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Preface 

This volume contains refereed papers presented at  the Workshop on Large 
Scale Nonlinear Optimization held in Erice, Italy, a t  the "G. Stampacchia" 
International School of Mathematics of the "E. Majorana" Centre for Scientific 
Culture, during June 22-July 1, 2004. The Workshop was the fourth in a series 
of Workshops on Nonlinear Optimization held in Erice; the three previous ones 
were held in 1995, 1998, 2001, respectively. 

In the tradition of these meetings, the purpose of the Workshop was to 
review and discuss recent advances and promising research trends in the field 
of Nonlinear Optimization and its applications, with a main focus on the large 
dimensional case, currently a t  the forefront of the research effort. 

The meeting was attended by 71 people from 18 different countries. Besides 
the lectures, several formal and informal discussions took place. The outcome 
was a wide and deep knowledge of the present research achievements and 
tendencies in the field. We wish to express our appreciation for the active 
contribution of all the participants in the meeting. By editing this volume 
we aim at  enlarging the community of researchers, professionals and students 
who can benefit from this valuable knowledge. 

The 16 papers included in this volume represent a significant selection of re- 
cent developments in Nonlinear Optimization theory and practice. They show 
that there are plenty of exciting ideas and new applications which give evi- 
dence of a fast evolution in the field. Moreover, they give an updated overview 
from different and complementary standpoints: theoretical analysis, algorith- 
mic development, implementation issues, real world applications. 

In particular, as concerns unconstrained optimization, the paper by LukSan 
and VlEek is an up-to-date survey of efficient methods for large scale prob- 
lems, while Powell gives an accurate description of the derivative-free NEWUOA 
software. Large space in the volume is devoted to  constrained optimization, 
from both a theoretical and algorithmic point of view. In fact, the paper 
by Bertsekas deals with sensitivity properties of Lagrange multipliers. Dostti1 
reviews recently proposed algorithms for large quadratic programming prob- 
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lems. Byrd et al., in their paper, give a detailed description of the KNITRO 
package for nonlinear programming. This package is designed for solving large 
scale problems; various algorithmic options, including two interior point meth- 
ods and an active-set method, are considered. A new class of preconditioners 
is proposed in the paper by Dollar et al.: implicit-factorization constraint 
preconditioners are considered for the iterative solution of symmetric linear 
systems arising from saddle-point problems. Preconditioning in one-step one- 
shot design optimization is considered in the paper by Griewank: in particular, 
the problem of minimizing an objective function subject to  a very large dimen- 
sional state equation with a separate design space is tackled, addressing the 
issue of selecting a suitable preconditioner for the approximate reduced gra- 
dient. The use of exact penalty functions for solving generalized Nash equilib- 
rium problems is proposed by Facchinei and Pang; a broad algorithmic scheme 
for the solution of such problems is described too. In the paper by Mastroeni a 
variational model for traffic network problems is studied; in particular, the au- 
thor considers a generalized minimum cost flow problem formulated by means 
of a variational inequality. The paper by Bkrend et al, deals with the use of 
dedicated algebra solvers and an interior point algorithm for the efficient so- 
lution of the linear systems arising when solving an optimal control problem 
by a Runge-Kutta discretization scheme. Vector optimization is also treated: 
in the paper by Gutikrrez et al, approximate solutions of vector optimization 
problems are studied by means of a concept of approximate efficiency. 

The paper by Evtushenko et al, deals with algorithms for constructing a 
family of parallel hyperplanes that separate two disjoint polyedra given by 
systems of linear inequalities; it is well known how the capability of finding 
such hyperplanes plays an important role in solving some practical problems. 
Another interesting problem is considered in the paper by Burdakov et al.: the 
problem, known as isotonic regression, has important applications in Opera- 
tions Research and Statistics, and it is often characterized by large dimension- 
ality. In order to  solve such problems the authors introduce a new algorithm 
which exhibits both low computational complexity and high accuracy. 

Finally, important real world applications are considered in the papers by 
Griesse and Volkwein, in the paper by Pesch et al. and in the paper by Peri et 
al. The first one considers boundary optimal control problems for a nonlinear 
reaction-diffusion equation system in three spatial dimensions. The second 
one presents a mathematical model for the dynamical behaviour of a molten 
carbonate fuel cell, which yields a large scale partial differential algebraic 
equation constrained optimization problem. The third one deals with optimum 
ship design problems and proposes the use of multi-objective formulations and 
global optimization strategies for their solution. 

We are indebted to  many anonymous referees who took care to  review all 
the papers submitted for publication in this volume. 
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Optimization 
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CNES, Launcher Directorate, Rond-Point de l'Espace, 91023 Evry Cedex, 
France (Christophe.Ta1botOcnes.fr) 

Summary. This paper presents some methods for solving in a fast and reliable way 
the linear systems arising when solving an optimal control problem by a Runge- 
Kutta discretization scheme, combined with an interior-point algorithm. Our anal- 
ysis holds for a multiarc problem, i.e., when several arcs, each of them associated 
with a dynamics and integral cost, are linked by junction points, called nodes; with 
the latter are associated junction conditions and a cost function. 

Our main result is that a sparse QR band factorization combined with a spe- 
cific elimination procedure for arcs and nodes allows to factorize the Jacobian of 
the discrete optimality system in a small number of operations. Combined with an 
"optimal" refinement procedure, this gives an efficient method that we illustrate on 
Goddard's problem. 

Key words: Optimal control, differential equations, Runge-Kutta and sym- 
plectic schemes, sparses algebra, band matrices, QR factorization. 

1 Introduction 

This  paper discusses numerical methods for solving multi arc optimal control 
problems. Let us give an  example of a possible mission t o  be  optimized. 
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Orbital station Rendez-vous with station 

End of mission 

Booster separation 

Return of booster 

Orbiter and Booster 
on ground 

Here a separation between booster and orbiter occurs a t  some point; the 
orbiter meets a spatial station and both remain linked for some time. The 
return trajectory of the booster is to be optimized, as well as the one of the 
space station. While arcs are connected here through separation or rendez- 
vous, one may think also of other arcs corresponding to possible events, for 
instance of failure, that requires to change trajectories. 

We concentrate on direct methods, which solve approximately a time dis- 
cretized version of the optimal control problem, and are able to refine dis- 
cretization. See [4,11,18,19] for an overview of numerical methods for optimal 
control problems, and [5 ,7 ]  for specific direct methods. 

The paper is organized as follows. Section 2 deals with single arc problems. 
We discuss the error analysis in subsection 2.1, and linear algebra issues in 
subsection 2.2. An "optimal" refinement technique is presented in 2.4, and 
2.5 discusses the monitoring of interior-point algorithms. Section 3 is devoted 
to  multiarc problems. Their structure is presented in subsection 3.1, and the 
linear algebra is analysed in subsection 3.2. Since our software is still under 
construction, we present only numerical results for the well known (single arc) 
Goddard problem in section 4. 

2 Single arc problem 

2.1 Framework and discretization 

We start by describing an optimal control problem with a single arc and, to 
begin with, without constraints. We may assume without loss of generality 
(adding an additional state variable if necessary) that there is no integral 
cost, and we take into account only a final cost: 

Here f and @ are CCO functions lRm x lRn --+ lRn and lRn + lR, respectively. 
Introduce now a Runge-Kutta type discretization, as done in Hager [14]: 
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The positive time steps hk are such that ~fz; hk = T. Note that with each 
"inner state" yki is associated an inner control uki, The Runge-Kutta scheme 
is parameterized by its coefficients (a ,  b), an s x s matrix and a vector of 
Rn respectively. Assuming all coefficients bi to  be nonzero, it was shown by 
Hager 1141 that the optimality system can be written in the following form: 

where 
b := b and &ij := (bib, - bJaij)/bi, for all i and j .  (4) 

The above system may be interpreted as a partitioned Kunge-Kutta discretiza- 
tion scheme for the optimality conditions of problem (1) stated below: 

If the Hamiltonian function H(y ,  u ,p)  := p .  f (u, y) is, in the neighborhood of 
the optimal trajectory, a strongly convex function of u then we can eliminate 
the control from the above algebraic constraint (thanks to the implicit function 
theorem) so that (5) reduces to a two points boundary value problem. In view 
of (4), this system is symplectic [15-171. These references present the theory 
of order conditions for partitioned Kunge-Kutta schemes. One may find in [8] 
a simplification of order conditions for symplectic schemes, that allows to 
state them for order up to 6 (they were obtained in [I41 for order up to 4). 
Yet these results apply only for unconstrained problems with strongly convex 
Hamiltonians; some results for for constrained optimal control problems may 
be found in [12,13]. 
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2.2 Linear algebra: problems without design variables 

Here we present a fast and reliable approach to  the numerical resolution of 
the linear systems arising when solving the discrete optimality conditions ( 3 ) )  
in the case when there is no design variable. The starting point is that the 
Jacobian matrix denoted A is, when variables are ordered by increasing values 
of time, a band matrix. Let q denote the band size, i.e., such that Aij = 0 if li- 
jl > q (for instance, a diagonal matrix has band size 0). Remind that n (resp. 
m) denotes the number of states (resp, controls). Our implementation achieves 
a band size of q = ( s  + 1)(2n + m) + n, where s is the number of inner stages 
in the Runke Kutta scheme. For a problem with n, distributed constraints 
(upper and lower bounds), dealt with by the interior-point approach discussed 
later, we have a band size of q = ( s  + 1)(2n + m + 2ng) + n - 1. Note that 
a t  each time step there are ( s  + 1)(2n + m + 2ng) variables (state, costate, 
control and Lagrange multipliers) and there are dynamic constraints with the 
previous and next state and costate. 

Lemma 1. The number of multiplications for a QR factorization based on 
Givens rotations, applied to a matrix M of band size q ~ ,  and having NM lines, 
with NM large w.r.t, q ~ ,  is at most 6 q & N ~  + O(q&) multiplications. The 
number of multiplications for solving the linear system (after factorization) is 
6 q ~  NM . 
Proof. Row i eliminates element of index (i + k, i)  with k varying from 1 
to q h ~ .  This results in a fill-in from row i only. Therefore, when elimination 
of element (i + k, i )  occurs, row i of R has only q + k elements, and hence, 
4(qM + k) + O(1) operations are performed. Since x l r l ( q ~  + k) = 3&/2 + 
O(qM), the result follows. 

Solving needs the resolutions of two linear systems with matrices R and 
Q. For the one with matrix R,  we compute the components of the solution 
backwards (starting from the last one). Computing component i knowing all 
components of index j > i needs 2q.44 multiplications, except for the 2qM last 
rows, that is a total of ~ ~ M N M  + o(&) multiplications. For the one with 
matrix Q, we have to apply the inverse qMNM + O(q&) Givens rotations to 
the right-hand-side, each of them needing 4 multiplications. The conclusion 
follows. 

Remark 1. (i) Usually m and n, are of the order of n ,  and in this case the cost 
of factorization (resp, resolution) of the Jacobian A is of order s 3 n 3 ~  (resp. 
s2n2 N) .  
(ii) It  would be interesting to  have an idea of the least possible number of 
operations for an orthogonal factorization of a band matrix. Our procedure 
seems to  be quite effective, but we do not know how far it is from this lower 
bound. 
(iii) The ratio between factorization and solve is, under the assumptions of 
the lemma, essentially sn.  Typical values of sn  will be larger than 10. This 
means that factorization is by far the most expensive part of resolution. 
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2.3 Linear algebra: problems with design variables 

We start our analysis with a general result on the factorization by elimination. 
Let A be a n x n invertible matrix, where n = nl  +nz, n l  and nz being positive 
integers. Let Aij, i , j  = 1 , 2 ,  be its decomposition by blocks of size n, x n j ,  as 
on the figure below (corresponding to the case when All is a band matrix): 

Let (2,  y )  be solution of the following linear system: 

Assuming All to be invertible, we may eliminate x from the first equation, 
and express (x,  y) as 

y = (A22 - ~ 2 1 ~ ~ - ~ 1 2 ) - ' ( b 2  - ~ 2 1 ~ r ; b l ) ;  x = ~ z ( b l  - -41211). ( 7 )  

The factorization step consists in factorizing All ,  solving nz linear systems 
of type Al lx  = c, where c is an arbitrary column of A12, and computing the 
reduced matrix AR := (A22 - A ~ I A ~ A ~ ~ ) - ' ,  and finally factorizing AR. The 
resolution step needs the resolution of two linear systems with matrix All ,  
and one with matrix AR. We obtain the following complexity result: 

Lemma 2. The resolution of (6) based on reduction (7) requires (i) for fac- 
torization: the factorization of All ,  n2 resolutions with matrix All ,  and the 
factorization of AR, and (ii) for each resolution (after factorization): to solve 
two linear systems with matrix All and one with matrix AR.  

We apply this result to the case of a single arc problem with n, static 
parameters, the time dependant variables being eliminated first, using the 
number of operations estimated in lemma 1. Then static parameters are com- 
puted using a full matrix factorization. Lemma 2 implies the following result: 

Corollary 1. A single arc problem with n, static parameters, using the above 
elimination procedure, and the QR factorization for time dependant variable, 
needs O(n, q2 N + q3 N) + O(n2) operations for factorization, and O(Nq2 + n:) 
for each resolution (after factorization). 
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2.4 Mesh Refinement 

For a Cauchy problem (integration of an ordinary differential equation with 
given intial value) the control of the size of time step is done once for all for 
each given time step. For a two points boundary value problem, the situation 
is different. Although the error estimate is of the same nature, one needs to 
solve a given discretization grid accurately enough before obtaining the local 
error estimates that allow to predict the needed additional grid points. Some 
refinement schemes are based on primal errors only, see [ 5 , 6 ] .  We show here 
how to compute an "optimal" refinement for the state and costate equations. 

The theory of error estimates tells us that the local error on step k is of 
the form ek = ~~h!" ,  where the order p is, in principle, known. The error 
estimate may be obtained by comparing the local variation of the differential 
variable with the one computed by a scheme of higher order. Dividing the 
step hk into qk smaller steps of size hk/qk, where qk is a positive integer, we 
reduce the error to  Ck(hk/qk)Pt l  on each smaller step, i.e, a total of ek/qg on 
the qk steps. This is valid, of course, provided the step is small enough. The 
problem of reaching a specific error estimate by adding the smallest number 
of new grid points can therefore be formulated as follows: 

This nonlinear integer programming problem appears to be easily solvable, 
by adding iteratively points at steps for which the local gain, obtain by incre- 
menting qk by one, is maximal. See algorithm 1 below, and [3] for details. 

Algorithm 1 Primal Algorithm 

For k = 1 , .  . . ,  N do qk := 1.  End for 
While ~ r = ~  ek/qE > E do 

Compute kg E argmaxk{ek (119: - l / (qk + l ) p ) }  

2.5 Interior-point algorithms 

Consider now a constrained optimal control problem of the following form: 

Introducing a nonnegative slack variable for inequality constraints, a using 
a logarithmic penalty for the nonnegativity constraint on the slack variable, 
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and setting !,(y, u)  := !(y,u) - E Cy=l gi(y, u) ,  where E > 0, we obtain the 
following approximation: 

The penalized problem (9) is unconstrained with an integral and final cost. 
Adding an additional state variable allows to  reduce it to a problem with final 
cost only, that can be discretized by the Runge-Kutta schemes discussed in 
subsection 2. For a given value of E the error analysis of that section applies 
when the steps vanish. The constants, however, will depend on E .  

An interesting open problem is to  obtain error estimates for given pa- 
rameter E and discretization steps. This is obviously difficult, since without 
logarithmic penalty, one may encounter a reduction order when state con- 
straints are active (it is known that in general a Runge-Kutta scheme applied 
to an algebraic differential system suffers from order reduction). In addition 
junction points for constraints (times when the constraint begins or stops to 
be active) need a specific analysis. 

Related to  this is the question of the choice of a path of convergence, i.e., 
a t  which speed should the parameter E and the discretization steps to 0. Again 
this is essentially an open problem. In our present implementation we simply 
require that the error estimate is not more than a constant times E .  

3 Multiarc problems 

3.1 Framework 

With a multiarc problem is associated a scenario graph whose edges are the 
arcs of the optimal control problem, i.e, time intervals with a given dynamics 
and integral cost, and vertices are junction points corresponding to starting 
or ending points, separation, or rendez-vous. For instance, with the mission 
example stated in the introduction is associated the following scenario graph: 

Formally, the graph is a pair (V, E) where V is the finite set of vertices, and 
E c V x V is the set of edges. With edge e = (i, j ) ,  where i and j are vertices, 
are associated the following variables and data: 
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ye( t )  E R n e l  ue (t) E R m e  : state and control, 

re  E E n s , ,  : static optimization parameters, size n,,,, 

ee(t, ye@), ue( t ) ,  r e )  : distributed cost, (10) 

f e ( t , ye ( t ) , ue ( t ) , r e )  : state dynamics, 

ge(t ,ye(t) ,ue(t)1ne) : distributed constraints. 

Static optimization parameters are parameters involved at each time step, 
such as a mass of vehicle or the engine power. Since we reduce the possible 
variable time (spent on the arc) to  a fixed unit time through the usual change 
of variables, the durations also appear as static parameters in our formulation. 

With a vertex j E V are associated the following variables and data: 

23  : variables at vertex, size n j ,  

@i(zi) : cost at vertex, (11) 

gi(tj ,  z j )  : distributed constraints. 

Variables z j  include the date t i  associated with the vertex, a copy of either 
initial or terminal states of arcs connected to this vertex, and as a copy of all 
static optimization parameters of these arcs. The multiarc problem may be 
formulated as follows: 

ee( t ,ye( t ) ,ue( t ) )dt  + @ j ( ~ j ) ) ;  
e= ( i , j )~E  3 E V  

ye(t)  = f e ( t , ye ( t ) , ue ( t ) , ne ) ,  t E [ t i l t j ] ,  for all e = ( i , j )  E E, 

0 5 ge(t,  y e ( t ) , ue ( t ) , ne ) ,  for all e E El 
0 5 g i ( t j , z j ) ,  f o r a l l j ~ v ,  

( t )  n )  ( ( t  3 ) 1 ) 2 )  for all j E V. 

The equality constraint a t  the nodes hj includes the above mentioned copies of 
initial or terminal states and static parameters, as well as equality constraints 
on initial or terminal states, if any. 

3.2 Linear algebra 

Here is the main result of this section. 

Theorem 2. Let (V, E) be the scenario graph of the multiarc optimal control 
problem. Let Ne denote the number of time steps of arc e. Denote by s, the 
number of inner steps in the Runge Kutta formula used for arc e, and by ng,, 
the number of distributed constraints on arc e. Let n,,, and n, denote the 
number of static parameters on edge e, and the number of vertices variables 
on vertex v,  respectively. 

Then the band size qe on arc e satisfies qe = s,O(ne + me + n,,,), and a 
procedure (to be detailed below) allows to obtain a complexity for factorization 
and resolution of the Jacobian of discretized optimality system of order 
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Here g and E denote the starting and ending vertices, respectively, of edge e. 

Remark 2. (i) The first sum in (12) represents the order of number of oper- 
ations needed for the factorization of parts of the Jacobian corresponding to 
each arc. Therefore the total cost is proportional to the number of vertices 
and edges (weighted by coefficients depending on the number of associated 
variables) and the overall complexity (12) seems to  be quite low. 
(ii) For most real world optimal control problems, we may expect that the 
dominant term in (12) will be CeEE qzNe, itself of order CeEE sZnZNe. 

The elimination procedure is as follows, 

Algorithm 3 Elimination 

1) Factorize the parts of Jacobian corresponding to each arc 
2) Eliminate all arc variables 
3) Eliminate recursively all node variables, starting from leaves 

Proof of theorem 2. That qe = seO(ne + m e  +n,,,) results from the discus- 
sion before lemma 1. In view of that lemma, the number of multiplications for 
step 1 is of order CeEE[Ne(qz +n , , ,q~)  +n:,,]. Step 2 needs at  most (n, - +nz) 
resolutions of the four blocs matrix and each resolution need (n:,, + q2Ne) 
operations. In step 3, elimination of leaf v connected to vertex w does not 
interplay with other vertices, and need, by lemma 2, the factorization of ma- 
trices of size ni and n j ,  plus solving n j  linear systems of size ni l  which means 
a number of operations of order n: + n j  + njn?.  Since njn5 5 max(n:, n j )  
this is of order nf + n;. The third step being recursive, the conclusion follows. 
rn 

Remark 3. Our implementation of the elimination procedure in C describes 
matrices as data structures plus a routines allowing factorization, so that 
sparse matrices of different types may be involved. We have presently three 
types of matrices: band, full and identity. Only the single arc minimization is 
implemented presently, but it uses already this general elimination procedure. 
What lacks for the multiarc problem is the construction of the optimality 
conditions and its Jacobian, starting from the description of subsection 3.1. 

4 Application to Goddard's problem 

Goddard's problem, stated in 1919 (see e.g. 1201) consists in maximizing the 
final altitude of a rocket with vertical ascent. The model involves three state 
variables: altitude r ,  speed v and mass m, and the thrust F as control variable. 
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The objective is to  maximize the final altitude, the final time being free. The 
Dynamics is 

+(t)  = v(t) ,  

6(t)  = (F ( t )  - D ( v ( t ) , d t ) ) ) l m ( t )  - g(r(t))1 (13) 
riz(t) = -F( t ) / c  

where D is the drag function, with arguments speed and altitude, g( r )  is the 
gravity field, and c is the speed of ejection of gas. The final mass is given, and 
we have a bound on thrust: 0 5 F ( t )  5 Fmax. 

Starting from a speed close to  zero, it happens that the optimal thrust is 
not (as numerical experiments show) to set the thrust a t  Fmax as long as the 
final mass is not attained. The reason is that aerodynamic forces would, in 
that case, tend to reduce significantly the speed. Therefore (although this is 
apparently not proved yet) the optimal law is to set the thrust a t  Fmax for a 
certain time, then to  set it to values in (0, Fmax) (this is the singular arc) and 
finally to set it to zero. The term singular arc comes from the fact that,  since 
the control appears linearly in the dynamics (and not in the cost function) it 
cannot be computed by minimizing the Hamiltonian function. There exists a 
nice piece of theory that allows to obtain the control law during the singular 
arc (see [ lo ,  20]), but of course we do not use it in our numerical experiments. 

Although our code may use arbitrary Runge-Kutta coefficients, we have 
used only the Gauss-Legendre of order 2, so that we may see how the code 
bevahes when there are many time steps. The results are synthetized in Table 
1. Each major iteration corresponds to  the resolution of the penalized problem 
for a given value of E. We display the values of the major iteration I t ,  the size 
N of the mesh, the number of points to  be added (predicted by the refinement 
procedure), the current value of E and the threshold E on error estimates. Ob- 
serve the great accuracy of the refinement procedure, that essentially predicts 
in one shot the points to be added. The number of inner iterations remains 
small. I t  is fair to say, however, that our reduction procedure for E is quite 
conservative (division by 2). Stronger reductions will be the subject of future 
research. 

The optimal control and states are displayed on figures 1-4, for each value 
of the parameter E. We observe the barrier effect for large E, and the conver- 
gence to  a three arcs structure, one of them being singular. 

The density of mesh, after each major iteration is displayed in figure 5. 
The small numbers on the vertical axis are 0,4,8,10,14,16. The original mesh 
has 100 equal steps. We can observe on the final mesh a high density in the 
region corresponding to the singular arc. 

5 Conclusion 

The main features of our approach are the use of dedicated algebra solvers 
that exploit the band structure of sparse matrices, and the optimal refinement 
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Table 1: Results 

scheme. The interior-point methodology avoids the need for large number of 
iterations as in sequential quadratic programming algorithms [ 5 , 7 ] ,  but it 
also gives flexibility for refinement that can be performed at any iteration. 
Of course shooting methods are always less expensive for a given precision, 
but they are not always stable and frequently need a priori knowledge of the 
sequence of active constraints. 

We apply our methodology to reentry problems in [I] (that paper contains 
also a detailed analysis of the refinement problem). Numerical computations 
for multiarc problems will be presented in J .  Laurent-Varin's Ph.D. Thesis. 

Much remains to be done in several directions. (i) In the case of state 
constraints there is a reduction in error orders that should be taken into 
account in the analysis. (ii) We do not have any theory telling what should 
be the order of parameter E for a given value of discretization errors (i.e., 
along which path these two parameters should go to zero). (iii) Convergence 
could be improved (especially for avoiding stationary points that are not local 
minima) by using step decomposition, see [9, Part 1111. 

Finally heuristics for having good starting points are of course essential 
and are a research subject by themselves. 
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Fig. 1: Thrust law Fig. 2: Altitude 

Fig. 3: Velocity Fig. 4: Mass 
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Lagrange Multipliers with Optimal Sensitivity 
Properties in Constrained Optimization 

Dimitri P. Bertsekasl 
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02139, USA. ( d i m i t r i b h i t .  edu) 

Summary. We consider optimization problems with inequality and abstract set 
constraints, and we derive sensitivity properties of Lagrange multipliers under very 
weak conditions. In particular, we do not assume uniqueness of a Lagrange multiplier 
or continuity of the perturbation function. We show that the Lagrange multiplier 
of minimum norm defines the optimal rate of improvement of the cost per unit 
constraint violation. 

Key words: constrained optimization, Lagrange multipliers, sensitivity. 

1 Introduction 

We consider the  constrained optimization problem 

minimize f (x) 

sub jec t to  X E X ,  g j ( x ) l O ,  j = l , . . . , r ,  (PI 

where X is a nonempty subset of !Rn, and f : !Rn -+ !R and g j  : !Rn * !R are 
smooth (continuously differentiable) functions. 

In  our notation, all vectors are viewed as column vectors, and a prime 
denotes transposition, so x'y denotes the  inner product of the  vectors x and 
y. We will use throughout the  standard Euclidean norm IIxI1 = ( X ' X ) ' / ~ .  The  
gradient vector of a smooth function h : !Rn H !R a t  a vector x is denoted by 
Vh(x) .  The  positive part of the  constraint function gj (x)  is denoted by 

and we write 

Research supported by NSF Grant ECS-0218328. 
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The tangent cone of X at  a vector x E X is denoted by Tx(x). It  is the set 
of vectors y such that either y = 0 or there exists a sequence {xk} c X such 
that xk  # x for all k and 

An equivalent definition often found in the literature (e.g., Bazaraa, Sherali, 
and Shetty [BSS93], Rockafellar and Wets [RoW98]) is that Tx(x) is the set 
of vectors y such that that there exists a sequence {xk} C X with xk + x ,  
and a positive sequence { a k }  such that ak + 0 and (xk - x)/cuk + y.  Note 
that Tx(x) is a closed cone, but it need not be convex (it is convex if X is 
convex, or more generally, if X is regular a t  x in the terminology of nonsmooth 
optimization; see [BN003] or [RoW78]). For any cone N ,  we denote by N *  its 
polar cone (N* = { z  I z'y I 0, V y E N}). This paper is related to  research on 
optimality conditions of the Fritz John type and associated subjects, described 
in the papers by Bertsekas and Ozdaglar [Be002], Bertsekas, Ozdaglar, and 
Tseng [BOT04], and the book [BN003]. We generally use the terminology of 
these works. 

A Lagrange multiplier associated with a local minimum x* is a vector 
p = ( p l ,  . . . , pr )  such that 

where A(x*) = { j  / gj(x*) = 0) is the index set of inequality constraints 
that are active at  x*. The set of Lagrange multipliers corresponding to x* 
is a (possibly empty) closed and convex set. Conditions for existence of a t  
least one Lagrange multiplier are given in many sources, including the books 
[BSS93], [Ber99], and [BN003], and the survey [Roc93]. 

We will show the following sensitivity result. The proof is given in the next 
section. 

Proposition 1. Let x* be a local m i n i m u m  of problem (P), assume that the 
set of Lagrange multipliers i s  nonempty ,  and let p* be the vector of m i n i m u m  
n o r m  o n  this set.  T h e n  for every sequence {xk} C X of infeasible vectors such 
that xk + x*,  we have 

Furthermore, if p* + 0 and Tx(x*) is  convex, the preceding inequality i s  sharp 
i n  the sense that there exists a sequence of infeasible vectors {xk} c X such 
that xk + x* and 
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For this sequence, we have 

A sensitivity result of this type was first given by Bertsekas, Ozdaglar, and 
Tseng [BOT04], for the case of a convex, possibly nondifferentiable problem. In 
that paper, X was assumed convex, and the functions f and gj  were assumed 
convex over X (rather than smooth). Using the definition of the dual function 
[q(p) = infZEx{ f (x) + p'g(x))],  it can be seen that 

'd x E X ,  where q* is the dual optimal value (assumed finite), and p* is the 
dual optimal solution of minimum norm (assuming a dual optimal solution 
exists). The inequality was shown to be sharp, assuming that p* # 0, in the 
sense that there exists a sequence of infeasible vectors {xk} c X such that 

This result is consistent with Prop. 1. However, the line of analysis of the 
present paper is different, and in fact simpler, because it relies on the machin- 
ery of differentiable calculus rather than convex analysis (there is a connection 
with convex analysis, but it is embodied in Lemma 1, given in the next sec- 
tion). 

Note that Prop. 1 establishes the optimal rate of cost improvement with 
respect to infeasible constraint perturbations, under much weaker assumptions 
than earlier results for nonconvex problems. For example, classical sensitivity 
results, include second order sufficiency assumptions guaranteeing that the 
Lagrange multiplier is unique and that the perturbation function 

is differentiable (see e.g., [Ber99]). More recent analyses (see, e.g., Bonnans 
and Shapiro [BoSOO], Section 5.2) also require considerably stronger conditions 
that ours. 

Note also that under our weak assumptions, a sensitivity analysis based 
on the directional derivative of the perturbation function p is not appropriate. 
The reason is that our assumptions do not preclude the possibility that p has 
discontinuous directional derivative at u = 0, as illustrated by the following 
example, first discussed in [BOT04]. 
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Example 1. Consider the two-dimensional problem, 

minimize -x2 

subject to x E X = {x / x i  5 x l ) ,  gl (x)  = XI 5 0, g2(x) = x2 < 0, 

we have 
-uz if u i  < u l ,  

P(U) = - if ul < ui, ul 2 0, u2 2 0, 
otherwise. 

It  can be verified that x* = 0 is the global minimum (in fact the unique 
feasible solution) and that the set of Lagrange multipliers is 

Consistently with the preceding proposition, for the sequence xk  = (1/k2, I l k ) ,  
we have 

However, p* = (0, I ) ,  is not a direction of steepest descent, since starting at 
u = 0 and going along the direction (O,l),  p(u) is equal to 0, so 

p'(0; p*) = 0. 

In fact p has no direction of steepest descent a t  u = 0, because pl(O; .) is 
not continuous or even lower semicontinuous. However, one may achieve the 
optimal improvement rate of lip* / /  by using constraint perturbations that lie 
on the curved boundary of X. 

Finally, let us illustrate with an example how our sensitivity result fails when 
the convexity assumption on Tx(x*) is violated. In this connection, it is worth 
noting that nonconvexity of Tx(x*) implies that X is not regular a t  x* (in 
the terminology of nonsmooth analysis - see [BN003] and [RoW78]), and this 
is a major source of exceptional behavior in relation to  Lagrange multipliers 
(see [BN003], Chapter 5). 

Example 2. In this 2-dimensional example, there are two linear constraints 

and the set X is the (nonconvex) cone 

(see Fig. 1). Let the cost function be 
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Fig. 1: Constraintsof Example 2. We have Tx(x*) = X = {x (xl+xz(xl-zz) = 0). 
The set X consists of the two lines shown, but the feasible region is the lower portion 
where 22 5 0. 

Then the vector x* = (0,O) is a local minimum, and we have T x ( x * )  = X ,  so 
T x ( x * )  is not convex. 

A Lagrange multiplier is a nonnegative vector (p? ,  pz) such that 

(Vf ( x * )  + pTVg1 ( x * )  + p ; ~ g ~ ( x * ) ) ' d  2 0,  V d  E T x  ( x * ) ,  

from which, since T x ( x * )  contains the vectors (1 ,0 ) ,  (-1, O ) ,  (0 ,  I ) ,  and 
(0 ,  - I ) ,  we obtain 

Thus the unique Lagrange multiplier vector is p* = ( 1 , l ) .  There are two types 
of sequences { x k }  c X  (and mixtures of these two) that are infeasible and 
converge to x*: those that approach x* along the boundary of the constraint 
xl + x2 5 0  [these have the form ( - F k , F k ) ,  where F k  > 0  and F k  -+ 01, and 
those that approach x* along the boundary of the constraint - X I  + x2 5 0 
[these have the form (tk,Fk), where F k  > 0 and F k  + 01. For any of these 
sequences, we have f ( x k )  = ( F k ) '  + (tk - 1)2 and llg+(xk)ll = 2Fk, so 

Thus 1Ip*II is strictly larger than the optimal rate of cost improvement, and 
the conclusion of Prop. 1  fails. 



20 Dimitri P. Bertsekas 

2 Proof 

Let { x k }  c X be a sequence of infeasible vectors such that xk --+ x*. We 
will show the bound (1.3). The sequence { ( x k  - x*)/llxk - x*II) is bounded 
and each of its limit points belongs to  T x ( x * ) .  Without loss of generality, we 
assume that { ( x k  - x*) /J jxk  - x*I/)  converges to a vector d E T x ( x * ) .  Then 
for the minimum norm Lagrange multiplier p * ,  we have 

Denote 

We have 

T 

v f ( x * )  + C p;vg3 ( x * )  
j=1 

so using Eq. (2.1) and the fact ck --, 0, we have 

T 

V f ( x * )  + C p;vg j ( x* )  ( x k  - x*)  t O(/lxk - x* 1 1 )  (2.2) 
j=1 

Using Eq. (2.2), a Taylor expansion, and the fact p*'g(x*) = 0, we have 

We thus obtain, using the fact p 2 0, 

and using the Cauchy-Schwarz inequality, 
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which is the desired bound (1.3). 
For the proof that the bound is sharp, we will need the following lemma 

first given in Bertsekas and Ozdaglar [Be0021 (see also [BN003], Lemma 
5.3.1). 

Lemma 1. Let N be a closed convex cone in !Rn, and let a o , . .  . , a ,  be given 
vectors in !Rn. Suppose that the set 

is nonempty, and let p* be the vector of minimum norm in M .  Then, there 
exists a sequence {dk} c N* such that 

For simplicity, we assume that all the constraints are active at x*. Inactive 
inequality constraints can be neglected since the subsequent analysis focuses 
in a small neighborhood of x*, within which these constraints remain inactive. 
We will use Lemma 1 with the following identifications: 

M = set of Lagrange multipliers, 

y* = Lagrange multiplier of minimum norm. 

Since Tx(x*) is closed and is assumed convex, we have N*  = Tx(x*) ,  so 
Lemma 1 yields a sequence {dk} c Tx(x*) such that 

Since dk E Tx(x*) ,  for each k we can select a sequence {xklt} C X such that 
xk>t  # x* for all t and 

Denote 

For each k, we select tk  sufficiently large so that 

and we denote 
xk = x k , t k  (k = (k t , ? ,  
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Thus, we have 

Using a first order expansion for the cost function f ,  we have for eac 
t , 

f ( x k )  - f ( x * )  = v f ( x* ) ' ( xk  - x* )  + O(llxk - x* / I )  
= V f (x*) '  (dk + t k )  llxk - x* 1 1  + o(llxk - x * )  

= ilxk - x* 1 1  (V (x*)'dk + v f ( x * ) ' t k  + O ( x k  - x * I I ) )  , 
llxk - x* I /  

and, since tk + 0 and v f ( x * ) ' d k  + -11p*//', 

f ( x k )  - f ( x * )  = -llxk - x* I . IIp*J1' + o(llxk - x*j/) .  (2.5) 

Similarly, using also the fact g j ( x* )  = 0, we have for each k and t ,  

g j ( x k )  = lIxk - x*jlpj* + 0(llxk - x*1),  j = 1,. . . ,7-, 
from which we also have 

g T ( x k )  = llxk - x * 1 1 ~ $  + o( l xk  - x * / ) ,  j = 1, .  . . ,T .  (2.6) 

We thus obtain 

119'-(xk)ll = Ilxk - x*ll * 1lii*11 + 0(llxk - x*II), (2.7) 

which, since IIp*ll # 0,  also shows that Ig+(xk))ll # 0 for all sufficiently large 
k.  Without loss of generality, we assume that 

119'-(xk)ll#O, k = 0 , 1 , . . .  (2.8) 

By multiplying Eq. (2.7) with Ip*11, we see that 
+ k IIii*II . llg (17: I l l  = llxk - x*11 l l ~ * 1 1 ~  + 0(11xk - x*ll). (2.9) 

Combining Eqs. (2.5) and (2.9) ,  we obtain 

f ( x * )  - f ( x k )  = IIii*Il . lIg+(xk)ll + 0(llxk - x*ll), 

which together with Eqs. (2.7) and (2.8),  shows that 

Taking the limit as k -+ cc and using the fact lly*I/ # 0, we obtain 

Finally, from Eqs. (2.6) and (2.7), we see that 

from which Eq. (1.5) follows. 0 
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Summary. We consider the problem of minimizing the distance from a given n- 
dimensional vector to a set defined by constraints of the form xi I: xj. Such con- 
straints induce a partial order of the components x2, which can be illustrated by an 
acyclic directed graph. This problem is also known as the isotonic regression (IR) 
problem. IR has important applications in statistics, operations research and signal 
processing, with most of them characterized by a very large value of n .  For such 
large-scale problems, it is of great practical importance to develop algorithms whose 
complexity does not rise with n too rapidly. The existing optimization-based algo- 
rithms and statistical IR algorithms have either too high computational complexity 
or too low accuracy of the approximation to the optimal solution they generate. 
We introduce a new IR algorithm, which can be viewed as a generalization of the 
Pool-Adjacent-Violator (PAV) algorithm from completely to partially ordered data. 
Our algorithm combines both low computational complexity O(n2) and high accu- 
racy. This allows us to obtain sufficiently accurate solutions to IR problems with 
thousands of observations. 

Key words: quadratic programming, large scale optimization, least distance 
problem, isotonic regression, pool-adjacent-violators algorithm. 

1 Introduction 

We consider the  isotonic regression problem (IR) in the  following least distance 
setting. Given a vector a E Rn, a strictly positive vector of weights w E Rn 
and a directed acyclic graph G ( N ,  E) with the  set of nodes N = { 1 , 2 , .  . . , n),  
find x* E Rn tha t  solves the  problem: 

min wi (xi - ai)' 
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Since this is a strictly convex quadratic programming problem, its solution x* 
is unique. The optimality conditions and an analysis of the typical block (or 
cluster) structure of x* can be found in [BC9O1Lee83,PX99]. The monotonicity 
constraints defined by the acyclic graph G(N,  E) imply a partial order of the 
components xi, i = 1,. . . , n. 

A special case of IR problem arises when there is a complete order of 
the components. This problem, referred to as IRC problem, is defined by a 
directed path G(N,  E) and is formulated as follows: 

min wi (xi - ai) 2 
(2) 

IR problem has numerous important applications, for instance in statis- 
tics [BBBB72,DR82,Lee83], operations research [MM85, R86] and signal pro- 
cessing [AB98, RB931. These applications are characterized by a very large 
value of n.  For such large-scale problems, it is of great practical importance 
to develop algorithms whose complexity does not rise with n too rapidly. The 
existing optimization-based algorithms [DMTOl] and statistical IR algorithms 
have either high computational complexity or low accuracy of the approxima- 
tion to  the optimal solution they generate. In this connection, let us quote a 
recent paper by Strand [Str03]: 

Unfortunately, in the case where m > 1 and at least some of the 
explanatory variables are continuous (i.e. typical multiple regression 
data) ,  there is no practical algorithm to determine LSIR ... estimates 

where m stands for the number of explanatory variables. The case m > 1 in 
the least squares isotonic regression (LSIR) corresponds to problem ( I ) ,  while 
the case m = 1 corresponds to (2). 

The most widely used method for solving IRC problem (2) is the so-called 
pool-adjacent-violators (PAV) algorithm [ABERS55, BBBB72, HPW731. This 
algorithm is of computational complexity O(n)  (see [BC90,PX99]). The PAV 
algorithm has been extended by Pardalos and Xue [PX99] to  the special case 
of IR problem ( I ) ,  in which the partial order of the components is presented 
by a directed tree. Several other special cases, in which the PAV algorithm 
is applied repeatedly to  different subsets of the components, are considered 
in [BDPR84,DR82,SS97,Str03]. In [BC90], it was shown that some algorithms 
for problems (1) and (2) may be viewed as active set quadratic programming 
methods. The minimum lower set algorithm [Br55] is known to be the first 
algorithm proposed for the general IR problem. It  was shown in [BC90] that 
this algorithm, being applied to IRC problem, is of complexity O(n2) .  Per- 
haps, the most widely used approaches for solving applied IR problems are 
based on simple averaging techniques [M88, MS94, Str031. They can be easily 
implemented and enjoy a relatively low computational burden, but the quality 
of their approximations to  x* are very case-dependent and can be far from 



An O(n2) Algorithm for Isotonic Regression 27 

optimal. The best known computational complexity for the general case of IR 
problem is 0 ( n 4 ) ,  and it refers to an algorithm introduced in [MM85,R86]. 
This algorithm provides the exact solution to problem (1) by solving O(n) 
minimal flow problems. 

The aim of this paper is to  present our generalization of the PAV algorithm 
to the case of IR problem (1). It is referred to  as the GPAV algorithm. Our 
numerical experiments shows that it enjoys both low computational burden 
and high accuracy. The computational complexity of our algorithm is O(n2) .  
It  must be emphasized here that,  for graphs of some special structure, the 
number of non-redundant monotonicity constraints in (1) grows in proportion 
to  n2 .  

In the case of the partial order presented by a directed tree, the GPAV 
algorithm is closely related to the algorithm of Pardalos and Xue [PX99]. 
These two algorithms provide the exact optimal solution, and they are of 
complexity 0 (n  log n)  . 

The article is organized as follows. Section 2 describes the GPAV algo- 
rithm. Its O(n2)  complexity is discussed in Section 3. Section 4 presents the 
results of our numerical experiments, which indicate that the GPAV algo- 
rithm provides much higher accuracy and has lower computational burden in 
comparison to  the simple averaging algorithm. The numerical results comple- 
ment those we reported in [BGH04,HGBSO5] for some other test and applied 
problems. 

2 Generalization of PAV algorithm 

We say that the component xi is adjacent to the component x j ,  if ( i ,  j )  E E. 
According to  [BC90, Lee83, PX991, the optimal solution to IR problem (1) is 
characterized by groups (blocks) of several adjacent components x5 with one 
and the same value equal to the average a-value over the block they belong 
to. 

The GPAV algorithm generates some splitting of the set of nodes N into 
disjoint blocks of nodes. Since the values of components within one block 
are the same, each block is presented in the subsequent computations by one 
element called the head element. The block with the head element i E N is 
denoted by Bi.  The set of head elements is denoted by H. Obviously, H C N, 
and moreover, 

The components of x associated with each block Bi ,  i E H ,  have the following 
values 
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where 

is the weight of block Bi. 
For node i E N ,  denote the set of its immediate predecessors {j E N : 

(j,i) E E) by i-. The block Bi is said to  be adjacent to block B j ,  or called 
immediate predecessor for B j ,  if there exist k E Bi and 1 E B j  such that 
k E 1 - .  Let B, denote the set of all adjacent blocks for Bi.  The GPAV 
algorithm sets initially Bi = {i) and B; = i- for all the nodes i E N ,  and 
subsequently operates with the blocks only. 

The GPAV algorithm deals with a reduced acyclic graph of blocks, which 
is initially identical to G(N,  E), and which subsequently can shrink from step 
to step. This is because one block can absorb, under certain conditions, its 
adjacent block. This operation reduces the set of blocks and edges connecting 
them. The operation of absorbing Bi 6 B y  by B j  can be presented as follows. 

Algorithm ABSORB (i,  j). 

1. Set H = H \ {i). 
2,  Set B j  = Bz- U B j  \ {i). 
3. Set x j  = (Wjxj + W2xi) / (Wj + Wz). 
4. Set B j  = B j U B i  and Wj = Wj+Wi .  
5. For all k E H such that i E Bi, set BI, = BI, \ {i) U { j ) .  

The GPAV algorithm returns a feasible approximation 2 to the optimal 
solution x*. Our numerical experiments show that the accuracy of this ap- 
proximation is sufficiently high. The GPAV algorithm begins with the set of 
untreated blocks U = N ,  and then treats the blocks in U one by one. This 
takes n steps. After each treatment step, the values assigned to  the compo- 
nents xi, i E H \ U, ensure the fulfillment of those of the original monotonic- 
ity constraints, which involve only the components composing the blocks Bi ,  
i E H \ U .  It is typical in practice that these values are optimal solutions to 
problem (1) reduced to the variables xi E N \ U. If not optimal, the values of 
these components are reasonably close to the optimal ones. 

We call B j  a lower block of U, if the set {i E U : i E B j )  is empty, i.e., 
if U contains no blocks adjacent to B j  E U. The block to  be treated, say Bj ,  
is chosen in the GPAV algorithm among the lower elements of the partially 
ordered set U. Then B j  can be enlarged by absorbing, one by one, some of its 
adjacent blocks in H \ U. If the common value of the components of x in the 
new block violates any of the monotonicity constraints involving its adjacent 
blocks, the new block absorbs the one corresponding to the mostly violated 
constraint. This operation is repeated until all the constraints involving the 
new block and its adjacent ones are satisfied. Our generalization of the PAV 
algorithm can be presented as follows. 
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Algorithm GPAV. 

1. Set H =  N and U =  N .  
2. For all i E N ,  set Bi = {i), B, = i - ,  x i = a i  and Wi =wi .  
3.  While U # 0, do: 
4. Find any of the lower elements of U ,  say, j .  Set U = U \ {j ) .  
5 .  While there exists k E B, such that xk _> xj, do: 
6. Find i E B j  such that xi = max{xk : k E B j ) .  
7. ABSORB (i,  j ) .  
8. F o r a l l k E  H a n d i E B k , s e t 2 i = x k .  

This algorithm can be viewed as a generalization of the PAV algorithm, 
because they coincide for IRC problem (2). Moreover, the GPAV algorithm is 
closely related to the algorithm of Pardalos and Xue [PXSS], when the graph 
G(N ,  E) in IR problem (1) is a directed tree. 

3 Complexity 

A detailed proof of the fact that the GPAV algorithm is of computational 
complexity O(n2)  will be presented in a separate paper. Here we just outline 
the basic properties of our algorithm which will be used in the proof. 

Obviously, Steps 1, 2 and 8 of Algorithm GPAV take O(n)  time. Step 4 
is repeated n times, and each time the complexity of finding a lower element 
of U does not exceed 0(1U() .  Thus, all the operations related to Step 4 are 
of complexity O(n2) .  Algorithm ABSORB can be implemented in O(n)  time. 
The number of times that it is called on Step 7 of Algorithm GPAV does not 
exceed n ,  the total number of nodes. The while-loop presented by Steps 5-7 
can not be repeated more than 2n times, because every computation of the 
while-condition either terminates (n  times at  most) the treatment of the new 
block, or allows (n times at most) the new block to  absorb one of its adjacent 
blocks. At Steps 5 and 6, each operation of finding the maximal value of the 
head components of the blocks adjacent to  the new one takes O(n)  time. 
Therefore, the total number of operations associated with the while-loop can 
be estimated as O(n2) .  

The reasoning above explains why the GPAV algorithm is of computational 
complexity O(n2) .  Notice that the complexity is of the same order as the 
possible maximal number of non-redundant constraints in ( I ) ,  which is also 
estimated as O(n2).  

4 Numerical results 

We used MATLAB for implementing the GPAV algorithm, the simple averag- 
ing algorithm described in [M88], and a modification of the GPAV algorithm. 
They are referred to  as GPAV, SA and GPAV+, respectively. 
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In the modification mentioned above, we run GPAV twice. First, we run it 
on the original problem ( I ) ,  which returns an approximation 2' to the optimal 
solution. Second, we run it on the problem 

min x wi (zi - as)2 

which is equivalent to  (1) for Sii = -ai, Zi = -xi and for the same edges in 
l? as in E, but inverted. Let i" denote the resulting approximation to the 
optimal solution of (1). Denote the convex linear combination of these two 
approximations as x(X) = X i '  + (1 - X)il', where the scalar X E [0, 11. Since 
the feasible region in (1) is a convex set, x(X) does not violate the monotonicity 
constraints. Then GPAV+ returns an approximation to the optimal solution 
of problem (1) that corresponds to the optimal solution of the simple one- 
dimensional problem: 

min x wi (xi (A) - ai)'. 
O < X < l  i=l 

In our test IR problems we set wi = 1, i = 1, .  . . , n. The test problems 
were based on the model 

a = U l + U z + ~ ,  

where U1, Uz are two explanatory variables (m = 2) and E is an error. Samples 
of n = 80, n = 400 and n = 2000 observations 

were generated for normally distributed explanatory variables and for nor- 
mally, exponentially or double-exponentially distributed error. Thereafter, for 
each i ,  j E N such that Ui _< Uj component-wise, we generated the mono- 
tonicity constraint xi < xj .  In this way we constructed the set of edges 

E = {(i, j )  : Ui _< ~ j ,  i ,  j E N), (3) 

that,  along with a l ,  . . . ,a,, define problem (1). Then we reduced E by elimi- 
nating all the redundant constraints, i.e., we eliminated the edge (i ,  j ) ,  if there 
existed k E N such that (i ,  k) E E and (k, j )  E E. We also performed a topo- 
logical sort [CLRSOl] of our directed acyclic graph to  assure that (i ,  j )  E E 
implies i < j. The topological sort allowed to skip the search for a lower ele- 
ment of U at  Step 4 of Algorithm GPAV; instead, the blocks were treated in 
the natural order B1, B',. . . , Bn. 

For the future numerical experiments, we plan to generate in an efficient 
way the reduced set of edges directly from the data, without generating the 
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complete set of edges (3). This will produce simultaneously a topological sort 
of our graph. 

The numerical results presented here were obtained on a PC  running under 
Windows XP with a Pentium 4 processor (2.8 GHz). We compare the objective 
function value of problem ( I ) ,  obtained by GPAV, GPAV+ and SA, with the 
optimal objective function value obtained by MATLAB solver lsqlin. Tables 1, 
2 and 3 summarize the obtained performance data, where we use the notation 

N/A = lsqlin failed to solve problem within given time limits, 
sum = objective function value (sum of squares), 
cpu = CPU time (seconds) until termination, 

r.e.% = relative error (%) calculated as follows, 

SumA - lsqlin . loo%, 
lsqlin 

where A stands for GPAV, GPAV+ or SA. 

Table 1: Normally distributed errors. 

n 80 400 2000 

sum cpu r.e.% sum cpu r e %  sum cpu 

GPAV 41.966 0.016 4.14 279.819 0.172 1.16 1670.699 6.532 
GPAV+ 41.3150.048 2.52 279.496 0.562 1.05 1657.81419.579 
S A 52.722 0.047 30.83 356.515 0.875 28.89 2132.418 18.875 
lsqlin 40.297 0.657 0.00 276.589 263.969 0.00 N/A N/A 

Table 2: Exponentially distributed errors. 

sum cpu r.e.% sum cpu r.e.% sum cpu 

GPAV 19.475 0.032 2.52 161.177 0.171 0.74 1445.026 6.375 
GPAV+ 19.365 0.062 1.94 160.631 0.655 0.40 1439.493 19.359 
S A 23.601 0.047 24.24 222.578 0.891 39.12 1726.989 18.750 
lsqlin 18.995 0.390 0.00 159.983 233.766 0.00 N/A N/A 

The three tables show that GPAV required less CPU time than SA for pro- 
ducing much more accurate approximation to the optimal solution. Moreover, 
GPAV+ always improved the relative error produced by GPAV, requiring for 
this about three times more CPU time. The linear combination of the ap- 
proximations generated by GPAV+ and SA did not result in any appreciable 
improvement of the accuracy. 
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Table 3: Double-exponentially distributed errors. 

sum cpu r.e.% sum cpu r.e.% sum cpu 

GPAV 51.190 0.015 0.93 604.085 0.266 1.56 3344.406 6.266 
GPAV+ 51.105 0.047 0.76 598.177 0.703 0.56 3317.172 18.219 
S A 70.043 0.031 38.10 1406.101 0.844 136.40 7488.342 18.250 
lsqlin 50.716 0.484 0.00 594.787 365.000 0.00 N/A N/A 

All these observations are in good agreement with the  numerical results 
reported in [BGH04, HGBS051 for some other test and applied problems. 

5 Conclusions 

The  presented generalization of the  PAV algorithm allows us now to  obtain 
sufficiently accurate solutions t o  the  isotonic regression problems with thou- 
sands of observations. The lack of the  complete order in the  data  is not tha t  
limiting now as it was previously. 

In our future work, we plan to  improve the presented version of the  GPAV 
algorithm in the following way. When the  algorithm is running, it is not diffi- 
cult t o  check whether the x-components of the new block produced on Steps 
5-7 are suspected to  be nonoptimal. Then such block can be split in smaller 
ones in order to  make the  corresponding values of the  x-components more 
close, or even equal, t o  the  optimal values. 
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Summary. This paper describes KNITRO 5.0, a C-package for nonlinear optimiza- 
tion that combines complementary approaches to nonlinear optimization to achieve 
robust performance over a wide range of application requirements. The package is 
designed for solving large-scale, smooth nonlinear programming problems, and it is 
also effective for the following special cases: unconstrained optimization, nonlinear 
systems of equations, least squares, and linear and quadratic programming. Various 
algorithmic options are available, including two interior methods and an active-set 
method. The package provides crossover techniques between algorithmic options as 
well as automatic selection of options and settings. 

Key words: nonlinear optimization, optimization software, interior-point, 
SLQP. 

1 Introduction 

Nonlinear programming problems are often difficult t o  solve. In spite of the  
rapid pace of algorithmic improvements, the  most efficient algorithms avail- 
able a t  present provide no guarantees of success or of fast performance over a 
range of applications. To complicate matters, the  search for improved meth- 
ods has led researchers to  propose a variety of algorithms, each of which is 
typically implemented in a separate software package. To overcome the  nu- 
merous difficulties tha t  arise in practice, software developers have included 
a variety of options and heuristics t o  improve the chances of success. These 
packages are, however, constrained by the  underlying algorithm, and as is 
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well known, no single approach is uniformly successful in nonlinear optimiza- 
tion. The prospective user is thus faced with a difficult choice. Each code is 
unique in many ways: input and output formats, options and conventions. 
Thus there is a steep learning curve in trying to  achieve the most effective 
use of a package. The availability of many codes through the NEOS Server 
h t t p :  //www-neos .mcs . an1 .gov/ addresses only some of these issues. 

The KNITRO software package aims to achieve greater flexibility and ro- 
bustness through an integration of two powerful and complementary algorith- 
mic approaches for nonlinear optimization: the interior-point approach and 
the active-set approach. The impressive success of an integrated approach 
of this sort for linear and integer programming, particularly over the past 
decade [21,23], argues for a similar approach to  be taken in nonlinear opti- 
mization. KNITRO is capable of applying features of an interior-point method 
or an active-set method - or possibly both - depending on problem charac- 
teristics. Within the interior-point approach, KNITRO provides two algorithms 
implementing distinct barrier approaches. One of the main challenges in the 
development of KNITRO has been the effective integration of the interior and 
active-set algorithms into a unified package, and the development of tools that 
exploit the power of our integrated approach. 

The nonlinear programming formulation considered in this paper is: 

min f (x) 
X 

subject to  c,(x) = 0 

c,(x) 2 0, 

where f : Rn -+ R, c, : Rn -, R1 and c, : Rn -+ Rm are twice continuously 
differentiable functions. Problem (1.1) includes as special cases unconstrained 
optimization, systems of nonlinear equations, least squares problems, linear 
programs and quadratic programs. An important feature of the algorithms 
implemented in KNITRO is that they automatically reduce to  effective algo- 
rithms for each of the simpler problem classes. 

The quality and diversity of nonlinear optimization software has greatly 
improved during the last 10 years. Some of the established packages have ma- 
tured, and new packages have emerged. SNOPT [18] and FILTERSQP [15] im- 
plement active-set sequential quadratic programming (SQP) methods. SNOPT 
uses a line search approach, and in its default setting, employs quasi-Newton 
approximations to the Hessian. FILTERSQP follows a trust region approach, 
with filter globalization, and makes use of second-derivative information. The 
MINOS [29] and LANCELOT [12] packages, which were the first widely available 
codes capable of solving problems with tens of thousands of variables and con- 
straints, implement augmented Lagrangian methods. Another well established 
package is CONOPT [14], which offers reduced Hessian and SQP methods. 

Most of the new packages are based on the interior-point approach. LOQO 
[33] implements a line search primal-dual algorithm that can be viewed as a 
direct extension of interior methods for linear and quadratic programming. 
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The first release of KNITRO [6] offered a trust region interior-point algorithm 
employing a conjugate gradient iteration in the step computation; the sec- 
ond release added a line search interior algorithm that is safeguarded by the 
trust region approach [38]. BARNLP 121 and IPOPT [36] implement line search 
interior-point approaches; IPOPT uses a filter globalization and includes a fea- 
sibility restoration phase. MOSEK [I] is a primal-dual interior-point method 
for convex optimization, and PENNON 1251 follows an augmented Lagrangian 
approach. 

New active-set methods based on Sequential Linear-Quadratic Program- 
ming (SLQP) have recently been studied by Chin and Fletcher [9] and Byrd 
et al. 151. Unlike SQP methods, which combine the active-set identification 
and the step computation in one quadratic subproblem, SLQP methods de- 
couple these tasks into two subproblems. The active-set algorithm in KNITRO, 
implements the SLQP method described in 151. 

Interior-point and active-set methods offer competing state-of-the-art ap- 
proaches for solving nonlinear optimization problems - each with its own set 
of advantages. Benchmarking studies 113,281 have tried to identify the classes 
of problems for which each approach is best suited, but the rapid pace of soft- 
ware development makes it difficult to arrive at  concrete conclusions at this 
time. We take the view that interior-point and active-set methods will both 
be needed in the years to come. 

2 Overview of the Package 

KNITRO 5.0 is a C-package for solving nonlinear optimization problems. It  
is designed for large-scale applications, but it is also effective on small and 
medium scale problems. A great deal of attention has been given to the per- 
formance of the KNITRO algorithms on simpler classes of problems such as 
systems of nonlinear equations and unconstrained problems because these 
tasks are crucial in the solution of nonlinear programming problems. We have 
also ensured that the algorithms are fast and reliable on linear and quadratic 
programming problems. A schematic view of the KNITRO package is given in 
Figure 1. 

In Figure 1 the nomenclature CG reflects the fact that the algorithmic 
step is computed using an iterative conjugate gradient approach, while DI- 
RECT implies that the step is (usually) computed via a direct factorization 
of a linear system. As the figure suggests, the software design will enable the 
addition of future options in the package such as a DIRECT version of the 
active-set algorithm. Throughout the remainder of this paper we will refer to 
the implementations of the CG and direct interior-point algorithms in KNI- 
TRO as INTERIORICG and INTERIORIDIRECT, and the active-set algorithm 
implementation will be called ACTIVE. 

In the following sections we give an outline of the algorithms implemented 
in KNITRO. The descriptions are inevitably incomplete, since many additional 
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/ INTERIOR-POINT 1 - - - - - - - - - - - - - - - - - - 4 ACTIVE-SET I 

Fig. 1: The main algorithmic options in the KNITRO 5.0 package. 

features (such as second-order corrections, iterative refinement steps, resetting 
of parameters, and regularization procedures) are needed to achieve efficiency 
and robustness over a range of problems. Nevertheless, our outlines highlight 
the main features of the algorithms. 

3 Interior-Point Methods 

The interior (or barrier) methods implemented in KNITRO associate with (1.1) 
the barrier problem 

min f (x) - p log si 
X , S  i=l 

subject to cE(x) = 0 

where s is a vector of slack variables and p > 0. The interior approach consists 
of finding (approximate) solutions of the barrier problem (3.1) for a sequence 
of positive barrier parameters {pk)  that converges to zero. 

The KKT conditions for (3.1) can be written as 

Vf (x) - A , ~ ( X ) ~  - A , ~ ( Z ) ~  = 0 (3.2a) 

- p e + S z  = 0 (3.2b) 

cE(x) = 0 ( 3 . 2 ~ )  

c I (x )  - s = 0, (3.2d) 

where e = (1, ..., I ) ~ ,  S = diag(sl, ... , s,), A, and A, are the Jacobian ma- 
trices corresponding to the equality and inequality constraint vectors respec- 
tively, and y and z represent vectors of Lagrange multipliers. We also must 
have that s ,  z > 0. In the line search approach, we apply Newton's method 
to (3.2), backtracking if necessary so that the variables s, z remain positive, 
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and so that the merit function is sufficiently reduced. In the trust region ap- 
proach, we associate a quadratic program with (3.1) and let the step of the 
algorithm be an approximate solution of this quadratic subproblem. These 
two approaches are implemented, respectively, in the INTERIOR/DIRECT and 
INTERIOR/CG algorithms, and are described in more detail below. 

The other major ingredient in interior methods is the procedure for choos- 
ing the sequence of barrier parameters { p k ) .  Several options are provided in 
KNITRO. In the Fiacco-McCorrnick/monotone approach, the barrier param- 
eter p is held fixed for a series of iterations until the KKT conditions (3.2) 
are satisfied to some accuracy. An alternative is to use an adaptive strategy 
in which the barrier parameter is updated at  every iteration. We have im- 
plemented the following adaptive update options: (i) the rule implemented 
in LOQO [33] based on the deviation of the minimum complementarity pair 
from the average; (ii) a probing strategy that uses Mehrotra's predictor step 
to select a target value for p;  (iii) a so-called quality-function approach; (iv) 
variants of option (ii) which possibly utilize safeguarded corrector steps. These 
rules are described and tested in Nocedal, Waechter and Waltz [30]. Since it 
is not known at  present which one is the most effective in practice, KNITRO 
allows the user to  experiment with the barrier update strategies just men- 
tioned. 

To control the quality of the steps, both interior algorithms make use of 
the non-differentiable merit function 

where v > 0. A step is acceptable only if it provides a sufficient decrease in 4,. 
Although it has been reported in the literature [22,34] that merit functions 
of this type can interfere with rapid progress of the iteration, our experience 
indicates that the implementation described in Section 3.3 overcomes these 
difficulties. These observations are consistent with the results reported in Ta- 
ble 2 of Wachter and Biegler [36], which suggest that this merit function 
approach is as tolerant as a filter mechanism. 

3.1 Algorithm I: KNITRO-INTERIOR/DIRECT 

In this algorithm a typical iteration first computes a (primary) line search 
step using direct linear algebra. In order to obtain global convergence in the 
presence of non-convexity and Hessian or Jacobian singularities, the primary 
step may be replaced, under certain circumstances, by a safeguarding trust re- 
gion step. INTERIOR-DIRECT is an implementation of the algorithm described 
in [38]. 

We begin by describing the (primary) line search step. Applying Newton's 
method to (3.2), in the variables x, s, y, z ,  gives 
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a given threshold, we discard the line search iteration (3.4)-(3.9) and replace 
it with the  t rus t  region step. 

We outline the  method in Algorithm 3.1. Here D+,(x, s; d) denotes the  
directional derivative of the merit function 4, along a direction d. T h e  algo- 
r i thm maintains a trust  region radius Ak a t  every iteration, in case it needs 
t o  revert t o  t he  trust  region approach. 

A lgo r i t hm 3.1: KNITRO-INTERIORIDIRECT 

Choose X O ,  so > 0, and the parameters 0 < 7 ,  and 0 < a,,, < 1. 
Compute initial values for the multipliers yo, zo > 0, the trust-region 
radius d o  > 0, and the barrier parameter p > 0. Set k = 0. 

R e p e a t  until a stopping test for the nonlinear program (1.1) is satisfied: 
R e p e a t  until the perturbed KKT condit,ions (3.2) are approximately 

satisfied: 
Factor the primal-dual system (3.4) and record the number ne ig  
of negative eigenvalues of its coefficient matrix. 
Set LineSearch = False.  
If ne ig  5 1 + m 

Solve (3.4) to obtain the search direction d = (d,, d,, d,, d,). 
Define ur = (xk, sk) and dw = (d,, d,). 
Compute cryax, a:"" by (3.7). 
If  min{ayax, ayaX) > amin, 

Update the penalty parameter uk (see Section 3.3). 
Compute a steplength a, = daynx, 6 E (O,1] such that 
4 u ( ~  + asdw) I 4 v ( ~ )  + v a s D $ v ( ~ ;  dw). 
If a s  > a m i n ,  

Set a, = &a:"". 
Set ( x k + ~ ,  sk+l, Y ~ + I ,  zk+1) by (3.9). 
Set LineSearch = True. 

Endi f  
Endi f  

End i f  
IfLineSearch == False ,  

Compute (xk+ l r  sk+l, yk+l, zk+l) using the INTERIOR/CG 
algorithm of Section 3.2. 

End i f  
Compute Ak+l .  
Set k t k f l .  

E n d  
Choose a smaller value for the barrier parameter p.  

E n d  
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The initial multipliers yo, zo are computed as the least-squares solution of 
the system (3.2a)-(3.2b). When the line search step is discarded (the last If- 
Endif block in Algorithm 3.1) we compute one or more INTERIORICG steps 
(described in the following section) until one of them provides sufficient re- 
duction in the merit function. 

We assume in Algorithm 3.1 that we are using the Fiacco-McCormick/ 
monotone approach for updating the barrier parameter p .  However, this algo- 
rithm is easily modified to implement the adaptive barrier update strategies 
discussed at  the beginning of Section 3. In this case, there is no barrier stop 
test and the barrier parameter p is updated at  every iteration using some 
adaptive rule (which could cause p to increase or decrease). 

3.2 Algorithmic Option 11: KNITRO-INTERIORICG 

The second interior algorithm implemented in KNITRO computes steps by 
using a quadratic model and trust regions. This formulation allows great free- 
dom in the choice of the Hessian and provides a mechanism for coping with 
Jacobian and Hessian singularities. The price for this flexibility is a more 
complex iteration than in the line search approach. INTERIORICG is an im- 
plementation of the algorithm described in [B], which is based on the approach 
described and analyzed in [3]. 

To motivate the INTERIORICG algorithm, we first note that the barrier 
problem (3.1) is an equality-constrained optimization problem and can be 
solved by using a sequential quadratic programming method with trust re- 
gions. A straightforward application of SQP techniques to  the barrier prob- 
lem leads, however, to  inefficient steps that tend to  violate the positivity of 
the slack variables and are frequently cut short by the trust-region constraint. 
To overcome this problem, we design the following SQP method specifically 
tailored to the barrier problem. 

At the current iterate (xk ,  s k ) ,  and for a given barrier parameter p ,  we 
first compute Lagrange multiplier estimates (yk, zk) and then compute a step 
d = (d,, d,) that aims to solve the subproblem, 

I T 2  1 min v f ( ~ k ) ~ d ,  + -dx VxxC(xlc, sk, yk, zk)dx - peT5','dS + -d:Ckd, 
d, ,d, 2 2 

where Ck = sk1zk and T = 0.995. Ideally, we would like to set r = (r,, r,) = 
0, but since this could cause the constraints to  be incompatible or produce 
poor steps, we choose r as the smallest vector such that (3.10b)-(3.10d) are 
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which we refer t o  as the  tangential subproblem. To find an  approximate solu- 
tion d of (3.12), we first introduce the scaling 

which transforms (3.12d) into a sphere. Then we apply the  projected conju- 
gate gradient (CG) method of Section 5 to  the  transformed quadratic program, 
iterating in the  linear manifold defined by (3.12b)-(3.12~). During the solu- 
tion by CG,  we use a Steihaug strategy, monitoring the  satisfaction of the  
trust-region constraint (3.12d), and stopping if the  boundary of this region is 
reached or if negative curvature is detected. Finally, we truncate the  step d if 
necessary in order to  satisfy (3.10e). 

We outline this interior method in Algorithm 3.2. Here 

ared(d) = h ( x ,  s) - 4, (x  + d,, s + d,) (3.14) 

is the  actual reduction in the  merit function, and the  predicted reduction, 
pred(d), is defined by (3. IS),  (3.16). 

I Algorithm 3.2: KNITRO-INTERIOR/CG I 
Choose parameter 17 > 0. Choose initial values for p > 0, s o ,  s o  > 0 
and A0 > 0. 
Set k = 0. 

Repeat until a stopping test for the nonlinear program (1.1) is satisfied: 
Repeat until the perturbed KKT conditions (3.2) are approximately 

satisfied: 
Compute the normal step uk = (urn ,  us) 
Compute Lagrange multipliers yk, zk > 0. 
Compute the total step dk by applying the projected CG method 

to (3.12a)-(3.12~) (see Section 5). 
Update the penalty parameter vk (see Section 3.3). 
Compute aredk(dk) by (3.14) and pred,(dk) by (3.16). 
If are&(&) > 17predk(dk) 

Set xk+l = xk + dr ,  sk+l = sk + ds, and update Ah+*. 
Else 

Set xk+l = xk, sk+l = sk, and choose Ak+l < Ak.  
Endif 
Set k t k + l .  

End 
Choose a smaller value for the barrier parameter p . 

End 

The  multiplier estimates (yk, zlc)  are computed by a least squares approx- 
imation to  the  equations (3 .2~)-(3 .2b)  a t  x k ,  and shifted to  ensure positivity 
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of z k .  The barrier stop tolerance can be defined as E, = p. As with the IN- 
TERIORIDIRECT algorithm, this algorithm is easily modified to implement 
adaptive barrier update strategies. 

The interior-point method outlined in Algorithm 3.2 is asymptotically 
equivalent to standard line search interior methods, but it is significantly dif- 
ferent in two respects. First, it is not a fully primal-dual method in the sense 
that multipliers are computed as a function of the primal variables (x, s) - 
as opposed to the formulation (3.4) in which primal and dual variables are 
computed simultaneously from their previous values. Second, the trust-region 
method uses a scaling of the variables that discourages moves toward the 
boundary of the feasible region. This causes the algorithm to generate steps 
that can be very different from those produced by a line search method. 

3.3 Merit Function 

The role of the merit function (3.3) is to determine whether a step is produc- 
tive and should be accepted. Our numerical experience has shown that the 
choice of the merit parameter v plays a crucial role in the efficiency of the 
algorithm. Both interior-point methods in KNITRO choose v at every iteration 
so that the decrease in a quadratic model of the merit function produced by 
a step d is proportional to the product of v times the decrease in linearized 
constraints. 

To be more specific, suppose that either the INTERIOR/DIRECT or IN- 
TERIOR/CG algorithm has produced a step d. We define the following lin- 
earlquadratic model of the merit function 4,: 

where 

denotes the first-order violation of the constraints, and CT is a parameter to  be 
discussed below. We also define the predicted decrease in the merit function 
as 

~ r e d ( d )  = Qu(0) - Qu(d). (3.16) 

In all cases we choose the penalty parameter v large enough such that 

for some parameter 0 < p < 1 (e.g. p = 0.1). If the value of v from the previous 
iteration satisfies (3.17), it is left unchanged, otherwise v is increased so that 
it satisfies this inequality with some margin. Condition (3.17) is standard for 
trust region methods, but not for line search methods, where it may require 
v to  be larger than is needed to simply provide a descent direction. As shown 
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in 1381 this stronger condition can improve performance of the line search 
iteration. 

For a trust region method, such as that implemented in INTERIORICG, 
we set a = 1 in (3.15) because these methods can deal well with indefiniteness 
of the Hessian. A line search method, on the other hand, does not always 
produce a descent direction for the merit function if the model on which it is 
based is not convex. Therefore in the INTERIOR/DIRECT algorithm we define 
a as 

1 if d ~ ~ ~ , ~ d ,  + dyCd,  > o 
0 otherwise. 

(3.18) 

This choice of a guarantees the directional derivative of 4, in the direction d  
is negative. 

4 Active-set Sequential Linear-Quadratic Programming 

The active-set method implemented in KNITRO does not follow an SQP ap- 
proach because, in our view, the cost of solving generally constrained quadratic 
programming subproblems imposes a limitation on the size of problems that 
can be solved in practice. In addition, the incorporation of second derivative 
information in SQP methods has proved to  be difficult. 

We use, instead a sequential linear-quadratic programming (SLQP) method 
[5,9,16] that computes a step in two stages, each of which scales up well with 
the number of variables. First, a linear program (LP) is solved to identify a 
working set. This is followed by an equality constrained quadratic program- 
ming (EQP) phase in which the constraints in the working set W are imposed 
as equalities. The total step of the algorithm is a combination of the steps 
obtained in the linear programming and equality constrained phases. 

To achieve progress on both feasibility and optimality, the algorithm is 
designed to reduce the el penalty function, 

where ci, i E E l  denote the components of the vector c,, and similarly for c,. 
The penalty parameter v is chosen by an adaptive procedure described below. 

An appealing feature of the SLQP algorithm is that established techniques 
for solving large-scale versions of the LP and EQP subproblems are readily 
available. Modern LP software is capable of solving problems with more than a 
million variables and constraints, and the solution of an EQP can be performed 
efficiently using the projected conjugate gradient iteration discussed in Sec- 
tion 5. We now outline the SLQP approach implemented in KNITRO-ACTIVE. 
This algorithm is an implementation of the algorithm SLIQUE described in [5]. 
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4.1 Algorithm 111: KNITRO-ACTIVE 

In the LP phase, given an estimate xk of the solution of the nonlinear program 
(1 . I ) ,  we would like to solve 

subject to  c , ( x ~ )  + v ~ i ( x k ) ~ d  = 0, i E E (4.2b) 

~ ~ ( 2 1 ~ )  + V C ~ ( X ~ ) ~ ~  1 0, i € Z ( 4 . 2 ~ )  

IIdIIoo I nip, (4.2d) 

with A iP  > 0. (Note that (4.2) differs from the subproblem used in SQP 
methods only in that the latter include a term of the form i d T ~ d  in (4.2a), 
where H is an approximation to the Hessian of the Lagrangian of the nonlinear 
program.) Since the constraints of (4.2) may be inconsistent, we solve instead 
the el penalty reformulation of (4.2) given by 

subject to iidllw < AiP.  (4.3b) 

The solution of this linear program, which we denote by dLP, is computed by 
the simplex method so as to obtain an accurate estimate of the optimal active 
set. 

Based on this solution, we define the working set W as some linearly 
independent subset of the active set A at  the LP solution, which is defined as 

Likewise, we define the set V of violated constraints as 

To ensure that the algorithm makes progress on the penalty function P, 
we define the Cauchy step, 

dC = aLPdLP,  (4.4) 

where aLP E (0,1] is a steplength that provides sufficient decrease in the 
following (piecewise) quadratic model of the penalty function P ( x ;  u): 

Here H is the Hessian of the Lagrangian or an approximation to it, and l,(d) 
is defined in ( 4 . 3 ~ ) .  
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Given the  working set W k ,  we now solve a n  equality constrained quadratic 
program (EQP)  treating the  constraints in Wk as equalities and ignoring all 
other constraints. This gives the  subproblem 

1 
min - d T ~ ( x k ,  &)d  + v f (xl;) + ~k Y ~ v c ~ ( x ~ )  

d 2 
i E V  

subject t o  c i (xk)  + ~ c i ( x k ) ~ d  = 0, i E E n Wr, (4.6b) 

c i (xk)  + v ~ i ( x k ) ~ d  = 0, i E Z n Wr, ( 4 . 6 ~ )  

lld112 5 (4.6d) 

where yi is the  algebraic sign of the  violated i-th constraint. Note tha t  t he  
trust  region (4.6d) is spherical, and is distinct from the  trust  region ALP used 
in (4.2d). Problem (4.6) is solved for the  vector dQ by applying the  projected 
conjugated gradient procedure described in Section 5. The  total step d of the  
SLQP method is given by 

where aQ E [O, 11 is a steplength tha t  approximately minimizes the  model 
function (4.5). 

I Algorithm 4.1: KNITRO-ACTIVE I 
Initial data: x O ,  A0 > 0 ,  A:' > 0 ,  0 < 77 < 1. Set k = 0 .  

Repeat until a stopping test for the nonlinear program ( 1 . 1 )  is satisfied: 
LP point. Update the penalty parameter vk and solve the LP (4.3) 

to obtain the step d i p ,  and working set W k .  
Cauchy point. Compute afCP E ( O , 1 ]  as an approximate minimizer of 

q ( a d f C P )  such that aiPlldiPll 5 A k .  Set d: = a i P d i P  . 
EQP point. Compute d :  by solving the EQP (4.6). 

Define d g E  = d :  - d :  as the segment leading from the Cauchy point 
to the EQP point. 

n i a l  point. Compute a? E [ O , l ]  as an approximate minimizer of 
q ( d :  + a d E E ) .  Set d k  = d f  + and X T  = 212 + d k .  

Step Acceptance. Compute 
P k  = ( P ( x k ;  ~ k )  - P ( x T ;  ~ k ) ) / ( q k ( O )  - q k ( d k ) ) .  

If p i ,  2 77,  set xk+l +- X T ,  otherwise set xk+l +- xk .  

Update AiI;, and n k + l .  Set k + k + 1 .  
End 

The trust  region radius A k  for the  EQP phase is updated based on the 
ratio pk ,  following standard trust  region update strategies. The  choice of 
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is based on an effort to  generate a good working set. In our implementation, 
A&, is set to be a little larger than the total step dk, subject to some other 
restrictions, as described in [ 5 ] .  The multiplier estimates X k  used in the Hessian 
are least squares estimates using the working set Wk,  and modified so that 
Xi 2 0 for i E Z. 

Penalty Parameter Update Strategy. 
A novel feature of our SLQP algorithm is the procedure for updating 

the penalty parameter. Unlike most strategies proposed in the literature [ I l l ,  
which hold the penalty parameter u fixed for a series of iterations and only 
update it if insufficient progress toward feasibility is made, our algorithm 
chooses an appropriate value of u at each iteration. This selection takes place 
during the linear programming phase, as we now explain. 

We define a (piecewise) linear model of constraint violation at  a point xk 
by 

so that the objective (4.3) of the LP subproblem can be written as 

Given a value vk, we write the solution of the LP problem (4.3) as dLP(uk) 
to stress its dependence on the penalty parameter. Likewise, dLP(uDO) denotes 
the minimizer of mk(d)  subject to the trust region constraint (4.3b). The 
following algorithm describes the computation of the LP step d r  and the 
penalty parameter uk. 

Algorithm Penalty Update. LP Step and Penalty Update Strategy. 
Initial data: xk, uk-1 > 0, AkP > 0, and parameters €1, €2 E ( 0 , l ) .  
Solve the subproblem (4.3) with u = uk-1 to obtain dLP(uk-1). 
If mk(dLP(Uk-1)) = 0 

Set u+ t uk-1. 
Else compute dLP (urn) 

If m k  (dLP (Urn)) = 0 
Find uS > vk-1 such that mk(dLP(v+)) = 0. 

Else 
Find uS 2 uk-1 such that 

mk(O) - mk(dLP(u+)) > €~[mk(O) - mk(dLP(~m) ) ] .  
Endif 

Endif 
Increase u+ if necessary to satisfy 

I,+ (0) - l,+ (dLP (v')) > € 2 ~ '  [mk (0) - mk (dLP (u'))]. 
Set vk + u+ and dkP +-- dLP(u+),  
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The selection of v f  > vk-1 is achieved in all cases by successively increas- 
ing the current trial value of v by 10 and re-solving the linear program. The 
penalty update algorithm above guarantees that v is chosen large enough to 
ensure convergence to a stationary point [4]. Although the procedure does 
require the solution of some additional linear programs, our experience is that 
it results in an overall savings in iterations (and total LP solves) by achieving 
a better penalty parameter value more quickly, compared with rules which 
update the penalty parameter based on monitoring progress in feasibility. In 
addition, the extra LP solves are typically very inexpensive requiring rela- 
tively few simplex iterations because of the effectiveness of warm starts when 
re-solving the LP with a different penalty parameter value. 

5 Projected CG Iteration 

One of the main modules shared by the algorithms implemented in KNI-  
TRO, is a projected conjugate gradient iteration. The tangential subproblem 
(3.12) in the INTERIORICG algorithm and the EQP phase (4.6) of the AC- 
TIVE algorithm both require the solution of an equality constrained quadratic 
program. We solve these problems using a projected conjugate gradient itera- 
tion [ lo ,  20,24,26,32], which is well suited for large problems and can handle 
the negative curvature case without the need for Hessian modifications. We 
now outline this iteration and refer the reader to [20] for a more detailed 
derivation. 

Consider the quadratic program 

min i x T ~ x  + hTx 
x 2 

(5.9a) 

subject to Ax = b, (5.9b) 

and assume that G  is positive definite on the null space of A. One way to solve 
(5.9) is to eliminate the constraints (5.9b) and apply the conjugate gradient 
method to the reduced problem. An equivalent strategy is to  apply a special 
form of the CG iteration to  the KKT system of (5.9), which is given by 

Although the coefficient matrix is not positive definite, we can apply the 
CG method to  (5.10), provided we precondition and project the CG method 
so that it effectively solves the positive definite reduced problem within the 
feasible manifold (5.9b). This algorithm is specified below. Here we denote the 
preconditioning/projection operator by P and give its precise definition later 
on. 
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Algorithm PCG. Preconditioned Projected CG Method. 
Choose an initial point xo satisfying Axo = b. Set x + xo, compute r = Gx+h, 
z = Pr and p =  -z. 
Repeat the following steps, until lizii is smaller than a given tolerance: 

a = rTzlpTGp (5.11) 

x t x + a p  (5.12) 

r +  = r + a G p  (5.13) 

z+ = p r +  (5.14) 

p = ( r + ) T ~ + / r T z  (5.15) 

p +- - z+ + pp. (5.16) 

z + z+ and r t r +  (5.17) 

End 

This iteration has exactly the same form as the (standard) preconditioned 
CG method for solving symmetric and positive definite systems; see e.g. [19]. 
The crucial difference is that normally P is a symmetric and positive definite 
matrix, whereas in our case it represents a projection and preconditioning 
matrix, which we define (indirectly) as follows. Given a vector r,  we compute 
z = P r  as the solution of the system 

where D is a symmetric matrix that is positive definite on the null space of 
A, and w is an auxiliary vector. For (5.18) to  be a practical preconditioning 
operation, D should be a sparse matrix, so that solving (5.18) is significantly 
less costly than solving (5.10). 

By construction z = P r  is in the null space of A, and so are all the 
search directions generated by Algorithm PCG. Since initially Axo = b, all 
subsequent iterates x also satisfy the linear constraints. To view this iteration 
relative to the reduced CG method in which we eliminate the constraints 
(5.9b) and apply CG to a problem of dimension n - 1 ,  note that all iterates of 
Algorithm PCG may be expressed as x = xo + Zu,  for some vector u E R ~ - ~ ,  
and where the columns of the n x (n - 1) matrix Z form a basis for the 
null space of A. In these null-space coordinates the solution of the quadratic 
program (5.9) is given by the vector u that solves 

(ZTGZ)u = ZT ( G X ~  + h). (5.19) 

It  can be shown (see e.g. [20]) that the iterates x generated by Algorithm PCG 
are given by x = xo + Zu,  where u are the iterates of the preconditioned 
conjugate gradient method on the system (5.19), using the matrix Z T D Z  as 
a preconditioner. Therefore, Algorithm PCG is a standard preconditioned CG 
iteration as long as G and D are positive definite on the null space of A. 
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There are two advantages of following the approach of Algorithm PCG over 
the reduced CG approach. First, there is no need to compute a null space basis 
and consequently no risk that ill-conditioning in Z will deteriorate the rate of 
convergence of the CG iteration. Moreover, in the INTERIORICG algorithm 
we first scale the slack variables by (3.13), so that the matrix A in (5.9) has 

Therefore there is no ill conditioning caused by some slack variables approach- 
ing 0. The second benefit is that the projection matrix in (5.18) can also be 
used to  compute the normal step and Lagrange multipliers; thus the extra 
cost of each of these computations is only one back solve involving the factors 
of this projection matrix. 

In the INTERIOR/CG and ACTIVE algorithms we solve quadratic programs 
of the form (5.9) subject to a trust region constraint ~ ~ x l ~  5 A; in addition, G 
may not be positive definite on the null space of A. We adapt Algorithm PCG 
to this case by following Steihaug's approach: we terminate Algorithm PCG 
if the trust region is crossed or if negative curvature is encountered. 

KNITRO 5.0 sets D = I in (5.18) so that the preconditioner removes only 
ill-conditioning associated with the constraint matrix A. (We have experi- 
mented with other choices of D and future releases of KNITRO will include 
banded and incomplete Cholesky preconditioners.) 

Algorithm PCG assumes that an initial feasible point xo is provided. The 
factorization of the system in (5.18) allows us to  compute such a point by 
solvina 

which is in fact the minimum-norm solution in the norm weighted by D. 

6 Special Algorithmic Features 

The KNITRO package provides many algorithmic options and features that are 
listed comprehensibly in the documentation that accompanies the software 
[37]. Here we highlight some of these options and discuss their relationship to 
the algorithms presented in the previous sections. 

Hessian Options 
The user can supply first and second derivatives, which generally results 

in the greatest level of robustness and efficiency for the three algorithms in 
KNITRO. In some applications, however, the Hessian of the Lagrangian V2,C 
cannot be computed or is too large to  store, but products of this Hessian 
times vectors can be obtained through automatic differentiation tools, adjoint 
codes or user-provided routines. For this case the INTERIORICG and ACTIVE 



KNITRO: An Integrated Package for Nonlinear Optimization 53 

algorithms allow the user to  provide these Hessian vector products at every 
iteration of the projected CG iteration. In a related option, KNITRO takes 
control of this process and approximates the Hessian-vector products by finite 
differences of gradients of the Lagrangian; in this case the user need only 
provide gradients of the objective and constraints. 

Quasi-Newton options have also been implemented for the three algorithms 
in KNITRO. Here, the Hessian of the Lagrangian V2,C is replaced by a quasi- 
Newton approximation Bk, which is updated by the BFGS, SR1 or limited 
memory BFGS formulae. For example, for the interior-point methods, we de- 
fine 

and substitute the correction pairs (Al, Ax) in the standard definition of the 
BFGS, SR1 or limited memory BFGS update formulae (see e.g. [31]). To 
ensure positive definiteness of the BFGS and L-BFGS updates the vector d l  
is modified, if necessary, using Powell's damping procedure. SR1 updating 
is safeguarded to avoid unboundedness, but is allowed to generate indefinite 
approximations. 

Feasible Mode. 
In some applications, it is desirable for all of the iterates generated by the 

optimization algorithm to be feasible with respect to some or all of the inequal- 
ity constraints. For example, the objective function may be defined only when 
some of the constraints are satisfied, making this feature absolutely necessary. 
Interior-point methods provide a natural framework for deriving feasible al- 
gorithms, and we have therefore developed versions of the INTERIOR/CG and 
INTERIORIDIRECT algorithms that have this feature. 

The adaptation is simple. If the current iterate x satisfies c,(x) > 0, then 
after computing the step dl we let x+ = x + d,, redefine the slacks as 

and test whether the point ( x f ,  s t )  is acceptable for the merit function 4,. If 
so, we define this point to be the new iterate; otherwise we reject the step d and 
compute a new, shorter, trial step (in a line search algorithm we backtrack, 
and in a trust-region method we compute a new step with a smaller trust 
region). This strategy is justified by the fact that,  if a t  a trial point we have 
that c i ( x t )  < 0 for some inequality constraint, the value of the merit function 
is +m, and we reject the trial point. This strategy also rejects steps x + d, 
that are too close to the boundary of the feasible region because such steps 
increase the barrier term - p  CE1 log(si) in the merit function (3.3). Apart 
from the reset (6.21), in the INTERIOR/CG algorithm we must introduce a 
slight modification [8] in the normal step computation to ensure that this step 
makes sufficient progress toward feasibility. 



54 Richard H. Byrd, Jorge Nocedal, and Richard A.  Waltz 

Initial Point Strategy. 
As is well known, interior methods can perform poorly if the initial point 

is unfavorable. To overcome this problem, we have implemented several initial 
point strategies that work well for linear and quadratic programming and are 
also appropriate for nonlinear programs. At present, the initial point strategies 
are available only in the INTERIOR/DIRECT option. We now describe one of 
these strategies. 

We first compute, at the user supplied initial point xo, an affine scaling 
step dA = ( d t , d $ ,  d t ,  d:) by setting p = 0 in (3.4). Then we define 

where the max and absolute values are applied component-wise. The primal 
variables x and the equality-constraint multipliers y are not altered, i.e., we 
define (xl ,  yl) = (xo, yo). Finally we define the initial value of the barrier 
parameter as p l  = sTzl/rn. 

The motivation for this strategy is to take care that the initial slacks and 
inequality multipliers are not too close to the feasible boundary which can 
lead to  slow progress, and ideally to generate an initial point nearer to  the 
central path. Furthermore, nonlinear programming algorithms compute only 
local minimizers and accept user-supplied initial estimates xo that often lie in 
the vicinity of a minimizer of interest. Therefore initial point strategies should 
either respect the user-supplied estimate xo or compute one that is not too 
distant from it. In addition, large initial values of the multipliers should be 
avoided in the Hessian since they may introduce unnecessary non-convexities 
in the problem. In particular if one of the components, say z i ,  is large and 
the corresponding Hessian term V2c1(x1) is indefinite, the Hessian of the La- 
grangian can become indefinite, slowing down the iteration. Therefore, when 
computing the first step of the interior algorithm from (x l ,  s l ,  yl ,  z l )  we evalu- 
ate the Hessian of the Lagrangian using zo and not z l ,  i.e., V ~ , C ( x o ,  so, yo, zo) 
(this Hessian is independent of s, so the choice of that variable is irrelevant). 
More details about the initial point strategies are given in [17]. 

Special Problem Classes 
When the nonlinear program (1.1) has a special form, the algorithms in 

KNITRO often reduce to well-known special-purpose methods. 
For unconstrained optimization problems, the INTERIORICG and AC- 

TIVE algorithms (using second derivatives) reduce to  an inexact Newton-CG 
method with trust regions. This is because, in the unconstrained case, these 
algorithms skip their respective first phases, and compute the step using, re- 
spectively, the tangential subproblem (3.12) and the EQP phase (4.6), which 
are identical in this case. In the INTERIOR/DIRECT option, the algorithm will 
attempt to  compute the Cholesky factorization of the Hessian, and if it is 
positive definite a backtracking line search will be performed along the New- 
ton direction. If the Hessian is not positive definite, the algorithm reverts to  
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the trust region INTERIOR/CG algorithm and therefore computes an inexact 
Newton-CG step. 

If the problem (1.1) is a system of nonlinear equations, the algorithms 
in KNITRO implement a form of Newton's method (if second derivatives are 
provided). In INTERIORICG, only the normal step (3.11) is computed, and 
the resulting algorithm coincides with the Levenberg-Marquardt trust region 
method. The INTERIOR/DIRECT algorithm reduces to  a line search Newton 
method in this case, using as a merit function the Euclidean norm of the resid- 
uals of the system of equations. If the Jacobian is singular, INTERIOR/DIRECT 
reverts to the Levenberg-Marquardt method. 

KNITRO adapts itself automatically to the two classes of problems just 
discussed (unconstrained minimization and nonlinear equations). If the prob- 
lem is a linear or quadratic program, the user must inform KNITRO, so that 
the algorithms can take full advantage of this fact. For LPs or QPs, INTE- 
RIOR/DIRECT is the recommended interior-point option and automatically 
enables the initial point strategy described above, as well as a more aggres- 
sive barrier update strategy. ACTIVE reduces to a simplex method in the LP 
case. 

Infeasibili ty detect ion 
It  is not rare for users to generate optimization problems that do not have 

a feasible solution, and KNITRO includes heuristics to attempt to diagnose 
this situation. As is well known, however, infeasibility detection is a very diffi- 
cult problem for nonlinear constraints, and the algorithms in KNITRO cannot 
distinguish between infeasible problems and convergence to  an (infeasible) 
stationary point for a measure of feasibility. 

In the interior point algorithms, our heuristics are based on the theory 
developed in [3]. It  states that,  if the interior point algorithm is not ca- 
pable of finding a feasible point, then we have that A , ( x ~ ) ~ c , ( x ~ )  --t 0, 
and A , ( x ~ ) ~ c , - ( x ~ )  -+ 0, where c,- = max(0, -c,). The KNITRO interior- 
point algorithms will terminate if these vectors are sufficiently small while 
1 1  (cE(xk), c,- (xk)) 1 1  stays above some level. 

Since the algorithm implemented in ACTIVE is a penalty method, it can 
deal naturally with infeasibility. If a problem is infeasible then the penalty 
parameter will be driven to  infinity. Moreover, if the algorithm is converging 
to  a stationary point for our infeasibility measure, we have 

during the penalty update procedure providing a clear indication of local 
infeasibility. 

7 Crossover 

Interior methods provide only an approximate estimate of the solution and 
the optimal active set. In many practical applications, however, it is useful to 
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know precisely which constraints are active because this corresponds to  the 
presence or activity of certain constituents of the solution. In addition, it is 
often important to have accurate estimates of the Lagrange multipliers (or 
sensitivities). This can be done by switching from the interior to  an active-set 
iteration, a process that is often called crossover. Although crossover tech- 
niques have received much attention in the context of linear programming [27], 
to  the best of our knowledge, none of the nonlinear interior codes provide an 
option for it. We regard it as essential to have this facility in our integrated 
system, both for computational efficiency, and to return solutions in a form 
that is useful for applications. 

In linear programming, crossover involves two stages: identifying active 
constraints, and moving from a nonbasic optimal solution to a nearby basic 
one. In nonlinear programming, of course, we cannot expect the set of active 
constraints to correspond to a basic solution. Instead, our crossover procedure 
seeks to identify a set of active constraints with linearly independent constraint 
gradients, and computes a solution at which those constraints are satisfied 
with near equality, and which satisfies Lagrangian stationarity using these 
constraints only. 

This crossover procedure is implemented by internally switching to the 
ACTIVE algorithm after the INTERIOR/DIRECT or INTERIORICG algorithm 
has solved the problem to the requested tolerance. We first solve the EQP 
phase of ACTIVE using a tolerance-based active-set estimate, and minimize 
the model function (4.5) along the resulting step direction to  generate a new 
solution estimate. If this step does not solve the problem immediately, we 
begin the full ACTIVE algorithm with an initial LP trust region based on 
that active-set estimate. The goal is to judiciously choose the initial LP trust 
region small enough to exclude all the inactive constraints, but large enough to 
include the active ones. Below is a basic description of the KNITRO crossover 
procedure. 

Algorithm Crossover. KNITRO Crossover Procedure. 

1. The interior-point iteration terminates with stopping tolerance E, , ,  at 
iterate (xk ,  sk, yk, zk).  

2. Estimate the set of active constraints, A, using a tolerance test based on 
primal-dual feasibility and complementarity. 

3. Using this active-set estimate, generate a step by solving the EQP given 
by (4.6) for dQ and perform a line search to compute the steplength cuQ. 
If xk + aQdQ satisfies the stopping tolerances, terminate with that value 
and the corresponding multipliers. 

4. Otherwise determine the initial LP trust region AbP, and penalty param- 
eter vo for the KNITRO-ACTIVE algorithm (Algorithm 4.1): 
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5 .  Star t  KNITRO-ACTIVE using initial point (xk, s k ,  yk, z k ) ,  AbP and uo. 

Initially in Step 3 of crossover, the  active set is estimated using a tolerance 
test rather than by solving the  L P  (4.3). This is because, on some difficult 
problems, the  cost of solving the  L P  subproblem can be non-trivial and we 
would like the  cost of our crossover procedure in most cases to  be a small part 
of the  overall solution time. Therefore, if it is not necessary to  solve the L P  
t o  identify the  optimal active set, we seek to  avoid doing this. In many cases, 
especially if strict complementarity holds a t  the  solution, the  initial estimate 
of the  active set based on the  simple tolerance test will be correct and the  
crossover will succeed in one iteration without solving any LPs. 

T h e  condition (7.22) used t o  initialize the  initial L P  trust  region ALP 
guarantees tha t  if our active-set estimate is correct, the  initial L P  trust  region 
will be small enough to  exclude all inactive constraints. Motivated by the  
theory for the  C1 exact penalty function, the  penalty parameter u is initialized 
to  be a little larger than the  Lagrange multiplier of largest magnitude a t  the  
interior-point solution. 
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Summary. Recently Dollar and Wathen 1141 proposed a class of incomplete factor- 
izations for saddle-point problems, based upon earlier work by Schilders 1401. In this 
paper, we generalize this class of preconditioners, and examine the spectral implica- 
tions of our approach. Numerical tests indicate the efficacy of our preconditioners. 

Key words: saddle-point systems, constraint preconditioners. 

1 Introduction 

Given a symmetric n  by n matrix H and a full-rank m ( 5  n )  by n matrix A, 
we are interested in solving structured linear systems of equations 

Such "saddle-point" systems arise as stationarity (KKT) conditions for equality- 
constrained optimization [37, §18.1], in mixed finite-element approximation of 
elliptic problems [ 5 ] ,  including in particular problems of elasticity [38] and 
incompressible flow 1191, as well as other areas. 

In this paper, we are particularly interested in solving (1.1) by iterative 
methods, in which so-called constraint preconditioners [33] 

are used to  accelerate the iteration for some suitable symmetric G. In  Sec- 
tion 2, we examine the  spectral implications of such methods, and consider 
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how to choose G to give favourable eigenvalue distributions. In Section 3, 
we then extend ideas by Dollar, Schilders and Wathen [14,40] to construct 
"implicit" constraint preconditioners for which we can apply the eigenvalue 
bounds from Section 2. We demonstrate the effectiveness of such an approach 
in Section 4 and make broad conclusions in Section 5. 

Not at  ion 

Let I by the (appropriately-dimensioned) identity matrix. Given a symmetric 
matrix M with, respectively, m+,  m- and mo positive, negative and zero 
eigenvalues, we denote its inertia by In(M)  = (m+,  m-,  mo). 

2 Constraint preconditioners 

2.1 General considerations 

For KG to be a meaningful preconditioner for certain Krylov-based methods 
(271, it is vital that its inertia satisfies 

A key result concerning the use of KG as a preconditioner is as follows. 

Theorem 1. [33, Thm. 2.11 or, for diagonal G ,  [34, Thm. 3.31. Suppose that  
KH i s  the  coe f i c ien t  m a t r i x  of (1 .1) ,  and N i s  a n y  (n by n - m) basis m a -  
t r i x  for t h e  null-space of A. T h e n  K G ' K ~  has 2m unit eigenvalues, and the 
remaining n - m eigenvalues are those of the  generalized eigenproblem 

The eigenvalues of (2.2) are real since (2.1) is equivalent to NTGN being 
positive definite [7,26]. 

Although we are not expecting or requiring that G (or H) be positive 
definite, it is well-known that this is often not a significant handicap. 

Theorem 2. [ I ,  Cor. 12.9, or 12, for example]. T h e  inertial requirement (2.1) 
holds for  a given G i f  and on ly  if there exists a positive semi-definite m a t r i x  D 
such  that  G + A*DA i s  positive definite for all D for which D - i s  positive 
semi-definite.  

Since any preconditioning system 

may equivalently be written as 
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where w = v - DAu, there is little to be lost (save sparsity in G) in using (2.4), 
with its positive-definite leading block, rather than (2.3). This observation has 
allowed Golub, Greif and Varah [25,31] to  suggest3 a variety of methods for 
solving (1.1) in the case that H is positive semi-definite, although the scope 
of their suggestions does not appear fundamentally to be limited to  this case. 
LukSan and VlEek 1341 make related suggestions for more general G. 

Note, however, that although Theorem 2 implies the existence of a suitable 
D l  it alas does not provide a suitable value. In [31], the authors propose 
heuristics to use as few nonzero components of D as possible (on sparsity 
grounds) when G is positive semi-definite, but it is unclear how this extends 
for general G. Golub, Greif and Varah's methods aim particularly to  produce 
well-conditioned G + A T ~ A .  Notice, though, that perturbations of this form 
do not change the eigenvalue distribution alluded to in Theorem 1, since if 
H ( D H )  = H + A T D ~ A  and G(DG) = G + A ~ D G A ,  for (possibly different) 
DH and DG, 

and thus the generalized eigen-problem (2.2)) and hence eigenvalues of 
K;iDG) K ~ ( ~ ~ ) ~  are unaltered. 

2.2 Improved eigenvalue bounds with the reduced-space basis 

In this paper, we shall suppose that we may partition the columns of A so 
that 

A = (A1 A211 

and so that its leading m by m sub-matrix 

/ A l l  A1 and its transpose are easily invertible. 

Since there is considerable flexibility in choosing the "basis" Al from the rect- 
angular matrix A by suitable column interchanges, assumption A1 is often 
easily, and sometimes trivially, satisfied. Note that the problem of determining 
the "sparsest" A1 is NP hard, [8,9], while numerical considerations must be 

They actually propose the alternative 

although this is not significant. 
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given to ensure that A1 is not badly conditioned if a t  all possible [23]. More 
generally, we do not necessarily assume that Al is sparse or has a sparse fac- 
torization, merely that there are effective ways to solve systems involving Al 
and AT. For example, for many problems involving constraints arising from 
the discretization of partial differential equations, there are highly effective 
i terat ive  methods for such systems [4]. 

Given A l ,  we shall be particularly concerned with the reduced-space basis 
matrix 

N , where R =  -1~~1~. (2.5) 

Such basis matrices play vital roles in Simplex (pivoting)-type methods for 
linear programming [2,20], and more generally in active-set methods for non- 
linear optimization [23,35,36]. 

Suppose that we partition G and H so that 

and H =  
Hz1 Hz2 Gz1 G2z 

where GI1 and Hll are (respectively) the leading m by m sub-matrices of G 
and H. Then (2.5) and (2.6) give 

N T G N  =G2, + RTGTl + Gz1R + RTGl1R 
and N T H N  31,2 + R T ~ z  + H z l R +  R T H l l ~ '  

In order to  improve the eigenvalue distribution resulting from our attempts 
to  precondition KH by KG,  we consider the consequences of picking G to 
reproduce certain portions of H. 

First, consider the case where 

G22 = H22, but G l l  = 0 and Gzl = 0. (2.7) 

Theorem 3. Suppose that  G and H are as in (2.6) and that  (2.7') holds.  
Suppose fur thermore t h a t  Hz2 i s  positive definite,  and  let 

p = min 1 r a n k ( ~ z ) ,  r a n k ( ~ z l ) ]  

+ min [rank(&), rank(H21) + min[rank(d,),  rank(^^^)]] , 

T h e n  K G ' K ~  has  at  m o s t  

d is t inct  eigenvalues.  

Proof.  Elementary bounds involving the products and sums of matrices show 
that the difference 
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is a matrix of rank at most min(p,n - m).  Since N T G N  is, by assumption, 
positive definite, we may write N ~ G N  = wwT for some non-singular W.  
Thus 

differs from the identity matrix by a matrix of rank at most min(p, n -m) ,  and 
hence the generalized eigenproblem (2.2) has at most min(p, n - m) non-unit 
eigenvalues. 

As we have seen from Theorem 2, the restriction that Hzz be positive 
definite is not as severe as it might first seem, particularly if we can entertain 
the possibility of using the positive-definite Hz2 + A ~ D A ,  instead. 

The eigenvalue situation may be improved if we consider the case where 

GZ2 = H2z and Gll  = Hl l  but Gal = 0. (2.8) 

Theorem 4. Suppose that G and H are as in  (2.6) and that (2.8) holds. 
Suppose furthermore that Hz, + RTHE R is positive definite, and that 

v = 2 min [ r a n k ( ~ z ) ,  r a n k ( ~ z l ) ]  . 

Then K z l K H  has at most 

distinct eigenvalues. 

Proof. The result follows as before since now N T ~ N  - N T G N  = R ~ H ~  + 
H21 R is of rank at most v. 
The same is true when 

Theorem 5. Suppose that G and H are as i n  (2.6) and that (2.9) holds. 
Suppose furthermore that Hzz + R T H 5  + HzlR is positive definite, and that 

p = min I rank(d2) ,   rank(^^^)] . 

Then K z l K H  has at most 

 rank(^^^^^^) + 1 5 p + 1 5 min(m,n - m) + 1 

distinct eigenvalues. 
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Proof. The result follows, once again, as before since now N T ~ N  - NTGN = 

R T ~ , , R  is of rank at most p .  
In Tables 1 and 2, we illustrate these results by considering the complete 

set of linear and quadratic programming examples from the Netlib [21] and 
CUTEr [29] test sets. All inequality constraints are converted to equations by 
adding slack variables, and a suitable "barrier" penalty term (in this case, 1.0) 
is added to  the diagonal of H for each bounded or slack variable to  simulate 
systems that might arise during an iteration of an interior-point method for 
such problems. 

Given A, a suitable basis matrix A1 is found by finding a sparse LU fac- 
torization of AT using the HSL 1321 packages MA48 and MA51 [17]. An attempt 
to correctly identify rank is controlled by tight threshold column pivoting, in 
which any pivot may not be smaller than a factor r = 2 of the largest entry 
in its (uneliminated) column [23,24]. The rank is estimated as the number 
of pivots, p(A), completed before the remaining uneliminated sub-matrix is 
judged to  be numerically zero, and the indices of the p(A) pivotal rows and 
columns of A define Al-if p(A) < m, the remaining rows of A are judged 
to be dependent, and are d i ~ c a r d e d . ~  Although such a strategy may not be 
as robust as, say, a singular-value decomposition or a QR factorization with 
pivoting, both our and others' experience [23] indicate it to  be remarkably 
reliable and successful in practice. 

Having found A l l  the factors are discarded, and a fresh LU decomposition 
of Al l  with a looser threshold column pivoting factor r = 100, is computed 
in order to  try to encourage sparse factors. All other estimates of rank in 
Tables 1 and 2 are obtained in the same way. The columns headed "iteration 
bounds" illustrate Theorems 1 ("any G ) ,  3 ("exact Hz2") and 5 ("exact H22 
& Hzll'). Note that in the linear programming case, Hzl - 0, so that we have 
omitted the "exact H22" statistics from Tables 1, since these would be identical 
to those reported as "exact HZ2 & HZ1". 

Table 1: NETLIB LP problems 

80BAU3B 
ADLITTLE 
AFIRO 

BCDOUT 
BEACONFD 
BLEND 

iteration bound 
rank any Glexact  Hzz & Hz1 

n m A Az H I I H I Z  I' t 1 upper 
1876 821 820 725 820 0 1057 726 822 

12061 2262 2262 2231 2262 0 9800 2232 2263 
138 56 56 53 56 0 83 54 57 

Note that if this happens, the right-hand inequalities in Theorems 3-5 will depend 
on n - rank(A) not n - m. 
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Table 1: NETLIB LP problems (continued) 

name 
BOEINGl 
BOEINGZ 
BORE3D 
BRANDY 
CAPRI 
CYCLE 
CZPROB 
D2Q06C 
D6CUBE 
DEGEN2 
DEGEN3 
DFLOOl 
E226 
ETAMACRC 
FFFFF800 
FINNIS 
FITlD 
F I T l P  
FIT2D 
FIT2P 
FORPLAN 
3ANGES 
OFRD-PNC 
3 0 F F I N  
3REENBEA 
3REENBEB 
3ROW15 
=ROW22 
3ROW7 
SIERRA 
ISRAEL 
KB2 
LINSPANH 
LOTFI 
MAKELA4 
LIAROS-R7 
UAROS 
MODEL 
LIODSZKl 
3CDOUT 
VESM 
3ET1 
3 E T 3  
PEROLD 
PILOT4 
PILOT87 
='ILOT-JA 
'ILOTNOV 
'ILOT 
'ILOT-WE 
' T 
2AP8 
2AP12 
aAP15 
2PBD-OUT 
TEADING2 
IECIPELP 
SC105 
SC205 
1C50A 
X50B 
SCAGR25 

rank 
n m A A2 H I I H I Z  

726 351 351 314 351 C 

i teration bound 
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Table 1: NETLIB LP problems (continued) 

SCFXMS 
SCORPION 
SCRS8 

SCTAPl 
SCTAP2 
SCTAP3 

SHARElB 
SHARE2B 
SHELL 

SHIPl2L 
SHIPl2S 
SIERRA 
SIPOWlM 
SIPOWl 
SIPOW2M 
SIPOW2 
SIPOW3 
SIPOW4 
SSEBLIN 
STAIR 
STANDATA 
STANDGUB 
STANDMPS 
STOCFORl 

STOCFOR3 

TRUSS 

VTP-BASE 
WOODlP 
WOODW 

Table 2: CUTEr QP problems 

iteration bound 

name I n 

AUG3DQP 27543 
BLOCKQPl 10011 
BLOCKQP2 10011 
BLOCKQP3 10011 
BLOWEYA :I;; 
BLOWEYB 
BLOWEYC 4002 
CONT-050 2597 

m 
10000 
10000 
8000 
8000 
5001 
5001 
5001 
2002 
2002 
2002 
2401 

rank 
A Az H11 H1z 

10000 10000 10000 0 
10000 10000 10000 0 
8000 7998 8000 0 
8000 7998 8000 0 
5001 5001 5001 5000 
5001 5001 5001 5000 
5001 5001 5001 5000 
2002 2000 2002 2000 
2002 2000 2002 2000 
2002 2000 2002 2000 
2401 192 2401 0 

iteration bound 
any G 

10201 
10201 
19544 
19544 
5011 
5011 
5011 
2001 
2001 
2001 

197 

exact Hz2 
p + 1 upper 
10001 10201 
10001 10201 
7999 16001 
7999 16001 
5011 5011 
5011 5011 
5011 5011 
2001 2001 
2001 2001 
2001 2001 

193 197 

exact Hz2 & H z ]  
fi + 1 upper 
10001 10001 
10001 10001 
7999 8001 
7999 8001 
5002 5002 
5002 5002 
5002 5002 
2001 2001 
2001 2001 
2001 2001 

193 197 
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name  
CONT-101 
CONT-201 
CONT5-QP 
CONT1-10 
CONT1-20 
CONT-300 
CVXQPl  
CVXQPZ 
CVXQP3 
DEGENQP 
DUALCl 
DUALC2 
DUALC5 
DUALC8 
GOULDQP; 
GOULDQP: 
KSIP 
MOSARQPI 
NCVXQPl 
NCVXQP2 
NCVXQP3 
XCVXQP4 
VCVXQP5 
VCVXQP6 
VCVXQP7 
XCVXQP8 
VCVXQP9 
POWELL20 
PRIMALCl 
PRIMALC2 
PRIMALC5 
PRIMALC8 
PRIMAL1 
PRIMAL2 
PRIMAL3 
?RIMAL4 
2PBAND 
2PNBAND 
2PCBOEI1  
2PCBOEI2 
2PCSTAIR 
SPNBOEI l  
2PNBOEI2 
2PNSTAIR 
3OSQP1 
3TCQPl  
3TCQP2 
jTNQP1 
jTNQP2 
J B H l  
< A 0  

We observe that in some cases there are useful gains to be made from 

Table 2: CUTEr QP problems (continued) 

trying to  reproduce H 2 2  and, less often, H 2 1 .  Moreover, the upper bounds on 
rank obtained in Theorems 3 and 5 can be significantly larger than even the 
estimates p + 1 and p + 1 of the number of distinct eigenvalues. However the 
trend is far from uniform, and in some cases there is little or no apparent 
advantage to be gained from reproducing portions of H. Nonetheless, since 

n m 
10197 10098 

rank 
A Az H I I  H I Z  

10098 99 10098 0 

iteration bound 
any G 

1001 100 1001 100 100 

exact Hzz 
p + 1 upper 

exact Hzz & H z ]  
/I + 1 upper 
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significant improvements are possible, we now investigate efficient ways of 
computing decompositions which are capable of reproducing sub-blocks of H. 

3 Implicit-factorization constraint preconditioners 

It  has long been common practice (at  least in optimization circles) [3,6,10, 
18,22,34,39,42] to use preconditioners of the form (1.2) by specifying G 
and factorizing KG using a suitable symmetric, indefinite package such as 
MA27 [16] or MA57 [15]. While such techniques have often been successful, they 
have usually been rather ad hoc, with little attempt to improve upon the 
eigenvalue distributions beyond those suggested by the Theorem 1. 

Recently, Dollar and Wathen [14] have suggested using a preconditioner 
of the form 

KG = P B P ~ ,  (3.1) 

where solutions with each of the matrices P ,  B and PT are easily obtained. 
In particular, rather than obtaining P and B from a given KG,  KG is derived 
implicitly from specially chosen P and B .  In this section, we examine a broad 
class of methods of this form. 

3.1 Structural considerations 

In general, we may write 

where B1 and B33 are symmetric and Pz is of full rank; the zero block in P 
is selected so as to  mimic that in KG. Given this form, we have 

and since we wish (1.2) to hold, we require that 

P2B1P? + P ~ B T A  = A and P2B1P: = 0. (3.3) 

As A and P2 are of full rank, we write 

A = (Al A2) and P2 = (P31 P32) 

for nonsingular m by m matrices A1 and P31, and shall likewise write 
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The second requirement in (3.3) is then that 

Although there are a number of ways of guaranteeing this,5 the simplest is to 
insist that 

P3z = 0 and Bll  = 0. 

The first requirement in (3.3) may be satisfied if 

P,B; = I and P ~ B ~ P F  = 0, (3-4) 

although again there are other (more complicated) possibilities. It  then follows 
that 

B31 = P G ~  and P ~ , B ~ ( P ~  P&) = 0 

and the second of these implies that 

since P3i is non singular and (P& P&) must be of full rank.6 Thus 

p ( p l l ~ 1 2 ~ ~ )  Pzl Pz2 A; and B = ( 0  0 Bzz o x : )  B& , 
(3.5) 

B$ 0 0 B31 B32 B33 

where Bgl and Bz2 are non-singular. Furthermore, it follows trivially from 
Sylvester's law of inertia (see, for example, [ I l l )  that 

Bz2 must be positive definite (3.6) 

if (2.1) is to  hold. 

3.2 Solution considerations 

Solves involving P and its transpose 

Suppose that B31 is chosen to be easily invertible-Dollar and Wathen [14] 
suggest picking B31 = I, but other simple choices are possible. Then, in order 
to solve systems involving the block (reverse) triangular matrix P and its 
transpose, it suffices to be able to do so for systems involving the sub-matrix 

In general Bii = - ~ 3 ; l  ( P ~ ~ B Z ~ P $  + P ~ ~ B ~ P &  + P ~ ~ B ~ z P & )  ~ 3 ; ~  for any P32. 
The latter follows since P32 = 0 and P  is required to be non-singular. 



72 H. Sue Dollar, Nicholas I. M. Gould, and Andrew J.  Wathen 

Although A1 allows a general (Schur-complement) pivot, in which such sys- 
tems may be solved knowing factors of Al and Pz2 + RTpI2 ,  perhaps the 
easiest possibility is, again, to follow [Id] and pick 

This then presupposes that Pzz is non-singular. 
One further saving here in the solution of (2.3) via forward and backward 

substituting from (3.1) in the usual (preconditioning) case for which s = 0 
is that the the block zero component of the right-hand-side may trivially be 
exploited in the initial forward substitution 

for which pl = 0. 

Solves involving B 

It follows from (3.5) that solving systems of equations whose coefficient matrix 
is B relies on being able to solve systems with coefficient matrices B31, B22 
and B&. The choice Bgl = I made by Dollar and Wathen 1141 is again ideal 
from this perspective. 

3.3 Considerations relating to preconditioning 

So far, we simply require that P and B satisfy (3.5) in order to  ensure KG 
is of the form (1.2), but additionally that (3.6) holds for KG to  be a useful 
preconditioner. Note that without (3.6) we could choose the components of P 
and B to  factorize KG in the case where H = G, but if 

it will not be possible to find BaZ satisfying (3.6) in this case. 

Recovering G 

The leading diagonal block G of KG is 

In what remains, we shall thus assume that P and B2 are given by (3.5), and 
that (3.7) holds, that is that 
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p ( l l )  PZ1 Pzz AT and B = ( O o B z )  0 Bzz B& . 
(3.9) 

B$ 0 0 B31 B32 B33 

It  follows immediately from (2.6), (3.8) and (3.9) that 

Gll  = P ~ ~ B ~ A ~ + A ~ B ~ ~ P ~ + A ~ B ~ ~ A ~  

Gzl = A ~ B 3 1 ~ ~ + ~ 2 1 B ~ A 1 + ~ 2 2 ~ ~ 2 A 1 + A ~ ~ 3 3 A 1  and 

G22=P22B22P&+P21B3T1A2+P22B3T2A2+A~~31~~ + A : B ~ ~ P & + A T B ~ ~ A ~  

Notice that we have not as yet determined Pl l ,  PZ1, Pzz, B22, B31, B3z 
and B33, but that G involves significantly less information, and thus there is 
likely to be considerable freedom in our remaining choices even if we wish to 
recover a particular G. 

It  follows from (3.8) that 

for any null-space basis matrix N ,  since AN = 0 It  also follows from the 
required form (3.9) of P and B that 

and in the case of the reduced-space basis matrix (2.5) we have that 

3.4 Particular choices of P and B 

Existing proposals 

Schilders 1401 sets BS1 = I and Bg2 = 0, and uses Pll and Pz2 as free param- 
eters to determine PZ1, BZ2 and BQ3 from G. Dollar and Wathen [14] consider 
the same choices for Bgl and B32, and use Pll and Pz2 and B33 as free pa- 
rameters to determine Pzl, Bzz and GZ2 from G11 and G21. SO for example, 
if 

P11 =O,P21 = 0 ,  P22 = I ,  B31 = I ,  B22 = I ,  B3Z = O  and Bg3 =O 

then 
Gll = 0, Gzl = 0 and GZ2 = 1 
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Reproducing H p 2  

The simplest option is to  set as many of free components of P and B as 
possible to  zero; this corresponds to setting 

Pll = 0, PZ1 = 0, Bg2 = 0 and Bg3 = 0, (3.10) 

and results in 

G I ,  = 0, GZ1 = 0 and GZ2 = P ~ ~ B ~ ~ P ~ .  

Thus the requirement (3.6) forces GZ2 to  be positive definite, and any positive- 
definite GZ2 may be accommodated by the choice (3.10). In particular, if Hz2 
is positive-definite, Theorem 3 shows that picking Gz2 = Hzz leads to  an 
improved eigenvalue bound over that for generic G. In this case PZZ and BZZ 
could accommodate (sparse) Cholesky or L D L ~  factors of Hz2. 

Reproducing Hzl and Hzz 

The choice 
Pll = 0 and Bg3 = 0 

gives 

G I ,  = 0, Gzl = P z , B ~ A ,  + PZ2B&A1 and 

G22 = PZ2Bz2P& + Pz1BZA2 + P ~ ~ B ~ ~ A ~  + A;Bg1P$ + A T B ~ ~ P & .  

while choosing 
Pll = 0, Bg2 = 0 and Bg3 = 0 (3.12) 

gives 

Gll  = 0, Gzl = P ~ ~ B ~ A ,  and Gzz = P ~ ~ B ~ ~ P &  + P ~ , B ~ A ~  + A?B,,P$. 

Both of these possibilities allow us to choose GZ2 = Hz2 and GZ1 = Hz1, and 
Theorem 5 indicates that such choices lead to further improved eigenvalue 
bounds. Moreover, in both cases, 

regardless of how we choose Pzl,  Bgl and Bg2. 

Ensuring that G is positive definite 

The role of the matrix BQ3 is interesting. For Theorem 2 and (3.8) suggest 
that by picking B3g sufficiently negative definite, the remaining terms 

P,B,P? + A~B,P? + P,B;A 

will be positive definite. However, since any significantly dense rows of A will 
result in dense blocks in ATBg3A, it may well be wise to  keep Bgg = 0. 
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3.5 Factors in other orders 

We have seen that specifying decompositions of the form (3.1) in which P 
and B have the block form (3.2) is an extremely flexible approach. A natural 
question is: are there other block forms which are equally useful? The most 
obvious alternative is to seek a decomposition 

where 

where El and EQ3 are symmetric and Q2 is of full rank; here again the zero 
block in Q is selected so as to mimic that in KG. In this case 

(3.15) 
But now we see a strong disadvantage of (3.13) compared with (3.1), namely 
that requiring that the 2,l  and 2,2 blocks of (3.15) reproduce A and 0 respec- 
tively place strong restrictions on El, Ez, Q1 and Qz.  In particular, EIAT 
must lie in the null-space of A. Since this seems to limit the scope of (3.13)- 
(3.14) we do not pursue this further. 

4 Numerical experiments 

In this section we indicate that,  in some cases, the implicit-factorization pre- 
conditioners proposed in Section 3 are very effective in practice. 

We consider the set of quadratic programming examples from the CUTEr 
test set examined in Section 2. For each, we use the projected preconditioned 
conjugate-gradient method [27] to solve the resulting quadratic programming 
problem 

EQP: minimize q(x) = +xT HX + cTx subject to  Ax = b. 
x d R n  

Firstly a feasible point x = xo is determined. Thereafter, iterates xo + s 
generated by the conjugate-gradient method are constrained to satisfy As = 0 
by means of the preconditioning system (2.3). Since, as frequently happens in 
practice, q(xo + s )  may be unbounded from below, a trust-region constraint 
I s / /  5 A is also imposed, and the Generalized Lanczos Trust-Region (GLTR) 
method [28], as implemented in the GALAHAD library [30], is used to  solve 
the resulting problem 

minimize q(xo + s)  subject to As = 0 and llsll 5 A; 
x G IRn 

(4.1) 
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a large value of A = 101° is used so as not to cut off the unconstrained solution 
for convex problems. 

In Tables 1 and 2, we compare four preconditioning strategies for (ap- 
proximately) solving the problem (4.1). We consider both low and high(er) 
accuracy solutions. For the former, we terminate as soon as the norm of the 
(preconditioned) gradient of q(xo + s) has been reduced more than lo-' from 
that of q(xo), while the latter requires a reduction; these are intended 
to  simulate the levels of accuracy required within a nonlinear programming 
solver in early (global) and later (asymptotic) phases of the solution process. 

We consider two explicit factorizations, one using exact factors (G = H ) ,  
and the other using a simple projection (G = I ) .  The HSL package MA57 1151 
(version 2.2.1) is used to factorize KG and subsequently solve (2.3); by way 
of comparison, we also include times for exact factorization with the earlier 
MA27 [16], since this is still widely used. Two implicit factorizations of the form 
(3.1) with factors (3.9) are also considered. In the first, we use the method 
in Section 3.4 to get Gz2 = I .  The second follows Section 3.4 and aims to 
reproduce Gz2 = H2', and uses MA57 to compute its factors. In particular, 
we exploit one of MA57's options to make modest modifications [41] of the 
diagonals of H2' to  ensure that Gzz is positive definite if H2' fails to be-this 
proved only to be necessary for the BLOWEY* problems. 

All of our experiments were performed using a single processor of a 
3.05Mhz Dell Precision 650 Workstation with 4 Gbytes of RAM. Our codes 
were written in double precision fortran 90, compiled using the Intel ifort 8.1 
compiler, and wherever possible made use of tuned ATLAS BLAS [43] for core 
computations. A single iteration of iterative refinement is applied, as neces- 
sary, when applying the preconditioner (2.3) to try to ensure small relative 
residuals. 

For each option tested, we record the time taken to  compute the (explicit 
or implicit) factors, the number of GLTR iterations performed (equivalently, 
the number of preconditioned systems solved), and the total time taken to  
solve the quadratic programming problem EQP (including the factorization). 
The initial feasible point xo is found by solving 

( Y  I:) (;:) = (:) 
using the factors of KG. Occasionally-in particular when c = 0 and G = H- 
such a point solves EQP, and the resulting iteration count is zero. In a few 
cases, the problems are so ill-conditioned that the trust-region constraint is 
activated, and more than one GLTR iteration is required to solve EQP even 
when G = H. Furthermore, rank deficiency of A occasionally resulted in 
unacceptably large residuals in (2.3) and subsequent failure of GLTR when 
G = H ,  even after iterative refinement. 

In many cases, the use of an "exact" preconditioner G = H is cost ef- 
fective, particularly when the newer factorization package MA57 is used to 
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name 
ACGZDCQ 
AUGZDQP 
AUG3DCQ 
A U G 3 D Q P  
B L O C K Q P  
B L O C K Q P  
B L O C K Q P .  
BLOWEYA 
BLOM'EYB 
B L O W E Y C  
CONT-050 
CONT-101 
CONT-201 
C O N T 5 - Q P  
CONT1-10 
C O S T 1 - 2 0  
CONT-300 
C V X Q P 1  
C V X Q P ?  
C V X Q P 3  
D E G E N Q P  
D U A L C l  
DUALCZ 
DUALC5 
DUALC8 
G O U L D Q P :  
G O U L D Q P :  
K S I P  
M O S A R Q P  
K C V X Q P I  
NCVXQPZ 
N C V X Q P 3  
NCVXQP4 
NCVXQP5 
NCVXQPG 
NCVXQP7 
NCVXQP8 
VCVXQP9 
POWELL20 
P R I h l A L C l  
PRIhlALC2 
PRIhIALC.5 
P R I l I A L C 8  
P R I l l A L l  
?RIblAL2 
'RI l lAL3 
'RI.LIAL4 
a P B A N D  
2 P N B A S D  
p c a o m  
JPCBOEIZ 
J P C S T A I R  
a P S B O E I 1  
JPNBOEIZ 
J P K S T A I R  
1OSQP1 
j T C Q P l  
i T C Q P 2  
i T N Q P 1  
iTNQP2 
J B H l  
'A0 

Table 1: CUTEr QP problems-residual decrease of at least lo-' 

E x ~ l i c i t  factors 

fac t .  i te r ,  to ta  
0.08 1 0 1. 
0.08 1 0 1: 

rank deficient A 
9 76 0 9.84 

13.27 0 113 59 
9.64 0 9 72 
0.02 0 0 03 
0 .01 1 0 01 

fac t .  Iter. totz 
0 47 1 0 .5  

1 0 5  

0 0.04 
znk deficient A 
8 7  0 0 92 

i n k  deficient A 

fact.  l ter,  to t t  
0 46 1 0 .5  
0 46 2 0.5 

Imolicit factors 
G22 = I 

MA57 
Fact, i te r ,  t o t a  
0.04 125 1.52 
0.04 120 1.4s 
0 05 41 0.7. 
0 05 43 0 . 7  
0 .33  2 0.3: 
0 .33  2 0.3t 
0 33  2 0.3: 
0 03 50 0.1: 
0.03 32 0 01 
0.03 50 0.1: 
0 09 3 0 1C 
0.86 2 0.91 

10.14 2 10.41 
20.01 39 22.36 
0.90 3 0 .9 i  

10.83 3 11.2; 
40.82 2 41.4E 

0.21 57 0.56 
0.01 14 0.07 
0 .33 44 0.64 
2.43 3 2.87 
0.00 8 0.oc 
0.00 6 0.00 
0.00 6 0.01 
0 01 7 0.01 
0 03 0 0.05 
0 03 6 0 .11  
0 02 3 0 .03  
0 06 6 0 .07  
0.21 55 0 54 
0.20 55 0 54 
0.20 54 0 53 
0 .01 14 0.07 
0.01 14 0 06 
0.01 14 0 06 
0 .33 43 0.64 
0 .33 43 0 .63 
0 .33 44 0.64 
0.01 2 0.03 
0 .00 1 1  0.00 
0.00 5 0.00 
0.00 6 0 00 
0.00 11 0.01 
0.00 15 0 .01 
0.00 13 0.01 
0 .01 18 0.04 
0 .01 12 0 .03 
0.09 2 0.19 
0.09 3 0.24 
0.00 12 0 .01 
0.00 12 0.00 
0.00 12 0 0 1  
0 01 12 0 01 
0.00 12 0.00 
0.00 12 0 01 
0.03 1 0 04 
0.02 3 0.04 
0.03 3 0.05 
0.02 3 0.04 
0 .03 3 0.05 
0.02 0 0.03 
0.01 21 0.04 

G22 = H22 
NA67 

fact,  i ter.  to ta  
0.25 125 2.0 
0.25 125 2.0: 
0 79 41 1.5! 
0.78 40 1 51 
0.39 2 0.4 
0 .39  2 0.4 
0.38 2 0.4 
0 04 50 0.1: 
0.04 32 0.1. 
0.04 50 0.1: 
0 09 3 0.1. 
0.86 2 0 9 :  

10 10 2 10 3: 
19.94 37 22.2( 
0 9 1  3 0 9 5  

10.86 3 11 2f 
11.00 2 41 6L 
0.24 55 0.6: 
0.10 14 0.2: 
0.34 43 0.68 
2.45 3 2.8s 
0.00 8 0.OC 
0.00 6 0.01 
0.00 6 0.01 
0.01 7 0.01 
0.08 0 0.1C 
0.08 6 0.17 
0.02 3 0.03 
0.07 6 0.08 
0 24 55 0 68 
0 24 56 0 70 
0.23 55 0 69 
0 10 1 3  0 22 
0.10 14 0 24 
0.10 14 0 24 
0.34 43 0 67 
0.34 43 0.67 
0.34 43 0 67 
0.07 2 0.08 
0.00 6 0.00 
0.00 5 0.00 
0.00 5 0.00 
0.00 7 0.01 
0.00 27 0.02 
0 .01 21 0.02 
0.01 26 0.06 
0.02 15 0.04 
0.40 2 0.54 

0.00 14 0 .01 
0.00 12 0 .01 
3 00 12 0 00 
3.00 12 0 .01 
3.05 1 0.05 
3 09 1 0 10 
1.11 1 0 . 1 3  
1.09 1 0 . 1 1  
I l l  1 0.13 
1.04 0 0.05 
1.02 21 0.06 
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Table 2: CUTEr QP problems-residual decrease of a t  least l o w 8  

name 
AUG2DCQI 
AUG2DQP 
AUG3DCQI 
AUG3DQP 
B L O C K Q P I  
BLOCKQP: 
BLOCKQP: 
BLOWEYA 
BLO\I7EYB 
BLO\IJEYC 
CONT-050 
CONT-101 
CONT-201 
CONT5-QP 
CONTI-10 
CONTI-20 
CONT-300 
C V X Q P 1  
C\'XQPZ 
CVXQP3 
D E G E K Q P  
DUALCI 
DUALC2 
DLALC5 
DUALC8 
J O U L D Q P E  
3 0 U L D Q P 2  
KSIP 
LIOSARQPI 
VCVXQPI 
YCVXQP2 
YCVXQP3 
VCVXQP4 
CCVXQP5 
VCVXQP6 
VCVXQP7 
VCVXQP8 
UCVXQP9 
'OWELL20 
'RILIALCI 
'RIMALC2 
'RIMALC5 
'RIMALC8 
'RIMAL1 
'RIMAL2 
'RI11.4L3 
'RIhIAL4 
J P B A N D  
J P N B A N D  
J P C B O E I I  
JPCBOEI2 
JPCSTAIR 
J P N B O E I I  
JPNBOE12 
JPNSTAIR 
iOSQP1 
i T C Q P 1  
iTCQP2 
i T N Q P I  
iTNQP2 
J B H l  
'A0 

Explicit factors 
G = H  

MA27 
fact. i ter,  t o t a  
0.08 1 0.1: 

rank deficient A 
9.76 0 9.84 

L13.27 0 113.59 
9.64 0 9.72 
0.02 0 0.03 
0.01 1 0 .01 

MA57 
fact.  iter t o t a  
0.47 1 0.5' 

"ank deficient A 
0.87 0 0.92 
.ank deficient A 
0.87 0 0.92 
0.12 0 0.14 
3.03 1 0.04 

MA57 
fact.  i ter,  tot8 
0.46 1 0.5 
0.46 4 0 6 
1.45 1 1 5 
1 4 6  5 1 .7  
0.23 1 0.21 
0 23 2 0.2' 
0 23 1 0.2 

> 10000 iteration 
0.05 216 0.9' 

> 10000 iteration 
0.12 1 0.1, 
0.70 5 1.11 
5,63 13 11.21 
3.35 2 3 9i 
0.66 1 0.7' 
6.67 5 9 01 
8.33 40 58.0 
0.20 5 0 2' 
0.10 5 0 . 1 ~  
0.32 5 0.4: 
0.01 11 0 0 
0.00 1 O.O( 
0.01 4 0.0. 
0.01 5 0.0. 
0 2 0  0 0.2: 
0.20 5 0.33 
0.05 21 0.0s 
0.04 5 0.Ot 
0.20 5 0.2; 
0.20 5 0.2: 
0.20 6 0.21 
0.11 5 0 , l i  
0.10 5 0 . l i  
0.10 6 0 . l i  
0.32 5 0.45 
0.33 5 0.4: 
0.33 5 0.45 
0 09 20 0.2: 
0.00 11 0.01 
0 00 4 0.OC 
0.00 10 0.01 
0.01 7 0.01 
0 01 14 0.02 
0.03 8 0.02 
0 06 6 0.07 
0.03 5 0.04 
4.34 2 14.8C 
1.84 5 2.15 
1.83 6 2.24 
0.01 5 0.02 
0.00 5 0.01 
0.01 8 0.02 
0.01 5 0.01 
0.00 5 0.01 
0 01 8 0.02 
0.04 0 0.05 
0.67 6 21.35 
3 14 7 0.20 
3.75 6 21.43 
3 14 8 0.22 
I l l  0 0.13 
1.03 26 0.11 

Imollcit factors 1 

fact.  i ter.  to ta  
0.04 866 10.3, 
0 04 882 10.6' 

0.33 3 0.3'  
0 33  5 0.3! 

> 10000 iteration 
0.03 668 1.2: 

> 10000 iteration 
0.09 7 0 1: 
0.86 10 1.0! 
0.14 11 11 41 
0 .01 113 26 8. 
0.90 10 1 1: 
0.83 12 12.2; 
0.82 1 5  44.9: 
0 21 211 1.4! 
0 01 31 0.2 
0.33 183 1.6: 
2 43 3 3.0( 
0.00 8 0.01 
0.00 6 O.O( 
0.00 7 0.01 
0.01 7 0.01 
0 .03 0 0.0: 
0.03 1614 18.9: 
0.02 18 0.0: 
0.06 36 0.1C 
0.21 215 1.51 
0.20 212 1.5C 
0.20 210 1.4€ 
0.01 51 0.2C 
0.01 51 0.2C 
0 01 51 0.21 
0 3 3  189 1.6s 
0.33 191 1.69 
0.33 193 1.69 
0 01 40 0.21 
0.00 25 0.01 
0 00 9 0.00 
0.00 15 0.01 
0.00 20 0.01 
0.00 153 0.08 
0.00 86 0.06 
0.01 74 0.14 
0.01 41 0.07 
0.09 7 0.46 
3.09 8 0 51 
3.00 47 0 03 
3.00 38 0.01 
3.00 40 0.02 
I 0 1  48 0.03 
3.00 37 0.01 
3.00 40 0.02 
3.03 1 0.04 
1.02 6 0.05 
1 0 3  7 0.07 
1 0 2  6 0.05 
I 0 3  8 0.08 
1.02 0 0.03 
1.01 107 0.18 

0.39 3 0.43 
0.38 4 0.44 

> 10000 iterations 
> 10000 iterations 
> 10000 iterations 
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compute the factors. For those problems for which the exact preconditioner 
is expensive-for example, the CVXqP* and NCVXqP* problems-the "inexact" 
preconditioners are often more effective, particularly when low accuracy so- 
lutions are required. The explicit preconditioner with G = I is often a good 
compromise, although this may reflect the fact that H is often (almost) diag- 
onal. The implicit factors are sometimes but not always cheaper to  compute 
than the explicit ones. The cost of finding a good basis Al using MA48 is 
higher than we would have liked, and is usually the dominant cost of the over- 
all implicit factorization. Nonetheless, for problems like the DUAL*, PRIMAL* 
and ST* examples, the implicit factors seem to offer a good alternative to the 
explicit ones. We must admit to being slightly disappointed that the more so- 
phisticated implicit factors using Gz2 = Hz2 seemed to show few advantages 
over the cheaper Gz2 = I, but again this might reflect the nature of H in our 
test set. 

5 Comments and conclusions 

We have developed a class of implicit-factorization constraint preconditioners 
for the iterative solution of symmetric linear systems arising from saddle- 
point problems. These preconditioners are flexible, and allow for improved 
eigenvalue distributions over traditional approaches. Numerical experiments 
indicate that these methods hold promise for solving large-scale problems, 
and suggest that such methods should be added to the arsenal of available 
preconditioners for saddle-point and related problems. A fortran 90 package 
which implements methods from our class of preconditioners will shortly be 
available as part of the GALAHAD library [30]. We are currently generalizing 
implicit-factorization preconditioners to cope with problems for which the 2,2 
block in (1.1) may be nonzero [13]. 

One issue we have not really touched on-aside from the need for stable 
factors-is the effect of partitioning of the columns of A to  produce a non- 
singular sub-matrix A1. Consider the simple example 

where each x is non-zero. If we chose A1 as the sub-matrix corresponding to 
the first two columns of A, A2 has rank two, while if A1 were made up of 
columns one and three, A2 then has rank one. This simple example indicates 
how the choice of Al may effect the iteration bounds obtained in Theorems 3- 
5, and significantly, leads us to ask just how much we can reduce the bounds 
indicated in these theorems by judicious choice of A1. We plan to investigate 
this issue in future. 
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Optimal algorithms for large sparse quadratic 
programming problems with uniformly bounded 
spectrum 

VSB-Technical University Ostrava, Ti: 17, listopadu, CZ-70833 Ostrava, Czech 
Republic (zdenek , dostal0vsb , cz) 

Summary. Recently proposed algorithms for the solution of large quadratic pro- 
gramming problems are reviewed. An important feature of these algorithms is their 
capability to find an approximate solution of the convex equality and/or bound con- 
strained quadratic programming problems with the uniformly bounded spectrum 
of the Hessian matrix at O(1) iterations. The theoretical results are presented and 
illustrated by numerical experiments. 

Key words: quadratic programming, box and equality constraints, aug- 
mented Lagrangians, adaptive precision control. 

1 Introduction 

An important ingredient in development of effective methods for the solution 
of very large problems is identification of algorithms that can solve some spe- 
cial classes of problems with optimal (i.e, asymptotically linear) complexity. 
For example, the interior point methods were applied successfully to the solu- 
tion of very large problems of nonlinear optimization with many constraints 
and tens of thousands of decision variables observing that  the Hessian ma- 
trix with a special pattern of the nonzero elements may be decomposed with 
nearly linear complexity ( [ la]) .  

Another important class of problems may be characterized by distribution 
of the spectrum of the Hessian matrix. For example, the major breakthrough 
in the development of effective algorithms for numerical solution of elliptic 
partial differential equations was the observation that application of the do- 
main decomposition methods [25] or multigrid methods 1191 to  these problems 
may result in the class of unconstrained QP problems with the cost functions 
whose Hessian matrices are very sparse and have their spectrum in a given 
positive interval. Since there are well known algorithms, such as the conju- 
gate gradient method, with the rate of convergence dependent on the condition 



number of the Hessian matrix, it followed easily that the discretized elliptic 
problems may be solved with optimal (i. e ,  asyn~ptotically linear) complexity. 

Until recently, there were no theoretical results like this for inequality con- 
strained problems, the only exception known to the author being the results 
by J .  Schoberl based on the gradient projection 126,271. However, experimen- 
tal results were reported by several authors ( [ I ,  9,11,21-241). The lack of the 
theoretical results is not very surprising if we realize that any result of this 
type requires identification of the active constraints for free and the rate of 
convergence independent of conditioning of the constraints. Let us point out 
that even though the Hessian matrix of any of the problems we are talking 
about is sparse, its sparsity pattern typically does not allow fast decomposi- 
tion, so that the complexity of even single step of the interior point methods 
is far from optimal. 

In this paper, we review our optimal algorithms 14-7,161 for the solution of 
convex bound and/or equality constrained quadratic programming problems. 
These algorithms can be implemented in such a way that,  for the class of 
problems with the spectrum of the Hessian matrix in a given positive interval, 
they can find approximate solutions of each particular problem at the cost 
proportional to  that of the matrix-vector multiplication. In combination with 
our variants of FETI [13, 141 or FETI-DP [15] methods, these algorithms 
turned out to  be a powerful engine in development of scalable algorithms for 
numerical solution of elliptic variational inequalities. Numerical experiments 
with the solution of variational inequalities discretized by more than eight 
millions of nodal variables confirmed that the algorithms extend both the 
numerical and parallel scalability of the linear FETI method (e.g. [17]) to 
constrained problems. 

We demonstrate the performance of our algorithms by solving for each type 
of the constraints the class of well conditioned problems of varying dimensions 
with the quadratic form qt defined for t E {2 ,3 , .  . . ) by the symmetric Toeplitz 
matrix A = At of the order 2 * t2 determined by the nonzero entries a l l  = 
12, a12 = a ~ , ~  = -1 and by the vectors b = bt defined by the entries bi = 
-1, i = 1, . . . , 2  * t .  Using the Gershgorin theorem, it is easy to see that the 
eigenvalues X i  of any At satisfy 8 5 X i  5 16. The equality constraints were 
defined by the matrix C = Ct with t rows comprising 2 * t 2  entries which are 
zeros except ~ i , ~ z - i + l  = 1 and ci,~2+i = -1,i = 1 , .  . . , t .  

In the whole paper, q(x) = ;xTAx - bTx will always denote a strictly 
convex quadratic function defined on lRn with the Hessian matrix V2q = A E 
lRnXn symmetric positive definite and x,  b E Rn. The eigenvalues of A will 
be denoted Xi(A), 

The Euclidean norm and the A-energy norm of x will be denoted by llxll and 
( ( x ( ( ~ ,  respectively. Thus ( ( x / ( ~  = xTx and \ \ x ( ( \  = xTAx. Analogous notation 
will be used for the induced matrix norms. 
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2 Equality constrained problems 

We shall start with the problem of finding the minimizer of the quadratic 
function q(x)  subject to  the linear equality constraints, that is 

minimize q(x)  subject to x  E f l ~  (1) 

with f l ~  = {x E Rn : C x  = d ) ,  C  E Rmxn, and d  E Rm. We require 
neither that C is a full row rank matrix nor m 5 n,  but we shall assume 
that d belongs to  the range of C to guarantee that f 2 ~  is not empty. Our 
development is based on the augmented Lagrangian method [2] which reduces 
(1) to a sequence of the problems of the form 

minimize L(x ,  pk,  p k )  subject to x  E Rp ( 2 )  

where 
P k  

L ( x , P ~ ,  p k )  = q(x)  + ( P ~ ) ~ ( c x  - d )  + -IlCx - dl2 2  (3) 
k is known as the augmented Lagrangian function, pk = (p l  , . . . , ph)T is the 

vector of the Lagrange multipliers for the equality constraints, and pk is the 
penalty parameter. The precision of the approximate solution xk of the auxil- 
iary problems will be measured by the Euclidian norm of the feasibility error 
and of the gradient of the augmented Lagrangian. The latter is always denoted 
by g,  so that 

Our algorithm with the adaptive precision control reads as follows, 

Algorithm 1. Semi-monotonic augmented Lagrangians for equality 
constraints (SMALE) 
Given Q > 0, > 1 ,  M > 0, po > 0 ,  and p0 E lRm , set k = 0. 
Step 1. {Inner iteration with adaptive precision control.) 
Find xk such that 

Step 2. {Update p.) 

Step 3. {Update p provided the increase of the Lagrangian is not sufficient.) 
If k > 0  and 

then 
Pk+l = P p k  r 



else 
Pk+l  = P k .  

Step 4 .  Set k = k + 1 and return to  the Step 1. 

In Step 1 we can use any convergent algorithm for minimizing the strictly 
convex quadratic function such as the conjugate gradient method [2]. Algo- 
rithm 1 differs from those considered by Hager [20] and Dostal, Friedlander 
and Santos [8] by the condition on the update of the penalization parameter 
in Step 3. 

Algorithm 1 has been proved to be correctly defined and to  enjoy a kind 
of optimal convergence of the feasibility error [4]. To present our optimality 
result related to the conjugate gradient implementation of Step 1, let 'T denote 
any set of indices and assume that for any t E 7 there is defined a problem 

minimize qt(x)  subject to  x E 0; (10) 

with fig = { X  E Bnt : Ctx = 0}, qt(x)  = ;xTAtx  - bTx, At E ElntXnt  
symmetric positive definite, Ct E Elmt Xn" and bt , x E Elnt . 

Theorem 1. Let { x k ) ,  {&} and { p t , k )  be generated b y  Algorithm 1 for (10) 
with Ilbtll 2 qt > 0, p > 1, M > 0, pt,o = po > 0, p: = 0. Let 0 < amin < 
amax and 0 < cmin < emax be given constants. Let Step 1 be implemented by the 

k,O k,l 
conjugate gradient method which generates the iterates xt , xt , . . . , xfl' = x; 
for the solution of (10) starting from xf" = xF-' with x;' = 0, where 1 = l k ,  
is the first index satisfying 

Let the class of problems (10) satisfies 

where amin(Ct)  denotes the least nonzero singular value of C t .  Then the fol- 
lowing statements hold: 
(i) Algorithm 1 generates an approximate solution xft of any problem (10) 
which satisfies 

llxk - 311 i d b t  I 1  (14) 

at O(1) matrix-vector multiplications b y  the Hessian of the augmented La- 
grangian Lt for (10). 
(ii) The images of the Lagrange multipliers CTpk  are bounded and converge 
to CTp,  where p denotes any vector of Lagrange multipliers of the solution. 
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Proof: See [6] .  

We have implemented Algorithm 1  in Matlab and solved a class of prob- 
lems of the varying dimension defined in the introduction. We solved the 
problem with qt = lbtll,P = 10, p  = 200, M = 1  and po = 0  using the stop- 
ping criterion jlgt(x, p,  p) 1 1  5 jlbt 1 1  and llCtxll < ( ( b t ( ( .  The results are 
in Table 1. 

Table 1: Performance of SMALE 

Equality constrains cg Outer 
=bandwidth Dimension n iterations iterations 

We conclude that  we can observe optimality in practice for well conditioned 
problems. More numerical experiments and theoretical results may be found 
in [4 ,6] .  

3 Bound constrained problems 

We shall now be concerned with the problem 

minimize q ( x )  subject to x  E f l B  (15) 

with Qg = { x  : x  L e )  and ! E lRn. The unique solution T of (15) is fully 
determined by the Karush-Kuhn-Tucker optimality conditions [2] so that for 
i = l , . . . , n ,  

- x ,  = ei implies gi > 0  and Ti  > ti implies gi = 0  (16) 

where g  = g ( x )  denotes the gradient of q  defined by 

The conditions (16) can be described alternatively by the free gradient p  and 
the chopped gradient P that are defined by 

p i ( x )  = gi ( x )  for xi > ei,  pi ( x )  = 0  for xi = li 

Pi(.) = 0  for xi > .ti, p i (x )  = g;(x)  for xi = ti 



where we have used the notation g i  = min{gi, 0). Thus the conditions (16) 
are satisfied iff the projected gradient gP(x) = p(x)  +P(x)  is equal to the zero. 

The algorithm for the solution of (15) that we describe here exploits a 
given constant r > 0, a test to decide about leaving the face and three types 
of steps to  generate a sequence of the iterates {xk} that approximate the 
solution of (15). 

The expansion step may expand the current active set and is defined by 

with the fixed steplength 6 E (0, I1All-l] and the reduced free gradient @(x) 
with the entries Fi = Fi(x) = min{(xi - .ti)/3, pi}. 

If the inequality 
lIP(xk)ll2 5 r 2 F ( x k ) T ~ ( x k )  (19) 

holds then we call the iterate xk  strictly proportional. The test (19) is used to 
decide which component of the projected gradient gP(xk)  will be reduced in 
the next step. 

The proportioning step may remove indices from the active and is defined 

with the steplength a,, that minimizes q (xk - aP (xk ) ) .  It is easy to  check [2] 
that acq that minimizes q(x - cud) for a given d and x may be evaluated by 
the formula 

dTg(x) cucg = a,, (d) = - 
d*Ad ' 

The conjugate gradient step is defined by 

where pk is the conjugate gradient direction [2] which is constructed recur- 
rently. The recurrence starts (or restarts) from pS = y(xS)  whenever xS is 
generated by the expansion or proportioning step. If pk is known, then pk+l 

is given [2] by 

Algorithm 2. Modified proportioning with reduced gradient projec- 
tions (MPRGP) 
Let xO E 0, 5 E (0, IIAll-'], and r > 0 be given. For k 2 0 and xk  known, 
choose xk+' by the following rules: 
Step 1. If gP(xk)  = 0, set xk+l  = xk .  
Step 2. If x k  is strictly proportional and gP(xk)  # 0, try to  generate xk+l  by 
the conjugate gradient step. If xk+l  E 0, then accept it, else use the expan- 
sion step. 
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Step 3. If sk is not strictly proportional, define xk+' by proportioning. 

Algorithm 2 has been proved to enjoy the R-linear rate of convergence 
in terms of the spectral condition number [16]. To formulate the optimality 
results, let I denote any set of indices and assume that for any t E I there 
is defined the problem 

minimize qt(x) subject to x E Q L  (24) 

with 0; = {x E Rnt : x > e), qt(x) = $xTAtx - bTx, At E Rnt xnt  symmet- 
ric positive definite, and b t ,  x ,  et E ant. Our optimality result then reads as 
follows. 

Theorem 2. Let the Hessian matrices At = V2qt of  (24)  satisfy 

let { x f )  be generated by Algorithm 2 for  (24)  with a given x: E R i ,  E E 
(O,a;i,], and let r > 0. Let there be a constant ab such that IIx:I 5 abiibtiI 
for  a n y  t E 7 .  
( i )  If E > 0 is  given, then  the approximate solution Zt of (24)  which satisfies 

m a y  be obtained at O(1) matrix-vector multiplications by At.  
( i i )  I f  E > 0 i s  given, then  the approximate solution x$ of (24)  which satisfies 

m a y  be obtained at 0 ( 1 )  matrix-vector multiplications by At.  

Proof: See [7,16] 

Table 2: Performance of MPRGP 

Active Matrix-vector 
Bandwidth Dimension n constraints multiplications 

The results indicate that we can observe optimality for well conditioned 
problems. More numerical experiments and implementation details may be 
found in [16]. 



4 Bound and equality constrained problems 

We shall be finally concerned with the problem of finding the minimizer of 
the strictly convex quadratic function q(x) subject to  the bound and linear 
equality constraints, that is 

minimize q(x) subject to x E f l B E  (25) 

with QBE = {x E lRn : x 2 ! and Cx  = 0) and C E lRmxn. We do not require 
that C is a full row rank matrix, but we shall assume that Q is not empty. Let 
us point out that confining ourselves to the homogeneous equality constraints 
does not mean any loss of generality, as we can use a simple transform to 
reduce any non-homogeneous equality constraints to our case. The algorithm 
that we describe here combines in a natural way the algorithms SMALE and 
MPRGP described above. It is related to the earlier work of Friedlander and 
Santos with the present author [lo].  Let us recall that the basic scheme that 
we use was proposed by Conn, Gould and Toint [3] who adapted the aug- 
mented Lagrangian method to  the solution of the problems with a general 
cost function subject to general equality constraints and simple bounds. 

Algorithm 3. Semi-monotonic augmented Lagrangians for bound 
and equality constraints (SMALBE) 
Given q > 0, p > 1, M > 0, po > 0, and p0 E Rm , set k = 0. 
Step 1. {Inner iteration with adaptive precision control.) 
Find xk  such that 

Step 2. {Update p.) 
plc+l = I.1 k + p k c x k .  

Step 3. {Update p provided the increase of the Lagrangian is not sufficient.) 
If k > 0 and 

then 
Pk+l = P P ~ ,  

else 
Pk+l = Pk. 

Step 4 .  Set k = k + 1 and return to  Step 1. 

Algorithm 3.1 has been shown to be well defined [lo],  that is, any con- 
vergent algorithm for the solution of the auxiliary problem required in Step 
1 which guarantees convergence of the projected gradient to  zero will gener- 
ate either xk  that satisfies (26) in a finite number of steps or a sequence of 
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approximations that converges to the solution of (25). To present explicitly 
the optimality of Algorithm 3 with Step 1 implemented by Algorithm 2, let 
I denote any set of indices and let for any t E T be defined the problem 

minimize q t ( x )  subject to x E fibE (31) 

with OLE = { x  E Rnt : C t x  = 0 and x 2 i t } ,  q t ( x )  = $ x T A t x  - b r x ,  
At E Rntxnt symmetric positive definite, Ct E Rmt x n t ,  and bt, et E Rnt , 
Our optimality result reads as follows. 

Theorem 3. Let { x f } ,  { p k }  and {p t , k}  be generated by Algorithm 3 for (31) 
with llbtll 2 qt > 0 ,  P > 1, M > 0 ,  pt,o = po > 0 ,  p! = 0 ,  Let Step 
1 of Algorithm 3 be implemented by Algorithm 2 (MPRGP) which generates 
the iterates x:", x f l l ,  . . . , x f "  = x t  for the solution of (31) starting from 
x f > o  - k - 1  

- xt  with x,' = 0 ,  where 1 = l k ,  is the first index satisfying 

or 
I I S ~ ( X ~ " ,  pk, p k ) ~ ~  ~llbt 1 min{l, M - ' } .  (33) 

Let 0 < a,i, < a,,, and 0 < c,,, be given and let the class of problems (31) 
satisfies 

Then Algorithm 3 generates an approximate solution x f t  of any problem (31) 
which satisfies 

at O ( 1 )  matrix-vector multiplications by the Hessian of the augmented La- 
grangian Lt . 

Proof: See [7]. 

We have implemented Algorithm 3 in Matlab and solved the class of well 
conditioned problems of the varying dimensions specified in the introduction. 
We solved the problem with qt = b t l l ,  P = 10, p = 200, M = 1 and po = 0 
using the stopping criterion Ilgt(z, p, p ) / )  < 1 0 - ~ / l b ~ l l ,  llCtxll < ~ O - ~ b t  1 1 .  The 
results are in Table 3. 

5 Conclusions 

Theoretical results concerning optimality of the recently proposed algorithms 
for bound and/or equality constrained quadratic programming were presented 



Table 3: Performance of SMALBE 

Equality constrains Active cg Outer 
=bandwidth Dimension n constraints iterations iterations 

10 200 5 7 38 9 
50 5000 1239 4 1 9 

100 20000 4997 39 8 
250 125000 31193 44 8 
500 500000 124887 44 8 

and illustrated by numerical experiments. The unique feature of the  presented 
algorithms is their capability t o  find the approximate solution of the  class of 
problems with the  uniformly bounded spectrum of the Hessian matrix a t  O(1) 
matrix-vector multiplications. No assumptions concerning regularity of solu- 
tion are used and the  results are valid even for linearly dependent constraints. 
The  algorithms were combined with FETI  [ 5 ,  9, 11, 121 and FETI-DP [15] 
domain decomposition methods to  develop scalable algorithms for numerical 
solution of elliptic variational inequalities and contact problems of elasticity 
and tested on problems discretized by up  to  more than 8 millions of nodal 
variables. 
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Summary. The problem of finding a family of parallel hyperplanes that separates 
two disjoint nonempty polyhedra is examined. The polyhedra are given by systems 
of linear inequalities or by systems of linear equalities with nonnegative variables. 
Constructive algorithms for solving these problems are presented. The proposed 
approach is based on the theorems of alternative. 

Key words: polyhedra, separating hyperplane, theorems of alternative. 

1 Introduction 

The theorem on the existence of a separating hyperplane plays a key role in 
functional analysis, optimization theory, and operations research. In solving 
practical problems, one should not only know that there exists a separating 
hyperplane but also be able to constructively determine it. The method for 
finding a hyperplane that separates two polyhedra defined by a system of 
inequalities was developed by 1.1. Eremin (see [ I ,  Theorem 10.11). 

In this paper we propose the numerical methods for construction of a 
family of parallel hyperplanes that separate two disjoint nonempty polyhedra 
given by systems of linear inequalities or by systems of linear equalities with 
nonnegative variables. Our approach is based on new theorems of alternative 
described in [2,3]. 

In Section 2 we consider two polyhedra defined by systems of linear in- 
equalities. If polyhedra are disjoint then the union of these systems (original 
system) is inconsistent. The alternative system is solved by minimizing the 
residuals of the inconsistent original system. The results of this minimization 
are used to find the normal solution (with a minimal Euclidean norm) to  the 
alternative system. The replacement of the alternative system by the mini- 
mization of the residuals of the original system may be advantageous when the 
dimension of the new variables is less than that of starting ones. In this case, 
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such a reduction results in minimization problem in a space of lower dimen- 
sion and allows one to obtain the normal solution to the alternative system. 
After finding the normal solution of the alternative system we construct the 
family of parallel hyperplanes which separates the polyhedra. 

In Section 3, we construct families of separating hyperplanes for two poly- 
hedra given by systems of linear equalities with nonnegative variables. In con- 
trast to  the previous case, every solution to the alternative system determines 
two distinct families of separating hyperplanes. 

In Section 4, we examine the following problem: how can one distinguish a 
solution to the alternative system that generates a family of separating hyper- 
planes with a maximal thickness, which coincides with the minimal distance 
between the polyhedra? 

In Section 5, we give a brief review of the generalized Newton method for 
calculating the normal solution to the alternative system. The normal solu- 
tion is used for constructing a family of separating hyperplanes for polyhedra 
given by systems of linear inequalities. The generalized Newton method was 
implemented in Matlab and showed a good performance in solving large-scale 
test problems. 

2 Separation of polyhedra defined by inequalities 

Let x E Rn and b E Rm, where Ilbl # 0, be given vectors and A E Rmxn  be a 
given rectangular matrix. Define the two sets 

where p > 0 is an arbitrary fixed positive number and Oi is the zero vector of 
dimension i. The linear systems 

which determine the sets X and U, respectively, are alternative for any strictly 
positive value of p, which means that exactly one of them is consistent (this 
is the Gale theorem; e.g., see [2,3]). We take the scalar products of both sides 
of the first equality in (2) with the vector x and then subtract the second 
equality from the resulting relation. This yields 

This equality is a key tool for constructing a family of hyperplanes that se- 
parate two polyhedra given as intersections of half-spaces. We write A, b, and 
u in the form 
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where A1 and Az are matrices of sizes m l  x n and m2 x n ,  respectively; 
b l ,  ul  E Rml ;  b2, uz E Rm2;  and ml  + mz = m. Define the two nonempty sets 

which determine two polyhedra (or polyhedral sets; see [4]) such that X = 
= X1 n X2 = 0. Define the hyperplane cTx - y = 0, where c E Rn, llcll # 0 
is a normal vector and y is a scalar. We say that this hyperplane separates 
X1 and X 2  if cTx - y 2 0 for all x E X1 and cTx - y 5 0 for all x E Xz. 
If we have the strict inequalities in both conditions, then we say that this 
hyperplane strictly separates X1 and X2. 

Consider the problem of calculating the hyperplanes that separate X I  
and X2.  Taking into account the partition introduced above, we can rewrite 
systems (1) and (2) and relation (3) as follows: 

Define a linear function p(x,  a )  of variable x E Rn and a scalar parameter 
a ranging on the interval [O,1]: 

Relation (6) implies that p (x ,  a )  can be equivalently defined as 

The equality cp(x, a )  = 0, where u l  and u2 satisfy (5) and a belongs to  
[O, 11, determines the hyperplane that separates the sets XI and X2.  Indeed, 
if x E X I ,  then, according to  (7), we have p(x ,  a )  2 0, while if x E Xz, then, 
according to  (8), we have p ( x , a )  5 0. In view of system ( 5 ) ,  the hyperplane 
p (x ,  a )  = 0 determined by a function of form (7) or (8) can be written as 

where 

Here, u l  and uz are arbitrary solutions to system (5). For fixed distinct vectors 
uT = [uT,u;] that satisfy system (5)) we examine the family of parallel 
hyperplanes given by the following equivalent definitions: 
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All the hyperplanes belonging to this family are parallel, because they have 
the common normal vector c = A:ul = -A iu2 .  

The hyperplane r ( l )  can be obtained from r ( 0 )  with the help of the shift 
vector y: 

r p )  = r ( o )  + y. 

The norm of y (i.e., the distance between the hyperplanes r ( l )  and r ( 0 ) )  will 
be called the thickness of the family of hyperplanes. 

According to [3,4] the projection 2* of a point 2 onto the hyperplane r ( a )  
is determined by the formula 

Denote by pr(On, r ( a ) )  the projection of the origin onto the hyperplane 
r ( a ) .  Setting = On in ( l l ) ,  we obtain pr(O,,r(a)) = c(bTu1 - ap)/llcl12. 
From this, we find the shift vector y and the thickness llylj of the family of 
hyperplanes r ( a ) :  

1.I.Eremin was the first who proposed to use any solution to system 
(5) for construction the separation hyperplan utilizing function 4(x,  a)  with 
a = 112 [I].  System ( 5 )  may have many solutions. In this section, we examine 
the properties of the family of separating hyperplanes, where u is the normal 
solution ii* to system (5). The results of [2,3] allow us to  relatively easily con- 
struct the normal solution, i.e., to solve the following quadratic programming 
problem: 

1 
min - / 1 ~ 1 1 ~ ,  U = {U E EXm : A ~ U  = On,  bTu = p, u 2 Om}. (14) uEU 2 

Henceforth, we use the Euclidean norm of vectors. 
We introduce the following unconstrained minimization problem for the 

residual vector of system (1): 

1 
I I  = min - ( ( (b  - AX)+II~.  

s€Rn 2 

Here, a+ is the nonnegative part of a vector a ;  i.e., the ith component of a+ is 
the same as the ith component of a if the latter is nonnegative; otherwise, the 
ith component of a+ is zero. The unconstrained minimization problem (15) is 
dual to  the following quadratic programming problem: 
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Problems (15) and (16) are always solvable. Moreover, problem (16) has a 
unique solution, because its feasible set is nonempty and its objective func- 
tion, which is quadratic and strictly concave, is bounded above by lb( /2/2 .  
Theorem I ,  given below, asserts the equivalence between the quadratic pro- 
gramming problems (14) and (16) in the sense that the solution to  one problem 
determines the solution to  the other. The solution z* E Rm to the quadratic 
programming problem (16) can be expressed in terms of the solution x* E Rn 
to the simpler problem (15) of the unconstrained minimization of a piecewise 
quadratic function. Usually, we have n (< m in the problem of separating 
polyhedra (4). 

Theorem 1. Let X1 and X2 be nonempty  disjoint polyhedra. Every solution 
x* t o  problem (15) determines a unique solution z*T = [z*:, z*;] t o  problem 
(16) given by the formulas 

T h e  normal solution ii* to sys tem (5) can be obtained from the solution z* to  
problem (16) by the formula 

while the solution z* to  problem (16) can be obtained from the solution ii* to  
problem (14) by the formula 

I t  holds that Ilii*1111z*11 = p.  T h e  optimal values of the objective functions i n  
problems (15) and (16) are the same: I1 = I 2  = l l~*11~/2. 

The assertions of Theorem 1 follow from the results of [2,3]. The vector 
z * ~  = [ z T ~ ,  zzT] will be called the vector of min imal  residuals of system (4). 
Consider the family of hyperplanes (9), (10) that uses the normal solution ii* 
to  system (5). This family is given by the two equivalent definitions 

(20) 

Note that if ii* is replaced by z* using (19), then families (20) and (21) can 
be written in yet another equivalent form 
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Theorem 2 (on family (20), (21) of parallel separating hyperplanes). 
Let  X1 and X2 be n o n e m p t y  disjoint polyhedra. A s s u m e  that  x* i s  a solut ion 
t o  problem ( 1 5 ) ,  while the  vectors z* and Q* are determined by ( 1 7 )  and ( 1 8 ) .  
T h e n ,  the  following i s  true:  

1 )  there exists a solution t o  s y s t e m  (5); for every  solution t o  this  sys tem,  i t  
holds that  llull # 0, II~211 # 0, and 11ATul l l  = 1lA~uzll # 0; 

2) w h e n  0 5 a I 1 ,  the  set r ( a )  determines  a family of parallel hyperplanes 
that  separate X1 and X2; if 0 < a < 1 ,  t h e n  the  hyperplanes r ( a )  strictly 
separate XI and XZ; 

3) i f  a i s  equal t o  a ,  = /I~T/j~/11z*11~, t h e n  the  point x* belongs t o  the  sepa- 
rating hyperplane corresponding t o  this  value of a ;  

4 )  the  shift vector  y = r ( 1 )  - F ( 0 )  and the  thickness  of the  family r ( a )  are 
determined by the  formulas 

5) if a > 0, t h e n  X1 n r ( a )  = 0 ;  if a < 1 ,  t h e n  Xz n T ( a )  = 0 ;  
6 )  if X1 n r ( 0 )  # 0,  t h e n  r ( 0 )  i s  a supporting hyperplane of the  set XI; zf 

X2 n r ( 1 )  # 0 ,  t h e n  r ( 1 )  i s  a supporting hyperplane of the  set Xz; 
7) every solution x* t o  problem ( 1 5 )  belongs t o  ne i ther  X1 n o r  X2. 

Proof. 
1.  System ( 5 )  is alternative to the inconsistent system (4); hence, there 

exists a solution to  ( 5 ) ;  moreover, 1 1  Arul 1 1  = lAlu2 1 1 .  We show that these 
norms cannot vanish. The relation bTul + b$uZ = p > 0 implies that at least 
one of the two summands on the left-hand side is strictly positive. Without 
loss of generality, we can assume that 

By the condition of the theorem, XI # 0. Hence, the system A T U ~  = O,, 
blul = pl,  ul 2 O m , ,  which is alternative to  the system Alx 2 b l ,  is inconsis- 
tent. Thus, if ( 2 2 )  is fulfilled and ul > O m , ,  then the vector A T U ~  cannot be 
zero. Therefore, Aluz is not a zero vector as well. It follows that the solutions 
ul and uz to system ( 5 )  are nonzero. 

2. The necessary condition for a minimum in problem ( 1 5 ) ,  combined with 
(17) and ( 1 8 ) ,  leads to ATz* = 0, and ATd* = 0,. Define the vector c as 
follows: 

T ATGT = -A 2 G* 2 .  ( 2 3 )  

Since assertion 1  has already been proved, we have licl # 0 .  Taking the normal 
solution G* as the vector u in formulas (7) and ( 8 ) ,  we arrive at  the relations 
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If x E X1 and cu > 0, then p ( x , a )  > 0. If x E X2 and a < 1, then 
p(x ,  a )  I 0. Hence, T ( a ) ,  where 0 6 cu < 1, is indeed a family of separating 
hyperplanes. 

If a > 0 and x E X I ,  then, by (24), we have p ( x , a )  > 0. Similarly, if 
a < 1 and xz E X2,  then (25) implies that p (x ,  a )  < 0. Thus, in this case, 
r ( a )  defines a family of strictly separating hyperplanes. 

3. We set 3 in (11) equal to  the vector x* and set a equal to a,. Then, we 
find from (11) that 

Using this relation and taking into account (17) and (18), we arrive at  the 
equality 2* - x* = 0,; i.e., in this case, the vector x* belongs to the sepa- 
rating hyperplane T(a , ) .  Similarly, substituting a, into (21) and taking into 
account the relation 1 - cu, = Ilz; ll/liz* 1 1 2 ,  we conclude that x* belongs to  the 
separating hyperplane T(a , ) .  

4. This assertion follows from formulas (12) and (13). 
5. The conditions x l  E X I  and 6: L Om, imply that 6yT (A1xl - bl) 2 0. 

On the other hand, from the condition x1 E r ( a ) ,  we have ~ ~ ~ ( ~ 1 x 1  - b)+ 
+ a p  = 0, which is impossible if cup > 0. Hence, the intersection of X1 and 
r ( a )  is empty for any cu > 0. The case a < 1 is treated analogously. 

6. The set X1 has a t  least one common point xl  with r ( 0 ) .  Moreover, X1 
belongs to  the half-space cTxl - iiyT bl 2 0, because this inequality can be 
rewritten as i i ~ ~  (A151 -bl) > 0. It follows that r ( 0 )  is a separating hyperplane 
of the set XI  at its point XI .  The second assertion is proved analogously. 

7. Assume the contrary; i.e., there exists a solution x* to problem (15) 
such that x* E XI .  This means that z; = O m , .  Then, by (18), the solution to 
system (5) is such that 116i 1 1  = 0, which contradicts assertion 1. The theorem 
is proved. 0 

Theorem 2 suggests that the simplest method for constructing a family of 
separating hyperplanes is as follows. First, one solves in Rn the unconstrained 
minimization problem (15) for the residual of the inconsistent system (5) and 
calculates the normal solution ii* to system (5). Then, one constructs r ( a ) ,  
using (20) or (21). The approach of Eremin is to  find an arbitrary solution 
to  the consistent system (5), where the number of unknowns is m. Since we 
usually have n << m, the approach suggested by Theorem 2 is preferable. 

Note that the normal solution ii* to system (5) can be found by a different 
method, namely, by solving the dual problem to the quadratic programming 
problem (14). The dual problem is the following unconstrained maximization 
problem for a piecewise quadratic function: 
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The number of variables in this problem is n + 1. 
If p', x' is a solution to problem (26), then the normal solution ii* to 

system (5) is given by 
d* = (P'b - AX')+. 

In the following theorem, we determine the distance between the suppor- 
ting hyperplanes constructed with the help of the normal solution ii* to system 
( 5 ) .  

Theorem 3. Let  the  conditions of Theorem 2 be fu@lled. T h e n ,  there exist 
8 < 0 and d 2 1 such that  the  family o f  parallel hyperplanes (20), (21), 
where 8 5 a < &, separates X1 and X 2 .  T h e  hyperplanes r ( 8 )  and r ( & )  are 
supporting hyperplanes of the  sets X I  and X2, respectively. T h e  hyperplane 
r ( & )  can  be obtained from r ( 8 )  by the formula r ( & )  = r ( 8 )  + y ,  where 
t h e  shij? vector  y and i t s  n o r m  are given by  y = ( 8  - &)c/ll~11~ and 1 1  y 1 1  = 

= (& - 8 ) / ~ ~ c ~ ~ .  

Proof. The form of y ( x ,  a )  implies that the inequalities 

are fulfilled for all x E X1 and a > 0. Similarly, the inequalities 

y ( x ,  a )  = iiaT(b2 - A ~ X )  + (a - l ) p  = cTx + bl i i i  + ( a  - 1)p 5 0, (29) 
cTx 5 - b l i i a  - ( a -  1)p (30) 

hold for all x E X2 and a < 1. According to  (28) and (30)) there exist 2 E X1 
and 5 E X2 such that 

Setting x = 2 in (27) yields 

If a = 0, then we have 
bTii; - cT2 5 0. 

Therefore, (32) is valid for any a > 8 ,  where 

Relation (29) implies that 



Numerical methods for separating two polyhedra 103 

for x E X2 and a I: 1. I f a =  1, then we have 

Hence, the inequality p(x,  a )  < 0 holds for all x E X2 and a such that a < h ,  
where 

d = 1 - (cT? + b;ii;)lp > 1. (36) 

The hyperplane F(&)  = {x E Rn : cTx = cT?) has the common point 2 
with the set X I .  In view of (31), every point of X1 belongs to the half-space 
cT(? - x)  < 0. It  follows that T ( 8 )  is a supporting hyperplane of X I .  The 
vector c is a supporting vector of X1 at  the point 2 .  In particular, if & = 0, 
then F(0)  is a supporting hyperplane. In a similar way, we show that r ( h )  is a 
supporting hyperplane of X2 at the point 2 .  The shift vector y is obtained by 
simple calculations similar to those in (12) and (13). The theorem is proved. 
0 

In certain cases, the knowledge of the normal solution ii* makes it possible 
to easily determine the optimal values of the objective functions in problems 
(31) and find out whether the hyperplanes F ( a )  corresponding to  a = 0 and 
a = 1 are supporting hyperplanes for X1 and X2,  respectively. Denote by 
wl E R y l  and w2 E IWY2 the Lagrange multipliers, and define the Lagrangian 
functions for problems (31): 

T Ll (x,  wl )  = cTx + w:(bl - A ~ x ) ,  L ~ ( x ,  WZ)  = -c x + w,T(bz - A ~ x ) .  

The pair [xl ,  wl] is a Kuhn-Tucker point for the first problem in (31) if it 
holds that 

Analogously, the pair [xz, wz] is a Kuhn-Tucker point for the second problem 
in (31) if 

We take iii as the vector wl in (37). If there exists a vector xl  that satisfies 
(37), then [xl,  ii?] is a Kuhn-Tucker point. Moreover, (34) implies that 8 = 0; 
i.e., r ( 0 )  is a supporting hyperplane of X1 at  the point XI .  Similarly, let us 
set w2 = ii; in the second problem in (31). If there exists a vector xz that 
satisfies (38), then, in view of (36), we conclude that d = 1. Thus, r ( l )  is a 
supporting hyperplane of Xz at the point xz. If & < 0 or d > 1, then we seek 
the optimal Lagrange multipliers w; or wz for the corresponding problems in 
(31). The first conditions in (37) and (38) imply that these vectors satisfy the 
relation 

ATW; + A,Tw,* = 0. 

Setting ? = X I  and Z = 2 2  in (33) and (35), respectively, we obtain 
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Adding these inequalities, we find that 

It follows that the vector = [ w ~ ~ ,  wzT], together with G* ,  satisfies system 
(5). The family of separating hyperplanes can be represented as 

Thus, we have constructed two families of parallel separating hyperplanes 
of form (20), (21) and (39), (40), respectively. For the first family, we use the 
normal solution to  system (5); for the second, the optimal Lagrange multipliers 
for the linear programming problems (31). Both vectors G* and w* satisfy 
(5). The following theorem asserts that the normal vector c and the scalar y 
which determine an arbitrary strictly separating hyperplane can be expressed 
in terms of a solution to system (5). 

Theorem 4. Let the hyperplane cTx = y strictly separate two nonempty dis- 
joint polyhedra XI and Xz. Then,  there exists a solution u l ,  u2 to the system 

such that the vector c and the scalar y are given by 

where p l  and pz are arbitrary positive constants such that p l  + pz = p. 

Proof. For definiteness, we assume that the given strictly separating hy- 
perplane is such that all x E XI satisfy the inequality cTx  > y, while all 
x E Xz satisfy the inequality cTx  < y. Then, the system 

is unsolvable, whereas the alternative system is consistent. Hence, there exist 
a vector q > Om, and a scalar rl L 0, q E R 1  such that 

Here, p l  is an arbitrary positive constant. The scalar 7 cannot vanish, since, 
otherwise, the consistent system (42) has the form 
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Therefore, the alternative system A1x 2 bl is inconsistent, which contradicts 
the condition X1 # 0. Thus, (42) yields c = ATqlrl and y = b:q/rl - pl/rl. 
Using the notation u1 = q / q  and p1 /rj = p1, we obtain 

In a similar manner, we arrive at  the relations 

Adding (43) and (44)) we obtain the consistent system (41), which is alterna- 
tive to (4). The theorem is proved. 0 

3 Separation of polyhedra defined by equations with 
nonnegative variables 

Consider the case where two polyhedra are represented by equality systems 
given on the nonnegative orthant; i.e., we have two nonempty sets 

such that X = Xl n X2 = 0. According to  Farkas' lemma, the inconsistency 
of the system 

A ~ x  = b l ,  A2x = b2 ,  x > O n ,  

where the variables are nonnegative, implies that the system, 

is consistent. Here, p is a positive constant. 

Theorem 5. Let t w o  n o n e m p t y  disjont polyhedra X1 and  X2 are defined by 
t he  equality s y s t e m s  given o n  nonnegat ive  or thant .  T h e n  a n y  solut ion [u:, u i ]  
t o  s y s t e m  (45) de termines  t w o  families of parallel hyperplanes  t h a t  separate 
X1 and X 2  

where a E [0 11. 

Proof. System (45) is solvable, and every its solution satisfies the inequali- 
ties lul lJ  # 0, u 2 /  # 0, IIA:ulII # 0, and IIA;u211 # 0. Indeed, assume the 
contrary; namely, let ATul = 0,. Since X1 is nonempty, the alternative system 
ATul I 0, b[ul = pl # 0, is inconsistent. By assumption, A:ul = 0,; hence, 
bTul = 0. In this case, (45) converts into the consistent system A;u2 1 On, 
biu2 = p.  However, this is the alternative system to A2x = bz, x > 0,. 
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By assumption, the latter system is consistent, because Xz  is nonempty. The 
contradiction obtained proves that the equality ATul = 0, is impossible. If 
u l  = Om,, then ATul = O n ,  which is impossible. Taking the scalar product of 
the inequality part in (45) with a nonnegative vector x and then subtracting 
the equality part, we obtain 

u : ( ~ l x  - bl) + ~ ~ ( A Z X  - bz) 5 - p  < 0. (46) 

Define two linear functions of variable x E Rn and a parameter a E [ O , 1 ]  as 
follows: 

Then, inequality (46) can be rewritten as 

Fix vectors u l  and uz constituting an arbitrary solution to  system (45). Using 
cpl(x, a )  and cpz(x, a ) ,  we obtain two families of hyperplanes that correspond 
to  a E [0, 11 and separate XI  and X2.  If x E X I ,  then cpl(z,a) 2 0 for 
a E [O,l]. If x E Xz, then cpz(x, a )  < 0 for a E [ O , l ] .  Then, (47) implies 
that cpl(x, a )  < 0. It  follows that the hyperplanes in the family cpl(x, a )  = 0, 
a E [0, 11 separate X I  and X I .  If 0 < a < 1, then inequality (47) shows that 
the hyperplane cpl(x,a) = 0 strictly separates these sets. Now, we show that 
the condition cpz(x, a )  = 0 debermines the family of hyperplanes that separate 
X1 and X I  for a E [ O , 1 ]  and strictly separate these sets if 0 < a < 1. 

Indeed, if x E XZ,  then 9 2  (x, a )  < 0 for a E [ O , l ]  and cpz (x, a )  < 0 if 
0 < a < 1. If x E X I ,  then (47) implies that cp2(z,a) > 0 for a E [0, 11 and 
p z ( x , a )  > 0 if 0 < a 5 1. 

Thus, by solving the alternative consistent system (45)) we obtain two 
families of separating hyperplanes determined by cpl (x, a )  and cpz (x, a ) ) .  I t  
follows that the case under analysis differs from the case of polyhedra given 
by inequality systems, which was examined above. 

Define a nonnegative linear combination of cpl (x, a )  and cp2(x, a )  by setting 

Here, X1 2 0 and X2 L 0. 
Consider the following three families of separating hyperplanes and their 

unions: 

It  is easy to show that the hyperplanes in r 3 ( a )  separate X1 and Xz  for any 
nonnegative scalars X1 and Xz, of which at least one is nonzero. As in the 
preceding section, we denote by p* the vector joining two nearest points in 
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X 1  and X I ;  then, the distance between these sets is lip* 1 1 .  It is often possible 
to  choose X 1  and X 2  such that the vector 

where uT = [u:, u ; ] ,  satisfies condition (45) .  In this case, p* is the normal 
vector of r 3 ( x ,  a ) ,  and the thickness of this family is equal to the minimal 
distance between X I  and X 2 .  The following theorem is an analogue of Theo- 
rem 4. 

Theorem 6 .  Let the hyperplane cTx - y = 0 strictly separate two nonempty 
disjoint polyhedra X I  and X I .  Then, there exists a solution u l ,  u2 to the 
system 

-4Tul + A ~ U Z  5 0 ,  bTul + b i u 2  = p > 0 ,  

such that 

where pl and p:! are arbitrary positive constants such that pl + p2 = pl .  

The proof is an almost word-for-word repetition of the proof of Theorem 4. 
Theorem 6 asserts that polyhedra given by equality systems on the non- 

negative orthant are different from polyhedra given by inequality systems in 
the sense that it is not always possible to find u l  and uz that satisfy the 
consistent alternative system (45) and, a t  the same time, satisfy either the 
condition c = -4Tul,  or the condition c = - A ~ u 2 .  In other words, there may 
not exist vectors u l  and u2 that satisfy (45) and have the property that the 
separating hyperplane c T x  - y = 0 belongs to either r1(o) or r2(a) .  

4 The thickest separating family of parallel hyperplanes 

In this section we consider the polyhedra defined only by systems of linear 
inequalites. The problem of finding the minimal distance between two disjoint 
sets X 1  and X 2  can be written in the form 

1 
min min - l / x l  -x2112. 

xlEXl  xzEX2 2 

We change the variable to p = x l  - 2 2  and rewrite problem (48)  as 

1 
rnin min - I I P 1 1 2  
p ~ j R n  zzEXz 2 

subject to 
-41x2 + A l p  > bl ,  -42x2 > b2. (50) 
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The norm llpll is the same as the distance between the convex sets X 1  and X z .  
The vector p obtained by solving problem ( 4 9 ) ,  ( 50 )  will be called the vector 
determining the distance between these sets. The vector y introduced above 
is not always the same as the vector p produced by solving problem ( 49 ) .  

The Lagrangian function for problem ( ( 4 9 )  has the form 

Using this function, we can write the dual problem: 

max max min min L ( p ,  x z ,  v ) .  
V~ ERY' v Z ~ I W y 2  Z~ER"' p ~ R n  

( 5 1 )  

The optimality conditions for the inner minimization problem in ( 5 1 )  are 
as follows: 

Relations ( 52 )  and ( 53 )  imply that p = A T v l  = - A z v 2 .  The substitution of 
this expression into the Lagrangian function results in the dual Lagrangian 
function 

Taking into account ( 5 3 ) ,  we obtain the dual problem to problem ( 4 9 ) ,  ( 50 ) :  

max max {bTvl  + b l v 2  - I A T v 1 2 / 2 )  
V ~ E I W ~ ; ~ ~  z ~ ~ E R ~ ~  

subject to 
+ A ~ V Z  = On, ~1 2 Oml, ~2 L OmZ. (55 )  

Denote by [p* ,  xa] a solution to problem ( 4 9 ) ,  ( 5 0 )  and by [vT, v ;]  a solution 
to the dual problem ( 5 4 ) ,  ( 55 ) .  By the duality theorem, we have 

bTv; + b l v ;  - IIA:VT 112/2 = l i p *  112/2. ( 56 )  

Substituting p* = A T v ;  into ( 5 6 ) ,  we obtain 

Thus, we have the following assertion. 

Theorem 7. Every solution v * ~  = [vT ,vz]  t o  the dual problem ( 5 4 ) ,  ( 55 )  
determines the unique first component p* i n  a solution [p* , x ; ]  to problem 
( 5 1 ) ,  which is  given by the formulas 

T T p* = A1 V ;  = -Az vg.  

Moreover, i t  holds that 



Numerical methods for separating two polyhedra 109 

Theorem 7 implies that the vector v* found from (54), (55) satisfies system 
(5) for P = llp*1I2. 

Note that a solution v* to the dual problem (54)) (55) determines only 
the first component p* in a solution b*,x:] to the primal problem (49), (50). 
To determine x;, one should substitute p* into the constraints of the primal 
problem and solve the resulting system of inequalities 

Alx2 > bl - Alp*, A252 > b2 

with respect to the vector x2. Thus, the situation here is different from that 
of a pair of mutually dual problems, which was examined above. 

Theorem 8 (on a family of parallel separating hyperplanes). Let  X I  
and X2 be n o n e m p t y  disjoint polyhedra, and let v*, p*, x$ be a solution t o  
problem (51). T h e n ,  the  family of parallel hyperplanes that  separate X1 and 
X2 can  be represented in the  f o r m  

where Q E [O,l]. Moreover, if 0 < Q < 1, t h e n  these hyperplanes strictly sepa- 
rate XI  and X2. T h e  hyperplanes T(0)  and r ( 1 )  are supporting hyperplanes 
for the  sets  X1 and X2, respectively. T h e  thickness  of the  family T(Q)  i s  equal 
t o  11p*ii; i t  i s  the  s a m e  as  the  distance between the polyhedra X I  and X2.  

Proof. Since v* is a solution to problem (54), (55)) we have 

Multiplying this relation on the left by x T l  where x is an arbitrary vector in 
Rn ,  and subtracting the resulting equality from (57)) we obtain 

T T T xTA?u; + x A2 v; - bl v; - bzv; = - ) I A : v T ~ ~ ~ ,  (61) 

Using the coefficient Q E [O, 11 and the equality 1 1  ATv? J J  = IIAiv; / I ,  we can 
rewrite (61) as 

Due to (58), we arrive at the equivalent representations (59) and (60) of the 
hyperplane r ( a ) .  

The triple [v* , p* , x;] is a Kuhn-Tucker point for problem (49). Therefore, 
the following complementary slackness conditions must hold: 
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From these conditions, we derive 

The relations obtained imply that x i  E X l ,  x; E r (O),  xz E X2, and xa E 
E r m .  

\ ,  

For an arbitrary point x in X I ,  we have Alx > b l .  Taking the scalar 
product of this inequality with the nonnegative vector vT, we obtain V T ~  (Alx- 
-bl) 2 0. Taking into account (58)) we arrive at  the relation 

From (62), we find that 
bTV* - * T  * 
1 1 - P  X l -  

From (63), we conclude that p*Tz > p * T z ~  for any x E X1 and at  least one 
point x; E X1 belongs to the separating hyperplane p*Tx = p * T x ~ .  Hence, 
X1 belongs to  one of the half-spaces determined by the hyperplane r(O),  and 
r ( 0 )  is a supporting hyperplane for this set at its point x i .  In a similar way, 
we show that r ( l )  is a supporting hyperplane for X2 at  the point xa. It holds 
that 

All the points in X2 satisfy the inequality p*Tx < J I * ~ X ~  and at least one 
point za E X2 belongs to the hyperplane p*Tx = p*Txa. 

The distance between the supporting hyperplanes is the same as the dis- 
tance between X1 and X2;  both are equal to l i p* ,  which follows from the 
formulation of problem (49), (50). The theorem is proved. 

Note that ,  if relations (64) and (65) are taken into account, then hyper- 
planes r ( a )  of form (59), (60) can be represented as 

i.e., each member of the family of separating hyperplanes can be represented as 
a convex combination of supporting hyperplanes for X I  and X2. To construct 
a family of hyperplanes of form (66), one needs to solve problem (49), (50) 
in a space of variables of dimension 212. To represent the same family in form 
(59), (60), it is required to solve the dual problem (54), (55) in a space of 
variables of dimension m. The vector p* appearing in this representation is 
expressed in terms of v* by formula (58). 

Now, we examine the following issue: is it possible to  distinguish a solution 
to system (5) that determines a family of hyperplanes whose thickness is equal 
to the distance between the sets X1 and X2? According to formulas (12) and 
(13), the shift vector y and the thickness ilyil of the family of separating 
hyperplanes r ( a )  are given by y = -pAT~1/11AT~1112 and iiyll = P/IIAT~lll ,  
respectively; here, uT = [u:, u i ]  is a solution to system (5). It  is then natural 
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to pose the problem of finding a solution u*T = [uf T,  uzT] E U to  system (5) 
for which the thickness of the family of separating hyperplanes is maximal: 

In this case, the shift vector y = T(1) - r ( 0 )  yields the thickness of the 
family of hyperplanes, which is identical to the minimal distance between the 
polyhedra X1 and Xz. This is explained by the fact that the solution u* to 
problem (67)) (68) allows us to find the minimal distance between XI and 
Xz. It  turns out that problems (54)) (55) and (67)) (68) are equivalent in the 
sense that the solution to  one of them can be found from the solution to the 
other. 

Theorem 9. Let X1 and X2 be nonempty  disjoint polyhedra. T h e n ,  the solu- 
t ion  v* t o  problem (54), (55) and the solution u* to  problem (67), (68) satisfy 

T h e  family of separating hyperplanes can be represented i n  each of the follo- 
wing forms:  

where 0 5 cu I: 1. T h e  thickness of this family i s  identical t o  the min imal  
distance between X1 and X2. 

Proof. The vector u* satisfies system (5); hence, 1iA;u~ 1 1  f 0 (see the first 
assertion in Theorem 2 ) .  By Theorem 7, it holds that bTv*  f 0. Formulas (69) 
are obtained by comparing the Kuhn-Tucker conditions for problems (54)) 
(55) and (67), (68). Using (58)) (69) and (12)) we have 

It  follows that,  for the family of separating hyperplanes (70)) (71) the thickness 
is identical to the minimal distance between XI and Xz: 

The theorem is proved. 
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The dual problem to problem (67), (68) is as follows: 

The unknown vector q can be obtained from the solution u* to the primal 
problem (67), (68) by using the formula q* = ATUT = - A ~ u ; .  By the duality 
theorem, the solutions u* and [q*, x*, E * ]  to the primal and dual problems 
satisfy the relation p[* = IIATUT 1 1 2 .  Therefore, [* > 0 and p* = q*/[*, and 
x; = x*/E*. 

Thus, we have constructed the three equivalent representations (59)-(60), 
(66), and (70)-(71), for the same family of separating hyperplanes whose 
thickness is equal to the minimal distance between the polyhedra. Each re- 
presentation requires solving its own optimization problem. Geometrically we 
fined the thickest slab that separates two polyhedra. 

5 The generalized Newton method 

Since we usually have n << m in the problem of separating polyhedra given 
by inequality systems (4), it is preferable to solve problem (15): minimize the 
function F ( x )  = Il(b - Ax)+iI2/2, which depends on n variables. The uncon- 
strained minimization of F ( x )  can be performed by any method, say, by the 
conjugate gradient method. However, Mangasarian showed that the genera- 
lized Newton method is especially efficient for the unconstrained optimization 
of a piecewise quadratic function (see [4,5]). We give a brief description of 
this method. The objective function F ( x )  of problem (15) is convex, piecewise 
quadratic, and differentiable. Such a function does not have the conventional 
Hessian matrix. Indeed, the gradient 

of F ( x )  is not differentiable. However, for function F ( x ) ,  one can define the 
generalized Hessian matrix, which is an n x n symmetric positive semidefinite 
matrix of the form 

d 2 ~ ( ~ )  = A ~ D ~ ( Z ) A .  

Here, D # ( z )  denotes the n x n diagonal matrix whose ith diagonal entry zi is 
equal to one if (b -  AX)^ > 0; zi is equal to  zero if (b -  AX)^ 5 0, i = 1 , , . . , m .  
Since the generalized Hessian matrix can be singular, the following modified 
Newton direction is used: 

- ( d 2 ~ ( x )  + S I ~ ) - ' F ,  (x),  
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where 6 is a small positive number (in our calculations, we typically set 6 = 
= and In is the  identity matrix of order n. In this case, the  modified 
Newton method has the  form 

We used the  following stopping criterion for this method: 

Mangasarian has studied the  convergence of the generalized Newton 
method as applied t o  the  unconstrained minimization of a convex piecewise 
quadratic function of this type with the  step size chosen by the  Armijo rule. 
The  proof of the  finite global convergence of the  generalized Newton method 
can be found in [5-71. The generalized Newton method as applied t o  the  
unconstrained minimization problem (15) was implemented in Matlab and 
showed a good performance in solving large-scale test problems. For instance, 
problem (15) with n = 500 and m = l o4  whose matrix A was fully filled with 
nonzero entries was solved in less than one minute on a 2.24 GHz Pentium-IV 
computer. 
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Summary. We propose the use exact penalty functions for the solution of gener- 
alized Nash equilibrium problems (GNEPs). We show that by this approach it is 
possible to reduce the solution of a GNEP to that of a usual Nash problem. This 
paves the way to the development of numerical methods for the solution of GNEPs. 
We also introduce the notion of generalized stationary point of a GNEP and argue 
that convergence to generalized stationary points is an appropriate aim for solution 
algorithms. 

Key words: (Generalized) Nash equilibrium problem, Penalty function. 

1 Introduction 

In this paper we consider the  following Generalized Nash Equilibrium Problem 
(GNEP) with two players: 

minimize, 01 (x ,  y) minimize, 011 (x, y) 

subject t o  h l (x)  5 0 and subject to  hI1(y) 5 0 (1) 

g l (x ,  Y) i 0 g H ( x 1 y )  5 0 

where 

x E R n l ,  y € R n 2 ;  
OI(x, y) (BII(x, y))  is a continuously differentiable function from to  
R ,  such tha t ,  for every fixed y (x),  @I(. ,  y) (QII(X, .)) is convex; 
hl(x) (h l l (Y))  is a continuously differentiable convex function from Rnl  
(Rn2)  t o  Rm' (Rm2); 
g l (x ,  y) (gll(x, y))  is a continuously differentiable function from R n l +  n 2  t o  
Rml (Rm2) such tha t ,  for every fixed y (x),  g~ (., y) (g11 (x,  .)) is convex. 
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The extension of all the results of the paper to the case of a finite number of 
players is trivial and we do not discuss this more general case just for the sake 
of notational simplicity. 

For every fixed y, denote by S(y)  the (possibly empty) solution set of 
the first player and, similarly, for every fixed x,  S(x)  is the (possibly empty) 
solution set of the second player. We further denote by .F 3: Rnl x Rn2 the 
feasible set of the GNEP, i.e. the set of points (x, y) that are feasible for the 
first and second player a t  the same time. Note that,  by the assumptions made, 
once y is fixed, the first player's problem is convex in x and analogously we 
have that the second player's optimization problem is convex in y for every 
fixed x. A point (3 ,  %) is a solution of the GNEP if 3 E S(%)  and jj E S (2 ) .  
Solutions of the GNEP are also often called equil ibria.  

The presence of the "coupling" constraints gl(x, y) and g" (x,  y) which make 
the feasible set of one player depend on the variables of the other player is 
what distinguish the GNEP from the standard Nash Equilibrium Problem 
NEP and actually makes the GNEP an extremely difficult problem. To date 
there have been very few attempts to define algorithms for the calculation of 
an equilibrium of a GNEP. One possibility is to write the optimality condi- 
tions of the two players using the minimum principle thus obtaining a Quasi 
Variational Inequality (QVI). This has been recognized by Bensoussan [I] as 
early as 1974 (see also [ I l l  for the finite-dimensional case). However there is 
also a lack of proposals for the solution of QVIs, so this reduction is not very 
appealing from the algorithmic point of view. There are a few other scattered 
proposals in the literature, based either on fixed point approaches or the use 
of the Nikaido-Isoda function: [2,3,  14, 16, 191 (see [I 51 for the definition of 
the Nikaido-Isoda function). These kind of algorithms, however, require quite 
stringent assumptions that cannot be expected to be satisfied in general. On 
the other hand there is certainly a wealth of interesting applications that call 
for the solution of GNEPs: see, as a way of example, [4,10,13,17,18] 

Recently, Fukushima and Pang [lo] proposed a promising sequent ia l  penalty 
approach whereby a solution is sought by solving a sequence of smooth NEPs 
problems for values of a penalty parameter increasing to  infinity. The ad- 
vantage of this idea is that the the penalized NEPs can be reformulated as 
Variational Inequalities (VI) to  which, in principle, well understood solution 
methods can be applied, see [9]. In this work we propose a solution framework 
whereby, by using exac t  penalization techniques, the GNEP is reduced to  the 
solution of a single NEP. The advantage is that we only deal with a single 
NEP with a finite value of the penalty parameter. The disadvantage is that 
the players in this NEP have nonsmooth objective functions. 

Before describing our approach more in detail we think it is important 
to set the goal. The GNEP has a structure that exhibits many "convexities" 
and so one could think that a reasonable goal for a numerical method is to 
find a solution (or to determine that the problem has no solutions): this would 
parallel what happens for a convex optimization problem. However the GNEP 
is really a "non convex" problem. For example, under our assumptions, the 
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feasible set .F is non convex and even finding a feasible point, let alone a 
solution, is a difficult task. Therefore we cannot expect that we can solve 
GNEP unless some (more) stringent assumptions are made. 

In nonlinear programming a research line has emerged that attempts to  
analyze algorithms under minimal assumptions; an algorithm is considered 
successful if it can be shown to find a "generalized stationary point" un- 
der these minimal assumptions. Roughly speaking, a "generalized stationary 
point" of a nonlinear program is a either a Karush-Kuhn-Tucker (KKT) point 
or Fritz-John (FJ)  point or an (unfeasible) stationary point of some measure 
of violation of the constraints. After this analysis has been carried out, it 
is investigated under which additional assumptions one can guarantee that,  
indeed, the algorithm converges to  a KKT point, thus ruling out other unde- 
sirable possibilities. This point of view seems very sensible and enriches the 
usual approach in that when one applies an algorithm to the solution of a non- 
linear optimization problem, one does not usually know in advance that the 
problem satisfies the regularity assumptions required by algorithm (i.e. linear 
independence of active constrains, positive linear independence of violated 
constraints and so on). It is then of interest to show that ,  in any case, the al- 
gorithm behaves in a reasonable way, locating a generalized stationary point, 
and to show that,  if in addition some more stringent regularity conditions are 
satisfied, convergence actually occurs to a KKT point of the problem. 

In this paper we parallel these kind of developments and show that the 
penalization technique we propose can only converge to a "Nash generalized 
stationary point". Then we give additional conditions to guarantee that con- 
vergence occurs to  a solution. Our first task on the agenda is then to  give 
a suitable definition of Nash generalized stationary point. Our definition is 
inspired by similar definitions in the case of nonlinear optimization problems 
and also takes into account the convexities that are present in the GNEP. 

Definition 1. A point (x,  y) E Rnl+nz is a Nash generalized stationary point 
if 

1. x is either a KKT or a FJ point of 

minimize, 81 (x, y) 

subject to  hl(x) 5 0 

or a global minimizer of lh l ( . )+ ,g l ( . ,  y)+llz with Ilhl(x)+,gl(x, y ) + 2  > 0; 
2 ,  y is either a KKT or a FJ point of 

minimize, 811 (x, y )  

subject to h"(y) 5 0 (3) 
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or aglobalminimizer of llh"(.)+,gll(x,~)+llz withllhl(y)+,gl(x, y ) + / / z >  0. 

Two observations are in order. Every solution is clearly a Nash generalized 
stationary point, but the viceversa does not hold. If x is a KKT point (by which 
we mean that x ,  together with appropriate multipliers, satisfies the KKT 
conditions) then x solves, for the given fixed y, the optimization problem (2) 
and similarly for y. If x is FJ point, instead, this reflects a "lack of constraint 
qualification" and in this case we cannot say whether x is or is not a solution 
to  (2). Finally, if x is a global minimizer of the function 1 1  h l( .)+, gl(. ,  y) + 1 1 2  
with ~ I ~ ' ( X ) + , ~ ' ( X ,  y)+1l2 > 0, this means that,  for the given y, problem (2) 
is unfeasible. Note that the definition of generalized stationary point extends 
in a natural way similar definitions valid for nonlinear optimization problems. 
We remark that under the assumptions we will make to  analyze the algorithm 
the existence of a solution is not guaranteed, so it would be unreasonable to 
expect that any algorithm can surely find one! 

2 Exact penalty functions for the GNEP 

Our aim is to transform the GNEP (1) problem into a(n unconstrained), 
nondifferentiable Nash problem by using a penalty approach. To this end we 
consider the following penalization of the GNEP: 

and (4) 

where p~ and p11 are positive penalty parameters. In this paper all the norms 
are always Euclidean norms; therefore from now on we will always write 1 1  . / /  
instead of . 112. By setting 

problem (4) can be rewritten as 

It  is also possible to penalize only some of constraints, the most natural choice 
being to  penalize only the coupling constraints g:(x, y) 5 0 and gy(x ,  y) 5 0. 
This would give rise to the following penalized Nash problem 
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where X = {x : hl(x) 1 0) and Y = {y : hI1(y) 5 0). Different penalizations 
could further be considered where, maybe, also some "difficult" constraints in 
the definition of X or Y are penalized while the simple ones (e.g. box con- 
straints) are not penalized. We do not consider all this variants in this paper, 
but with some obvious technical changes all the developments we consider for 
the penalization (4) can be extended to these different penalizations. 

Note that for every fixed y, the first player subproblem in (4) is convex, 
although nondifferentiable, and the same holds for the second player. In this 
section we show that under appropriate conditions and for sufficiently large 
(but finite) values of the penalty parameters, the solutions sets of the GNEP 
(1) and that of the Penalized GNEP (PGNEP) (4) are strongly related. In the 
next section we will give a general scheme that allows us to iteratively update 
the penalty parameters in an appropriate way supposing that a minimization 
algorithm is available for the solution of the PGNEP (4) for fixed values of 
the penalty parameters. 

The first result we discuss is basically known (see [12] for example), how- 
ever we report it here with a proof for sake of completeness and also because 
we could not find a reference with the precise statement below that we need. 

Proposition 1. Consider the minimization problem 

minimize, f (z) 

subject to  v(z) 1 0 ,  

where f : Rn -+ R and v : Rn -t Rm are C1 and (componentwise) convex. Let 
2 be a solution of this problem and assume that set M of KKT multipliers 
is non-empty. Let X be any multiplier in M. Then, for every p > 11X11, the 
solution sets of (5) and 

minimize, f ( z )  + p llv+ (z) 1 1  

coincide. 

Proof. Let 2 be a solution of (5) and suppose that p > I / X / I .  We show that 2 
is a minimum point of the penalty function P ( z ;  p) -= f (z) + p Ilv+ (z) 1 1  (which 
is also convex). We recall that 5 is a minimum point of the Lagrangian of the 
constrained problem (5), that is 

(A is a fixed KKT multiplier; recall that the set M of multipliers of problem 
(5) does not depend on the solution considered). Therefore we get, for any 
z E Rn, 
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where we have used the facts that X 2 0, XTv(B) = 0 and v+(5) = 0. Suppose 
now that B is a (global) minimum point of the penalty function P ( z ,  p). Since 
the penalty function P and the objective function f coincide on the feasible 
set of problem (5)' in order to  show that B is a solution of problem (5) it is 
sufficient to  verify that 5 is feasible to  problem (5). If this were not the case 

(where the fourth inequality derives again from the fact that is a minimum 
point of the Lagrangian of the constrained problem (5)).  This would show that 
t is not a global minimum of the penalty function thus giving a contradiction 
and therefore 5 must be feasible. A 

Consider now the first player's problem in (1). We can see it as a collection 
of convex optimization problems, one for each possible y. The same holds for 
the second player's problem, with the role of "parameter" taken here by x.  
The previous theorem suggests that if we want to  penalize (1) and obtain 
some kind of equivalence to the penalized problem for finite values of the 
penalty parameters, we should require the boundedness of the multipliers of 
the player's problems for each value of the other player's variables. This lead 
us t o  the following assumption. 

Assumption 2.1 (Generalized Sequential Boundedness Constraint Qualifi- 
cation (GSBCQ)) There exists a constant M such that for every solution ( 2 ,  y) 
of the generalized Nash equilibrium problem there exists a corresponding cou- 
ple (A, p)  of KKT multipliers such that II(X, p)/I 5 M. 

We refer to chapter 3 in [9] for more details on this constraint qualification 
(CQ) condition (in the case of optimization problems). Here we only stress 
that the GSBCQ appear to be a rather mild constraint qualification that 
unifies many standard CQ such as the Mangasarian-Fromovitz CQ and the 
constant rank one. 

Under this assumption it is easy to prove the following result. 
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Theorem 1. Suppose that the GSBCQ is satisfied. Then there exists p~ 2 0 
and ~ I I  L 0 such that for every p~ > pI and pr1 > p11 every solution of (1) is 
a solution of (4); viceversa every solution of (4) feasible to (1) is a solution of 
(1) (independent of the values of the penalty parameters). 

Proof. Take p~ and p11 larger then the constant M in the definition of the 
GSBCQ. Suppose (3,g)  is a solution of the GNEP. Then, by Proposition 1 
(? ,a)  is also a solution of (4). Viceversa, assume that (1, a )  is a solution of 
(4) feasible to  (1). It is trivial to see then, that it is also a solution for (1). A 

This result is somewhat weaker than the corresponding one in the case of 
constrained optimization, where in the second part there is no necessity to 
postulate the feasibility of the solution of (4) to  conclude that the point is a 
solution of (1). However we do not believe that it is possible and, actually, 
sensible to  expect such a result in the case of a GNEP. In the case of penalty 
functions for constrained optimization, in fact, a basic assumption is always 
that the optimization problem is feasible. In the case of GNEP, instead, we 
deal with (looking at the first player, for example) an infinite number of op- 
timization problems, one for each possible y ,  and some of this problems can 
be expected to have no solution or even no feasible points. 

Theorem 1 is certainly of interest and basically shows that a penalty ap- 
proach for GNEPs has sound bases. In the next section we give a general 
algorithmic scheme and show, on the basis of Theorem 1, that this penalty 
algorithmic scheme can locate generalized stationary points. 

3 Updating the penalty parameters 

In general the correct value of the penalty parameters for which the solutions 
of the generalized Nash problem (1) and those of the Nash problem (4) coincide 
is not known in advance. Therefore, a strategy must be envisaged that allows 
to  update the values of penalty parameter so that eventually the correct values 
are reached. In this section we show how this is possible in a broad algorithmic 
framework. 

The aim of the penalization method is to transform the original problem 
into one that is easier to  solve. It  is clear that,  in principle, (4) is easier 
than ( I ) ,  even if the non differentiabilty of the players' objective functions is 
somewhat problematic, at least in practice. There exist methods to deal with 
nondifferentiable (4) and the equivalent VI-type reformulation. Furthermore, 
ad-hoc methods (such as smoothing methods, for example) could be developed 
to deal with the very structured nondifferentiability of the objective functions 
of (4). In this paper we do not go into these technical details. Our aim is, 
instead, to give a broad framework that is as general as possible to show 
the viability of the approach. To this end, we simply assume that we have a 
"reasonable" algorithm for the solution of the Nash problem (4). To be more 
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precise we suppose that we have at our disposal an iterative algorithm A that,  
given a point (xk ,  yk) ,  generates a new point (xk+l ,  yk+l)  = A[(xk,  yk)].  We 
make the following absolutely natural and basic assumption on the algorithm 
A. 

Assumption 3.1 For every (xO, yo), the sequence {(xk,  yk)} obtained by it- 
eratively applying the algorithm A is such that every of its limit points (if 
any) is a solution of (4). 

It  is clear that virtually every algorithm that can be said to LLsolve" (4) will sat- 
isfy this assumption. We can now consider the following algorithmic scheme. 
Below we denote by 3 ( y )  the feasible set of the first player for a given y and, 
similarly F ( x )  is the feasible region of the second player for a given x. 

General penalty updating scheme 

Algorithm. 2 
Data: (xO, yo) E I W n l + ~ ,  PI, prr > 0, CI, CII E ( 0 , l ) .  Set k = 0. 
Step 1: If (xk ,  yk) is a solution of (1) STOP. 
Step 2: If xk  3 ( y k )  and 

then double p~ until (6) is not satisfied. 
Step 3: If y k  6 3 ( x k )  and 

then double ,011 until (7) is not satisfied. 
Step 4: Compute (xktl ,  yk+l)  = A[(xk,  yk)] ;  set k t k + I and go to  step 1. 

Note that if the perform the test (6) the point xk  is not feasible for the first 
player, so that h f ( ~ ~ ) ) , ~ ? ( x ~ ,  yk)")  > 0 and, since the norm is the Euclidean 
norm, the function 1 1  h? (.), gT (., yk)  1 1  is continuously differentiable around x k  
and the test (6) is well defined. Similar arguments can be made for the test 
a t  Step 3. 

In what follows we assume that the stopping criterion at  Step 1 is never 
satisfied and study the behavior of Algorithm 2. 

Theorem 3. Let the sequence {(xk,  yk)} produced by the Algorithm 2 be 
bounded. If either p1 or p11 are updated an infinite number of times, then 
every limit point of the sequence {(xk,  yk)} is a generalized stationary point 
of the GNEP (1). If instead the penalty parameters p~ and p11 are updated 
only a finite number of times, then every limit point of the sequence {(xk,  yk)} 
is a solution of the GNEP (1). 

Proof. Suppose the both penalty parameters are updated a finite number of 
times only. Therefore for k sufficiently large we are applying the algorithm A 
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to  problem (4) for fixed penalty parameters. We denote these fixed values by 
p~ and p11. Hence, by the assumption made on A we know that every limit 
point of the sequence {(xk,  yk)} is a solution of (4). Let (3, g) be such a limit 
point. We want to  show that ( Z , j j )  is also a solution of (1). By Theorem 1 
we only have to show that (2 ,g)  is feasible for (1). Suppose this is not true 
and assume, without loss of generality, that the constraints of the first player 
are not satisfied at  (Z, g). Furthermore, since (2 ,g)  is a solution of (4) and 
I ( h ; ( ~ ) , ~ f ( Z , g ) j j  > 0, we can write 

from which we deduce 

But this, together with CI < 1 and some simple continuity arguments, shows 
that the tests at Step 2 must be satisfied eventually and p~ updated. This 
contradiction shows that ( I ,  g) is feasible for both players. 

Consider now the case in which at least one penalty parameter is updated 
an infinite number of times. Without loss of generality assume that it is p1 
that is updated an infinite number of times and that the infinite subsequence 
of iterations where the updating occurs is K .  If { ( I , g ) )  is the limit of a 
subsequence of {(xkl  yk)} with k K we can reason as in the previous case 
and conclude that ( (2 ,  g)} is a solution of (1). Let us analyze then the case 
in which {( I ,g )}  is the limit of a subsequence of {(xkl  yk))  with k E K. We 
have that the the sequence (xk ,  yk) is bounded by assumption and so is, by 
continuity, {VxBI(xkl yk ) IK .  Therefore, since the test (6) is satisfied for every 
k E K and the penalty parameter goes to  infinity on the subsequence K ,  we 
can conclude that 

If (2,  jj) is infeasible we then have by continuity that V, Ilh?(?), g f ( ~ ,  fj) I = 
0 and therefore, since I l h ? ( ~ ) , ~ f ( x ,  y)ll is convex in x (for a fixed y) ,  this 
means that a: is a global minimizer of the function jlhl(.)+,gl(., y)+ll with 
I l h l ( ~ ) + l ~ l ( ~ l ~ ) + l /  > 0. 

If ( I ,  g) is feasible, we have, taking into account that every xk  with k E K 
is infeasible for the first player, that 

Passing to  the limit for k 4 oo, k E K ,  it is easy to  check that 2 is a FJ 
point for the first player (when the second player chooses the strategy g).  It  
is now immediate to  see, reasoning along similar lines, that also y must be 
either a solution or a FJ point for the second player or global minimizer of the 
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function Ilhll(.)+,gll(x,.)+I/ with l l h l ( ~ ) + , g l ( ~ , g ) + l l  > 0. Hence we conclude 
that in any case (2 ,  g) is a generalized stationary point of the GNEP (1). A 

It  should be clear that there is no need to perform the tests a t  steps 2 and 3 
for every k.  It is enough that they are performed an infinite number of times. 
Also, if the updating test, say that at Step 2, is passed, it is sufficient to  take 
the new p~ larger than 

Actually any updating rule for the penalty parameter p~ will be acceptable as 
far as it is guaranteed that if p~ is updated an infinite number of times then 
it grows to  infinity. We leave the details to the reader and discuss instead the 
more interesting issue of whether it is possible to guarantee that every limit 
point is a solution and not just a generalized stationary point of the GNEP (1). 
Note that in Theorem 3 we did not make any regularity assumption on the 
problem; correspondingly, and quite naturally, we could prove convergence 
to generalized stationary points and not to solutions. However, Theorem 3 
makes clear that convergence to  generalized stationary points that are not so- 
lutions can only occur if a( t  least one) penalty parameter goes to infinity. In 
turn, the proof of Theorem 3 shows that if this occurs, then we can find a se- 
quence {xkl  yk )  of infeasible points such that either {Vxll h?(xk)) ,  gT(zk,  yk)  ll) 
or { ~ , l l  h&(yk) ,g&(xk,  yk))ll) tend to zero. The following corollary then easily 
follows from the above considerations. 

Corollary 1. Let the sequence {(xkl yk))  produced by the algorithm 2 belong 
to a bounded set B. Suppose that there exists a positive constant o such that,  
for every infeasible point (x,  y) E B, 

Then p~ or p11 are updated an finite number of times and every limit point of 
the sequence {(xk,  yk))  is a solution of the GNEP (1). A 

In the case of one player (i.e. in the case of optimization problems) the condi- 
tion (8) has been used and analyzed in detail, see [5-81. Basically this condition 
can be viewed as a sort of generalization of the Mangasarian-F'romovitz CQ. 
Its practical meaning is rather obvious: the functions 1 1  hIf (x),  (x ,  y) 1 1  and 
llhA(y), gf:(x, y)ll which represent the violation of the constraints of the first 
and second player respectively, must not have stationary points outside the 
feasible set. This condition seems very natural and says that the "feasibility" 
problem which is a "part" of the generalized Nash equilibrium problem is easy 
(in the sense that the only stationary points of the functions representing the 
violation of the constraints are the global minima). From this condition we 
could derive several sets of sufficient conditions for Corollary 1 to hold, along 
the lines developed in 15-81. We leave this for future research. 
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4 Conclusions 

In this paper we proposed the  notion of generalized stationary point for the  
Generalized Nash Equilibrium Problem and argued tha t  this is an  appropri- 
a te  and realistic target for any numerical solution method. Furthermore we 
introduced an  exact penalization method for the  solution of the  GNEP. We 
gave a broad algorithmic scheme and showed tha t  this scheme is able to  gen- 
erate sequences converging to  a generalized stationary point under a mere 
boundedness assumption. Finally we also discussed an  additional regularity 
condition tha t  guarantees convergence to  solutions (as opposed to  general- 
ized stationarity points). There are certainly still many issues tha t  deserve 
more study, prominent among these an  effective solution procedure for the  
nondifferentiable (unconstrained) problem arising from the  application of the  
exact penalty approach. I t  certainly was not our intention to  investigate all 
t he  issues connected t o  a penalization approach t o  the solution of a GNEP. 
However, we remark that ,  given the  lack of results in the  study of GNEPs, 
we believe tha t  the  approach proposed in this paper could not only be useful 
from the  numerical point of view, but  also lead t o  new sensitivity and stability 
results. 
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Summary. A boundary optimal control problem for an instationary nonlinear 
reaction-diffusion equation system in three spatial dimensions is presented. The 
control is subject to pointwise control constraints and a penalized integral con- 
straint. Under a coercivity condition on the Hessian of the Lagrange function, an 
optimal solution is shown to be a directionally differentiable function of perturba- 
tion parameters such as the reaction and diffusion constants or desired and initial 
states. The solution's derivative, termed parametric sensitivity, is characterized as 
the solution of an auxiliary linear-quadratic optimal control problem. A numerical 
example illustrates the utility of parametric sensitivities which allow a quantitative 
and qualitative perturbation analysis of optimal solutions. 

Key words: optimal control, reaction-diffusion equations, sensitivity analy- 
sis. 

1 Introduction 

Parametric sensitivity analysis for optimal control problems governed by par- 
tial differential equations (PDE) is concerned with the  behavior of optimal so- 
lutions under perturbations of system data.  The subject matter  of the  present 
paper is an  optimal boundary control problem for a time-dependent coupled 
system of semilinear parabolic reaction-diffusion equations. The  equations 
model a chemical or biological process where the species involved are subject 
to  diffusion and reaction among each other. The goal in the  optimal control 
problem is t o  drive the  reaction-diffusion model from the  given initial state as 
close as possible t o  a desired terminal state. However, the  control has to  be 
chosen within given upper and lower bounds which are motivated by physical 
or technological considerations. 
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In practical applications, it is unlikely that all parameters in the model are 
precisely known a priori. Therefore, we embed the optimal control problem 
into a family of problems, which depend on a parameter vector p. In our case, 
p can comprise physical parameters such as reaction and diffusion constants, 
but also desired terminal states, etc. In this paper we prove that under a coer- 
civity condition on the Hessian of the Lagrange function, local solutions of the 
optimal control problem depend Lipschitz continuously and directionally dif- 
ferentiably on the parameter p. Moreover, we characterize the derivative as the 
solution of an additional linear-quadratic optimal control problem, known as 
the sensitivity problem. If these sensitivities are computed "offline", i e . ,  along 
with the optimal solution of the nominal (unperturbed) problem belonging to 
the expected parameter value pol a first order Taylor approximation can give 
a real-time ("online") estimate of the perturbed solution. 

Let us put the current paper into a wider perspective: Lipschitz dependence 
and differentiability properties of parameter-dependent optimal control prob- 
lems for PDEs have been investigated in the recent papers [6,11-14,16,18]. In 
particular, sensitivity results have been derived in [6] for a two-dimensional 
reaction-diffusion model with distributed control. In contrast, we consider here 
the more difficult situation in three spatial dimensions and with boundary 
control and present both theoretical and numerical results. Other numerical 
results can be found in [3,7]. 

The main part of the paper is organized as follows: In Section 2, we in- 
troduce the reaction-diffusion system at  hand and the corresponding optimal 
control problem. We also state its first order optimality conditions. Since this 
problem, without parameter dependence, has been thoroughly investigated 
in [9], we only briefly recall the main results. Section 3 is devoted to  estab- 
lishing the so-called strong regularity property for the optimality system. This 
necessitates the investigation of the linearized optimality system for which 
the solution is shown to be Lipschitz and differentiable with respect to per- 
turbations. In Section 4, these properties for the linearized problem are shown 
to carry over to  the original nonlinear optimality system, in virtue of a suit- 
able implicit function theorem. Finally, we present some numerical results in 
Section 5 in order to  further illustrate the concept of parametric sensitivities. 

Necessarily all numerical results are based on a discretized version of our 
infinite-dimensional problem. Nevertheless we prefer to  carry out the analy- 
sis in the continuous setting so that smoothness properties of the involved 
quantities become evident which could then be used for instance to determine 
rates of convergence under refinements of the discretization etc. In view of 
our problem involving a nonlinear time-dependent system of partial differ- 
ential equations, its discretization yields a large scale nonlinear optimization 
problem, albeit with a special structure. 
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2 The Reaction-Diffusion Optimal Boundary Control 
Problem 

Reaction-diffusion equations model chemical or biological processes where the 
species involved are subject to diffusion and reaction among each other. As 
an example, we consider the reaction A + B 4 C which obeys the law of mass 
action. To simplify the discussion, we assume that the backward reaction C 4 
A+B is negligible and that the forward reaction proceeds with a constant (not 
temperature-dependent) rate. This leads to  a coupled semilinear parabolic 
system for the respective concentrations (cl,  c2, c3) as follows: 

a 
-cl( t ,x)  = dlAcl ( t ,x )  - klc1(t,x)c2(t,x) for all ( t , ~ )  E Q, ( l a )  a t  

The scalars di and ki, i = 1 , .  . . , 3 ,  are the diffusion and reaction constants, 
respectively. Here and throughout, let f l  c R3 denote the domain of reaction 
and let Q = (0 ,T)  x f l  be the time-space cylinder where T > 0 is the given 
final time. We suppose that the boundary r = df l  is Lipschitz and can be 
decomposed into two disjoint parts r = rn U r,, where rc denotes the control 
boundary. Moreover, we let Cn = ( 0 ,T )  x rn and C, = (0 ,T)  x r , .  We 
impose the following Neumann boundary conditions: 

ac2 d2-(t, x )  = 0 for all ( t ,  x )  E C,, 
an ( 2 ~ )  

ac3 dj-(t, x) = 0 for all ( t ,  x) E C. 
a n  ( 2 4  

Equation (2b) prescribes the boundary flux of the second substance B by 
means of a given shape function ~ ( t ,  x) 2 0, modeling, e.g., the location of a 
spray nozzle revolving with time around one of the surfaces of R ,  while u(t)  
denotes the control intensity at time t which is to be determined. The re- 
maining homogeneous Neumann boundary conditions simply correspond to a 
"no-outflow" condition of the substances through the boundary of the reaction 
vessel R .  

In order to  complete the description of the model, we impose initial con- 
ditions for all three substances involved, i.e., 

q ( 0 ,  x) = clo(x) for all x E R,  ( 3 4  

c2 (0, x) = c20(x) for a11 x E E, (3b) 
cg (0, x) = ~ 3 0  (x) for a11 x E R.  ( 3 ~ )  
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Our goal is to  drive the reaction-diffusion model (1)-(3) from the given 
initial state near a desired terminal state. Hence, we introduce the cost func- 
tional 

+ IT u - udI2 dt. 

Here and in the sequel, we will find it convenient to abbreviate the notation 
and write q ( T )  instead of cl(Tl .) or omit the arguments altogether when no 
ambiguity arises. 

In the cost functional, Dl ,  pz and y are non-negative weights, c l r  and 
CZT are the desired terminal states, and ud is some desired (or expected) 
control. In order to  shorten the notation, we have assumed that the objective 
J1 does not depend on the product concentration c3. This allows us to delete 
the product concentration cs from the equations altogether and consider only 
the system for (el ,  c2). All results obtained can be extended to the three- 
component system in a straightforward way. 

The control u : [O,T] -, R is subject to pointwise box constraints 
ua( t )  < u(t) < ub(t) ,  I t  is reasonable to  assume that ua( t )  2 0, which to- 
gether with ol(t,x) > 0 implies that the second (controlled) substance B can 
not be withdrawn through the boundary. The presence of an upper limit ub is 
motivated by technological reasons. In addition to the pointwise constraint, it 
may be desirable to limit the total amount of substance B added during the 
process, i . e . ,  to impose a constraint like 

In the current investigation, we do not enforce this inequality directly but 
instead we add a penalization term 

to the objective, which then assumes the final form 

Our optimal control problem can now be stated as problem (P) 

Minimize J ( Q ,  cz, u) s. t .  ( la)-(lb),  (2a)-(2~)  and (3a)-(3b) 

and ua( t )  < u(t) < ub(t) hold. (p) 
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2.1 State Equation and Optimality System 

The results in this section draw from the investigations carried out in [9] and 
are stated here for convenience and without proof. Our problem (P) can be 
posed in the setting 

u E U = L2(0,T)  

( c l ,  cz) E Y = W(0, T )  x W(0, T ) .  

That  is, we consider the state equation ( la)-( lb) ,  (2a)-(2c) and (3a)-(3b) in 
its weak form, see Remark 1 and Section 2.2 for details. Here and throughout, 
L2(0, T )  denotes the usual Sobolev space [I] of square-integrable functions on 
the interval (0, T )  and the Hilbert space W(0, T )  is defined as 

containing functions of different regularity in space and time. Here, H1(R)  is 
again the usual Sobolev space and H 1 ( 0 ) '  is its dual. At this point we note 
for later reference the compact embedding [17, Chapter 3, Theorem 2.11 

W(0, T )  rr L2(0, T; H S ( 0 ) )  for any 112 < s < 1 ( 5 )  

involving the fractional-order space H S ( R ) .  For convenience of notation, we 
define the admissible set 

Let us summarize the fundamental results about the state equation and 
problem (P). We begin with the following assumption which is needed 
throughout the paper: 

Assumption 1 ( a )  Let R c R3 be a bounded open domain with Lipschitz 
continuous boundary = a n ,  which is  partitioned into the control part rc 
and the remainder r,. Let di and k i ,  i = 1 , 2  be positive constants, and 
assume that a E Lm(O, T ;  L2 ( r c ) )  i s  non-negative. The  initial conditions 
c , ~ ,  i = 1,2  are supposed to be i n  L2(R) .  T > 0 is  the given final t ime  of 
the process. 

(b)  For the control problem, we assume desired terminal states c i ~  E L 2 ( 0 ) ,  
i = 1,2 ,  and desired control ud E L2(0 ,T)  t o  be given. Moreover, let PI,  p2 
be non-negative and y be positive. Finally, we assume that the penalization 
parameter E i s  positive and that u, E R and u, and ub are i n  Lm(O,T) 
such that J: u,(t) d t  5 uc. 

Theorem 1. Under Assumption 1 (a) ,  the state equation (1  a)-(1 b), (2a)-(2c) 
and (3a)-(3b) has a unique weak solution (cl ,  c 2 )  E W(0, T )  x W(0,  T )  for any 
given u E L2(0, T ) .  The  solution satisfies the a priori estimate 

with some constant C > 0 
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In order to  state the system of first order necessary optimality conditions, 
we introduce the active sets 

A-(u) = {t E [0, T] : ~ ( t )  = u,(t)) 

A+(u) = { t  E [O,T] : ~ ( t )  = ~ b ( t ) )  

for any given control u E Uad. 

Theorem 2. Under Assumpt ion  1, the optimal control problem (P) possesses 
at least one global solution i n  Y x Uad.  If (el ,  c2, u)  E Y x Uad is  a local solution, 
t h e n  there exists a unique adjoint variable (A1, X2) 6 Y satisfying 

i n  the weak sense, and a unique Lagrange multiplier E E L2(0,T)  such that 
the optimality condition 

T 

y(u(t)  -ud(t)) + 3  man (0, u(t)  d t - ~ . ) ~  - L P ( t l x )  ~ 2 ( t , x )  d x + ~ ( t )  = 0 
E 

( 7 )  
holds for almost all t E [O,T], together with the complementarity condition 

Remark 1. The partial differential equations throughout this paper are always 
meant in their weak form. In case of the state and adjoint equations (1)-(3) 
and (6), respectively, the weak forms are precisely stated in Section 2.2 below, 
see the definition of F. However, we prefer to write the equations in their 
strong form to make them easier understandable. 

Solutions to  the optimality system (6)-(8), including the state equation, 
can be found numerically by employing, e.g., semismooth Newton or primal- 
dual active set methods, see [8,10,19] and [2,9], respectively. 

In the sequel, we will often find it convenient to  use the abbreviations 
y = (el ,  c2) for the vector of state variables, x = (y, u) for state/control pairs, 
and X = (XI, X2) for the vector of adjoint states. In passing, we define the 
Lagrangian associated to our problem (P), 
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for any x = (el ,  c2, u) E Y x U and X = (A1, Xz) E Y. The bracket (u, v) 
denotes the duality between u E H1(Q)'  and v E H1(R) .  The Lagrangian 
is twice continuously differentiable, and its Hessian with respect to the state 
and control variables is readily seen to be 

+%ax E { O  lT u(t)  dt - } ( ( t )  dt) 2 ( k l X l + k 2 X 2 ) T 1 ~ 2  dxdt .  

The Hessian is a bounded bilinear form, i .e. ,  there exists a constant C > 0 
such that 

holds for all (TI,  Z2) E [Y x UI2. 

2.2 P a r a m e t e r  Dependence  

As announced in the introduction, we consider problem ( P )  in dependence on 
a vector of parameters p and emphasize this by writing (P(p) ) .  It  is our goal 
to  investigate the behavior of locally optimal solutions of (P(p)) ,  or solutions 
of the optimality system (6)-(8) for that matter, as p deviates from its given 
nominal value p*. In practice, the parameter vector p can be thought of as 
problem data which may be subject to  perturbation or uncertainty. The nom- 
inal value p* is then simply the expected value of the data. Our main result 
(Theorem 3) states that under a coercivity condition on the Hessian (10) of the 
Lagrange function, the solution of the optimality system belonging to  (P (p ) )  
depends directionally differentiably on p. The derivatives are called paramet- 
ric sensitivities since they yield the sensitivities of their underlying quantities 
with respect to  perturbations in the parameter. Our analysis can be used to 
predict the solution at p near the nominal value p* using a Taylor expansion. 
This can be exploited to devise a solution algorithm for (P(p) )  with real-time 
capabilities, provided that the nominal solution to (P(p*) )  along with the 
sensitivities are computed beforehand ("offline"). In addition, the sensitivities 
allow a qualitative perturbation analysis of optimal solutions. 

In our current problem, we take 
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as the vector of perturbation parameters. Note that p belongs to  an infinite-di- 
mensional Hilbert space and that,  besides containing physical parameters such 
as the reaction and diffusion constants ki and di, it comprises non-physical 
data  such as the penalization parameter E .  

In order to  carry out our analysis, it is convenient to rewrite the optimal- 
ity system (6)-(8) plus the state equation as a generalized equation, involving 
a set-valued operator. We notice that the complementarity condition (8) to- 
gether with (7) is equivalent to  the variational inequality 

lT c( t ) ( l ( t )  - ~ ( t ) )  dt 5 0 b% E uad.  

This can also be expressed as E E N(u)  where 

if u E Uadr and N(u )  = 8 if u # Uad. This set-valued operator is known 
as the dual cone of Uad at  u (after identification of L2(0, T )  with its dual). 
To rewrite the remaining components of the optimality system into operator 
form, we introduce 

with the target space Z given by 

The components of F are given next. Wherever it appears, 4 denotes an 
arbitrary function in L2(0,T;  H1(f2)). For reasons of brevity, we introduce 
K = klX1 + k2X2. 
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At this point it is not difficult to see that the optimality system (6)-(8), 
including the state equation ( la)-( lb) ,  (2a)-(2c) and (3a)-(3b), is equivalent 
to the generalized equation 

where we have set N ( u )  = (0 ,0 ,0 ,0 ,  N(u) ,  O,0, 0, o ) ~  c 2. In the next sec- 
tion, we will investigate the following linearization around a given solution 
(y* u*, A*) of (13) and for the given parameter p*. This linearization depends 
on a new parameter 6 E 2: 

6 E F ( y * , u * , A * , p * ) + F t ( y * , u * , A * , p * )  u - u *  + N ( u ) .  (14) (1 : ::) 
Herein F' denotes the Frkchet derivative of F with respect to (y, u, A). Note 
that F is the gradient of the Lagrangian C and Ft is its Hessian whose "upper- 
left block" was already mentioned in (10). 

3 Properties of the Linearized Problem 

In order to become more familiar with the linearized generalized equation (14), 
we write it in its strong form, assuming smooth perturbations 6 = (61,. . . , J5). 
For better readability, the given parameter p* is still denoted as in (11)) with- 
out additional * in every component. We obtain from the linearizations of Fl 
through F4: 
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where we have abbreviated K = klXl $- kzXz and K* = klXT + k2XH. From 
the components F6 through Fg we obtain a linearized state equation: 

Finally, the component F5 becomes the variational inequality 

AT ((t) (?i(t) - ~ ( t ) )  dt _< 0 b?i E uad (I 7,  

where in analogy to  the original problem, [ E L2(0, T) is defined through 

In turn, the system (15)-(18) is easily recognized as the optimality system for 
an auxiliary linear quadratic optimization problem, which we term (AQP(6) ) :  
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1 
Minimize -CZx (x* , A*) (x,  X)  - pl C ~ T  ~1 (T)  dx - p2 

2 

6 
- - E max 10,  i T u * ( t )  d t  - uc}  ( L ~  u*(t) dt) (lT u(t)  dt) 

subject to  the linearized state equation (16) above and u E Uad. The 
bracket (6i,  c l )  here denotes the duality between ~ ' ( 0 ,  T; H1 (a)) and its dual 
L2(0 ,T ;  H1(R) ' ) .  In order for (AQP(6) )  to have a strictly convex objective 
and thus to  have a unique solution, we require the following assumption: 

A s s u m p t i o n  2 (Coercivi ty  Condi t ion)  
We assume that there exists p > 0 such that 

holds for all x = (el, c2, u) E Y x U which satisfy the linearized state equation 
(16) in weak form, with all right hand sides except the term a u  replaced by 
zero. 

Sufficient conditions for Assumption 2 to  hold are given in [9, Theorem 3.151. 
We now prove our first result for the auxiliary problem (AQP(S)) :  

P r o p o s i t i o n  1 (Lipschitz S tab i l i ty  for  t h e  Linear ized P r o b l e m ) .  
Under Assumption 1,  holding for the parameter p*, and Assumption 2, 
(AQP(6)) has a unique solution which depends Lipschitz continuously on the 
parameter 6 E Z. That is, there exists L > 0 such that for all i, 8 E Z with 
corresponding solutions ( 2 ,  i )  and (5, A), 

hold. 

P roof .  The proof follows the technique of [I81 and is therefore kept rela- 
tively short here. Throughout, we denote by capital letters the differences we 
wish to estimate, i.e,, C1 = el - C1, etc. To improve readability, we omit the 
differentials dx and dt in integrals whenever possible. We begin by testing the 
weak form of the adjoint equation (15) by C1 and C2, and testing the weak 
form of the state equation (16) by Al and A2, using integration by parts with 
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respect to time and plugging in the initial and terminal conditions from (15) 
and (16). One obtains 

From the variational inequality (17)) using ii = 6 or ii = ii as test functions, 
we get 

Unless otherwise stated, all norms are the natural norms for the respective 
terms. Adding the inequality (21) to (20) above and collecting terms yields 

where the last inequality has been obtained using Holder's inequality, the 
embedding W(0 ,T )  - C([O, TI; L2(R))  and Young's inequality in the form 
ab 5 +a2 + b2/(4+). The number n > 0 denotes a sufficiently small con- 
stant which will be determined later at our convenience. Here and throughout, 
generic constants are denoted by c. They may take different values in different 
locations. 
In order to make use of the Coercivity Assumption 2, we decompose Ci = 
zi + wi, i = 1 , 2  and consider their respective equations, see (16). The z com- 
ponents account for the control influence while the w components arise from 
the perturbation differences d l , .  . . , &. We have on Q, C and R ,  respectively, 
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Note that for (z l ,  22 ,  U),  the Coercivity Assumption 2 applies and that stan- 
dard a priori estimates yield //zll+112211 < cllUll and W I  + / w z / /  I c(AGII+  
11A711+jjAsII+liAgll). Using the generic estimates ( I ~ i j / ~  L 11Ci~~2-2 / /C t / j / l ~ i l~+  
jwi1I2 and jzill I IlCill + liwiii, the embedding W(0, T )  - C([O, TI; L ~ ( Q ) )  
and the coercivity assumption, we obtain 

For the last term, we have employed Holder's inequality and the embedding 
W(0, T) - L4(Q),  see [4, p. 71. Combining the inequalities (22) and (23) 
yields 

and the last two terms can be absorbed in the left hand side when choosing 
n > 0 sufficiently small and observing that A1 and Az depend continuously on 
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the data C1 and C2. By the a priori estimate stated above, w,, i = 1,2 ,  can 
be estimated against the data 4,. . . , Ag. Using again Young's inequality on 
the terms IICillllwj/I and absorbing the quantities of type K I I C , / ~ ~  into the left 
hand side, we obtain the Lipschitz dependence of (C1, C2, U )  on A I ,  . . . , Ag. 
Invoking once more the continuous dependence of Ai on (C1, Cz) , Lipschitz 
stability is seen to  hold also for the adjoint variable. 0 

If (x*, A*) is a solution to the optimality system (6)-(8) and state equa- 
tion, then the previous theorem implies that the generalized equation (13) is 
strongly regular a t  this solution, compare 1151. Before showing that the Co- 
ercivity Assumption 2 implies also directional differentiability of the solution 
of (AQP(6) )  in dependence on 6, we introduce the strongly active subsets for 
the solution (y*,  u*, A*) with multiplier <* given by (7), 

A!! (u*) = {t E [0, TI : <* (t) < 0) 

A:(u*) = {t E [0, TI : <*(t) > 0) 

Note that necessarily u* = u, on A! (u*) and u* = ub on AO+(u*) hold in view 
of the variational inequality (12). Based on the notion of strongly active sets, 
we define G a d ,  the set of admissible control variations: 

u = 0 on A! (u*) u A: (u*) 

u E  c a d  @ U E  L ~ ( o , T )  and u > OonA-(u*)  

u 5 0 on A+(u*) .  

This definition reflects the fact that if the solution u* associated to  the pa- 
rameter value p* is equal to the lower bound u, a t  some point t E [0, TI, we 
can approach it only from above (and vice versa for the upper bound). In 
addition, if the control constraint is strongly active at some point, i.e., if it 
has a nonzero multiplier <* there, the variation is zero. 

Propos i t ion  2 (Differentiabili ty for t h e  Linearized P rob l em) .  
Under Assumptions 1 and 2, the unique solution to (AQP(6)) depends direc- 
tionally differentiably on the parameter 6 E 2. The directional derivative in 
the direction of i E Z is given b y  the solution of the auxiliary linear quadratic 
problem (DQP($)), 

- l ' ~ & ~ d t  

subject to u E c a d  and the linearized state equation 
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Proof. Let 8 E Z be any given direction of perturbation and let {rn)  be a . . 

sequence of real numbers such that rn \, 0. We set 6, = rnS and denote the 
solution of (AQP(6,)) by (c';", c t ,  un, A';", At). Note that (cT, c;, u*,  AT, A;) is 
the solution of (AQP(0) ) .  Then, by virtue of Proposition 1, we have 

in the norms of W(0, T) ,  L2(0, T ) ,  and 2, respectively, and with some Lip- 
schitz constant L > 0. We can thus extract weakly convergent subsequences 
(still denoted by index n) and use the compact embedding of W(0, T) into 
L2 (Q) to  obtain 

and in L2 (Q) 

and similarly for the remaining components. Taking yet another subsequence, 
all components except the control are seen also to converge pointwise almost 
everywhere in Q. From here, we only sketch the remainder of the proof since 
it closely parallels the ones given in [6, 121. In addition to  the arguments 
given there, our analysis relies on the strong convergence (and thus pointwise 
convergence almost everywhere on [0, TI of a subsequence) of 

which follows from the compact embedding of W(0,  T )  into L2 (0, T; H S  (a)) 
for 112 < s < 1 (see (5)) and the continuity of the trace operator H s ( 0 )  -+ 

L2(I',). One expresses un as the pointwise projection of un + Cn/y onto the 
admissible set U,d with Cn given by (18) evaluated at (un,  A;). Using (27) 
and (29), one shows that (un -u*) / rn  possesses a pointwise convergent subse- 
quence (still denoted by index n).  Distinguishing cases, one finds the pointwise 
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limit G of (un - u* ) / rn  to  be the pointwise projection of lim,,,(un + tn /y)  
onto the new admissible set Qad. Using a suitable upper bound in Lebesgue's 
Dominated Convergence Theorem, one shows that G is also the limit in the 
sense of L2(0, T) and thus 6 = ii must hold. It  remains to  show that the limit 
(61,62, G,  ill i 2 )  satisfy the first order optimality system for (DQP($) (which 
is routine) and that the limits actually hold in their strong senses in W(0, T) 
(which follows from standard a priori estimates). Since we could have started 
with a subsequence of rn in the first place and since the limit (El, E2, Q, i l l  i 2 )  
must always be the same in view of the Coercivity Assumption 2, the conver- 
gence extends to  the whole sequence. 0 

4 Properties of the Nonlinear Problem 

In the current section, we shall prove that the solutions to the original non- 
linear generalized equation (13) depend on p in the same way as the solutions 
to the linearized generalized equation (14) depend on 6.  To this end, we in- 
voke an implicit function theorem for generalized equations. Throughout this 
section, let again p* be a given nominal (or unperturbed or expected) value 
of the parameter vector 

satisfying Assumption 1. Moreover, let (x*, A*) = (c;, c;, u*, AT, A;) be a so- 
lution of the first order necessary conditions (6)-(8) plus the state equation, 
or, in other words, of the generalized equation (13). 

T h e o r e m  3 (Lipschitz Cont inu i ty  a n d  Direct ional  Differentiabili ty).  
Under Assumptions 1 and 2, there exists a neighborhood B(p*) c 17 of p* and 
a neighborhood B(y*, u*, A*) C Y x U x Y and a Lipschitz continuous function 

such that (y,, up,  A,) solves the optimality system (6)-(8) plus the state equa- 
tion for parameter p and such that it is the only critical point in B(y*, u*, A*). 
Moreover, the map p H (y,, up, A,) is directionally differentiable, and its 
derivative in the direction fJ E 17 is given by the unique solution of (DQP(~)) ,  
in the direction of 8 = -F,(y*, u*, A*,p*) fi, 

Proof .  The proof is based on the implicit function theorem for generalized 
equations from [5,15]. It  relies on the strong regularity property, which was 
shown in Proposition 1. It  remains to verify that F is Lipschitz in p near p*, 
uniformly in a neighborhood of (y*, u*, A*), and that F is differentiable with 
respect to  p,  which is straightforward. The formula for its derivative is given 
in the remark below. 0 
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Remark 2. In order to  compute the parametric sensitivities of the nominal 
solution (cT , c:, u* , AT, A;) for (P(p*))  in a perturbation direction f i ,  we need 
to solve the linear-quadratic problem ( D Q P ( ~ ) )  with 

where I means max 0, J: u* (t)  dt - u~). We close this section by remarking i 
that the parametric sensitivities allow to compute a second-order expansion 
of the value of the objective, see [6,12] for details. In addition, the Coerciv- 
ity Assumption 2 implies that second order sufficient conditions hold at the 
nominal and also at  the perturbed solutions, so that points satisfying the first 
order necessary conditions are indeed strict local optimizers. 

5 Numerical Results 

In this section, we present some numerical results and show evidence that the 
parametric sensitivities yield valuable information which is useful in making 
qualitative and quantitative estimates of the solution under perturbations. In 
our example, the three-dimensional geometry of the problem is given by the 
annular cylinder between the planes z = 0 and z = 0.5 with inner radius 0.4 
and outer radius 1.0 whose rotational axis is the z-axis (Figure 1). The control 
boundary r, is the upper annulus, and we use the control shape function 

which corresponds to  a nozzle circling for t E [0, 11 once around in counter- 
clockwise direction at  a radius of 0.7. For fixed t ,  cu is a function which decays 
exponentially with the square of the distance from the current location of 
the nozzle. The problem was discretized using the finite element method on a 
mesh consisting of 1797 points and 7519 tetrahedra. The 'triangulation' of the 
domain R by tetrahedra is also shown in Figure 1. In the time direction, the 
interval [0, TI was uniformly divided into 100 parts. By controlling the second 
substance B, we wish to  steer the concentration of the first substance A to 
zero at  terminal time T = 1, L e . ,  we choose 
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?axla x ax83 

Fig. 1: Domain 0 c Kt3 and its triangulation with tetrahedra 

The control cost parameter is y* = and the control bounds are chosen 
as 

1 UbE5.  

The chemical reaction is governed by equations (1)-(3) with parameters 

As initial concentrations, we use 

The discrete optimal solution without the contribution from the penalized 
integral constraint J2 (corresponding to  E = co) yields 

In order for this constraint to become relevant, we choose uE = 3.5 and en- 
force it using the penalization parameter E* = 1. Details on the numerical 
implementation are given in [8,9]. For the discretization described above, we 
obtain a problem size of approximately 726 000 variables, including the ad- 
joint states, which takes a couple of minutes to solve on a standard desktop 
PC. 

In Figures 3-4 (left columns) and Figure 2 (left), we show the individual 
components of the optimal solution. We note that the optimal control lies on 
the upper bound in the first part of the time interval, then in the interior of the 
admissible interval [I, 51 and finally on the lower bound. From Figure 3 (left) 
we infer that as time advances, substance A decays and approaches the desired 
value of zero to the extent permitted by the control cost parameter y and the 
control bounds. Figure 4 (left) nicely shows the influence of the revolving 



Parametric Sensitivity Analysis for Optimal Boundary Control 145 

Fig. 2: Left: Optimal control u* (thick solid), true perturbed control up (thin solid) 
and predicted control (circles), Right: Parametric sensitivity dupe / d p  in the direction 
ofp-p* .  

control nozzle on the upper surface of the annular cylinder, adding amounts 
of substance B over time which then diffuse towards the interior of the reaction 
vessel and react with substance A. 

In order to  illustrate the sensitivity calculus, we perturb the reaction con- 
stants k: and k; by 50%, taking 

as their new values. With the reaction now proceeding faster, one presumes 
that the desired goal of consuming substance A within the given time interval 
will be achieved to  a higher degree, which will in fact be confirmed below from 
sensitivity information. Figure 2 (left) shows, next to the nominal control, the 
solution obtained by a first order Taylor approximation using the sensitivity 
of the control variable, ie., 

d 
U P  '=: U p *  + -Up* (p - p*) .  

dp 

To allow a comparison, the true perturbed solution is also depicted, which of 
course required the repeated solution of the nonlinear optimal control problem 
(P(p) ) .  It is remarkable how well the perturbed solution can be predicted in 
face of a 50% perturbation using the sensitivity information, without recom- 
puting the solution to the nonlinear problem. We observe that the perturbed 
control is lower than the nominal one in the first part of the time interval, 
later to become higher. This behavior can not easily be predicted without 
any sensitivity information at hand, Besides, a qualitative analysis of the 
state sensitivities reveals more interesting information. We have argued above 
that with the reaction proceeding faster, the control goal can more easily be 
reached. This can be inferred from Figure 3 (right column), showing that the 
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Fig. 3: Concentrations of substance A (left) and its sensitivity (right) a t  times t = 
0.25, t =0.50,  t = 0 . 7 5 ,  and t =  1.00. 
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Fig. 4: Concentrations of substance B (left) and its sensitivity (right) at  times t  = 
0.25, t  = 0 . 5 0 ,  t = 0 . 7 5 ,  a n d t  = 1.00. 
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sensitivity derivatives of t he  first substance are negative throughout, i e . ,  t he  
perturbed solution comes closer in a pointwise sense t o  t he  desired zero termi- 
nal  s t a t e  ( t o  first order). T h e  sensitivities for t he  second s ta te  component (see 
Figure 4, right column) nicely reflect t he  expected behavior inferred from the  
control sensitivities, see Figure 2 (right). As the  perturbed control is initially 
lower t h a n  the  unperturbed one after leaving the  upper bound,  t he  sensitivity 
of t he  second substance is below zero there. Later ,  i t  becomes positive, as  does 
t he  sensitivity for t h e  control variable. 
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Summary. One-shot optimization aims a t  attaining feasibility and optimality si- 
multaneously, especially on problems where even the linearized constraint equations 
cannot be resolved economically. Here we consider a scenario where forming and fac- 
toring the active Jacobian is out of the question, as is for example the case when the 
constraints represent some discretization of the Navier Stokes equation. Assuming 
that the 'user' provides us with a linearly converging solver that gradually restores 
feasibility after each change in the design variables, we derive a corresponding ad- 
joint iteration and attach an optimization (sub)step. 

The key question addressed is how the approximate reduced gradient generated 
by the adjoint iteration should be preconditioned in order to achieve overall conver- 
gence at a reasonable speed. An eigenvalue analysis yields necessary conditions on 
the preconditioning matrix, which are typically not satisfied by the familiar reduced 
Hessian. Some other projection of the Lagrangian Hessian appears more promising 
and is found to work very satisfactorily on a nonlinear test problem. 

The analyzed approach is one-step in that the normal, dual and design variables 
are always updated simultaneously on the basis of one function evaluation and its 
adjoint. Multi-step variants are promising but remain to be investigated. 

Key words: Jacobian-free optimization, adjoint equation, algorithmic differ- 
entiation, R-linear Convergence, fixed point iteration. 

1 Introduction 

Design optimization problems are distinguished from general NLPs by the  fact 
t ha t  the  set of variables is split a priori into a s ta te  vector y E Y and a set 
of design or control variables u E U. For simplicity we will assume tha t  not 
only Y but  also U and thus their Cartesian product X = Y x U are Hilbert 

' Supported by the DFG Research Center MATHEON "Mathematics for Key 
Technologies" in Berlin 
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spaces. With c : X -+ Y the state residual and f : X -+ R the objective we 
obtain the equality constrained optimization problem 

Min f (y, u) s.t. c(y, u) = 0 E Y. 

While the solution space Y has often a natural scalar product, the design space 
U may be rather heterogeneous, representing for example material properties 
and/or shapes in various parameterizations [14]. We will therefore strive to 
avoid any dependences on the inner product in U. 

For notational convenience we will assume that Y and U have finite di- 
mensions n = dim(Y) and m = dim(U) with n >> m, typically. Then elements 
y E Y and u E U may be identified with their coordinate vectors in Rn and 
Rm with respect to suitable Hilbert bases. This convention allows us to write 
duals as transposed vectors and inner products as the usual scalar products 
in Euclidean space. Also we will be able to compute determinants and charac- 
teristic polynomials to determine eigenvalues rather than performing spectral 
theory in Hilbert spaces. 

A key assumption throughout the paper is that a t  all arguments x = (y, u) 
of interest 

det(cy(yl u))  # 0 where c, E &(y, u ) /  dy. (1) 

Here and elsewhere subscripting by real vectors indicates partial differenti- 
ation, whereas integer subscripts are iteration counters. Throughout we will 
denote a locally unique solution of c(y, u) = 0 for fixed u as y, = y,(u) and 
also annotate other quantities evaluated at such a feasible point by subscript 
*. 

Related Concepts 

The scenario sketched above is similar to the one described by Biros and 
Ghattas in [2] under the heading 'PDE Constrained Optimization'. They also 
consider a situation, where there are 'only' equality constraints, which makes 
the problem look simple from a superficial point of view. However, the key 
assumption is that the state constraint system is so complex that it is impossi- 
ble to directly evaluate and manipulate the active constraint Jacobian in any 
way. In particular it is considered very troublesome to compute and represent 
the generally dense matrix of tangential directions because that requires ma- 
trix factorizations or a large number of iterative equation solves. Instead one 
wishes to get by with just a few approximate solves for the state equation and 
its adjoint per outer iteration. 

In another excellent paper (131 Heinkenschloss and Vicente develop a 
framework, which is even notationally very close to  the one used here. They 
rightly emphasize the importance of inner products and the corresponding 
norms for the definition of gradients and second derivatives as well as iter- 
ative equation solvers of the Krylov and quasi-Newton type. These aspects 
may sometimes be ignored with impunity on smaller problems but become 
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absolutely crucial on large scale NLPs that arise from the discretization of 
design or control problems involving differential equations. Ideally, the overall 
optimization algorithm should be set up such that it behaves mesh-invariant 
in that it generates approximately the same iterates and function values for 
all sufficiently fine meshes [ 5 ] .  

Complexity Growth 

Especially when partial differential equations are involved, the process of sim- 
ulation, i.e. the computation of a feasible state y given values of the design 
or control parameters u may take a substantial amount of computational re- 
sources. It  is then very important that the transition to optimization causes 
neither the operations count nor the number of data transfers and total mem- 
ory required to  grow by more than a moderate factor. Otherwise one has to 
perform the optimization calculation on cruder models, or rely on shear intu- 
ition altogether. Ideally, the factor limiting the growth in complexity should 
be a problem independent constant. However, even theoretically, one has to 
allow for a logarithmic dependence on the problem size in order to  limit the 
storage requirement [7] for gradient calculations on evolutionary, or insta- 
tionary, problems. Even though for actual runtimes the characteristics of the 
computing platform and many other issues are important, we will keep in 
mind that the complexity of each outer optimization step as well as their 
total number required to achieve an acceptable solution accuracy does not 
exceed the corresponding costs for the underlying simulation by more than a 
moderate factor. 

2 (R)SQP variants on the structured KKT System 

Whenever the regularity assumption (1) is satisfied in the vicinity of the fea- 
sible set c-l(O) = {x E X : c(x) = 01, the subspace Y - Y x (0) c X can be 
used as a subspace of normal directions. The reason is that it must then be 
transversal to  the nullspace spanned by the row vectors of the matrix 

[ZT, I,] where Z = Z(y, u) = - c ~ ( ~ ,  u ) - ' & ( ~ ,  u).  

Here I, denotes the identity matrix of order m. We may therefore use 
the adjective normal to  qualify all terms and actions that are concerned with 
solving the state space equations without changing the design vector u. In 
contrast we will use the adjective adjoint for all terms and actions related to 
the adjoint equation associated with c(y, u)  = 0, namely 

0 = C(y,g,u) = j j c Y ( y , u ) + p f y ( y , u )  with jjT € E X n .  ( 2 )  

Here p > 0 is a constant weighting of the objective function, which will be 
handy later on as relative scale of normal and adjoint errors. It is well known 
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that the solution vector jj may be interpreted as the gradient of the weighted 
objective function value p f with respect to perturbations of the right hand 
side of the state equation c(y, u)  = 0. We will view all barred quantities and all 
partial derivatives as row vectors, since they really belong to  the dual spaces 
of Y or U. At feasible points (y(u), u) E c-l(0) the total derivative, or reduced 
gradient, of f with respect to u is given by the adjoint vector 

ii(y, jj, u) E jj cu(y, u) + p fu(y, u) with iiT E Rm. 

We note that by their definition the adjoint vectors jj and ii like all Frkchet 
derivatives are heavily dependent on the inner products in Y and U .  We will 
assume that for Y the inner product has been given in a 'natural' way and 
strive to  eliminate the influence of the inner product in U, which we view as 
more or less arbitrary. In other words we are looking for invariance with respect 
to  linear transformations on the design space U. Whenever c (y ,y ,u)  = 0 we 
will speak of adjoint feasibility. It should be noted that due to the given 
variable partitioning this is not quite the same as the concept of dual feasible 
familiar from linear optimization, in particular. 

Adding the optimality condition ii = 0 to the state equation c(y,O) = 0 
and its adjoint (2) we get the coupled system 

This is nothing but the K K T  system for an equality constrained optimization 
problem with the a priori partitioned variable vector x = (y, u ) .  The notational 
association of the Lagrange Multiplier vector y with the state variables y is 
meaningful because (2) has the exact solution = p f ,(y,u) c , ( ~ ,  u)-l. In 
other words E(y, jj, u) = 0 defines the Lagrange multiplier estimates such that 
the partial gradient of the Lagrangian 

with respect to the state vector y is always zero. Computationally this makes 
especially sense when the state space Jacobian cy (y, U) is not only nonsingular 
but also has sufficient structure to  facilitate the economical computation of 
Newton steps Ay = -c,(y, u)-lc(y, u). Whether this is done by factorization 
or using iterative solvers, the exact or approximate computation of jj by the 
same scheme applied to  the transposed system will then only require a similar 
amount of computing time and very little extra coding. This applies in par- 
ticular when c(y,u)  is selfadjoint with respect to  y, i.e, the partial Jacobian 
c, is symmetric. However, in view of nonelliptic problems we will later in this 
paper be mainly concerned with the case, where solving even the linearized 
state or adjoint equation for fixed u with any degree of accuracy is already 
very expensive. 
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Inexact Subspace Iteration 

The structure of the KKT system (3)  with the state equation Jacobian c, be- 
ing nonsingular suggests a block solution approach consisting of three substeps 
in each major iteration or cycle. First compute a normal step 

y = y + Ay with Ay = -c, (y ,  u ) - ' ~ ( ~ ,  u )  ( 5 )  

towards primal feasibility. Then, at the new y point evaluate 

Finally, given a symmetric positive matrix H E RnXn perform an optimization 
step 

u = u + Au with Au E - ~ - ' i i ~ .  ( 7 )  

In other words we perform a cycle of three steps on the primal state, ad- 
joint state, and design vector, to enhance feasibility, adjoint feasibility, and 
optimality, respectively. 

On nonlinear problems one needs conceptually infinitely many such cycles, 
and it does not matter for the asymptotic behavior with which of the three 
steps one begins. Hence we may characterize this approach schematically as 

. . -+ normal + adjoint --- optim -+ . . . 

An (R)SQP interpretation 

When the Lagrange multipliers are really recomputed from scratch as sug- 
gested by (6) one may merge the second step with the third and obtains a 
scheme similar to the Reduced SQP Algorithm 1 detailed in [12] by Hazra and 
Schulz. The only difference is that they avoid the evaluation of the constraints 
a t  two different arguments in each cycle by replacing the right hand side for the 
computation of Ay with the approximation c(y, 6 )  + c,(y, G)(u - 6 )  x c(y, u).  
Here ii = u - Au denotes the old design at  which c and its derivatives were 
already evaluated in the previous cycle. Either variant yields locally 2-step, 
or more precisely in our context 2-cycle Q-superlinear convergence, if the pre- 
conditioner H equals a t  least asymptotically the reduced Hessian 

H(1)  = Lu, + ZTL,, + L,,Z + z T L y y z ,  (8) 

where the subscripts u and y denote partial differentiation with respect to the 
design and state variables, respectively. Throughout the paper we will use this 
notation and refer to  H(1) as the reduced rather than the projected Hessian, 
since there will be other projections of interest. 

R-superlinear convergence has also been established for more classical 
RSQP, i.e, reduced SQP, methods where the last step is properly tangen- 
tial. One should notice that this is not the case for our optimization step ( 7 ) )  
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which leaves the state variables uncorrected and relies on the subsequent nor- 
mal step (5) to  straighten them out. Thus we obtain in some way a method of 
alternating direction, which like other nonlinear block Gauss-Jordan variants 
is generally prone to  yield only linear convergence. Proper RSQP methods do 
not need to  apply the Schulz correction mentioned above and can evaluate all 
function and derivative evaluations at a single argument per cycle. There is, 
however, a variant due to  Coleman and Conn [3] that expends a second resid- 
ual evaluation after the normal step in order to achieve 1-cyle Q-superlinear 
convergence. In contrast we require a second residual evaluation after the op- 
timization step or need to  approximate its value by the Schulz correction. This 
still does not give us 1-cycle Q-superlinear convergence unless we perform two 
normal corrections in a row thus applying the scheme 

. . -+ normal -, adjoint -+ optim -+ normal -+ 

For other RSQP variants and a very detailed convergence analysis see the 
seminal paper by Biegler, Nocedal and Schmid [I].  

3 Pseudo-Newton Solvers and Piggy-backing 

The discussion above tacitly assumed that it is possible to approximate normal 
and adjoint Newtons steps with some degree of accuracy at a reasonable cost. 
Especially on discretizations of nonelliptic PDEs this assumption is rather op- 
timistic and one may have to make do with a possibly rather slowly convergent 
fixed point iteration of the form 

yk+1 = G(yk, u) with G : X = Y x U -+ Y. (9) 

Naturally, we assume that the iteration function G is stationary only at fea- 
sible points, i.e. 

y = G(y, u) c(y, u)  = 0. 

This holds for example when c(y, u) = P(y ,u) [G(y ,  u) - y] with P ( x )  = I, 
or some other family of nonsingular matrices, e.g. P (y ,  u) = cy(y, u) when G 
is defined by Newton's methods. 

Linear Convergence Rates 

In aerodynamics it is not unusual that thousands of iterations are needed 
to obtain a high accuracy solution of the state equation. We will assume 
throughout that G is contractive such that for some constant p in the induced 
matrix norm I /  . 1 1  
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The implication follows from the mean value theorem on any convex subdo- 
main of Y. Another consequence is that no eigenvalue of G,(y, u) can be in 
modulus greater than p at  any point (y, u). 

Now it follows from Banach's fixed point theorem that the normal iteration 
(9) converges for any given u to the unique fixed point y* = y,(u) solving 
c(y(u), u) = 0. Moreover, the rate of convergence is linear with the Q-factor 

The norm independent R-factor may be smaller [15] and is given by 

When even p, is quite close to 1.0 it makes little sense to refer to (9) as a 
Newton-like iteration. In his thesis [4] Courty has considered such slowly con- 
vergent solvers for Navier Stokes variants and called them more appropriately 
pseudo-Newton iterations. 

Our key assumption is that the 'user' provides (only) such a pseudo- 
Newton solver, which may have been developed over a long period of time 
by various people. Presumably, they were experts at exploiting the particular 
structure of the state equation, so one cannot easily accelerated or otherwise 
improve the given fixed point solver. Now the optimizer faces the task of 
converting this given simulation tool into an optimization tool without per- 
forming major surgery on the code. We have coined the term piggy-backing 
for this hopefully convenient transition. 

The Adjoint Iteration 

Assuming that the 'user' also provides a code for the objective function f (y, u) 
one can apply automatic, or algorithmic differentiation in the reverse mode 
to  evaluate the associated adjoints 

I t  is in the nature of the reverse mode that both jjk+l and are obtained 
simultaneously and with a basic operations count not exceeding 4 times that 
for evaluating G and f .  While this complexity result from [7] takes into ac- 
count memory moves as operations, it does rely on the ability to temporarily 
store the intermediate results of all arithmetic operations and special function 
evaluations. Alternatively, one may employ checkpointing techniques, which 
allow various trade-offs between the increase in the temporal and the spa- 
tial complexity for the adjoint (11) relative to the normal (9) iteration. In 
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particular one can achieve an only logarithmic growth in both complexity 
components. For more details see again 171 and (81. 

In the current context it is only important to note that performing the 
adjoint step (11,12) is not much more expensive than con~puting the normal 
step (9) and that,  except in linear cases, no saving is made if the former is 
executed without the latter. More specifically, the computation of the adjoint 
quantities a k + l  and .iik+l requires the execution of a forward and a backward 
sweep through the evaluation procedure for [G, f], of which the first sweep 
already yields yk+l. As a cautionary note we add that the mechanical appli- 
cation of an AD tool in reverse mode to 1 successive steps (9) will lead to a 
memory requirement that grows proportional to  1 .  This memory growth pro- 
portional to the number of iterations is only acceptable for true evolutions, 
e.g. discretized dynamical systems. It  can and should be avoided whenever 
the iterates converge to a stationary solution, in other words if we have a 
pseudo-time evolution. 

Notice that in (11) the Lagrange multipliers fjk have a true iteration 
history, rather than being recalculated from scratch at  each primal iter- 
ate. The latter is usually done in NLP solvers that have access to the ac- 
tive constraint Jacobian. Naturally, the resulting approximate reduced gra- 
dient will be as good or bad as the current multiplier estimate f j k .  For 
c(y, u) = P(y ,  u) [G(y, u) - y] we have at  feasible points (y, u)  the identity 
cy(y, u) = P(y ,  u) [Gy(y, u)  - I,]. Then it is easy to see that fj, = fj* (u) is 
exactly a fixed point of (1 1) at (y, u) E cV1 (0) if fj* P (y* ,  u)-l is a solution of 
the original adjoint equation (2). 

It is well understood that if one first solves the state equation c(y, u) = 0 to 
full accuracy and only then executes the adjoint iteration (11) the convergence 
rates of the two iterative processes will be very similar to each other. The 
reason is that the transposed Jacobian 

has of course exactly the same spectral properties as Gy. Since, for fixed (y, u),  
the adjoint G is linear with respect to  we may even expect a more regular 
convergence pattern for the adjoints than for the underlying normal itera- 
tion. It was first observed in [6] that if G describes Newton's method so that 
Gy(y, u)  vanishes at any feasible (y, u) ,  then the adjoints will converge in a 
single step, which amounts simply to an application of the implicit function 
theorem. For slowly converging solvers on the other hand, it can often be 
observed that executing the adjoint iteration simultaneously with the under- 
lying state space iteration does not slow the former down significantly. This 
simultaneous iteration certainly promises a significant reduction in wall-clock 
time, especially on a multiprocessor machine. 
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The Coupled Iteration 

For the subsequent analysis we write the combination of (9) and (11) in a 
Hamiltonian like fashion as 

where N is defined as 

When we set c(y, u) = G(y, u) - y then the function N is related to  the 
Lagrange function L as defined in (4) by the shift 

Consequently, we have then 

Ny = Ly + g and Ng = Lg + y but Nu = Lu 

and, for the subsequent analysis more importantly, all second derivatives are 
identical: 

Nyy = Lyy, Nyu = Lyu, Nuu = LUU. 

In the more general situation c(y, u) = P(y ,  u) [G(y, u) - y] the second deriva- 
tives are related in such a way that second order necessary and sufficiency 
conditions applied to  N and L are still equivalent. 

In any case we note that N is linear in the weighting (fj,p) and thus 
homogeneous in p ,  provided jj solves the adjoint equation Ny(y,J ,  u) = J 
or is initialized and consistently updated proportionally to p.  Hence we can 
make N and its derivatives arbitrarily small compared to G by reducing the 
weighting p on the objective appropriately. 

A side benefit of iterating on jjk simultaneously with yk is that the La- 
grangian value 

converges much faster than p f (ykr  u) towards the limit p f (y,(u), u). This 
result was derived in [9] using a very general duality argument. It  merely 
reflects that the Lagrange multipliers indicate the sensitivity of the optimal 
function value with respect to perturbations of the state equations and that 
the current iterate exactly satisfies a slight perturbation of these 'constraints'. 

Adjoint Convergence Analysis 

The Jacobian of the coupled iteration (13) takes the block triangular form 
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By elementary arguments one derives that in the 12 matrix norm 

In other words for sufficiently small p the combined iteration (13) is, like G, 
also a contraction on the product space Y x Y. Using the homogeneity of all 
adjoint quantities with respect to  p ,  one can then deduce that for any fixed 

This R-linear convergence result was generalized in [9] to  contractive iterations 
of the form yk+l = Gk (yk, u) = yk -Pk c(yk, u) coupled with the corresponding 
adjoints. Here the matrices Pk may vary discontinuously from step to step as 
is for example the case for quasi-Newton methods. 

On the other hand, the following observation was made in [ll] for twice 
continuously differentiable G(y, u) and f (y, u).  Since Jk is block triangular and 
has in its diagonal the Jacobian Gy and its transposed GF, every eigenvalue 
of G, is a double eigenvalue of J k ,  which has thus generically Jordan blocks 
of size 2. As a consequence, for fixed u the adjoints gk and 211: converge a little 
slower than the normal iterates yk in that in general 

In other words, despite the common R-factor, the Lagrange multipliers zjk 

and the corresponding reduced gradients f i k  lag somewhat behind the normal 
iterates yk. In hindsight that is not all that surprising since the adjoints are 
heading for a moving target, namely the solution of an equation parameter- 
ized by yk. A practical consequence seems that any optimization algorithms 
that is based on the approximate reduced gradients i i k  will likely exhibit tan- 
gential convergence to  constrained optima. In other words feasibility will be 
reached faster than adjoint feasibility and thus optimality, a pattern that is fa- 
miliar from NLP solvers based on exact Jacobians but (secant) approximated 
Hessians. 

Reduced Hessian as Second Order Adjoints 

Differentiating (13) and (12) once more with respect to z = (y, u) in some 
direction (yk,  u) one obtains an iteration of the form 

Here we have separated on the right hand side the leading terms that are 
dependent on yk E Rn and 5: E Rn,  respectively. Since they are defined 
again in terms of the contractive state space Jacobian G, one gets once more 
linear convergence as follows. 
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Proposition 1 With  Z, = ( I  - G,)-'G, E RmXn the derivatives yk E 

R n , $ r  E Rn and 6; E Rm converge with R-Factors 5 p such that in the 
limit 

Proof: The fact of linear convergence with R-factor 5 p was proven in [9]. 
The limits can be derived in the current framework as follows. Simply replacing 
in (17) all subscripts k by * and collecting the unknown vector onto the left 
side we obtain linear equations for y,, 5, and 6,, all in terms of the matrix 
I - G, or its transpose. The first equation has the right hand side G,, which 
immediately yields the solution (I-G,)-'G,u = Z,u. Substituting this result 
into the second equation we obtain the transposed right hand side 

Transposition and post-multiplication by ( I  - Gy)-l yields the assertion. 
Substitution of this result into the third yields firstly the term %,G, = 
.liTIZT, I] Nx,(I - G, ) - 'G~  = ziT[.ZT, I] NxyZ, to which we have to add 
XTN,, = UT(Z:, I)Nx,. The sum can than be written as the asserted parti- 
tioned matrix product. 

The proposition states that for each selected direction u in the domain 
space, the first derivative vectors yk converge to the state space direction 
y, = Z,u, which makes x = (y,,u) a feasible direction in the full space 
X = Y x U .  The corresponding adjoint vectors Gk converge to the product of 
the Lagrangian Hessian and the vector x = (y,, u),  except for the nonsingular 
transformation I-G,. The corresponding second order adjoints iik converge to 
the transposed direction uT multiplied by the reduced Hessian. As in Section 1 
we will denote the latter by H,(1) = [zT, I]N,,[zT, I ] ~  E Rmxm for reasons 
that will become clear later. 

While the iteration (17) looks reasonably complicated it can also be real- 
ized in a completely automatic fashion, which does not increase the complexity 
by more than a constant factor. If one replaces u in the above results by the 
identy I, on the design space the whole reduced Hessian H, (1) is obtained as 
6, by what is sometimes called the vector mode of automatic differentiation. 
Naturally the cost will then also grow by a factor of rn, namely the dimension 
of the design space. In our test calculations we have so far made that effort, 
though we prefer a different projected Hessian denoted by H,(-1) that can 
be obtained using a slight variation of (17). 

The analysis in [ll] shows that the errors in ck and thus also in hk lag 
asymptotically behind those in yk by a factor proportional to k2  so that 
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In view of (16) this effect is not surprising and probably not so serious, because 
the accuracy of reduced Hessians is not nearly as critical as that of reduced 
gradients for rapid and robust convergence. 

Inexac t  Block Gauss-Seidel 

Now suppose we decide to  always execute the coupled step (13) r > 0 times, 
before executing one optimization step of the form (7). Schematically, we may 
write this approach as 

--, [normal ,  adjointIr -+ o p t i m  --, . . . (19) 

Here [normal ,  adjoint]  represents (13) with uk = u remaining unchanged 
and o p t i m  represents the update 

(Thus k is employed to count individual steps rather than whole cycles.) 
When we select r very large the first two equation blocks in the KKT 

system (3) are solved quite accurately, so that we have a block Gauss-Seidel 
type method. However, it is clearly doubtful whether it makes sense to expend 
a large computational effort for gaining feasibility and adjoint feasibility a t  a 
design argument u that may still be far from the optimal. This observation 
leads naturally to  the concept of 'one-shot' optimization as it is called in 
the aerodynamics literature [16]. The basic idea is to adjust the design u as 
frequently as possible in order to gain optimality more or less simultaneously 
with feasibility. 

From an 'algebraic' point of view it seems attractive to adjust u at every 
step. Here we tacitly assume that changing u from a current value uk to 
a different design uk+l causes no extra cost for the subsequent evaluation 
of the iteration function G at  (ykS1, u ~ + ~ ) .  However, in applications there 
may be a significant setup cost for example due to the need to regrid after 
changes in a wing design. In that situation our hypothesis that i ~ k + l  costs 
little extra on top of the evaluation of j jk+ l  may also be a little naive. To 
model these effects one would have to consider some partial preevaluation 
of G(y,u)  and then distinguish the cost of evaluating G and its derivatives 
with or without a change in u. For simplicity we shy away from doing so, but 
will keep this effect in mind. On a theoretical level one may refine G as a 
subcyles of 1 normal steps, such that its combined cost clearly dominates the 
setup cost incurred by changing the design. In any case we may realistically 
assume that m = dim(u) is so small that the linear algebra associated with 
the optimization step especially storing and manipulating the preconditioning 
matrix H is comparatively cheap. 

Finally, as we have observed in the previous section for an RSQP-like 
method it may make sense to perform more normal steps than coupled ones 
so that one arrives a t  a the following most general scheme 
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. . -+ [normalls --+ [normal ,  adjointIr -+ o p t i m  -+ . . - (21) 

Here no rma l  represents (9) with uk = uk remaining unchanged. 
Now the key question is naturally how to first select the repetition numbers 

s and r and then how to best define and compute the matrix Hk in (20). Since 
there is no separate line-search it should absorb the step multiplier and achieve 
the invariance with respect to linear transformations on the design space. 
Naturally, when p("r) is still close to 1.0 we must choose Hk large and thus 
H;' small such that the design variables uk are adjusted rather cautiously. 
Otherwise the iteration may diverge immediately as was we have observed on 
our test problem. On the other hand we wish to  choose Hk small enough such 
that the overall optimization proceeds at a reasonable pace that is not much 
smaller than normal iteration for pure simulation at  a fixed design u. While 
there are some experimental studies and corresponding recommendations for 
particular application areas we are not aware of a systematic study on the best 
choice of the repetition numbers s ,  r and the possible choices of Hk. There is a 
natural tendency for optimization people to  assume that the reduced Hessian 
Hk = H, as defined in (8) is the optimal choice. However, we believe this only 
to be true when pr is quite small so that a large degree of normal and adjoint 
feasibility is restored before each optimization step. It certainly is not valid 
a t  the other extreme namely for the one-step method 

. . -+ [normal ,  adjoint ,  op t im]  -+ . . . (22) 

In contrast to  the scheme above with s = 0 and r = 1 we assume here that 
the reduced gradient (12) is still evaluated with the old values (yk, Yk) rather 
than the new versions (yk+l ,gk+l)  just obtained in the same cycle. As we 
have discussed above, from an algebraic view point this value jjk G, (yk , uk)  + 
f, (yk, uk) is a cheap by-product of evaluating [G, f ] and G at  (yh, gk, uk), but 
obtaining the newer reduced gradient jjk+1 G,(yk+l, uk) + fu(yk,  uk) would 
require a completely new evaluation of the same quantities a t  (yk+1, g k + l ,  uk) .  
While this simplification may cause the loss of of superlinear convergence for 
an RSQP like method, we believe that it makes very little difference for the 
convergence speed in a pseudo-Newton setting. 

4 Necessary Convergence Condition on H ,  

Throughout this section we assume that we are within the neighborhood of 
a KKT point (y, ,g, ,u,) ,  i.e. a solution to (3) in which the contractivity 
assumption (10) holds and G as well as f are twice Lipschitz continuously 
differentiable. The contractivity implies linear independence of the constraints 
G(y, u) - y = 0 and thus uniqueness of the multipliers jj, for given (y,, u,). 
Using the function N(y,  g, u) defined above we may write one step of the 
one-step scheme (22) as 
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Omitting the common argument (y,, y,, u,) and assuming that the Hk con- 
verge to  a limit H, we obtain at  the fixed point the block 3 x 3 Jacobian 

The eigenvalues of the system Jacobian can be characterized as those of 
its Schur complement. 

Proposition 2 For any nonsingular H, = H: the eigenvalues of the matrix 
j, are either eigenvalues of Gy or solve the nonlinear eigenvalue problem 
det(M(X)) = 0 with 

Proof: The eigenvalues X must solve the characteristic equation 

G, - X I  0 G, 
0 = det [ \I, G; - X I  N ~ u .  I (26) 

-H;'NUy -H;'G; (1 - X)I - H;lNUu 

Without changing the roots we can premultiply the last block row by the 
the negative of the nonsingular matrix -H,, which now occurs in place of I .  
Unless a X is eigenvalue of G, the leading 2 x 2 block has the inverse 

(G, - XI)-l 0 
-(G, - XI)-*N,, (G, -  XI)-^ (G, -  XI)-^ ] . (27) 

Using this block to eliminate the last block row and block column we obtain 
after some rearrangements as Schur complement exactly the negative of ma- 
trix M(X). 

Now we look for conditions that exclude the existence of eigenvalues with 
modulus greater than or equal to 1. To this end we denote the right term in 
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where 
Z ( X )  = [ X I  - G,] -~G,  E wXm. 

Since we may write the state constraints as G ( y , u )  - y = 0 the columns of 
the particular matrix Z ( 1 )  represent feasible directions restricted to the state 
space. Therefore the positive definiteness property of H ( 1 )  being positive def- 
inite, denoted by H ( l )  > 0, corresponds to  the usual second order sufficiency 
condition at  constrained minima. More generally the rows of [ z ( X ) ~ ,  I ]  span 
the tangent space of the manifold { G ( y , u )  = X y )  and H(X)  represents the 
projection of N,, onto that m-dimensional subspace. 

The nicest situation occurs when G ,  has n distinct real eigenvalues and 
our optimization problem is strongly convex in that the Lagrangian Hessian 
N,, is positive definite on the whole space X = Rn+m. Then the rational 
function det M ( X )  has n double-poles in the interval ( - 1 , l )  and for positive 
definite H,  we may expect two eigenvalues of J ,  close to  each one of them. Of 
those only the ones beyond the largest and below the smallest eigenvalue of G ,  
may destroy contractivity. However, there is no guarantee that there may not 
be complex eigenvalues of modulus greater than 1.0 even in this convenient 
scenario. Therefore the necessary conditions for convergence derived in the 
following proposition are probably quite far from sufficient. 

Proposition 3 Provided H ( l )  > 0, i t  is  a necessary condition for j ,  to have 
no real eigenvalues X > 1  that H,  >. 0 and de t (H(1 ) )  # 0. Moreover, then for 
j, also to have no real eigenvalues X I -1 it is necessary that H,  > ;H( -1 ) .  

Proof: Since M ( 1 )  = H ( l )  the singularity of H ( 1 )  would immediately 
imply that X = 1  is an eigenvalue of j,, which establishes de t (H(1 ) )  # 0. As 
clearly Z(X)  = C ? ( I X I - l )  we have H(X)  = Nu, + C 3 ( I X / - 1 )  and the leading term 
(A - 1)H, of M ( X )  as defined in (25) dominates M ( X )  for large / A / .  Now if H, 
had a negative eigenvalue the matrix M (A) ,  which reduces to H ( l )  = M (1 )  at  
X = 1, would have to  become singular for some X 2 1. Because H, is by defini- 
tion symmetric and nonsingular we must therefore have H, >. 0.  Now suppose 
the second condition was violated so that M(-1 )  = -2H, + H(-1 )  has a 
positive eigenvalue. Then there would have to be a real eigenvalue X < -1 
since (A  - 1)H,  and thus M ( X )  must be negative definite for large negative A .  

According to Proposition 2  it is necessary for the iteration (23) to be 
contractive that 

provided the second order sufficiency conditions are satisfied at  the KKT 
point in question. If the underlying optimization problem is strongly convex 
then H(-1)  is like all H(X)  positive definite and it looks like a reasonable 
candidate for the preconditioner H,. On the other hand there is no reason, 
why the standard projected Hessian H ( l )  should be greater than H(-1 ) /2  
and if it fails to  do so then using it in (23) must prevent even local convergence. 
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On our test problem the standard choice H, = H,(1) leads to  immediate blow 
up of the iteration, while H, = H,(-1) yields full step convergence without 
any line-search. While the problem is not everywhere convex we found that 
eventually all components of the Lagrange multiplier vector fjk were positive 
so that naturally both H, = H,(1) and H, = H,(-1) allowed a Cholesky 
factorization. 

To make the surprising result of our eigenvalue analysis a little more in- 
tuitive we offer the following, admittedly very vague explanation. The matrix 
Z(1) = ( I  - G,)-'GU spans the tangent space of {G(y,u) = y), which is rich 
in the eigenvectors of G, for which the corresponding eigenvalues are close 
to +1.0. We may call them mononotic modes in contrast to the alternating 
modes associated with eigenvalues close to -1.0 The latter are richly repre- 
sented in Z(-1) = ( I  + G,)-'G, whose columns span the tangent space of 
{G(y,u)  = -y). By preconditioning the approximate reduced gradient with 
H(-1) = z ( - ~ ) ~ N , , z ( - ~ )  we seem to be monitoring more the effects of 
these alternating modes. Their strength is perhaps more detrimental to a 
regular convergence behavior than that of the monotonic modes. 

To actually compute approximations Zk E 27-1) E RnXm and Hk = 
H, (-1) E R m X m  one may use the following modification of the vector itera- 
tion (17). 

(28) 
Here the matrix Zk E Rmxn represents the adjoint of Zk .  The two minus 
signs in front of Zk+' and Zk+' on the left are quite deliberate and result 
from setting X = -1. Of course we can move them to the right, especially 
in order to verify that we have again linear contractions in the state space 
Jacobian. Leaving them on the left only illustrates that we can use standard 
differentiation procedures to evaluate the right hand sides and then only have 
to  flip signs to get the correct values for Zk+' and Z k c l .  

Finally, let us consider what happens when the design variable u is replaced 
by C u  with C E RmXm and det(C) # 0. Then all differentiations with respect 
to the new design variable will 'eject' the extra factor C according to the 
chainrule. In particular the reduced gradient fi and the matrices Z(X) will be 
multiplied from the right by C ,  and H(X) will be multiplied from the right 
by C and from the left by CT.  The same will be true for any preconditioner 
H, that we define as a linear combination of one or several of the H(X). 
Then it can be checked without too much trouble that the corrections to the 
design variables according to (20) are C-' times those for the original setting 
and thus unchanged except for the coordinate transformation. Hence we have 
indeed achieved invariance with respect to the inner product norm and the 
design space U. 
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5 Numerical Verification 

The following results were obtained on the unit square for a variant of the 
Bratu equation frequently used in combustion modeling. 

A , y ( x ) + e ~ ( " )  = O  for x = (C,V) E [0,112 s.t. 

Hence the problem is periodic with respect to the horizontal coordinate C and 
has Dirichlet boundary conditions on the lower and upper edge of the unit 
square. The function u is viewed as a boundary control that can be varied to 
minimize the objective 

In the following calculations we used a = 0.001 and the control u is set initially 
to the constant u(C) = 2 .2 .  This value is not all that far from the fold point 
where solutions cease to  exist due to overheating of the system. 

We use a central difference discretization with the meshwidth 1112.0 so 
that the resulting algebraic system involves 144 equations in as many variables. 
Since the nonlinearities occur only on the diagonal one can easily implement 
Jacobi's method to obtain the basic function G(y, u). For this simple example 
we also coded by hand the corresponding adjoint iteration function (.? defined 
in (11) and even the somewhat more complicated right hand side of (17). The 
results were later confirmed using the automatic differentiation tool ADOL- 
c [lo].  

As can be seen in Fig.1 the convergence of the Jacobi method is rather 
slow with the common R-factor being about (1 - 11300). The lowest curve rep- 
resents the natural logarithms of the Euclidean norm ratios IIykS1 - ~ ~ l l / l l ~ ~  - 

yell, which provide some indication of the norm ratios 1 1  yk - y, 1 / 1 1  yo - y* 1 1  
In view of the very slow convergence this relation need certainly not be very 
close. Nevertheless the theory is basically confirmed with the first derivatives 
l l ~ k + ~  - ~ k \ l / i l ~ l  - yo11 and llf&+1 - i l k l l / l l ~ i  - go11 lagging somewhat behind, 
and the second derivatives / / c k + l  - ck ll/llcl - Go 1 1  coming in last. 

On closer inspection it was found in [ll] that the ratio between these 
derivative quantities and the original iterates confirms after an initial tran- 
sition phase the asymptotic relations (16) and (18). While the adjoints gk 
were defined as vectors, the direct differentiation was performed simultane- 
ously with respect to all components of the discretized u so that the quantity 
u occurring in (17) was in fact the identity matrix of order 12. Consequently, 
yk = Zk and ck = zk had also 12 times as many components as the underlying 
yk and Y k ,  which had both n = 144 components. 

Without and with the sign switch the Hessians Hk converged for fixed 
u quite rapidly to the respective limits H(1)  and H(-1) displayed in Fig.2 
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convergence history 

Fig. 1: Convergence pattern for fixed design u = 2.2 

-12 - I 

and Fig. 3. Both are Toeplitz matrices and look rather similar to discretized 
Laplacians in ID. It was shown in [12] by Hazra and Schulz that the reduced 
Hessian must have this property exactly on the original test problem without 
the nonlinear term, which causes only a relatively compact perturbation. By 
comparison the diagonal elements in H(-1) are about 50% larger than those 
of H(1) ,  which results in slightly shorter and thus more cautious optimization 
steps. R/Ioreover, there are also structural differences as H(1)  is apparently 
an M-matrix, whereas the subdiagonals of H(-1) have alternating signs and 
don't decline quite as rapidly as those of H(1) .  

In any case, as soon as the optimization correction (7) is added using either 
approximations Hk x H(1) or Hk x H(- I )  the convergence behavior is very 
different. The first, seemingly natural choice results in an immediate blow up 
whereas the second achieves convergence of the full steps without any line- 
search. The resulting values of the objective function f (yk, uk) ,  its Lagrange 
correction according to (15) and the Euclidean norm of the reduced gradient 
i i k  are displayed in Fig. 4. As one can see the optimum is reached with about 
6 Figure accuracy after some 1600 iterations, which is roughly twice as many 
as it took for the simulation with constant design u to  reach that level of 
accuracy. The reason for the subsequent oscillation in the reduced gradient 
remains as yet a little mysterious. In order to make the method converge with 
steps of the form -aH,(l)-lfik we had to use a step multiplier cu smaller than 
0.04. On the other hand we could only use steps -aH, (-l)-'iik with cu up 
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Fig. 2: The reduced Hessian H, (1) 

Fig. 3: The projected Hessian H,(-1) 

to  about 1.3 before convergence was lost. This indicates that -H,(-l)-lfir, 
is fairly optimal. 

6 Summary and Outlook 

We have considered the problem of minimizing an objective function subject 
to a very large dimensional state equation with a separate design space. After 
reviewing some reduced SQP variants we considered one-shot methods based 
on a rather slowly converging state equation solver. This approach promises 
a convenient transition from simulation to optimization at a limited increase 
in computational cost. Based on the convergence analysis in [9] for fixed de- 
sign, we addressed the task of selecting a suitable preconditioner H, for the 
approximate reduced gradient to allow an adjustment of the design variable 
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convergence history 
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Fig. 4: One-step one-shot convergence with variable design 

at  each iteration. This was referred to  as one-step one-shot design. Our eigen- 
value analysis yielded certain necessary convergence conditions, which are not 
necessarily satisfied by the conventional reduced Hessian H,(1). A more suit- 
able choice seems to be another projection H,(-1), though there is certainly 
no guarantee even of local convergence either. 

In any case our current approach of evaluating either one of the projected 
Hessians as second order vector adjoints is certainly too expensive. To avoid 
a cost that grows proportional to the number of design variables we will pur- 
sue a low rank updating approach. Another possible improvement concerns 
the spacing of optimization steps. There is some indication that normal and 
adjoint iterations should be repeated at  least twice before each correction on 
the design variables. That would turn the alternating modes of the state space 
Jacobian into monotone modes and thus possibly favor the reduced Hessian 
as preconditioner. However, this simple remedy need not work if there are 
complex eigenvalues as one should certainly expect in general. In general one 
would like to  obtain a relation between the contractivity factor p of the given 
simulation code and the best convergence rate on can achieve for a multi-step 
optimization scheme of the most general form (21).  For that one can not sim- 
ply ignore complex eigenvalues as we have done so far. Of course, there are 
many unresolved nonlocal issue, chiefly how to force convergence and how to 
deal with inequalities. 
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Summary. This work deals with approximate solutions in vector optimization 
problems. These solutions frequently appear when an iterative algorithm is used 
to solve a vector optimization problem. We consider a concept of approximate effi- 
ciency introduced by Kutateladze and widely used in the literature to study this kind 
of solutions. Working in the objective space, necessary and sufficient conditions for 
Kutateladze's approximate elements of the image set are given through scalarization 
in such a way that these points are approximate solutions for a scalar optimization 
problem. To obtain sufficient conditions we use monotone functions. A new concept 
is then introduced to describe the idea of parametric representation of the approx- 
imate efficient set. Finally, through scalarization, characterizations and parametric 
representations for the set of approximate solutions in convex and nonconvex vector 
optimization problems are proved. 

Key words: &-efficiency, approximate solution, parametric representation, 
monotone function. 

1 Introduction 

In this paper, we deal with the  following vector optimization problem: 

min{f (x) : x E S ) ,  (VP) 

* This research was partially supported by Ministerio de Ciencia y Tecnologia 
(Spain), project BFM2003-02194. 
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where f : X -- RP, X is a normed space, S c X,  S # 0 and RP is ordered via 
Pareto order (we denote the nonnegative orthant of RP by RP,): 

Usually, to solve (VP), i.e., to find the set of efficient points 

or the set of weak efficient points (we denote the interior of a set A by int(A)) 

a scalarization procedure and an iterative algorithm are used. Scalarization 
methods transform (VP) into a scalar optimization problem 

min{(ip 0 f ) ( x )  : x E S}, (SP) 

with p : RP -, R, in such a way that solutions of (SP) are efficient points of 
(VP). However, when an iterative algorithm is used to solve (SP), the following 
approximate solutions are just obtained: 

where E > 0 gives the precision achieved. 
To analyze these questions, we introduce a notion of parametric repre- 

sentation for the set of approximate solutions of (VP). With this notion, we 
extend the usual concept of parametric representation (see [Wie86, Section 21 
for the definition) from the set of efficient points to the set of approximate 
efficient points. 

The following concept of approximate efficiency due to  Kutateladze [Kut79] 
is considered to define the notion of approximate solution of a vector optimiza- 
tion problem. 

Definition 1 

( a )  Let  E > 0 and  q E RP,\{O}. I t  i s  said that  a point x E S i s  a Pareto 
~ q - e f i c i e n t  solution of ( V P )  if 

( b )  G i v e n  E > 0 and q E RP,\{O), it i s  said that  a point x E S i s  a weak 
Pareto ~ q - e f i c i e n t  solution of ( V P )  if 

(f (2) - ~q - int (R:)) n f (S)  = 0. 

We denote the set of Pareto ~q-efficient solutions of (VP) by AMIN( f ,  S, E )  and 
the set of weak Pareto ~q-efficient solutions of (VP) by WAMIN( f ,  S, E) .  It  is 
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clear that AMIN( f ,  S, e) c WAMIN(f, S, E ) ,  Y E  > 0. Moreover, if q E int(R:) 
then 

WAMIN(f,S,e)cAMIN(f,S,v), V V > E > ~ .  (1) 

The work is structured as follows: in Section 2, necessary and sufficient 
conditions for approximate elements of a set, in the sense of Kutateladze, are 
obtained through scalarization. After that,  in Section 3, several characteriza- 
tions for Kutateladze's approximate solutions of (VP) are deduced. Moreover, 
a new concept of parametric representation is introduced and, using the previ- 
ous necessary and sufficient conditions, some parametric representations are 
obtained for the set of approximate efficient solutions of (VP). Finally, in 
Section 4, some conclusions that summarize this work are presented. 

2 Necessary and sufficient conditions 

Let us redefine MIN( f ,  S ) ,  WMIN( f ,  S ) ,  AMIN( f ,  S, E )  and WAMIN( f ,  S, e) 
to consider efficient, weak efficient, eq-efficient and weak ~q-efficient elements 
of a set K c Rp. 

Definition 2 

( a )  Cons ider  E 2 0 and q E R:\{O). A point y E K i s  called a Pareto ~ q -  
e f i c i e n t  e lement  of K if 

( b )  G i v e n  E 2 0 and q E @+\{O) ,  i t  i s  said that  a point y E K i s  a weak 
Pareto q - e f i c i e n t  e lement  of K if 

We denote the set of Pareto ~q-efficient points of K by AE(K,E)  and 
the set of weak Pareto ~q-efficient points of K by WAE(K,E). It  is clear 
that f-'(AE(f (S ) , e ) )  n S = AMIN(f, S , e )  and f-'(WAE(f (S ) , e ) )  n S = 
WAMIN(f, S, E ) .  Moreover, AE(K, E )  c WAE(K,E),  AE(K, 0) = E ( K )  and 
WAE(K, 0) = WE(K) .  In [HP94, Section 3.11 and [GJN05b] important prop- 
erties of the set AE(K, &), considered as an approximation to E ( K ) ,  are an- 
alyzed. One of them is related with the limit behavior of the set-valued map 
F : (0, ca) =t X defined by F (E)  = AE(K, e) when E 4 0: 
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For more details we refer the reader to  [HP94] and IAF90, Sections 1.3 and 
1.41. 

In this section, our objective is to describe the sets AE(K, E) and WAE(K, E) 
through approximate solutions of several scalar optimization problems, i.e., 
to  relate the points of AE(K, E) and WAE(K, E) with elements of the set 

Notice that ASMIN(cp o f ,  S, E) = f (ASE( f (S) , cp, E)) n S. 
As it is usual in the study on efficient points of a set via scalarization, 

sufficient conditions to Pareto ~q-efficiency are obtained through points in 
ASE(K,cp,&), when the function cp is monotone (see for instance lTam94, 
Theorem 2 and Corollary 1(2)]).  

Definition 3 Let us consider cp : RP -+ R. 

(a) cp is monotone if for every y E RP, 

(b) cp is strongly monotone if for every y E RP, 

(c) cp is strictly monotone if for every y E RP, 

It is clear that (b) implies (a ) ,  (b) implies (c) ,  and if cp is continuous then ( c )  
implies (a ) .  Next, we give several examples of these notions. We denote the 
components of a point y E RP by (yl ,  ya, . . . , yp) and the usual scalar product 
in Rp by (. , .) . 

Example 1 

(a)  A linear function cp(y) = (A, y) is continuous strictly monotone (and 
consequently monotone) if X E RP,\{O) and it is strongly monotone if 
A E int(RP+). 

(b) The max type function p(y)  = max {vi(yi - zi)),  where z E RP, is mono- 
lC i<p  

tone if v E R: and it is continuous strictly monotone (and consequently 
monotone) if v E int(R?). 

Next, we show under mild conditions that if cp is a monotone (or strongly 
monotone) function, then some points in ASE(K, cp, b) are Pareto ~q-efficient 
elements of K and the error E depends on the precision 6. Similarly, we see 
that if cp is a strictly monotone function, then some elements of ASE(K, cp, 6) 
are weak Pareto ~q-efficient points of K .  

For a function cp : RP -+ R and errors E ,  b >_ 0 we consider the following 
sets: 

Sl(cp,&, 6) = {Y E ElP : cp(y) - cp(y - ~ q )  > 611 

Sz(% El 6) = {Y E RP : P(Y) - P(Y - ~ 4 )  2 6). 
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Theorem 1 Let us consider E, 6 2 0 and q E RP+\{O). 

(a )  If cp is monotone then 

(b) If cp is strongly monotone then 

(c) If cp is strictly monotone then 

Proof. Part  ( a ) .  Suppose that the result is false. Then, there exists a point 
yo E Sl (cp, c ,  6) n ASE(K, cp, 6) such that yo $! AE(K, E).  Consequently, there 
exists y E K such that y E yo - ~q - R~\{O}.  As cp is monotone we have that 

Since yo E ASE(K, p, 6) and y E K ,  we deduce that 

and, from (3), it follows that 

contrary to  yo E Sl (cp, E, 6). 
The proofs of parts (b) and (c) are similar. In (b),  since cp is strongly 

monotone, we have that cp(y) < cp(yo - ~ q )  in equation (3).  Therefore, (4) 
shows that 

4 ~ 0 )  -  YO - ~ 4 )  < 6, 

contrary to yo E Sz(cp, E ,  6). In part (c) ,  if there exists a point yo E Sz(cp, E ,  S )  n 
ASE(K, cp, 6) such that yo $! WAE(K, E) then there exists y E K such that 
y E yo - ~q - int(R:). From here, the proof follows as in part (b) since cp is 
strictly monotone. 0 

Theorem l(b)-(c) extends for example the results in [Wie86, first part 
of Theorem 91 and Corollary 1 of this paper considering as set K the im- 
age set f(S) of (VP). These results are obtained by taking E = 0 in Theo- 
rem l(b)-(c) .  Moreover, several usual sufficient conditions for ~q-efficient and 
weak ~q-efficient solutions obtained through approximate solutions of scalar- 
izations based on linear or max functions are generalized (see for instance 
Loridan [Lor84, Proposition 3.2(ii)], White [Whi86, Lemma 3.21, Deng [Den97, 
Theorem 2.11, Li and Wang [LW98, Theorems 4 and 51, Liu [Liu99, Theo- 
rem 11, Dutta and Vetrivel [DVOl, Theorem 2.11 and Gutibrrez, Jimbnez and 
Novo [GJN05a, Lemma 3.11). 
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Necessary conditions for weak Pareto ~q-efficient elements are now proved 
through scalarizations given by linear and max type functions. With max type 
functions, we obtain necessary conditions for weak Pareto ~q-efficient points 
of a general set, and with linear functions we obtain necessary conditions for 
weak Pareto ~q-efficient elements of R:-convex sets (a set K is R:-convex 
when K + IW; is a convex set). 

Let us consider q E int(R:). For every y E K we denote 

Theorem 2 

Proof. Part ( a ) .  We prove that 

Indeed, cp,(y) = max {(yi - yi)/q2) = 0 and cp,(z) 2 -E, Y z E K ,  since if 
l < i < p  

there exists a point z E K such that 

then zi < yi - ~ q i ,  Vi = I ,  2 , .  . . , p  and it follows that z E y - cq - int(RP+), 
which is a contradiction since y E WAE(K, E). 

Part (b). Let us consider yo E WAE(K,E). As int(RP+) +JR: = int(R:) we 
have that 

(yo - ~q - int(R;)) n ( K  + R:) = 0, 
where K +R: and yo - ~q - int(R:) are convex sets. Then, by the separation 
theorem (see for instance [BSS93, Corollary 1, pg. 501)) we deduce that there 
exists X E RP\{O) such that 

We can assume that 11X11 = 1 (considering X/IIXI/  if it is necessary), since X # 0. 
As R: is a cone and (A, .) is a linear function, taking y = yo and d2 = 0 in 
(5) we obtain 

Therefore, (A, d l )  > 0, Y dl E R: and then X E R:. Finally, taking dl = d2 = 0 
in (5) we have that 
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( ~ , Y o ) - ~ ( ~ , q ) = ( ~ , Y o - e q ) < ( ~ , ~ ) ,  V Y E K  

and so yo E ASE(K, (A, .) ,  &(A, q)).  
From Theorem 2(a) ,  an approximate nonconvex separation between the 

set K and some points yo E int (K) can be obtained. When E = 0 this result 
becomes the usual nonconvex separation theorem between a set K and points 
yo @ K + int(IW:) (see for instance [Wie86, Theorem 10 applied to function 
(32) in this reference]). Notice that Theorem 2(a) is direct, in the following 
sense: we know a priori which test function gives a necessary condition to 
check if a previously fixed point is ~q-efficient. 

In Theorem 2(b) we have achieved a nondirect approximate separation 
between a EL:-convex set K and some points yo E int(K) by means of lin- 
ear functions and using the classical convex separation theorem (see for in- 
stance [BSS93, Corollary 1, pg. 501). This classical result can be obtained from 
Theorem 2(b) taking E = 0. 

3 Characterizations and parametric representations 

With the above necessary and sufficient conditions proved in the image space 
we now describe the sets of ~q-efficient and weak eq-efficient solutions of (VP) 
using approximate solutions of several scalarizations. This description is done 
through a new notion of parametric representation that we introduce as fol- 
lows. 

Let {ya)aEp be a family of scalar functions cp, : RP -+ R, where ? is a 
parametric index set, and let G : ? 3 X be a set-valued map. Consider the 
following two properties: 
(P I )  There exists c, > 0 such that 

U ASMIN(cp, 0 f ,  S n G(cu), 6) c AMIN(f, S, c,6), V 6  > 0. (6) 
aEP 

(P2) There exists c, > 0 such that 

A M I N ( ~ , S , E ) C U A S M I N ( ~ , O ~ , S ~ G ( ~ ) , ~ , ~ ) ,  V i > O .  (7) 
a€P 

Definition 4 We say that {pa)aEP and G give a parametric representation 
of AMIN(f, S, E) if properties (P I )  and (P2) hold. 

The notion of parametric representation has been used in the literature 
to describe the efficiency set of vector optimization problems as (VP) (see 
for instance [Wie86, Section 21). With Definition 4 we extend this concept 
to approximate solutions. Notice that the conditions considered in [Wie86, 
Section 21 to define the concept of parametric representation of i'vIIN( f ,  S )  are 
obtained from Definition 4 taking 6 = 0 and e = 0 in (6) and (7), respectively. 

In the following definition we introduce a similar concept for the set of 
weak Pareto eq-efficient solutions of (VP). 
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Definition 5 We say that {p,)aEP and G give a parametric representation 
of WAMIN( f ,  S, E) if properties (P I )  and (P2) hold replacing AMIN(f, S, c,S) 
by WAMIN( f ,  S ,  c,6) in (P I )  and AMIN( f ,  S, E) by WAMIN( f ,  S, E )  in (P2).  

Remark 1 

(a)  G(a )  represents a possible additional constraint motivated by the scalar- 
ization 9,. 

(b) Conditions (P I )  and (P2) ensure that all ~q-efficient solutions, and only 
this kind of solutions, can be obtained by solving the scalar optimization 
problems given by the objective functions y, o f ,  a E P .  Moreover, (P I )  
ensures that an improved ~q-efficient solution is obtained when the scalar 
objective decreases, since c,6 -+ 0 if 6 -, 0, and this improvement depends 
on the properties of the set AMIN( f ,  S, E) when E -, 0 (see for instance 
property (2) 1. 

(c) It  is clear that (P I )  and (P2), respectively, imply sufficient and necessary 
conditions. However, the concept of parametric representation is stronger 
than the notion of characterization because the former ensures that suffi- 
cient conditions do not depend on a fixed point, that is to  say, all approx- 
imate solutions in ASMIN(y, o f ,  S n G(a ) ,  6) are c, Gq-efficient solutions 
of (VP). 

By Remark l(b)-(c) we conclude that Definitions 4 and 5 give an useful frame- 
work to  analyze approximate solutions of scalarizations obtained via iterative 
algorithms. 

Next, we deduce several parametric representations. 

Theorem 3 Let us consider q E int(R:). 

(4  The family {Yf (x))xcst where 

gives a parametric representation of WAMIN( f ,  S ,  E) and AMIN( f ,  S, E )  

with c, = c, = 1 and c, > c, = 1, respectively. 
(b) I f f  is a convex function and S is a convex set then the family {(A, 

where 
P = {A E RP+ : ( / A / /  = I ) ,  

gives a parametric representation of WAMIN( f ,  S,  E) and AMIN( f ,  S, E) 
with c, = k, := l/min{(X,q) : X E P ) ,  c, = k, := max{(X,q) : X E P) 
and c, > k , ,  c, = k,, respectively. 

Proof. Part  (a) .  For every E > 0, by Theorem 2(a) ,  it follows that 

From Example l (b)  we see that yf(,) is a strictly monotone function for every 
x E S and consequently, by Theorem l (c ) ,  we deduce that 
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As 
P f ( x ) ( ~ ) - P f ( . ) ( ~ - & 4 ) = & ,  Y Y E R P ,  

then S 2 ( y f ( x ) , ~ , ~ )  = IRP and by (8)-(9) we have that 

Thus, 

and 

where (10) is a consequence of (1). From here we see that the family 
{ ' P ~ ( ~ ) ) ~ ~ ~  and the set-valued map G( f (x)) = X give a parametric repre- 
sentation of WAMIN(f, S, E) with c, = c, = 1 and they give a parametric 
representation of AMIN(f, S, E) for every c, > 1 and c, = 1. 

Part  (b). As f is a convex function and S is a convex set then f (S)  is a IR:- 
convex set. Moreover, for every X E P, ( A ,  8 )  is a strictly monotone function 
such that 

( & Y )  - 0 1  Y - 4 = +,q) ,  Q Y  E RP1 

and so &((A, a ) ,  E ,  &(A, q ) )  = RP. Then, for every E > 0, by Theorems l ( c )  and 
2(b) we have that  

and 



182 Cksar Gutikrrez, Bienvenido Jimknez, and Vicente Novo 

where (12) is a consequence of (1). Let us consider k, := max{(X,q) : X E P )  
and k, := l/min{(X, q) : X E P ) .  As q E int(RP+) and P is a compact set, by 
Weierstrass' Theorem it follows that k,, k, E ( 0 , ~ ) .  Then, by (11)-(12), we 
conclude that the family {(A, . ) ) x E p  and the set-valued map G(X) = X give 
a parametric representation of WAMIN(f, S , E )  taking c, = k,, c, = k, and 
they give a parametric representation of AMIN(f, S ,  E) for every c, > k, and 
c, = k,. 

The family {qf(s))zEs has been considered by Wierzbicki in [Wie86] to 
obtain a parametric representation of the efficiency set of (VP). Theorem 
3(a)  extends [Wie86, scalarization (32) and Theorem 101 from the set of weak 
efficient solutions to  the set of weak Pareto ~q-efficient solutions of (VP). 
Theorem 3(b) also extends Theorem 1 in [Wie86], that describes a parametric 
representation of the set of weak efficient solutions in convex vector opti- 
mization problems, to  weak approximate solutions of (VP) in the sense of 
Kutateladze. 

Example 2 Let (VP) be the vector optimization problem given by the fol- 
lowing data: X = R2, p = 2, f (x,  y) = (x, y), S = R: and q = ( 1 , l ) .  I t  follows 
that 

In order to  obtain a parametric representation of WAMIN(f, S, e)  from Theo- 
rem 3(a) ,  let (a ,  b) E JR? be a feasible point and consider the scalar optimiza- 
tion problem 

min{(~a,b 0 f )(x1 y) : 2 1  y 2 
where ( P ~ , ~ ( X ,  y) = max{x - a ,  y - b). It  is easy to  check that 

and so, it is clear that the set 

gives a "parametric representation" of WAMIN(f, S, e) 

From Theorem 3 we obtain the following characterizations for Pareto and 
weak Pareto ~q-efficient solutions of (VP). Notice that (a . l ) (=+)  and (a.2) are 
direct necessary conditions and, however, (b.l)(*) and (b.2) are not direct 
necessary conditions. 
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Corollary 1 

(a)  Let us consider q E int(R:). 
(a.  1) x 6 WAMIN( f ,  S, E) w x E ASMIN((pfx o f ,  S, E).  
(a.2) x E AMIN( f ,  S, E) 3 x E ASMIN((pfx o f ,  S ,  E) . 
(a.3) x E ASMIN((pf(,) o f ,  S ,E )  + x E AMIN(f, S, u), 'du > E. 

(b) Let us consider that f is a convex function, S is a convex set and q E 
RP+\{O). Then 

( ~ . ~ ) X E W A M I N ( ~ , S , E )  W X E  U ASMIN((h,~)oflS,~(h,q)). 
X E P S ~ , I X I I = I  

(b.2) x E AMIN(f, S,E) + there exists X E RP+ with / / A / /  = 1 such that 
x E ASMIN((X, .) o f ,  S, &(A, 9 ) ) .  

(b.3) If q E int(R:), X E RP+\{O) and x E ASMIN((X;) o ~ , S , E )  + x E 

AMIN(f 1 Sl u), v > &/(A 9).  

In [LW98, Theorem 11, Li and Wang have obtained a characterization 
for weak ~q-efficient solutions of (VP) via approximate solutions of several 
scalarizations. In Corollary l(a.1) we have proved an equivalent condition, 
which is simpler since it uses a single scalarization. 

4 Conclusions 

In this work, approximate efficient solutions of vector optimization problems 
have been analyzed using a concept of approximate efficiency introduced by 
Kutateladze in [Kut79]. We have obtained relations between these approxi- 
mate solutions and approximate solutions of several scalarizations. This rela- 
tions are important because the methods used to solve a vector optimization 
problem are usually based on scalarization processes. 

Next, a notion of parametric representation for the set of approximate 
efficient solutions defined by Kutateladze has been introduced and two specific 
parametric representations have been given via linear and max type functions. 
Our theorems extend several previous results since we consider nonconvex 
problems. 
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Summary. This contribution contains a description of efficient methods for large- 
scale unconstrained optimization. Many of them have been developed recently by 
the authors. It concerns limited memory methods for general smooth optimization, 
variable-metric bundle methods for partially separable nonsmooth optimization, hy- 
brid methods for sparse least squares and methods for solving large-scale trust-region 
subproblems. 

Key words: Unconstrained optimization, large-scale optimization, nons- 
mooth optimization, limited-memory methods, bundle-type methods, vari- 
able metric methods, nonlinear least squares, nonlinear minimax optimization, 
trust-region subproblems, computational experiments. 

1 Introduction 

Modern numerical methods for unconstrained optimization have been studied 
and developed since the sixties of the last century. Nevertheless, many new 
problems and approaches have appeared only recently. I t  especially concerns 
general large-scale problems, which challenged the development of limited- 
memory variable metric methods [Noc80], and structured large-scale prob- 
lems, which stimulated the development of variable metric methods for par- 
tially separable problems [GT82] and hybrid methods for sparse least-square 
problems [Luk96b]. Additional approaches arose in connection with nons- 
mooth unconstrained optimization. In this case, various bundle-type meth- 
ods [Kiw85], [Lem89], [MN92] were developed including variable-metric bun- 
dle methods [LV99], [VLOl], which substantially reduce the size of bundles 
and, therefore, the number of constraints in the quadratic programming sub- 
problems. Variable-metric bundle methods were recently generalized to solve 
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large-scale nonsmooth problems using a limited-memory variable metric ap- 
proach [HMM04], [HMMOS] or a partially-separable variable metric frame- 
work [LV04]. Furthermore, new methods [GLRT99], [LMV04] for solving large- 
scale trust-region subproblems were proposed, which can be used in connec- 
tion with the Newton method for general sparse unconstrained optimization 
or with the Gauss-Newton method for sparse nonlinear least squares. 

In this contribution, we deal with the local minimization of the objective 
function F : Rn -+ R. In Section 2, the function F is assumed to be twice con- 
tinuously differentiable and limited-memory methods are reviewed, including 
the most recent methods proposed in [VL02] and [VL05]. Section 3 is devoted 
to the nonsmooth optimization. After introducing basic principles of the bun- 
dle methods and describing variable-metric bundle methods, we focus our 
attention on methods for large-scale nonsmooth problems. Section 4 contains 
a description of hybrid methods for nonlinear least squares and Section 5 is 
devoted to  efficient methods for solving large-scale trust-region subproblems. 
All the methods presented were carefully tested and compared using extensive 
computational experiments. 

2 Limited-memory variable metric methods 

Limited-memory variable metric methods can be efficiently used for large- 
scale unconstrained optimization in case the Hessian matrix is not known or 
is not sparse. These methods are usually realized in the line-search framework 
so that they generate a sequence of points xk E Rn, k E N ,  by the simple 
process 

Xk+l = Xk + tkdk, (1) 

where dk = -Hkgk is a direction vector, Hk is a positive definite approxima- 
tion of the inverse Hessian matrix and tk  > 0 is a scalar step-size chosen in 
such a way that 

(the weak Wolfe conditions), where Fk = F ( x k ) ,  gk = V F ( x k )  and 0 < E I  < 
112, < ~2 < 1 .  Matrices Hk, k E N, are computed either by using a 
limited (small) number of variable metric updates applied to  the unit matrix 
or by updating low dimension matrices. First, we shortly describe two known 
limited-memory variable metric methods. Then we focus our attention on new 
shifted limited-memory variable metric methods. 

2.1 Limited memory BFGS method 

The most known and commonly used limited-memory BFGS (L-BFGS) 
method [NocBO] works with matrices Hk = H:, where HL-, = y k I  (usu- 
ally yk = bk-llak-1) and 
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for k - m  5 j 5 k - 1 .  Heres j  = ~ j + ~  - x j ,  yj = g j + l  - g j ,  a j  = y T ~ j y j ,  
b j  = y;sj and pj are correction parameters. Matrix Hk = H: need not be 
constructed explicitly since we need only vector dk = -Hkgk, which can be 
computed using two recurrences (the Strang formula). First, vectors 

k - 1 2 j 2 k - m, are computed using the backward recurrence 

aj = s , T ~ j + ~ / b j ,  

U j  = U j + l  - a jy j ,  

where uk = -gk. Then vectors 

k - m 5 j < k - 1 ,  are computed using the forward recurrence 

vj+l = vj + (pjaj  - y T ~ , / b . ) s  3 3 3 31 

where vk-, = (bk- l /ak- l )~k-m.  Finally we set dk = vk. Note that 2m vectors 
s,, yj, k - m  5 j < k - 1 are used and stored. 

Matrix HI, = H;, obtained by updates (3) ,  can be expressed in the com- 
pact form using low order matrices [BNS94]. In this case 

Hk = ykI - [ ~ k ,  y k y k ] ~ k [ ~ k >  ~ k y k ] ~ ,  (4) 

where Sk = [ s ~ - ~ ,  . . . , sk-11, Yk = [ ~ k - ~ ,  . . . , yk-11, and 

where Ck is a diagonal matrix containing diagonal elements of S:Y~ and Rk 
is an upper triangular matrix having the same upper triangular part as S:yk. 
Again 2m vectors s j ,  yj, k - m 5 j < k - 1 are used and stored. 

The above idea can be used for some other variable metric updates. The 
symmetric rank-one (SR1) update can be expressed in the form 

Hk = Y ~ I  + (Sk - ~kYk)(Rk + R z  - Ck - "/k~:yk)-~(sk - 'YkY kIT. (El 
It  is necessary to  note that update (3) with Strang recurrences is more sta- 
ble than expressions (4)-(5). On the other hand, compact-form formulas are 
very important, since they can be easily inverted (using duality) and applied 
directly to Bk  = H;', which is necessary in trust-region approach or in con- 
strained optimization. 
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2.2 Methods based on reduced Hessian matrices 

Another limited-memory variable metric method, proposed in [GL03], is based 
on updating reduced Hessian matrices. Let B k ,  k E N ,  be approximations 
of Hessian matrices obtained by the BFGS method (with B1 = I). If Gk 
and VI, are linear subspaces spanned respectively by the columns of matrices 
Gk = [gl , .  . . , gk ]  and Dk = [d l , .  . . , dk ] ,  then Vk = G k .  Moreover, Bkv E Gk 
for v E Gk and Bkw = w for w E G t .  Let 21, be a matrix whose columns form 
an orthonormal basis in Gk and let Qk = [Zk, Wk] be a square orthogonal 
matrix. The above consideration implies that 

and the direction vector can be obtained from the reduced system 

Thus complete information concerning the variable metric update is contained 
in the reduced Hessian approximation Z;BkZk. We usually use the Choleski 
decomposition RZRk = z ~ B ~ Z I ,  and update the upper triangular matrix Rk .  
More details can be found in [GLOl]. 

Consider now a limited-dimension subspace Dk spanned by the columns 
of matrix Dk  = [dk-,+l,. . . , dk] (note that Dk and Dk  were redefined). This 
subspace is changed on every iteration. Let Zk be a matrix whose columns 
form an orthonormal basis in Vk.  In efficient implementations of limited- 
memory methods based on reduced Hessians, matrices Zk and Z ~ B ~ Z ~  are 
not used explicitly. An upper triangular matrix Tk such that Dk = ZkTk and 
the Choleski decomposition R;R~ = Z:BkZlc are used instead. At the first 
iteration, we set 

On every iteration, we first solve two equations R:Rkd;, = -&, Tkvk = d;c 
and set dk = Dkvk. Then the line-search is performed to  obtain a new point 
xk+1 = xk + tkdk and matrices Dk ,  Tk are changed according to the subspace 
Vk. Therefore, we replace the last column of Dk by dk and the last column 
of T k  by &. Now a representation of the subspace Dktl has to be formed. 
First, we project the new gradient gk+1 = g(xkS1) into the subspace Vk by 
solving the equation ~ z r ~ + ~  = Drgk+l .  Then we determine the quantity 
Pk+1 = lIgk+lll - llrk+lll, set Dk+l = [Dk, gk+l] and 

Thus we obtain a temporary representation of the reduced Hessian approxi- 
mation in the form z:+~ Bkzkt l  = R :+,%I, where 
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( ~ k + l  is the scaling parameter). This factorization has to  be updated to satisfy 
the quasi-Newton condition R c + l R k + l ~ k  = g k ,  where 

Numerically stable methods described in [GMS75] can be used for this pur- 
pose. If the subspace Dktl  has dimension m + l ,  then it has to  be reduced 
before the new iteration is started. Denote the matrices after such reduction 
by Dk+1, Tk+1, i i k + 1 .  Then Dk+1 is obtained from Dk+l  by deleting its first 
column and matrices i T j c + l ,  Rk+1 can be constructed by using elementary 
Givens rotations (see [GL03] for more details). 

2.3 Shifted variable metric methods 

Consider line-search methods of the form (1)-(2). Limited-memory variable 
metric methods based on reduced Hessians use low-rank matrices Hk = 

Z k ( Z r B k Z k ) - l Z ;  = Uku:,  where Uk has m columns at most. Thus Hk 
is singular and the case when dk is almost perpendicular to  gk can occur. For 
this reason, it is advantageous to set Hk = CkI + Uku:,  where Ck > 0 is a 
parameter, which is carefully selected in every iteration. In this subsection, 
we assume that the rank of Ak = UkU: is min(k, n)  (i.e., m = n). 

Shifted variable metric methods use matrices Hk = CkI + A k ,  k E N, 
where Ck > 0 and Ak is positive semidefinite. Starting from the zero matrix, 
these methods generate a sequence of positive semidefinite matrices A k ,  k E 
N, satisfying the (modified) quasi-Newton condition Ak+1yk = eksek, where 
sk = xk+l - xk, yk = gk+l - gk and S k  = sk - Ck+lyk. Here is a correction 
parameter and C k + 1  > 0 is a shift parameter. Update 

(8) 
is used, where = y r ~ k y k  and iI, = yTdk. The shifted BFGS method 
corresponds to qk = 1. The following theorem is proved in [VL02]. 

Theorem 1. Let Ak be positive semidefinite and qk L 0. If 0 < C k + l  < 
Y ~ s k / Y ~ Y k ,  then Ak+l is positive semidefinite. 

A crucial part of shifted variable metric methods is the determination of 
the shift parameter. Theorem 1 implies condition 
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where bk = y;sk and hk = yTYk. If pk is too small, then matrix Hk is usually 
unsuitable (Ak is singular in the first n iterations). If pk is too large, the 
stability is usually lost (numerical explosion). Two basic choices were tested. 
The simplest choice uses constant pk = p ,  0 < p < 112, in every iteration. If 
p -+ 112, then the shifted BFGS method becomes unstable. Efficient values 
lie in the interval 0.20 5 p 5 0.25, e.g., p = 0.22. A more sophisticated choice, 
derived by using a theoretical investigation of stability and global convergence 
(see [VL02]), is given by the formula 

(the numerator assures the global convergence and the denominator assures 
the stability). 

For proving the global convergence, we need the following assumptions. 

Assumption 1. The objective function f : Rn -+ R is uniformly convex and 
has bounded second-order derivatives, i.e., there are constants 0 < G < < 
co such that 

G I X(G(x)) L X(G(x)) I 77 
for all x E Rn, where X(G(x)) and X(G(X)) are the lowest and the greatest 
eigenvalues of the Hessian matrix G(x).  

Assumption 2. Parameters ~k and pk of the shifted variable metric method 
are uniformly positive and bounded, in the sense that 

for every k > 1. 

The following theorem is proved in [VL05]. 

Theorem 2. Consider a shifted variable metric method satisfying Assump- 
tion 2 with the line-search fulfilling the weak Wolfe conditions. Let the objec- 
tive function satisfy Assumption 1. Then, if 0 < qlc < 1 and p i  5 1 - a k / a k 1  
one has 

liminf ilgkli = 0, 
k--too 

Remark 1. Condition p i  I 1 - hk/ak has been used for the choice of the 
numerator in (9). The denominator in (9) minimizes the condition number of 
Hktl in the first iteration. 

Shifted variable metric methods were tested by using a set of 92 relatively 
difficult (ill-conditioned) test problems with 50 and 200 variables implemented 
in subroutine TEST28 (see www. c s  . cas  , cz /" luksan / tes t  . html). The results 
are presented in Table 1, where n is the number of variables, "method" is 
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the method used (SBFGS - the shifted BFGS method, SDFP - the shifted 
DFP method, BFGS - the standard BFGS method, DFP - the standard DFP 
method), NIT is the total number of iterations, NEV is the total number of 
function and gradient evaluations, NF is the number of failures for a given set 
(i.e., the number of problems which were not successfully solved) and "time" 
is the total computational time in seconds. 

I n lmethodl NIT NEV NF time1 

Table 1 

The results presented in this table imply the following conclusions for the 
variable metric (VM) methods: 

The shifted VM methods are more efficient than standard implementa- 
tions of the classic VM methods. However, the classic VM methods can be 
improved by a suitable scaling, which is problematic in the case of shifted 
VM methods. 

0 The shifted VM methods were not developed for solving problems that can 
be successfully solved by the classic VM methods. They have been discov- 
ered in the framework of shifted limited memory VM methods. Having the 
same form, they are ideal as starting methods (that give a suitable initial 
matrix Ul) for algorithms described in the next section. 

2.4 Shifted limited-memory variable metric methods 

Shifted limited-memory variable metric methods use recurrences (1)-(2) with 
matrix Hk = ckI + Ak = CkI + UkU;, where n x m matrix Uk is updated 
by formula Uk+l = VkUk with a low rank matrix Vk chosen in such a way 
that the (modified) quasi-Newton condition Ak+lyk = Uk+lU~+lYk = pkdk is 
satisfied. This condition can be replaced by equations 

The following theorem is proved in [VL05]. 

Theorem 3. Let Tk be a symmetric positive definite matrix and zk E Em. 
Then the unique solution Uk+1 to the problem 
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minimize / T ~ - " ~ ( u ~ + I  - Uk)Il$ subject to (10) 

(Tkyk and zk are vector parameters defining a class of shifted limited-memory 
variable metric methods). 

Remark 2. Formula (11) can be writen in the form 

which implies 

Usually Tkyk = Sk. This choice gives the (full) shifted BFGS method if term 
zkz:/zzzk is omitted. 

Using suitable values of the vector parameters we obtain particular meth- 
ods. Assuming that Thyk and pkSk - Ukzk are linearly dependent and setting 

we obtain rank 1 variationally derived method (VARl), where 

which gives the best results for the choice sgn(flkbk) = -1. 
Using zk given by (12) and setting Tkyk = Sk, we obtain rank 2 variation- 

ally derived method (VAR2), where 

The efficiency of both these methods significantly depends on the value of the 
correction parameter e k .  Very good results were obtained with choices ~k = 

vk, Qk = E k ,  e k  = and L?k = Ck/(Ck + <k+l), where vk = ~ k / ( 1  - ~ k ) ,  
is a relative shift parameter and EI, = J- is the damping factor 

of Pk. 
Using the above formulas, the global convergence of VARl and VAR2 is a 

consequence of Theorem 2 (see [VL05]). 
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Theorem 4. Consider a shifted variable metric method VARl or VAR2 satis- 
fying Assumption 2 and inequality pi < Skak /ak  together with the line search 
(1)-(2). Let the objective function satisfy Assumption 1. Then if 

(for VARl or VAR2) hold in all iterations (C > 0 can be chosen arbitrarily), 
one has 

Shifted limited-memory variable metric methods were tested by using a set 
of 22 test problems with 1000 and 5000 variables implemented in subroutine 
TEST14 (see www. c s  . cas , cz /" luksan / tes t  . html). The results are presented 
in Table 2, where n is the number of variables, "method is the method used 
(VAR1 - the rank 1 variationally derived method, VAR2 - the rank 2 varia- 
tionally derived method, LBFGSS - the limited-memory BFGS method with 
Strang recurrences, LBFGSC - the limited-memory BFGS method with com- 
pact matrices, LBFGSR - the limited-memory BFGS method with reduced 
Hessians, CG - the nonlinear conjugate gradient method), NIT is the total 
number of iterations, NEV is the total number of function and gradient eval- 
uations, NF is the number of failures for a given set (i.e., the number of 
problems which were not successfully solved) and "time" is the total computa- 
tional time in seconds. Always 10 vectors (or pairs) were stored for n = 1000 
and 5 vectors (or pairs) were stored for n = 5000. 

Table 2 

n 
1000 

5000 

The results presented in this table and our other extensive experiments imply 
the following conclusions: 

method 
VARl 
VAR2 

LBFGSS 
LBFGSC 
LBFGSR 

CG 
VARl 
VAR2 

LBFGSS 
LBFGSC 
LBFGSR 

CG 

NIT NEV NF time 
19260 19660 - 10.63 
18430 18693 - 10.39 
20341 21389 - 11.55 
21022 22101 - 12.06 
21892 33442 - 18.91 
20087 40122 - 13.70 
97057 98888 - 292.56 
87725 89528 - 270.09 

117670 121053 1 322.38 
112448 115573 1 326.95 
118139 189451 1 509.75 
71388 178417 1 340.13 
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Methods VARl and VAR2 are very efficient, competitive with LBFGS 
methods, for our set of test problems. However, LBFGS methods can be 
better than VARl and VAR2 for very ill-conditioned problems. 
Method CG is very efficient for large-scale problems, but it needs a larger 
number of function evaluations and frequently terminates before a required 
precision is achieved. 
Shifted limited-memory VM methods are still under development. Our 
limited computational experience indicates that they could be improved 
by using a more suitable choice of parameters. 

3 Met hods for large-scale nonsmoot h optimization 

We assume that objective function F : Rn -+ R is locally Lipschitz and we 
are able to  compute a (Clarke) subgradient g E dF (x )  at any point x E Rn. 
Since a locally Lipschitz function is differentiable almost everywhere by the 
Rademacher theorem, then usually g = VF(x ) .  A special feature of nons- 
mooth problems is the fact that the gradient VF(x )  changes discontinuously 
and is not small in the neighborhood of a local extremum. Thus the standard 
optimization methods cannot be used efficiently. 

3.1 Principles of bundle methods 

The quantities F ( x k ) ,  g (xk)  E d F ( x k )  at a single point x k  do not suffice 
for describing the local properties of the nonsmooth objective function. A 
bundle of quantities Fj = F(yj ) ,  g j  E aF(y3) obtained at  trial points yj ,  
j E Jk C (1,. . . , k ) ,  gives much better information. These values serve for 
the construction of the piecewise linear function 

where a: = F ( X ~ )  - F;, j E Jk, are linearization errors and F; = Fj + (xk - 
~ j ) ~ g j ,  j E Jk, In the convex case, this piecewise linear function is majorized 
by the objective function and, moreover, a: 2 0 for j E Jk. To guarantee 
nonnegativity of these numbers in the nonconvex case, the subgradient locality 
measures 

a: = max { lF(xk)  - F$, y(s$)") ,  

where y > 0, v 2 1 and 

for j E Jk, are used instead of linearization errors. Since we can only work 
with limited-size bundles where / J k I  5 m (IJk/ is the cardinality of set Jk), 
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the set Jk is usually determined in such a way that Jk = ( 1 , .  . . , k }  for 
k 5 m, and Jk+l = Jk U {k + l } \ { k  + 1 - m) for k > rn. In this case, one 
possibility guaranteeing the global convergence of the bundle method is the 
use of transformed aggregate values F:, gk,  s: and 

a! = max {lF(xk)  - F;I, y(s!)") , 

which accumulate information from the previous iterations. These values rep- 
resent a linear function which is added to the set of linear functions contained 
in the bundle. New aggregate values F,", j:, St are obtained by solving the 
quadratic programming subproblem (see (18)) and are transformed to  the 
next iteration by (24). 

Direction vector dk E Rn is usually obtained as a minimum of the piecewise 
quadratic function 

1 k T  k 
F;(X) = I(x - X ~ ) ~ G ' ( X  - xk )  + max{F/,(x), F ( x k )  + (x - x ) g, - a!),  

where (1/2)(x - x ~ ) ~ G ~ ( x  - xk )  is the regularizing term with symmetric 
positive definite matrix Gk.  This term restricts the size of the direction vector 
(in a similar way as in the trust region methods). This minimization problem 
is equivalent to  the quadratic programming problem: Minimize function 

subject to 
-a; + d T g j  5 v, j E J ~ ,  -a; + dTgk < v ( 1 6 )  

(v is an extra variable). The solution of the primal QP subproblem can be 
expressed in the form 

where 

and where A;, j E Jk, A!, are corresponding Lagrange multipliers. These 
Lagrange multipliers are also solutions of the dual QP problem: Minimize 
function 



196 Ladislav LukSan and Jan VlEek 

subject to 

The minimum value of the dual function is 

Using direction vector dk,  we can compute a new approximation of the 
minimizer of the objective function. It is usually not possible to just set xk+' = 
xk + dk.  To guarantee the global convergence of the bundle method, we use a 
line search procedure which generates two points 

where 0 < t i  < t k  < 1 are stepsizes, in such a way that exactly one of the 
two possibilities, the descent step or the zero step, occurs. The descent step 
implies the conditions 

while the zero step implies the conditions 

with 

ak+l = max {lF(xk)  - F ( x k  + tkdk)  + tk(dk)Tg(xk + tkdk)l,  yltkdklu) 

Here 0 < E L  < 112 and EL < E R  < 1. 
In case the descent step is performed, it is necessary to transform all bundle 

quantities to  the new point xk+l. This is realized by using the formulas 

It  remains to specify the way for determining matrices Gk .  To ensure the 
global convergence of a bundle method, we assume for simplicity that matrices 
Gk are uniformly positive definite and uniformly bounded (their eigenvalues 
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are positive and lay in the compact interval that does not contain zero). 
Moreover, if the k-th step is a zero step, then we assume that Gktl - Gk 
is positive semidefinite. These assumptions are relatively strong, but they 
can be weakened for individual bundle methods. In the most frequently used 
proximal bundle method, where matrix Gk is a diagonal of the form G~ = a k ~ ,  
the above assumptions are satisfied if weights ak are positive and lay in the 
compact interval that does not contain zero and ak+' 2 nk holds in the zero 
step. Note that the proximal bundle method requires relatively large bundles 
(m  N n) to  be computationally efficient so that the solution of the quadratic 
programming subproblem (15)-(16) is time consuming. 

It  can be proved under mild assumptions (see e.g. [Kiw85]) that the number 
of consecutive zero steps is finite and that every cluster point of the sequence 
{xk)  is a stationary point of the objective function. This follows from the fact 
that the norms of aggregate subgradients tend to  zero implying 0 E 8F(xk) ,  
if the number of consecutive zero steps is infinite. An infinite sequence of the 
descent steps can be investigated by the standard way. 

3.2 Variable metric methods for nonsmooth problems 

Standard bundle methods require relatively large bundles to be computa- 
tionally efficient. Therefore, we need to  solve quadratic programming sub- 
problems with a relatively large number of constraints. At the same time, 
standard variable metric methods successfully solve many nonsmooth prob- 
lems. For this reason, it is advantageous to develop special variable metric 
methods, which combine good properties of both mentioned approaches. Fol- 
lowing [VLOl], we apply variable metric updates with current subgradients to 
matrix Hk = (Gk))- (used in (19))) which allows us to decrease the bundle 
dimension significantly. At the same time, we use aggregate subgradients after 
zero steps and a line search described in the previous subsection to guarantee 
the global convergence. 

Variable metric methods described in this subsection use, for the direction 
determination, the current subgradient after a descent step and the aggregate 
subgradient after a zero step. The aggregation procedure uses only three sub- 
gradients gm E aJ'(xk),  gkS1 E 8 ~ ( ~ ~ + ' ) ,  ak and three subgradient locality 
measures am = 0, a k + l  2 0, tik 2: 0 (m  is the index of the last descent 
step and the tilde denotes aggregate quantities). The quadratic programming 
subproblem (19)-(20) reduces to  the minimization of the function 

where Xi 2 0, i E {1 ,2 ,3)  and A 1  + X2 + X3 = 1. The optimal values A t  2 0, 
i E {1,2,3)  can be computed in a simple way. The new aggregate subgradient 
and the new aggregate subgradient locality measure are computed from the 
formulas 



198 Ladislav LukSan and Jan VlEek 

In the first iteration or after a descent step, we set ijk = g k ,  tik = 0 and 
m = k .  The direction vector is determined by formula dk = -Hkijk. At the 
same time, we set wk = ( ( 1 / 2 ) ( ~ ~ ) ~ H ~ f i ~  + t i  ', If wk is sufficiently small, then 
an approximate solution is found. 

Positive semidefiniteness of Hk - Hk+l  (which is equivalent to  positive 
semidefiniteness of G"' - G') after a zero step is usually guaranteed by the 
symmetric rank-one (SR1) update. Therefore, we use the BFGS update after 
a descent step and the SR1 update after a zero step. The BFGS update 

where uk = gk+' - gm, is used only if (uk)Tdk > 0. Otherwise we set Hk+' = 
H k .  The SR1 update 

where vk = Hkuk-&dk,  is used only if (vk)Tijk < 0 (which implies (uk)Tvk > 
0).  Otherwise we set Hk+l = Hk. 

Detailed descriptions of variable metric methods for nonsmooth functions 
can be found in [LV99] and [VLOl]. The following result is proved in [VLOl]. 

Theorem 5. Assume that function F : Rn -+ R is locally Lipschitz and 
the level set {x E Rn : F ( x )  5 F ( x l ) )  is bounded. Then every cluster 
point of sequence {xk)  generated by the nonsmooth variable metric method 
is stationary for F .  

Two methods for nonsmooth optimization (PBM - the proximal bundle 
method, NVM - the nonsmooth variable metric method) were tested by us- 
ing a set of 25 test problems with 2-50 variables implemented in subroutine 
TEST19 (see www.  c s .  cas  . c z / - l u k s a d t e s t  . html). The results are presented 
in Table 3, where P is the number of the problem, NIT is the total number of 
iterations, NEV is the total number of function and subgradient evaluations 
and F is the reached function value. The last row contains the summary values 
and the total computational time (in seconds). 

Table 3 demonstrates the high efficiency of the nonsmooth variable metric 
method. It  is competitive with the proximal bundle method measured by 
the number of iterations, even if it uses bundles of dimension at  most 2. 
Moreover, it is more efficient than the proximal bundle method measured by 
the computational time, since it does not use the time consuming quadratic 
programming subproblem (with m N n constraints). 
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PBM 
NIT NEV F 

42 45 0.38117064-Of 
18 20 0.46154993-0E 
31 33 1.9522245 
14 16 2.0000000 
17 19 -3.0000000 
13 15 7.2000014 
11 12 -1.4142135 
66 68 -.99999940 
13 15 -1.0000000 
43 46 -7.9999999 
43 45 -43.999999 
27 29 22.600162 
60 62 -32.348678 

154 155 -2.9196975 
92 93 ,55981566 
74 75 -.84140828 

160 162 9.7857723 
128 143 16.703861 
150 151 0.16712381-06 
39 40 0.12440972-12 

245 251 -638530.48 
52 53 0.11665945-11 
19 20 0.51313988-08 
27 28 0.23412735-07 

428 450 32.349182 
966 2046 TIME = 1.48 

NVM 
NIT NEV F 

34 34 0.27598807-10 
15 16 0.94894120-10 
17 17 1.9522247 
17 17 2.0000000 
20 20 -2.9999996 
19 19 7.2000000 
10 10 -1.4142133 
55 59 -.99999247 
37 37 -.99999979 
14 14 -7.9999998 
38 38 -43.999999 
40 40 22.600162 
52 53 -32.348678 
32 32 -2.9197003 
81 83 .55981553 
89 89 -.84140570 

241 241 9.7858732 
88 89 16.703838 

123 123 0.14683215-05 
23 23 .OOOOOOOO 

357 359 -638564.91 
358 360 0.41534959-05 

65 66 0.32729678-05 
67 67 0.94570857-06 

313 315 32.349159 
1205 2221 TIME = 0.93 

Table 3 

3.3 Variable metric methods for large-scale nonsmooth problems 

Proximal bundle methods are not suitable for solving large-scale nonsmooth 
problems, since they lead to  large-scale quadratic programming subproblems, 
where constraint Jacobian matrices are usually dense. Nonsmooth variable 
metric methods described in the previous subsection are also unsuitable, since 
they use dense variable metric updates. Fortunately, these updates can be 
replaced by updates based on a limited-memory approach or by updates which 
utilize sparsity. All other algorithmic details can remain unchanged. 

A limited-memory approach is investigated in [HMM04]. The resulting 
method utilizes matrix (4)-(5) after a descent step and matrix (6) after a zero 
step. Nevertheless, the updating strategy is not simple, since the condition 
requiring positive semidefiniteness of H~ - after a zero step consid- 
erably complicates a logical structure of the algorithm. Algorithmic details 



200 Ladislav LukSan and Jan VlCek 

of this method together with encouraging computational results are given 
in [HMM04]. Global convergence of this method is proved in [HMM03]. 

An efficient method based on partitioned variable metric updates is pro- 
posed in [LV04]. This method has been developed for minimizing partially 
separable functions of the form 

where f i  : Rn -+ R, 1 < i L m (m is usually large), are nonsmooth functions 
depending on a small number of variables (ni ,  say). A typical example is 

If ni << n for 1 5 i < m, subgradients gi, generalized Hessian matrices Gi and 
their approximations Bi are sparse. Let RT c Rn be the subspace defined by 
ni variables appearing in fi and Zi E Rnxnt be the matrix whose columns 
form the canonical orthonormal basis in Ry (i.e., they are columns of the unit 
matrix). To simplify the notation, we introduce packed subgradients iji = 
ZFgi E Rni, packed generalized Hessian matrices ~i = z , T G ~ z ~  E RnbXn, 
and their approximations Bi E Rn7,xnl .  Defining vectors li.i = ZTxi E RnA 
as parts of vector x E Rn, we can write packed quasi-Newton conditions in 
the form B!+'$ = $, where if = if+' - if and 6: = 4;'' - 4;. Packed 
quasi-Newton conditions imply packed quasi-Newton updates, which are used 
instead of dense variable metric updates. 

Matrices B: = Z~B~Z: and subgradients g; = Zigk (determined from 
packed matrices ~ " n d  packed subgradients 4;) define matrix B k  and sub- 
gradient gk as sums 

m m 

Denoting by 3k = xzl j"he corresponding aggregate subgradient (see (28))) 
direction vector d%s determined by solving the equation 

Furthermore, we define wk = - ( 1 / 2 ) ( ~ ~ ) ~ 3 ~  + d k .  If wk is sufficiently 
small, then an approximate solution is found. Since matrix B k  is large and 
sparse, we use a sparse Choleski (or Gill-Murray [GM74]) decomposition 
B k  = L ~ D ~ ( L ~ ) ~ .  This decomposition is also used in the quadratic pro- 
gramming subproblem (25) instead of H'". Thus corresponding matrix multi- 
plications are replaced by solutions of systems with triangular matrices (back 
elimination). Solving (25) we obtain Lagrange multipliers X I ,  X2, X3. The 
aggregate subgradients are obtained by the formula 
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Packed matrices B:, 1 < i < m,  are updated by packed variable metric 
updates. We use the packed BFGS update 

after a descent step and packed symmetric rank-one (SR1) update 

with 6," = $: - B:$, after a zero step. 
Methods for large-scale nonsmooth optimization were tested by using a 

set of 22 test problems with 50, 200, 500 and 1000 variables implemented 
in subroutine TEST15 (see www. c s  . cas  , cz /" luksan / tes t  . html). The results 
are presented in Table 4, where n is the number of variables, "method" is the 
method used (PBM - the proximal bundle method, NVM - the nonsmooth 
variable metric method, PNVM - the partitioned nonsmooth variable metric 
method), NIT is the total number of iterations, NEV is the total number 
of function and subgradient evaluations, NF is the number of failures for a 
given set (i.e., the number of problems which were not successfully solved) 
and "time" is the total computational time in seconds. 

n lmethodl NIT NEV NF time1 
I I 

50 / PBM 1 99665 103814 - 38.361 

Table 4 

200 

500 

1000 

The results presented in this table imply the following conclusions: 

Nonsmooth variable metric method NVM is more efficient than proximal 
bundle method for small-size partially separable sums of absolute values. 

NVM 
PNVM 
PBM 
NVM 

PNVM 
NVM 

PNVM 
PNVM 

34390 34475 - 3.48 
50629 50676 - 4.22 

214320 241845 8 1085.39 
97439 97703 2 67.53 
42310 42418 - 15.83 

173175 173744 4 880.15 
45105 46086 - 51.77 
52729 53604 - 135.00 
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Partitioned nonsmooth variable metric method PNVM is very robust, 
much more efficient than other methods used for solving our sets of 
medium-size and large-scale test problems. 

3.4 Variable metric methods for partially separable minimax 
problems 

Consider functions of the form 

F (x) = max f i (x)  
l< i<m 

where fi  : Rn -t R ,  1 < i < m (m is usually large), are nonsmooth functions 
depending on a small number of variables (ni,  say). Let F ( x )  = f i (x)  for some 
1 5 i < m. Then any subgradient of f i (x)  is a subgradient of F ( x ) .  Thus we 
can easily find a sparse subgradient g(x) = g,(x) (containing only ni nonzero 
elements) a t  an arbitrary point x E E n ,  which means that the constraint 
Jacobian matrix of the quadratic programming subproblem: minimize 

is sparse (note that aggregate subgradient g,k need not be sparse, which implies 
that the constraint Jacobian matrix can have one dense row). If Gk = o k l ,  we 
obtain a sparse quadratic programming subproblem. Thus having an efficient 
sparse Q P  solver, we can use the proximal bundle method. 

Let 

where f i (x) ,  1 < i 5 m, are smooth functions depending on a small number 
of variables. Then minimization of F is equivalent to the sparse nonlinear 
programming problem with n + 1 variables x E R n ,  z E R: Minimize z 
subject to  

-z I f i (x)  I z, 1 < i 5 m.  

This problem can be solved by an arbitrary nonlinear programming method 
utilizing sparsity (SQP, interior point, nonsmooth equation). A special form of 
this problem allows us to use some simplifications in comparison with general 
problems. Choosing a suitable initial value of z we obtain a feasible start- 
ing point. Moreover, function F ( x )  is an ideal merit function for the above 
problem. 



Efficient methods for large-scale unconstrained optimization 203 

4 Hybrid methods for large-scale nonlinear least squares 

Consider functions of the form 

(sum of squares), where fi : R n  -+ R, 1 5 i < m (m is usually large), are 
smooth functions depending on a small number of variables (ni l  say). In this 
case, the Jacobian matrix J ( x )  = [Jij(x)] = [af i (x) /axj]  is sparse. Using the 
Jacobian matrix, we can express gradient g(x) and Hessian matrix G(x) in 
the form g(x) = JT (x )  f (x) and 

(gi (x) and Gi (x) are gradients and Hessian matrices of f i (x) ,  respectively). 
The most known Gauss-Newton method uses matrix B (x )  = J T ( x ) J ( x )  

instead of the Hessian matrix G(x) = JT (x )  J ( x )  + C(x)  (i.e., it omits 
the second order information contained in C(x)) .  We assume that matrix 
JT (x )  J ( x )  is sparse (then also C(x)  is sparse). Matrix JT(x)  ~ ( x )  is fre- 
quently ill-conditioned (even singular), thus the Gauss-Newton method re- 
quires a trust-region realization. If the minimum value F (x* )  is large (large 
residual problem), then the Gauss-Newton method can be inefficient. There- 
fore, modifications based on variable metric updates have been developed. 
The following theorem is proved in [AF85]. 

Theorem 5. If Fk + 0 Q-superlinearly, then (Fk - Fk+l) /Fk --+ 1. If Fk i 
F* > 0, then (Fk - Fk+l ) /Fk  -+ 0. 

Theorem 5 implies the following philosophy of hybrid Gauss-Newton methods 
with second order corrections. Direction vector d is obtained by a trust-region 
strategy using the quadratic model (1/2)dTBd + f T J d  and the constraint 
ildii 5 A.  Then x+ = x + d, F+ = F(x+)  and J+ = J ( x + ) .  If F - F+ > gF, 
then B+ = JFJ+ (Gauss-Newton method). If F - F+ < QF, then B+ = 
J:J+ + C+, where C+ is an approximation of the second order term. Usually 
d = - 

For medium-size problems with dense matrices, matrix C is usually ob- 
tained by variable metric updates [AF85] [DGW81], which are unsuitable in 
the large-scale case. Fortunately, simple corrections utilizing sparsity consid- 
erably increase efficiency of the Gauss-Newton method. We shortly describe 
two hybrid methods proposed in [Luk96b]. 

Gauss-Newton method with the Newton corrections. In the first iteration 
we use matrix B = JTJ. In the subsequent iterations, we set 
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where f: = f i (x+) ,  G: zz Gi(x+),  1 5 k 5 m, (G' is a difference 
approximation of the Hessian matrix Gi(xt)) .  
Gauss-Newton method with the Marwil corrections. In the first iteration 
we use matrix B = J T J .  In the subsequent iterations, we set 

where 
P s W  = ( W  + w T ) / 2  

for a given square matrix W and 

for a given symmetric positive semidefinite matrix M .  Here u E Rn solves 
linear system Du = y - M s  with diagonal matrix D such that 

and 

(PG is the so-called gangster operator). 

Methods for large-scale nonlinear least squares were tested by using a set of 
52 test problems with 1000 variables implemented in subroutines TEST15 and 
TEST18 (see www. c s .  cas  . cz /" luksan / tes t  . html). The results are presented 
in Table 5 ,  where "step" is the strategy for step-length selection (MS - the opti- 
mum trust-region step of Mori: and Sorensen [MS83], DL - the dog-leg strategy 
of Powell [Pow7O], LS - the standard line-search procedure), "method" is the 
method used (GN - the Gauss-Newton method, GNN - the Gauss-Newton 
method with the Newton corrections, GNM - the Gauss-Newton method with 
the Marwil corrections, DN - the discrete Newton method, where the second 
order derivatives are approximated by differences, PVM - the partitioned vari- 
able metric method), NIT is the total number of iterations, NEV is the total 
number of function evaluations, NF is the number of failures for a given set 
(i.e., the number of problems which were not successfully solved) and "time" 
is the total computational time in seconds. 
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step - 
MS 

I 

PVM 112093 16285 1 99.171 

method 
GN 

GNN 
GNM 
DN 
GN 

GNN 
GNM 
DN 

Table 5 

NIT NEV NF time 
8542 8929 1 72.00 
5499 5801 - 51.94 
6434 6801 - 62.88 
7804 52398 1 202.07 
9244 9602 - 38.84 
7767 8216 - 35.68 
6851 7029 - 25.87 

10326 91181 - 171.98 

The results presented in this table imply the following conclusions: 

Modifications of the Gauss-Newton method implemented with the trust- 
region strategy are very robust for our set of test problems, much better 
than discrete versions of the Newton method and more efficient than par- 
titioned variable metric methods. 
The Newton corrections or the Marwil variable metric updates improve 
the efficiency of the Gauss-Newton method especially if direct methods 
for solving trust-region subproblems are used. Hybrid methods GNN and 
GNM are shown to be the most efficient methods for solving our set of 
test problems. 

5 Met hods for solving large-scale t rust-region 
subproblems 

Trust-region methods can be used when the Hessian matrix (or its approx- 
imation) is known. These methods are very convenient when this matrix is 
indefinite, ill-conditioned or singular. This situation often arises in connection 
with the Newton method for general objective function (indefiniteness) or with 
the Gauss-Newton method for nonlinear least-squares (near-singularity). 

The crucial part of each trust region method is the direction determina- 
tion. We restrict our attention to  problems with large dimensions. To simplify 
the notation, we omit index k and use symbol k for ordering by positive 
semidefiniteness. Let 

1 
Q(d) = - d T ~ d  + g T d .  

2 
We seek a direction vector d  E Rn in such a way that 
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with 0 5 w < 1 and 

with 0 < a 5 112. It  can be shown [Pow841 that conditions (29)-(31) guar- 
antee that the trust-region method is globally convergent if matrices B are 
uniformly bounded (or the sum of the reciprocal values of its norms is equal to  
infinity). There are various commonly known methods for computing direction 
vectors satisfying conditions (29)-(31) which we now shortly mention. 

The most sophisticated method is based on the computation of the optimal 
locally constrained step. In this case, vector d E Rn is obtained by solving 
subproblem 

1 
minimize Q(d) = - d T ~ d  + gTd subject to lldll < A. 

2 (32) 

Necessary and sufficient conditions for this solution are 

The Mor6-Sorensen method [MS83] is based on solving nonlinear equation 
l/lld(X)1/ = l / A  with ( B  + XI)d(X) + g = 0 by the Newton method using 
the sparse Choleski decomposition of B + XI. This method is very robust but 
requires 2-3 Choleski decompositions per iteration. 

Simpler methods are based on minimization of Q(d) on the two-dimensional 
subspace containing Cauchy step dc = -(gTg/gTBg)g and Newton step 
dN = -B71g. The most popular is the dog-leg method [Pow7O], [DM75], 
where d = dN if dN 5 A and d = (A/jjdcl()dc if ((dell 2 A. In the remaining 
case, d is a convex combination of dc and dN such that lldli = A. This method 
requires only one Choleski decomposition per iteration. 

If B is not sufficiently sparse, then the sparse Choleski decomposition of B 
is expensive. In this case, iterative methods based on conjugate gradients are 
more suitable. Steihaug [Ste83] and Toint [Toi81] proposed a method based on 
the fact that Q(dktl)  < Q(dk) and Ildk+lll > Ildkli hold in the subsequent CG 
iterations if CG coefficients are positive. We either obtain an unconstrained 
solution with a sufficient precision or stop on the trust-region boundary if a 
negative curvature is indicated or the trust-region is left. This method is very 
efficient in practice especially when suitable preconditioning is used. Note that 
Ildk+lllc > Ildkllc (where Idkll& = d r c d k )  holds instead of Ildktll > Ildkll if 
preconditioner C (symmetric and positive definite) is used. Thus the solution 
on the trust-region boundary obtained by the preconditioned CG method 
can be further from the optimal locally constrained step than the solution 
obtained without preconditioning. This insufficiency is usually compensated 
by the rapid convergence of the preconditioned CG method. 

The CG steps can be combined with Newton step dN in the multiple dog- 
leg method [Ste83], [Luk96a]. Let k << n (usually k = 5) and dk be a vector 
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obtained after k CG steps of the Steihaug-Toint method. If (ldkl( < A,  we use 
dk instead of dc = dl in the dog-leg method. 

The solution on the trust-region boundary obtained by the Steihaug-Toint 
method can be rather far from the optimal solution. This insufficiency can 
be overcame by using the Lanczos process [GLRT99]. Initially, the conjugate 
gradient algorithm is used as in the Steihaug-Toint method. At the same 
time, the Lanczos tridiagonal matrix is constructed from the CG coefficients. 
If a negative curvature is indicated or the trust-region is left, we turn to the 
Lanczos process. In this case, d = 22, where 2 is obtained by minimizing 
quadratic function 

1 
- d T ~ 2 +  1lglJeT2 
2 

subject to  11211 5 A ,  Here T = Z ~ B Z  (with z T Z  = I )  is the Lanczos tridi- 
agonal matrix and el  is the first column of the unit matrix. This method 
cannot be successfully preconditioned, since preconditioning changes the orig- 
inal trust-region subproblem to lldiic 5 A,  where C changes in each major 
iteration and can be ill-conditioned. 

To overcome the insufficiency of the previous method, the Lanczos process 
can be combined with the Steihaug-Toint method. The shifted Steihaug-Toint 
method proposed in [LMV04] consists of three steps: 

Let m << n (usually m = 5 ) .  Determine tridiagonal matrix T of order m 
by m steps of the (unpreconditioned) Lanczos method applied to  matrix 
B with the initial vector g.  
Solve subproblem 

1 
minimize - d T ~ 2 +  gl leT2 subject to 211 5 A 

2 (34) 

using the method of Mort5 and Sorensen to obtain Lagrange multiplier i. 
Apply the (preconditioned) Steihaug-Toint method to  subproblem 

1 
minimize - d T ( ~  + k ) d  + gTd subject to Ild 5 A (35) 

2 

to  obtain direction vector d = d ( i )  

The following theorem is proved in [LMV04]. 

Theorem 6. Let A be the Lagrange multiplier of the small-size subproblem 
(34) and X be the Lagrange multiplier obtained by the Mark-Sorensen method 
applied to  the original problem. Then 0 5 ;\ 5 A. 

As a consequence of Theorem 6, one has that X = 0 implies 1 = 0 so that 
Ildll < A implies i = 0. Thus the shifted Steihaug-Toint method reduces to  
the standard one in this case. At the same time, if B is positive definite and 
i > 0, then one has A 5 lI(B + 11)-lgJI < 11B-lgl. Thus the unconstrained 
minimizer of the shifted quadratic function (35) is closer to the trust-region 
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boundary than the unconstrained minimizer of the original quadratic function 
(32) and we can expect that d ( i )  is closer to  the optimal locally constrained 
step than d. Finally, if i > 0, then matrix B + XI is better conditioned than 
B and we can expect that the shifted Steihaug-Toint method will converge 
more rapidly than the original one. 

Methods for solving large-scale trust-region subproblems were tested by us- 
ing a set of 22 sparse test problems with 1000 and 5000 variables implemented 
in subroutine TEST14 (see www.  c s  . cas  , cz /" luksan / tes t  . html). The results 
are presented in Table 6, where n is the number of variables, "method" is 
the method used (MS - the optimum trust-region step of More and Sorensen 
[MS83], DL - the dog-leg strategy of Powell [Pow70], MDL - the multiple 
dog-leg strategy [Luk96a] with m = 5, ST - the basic Steihaug-Toint method, 
GLRT - the method of Gould, Lucidi, Roma and Toint [GLRT99] based on 
the Lanczos process, PST - the preconditioned Steihaug-Toint method (with 
the incomplete Choleski preconditioner), PSST - the preconditioned shifted 
Steihaug-Toint method [LMV04] with m = 5))  NIT is the total number of 
iterations, NEV is the total number of function evaluations, NCG is the to- 
tal number of CG iterations and "time" is the total computational time in 
seconds. 

NIT NEV NCG time 
1918 1955 - 4.65 

n 
1000 

5000 

Table 6 

methoc 
MS 
DL 

MDL 
ST 

GLRT 
PST 

PSST 
MS 
DL 

MDL 
ST 

GLRT 
PST 

PSST 

The results presented in this table imply the following conclusions: 

Direct methods MS and DL based on the sparse Choleski decomposition 
are very efficient for our set of test problems. Iterative methods require a 
suitable preconditioning. 
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T h e  Morit-Sorensen strategy MS gives the best approximation of the  op- 
t imum locally constrained step and decreases the  number of the  major 
iterations. 
New strategy PSST can be efficiently preconditioned. I t  gives a relatively 
good approximation of the  optimum locally constrained step.  Method 
PSST is the  most efficient method for solving our set of test problems. 
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A variational approach for minimum cost flow 
problems 
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Summary. We consider a variational model for traffic network problems, which 
generalizes the classic minimum cost flow problem. This model has the peculiarity 
of being formulated by means of a suitable variational inequality. The Lagrangean 
approach to the study of this variational inequality allows us to consider dual vari- 
ables associated with the constraints of the feasible set, and to generalize the classic 
Bellman optimality conditions in order to obtain a stopping criterion for a gap 
function algorithm. 

Key words: network flows, variational inequalities, equilibrium problems, 
gap functions. 

1 Introduction 

In this paper we aim to deepen the analysis of a variational model for mini- 
mum cost network flow problems, introduced in [MP04]. The  model requires 
the  solution of a variational inequality defined on the  usual feasible set of the  
linear minimum cost flow problem, where the  constraints are given by the  flow 
conservation equations a t  the  nodes and the capacities on the  arcs. One of the  
main applications of this model is the  study of traffic equilibrium on a network, 
however, similarly to  the classic minimum cost flow problems, further applica- 
tions can be found in economic or computer networks. Variational inequality 
models have been considered by several authors: we refer to  [FP03,Pat99] and 
references therein, for a detailed description of the  development of this topic 
in the  literature. 

Let K := {x E IRn : g(x) 5 0, h(x) = 0) and consider the  variational 
inequality which consists in finding y E K such tha t  

' This work has been supported by the National Research Program 
FIRB/RBNEOlWBBB "Large Scale Nonlinear Optimization" 
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where F : IRn - IRn, g : IRn - IRp and h : IRn - IRm. 

In our analysis we will make use of the well-known Lagrangian-type opti- 
mality conditions for VI (F ,  K )  which state, under suitable constraint qualifi- 
cations and in the hypothesis that K is a convex set, that y E IRn is a solution 
of VI (F ,  K) if and only if there exist A* E IRm, p* E IRP such that (y, A*,  p * )  
is a solution of the system 

In Section 2 we consider a generalized minimum cost flow problem, formu- 
lated by means of the variational inequality VI (F ,  K ) ,  where the operator F 
represents the cost associated to the arcs of the network. In such a case, it has 
been shown [MP04] that the multipliers (A*, p * )  can be interpreted in terms of 
potentials associated with the nodes and the arcs of the network. In particular, 
we obtain a generalization of the Bellman dual optimality conditions for the 
classic minimum cost flow problem, that we will use as stopping criterion in 
an iterative algorithm for solving VI (F ,  K )  that will be presented in Section 
3. This algorithm is a slight variant of the Fukushima method for the mini- 
mization of a gap function associated with VI (F ,  K )  [Fuk92] and turns out 
to be closely related to the auxiliary problem principle for VI (F ,  K )  [Coh88]. 
The last section is devoted to the computational considerations related to the 
practical implementation of the proposed algorithm. 
Let us recall the main definitions that will be used in the sequel. 

A function h : IRn - IR is said strongly convex on the convex set K C IRn, 
with modulus a > 0, iff, 'dxl , x2 E K and 'dA E [0, 11, 

We will say that the mapping F : IRn - IRn is monotone on K iff: 

it is strictly monotone if strict inequality holds 'dx f y. 
We will say that the mapping F is strongly monotone on K ,  with modulus 
a > 0, iff: 

(F (Y)  - F ( x ) ,  Y - 2)  2 ally - x1I2, Vx1 Y E K ;  

F is Lipschitz continuous on K ,  with modulus L > 0, iff 
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2 The variational model 

Given a network represented by the graph G = (N, A), where N := (1 , .  . . , m) 
is the set of the nodes and A := {A1,.  . . ,A,} is the set of the arcs, we consider 
a variational inequality model formulated in terms of the flows on the arcs. In 
general, in the literature, such models are formulated considering the flows on 
the paths. Our model is a generalization of the minimum cost flow problem to 
which it collapses when the operator of the variational inequality is a constant. 
Let us introduce the following assumptions and notations: 

fi  is the flow on the arc Ai := ( r ,  s )  and f := ( f l , .  . . , f,)T is the vector 
of the flows on all arcs. 
We assume that each arc Ai is associated with an upper bound di on its 
capacity, d := ( d l , .  . . , d,)T. 
ci(f)  is the unit cost on the arc Ai as function of the flows, c ( f )  := 
(c l ( f ) ,  . . . , ~ , ( f ) ) ~ ;  we assume that c(f)  2 0. 
qj is the balance at  the node j ,  q := (ql, . . .  ,q,)T. 
r = (yij) E Rm x Rn is the node-arc incidence matrix whose elements are 

-1, if i is the initial node of the arc Aj,  

+1, if i is the final node of the arc Aj ,  (2) 
0, otherwise. 

The equilibrium model is defined by a variational inequality having c as op- 
erator and feasible set given by the classic flow conservation equations at the 
nodes and capacities on the arcs. 

Definition 1. f * is an equilibrium flow iff 

VI(c, K f )  is equivalent to the problem of finding f *  E Kf s.t ,  f *  is an 
optimal solution of 

The problem (3) collapses to the minimum cost network flow problem 
when the function c(f)  is independent of f ,  namely, c( f )  := (cij, (i, j )  E A). 

In the classic approach, the equilibrium model is defined by the optimiza- 
tion problem 
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The solution f * of VI(c,  K f )  can be considered as the user equilibrium, while 
the optimal solution of (4) as the network equilibrium perceived by an exter- 
nal observer. To this end, we recall that,  if we suppose that the (unit) path 
cost function is additive, then the Wardrop equilibrium principle [War521 can 
be expressed in terms of a variational inequality having c ( f )  as operator, and 
defined on a suitable feasible set that takes into account the demands between 
the origin-destination pairs [Daf8OlFP03]. For example, consider the partic- 
ular case where the set of origins consists of only one node, say it , and the 
set of destinations is given by N \ {z). If we let qj 2 0 be the demand of the 
couple (?,j), j = l , . . . , m ,  j f ? ,  = -C .  , q .  and di =+m, i =  1 , . . . ,  n, 3 # ~  3 
then it is easy to  show that a solution of VI(c,  K f )  is a Wardrop equilibrium 
flow. 

The following well-known results provide a primal-dual formulation of 
VI(c ,  K f  1. 
Proposition 1. f *  is a solution of VI(c,  K f )  if and only if there exists 
(A*, p*)  E RmXn such that (f *,  A * ,  p*) is a solution of the system 

Proof. It  is enough to  observe that,  a t  f := f * ,  the system (5) coincides 
with the Kuhn-Tucker conditions for the problem (3), that,  in our hypotheses, 
are necessary and sufficient for the optimality of f * .  0 

By means of system (5), we can immediately derive the following equilib- 
rium principle. 

Theorem 1. f *  is a solution of VI(c,  K f )  if and only if there exist A* E Rm 
and p* E Rn+ such that, V ( i ,  j )  E A: 

Remark 1. The dual variables corresponding to the flow conservation con- 
straints can be interpreted in terms of potentials a t  the nodes of the network. 
If we assume that c ( f )  2 O,then, from (6) and (8) we deduce that 

that is, a positive flow on the arc (i ,  j )  implies that the difference of potential 
between the nodes i and j is positive. 
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We observe that conditions (6), ( 7 ) ,  (8) are a generalization to V I  of the 
classic Bellman conditions for the linear minimum cost network flow problem. 
Actually, given f E K f ,  define the so called "reduced costs" by % j  := ci3 ( f )  - 
X i  + X j ,  ( i ,  j )  E A, where X E IRm is chosen in order to fulfil the system 

Gj = 0, ( i ,  j )  E { ( i ,  j )  E A : 0 < f i j  < d i j ) ,  (9) 

so that Theorem 1 can be reformulated in the following way. 

Proposition 2. f *  E K f  is an optimal solution of V I ( c ,  K f )  if 

G j  2 0, V ( i , j )  E {(i, j )  E A : f ;  = 01, (10) 

Proof. It  is enough to eliminate p from (7) and (8), taking into account that 
p 2 0. 0 

When ci, ( f )  is independent of f ,  then ( l o ) ,  ( 1 1 )  collapse to the well-known 
Bellman conditions. We will use these relations as a stopping criterion in an 
iterative method for V I ( c ,  K f )  that will be presented in the next section. 

3 An algorithm for V l ( c ,  Kf) 

Two important classes of algorithms for V I  are those based on the auxiliary 
problem principle [Coh88] and those related to the minimization of a gap 
function [Fuk92]. Both methods have the peculiarity of using the solution of 
the same subproblem, at  the current iteration, in order to define the next one. 
We present a line search algorithm for the minimization of a gap function 
which is closely related to the previous ones and collapses to one or to the 
other depending on the choice of suitable parameters and of the step used in 
the line search. 

We recall the notion of gap function associated to  V I ( F ,  K ) .  

Definition 2. Let K G IRn. p : IRn - IR is a gap  function for V I ( F ,  K )  i f f:  
i )  p(x) 1 0, Vx E K ;  
ii) p(x) = 0 ifl x is a solution for V I ( F ,  K ) .  

A class of continuously differentiable gap functions has been defined 
by Fukushima [Fuk92] and subsequently generalized by Zhu and Marcotte 
[ZM94]. 

Proposition 3. [ZM94] Let K be a convex set in IRn and let G ( x ,  y )  : 
IRn x IRn - IR be a non-negative, continuously differentiable, strongly con- 
vex function on K ,  with respect to y ,  Vx E K ,  such that 
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G(y,  y )  = 0, and V y G ( y l  y )  = 0, 'dy E K.  

Then 
P ( X )  := m a x y ~ ~ { ( F ( ~ ) ,  x - Y )  - G ( x ,  Y ) )  ( I2)  

is a gap function for VI(F,K). Moreover, if F E C1, then p E C1 and 

where y(x)  is the unique solution of the maximization problem appearing on 
the right-hand side of (12). 

Consider the problem V I ( c ,  K f )  and the gap function p defined by 

If c is continuously differentiable, then p is a continuously differentiable gap 
function [Fuk92]. Let us analyse more in detail the properties of the gap 
function (14). The following results have been either established by Fukushima 
or can be easily derived from his work. 
Denote by P ( f )  the extremum problem defined in (14). 

Lemma 1. f * is an optimal solution of V I ( c ,  K f )  if and only if y ( f  * )  = f *, 
where y ( f )  is the optimal solution of P( f ) .  

Proof. Let 

If f *  is an optimal solution of V I ( c ,  K f ) ,  then dJ(y)  < 0, Vy E K f .  Since q5 is 
a strongly concave function then the problem 

admits a unique solution that coincides with f * because #( f * )  = 0. 

Vice versa, suppose that y ( f * )  = f * .  Since K f  is a convex set, then the 
variational inequality which represents the first order optimality condition for 
P( f  *), at  the point y ( f  *), holds: 

It  follows that f * is a solution of V I ( c ,  K f ) .  0 

Proposition 4. Suppose that c is a continuously differentiable operator on 
K f ,  Let f *  be an optimal solution of V I ( c ,  K f )  and (A*, p * )  be the Lagrange 
multipliers associated with the problem P( f * ) .  

Then 

ii) ( f  * ,  -A* ,  -p* )  is a solution of system (5) .  
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Proof. Put  G(f ,  y) := $ 1 1  f - ylj2. 
i) By Lemma 1, f *  is an optimal solution of VI(c,  K f )  if and only if y ( f*)  = 
f * .  Observing that Vf G = a ( f  - y), by the formula (13) we have that 

which proves the statement i). 

ii) Since f *  is an optimal solution of VI(c ,  K f ) ,  then f *  is optimal for 
P ( f * ) .  The gradient Vy{(c(f*),  f *  - y) - $ l l f *  - Y / 1 2 } ,  evaluated at  f *  is 
equal to  -c(f*),  so that the Kuhn-Tucker conditions for P ( f * )  coincide, up 
to  a change of the sign of the multipliers, with those related to  VI(c,  K f )  
(defined by system (1)) and, therefore, with (5). 

0 

The optimal solution of P ( f )  allows us to determine a descent direction 
for p at the point f E Kf . 

Proposition 5. [Fuk92] Let y ( f )  be the optimal solution of P ( f ) .  Then d := 
y( f )  - f is a descent direction for p at the point f E K f ,  provided that c is a 
continuously differentiable strictly monotone operator on Kf and y( f )  # f .  

Proof. By (13)) we have that 

so that 

Since y( f )  is the optimal solution of P ( f )  and Kf is convex, then the following 
variational inequality holds: 

Computing (15) for z = f ,  we obtain 

Taking into account that c is a differentiable strictly monotone operator, we 
have that Vc(f)  is positive definite, Vf E Kf [OR70], which, together with 
(16), implies that (Vp( f ) , y ( f )  - f )  < 0. 

These remarkable properties allow us to consider the following line-search 
algorithm in order to  minimize the gap function p. 
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Algorithm. 
Let p be defined by (14) and a ,  E ,  E > 0 be fixed positive parameters. 

Step 1. Let k = 0, f O E K f ;  

Step 2, f k + l  := f k  + tkdk ,  k = 1, 2 , .  . . 
where dk := y( f k )  - f lc,  y( f k )  is the optimal solution of the problem 

Selected a random number fk E (O,l], put tk := fk if 
p ( fk  + fkdk)  < p ( fk )  - E ,  

otherwise tk is chosen as a positive random number sufficiently 
close to zero. 

Step 3. If p(fk+l)  < E l  then go to  Step 4, otherwise put k = k + 1 and go 
to Step 2. 

Step 4. Let (A*,  p*) be the vector of the Lagrange multipliers associated 
to the solution y ( fk+ l )  ofthe problem p ( f k + l ) .  If ( f k + l ,  -A* ,  -p*) 
fulfils the relations (6)) (7) ,(8), then f is an optimal solution of 
VI(c,  K f ) ,  otherwise put ( = 112, k = k + 1 and go to Step 2. 

Step 2 requires the solution of a strongly concave quadratic maximization 
problem. With regard to Step 4, Proposition 4 shows that the opposite of 
the Lagrange multipliers associated to  the solution y ( f k t l )  of the problem 
p ( f k t l )  are also solutions of the system (5) if f k + l  is a solution of VI(c,  K f ) :  
recalling Proposition 1 and Theorem 1, they can be employed for checking if 
the relations (6)) (7), (8) are fulfilled. 

Remark 2. Suppose that c is a strongly monotone operator, with modulus a ,  
and Lipschitz continuous, with modulus L,  on K f .  If we choose a > L2/2a 
and ti, = 1, V k  = 1,. . . , then the algorithm coincides with the one based on 
the auxiliary problem principle stated by Cohen [Coh88]. 
If tk  is chosen in order to be a solution (exact or inexact) of the problem 

min p ( f k + t d k ) ) ,  
O < t < l  

then the algorithm collapses to the gap function method proposed by F'ukushima 
[Fuk92]. 
Both methods are globally convergent under the above mentioned hypotheses. 

4 Computational considerations and concluding remarks 

We observe that the method based on the "auxiliary problem principle" and 
the "gap function" method are very similar. The crucial point of the two 
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methods lies in the fact that the search direction dk := y( f ') - f is a descent 
direction for the gap function g at  the point f k .  In the former, we set f "+' := 
y ( fk ) ,  while, in the latter, the stepsize is given by the optimal solution of 
problem (17). Therefore, the methods coincide if the stepsize tk can be taken 
always equal to  one: this is possible if the parameter a is chosen according 
to  the rules mentioned in Remark 2. The auxiliary principle method has the 
drawback that the constant a must be determined with a sufficient degree 
of accuracy, which is not an easy task, since the Lipschitz constant or the 
modulus of strong monotonicity of the operator c may not be known. On the 
contrary, gap function methods do not need the evaluation of any constant 
but require an inexact (or exact) line-search at each step, which increases the 
computational cost. Numerical experiments show that,  a t  least in the first 
iterations, it is not convenient to make too much effort in performing the line 
search, since the value of the gap function may be very high. 
Taking into account these observations, in our implementation we consider the 
descent direction dk for the gap function p, but without performing the exact 
minimization (17): first, we select a point g ( fk )  in the segment ( f k ,  y ( fk) )  
close to  y ( fk)  and, in case p(g(fk))  > >( fk )  - c, we make a null step, and 
choose f k + l  sufficiently close to  f k ,  in order to sligthly perturb the current 
point. 

We have applied the Algorithm to the problem VI(c, K f )  with the follow- 
ing features: 

0 the incidence matrix r E Rmxn, the balance vector q E IR? and the vector 
of the capacities d E IR? are randomly chosen, provided that ELn=, qi = 0. 

0 Three different choices have been made for the operator c: in the first 
two choices, c is a linear operator, c ( f )  := Cl f + p, or c(f)  := C2 f + 
where C1 and C2 are non symmetric n x n randomly chosen non negative 
matrices with C1 positive definite, C2 indefinite and P E R?, In the third 
choice c is a non linear operator c( f )  := E( f )  = (Ei( f i ) ,  i = 1, . . . , n) ,  where 
Ei(fi) := ai + ki(fi/bi)3 and ai ,  ki, bi, s are suitable positive parameters, 
for i = 1 , .  . . , n .  Observe that if c(f) = Cl f + ,O or c(f)  = c ( f ) ,  then the 
operator is strongly monotone or monotone, respectively. 

Preliminary numerical tests have been performed using the Matlab software. 
Table 1 reports the results obtained with the following choices for the param- 
eters: f 0  E Kf is a random starting point, E = 0.1, c = a = 1.5, Pi = 1, 
ai = 1, ki E ( 0 , l )  a random positive number and bi = di, for i = 1,. . . , n,  
s = 2. 

For each couple of values, m and n, of the nodes and the arcs, we report 
the average number of the iterations and the computation times, obtained by 
performing the algorithm a sufficiently large number of times. The number of 
iterations includes null steps and coincides with the number of evaluations of 
the gap function p. 



220 Giandomenico Mastroeni 

Table 1: Number of iterations and cpu time in seconds 

iterationsl cpu /iterations) cpu 1 iterations1 cpu 
I I I I I 

For n 2 200, computational time increases drastically, although the  conver- 
gence is still reached in a number of iterations generally not greater than one 
hundred. We observe that  the  lack of monotonicity of the  operator does not 
seem to  affect the  convergence of the algorithm, but  only causes an  increase in 
the  number of null steps. Since the  number of iterations is not very sensitive 
to  the  problem size, the algorithm might be suitable for large scale problems 
provided tha t  a large scale subroutine is used for solving the problem P(f),  
which enables us t o  evaluate p( f ) .  

As regards further developments of the  analysis, we remark tha t  gap function 
theory can also be employed in the  study of vector variational inequalities 
and equilibrium problems [Mas00,CYG00,B094,MasO3]. Future research may 
be devoted t o  the  extension of the  proposed algorithm t o  vector variational 
inequalities and,  following the  line developed in [Mas03], t o  the  applications 
to  equilibrium problems, Moreover, it is of interest t o  deepen the  analysis of 
the  relationships with similarly structured methods as proximal point or trust  
region methods. 
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Summary. For the major part of real-life application, the formulation of an opti- 
misation problem involves a lot of different objective functions, often coming from 
different disciplines or areas. In this context, the optimisation represents a meeting 
point for many specialists, each one focused his proper requirements, that is, crite- 
ria constraints and objective functions. Different disciplines could be involved, like 
Computational Fluid Dynamics (CFD), structural analysis etc. 

Moreover, being different criteria involved, Multi-Objective (MO) techniques 
must be adopted, in order to control the enhancements of all the objective functions. 
By the way, designers are not interested in marginal improvements of the starting 
design, and only Global Optimisation (GO) techniques are able to guarantee a wide 
and exhaustive exploration of the design space. In conjunction to that, high-fidelity 
models must be applied during the optimisation process, in order to ensure the 
quality of the optimising design. This last feature is conflicting with the desiderata 
of the GO algorithms, that usually require a large amount of evaluations on the 
objective function in order to qualify the global optimum. Moreover, the design 
team needs a solution in a short time, and the total time needed by the application 
of reliable solvers in conjunction with GO algorithms may be unpractical if a single 
objective function evaluation takes hours or days, as for CFD computations. 

In this context, the only way to make the process feasible is to perform a strong 
reduction on the number of calls to the high-fidelity models, adopting a cheaper 
one to be substituted to the high-fidelity solver for the most of the calls, without 
loosing the accuracy of the high-fidelity model. This goal can be obtained by dif- 
ferent strategies, all referring to the concept of Variable Fidelity Model (VFM): 
solvers with different complexity (and cost) are applied together, in a framework in 
which the exchange of information between the models makes possible to correct the 
evaluations of the low-fidelity one, substituting efficiently the high-fidelity model. 

Here an algorithm for the solution of optimum ship design problems is presented. 
The procedure, illustrated in the framework of multi-objective optimisation prob- 
lems, make use of high-fidelity, CPU time expensive computational models, like a 
free surface capturing RANSE solver, coupled with analytical meta-models of the 
objective functions (low-fidelity). 

The optimisation is composed by global and local phases. In the global stage 
of the search, few computationally expensive simulations (high-fidelity) are applied 
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and surrogate models (metamodels) of the objective functions are produced (low- 
fidelity). After that, a large number of tentative design, placed uniformly on the 
Feasible Solution Set (Fss), are evaluated with the low-fidelity model. The most 
promising designs are clustered, then locally minimized and eventually verified with 
high-fidelity simulations. New exact values are used to enlarge the training points 
for the low-fidelity model and repeated cycles of the algorithm are performed. A 
Decision Maker strategy is adopted to select the most promising designs. 

Key words: global optimization, simulation based design, viscous flows, ship 
hydrodynamics, yacht design. 

1 Introduction 

Simulation-Based Design (SBD) in the naval hydrodynamic context still suf- 
fers from three major limitations: first, even if real ship design problems are 
multi-objective, attention is largely confined to single objective problems; sec- 
ond, it is relying exclusively on local optimisers, mostly gradient-based, either 
with adjoint formulations or finite-differences approaches; third, the use of 
high-fidelity, CPU time expensive solvers is still reduced by the large compu- 
tational effort needed in the optimisation cycles. 

Recently, the availability of fast computing platforms and the development 
of new and efficient analysis algorithms is alleviating the third limitation, shift- 
ing the focusing of high-fidelity models, such as the Navier-Stokes equations 
or those based on fine computational meshes, from the simple analysis of al- 
ternative configurations to optimal design. Examples in ship hydrodynamics 
are [Tahara97], [Hino], [Tahara02], [PeriOl], [Newman], [Stern]. However, their 
use is confined to single objective problems solved with local optimisers. 

Some recent work ( [PeriOlb], [Peri03b], [PeriO3], [Minami]) were dedicated 
to expand optimisation applications from single- to multi-objective problems. 

Our present goal is instead the development of a new optimisation pro- 
cedure to  solve multi-objective problems searching for the global optimum, 
overcoming the aforementioned limitations through the use of metamodels 
and of an alternate global-local stage in the algorithm. The intent of the 
present paper is to  illustrate the procedure and to  give numerical evidence of 
its capability. 

2 Description of the GO algorithm 

This section is devoted to the description of the developed algorithm and its 
definition in the group of GO techniques. For an extensive coverage of various 
methods of GO useful references are [Torn] and [Horst]. 

The algorithm is illustrated in the case of a multi-objective problem but it 
is also applicable to solve single objective problems. Different ways of classify- 
ing Global Optimisation methods exist. The proposed method belongs to the 
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class of deterministic optimiser, and to the family of Covering Methods, but 
with some features similar to the Adaptive Clustering Covering (ACCO) - 
Adaptive Clustering covering with Descent (ACD) schemes proposed in [Solo- 
matine]. It  is basically founded on the consideration that the only way to  
find out the global minimum of an unknown objective function, whose global 
characteristics of continuity and boundedness are not available, is to  search 
uniformly the design variable space. 

The algorithm hence consists of two main stages: (i) a global search phase, 
where a GO algorithm is used to  explore the design space avoiding local min- 
ima and trying to locate regions where promising solutions are found and (ii) 
a local refinement phase, where best configurations (according to the Deci- 
sion Maker) are grouped in clusters and then locally optimised with a multi- 
objective local method. The fundamental elements of the global algorithm are 
described in the following. 

Formulation of the GO problem: In the most general way, the GO 
problem for a single objective function can be stated as follows. Let us consider 
a function f : Z -+ R, where Z c R ~ :  

find x* E Z 
such that 

f ( x* )  = minf(x) ,  x E Z 

In the constrained problem, bounds on the N design variables xi and M 
functional constraints should be considered: 

In general f (x) and g(x)  may be non-convex, non-smooth functions. The 
multi-objective optimisation problem can now be easily defined: 

where we have K(>_ 2) different objective functions f k  : Z -+ R. 

Manipulation of the ship geometry and discrete mesh: In the im- 
plementation of an algorithm for shape optimisation there is the obvious need 
for a geometry modification procedure. Several attempts have been made to 
deal with this item. We decided not to rely on the use of a specific commercial 
CAD program but to induce modification in the ship's geometry by controlling 
a perturbation polynomial surface, which is added to the unmodified original 
geometry (details in [PeriOl]). The control points of this polynomial surface 
will become the design variables xi of the design problem. General guidelines 
for this procedure are the following: (i) when only a part of the ship is di- 
rectly involved by shape optimisation, the modified region should join the 
original design without discontinuities and should be generally smooth; (ii) 
the number of design variables should be kept as small as possible to reduce 



226 Daniele Peri, Antonio Pinto, and Emilio F. Campana 

the complexity of the optimisation problem, but (iii) the algorithm should 
be as flexible as possible in order to achieve the largest number of possible 
solutions. 

The above requirements have been obtained by using Bezier patches grad- 
ually reducing to  a zero level while approaching the unmodified hull shape. In 
this way, geometric continuity between grid boundaries is guaranteed, and if 
the number of control points is kept sufficiently small, realistic geometry can 
be obtained that do not need major refinements prior to  construction. Once 
the geometry is modified, the volume grid is adjusted accordingly. 

Metarnodel identification from CFD analysis results: As recalled 
before, when the number of the objective function evaluations needed by the 
algorithm increases, the application of high-fidelity models for the evaluation 
of the objective functions is discouraged. Anyway, the possible existence of 
a (unknown) relationship between the results coming from CFD and a much 
simpler analysis tool could help in reducing the number of evaluations ad- 
dressed to the high-fidelity models. An interesting possibility is to assign an 
analytical structure to the data coming from the CFD over the whole design 
variable space (or a smaller part of it) trying to  derive a metamodel. We 
call it "metamodel" because we are building a "model of the model", that is, 
an analytical approximation of the available data coming from the numeri- 
cal simulation available a t  that time. Obviously, a specific metamodel must 
be constructed for each different objective function considered in the multi- 
objective problem. 

A variety of metamodelling techniques exist (for an analysis of their per- 
formances see [Jin]). Polynomial regression models [Myers] is a widely known 
approach for the design and analysis of computer experiments. The coeffi- 
cients of the polynomial functions may be computed by using a least square 
technique, or a more sophisticated identification parameter technique, as the 
Levemberg-Marquardt method. Moreover, performing the Analysis Of the 
VAriance (ANOVA) of the response surface it is also possible to enhance their 
quality, deleting terms not really affecting the approximation ( [Giuntag?] 
and [Giunta97b]). Obviously, this method is capable to correctly describe only 
objective functions whose behaviour is approximated by a polynomial func- 
tion up to a certain order. If the objective function is much more complicated, 
the degree of the polynomial may be increased, but the metamodel quality 
may decrease because of numerical instabilities. 

Artificial neural networks [Smith], [Cheng] are well-known approaches for 
identifying approximations of complex simulation codes and to  fit a wide 
class of objective functions. In the following, a neural network of radial basis 
function (RBF neural network, [Powell]) has been selected as metamodel to  
solve the GO problem. Given a set of T points, the interpolating function has 
the form: 
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where @ is a continuous function, which can be chosen among radial func- 
tions. The most used function in an RBF network is a Gaussian 

RBF networks are feedforward with only one hidden layer. RBF hidden 
layer units have a receptive field, which has a center ( a  particular input value 
a t  which they have a maximal output). Their output tails off as the input 
moves away from this point. An example of the performances of the RBF 
neural network is reported in Fig. 1. 

Fig. 1: An example showing the training phase of the metamodel approximating 
a f(x,y) function. A RBF Neural Network is trained with 15*15 points. Points are 
coloured with the function value, while the surface represents the final metamodel. 

To construct the metamodel one has to select the T training points that 
have to  be computed with the high-fidelity model. This can be performed 
using a Design Of Experiment (DOE) technique. A complete factorial design 
usually requires a t  least L~ solutions to be computed with the high-fidelity 
model, where N is the number of design variables and L is the number of levels 
in which each design variable interval is subdivided. The minimum value is 2 N ,  
the vertexes of a hypercube constructed in the design variable space around 
the initial design. Consequently, the number of solutions needed to  build the 
metamodel with a complete factorial design rapidly grows (exponentially) 
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with the number of design variables. Hence, an incomplete factorial design, in 
which some extremes of the design variable space are discharged, is usually 
applied. The criterion for the vertex's elimination generates a huge number of 
different methodologies. In this paper we have selected an Orthogonal Array 
(OA) technique [Hedayat], for which only N+1 points (i.e. CFD solutions) 
are requested to  build the metamodel. 

T h e  search  i n  t h e  design variable space:  Once an interval for the 
design variables has been fixed, trial points (i.e, solutions to be evaluated with 
the metamodel) must be distributed into the design space. For a fixed density 
of trial points, uniformity of the distribution is a crucial characteristic for 
the success of the optimisation, since an under-sampling of some region could 
deceive the optimiser forcing to discharge that portion of the design space. A 
regular sampling (cubic grid) would produce an uniform hexahedrical mesh on 
the hypercube defined in the design variable space, with two major drawbacks: 
too many points are needed when the number of design variables increases, 
and a marked shadow effect is produced (i.e. the coincidence of the projections 
of some points on the coordinate axes). LP, grids [Statnikov], belonging to the 
family of the Uniformly Distributed Sequences (UDS), have some attractive 
features, like an high degree of uniformity with a reduced set of trial points 
and a moderate shadow effect. In [Statnikov] the maximum number of points 
in the LP, distribution is 216 and this value has been selected in the numerical 
test. 

Once an UDS is placed into the design variable space, geometrical con- 
straints are verified on these configurations and the Feasible Solution Set 
(Fss) is identified. Obviously, the density of trial points in the Fss is initially 
connected with the starting distribution and it is clear that the number of 
points in the Fss must be as high as possible to be able to find a global op- 
timum. On the other hand, CPU time needed for the constraints verification 
may be not small for real applications and a very long time for constructing 
the Fss  may be necessary in the case of an excessive sampling. Anyway, local 
refinement techniques described below aid to reduce this problem, allowing for 
an increase of the number of points in the Fss near the best configurations 
during the process of optimisation. 

P a r e t o  opt imal i ty:  In multi-objective problems, the problem of finding 
optimal solutions among those belonging to  the feasible set is solved employing 
the concept of Pareto optimality: 

Definition: a configuration identified by the objective vector x, E Fss 
is called optimal in the Pareto sense if there does not exists another design 
x E Fss such that fk (x)  5 fk(xO)Vk = 1, ..., K, where K is the number of 
objective functions, and fk (x )  < frE(xo) for a t  least a single k 5 [I, ..., K]. 

By applying the Pareto definition on the feasible solutions it is possible 
to find all the design vectors where none of the components can be improved 
without deterioration of a t  least one of the other components (non-dominated 
solutions). These designs belong to  the Pareto optimal set P. 
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Decision maker: Mathematically, all x E ? are optimal solutions of 
the multi-objective problem. However, the final task is to order the design 
vectors belonging to  P according to some preference rules indicated by the 
designer and select one optimal configuration among them. In general, one 
needs the cooperation between the decision maker and the analyst. A decision 
maker may be defined [Miettinen] as the designer who is supposed to  have 
better insight into the problem and can express preference relations between 
different solutions. On the contrary, the analyst can be a computer program 
that gives the information to the decision maker. A wide number of different 
methodologies exist in literature (see [Miettinen] for an extensive summary of 
the subject) depending on the role of the decision maker in the optimisation 
process. In no-preference methods the opinions of the decision maker are not 
taken into consideration and the selection is accomplished by measuring (in 
the objective function space) the distance between some reference points (the 
"ideal" objective vector) and the Pareto solutions. It  is the simple Global 
criterion, which can use different metrics. A powerful and classical way to 
solve this problem from the standpoint of practical application is the use of 
the ideas of goal programming. The procedure is simple: a list of hypothetical 
alternatives with assigned values (aspiration levels) of the objective functions 
is ranked by the designer according to his preference and experience (these are 
the goals). The problem is then modified into the minimization of the distance 
from these goals. Designer data may be used for constructing a metamodel 
of the preference order. In this way, the optimisation process will be mainly 
driven by the real needs of the designer, and the portion of Pareto set explored 
by the optimiser will contain the subset of the most preferable solution in the 
opinion of the designer. 

Local refinement of the best solution: At the beginning, all the points 
belonging to Fss have the same probability to  be optimal points, but dur- 
ing the development of the optimisation process some designs show better 
characteristics than others, and the probability that the optimal solution is 
located in the vicinity of these good points is higher. This part of the Fss 
may be deemed more interesting than others. In multi-objective GO the local 
refinement may follow two different strategies: (i) use a simple local method, 
able to  give small improvements for all the objective functions in the nearby 
of a promising point, and/or (ii) adopt a clustering technique [Becker], in or- 
der to identify the region for which a deeper investigation is required and an 
increased density of trial points is wanted. 

Cluster analysis of the promising solutions and refinement of the 
clusters: The task of any clustering procedure is the recognition of the re- 
gions of attraction, i.e. those regions R, of the objective space such that for 
any starting point x E R,, an infinitely small step steepest descent method will 
converge the same local minimum [Torn]. In a multi-objective reformulation 
of this approach (it is not possible to  apply a steepest-descent method to these 
problem) the points belonging to  the Pareto optimal set are the most promis- 
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ing points for the problem under consideration. The clustering algorithm may 
be easily summarized: 

taken the x vectors in the design space that correspond to  the Pareto 
solutions, let a,, be the average distance for the nearest neighbour and 
aall the average distance between all the points x E P to be clustered. 
two hyperspheres of radii a,, and aall are centred in the selected Pareto 
point XI; 
compute 7-12 = 11x1 - xz I I being xz another Pareto point; 
if 7-12 < a,, then xz is averaged with XI and this become the new center 
of the cluster; 
if a,ll 2 7-12 2 a,,, xz lies between the two hyperspheres and is returned; 
if 7-12 > aall then two new hyperspheres of radii a,, and aall are centred 
in xz. 
the remaining points are assigned to  the clusters with the same rules. 

The local refinement is then obtained by placing around the center of the 
clusters another LP, net, with small radius and few points. The radius of 
the investigated region in the nearby of the Pareto point decreases during the 
optimisation process, and the distribution is also rotated at each step, in order 
to  spread out points in all the directions. 

T h e  a lgor i thm for t h e  GO problem: Main steps of the algorithm may 
be summarized as follows: 

1. Initial exploration of the design space - Orthogonal Array is adopted for 
the initial exploration of the design space and trial points are distributed. 

2. Model Identification from CFD results - Trial points are evaluated using 
the CFD and then used for the construction of the metamodels (one for 
each objective function); 

3. The search in the design variable space - Trial designs (216 = 65536) are 
uniformly distributed in the design variable space by using the LP,-grid; 

4. Derive the feasible set - Enforcing the geometrical and functional con- 
straints: the trial points not respecting the constraints are discharged and 
the feasible solution set is derived; 

5. Identify the Pareto front - Analyse feasible points using the metamodels 
and find all x E P ;  

6. Adopt a Decision Maker strategy for ordering the designs and finding 
non-dominated solutions; 

7. Local refinement of the best solution with a multi-objective local method 
based on the metamodels (or with a scalarisation of the problem according 
to  the DM); 

8. Verification of the best solution using the CFD solvers. The new solution 
will be added to  the metamodel training set for its improvement; 

9. Clustering of the Pareto solutions is performed in the design space around 
dominating solutions. A reduced number of sets are obtained; 
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10. Refinement around the center of the clusters: new trial designs are uni- 
formly distributed with smaller LP,-grids centred around the clusters; 

11, go to step 4 until no more regions of attraction are found; 

An important feature of this algorithm is that,  as a consequence of both 
the refinements (steps 7 and lo) ,  new added points may fall in a region of 
the design space which was not adequately covered. Even more, portion of 
the design space not considered at  all in the initial distribution of trial points 
could be included dynamically. This last feature is a really useful quality of 
the method: in fact, in our particular case, since there is not a strong connec- 
tion between design variables (the control points of the BBziBr patches) and 
geometrical constraints, a correct estimation of the boundaries of the design 
parameters is non trivial. For this reason, the initial distribution sometimes 
does not cover the whole Fss, since the investigated volume must be as small 
as possible in order to  retain the point density of the F s s  The local refine- 
ment technique automatically corrects the underestimation of the design space 
extension: the optimisation problem is still constrained, but bounds on the de- 
sign variables may change dynamically within the course of the optimisation 
problem solution. 

3 Multi-Objective Optimisation Test 

A multi-objective problem for a race yacht is here presented. The original 
geometry has been selected among the ones of the systematic series of the 
"I1 Moro di Venezia". This ship belongs to International America's Cup Class 
(IACC), and was racing during the edition of the America's Cup in 1992, 
winning the Louis Vuitton Cup, being the first European challenger for the 
Cup. This represents an old design, and it can be probably improved. 

Differently from usual ships, like cargo ships or cruise ships, for which an 
autonomous propulsion system is available, here the wind gives the power for 
the motion of the ship, and it could be different during the months and also 
during a single regatta. Since this kind of ships are designed for the particular 
region in which the regatta will take place, some assumptions are made about 
the weather and wind conditions much more probable in the period of the 
race. Anyway, there is a great uncertainty on this data, and the ship could be 
completely wrong if it is designed for a very narrow wind conditions and the 
predictive method for the meteorological predictions fail. 

Another big point is the different sailing conditions during the race. Due 
to  the particular rules here applied, the boat is supposed to  sail through 
a path oriented upwind and than downwind exactly: if the wind direction 
changes during the race, the markers of the regatta field are moved in order 
to accomplish this rule, and the position of the markers is aligned with the 
wind again. As a consequence, the ship is travelling in only two different 
positions with respect to the wind. But, depending on the strength of the 
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wind and the adopted sails, the yacht will be inclined differently on the sea 
surface. Moreover, since the yacht is not able to travel exactly upwind, the 
course of the yacht in such a situation is like a zigzag path, and the wind 
comes partly form one side of the boat. Furthermore, in this position the 
generation of a force in the direction of advance is paid at the price of a 
side force that tends to  shift the boat in the direction of the wind. In order to 
contrast this side force, the yacht yaws of an angle depending on the speed and 
the windlsails condition. As a consequence, the shape of the immersed part 
of the ship will be different than the one of the steady yacht. Summarizing, 
during the race the yacht is travelling in different positions, depending on the 
weather conditions the yacht encounters during the race. This situation makes 
the number of objective functions to be accounted for increasing, because 
each sailing position will drive to a different immersed shape of the yacht 
and consequently to  a different objective function, depending from the wind 
speed, the boat speed and also the tactical choices of the skipper, who is in 
charge of the selection of the sails and their trim. It  is now clear that a multi- 
objective optimisation problem must be solved. Great attention must be paid 
on the definition of the interesting sailing conditions: in fact, if a "general 
purpose" boat is designed, this will lose the race against a boat designed for 
the real sailing conditions. On the other hand, due to the uncertainty on 
the meteorological predictions, to design a boat for a very narrow range of 
conditions could be a mess if the weather conditions are strongly different 
than the expected ones. This is also the reason why two different boats are 
usually built by each participant (the rules limit the number of boats to be 
less than three). 

Now, since there are no clear objectives, and there is not a clear under- 
standing about the mutual influence on the potential objective functions, ship 
designers are used to  produce different alternatives in order to  evaluate the 
trade-off between different objective functions: as a consequence, the prac- 
tice of assembling all the objective functions into a single merit function and 
than solving a single objective optimisation problem is not the recommended 
one, because this kind of approach makes the designer to loose the alterna- 
tives, forcing him team to accept or reject a single hull configuration. The 
Pareto front approach is preferable: the designer will select its best configu- 
ration among the alternatives x E F'. As a consequence, the wideness of the 
produced Pareto front and its resolution is of paramount importance, since it 
means a wider range of alternatives. 

3.1 Selection of the Objective Functions 

Since the selected design is a race boat, it is intuitive to ask to the optimisation 
team a faster boat than the present one. As a consequence, the total resistance 
of the hull will be one of the objective functions. 

On the other hand, the boat is travelling on the sea surface powered by the 
wind, and the ship will assume different positions as a consequence of the wind 
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direction and the requested path. The position of the ship could be identified 
by three angles: the heel angle, (the angle around the longitudinal axis), the 
leeway angle or yaw angle (the angle around the vertical axis) and the trim 
angle (the angle around the side direction axis). For this class of ships, the 
regatta field is defined by two marks (windward and leeward). The race course 
is 18.5 nautical miles (or the equivalent of 34 kilometres) and consists of three 
laps of a windward-leeward type course with starboard rounding. 

The boats begin from the starting line between two marks laid a t  right 
angles to  the wind's direction and sail upwind to  the first mark to  be rounded 
to the starboard (right side). 

Once the ships turn around the windward marker, the race continues down- 
wind to the second mark, that is laid in close proximity to the starting line 
100-meters further up the course. The boats round the marks 3 times before 
the winner crosses the Finish line. 

Scrolling the course of the race, it is possible to identify two main relative 
positions of the wind with respect to  the ship. During the first part of the 
track, the boat is travelling with the wind from the front: as a consequence, 
the boat is describing a zigzag trajectory, and the wind is coming from one 
side mainly. In this condition, the boat is heeled, that is, the ship is inclined 
around the advancing (X) direction, and also around the vertical (Z)  direction. 
In the second side of the track, the wind is coming essentially from the rear, 
and the boat is just a little bit heeled and yawed because of the asymmetry 
of the sails. 

As a consequence, two positions of the ship, defined by the three angles of 
inclination, have been accounted for: 

10 degrees of heel, 4 degrees of leeway; 
0 2 degrees of heel, 0 degrees of leeway. 

A sketch of the reference frame here adopted is reported in figure 2.  
For the first condition (namely heeled), both the total resistance and the 

side force are assumed as the first two objective functions for the problem. 
In fact, since the ship is travelling with a side wind, a side force must be 
generated in order to  maintain the prescribed path. Since this force is negative 
in the adopted reference frame, we have a minimization problem also for this 
objective function. If a higher side force is generated, a lower yaw angle is 
needed: since a drag is connected with a yaw angle, the lower the aw angle 
the lower the induced drag. As a consequence, a lower yaw angle results also 
in a lower resistance. 

In the second condition (namely upright), the total resistance is assumed 
as the third (last) objective function of the problem. 

Side force is mainly generated by the appendages, while the hull gives 
a low contribution on it. Anyway, the flow condition for the appendages is 
depending from the hull shape: this means that there is a strong interaction 
between the hull and the appendages. Since the hull will be the only modified 
part during the optimisation process, an increase of the side force can be 
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Fig. 2: Reference frame adopted for the sailing yacht. Main hull is the darkest part, 
appendages are the brightest part. The underwater part only is shown. 

obtained only through a modification of the interaction factors between the 
hull and the appendages. The obtained results will focus on the importance 
of these interaction factors, usually considered by the designers in a simplified 
way. 

3.2 Hull Shape Modification 

In previous works [PeriOl], a superimposition of some analytical surfaces has 
been adopted for the modification of the hull shape. This strategy allows the 
control of the connections between the different blocks of the computational 
grid, and a faired surface is still obtained at the end of the optimisation 
process. In this particular application, due to the complexity of the topology 
of the computational grid, it is not possible to apply the continuity condition 
between the grid blocks located in the nearby of the hull-rudder connections, 
and a large part of the stern cannot be modified if this strategy is applied. 

In order to  overcome this difficulty, a different strategy has been devel- 
oped. Here a single rectangular patch has been placed in the physical domain, 
surrounding the part of the hull to be modified. This patch is still described by 
a BBziBr surface. The surface has an offset, and it has the unit value if all the 
variables are set to zero. The patch represents the map of the multiplicative 
factor to  be applied to  the local lateral wideness of the hull: once the design 
variables are moved, the control surface moves and assumes different values 
in different regions of the space. Consequently, the Y coordinate is multiplied 
by the local value of the control surface, and a new hull is obtained. Control 
points represent the design parameters of the hull, moving the BBzi6r surface. 
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Continuity is enforced as explained in [PeriOl]. The patch is here covering the 
entire hull surface, no matter about any particular structure for the numerical 
grid. The application of this kind of approach is encouraged by the fact that 
the shape of the hull has single curvature, and there is a biunivocal correspon- 
dence between a couple of coordinates in the XZ plane and a point of the hull. 
Moreover, the points laying on the symmetry plane are not moved because 
their side coordinate is just zero. 

3.3 Active Constraints 

In order to produce an hull still respecting the IACC class rules, all the class 
constraints must be applied. On the other hand, since we are not forced to 
produce a new design respecting the rules, only few of the rule have been 
followed. In particular, the active constraints for the problem are listed below: 

a Fixed displacement (obtained by a change in the immersion of the boat). 
a Beam in between 3.5 and 5.0 meters. 
a Maximum displacement of the grid points: 2.0 meters. 

The reduction of number of the constraints is not equivalent to  a large sim- 
plification of the problem to be solved. In fact, constraints are non-linear, and 
no assumption about the shape of the feasible set is possible. In particular, 
convexity, continuity and connection of the feasible set are not guaranteed at 
all. As a consequence, all the difficulties of a non-linear programming problem 
are still present in this application. It is important to stress how there is not a 
parameter able to  fix, for example, the beam of the ship, and also the displace- 
ment of a grid point depends on the movement of all the design parameters. 
This is a consequence of the parameterisation strategy, whose flexibility gives 
guarantees on the variety of the so produced shapes, but increase the com- 
plexity of the optimisation problem. This results also in difficulties in defining 
the correct initial range of variation of the design parameters. 

3.4 Numerical results 

Each hull shape evaluation requires two different runs of a RANSE solver, 
one for each position of the yacht. Since the time needed for the computation 
of a single configuration is about 8 hours on a Intel P4 2.8GHz, this means 
that for a single hull about 16 hours are required before obtaining the needed 
solutions. As a consequence, only 100 different hull shapes, including the ones 
required for the training of the metamodels, have been allowed, in order to 
limit the resources available for this study. 

One single configuration is evaluated at each step of the algorithm, and 
13 points have been distributed in the design space as training points of the 
metamodels. As a consequence, 87 different configurations have been evaluated 
during the course of the algorithm. At the end of the optimisation cycle, 12 
different hulls compose the Pareto front, reported in table 1. 
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Table 1: Pareto Optimal Set for the here depicted optimisation problem. All the 
objective functions are non-dimensionalised by their initial value. 

ID. # 
36 
54 
71 
72 
74 
76 
77 
80 
93 
96 
99 
100 

Good solutions are indicated just a t  the start of the process, as the first 
column of the table 1 shows (one Pareto point is selected after 36 solutions). 
This means that,  while the optimiser is running, designers are able to perform 
some preliminary analysis on the obtained results, and some modifications 
on the problem formulation are allowed without waiting for the end of the 
process. Even more, some new designs could be added on line, exploring with 
higher details some regions of the design space the designer is now interested 
in, as a consequence of the preliminary analysis. This is a feature connected 
with the fact that the algorithm is fully sequential, and can be interrupted 
and restarted in any moment, without losing any information produced at  the 
time. Anyway, the longer the algorithm runs, the more the number of Pareto 
points discovered. 

Hull number 54 is the best for the total resistance in upright and heeled 
condition, while hull number 74 is the best for the side force. This does not 
means that the first two objective functions are highly connected, because if we 
rank the hulls for these two objective functions the position in the list changes. 
Anyway, they do not change so much. On the other hand, the rank is quite 
reversed looking at  the third objective function. This is the classical situation 
of a multi-objective optimisation problem, where some objective functions are 
conflicting each other. The rank for the different objective functions is reported 
in table 2. Here some considerations could be drawn about the best hull to be 
selected, if the choice were made on the basis of the rank position. In fact, if 
we select the sum of the ranking position as the selection parameter, best hull 
is number 54, who is the best for two objective functions, but is nearly the 
worst for the third objective function. If we assume the square of the ranks 
as the selection parameter, hull number 99 becomes the best: it is not the 
best for a single objective function, but it ranks quite well for all the different 
objective functions. Anyway, due to the small connections between the first 

FI 
0.88468 
0.87730 
0.93423 
0.92344 
0.96062 
0.90208 
0.90265 
0.92781 
0.91226 
0.91789 
0.90030 
0.92884 

Fz 
0.91041 
0.90526 
0.94711 
0.96320 
1.00322 
0.92414 
0.92462 
0.95877 
0.94200 
0.94825 
0.92471 
0.95752 

F3 
1.08172 
1.08048 
1.10979 
1.12452 
1.14720 
1.08534 
1.08557 
1.12915 
1.10647 
1.11527 
1.09599 
1.13995 
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and the second objective function, this selection strategy penalize the third 
objective function: as a consequence, the final selection must be performed in 
a different way, 

Table 2: Pareto Optimal Set for the here depicted optimisation problem: column 
number 2, 3 and 4 report the ranking with respect to objective function number 1, 
2 and 3 respectively. Column labelled with S reports the sum of the ranks, while 
column SSQ reports the sum of the square of the ranks. 

lank F3 
11 
12 
6 
4 
1 

10 
9 
3 
7 
5 
8 
2 

Maximum improvements are 12% for the total resistance in upright, 10% 
for the total resistance in heeled condition and 15% for the side force in heeled 
condition. If we consider that the difference between the best hull and the 
worse one was about 3% in the last America's Cup edition, and a difference on 
the performances of less than 1% gives the victory, it is clear the significance of 
the obtained improvements. The wideness of the Pareto front is quite large: the 
wideness of the variation is about 8% for the first objective function, 10% for 
the second one and 6% for the third one. This gives the opportunity of a wide 
choice for the designer, obtaining a good balance between the performances 
as needed. If this analysis is not considered to be enough, deeper analysis on 
the Pareto points is possible, evaluating different objective functions in order 
to better assess the behaviour of the yacht in off-design conditions. 

As a final consideration, the increase in the side force generation is only 
due to  the hull shape modifications. Since the grater part of the side force 
is generated by the appendages, whose geometry is unchanged during the 
course of the optimisation problem solution, it is clear that enhancements in 
this direction are obtained only by changing the working conditions of the 
fin, that is, by changing their inflow through the modification in the shape 
of the hull. As a consequence, there is a strong influence of the hull shape in 
the performances of the appendages, and a simple linear superimposition of 
the forces generated by the hull and the fin separately, eventually corrected 

S 
15 
14 
24 
23 
25 
17 
18 
22 
19 

16 
21 

SSQ 
129 
146 
206 
201 
289 
125 
122 
190 
121 

2 0 1 3 8  
98 
185 
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by some empirical correlation factors, is not enough. Concluding, the design 
of the appendages and the hull must be performed together, and not in a 
separate way, as in common practice. 

4 Conclusions 

Optimisation tools could help the designer, and GO techniques can lead to 
new design concepts. The final goal of the authors was to  develop an useful 
GO tool for ship design, plus techniques for reducing CPU-time requirements, 
a fundamental step if a GO problem has to be solved. To this aim, a GO 
problem in a multi-objective context has been formulated and solved with 
an original algorithm. Although the numerical results are still preliminary, 
strong reductions on the interesting quantities have been obtained, although 
the main difficulties of a classical multi-objective optimisation problem have 
been encountered, with highly conflicting objective functions. The applied nu- 
merical solvers are able to give reliable information on the flow field, allowing 
improvements otherwise difficult to  be obtained in the absence of correlations 
law between main geometrical parameters and local flow variables. The opti- 
misation tool seems to  be able to  coordinate the different objectives and the 
analysis tools used in the procedure are used in a rational way. The inclusion 
of this approach into the spiral design cycle is recommended, in particular 
when some special requests are present in the design specifications. 
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Summary. Molten carbonate fuel cells (MCFCs) allow an efficient and environ- 
mentally friendly energy production by converting the chemical energy contained 
in the fuel gas in virtue of electro-chemical reactions. Their dynamical behavior 
can be described by large scale embedded systems of ID or 2D nonlinear partial 
differential algebraic equations (PDAEs) up to dimension 28. They are of mixed 
parabolic-hyperbolic type with integral terms in the right hand side and initial and 
nonlinear boundary conditions, the latter governed by a system of ordinary differ- 
ential equations. 

In this paper a new 2D model together with results of its numerical simulation 
is presented. The numerical results show a good correspondence with the expected 
dynamical behavior of MCFCs. The ultimate goal is to optimize this large scale 
nonlinear PDAE system to increase efficiency and service life of MCFCs. 

Key words: partial differential algebraic equations, numerical simulation, 
PDE constrained optimization, fuel cells. 

1 Introduction 

Molten carbonate fuel cells (MCFCs) are especially well suited for stationary 
power plants if their process heat is used to increase their efficiency. MCFCs 
seem to become soon competitive compared to traditional power plants. In 
order to enhance service life, high temperature gradients inside the fuel cells 
must be avoided. Therefore control strategies are currently under develop- 
ment. Admittedly, not only the avoidance of high temperature gradients is of 
interest, but also the optimization of the efficiency of fuel cell systems. 

The dynamic behavior of MCFCs can be modeled mathematically by a hi- 
erarchy of systems of partial differential algebraic equations; see Heidebrecht 
and Sundmacher [5,6] and, in particular, Heidebrecht [4]. A detailed descrip- 
tion of a certain ID model together with an index analysis concerning the 
differential time and spatial index as well as the MOL index of the ID PDAE 



244 Hans Josef Pesch, Kati Sternberg, and Kurt Chudej 

system and some numerical results can be found in Chudej et al. [3]. An index 
analysis of several ID and 2D models can be found in Chudej 121. In addition, 
for a simplified linearized 2D model also a perturbation index analysis can be 
found in Rang and Chudej [8]. 

The present paper focuses on a new enhanced 2D cross flow model of a 
MCFC as well as on its numerical simulation and optimization. 

2 2D Molten Carbonate Fuel Cell Model 

The model investigated in the present paper describes an MCFC with a 
cross flow mode for the guidance of the anode and cathode gas streams. 
Such a design has been realized for the so-called HotModule produced by 
the MTU CFC Solutions GmbH, Munich, and operated for example by the 
IPF-Heizkraftwerksbetriebsgesellschaft mbH, Magdeburg, at the power plant 
of the University Hospital of Magdeburg. See Fig. 1 for a schematic picture 
of the main devices of the HotModule, which has been taken into account in 
the mathematical model. The anode inlet is on the south-west side of the fuel 
cell. The anode outlet gas is fed into the cathode inlet on the south-east side 
of the fuel cell via a catalytic combustor and a reversal chamber. The cathode 
exhaust gas is partially led back to  the catalytic combustor and goes then 
again into the cathode inlet. The remaining part of the exhaust gas a t  the 
cathode outlet finally goes to  the cell exhaust device. 

air inlet 
cell 
exhaust 

Fig. 1: Cross flow configuration of the HotModule 

In the anode and cathode gas channels, resp., the following chemical re- 
actions take place. Within the gas stream of the anode channel an internal 
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reforming can be performed due to the high operating temperature to produce 
the necessary hydrogen 

Simultaneously, an electro-chemical reaction, the oxidation reaction, takes 
place at  the anode electrode 

In contrast, at the cathode electrode we have the reduction reaction 

Hereby, the carbonate ions are transferred through the electrolyte from the 
cathode electrode to the anode electrode. Bipolar plates serve as heat con- 
ducting material and separate the single cells of the stack. From the cell's 
outside, the electric current can be collected at the electrodes; see Fig. 2.  For 
the sake of simplicity, we use here ID figures for a cell with a counter flow 
configuration in order to describe the gas flows and the dominating chemi- 
cal reactions (by Fig. 2) and the concrete physical quantities involved in the 
model (by Fig. 3 ) .  The model however treats the cross flow configuration and 
the chemical reactions of Eqs. (1-3). 

bipolar plate - - - - 1 pores 

electrolyte - - - 

Fig. 2: Gas flow and (simplified) chemical reactions 

In the anode and cathode channels 7 substances arise in the chemical reac- 
tions: methane CH4, hydrogen H z ,  water HzO, oxygen 0 2 ,  carbon monoxide 
CO, carbon dioxide C 0 2 ,  and nitrogen N 2 .  The molar fractions of all these 



246 Hans Josef Pesch, Kati Sternberg, and Kurt Chudej 

Fig. 3: Variables and boundary conditions 

species in the gas flows of the two channels are denoted by x,,j and x,,j, 
j = 1,. . . , 7 ,  resp. In contrast, the molar fractions in the pores of the elec- 
trodes are denoted by p,,j and pc,j; see Fig. 3. For the numerical treatment 
we have to  include only four variables p,,j associated with HzO, H z ,  CO, 
C 0 2  in the pores of the anode and two variables pc, j  associated with CO,  
COz in the pores of the cathode. Note that the distinction between the molar 
fractions in the gas streams, where the internal reforming (1) takes place, and 
the pores, where the anode (2)  and the cathode (3) reaction take place, is a 
more detailed description compared to  the model treated in a previous paper 
of Sternberg et al. 191. Both models are due to  Heidebrecht 141. Further, we 
have to take into account the molar flows g, and g, as well as the tempera- 
tures 0, and 0, in the anode and cathode gas channels. These temperatures 0, 
and 0, are dominated by convection and are to be distinguished from the solid 
temperature O,, which is distributed through the solid by diffusion, i.e, heat 
conduction. Moreover, the electrical potentials @:, @:, and @: at which anode 
ion layer, cathode ion layer and cathode electrode are relative to  a reference 
potential, and the current density i are introduced into the model. Finally, the 
total cell current ICen = ICell(t) represents a degree of freedom in the model, 
that can be used for controlling the fuel cell. 

Altogether, we end up with a system of time t dependent nonlinear partial 
differential algebraic equations in two space dimensions z := (zl ,  z2) E R := 
[O, 11' corresponding to  the two gas flow directions due to  the cross flow con- 
figuration of the stack. We have the following parts of a large scale coupled 
system: 
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Heat equation in the solid: 

a@, - = X A@, + c p ~  (Q,, Q,, 8,) x,, xc ,pa ,pc ,  @;, @;, @:) , X > 0 constant(4) 
at 

Advection equations in the gas streams: 

Algebraic equations in the pores: 

Degenerated PDEs for the molar flows: 

Integro-PDAE system for the potentials: 

where the current density i = i ( t ,  z) is given by 
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and the total cell current ICell can be used for control purposes as mentioned 
above. 

All functions determined by the PDAEs are functions of z and t except 
@: = @:(t). The presentation of all source terms y j ,  j = 1, . . . ,11, as well 
as of the functions i,, i,, and i, in full detail would be beyond the scope of 
this paper; they can be found in Heidebrecht 141. Summarizing we obtain a 
nonlinear PDAE system of dimension 28. Note that by substituting v, := g, 0, 
and v, := g, 8, the PDAE system becomes quasi-linear, but the boundary 
conditions still remain highly nonlinear as we will see subsequently. 

For simulations, the boundary conditions for the temperature Q,, the mo- 
lar fractions x,,j, and the molar flow g, are prescribed at the anode inlet, 
i. e., a t  21 = 0, 752 E [0, 11; compare Figs. 1 and 3 (here denoted by the sub- 
script .,in). For control purposes they can also be chosen as time dependent 
boundary controls. For the temperature O,, the molar fractions x,,j, and the 
molar flow g, the boundary conditions at  the cathode inlet (in Fig. 3 denoted 
by the subscript ,,in), i. e., at 22 = 0, a1 E [0, 11, depend on the corresponding 
output values at the anode outlet, i. e., a t  z l  = 1, 22 E [O,1] and from the 
environment; see Fig. 3. These values are given via the solution of a system 
of ordinary differential algebraic equations. It  describes the time dependent 
behavior of the gas temperature, the molar fractions and the molar flow in 
the catalytic combustor and the reversal chamber. Note that these quantities 
depend on the averaged values of the associated quantities at the anode outlet. 
Again, without giving the details for the right hand sides y j ,  j = 12, . . . ,14, 
of the ordinary DAE system, the boundary conditions at  the cathode inlet 
can be read as follows: 

where 

Qair r Xj,a i r  r Aair) . 
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Here, Oair ,  xj,,i,, and Xair denote the ambient temperature, the molar frac- 
tions of oxygen and nitrogen in air and the air number, resp. The latter defines 
the amount of air fed into the burner. All these quantities can be subject to 
changes in time and thus can play the roles of boundary controls. 

So far, the re-feeding is not modeled. It will introduce further dependen- 
cies of the right hand sides of the ordinary DAE system. In this case, the 

1 1 function cpl2 will also depend on the integrals So zcl,,=l dzl,  So O,lZ2=l dzl,  
1 

and So ga/z2=1 dz1. 
Moreover, the boundary conditions for the solid temperature 0, are, be- 

cause of the insulation, given by zero Neumann conditions at the boundary of 
the electrolyte, i, e, a t  do. Finally, consistent initial conditions at time t = 0 
for all z E R must be suitably imposed. 

This completes the mathematical model. 

3 Simulation Results 

The entire PDAE system can be written in compact form as follows 

Hereby A is a singular diagonal matrix containing only zeros and ones, and 
B = diag(X, 0 , .  . . , 0 ) ,  if we choose the vector solution u containing all the 
unknown functions of the Eqs. (4)-(15) as u := (O,, . . . , @:). Here the Lapla- 
cian has to  be understood componentwise. The singular diagonal matrices C1, 
resp. C2 depend on the auxiliary variables v, := g, O,, resp. vc := g, 0, previ- 
ously defined making the system quasi-linear. Finally the term f (u) contains 
all further nonlinear dependencies. 

In order to  solve this complex nonstandard PDAE constrained optimiza- 
tion problem numerically in the future we choose the approach to first dis- 
cretize, then optimize in contrast to first optimize, then discretize, i. e, to 
derive firstly the optimality conditions in function spaces which are then dis- 
cretized. We favor this approach because of the various model updates in the 
past being typical when dealing with real world problems. This fact makes 
it (almost) impossible to apply the mathematically more safeguarded latter 
approach. 

Thus, we apply, as the method of choice, the (vertical) method of lines, 
and we obtain a large scale ordinary DAE system of the form 

for which now standard techniques can be used, if the dimension remains mod- 
erately large, e.g., a transcription to a very large scale nonlinear programming 
problem. 



250 Hans Josef Pesch, Kati Sternberg, and Kurt Chudej 

The numerical approximation uh( t )  of the exact solution u(t ,  z l ,  22) is ac- 
cordingly obtained by semi-discretization in the spatial variables zl and 22 .  

Hereby, the Laplace operator is approximated by the standard five point dif- 
ference star. For the convection terms upwind formulas are used taking into 
account the known wind direction in the anode and cathode gas channels, 
resp. Despite the complicated boundary conditions they can be handled in 
the usual way like Dirichlet and Neumann conditions with values partly ob- 
tained via the solution of an ordinary DAE system. 

In Eq. (22), Ah is a constant singular diagonal matrix containing again 
only zeros and ones, and the nonlinear function g stands for the discretized 
right hand side of (21). 

In the following we present the numerical simulation results. The software 
package NUDOCCCS [I] developed for the numerical solution of large scale 
ODE and DAE constrained optimal control problems can be used for simula- 
tion purposes, too. The numerical integration of the DAE system is performed 
by a fifth order implicit Runge-Kutta method (RADAU 5 ) .  

The numerical solution of some selected components is depicted in the 
Figs. 4-11. The figures show the two-dimensional spatial distribution at  a 
time, a t  which we assume that the steady state has been reached. About 
10000 time steps had to  be performed. Further note that all quantities are 
dimensionless. 

In each diagram, the inlet of the anode is on the south-west side (zl = 0, 
zg E [0, I]), the cathode inlet is on the south-east side (zl E [ O , 1 ] ,  zz = 0). The 
gas flows in zl-direction through the anode channel, in zz-direction through 
the cathode channel. 

Fig. 4: Methane in anode channel Fig. 5 :  Hydrogen in anode channel 

The results obtained make sound sense as we will show. The methane de- 
picted in Fig. 4 decreases over the entire width due to  the methane consuming 
endothermic reforming reaction (1). The concentration is slightly lower on that 
side of the anode channel where the cathode outlet is located. This is due to 
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the higher temperatures in this region leading to higher reforming reaction 
rates there. 

~ i ~ .  6: Molar flow in anode channel Fig. 7: Carbon dioxide in cathode 
channel 

In accordance with the methane behavior hydrogen is produced in the 
endothermic reforming reaction (1) immediately after the anode inlet to be 
subsequently consumed in the exothermic oxidation reaction (2); see Fig. 5. 
Near zl = 1 and 22 = 1, we see higher concentrations of hydrogen due to 
higher temperatures and consequently higher reforming reaction rates. 

The molar flow in the anode, as depicted in Fig. 6, is increasing due to 
both the reforming reaction and the oxidation reaction. 

Fig. 8: Molar flow in cathode channel Fig. 9: Temperature in anode channel 

As can be seen from Figs. 7 and 8 both the concentration of the carbon 
dioxide and the molar flow in the cathode decreases from the cathode inlet on 
the south-east side to its outlet on the north-west side due to the reduction 
reaction (3) .  
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Fig. 10: Temperature in cathode chan- Fig. 11: Temperature in solid 
nel 

The most important results are concerned with the temperatures; see 
Figs. 9-11. They directly influence the reaction rates. Moreover, the solid 
temperature, see Fig. 11, must be particularly observed to  avoid so-called hot 
spots leading to  material corrosion and consequently to  a reduced service life. 

The temperature distribution in the anode channel coincides with the heat 
demand and the heat release of the reactions therein. Initially we have the 
endothermic reaction (1). Thus the temperature declines. In the following, 
the anode gas temperature is increased again by heat exchange with the solid, 
which is heated by the electrochemical reactions (Eqs. 2, 3) .  

Since the solid temperature is not evenly distributed, see Fig. 11, the 
temperature in the anode channel has a local maximum near zl = 1 and zz = 1 
due to heat conduction, see Fig. 9. The cathode gas is heated up by the solid 
phase all along the channel, so the temperature continuously increases along 
z2 8 

4 Conclusions 

A complicated mathematical model, describing the dynamical behavior of a 
molten carbonate fuel cell, has been presented. The semi-discretization in 
space of the large scale partial differential algebraic equation system with 
integral terms in the right hand side together with its nonstandard boundary 
conditions including an ODE system yields a very large scale DAE system. 
The obtained numerical results correspond to  the practical experiences of 
engineers with real fuel cells of the type investigated here. This approach 
enables further investigations with respect to parameter identification as well 
as optimal control purposes, e.g. the optimization of the fuel cell when working 
in certain operation modes such as load changes. For those purposes we can 
use the same mathematical model as well as the same software NUDOCCCS 
used here, since NUDOCCCS can solve optimal control problems with large 
scale DAE constraints. 
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The NEWUOA software for unconstrained 
optimization without derivatives 
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Summary. The NEWUOA software seeks the least value of a function F(g), 
x E En, when F ( 2 )  can be calculated for any vector of variables g. The algorithm - 
is iterative, a quadratic model Q RZ F being required a t  the beginning of each iter- 
ation, which is used in a trust region procedure for adjusting the variables. When 
Q is revised, the new Q interpolates F at  m points, the value m = 2n+ 1 being 
recommended. The remaining freedom in the new Q is taken up by minimizing the 
Frobenius norm of the change to v2Q. Only one interpolation point is altered on 
each iteration. Thus, except for occasional origin shifts, the amount of work per 
iteration is only of order (m+n)', which allows n to be quite large. Many questions 
were addressed during the development of NEWUOA, for the achievement of good 
accuracy and robustness. They include the choice of the initial quadratic model, 
the need to maintain enough linear independence in the interpolation conditions 
in the presence of computer rounding errors, and the stability of the updating of 
certain matrices that allow the fast revision of Q. Details are given of the techniques 
that answer all the questions that occurred. The software was tried on several test 
problems. Numerical results for nine of them are reported and discussed, in order 
to demonstrate the performance of the software for up to 160 variables. 

Key words: direct search, quadratic models, t rust  regions, unconstrained 
minimization, updating. 

1 Introduction 

Quadratic approximations t o  the objective function are highly useful for ob- 
taining a fast rate of convergence in iterative algorithms for unconstrained 
optimization, because usually some attention has t o  be  given t o  the  curva- 
ture  of the  objective function. O n  the  other hand, each quadratic model has 

(n + 1) (n + 2) independent parameters, and this number of calculations of 
values of the  objective function is prohibitively expensive in many applica- 
tions with large n. Therefore the  new algorithm tries to  construct suitable 



quadratic models from fewer data. The model Q(g),  ZE Rn, at  the beginning 
of a typical iteration, has to  satisfy only m interpolation conditions 

where F(:), : E Rn, is the objective function, where the number m is 
prescribed by the user, and where the positions of the different points g,, 
i = 1,2,  . . . , m,  are generated automatically. We require m 2 n +  2, in order 
that the equations (1.1) always provide some conditions on the second deriva- 
tive matrix V2Q, and we require m < (n + l ) ( n  + 2)) because otherwise no 
quadratic model Q can satisfy all the equations (1.1) for general right hand 
sides. The numerical results in the last section of this paper give excellent 
support for the choice m = 2n+ 1. 

The success of the new algorithm is due to a technique that is suggested by 
the symmetric Broyden method for updating V2Q when first derivatives of F 
are available (see pages 195-198 of Dennis and Schnabel, 1983, for instance). 
Let an old model Qold be present, and let the new model Q,,, be required to 
satisfy some conditions that are compatible and that leave some freedom in 
the parameters of Q,,,. The technique takes up this freedom by minimizing 
IIV2Qne,-V2QoldllF, where the subscript "F" denotes the Frobenius norm 

Our conditions on the new model Q = Q,,, are the interpolation equations 
(1.1). Thus V2Qne, is defined uniquely, and Qne, itself is also unique, because 
the automatic choice of the points gi excludes the possibility that a nonzero 
linear polynomial p(g) ,  g E Rn, has the property p(g,) = 0, i = l , 2 , .  . . , m. In 
other words, the algorithm ensures that the rows of the (n+  1) x m matrix 

are linearly independent, where go is any fixed vector. 
The strength of this updating technique can be explained by considering 

the case when the objective function F is quadratic. Guided by the model 
Q = Qold at  the beginning of the current iteration, a new vector of variables 
gnew =gopt+d is chosen, where hp, is such that F ( h p t )  is the least calculated 
value of F so far. If the error lF(gnew)-Qold(gne,)I is relatively small, then 
the model has done well in predicting the new value of F, even if the errors 
of the approximation V2Q % V 2 F  are substantial. On the other hand, if 
I F(gnew) - Qold (gnew) / is relatively large, then, by satisfying Q,,, (g,,,) = 
F(:,,,), the updating technique should improve the accuracy of the model 
significantly, which is a win/win situation. Numerical results show that these 
welcome alternatives provide excellent convergence in the vectors of variables 
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that are generated by the algorithm, although usually the second derivative 
error llV2Q-V2FIIF is big for every Q that occurs. Thus the algorithm seems 
to achieve automatically the features of the quadratic model that give suitable 
changes to  the variables, without paying much attention to other features 
of the approximation Q x F .  This suggestion is made with hindsight, after 
discovering experimentally that the number of calculations of F is only O(n)  
in many cases that allow n to be varied. Further discussion of the efficiency 
of the updating technique can be found in Powell (2004b). 

The first discovery of this kind, made in January 2002, is mentioned in 
Powell (2003). Specifically, by employing the least F'robenius norm updating 
method, an unconstrained minimization problem with 160 variables was solved 
to  high accuracy, using only 9688 values of F ,  although quadratic models have 
13122 independent parameters in the case n =  160. Then the author began to 
develop a Fortran implementation of the new procedure for general use, but 
that task was not completed until December, 2003, because, throughout the 
first 18 months of the development, computer rounding errors caused unac- 
ceptable loss of accuracy in a few difficult test problems. A progress report 
on that work, with some highly promising numerical results, was presented at  
the conference in Hangzhou, China, that celebrated the tenth anniversary of 
the journal Optimization Methods and Software (Powell, 2004b). The author 
resisted pressure from the editor and referees of that paper to include a de- 
tailed description of the algorithm that calculated the given results, because 
of the occasional numerical instabilities. The loss of accuracy occurred in the 
part of the Fortran software that derives Q,,, from QOld in only O(m2)  com- 
puter operations, the change to Q being defined by an (m+n+ l )  x (m+n+ l )  
system of linear equations. Let W be the matrix of this system. The inverse 
matrix H = W-I was stored and updated explicitly. In theory the rank of R ,  
which is the leading m x m  submatrix of H, is only m-n-1, but this property 
was lost in practice. Now, however, a factorization of 0 is stored instead of 
R itself, which gives the correct rank in a way that is not damaged by com- 
puter rounding errors. This device corrected the unacceptable loss of accuracy 
(Powell, 2004~) )  and then the remaining development of the final version of 
NEWUOA became straightforward. The purpose of the present paper is to 
provide details and some numerical results of the new algorithm. 

An outline of the method of NEWUOA is given in Section 2, but m (the 
number of interpolation conditions) and the way of updating Q are not men- 
tioned, so most of the outline applies also to  the UOBYQA software of the 
author (Powell, 2002), where each quadratic model is defined by interpolation 
to  i ( n + l ) ( n + 2 )  values of F. The selection of the initial interpolation points 
and the construction of the first quadratic model are described in Section 3, 
with formulae for the initial matrix H and the factorization of Q, as intro- 
duced in the previous paragraph. Not only Q but also H and the factorization 
of R are updated when the positions of the interpolation points are revised, 
which is the subject of Section 4. On most iterations, the change in variables 
d is an approximate solution to  the trust region subproblem - 
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Minimize Q(zopt+d) subject to lldll 5 A, (1.4) 

which receives attention in Section 5, the parameter A > 0 being available with 
Q.  Section 6 addresses an alternative way of choosing cl, which may be invoked 
when trust region steps fail to yield good reductions in F. Other details of 
the algorithm are considered in Section 7, including shifts of the origin of 
Rn, which are necessary to avoid huge losses of accuracy when H is revised. 
Several numerical results are presented and discussed in Section 8. The first 
of these experiments suggests a modification to the procedure for updating 
the quadratic model, which was made to  NEWUOA before the calculation of 
the other results. I t  seems that the new algorithm is suitable for a wide range 
of unconstrained minimization calculations. Proofs of some of the assertions 
of Section 3 are given in an appendix. 

2 An outline of the method 

The user of the NEWUOA software has to  define the objective function by 
a Fortran subroutine that computes F ( g )  for any vector of variables :E R n .  
An initial vector go E Rn, the number m of interpolation conditions (1.1), and 
the initial and final values of a trust region radius, namely pbeg and pend, are 
required too. It is mentioned in Section 1 that m is a fixed integer from the 
interval 

n+2 i m I $ (n+1)  (n+2), (2.1) 

and that often the choice m = 2n+ 1 is good for efficiency. The initial in- 
terpolation points gi, i = 1 , 2 , .  . . , m, include go, while the other points have 
the property -:ol~oo = pb,,, as specified in Section 3.  The choice of pbeg 
should be such that the computed values of F at  these points provide use- 
ful information about the behaviour of the true objective function near zo, 
especially when the computations may include some spurious contributions 
that are larger than rounding errors. The parameter pend, which has to satisfy 
Pend -< pbeg, should have the magnitude of the required accuracy in the final 
values of the variables. 

An outline of the method is given in Figure 1. The details of the operations 
of Box I are addressed in Section 3. The parameter p is a lower bound on the 
trust region radius A from the interval [pend, pbeg]. The value of A is revised on 
most iterations, but the purpose of p is to  maintain enough distance between 
the interpolation points gi, i = 1,2,  . . . , m ,  in order to restrict the damage to 
Q from the interpolation conditions (1.1) when there are substantial errors 
in each computation of F. Therefore p is altered only when the constraint 
A > p seems to  be preventing futher reductions in the objective function. 
Each change to p is a decrease by about a factor of ten, except that the 
iterations are terminated in the case p=pend, as shown in Boxes 11-13 of the 
figure. 
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Pick the initial interpolat,ion points, letting z,,, b e  
a n  init,ial point where F is least. Construct the first 
quadratic model Q x  F. Set p=pb,, and A = p b e g .  

' I  are "small". 

Subroutine TRSAPP calculat,es 
d by minimizing Q(gOpt + d) - 
approximately, subject t>o the 
bound Jldl I A .  If /dl1 < A ,  
t,hen CRVMIN is set to  the least 
curvature of Q tha t  is found. 

If MOVE > 0,  then Q is mod- 
ified bv subroutine UPDATE, 

Using C R V M I ~  

so tha t  Q interpolates F 
go,, +d instead of a t  gMOVE. 
If F(&,,+d) < F(&,t), then 

v I 

zOpt is overwritten by &,t&. I 
, 

- Y 
lldll and F-Q 

---(&\\ 3 2 i p ? w  

Calculate F(z,,,+ + d ) ,  and set, 

t,est if three re- 
cent, values of 

. . -~ . 

RATIO = F(%pt)-F(%pt+d) ~h~~ Q ( ~ o ~ t ) - Q ( + o ~ t  + d )  ' 

A is revised, subject to A >_ p. 
Then MOVE is set t,o zero or to  
t,he index of t,he interpolat,ion 
point t,hat will be dropped next,. 

is going to be replaced by z,,,+d, 
where d is chosen here by subroutine 
BIGLAG or BIGDEN, in a way that  helps 
the conditioning of the linear system 
tha t  defines Q. Set RATIO = 1 .  

15 / 
Reduce A by 
a factor of 10 
or to  its lower 
bound p. Set 
RATIO=-1. 
I 

r + 
Let zMovE be t,he current, 
int,erpolation point t,hat 
maximizes t,he distance 

v I D I S T = / I Z ~ O V E - ~ ~ ~ I I .  

Reduce p by about  a 
factor of 10 subject t o  
p 2 pendr and reduce 

Termination, after cal- 
13 culating F(&,,+d), if 

this has not been done 
due t o  Jldll< hp. 

END - 

Fig. 1: An outline of the  method, where Y=Yes and N=No 
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Boxes 2-6 of Figure 1 are followed in sequence when the algorithm per- 
forms a trust region iteration that calculates a new value of F .  The step d 
from G,, is derived from the subproblem (1.4) in Box 2 by the truncated 
conjugate gradient procedure of Section 5 .  If lldli < A  occurs here, then Q has 
positive curvature along every search direction of that procedure, and CRVMIN 
is set to the least of those curvatures, for use in Box 14 when the N branch 
is taken from Box 3, which receives attention later. Box 4 is reached in the 
present case, however, where A is revised in a way that depends on the ratio 

RATIO = {F(gOpt) - F ( ~ ~ ~ t + d ) l  l {Q(&,t) - Q ( ~ - p t  +d) I l  (2.2) 

as described in Section 7. The other task of Box 4 is to pick the m interpolation 
points of the next quadratic model. Usually one of the current points gi ,  
i = l , 2 , .  . . , m, is replaced by gopt+d, and a11 the other points are retained. In 
this case the integer MOVE is set in Box 4 to the index of the interpolation point 
that is dropped. The only other possibility is no change to the interpolation 
equations, and then MOVE is set to zero. Details of the choice of MOVE are 
also given in Section 7, the case MOVE > 0 being mandatory when the strict 
reduction F(z-,, +d) < F(z+~) is achieved, in order that the best calculated 
value of F so far is among the new interpolation conditions. The updating 
operations of Box 5 are the subject of Section 4. Box 6 branches back to Box 
2 for another trust region iteration if the ratio (2.2) is sufficiently large. 

The N branch is taken from Box 6 of the figure when Box 4 has provided 
a change F(gopt)  - F(gopt +d)  in the objective function that compares un- 
favourably with the predicted reduction Q(G,~) - Q(z-,~ +d) .  Usually this 
happens because the positions of the points gi in the interpolation equa- 
tions (1.1) are unsuitable for maintaining a good quadratic model, especially 
when the trust region iterations have caused some of the distances jlgi-x-pt / /  , 
i = l , 2 , .  . . , m,  to  be much greater than A.  Therefore the purpose of Box 7 is 
to identify the current interpolation point, gMovE say, that is furthest from go,, . 
We take the view that,  if //gMovE-&,,// 2 2 4  holds, then Q can be improved 
substantially by replacing the interpolation condition Q(gMOvE) = F(gMOVE) by 
Q(~pt+d)=F(z- ,pt+d) ,  for some step d that satisfies Ildll I d .  We see in the 
figure that the actual choice of d is made in Box 9, details being given in Sec- 
tion 6, because they depend on the updating formulae of Section 4. Then Box 
5 is reached from Box 9, in order to update Q as before, after the calculation 
of the new function value F(Z-~,+~). In this case the branch from Box 6 to 
Box 2 is always followed, due to  the setting of the artificial value RATIO = 1 
at  the end of Box 9. Thus the algorithm makes use immediately of the new 
information in the quadratic model. 

The N branch is taken from Box 8 when the positions of the current points 
gi, i =  1 , 2 , .  . . , m ,  are under consideration, and when they have the property 

l lgi-~ptl~ < 2A, i =  1, 2 , .  . . , m. (2.3) 

Then the tests in Box 10 determine whether the work with the current value 
of p is complete. We see that the work continues if and only if one or more 
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of the conditions ljdll > p, A > p or RATIO > 0 holds. Another trust region 
iteration is performed with the same p in the first two cases, because p has 
not restricted the most recent choice of 4. In the third case, RATIO > 0 implies 
F(&,, +d) < F(%,,) in Box 4, and we prefer to retain the old p while strict 
reductions in the objective function are being obtained. Thus an infinite loop 
with p fixed may happen in theory. In practice, however, the finite precision of 
the computer arithmetic provides an upper bound on the number of different 
values of F that can occur. 

Finally, we consider the operations of Figure 1 when the step d of Box 2 
satisfies lldlj < ips Then Box 14 is reached from Box 3, and often F(&,,+d) 
is not going to be calculated, because, as mentioned already, the computed 
difference F(%,t)-F(:opt+d) tends to  give misleading information about the 
true objective function when lldll becomes small. If Box 14 branches to Box 
15, a big reduction is made in A if allowed by A 2 p, and then, beginning at 
Box 7, there is a choice as before between replacing the interpolation point 
~M,,,, or performing a trust region iteration with the new A ,  or going to  Box 
I1 because the work with the current p is complete. Alternatively, we see that 
Box 14 can branch directly to  Box 11, the reason being as follows. 

Let $,,, and &,, be the first and last values of &,, during all the work 
with the current p, and let $,, z = 1 ,2 , .  . . , m ,  be the interpolation points at 
the start of this part of the computation. When p is less than pbeg, the current 
p was selected in Box 12, and, because it is much smaller than its previous 
value, we expect the points $, to satisfy Ij$,-$op, / I  > 2p, i #opt. On the other 
hand, because of Boxes 7 and 8 in the figure, Box 11 can be reached from 
Box 10 only in the case z , -&~ ,  < 2p, i = 1,2,  . . . , m. These remarks suggest 
that a t  least m-1 new values of the objective function may be calculated for 
the current p. It  is important to  efficiency, however, to include a less laborious 
route to  Box 11, especially when m is large and pe,d is tiny. Details of the 
tests that pick the Y branch from Box 14 are given in Section 7. They are 
based on the assumption that there is no need for further improvements to 
the model Q, if the differences lF(gopt +d)  -&(go,, +d) I of recent iterations 
compare favourably with the current second derivative term $ p 2 ~ ~ ~ ~ ~ ~ .  

When the Y branch is taken from Box 14, we let be the vector d 
that has satisfied IJdlj < ip in Box 3 of the current iteration. Often &Id  is 
an excellent step to take from G,, in the space of the variables, so we wish 
to  allow its use after leaving Box 11. If Box 2 is reached from Box I 1  via 
Box 12, then d = & , I d  is generated again, because the quadratic model is 
the same as before, and the change to A in Box 12 preserves the property 
A > iPold > Idold 1 1 .  Alternatively, if the Y branches are taken from Boxes 14 
and 11, we see in Box 13 that F(G,, +dold) is computed. The NEWUOA 
software returns to  the user the first vector of variables that gives the least of 
the calculated values of the objective function. 



3 The initial calculations 

We write the quadratic model of the first iteration in the form 

xo being the initial vector of variables that is provided by the user. When the - 
number of interpolation conditions (1.1) satisfies m 2 2n+1, the first 2n+l of 
the points g i ,  i = l , 2 ,  . . . , m ,  are chosen to be the vectors 

where pbeg is also provided by the user as mentioned already, and where gi 
is the i-th coordinate vector in Rn. Thus Q(go),  P Q ( g o )  and the diagonal 
elements (V2Q)ii, i =  l , 2 , .  . . , n,  are given uniquely by the first 2 n + l  of the 
equations (1.1). Alternatively, when m satisfies n + 2 5 m < 212, the initial 
interpolation points are the first m of the vectors (3.2). It follows that Q(go) ,  
the first m-n-1 components of y Q ( g O )  and (V2Q),i, i = 1,2 ,  . . . , m-n-1, are 
defined as before. The other diagonal elements of V2Q are set to  zero, so the 
other components of TQ(:,) take the values {F(go  + pbeg ei)  -F(zO)}/pbegr 
m-n  5 i 5 n. 

In the case m > 2n+ 1, the initial points gi, i = 1,2 ,  . . . , m, are chosen so 
that the conditions (1.1) also provide 2(m-2n- 1) off-diagonal elements of 
V2Q, the factor 2 being due to symmetry. Specifically, for i E [2n+2, m], the 
point gi has the form 

where p and q are different integers from [ l , n ] ,  and where a, and a, are 
included in the definitions 

which biases the choice (3.3) towards smaller values of the objective function. 
Thus the element (V2Q),, = (V2Q)qp is given by the equations (1.1), since 
every quadratic function Q(g),  g € R n ,  has the property 

For simplicity, we pick p and q in formula (3.3) in the following way. We let 
j be the integer part of the quotient (i - n - 2)/n, which satisfies j > 1 due to  
i 2 2n+2, we set p = i - n -  1 - j n ,  which is in the interval [ I ,  n] ,  and we let 
q have the value p +  j or p+ j -n ,  the latter choice being made in the case 
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p +  j > n. Hence, if n = 5 and m = 20, for example, there are 9 pairs {p,q}, 
generated in the order {1,2), {2,3), {3,4}, {4,5), {5,1), {1,3), {2,4),  {3,5) 
and {4,1). All the off-diagonal elements of V2Q that are not provided by the 
method of this paragraph are set to zero, which completes the specification of 
the initial quadratic model (3.1). 

The preliminary work of NEWUOA includes also the setting of the initial 
matrix H = W-l,  where W occurs in the linear system of equations that 
defines the change to the quadratic model. We recall from Section 1 that,  
when Q is updated from Qold to Qnew = Qold+ D ,  say, the quadratic function 
D is constructed so that lIV2DI$ is least subject to the constraints 

these constraints being equivalent to Qnew (ci) = F(gi), i = 1,2,  . . . , m. We see 
that the calculation of D is a quadratic programming problem, and we let X j ,  
j = 1 , 2 , .  . . , m, be the Lagrange multipliers of its KKT conditions. They have 
the properties 

and the second derivative matrix of D takes the form 

(Powell, 2004a), the last part of expression (3.8) being a consequence of the 
equations (3.7). This form of V2D allows D to be the function 

and we seek the values of the parameters c E R ,  g E R n  and E Rm. The 
conditions (3.6) and (3.7) give the square system oflinear equations 

where A has the elements 

where X is the matrix (1.3), and where r has the components F ( Z ~ ) - Q ~ ~ ~ ( Z ~ ) ,  
i = 1 ,2 , .  . . , m. Therefore W and H are the matrices 



say. It  is straightforward to derive the elements of W from the vectors gi, 
i = 1 , 2 , .  . . , m ,  but we require the elements of S and T explicitly, with a 
factorization of R. Fortunately, the chosen positions of the initial interpolation 
points provide convenient formulae for all of these terms, as stated below. 
Proofs of the correctness of the formulae are given in the appendix. 

The first row of the initial ( n + l )  x m matrix E has the very simple form 

Further, for integers i that satisfy 2 si <min [n+ l ,m-n ] ,  the i-th row of E 
has the nonzero elements 

Eii = (2 pbe,)-l and Zitn = -(2pbeg)-ll  (3.14) 

all the other entries being zero, which defines the initial 5 in the cases m 2 
2n+ 1. Otherwise, when m - n + l  < i 5 n + l  holds, the i-th row of the initial 
5 also has just two nonzero elements, namely the values 

- 1 
s i l  = -(fbeg)- and Zip (pbeg)-ll  (3.15) 

which completes the definition of E for the given interpolation points. More- 
over, the initial (n+l )  x (n+l )  matrix T is amazingly sparse, being identically 
zero in the cases m 2 2n+l .  Otherwise, its only nonzero elements are the last 
2n-m+ 1 diagonal entries, which take the values 

The factorization of 0, mentioned in Section 1, guarantees that the rank 
of R is at most m-n-1, by having the form 

the second equation being valid because each s k  is set to one initially. When 
15 k<min[n,  m-n-11, the components of the initial vector zk € R m ,  which 
is the k-th column of 2, are given the values 

so each of these columns has just three nonzero elements. Alternatively, when 
m > 2n+1 and n + l s  k 5 m-n-1, the initial gk depends on the choice (3.3) of 
gi in the case i =  k + n + l .  We let p, q, a, and a, be as before, and we define 
f i  and 4 by the equations 
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It  follows from the positions of the interpolation points that f i  is either p+l or 
p+n+l ,  while is either q+l or q+n+l.  Now there are four nonzero elements 
in the k-th column of Z ,  the initial zk being given the components 

Z1k = P;:~, 
(3.20) 

Zk+n+~ k = Zjk = 0 otherwise. 

All the given formulae for the nonzero elements of H = W-' are applied in 
only C?(m) operations, due to the convenient choice of the initial interpolation 
points, but the work of setting the zero elements of El T and Z is C?(rn2). 
The description of the preliminary work of NEWUOA is complete. 

4 The updating procedures 

In this section we consider the change that is made to the quadratic model Q 
on each iteration of NEWUOA that alters the set of interpolation points. We 
let the new points have the positions 

x$ = ~ , , + d  =:+, say, - 
c: = zz, i~ { I ,  2 , .  , . , rn}\{t}, 

which agrees with the outline of the method in Figure 1, because now we write 
t instead of MOVE. The change D=Q,,,-Qold has to  satisfy the analogue of 
the conditions (3.6) for the new points, and Qold interpolates F at  the old 
interpolation points. Thus D is the quadratic function that minimizes IIV2DllF 
subject to  the constraints 

Let W +  and Ht be the matrices 

where A+ and X+ are defined by replacing the old interpolation points by 
the new ones in equations (1.3) and (3.11). It  follows from the derivation of 
the system (3.10) and from the conditions (4.2) that D is now the function 

the parameters being the components of the vector 



where g,  is now in 7Zrntn+' .  Expressions (4.5) and (4.4) are used by the 
NEWUOA software to generate the function D for the updating formula 

The matrix H = W-I is available a t  the beginning of the current itera- 
tion, the submatrices Z and T being stored explicitly, with the factorization c:=-;"-' skZkZ; of L? that has been mentioned, but H+ occurs in equation 
(4.5). Therefore 3 and T are overwritten by the submatrices 3+ and T +  of 
expression (4.3), and also the new factorization 

is required. Fortunately, the amount of work of these tasks is only O(m2)  
operations, by taking advantage of the simple change (4.1) to the interpolation 
points. Indeed, we deduce from equations (4.1), (1.3)) (3.11), (3.12) and (4.3) 
that all differences between the elements of W and Wf are confined to  the 
t-th row and column. Thus W+-W is a matrix of rank two, which implies that 
the rank of H+-H is also two. Therefore E+, T +  and the factorization (4.7) 
are constructed from H by an extension of the Sherman-Morrison formula. 
Details and some relevant analysis are given in Powell (2004c), so only a 
brief outline of these calculations is presented below, before considering the 
implementation of formula (4.6). The updating of H in O(m2)  operations is 
highly important to  the efficiency of the NEWUOA software, since an ab initio 
calculation of the change (4.4) to the quadratic model would require O(m3) 
computer operations. 

In theory, H+ is the inverse of the matrix W+ that has the elements 

It follows from the right hand sides of this expression that H and the t-th 
column of W+ provide enough information for the derivation of H + .  The 
definitions (1.3) and (3.11) show that W+g, has the components 

w$ = i {(:+ -:o)T(~+-~o))2, i = 1 , 2 , . . , , m  

W:+l , = 1 and w & ~ + ~  , = (g+ i =  1,2,  . . . , n } , (4.9) 

the notation :+ being used instead of :,$, because Z+ = G,, +d is available 
before t = MOVE is picked in Box 4 of Figure 1. Of course t must have the 
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property that W +  is nonsingular, which holds if no divisions by zero occur 
when H +  is calculated. Therefore we employ a formula for H +  that gives 
conveniently the dependence of H +  on t .  Let the components of g~ Rrn+"+' 
take the values 

1 T +-  
i = - 0 )  (2 ~ 0 ) ) ~ ~  i = 1 , 2 , , . . , r n  I , (4.10) 
wm+l = 1 and wiirn+l = (gt -gO)i, i = 1,2 ,  . . . , n 

so g is independent of t .  Equations (4.1), (4.9) and (4.10) imply that Wtgt 
differs from g only in its t-th component, which allows HS  to be written in 
terms of H ,  g and e,. Specifically, Powell (2004a) derives the formula 

H'=H + a - I  [ a  (gt- H g )  (g,- H Z U ) ~  - i(iHBe:H 

+ T {He,  kt- H W ) ~  + kt- H ? u ) ~ T H ) ]  . (4.11) 

the parameters being the expressions 

We see that H w  and i(i can be calculated before t is chosen, so it is inexpensive 
in practice to investigate the dependence of the denominator a on t ,  in order 
to ensure that la1 is sufficiently large. The actual selection o f t  is addressed in 
Section 7. 

Formula (4.11) was applied by an early version of NEWUOA, before the 
introduction of the factorization of L?. The bottom left ( n+ l )xm and bottom 
right (n + 1) x (n + 1) submatrices of this formula are still used to construct 
E+ and T +  from E and T ,  respectively, the calculation of H g  and He, 
being straightforward when the terms s k  and gk, k =  1 , 2 , .  . . , m-n-1, of the 
factorization (3.17) are stored instead of L?. 

The purpose of the factorization is to  reduce the damage from rounding 
errors to the identity W = H- l ,  which holds in theory at the beginning of 
each iteration. It became obvious from numerical experiments, however, that 
huge errors may occur in H in practice, including a few negative values of H,,, 
I 5 i 5 m,  although L? should be positive semi-definite. Therefore we consider 
the updating of H when H is very different from W-', assuming that the 
calculations of the current iteration are exact. Then H +  is the inverse of the 
matrix that has the elements on the right hand side of expression (4.8)) which 
gives the identities 

(H+)i,' = W: and (Ht);l = W:, i =  1 , 2 , .  . . , m + n + l ,  I (4.13) 
W+ - (H+)-' = Wij - H,;~, otherwise, l < i ,  j < m + n + l .  

23 1-3 

In other words, the overwriting of W and H by Wf and H +  makes no differ- 
ence to  the elements of W-H-', except that the t-th row and column of this 



error matrix become zero. It follows that,  when all the current interpolation 
points have been discarded by future iterations, then all the current errors in 
the first m rows and columns of w-H-~ will have been annihilated. Equation 
(4.13) suggests, however, that any errors in the bottom right ( n + l )  x ( n + l )  
submatrix of H-I are retained. The factorization (3.17) provides the perfect 
remedy to this situation. Indeed, if H is any nonsingular (m+n+l)x(m+n+l)  
matrix of the form (3.12), and if the rank of the leading m x m  submatrix fl is 
m-n-1, then the bottom right (n+l)x(n+l)  submatrix of H-I is zero, which 
can be proved by expressing the elements of H-l as cofactors of H divided 
by det H (Powell, 2004~).  Thus the very welcome property 

is guaranteed by the factorization (4.7), even in the presence of computer 
rounding errors. 

The updating of the factorization of fl by NEWUOA depends on the fact 
that the values 

s t  = sk and zl = z k ,  k E K ,  (4.15) 

are suitable in expression (4.7), where k is in K if and only if the t-th compo- 
nent of zk is zero. Before taking advantage of this fact, an elementary change 
is made if necessary to  the terms of the sum 

which forces the number of integers in K to be at least m-n-3. Specifically, 
NEWUOA employs the remark that,  when si = s j  holds in equation (4.16), 
then the equation remains true if gi and zj are replaced by the vectors 

cosOzi+sinOzj and -sinOzi+cosOgj,  (4.17) 

respectively, for any 0 E [O, 2 ~ 1 .  The choice of 0 allows either i or j to be added 
to  K if both i and j were not in K previously. Thus, because sk = k1 holds 
for each k, only one or two of the new vectors zl, k = 1 , 2 , .  . . , m - n - 1,  
have to be calculated after retaining the values (4.15). When 1x1 = m -n-  2, 
we let zk-,-l be the required new vector, which is the usual situation as 
the theoretical positive definiteness of fl should exclude negative values of sk. 
Then the last term of the new factorization (4.7) is defined by the equations 

where r ,  a and gt - H z  are taken from the updating formula (4.11), where 
Ztrn-,-l is the t-th component of qrn-n-l, and where chop @ - H z )  is the 
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vector in Rm whose components are the first m components of gt-Hw. These 
assertions and those of the next paragraph are justified in Powell (2003~).  

In the alternative case 1x1 =m-n-3, we simplify the notation by assuming 
that  only & and zi are not provided by equation (4.15), and that the signs 
s l  = +1 and s2 = -1 occur. Then the t-th components of and g2, namely Ztl 
and Zt2, are nonzero. Many choices of the required new vectors & and zi are 
possible, because of the freedom that corresponds to the orthogonal rotation 
(4.17). We make two of them available to NEWUOA, in order to avoid can- 
cellation. Specifically, if the parameter ,B of expression (4.12) is nonnegative, 
we define C = r2 +P ZA, and NEWUOA applies the formulae 

s t  = s l  = +l, s$ = sign ( a )  s2 = -sign ( a ) ,  I 

Otherwise, when P<O, we define C=T~-PZ;~ ,  and NEWUOA sets the values 

S: = sign ( a )  s l  = sign (a ) ,  s$ = s2 = -1, 

The technique of the previous paragraph is employed only if at least one 
of the signs sk, k = 1,2,  . . . , m - n - 1, is negative, and then a < 0 must have 
occurred in equation (4.18) on an earlier iteration, because every sk is set 
to +1 initially. Moreover, any failure in the conditions cu > 0 and P 2 0 is 
due to  computer rounding errors. Therefore Powell (2004a) suggests that the 
parameter a in formula (4.11) be given the value 

instead of olp+r2, If the new value is different from before, however, then the 
new matrix (4.11) may not satisfy any of the conditions (4.8), except that the 
factorizations (4.16) and (4.7) ensure that the bottom right (n+1)  x (n+1)  
submatrices of H-I and (H+)- l  are zero. Another way of keeping a positive 
is to retain cr = e T ~ e t ,  T = e T ~ w  and a = ap+r2 from expression (4.12), and 
to define P by the formula 

Pnew = max [ 0 ,  ~ ~ : + - z o 1 1 4 -  E ~ H E ]  , (4.22) 

In this case any change to  /3 alters the element (Hf);l, but every other sta- 
bility property (4.13) is preserved, as proved in Lemma 2.3 of Powell (2004~).  
Therefore equation (4.21) was abandoned, and the usefulness of the value 
(4.22) instead of the definition (4.12) of /? was investigated experimentally. 
Substantial differences in the numerical results were found only when the 



damage from rounding errors was huge, and then the recovery that is pro- 
vided by all of the conditions (4.13) is important to efficiency. Therefore the 
procedures that have been described already for updating El T and the fac- 
torization of R are preferred, although in practice a ,  P,  a and some of the 
signs s k  may become negative occasionally. Such errors are usually corrected 
automatically by a few more iterations of NEWUOA. 

Another feature of the storage and updating of H by NEWUOA takes 
advantage of the remark that,  when d is calculated in Box 2 of Figure 1, the 
constant term of Q is irrelevant. Moreover, the constant term of Qold is not 
required in equation (4.5), because the identities Q o l d ( ~ p t )  = F(gopt) and 
x+ =&,, +d allow this equation to  be written in the form - 

Therefore NEWUOA does not store the constant term of any quadratic model. 
It follows that c+ in expression (4.23) is ignored, which makes the (m+l) - th  
row of H+ unnecessary for the revision of Q by formula (4.6). Equation (4.23) 
shows that the (m+l ) - t h  column of H+ is also unnecessary, t being in the 
interval [ I ,  m]. Actually, the (m+l ) - t h  row and column of every H matrix 
are suppressed by NEWUOA, which is equivalent to removing the first row of 
every submatrix E and the first row and column of every submatrix T ,  but 
the other elements of these submatrices are retained. Usually this device gains 
some accuracy by diverting attention from actual values of F and :E Rn to 
the changes that occur in the objective function and the variables, as shown 
on the right hand side of equation (4.23) for example. The following procedure 
is used by NEWUOA to update H without its (m+l ) - th  row and column. 

Let "opt" be the integer in [ I ,  m] such that i =opt  gives the best of the 
interpolation points gi, i = 1 , 2 , .  . . , m ,  which agrees with the notation in 
Sections 1 and 2, and let v ~ R m + n + l  have the components 

Therefore 2 is the opt-th column of the matrix W, so expression (3.12) implies 
H z  = L,, in theory, where G,, is the opt-th coordinate vector in Rmtn+'. 
Thus the terms H w  and W T ~ W  of equations (4.11) and (4.12) take the values 

and 
T w T H u  = (g - U ) ~ H  (w - 2) + 2 WTGpt - 2 gopt. - (4.26) 

These formulae allow the parameters (4.12) to be calculated without the 
(m+l ) - t h  row and column of H, because the (mS1)- th  component of w-2 
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is zero. Similarly, the first m and last n components of H g  are given by for- 
mula (4.25)) and these components of Het are known. Thus all the terms of 
expression (4.11) are available for generating the required parts of St and 
TS. Moreover, after constructing chop (g, - H z ) ,  the updating of the factor- 
ization of R is unchanged. It  is proved in Lemma 3 of Powell (2004a) that,  
when this version of the updating procedure is applied, and when H has been 
damaged by rounding errors, then the new H +  enjoys stability properties that 
are analogous to the conditions (4.13). 

We see that the given procedures for updating H require only C3(m2) 
computer operations, which is highly favourable in the recommended case 
m = 2 n + l .  On the other hand, the function (4.4) has the second derivative 
matrix 

m 
+ T 0'0 = Xi (g: - go)  (gj  - go )  , (4.27) 

j=1 

so the calculation of its elements would take O(mn2) operations. Therefore 
V2QneW is not derived explicitly from formula (4.6). Instead, as suggested at  
the end of Section 3 of Powell (2004a), the NEWUOA software employs the 

overwriting the symmetric matrix r and the real coefficients yj ,  j = 1 , 2 , .  . . , m,  
by rt and ?:, j = 1, 2 , .  . . , m, respectively. At the beginning of the first 
iteration, each yj is set to zero, and we let r be the second derivative matrix 
of the initial quadratic model, its elements being specified in the first two 
paragraphs of Section 3. When the change (4.6) is made to  the quadratic 
model, conditions (4.1), (4.27) and (4.28) allow the choices 

rt = l- + ?t k t - g o )  (~ t - . o )~ ,  
(4.29) 

and y,f = yj + A;, j E {I ,  2, . . . , m}\{t} 

which are included in NEWUOA, because they can be implemented in only 
C3(n2) operations. Finally, the gradient of the quadratic model (3.1) is revised 
by the formula 

7 Q n e w  (go) = OQold (go) + 9') (4.30) 

in accordance with expressions (4.4) and (4.6)) where g+ is taken from equa- 
tion (4.23). The description of the updating of Q,  without the unnecessary 
constant term Q(go) ,  is complete, except that some of the numerical results 
of Section 8 suggested a recent modification that is described there. 
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5 The trust region subproblem 

We recall from Box 2 of Figure 1 that subroutine TRSAPP generates a step d 
from go,, that is an approximate solution of the subproblem 

Minimize Q(gopt+d) subject to lldll I A. (5.1) 

The method of the subroutine is explained below. Figure 1 shows that the trust 
region radius A and the quadratic model Q are available when the subroutine 
is called, but, as mentioned at the end of Section 4, the matrix V2Q is stored 
in the form 

m 

because it would be too onerous to work with all the elements of V2Q explicitly 
when n is large. Expression (5.2) implies the identity 

where q k  = yc (gk -go)TU, k = 1 , 2 , ,  . . , m,  and where 2 is a general vector in 
R n .  Thus the product V2QU can be calculated in CJ(mn) operations for any 
choice of 2. Therefore it is suitable to generate d by a version of the truncated 
conjugate gradient method (see Conn, Gould and Toint, 2000, for instance). 

This method produces a piecewise linear path in R n ,  starting at  G,, = 
G,, +do, where do = O .  For j 2 1, we let go,, +dj be the point on the path at 
the end of the j-th line segment. It  has the form 

where is the direction of the line segment and cuj is now a steplength. We 
do not include any preconditioning, because the norm of the bound Ildll I A 
in expression (5.1) is Euclidean. Moreover, the path is truncated at go,t+dj-l 
if IIPQ(gop,+dj-l) I is sufficiently small, if /dJE,_l 1 = A holds, or if some other 
test is satisfied, as specified later. The complete path has the property that,  
if one moves along it from G,,, then the Euclidean distance from go,, in Rn 
increases monotonically. 

When the j-th line segment of the path is constructed, its direction is 
defined by the formula 

where pj is the ratio 1/PQ(Gpt+dj-l)j/2//17Q(gOPt+dj j2)112, this convenient 
value being taken from Fletcher and Reeves (1964). Then the steplength cuj 
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of equation (5.4) is chosen to minimize Q(&,,+dj) subject to aj 2 0 and 
(Idj 'jj 2 A for each j. Formula ( 5 . 5 )  provides the well-known descent condition 

which depends on the choice of aj-1 when j 2 2. I t  follows from Ild-l 1 1  < A 
that aj is positive. 

The form (5.3) of the product V2Q assists the calculation of the gradients 
VQ(g,,, +&), j 2 0, and the steplengths aj, j 2 1. The initial vector 1 is the - 
difference go,, -go, in order to obtain from expression (3.1) the gradient 

The other choices of are just all the vectors (5.5) that occur. The availability 
of 7Q(:opt +d3-l) and V2Qsj  allows aj to be found cheaply, because it is 
the value of a in the interval [O, ti3] that minimizes the function 

. , 

where dj is the positive root of the equation Il~-,,+d~-~+&~s~ 1 )  =A. Therefore 
we ask whether Q(&,, +cij-l + ag j ) ,  0 < a < tij, decreases monotonically. 
Equations (5.6) and (5.8) imply that the answer is affirmative in the case 

and then aj = &j is selected. Otherwise, $ V ~ Q  zj is positive, and the sub- 
routine picks the value 

After finding aj, the gradient 7Q(%,, +dj) is constructed by the formula 

which is derived from the relation (5.4), the product V2QSj being employed 
again. The techniques of this paragraph are applied for each line segment of 
the path. 

The path is truncated at go,, +dj in the case aj = d j ,  because then d=dj  
is on the boundary of the trust region lldll < A. Moreover, it is truncated at 
its starting point +,tido =x-,pt in the unusual case when the initial gradient 
7Q(:,,,) is identically zero. Otherwise, we try to truncate the path when the 
ratio 

is sufficiently close to  one, in order to avoid conjugate gradient iterations that 
improve only slightly the reduction in the objective function that is predicted 



by the quadratic model. The implementation of this aim is empirical. Specif- 
ically, the iterations are terminated if at least one of the conditions 

is satisfied, the change in Q for each line segment being derived from expression 
(5.8), and Q(G,,) - Q(%,, +dj) is the sum of the changes so far. The path 
is also truncated if j reaches the theoretical upper bound on the number of 
iterations, namely n, but we expect this test to be redundant for n110. 

Let +,,+rlj be the final point of the path. The step d=dj  is returned by 
subroutine TRSAPP in the case lidj 1 1  < A ,  because then there is no interference 
with the conjugate gradient iterations from the trust region boundary. Further, 
the parameter CRVMIN, introduced in Box 2 of Figure 1, is given the value 

CRVMIN = min { S $ ~ 2 ~ ~ i  / I I S ~ I I '  : i = 1 , 2 , .  . . , j ) . (5.14) 

Otherwise, CRVMIN is set to zero, and, because of the possibility that the ratio 
(5.12) may be substantially less than one, the following iterative procedure 
is applied. It  also calculates dj from dj-l, the initial point x-,,~ +dj-l being 
the final point of the truncated piecewise linear path, so 7Q(%,, 
is available. The conditions lidj / I  = IIdjEj-lll = A are going to hold on every 
iteration of the additional procedure. 

At the beginning of an iteration, we decide, using only and ~Q(x- , , ,+  
whether d=cij-l is acceptable as an approximate solution of the sub- 

problem (5.1). If djVl were the true solution, then, by the KKT conditions of 
the subproblem, 7Q(gop t+~ j - l )  would be a nonpositive multiple of d jVl ,  and 
we also give attention to the first of the conditions (5.13). Indeed, subroutine 
TRSAPP picks d=dj-, if one or both of the inequalities 

is achieved. Otherwise, cij-l and IQ(%,, +dj-,) span a two dimensional 
subspace of Rn, and dj is calculated to  be the vector in this subspace that 
minimizes Q ( G ~ ,  +&) subject to lidj 1 1  = A. Therefore cLj has the form 

where now the search direction zj is chosen to be a vector in the two dimen- 
sional subspace that has the properties 

$dj-, = 0 and /ss// = A. (5.17) 

Equation (5.16) implies that Q(G,, +d(Q)) is the expression 
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because the last term in braces is the product v ~ Q ~ ~ - ~ .  Again v 2 Q S j  is 
constructed by formula (5.3), after which the minimization of the function 
(5.18) takes only O(n)  operations. Thus dj is determined, and the subroutine 
returns d=dj  if the second of the conditions (5.13) holds, or if j is at least n .  
Alternatively, 'Q(gPt +$) is calculated for the next iteration, by applying 
the remark that equation (5.16) gives the gradient 

Then j is increased by one, in order that the procedure of this paragraph can 
be applied recursively until termination occurs. 

6 Subroutines BIGLAG and BIGDEN 

We recall from Section 2 that,  if Box 9 of Figure 1 is reached, then the con- 
dition (1.1) with index i = MOVE is going to  be replaced by the interpolation 
condition Q(gopt +d) = F ( G , ~  +d) ,  where d is calculated by the procedure 
of this section. In theory, given the index MOVE, the choice of d is derived 
from the positions gi, i = 1 , 2 , .  . . , m ,  of the current interpolation points, but 
in practice it depends also on the errors that occur in the matrices that are 
stored and updated, namely the submatrices 5 and T of expression (3.12) 
and the factorization (4.16). We write t instead of MOVE, in order to  retain the 
notation of Section 4. In particular, equation (4.1) shows the new positions of 
the interpolation points. 

The t-th Lagrange function of the current interpolation points is impor- 
tant. I t  is the quadratic polynomial t , ( ~ ) ,  ~ E R ~ ,  that satisfies the Lagrange 
conditions 

e,(zi)  = d Z t 1  i = 1 , 2 , . .  . , m 1  (6.1) 

where the remaining freedom in the usual case m <  k(n+l)(n+2)  is taken up 
by minimizing the Frobenius norm llV2ttj/F. Therefore Ct is the function 

the parameters c,  g and Xk, k =  1 ,2 , .  . . , m ,  being defined by the linear system 
of equations (3.107, where the right hand side is now the coordinate vector 
e, E Rm+n+l. Thus the parameters are the elements of the t-th column of the - 
matrix H of expression (3.12). For each :E Rn, we let ~ ( g )  be the vector in 
RmSn+l that has the components 



It  follows that expression (6.2) can be written in the form 

Therefore, when the symmetric matrix H is updated by formula (4.11), be- 
cause of the change (4.1) to the interpolation points, expression (4.12) includes 
the value 

Thus the Lagrange function (6.2) gives the dependence of r on the choice of 
d. - 

As mentioned in Section 4, we expect a relatively large modulus of the 
denominator a = a/3+r2 to be beneficial when formula (4.11) is applied. 
Usually a > r2 holds in practice, because in theory both cu and /3 are positive. 
Thus we deduce from the previous paragraph that it may be advantageous to 
let d be an approximate solution of the subproblem 

where 2 > 0 is prescribed. This calculation is performed by subroutine BIGLAG, 
details being given in the next paragraph. There is an excellent reason for 
a large value of jet(%,, +d)  1 in the case m = ; (n + 1) (n  + 2). Specifically, 
one picks a convenient basis of the space of quadratic polynomials, in order 
that the construction of Q from the interpolation conditions (1.1) reduces 
to the solution of an m x m system of linear equations. Let B and B+ be 
the old and new matrices of the system when the change (4.1) is made to 
the interpolation points. Then, as shown in Powell (2001), the dependence 
of the ratio det B+/ det B on d E Rn is just a quadratic polynomial, which 
is exactly e,(:,,, +d) ,  d E Rn, because of the Lagrange conditions (6.1). In 
this case, therefore, the subproblem (6.6) is highly suitable for promoting the 
nonsingularity of B+. 

The method of BIGLAG is iterative, and is like the procedure of the last 
paragraph of Section 5. As in equation (5.16), the j-th iteration generates the 
vector 

d .  = d(0) = cosOdj-, +sinOzj,  -3 (6.7) 
where d3-i is the best estimate of the required d at  the beginning of the 
current iteration, where cij-l and sj have the properties 



The NEWUOA software 277 

and where the angle 0 of equation (6.7) is calculated to maximize jet(zopt+ij) 1 .  
The choice 

do = *a k t  - %,t) / Ilzt - ~ , t  I 1  (6.9) 
is made for the first iteration, with the sign that provides the larger value 
of let ( G ~ ~  +do) 1 ,  which implies pet (cop, +do) # 0, because tt is a quadratic 
polynomial that satisfies the Lagrange conditions it ( G ~ , )  = 0 and et (g,) = 1. 
The vector sl of the first iteration is taken from the two dimensional subspace 
that is spanned by do and 7&(&,,), provided that both the inequalities 

hold, because this use of 7 e t ( ~ , , )  is unattractive if the subspace is nearly 
degenerate, or if the bound a //Y&(x-,,)II on the first order term of the iden- 
tity 

compares unfavourably with let(x-,, +do)l.  Alternatively, if a t  least one of 
the conditions (6.10) fails, then gl is defined by the technique that gives sj 
for j 2 2. Specifically, sj is a linear combination of dj-? and yet (~- , ,+d~-~)  
that has the properties (6.8), except that the subroutine returns the vector 
d=djP l  in the unlikely situation - 

The usual test for termination is the condition 

because the iteration has not improved very much the objective function of 
the subproblem (6.6). Then d=dj  is returned, which happens too if j reaches 
the value n. Otherwise, as in equation (5.19), the gradient 

74 (zap, + d j )  = (1 -cos 0) Yet (go,,) + cos (cop, + sin Q V21t zj 
(6.14) 

is calculated, and then j is increased by one for the next iteration. Because 
the second derivative matrix of the function (6.2) is not constructed explicitly, 
the remarks on V2Q in Section 5 apply also to V 2 4 ,  including the use of the 
formula 

where qk = Xk(gk - go)T2L, k = 1, 2 , .  . . , m. Now the vectors 2 that occur are 
just G,, -go, do and each zj, so the amount of work of BIGLAG is similar to 
that of subroutine TRSAPP. 
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The parameter 2 of the subproblem (6.6) is set automatically to a value 
that depends on three considerations. Firstly, because of the purpose of p, 
as described in the second paragraph of Section 2, the bound a > p is im- 
posed. Secondly, the Y-branch has been taken from Box 8 of Figure 1 because 
DIST = 1/g, - go,, I /  is unacceptably large, so the condition a 5 0.1 DIST is 
reasonable. Thirdly, a should be no greater than the current A of the trust 
region subproblem of Section 5, and we anticipate that A may be halved. 
These remarks provide the choice 

- 
A = max jmin(0.l DIST, 0.5 A),  p ]  , (6.16) 

which seems to  be suitable in practice, even if the given pb,, causes p to be 
much less than the required changes to the variables. 

After the construction of d by subroutine BIGLAG, the parameters (4.12) 
are calculated, g+ being the vector G,, +d. It  has been mentioned already 
that in theory a and p are positive, but that negative values of a = ap+r2 
may occur occasionally, due to computer rounding errors. We recall also that 
formula (4.11) is applied even if a is negative, but the updating would be 
unhelpful if a were too close to  zero. Therefore the d from BIGLAG is rejected 
if and only if the current parameters have the property 

The alternative choice of d is made by calling subroutine BIGDEN, which seeks a 
big value of the denominator la1 instead of a big value of 171. The dependence of 
a on g=&,,Sd_ is obtained by substituting gf =g and g = g ( g )  into expression 
(4.12), using the definition (6.3). Then BIGDEN sets d to an approximation to 
the solution of the subproblem 

Maximize la(&,, +d) 1 subject to lid1 5 2, (6.18) 

where still has the value (6.16). This task is much more laborious than 
the calculation of BIGLAG, because a(:), g E Rn, is a quartic polynomial. 
Fortunately, numerical experiments show that the situation (6.17) is very rare 
in practice. 

The methods of subroutines B I G L A G  and BIGDEN are similar, except for 
obvious changes due to  the differences between their objective functions. In- 
deed, BIGDEN also picks initial vectors do and sl that satisfy the equations 
(6.8), in order to  begin an iterative procedure. Again the j-th iteration lets dj 
have the form (6.7), but now 8 is calculated to  maximize Ju(:,,,+dj) 1 .  When 
j > 2 ,  the vector d=dj is returned by BIGDEN if it has the property 

or if j has reached the value n, the test (6.19) being analogous to  condition 
(6.13). Otherwise, after increasing j by one, the gradient 7a(:opt+dj-l) is 
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constructed, using some numbers that are known already, as described at the 
end of this section. If the inequality 

- 2  I d F 1 7 0 ( ~ p t +  dj-1) l 2  < (1 -10-~)  A 1 1 7 0 ( ~ ~ ~ +  dj-1))12 (6.20) 

holds, then Sj = ~ p a n { d ~ - ~ ,  7 ~ ( g , ~ ~ + ~ ~ - ~ ) )  is a well-defined two dimensional 
subspace of R n .  Then another iteration is performed, sj being set to a vector 
in Sj with the properties (6.8). If the test (6.20) fails, however, the first order 
conditions for the solution of the subproblem (6.18) are nearly achieved, so 
BIGDEN returns the vector d=djP1. 

The choice of do in BIGDEN is the d that has just been picked by BIGLAG, 
because we expect la(x-,,+d) to be large when let (gopt+d)l is large, although 
rounding errors have caused the unwelcome situation (6.17). The direction sl 
is taken from the space S1 = s p a n { d o , ~ ) ,  where 2 is the step zk -go,, from 
G,, to one of the other interpolation points. The value of k depends on the 
ratios 

W i  = 
I ( g i - ~ p t ) ~ d o  l 2  i E {1 ,2 , .  . . , m)\{opt). (6.21) 
llzi- ~ 0 , t  1 1 2  lld0l1~ ' 

Priority is given to k = t ,  this selection being made in the case wt i 0.99. 
Otherwise, k is such that wk is the least of the ratios (6.21). A criticism of 
this procedure is that it ignores the objective function a ,  which is why the 
test (6.19) for termination is not tried on the first iteration. The possibility 
u=7a (gOp t )  is unattractive, because 7a (gOp t )  is zero in exact arithmetic, and - 
it would be inconvenient to pick u=~a(x-,,+do), because the numbers that 
assist the construction of this gradient, mentioned in the previous paragraph, 
are not yet available. 

Let 6 (Q) ,  Q E R ,  be the value of a(gop, +d) ,  when d = d(0) is the vector 
(6.7). The main task of an iteration of BIGDEN is to  assemble the coefficients 
6e, 1= 1 , 2 , .  . . , 9 ,  such that 3 is the function 

4 

?(Q) = d-1 + {62k cos(k0) + bak+l sin(k8)) , BER.  (6.22) 
k=l 

Because the right hand side of equation (4.25) is used in the calculation of a ,  
matrices U and V of dimension (m+n)  x 5 are constructed, that provide the 
dependence of the relevant parts of g-g and H(w-Q), respectively, on Q.  We 
define w by putting the vector 

into expression (6.3), but the definition (4.24) of 2 is independent of Q. Thus 
we find the components 
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and 

T T where f i i ,  Gi and 2iri are the scalar products (gopt -go) (gi-go), ~ & - ~ ( g ~ - g ~ )  
and 2~(z i -zO) ,  respectively. We construct the rows of U by regarding these 
components of U-g as functions of 8, writing them in sequence in the form 

Then we define V by the property that the terms 

+K2 C O S Q + V , ~  sin Q+K4 cos(2Q) +V,s sin(2Q), i =  1 , 2 , .  . . , m+n, (6.27) 

are the first m and last n components of H(w-2) .  In other words, because 
(~l l_) ,+l  is zero, V is the product HredUl where Hred is the matrix H without 
its (m+l)- th  row and column, which receives attention in the paragraph that 
includes equation (4.23). The product of the displays (6.26) and (6.27) is 
expressed as a constant plus a linear combination of cos(kQ) and sin(kQ), 
k =  112,  3 ,4 ,  and the results are summed over i .  Thus we find the coefficients 
Pel != 1 , 2 , .  . . ,9 ,  of the function 

The contribution from these coefficients to expression (6.22) is explained 
below. 

T The definitions (6.3) and (4.24) provide UTeOpt = i{(gopt -go) (g-go)}2 
1 and gTGpt = - x0 1 1 4  in formula (4.26). Hence equations (4.12), (4.26) 

and (4.25), with t#op( allow 6 to  be written in the form 

T 2 
- CY (w-I)~H(w-I) + [g, ~ ( ~ - g ) ]  . (6.29) 

Therefore, because a =  g; H g, is independent of g = G,, +d(Q),  subroutine 
BIGDEN sets the required coefficients of the function (6.22) to  ire = -ape, 
1 = 1,2,  . . . , 9 ,  initially, and then it makes the adjustments that provide the 
square bracket terms of equation (6.29). 

The adjustment for the last term of this equation begins with the remark 
that g r H ( ~ - ~ )  is the function (6.27) of Q in the case i = t .  Therefore BIGDEN 
expresses the square of this function as a constant plus a linear combination of 
cos(kQ) and sin(kQ), k =  l , 2 , 3 , 4 ,  and it adds the resultant coefficients to  the 
corresponding values of ire, 1 = 1,2,  . . . ,9 .  Moreover, one can deduce from the 
conditions (6.23) and (6.8) that the first square brackets of equation (6.29) 
contain the function 
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where Copt, Copt and GOpt are taken from expression (6.24). It  follows that the 
final adjustment of the ire coefficients is elementary. Next, BIGDEN computes 
the values 8(2ni/50), i=O, 1 , .  . . ,49, directly from equation (6.22), identifying 
the integer z ? ~  [O, 491 that maximizes (6(2nz?/50)l. Then the quadratic polyno- 
mial 6(0), 0 E R, is constructed by interpolation to 8 at the points 0 = 2ni/501 
i = 27- 1, z?, ;+I.  The choice of 0 for the definition (6.7) of dj is completed by 
giving it the value that maximizes @ ( 0 ) /  within the range of its interpolation 
points. 

After calculating & ,  and then increasing j by one if the test (6.19) fails, 
the gradient ~ U ( Z - , ~ ,  +dj-l)  is required, as mentioned already. We are going 
to  derive it from expression (6.29), the right hand side being the function 
a(:), :E Rn, where w depends on : through equation (6.3). We consider the 
equivalent task of finding ya(gopt+dj) for the old value of j, in order to retain 
the notation of the previous three paragraphs. 

The gradient of the first line of the function (6.29) a t  g=&,,+dj is the 
vector 

the right hand side being given by the relation (:-go) = d j  + (x-pt - go ) .  
It  is employed by BIGDEN, in order to avoid some cancellation when lidj 1 1  is 
relatively small. The remainder of the gradient of the function (6.29) is the 
sum 

i=l i=l 
(6.32) 

An advantage of the work so far is that the terms (6.27) for the chosen 0 are the 
first m and last n components of H(w-2) .  Thus expression (6.27) provides 
the numbers fji = { H ( E - ~ ) ) ~ ,  i = 1 , 2 , .  . . , m,  and qi = { H ( g - ~ ) ) i + , + l ,  
i = 1,2 ,  . . . , n. We recall from equations (4.12) and (4.25)) with t # opt, that 
e : ~  (g-2) is the current value of T .  Therefore, because the definition (6.3) - 
shows that w(:),+~ is constant, the sum (6.32) can be written in the form 

Equation (6.3) gives ?{w(g)i) = {(g-go)T(gi -gO))(gi-go),  i = 1 , 2 , .  . . , m, 
and ?{w(:)i+m+l) = ei, i = 1 ,2 , .  . . , n. It  follows that the required gradient 
of a(:) is the sum of three vectors, namely expression (6.31), the sum 
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- a % )  (z-co)~(Lc~ -20)) (g, --go), 

and the vector in Rn with the components 2 ( T H ~ ~ + ~ + ~ - Q ~ ~ ) ~  i = l ,  2 , .  . . ,n. 
The description of the method of BIGDEN is complete. 

7 Other details of NEWUOA 

We see in Figure 1 of Section 2 that A is revised and MOVE is set in Box 4, 
that p is reduced in Box 12, and that a test is made in Box 14. We recall also 
from the end of Section 1 that shifts of origin are important to the accuracy 
of the H matrix. The details of these operations are addressed in this section. 

Let Aold and Anew be the old and new values of A that occur in Box 
4. As mentioned already, the choice of Anew depends on the ratio (2.2)) and 
also the Euclidean length of the step d receives attention. Possible values of 
A,,, are i lldll, ildii and 211.rEll in the cases RATIO 5 0.1, 0.1 < RATIO < 0.7 and 
RATIO > 0.7, respectively, but we take the view that,  if RATIO > 0.1, then a 
large reduction in A may be too restrictive on the next iteration. Moreover, 
we observe the bound A L p ,  and we prefer to sharpen the test in Box 10 by 
avoiding trust region radii that are close to  p. Therefore NEWUOA sets A,,, 
to  p or to A,,, in the cases Aint 1 1 . 5 p  or A,,, > 1 . 5 ~ )  respectively, where Aint 
is the intermediate value 

( mar  { 2 lldll, i Auld}, RATIO > 0.7 

The selection of MOVE in Box 4 provides a relatively large denominator 
for the updating formula (4.11), as stated after expression (4.12). We recall 
that Hu and p in this expression are independent of t .  Let 7 be the set 
{1 ,2 , .  . . ,m} ,  except that the integer "opt" is excluded from 7 in the case 
F(:,,,+d) L F(:,,,), in order to  prevent the removal of go,, from the set of 
interpolation points. The numbers 

are calculated, at being the denominator that would result from choosing 
MOVE = t .  There is a strong disadvantage in making /cMovE I as large as possible, 
however, as we prefer to retain interpolation points that are close to  G,,. 
The disadvantage occurs, for instance, when at  least n + l  of the points gi, 
i = 1,2 ,  . . . , m, are within distance A ofx-,,, but gt is much further away. Then 
the Lagrange conditions (6.1) suggest that it may be not unlike the function 
12-go,, //2/11:t -&,, /I2, :ERn, which, because of the bound 11dII < A ,  would 
imply the property 
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Now the equations (6.5) include eTHw = tt (G,, + d ) ,  and it is usual for 
(gTHet)P and ( ~ T H ~ ) ~  to  be positive numbers of similar magnitudes in ex- 
pression (7.2). Thus, for general t E 7, it may happen that lat/ is Q(1)  or 
0(44/11gt-20pt114) in the case llgt-gOpt 1 1  5 A or II:,-x-,, / /  > A ,  respectively. 
Therefore NEWUOA sets MOVE either to zero or to  the integer t* E 7 that 
satisfies the equation 

wt* /at+ I = max {wt a t  1 : t E I) , (7.4) 

where wt is a weighting factor that is necessary for the automatic removal 
of interpolation points that are far from go,,. This removal is encouraged by 
using a sixth power of 11gt-&,, / I  instead of the fourth power that is indicated 
above. Another consideration is that interpolation points tend to cluster near 
G,, only when 4 is either being reduced or is a t  its lower bound p ,  so the 
weights are given the values 

where g* is the G,, that is going to be selected in Box 5 of Figure 1. The 
MOVE = 0 alternative preserves the old interpolation points, so it is available 
only in the case F(G,, + d )  2 F(gop,) .  We wish to avoid applications of for- 
mula (4.11) that cause abnormal growth in the elements of H, taking into 
consideration that some growth is usual when a remote interpolation point is 
dropped. Therefore MOVE is set to  zero instead of to t* if and only if both the 
conditions F ( x - , ~ ~  +d) > F(%,,) and wt* lat* / 5 1 hold. 

The value of p is decreased from pold to pnew in Box 12 of Figure 1. The 
reduction is by a factor of 10, unless only one or two changes to  p are going 
to  attain the final value p = pend. The equation ~ o l d / ~ n e w  = pnew/pend gives 
a balance between the two reductions in the latter case. These remarks and 
some choices of parameters provide the formula 

for the adjustment of p by NEWUOA. 
The reason for Box 14 in Figure 1 is explained in the penultimate para- 

graph of Section 2, the calculations with the current value of p being complete 
if the "Y" branch is taken. We see that Box 14 is reached when the trust re- 
gion subproblem of Box 2 yields a step d that has the property /dl1 < ipl 
which suggests that the current quadratic model Q is convex. Therefore, as- 
suming that CRVMIN is a useful estimate of the least eigenvalue of V 2 Q ,  we 
prefer not to  calculate F(x- , , ,+~)  when the predicted reduction in F ,  namely 
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Q(x-,pt)-Q(x-,pt+ci), is less than i p 2 ~ R ~ M 1 N .  Further, if the values of the error 
IQ(x-,pt +d) - F(x-,pt +d) 1 on recent iterations are also less than this amount, 
then we take the view that trying to improve the accuracy of the model would 
be a waste of effort. Specifically, the test in Box 14 is satisfied if at least 3 new 
values of F have been computed for the current p, and if all the conditions 

hold, where Qj ,  d(j) and &$ are Q, d and x-,,, a t  the beginning of Box 5 
on the j-th iteration, where CRVMIN is generated on the current iteration, and 
where J' contains 3 integers, namely the iteration numbers of the 3 most recent 
visits t o  Box 5 before the current iteration. Thus the work of NEWUOA with 
the current p is terminated often, although some of the distances llgi -x-,pt / I ,  
i = l , 2 , .  . . , m, may exceed 2p. 

In order to show the importance of go in practice to the rounding errors 
of the updating formula (4.11), we assume that all the distances llxi -gj 1 1 ,  
I 5 i < j 5 m ,  between interpolation points are of magnitude one, that lldll= 
lIg+-x-,,, 1 1  is also of magnitude one, but that Ilgopt -go 1 1  = M ,  say, is large. In 
theory, the parameters a ,  p, T and a of expression (4.12), and also the leading 
mxm submatrix of H, are independent of go (Powell, 2004a), but the definition 
(4.10) implies that each of the first m components of g is approximately M 4 .  
Thus much cancellation occurs in the formula 

Further, if there were an error of E in Hll, and if there were no other errors 
on the right hand side of equation (7.8), then ,B would include an error of 
magnitude M8e, this power of M being so large that M > 100 could be 
disastrous. The substitution of expression (4.26) into formula (7.8) is less 
unfavourable, because HI1 is multiplied by -(wl - v ~ ) ~ ,  and the middle line 
of equation (6.24) provides the value 

Thus the error in /3 is now of magnitude M 6 ~ ~ o s 2 B ,  where B is the angle 
between g1 - go and d = :+ - x-,,, . The factorization (4.16) also helps the 
attainment of adequate accuracy. Nevertheless, we found from numerical ex- 
periments in REAL*8 arithmetic, using some difficult objective functions, that 

2 .5  d sequences of iterations may cause unacceptable errors if Igopt-go 1 1  2 10 1 1 - 1 1  
is allowed in the updating calculations of Section 4. Therefore NEWUOA tests 
the condition 

2 3 2 lldll 5 10- ilgopt- go11 (7.10) 

before replacing gMOVE by gopt+d in Box 5 of Figure 1. If this condition holds, 
then go is overwritten by the go,, that occurs at the beginning of Box 5, 
which alters the last n rows of the matrix (1.3) and all the elements (3.11). In 
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practice, however, the matrix H= W-' of expression (3.12) is stored instead 
of W. Therefore H is revised in the way that is implied by the change to  W ,  
except that the (m+l) - th  row and column of H are not required. Details of 
this task are considered in Section 5 of Powell (2004a), so only a brief outline 
is given below of the changes that are made to H when go is shifted. 

Let gav and be the vectors and %,,-go, respectively, before 
xo is overwritten by G,~, let Y be the n x m  matrix that has the columns - 

and let Gold and One, be the old and new H matrices without their (m+l)-th 
rows and columns. Then, according to equations (5.11) and (5.12) of Powell 
(2004a), One, is defined by the formula 

Thus, as mentioned already, the submatrix R of expression (3.12) is undis- 
turbed, and we keep its factorization (4.16). It follows also from expressions 
(3.12) and (7.12) that the product Yfl  and the sum Y Z ~ ~ + E ~ ~ ~ Y  T + ~ R ~  
are added to  the last n rows of E and to the trailing n x n submatrix of T ,  
respectively, where Zred is the original matrix s" without its first row. 

When co is overwritten by gOpt, the gradient 7 Q ( g o )  has to  be revised 
too. Specifically, because the function (3.1) can be written in the form 

and because 7Q(cOp t )  = 7 Q ( c o ) + V 2 Q  2 follows from z=gopt -go, the vector 
V 2 Q z  is added to  7 Q ( g o ) .  The constant term of Q is unnecessary, as stated 
at  the end of Section 4, and V2Q is independent of go, except that,  as in 
equation (4.28), it is expressed as the sum 

where 2 = CYyl yj ( z j  --go,, + iS) = CEl yj  (gj  -gav),  Therefore the shift 
in go requires g s T  + s g T  to be added to r ,  although the parameters yj,  
j = 1,2,  . . . , m,  are unchanged. 

The amount of work in the previous paragraph is only O(mn),  but the 
implementation of the product (7.12) takes C?(m2n) operations. Therefore we 
hope that condition (7.10) holds on only a small fraction of the total number 
of iterations, especially when n is large. Rough answers to this question are 
provided by the running times of the numerical experiments of the next sec- 
tion. They suggest that usually the average work per iteration of NEWUOA 
is close to O(mn).  
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8 Numerical results 

In December, 2003, the author released the Fortran software of the version of 
NEWUOA that has been described, having tested it on a range of problems 
with up to 200 variables. Then, a t  the conference in Erice of these proceedings, 
he discussed with Nick Gould some other problems that might be tried, which 
led to more experiments. It  became clear from one of them that a further 
modification would be advantageous occasionally. It  has now been made, and 
is the first subject of this section, because the numerical results that follow 
were calculated by the new version of NEWUOA. 

The experiment that suggested the modification is the VARDIM test prob- 
lem on page 98 of Buckley (1989). The objective function is the quartic poly- 
nomial 

which takes its least value of zero at g = e, the vector of ones. Analytic 
differentiation gives the second derivative matrix 

where I is the n x n  unit matrix and where 0 is the rank one matrix that has 
the elements Bi j  = i  j ,  1 5 i ,  j 5 n. Thus V2 F ( g )  has n -  1 eigenvalues of 2 and 
one of 2+[ 4+2{Cy=1 . t ( ~ ~ - l ) } ~ ]  n(n+1)(2n+l). When NEWUOA is employed 
with m = 2 n + l ,  however, the initial quadratic model has a diagonal second 
derivative matrix, the diagonal elements of V2Q being approximately those 
of V2F(go) ,  where go is the given starting vector of variables, which has the 
components 1-iln, i = 1 , 2 , .  . . , n,  in the VARDIM test problem. Thus initially 
the eigenvalues of V2Q are about 2+[2+12{C;=1 ! ( ~ ~ - 1 ) } ~ ]  i2 ,  i= 1 , 2 , .  . . , n,  
the term in square brackets being 2 + i (n+ 1)'(2n+ 1)'. I t  follows that,  at 
the start of the calculation, V2Q is a very bad estimate of V 2 F .  Further, if 
n = 80 for instance, the range of eigenvalues of V2Q initially is from about 
5 . 7 ~ 1 0 7  to 3 . 6 x 1 0 ~ ~ ,  but the large eigenvalue of V 2 F  at the solution g = g  is 
only 347762. Therefore NEWUOA cannot perform satisfactorily unless huge 
improvements are made to V2Q by the updating formulae of the sequence of 
iterations. 

Unfortunately, however, each application of the least Frobenius norm up- 
dating method makes the smallest change to V2Q that is allowed by the 
new interpolation conditions, so the basic method of NEWUOA is not suit- 
able for the VARDIM test problem. Therefore the recent modification tries 
to recognise when the elements of V ~ Q  are much too large, and, if there is 
strong evidence for this possibility, then Q is replaced by Qint,  which is the 
quadratic model that minimizes jlV2Qint / I F ,  instead of the Frobenius norm of 
the change to  V2Q, subject to  the conditions Qint(g,) =F (g i ) ,  i = 1 , 2 , .  . . , m ,  
the interpolation points gi being the updated ones at the exit from Box 5 of 



The NEWUOA software 287 

Figure 1. When Qint is preferred, the gradient 7Qin t (go)  and the parameters 
yj,  j = 1,2 ,  . . . , m,  of the expression 

are required. It  follows from the definition of Qint that they are the vector g 
and the components of A in the system (3.10), where E has the components 
ri = F(gi)-$, i = 1 ,2 ,  . . . , m ,  for any $ E R. Some damage from rounding errors 
is avoided by the choice 4= F(&,,). We deduce from the notation (3.12) that 
g and A are the products Ered 23 and f i r ,  respectively, where Zred is still the - 
matrix E without its first row. Thus NEWUOA constructs a useful form of 
Qint in C?(m2) operations. 

When the elements of V2Q are much too large, the interpolation equations 
(1.1) imply that 11VQ(:)(1 is also much too large for most vectors of variables. 
Usually a huge value of I/T7Q(gOpt)Ij causes the ratio (2.2) to be tiny. Moreover, 
because 7 Q ( g 0 )  is available, and because we have found that 7Qin t ( zo )  is 
the product Ered r ,  it is easy to  compare / /VQint (go) / /  with llVQ(:o)/l. On the 
iterations of the new version of NEWUOA that reach Box 5 of Figure 1 from 
Box 4, a flag is set to  YES or N O ,  the YES being chosen when the conditions 

hold at  the end of Box 5. Then Q is replaced by Qint if and only if three 
consecutive settings of the flag are all YES. 

Table 1: Two versions of NEWUOA applied to  VARDIM with m=2n+l 

The VARDIM test problem with 80 variables can be solved by the older 
version of NEWUOA, in spite of the deficiencies in v2Q that have been noted. 
Results for the unmodified and modified versions, using pb,, = (2n)-l and 
pend = are displayed on the left and right hand sides, respectively, of Ta- 
ble 1. The heading #F denotes the total number of calculations of the objec- 
tive function, and gfi, is the vector of variables that is returned by NEWUOA, 
because it gives the least calculated value of F. In theory, a reordering of the 
variables makes no difference, the initial set of interpolation points being un- 
changed for m = 2 n + l 1  so this device can be used to investigate some effects 
of computer rounding errors. The entries to the left and right of the colons in 
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Table 1 were obtained with different orderings. We see that rounding errors 
are highly influential, that the values of F(gfin) are satisfactory, and that the 
modification is successful in reducing #F. 

During the development of NEWUOA, the objective function that was 
used most is the trigonometric sum of squares 

namely TRIGSSQS. The elements of the matrices S and C are random inte- 
gers from [-loo, 1001, each scaling factor Oj is sampled from the logarithmic 
distribution on [0.1,1], and the parameters bi, i = 1 , 2 , .  . . ,212, are defined by 
F ( z * )  = 0, where :* has the components x; = 2:/Oj, j = 1 ,2 , .  . . , n,  each 23" 
being picked from the uniform distribution on [-n, n]. The initial vector go 
has the components (2;t0.1t;)/Oj, j =  l , 2 , .  . . , n,  where every $1 is also taken 
at  random from [ -T,  n]. The function (8.5) has saddle points and maxima, 
due to  periodicity, and the values of the scaling factors O j  provide a tougher 
problem than the case O j  = 1, j = 1 , 2 , .  . . , n .  For each n ,  we generate five 
different objective functions and starting points by choosing different ran- 
dom numbers. We let the number of interpolation conditions, namely m,  be 
2n+ 1, m("") or i (n+  1) (n+2) ,  where m(av) is the integer that is nearest to 
{(n+i)(n+l)(n+2)) ' /2 .  Results of the NEWUOA software for some of these 
cases, with four values of n and the parameters pbeg = 10-I and p,,d = lop6,  
are reported in Table 2, the entries in the main part of the table being av- 
erages for the five different test problems that have been mentioned. Both 
#F and gfi, have been defined already. Again the results are sensitive to  the 
effects of computer rounding errors. The dashes in the table indicate that the 
problems were not tried, because of the running times that would be required 
on a Sun Ultra 10 workstation. The values of #F in the m=2n+1 part of the 
table are much smaller than the author had expected originally, because they 
become less than the number of degrees of freedom in a quadratic model when 
n is large. This highly welcome situation provides excellent support for the 
least Frobenius norm updating technique. The accuracy of the calculations is 
satisfactory, the -g* 11, entries in the table being comparable to  p,,d. 

The method of NEWUOA, in particular the use of the bound A 2 p in 
Figure 1, is intended to be suitable for the minimization of functions that 
have first derivative discontinuities. Therefore Table 3 gives some results for 
the objective function TRIGSABS, which has the form 

The parameters bi, Sij and Cij, and the initial vector go ,  are generated ran- 
domly as in the previous paragraph, except that we employ the scaling factors 
Bj = 1, j = 1 , 2 , .  . . , n. Different random numbers provide five test problems 
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Table 2: Averages for NEWUOA applied to 5 versions of TRIGSSQS 

for each n as before. We retain pbeg =0,1, but we set p,,d = lo-', in order to 
take advantage of the sharpness of the minimum of F  at  :=g*. The entries 
in Table 3 are analogous to those of Table 2. We see that,  for each n, the 
least value of # F  occurs in the m = 2n+ 1 column, those results being very 
encouraging. If p,,d is reduced to the figures for m = 2 n + l  and n =  160 
become # F  = 12007 and -g*II, = 1.6 x so again # F  is less than 
the number of degrees of freedom in a quadratic model. 

Table 3: Averages for NEWUOA applied to 5 versions of TRIGSABS 

We consider next a test problem that was invented by the author recently, 
namely SPHRPTS. Here n is even, and n/2 points have to be placed on the 
surface of the unit sphere in three dimensions at  positions that are far apart. 
We let the k-th point pk - € R 3  have the coordinates 

where : E Rn is still the vector of variables. The problem is to minimize the 
function 

F(d = EL!: C!I; ~ ~ ~ 1 l - ~ l  - x (8J3) 

where initially the points pk are equally spaced on the equator of the sphere, 
the vector go having the components (z0)2k-1 = 4.irkln and (gO)2k = 0, k = 
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1 , 2 , .  . 
and n 
values 

. , n/2. The NEWUOA software was applied to this problem, taking m 
from Tables 2 and 3, with pb,, = n-l and p,,d = low6.  The resultant 
of #F are shown to the left of the colons in Table 4. We found also 

that F(gfin) agrees with the minimum value of F ( g ) ,  g E Rn, to more than 
10 decimal places, although there is much freedom in the optimal vector of 
variables, because permutations of the points and rotations of the unit sphere 
do not alter the value of the double sum (8.8). Therefore many adjustments of 
the variables in practice cause only a tiny reduction in the objective function. 
Indeed, after computing each F(gfi,), we inspected the sequence of values of 
F calculated by NEWUOA, in order to note the position in the sequence of 
the first value that satisfies F ( g )  5 1.001 F(gfi,). These positions are given to  
the right of the colons in Table 4. We see that,  for the SPHRPTS problem, 
most of the work is spent on marginal improvements to  F, especially during 
the calculations of the m = 2 n + l  column. 

Table 4: Values of #F for the SPHRPTS problem 

The NEWUOA software has also been tested on several problems that 
have been proposed by other authors. The final table presents results in the 
following five cases using m = 2n + 1. The ARWHEAD problem (see the Ap- 
pendix of Conn e t  all 1994) has the objective function 

and the starting point go is g E R n ,  which is still the vector of ones. In the 
CHROSEN problem (see page 45 of Buckley, 1989)) we let F be the function 

and the starting point go is -gERn.  The PENALTY1 problem (see page 79 
of Buckley, 1989) includes two parameters, and we pick the objective function 

with the starting point (go)% = i ,  i = I ,  2, . . . , n. Our choice of parameters for 
the PENALTY2 problem (see page 80 of Buckley, 1989) gives the function 
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and the starting point go is i e ~ R n .  The PENALTY3 problem (see page 81 
of Buckley, 1989) has the objective function 

where R and S are the sums 

and we let the starting point go E Rn be the zero vector. We set pend = l o v 6  
in every case, while pbeg is given the value 0.5, 0.5, 1.0, 0.1 and 0.1 for AR- 
WHEAD, CHROSEN, PENALTYl, PENALTY2 and PENALTY3, respec- 
tively. Table 5 shows the numbers of function evaluations that occurred when 
NEWUOA was applied to these problems with our usual choices of n ,  except 
that * indicates that #F exceeded 500,000. 

Table 5: Values of # F  for 5 problems with m=2n+1  

n 

20 
40 
80 
160 

All the ARWHEAD, CHROSEN and PENALTY1 calculations were com- 
pleted successfully, the greatest distance j/pfi, -:* /I, being 6.1 x where 
gfi, and :* are still the final and optimal vectors of variables. Good accuracy 
was also achieved in the PENALTY2 calculations with n 5 80, the values of 
F(zfi,) agreeing to  13 decimal places with other values that were obtained for 
permutations of the variables and other choices of m. When n = 160 is selected, 
however, the constants ei/lo, i = 1 ,2 , .  . . , n,  vary from 1.1 to  9 x 106, so the 
magnitudes of the terms under the first summation sign of expression (8.12) 
vary from 1 to 1013, which causes the PENALTY2 problem to be too difficult 

ARWHEAD CHROSEN PENALTY1 PENALTY2 PENALTY3 

404 845 7476 2443 3219 
1497 1876 14370 2455 16589 
3287 4314 32390 5703 136902 
8504 9875 72519 * * 
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in REAL*8 arithmetic. We compared the given results of the PENALTY3 
calculations with those that occurred after permuting the variables. The #F 
entries became 4336, 18209 and 125884 for n = 20, n = 40 and n = 80, respec- 
tively, which agrees well with the last column of Table 5 .  Further, for each 
n ,  the two values of F(gfi,) were slightly less than n2,  and they agreed to 
about 11 decimal places. A feature of PENALTY3, however, is that the mini- 
mum value of the objective function is close to and is hard to  find. This 
magnitude is exposed by picking the variables xi = 1, i = 1,2,  . . . , n - 1, and 
~ , = - ( n ~ - n + l ) ~ / ~ ,  because then exn is tiny and both S and the second line 
of expression (8.13) are zero, which provides F ( g )  = l ~ - ~ ( l +  R e x " )  E l ow3 .  
When NEWUOA was applied to PENALTY3 with n = 160, the original or- 
dering of the variables yielded #F = 629582 and F(cfi,) = 25447.688, while 
the new ordering yielded #F = 16844 and F(gfi,) = 0.001002. We had not 
expected the new ordering to be so favourable, because the differences in the 
results are due entirely to  computer rounding errors. 

The average amount of work per iteration is mentioned at the end of 
Section 7, being at best CJ(n2) in the case m = 2n+1. We tested this possibility 
in the ARWHEAD and PENALTY1 experiments of Table 5. The total time in 
seconds of each calculation on a Sun Ultra 10 workstation was divided by the 
product of n2  and #F. The resultant quotients for ARWHEAD are 8 .4x10-~ ,  
8.0 x 8.5 x and 8.8 x in the cases n = 20, n = 40, n = 80 
and n = 160, respectively, and the corresponding quotients for PENALTY1 
are 9.2 x l o w 6 ,  8.5 x 8.6 x and 9.3 x loF6,  the running time in the 
last case being nearly 5 hours, while ARWHEAD with n = 20 was solved in 
only 1.36 seconds. These findings suggest that the average complexity of each 
iteration is proportional to  n2,  which is most welcome. 

The development of NEWUOA has taken nearly three years. The work 
was very frustrating, due to  severe damage from computer rounding errors 
in difficult cases, before the factorization (4.16) of f2 was introduced. There- 
fore the author has had doubts about the use of the explicit inverse matrix 
H= W-', instead of using a factored form of W that allows the system (3.10) 
to be solved in 0 ( m 2 )  operations. The numerical results are still highly sen- 
sitive to  computer rounding errors, but the experiments of this section show 
that good accuracy is achieved eventually, which confirms the stability of the 
given techniques. Thus we conclude that the least Frobenius norm method for 
updating quadratic models is highly successful in unconstrained minimization 
calculations without derivatives. Readers are invited to request a free copy of 
the NEWUOA Fortran software by sending an e-mail to  mjdp&am.ac.uk. 

Appendix: Proofs for Section 3 

The assertions of the last two paragraphs of Section 3 are presented below 
as lemmas with proofs. The positions of the relevant interpolation points are 
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described at  the beginning of Section 3, followed by the definitions of the 
matrices (3.12). 

Lemma 1. The first row of the initial matrix E has the elements (3.13), and, 
for every integer i that satisfies 2 <i <min[n+l ,  m-n],  the i-th row includes 
the elements (3.14). When m 5 2n, the nonzero elements of the remaining 
rows of E take the values (3.15), where i is any integer from the interval 
[m-n+1, n + l ] .  All other elements of the initial matrix E are zero. 

Proof: For each integer j in [ I ,  m], we let the quadratic polynomial 

be the j-th Lagrange function of the initial interpolation points, which means 
that /IV2tj is as small as possible subject to the conditions 

as stated in the second paragraph of Section 6. The construction of ej is the 
same as the construction of D in Section 3, if the constraints (3.6) have the 
right hand sides F (g i )  - Qold(gi) = Sij, i = 1,2,  , . , , m. Therefore ej (go) and 
Yt j (go)  are the same as c and - g ,  respectively, in the system (3.10), when 2: 
is the coordinate vector gj E Rm. In this case, the partitioned vector on the 
left hand side of equation (3.10) is the j-th column of W-l .  It follows from 
the notation (3.12) that e, (go) and ye:, (go) provide the j-th column of E, as 
shown in the expression 

The remainder of the proof depends on the positions of the initial inter- 
polation points. In particular, because of the choice g, = go with the first 
of the conditions (A.2) for each j, the first row of the matrix (A.3) has the 
elements (3.13). Moreover, when k satisfies 15 k 5 min[n, m-n-11, the points 
:k+l = :o +pbeggk and gktnt = go - pbegek have been chosen, so the k-th 
component of 7 e j  (go) is the divided difference 

because !j is a quadratic that takes the values (A.2). We replace k + l  by i ,  
and then expression (A.3) gives (7.$(:o))k = Zk+l = Zi,. It  follows from 
equation (A.4) that formula (3.14) does provide all the nonzero elements of 
the i-th row of E for 2 < i 5 min[n+l, m-n]. Finally, if k satisfies m-n 5 k < n ,  
then only the first two of the vectors gl =go, gk+l =go+pbeggk and go-pbegek 
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are interpolation points. Further, the minimization of (IV2ejllF subject to the 
conditions (A.2) yields (V2ej)kk =0,  j = 1 , 2 , .  . . , m ,  so the univariate function 
ej(go+agk) ,  QER,  is a linear polynomial for each j .  Therefore the (k+l)- th  
row of the matrix (A.3) contains the divided differences 

Again we replace k + l  by i ,  so equation (A.5) establishes that the nonzero 
elements of the i-th row of Z have the values (3.15) when i satisfies m-n+l I 
i 5 n + l .  The proof of the lemma is complete. 

Lemma 2. When m L 2 n + l  holds, the initial matrix T is identically zero. 
Otherwise, T is a diagonal matrix, and expression (3.16) gives all the elements 
of T that are nonzero. 

Proof: Let fi be the integer min[m,2n+l ] ,  and let 2, A and 2 be the 
leading (n+ l )  x f i ,  f i x  ( n+ l )  and ( n + l ) x  (n+ l )  submatrices of c", A and X ,  
respectively. The definitions (3.12) provide the matrix equation ZA+YX =0,  
and its first n+l columns give the identity EA+rX =0,  which depends on the 
property in Lemma 1 that,  if m > 2n+1, then the last m-2n-1 columns of Z 
are zero. We deduce from equations (3.2) and (3.11) that A has the elements 

We seek the elements of the product gi?, which is a square matrix. For each 
integer j in [ I ,  n + l ] ,  equations (3.13)) (3.14) and (3.15) give the formula 

the last line being void in the case m 2 2n+l .  It  follows from equation (A.6) 
that s"A is a diagonal matrix, and that its first row and column are zero. 
Further, because min[n+ 1, m -n] is the same as fi -n,  we find the diagonal 
elements - - 

(ZA)ii = 0, l < i < f i - n  

( 2 ~ ) .  zz - - 1 , pbeg, 3 m - n + l l i < n + l  
(A.8) 

We now consider the identity $A+TX = 0. The definition (1.3) of X with - gl =go imply ;gl =el, where el is the first coordinate vector in Rnf l ,  and 
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we recall EAel =O. It  follows from ( E A + T Q e l  = O  that the first column of 
T is also zero. Thus g A + Y Z  = O  remains true if any change is made to  the 
first row of k. Expressions (1.3) and (3.2) allow the new %! to be pbeg times 
the (n+1)  x (n+1)  unit matrix. Hence Y is the matrix -p& EA, which we 
know is diagonal. Further, we deduce from equation (A.8) that T is the zero 
matrix in the cases m >  2n+ l ,  and that otherwise the nonzero elements of T 
take the values (3.16). Therefore the lemma is true. 

Lemma 3. The initial matrix has the factorization 

where the vectors ,zk E E m ,  k = 1,2,  . . . , m-n-1, are the columns of Z. Further, 
the first min[n, m-n-11 of these vectors have the components (3.18), and, if 
m >  2n+1, the remaining vectors have the components (3.20)) the subscripts 
I j  and $ being introduced in the last paragraph of Section 3. 

Proof: Let Q(g) ,  g € R n ,  be the initial quadratic model, given at the begin- 
ning of Section 3. Each element of V2Q is either defined by the equations (1.1) 
or is set to  zero. Therefore the choice of Q minimizes I (V2Q//F subject to the 
interpolation conditions. It  follows from the derivation of the system (3.10) 
that ,  if we let r have the components ri = F(gi ) ,  i = 1,2 ,  . . . , m,  and if we set 
A =  R r ,  where R is taken from expression (3.12), then A is the unique vector - 
satisfying the constraints (3.7), such that V2Q is the matrix (3.8). These re- 
marks characterise R uniquely, because they are valid for all right hand sides 
ri  = F(g i ) ,  i = 1 , 2 , .  . . , m. Hence it is sufficient to  verify that,  if we put the 
matrix (A.9) into the equation A =  Ry for general r, then A has the properties 
that have been mentioned. 

The first of the constraints (3.7) is ATe=O,  where e € R m  is the vector of 
ones. Substituting A= fly and a=  ZZT,  this condition becomes rTZZTe= 0, 
which is achieved, because each column ,zk of Z has the components (3.18) or 
(3.20), and both sets of components provide &g = 0. Similarly, the relation 
X = ZZTT implies that the other constraint (3.7) also holds if Z satisfies the - 
equations 

m 

For 1 L k 5 min[n, m - n - 11, the values (3.18) and (3.2) imply that the left 
hand side of this expression is a multiple of the difference Pbeggk-Pbeg&k =0. 
Alternatively, for n + l L  k 5 m-n-1, the values (3.20), (3.19) and (3.3), with 
i = k+n+  1 and =go, give the condition 
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Thus, for general 2 : ~  Rm, the vector A= f21: does obey the constraints (3.7). 
By substituting X=ZZTE, we write the matrix (3.8) in the form 

and we complete the proof by establishing V2Q=V2D.  For 1 < k < min [n, 
m-n- 11, the components (3.18) provide the equations 

zC~ :  = fidg {-F(%) + % F('O+~beg ek) + F(.o-~beg ek)) I 
C L ~  z j k ( q - z 0 )  ( q - s ~ ~  = JzP;:~ {P2egeke~}  = JZeker ( ' 

(A. 13) 
Moreover, the construction in the first paragraph of this section employs the 
divided difference 

(v2Q)kk = {F(:O-~beg ek) - 2 F(:o) + F(.,+~beg ~ k ) )  . (A.14) 

It  follows that the first min[n, m-n- l] terms of the sum over k in expression 
(A.12) provide a diagonal matrix, whose diagonal elements are the same as 
those of V2Q. Thus V2Q=V2D is achieved in the cases m 5 2n+1. It  remains 
to  show that,  if m > 2n+l, then the last m-2n-1 values of k in expression (A.12) 
generate the off-diagonal elements of V2Q without disturbing the diagonal 
elements. 

For each k in the interval [n + 1, m-n -  11, the interpolation points (3.3) 
and (3.19) are relevant with i =  k+n+l .  Indeed, the components (3.20) imply 
that & is just the left hand side of equation (3.5), while the term in the 
braces of expression (8.12) is the matrix 

-e,eT -e,e; + (a,e,+~, e,) (a,e,+u, eqIT = a, a, (e,eT +eq e;). (A.15) 

Therefore the k-th term of the sum (A.12) contributes to (V2D),, and (V'D)~, 
the amount that is required by equation (3.5), and it does not alter any other 
element of V'D. Thus all the different elements of V2Q that can be nonzero 
are provided by the different values of k in expression (A.12). The justification 
of the initial choice of Z is complete. 
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