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Summary. We propose the use exact penalty functions for the solution of gener- 
alized Nash equilibrium problems (GNEPs). We show that by this approach it is 
possible to reduce the solution of a GNEP to that of a usual Nash problem. This 
paves the way to the development of numerical methods for the solution of GNEPs. 
We also introduce the notion of generalized stationary point of a GNEP and argue 
that convergence to generalized stationary points is an appropriate aim for solution 
algorithms. 
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1 Introduction 

In this paper we consider the  following Generalized Nash Equilibrium Problem 
(GNEP) with two players: 

minimize, 01 (x ,  y) minimize, 011 (x, y) 

subject t o  h l (x)  5 0 and subject to  hI1(y) 5 0 (1) 

g l (x ,  Y) i 0 g H ( x 1 y )  5 0 

where 

x E R n l ,  y € R n 2 ;  
OI(x, y) (BII(x, y))  is a continuously differentiable function from to  
R ,  such tha t ,  for every fixed y (x),  @I(. ,  y) (QII(X, .)) is convex; 
hl(x) (h l l (Y))  is a continuously differentiable convex function from Rnl  
(Rn2)  t o  Rm' (Rm2); 
g l (x ,  y) (gll(x, y))  is a continuously differentiable function from R n l +  n 2  t o  
Rml (Rm2) such tha t ,  for every fixed y (x),  g~ (., y) (g11 (x,  .)) is convex. 
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The extension of all the results of the paper to the case of a finite number of 
players is trivial and we do not discuss this more general case just for the sake 
of notational simplicity. 

For every fixed y, denote by S(y)  the (possibly empty) solution set of 
the first player and, similarly, for every fixed x,  S(x)  is the (possibly empty) 
solution set of the second player. We further denote by .F 3: Rnl x Rn2 the 
feasible set of the GNEP, i.e. the set of points (x, y) that are feasible for the 
first and second player a t  the same time. Note that,  by the assumptions made, 
once y is fixed, the first player's problem is convex in x and analogously we 
have that the second player's optimization problem is convex in y for every 
fixed x. A point (3 ,  %) is a solution of the GNEP if 3 E S(%)  and jj E S (2 ) .  
Solutions of the GNEP are also often called equil ibria.  

The presence of the "coupling" constraints gl(x, y) and g" (x,  y) which make 
the feasible set of one player depend on the variables of the other player is 
what distinguish the GNEP from the standard Nash Equilibrium Problem 
NEP and actually makes the GNEP an extremely difficult problem. To date 
there have been very few attempts to define algorithms for the calculation of 
an equilibrium of a GNEP. One possibility is to write the optimality condi- 
tions of the two players using the minimum principle thus obtaining a Quasi 
Variational Inequality (QVI). This has been recognized by Bensoussan [I] as 
early as 1974 (see also [ I l l  for the finite-dimensional case). However there is 
also a lack of proposals for the solution of QVIs, so this reduction is not very 
appealing from the algorithmic point of view. There are a few other scattered 
proposals in the literature, based either on fixed point approaches or the use 
of the Nikaido-Isoda function: [2,3,  14, 16, 191 (see [I 51 for the definition of 
the Nikaido-Isoda function). These kind of algorithms, however, require quite 
stringent assumptions that cannot be expected to be satisfied in general. On 
the other hand there is certainly a wealth of interesting applications that call 
for the solution of GNEPs: see, as a way of example, [4,10,13,17,18] 

Recently, Fukushima and Pang [lo] proposed a promising sequent ia l  penalty 
approach whereby a solution is sought by solving a sequence of smooth NEPs 
problems for values of a penalty parameter increasing to  infinity. The ad- 
vantage of this idea is that the the penalized NEPs can be reformulated as 
Variational Inequalities (VI) to  which, in principle, well understood solution 
methods can be applied, see [9]. In this work we propose a solution framework 
whereby, by using exac t  penalization techniques, the GNEP is reduced to  the 
solution of a single NEP. The advantage is that we only deal with a single 
NEP with a finite value of the penalty parameter. The disadvantage is that 
the players in this NEP have nonsmooth objective functions. 

Before describing our approach more in detail we think it is important 
to set the goal. The GNEP has a structure that exhibits many "convexities" 
and so one could think that a reasonable goal for a numerical method is to 
find a solution (or to determine that the problem has no solutions): this would 
parallel what happens for a convex optimization problem. However the GNEP 
is really a "non convex" problem. For example, under our assumptions, the 
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feasible set .F is non convex and even finding a feasible point, let alone a 
solution, is a difficult task. Therefore we cannot expect that we can solve 
GNEP unless some (more) stringent assumptions are made. 

In nonlinear programming a research line has emerged that attempts to  
analyze algorithms under minimal assumptions; an algorithm is considered 
successful if it can be shown to find a "generalized stationary point" un- 
der these minimal assumptions. Roughly speaking, a "generalized stationary 
point" of a nonlinear program is a either a Karush-Kuhn-Tucker (KKT) point 
or Fritz-John (FJ)  point or an (unfeasible) stationary point of some measure 
of violation of the constraints. After this analysis has been carried out, it 
is investigated under which additional assumptions one can guarantee that,  
indeed, the algorithm converges to  a KKT point, thus ruling out other unde- 
sirable possibilities. This point of view seems very sensible and enriches the 
usual approach in that when one applies an algorithm to the solution of a non- 
linear optimization problem, one does not usually know in advance that the 
problem satisfies the regularity assumptions required by algorithm (i.e. linear 
independence of active constrains, positive linear independence of violated 
constraints and so on). It is then of interest to show that ,  in any case, the al- 
gorithm behaves in a reasonable way, locating a generalized stationary point, 
and to show that,  if in addition some more stringent regularity conditions are 
satisfied, convergence actually occurs to a KKT point of the problem. 

In this paper we parallel these kind of developments and show that the 
penalization technique we propose can only converge to a "Nash generalized 
stationary point". Then we give additional conditions to guarantee that con- 
vergence occurs to  a solution. Our first task on the agenda is then to  give 
a suitable definition of Nash generalized stationary point. Our definition is 
inspired by similar definitions in the case of nonlinear optimization problems 
and also takes into account the convexities that are present in the GNEP. 

Definition 1. A point (x,  y) E Rnl+nz is a Nash generalized stationary point 
if 

1. x is either a KKT or a FJ point of 

minimize, 81 (x, y) 

subject to  hl(x) 5 0 

or a global minimizer of lh l ( . )+ ,g l ( . ,  y)+llz with Ilhl(x)+,gl(x, y ) + 2  > 0; 
2 ,  y is either a KKT or a FJ point of 

minimize, 811 (x, y )  

subject to h"(y) 5 0 (3) 
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or aglobalminimizer of llh"(.)+,gll(x,~)+llz withllhl(y)+,gl(x, y ) + / / z >  0. 

Two observations are in order. Every solution is clearly a Nash generalized 
stationary point, but the viceversa does not hold. If x is a KKT point (by which 
we mean that x ,  together with appropriate multipliers, satisfies the KKT 
conditions) then x solves, for the given fixed y, the optimization problem (2) 
and similarly for y. If x is FJ point, instead, this reflects a "lack of constraint 
qualification" and in this case we cannot say whether x is or is not a solution 
to  (2). Finally, if x is a global minimizer of the function 1 1  h l( .)+, gl(. ,  y) + 1 1 2  
with ~ I ~ ' ( X ) + , ~ ' ( X ,  y)+1l2 > 0, this means that,  for the given y, problem (2) 
is unfeasible. Note that the definition of generalized stationary point extends 
in a natural way similar definitions valid for nonlinear optimization problems. 
We remark that under the assumptions we will make to  analyze the algorithm 
the existence of a solution is not guaranteed, so it would be unreasonable to 
expect that any algorithm can surely find one! 

2 Exact penalty functions for the GNEP 

Our aim is to transform the GNEP (1) problem into a(n unconstrained), 
nondifferentiable Nash problem by using a penalty approach. To this end we 
consider the following penalization of the GNEP: 

and (4) 

where p~ and p11 are positive penalty parameters. In this paper all the norms 
are always Euclidean norms; therefore from now on we will always write 1 1  . / /  
instead of . 112. By setting 

problem (4) can be rewritten as 

It  is also possible to penalize only some of constraints, the most natural choice 
being to  penalize only the coupling constraints g:(x, y) 5 0 and gy(x ,  y) 5 0. 
This would give rise to the following penalized Nash problem 
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where X = {x : hl(x) 1 0) and Y = {y : hI1(y) 5 0). Different penalizations 
could further be considered where, maybe, also some "difficult" constraints in 
the definition of X or Y are penalized while the simple ones (e.g. box con- 
straints) are not penalized. We do not consider all this variants in this paper, 
but with some obvious technical changes all the developments we consider for 
the penalization (4) can be extended to these different penalizations. 

Note that for every fixed y, the first player subproblem in (4) is convex, 
although nondifferentiable, and the same holds for the second player. In this 
section we show that under appropriate conditions and for sufficiently large 
(but finite) values of the penalty parameters, the solutions sets of the GNEP 
(1) and that of the Penalized GNEP (PGNEP) (4) are strongly related. In the 
next section we will give a general scheme that allows us to iteratively update 
the penalty parameters in an appropriate way supposing that a minimization 
algorithm is available for the solution of the PGNEP (4) for fixed values of 
the penalty parameters. 

The first result we discuss is basically known (see [12] for example), how- 
ever we report it here with a proof for sake of completeness and also because 
we could not find a reference with the precise statement below that we need. 

Proposition 1. Consider the minimization problem 

minimize, f (z) 

subject to  v(z) 1 0 ,  

where f : Rn -+ R and v : Rn -t Rm are C1 and (componentwise) convex. Let 
2 be a solution of this problem and assume that set M of KKT multipliers 
is non-empty. Let X be any multiplier in M. Then, for every p > 11X11, the 
solution sets of (5) and 

minimize, f ( z )  + p llv+ (z) 1 1  

coincide. 

Proof. Let 2 be a solution of (5) and suppose that p > I / X / I .  We show that 2 
is a minimum point of the penalty function P ( z ;  p) -= f (z) + p Ilv+ (z) 1 1  (which 
is also convex). We recall that 5 is a minimum point of the Lagrangian of the 
constrained problem (5), that is 

(A is a fixed KKT multiplier; recall that the set M of multipliers of problem 
(5) does not depend on the solution considered). Therefore we get, for any 
z E Rn, 
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where we have used the facts that X 2 0, XTv(B) = 0 and v+(5) = 0. Suppose 
now that B is a (global) minimum point of the penalty function P ( z ,  p). Since 
the penalty function P and the objective function f coincide on the feasible 
set of problem (5)' in order to  show that B is a solution of problem (5) it is 
sufficient to  verify that 5 is feasible to  problem (5). If this were not the case 

(where the fourth inequality derives again from the fact that is a minimum 
point of the Lagrangian of the constrained problem (5)).  This would show that 
t is not a global minimum of the penalty function thus giving a contradiction 
and therefore 5 must be feasible. A 

Consider now the first player's problem in (1). We can see it as a collection 
of convex optimization problems, one for each possible y. The same holds for 
the second player's problem, with the role of "parameter" taken here by x.  
The previous theorem suggests that if we want to  penalize (1) and obtain 
some kind of equivalence to the penalized problem for finite values of the 
penalty parameters, we should require the boundedness of the multipliers of 
the player's problems for each value of the other player's variables. This lead 
us t o  the following assumption. 

Assumption 2.1 (Generalized Sequential Boundedness Constraint Qualifi- 
cation (GSBCQ)) There exists a constant M such that for every solution ( 2 ,  y) 
of the generalized Nash equilibrium problem there exists a corresponding cou- 
ple (A, p)  of KKT multipliers such that II(X, p)/I 5 M. 

We refer to chapter 3 in [9] for more details on this constraint qualification 
(CQ) condition (in the case of optimization problems). Here we only stress 
that the GSBCQ appear to be a rather mild constraint qualification that 
unifies many standard CQ such as the Mangasarian-Fromovitz CQ and the 
constant rank one. 

Under this assumption it is easy to prove the following result. 
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Theorem 1. Suppose that the GSBCQ is satisfied. Then there exists p~ 2 0 
and ~ I I  L 0 such that for every p~ > pI and pr1 > p11 every solution of (1) is 
a solution of (4); viceversa every solution of (4) feasible to (1) is a solution of 
(1) (independent of the values of the penalty parameters). 

Proof. Take p~ and p11 larger then the constant M in the definition of the 
GSBCQ. Suppose (3,g)  is a solution of the GNEP. Then, by Proposition 1 
(? ,a)  is also a solution of (4). Viceversa, assume that (1, a )  is a solution of 
(4) feasible to  (1). It is trivial to see then, that it is also a solution for (1). A 

This result is somewhat weaker than the corresponding one in the case of 
constrained optimization, where in the second part there is no necessity to 
postulate the feasibility of the solution of (4) to  conclude that the point is a 
solution of (1). However we do not believe that it is possible and, actually, 
sensible to  expect such a result in the case of a GNEP. In the case of penalty 
functions for constrained optimization, in fact, a basic assumption is always 
that the optimization problem is feasible. In the case of GNEP, instead, we 
deal with (looking at the first player, for example) an infinite number of op- 
timization problems, one for each possible y ,  and some of this problems can 
be expected to have no solution or even no feasible points. 

Theorem 1 is certainly of interest and basically shows that a penalty ap- 
proach for GNEPs has sound bases. In the next section we give a general 
algorithmic scheme and show, on the basis of Theorem 1, that this penalty 
algorithmic scheme can locate generalized stationary points. 

3 Updating the penalty parameters 

In general the correct value of the penalty parameters for which the solutions 
of the generalized Nash problem (1) and those of the Nash problem (4) coincide 
is not known in advance. Therefore, a strategy must be envisaged that allows 
to  update the values of penalty parameter so that eventually the correct values 
are reached. In this section we show how this is possible in a broad algorithmic 
framework. 

The aim of the penalization method is to transform the original problem 
into one that is easier to  solve. It  is clear that,  in principle, (4) is easier 
than ( I ) ,  even if the non differentiabilty of the players' objective functions is 
somewhat problematic, at least in practice. There exist methods to deal with 
nondifferentiable (4) and the equivalent VI-type reformulation. Furthermore, 
ad-hoc methods (such as smoothing methods, for example) could be developed 
to deal with the very structured nondifferentiability of the objective functions 
of (4). In this paper we do not go into these technical details. Our aim is, 
instead, to give a broad framework that is as general as possible to show 
the viability of the approach. To this end, we simply assume that we have a 
"reasonable" algorithm for the solution of the Nash problem (4). To be more 
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precise we suppose that we have at our disposal an iterative algorithm A that,  
given a point (xk ,  yk) ,  generates a new point (xk+l ,  yk+l)  = A[(xk,  yk)].  We 
make the following absolutely natural and basic assumption on the algorithm 
A. 

Assumption 3.1 For every (xO, yo), the sequence {(xk,  yk)} obtained by it- 
eratively applying the algorithm A is such that every of its limit points (if 
any) is a solution of (4). 

It  is clear that virtually every algorithm that can be said to LLsolve" (4) will sat- 
isfy this assumption. We can now consider the following algorithmic scheme. 
Below we denote by 3 ( y )  the feasible set of the first player for a given y and, 
similarly F ( x )  is the feasible region of the second player for a given x. 

General penalty updating scheme 

Algorithm. 2 
Data: (xO, yo) E I W n l + ~ ,  PI, prr > 0, CI, CII E ( 0 , l ) .  Set k = 0. 
Step 1: If (xk ,  yk) is a solution of (1) STOP. 
Step 2: If xk  3 ( y k )  and 

then double p~ until (6) is not satisfied. 
Step 3: If y k  6 3 ( x k )  and 

then double ,011 until (7) is not satisfied. 
Step 4: Compute (xktl ,  yk+l)  = A[(xk,  yk)] ;  set k t k + I and go to  step 1. 

Note that if the perform the test (6) the point xk  is not feasible for the first 
player, so that h f ( ~ ~ ) ) , ~ ? ( x ~ ,  yk)")  > 0 and, since the norm is the Euclidean 
norm, the function 1 1  h? (.), gT (., yk)  1 1  is continuously differentiable around x k  
and the test (6) is well defined. Similar arguments can be made for the test 
a t  Step 3. 

In what follows we assume that the stopping criterion at  Step 1 is never 
satisfied and study the behavior of Algorithm 2. 

Theorem 3. Let the sequence {(xk,  yk)} produced by the Algorithm 2 be 
bounded. If either p1 or p11 are updated an infinite number of times, then 
every limit point of the sequence {(xk,  yk)} is a generalized stationary point 
of the GNEP (1). If instead the penalty parameters p~ and p11 are updated 
only a finite number of times, then every limit point of the sequence {(xk,  yk)} 
is a solution of the GNEP (1). 

Proof. Suppose the both penalty parameters are updated a finite number of 
times only. Therefore for k sufficiently large we are applying the algorithm A 
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to  problem (4) for fixed penalty parameters. We denote these fixed values by 
p~ and p11. Hence, by the assumption made on A we know that every limit 
point of the sequence {(xk,  yk)} is a solution of (4). Let (3, g) be such a limit 
point. We want to  show that ( Z , j j )  is also a solution of (1). By Theorem 1 
we only have to show that (2 ,g)  is feasible for (1). Suppose this is not true 
and assume, without loss of generality, that the constraints of the first player 
are not satisfied at  (Z, g). Furthermore, since (2 ,g)  is a solution of (4) and 
I ( h ; ( ~ ) , ~ f ( Z , g ) j j  > 0, we can write 

from which we deduce 

But this, together with CI < 1 and some simple continuity arguments, shows 
that the tests at Step 2 must be satisfied eventually and p~ updated. This 
contradiction shows that ( I ,  g) is feasible for both players. 

Consider now the case in which at least one penalty parameter is updated 
an infinite number of times. Without loss of generality assume that it is p1 
that is updated an infinite number of times and that the infinite subsequence 
of iterations where the updating occurs is K .  If { ( I , g ) )  is the limit of a 
subsequence of {(xkl  yk)} with k K we can reason as in the previous case 
and conclude that ( (2 ,  g)} is a solution of (1). Let us analyze then the case 
in which {( I ,g )}  is the limit of a subsequence of {(xkl  yk))  with k E K. We 
have that the the sequence (xk ,  yk) is bounded by assumption and so is, by 
continuity, {VxBI(xkl yk ) IK .  Therefore, since the test (6) is satisfied for every 
k E K and the penalty parameter goes to  infinity on the subsequence K ,  we 
can conclude that 

If (2,  jj) is infeasible we then have by continuity that V, Ilh?(?), g f ( ~ ,  fj) I = 
0 and therefore, since I l h ? ( ~ ) , ~ f ( x ,  y)ll is convex in x (for a fixed y) ,  this 
means that a: is a global minimizer of the function jlhl(.)+,gl(., y)+ll with 
I l h l ( ~ ) + l ~ l ( ~ l ~ ) + l /  > 0. 

If ( I ,  g) is feasible, we have, taking into account that every xk  with k E K 
is infeasible for the first player, that 

Passing to  the limit for k 4 oo, k E K ,  it is easy to  check that 2 is a FJ 
point for the first player (when the second player chooses the strategy g).  It  
is now immediate to  see, reasoning along similar lines, that also y must be 
either a solution or a FJ point for the second player or global minimizer of the 
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function Ilhll(.)+,gll(x,.)+I/ with l l h l ( ~ ) + , g l ( ~ , g ) + l l  > 0. Hence we conclude 
that in any case (2 ,  g) is a generalized stationary point of the GNEP (1). A 

It  should be clear that there is no need to perform the tests a t  steps 2 and 3 
for every k.  It is enough that they are performed an infinite number of times. 
Also, if the updating test, say that at Step 2, is passed, it is sufficient to  take 
the new p~ larger than 

Actually any updating rule for the penalty parameter p~ will be acceptable as 
far as it is guaranteed that if p~ is updated an infinite number of times then 
it grows to  infinity. We leave the details to the reader and discuss instead the 
more interesting issue of whether it is possible to guarantee that every limit 
point is a solution and not just a generalized stationary point of the GNEP (1). 
Note that in Theorem 3 we did not make any regularity assumption on the 
problem; correspondingly, and quite naturally, we could prove convergence 
to generalized stationary points and not to solutions. However, Theorem 3 
makes clear that convergence to  generalized stationary points that are not so- 
lutions can only occur if a( t  least one) penalty parameter goes to infinity. In 
turn, the proof of Theorem 3 shows that if this occurs, then we can find a se- 
quence {xkl  yk )  of infeasible points such that either {Vxll h?(xk)) ,  gT(zk,  yk)  ll) 
or { ~ , l l  h&(yk) ,g&(xk,  yk))ll) tend to zero. The following corollary then easily 
follows from the above considerations. 

Corollary 1. Let the sequence {(xkl yk))  produced by the algorithm 2 belong 
to a bounded set B. Suppose that there exists a positive constant o such that,  
for every infeasible point (x,  y) E B, 

Then p~ or p11 are updated an finite number of times and every limit point of 
the sequence {(xk,  yk))  is a solution of the GNEP (1). A 

In the case of one player (i.e. in the case of optimization problems) the condi- 
tion (8) has been used and analyzed in detail, see [5-81. Basically this condition 
can be viewed as a sort of generalization of the Mangasarian-F'romovitz CQ. 
Its practical meaning is rather obvious: the functions 1 1  hIf (x),  (x ,  y) 1 1  and 
llhA(y), gf:(x, y)ll which represent the violation of the constraints of the first 
and second player respectively, must not have stationary points outside the 
feasible set. This condition seems very natural and says that the "feasibility" 
problem which is a "part" of the generalized Nash equilibrium problem is easy 
(in the sense that the only stationary points of the functions representing the 
violation of the constraints are the global minima). From this condition we 
could derive several sets of sufficient conditions for Corollary 1 to hold, along 
the lines developed in 15-81. We leave this for future research. 
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4 Conclusions 

In this paper we proposed the  notion of generalized stationary point for the  
Generalized Nash Equilibrium Problem and argued tha t  this is an  appropri- 
a te  and realistic target for any numerical solution method. Furthermore we 
introduced an  exact penalization method for the  solution of the  GNEP. We 
gave a broad algorithmic scheme and showed tha t  this scheme is able to  gen- 
erate sequences converging to  a generalized stationary point under a mere 
boundedness assumption. Finally we also discussed an  additional regularity 
condition tha t  guarantees convergence to  solutions (as opposed to  general- 
ized stationarity points). There are certainly still many issues tha t  deserve 
more study, prominent among these an  effective solution procedure for the  
nondifferentiable (unconstrained) problem arising from the  application of the  
exact penalty approach. I t  certainly was not our intention to  investigate all 
t he  issues connected t o  a penalization approach t o  the solution of a GNEP. 
However, we remark that ,  given the  lack of results in the  study of GNEPs, 
we believe tha t  the  approach proposed in this paper could not only be useful 
from the  numerical point of view, but  also lead t o  new sensitivity and stability 
results. 
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