of coherent interaction of relativistic electrons and
positrons with a plane transversal EM wave in a crystal.

7.1 Positron–Strong Wave Interaction at the Planar
Channeling in a Crystal

If a charged particle with relativistic velocity enters a crystal at the angle
with respect to a crystal plane or crystallographic axis smaller than some
specified angle (Lindhard angle)

θα =

√
2U0

E , (7.1)
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then the effective electrostatic field of the crystal becomes a transversal po-
tential well related to the particle motion and the latter moves in the crystal
channel — the channeling of the particle occurs. Here U0 is the depth of the
potential well and E is the particle energy. In the most interesting case of ul-
trarelativistic energies for channeling phenomenon the transversal de Broglie
wavelength of the particle

λD =
�c√
2U0E

(7.2)

is much smaller than the interplanar or interaxial distance d in a crystal
(U0 is of the order of the kinetic energy of the particle transversal motion)
and consequently d/λD >> 1. On the other hand, the quantity d/λD with
the coefficient coincides with the number of bound states l of the particle
transversal motion in the crystal channel. Hence, in the most important region
of energies l >> 1 and the particle motion at the channeling can be described
classically.

We will study the induced interaction of a charged particle channeled
in a crystal with the external coherent radiation field within the scope of
the classical theory. In this section the case of the planar channeling will be
considered.

As is known for a positron planar channeling the effective electrostatic
potential of the crystal planes within the channel is well enough described by
the parabolic law

U (x) = 4
U0

d2 x
2, (7.3)

where d is the distance between the crystal planes, and the transversal coordi-
nate x is evaluated from the median plane. The classical relativistic equation
of motion for a positron in the fields (7.3) and an external plane monochro-
matic EM wave

E = E0 cos (ω0t− k0r) ; k0= ν
n0ω0

c
(7.4)

(n0 = n0(ω0) is the refractive index of the crystal on the wave frequency) is
written as

dp
dt

= eE+
e

c
[vH] − ∇U (x) . (7.5)

As for the permitted maximal values of the wave intensities in the dielectric
media the characteristic interaction parameter ξ0 = eE0/mcω0 << 1 (see
Section 2.2), then for the ultrarelativistic energies of the channeled particles
the interaction with the EM wave in a crystal with great accuracy can be
described by the classical perturbation theory over the field (7.4). Conse-
quently, in the zero order over the EM wave field from Eq. (7.5) we have the
equations
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dpx

dt
= −dU (x)

dx
, (7.6)

dpy

dt
= 0;

dpz

dt
= 0. (7.7)

Choosing the axis z along the initial motion of the particle from Eqs. (7.6)
and (7.7) for the particle energy and momentum we obtain respectively

E =
mc2√

1 − (v2
x + v2

z) /c2
+ U (x) , (7.8)

py = 0; pz =
mvz√

1 − (v2
x + v2

z) /c2
. (7.9)

For the transversal velocity of the particle from Eqs. (7.8) and (7.9) we have

v2
x = c2

[E−U (x)]2 − E2
�

[E−U (x)]2
, (7.10)

where

E� = c
√
p2

�
+m2c2 (7.11)

is the energy of the longitudinal motion. Equation (7.10) is the exact equation
for the particle transversal motion. One can make some simplification of this
equation taking into account the smallness of the potential energy related to
the energy of the ultrarelativistic particle:

Umax (x) � E .

Representing the particle energy in the form

E = E� + E⊥,

where E⊥ is the energy of the transversal motion, and taking into account
that for the channeled particles

E⊥ �Umax (x) � E�,

then the equation for the particle transversal motion (7.10) with the accuracy
of the small quantity E⊥/E� <<1 will take the form
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v2
x =

2c2

E�

[E⊥−U (x)] . (7.12)

Formally Eq. (7.10) has a nonrelativistic character where instead of particle
rest mass, the relativistic mass mrel 
 E�/mc

2 stands.
The longitudinal velocity of the particle is determined from Eq. (7.9) and

has the form

vz (t) 
 c

{
1 − 1

2

[
v2

x

c2
+
(
mc2

E�

)2
]}

. (7.13)

In the case of planar channeling of a positron when the effective elec-
trostatic potential of the crystal may be approximated by Eq. (7.3), the
integration of Eq. (7.12) gives the following law for the transversal motion:

x (t) = xm sin [Ω (t− t0) + ϕ] . (7.14)

Here

Ω =
2c
d

√
2U0

E�

(7.15)

is the frequency of the positron transversal oscillations in the potential well
of the crystal channel,

xm =
d

2

√E⊥
U0

(7.16)

is the amplitude and ϕ is the phase of the transversal oscillations at the
moment t0 when the positron enters into the crystal. Corresponding to Eq.
(7.14) the transversal velocity of the positron is

vx (t) = vxm cos [Ω (t− t0) + ϕ] , (7.17)

where

vxm =
dΩ

2

√E⊥
U0

(7.18)

is the maximal velocity of the transversal motion of the positron in the crystal
channel. Then using Eq. (7.17) after the integration of Eq. (7.13) we will have

z (t) = vzt− zm sin [2Ω (t− t0) + 2ϕ] + zm sin 2ϕ, (7.19)

where
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vz = c

{
1 − 1

2

[(
mc2

E�

)2

+
E⊥
E�

]}
(7.20)

is the mean longitudinal velocity of the positron, and the amplitude of the
longitudinal oscillations zm is

zm =
cE⊥
4ΩE�

. (7.21)

Now we can evaluate the induced channeling effect in the field of an
external EM wave, by the classical perturbation theory in the first order over
the field (7.4). The energy change of the channeled positron at the interaction
with the plane transverse EM wave is given by

∆E = e

t2∫
t1

E(t− νrn0/c)v(t)dt, (7.22)

where the law of motion r = r(t) and velocity v(t) of the positron in the
crystal channel are determined by Eqs. (7.14), (7.19) and Eqs. (7.13), (7.17),
respectively. The induced interaction time ∆t = t2 −t1 actually will be deter-
mined by the length of the channel (t1and t2 are correspondingly the moments
of the wave entrance in the crystal and exit from the channel).

For the concreteness and evaluation of the energy change (7.22) we in-
troduce a new Cartesian coordinate system x′, y′, z′ and assume that a
quasi-monochromatic EM wave linearly polarized along the axis x′ propa-
gates along the axis z′, at a small angle with respect to a crystal plane (see
Eq. (7.1)). The coordinate system x′, y′, z′ is related to the system x, y, z
via Eulerian angles α, β, γ as follows:⎛⎝x′

y′

z′

⎞⎠ =

⎛⎝ cos γ sin γ 0
− sin γ cos γ 0
0 0 1

⎞⎠⎛⎝ cosβ 0 − sinβ
0 1 0
sinβ 0 cosβ

⎞⎠

×
⎛⎝ 1 0 0

0 cosα sinα
0 − sinα cosα

⎞⎠⎛⎝x
y
z

⎞⎠ . (7.23)

At the motion of the positron in the crystal channel by the trajectory
(7.14), (7.19), the wave phase in Eq. (7.22) corresponding to induced inter-
action is

φ = ω0t− k0r =ωt− κ1 sin [Ω (t− t0) + ϕ]
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+κ2 sin 2 [Ω (t− t0) + ϕ] + ψ, (7.24)

where

ω = ω0

(
1 − n0vz

c
cosα cosβ

)
(7.25)

is the Doppler-shifted wave frequency, and the parameters κ1, κ2, ψ are

κ1 = n0ω0
xm

c
sinβ; κ2 = n0ω0

zm

c
cosα cosβ,

ψ = −n0
ω0

c
cosα cosβ (zm sin 2ϕ− vzt0) . (7.26)

Substituting Eq. (7.24) as well as Eqs. (7.13) and (7.17) in Eq. (7.22) for the
energy change of the positron due to the induced channeling effect, in the
first order by the wave field we will have

∆E =
∞∑

s=−∞

e

ω − sΩ
{E0xvxmA1 (s,κ1,κ2) + E0z (vz + vzm)A0 (s,κ1,κ2)

−2E0zvzmA2 (s,κ1,κ2)} {sin [(ω − sΩ) t2 + sΩt0 − sϕ+ ψ]

− sin [(ω − sΩ) t1 + sΩt0 − sϕ+ ψ]} , (7.27)

where

An (s, α, β) =
1
2π

π∫
−π

cosn ϕ′ei(α sin ϕ′−β sin 2ϕ′−sϕ′)dϕ′

is the generalized Bessel function with the definitions

A0 (s, α, β) =
∞∑

k=−∞
Js+2k (α)Jk (β) ,

A1 (s, α, β) =
1
2

[A0 (s− 1, α, β) +A0 (s+ 1, α, β)] ,

A2 (s, α, β) =
1
4

[A0 (s− 2, α, β) + 2A0 (s, α, β) +A0 (s+ 2, α, β)] ,

and
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vzm =
cE⊥
2E�

(7.28)

is the amplitude of the positron longitudinal velocity oscillations.
Equation (7.27) shows that the energy change of the positron after the

interaction differs from zero (will have nonoscillating character in the time)
if the condition

ω0

(
1 − n0

vz

c
cosα cosβ

)
= sΩ; s = 0,±1,±2, ... (7.29)

is satisfied for a specified s. The latter is the condition of the resonance be-
tween the transversal oscillations of the positron in the potential well of the
crystal channel and EM wave. Only at the fulfillment of this condition does
the coherent energy exchange of the channeled positron with the monochro-
matic wave become real. Then for the energy change of the positron after the
interaction we have

∆E = eE0∆t {vxm cosβ cos γA1 (s,κ1,κ2) + (sinα sin γ − cosα sinβ cos γ)

× [(vz + vzm)A0 (s,κ1,κ2) − 2vzmA2 (s,κ1,κ2)]}

× cos
[
sΩt0 − sϕ+ n0

ω0

c
cosα cosβ (vzt0 − zm sin 2ϕ)

]
. (7.30)

Expressing the functions A0,1,2 (s,κ1,κ2) via the ordinary Bessel functions,
Eq. (7.30) can be presented in the form

∆E = eE0∆t

∞∑
k=−∞

{
1
2
vxm cosβ cos γ [Js−1+2k (κ1) + Js+1+2k (κ1)]

+vz (sinα sin γ − cosα sinβ cos γ)Js+2k (κ1)

−vzm (sinα sin γ − cosα sinβ cos γ) [Js−2+2k (κ1) + Js+2+2k (κ1)]
}
Jk (κ2)

× cos
[
sΩt0 − sϕ+ n0

ω0

c
(vzt0 − zm sin 2ϕ) cosα cosβ

]
. (7.31)

For the X-ray and γ-ray frequencies when n0 (ω0) � 1 the resonance condition
(7.29) corresponds to the normal Doppler effect at which the energy absorp-
tion from the EM wave is accompanied by enhancement of the transversal
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oscillations of the positron (in these cases s > 0 in Eq. (7.31)). For the opti-
cal frequencies when n0 (ω0) > 1 the anomalous Doppler effect is possible as
well:

1 − n0
vz

c
cosα cosβ < 0, (7.32)

which corresponds to enhancement of transversal oscillations of the positron
at the induced radiation (in Eq. (7.31) in this case s < 0). Under the condition

1 − n0
vz

c
cosα cosβ = 0, (7.33)

that is, the Cherenkov condition in the crystal channel corresponding to s =
0, Eq. (7.29) expresses the real energy exchange at the positron–wave induced
Cherenkov interaction.

Equation (7.31) for the general geometry of the positron planar channeling
at the arbitrary propagation and polarization directions of the wave is very
bulky. It can be simplified in the case of a particular geometry of the induced
interaction — if the EM wave propagates along the direction of the positron
motion in the channel (axis z) with the electric field directed along the axis x
— and the positron energy E� � m2c4/E⊥. Then, for the number of harmonic
s we have: s = 0, ±1 (for the coherent accumulation of energy exchange), and
for the frequencies satisfying the resonance condition (7.29) one can suppose
n0 (ω0) 
 1. The latter excepts the possibility of the induced Cherenkov effect
( s = 0) and the anomalous Doppler effect (s = −1) as well. Thus, for the
induced energy exchange we have a simple formula

∆E =
eE0vxm

2
∆t cos

[(
Ω + ω0

vz

c

)
t0 − ϕ

]
. (7.34)

As is seen from Eqs. (7.31) and (7.34) depending on the initial conditions-
a moment t0 when the positron enters into the crystal and a phase ϕ of the
transversal oscillations — either the direct or the inverse induced channeling
effect occurs, i.e., positron deceleration or acceleration, respectively. Hence,
at the interaction of the channeled positron beam with the monochromatic
EM wave the diverse particles entering into a crystal at the different moments
and in the different oscillation phases will acquire or lose different energies.
As a result, the modulation of the particles’ velocities will take place leading
to beam bunching if the longitudinal size of the latter lz > πvz/ω0.
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7.2 Induced Interaction of Electrons with Strong EM
Wave at the Axial Channeling

As is known, for an electron axial channeling the effective electrostatic po-
tential of the atomic chain along the crystal axis is well enough described by
the two-dimensional Coulomb potential

U (ρ) = −αc

ρ
, (7.35)

where αc is a constant depending on the type of crystal and the particular
geometry, and ρ is the distance from the crystal axis. The transversal motion
of the electron in the field (7.35) with a nonzero momentum occurs by the
Keplerian elliptic trajectory. If one directs the coordinate axes OX and OY
correspondingly along the major and minor semiaxes of the ellipse and the
axis OZ along the crystal axis, and if at the moment t = t0 the electron
is situated in the perihelion of the orbit of the transversal motion with the
coordinate z = z0, then the electron trajectory may be presented in the
known parametric form

x = a (cos ζ − ε) ; y = (−1)s′
b sin ζ,

z = vz (t− t0) − a2 εΩ

c
sin ζ + z0, (7.36)

t =
ζ − ε sin ζ

Ω
+ t0,

where for a full rotation of the electron by the elliptic orbit the parameter ζ
varies from zero to 2π. Here the parameters

a =
αc

2 |E⊥| ; b = a
√

1 − ε2 (7.37)

are the major and minor semiaxes of the ellipse,

ε =

√
1 − 2 |E⊥|M2

z c
2

E�α2
c

(7.38)

is the eccentricity (Mz is the z-component of the orbital moment),

Ω = c
(2 |E⊥|) 3

2

αc

√E�

(7.39)
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is the rotation frequency, and

vz = c

(
1 − m2c4

2E2
�

)
− c |E⊥|

E�

(7.40)

is the mean longitudinal velocity of the electron. The parameter s′ in Eq.
(7.36) determines the right-hand or left-hand rotation of the electron by the
elliptic orbit:

s′ =

⎧⎪⎨⎪⎩
0, Mz

|Mz| > 0,

1, Mz

|Mz| < 0.
(7.41)

As the electron trajectory at the axial channeling is of helical type from
the point of view of the symmetry in this issue we will suppose that an EM
wave has a circular polarization:

Ex′ = E0 cos (ω0t− k0r) ; Ey′ = E0 (−1)s′′
sin (ω0t− k0r) (7.42)

correspondingly with the left-hand and right-hand rotations:

s′′ =
{

0,
1,

left-hand,
right-hand.

The coordinate system x′y′z′ relates to the xyz one in accordance with Eq.
(7.23) and in the case of the wave circular polarization one can assume that
the Eulerian angle γ = 0.

We will evaluate the induced effect at the axial channeling by Eq. (7.22)
again in the first order by the EM wave field. As far as the particle velocity
and law of motion in the channel in this case are determined in parametric
form (Eq. (7.36)) it is necessary to pass in Eq. (7.22) from the variable t to ζ.
Then the induced energy exchange between the channeled electron and EM
wave will be written in the form

∆E = e

ζ(t2)∫
ζ(t1)

E(φ (ζ))
dr(ζ)
dζ

dζ, (7.43)

where ∆t = t2 − t1 is the duration of electron–wave coherent interaction at
the axial channeling. In the first-order approximation for the wave phase in
the integral (7.43) with the help of Eqs. (7.36)–(7.41) we have

φ (ζ) = ω0t− k0r =
ω0 − k0zvz

Ω
ζ − κ1 sin ζ − κ2 cos ζ + ψ, (7.44)
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where

k0 = n0
ω0

c
(sinβ,− sinα cosβ, cosα cosβ) ,

and the parameters κ1, κ2, ψ in this case are

κ1 =
ε

Ω
(ω0 − k0zvz) + (−1)s′

k0yb− k0za
2ε
Ω

c
; κ2 = ak0x,

ψ = ω0t0 + k0xaε− k0zz0.

Performing integration in Eq. (7.43) with the help of Eqs. (7.36) and (7.44)
we obtain the following ultimate equation for the coherent energy exchange
between the electron and external strong EM wave at the axial channeling:

∆E = −eE0Ω∆t

{
Js (κ)

[
(−1)s′′

sinα sinϕ− cosα sinβ cosϕ
] vz

Ω

+
s

κ
Js (κ)

[
a cosβ sinϕ1 cosϕ+ (−1)s′

b sinα sinβ cosϕ cosϕ1

+ (−1)s′+s′′
b cosα sinϕ cosϕ1 +

(
1 +

2c |E⊥|
vzE�

)
εvz

Ω

(
cosα sinβ cosϕ cosϕ1 − (−1)s′′

sinα sinϕ cosϕ1

)]

+J ′
s (κ)

[
a cosβ sinϕ cosϕ1 + (−1)s′

b sinα sinβ sinϕ sinϕ1

+ (−1)s′+s′′
b cosα cosϕ sinϕ1 −

(
1 +

2c |E⊥|
vzE�

)
εvz

Ω

×
(
cosα sinβ sinϕ sinϕ1 + (−1)s′′

sinα sinϕ1 cosϕ
)]}

, (7.45)

where the parameters κ, ϕ1, and ϕ are

κ =
√

κ2
1 + κ2

2 ,
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ϕ1 =
κ1

|κ1| arcsin
κ2

κ
, (7.46)

ϕ = ω0t0 − n0
ω0

c
z0 cosα cosβ + aεn0

ω0

c
sinβ − sϕ1.

The physical analysis of Eq. (7.45) is the same as was made for the positron
planar channeling. So, we will not repeat the analogous analysis, noting only
that the condition of resonance at the axial channeling for coherent energy
exchange (7.45) is given by Eq. (7.29), where the frequency of transversal
oscillations Ω of the electron is determined by Eq. (7.39).

Equation (7.46) corresponding to general geometry of the electron axial
channeling in the arbitrary propagation and polarization directions of the
wave is very bulky. It is rather simplified if the wave propagates along the
direction of the electron motion in the channel (axis z) with the components
of the electric field strength directed along the axes x and y, as well as the
electron energy should not exceed the value m2c4/E⊥. For the induced energy
exchange we have the following ultimate equation:

∆E = −eE0Ω∆t
{
aJ ′

s (κ) + b (−1)s′+s′′ s

κ
Js (κ)

}

× sin
(
ω0t0 − n0

ω0

c
z0

)
. (7.47)

The existence of diverse harmonics in Eq. (7.47) is related to the anharmonic
character of the electron transversal oscillations in the field (7.35) (in contrast
to Eq. (7.34) for the planar channeling, at which the positron is a harmonic
oscillator in the channel).

In addition, note that Eqs. (7.45) and (7.47) due to their coherent de-
pendence on the interaction phase lead to the electron beam classical mod-
ulation and bunching after the interaction with the stimulating wave at the
axial channeling analogously to the positron beam bunching at the planar
channeling.

7.3 Quantum Description of the Induced Planar
Channeling Effect

Consider the interaction of the particles channeled in a crystal and a plane
monochromatic EM wave in the scope of the quantum theory. First we will
study the case of a weak wave when the one-photon absorption and emis-
sion processes dominate and the induced channeling effect may be described
within the quantum perturbation theory by the particle wave function in
the linear over the field approximation with respect to the initial state in
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the potential field of the crystal channel. It means that the latter should be
described exactly.

We will start from the Dirac equation which in the case of the planar
channeling of a positron in the field of an external EM wave is written as

i�
∂Ψ

∂t
=
(
Ĥ0 + V̂

)
Ψ, (7.48)

Ĥ0 = cα̂p̂ + β̂mc2 + U (x) ; V̂ = −eα̂A, (7.49)

where α̂, β̂ are the Dirac matrices in the standard representation (3.2). Ac-
cording to perturbation theory we seek the solution of Eq. (7.49) in the form

Ψ = Ψ0 + Ψ1 + · · · ; |Ψ1| � |Ψ0| , ...,

where Ψ0 satisfies the following equation for the positron in the electrostatic
field of the crystal channel:

i�
∂Ψ0

∂t
=
[
cα̂p̂ + β̂mc2 + U (x)

]
Ψ0 (7.50)

with the effective potential U (x) (7.3). The particular solution of Eq. (7.50)
may be presented in the form

Ψ0 (r, t) = b

⎛⎝ϕ

χ

⎞⎠ e− i
�

Et, (7.51)

where ϕ and χ are spinor functions, E is the total energy of the positron in
the potential field of the channel, and b is the normalization coefficient. From
Eq. (7.50) for the spinor functions ϕ and χ we obtain the following set of
equations:

Eϕ = c (σp̂)χ+mc2ϕ+ U (x)ϕ,

Eχ = c (σp̂)ϕ−mc2χ+ U (x)χ, (7.52)

where σ = (σx, σy, σz) are the Pauli matrices (1.79). Eliminating χ from the
first equation (7.52):

χ =
cσp̂

E +mc2 − U (x)
ϕ, (7.53)

for the spinor function ϕ we obtain a differential equation of the second order:
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∆ϕ+
1

�2c2

(
[E − U (x)]2 −m2c4

)
ϕ+

σ∇U (x)
E +mc2 − U (x)

(σ∇)ϕ = 0. (7.54)

The solution of Eq. (7.54) is sought in the form

ϕ = wψ (x) e
i
�
p�r =

⎛⎝w1

w2

⎞⎠ψ (x) e
i
�
p�r, (7.55)

where ψ (x) is the positron wave function corresponding to the transversal
motion in the potential well of the channel, and w is a constant spinor which
should be defined from the wave function normalization condition

w†w = w∗
1w1 + w∗

2w2 = 1.

Neglecting the small terms of the order Umax/E << 1 (or E⊥/E << 1) in
Eq. (7.54), for the positron wave function describing the transversal motion
in the crystal channel we obtain a one-dimensional Schrödinger equation in
the potential field U (x)

d2ψ (x)
dx2 +

2meff

�2 [E⊥ − U (x)]ψ (x) = 0, (7.56)

with the effective mass meff corresponding to the energy E� of relativistic
longitudinal motion

meff =
E�

c2
=

√
p2

�

c2
+m2. (7.57)

In Eq. (7.56) E⊥ = E − E� is the energy of transversal motion, which para-
metrically depends on the energy of longitudinal motion E⊥ = E⊥ (E�) . In
the case of planar channeling of positrons with the harmonic potential (7.3),
Eq. (7.56) describes the quantum harmonic oscillator the solution of which
is given by

ψn (x) =
( E�Ω

π�c2

) 1
4 1√

2nn!
e− E�Ω

2�c2
x2Hn

(√
E�Ω

�c2
x

)
, (7.58)

where

Hn (ξ) = (−1)n
eξ2 dne−ξ2

dξn
(7.59)

are the Hermit polynomials, and the quantization law for the positron
transversal energy is



7.3 Quantum Description of the Induced Planar Channeling Effect 219

E⊥ (n, E�) =
(
n+

1
2

)
�Ω, (7.60)

where Ω is given by Eq. (7.15).
Finally, with the help of Eqs. (7.55) and (7.51) the solution of Eq. (7.48)

for the positron wave function with the longitudinal momentum p� in the
n-th bound state of the transversal motion and spin state σ can be written
as

Ψp�,n,σ (r, t) =

√
E� +mc2

2E�

⎛⎝ϕσ

cσp̂
E+mc2−U(x)ϕσ

⎞⎠ψn (x) e
i
�
(p�r−Et), (7.61)

where ϕσ are the spinors (3.11), and the total energy E is given by the relation

E (p�, n) =
√
c2p2

�
+m2c4 +

(
n+

1
2

)
�Ω. (7.62)

Now we can evaluate the wave function of the channeled positron at the
induced interaction with an external EM wave in the first approximation of
perturbation theory (Ψ1) on the basis of Eqs. (7.61), (7.62) for unperturbed
(by the wave) state in the crystal channel (Ψ0).

Before the interaction with a plane monochromatic EM wave assume that
a positron with an initial longitudinal momentum p� = (0, py, pz) is situated
in the bound state of the crystal channel characterized by the quantum num-
bers n, σ, that is, the initial state is described by the wave function

Ψ0 (r, t) = Ψp�,n,σ (r, t) . (7.63)

The positron wave function Ψ1 perturbed by the EM wave will be expanded
in terms of the full basis of the eigenstates (7.63) with Eqs. (7.61), (7.62):

Ψ1 (r, t) =
∑

p′
�
,n′,σ′

ap′
�
,n′,σ′ (t)Ψp′

�
,n′,σ′ (r, t) , (7.64)

where ap′
�
,n′,σ′ (t) are unknown functions, and the summation is made over

all possible states of the positron transversal motion in the potential well
corresponding to planar channeling. Substituting the wave function Ψ = Ψ0+
Ψ1 with Eqs. (7.63) and (7.64) in the Dirac equation (7.48) and neglecting
the small terms of the second order by the quantity ∼ eα̂AΨ1 (in accordance
with the perturbation theory) we obtain the following differential equation
for the expansion coefficients ap′

�
,n′,σ′ :
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p′

�
,n′,σ′′

�
∂ap′

�
,n′,σ′

∂t
Ψp′

�
,n′,σ′ (r, t) = ieα̂A (r, t)Ψp�,n,σ (r, t) . (7.65)

Multiplying Eq. (7.65) on the left-hand side by Ψ †
p′

�
,n′,σ′ (r, t) and integrating

over drdt one can present the solution of Eq. (7.65) in the form

ap′
�
,n′,σ′ = i

eA0

4

√
2�Ω

E�

δσ′σ
[√

nδn′+1,n − √
n+ 1δn′−1,n

]

×
[
δ
p′

�
,p�+�k0

e− i
� (E(p�,n)−E(p′

�
,n′)+�ω0)t

E (p�, n) − E (p′
�
, n′)+ �ω0

+δ
p′

�
,p�−�k0

e− i
� (E(p�,n)−E(p′

�
,n′)−�ω0)t

E (p�, n) − E (p′
�
, n′)− �ω0

]
. (7.66)

In Eq. (7.66) it was assumed that the wave propagates in the plane yz with
the vector potential directed along the axis x:

Ax = A0 cos (ω0t− k0r) ,

and was taken into account that for actual cases �ω0/E� << 1 and the
positron energies E < m2c4/U0 as well.

As is seen from Eq. (7.66) only the following expansion coefficients differ
from zero

ap�+�k0,n−1,σ (t) = D√
n
e−i(ω+Ω)t

ω +Ω
,

ap�+�k0,n+1,σ (t) = −D√
n+ 1

e−i(ω−Ω)t

ω −Ω
,

ap�−�k0,n−1,σ (t) = −D√
n
ei(ω−Ω)t

ω −Ω
, (7.67)

ap�−�k0,n+1,σ (t) = D√
n+ 1

ei(ω+Ω)t

ω +Ω
,

where the quantity D is

D = i
eA0

2�

√
�Ω

2E�

, (7.68)
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and the Doppler-shifted wave frequency ω is

ω = ω0 − k0v�; v� =
c2p�

E�

. (7.69)

The expressions in Eq. (7.67) show that the second and third coefficients have
a resonance character due to which the induced channeling effect occurs —
resonance absorption of the wave photons by a channeled particle and coher-
ent emission of the photons into the wave. Hence, neglecting in Eq. (7.64) the
small terms with nonresonant expansion coefficients (first and fourth ones in
Eq. (7.67)) of the perturbed wave function for the probability density of the
positron at the planar channeling we will have

W (r, t) = ϕ2
n (x) +

eA0

� (ω −Ω)

√
�Ω

2E ϕn (x)

× [√n+ 1ϕn+1 (x) − √
nϕn−1 (x)

]
sin (k0r − ω0t) . (7.70)

In the case of the exact resonance (ω = Ω) Eq. (7.70) is not applicable. In
this case the solution of Eq. (7.65) for the probability density of the positron
gives

W (r, t) = ϕ2
n (x) +

eA0

�

√
�Ω

2E ϕn (x)

× [√nϕn−1 (x) − √
n+ 1ϕn+1 (x)

]
∆t cos (k0r − ω0t) , (7.71)

where ∆t is the period of channeled positron interaction with EM wave.
As is seen from the Eqs. (7.70) and (7.71) the probability density of the

positron due to the induced channeling effect is modulated at the stimulat-
ing wave frequency (in the one-photon approximation; in the next orders of
perturbation theory we will obtain modulation at the harmonics of the wave
fundamental frequency).

The condition of validity of the perturbation theory at which the obtained
formulas are applicable we can obtain from Eq. (7.71):

eE0vxm∆t

�ω0
� 1, (7.72)

where vxm is the maximal velocity of transversal motion of the positron in
the channel of the crystal (see Eq. (7.18)):

vxm = c

√
2n�Ω

E�

= c

√
2E⊥
E�

. (7.73)
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7.4 Quantum Description of the Induced Axial
Channeling Effect

At the axial channeling the state of the electron is characterized by the pro-
jection of the momentum pz on the crystal axis z, and due to the axial
symmetry of the effective electrostatic potential of an atomic chain within
the channel the projection of the orbital moment of the electron on the same
axis is conserved.

The Dirac equation for an electron at the axial channeling is written in
the form (7.48) with the Hamiltonian

Ĥ0 = cα̂p̂ + β̂mc2 + U (ρ) , (7.74)

where U (ρ) is given by Eq. (7.35). The interaction of the electron with the
external EM wave will again be taken into account by perturbation theory
(in the one-photon approximation):

Ψ = Ψ0 + Ψ1; |Ψ1| � |Ψ0| ,

where Ψ0 is the electron wave function in a crystal at the axial channeling,
which satisfies the equation

i�
∂Ψ0

∂t
=
[
cα̂p̂ + β̂mc2 + U (ρ)

]
Ψ0. (7.75)

The solution of Eq. (7.75) may be presented in the form

Ψ0 (r, t) = b

(
Φ
χ

)
e

i
�
(pzz−Et), (7.76)

where E is the total energy of the electron and b is the normalization coeffi-
cient. The bispinors Φ and χ are connected by the relation

χ =
cpzσz + cp̂σ

E +mc2 − U (ρ)
Φ. (7.77)

From Eq. (7.75) for the wave function of the electron transversal motion in
the channel with the accuracy of a small term ∼ U0/E we obtain the equation

∆ρ,ϕΦ (ρ, ϕ) +
2E�

�2c2
[E⊥ − U (ρ)]Φ (ρ, ϕ) = 0, (7.78)

where
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∆ρ,ϕ =
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2

is the two-dimensional Laplacian,

E� =
√
c2p2

z +m2c4

is the energy of the electron longitudinal motion, and E⊥ = E−E� is the
transversal one.

As is seen from Eq. (7.78) for wave function Φ (ρ, ϕ) the variables are
separated and the eigenvalue of the operator

L̂z = −i� ∂

∂ϕ

— the projection of the orbital moment of the electron on the z axis is
conserved. Then the wave function Φ (ρ, ϕ) can be represented in the form

Φ (ρ, ϕ) = Φ (ρ) eimϕ; m = 0,±1,±2, ..., (7.79)

where m is the azimuthal quantum number, and from Eq. (7.78) for the
function

R (ρ) =
Φ (ρ)√
ρ

(7.80)

we obtain the equation

R′′ +
2
ρ
R′ +

[
2E�

�2c2

(
E⊥ +

αc

ρ

)
− m2 − 1/4

ρ2

]
R = 0. (7.81)

For the solution of Eq. (7.81) we pass from ρ to a new variable

r =
2
�c

√
2E� |E⊥|ρ, (7.82)

and making a notation

n =
αc

�c

√
E�

2 |E⊥| , (7.83)

then introducing the function R (r) in the form

R (r) = r|m|−1/2e−r/2w (r) , (7.84)

for the new function w (r) we obtain the equation
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rw′′ +
[
2
(

|m| − 1
2

)
+ 2 − r

]
w′ +

(
n− |m| − 1

2

)
w = 0. (7.85)

The solution of Eq. (7.85) should not diverge at infinity more quickly than a
limited power r and must be confined at r = 0. The function satisfying the
second condition is the degenerated hypergeometric function

w (r) = F

(
−n+ |m| +

1
2
, 2 |m| + 1, r

)
, (7.86)

and the solution satisfying the first condition at infinity will be obtained only
at the integer negative (or equal to zero) values of the argument −n+|m|+1/2
when the function (7.86) turns to polynomial with the power n− |m| − 1/2.
Otherwise it diverges at infinity as er. Hence, the number n must be a positive
half-integer, and at the specified number m it is necessary that

n ≥ |m| +
1
2
; n = |m| +

1
2

+ nρ; nρ = 0, 1, 2, . . . . (7.87)

These conditions determine the quantization law of the electron transversal
motion in the potential well of the crystal at the axial channeling. Thus,
from Eq. (7.83) for the spectrum of the transversal energy eigenvalues of the
electron bound states in the potential field (7.35) we obtain

E⊥ = − α2
cE�

2�2c2n2 . (7.88)

With the help of Eqs. (7.77), (7.79), (7.84) and (7.86) for the wave function
of the channeled electron (7.76), normalized for one particle per unit volume,
we will have the equation

Ψ0 (r, t) = Ψpz,n,m,σ (r, t) =

√
E� +mc2

2E�

⎛⎝ϕσ

cσp
E+mc2−U(ρ)ϕσ

⎞⎠

×
√

ρ

2π
Rn,|m|−1/2 (ρ) eimϕe

i
�
(pzz−Et), (7.89)

where ϕσ is a constant spinor determined in Eq. (7.61), and the function
Rn,|m|−1/2 (ρ) is

Rn,|m|−1/2 (ρ) =
(E�αc

�2c2

)3/2 4
n|m|+3/2

√
2 (n+ |m| − 1/2)!
(n− |m| − 1/2)!

(
4E�αcρ

�2c2

)|m|−1/2
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× exp
{

−2E�αc

n�2c2
ρ

}
F

(
−n+ |m| + 1/2, 2 |m| + 1,

4E�αc

n�2c2
ρ

)
. (7.90)

The total energy E in Eq. (7.89) is given by the relation

E (pz, n) =
√
c2p2

z +m2c4 − 2α2
cE�

�2c2n2 . (7.91)

To determine the electron wave function Ψ1 perturbed by the EM wave in
the next approximation of perturbation theory one needs the concrete form
of the wave vector potential. Let it have the form

Ax = A0 cos (ω0t− k0z) ,

Ay = A0 sin (ω0t− k0z) . (7.92)

Expanding Ψ1 in terms of the full basis of the eigenstates (7.89)

Ψ1 (r, t) =
∑

p′
z,n′,m′,σ′

cp′
z,n′,m′,σ′ (t)Ψp′

z,n′,m′σ′ (r, t) , (7.93)

and substituting the wave function in the first approximation of perturbation
theory Ψ0+ Ψ1 into Eq. (7.48) with Eqs. (7.89)–(7.92), then after the solution
of the obtained equation for unknown expansion coefficients cp′

z,n′,m′ (t) we
will have

cp′
z,n′,m′,σ′ = −ieA0

2c
Ωn′nDm′m

n′n δσσ′

{
e− i

� (E(pz,n)−E(p′
z,n′)+�ω0)t

E (pz, n) − E (p′
z, n

′) + �ω0
δm′,m+1

×δp′
z,pz+�k0 +

e− i
� (E(pz,n)−E(p′

z,n′)−�ω0)t

E (pz, n) − E (p′
z, n

′) − �ω0
δm′,m−1δpz,pz−�k0

}
, (7.94)

where

Dm′m
n′n =

∫ ∞

0
ρ3Rn′,|m′|−1/2 (ρ)Rn,|m|−1/2 (ρ) dρ, (7.95)

and

Ωn′n =
E⊥n′ − E⊥n

�
= − 2E�α

2
c

�3c2n′2n2 (n′ + n) (n′ − n) (7.96)

is the transition frequency between the initial and excited states of the
transversal motion of the electron in the crystal channel.
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Equations (7.93) and (7.94) determine the wave function of the one-
photon induced axial channeling effect. With the help of the latter the prob-
ability density (Ψ+Ψ) of the electron after the interaction can be presented
in the form

W =
ρ

2π
R2

n,|m|−1/2 (ρ) +
eA0ρ

2π�
Rn,|m|−1/2 (ρ)

×
⎧⎨⎩ ∑

n′�|m+1|+1/2

Ωn′n
Rn,|m+1|−1/2 (ρ)

ω −Ωn′n
Dm+1m

n′n

+
∑

n′�|m−1|+1/2

Ωn′n
Rn′,|m−1|−1/2 (ρ)

ω +Ωn′n
Dm−1m

n′n

⎫⎬⎭ sin (k0z − ω0t+ ϕ) , (7.97)

where the Doppler-shifted wave frequency ω is

ω = ω0

(
1 − n0

cpz

E�

)
. (7.98)

As in the case of the planar channeling the electron probability density is
modulated at the wave frequency. Consequently, the electric current density
in the case of an electron beam will be modulated at the stimulating wave
frequency and its harmonics (corresponding equations for the modulation
at the harmonics can be found in the next approximation of perturbation
theory). Equation (7.97) is complicated enough for general forms of the func-
tions Rn,m (ρ) and Dm′m

n′n . It is rather simplified for resonant transitions of
the electron from the initial bound state of transversal motion to the neigh-
bor ones. Thus, from Eqs. (7.88), (7.95), and (7.96) we obtain that in the
expression of the modulation depth quantity Ωn′nDm′m

n′n ∼√E⊥/E�. The lat-
ter is the amplitude of the velocity of the electron transversal motion in the
channel v⊥m. Besides, the resonant denominators in Eq. (7.97) define the pe-
riod of coherent interaction of the electron with the EM wave in the channel:
(ω −Ωn′n)−1 → ∆t. Hence, the modulation depth ∼ eE0v⊥m∆t/ω << 1 in
accordance with the perturbation theory.

Note that in general the function Dm′m
n′n determined by Eq. (7.95) may be

presented in the form

Dm′m
n′n =

�
2c2

E�αc

2|m|+|m′|
n|m|+3/2n′|m′|+3/2 (2 |m|)! (2 |m′|)!

×
√

(n+ |m| − 1/2)! (n′ + |m′| − 1/2)!
(n− |m| − 1/2)! (n′ − |m′| − 1/2)!

∫ ∞

0
z|m|+|m′|+2e−(1/n′+1/n)z (7.99)
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×F
(

−n+ |m| +
1
2
, 2 |m| + 1,

2z
n

)
F

(
−n′ + |m′| +

1
2
, 2 |m′| + 1,

2z
n′

)
dz.

In Eq. (7.95) integral is known as a function

J sp
γ (α, α′) =

∞∫
0

e− κ+κ
′

2 zzγ−1+sF (α, γ,κz)F (α′, γ − p,κ′z) dz,

which is expressed via J 00
γ (α, α′) by the recurrent relations.

7.5 Multiphoton Induced Channeling Effect

In the quantum description of the induced channeling effect in the previous
two sections the wave field was weak enough so that the interaction process
had mainly one-photon character. The coherent (resonant) interaction of the
channeled particles with a strong EM wave from the quantum point of view
has multiphoton character. Here we will consider the induced channeling
effect in the strong wave fields in the scope of quantum theory, that is, we will
solve the quantum equations of motion for channeled electrons or positrons
in the strong plane EM wave field.

We will assume that the wave propagates in the yz plane of a crystal and
is polarized in the xy plane with the vector potential

A =
{
Ax

(
t− n0

z

c

)
, Ay

(
t− n0

z

c

)
, 0
}
, (7.100)

where n0 ≡ n(ω0) is the refractive index of the medium at the carrier fre-
quency of the wave. We will consider the case when averaged potential of
the crystal for a plane channeled particle is satisfactorily described by the
harmonic potential

U(x) = κ
x2

2
. (7.101)

For the positron at the planar channeling

κ =
8U0

d2 (7.102)

(see the potential (7.3)), while for the electrons the approximate potential of
the channel is actually not harmonic and described by the potential

U(x) = − U0

cosh2 (x
b

) . (7.103)
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Nevertheless, for the high energies it can be approximated by the harmonic
potential (7.101). As we saw in previous sections, for the channeled particles
the depth of the potential hole U0 << E , where E is the particle energy. The
spin interaction, which is ∼ �U(x), is again less than E . For this reason the
transverse motion of the channeled particle is described by the Schrödinger
equation (7.56) with the effective mass meff = E�/c

2. On the other hand,
the spin interaction can play a role in the particle–wave interaction process
at the energy of the photon comparable with the particle one: �ω0 ∼ E . If
the particle energy is not high enough, i.e., E << m2c4/E⊥ (optimal cases
for the channeling), then the resonant interaction of the channeled particles
with an external EM wave takes place at �ω0 << E and the spin effects are
not essential. Hence, one may ignore the spin interaction and instead of the
Dirac equation solve the Klein–Gordon equation[

i�
∂

∂t
− U (x)

]2
Ψ =

[
c2
(
p̂ − e

c
A
(
t− n0

z

c

))2
+m2c4

]
Ψ. (7.104)

As we saw in Section 7.3 the channeled particle initial motion (before the
interaction with EM wave) is separated into longitudinal (y, z) and transver-
sal (x) degrees of freedom. For the longitudinal motion we assume an initial
state with a momentum p� = {0, py, pz}, while for the transversal motion we
assume a quantum state {n}, where by n we indicate the energy levels in
the harmonic potential (7.101). As the plane wave field depends only on the
retarding coordinate τ = t − n0z/c, then using the problem symmetry the
wave function of a channeled particle can be sought in the form

Ψ(r, t) = f(x, τ)e
i
�
(p�r−Et). (7.105)

The multiphoton interaction of the charged particles with a strong EM wave,
in general, as was shown in diverse processes is well enough described by
the eikonal-type wave function corresponding to a slowly varying function
f(x, τ) on the wave coordinate τ . Hence, neglecting the second derivatives
of this function compared with the first-order ones in accordance with the
conditions (3.92) for the function f(x, τ) we will obtain the equation[

�
2 ∂2

∂x2 +
2E�

c2
(E⊥ − U(x)) + 2i

p̃�

c

∂

∂τ
− 2i

e�

c
Ax (τ)

∂

∂x

+2
e

c
pyAy (τ) − e2

c2
A2 (τ)

]
f(x, τ) = 0, (7.106)

where

p̃ =
1
c

(E� − n0cpz) . (7.107)
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In Eq. (7.106) the transversal and longitudinal motions are not separated.
But after the definite unitarian transformation for the transformed function
the variables are separated. The corresponding unitarian transformation op-
erator is

Ŝ = e
i
�

{g1(τ)x−g2(τ)p̂x}, (7.108)

where the functions g1(τ), g2(τ) will be chosen to separate the transversal and
longitudinal motions and to satisfy the initial condition. Taking into account
Eq. (4.54) for transformed function

Φ(x, τ) = Ŝf(x, τ) (7.109)

we obtain the equation[
�

2 ∂2

∂x2 +
2E�

c2
(E⊥ − U(x)) + 2i�

(
p̃

c

dg2 (τ)
dτ

− g1(τ) − e

c
Ax (τ)

)
∂

∂x

+
2
c

(
p̃
dg1 (τ)
dτ

+
E�κ

c
g2(τ)

)
x+

2ip̃�
c

∂

∂τ
+Q (τ)

]
Φ(x, τ) = 0, (7.110)

where

Q (τ) =
p̃

c

(
dg2 (τ)
dτ

g1(τ) − dg1 (τ)
dτ

g2(τ)
)

− g2
1(τ) − E�κ

c2
g2
2(τ)

−2e
c
Ax (τ) g1(τ) +

2e
c
pyAy (τ) − e2

c2
A2 (τ) . (7.111)

Let us choose g1(τ) and g2(τ) in such a form that the coefficients of x and
∂/∂x in Eq. (7.110) become zero. Then for the functions g1(τ) and g2(τ) we
will obtain a classical equation of motion describing stimulated oscillations
in the harmonic potential:

dg1 (τ)
dτ

= −E�κ

cp̃
g2(τ), (7.112)

dg2 (τ)
dτ

=
c

p̃
g1(τ) +

e

p̃
Ax (τ) . (7.113)

The solutions of Eqs. (7.112) and (7.113) can be written as
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g1 (τ) =
eΩ′

c
Im

⎡⎣e−iΩ′τ

τ∫
−∞

Ax (τ) eiΩ′τ ′
dτ ′

⎤⎦ , (7.114)

g2 (τ) =
e

p̃
Re

⎡⎣e−iΩ′τ

τ∫
−∞

Ax (τ) eiΩ′τ ′
dτ ′

⎤⎦ , (7.115)

where

Ω′ =
Ω

1 − n0
vz

c

; Ω = c
√
κ/E�. (7.116)

In Eqs. (7.114) and (7.115) we have taken into account the initial condition

g1(−∞) = g2(−∞) = 0.

After the unitarian transformation (7.109) for the function Φ(x, τ) the
following equation is obtained:[

�
2 ∂2

∂x2 +
2E�

c2
(E⊥ − U(x)) +

2ip̃�
c

∂

∂τ
+Q (τ)

]
Φ(x, τ) = 0. (7.117)

Now in Eq. (7.117) the variables are separated and the solution can be written
as follows:

Φ(x, τ) = Nϕn (x) exp

⎧⎨⎩i c

2�p̃

τ∫
−∞

Q (τ) dτ ′

⎫⎬⎭ , (7.118)

where ϕn (x) coincides with the harmonic oscillator wave function (7.58) and
N = 1/

√
LyLzis the normalization constant (Ly and Lz are the quantization

lengths). By inverse transformation

f(x, τ) = Ŝ†Φ(x, τ),

with the help of Eq. (4.66) we obtain the solution of the initial equation
(7.104) (taking into account Eq.(7.105)):

Ψ(r, t) = N exp
{
i

�
(p�r−Et)

}
ϕn (x+ g2 (τ))

× exp

⎧⎨⎩ i

�

⎡⎣ c

2p̃

τ∫
−∞

Q (τ) dτ ′ − 1
2
g1(τ)g2 (τ) − g1(τ)x

⎤⎦⎫⎬⎭ , (7.119)
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where the function Q (τ) can be represented in the form

Q (τ) =
2e
c
pyAy (τ) − e

c
Ax (τ) g1(τ) − e2

c2
A2 (τ) . (7.120)

This wave function describes the multiphoton interaction of the channeled
particle with the strong EM radiation field. Thus, for a monochromatic wave

A = {A0 cos (ω0t− k0z) , 0, 0} ,

from Eqs. (7.114) and (7.115) for the functions g1(τ) and g2(τ) we obtain

g1 (τ) =
e

c
A0

Ω′2

∆
cosω0τ,

g2 (τ) =
eA0

p̃

ω0

∆
sinω0τ, (7.121)

and we will have the following wave function for the particle in the field of a
strong EM wave at the planar channeling:

Ψ(r, t) = N exp
{
i

�

(
p�r−Et− e2A2

0ω
2
0

4cp̃∆
τ

)}
ϕn

(
x+

eA0ω0

p̃∆
sinω0τ

)

× exp

{
− i

�

[
eA0Ω

′2

c∆
x cosω0τ +

e2A2
0ω0
(
ω2

0 +Ω′2)
8cp̃∆2 sin (2ω0τ)

]}
, (7.122)

where

∆ = ω2
0 −Ω′2

is the resonance detuning.
On the basis of the obtained wave function (7.119) consider the possibility

of multiphoton excitation of transversal levels by the strong EM wave at the
resonance

ω0 
 Ω∣∣1 − n0
vz

c

∣∣ . (7.123)

The Doppler factor 1−n0vz/c may be positive as well as negative — anoma-
lous Doppler effect at n0 > 1. We will consider the actual case of a quasi-
monochromatic EM wave with a slowly varying amplitude A0(τ). After the
interaction with the wave (t → +∞ ) from Eqs. (7.114) and (7.115) at the
resonance condition (7.123) we have
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g1 (τ) =
eA0TΩ

′

2c
sinω0τ, (7.124)

g2 (τ) =
eA0T

2p̃
cosω0τ, (7.125)

where T is the coherent interaction time (for actual laser radiation T is the
pulse duration) and A0 is the average value of the slowly varied envelope.
Substituting Eqs. (7.124) and (7.125) into the expression for the wave func-
tion (7.119) and expanding the latter in terms of the full basis of the particle
eigenstates

Ψ (r, t) =
∑
p′

�
,n′
ap′

�
,n′ (t)Ψp′

�
,n′ (r, t) , (7.126)

we find the probabilities of the multiphoton induced transitions between the
transversal levels. To calculate the expansion coefficients

ap′
�
,n′ (t) =

∫
Ψ∗

p′
�
,n′ (r, t)Ψ (r, t) dr, (7.127)

we will take into account the result of the integration (4.73). Taking into
account Eqs.(7.124), (7.125), (7.119), and (7.127) we get the following ex-
pansion coefficients:

ap′
�
,n′ (t) = In,n′ (α) δp′

y,py
δp′

z,pz+µ�k0(n′−n)

× exp
{
i

�
(E(p′

�, n
′) − E(p�, n) − µ�ω0(n′ − n))t+ iφ

}
, (7.128)

where

µ =
1 − n0

vz

c∣∣1 − n0
vz

c

∣∣ ,
and

φ ≡ c

2�p̃

∞∫
−∞

Q (τ) dτ ′

is the constant phase. Here the argument of the Lagger function In,n′ (α) is

α =
e2A

2
0T

2

8�

Ω′

cp̃
. (7.129)
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According to Eq. (7.128) the transition of the particle from an initial state
{py, pz, n} to a state {p′

y, p
′
z, n

′} is accompanied by the emission or absorption
of |n− n′| number of photons. Consequently, substituting Eq. (7.128) into Eq.
(7.126) we can rewrite the particle wave function in the form

Ψ (r, t) = N

∞∑
n′=0

In,n′ (α) exp
{
i

�
(pyy + (pz + µ�k0(n′ − n))z)

}

× exp
{

− i

�
(E(p�, n) + µ�ω0(n′ − n)) t+ iφ

}
ϕn′ (x) . (7.130)

Hence, the probability of the induced transitions n → n′ between the energy
levels of the particle transversal motion in the channel finally is defined from
Eq. (7.130):

Wn,n′ = I2
n,n′

(
e2A

2
0T

2Ω′

8�cp̃

)
. (7.131)

Equation (7.130) shows that in the field of a strong EM wave the transver-
sal levels are excited at the absorption of the wave quanta if 1 − n0vz/c > 0
and µ = 1, corresponding to the normal Doppler effect, while in the case
1 − n0vz/c < 0 and µ = −1 the transversal levels are excited at the emission
of coherent quanta due to the anomalous Doppler effect.

Let us now estimate the average number of emitted (absorbed) photons
by the particle at the resonance for the high excited levels (n >> 1) and for
the strong EM wave. In this case the most probable number of photons in the
strong wave field corresponds to the quasiclassical limit (|n− n′| >> 1) when
multiphoton processes dominate and the nature of the interaction process is
very close to the classical one. In this case the argument of the Lagger function
can be represented as

α =
1
4n

(�Ecl

�ω0

)2

, (7.132)

where

�Ecl =
eE0T

2
v⊥∣∣1 − n0

vz

c

∣∣
is the maximal energy change of the particle according to classical pertur-
bation theory (E0 is the amplitude of the electric field strength of the EM
wave, v⊥ 
 c

√
2n�Ω/E� is the particle mean transversal velocity). Note

that according to conditions (3.92) of the considered eikonal approximation
∆E << E .
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The Lagger function is maximal at α → α0 =
(√

n′ − √
n
)2

, expo-
nentially falling beyond α0. Hence, for the transition n → n′ and when
|n− n′| << n we have

α0 
 (n′ − n)2

4n
.

The comparison of this expression with Eq. (7.132) shows that the most
probable transitions are

|n− n′| 
 �Ecl

�ω0
,

in accordance with the correspondence principle.
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(1985)
V.N. Bayer, A.I. Milstein, Nucl. Instrum. Methods Phys. Res. 17, 25 (1986)
M.A. Kumakhov: Emission By Channeled Particles In Crystals (Energoat-
omizdat, Moscow 1986) [in Russian]
S.A. Bogacz, J.B. Kefterson, G.K. Wong, Nucl. Instrum. Methods Phys. Res.
250, 328 (1986)
H.K. Avetissian et al., Dokl. Acad. Nauk Arm. SSR 85, 164 (1987) [in Rus-
sian]
V.A. Bazylev and N.K. Zhevago: Emission by Fast Particles in Matter and



Bibliography 235

External Fields (Nauka, Moscow 1987) [in Russian]
G. Kurizki, Adv. Laser Sci. 3, 56 (1988)
K.B. Oganesyan, A.M. Prokhorov, M.V. Fedorov, Zh. Éksp. Teor. Fiz. 94,
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8 Nonlinear Mechanisms of Free Electron
Laser

The problem of creation of short-wave coherent EM radiation sources in gen-
eral aspects reduces to the implementation of free electron lasers (FEL). The
principal advantage of a FEL with respect to traditional quantum generators
operating on discrete transitions in atomic/molecular systems is that the ra-
diation frequency is continuously Doppler upshifted due to high relativism of
electron beams, providing rapid tunability over a broad range of frequencies
up to γ-ray.

Among the diverse versions of FEL at present the undulator scheme is be-
ing actively developed. Although the amplifying frequencies are still far from
X-ray, the main hopes for an efficient X-ray FEL remain associated with the
undulator scheme based on the accumulation of coherent radiation of ultrarel-
ativistic electron beams in the Self-Amplified Spontaneous Emission (SASE)
regime, in which the initial shot noise on the electron beam is amplified over
the course of propagation through a long wiggler. For that it is required that
the lengths are on the order of several ten to hundred meters. The recent
experimental success shows the feasibility of construction of such facilities.

Nevertheless, because there are no drivers or mirrors operable at X-ray
wavelengths the problem reduces to amplification/generation of coherent ra-
diation in the single-pass regime. It is clear that the latter can be achieved with
more efficiency via the nonlinear schemes of FEL induced by strong pump EM
fields. The latter will considerably abbreviate the amplification length as well
and one can expect small setup FEL devices.

On the other hand, as the photon wavelength moves into the deep UV and
X-ray regions the interaction becomes quantum mechanical, i.e., quantum re-
coil becomes comparable to or larger than the gain bandwidth and quantum
effects play an essential role. The quantum effects are also essential if one
considers the FEL versions where one or two degrees of freedom of the charged
particles are quantized and the resonant enhancement of electron–photon in-
teraction cross section holds. This takes place for the X-ray laser schemes
based on the electron/positron beam channeling radiation in crystals.

The smallness of the electron–photon interaction cross section can also be
compensated and the quality of the output X-ray radiation can be enhanced in
the hybrid schemes of FEL and atomic laser. It can be achieved by means of
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fast high-density ion beam interaction with a strong counterpropagating pump
laser field or with a crystal periodic electrostatic potential.

Investigation of the nonlinear schemes and quantum aspects of FEL on
the basis of a self-consistent set of Maxwell and quantum kinetic equations is
the subject of the present chapter.

8.1 Self-Consistent Maxwell and Relativistic Quantum
Kinetic Equations for Compton FEL with Strong Pump
Laser Field

In contrast to conventional laser devices in atomic systems, the FEL is usu-
ally regarded as a classical device that also exhibits non-Poissonian photon
statistics. But this is not a universal property of FELs as in some cases
quantum effects may play a significant role. In the quantum description the
small-signal gain of the FEL is usually represented as a convolution integral
of the electron beam momentum distribution with the difference between the
probability distributions of emission and absorption per photon. Since the
electron recoils in opposite directions depending on whether it emits or ab-
sorbs photons with the same wave vector k′, the resonant momenta of an
electron for emission pe and absorption pa are different. Hence, the probabil-
ity distributions of emission and absorption are centered at pe and pa, and
when these distributions are much narrower than the spread of the electron
beam distributions f(p), the small-signal gain is proportional to the so-called
“population inversion” f(pe)−f(pa). In the quasiclassical limit when photon
energy �ω′ satisfies the condition

�ω′ << max {∆εγ , ∆εϑ, ∆εL} (8.1)

(∆εγ and ∆εϑ are the resonance widths due to energetic and angular spreads,
and ∆isεL the resonance width caused by the finite interaction length) the
quantum expression for the gain coincides with its classical counterpart, being
antisymmetric about the classical resonant momentum pc = (pe + pa)/2 and
proportional to the derivative of the momentum distribution df(p)/dp at
resonant value pc. The result is that amplification takes place only if the initial
momentum distribution is centered above pc as the electrons whose momenta
are above pc contribute on average to the small-signal gain, and the electrons
whose momenta are below pc contribute on average to the corresponding
loss. This severely limits the FEL gain performance at short wavelengths.
In the more conventional undulator devices, to achieve the X-ray frequency
domain one should increase the electron energies up to several gigaelectron
volts, which in turn significantly reduces the small-signal gain (∼ γ−3

L ). To
achieve the X-ray domain with moderate relativistic electron beams (energy
of electrons ≤ 50 MeV), the frequency of electron self-oscillation should be
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high enough ∼ 1014 ÷ 1015s−1 (in undulator 1010s−1). The latter can be
realized, e.g., in the Compton backscattering scheme suggested over 40 years
ago.

Another way to increase the efficiency of a FEL is to achieve the quantum
regime of generation

�ω′ ≥ max {∆εγ , ∆εϑ, ∆εL} , (8.2)

as in this case the absorption and emission line shapes are separated and the
simultaneous absorption of a probe wave is excluded. From this point of view
the scheme of an X-ray Compton laser has an advantage with respect to the
conventional undulator devices connected with the satisfaction of condition
(8.2) for the quantum regime of generation. To achieve this condition for
current FEL devices operating in undulators is problematic as it presumes
severe restrictions on the beam spread. Thus, the scheme of an X-ray Comp-
ton laser in the quantum regime of generation is preferable, since it requires
considerably lower energies of the electron beam and moderate restrictions
on the beam spreads.

Consider a scheme of X-ray coherent radiation generation in the nonlin-
ear quantum regime by means of a mildly relativistic high-density electron
beam and a strong pump laser field. This makes it possible to achieve the
quantum regime of generation at X-ray frequencies as well, due to radiation
of high harmonics of Doppler-shifted pump frequencies in the strong laser
field. In addition, concerning the further process of X-ray radiation amplifi-
cation it is necessary to realize a single-pass FEL, as long as the construction
of resonators in the X-ray domain is problematic. In the linear regime this
demands very long interaction lengths. Here the main emphasis is on the non-
linear regime of generation. The consideration is based on a self-consistent set
of Maxwell and quantum kinetic equations. Because the energy-momentum
levels are not equidistant, the probe wave resonantly couples only two Volkov
states, and the coupled equations will be solved in the slowly varying envelope
approximation.

We will consider given pump EM wave with four-wave vector k ≡ (ω/c,k)
which is described by the four-vector potential

Aµ = (0,A), (8.3)

where A is defined by Eq. (1.48). As we saw in Section 1.4 the Dirac equation
allows the exact solution in the field of a plane EM wave (Volkov solution).
Although the Volkov states are not stationary, as there are no real transitions
in the monochromatic EM wave (due to violation of energy and momentum
conservation laws) the state of a particle in an EM wave can be characterized
by the quasimomentum Π and polarization σ and the particle state in the
field (8.3) is given by the wave function (1.94).
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We assume the probe EM wave to be linearly polarized with the carrier
frequency ω′ and four-vector potential

Aw =
ε

2

{
Ae(t, r)e−ik′x + c.c.

}
, (8.4)

where Ae(t, r) is a slowly varying envelope, k′ = (ω′/c,k′) is the four-wave
vector and ε is the unit polarization four vector εk′ = 0, and x = (ct, r) is
the four-component radius vector.

Cast in the second quantization formalism, the Hamiltonian is

Ĥ =
∫
Ψ̂+Ĥ0Ψ̂dr+Ĥint, (8.5)

where Ψ̂ is the fermionic field operator, Ĥ0 is the one-particle Hamiltonian
in the plane EM wave (8.3), and the interaction Hamiltonian is

Ĥint =
1
c

∫
ĵAwdr, (8.6)

with the current density operator

ĵ = eΨ̂+γ0γΨ̂ . (8.7)

We pass to the furry representation and write the Heisenberg field operator
of the electron in the form of an expansion in the quasistationary Volkov
states (1.97)

Ψ̂(r, t) =
∑
Π,σ

âΠ,σ(t)ΨΠσ(r, t), (8.8)

where we have excluded the antiparticle operators, since contribution of
particle–antiparticle intermediate states will lead only to small corrections
to the processes considered. The creation and annihilation operators, â+

Π,σ(t)
and âΠ,σ(t), associated with positive energy solutions satisfy the anticommu-
tation rules at equal times

{â†
Π,σ(t), âΠ′,σ′(t′)}t=t′ = δΠ,Π′δσ,σ′ , (8.9)

{â†
Π,σ(t), â†

Π′,σ′(t′)}t=t′ = {âΠ,σ(t), âΠ′,σ′(t′)}t=t′ = 0. (8.10)

Taking into account Eqs. (8.8), (8.7), (8.6), and (1.97), the second quan-
tized interaction Hamiltonian can be expressed in the form
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Ĥint =
∞∑

s=−∞

∑
Π,σ,σ′

{
eAe

2c
M (−s) (Π,σ;Π − �k′ + s�k,σ′) e−i∆(s,Π)t

×â†
Π,σ(t)âΠ−�k′+s�k,σ′(t) +

eA∗
e

2c
M (s) (Π − �k′ + s�k,σ′;Π,σ) ei∆(s,Π)t

×â†
Π−�k′+s�k,σ′(t)âΠ,σ(t)

}
. (8.11)

Here

M (s) (Π′,σ′;Π,σ) =
1

2
√
Π ′

0Π0
uσ′(p′)

{
e2(kε)Q2s(α, β, ϕ)

2c2(kp′)(kp)
k̂

+

(
eQ̂1s(α, β, ϕ)k̂ε̂

2c(kp′)
+
eε̂k̂Q̂1s(α, β, ϕ)

2c(kp)

)
+ ε̂Q0s(α, β, ϕ)

}
uσ(p), (8.12)

where the vector functions Qµ
1s = (0,Q1s) and scalar functions Q0s, Q2s are

expressed via generalized Bessel functions Gs(α, β, ϕ):

Q0s = Gs(α, β, ϕ), (8.13)

Q1s =
A0

2
{e1 (Gs−1(α, β, ϕ) +Gs+1(α, β, ϕ))

+ie2g (Gs−1(α, β, ϕ) −Gs+1(α, β, ϕ))} , (8.14)

Q2s = A2
0
(1 + g2)

2
Gs(α, β, ϕ)

+A2
0
(1 − g2)

2
(Gs−2(α, β, ϕ) +Gs+2(α, β, ϕ)) . (8.15)

The definition of arguments α, β, ϕ are the same as in Eqs. (1.103)–(1.105).
The resonance detuning in Eq.(8.11) is

�∆ (s,Π) =
√
c2 (Π − �k′ + s�k)2 +m∗2c4 + �ω′

−
√
c2Π2 +m∗2c4 − s�ω. (8.16)
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We will use Heisenberg representation, where evolution of the operators
are given by the equation

i�
∂L̂

∂t
=
[
L̂, Ĥ

]
, (8.17)

and expectation values are determined by the initial density matrix D̂

< L̂ >= Sp
(
D̂L̂
)
. (8.18)

Equations (8.17) should be supplemented by the Maxwell equation for Ae

which is reduced to

∂Ae

∂t
+
c2k′

ω′
∂Ae

∂r
= −i4πc

ω′ < εĵ > exp(ik′x), (8.19)

where the bar denotes averaging over time and space much larger than (1/ω′,
1/k′) and

< εĵ >= Sp
(
εĵD̂
)
. (8.20)

Taking into account Eqs. (8.7) and (8.8) we obtain

εĵ exp(ik′x) = e

∞∑
s=−∞

∑
Π′,Π,σ′,σ

{
â+
Π′,σ′(t)âΠ,σ(t)

×M (s) (Π′, σ′;Π,σ) e
1
� (Π′−Π−s�k+�k′)x

}
. (8.21)

As we are interested in amplification of the wave with a certain ω′,k′, then
we can keep only resonant terms in Eq. (8.21) with Π′ = Π − �k′+s�k. In
principle, because of the electron beam energy and angular spreads different
harmonics may contribute to the process considered, but in the quantum
regime (see below Eqs. (8.44), (8.45)) we can keep only one harmonic s = s0.
For the resonant current amplitude we will have the expression

−i(εĵ) exp(ik′x) =
∫
Ĵ(Π,t)dΠ, (8.22)

where
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Ĵ(Π,t) = − ie

(2π�)3
∑
σ′,σ

â+
Πf ,σ′(t)âΠ,σ(t)M (s0) (Πf , σ

′;Π,σ) ei∆(s0,Π)t

(8.23)
and the summation over Π has been replaced by integration according to

∑
Π

→ 1
(2π�)3

∫
dΠ.

Here we have introduced the notation

Πf= Π − �k′+s0�k. (8.24)

The physical meaning of Eq. (8.23) with Eq. (8.24) is obvious: it describes
the process where a particle with quasimomentum Π is annihilated and is
created in the state with quasimomentum Π − �k′+s0�k with the emission
of a photon with the frequency ω′ and momentum k′.

Taking into account Eqs.(8.11), (8.17), (8.9), and (8.10) for the operator
Ĵ(Π,t) we obtain the equation

∂Ĵ(Π,t)
∂t

− i∆ (s0,Π) Ĵ(Π,t) =
e2Ae

2c�(2π�)3

×
∑

σ′,σ,σ1

{
M (s0) (Πf , σ

′;Π,σ)M (−s0) (Π,σ1;Πf ,σ
′) â†

Π,σ1
(t)âΠ,σ(t)

−M (s0) (Πf , σ
′;Π,σ)M (−s0) (Π,σ;Πf ,σ1) â+

Πf ,σ′(t)âΠf ,σ1(t)
}
, (8.25)

where we have kept only resonant terms. These terms are predominant
in near-resonant emission/absorption, since their detuning is much smaller
than that of nonresonant terms, which are detuned from resonance by
ω >> |∆ (s0,Π)|.

We will assume that the electron beam is nonpolarized. This means that
the initial single-particle density matrix in momentum space is

ρσ1σ2(Π1,Π2, 0) =< â+
Π2,σ2

(0)âΠ1,σ1(0) >= ρ0(Π1,Π2)δσ1,σ2 . (8.26)

Here ρ0(Π,Π) is connected to the classical momentum distribution function
F (Π) by the equation

ρ0(Π,Π) =
(2π�)3

2
F0(Π). (8.27)
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For the expectation value of Ĵ(Π,t) from Eq. (8.25) we have

∂J(Π,t)
∂t

− i∆ (s0,Π)J(Π,t) =
e2M2

4�c
Ae (F (Π, t) − F (Πf , t)) , (8.28)

where

F (Π1, t) =
2

(2π�)3
< âΠ1,σ1(t)âΠ1,σ1(t) >, (8.29)

M2 =
∑
σ′,σ

M (s0) (Πf , σ
′;Π,σ)M (−s0) (Π,σ;Πf ,σ

′) . (8.30)

The M2 is reduced to the usual calculation of a trace (see Eq. (1.112), where
summation over the photon polarizations should not be made), and in our
notations we have

M2 =
2c4

Πf0Π0

{∣∣∣[(pε′)Q0s − e

c
(Q1sε

′)
]∣∣∣2

− e2

4c2
(�k′k)2

(kp′)(kp)

[
|Q1s|2 +Re (Q2sQ

∗
0s)
]}

, (8.31)

where

ε′ = ε− k
′
(
kε

kk′

)
. (8.32)

In Eq.(8.31) one can neglect the terms on the order of (�k′k/(kp))2 << 1 as
for a FEL this condition is always satisfied. Taking into account Eqs. (8.11),
(8.17), (8.9), (8.10), and (8.29) for F (Π, t) and F (Πf , t) we obtain

∂F (Π, t)
∂t

= − 1
2�c

(A∗
eJ(Π,t) +AeJ

∗(Π,t)) , (8.33)

∂F (Πf , t)
∂t

=
1

2�c
(A∗

eJ(Π,t) +AeJ
∗(Π,t)) . (8.34)

To take into account the pulse propagation effects we can replace the time
derivatives by the following expression:

∂

∂t
→ ∂

∂t
+ v

∂

∂r
,
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where v = c2Π/Π0 is the mean velocity of the electron beam and the con-
vectional part of the derivative expresses the pulse propagation effects. In-
troducing the new quantity

δF (Π, t) = F (Π, t) − F (Πf , t), (8.35)

which physically expresses population inversion in momentum space, from
Eqs.(8.19), (8.22), (8.28), (8.33), and (8.34) we obtain the self-consistent set
of equations:

∂J (Π)
∂t

+ v
∂J (Π)
∂r

− i∆ (s0,Π)J (Π) =
e2M2

4�c
AeδF (Π) ,

∂δF (Π)
∂t

+ v
∂δF (Π)

∂r
= − 1

�c
(A∗

eJ (Π) +AeJ
∗ (Π)) , (8.36)

∂Ae

∂t
+
c2k′

ω′
∂Ae

∂r
=

4πc
ω′

∫
J (Π) dΠ.

These equations yield the conservation laws for the energy of the system and
particle number:

∂ |Ae|2
∂t

+
c2k′

ω′
∂ |Ae|2
∂r

= −4π�c2

ω′

∫ (
∂

∂t
+ v

∂

∂r

)
δF (Π) dΠ, (8.37)

(
∂

∂t
+ v

∂)
∂r

)(
(δF (Π))2 +

8
e2M2 |J (Π)|2

)
= 0. (8.38)

Note that from the set of Eqs. (8.36) one can obtain a small signal gain passing
into perturbation theory which in the quasiclassical limit will coincide with
the classical one (the latter will be done for a wiggler).

8.2 Nonlinear Quantum Regime of X-Ray Compton
Backscattering Laser

In the quantum regime the emission and absorption are characterized by the
widths

∆e = ∆ (s0,Π) = ω′(1 − v
c

cos θ)

−s0ω(1 − v
c

cosϑ0) +
s0�ωω′

Π0
(1 − cos θr), (8.39)
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∆a = ∆ (s0,Π+�k′ − s0�k) = ∆e − 2s0�ωω′

Π0
(1 − cos θr), (8.40)

where ϑ0, ϑ are the incident and scattering angles of the pump and probe
photons with respect to the direction of the particle mean velocity v, and
ϑr is the angle between the propagation directions of the pump and probe
photons.

The quantum regime assumes that

∆e −∆a =
2s0�ωω′

Π0
(1 − cos θ0)

> max
{∣∣∣∣∂∆e

∂ηi
δηi +

∂2∆e

∂η2
i

(δηi)2
∣∣∣∣ , ω

Nω

}
, (8.41)

where by ηi we denote the set of quantities characterizing the electron beam
and pump field and by δηi their spreads. The second term in the curly brack-
ets of Eq. (8.41) expresses the resonance width caused by the finite interaction
length andNω is the number of periods of the pump field. In particular, for the
energetic (∆E) and angular (∆ϑ) spreads from Eq. (8.41) (for θr = θ0 
 π,
θ << 1) we will have

∆E ≺ �ω′, (8.42)

∣∣∣∣θ∆ϑ+
∆ϑ2

2

∣∣∣∣ < 4s0�ω

E . (8.43)

The conditions for keeping only one harmonic s = s0 in the resonant current
are

∆E
E <<

1
s0
, (8.44)

∣∣∣∣θ∆ϑ+
∆ϑ2

2

∣∣∣∣ << ω

ω′ . (8.45)

As we see, for not very high harmonics the conditions (8.44) and (8.45) are
weaker than the conditions in the quantum regime (8.42), (8.43) , or (8.2)
and are well enough satisfied for current accelerator beams.

Our goal is to determine the conditions under which we will have non-
linear amplification. We assume steady-state operation, i.e., dropping of all
partial time derivatives in Eqs. (8.36). The considered setup is either a single-
pass amplifier for which an injected input signal is necessary, or self-amplified
coherent spontaneous emission for which a modulated beam is necessary. In
addition, we will consider the case of exact resonance neglecting detuning in
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Eqs. (8.36) assuming that electron beam momentum distribution is centered
at ∆e = 0, i.e.

J (r, t,Π) = J (r, t) δ(Π − Πe), (8.46)

δF (r, t,Π) = F (r, t) δ(Π − Πe), (8.47)

where for Πe

∆e = ∆ (s0,Πe) = 0.

To achieve maximal Doppler shift and optimal conditions of amplification
we will assume counterpropagating electron and pump photon beams (X axis,
θr = θ0 = π). In this case the optimal condition for the linearly polarized
pump wave is θ = 0, while for the circular wave θ ∼ ξ/γL (θ << 1). For
the on axis radiation we have the following known formula for the radiation
wavelengths

λ′ =
1
4

λ

s0γ2
L

(
1 +

1 + g2

2
ξ20

)
, (8.48)

where λ is the wavelength of the pump wave. For both cases we will assume
that the envelope of the probe wave depends only on x . Then the set of Eqs.
(8.36) and conservation laws (8.37), (8.38) are reduced to

dJ

dx
=
e2M2

4�cv
AeF,

dF

dx
= − 2

�cv
AeJ, (8.49)

dAe

dx
=

4π
ω′ J,

F 2 +
8

e2M2

∣∣J∣∣2 = N2
0 ,

W = W0 +
�ω′v

2
(F0 − F ) ,

where N0 is the electron beam density, W is the probe wave intensity, and
W0 is the initial one. From Eq.(8.49) we have the following expressions for J
and F :

F = N0 cos
{

e |M |
21/2�cv

∫ x

0
Aedx

′ + ϕ0

}
, (8.50)
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J =
e |M |
23/2 N0 sin

{
e |M |

21/2�cv

∫ x

0
Aedx

′ + ϕ0

}
, (8.51)

where ϕ0 is determined by boundary conditions. Denoting

ϕ =
e |M |

21/2�cv

∫ x

0
Aedx

′ + ϕ0, (8.52)

we arrive at the nonlinear pendulum equation

d2ϕ

dx2 = χ2 sinϕ, (8.53)

where

χ2 =
πe2M2N0

�ω′cv
(8.54)

is the main characteristic parameter of amplification: Lc = 1/χ is the char-
acteristic length of amplification. For the linearly polarized pump wave from
Eqs.(8.13), (8.14), (8.15), and (8.31) we have

χL =
ξ0 |Λ1(0, β, s0)|

2γ2
L

√
α0

cλ

s0v
N0(1 + ξ20/2). (8.55)

Here α0 is the fine structure constant and the function Λ1(0, β, s) is expressed
by the ordinary Bessel functions:

Λ1(0, β, s0) 
 1
2

{
J s0−1

2

(
s0ξ

2
0

4 + 2ξ20

)
− J s0+1

2

(
s0ξ

2
0

4 + 2ξ20

)}
. (8.56)

In this case only odd harmonics are possible. For the circularly polarized
pump wave we have

χc =
ξ0

2γ2
L

(
θγL

ξ0
+
s0
α

)
|Js0 (α)|

√
α0

cλ

s0v
N0(1 + ξ20 + θ2γ2

L), (8.57)

and the argument of the Bessel function is

α 
 2s0ξ0θγL

1 + ξ20 + θ2γ2
L

. (8.58)

We will consider two regimes of amplification which are determined by initial
conditions. For the first regime the initial macroscopic transition current of
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the electron beam is zero and it is necessary to have a seeding electromagnetic
wave. In this case the following boundary conditions are imposed:

F |x=0= N0; J |x=0= 0; W |x=0= W0. (8.59)

The solution for the probe wave intensity in this case is written as

W (x) = W0dn
−2
(χ
κ
x;κ
)
, (8.60)

κ =
(

1 +
W0

N0�ω′v

)− 1
2

, (8.61)

where dn (x, κ) is the elliptic function of Jacobi and κ its module.
As is known dn (x, κ) is the periodic function with the period 2K(κ) ,

where K(κ) is the complete elliptic integral of first order. At the distances
L = (2r + 1)κK(κ)/χ (r = 0, 1, 2, ...) the wave intensity reaches its maximal
value which equals

Wmax = W0 +N0�ω′v. (8.62)

For the short interaction length x � Lc from Eq.(8.60) we have

W (x) = W0
(
1 + χ2x2) ,

and the wave gain is rather small. To extract maximal energy from the elec-
tron beam the interaction length should be at least on the order of half
the spatial period of the wave envelope variation — κK(κ)/χ. Under this
condition the intensity value Wmax = W0 + N�ω′v is achieved, because all
electrons make a contribution in the radiation field. Taking into account that
seed power is much smaller than Wmax and if 1 − κ << 1

K(κ) → 1
2

ln
[

16
1 − κ2

]
,

for amplification length we will have

L 
 Lc ln
(

4
Wmax

W0

)
. (8.63)

Let us now consider the other regime of wave amplification when the electron
beam is modulated — “macroscopic transition current” J differs from zero.
This regime can operate without any initial seeding power (W0 = 0). Thus,
we will consider the optimal case with the following initial conditions:
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J |x=0= J0; F |x=0= δN0; W |x=0= 0. (8.64)

Then the wave intensity is expressed by

W (x) =
N0�ω′v

2

(
1 − δN0

N0

)[
1

dn2(χx; k)
− 1
]
, (8.65)

and module κ of Jacobi elliptic function is determined by

κ =
1
2
(1 +

δN0

N0
). (8.66)

As is seen from Eq. (8.65) in this case the intensity varies periodically with
the distances as well, with the maximal value of intensity

W ′
max =

N0�ω′v
2

(1 +
δN0

N0
). (8.67)

The second regime is more interesting. It is the regime of amplification
without initial seeding power and has superradiant nature. For the short
interaction length x � Lc according to Eq. (8.65)

W (x) =
N0�ω′vχ2x2

4

(
1 − δN0

N0

)
. (8.68)

The intensity is scaled as N2
0 (χ2 ∼ N0) which means that we have a super-

radiation. The radiation intensity in this regime reaches a significant value
even at x � Lc.

The coherent interaction time of electrons with probe radiation is confined
by the several relaxation processes. To be more precise in the self-consistent
set of Eqs. (8.36) we should add the terms describing spontaneous transitions
and other relaxation processes. Since we have not taken into account the
relaxation processes, this consideration is correct only for the distances L �
cτmin, where τmin is the minimum of all relaxation times. Due to spontaneous
radiation electrons will lose energy ∼ �ω′ at the distances

Ls 
 c
�ω′

Ws
=

3
2π

s0λ

α0(1 + ξ20/2)ξ20
, (8.69)

where Ws is the intensity of spontaneous radiation (for linearly polarized
pump wave; for circularly polarized wave one should replace ξ20 → 2 ξ20).
Although the cutoff harmonic increases with the increasing of ξ0 ( sc ∼ ξ30 ),
for the high laser intensities ξ0 	 1 the role of spontaneous radiation increases
as Ls ∼ ξ−4

0 and the above mentioned regimes will be interrupted. Therefore,
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the obtained solutions are correct at the distances ∼ Ls. At ξ0 	 1 for the
high harmonics Lc decreases and simultaneously the quantum recoil �ω′/E
increases, but Ls ∼ Lc. The first regime will effectively work as a single-pass
amplifier if Lc � 10Ls (see Eq. (8.63): Wmax 
 eL/LcW0/4).

The second regime may be more promising as it allows considerable output
intensities even for the small interaction lengths (8.68). It is expected that the
effects of energy and angular spreads will not have a significant influence on
this regime as it is governed by the initial current and only Doppler dephasing
and spontaneous lifetime may interrupt the superradiation process. Note that
necessary for the second regime initially quantum modulation of the particle
beam at the above optical frequencies can be obtained through multiphoton
transitions in the laser field at the presence of a “third body”. The possibilities
of quantum modulation at hard X-ray frequencies in the induced Compton,
undulator, and Cherenkov processes have been studied in Chapters 3 and 5.

8.3 Quantum Description of FEL Nonlinear Dynamics
in a Wiggler

To evaluate the nonlinear gain of a FEL in a wiggler on the basis of quantum
theory we need the relativistic wave function of an electron in a wiggler. We
will consider linear (LW) as well as helical wigglers (HW). The magnetic field
of a wiggler is described by the following vector potential:

AH = {0, A0 cos(k0r), gA0 sin(k0r)} , (8.70)

where

k0 ≡
{

2π
�
, 0, 0

}
, (8.71)

with the wiggler step �. In Eq. (8.70) g = ±1 correspond to HW, while g = 0
corresponds to LW.

The quantum dynamics of an electron in a wiggler will be described by the
Dirac equation which in the quadratic form (see Eqs. (1.82), (1.83)), taking
into account the specified field configuration (8.70), can be represented in the
form{

�
2 ∂

2

∂t2
+ c2p̂2 − 2ceAH p̂ + e2A2

H +m2c4 − ec�Σ̂H
}
Ψ = 0, (8.72)

where

Σ̂ =
(
σ 0
0 σ

)
(8.73)
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is the spin operator with the σ̂ Pauli matrices and

H = rotAH (8.74)

is the magnetic field of a wiggler.
As the magnetic field depends only on the φ = k0r, then raising from the

symmetry, we seek a solution of Eq. (8.72) in the form

Ψ(r, t) = F (φ)e
i
�
(pr−Et), (8.75)

where E and p are the energy and momentum of a free electron.
To solve Eq. (8.72) we will consider F (φ) as a slowly varying bispinor

function of φ (on the scale of pk0/(�k2
0)) and neglect the second derivative

compared with the first order, which restricts the magnetic field strength by
the condition

ξH ≡ eA0

mc2
=

eH0�

2πmc2
<< γL. (8.76)

Here γL = E/mc2 is the Lorentz factor (ξH is the so-called wiggler parameter
(5.26)).

Hence, from Eqs. (8.72) and (8.75) for F (φ) we will have the following
equation:{

2i� (pk0)
d

dφ
+ 2

e

c
pAH − e2

c2
A2

H +
e�

c
Σ̂H
}
F (φ) = 0. (8.77)

The solution of Eq. (8.77) can be written in the operator form

F (φ) = exp

⎧⎨⎩ i

2�pk0

φ∫
−∞

(
2e
c

pAH − e2

c2
A2

H

)
dφ′

⎫⎬⎭
× exp

{
ie

2cpk0
Σ̂ [k0AH ]

}
uσ√
2E , (8.78)

where uσ is the bispinor amplitude of a free electron with polarization σ (it
is assumed adiabatic entry of the electron into the wiggler — H (−∞) = 0).

Then taking into account the property of spin operator

exp
[
Σ̂a
]

=
1
2
(exp(a) + exp(−a)) + Σ̂a

1
2a

(exp(a) − exp(−a)),

and taking into account the condition (8.76), which in this case restricts the
parameter a << 1, for the wave function (8.75) we will have the expression
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Ψ(r, t) =
(

1 +
ie

2c (pk0)
Σ̂ [k0AH ]

)
uσ√
2E

× exp

⎧⎨⎩ i

�

⎡⎣pr−Et+
1

2 (pk0)

φ∫
−∞

(
2
e

c
pAH − e2

c2
A2

H

)
dφ′

⎤⎦⎫⎬⎭ . (8.79)

The wave function (8.77) is an analogy of the Volkov wave function
(1.93). Therefore, it is reasonable to represent the wave function in the
four-dimensional notation making analogy more evident. Introducing four-
dimensional vector potential and “wave vector”

AH = (0,AH); k ≡ (0,−2π
�
, 0, 0),

and taking into account that

Σ̂ [k0AH ] = ik̂ÂH ,

the wave function (8.77) will be written as

Ψ(r, t) =
(

1 +
e

2c (pk)
k̂ÂH

)
uσ√
2E

× exp

⎧⎨⎩− i

�

⎡⎣px+
1

2 (pk)

φ∫
−∞

(
2
e

c
pAH − e2

c2
A2

H

)
dφ′

⎤⎦⎫⎬⎭ . (8.80)

Here p = (E/c,p) is the four-momentum of a free electron and â = aµγµ.
As we see this wave function by the form coincides with the Volkov wave
function (1.93). Hence, we will not repeat all calculations which have been
done for the Compton effect and use the obtained results for spontaneous
as well as for induced undulator radiation. The main difference in this case
is that k2 �= 0 but taking into account Eq. (8.76) we can neglect the terms
which come from k2 �= 0 (quantum recoil). This will be more evident in the
Weizsäcker-Williams approach, when in the frame concerned with electrons
the wiggler field is well enough described by a plane EM wave field.

Performing integration in Eq. (8.80), taking into account Eq. (8.70), for
the electron wave function we will have

ΨΠσ =

[
1 +

ek̂ÂH

2c(kp)

]
uσ(p)√

2Π0
exp
[
− i

�
Πx− i

�

e2A2
0

8c2 (pk)
(
1 − g2) sin (2k0r)

]
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× exp
[
i

�

eA0

c (pk)
(py sink0r − pzg cosk0r)

]
, (8.81)

where by further analogy with the Volkov states we have introduced four-
quasimomentum

Π = p+ k
m2c2

4kp
(1 + g2)ξ2H . (8.82)

Hence, the state of an electron in the wiggler field (8.70) is characterized
by the quasimomentum Π and polarization σ and the wave function (8.81)
is normalized by the condition

1
(2π�)3

∫
Ψ †

Π′σ′ΨΠσdr = δ(Π − Π′)δσ,σ′ .

The FEL dynamics in the wiggler will be described by the same self-
consistent set of Eqs. (8.36) with

M2 =
2c4

E2

∣∣∣[(pε′)Q0s(α, β, ϕ) − e

c
(Q1s(α, β, ϕ)ε′)

]∣∣∣2 , (8.83)

and the parameters α, β, and ϕ are

α =
eA0

�c

⎡⎣( py

pk0
− p′

y

p′k0

)2

+ g2

((
pz

pk0
− p′

z

p′k0

)2
)2
⎤⎦1/2

,

β =
e2A2

0

8c2
(g2 − 1)

k′k0

(pk0)
2 , (8.84)

tanϕ =
g
(

pz

pk0
− p′

z

p′k0

)2

(
py

pk0
− p′

y

p′k0

) .

The resonance detuning for the wiggler is

�∆ (s0,Π) =
√
c2 (Π − �k′ − s0�k0)

2 +m∗2c4

−
√
c2Π2 +m∗2c4 + �ω′. (8.85)

The spectrum of emitted photons is determined from the conservation laws
∆ (s0,Π) = 0:
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ω′ =
s0

2π
� v cosϑ0

1 − v
c cos θ + 2πc�s0

E� cos θr

, (8.86)

where θ and θr are the scattering angles of probe photons with respect to the
electron beam direction of motion and undulator axis, respectively, and ϑ0 is
the angle of the electron beam direction of motion with respect to undulator
axis. The last term in the denominator is the quantum recoil. Neglecting the
latter for the on axis radiation θ = ϑ0 we obtain the following known formula
for the radiation wavelengths

λ′ =
1
2

�

s0γ2
L

(
1 +

1 + g2

2
ξ2H

)
. (8.87)

Note that the spectrum (8.87) coincides with the spectrum of Compton effect
(8.48) with the factor 1/4 instead of 1/2. As has been mentioned the scheme
of an X-ray Compton laser has an advantage with respect to the conventional
undulator devices concerned with the satisfaction of condition (8.2) for the
quantum regime of generation. To achieve this condition for current FEL de-
vices operating in undulators is problematic as it presumes severe restrictions
on the beam spreads.

8.4 High-Gain Regime of FEL

Now we will solve the self-consistent set of Eqs. (8.36) for FEL at an arbitrary
detuning of resonance. As the most effective case the hydrodynamic instabil-
ity of a cold electron beam will be considered and the criteria will be obtained
showing that either High Gain or quantum regime of generation takes place
depending on the beam parameters and amplifying photon energy.

We assume steady-state operation of FEL at which one can drop all par-
tial time derivatives in Eqs. (8.36). To achieve maximal Doppler shift and
optimal conditions of amplification we will assume that the electron beam
propagates along the wiggler axis (OX) (or counterpropagating electron and
pump photon beams). Consequently, the electron beam dynamics will be
considered one dimensional.

Our goal is to determine the conditions under which we will have collective
instability, which causes exponential growth of the probe wave. Hence, we
will assume a small density perturbation for the electron beam and seek the
solution of Eq. (8.36) in the form

δF = δF0 (Πx) + δF1 (Πx, x) .

Then in the first order by the field we will obtain the following set of linear
equations:



256 8 Nonlinear Mechanisms of Free Electron Laser

v
dJ(x,Πx)

dx
− i∆ (s0, Πx)J(x,Πx) =

e2M2

4�c
δF0 (Πx)Ae (x) , (8.88)

dAe (x)
dx

=
4π
ω′

∫
J(x,Πx)dΠx, (8.89)

where

δF0 (Πx) = F0 (Πx) − F0 (Πx − �k′ − s0�k0) (8.90)

is defined via initial distribution function F0 (Πx).
Performing Laplace transformation

f (q) =

∞∫
0

f(x)e−qxdx (8.91)

for the functions J(q,Πx) and Ae (q) we obtain

(vq − i∆ (s0, Πx))J(q,Πx) =
e2M2

4�c
δF0 (Πx)Ae (q) , (8.92)

qAe (q) =
4π
ω′

∫
J(q,Πx)dΠx. (8.93)

From these equations we arrive at the following characteristic equation for
variable q:

q =
πe2M2

�ω′c

∫
δF0 (Πx)

vq − i∆ (s0, Πx)
dΠx. (8.94)

For the initial cold electron beam with the distribution function

F0 (Πx) = N0δ (Πx −Π0x) (8.95)

from Eq. (8.94) one can obtain the equation

q = χ2

[
1

q − i∆e

v

− 1
q − i∆a

v

]
, (8.96)

where

∆e = ∆ (s0, Π0x) ,

∆a = ∆ (s0, Π0x + �k′ + s0�k0)
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are the resonance widths for the emission and absorption and χ is the main
characteristic parameter of amplification in the quantum regime (see Eq.
(8.54)). Equation (8.96) is the cubic equation known in the FEL theory, but
it is more generalized and includes the quantum effects. We will solve the
latter in the opposite limits, which characterize the quantum and classical
high-gain regimes.

In the quantum regime when the electron beam momentum distribution
is centered at ∆e = 0 and

|χ| << |∆a|
v

, (8.97)

the second term in the square brackets of Eq. (8.96) can be neglected and we
obtain

q = ±χ,

whence the exponential growth rate in the quantum regime will be

Gq = χ. (8.98)

This result is predictable from the nonlinear solutions (8.54) and (8.65) for
the short interaction lengths.

In the classical limit the quantum recoil can be neglected and since in this
limit ∆a = −∆e (classical resonance), Eq.(8.96) under the condition

|q|2 >> ∆2
e

v2 (8.99)

can be rewritten as

q3 = 2iχ2∆e

v
, (8.100)

whence the unstable root defines the classical result for exponential growth
rate:

Gcl ≡
√

3
2

(
2χ2∆e

v

)1/3

. (8.101)

For joint consideration of Compton and undulator FELs the resonance
widths (8.39) and (8.85) at the classical resonance for the emission/absorption
can be written as

∆e = ε
�ω′

E
2πcs0
λ

, (8.102)

where the factor ε = 2 for Compton FEL and ε = 1 for undulator FEL, and λ
is the wavelength of the pump wave or wiggler step. Recalling the definition
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(8.54) for the parameter χ and using Eq. (8.102) the classical exponential
growth rate can be written as

Gcl ≡
√

3
2

(
4εs0

π2e2M2N0

v2Eλ
)1/3

. (8.103)

In particular, at the linear polarization of the pump field for the on axis
radiation from Eqs. (8.31) and (8.83) we have

M2 = c2
ξ2p

2γ2
L

Λ2,

where

Λ = J s0+1
2

(
s0ξ

2
p

4 + 2ξ2p

)
− J s0−1

2

(
s0ξ

2
p

4 + 2ξ2p

)
,

and ξp = ξ0 and ξp = ξH for Compton and undulator FELs, respectively.
Then for the classical exponential growth rate (8.103) we obtain the known
equation

Gcl ≡
√

3
2

(
2εs0π2c2reN0Λ

2

v2λ

ξ2p
γ3

L

)1/3

. (8.104)

Finally we note that the condition (8.99) for the classical high-gain regime
can be written as

χ >>
∆e

v
, (8.105)

which is opposite the condition for the quantum regime (8.97).

8.5 Quantum SASE Regime of FEL

In the previous sections we have described the FEL dynamics by the univer-
sal self-consistent set of Eqs. (8.36) which were derived in detail to reveal the
FEL dynamics in general. In particular, it has been solved in the steady-state
regime neglecting the dependence on time. This is appropriate for the FEL
when slippage due to the difference between the light and electron veloci-
ties is neglected. Here we describe the FEL dynamics in the Self-Amplified
Spontaneous Emission (SASE) regime taking into account the propagation
effects. Thus, we will not consider diffraction or saturation effects and the
FEL dynamics will be considered to be one dimensional. Taking into account
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the mentioned fact and keeping the time derivatives in Eqs. (8.36), in a simi-
lar way as was done with respect to Eqs. (8.88) and (8.89) we will obtain the
following set of linear equations:

∂J(x, t,Πx)
∂t

+ v
∂J(x, t,Πx)

∂x
− i∆ (s0, Π)J(x, t,Πx)

=
e2M2

4�c
δF0 (Πx)Ae (x, t) , (8.106)

∂Ae (x, t)
∂t

+ c
∂Ae (x, t)

∂x
=

4πc
ω′

∫
J(x, t,Πx)dΠx, (8.107)

where δF0 (Πx) is defined again by Eq. (8.90) via initial distribution function
of the electron beam.

By Fourier transformation for slowly varying envelopes of the probe EM
wave and electric current density

Ae(x, t) =

∞∫
−∞

A�(x)ei�td!, (8.108)

J(x, t,Πx) =

∞∫
−∞

J�(x,Πx)ei�td!, (8.109)

Eqs. (8.106) and (8.107) are reduced to the equations

∂J�(x,Πx)
∂x

− iΘ� (Πx)J�(x,Πx) =
e2M2

4�cv
A�(x)δF0 (Πx) , (8.110)

∂A�(x)
∂x

+ i
!

c
A�(x) =

4π
ω′

∫
J�(x,Πx)dΠx, (8.111)

where

Θ� (Πx) =
∆ (s0, Πx) −!

v
. (8.112)

The solution of Eq. (8.110) can be written as

J�(x,Πx) = J�(0, Πx)eiΘ�(Πx)x
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+
e2M2

4�cv

x∫
0

eiΘ�(Πx)(x−x′)A�(x′)δF0 (Πx) dx′. (8.113)

Here it is assumed that

J�(0, Πx) = J�δ(Πx −Π0x), (8.114)

where J� characterizes the shot noise in the electron beam or modulation
depth for the initially modulated beam. Substituting Eq. (8.113) into Eq.
(8.111) we obtain an integro-differential equation for the phase transformed
amplitude Ã�(x) of the amplifying wave field:

∂Ã�(x)
∂x

+ i
(!
c

+Θ� (Π0x)
)
Ã�(x) =

4π
ω′ J�,

+
πe2M2

�ω′cv

∫ x∫
0

ei(Θ�(Πx)−Θ�(Π0x))(x−x′)Ã�(x′)δF0 (Πx) dx′dΠx, (8.115)

where

Ã�(x) = A�(x)e−iΘ�(Π0x)x. (8.116)

In the quantum regime, when condition (8.97) holds one can neglect the
second term in Eq. (8.90) (which is equivalent to neglecting the absorption
probability compared with the emission one) and put

δF0 (Πx) 
 N0δ(Πx −Π0x); ∆ (s0, Π0x) = 0 (8.117)

in Eq. (8.115). Then we will obtain

∂Ã�(x)
∂x

− i

(
1 − v

c

)
!

v
Ã�(x) =

4π
ω′ J� + χ2

x∫
0

Ã�(x′)dx′. (8.118)

Performing Laplace transformation (8.91) on Eq. (8.118) we arrive at the
following characteristic equation for variable q:

q2 − i

(
1 − v

c

)
!

v
q − χ2 = 0, (8.119)

and the solution of Eq. (8.118) can be written as



8.5 Quantum SASE Regime of FEL 261

Ã�(x) =
1

2iπ

∮
qÃ�(0) + 4π

ω′ J�

(q − q1) (q − q2)
eqxdq, (8.120)

where Ã�(0) characterizes a coherent input signal. The contour integration
in Eq. (8.120) is the result of the inverse Laplace transformation and encloses
the poles which are the solutions of the characteristic equation (8.119):

q1 =
i

2

(
1 − v

c

)
!

v
+ χ

√
1 −

(
1 − v

c

)2
4χ2

!2

v2 , (8.121)

q2 =
i

2

(
1 − v

c

)
!

v
− χ

√
1 −

(
1 − v

c

)2
4χ2

!2

v2 . (8.122)

In Eq. (8.120) the term proportional to Ã�(0) describes the amplifica-
tion of the coherent input signal, while the second term proportional to J�

describes either the amplification of the shot noise or coherent spontaneous
emission (for the initially modulated electron beam). Since the main propose
of this section is to study the amplification process without initial seed the
first term will not be considered further. Hence, at Ã�(0) = 0 Eq. (8.120)
yields

Ã�(x) =
4π
ω′

J�

q1 − q2
eq1x +

4π
ω′

J�

q2 − q1
eq2x. (8.123)

The root q1 has a positive real part that gives rise to an exponentially grow-
ing term in the radiation intensity. Keeping only this term and taking into
account that q1 − q2 
 2χ, we have

Ã�(x) =
2π
ω′χ

J�e
q1z. (8.124)

The spectral property of output radiation is defined by the dependence of q1
on ! and from Eq. (8.121) we obtain

Req1 
 χ−
(
1 − v

c

)2
8χ

!2

v2 . (8.125)

For the average spectral intensity

I�(x) =
c

8π

〈
|E�(x)|2

〉
=

ω′2

8πc

〈∣∣∣Ã�(x)
∣∣∣2〉 (8.126)

with the help of Eqs. (8.124) and (8.125) we will have
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Iω(x) =
π

2cχ2

〈∣∣J�

∣∣2〉 exp

[
− (ω − ω′)2

2∆2
q (x)

]
e2χx, (8.127)

where ω′ is the resonant frequency (! → ω − ω′) and the spectral width in
the quantum SASE regime is defined as follows:

∆q (x) =

√
2χ
x

v
1 − v

c

. (8.128)

In the classical regime when condition (8.105) holds the electrons have
almost the same probability of absorption or emission of a photon and the
net gain factor is proportional to the derivative of the momentum distribution
function F0(Πx). Hence, from Eq. (8.90) one can put

δF0 (Πx) 
 ∂F0(Πx)
∂Πx

�ω′

c
. (8.129)

For the initial cold electron beam (8.95) from Eq. (8.115) in this case we
obtain

∂Ã�(x)
∂x

− i

(
1 − v

c

)
!

v
Ã�(x) =

4π
ω′ J�

+iG3
cl

x∫
0

(x− x′) Ã�(x′)dx′, (8.130)

where Gcl is the classical exponential growth rate (8.101). Without initial
seed the solution of Eq.(8.130) is given as

Ã�(x) = −i 2
ω′

∮
J�qe

qx

(q − q1) (q − q2) (q − q3)
dq, (8.131)

where q1,2,3 are the solutions of the characteristic equation

q3 − i

(
1 − v

c

)
!

v
q2 − iG3

cl = 0. (8.132)

The unstable solution (suppose Req1 > 1) in this case is given as

Ã�(x) =
4π
ω′ J�

q1
(q1 − q2) (q1 − q3)

eq1x, (8.133)

where one can put
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Req1 
 Gcl −
(
1 − v

c

)2
12Gcl

!2

v2 , (8.134)

∣∣∣∣ q1
(q1 − q2)(q1 − q3)

∣∣∣∣2 
 1
12G2

cl

. (8.135)

Hence, for the average spectral intensity (8.126) we have

I�(x) =
π

6cG2
cl

〈∣∣J�

∣∣2〉 exp

[
− (ω − ω′)2

2∆2
cl(x)

]
e2Gclx. (8.136)

The spectral width in the classical SASE regime is defined as follows:

∆cl(x) =

√
3Gcl

x

v
1 − v

c

. (8.137)

Comparing Eq. (8.136) with its quantum counterpart (8.127) one can see that
for the same initial shot noise in the quantum regime the start-up intensity is
enhanced by the factor G2

cl/χ
2 >> 1 (see conditions (8.97), (8.99)) and the

spectrum of the SASE intensity is narrowed by the factor
√

2χ/3Gcl << 1,
while for the quantum SASE regime a longer amplification length is required.

8.6 High-Gain FEL on the Coherent Bremsstrahlung in
a Crystal

To achieve the condition of coherency for generation of shortwave radiation
by electron beams of considerably lower energies, in the problem of X-ray
FEL it may be reasonable to consider other versions of stimulated radiation
in the crystals, based on the coherent bremsstrahlung of charged particles on
the periodic ionic lattice. It is clear that the coherent length in this scheme
is confined by the multiple scattering of electrons in a crystal. The latter
drastically increases the lasing threshold for the beam density. To compensate
it we will consider the case when the electron beam current density is initially
modulated.

Thus, we will investigate the lasing in the X-ray domain due to the coher-
ent bremsstrahlung in a crystal, in the high-gain regime, when the electron
beam moves close to the crystal lattice plane or axis. To avoid the channel-
ing effect in a crystal we assume that the incident angle θ of an electron
with respect to a crystalline plane or axis is larger than the Lindhard angle
θL =

√
2U0/E , where U0 is the height of the barrier of a crystal plane (axis)

potential, and E is the energy of an electron. In this case, when the radia-
tion coherence length lc ∼ γ2v/ω (γ being the Lorentz factor, v the electron
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velocity, and ω the radiation frequency) exceeds the crystal lattice periods:
lc >> di, the bremsstrahlung emitted from the various centers interfere with
each other and the enhancement of radiation occurs, which is referred to as
coherent bremsstrahlung. The trajectory of a particle can be considered as
quasi-linear and the trajectory period will be determined by the space period
of the crystal potential. In this respect the coherent bremsstrahlung is close
to the undulator radiation, where the trajectory period is determined by the
space period of the magnetic field. We will assume that

NcZae
2/�v >> 1; lc > R/θ, (8.138)

where Za is the nuclear charge number of the crystal atoms, R is the radius
of screening, Nc is the number of atoms on the radiation coherence length lc,
and θ << 1. In this case one can treat the particle motion by the classical
theory (the first condition is contrary to the Born one) and approximate the
interaction of the particle with the crystal by the continuous potential (second
condition of (8.138)) of atomic planes or strings, i.e., the atomic potential is
averaged over the given crystallographic plane or axis, which is oriented at
a small angle to the incident beam. For the concreteness we will consider
the case of the atomic plane, then the generalization for the crystal axis will
be obvious. The potential of the atomic plane, which governs the particle
motion, can be represented as a superposition of the potentials

U(x) =
∑

l

Up(x− ld1),

Up(x) =
1

d2d3

∫
u(r)dydz, (8.139)

where u(r) is the single atomic potential. Considering U(x) as a perturbation,
from the classical equations of motion one can obtain the perturbed velocity
of the electron, which is responsible for the coherent bremsstrahlung. The
latter can be expressed in the form

v′
x 


∑
n

un

mvθγ
exp
[
i
2π
d1
nvθt

]
, (8.140)

where

un =
4πNaZae

2(
2πn
d1

)2
+ 1

R2

(8.141)

is the Fourier component of the potential Up(x) (8.139). Here Na is the atomic
concentration in the crystal and for the single atomic potential we have taken



8.6 High-Gain FEL on the Coherent Bremsstrahlung in a Crystal 265

a screening Coulomb potential. We will consider the more reasonable case
of amplification of forward radiation of the electrons. Ignoring space charge
effects, the probe EM wave can be treated as transversal, propagating parallel
to the electron beam. We assume the probe wave to be linearly polarized with
the carrier frequency ω, wave vector k, and electric field strength

E = E0(t, zl)ei(kzl−ωt) + c.c., (8.142)

where E0(t, zl) is a slowly varying envelope and zl is the coordinate along the
electron beam propagation. Taking into account (8.140), the rate of energy
exchange between the electrons and probe wave can be expressed in the form

dE
dzl



∑

n

uneE0(t, zl)
m2vθγ

exp [iΨn] + c.c., (8.143)

where

Ψn = kzl − ωt+
2π
d1
nvθt. (8.144)

Then, the coherence condition, at which the bremsstrahlung emitted from
various crystal centers along the electron path interfere constructively, is the
following

dΨn

dzl
= 0; ω =

2πnvθ
d1(1 − v

c )
, (8.145)

which represents the general resonance condition for the forward radiation.
Though the consideration can be easily generalized to higher harmonics, we
will consider the fundamental resonance and keep only the resonant term
(n = 1) in Eq. (8.143). For the formulation of the Maxwell–Vlasov equations
it is convenient to change the independent variables from (zl, t) to (zl, Ψ1 ≡ ψ)
and the conjugate variable to ψ will be

χ = (γ − γ0)/γ0, (8.146)

where mc2γ0 is the electron resonant energy defined from Eq. (8.145). From
Eqs. (8.143) and (8.144) one can obtain the equations for (ψ, χ), generally
known as the pendulum equations in the conventional undulator version of
FEL:

dψ

dzl
=

4π
d1
θχ, (8.147)

dχ

dzl
=

eξcb

2mcvγ2
0
E0(ψ, zl)eiψ + c.c., (8.148)
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where by further analogy with the undulator or Compton FEL we have in-
troduced the effective interaction parameter ξcb for coherent bremsstrahlung

ξcb =
8πcNaZareR

2

vθ
, (8.149)

which has the same physical meaning as the usual ξH parameter for con-
ventional undulators (re is the electron classical radius). Hence, taking into
account Eqs. (8.147) and (8.148) the Vlasov equation for the phase-space
distribution function F (zl, ψ, χ) will be

∂F

∂zl
+

4πθχ
d1

∂F

∂ψ
+

eξcb

2mcvγ2
0

× (E0(t, zl)eiψ + c.c.
) ∂F
∂χ

= 0. (8.150)

The Maxwell equation for the slowly varying envelope of the probe wave can
be written as

∂E0

∂zl
+

2πθ
d1

∂E0

∂ψ
+ µE0 = −πeξcb

γ0
e−iψ

∫
Fdχ, (8.151)

where the bar denotes averaging over time and space much larger than
(1/ω, 1/k), and to take into account the probe wave damping because of
absorption and scattering in the crystal, we have introduced absorption coef-
ficient µ. Equations (8.150) and (8.151) are the self-consistent set of equations
for the considered scheme of FEL. The main impending factor in the coherent
bremsstrahlung process, which we have not taken into account in Eq. (8.150),
is the multiple scattering of electrons in a crystal. The latter will not violate
the electron coupling with the radiation field and, consequently, will not have
essential bearing on the amplification process, if the detuning of the phase ψ
due to multiple scattering is less than π. For the forward radiation we have
the condition Lδϑ2

ms/2 < λ (where λ is the wavelength of the amplifying
wave), which restricts the effective interaction length of the electrons in a
crystal

L < Lms =
(
8πr2eZ

2
aNad

−1θ ln 183Z−1/3
a

)−1/2
, (8.152)

where Lms and ϑms are the characteristic length and angle of multiple scat-
tering.

We shall determine the conditions under which the collective instabil-
ity develops in the coherent bremsstrahlung process causing the exponential
growth of the probe wave. Correspondingly, we will assume steady-state op-
eration and a small density perturbation for the electron beam and seek the
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solution of Eq.(8.150) in the form

F = F0 + F1e
iψ + c.c.,

dropping all partial derivatives with respect to ψ in the equations for F1 and
E0. For the initial cold electron beam at the exact resonance with distribution
function

F0(χ) = N0δ(χ)

(N0 is the mean density of the electron beam) from Eqs.(8.150) and (8.151)
one can obtain the integro-differential equation for the slowly varying enve-
lope E0:

dE0

dzl
+ µE0 = −πeξcbδN0

γ0
+ iαg

z∫
0

(z − z′)E0(z′)dz′. (8.153)

Here we introduced the gain parameter

αg =
2π2creξ

2
cbN0θ

vγ3
0d1

, (8.154)

and for the initially modulated electron beam it was assumed that

F1(z = 0, χ) = δN0δ(χ),

where δN0/N0 is the modulation depth. Performing Laplace transformation
(8.91) on Eq. (8.153), we obtain the following characteristic equation:

q3 + µq2 − iαg = 0, (8.155)

which for the values αg > µ gives the exponential growth rate for coherent
bremsstrahlung

G =
√

3
2

(
2π2creξ

2
cbN0θ

vγ3
0d1

)1/3

. (8.156)

For the high-gain regime the growth rate (8.156) is required to be larger
than the characteristic ones for the impending effects of radiation absorption
and multiple scattering of electrons in the crystal: G > max{µ,L−1

ms}.
For the electron beam low currents G << {µ,L−1

ms} and for the initially
modulated current densities (δN0 �= 0), with no input signal, the solution of
Eq. (8.153) gives
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E0 
 πeξcbδN0

γ0µ

(
e− µ

2 z − 1
)
. (8.157)

In Eq. (8.157) the amplification length z is restricted by the length of the
multiple scattering of electrons in the crystal Lms. At the large absorption
of amplifying radiation in the crystal, when µ >> 1/Lms, for the maximal
power of output radiation, which has a superradiant nature, we have

I 
 c

2π

[
πeξcbδN0

γ0µ

]2
. (8.158)

In the inverse case of small absorption µ << 1/Lms from Eq. (8.157) we have

I 
 c

8π

[
πeξcbδN0

γ0
Lms

]2
. (8.159)

Although the regimes (8.158) and (8.159) require low electron beam cur-
rents, they nevertheless may provide considerable output intensities for co-
herent X-ray. Hence, the considered setup of coherent bremsstrahlung in a
crystal may serve as a powerful mechanism for prebunched electron beam
superradiation, at moderate relativistic energies of electron beams.

8.7 Nonlinear Scheme of X-Ray FEL on the Channeling
Particle Beam in a Crystal

As the channeling radiation of ultrarelativistic electrons and positrons lies in
the X-ray and γ-ray domain, and its spectral intensity exceeds that of other
radiation sources in this frequency range, hence, the stimulated channeling
radiation of charged particles is of certain interest as a potential FEL in the
short wavelength domain. As the absorption coefficients of X-rays and γ-rays
in crystals are very high (∼ 102 ÷ 103cm−1) and the construction of mirrors
in this domain is very problematic, it is necessary to study the possibilities
of realization of the single-pass nonlinear regimes of X-ray amplification.

To obtain coherent radiation in the crystal channel it is most appropri-
ate to use electron beams with comparatively low energies (E � 50 MeV
for planar channeled electrons and E � 10 MeV for axial ones). First, the
states of channeled electrons are most stable in this energy region, i.e., the
scattering of channeled particles on atomic electrons and nuclei of the lat-
tice are suppressed. Then, at these energies a few discrete energy levels in
the transverse potential well of the channeled electron are formed that are
not equidistant. In this case by means of varying the angle of incidence of
the electron beam to the crystal an inverted population of electron states
in the transverse potential can be reached. In addition, at low energies it is
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possible to use electron beams with high densities and increase the popula-
tion inversion. Because the energy levels are not equidistant the stimulating
EM wave resonantly couples only two energy levels, and the physical pro-
cesses in the above-mentioned case of the channeling are similar to those of a
two-level atom (two-dimensional “atom” in the case of axial channeling, and
one-dimensional in the case of planar channeling) moving with relativistic
velocity.

The problem concerned with controlling the overpopulation of channeled
particles can be overcome by two component laser-assisted schemes. In par-
ticular, the stimulated Compton scattering by channeled particles is of cer-
tain interest as the necessity of inverse population of transverse levels for
lasing vanishes and the cross section of the considered process is resonantly
enhanced by several orders with respect to the Compton process on free elec-
trons.

For the description of a FEL operating in the crystal, where transverse
degrees of freedom of the particles are fully quantized, we will begin from the
second quantization formalism. The second quantized Hamiltonian is

Ĥ =
∫
Ψ̂+Ĥ0Ψ̂dr+Ĥint, (8.160)

where Ψ̂ is the fermionic field operator, Ĥ0 is the one-particle Hamiltonian
in the channel of the crystal (along the axis OZ) with average electrostatic
potential U(ρ) (ρ ≡ x in case of a planar channeling and ρ ≡

√
x2 + y2 for

the axial one), and Ĥint is the interaction Hamiltonian:

Ĥint = −1
c

∫
ĵ (Ae + A) dr. (8.161)

Here ĵ = eΨ̂+α̂Ψ̂ is the current density operator (α̂ is the Dirac matrix)
and Ae, A are the vector potentials of the probe and pump EM waves,
respectively. To achieve maximal Doppler shift and optimal conditions of
amplification, we will assume a co-propagating probe EM wave and channeled
particle beam and counterpropagating pump EM wave. We will consider a
linearly polarized (along OX) pump EM wave with the frequency ω and wave
vector k that is described by the vector potential

A = x̂
A0

2

{
ei(ωt+kz) + c.c.

}
. (8.162)

We assume the probe wave to be linearly polarized with the carrier frequency
ω′, wave vector k′, and vector potential

Ae = x̂
1
2

{
Ae(t, z)ei(ω′t−k′z) + c.c.

}
, (8.163)
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where Ae(t, z) is a slowly varying envelope.
As in Section 8.1 we write the Heisenberg field operator of the particles

in the form of an expansion in the stationary states

Ψ̂(r, t) =
∑
µ,pz

âµ,pz
(t)e− i

�
Eµ(pz)tψµ,pz

. (8.164)

The creation and annihilation operators â+
µ,pz

(t) and âµ,pz
(t), associated with

positive energy Eµ(pz) solutions of the Dirac equation, satisfy the usual anti-
commutation rules at equal times (see Eqs. (8.9), (8.10)). Here µ, pz are the
complete set of quantum numbers µ = {py, n, σ} for the planar channeling
and µ = {m, n, σ} for the axial one, n is the main quantum number and
m is the magnetic quantum number, σ characterizes spin polarization and
py, pz are the components of particle momentum; ψµ,pz are the normalized
eigenvectors of channeled particle corresponding to the given set of quantum
numbers. We will assume that probe and pump waves resonantly couple only
two transverse levels, which will be labeled (0) and (1). It is also assumed
that the particle beam is nonpolarized and the probability of transitions with
the spin flip is negligible (this imposes a restriction on the wave frequency
�ω′ << Eµ(pz)). As a result, taking into account Eqs. (8.161)–(8.164) and
keeping only the resonant terms (Rotating Frame Approximation) the Hamil-
tonian (8.160) can be reduced to the form

Ĥ =
∑
pz

[E0(pz)â+
0,pz

â0,pz
+ E1(pz)â+

1,pz
â1,pz

]
+ Ĥint (8.165)

with the interaction Hamiltonian:

Ĥint =
∑
pz

[
β⊥
2c

{
ieA0â

+
0,pz+�kâ1,pze

iΓ (pz+�k,pz,ω)t

+ieAeâ
+
0,pz−�k′ â1,pze

iΓ(pz−�k′,pz,ω′)t + h.c.
}]
. (8.166)

Included in Eq. (8.166) the resonance detuning Γ (p, p′, !) as a function of
any three parameters has the following definition:

Γ (p, p′, !) =
E0(p) − E1(p′) + �!

�
, (8.167)

and β⊥ is the transition matrix element for the transverse velocity operator:

β⊥ = Ωnn′xµµ′ , (8.168)
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where

Ωnn′ =
E⊥n′ − E⊥n

�
(8.169)

is the transition frequency between the initial and excited states of the
transversal motion of the particle in the crystal channel. The resonant fre-
quencies of the probe and pump waves for resonant coupling of the two trans-
verse levels are defined from the conditions

Γ (pz + �k, pz, ω) = 0, Γ (pz − �k′, pz, ω
′) = 0

and are written as

ω =
Ω01

1 + n (ω) vz

c

, (8.170)

ω′ =
Ω01

1 − n (ω′) vz

c

. (8.171)

Here vz is the electrons’ mean longitudinal velocity in the beam and n (!)
is the index of refraction of a crystal medium (n (ω′) 
 1 for the frequency
region under consideration).

The energy spectrum of the planar channeled electron in the potential
well (7.103) has the form

E⊥n = − �
2

2b2mγ
[s− n]2 ; n = 0, 1, . . . , [s] , (8.172)

where

s = −1
2

+

√
1
4

+
2b2mγU0

�2 ,

and for the axial channeled electron in the potential (7.35):

ε⊥n = −mγα2

2�2

1(
n+ 1

2

)2 ; n = 0, 1, 2, . . . . (8.173)

The selection rules for transitions are determined by the matrix element
of dipole momentum and for the axial channeling are: ∆m = ±1. For the
planar channeling, xµµ′ differs from zero between the states having different
parities. For the axial channeling there is degeneracy by the magnetic quan-
tum number and in the case of the wave of linear polarization both of the
states m = ±1 will have a contribution in the resonant interaction process.
Because β⊥ depends on |m| for ∆m = ±1 transitions, so the m = ±1 states
are equally populated if the initial populations are also equal.
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In the channeling potential (7.103) for the µ0 = {0, 0} −→ µ = {0, 1}
transition we have

β⊥ =
�

2bmγ
(2s− 1)

(
s− 1

2

) 1
2 Γ 2

(
s− 1

2

)
Γ 2 (s)

, (8.174)

where Γ (s) is the Euler gamma function. In the potential (7.35) for the
transition µ0 = {0, 0} −→ µ = {±1, 1} we have

β⊥ =
√

2
αc

�

√
3
32

, (8.175)

where the factor
√

2 is related to the degeneracy for axial channeling.
For the determination of the self-consistent field we need the evolution

equation for the single-particle density matrix ρij(pz, p
′
z) =< â+

j,p′
z
âi,pz >.

From the Heisenberg equation (8.17) in the interaction representation we
obtain the following equations for the populations of ground and excited
states:

∂ρ00(pz, p
′
z, t)

∂t
=

e

2�c
β⊥
[
A0ρ01(pz, p

′
z − �k, t)e−iΓ(p′

z,p′
z−�k,ω)t

+A0ρ10(pz − �k, p′
z, t)e

iΓ (pz,pz−�k,ω)t

+A∗
eρ01(pz, p

′
z + �k′, t)e−iΓ(p′

z,p′
z+�k′,ω′)t

+Aeρ10(pz + �k′, p′
z, t)e

iΓ(pz,pz+�k′,ω′)t
]
, (8.176)

∂ρ11(pz, p
′
z)

∂t
= − e

2�c
β⊥
[
A0ρ10(pz, p

′
z + �k, t)eiΓ(p′

z+�k,p′
z,ω)t

+Aeρ10(pz, p
′
z − �k′, t)eiΓ(p′

z−�k′,p′
z,ω′)t

+A0ρ01(pz + �k, p′
z, t)e

−iΓ (pz+�k,pz,ω)t

+A∗
eρ01(pz − �k′, p′

z, t)e
−iΓ(pz−�k′,pz,ω′)t

]
, (8.177)

and for the nondiagonal elements we have

∂ρ01(pz, p
′
z)

∂t
= − e

2�c
β⊥
[
A0ρ00(pz, p

′
z + �k)eiΓ(p′

z+�k,p′
z,ω)t
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+Aeρ00(pz, p
′
z − �k′)eiΓ(p′

z−�k′,p′
z,ω′)t

−A0ρ11(pz − �k, p′
z)e

iΓ (pz,pz−�k,ω)t

−Aeρ11(pz + �k′, p′
z)e

iΓ(pz,pz+�k′,ω′)t
]
, (8.178)

ρ10(pz, p
′
z) = ρ∗

01(p
′
z, pz). (8.179)

This set of equations should be supplemented by the Maxwell equation, which
is reduced to

∂Ae

∂t
+ c

∂Ae

∂z
=

4πce
ω′ β⊥

∑
pz

ρ01(pz, pz + �k′)e−iΓ(pz,pz+�k′,ω′)t. (8.180)

Equations (8.176)–(8.180) define the FEL dynamics in the crystal channel
with the pump EM wave.

First we consider the case when there is no pump field (A0 = 0). In
this case for the X-ray generation process it is necessary to have an inverted
population of the energy levels in transverse potential or one should have
an initial macroscopic dipole momentum, i.e., the electrons should be in the
coherent superposition state of transverse levels.

If A0 = 0 from Eqs. (8.176)–(8.179) one can find the closed set of equa-
tions for the density matrix elements ρ00(pz, pz), ρ11(pz + �k′, pz + �k′), and
ρ01(pz, pz + �k′, t):

∂ρ00(pz, pz, t)
∂t

=
e

2�c
β⊥
[
A∗

eρ01(pz, pz + �k′, t)e−iΓ(pz,pz+�k′,ω′)t

+Aeρ
∗
01(pz, pz + �k′, t)eiΓ(pz,pz+�k′,ω′)t

]
, (8.181)

∂ρ11(pz + �k′, pz + �k′, t)
∂t

= −∂ρ00(pz, pz, t)
∂t

, (8.182)

and
∂ρ01(pz, pz + �k′, t)

∂t
=

e

2�c
β⊥Aee

iΓ(pz,pz+�k′,ω′)t

× [ρ11(pz + �k′, pz + �k′, t) − ρ00(pz, pz, t)] . (8.183)

Introducing the new quantities

ρ11(pz + �k′, pz + �k′, t) − ρ00(pz, pz, t) = 2π�δF (pz) ,
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J (pz) =
eβ⊥
2π�

ρ01(pz, pz + �k′, t)e−iΓ(pz,pz+�k′,ω′)t

and replacing the time derivatives ∂/∂t → ∂/∂t+ vz∂/∂z, we obtain

∂δF (pz)
∂t

+ vz
∂δF (pz)

∂z
= − e

�c
(A∗

eJ (pz) +AeJ
∗ (pz)) ,

∂J (pz)
∂t

+ vz
∂J (pz)
∂z

+ iΓ (pz − �k′, pz, ω
′)J (pz) =

e2β2
⊥

2�c
AeδF (pz) ,

∂Ae

∂t
+ c

∂Ae(t, z)
∂z

=
4πc
ω′

∫
J (pz) dpz. (8.184)

This set of equations is equivalent to the set (8.36) for the Compton and
undulator FELs. One should make only the replacement in Eqs. (8.36)

M2 → 2β2
⊥. (8.185)

Hence, we will not repeat all calculations which have been done for Comp-
ton and undulator FELs and will use the obtained results. In particular, for
steady-state regimes we have the same solutions (8.60), (8.65), where the
main characteristic parameter of amplification (the characteristic length of
amplification) will be

Lch =
1
χch

; χch =

√
2πβ2

⊥e2N0

�ω′cvz
. (8.186)

The coherent interaction time of channeled particles with EM radiation is
confined by the lifetime of eigenstates of channeled particles and dechanneling
effects. For the axial channeling of mildly relativistic electrons the eigenstate
width is of order of 1 eV (at �ω′ ∼ 1 keV) which corresponds to relaxation
length Lr ∼ 1 µm. For planar channeling this length is a little large. To
fulfill the condition Lch � Lr one needs high electron currents. However,
the maximal current that can be used in this process is strongly restricted
because of the effects of damaging the crystal as well as increasing the beam
divergence and the strong bremsstrahlung background. As we saw in Section
8.2 the regime of wave amplification when the electron beam is modulated
—“macroscopic transition current” differs from zero — may operate without
any initial seeding power, and radiation intensity in this regime reaches a
significant value even for small interaction lengths. In the considered case
initially electrons should be in the coherent superposition state of transverse
levels and the maximal intensity that can be extracted here is
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W ∼ N0�ω′vz

(
Lr

Lch

)2

,

which for allowable electron currents at the frequency �ω′ ∼ 1 keV is of order
of 1 kW/cm2.

8.8 Compton FEL on the Channeling Particle Beam

Consider the scheme of X-ray coherent radiation generation by means of
mildly relativistic high-density channeled particle beam and strong counter-
propagating pump laser field. In this case the necessity of inverse population
of transverse levels for lasing vanishes and as we will see the exponential
growth rate of the considered process is resonantly enhanced by several or-
ders with respect to the Compton FEL. We will assume that the pump laser
field is not too strong (the Rabi frequency is small compared with resonance
detuning) and, consequently, the population of transverse excited state re-
mains small. The main terms responsible for the wave amplification in this
case are ρ00(pz, pz + �k′ + �k, t) and ρ01(pz, pz + �k′). Hence, from the set of
Eqs. (8.176)–(8.179) in the first order by the fields when

ρij(pz, p
′
z) = ρ

(0)
ij (pz, p

′
z) + ρ

(1)
ij (pz, p

′
z)

and keeping only the resonant terms we will obtain

∂ρ
(1)
00 (pz, pz + �k′ + �k, t)

∂t
=
eβ⊥
2�c

[
Aeρ

(0)
10 (pz + �k′, pz + �k′ + �k, t)

×eiΓ(pz,pz+�k′,ω′)t +A0ρ
(0)
01 (pz, pz + �k′, t)

×e−iΓ(pz+�k′+�k,pz+�k′,ω)t
]
, (8.187)

∂ρ
(1)
01 (pz, pz + �k′)

∂t
= −eA0β⊥

2�c
ρ
(1)
00 (pz, pz+�k′+�k)eiΓ(p′

z+�k,p′
z,ω)t, (8.188)

and

∂ρ
(0)
01 (pz, p

′
z)

∂t
= −eβ⊥

2�c

[
A0ρ

(0)
00 (pz, p

′
z + �k)eiΓ(p′

z+�k,p′
z,ω)t

+Aeρ
(0)
00 (pz, p

′
z − �k′)eiΓ(p′

z−�k′,p′
z,ω′)t

]
. (8.189)
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The Maxwell equation (8.180) for this process is

∂Ae

∂t
=

4πce
ω′ β⊥

×
∑
pz

[
ρ
(0)
01 (pz, pz + �k′) + ρ

(1)
01 (pz, pz + �k′)

]
e−iΓ(pz,pz+�k′,ω′)t. (8.190)

Here we will consider the probe wave amplification in time at which the
spatial dependence of the quantities will be neglected. It is also assumed that
the initial electron beam is uniform and, consequently,

ρ
(0)
00 (pz, p

′
z) = 2π�F0

(
pz + p′

z

2

)
δpzp′

z
, (8.191)

where F (pz) is the classical momentum distribution function of electrons.
Taking into account Eq. (8.191), the solution of Eq. (8.189) for the first-

order nondiagonal elements of the electrons’ density matrix is

ρ
(0)
01 (pz, pz + �k′) = i

πβ⊥
c

eAeF0 (pz)
eiΓ(pz,pz+�k′,ω′)t

Γ (pz, pz + �k′, ω′)
, (8.192)

ρ
(0)
10 (pz + �k′, pz + �k′ + �k) = −iπβ⊥

c
eA0F0 (pz + �k′ + �k)

× e−iΓ(pz+�k′+�k,pz+�k′,ω)t

Γ (pz + �k′ + �k, pz + �k′, ω)
. (8.193)

Substituting Eqs. (8.192) and (8.193) into Eqs. (8.187) and (8.190) and taking
into account that

Γ (pz, pz + �k′, ω′) − Γ (pz + �k′ + �k, pz + �k′, ω) = Γ0pz

(see the definition (8.167)), where

Γ0pz =
E0(pz) − E0(pz + �k′ + �k) + �ω′ − �ω

�
(8.194)

is the resonance detuning for the Compton scattering, we obtain the self-
consistent set of equations which determines the evolution and dynamics of
the considered FEL:

dAe

dt
= i∆Ae +

4πc
ω′

∫
e−iΓ(pz,pz+�k′,ω′)tJ(pz, t)dpz, (8.195)
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dJ

dt
= −A0e

2β2
⊥

2�c
eiΓ(pz+�k′+�k,pz+�k′,ω)tδn(pz, t), (8.196)

dδn

dt
= i

A0Aee
2β2

⊥
4�2c2

eiΓ0pz t

[
F0(pz)

Γ (pz, pz + �k′, ω′)

− F0(pz + �k′ + �k)
Γ (pz + �k′ + �k, pz + �k′, ω)

]
. (8.197)

Here for convenience we have introduced new quantities

δn(pz, t) ≡ 1
2π�

ρ
(1)
00 (pz, pz + �k′ + �k, t),

J(pz, t) ≡ eβ⊥
2π�

ρ
(1)
01 (pz, pz + �k′, t),

and the summation is replaced by integration. Then

∆ =
2πe2β2

⊥
�ω′

∫
dpz

F0(pz)
Γ (pz, pz + �k′, ω′)

(8.198)

is the frequency shift due to the particle beam polarization (induced dipole
moment).

Performing Laplace transformation on Eqs. (8.195), (8.196), and (8.197)
we arrive at the following characteristic equation:

q − i∆ = −iπe
4β4

⊥A
2
0

2�3c2ω′

∫
dpz

(q + iΓ0pz ) (q + iΓpz,pz+�k′,ω′)

×
[

F0(pz)
Γpz,pz+�k′,ω′

− F0(pz + �k′ + �k)
Γpz+�k′+�k,pz+�k′,ω

]
. (8.199)

This is a transcendental equation that allows one to determine the small-
signal gain in various regimes. For the cold electron beam (8.95), taking into
account the condition |q| >> |Γ0pz

| , |∆| (high gain regime) and neglecting
the quantum recoil, from Eq. (8.199) one can obtain the exponential growth
rate:

G =
√

3
2

[
4πre

λc

mc

�Ω01γ

ξ20
δ2
β4

⊥N0

]1/3

. (8.200)

Here λc = �/mc is the particle Compton wavelength, re is the electron clas-
sical radius, and
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δ =
|ω + vzk −Ω01|

Ω01

is the relative detuning of the resonance.
Equation (8.200) defines the exponential growth rate of X-rays in the

crystal at “Compton” scattering of a strong pump laser radiation on the
channeled particle beam at the resonance. Instead of ξ20 in the Compton effect
on the free electrons the effective interaction parameter in the channeling
process is determined by the resonance parameter ξ20/δ

2. For the high-gain
regime it is necessary that GLr/c > 1, where Lr is the relaxation length in
the crystal.

The obtained results are also applicable for positron beams channeled
in the zeolite crystals containing hollow channels with the diameter R ∼
10 ÷ 100 Å. In this case, main time channeled particles move in the hollow
channel and atomic electrons are disposed in the thin layer of the internal
surface of the channel and the scattering processes are suppressed and the
relaxation time is much larger than in the monocrystals (Lr ∼ 0.1 cm).
Besides, if λ < R (λ is the wavelength of amplifying radiation) the X-ray
absorption and scattering process is also suppressed, which in turn reduces
the threshold currents and the considered setup will be more preferable. In
this case, the potential of the channel can be approximated by the potential
U (ρ) = 0, if ρ < R; and ∞, if ρ ≥ R. Then the resonance can be achieved by
the infrared pump lasers as �Ω01 ∼ 0.1 eV and one can consider the SASE
regime as a small setup single-pass soft X-ray FEL.

8.9 Nonlinear Scheme of X-Ray Laser on the Ion and
Pump Laser Beams

As an alternative version of FEL we will consider the problem of generation
of coherent shortwave radiation by relativistic ion beams when due to the
existence of bound states, the ion–photon interaction cross section resonantly
increases with respect to the electron–photon scattering one. From this point
of view stimulated radiation from relativistic ion beams is a synthesis of
conventional quantum generators and FELs in the X-ray domain.

We consider as our model a relativistic beam of two level ions, co-
propagating (Z axis) probe EM wave with a frequency ω and wave vector
k and counterpropagating strong pump EM wave of frequency ω0 and wave
vector k0. The EM waves are treated as classical fields and the total electrical
field is given by

E(r, t) =
1
2
ε0E0e

iω0t−ik0r +
1
2
εEe(t, r)eiωt−ikr + c.c.. (8.201)

The probe wave is characterized by slowly varying amplitude Ee(t, r) and
unit polarization vector ε, while a pump wave is characterized by a given
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amplitude E0 and polarization vector ε0 (both waves are linearly polarized).
We assume that an internal ionic electron is nonrelativistic and the transition
takes place from an S state to a P state. The Hamiltonian governing the
evolution of the ion beam in the field (8.201) takes the following second
quantized form in the resonant approximation:

Ĥ 

∑

p,s=1,2

Es(p)â+
s,p âs,p +

∑
p

[
�Ω0pe

iω0tâ+
1,p−�k0

â2,p

+�Ωp(r, t)eiωtâ+
1,p−�k â2,p + h.c.

]
. (8.202)

Here

Es(p) =
√
c2p2 + (mic2 + ws)2; s = 1, 2 (8.203)

is the total energy of the ion with the momentum p of the center-of-mass
motion and w1, w2 are the binding energies of the internal ionic electron
in the ground and excited states, respectively (mi is the ion mass). Then
â+

s,p, âs,p denote ionic creation and annihilation operators for the internal
states s = 1, 2 with center-of-mass momentum p. These operators satisfy the
usual either bosonic or fermionic type equal times commutation rules. The
couplings

Ω0p =
E0ε0d12

2�

(
1 − vk0

ω0

)
, (8.204)

Ωp(r, t) =
Ee(t, r)εd12

2�

(
1 − vk

ω

)
(8.205)

take into account the dipole interaction as well as the interaction of magnetic
moment [d12 × v] /c (because of moving electric dipole) with the magnetic
field of the waves. In Eq. (8.205) v = p/miγ is the ion velocity, γ is the
Lorentz factor, and d12 is the ionic transition dipole moment.

We will use again the Heisenberg representation where evolution of the
operators are given by Eq. (8.17) and expectation values are determined
by the initial density matrix of the ion beam (see Eq. (8.18)). Then the
Heisenberg equations should be supplemented by the Maxwell equation for
slowly varying amplitude Ee(t, r) analogously to Eq. (8.19). The resonant
current for ion beam is defined by the nondiagonal element of the single-
particle density matrix

ρ12p,p+�k(t) =< â+
2,p+�kâ1,p > . (8.206)

Hence, for the determination of the self-consistent field we need the evolution
equation for the single particle density matrix
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ρijp,p′(t) =< â+
j,p′ âi,p > . (8.207)

We will assume that initially ions are in the ground state and the pump
laser field is not so strong or it is far off resonance and consequently, the
excited state population remains small. In analogy with the previous section
introducing the functions

ρ11p,p+�k−�k0(t) = ρ
(0)
11p,p+�k−�k0

+ (2π�)3ei(ω−ω0)tδn(p, t), (8.208)

ρ12p,p+�k(t) = ρ
(0)
12p,p+�k + (2π�)3eiωtJ(p, t) (8.209)

from the Heisenberg and Maxwell equations one can obtain the self-consistent
set of equations which determines the evolution and dynamics of the consid-
ered system:

∂Ee

∂t
+
c2k
ω

∂Ee

∂r
− i∆Ee = 4πiωεd∗

12

∫ (
1 − vk

ω

)
J(p, t)dp, (8.210)

∂J

∂t
+ v0

∂J

∂r
+ iΓ1(p)J = iΩ0pδn(p, t), (8.211)

∂δn

∂t
+ v0

∂δn

∂r
+ iΓ0(p)δn = iΩ∗

0pΩp

×
[
F0 (p + �k − �k0)
Γ1(p) − Γ0(p)

− F0 (p)
Γ1(p)

]
. (8.212)

To take into account the pulse propagation effects we have replaced the time
derivatives ∂/∂t → ∂/∂t+ v0∂/∂r, where v0 is the mean velocity of the ion
beam. Here it is assumed that the initial beam is uniform and consequently

ρ11p,p′(0) = (2π�)3F0

(
p + p′

2

)
δp,p′ , (8.213)

where F0 (p) is the ions’ classical center-of-mass momentum distribution func-
tion and δp,p′ is the Kronecker symbol (summation is replaced by integra-
tion). Then

∆ =
2πω |εd12|2

�

∫
dp

(
1 − vk

ω

)2
F0 (p)

Γ1(p)
(8.214)

is the frequency shift because of the ion beam polarization (refractive index
caused by ion beam) and
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Γ0(p) =
E1(p) − E1(p + �k − �k0) + �ω − �ω0

�
(8.215)

is the resonance detuning for the Compton scattering of the strong wave on
ions, while

Γ1(p) =
E1(p) + �ω − E2 (p + �k)

�
(8.216)

is the resonance detuning for absorption/emission of the probe wave’s quanta.
To determine the conditions under which we will have collective instabil-

ity and consequently the exponential growth of the probe wave, one should
perform the same procedure as was made for the high-gain regime of amplifi-
cation on an electron beam. We will assume again the steady-state operation
at which one can drop all partial time derivatives in Eqs. (8.210), (8.211), and
(8.212). Performing Laplace transformation (8.91) on Eqs. (8.210), (8.211),
and (8.212) we arrive at the following characteristic equation for variable q:

q − i∆ =
∫

K(p)dp
(q + iΓ0(p)) (q + iΓ1(p))

, (8.217)

where

K(p) =
2πiω |εd12|2 |Ω0p|2

�v2
0zc

(
1 − vk

ω

)2

×
[
F0 (p)
Γ1(p)

− F0 (p + �k − �k0)
Γ1(p) − Γ0(p)

]
. (8.218)

This is the transcendental equation which allows one to determine a small-
signal gain in various regimes.

For initially cold ion beam

F0 (p) = Ni0δ(p − p0)

(Ni0 is the beam density) taking into account Eqs. (8.215), (8.216), as well as
the conditions |q| >> |Γ0(p0)| , |∆| (high-gain regime), and |q| << |Γ1(p0)|
and neglecting the quantum recoil, from Eq. (8.217) one can obtain the ex-
ponential growth rate of the probe X-ray:

G =
√

3
2

[
Ω2

r

δ2
2πω3 |εd12|2
v2
0zγ

5
0
mic3

Ni0

]1/3

. (8.219)

Here

Ωr =
E0ε0d12

2�
(8.220)
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is the Rabi frequency associated with the pump wave,

δ = ω12 − ω0γ0

(
1 +

v0z

c

)
(8.221)

is the resonance detuning, and

ω12 =
w2 − w1

�

is the transition frequency for internal ionic electron.
Equation (8.219) defines the exponential growth rate of X-rays at the

induced “Compton” scattering of a strong pump laser radiation on the ion
beam, which is resonantly enhanced with respect to the Compton laser on
free electrons.

8.10 Crystal Potential as a Pump Field for Generation
of Coherent X-Ray

Consider now the possibility of coherent X-ray radiation generation by a
fast, multiply charged, channeled ion beam in a crystal without a pump
laser field. In the proposed process the X-ray transitions involving the K or
L shell electrons in ions can be resonantly excited by the periodic crystal
potential seen by fast channeled ions. The emission frequencies in this case
are determined by the discrete spectrum of the electron states in ions and
by the Doppler shift due to the ion center-of-mass motion. With respect to
moving ions, the crystal electrostatic potential plays the role of an effective
pumping field with the Rabi frequency corresponding to a high power “X-ray
laser”. By varying the crystal thickness, one can obtain diverse equivalent
“X-ray pulses” leading to various coherent superposition states, from which
one can obtain coherent X-ray radiation from the ion beam spontaneous
superradiation.

Below we will consider superradiant coherent X-ray generation when an
ion beam moves close to the crystal lattice axis. This radiation is predicted by
the second quantized Maxwell and quantum equations governing the motion
of an ion beam in a crystal.

For channeling an ion beam in a crystal, we assume that the incident
angle of ions (with a charge number of the nucleus Zi) with respect to a
crystalline axis (OZ) is smaller than the Lindhard angle. Then the potential
of the atomic chain, which governs the ion motion, can be represented in the
form

V (z, r⊥) =
∑

n

Vn(r⊥) exp
[
i
2πn
d

z

]
, (8.222)
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where d is the crystal lattice period along the channel axis, Vn(r⊥) is defined
by the single atomic potential of the crystal, which is given by the screening
Coulomb potential with the radius of screening R and a charge number of
the nucleus Zc that has the form

Vn(r⊥) =
2eZc

d
K0 (r⊥qn) ,

qn =

√
1
R2 +

(
2πn
d

)2

, (8.223)

where K0 is a modified Bessel function.
The potential (8.222) acts on the internal electron as well as on the ion

center-of-mass motion, providing channeling. The center of mass of the ion
represents slow oscillations in the transversal direction (r⊥) and free motion
(on average) along the crystalline axis. For the ionic electron the atomic chain
potential acts as an exciting field. The latter is obvious in the rest frame of
reference of the ion (neglecting transversal oscillations) where there is an
oscillating time/space electromagnetic field with a fundamental frequency
2πγvz/d (γ is the Lorentz factor, vz is the ion longitudinal velocity). If one
of the harmonics (n) of this frequency is close to the frequency ω12 associated
with the energy difference of the ionic electron levels

2πnγvz

d

 ω12, (8.224)

we can expect resonant excitation of ions. The latter represents the conser-
vation law for the total energy (neglecting quantum recoil) in the laboratory
frame of reference.

As the physical picture of the considered process is more evident in the
frame of reference connected with the ion beam and the problem becomes
nonrelativistic in this frame, then it is more convenient to pass to the rest
frame of the ion beam (moving with the mean velocity v0 of the beam). If the
resonance condition (8.224) holds, we can keep only the resonant harmonic
in the potential (8.222) and the Hamiltonian describing the quantum kinetics
of the channeled ion beam takes the following second quantized form in the
resonant approximation:

Ĥic


∑

p,s=1,2

Es(p)â+
s,p âs,p +

∑
p

[
�Ωce

iωctâ+
1,p−�gn

â2,p + h.c.
]
. (8.225)

Here we have introduced the lattice vector

gn = (0, 0,−2πnγ0

d
),
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where γ0 = (1 − v2
0/c

2)−1/2, and â+
s,p , âs,p denote ionic creation and annihi-

lation operators for the states s = 1, 2 with center-of-mass momentum p and
energy

Es(p) =
p2

2mi
+ ws

(ws is the binding energy of the ionic electron). These operators satisfy ei-
ther the usual bosonic or fermionic type equal time commutation rules. The
coupling is

Ωc =
2eZcγ0

�d
{−ignfzK0 (r⊥qn) +

fr⊥
r⊥

qnK1 (r⊥qn)
}
, (8.226)

where f is the ionic transition dipole moment, which represents the Rabi
frequency, with the assumption that the crystal potential acts as a quasi-
monochromatic wave with the frequency

ωc = v0gn; gn =
2πnγ0

d
. (8.227)

In Eq.(8.226) we have neglected the ion transverse oscillations, since they are
much slower than the frequency of collisions of ions with the atoms of the
crystalline axis. Here r⊥ is the ion mean transverse displacement.

The full Hamiltonian describing also the radiation processes will be

Ĥ = Ĥic +
∑

k,µ=1,2

�ωĉ+k,µĉk,µ

+
∑
p,k,µ

[
�Ωk,µâ

+
1,p−�k â2,pĉk,µ + h.c.

]
, (8.228)

where the second term is the Hamiltonian of the photon field with the cre-
ation and annihilation operators ĉ+k,µ, ĉk,µ of photons with momentum �k
and linear polarization εµ (µ = 1, 2). The last term is the Hamiltonian of
interaction of the ions with the photon field and

Ωk,µ =
√

2π�ω (εµf) (8.229)

is the Rabi frequency for the quantized photon field (the quantization volume
is taken to be V = 1).

If the effective Rabi frequency is large enough and the crystal length is
short enough, the spontaneous emission and the relaxation processes may
be neglected during the time of interaction of ions with the crystal. In this
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case, the Heisenberg equation (8.17) for the operators âs,p may be solved
analytically. This gives the following solution:

â1,p = e− i
�

E1(p)t e−i 1
2 δvz τ

{
cosΩτ + i

δvz

2Ω
sinΩτ

}
â
(0)
1,p,

â2,p = −ie− i
�

E2(p)tei 1
2 δvz τ sinΩτ

Ωc

Ω
â
(0)
1,p−�gn

. (8.230)

Here â
(0)
1,p is the initial operator, τ is the ion interaction time with the crystal,

δvz
= ω12 − ωc − gnvz (8.231)

is the resonance detuning, and

Ω =

√
|Ωc|2 +

δ2vz

4
(8.232)

is the effective Rabi frequency. We assume that initially ions are in the ground
state, so that in Eq. (8.230) we have not written the terms with the operator
â
(0)
2,p. As we see, the population of electrons oscillates coherently between

the states depending on the crystal length Lc 
 vzτ . If |Ωc| >> |δvz | and
the crystal length corresponds to “pulse area” |Ωc| τ = jπ/4 ( j = 1, 2, ...),
the ion beam will then have the maximal polarization (macroscopic dipole
moment).

To investigate the properties of ion beam radiation (in free space) we
come back to the full Hamiltonian and perturbatively calculate the photonic
operators ĉk,µ(t):

ĉk,µ(t) = −iπ�Ωk,µ

∑
p

â+
1,p−�k â2,p

×δ(�ω + E1(p − �k) − E2(p)). (8.233)

The output spectrum consists of coherent and incoherent radiation. The co-
herent superradiation is defined by the mean value of the photonic operators
< ĉkµ(t) >; i.e., it is proportional to the Fourier transform of the mean ion
polarization < â+

1,p−�k â2,p > . To determine the intensity of coherent radi-
ation we will assume that the mean number of photons is much smaller than
the total number of ions: Nph << Ni. In accordance with this assumption,
one can neglect the retro radiation effects. Otherwise, ions would respond
collectively, and as is known the N -particle spontaneous emission rate might
be much larger than a single-particle spontaneous emission rate, consequently
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the considered equations for the photons and ions operators should be solved
self-consistently.

From Eq. (8.233) we obtain the following equation for the total number
of emitted photons with momentum �k and polarization µ per unit time:

∂N
(coh)
kµ

∂t
= 2π� |Ωk,µ|2

∑
p1,p

Re {ρ12p1−�k,p1

× ρ21p,p−�kδ (�ω + E1(p − �k) − E2(p))} , (8.234)

where ρ12p,p′(t) =< â+
2,p′ â1,p > is the nondiagonal element of the single-

particle density matrix defined by the operators (8.230). By summing over
photon polarization and integrating over frequency one can obtain the fol-
lowing expression for the angular distribution of superradiant power per unit
solid angle (dO):

dIcoh

dO
= N2

i I1(k̂)
∣∣∣G(k̂ω12

c
− gn

)∣∣∣2

×
∣∣∣∣∣
∫

exp

(
i
k̂v
c
ω12t

)
P (vz)F (v)dv

∣∣∣∣∣
2

, (8.235)

where

G(q) =
1
Ni

∫
n(r)eiqrdr (8.236)

is the beam form-factor with n(r) being the ion beam density function, F (v)
is the velocity distribution function of ions, I1(k̂) is the single ion radiation
power with the unit vector k̂ in the radiation direction, and

P (vz) =
Ωc

Ω
sinΩτ

{
cosΩτ + i

δvz

2Ω
sinΩτ

}
exp (−ignvzτ) . (8.237)

For the beam spatial and velocity distributions we will assume Gaussian
functions with isotropic transverse distributions. Then, from Eq.(8.235) for
the differential power of the ion beam superradiation we obtain

dIcoh

dO
= N2

i I1(k̂) exp
[
−δv2

⊥
c2

ω2
12t

2 sin2 ϑ

]
|P (t, ϑ)|2

× exp
[
− l2⊥ω

2
12

c2
sin2 ϑ− l2zg

2
n(1 +

ω12

cgn
cosϑ)2

]
, (8.238)
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where

P (t, ϑ) =
∫
P (vz) exp

[
i
vz cosϑ

c
ω12t− v2

z

2δv2
z

]
dvz√
2πδvz

. (8.239)

Here l⊥, lz are the transverse and longitudinal bunch sizes of the beam with
the transverse and longitudinal velocity spreads δv⊥, δvz. As is seen from
Eq.(8.238), if the observed wavelengths are much smaller than the transverse
size of an ion beam, the superradiation from the ion beam will occur primarily
along the Z axis and will cover only a tiny solid angle, which will be defined
by the transverse size of the ion beam

∆O 
 π
c2

l2⊥ω
2
12
. (8.240)

The superradiant pulse duration depends on velocity spreads of the beam
and will be defined by the function P (t, ϑ). The analysis of Eq.(8.238) shows
the existence of two superradiant regimes of X-ray generation. For the first
regime when the phase matching condition holds

ω12 = cgn, (8.241)

the superradiation from the ion beam may occur primarily in the backward
direction and the longitudinal bunch size lz of the ion beam should not be
smaller than the wavelength of superradiation. On the other hand, for the
resonant excitation the condition |δ0| << ω12 should be fulfilled. Then taking
into account the phase matching condition (8.241), for the detuning (8.231)
we have

δ0 
 ω12(1 − v0

c
). (8.242)

The latter means that for the backward superradiation it is necessary for a
relativistic ion beam to satisfy the resonance condition δ0 
 ω12/2γ2

0 << ω12.
For the mean power of backward superradiation from Eq.(8.238) one can

obtain the following approximate formula:

Imean 
 N2I1 |P (0, π)|2∆O. (8.243)

In the opposite case when the resonance condition holds: ω12 = ωc = v0gn,
one can easily fulfill the condition for maximal dipole moment |Ωc| >> δ0
for the light ion beams (Zi < 10, γ0 
 1 ), but since the phase matching
condition (8.241) is violated: ω12 < cgn, the superradiation will take place if
the longitudinal bunch size of the ion beam is smaller than the crystal lattice
period d.
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9 Electron–Positron Pair Production in
Superstrong Laser Fields

Considering the interaction of charged particles with strong radiation fields
in vacuum we looked at the non-quantum electrodynamic (QED) properties
of electromagnetic vacuum. At such consideration, vacuum stipulates only
the classical dispersion properties of EM waves propagating with the speed of
light c. However, the latter is valid for radiation fields that are not superstrong
(ξ0 < 1), otherwise the excitation of QED vacuum and production of electron–
positron pairs becomes possible.

As follows from the physical meaning of the wave intensity parameter
ξ0, at values of ξ0 > 1 the energy acquired by an electron over a wavelength
of a coherent radiation field exceeds the electron rest energy mc2. On the
other hand, the energetic width of the vacuum gap or the threshold value for
the electron–positron pair production is 2mc2. This means that electrons of
the Dirac vacuum acquiring the energy E > 2mc2 at the interaction with the
wave field of intensity ξ0 > 1 will pass from negative energy states to positive
ones (excitation of the Dirac vacuum) and electron–positron pair production
becomes a fact (with the presence of a third body for the satisfaction of the
conservation laws for this process).

The production of electron–positron pairs by plane EM waves of relativistic
intensities ( ξ0 >> 1) is essentially a multiphoton process, which principally
differs from the known “Klein paradox” — production of electron–positron
pairs in stationary and homogeneous electric field proceeding over the elec-
tron Compton wavelength. The latter corresponds to the tunnel effect through
the effective energetic barrier of finite width formed from the vacuum gap of
infinite width by the presence of a uniform electric field (Schwinger mecha-
nism). The physical mechanisms are similar to two different limits of Above
Threshold Ionization of atoms in strong radiation fields — multiphoton and
tunnel ionization.

This chapter considers the excitation of the Dirac vacuum in superstrong
EM fields and the electron–positron pair production process in the presence
of a diverse type third body.
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9.1 Vacuum in Superstrong Electromagnetic Fields.
Klein Paradox

It has long been well known that in the background of a stationary and
homogeneous electric field the QED vacuum is unstable and electron–positron
(e−, e+) pair production from the vacuum occurs (this mechanism is often
referred to as the Schwinger mechanism). However, a measurable rate for pair
production requires extraordinarily strong electric field strengths comparable
to the critical vacuum field strength

Ec =
m2c3

e�
, (9.1)

the work of which on an electron over the Compton wavelength λc = �/mc
equals the electron rest energy. As we will see the probability of this process
reaches optimal values when

ζ =
E0

Ec
� 1, (9.2)

where E0 is the magnitude of a uniform electric field strength.
Fortunately, it seems possible to produce EM fields with electric field

strengths of the order of the Schwinger critical field in the focus of expected
X-ray FEL and consideration of this problem is theoretically important, since
it requires one to go beyond perturbation theory, and its experimental obser-
vation would verify the validity of theory in the domain of strong fields.

To solve the problem of e−, e+ pair production in the given electric field
we shall make use of the Dirac model — all vacuum negative energy states
are filled with electrons and e−, e+ pair production by the electric field oc-
curs when the vacuum electrons with initial negative energies E0 < 0 due to
“acceleration” pass to the final states with positive energies E > 0. To dis-
tinguish the free particle states we will switch on and switch off the electric
field elaborating on a model which retains the main features of the spatially
uniform electric field and allows one to obtain an exact solution for the Dirac
equation and final expressions for the pair production rate in closed form.
Thus, we will assume an electric field of the form

E(t) =
E0

cosh2 ( t
T

) ẑ, (9.3)

where T is the characteristic period of the field and ẑ is the unit vector along
the field strength. The vector potential corresponding to this field may be
written as
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A(t) = −c
t∫

−∞
E(t)dt = −cE0T ẑ

[
tanh

(
t

T

)
+ 1
]
. (9.4)

We will solve the Dirac equation in the spinor representation (see Eqs.
(1.77), (1.78)). Since the interaction Hamiltonian does not depend on the
space coordinates, the generalized momentum p0 is conserved. Hence, the
solution of Eq. (1.77) may be represented in the form

Ψ(r,t) = Ψp0 (t) e
i
�
p0r, (9.5)

and from Eq. (1.77) for the function Ψp0(t) we obtain the following equation:

i�
dΨp0

dt
=
[
cα
(
p0+

e

c
A (t)

)
+mc2β

]
Ψp0 . (9.6)

In this section the electron charge will be assumed to be −e. Since A(−∞) =
0 the solution of Eq. (9.6) at t → −∞ should be superposition of the free
particle solutions ψ(κ)

p0,σ with negative (κ = −1) and positive (κ = 1) energies
and polarizations σ = ± 1

2 (spin projections Sz = ± 1
2 in the rest frame of the

particle):

ψ
(κ)
p0,1/2 =

√
1

2E0 (E0 − κcp0z)

⎛⎝κmc2w(1/2)

(E0 − κcσp0)w(1/2)

⎞⎠ e− i
�

κE0t, (9.7)

ψ
(κ)
p0,−1/2 =

√
1

2E0 (E0 + κcp0z)

⎛⎝ (E0 + κcσp0)w(−1/2)

κmc2w(−1/2)

⎞⎠ e− i
�

κE0t, (9.8)

where E0 =
√
c2p2

0 +m2c4, σ are Pauli matrices, and the spinors w(±1/2)are

w(1/2) =
(

1
0

)
; w(−1/2) =

(
0
1

)
.

At t → ∞, the electric field E(∞) = 0 but

A(∞) = −2cE0T ẑ, (9.9)

and the solution of Eq. (9.6) at t → ∞ should be superposition of the free
particle solutions (9.7), (9.8) where the “final momentum”
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p = p0 − e

∞∫
−∞

E(t)dt = p0 +
e

c
A(∞) (9.10)

stands for p0. Equation (9.6) in the quadratic form (see Eqs. (1.82), (1.83))
for the bispinor components

Ψp0 (t) =

⎛⎜⎜⎝
f1
f2
f3
f4

⎞⎟⎟⎠ (9.11)

gives the following set of equations:{
�

2 d
2

dt2
+ E2

0 + e2A2(t) + 2ecp0zA (t) ∓ iec�E(t)
}
f1,2 = 0, (9.12)

{
�

2 d
2

dt2
+ E2

0 + e2A2(t) + 2ecp0zA (t) ± iec�E(t)
}
f3,4 = 0. (9.13)

Thus, solving the equation{
�

2 d
2

dt2
+ E2

0 + e2A2(t) + 2ecp0zA (t) − δiec�E(t)
}
Φ = 0 (9.14)

with δ = ±1 one can construct the whole bispinor (9.11). Passing in Eq.
(9.14) to the new variable

z = −e2 t
T ,

and seeking the solution in the form

Φ (t) = (−z)i
E0T
2� (1 − z)iδ

eE0T2c
� F (z), (9.15)

we obtain the equation for hypergeometric function F (α, β, γ, z):

z (1 − z)F ′′ + (γ − (α+ β + 1) z)F ′ − αβF = 0. (9.16)

The parameters α, β, γ are defined as follows:

α (E0, δ) = i
E0 + E + 2iδeE0cT

2�
T,
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β (E0, δ) = i
E0 − E + 2iδeE0cT

2�
T, (9.17)

γ (E0) = 1 + i
E0

�
T,

where according to Eqs. (9.10) and (9.9)

E =
√
c2 (p0 − 2eE0T ẑ)2 +m2c4.

The general solution for hypergeometric equation (9.16) is

F (z) = F (α, β, γ, z) + z1−γF (α− γ + 1, β − γ + 1, 2 − γ, z) . (9.18)

Taking into account the relations

α (E0, δ) − γ (E0) + 1 = α (−E0, δ) ,

β (E0, δ) − γ (E0) + 1 = β (−E0, δ) ,

2 − γ = γ (−E0) ,

i
E0

2�
T + 1 − γ (E0) = −iE0

2�
T,

the general solution for bispinor Ψp0 (t) can be written as follows:

Ψp0 (t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1Φ (E0, 1; z) +A2Φ (−E0, 1; z)

B1Φ (E0,−1; z) +B2Φ (−E0,−1; z)

C1Φ (E0,−1; z) + C2Φ (−E0,−1; z)

D1Φ (E0, 1; z) +D2Φ (−E0, 1; z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9.19)

where

Φ (E0, δ; z) = (−z)i
E0
2�

T (1 − z)iδ
eE0c

�
T 2

×F (α (E0, δ) , β (E0, δ) , γ (E0) , z) , (9.20)

and the coefficients A1,2, B1,2, C1,2, D1,2 should be defined from the initial
condition.
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To determine the probability of e−, e+ pair production we use the initial
condition: at t → −∞ when A(−∞) = 0 this wave function must turn into
the free Dirac equation solution with negative energy in accordance with the
Dirac model. Then taking into account that at

t → −∞; z → 0,

Φ (E0, δ; z → 0) = (−z)i
E0
2�

T = e
i
�

E0t,

we obtain

Ψ
(−1)
p0,1/2 =

√
1

2E0 (E0 + cp0z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−mc2Φ (E0, 1; z)

0

(E0 + cp0z)Φ (E0,−1; z)

(cp0x + icp0y)Φ (E0, 1; z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9.21)

Ψ
(−1)
p0,−1/2 =

√
1

2E0 (E0 − cp0z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−cp0x + icp0y)Φ (E0, 1; z)

(E0 + cp0z)Φ (E0,−1; z)

0

−mc2Φ (E0, 1; z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9.22)

After the interaction at t → +∞; z → −∞ these wave functions become the
superposition of the free Dirac equation solutions. To determine the asymp-
totes of these functions we will use the following property of the hypergeo-
metric function:

F (α, β, γ, z) =
Γ (γ)Γ (β − α)
Γ (β)Γ (γ − α)

(−z)−α
F

(
α, α+ 1 − γ, α+ 1 − β,

1
z

)

+
Γ (γ)Γ (α− β)
Γ (α)Γ (γ − β)

(−z)−β
F

(
β, β + 1 − γ, β + 1 − α,

1
z

)
. (9.23)

Hence, for the function Φ we obtain

Φ (E0, δ; z → −∞) = e− i
�

EtΓ (γ (E0))Γ (β (E0, δ) − α (E0, δ))
Γ (β (E0, δ))Γ (γ (E0) − α (E0, δ))
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+e
i
�

EtΓ (γ (E0))Γ (α (E0, δ) − β (E0, δ))
Γ (α (E0, δ))Γ (γ (E0) − β (E0, δ))

. (9.24)

Taking into account the relations

E − E0 + 2eE0cT

E0 − E + 2eE0cT
=

E − cpz

E0 + cp0z
,

p0z − pz = 2eE0T,

for the bispinor wave function (9.21) we obtain

Ψ
(−1)
p0,1/2 (t → +∞) = C (E)ψ(1)

p,1/2 + C (−E)ψ(−1)
p,1/2, (9.25)

where

C (E) =

√
EE0

(E0 − E + 2eE0cT ) (E − E0 + 2eE0cT )

× 2Γ
(
iE0

�
T
)
Γ
(−iE

�
T
)

Γ
(
iE0−E+2eE0cT

2�
T
)
Γ
(
iE0−E−2eE0cT

2�
T
) . (9.26)

The probability of the e−, e+ pair production summed over the spin states
is

W (E) = 2 |C (E)|2 . (9.27)

Taking into account that

|Γ (iy)|2 =
π

y sinπiy
,

for the probability (9.27) we obtain

W (E) = 2
cosh

(
π 2eE0cT 2

�

)
− cosh

(
π E−E0

�
T
)

cosh
(
π E+E0

�
T
)− cosh

(
π E−E0

�
T
) . (9.28)

The number of created e−, e+ pairs per unit space volume is

N =
∫
W (E)

dp0

(2π�)3
,

which with Eq. (9.28) is written as
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N =
2

(2π�)3

∫ cosh
(
π 2eE0cT 2

�

)
− cosh

(
π E−E0

�
T
)

cosh
(
π E+E0

�
T
)

− cosh
(
π E−E0

�
T
) dp0zdp0xdp0y. (9.29)

The probability (9.28) has a maximum at p0z = eE0T (the electrons and
positrons are created with the same energy, i.e., pz = −eE0T ). In the limit
T → ∞ the electric field (9.3) tends to a constant one: E(t) → E0ẑ and from
Eq. (9.28) one can obtain the probability of the e−, e+ pair production in
the static, spatially uniform electric field. In this case in the integral (9.29)
over p0z the main contribution gives the maximum point with the width
δp0z ≈ eE0T . Hence, at

(ceE0T )2 >> m2c4 + c2p2
0⊥; p0⊥ =

√
p2
0x + p2

0y,

we have

E0 ≈ E ≈ ceE0T +
m2c4 + c2p2

0⊥
2ceE0T

,

and for the number of e−, e+ pairs created per unit time and unit space
volume we obtain

N

T
≈ 2

(2π�)3
eE0

∫
exp
[
−πm

2c4 + c2p2
0⊥

ceE0�

]
dp0xdp0y. (9.30)

Integrating in Eq. (9.30) over transversal momentum we obtain the Schwinger
formula:

NSch

T
=

e2E2
0

4π3�2c
exp
[
−πm

2c3

e�E0

]
, (9.31)

or in the terms of critical field

NSch

T
=

ζ2

4π3λ3
c

mc2

�
exp
[
−π

ζ

]
. (9.32)

If ζ << 1 the probability of pair production is exponentially suppressed and
reaches the optimal values when ζ � 1 at which

NSch

T
� 1049cm−3c−1.
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9.2 Electron–Positron Pair Production by Superstrong
Laser Field and γ-Quantum

For the electron–positron pair production by superstrong laser fields of rela-
tivistic intensities as a third body for the satisfaction of conservation laws in
physically more interesting cases can serve a γ-quantum or a nucleus/ion.

Fig. 9.1. Feynman diagram for electron–
positron pair production by laser field and γ-
quantum.

The e−, e+ pair production process by a plane monochromatic radiation
field and a γ-quantum in the scope of QED is described by the first order
Feynman diagram (Fig. 9.1) where wave functions (1.94) correspond to elec-
tron/positron lines. As in QED the production of electron and positron with
quasimomentums Π− and Π+ respectively is interpreted as a transition of an
electron from the vacuum state “−Π+” to state Π−. The Feynman diagram
is topologically equivalent to that of the Compton effect. Hence, the S-matrix
amplitude of this process can be obtained from the Compton-effect S-matrix
amplitude (1.114) by the substitutions: ε∗µ → εµ, k′ → −k′, Π → −Π+,
Π ′ → Π−:

Sfi = −i (2π�)4
√

πα0

2ω′cΠ0+Π0−V 3uσ′(p−)

×M̂ (Compton)
fi (ε∗ → ε, k′ → −k′, Π → −Π+, Π

′ → Π−)uσ(−p+). (9.33)

We will assume that the γ-quantum is nonpolarized and corresponding
summation over the electron and positron polarizations will be made. Taking
into account that at the summation over the positron polarizations one should
replace u(−p+)u(−p+) by c2(p̂+ −mc) one can see that

1
2

∑
σ′,σ,ε

|Sfi|2
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= −1
2

∑
σ′,σ,ε,ε

|Sfi|2(Compton) (k′ → −k′, Π → −Π+, Π
′ → Π−) . (9.34)

For the differential probability of e−, e+ pair production per unit time we
have

dW =
1

2∆t

∑
σ′,σ,ε

|Sfi|2 V dΠ−
(2π�)3

V
dΠ+

(2π�)3
. (9.35)

Hence, using Eqs. (1.114) for the Compton effect and taking into account
relation (9.34) for the differential probability (9.35) we obtain

dW =
∞∑

s>sm

W (s)δ (Π− +Π+ − �k′ − s�k) dΠ−dΠ+, (9.36)

where

W (s) =
α0m

2c6

2πω′�2Π0+Π0−

[
|Gs|2 −

(
1 − �

2 (kk′)2

2 (p+k) (p−k)

)

×
(

(1 + g2)ξ20
4

(
|Gs−1|2 + |Gs+1|2 − 2 |Gs|2

)

+
(1 − g2)ξ20

4
Re
[
2G∗

s−1Gs+1 −G∗
s (Gs−2 +Gs+2)

])]
. (9.37)

The arguments of the functions Gs (α, β, ϕ) in this case are

α =
eA0

�c

[(
e1p−
p−k

− e1p+

p+k

)2

+ g2
(

e2p−
p−k

− e2p+

p+k

)2
]1/2

, (9.38)

β = −e2A2
0

8�c2
(1 − g2)

(
1
p+k

+
1

p−k

)
, (9.39)

tanϕ =
g
(

e2p−
p−k − e2p+

p+k

)
(

e1p−
p−k − e1p+

p+k

) . (9.40)

Since the pair production is a threshold effect, the number of photons ab-
sorbed from the strong wave must exceed the threshold value
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sm =
2m∗2c2

�2 (k′k)
, (9.41)

which follows from the conservation law of this process expressed by the
δ-function in Eq. (9.36) and the dispersion law for quasimomentum (1.96).
Note that in Eq. (9.41) the effective mass appears which depends on the laser
intensity. If sm > 1 (for low photon energies), production of the electron–
positron pair may only proceed by nonlinear channels (even for ξ0 << 1).
Besides, this process does not have a classical limit and the quantum recoil
is always essential.

For the concreteness we will investigate the case of circular polarization
of the incident wave (g = ±1). In this case |Gs|2 = J2

s (α) and from Eq. (9.37)
for the partial probabilities we have

W (s) =
e2m2c5

2πω′�3Π0+Π0−

[
J2

s (α) − ξ20

(
1 − �

2 (kk′)2

2 (p+k) (p−k)

)

×
((

s2

α2 − 1
)
J2

s (α) + J ′2
s (α)

)]
. (9.42)

Taking into account the conservation laws, as well as the relations p−k = Π−k
and p+k = Π+k, the argument of the Bessel function can be written as

α = ξ0
mc2

�ω

∣∣∣∣[k( p−
p−k

− p+

p+k

)]∣∣∣∣
= ξ0

mc

�

[
2s�
(

1
Π−k

+
1

Π+k

)
−m2

∗c
2
(

1
Π−k

+
1

Π+k

)2
]1/2

. (9.43)

For a weak EM wave: ξ0 << 1 and sm < 1 (linear theory) the argument of
the Bessel function α << 1 and the main contribution to the probability of
the pair production is the one-photon process. In this case J2

1 (α1) 
 α2
1/4,

J ′2
1 (α1) 
 1/4, Π0+ 
 E+, Π0− 
 E− and taking into account that

1 − (kk′)2

2 (p+k) (p−k)
= −1

2

[
p−k
p+k

+
p+k

p−k

]
,

we obtain the G. Breit, A. Wheeler formula:

W (1) =
e2m2c5

8πω′�3E+E−
ξ20

[
2
(
m2c2

�p−k
+
m2c2

�p+k

)
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−
(
m2c2

�p−k
+
m2c2

�p+k

)2

+
[
p−k
p+k

+
p+k

p−k

]]
. (9.44)

For a strong EM wave it is more convenient to choose the quantum recoil
parameter as an integration variable:

ρ =
�

2 (kk′)2

2 (p+k) (p−k)
=

�
2 (kk′)2

2 (Π+k) (Π−k)
. (9.45)

Taking into account the azimuthal symmetry with respect to the wave prop-
agation direction one can make the following replacement:

δ (Π− +Π+ − �k′ − s�k)
dΠ−dΠ+

Π0+Π0−
=>

2π
c2

1

ρ
√
ρ2 − 2ρ

dρ, (9.46)

and we obtain

W =
e2m2c3

ω′�3

∞∑
s>sm

2s/sm∫
2

[
J2

s (αs (ρ)) + ξ20 (ρ− 1)

×
((

s2

α2
s (ρ)

− 1
)
J2

s (αs (ρ)) + J ′2
s (αs (ρ))

)]
dρ

ρ
√
ρ2 − 2ρ

, (9.47)

where the argument of the Bessel function is

αs (ρ) =
ξ0√

1 + ξ20
sm

[
2s
sm

ρ− ρ2
]1/2

. (9.48)

The latter reaches its maximal value

αs max =
ξ0√

1 + ξ20
s (9.49)

at ρ = s/sm. This value is in the integration range when s > 2sm. If sm >>
1, which is possible for not so hard γ-quantum, and at ξ0 � 1 one can
approximate the Bessel function by the Airy one (see Eq. (1.69) for Compton
effect) and for the probability of the pair production we obtain

W 
 e2m2c3

ω′�3

∞∑
s>sm

2s/sm∫
2

{[
1 + ξ20 (ρ− 1)

(
s2

α2 (ρ)
− 1
)](

2
s

)2/3

Ai2 (Z)
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+ξ20 (ρ− 1)Ai′2 (Z)
(

2
s

)4/3
}

dρ

ρ
√
ρ2 − 2ρ

, (9.50)

where

Z =
1

1 + ξ20

(s
2

)2/3
(

1 + ξ20

(
1 − sm

s
ρ
)2
)
. (9.51)

As far as the Airy function exponentially decreases with increasing of
the argument one can conclude that the optimal parameters for the pair
production process are determined from the condition Zmin ∼ 1, where

Zmin =
(s

2

)2/3
(

1 − α2
s max

s2

)


(

s

2ξ30

)2/3

,

which gives

2ξ30 � sm.

For ξ0 >> 1, sm 
 2m2c2ξ20/(�
2k′k) we obtain

ζ =
�

2k′k
m2c2

ξ0 � 1. (9.52)

The latter means that in the rest frame of created electron the electric field
strength of the EM wave exceeds the critical vacuum field (9.1). Hence, ζ
is the quantum parameter of interaction in the scale of the critical vacuum
field.

For Zmin >> 1 or ζ << 1 (so called tunneling regime of the pair pro-
duction process) one can use the following asymptotic formula for the Airy
function:

Ai(Z) 
 1
2
√
π
Z−1/4 exp

(
−2Z3/2

3

)
.

Hence, the probability of the electron–positron pair production

W ∝ exp
(

− 4
3ζ

)
(9.53)

is exponentially suppressed.
For the moderate relativistic intensities ξ0 ∼ 1 to show the dependence of

the probability on the wave intensity and quantum parameter of interaction
ζ the normalized probability

W̃ =
ω′

�
3

e2m2c3
W (9.54)
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Fig. 9.2. The normalized probability ˜W = �
3ω′W/(e2m2c3) as a function of rela-

tivistic parameter of intensity ξ0 for various ζ.

is displayed in Fig. 9.2 as a function of ξ0 for various ζ.

9.3 Pair Production via Superstrong Laser Beam
Scattering on a Nucleus

Fig. 9.3. Feynman diagram for electron–
positron pair production via laser beam scat-
tering on a nucleus.

The electron–positron pair production via superstrong laser beam scatter-
ing on a nucleus can be described again by the first-order Feynman diagram
(Fig. 9.3) where wave functions (1.94) correspond to electron/positron lines.
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The Feynman diagram is topologically equivalent to that of the stimulated
bremsstrahlung (SB) effect. As in the previous section the S-matrix amplitude
of this process can be obtained from the S-matrix amplitude of SB (1.128)
by the substitutions: Π → −Π+, Π ′ → Π−:

Sfi =
−iπe

V c
√
Π0+Π0−

uσ′(p−)M̂ (SB)
fi (Π → −Π+, Π

′ → Π−)uσ(−p+).

(9.55)
Making the summation over the electron and positron polarizations one can
see that ∑

σ′,σ

|Sfi|2 =
∑
σ′,σ

|Sfi|2SB (Π → −Π+, Π
′ → Π−) . (9.56)

The differential probability of e−, e+ pair production per unit time is written
as

dW =
1
∆t

∑
σ′,σ

|Sfi|2 V dΠ−
(2π�)3

V
dΠ+

(2π�)3
. (9.57)

Hence, using Eq. (1.129) for the SB process and taking into account Eq. (9.56)
for the differential probability of pair production per unit time we obtain

dW =
∞∑

s>sm

W (s)δ (Π0+ +Π0− − s�ω) dΠ−dΠ+, (9.58)

where

W (s) =
4π

Π0+Π0−
e2 |ϕ (qs)|2
(2π�)6 �

{
�

2q2
sc

2

4
|Bs|2 +

e2�
2 [kqs]

2

4(kp−)(kp+)

×
[
|B1s|2 −ReB2sB

∗
s

]
−
∣∣∣∣E+Bs +

e (p+B1s)ω
(kp+) c

+
e2ω

2c2(kp+)
B2s

∣∣∣∣2
}
, (9.59)

and

�qs= Π− + Π+ − s�k.

The threshold value of the photon number for this process is defined as fol-
lows:

sm =
2m∗c2

�ω
. (9.60)

The arguments α, β, ϕ of the functions Bs, B1s, B2s are defined according to
Eqs. (9.38)–(9.40).
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In the case of circular polarization of an incident strong wave (g = 1) we
have

Gs(α, 0, ϕ) = (−1)s
Js(α)eisϕ.

Taking into account the azimuthal symmetry with respect to the wave prop-
agation direction one can make the following replacement:

δ (Π0+ +Π0− − s�ω) dΠ−dΠ+ → 2πm∗Π0− |Π−|Π0+ |Π+|
c2

× sin θ+ sin θ−dθ−dθ+dφdγ+, (9.61)

where γ+ = Π0+/(m∗c2), θ+, θ− are the scattering angles of positron and
electron with respect to the EM wave propagation direction and φ is the angle
between the planes formed by Π−, k and Π+, k. Hence, for the differential
probability of e−, e+ pair production per unit time we have

dW =
2π2α0m

∗

(2π�)6 c

∞∑
s>sm

|Π−| |Π+| |ϕ(qs)|2

×
⎧⎨⎩
⎡⎣�

2q2
sc

2 − 4

(
Π0+ − s�ω

(kp+)
κ
[
kp+

]
κ2

)2
⎤⎦J2

s (αs)

+
�

2e2A2
0

(kp−)(kp+)
[kqs]

2
[(

s2

α2
s

− 1
)
J2

s (αs) + J ′2
s (αs)

]

− 4e2A2
0

(kp+)2

[
κ
[
kp+

]]2
κ2 J ′2

s (αs)

}
sin θ+ sin θ−dθ−dθ+dφdγ+. (9.62)

In this equation the electron quasienergy and quasimomentum are defined
via Π0+ according to conservation law and

κ =

[
kp+

]
p+k

−
[
kp−

]
p−k

. (9.63)

The Bessel function argument in Eq. (9.62)

αs =
eA0

�ω
|κ|

can be represented in the form
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αs =
ξ0sm

2
√

1 + ξ20

[
β2

+ sin2 θ+

(1 − β+ cos θ+)2
+

β2
− sin2 θ−

(1 − β− cos θ−)2

−2
β−β+ sin θ+ sin θ− cosφ

(1 − β+ cos θ+) (1 − β− cos θ−)

]1/2

, (9.64)

where

β± =
c |Π±|
Π0±

; Π0− = s�ω −Π0+.

In this particular case we utilize Eq. (9.62) in order to obtain the electron–
positron pair production probability on the Coulomb potential for which the
Fourier transform is

ϕ (qs) =
4πZae

q2
s

. (9.65)

Then taking into account Eq. (9.65) for the differential probability of e−, e+

pair production by a strong plane monochromatic wave per unit time at the
scattering on the Coulomb field we will have

dW = α2
0
Z2

am
∗

2π2�

∞∑
s>sm

|Π−| |Π+|
�4q4

s

{[
�

2q2
sc

2 − 4
κ4

(
κ

(
Π0− [kΠ+]

Π+k
+
Π0+ [kΠ−]

Π−k

))2
]
J2

s (αs)

−4e2A2
0

κ2

(
[[kΠ−] [kΠ+]]
(kΠ−) (kΠ+)

)2

J ′2
s (αs) +

e2A2
0

(kΠ−) (kΠ+)
[k (Π− + Π+)]2

×
[(

s2

α2
s

− 1
)
J2

s (αs) + J ′2
s (αs)

]}
sin θ+ sin θ−dφdθ−dθ+dγ+. (9.66)

For a weak EM wave the main contribution in this process is the one-
photon process. Dividing the differential probability (9.66) by the initial flux
density

J =
1

�ω

c

4π
E2

0

we obtain the H.A. Bethe, W. Heitler formula:
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dσ = α3
0
Z2

a

2π
|p−| |p+|

�4q4
1

1
�ω3

×
{

�
2q2

1c
2

([
kp+

]
p+k

−
[
kp−

]
p−k

)2

− 4

(
E−
[
kp+

]
p+k

+
E+
[
kp−

]
p−k

)2

+
2�

2ω2

(kp−) (kp+)
[k (p− + p+)]2

}
sin θ+ sin θ−dφdθ−dθ+dE+. (9.67)

In general the expression for the differential probability of e−, e+ pair pro-
duction by strong radiation field (9.66) is very complicated (one should per-
form four-dimensional integration and summation over photon numbers) but
without integration one can make conclusions about optimal values of laser
parameters for the measurable pair production probability using the prop-
erties of the Bessel function. The Bessel function argument in Eq. (9.66)
αs(γ+, θ+, θ−, φ) as a function of θ+, θ−, φ reaches its maximal value at

cos θ+ = β+, cos θ− = β−, cosφ = −1,

and is equal to

αs (γ+) =
ξ0sm

2
√

1 + ξ20

⎛⎝√γ2
+ − 1 +

√(
2s
sm

− γ+

)2

− 1

⎞⎠ . (9.68)

The latter is always small compared with the Bessel function index. Indeed,
as follows from the conservation law

1 ≤ γ+ ≤ 2s
sm

− 1,

and in this range αs (γ+) reaches its maximal value

αs max =
ξ0√

1 + ξ20

√
s2 − s2m < s (9.69)

at the γ+ = s/sm. Hence, for ξ0 � 1 and sm >> 1 the main contribution to
the differential probability will give the number of photons s >> sm and as
in the previous section one can approximate the Bessel function by the Airy
one (1.69). The Airy function argument for α 
 αs max will be

Z(s) 
 1
22/3ξ20

s2/3
(

1 + ξ20
s2m
s2

)
. (9.70)
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As the Airy function exponentially decreases with increasing of the argu-
ment one can conclude that the optimal parameters for the pair production
process are determined from the condition Zmin ∼ 1, Zmin being the minimum
value of Z(s). The latter corresponds to the number of photons s =

√
2ξ0sm

at which

Zmin = Z
(√

2ξ0sm

)
= 3
(
Ec

2E0

)2/3

, (9.71)

where Ec is the vacuum critical field strength (9.1). Hence, at ξ ≥ 1 the
probability reaches optimal values when ζ ≡ Ec/E0 ≥ 1 (at ξ0 << 1 quantum
effects are optimal when ζ ∼ ξ0, which corresponds to linear theory, that is,
the perturbation theory of QED). When ζ << 1 according to Eq. (9.53) the
probability is exponentially suppressed:

W ∝ exp(−2
√

3/ζ), (9.72)

as in the Schwinger mechanism for e−, e+ pair production in the uniform
electrostatic field, where W ∝ exp(−π/ζ). For the available superstrong op-
tical lasers ζ ∼ 10−4, which practically does not allow for measurable pair
creation probability. As was argued, one can achieve ζ ∼ 10−1 at the focus of
expected X-ray FEL facilities, which will allow for measurable pair creation
probability by the Schwinger mechanism.

Note that in the considered process of pair production on a nucleus one
can achieve the condition ζ ≥ 1 (even ζ >> 1) in the scheme of counterprop-
agating nucleus beam and X-ray FEL. Then, in the rest frame of the nucleus
we will have ζ 
 2ζLγL, where γL is the Lorenz factor of nucleus and ζL is
the field parameter in the laboratory frame. Since ξ0 is the Lorenz invariant,
then if ξ0 ≥ 1 and γL > Ec/2E0 in the laboratory frame, the probability of
multiphoton e−, e+ pair production reaches its optimal value.

9.4 Nonlinear e−, e+ Pair Production in Plasma by
Strong EM Wave

As was shown in Chapter 6 for electron–positron pair production by a γ-
quantum or a plane monochromatic EM wave, a macroscopic medium with a
refractive index n0(ω0) < 1 may serve as a third body for the satisfaction of
conservation laws. In such a plasmalike medium the multiphoton production
of e−, e+ pairs by a strong laser radiation field is possible at ordinary densities
of plasma, in contrast to single-photon production γ → e−+e+, which is only
accessible in a superdense plasma with the electron density ρ � 3 ·1034cm−3.

In laser fields with ξ0 ∼ 1 when the energy of the interaction of an electron
(of the Dirac vacuum) with the field over a wavelength becomes comparable
to the electron rest energy (eE0λ0 ∼ mc2) the multiphoton pair-production
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process goes in through nonlinear channels. At such intensities, in general,
the dispersion law of a plasma becomes nonlinear, too; i.e., the refractive
index depends on the wave intensity: n0 = n0(ω0, ξ

2
0). As is known, because

of the intensity effect, the transparency range of a plasma widens and the
dispersion law n0(ω0, ξ

2
0) < 1, which is necessary for the production of e−, e+

pairs, holds all the more. But the intensities required for the appearance of
a real nonlinearity in dispersion become essential when ξ0 >> 1. Hence, in
considering fields ξ0 ∼ 1 the dispersion law of a plasma can be regarded as
linear (n2

0(ω0) = 1 − 4πρe2/mω2
0).

Let a plane transverse linearly polarized EM wave with frequency ω0 and
vector potential

A (r, t) = A0 cos (ω0t− k0r) ; |k0| = n0
ω0

c
(9.73)

propagate in a plasma. The multiphoton degree s for the e−, e+ pair produc-
tion in the light fields is defined by the condition (reaction threshold)

s�ω0 � 2mc2√
1 − n2

0

. (9.74)

To determine the multiphoton probabilities of this process it is convenient
to solve the problem in the center-of-mass frame of the produced pair (C
frame), in which the wave vector of the photons is k′ = 0 (the refractive
index of the plasma in this frame is n′ = 0). The velocity of the C frame with
respect to the laboratory frame (L frame) is v = cn0. The traveling EM wave
is transformed in the C frame into a varying electric field (the magnetic field
H ′ = 0) with a vector potential

A′ (t′) =
A0

2
[exp(iω′t′) + exp(−iω′t′)], ω′ = ω0

√
1 − n2

0. (9.75)

It is easily noted that with Eq. (9.75) taken into account the reaction
threshold condition (9.74) is obtained from the laws of the conservation of
energy E ′

− + E ′
+ = s�ω′ and momentum p′

− + p′
+ = s�k′ = 0 in the C

frame (E ′
−, p′

− and E ′
+, p′

+ are the energy and momentum of the electron
and positron, respectively, in the C frame).

To solve the problem of s-photon production of an e−, e+ pair in the
given radiation field (9.73), we shall make use of the Dirac model (all vac-
uum negative-energy states are filled with electrons and the interaction of
the external field proceeds only with this vacuum: on the other hand, the
interaction with the plasma electrons reduces to a refraction of the wave
only).

The Dirac equation in the field (9.75) has the form
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i�
∂Ψ

∂t
=
[
cα̂ (p′ − eA′ (t′)) + β̂mc2

]
Ψ, (9.76)

where the Dirac matrices α̂, β̂ will be chosen in the standard representation,
with σ the Pauli matrices. Since in the C frame the interaction Hamiltonian
does not depend on the space coordinates, the solution of Eq. (9.76) can be
represented in the form of a linear combination of free solutions of the Dirac
equation with amplitudes ai(t′) depending only on time:

Ψp′ (r′, t′) =
4∑

i=1

ai(t′)Ψ
(0)
i (r′, t′) . (9.77)

Here

Ψ
(0)
1,2 (r′, t′) =

√
E ′ +mc2

2E ′

⎛⎝ ϕ1,2

cσp′

E′+mc2ϕ1,2

⎞⎠ e
i
� (p′r′−E′t′),

Ψ
(0)
3,4 (r′, t′) =

√
E ′ +mc2

2E ′

⎛⎝ −cσp′

E′+mc2χ3,4

χ3,4

⎞⎠ e
i
� (p′r′+E′t′), (9.78)

where

E ′ =
√
c2p′2 +m2c4, ϕ1 = χ3 =

(
1
0

)
, ϕ2 = χ4 =

(
0
1

)
. (9.79)

The solution of Eq. (9.76) in the form Eq. (9.77) corresponds to an
expansion of the wave function in a complete set of orthonormal func-
tions of the electrons (positrons) with specified momentum (with energies
E ′ = ±

√
c2p′2 +m2c4 and spin projections Sz = ±1/2). The latter are nor-

malized to one particle per unit volume. According to the assumed model
only the Dirac vacuum is present prior to the turning on of the field, i.e.,

|a3(−∞)|2 = |a4(−∞)|2 = 1, |a1(−∞)|2 = |a2(−∞)|2 (9.80)

(the field is turned on adiabatically at t = −∞). From the condition of
conservation of the norm we have

4∑
i=1

|ai(t′)|2 = 2, (9.81)

which expresses the equality of the number of created electrons and positrons,
whose creation probability is, respectively, |a1,2(t′)|2 and 1 − |a3,4(t′)|2.
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Substituting Eq. (9.77) into Eq. (9.76), multiplying by the Hermitian
conjugate functions Ψ

(0)†

i (r′, t′), and taking into account orthogonality of
the eigenfunctions (9.78) and (9.79), we obtain a set of differential equations
for the unknown functions ai(t′). Since in the C frame there is symmetry
with respect to the direction A′

0 (the OY axis), we can take, without loss
of generality, the vector p′ to lie in the x′y′ plane (p′

z = 0). Further, having
introduced, to simplify the notation, the new symbols

a1(t′) ≡ b1(t′),

a4(t′) ≡ b4(t′)

[
1 − c2p′2

y

E ′2

]−1/2 [
c2p′

xp
′
y

E ′(E ′ +mc2)

+i

(
1 − c2p′2

y

E ′(E ′ +mc2)

)]
, (9.82)

we obtain for the amplitudes b1(t′) and b4(t′) (|b4(t′)| = |a4(t′)|) the following
set of equations:

db1(t′)
dt′

= i
ecp′

yA
′
y(t′)

�E ′ b1(t′)

+i
eA′

y(t′)
�

√
1 − c2p′2

y

E ′2 b4(t′) exp
(

2iE ′t′

�

)
,

db4(t′)
dt′

= −iecp
′
yA

′
y(t′)

�E ′ b4(t′)

+i
eA′

y(t′)
�

√
1 − c2p′2

y

E ′2 b1(t′) exp
(

−2iE ′t′

�

)
. (9.83)

A similar set of equations is also obtained for the amplitudes b2(t′) and b3(t′).
To solve the system (9.83), we make the transformations

b1(t′) = c1(t′) exp

⎡⎣iecp′
y

�E ′

t′∫
−∞

A′
y(η)dη

⎤⎦ ,

b4(t′) = c4(t′) exp

⎡⎣−iecp
′
y

�E ′

t′∫
−∞

Ay(η)dη

⎤⎦ , (9.84)
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where c1(t′) and c4(t′) satisfy the initial conditions, according to Eqs. (9.80)
and (9.82), |c1(−∞)| = 0 and |c4(−∞)| = 0.

For the new amplitudes c1(t′) and c4(t′) from Eqs. (9.83), we obtain the
set of equations

dc1(t′)
dt′

= f(t′)c4(t′),

dc4(t′)
dt′

= −f∗(t′)c1(t′), (9.85)

where

f(t′) = i
e

�
A′

y(t′)

√
1 − c2p′2

y

E2 exp

⎡⎣2i
�

E ′t′ − 2iecp′
y

�E ′

t′∫
−∞

A′
y(η)dη

⎤⎦ . (9.86)

We can obtain the solution of Eqs. (9.83), which satisfies the initial con-
ditions of the problem (9.80), with the help of successive approximations,
if ∣∣∣∣∣∣

t′∫
−∞

f(τ)dτ

∣∣∣∣∣∣ << 1. (9.87)

Then, for the transition amplitude c1(t′), we have

c1(t′) =
∞∑

j=0

B2j+1(t′), (9.88)

where

B2j+1(t′) = (−1)j

t′∫
−∞

f(τ1)dτ1

τ1∫
−∞

f∗(τ2)dτ2

τ2∫
−∞

f∗(τ3)dτ3 · · ·

×
τ2j−1∫
−∞

f∗(τ2j)dτ2j

τ2j∫
−∞

f∗(τ2j+1)dτ2j+1. (9.89)

We are interested in nonlinear pair production process in the strong wave
field. For that let us calculate the first term of the sum (9.88):
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B1(t′) =

t′∫
−∞

f(τ1)dτ1,

substituting the concrete form of the wave vector potential A′
y(η) from Eq.

(9.75) into Eq. (9.86) and carrying out the integration. Then for B1(t′) we
obtain

B1(t′) =
E ′

2cp′
y

(
1 − c2p′2

y

E ′2

)1/2 +∞∑
l=−∞

l�ω′

2E ′ − l�ω′ Jl(α)e
i
� (2E′−l�ω′)t′

, (9.90)

where Js(z) is the Bessel function,

α ≡ 2ξ0
mc2

E ′
cp′

y

�ω′ , ξ0 =
eE′

0

mcω′ , E′
0 =

ω′

c
A0.

As ξ0 is a relativistic invariant parameter, in Eqs. (9.90) ξ0 = eE0/mcω0,
where ω0 and E0 are the frequency and amplitude of the electric field of the
wave in the L frame.

For the considered fields, when ξ0 � 1, condition (9.87) always satisfies:
|B1(t′)| << 1, but the latter is not enough, yet, in order to be confined to
that term in determination of the amplitude c1(t′). Because the resonant term
l = s = 2E ′/ (�ω′) (s >> 1) gives a real contribution in the multiphoton pair
production process and in Eq. (9.90), the maximal value of the Bessel function
can be shifted from the resonant value. Since s >> 1, that shift will be as
small and negligible as possible when the argument of the Bessel function is
α ∼ s >> 1. Thus, the condition, when the pair production process will have
an essential nonlinear character, is

α = 2ξ0
mc2

E ′
cp′

y

�ω′ >> 1. (9.91)

If condition (9.91) is satisfied, we can be restricted to the first term of the
sum (9.88) for the amplitude c1(t′):

c1(t′) = B1(t′). (9.92)

The obtained approximate solution of the Dirac equation is thus applicable
with such intensities of EM wave, when conditions (9.87) and (9.91) are
satisfied simultaneously:

1
s
<< ξ0 � 1. (9.93)
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According to Eqs. (9.82) and (9.84), for the transition amplitude of the
electron from the Dirac vacuum to the state with positive energy (in a definite
spinor state) in the wave field we have

|a1(t′)|2 = |b1(t′)|2 = |c1(t′)|2 .

To obtain the probability amplitude for the production of electrons and
positrons after the wave has been turned off we introduce a small detuning of
the resonance in Eq. (9.90), corresponding to an s-photon transition: 2E ′ =
s�ω′ + �Γ (Γ << ω′).

The production probability of the e−, e+ pair, summed over the spin
states, is determined by the quantity

|a1(t′)|2 + |a2(t′)|2 = 2 |a1(t′)|2 ≡ 2 |C1(t′)|2 .

The differential probability of the s-photon process per unit time and
phase-space volume dp′/(2π�)3 (the normalization volume V = 1) in the
center-of-mass frame of the produced particles is given by

dwC
s =

dWC
s (t′)
t′

= 2 lim
t′→∞

|c1(t′)|2
t′

dp′

(2π�)3
. (9.94)

Substituting Eq. (9.90) into Eq. (9.94) and making use of the definition of
the δ-function in the form

lim
t′→∞

sin2 Γt′

πΓ 2t′
= δ (Γ ) = �δ (2E ′ − s�ω′) ,

we obtain

dwC
s =

s2ω′2 (E ′2 − c2p′2
y

)
16π2�2c2p′2

y

J2
s

(
2eA0cp

′
y

�ω′E ′

)
δ

(
E ′ − s�ω′

2

)
dp′. (9.95)

Integrating Eq. (9.95) over dp′, we obtain the total probability of the
s-photon e−, e+ pair production in a plasma by the strong EM wave:

wC
s =

�s5ω′5

32πc4p′

{[
2α2

s

4s2 − 1
− 1
]
J2

s (αs) +
α2

sJ
2
s−1 (αs)

2s(2s− 1)

+
α2

sJ
2
s+1 (αs)

2s(2s+ 1)
− 4c2p′2

s2�2ω′2
α2s

s

22s(2s+ 1) (s!)2
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×2F3

(
s+

1
2
, s+

1
2
, s+ 1, 2s+ 1, s+

3
2
; −α2

s

)}
, (9.96)

where 2F3
(
s+ 1

2 , s+ 1
2 , s+ 1, 2s+ 1, s+ 3

2 ; −α2
s

)
is the generalized hyperge-

ometric function and

αs =
2mc2ξ0

�ω′

(
1 − 4m2c4

s2�2ω′2

)1/2

.

As is seen from Eq. (9.95), the pair production probability decreases
highly in the directions perpendicular to the field (p′

y = 0), and the obtained
approximate nonlinear solution describes the process behavior well at the
angles not too close to π/2. Thus, Eq. (9.96), which is a result of integration
over all angles, does not contain a large error.

The quantity Ws is a relativistic invariant, and so Eq. (9.96) defines the
pair production probability in the L frame as well. As for the angular dis-
tribution of the probability of s-photon pair production in the L frame, it
can be obtained from the expression dWC

s (t′) for the differential probability
in the C frame by a Lorentz transformation. Here the quantity multiplying
dp′ is the expression of dWC

s (t′) (see Eq. (9.94)) transforms like the time
component of the current density four-vector of the electrons in the Dirac
vacuum (E ′ < 0). One must here take into account that the momentum
of real electrons coincides with the momentum of the vacuum electron p′,
while the momentum of a positron equals −p′ and the vacuum phase-space
volume element dp′/(2π�)3 (in unit volume) goes over correspondingly into
the volume element in momentum space of electrons and positrons. Further,
transforming the quantities in Eq. (9.95) from the C frame to the L frame,
we obtain for the differential probability of s-photon pair production per unit
time in the L frame:

dwL
s =

dWL
s (t)
t

=
s2ω2

0
(
1 − n2

0
)
(E − n0cpx)

16π2�2c2p2
yE

[
(E − n0cpx)2

1 − n2
0

− c2p2
y

]

×J2
s

(
2eA0cpy

�ω0 (E − n0cpx)

)
δ

(
E − n0cpx − s�ω0

(
1 − n2

0
)

2

)
dp′, (9.97)

where E and p are the energy and momentum of the produced electron or
positron. Integrating Eq. (9.97) over the electron (positron) energy, we obtain
the angular distribution of the probability of the s-photon production of
electrons (positrons) per solid angle element, do = sinϑdϑdϕ (the azimuthal
asymmetry of the probability in the L frame is due to the linear polarization
of the wave: in the case of circular polarization the probability distribution
has azimuthal symmetry):
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dwL
s =

2∑
v=1

s3ω3
0
(
1 − n2

0
)2

32π2�c3 (cpv − n0Ev cosϑ) sinϑ cos2 ϕ

×
[
s2�

2ω2
0
(
1 − n2

0
)

4
− c2p2

v sin2 ϑ cos2 ϕ

]

×J2
s

[
4mc3ξ0pv sinϑ cosϕ
s�2ω2

0 (1 − n2
0)

]
dϑdϕ, (9.98)

where

p1,2 =
1

2c (1 − n2
0 cos2 ϑ)

{
sn0�ω0

(
1 − n2

0
)
cosϑ

±
[
s2�

2ω2
0
(
1 − n2

0
)2 − 4m2c4

(
1 − n2

0 cos2 ϑ
)]1/2

}
,

E1,2 =
1

2 (1 − n2
0 cos2 ϑ)

{
s�ω0

(
1 − n2

0
)

±n0 cosϑ
[
s2�

2ω2
0
(
1 − n2

0
)2 − 4m2c4

(
1 − n2

0 cos2 ϑ
)]1/2

}
. (9.99)

The angle ϕ varies from 0 to 2π, while ϑ varies from 0 to ϑmax, which is
determined from the energy and momentum conservation laws (9.99). Fur-
ther, depending on the value of the plasma refractive index n0, the electron
(positron) production at the given angle is possible for a particular momen-
tum or for one of two momenta with different magnitude. For values

n0 <

√
1 − 2mc2

s�ω0

(in this case the threshold condition (9.74) for the process is certainly sat-
isfied), we should take in Eqs. (9.99) only the upper sign, corresponding to
the fact that in the probability (9.98) only ν = 1 (p1) remains and ϑmax = π;
i.e., particles are produced in all directions for the given angle ϑ with definite
momentum. In the opposite case we must also take into account the reaction
threshold condition in the region of values of the index of refraction,√

1 − 2mc2

s�ω0
< n0 <

√
1 − 4m2c4

s2�2ω2
0
,
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and an electron (positron) is produced in a given direction with one of two
different values of momentum p1 and p2 in a cone, opened forward, whose
opening angle is

ϑmax = arcsin
{[(

1 − n2
0
) (
s2�

2ω2
0
(
1 − n2

0
)− 4m2c4

)]1/2
/2mc2n0

}
.

The problem of e−, e+ pair production by the photon field is solved in
the C frame and the probability expressions (9.94)–(9.96) in that frame are
adduced with express purpose. This is of independent physical interest, since
Eqs. (9.94)–(9.96) describe the process of pair production in vacuum by a
uniform periodic electric field (electric undulator)

E(t) = E0 cosω0t, (9.100)

with the reaction threshold (see Eq. (9.74) when n′ = 0)

s�ω0 � 2mc2. (9.101)

By integrating over the electron (positron) energy, we obtain the angular
distribution of the nonlinear production of electrons (positrons) in the pe-
riodic electric field (in contrast to the pair production by the photon field
(9.98), here there is azimuthal symmetry):

dws =
s3ω3

0

32π�c3
4m2c4 cos2 ϑ+ �

2s2ω2
0 sin2 ϑ

(�2s2ω2
0 − 4m2c4)1/2 cos2 ϑ

×J2
s

[
2ceE0

(
�

2s2ω2
0 − 4m2c4

)1/2 cosϑ
s�2ω3

0

]
sinϑdϑ, (9.102)

where ϑ is the angle between the directions of the momentum of produced
electrons (positrons) and the electric field.

Finally, we consider the case of weak fields, eA/ (�ω0) << 1 (ξ0 << 1/s),
when perturbation theory is applicable. In this case, as was noted above,
we cannot be confined to the first term of the sum (9.88), since every term
B2l+1(t′) of the sum at α << 1 (see Eq. (9.90) for the expression of α) includes
a resonant multiplier ∼ ξs

0 (at 2l+ 1 � s) in the lowest order of perturbation
theory. Then from Eq. (9.88) we obtain the formula of perturbation theory
for the pair production probability in the C frame, which has a more compact
analytical form (here we could get free of the sum of unwieldy products):

dwC
s = 2π�Φ2δ (2E ′ − s�ω′)

dp′

(2π�)3
, (9.103)
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where

Φ = β
(α

2

)s

ω′
[

1
(s− 1)!

+
[(s−1)/2]∑

K=1

s−2K∑
S1=1

...

s−1−(S1+...+Sj−1)−2K+j∑
Sj=1

...

s−1−(S1+...+S2K−1)∑
S2K=1

(9.104)

{
(−1)S2+S4+...+S2K

(s− S1) (S1 + S2) ... [s− (S1 + S2 + ...+ S2K−1)] (S1 + S2 + ...+ S2K)

× β2K

(S1 − 1)! (S2 − 1)!... (S2K − 1)! [s− 1 − (S1 + S2 + ...+ S2K)]!

}]
.

Here s � 3, and parameters

β =
E ′

2cp′
y

(
1 − c2p′2

y

E ′2

)1/2

, α = sξ0
mc3p′

y

E ′2 ; ξ0 <<
1
s
.

9.5 Pair Production by Superstrong EM Waves in
Vacuum

As we saw in the previous section the conservation laws for the pair pro-
duction in the field of a plane monochromatic wave can be satisfied in a
plasmalike medium where EM waves propagate with a phase velocity larger
than the speed of light in vacuum. In this case

ω2

c2
− k2 > 0, (9.105)

which means that we have a “photon with nonzero rest mass” providing the
creation of the particles with the rest masses. The satisfaction of conservation
laws for the e−, e+ pair production process in the EM field is equivalent to
the satisfaction of the condition

E2 − H2 > 0, (9.106)

where E, H are the electric and magnetic strengths of the field. The latter is
obvious in the frame of reference where there is only an electric field that pro-
vides the pair creation (in the opposite case we would have only a magnetic
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field that cannot produce a pair). The condition (9.106) can be satisfied in
the stationary maxima of a standing wave being formed by two counterprop-
agating waves (opposite laser beams) of the same frequencies. It can also be
satisfied in the field of a plane monochromatic wave in a wiggler. Thus, these
processes of multiphoton pair production via nonlinear channels in vacuum
by superstrong laser fields are of special interest.

Let plane transverse linearly polarized EM waves with frequency ω and
amplitude of vector potential A0

A1 = A0 cos(ωt− kr), A2 = A0 cos(ωt+ kr), (9.107)

propagate in opposite directions in vacuum. To solve the problem of s-photon
production of an e−, e+ pair in the given radiation fields (9.107) we shall make
use of the Dirac model for electron–positron vacuum. The Dirac equation in
the field (9.107) has the form

i�
∂Ψ

∂t
=
[
cα̂(p̂ − e

c
A0 cos(ωt− kr)−e

c
A0 cos(ωt+ kr)) + β̂mc2

]
Ψ. (9.108)

Then we have stationary maxima of a standing wave and Eq. (9.108) may be
rewritten in the form

i�
∂Ψ

∂t
=
[
cα̂(p̂ − 2

e

c
A0 coskr cosωt) + β̂mc2

]
Ψ. (9.109)

According to the Dirac model the electron–positron pair production by
the EM wave field occurs when the vacuum electrons with initial negative
energies E0 < 0 due to s-photon absorption pass to the final states with
positive energies E = E0 + s�ω > 0. Since we study the case of superstrong
laser fields in which the pairs are essentially produced at the length l << λ (λ
is the wavelength of laser radiation) and on the other hand the Hamiltonian
of the interaction Hint ∼ p(A1 +A2), then the significant contribution in the
process of e−, e+ pair creation will be conditioned by the areas of stationary
maxima in the direction along the electric field strength of the standing wave.
Consequently, we can neglect the inhomogeneity of the field in the considered
problem, i.e., Eq. (9.109) will reduce to the following equation:

i�
∂Ψ

∂t
=
[
cα̂(p̂ − 2

e

c
A0 cosωt) + β̂mc2

]
Ψ. (9.110)

In this approximation the magnetic fields of the counterpropagating waves
cancel each other. In the case of e−, e+ pair production in a plasma we had
a similar equation in the center-of-mass frame of created particles (9.76).
Thus, we will follow the approach developed in the previous section. Since
the interaction Hamiltonian does not depend on the space coordinates, the
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solution of Eq. (9.110) can be represented in the form of a linear combination
of free solutions of the Dirac equation with amplitudes ai(t) depending only
on time (9.77). The application of the unitarian transformations (9.82) and
(9.84) yields the set of equations

dc1(t)
dt

= f(t)c4(t), (9.111)

dc4(t)
dt

= −f∗(t)c1(t). (9.112)

Here the function f(t) (see Eq. (9.86)) is expanded into series

f(t) = i
∞∑

s′=−∞
fs′ exp

[
i

�
(2E − s′

�ω)t
]
, (9.113)

where

fs′ =
E

2cpy

(
1 − c2p2

y

E2

) 1
2

s′ωJs′

(
4ξ0

mc2

E
pyc

�ω

)
, (9.114)

and Js is the ordinary Bessel function. The new amplitudes c1(t) and c4(t)
satisfy the initial conditions

|c1(−∞)| = 0, |c4(−∞)| = 1.

Because of space homogeneity the generalized momentum of a particle is
conserved so that the real transitions in the field occur from a −E negative
energy level to positive +E energy level (in the assumed approximation) and,
consequently, the multiphoton probabilities of e−, e+ pair production will
have maximal values for the resonant transitions 2E 
 s�ω. The latter just is
the conservation law of the pair production process at which both electrons
and positrons will be created back-to-back according to zero total momentum:
pe− + pe+ = 0, since the considered field is only time dependent. Thus, we
can utilize the resonant approximation, as in a two-level atomic system in
the monochromatic wave field.

The probabilities of multiphoton e−, e+ pair production will have maximal
values for the resonant transitions

2E − s�ω 
 0. (9.115)

In this case the function f(t) can be represented in the following form:

f(t) = Fs + Φ(t), (9.116)
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where

Fs = ifse
iδst (9.117)

is the slowly varying function on the scale of the wave period and

Φ(t) = ieiδst
∞∑

s′ �=s,s′=−∞
fs′ei(s−s′)ωt (9.118)

is the rapidly oscillating function. Here we have introduced resonance detun-
ing

�δs = 2E − s�ω. (9.119)

As a consequence of this separation the probability amplitudes can be repre-
sented in the form

c1(t) = c
(s)
1 (t) + β1(t), (9.120)

c4(t) = c
(s)
4 (t) + β4(t), (9.121)

where c(s)1 (t) and c
(s)
4 (t) are the slowly varying amplitudes corresponding to

c1(t) and c4(t). The functions β1(t) and β4(t) are rapidly oscillating functions.
Substituting Eqs. (9.120), (9.121) into Eqs. (9.111), (9.112) and separating
slow and rapid oscillations, taking into account Eq.(9.116), we will obtain the
following set of equations for the slowly varying amplitudes c(s)1,4(t):

dc
(s)
1

dt
= Fsc

(s)
4 + Φ (t)β4(t), (9.122)

dc
(s)
4

dt
= −Fsc

(s)
1 − Φ∗ (t)β1(t), (9.123)

and for the rapidly oscillating functions β1,4:

dβ1

dt
= Φ (t) c(s)4 , (9.124)

dβ4

dt
= −Φ∗ (t) c(s)1 . (9.125)

In Eqs. (9.122) and (9.123) the bar denotes averaging over time much
larger than wave period. In the set of Eqs. (9.124) and (9.125) we have ne-
glected the terms ∼ Fs β1,4(t) due to the rapid oscillations
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|Fsβη(t)| <<
∣∣∣∣dβ1

dt

∣∣∣∣ . (9.126)

Solving the set of Eqs. (9.124) and (9.125), taking into account that c(s)1,4 are
slowly varying functions, we obtain

β1 = c
(s)
4

t∫
0

Φ (t′) dt′,

β4 = −c(s)1

t∫
0

Φ∗ (t′) dt′.

Then substituting β1,4(t) into Eqs. (9.122) and (9.123), we will have the
following equations for the functions c(s)1,4:

dc
(s)
1

dt
= Fsc

(s)
4 − i

δf

2
c
(s)
1 , (9.127)

dc
(s)
4

dt
= −Fsc

(s)
1 + i

δf

2
c
(s)
4 , (9.128)

where

δf = −2iΦ (t)

t∫
0

Φ∗ (t′) dt′ =
2
ω

∞∑
s′ �=s,s′=−∞

|fs′ |2
s− s′ . (9.129)

The set of Eqs. (9.127) and (9.128) can be solved in the general case of
arbitrary wave envelope A0(t) only numerically. But it admits an exact so-
lution for a monochromatic wave describing “Rabi oscillations” of the Dirac
vacuum. In this case the set of Eqs. (9.127) and (9.128) for the phase trans-
formed amplitudes c(s)1 exp (−iδst/2) and c

(s)
4 exp (iδst/2) is a set of ordinary

linear differential equations with fixed coefficients. The general solution of
the latter is given by a superposition of two linearly independent solutions
which with the initial condition is

c
(s)
1 (t) = i

|fs|
Ωs

ei δs
2 t sin (Ωst) , (9.130)
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c
(s)
4 = e−i δs

2 t

[
cos (Ωst) +

i∆s

2Ωs
sin (Ωst)

]
, (9.131)

where

∆s = δf + δs (9.132)

is the resulting detuning and

Ωs =

√
|fs|2 +

∆2
s

4
(9.133)

is the “Rabi frequency” of the Dirac vacuum at the interaction with a peri-
odic EM field. As is seen from Eq. (9.130) with this frequency the probability
amplitude of e−, e+ pair production oscillates in the standing wave field dur-
ing the whole interaction time similar to Rabi oscillations in two-level atomic
systems. In this case the “Rabi frequency” has a nonlinear dependence on the
amplitudes of the opposite EM wave fields. Considerable number of electron–
positron pairs can be produced by a proper choice of intensity and duration
of laser pulses.

The set of Eqs. (9.127) and (9.128) has been derived using the assumption
that the amplitudes c(s)1,4(t) are slowly varying functions on the scale of the
EM wave period, i.e., ∣∣∣∣∣dc

(s)
1,4(t)
dt

∣∣∣∣∣ << ∣∣∣c(s)1,4(t)
∣∣∣ω. (9.134)

These conditions with Eq.(9.126) define the condition of applicability of the
applied resonant approximation which is equivalent to the condition

Ωs << ω. (9.135)

The probability of the s-photon e−, e+ pair production with the certain
energy E , summed over the spin states, is

Ws = 2
∣∣∣c(s)1 (t)

∣∣∣2 =
2 |fs|2
Ω2

s

sin2(Ωst). (9.136)

Hence, from Eq. (9.114) we have

Ws =
s2ω2

(
p2 sin2 ϑ+m2c2

)
2p2 cos2 ϑ

J2
s

(
4ξ0

mc3p cosϑ
�ωE

)
sin2(Ωst)

Ω2
s

, (9.137)

where ϑ is the angle between the directions of the momentum of produced
electrons (positrons) and the amplitude of the total field electric strength.
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Let us consider the case of short interaction time when

Ωst << 1. (9.138)

In this case we can determine a probability of multiphoton pair production
per unit time according to the following definition of the Dirac δ-function:

sin2(Ωst)
Ω2

s

→ 2π�tδ(2E − s�ω).

The differential probability of an s-photon e−, e+ pair production process per
unit time and unit space volume, summed over the spin states, is given by
the following formula:

dws =
s2ω2(p2 sin2 ϑ+m2c2)

16�2π2p2 cos2 ϑ

×J2
s

(
4ξ0

mc3p cosϑ
�ωE

)
δ

(
E − s�ω

2

)
dp. (9.139)

By integrating over the electron (positron) energy we obtain the angular
distribution of the s-photon differential probability density of created elec-
trons (positrons):

dws

do
=

s3ω3

64π2�c3
4m2c4 + �

2s2ω2 tan2 ϑ

(�2s2ω2 − 4m2c4)1/2

×J2
s

(
4ceE0

(
�

2s2ω2 − 4m2c4
)1/2 cosϑ

s�2ω3

)
, (9.140)

where do = sinϑdϑdϕ is the differential solid angle.
Analogously one can describe the multiphoton pair production process

in a wiggler by a superstrong laser pulse of relativistic intensities. Thus, as
we saw in Section 5.4 at the induced interaction of a charged particle with
a plane EM wave in an undulator, or with the counterpropagating waves
of different frequencies (Section 5.3) the two interference waves are formed
which propagate with the phase velocities vph > c and vph < c. According
to the conditions (9.105) and (9.106) the wave propagating with the phase
velocity vph > c will be responsible for the pair production process. By the
appropriate transformations the processes of e−, e+ pair production in these
EM field configurations can be reduced to the considered pair production
process (as in the case of plasma) in this section. Namely, one should solve
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the problem in the center-of-mass frame of the produced pair moving with
respect to the laboratory frame with the velocity v = c2/vph.
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