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Preface 

Although transportation economists have been advocating tolling of urban 
streets as a mechanism for controlling congestion and managing travel de- 
mands for over 50 years, it is only recently that this idea has become practical. 
When compared to the alternative of building more roads, congestion pric- 
ing, in particular via electronic tolling, is now more attractive and has been 
adopted in countries around the world. Singapore implemented its Area Li- 
censing Scheme to restrict vehicular traffic into the city's central area in 1975. 
Later (1988) it was renamed 'Electronic Road Pricing,' in part to reflect the 
use of new technology. In Norway, the first toll ring was operational in Bergen 
in 1986 and, subsequently, two additional toll rings were established in Oslo 
and Trondheim. More recently, the city of London introduced in February 
2003 a five pound daily fee on cars entering the city center. In spite of public 
resistance to  the concept of tolling, some cities in the United States have also 
employed congestion pricing in recent years. This is due in part to the Conges- 
tion Pricing Pilot Program established by Congress in 1991 that authorized 
the FHWA to enter into cooperative agreements with up to 15 state or local 
governments to  establish, maintain, and monitor congestion pricing projects. 
Later, this program was given a broader scope and named the Value Pricing 
Pilot Program. 

Papers in this volume focus on the development and the analysis of math- 
ematical and computational models for determining tolls or setting prices in 
an effort to  control congestion or, more generally, demands. Interestingly, the 
first paper by A b r a m s  and H a g s t r o m  discusses improving traffic flow with- 
out charging tolls. Instead, they introduce the possibility of blocking entries 
into certain roads. Ba i ,  Hea rn ,  and Lawphongpanich consider congestion 
tolls based on a system optimal traffic pattern and provide methodologies 
for resolving computational issues associated with using a traffic pattern that 
is only approximately system optimal. Then, the paper by Be r t s imas  and 
Perak is  addresses the problem of setting prices when the demand as a func- 
tion of price is not known, but is learned over time. In general, travelers 
or users of transportation networks are heterogeneous, e.g., they may value 
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time differently. Engelson and Lindberg  show in their paper that differ- 
ent values of time (e.g., in time or monetary units) can lead to  models with 
different properties. Computationally, some of these models are more advan- 
tageous than others. Similarly, Flor ian assumes in his paper that there are 
multiple classes of users, some of whom are not willing to pay tolls, and de- 
scribes approaches that have been used in many countries to  predict the usage 
of tolled facilities among different user classes. Sensitivity analysis is a use- 
ful technique for predicting changes in, e.g., the level of congestion, due to  
changes in, eg . ,  toll prices, infrastructure, and user behavior. Josefsson and 
Pa t r iksson  describe a method for generating sensitivity information that 
is more general and efficient than those in the literature. The paper by D e  
P a l m a  and Nes te rov  proposes 'stable dynamics' models for commuters who 
must make parking decisions as part of their commute. S m i t h  considers the 
'bilevel' problem of estimating road prices and signal green-times which ap- 
proximately minimizes a smooth measure of disbenefit subject to equilibrium 
and other constraints. He proposes a method that finds an approximate equi- 
librium that is stationary with respect to the measure of disbenefit. S t ewar t  
and Maher ' s  paper considers the problem of finding toll prices that yield the 
least revenue in order to  minimize the financial impact on the traveling public. 
Their procedure is based on the stochastic user equilibrium and (determin- 
istic) system optimal traffic assignment models. Concluding the volume, the 
paper by Sumalee,  Conno r s  and Wat l ing  considers an optimal toll design 
problem based on stochastic user equilibrium with Probit route-choice. Their 
algorithm for solving the problem uses the sensitivity information discussed 
in the paper by Josefsson and Patriksson. 

We would like to  take the opportunity to  thank the authors of the papers, 
anonymous referees, and the publisher for helping us to produce this volume. 
We also want to thank Altannar Chinchuluun for his help in preparing the 
volume and putting all of the papers in their final form. 

S. Lawphongpanich, D. W. Hearn, and M. J .  Smith 
Gainesville, Florida and York, England 

September 2005 
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Improving Traffic Flows a t  No Cost 

Robert A. Abramsl and Jane N. Hagstrom2 

Information and Decision Sciences, University of Illinois at Chicago, 601 S. 
Morgan, Chicago, IL 60607-7124, U.S.A., rabramsauic. edu 
Information and Decision Sciences, University of Illinois at Chicago, 601 S. 
Morgan, Chicago, IL 60607-7124, U.S.A., hagstrom0uic. edu 

Summary. The standard model of traffic flow used in the analysis of urban traffic 
is the Wardrop equilibrium. The existence of traffic flows that reduce costs for some 
travelers without increasing the costs for any other travelers when compared to the 
equilibrium defines a Generalized Braess Paradox. We provide a practical methodol- 
ogy for detecting such flows and report the existence of such a flow in the Sioux Falls 
study network when links with equilibrium flows in the free-flow range are regarded 
as constant cost. 

Key words: Multicommodity Traffic, Noncooperative Equilibrium, Nonlin- 
ear Programming, Braess Paradox. 

1 Introduction 

Traffic congestion is becoming a more and more pressing issue for society and 
a major concern for urban planners. In 1968, Braess [Bra681 identified the 
possibility that  more roads can make traffic worse. In this paper, we take 
an "inverse" view, that is, that fewer roads, or more-restricted roads, can 
make traffic better. Specifically, we look for situations in which the total cost 
of congestion is reduced at no additional cost to any traveler. We provide a 
methodology for identifying such situations and demonstrate that the Sioux 
Falls study network is an example in which restricting traffic on certain links 
leads to 33% lower travel times for some travelers while costs for other travelers 
increase no more than 0.25%. 

In urban road networks, individual travelers decide on their own travel 
routes on the basis of factors such as time, cost, and convenience. Since they 
are not acting cooperatively, it is not surprising that these individually chosen 
routes are not best from society's point of view. In this paper we show how 
to  detect cases where redirecting traffic flows reduces the travel time for some 
travelers while not increasing travel time for any travelers. Since this redirec- 
tion can be enforced by restricting access to  certain links in the network, or 

Mathematical and Computational Models for Congestion Charging, pp. 1-22 
O 2006 Springer Science and Business Media, Inc. 



2 R.A. Abrams, J .N .  Hagstrom 

by imposing tolls, it is possible to improve society's traffic costs while costs 
to individual travelers are reduced or remain the same. 

The standard model of traffic flow assumes that travelers distribute them- 
selves according to Wardrop's user-equilibrium principle. (See [Pat94, Chapter 
21, and [War52].) This principle states that all used paths between an origin- 
destination pair will have the same cost, which is no more than the cost on 
any unused path. Cost is measured as time or some combination of tolls, time, 
and other factors. Braess [Bra681 used this model to construct a seemingly 
paradoxical example in which adding a link to  a simple network results in a 
user-equilibrium distribution of flows that is worse for all travelers than the 
network without the added link. One can also view Braess's network example 
with the added link as an example in which a nonequilibrium flow (with no 
flow on the added link) reduces costs for all travelers. 

In a previous paper [HA02], the authors defined a Generalized Braess 
Paradox to  occur whenever there is an alternative distribution of flows which 
makes some travelers better off and none worse off than in the Wardrop equi- 
librium distribution. In game-theoretic terms, a Generalized Braess Paradox 
occurs whenever the user equilibrium is not strongly Pareto optimal. In this 
paper we show how to detect a Generalized Braess Paradox and report the 
detection of a Generalized Braess Paradox in the widely known Sioux Falls 
study network, when certain links with equilibrium flows in the free-flow range 
are assigned constant cost. We thus demonstrate the feasibility of detecting 
opportunities in which society can improve its total costs without increasing 
the cost to  any individual travelers. The procedure that we develop will also 
detect occurrences of the "classic" Braess Paradox, in which removing a link 
results in improved travel cost. 

This work is related to, but distinct from, work on finding system-optimal 
flows in a network. A system-optimal flow in a traffic network minimizes the 
sum of the costs of all travelers. A system-optimal flow is desirable from 
society's point of view because it minimizes consumption of resources and 
production of pollution. The system-optimal flow is usually distinct from 
the user-equilibrium flow, but typically will require some travelers to incur 
higher travel costs than in the equilibrium flow. Braess's example is one in 
which the system-optimal distribution demonstrates the existence of a Gen- 
eralized Braess Paradox. This, however, is unusual. In more usual cases (See 
[HA02].), the system-optimal distribution makes some travelers worse off than 
in the equilibrium distribution, even when a Generalized Braess Paradox ex- 
ists. Finding a distribution that demonstrates the existence of a Generalized 
Braess Paradox is significantly more difficult than finding a system-optimal 
distribution. 

In [HA02], we showed that a Generalized Braess Paradox can be charac- 
terized in terms of a mathematical program. In this paper, we use that char- 
acterization to develop a method for detecting the occurrence of a Generalized 
Braess Paradox. We make the mathematical program of [HA021 tractable by 
relaxing its constraints to obtain a convex mathematical programming prob- 
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lem that will detect occurrences of the Generalized Braess Paradox. However, 
due to  the particular structure of the relaxed problem, first-order optimality 
conditions may not hold for the optimal solution, thus rendering inapplicable 
any algorithm based on standard first-order conditions. Therefore we adopt a 
special method to solve the problem. The method first uses a sequence of lin- 
ear programs to  identify which nonlinear constraints always hold as equalities, 
and then whether a Generalized Braess Paradox exists. The number of linear 
programs is no more than the number of links in the network and usually much 
less. We apply the method to  two small examples and to the well-known Sioux 
Falls study network with 24 nodes, 76 links, and 528 origin-destination pairs. 
A Generalized Braess Paradox is found to occur in the Sioux Falls study net- 
work when links with equilibrium flows in the free-flow range are regarded as 
constant cost. The second of the small examples illustrates that the first-order 
optimality conditions (Karush-Kuhn-Tucker conditions) cannot be expected 
to  hold for the optimal solution to the relaxed mathematical program, even 
though it is a convex nonlinear programming problem. 

2 Notation and Definition of the Equilibrium Problem 

We consider a transportation network with multiple origin-destination ( o -  
d) pairs. Depending on circumstances, demand (usually given as a trip table, 
specifying for each origin-destination pair the volume per unit time of travelers 
desiring to  move between that origin and destination) may be either elastic 
or fixed. For the purposes of this paper we assume fixed demand. 

We make the following two assumptions. Neither is restrictive in that if 
either fails to hold, existing methods in the literature (See, e.g., [AM81].) can 
be used to reduce these cases to  situations satisfying the assumptions. 

1.  Travel costs are additive,  that is, the travel cost of a route is the sum of 
the traversal costs of the links on the route. 

2. The cost of traversing a link is the same for all travelers, and the cost 
depends on the vector of total link flows, where the total flow o n  a single 
link i s  the  s u m  of the  individual flows o n  the  link between each of the  
origin-dest inat ion pairs. 

An equilibrium distribution of flows is a distribution of flows that meets 
demands and satisfies Wardrop's User-Equilibrium Principle, i.e., every used 
path between an o-d pair must have the same cost, and all unused paths be- 
tween the same o-d pair must have cost greater than or equal to that of the 
used paths. A Wardrop equilibrium corresponds, in a game-theoretic frame- 
work, to  a (noncooperative) Nash equilibrium. (See [Pat94, pages 32, 541.) 

For a Wardrop equilibrium to be reached, one must assume that travelers 
have perfect information about travel costs and act to minimize their indi- 
vidual travel costs. Although this may seem to be a strong assumption, most 
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models used in traffic network analysis and planning assume that traffic will 
be distributed according to a Wardrop equilibrium. 

2.1 Notation 

As is common in traffic flow theory, our model is built on a network structure 
with travel costs on each link and known supplies and demands for each 
node. Our notation accounts for the network structure, properties of links, 
and properties of the travelers using the network. 

I i lanode  I 

Table 1. Notation 

I dla destination node 1 

k 

t(k) 
h(k) 

I Nl the set of nodes in the network I 

a link 
the node that link k is directed out of 
the node that link k is directed into 

I xlthe vector of total link flows I 

A 
A 
2) 

E$ lthe equilibrium solution flow on link k destined for d 
51. lthe total flow on link k in the eauilibrium solution 

the set of links in the network 
the IN1 x ]A1 node-link incidence matrix of the network 
the set of destination nodes 

G,dlthe equilibrium cost of traveling from node i to destination d 
~ i l t h e  reduced cost Fk(%) - fif(k) + u & ~ )  

Table 1 summarizes the notation we use. In addition, the elements a,,k of 
the node-link incidence matrix A are defined by 

1 if link k is directed out of node i 
-1 if link k is directed into node i 

0 otherwise. 
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In describing the flow on the network, we partition travelers according to 
their destination. In our previous work, we partitioned travelers according to 
both their origin and destination. The latter approach is conceptually easier; 
however, from a computational point of view, the smaller number of classes 
of travelers is desirable, and does not lose any generality. I t  is well known 
(LeBlanc, [LeB73]) that it is not necessary to discriminate between travelers 
starting from different origins if they are bound for the same destination, or 
equivalently, that it is not necessary to  discriminate between travelers bound 
for different destinations if they have all started at the same origin. 

2.2 T h e  Equi l ib r ium P r o b l e m  

The Wardrop equilibrium solution can be defined in several equivalent ways 
(See [Pat94, BMW55, Roc80].), e.g., as a variational principle, as the solu- 
tion of an optimization problem, etc. The particular formulation chosen turns 
out to  be critical in developing a tractable characterization of the Generalized 
Braess Paradox. For this purpose, we use a Lagrange multiplier definition. For 
given A ,  F, and demand vectors bd ,  the equilibrium problem can be expressed 
as seeking a solution to 

Equation Sets (1) and (4) state that on a link with positive flow destined 
for destination d, the cost of travel on the link k, Fk (x ) ,  is equal to the price 
difference, uf-uj,  corresponding to destination d, between the two end nodes, 
i and j ,  of the link. If there is no flow directed towards d on link k, then 
(4) allows zf to be positive and the cost of travel on link k may be greater 
than or equal to  the difference in prices. Equation Set (2) requires that flows 
directed toward d satisfy demand at  origin and destination nodes and conserve 
flow at  other nodes. Equation (3) defines the total flow on a link to be the 
sum of the flows on that link headed to the different destinations. There is 
always one node price u p o r  each d that is arbitrary. Equation Set (7) removes 
this ambiguity by defining the price at the destination nodes to  be zero. An 
equilibrium solution, denoted {(xd, ud, %d))dEv, is a solution to (EQ). In an 
equilibrium solution, the node price G: is the cost of traveling from node i to 
destination d along links with Z: > 0. 
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3 The Existence of Improved Flows 

Given a Wardrop equilibrium set of flows, we wish to  determine whether 
there is another distribution of flows that makes some travelers better off 
and no travelers worse off than in this equilibrium. To that end, we define 
a nonlinear program which minimizes system cost subject to  the constraint 
that no traveler has cost greater than in the given equilibrium. The constraints 
are similar to  those of the equilibrium problem, (EQ), except that instead of 
requiring that the traversal cost on a used link equal the price difference of its 
nodes, we allow the traversal cost of the link to  be less than or equal to the 
price difference of its nodes. In this way, the formulation allows nonequilibrium 
flows, and as discussed following the formulation, the potential a t  each node 
becomes an upper bound on the travel cost from that node to  the relevant 
destination. 

For given A, F, demand vectors bd, and equilibrium travel costs ti:, define 
the following optimization problem, originally introduced in [HA02], which 
we henceforth call the Equi l ibr ium Improvement  Problem, (EIP). (In 
[HA02], we referred to this as the Braess Optimization Problem.) 

min x . F(x) 
s.t. F(x) - A ~ U ~  - zd 5 o 'd d  E D  

 AX^ = bd V d € D  

x = CdED xd 
CdED zd . xd = 0 

xd > 0 V d e D  

zd 2 0 V ~ E D  

ui = 0 Y d e D  

ut < ii! V S E O ~  

The constraints of (EIP) are very similar to  the equilibrium problem (EQ). 
The differences are: 

1. As noted above, Constraint Set (8) is a set of inequalities instead of equa- 
tions. The inequality requires that,  on a link with positive flow for a 
particular destination, the travel cost is less than or equal to  the price dif- 
ference of the nodes connected by the link. Thus for any feasible, possibly 
nonequilibrium, flow, and for any used route from node i to destination 
d ,  the inequality constraint (8) implies that uf is an upper bound on the 
travel cost from node i to destination d  along that route. 

2. There is an additional constraint set, (15), which forces the travel cost 
from any origin to destination to be less than or equal to that of the 
equilibrium flow. 
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When x is nonnegative, the components of F (x )  are convex, and F ( x )  
is monotone ( (y  - x) . (F(y) - F(x))  2 0 for all feasible x, y [HPgO]), the 
objective function of (EIP) is convex, as is shown in Appendix B. Thus without 
Equation ( l l ) ,  (EIP) would be a convex optimization problem. 

Any feasible solution to  (EIP) with objective function value less than that 
of the equilibrium flow reduces the travel cost for some travelers and, due to  
the last set of constraints, does not increase the travel cost for any travel- 
ers. Thus if an equilibrium solution is not optimal for (EIP),  a Generalized 
Braess Paradox exists. As shown in [HA02], the converse also holds when each 
component of F ( x )  is nonnegative and nondecreasing. It  follows that under 
these mild conditions on Fk, determining the existence of flows that improve 
on a Wardrop equilibrium is equivalent to testing (EIP) to  see if a Wardrop 
equilibrium is optimal. In the following sections we will develop methods to  
test optimality of the Wardrop equilibrium. We first establish that if there is 
a feasible solution to  (EIP) for which some constraint corresponding to a used 
link in Set (8) holds strictly, then the equilibrium solution is not optimal for 
(EIP) and a Generalized Braess Paradox exists. 

Proposition 1. If there exists a feasible solution t o  (EIP) wi th  the  property 
tha t  for s o m e  link k and dest inat ion d ,  

t h e n  a Generalized Braess Paradox exists.  

Proof.  Suppose that the triples (xd, ud,  zd) define a feasible solution to  (EIP) 
and there exists a link k*  and destination d* such that 

From constraint set (15), we know that no traveler is worse off than in equi- 
librium. Since xi: > 0, there exists an origin s* which contributes flow to  link 
k*  that is destined for d * ;  more specifically, there is a path P of links k joining 
s* to d* such that k* E P and xi* > 0 for all links k E P. Since xi* > 0 for 
these links, zf = 0 on these links. Then for each of these links, Constraint 
Set (8) gives 

F k  ( 4  5 u$k) - +k). 

Our assumption of strict inequality gives 

Summing over k E P ,  and using Constraint Sets (14) and (15) we have 

Thus we have travelers using path P to go from s* to t* with a lower cost 
than in equilibrium. 
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4 A Computational Approach for Local Improvements 

(EIP) provides a direct method of checking for the existence of a Generalized 
Braess Paradox by solving an optimization problem. However, for even mod- 
erately large networks (EIP) is difficult to solve because the complementarity 
constraint (ll),  which essentially defines for each destination d the subnet- 
work of arcs that may be used by flows destined for dl is not convex. Solving 
(EIP) implies the need to  (implicitly or explicitly) enumerate all feasible sub- 
networks of the network. Since for each destination, flows may use a different 
subnetwork, solving (EIP) may require an extremely large enumeration. We 
therefore treat a more tractable version of the problem for which we can de- 
tect many instances of the Generalized Braess Paradox using a finite sequence 
of linear programs. 

In order to  develop the more tractable test, we replace the troublesome 
Constraint (11) with a more restrictive, but more tractable, condition. This 
new problem will identify a local Generalized Braess Paradox, in the sense that 
our search for an improved flow is restricted to  using essentially the same set 
of links used in the Wardrop equilibrium solution. The existence of a solution 
of the more restrictive problem that has a lower objective function value than 
the equilibrium solution will guarantee the existence of a Generalized Braess 
Paradox. However, because the problem is more restrictive, an improved so- 
lution using a different subnetwork may remain undetected. Therefore even 
when the equilibrium solution is optimal for the modified problem, a Gen- 
eralized Braess Paradox may exist as shown by Example 1 of [HA02]. This 
limitation is shared by all tests for the Braess Paradox of which we are aware 
([DN84a], [SZ83]), in that none will detect a Braess Paradox that uses flows 
on a subnetwork distinct from that of the equilibrium solution. 

The Restr ic ted Equi l ibr ium Improvement  Problem, (R-EIP), is 

(R-EIP) 

This formulation entails two changes from (EIP). Constraint Set (8) has 
been replaced with Constraint Set (16), which contains a new variable y.  
Since the variable y can be set to  a very large number, when the equilibrium 
value 2: > 0, the corresponding constraint is redundant just as is the case 
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for Constraint Set (8) when zf > 0. Constraint (11) has been replaced with 
Constraint (19), which requires that zt = 0 whenever 2: > 0. Thus any 
feasible solution to (R-EIP) has flow going to  destination d only on links k 
with 22 = 0. 

As previously noted, if F is convex and monotone, the objective function 
of (R-EIP) is convex. Therefore (R-EIP) is a convex optimization problem. 
All constraints except those involving F are linear. Our aim is to determine if 
the Wardrop equilibrium solution {(xd,  ud, E ~ ) ) ~ ~ ~  is optimal for (R-EIP). If 
a constraint qualification held for the problem, one might use the first-order 
necessary (KKT) conditions. However, as shown by Example 2 in Section 5 ,  
even when the equilibrium solution is optimal for (R-EIP), the KKT con- 
ditions do not necessarily hold. Therefore no constraint qualification can be 
assumed to  hold for the problem, and methods other than those based on the 
standard first-order conditions must be used. 

Convex programming problems for which no constraint qualification holds 
have been studied extensively by Ben-Israel, Ben-Tal and Zlobec [BBZ81]. Us- 
ing their approach and an algorithm proposed by Kerzner [AK78], we first de- 
termine if one or more nonlinear constraints hold as strict inequalities for some 
feasible solution. If even one such (nonvacuous) constraint exists, Proposition 
1 states that there is a Generalized Braess Paradox. If it is determined that 
no such constraint exists, we formulate a single linear program that searches 
for a feasible direction of improvement. The existence of such a direction will 
establish the existence of a Generalized Braess Paradox. If no such direction 
exists, then the Wardrop equilibrium solution is optimal for (R-EIP). 

Fig. 1. Bridge Network 

In our case of faithfully convex differentiable functions (See Appendix A 
for a definition.), Kerzner's algorithm for finding the constraints that can be 
satisfied strictly solves a sequence of linear programs. The number of linear 
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programs that must be solved is no more than the number of constraints and 
usually far less. In a network model of form (R-EIP), we point out in Appendix 
A that the number of linear programs that must be solved is bounded by the 
number of links. The model (R-EIP) for the Sioux Falls study network has 
1655 nonlinear constraints after removing those corresponding to positive $, 
but requires the solution of only three linear programs to  determine which 
constraints can be satisfied strictly. The algorithm as adapted for (R-EIP) is 
described in Appendix A. 

5 Computational Results 

We consider three examples in detail. The first two use the five-link bridge 
network studied by Braess [Bra681 to  illustrate his paradox, and the third 
is the well-known Sioux Falls study network [Bar02]. The first of the small 
examples is a straightforward application of the method as described in Ap- 
pendix A. The second example on the same network is a case in which there 
is no Generalized Braess Paradox, that is, the equilibrium solution is optimal 
for (EIP), but the Karush-Kuhn-Tucker conditions do not hold. The data, 
models and numerical results for all three examples are given in [Hag04]. 

Table 2. Data for Example 1, with a Generalized Braess Paradox but no Classic 
Braess Paradox 

Example 1. The network for Example 1 is shown in Figure 1. The demand 
for travel between the origin s and the destination t is 6 units of flow. The 

Equilibrium 
System 
Optimal 

Link Flows 

2.000 
2.000 1.01 1 
2.000 
4.000 

Route Route Costs 

(R-EIP) 
Optimal 

J 

without 
Link 3 

1, 4 
1, 3, 5 

2 ,  5 
Most Costly Used Route 

System Cost 

18.400 
18.400 
18.400 
18.400 

110.400 

18.920 
14.266 
17.770 
18.920 

106.093 

18.400 
14.372 
18.387 
18.400 

106.293 

18.434 

18.434 
18.434 

110.607 
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cost functions for the five links, the equilibrium solution, the system optimal 
solution, and an improved solution illustrating a Generalized Braess Paradox 
are shown in Table 2. Note that the cost functions are strictly convex in their 
arguments, and monotone, and as a result (See Appendix B.) the objective 
function of (EIP) is convex. There is no classic Braess Paradox for this problem 
because, as is also shown in Table 2, eliminating Link 3 does not result in an 
improved equilibrium travel cost from node s to node t .  Because the problem 
is small, it is a simple matter to solve (EIP) or (R-EIP) directly to  find a 
Generalized Braess Paradox if one exists. The (R-EIP) optimal solution shown 
in Table 2 reduces the travel cost for travelers using the route consisting of 
Links 1, 3, and 5 by 22 percent, and does not increase the cost for any other 
travelers, thus establishing the existence of a Generalized Braess Paradox. In 
this particular example, any convex optimizer can be counted on to give a 
correct solution to  (R-EIP) because the nonlinear constraints can be sa.tisfied 
strictly for some feasible solution. The details of our general approach as 
applied to this example are given in Appendix A. 

Example 2. The network for Example 2 is the same simple network as for 
Example 1, with the same demand for travel. The cost structure has been 
changed to  eliminate the occurrence of a Generalized Braess Paradox. The 
equilibrium solution is optimal for (R-EIP). However, the first order optimal- 
ity conditions do not hold at the equilibrium solution. The link costs, the 
equilibrium solution and the system-optimal solution are shown in Table 3. 

Applying the algorithm described in Appendix A to (R-EIP), we find at  
the first iteration that both of the nonlinear constraints (those in (16) corre- 
sponding to  Links 2 and 4) must hold with equality for all feasible solutions of 
(R-EIP). We then conclude (See Appendix A.) that the flows on Links 2 and 
4 are constant for all feasible solutions of (R-EIP). Due to the simple struc- 
ture of this example, it is immediately apparent that if there are no feasible 
changes to the flows on Links 2 and 4, there are no feasible changes to the 
flows on the other three links. Thus we know that the equilibrium solution is 
optimal for (R-EIP) and there is no local Generalized Braess Paradox. 

Table 3. Data for Example 2, with No Generalized Braess Paradox 

Link 

2.48 

Highest Used Route Cost / 16.801 17.99 
System Cost 1 100.81 97.3 

Cost Function Equilibrium 'ystem 
Optimal 
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If the example were not so simple, we would replace the arguments of the 
strictly convex cost functions for Links 2 and 4 by their constant values to 
obtain linear constraints. (R-EIP) then becomes a nonlinear program with 
convex objective function and linear constraints. Thus we have converted a 
formulation of the problem for which the Slater condition does not hold to 
one for which it does. Solving a linear program that searches for a feasible 
direction of decrease leads to the conclusion that the equilibrium solution is 
optimal for (R-EIP) and there is no local Generalized Braess Paradox. This 
example illustrates a case in which the equilibrium solution is optimal for 
(R-EIP), yet the Karush-Kuhn-Tucker conditions do not hold for the original 
formulation. 

Example 3. The Sioux Falls study network is often used as a test network for 
transportation models. It  consists of 24 nodes, 76 one-way links and 528 origin- 
destination pairs. Thus, most of the nodes are both origins and destinations. 
The network is shown in Figure 2. 

u 
Fig. 2. Sioux Falls Network 

The network structure, the trip table specifying required flows, and an 
accurate equilibrium solution can be found at  [Bar02]. The linear programs 
described in Appendix A were formulated using the LINGO modeling lan- 
guage. (Details are available a t  [Hag04].) For Bar-Gera's equilibrium solution 
[Bar02], the linear programs have approximately 2500 constraints and 4000 
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variables. With one important modification described below, the cost func- 
tion used is the fourth-power polynomial common in traffic analysis; it is also 
available a t  [Bar02]. 

The standard description of traffic flow time (cost) on a link is that it is 
constant in the low volume free-flow range and increasing for larger flows, with 
a sharp rise for flows in excess of a specific "capacity" level. This behavior is 
usually modeled with a fourth degree polynomial. Although the fourth degree 
polynomial does represent the desired behavior fairly well, it is strictly increas- 
ing in any range no matter how small the flow on the link. While this may 
be of little importance in most situations, it can be important in the solution 
of (EIP). Typically many constraints in Set (15) will hold with equality for 
all feasible solutions. In such cases a flow that is otherwise feasible for (EIP) 
might be eliminated because it mathematically violates the constraint even 
though the "violation" may be so small as to have no practical significance. 
To minimize the possibility of this occurring, we replace the fourth degree 
polynomial by a constant function on links for which the equilibrium flows 
are under half of the given capacity level, that is, for those well in the free- 
flow range. After finding the optimal changes for (R-EIP) using the constant 
cost functions for the free-flow ranges, we recalculated link costs using the 
original quartic functions. We found that while reducing some travelers costs 
by 33'70, no link costs increased by more than 0.25%. These increases occur on 
the arcs that were set to a constant cost, and the flows on these links were still 
under 50% of capacity, again in the free-flow range. With the original quartic 
functions in (R-EIP), an improved solution was not found. This is due to the 
strictly increasing cost function and the dense structure of the network. A 
similar result to  that obtained with the modified cost function can be found 
by retaining the quartic functions and relaxing Constraint Set (15) to  allow 
the cost of travel to slightly exceed the equilibrium value. 

After solving the first LP as described in Appendix A (See also [Hag04].), 
we found that 64 of the 68 (one-way) links with nonlinear cost functions must 
have constant cost for all feasible flows. As pointed out in Appendix A, this 
implies that the total flow on these links must be constant for all feasible so- 
lutions, and the nonlinear constraints may be replaced by linear constraints. 
Solving a second LP added two links to the set with constant cost. After solv- 
ing a third LP, we found that nonlinear constraints corresponding to  the last 
two links [5-61 and [6-51 can be satisfied strictly. All three of the LP's were 
solved in seconds on a desktop Windows machine using LINGO. The dual 
prices from the third LP give the changes in destination-based flows that will 
make links [5-61 and [6-51 have costs that are lower than the price differen- 
tials. This interior direction involves changing flows around two circuits, each 
involving a separate destination. The magnitudes of all the changes are equal. 
The links that have changes in flow, and the directions of these changes, are 
shown in Figure 3. By Proposition 1, these changes demonstrate the occur- 
rence of a Generalized Braess Paradox for the Sioux Falls study network. 
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Changes in Flow 
Destmed for Node 
10 (ma Node 5) 

a Changes ln Flow 
Destmed fon Node 16 
(ma Node 6) 

Fig. 3. Improving Changes in Flow for Sioux Falls Network 

After determining that a Generalized Braess Paradox exists and that all 
costs were constant except those corresponding to  links [5-61 and [6-51, we 
found the optimal solution to  (R-EIP). In the optimal solution the total flow 
changes were consistent with the direction found at the third iteration of 
the algorithm. However, different destination flow changes occurred. Details 
may be found at [Hag04]. As might be expected in multiple origin-destination 
models, these changes are not unique, and may be different each time the 
problem is solved. 

6 Conclusions 

The method presented in this paper identifies situations in which, when com- 
pared with the Wardrop equilibrium, alternate flows exist that reduce cost for 
some travelers without increasing cost for any other travelers. The network 
presented by Braess [Bra681 is an example of such a situation. That the phe- 
nomenon can occur in much more complex (nonlinear cost structure, multiple 
origins and destinations, etc.) situations is shown by the small examples in 
[HA021 and, in this paper, by the Sioux Falls study network. Models of ur- 
ban areas can easily involve thousands of links and origin-destination pairs. 
Because the method presented involves only the solution of linear programs, 
we expect that it can be directly applied to  large urban networks. When im- 
proved flows are found, congestion and societal costs can be reduced, but 
individual travelers face negligible increases in costs. This is in contrast to 
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system-optimal flows, where typically some travelers face significant increases 
in cost. 
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Appendix 

A Finding the Set of Always Binding Constraints 

In this appendix we apply Kerzner's algorithm [AK78] to (R-EIP). Because 
(R-EIP) has many sets of constraints and variables, the details become com- 
plicated. We first describe a version of the algorithm for a general convex 
program (CP) with nonlinear convex inequality constraints and linear equal- 
ity constraints. The treatment of linear inequalities is discussed at  the end of 
the description of the algorithm. 

We wish to  determine whether a vector x* is optimal for the following 
convex programming problem. 

(CP) min f ( x )  

s.t. gi(x) < 0, i = 1 , 2 ,  ... m 

A x = b  

where f and the gi are differentiable and faithfully convex. [A function f is 
faithfully convex (See [Roc701 and [BBZ81, page 181.) if it can be written as 

f (x)  = h (Mx  + b )  + a . x + c 

where h is a strictly convex function, M is a not necessarily square matrix, a 
and b are vectors of appropriate dimensions, and c is a scalar constant.] 

We assume, without loss of generality, that at x* all of the nonlinear con- 
straints, those involving gi, are binding. Any constraints that are not binding 
at  x* may be ignored for our current purposes. 

Let P =  be the set of always binding nonlinear constraints, that is, P =  is 
the set of nonlinear constraints which are binding for all feasible solutions of 
(CP). By definition all constraints not in the set P =  can be satisfied strictly 
for some feasible solution, and by taking a convex combination of such feasible 
solutions, we may obtain a single feasible solution for which all constraints 
not in P' hold strictly. 

As will be shown below, if the set P =  is known, the nonlinear constraints 
in P =  may be replaced by linear constraints, and the remaining nonlinear 
constraints (those not in P=) will hold strictly for some feasible solution. 
Thus the Slater constraint qualification [BSS93, page 1901 will hold, and it 
will be a simple matter to  check the optimality of x* by solving a single linear 
program. 

Kerzner's algorithm for finding the set P =  of (R-EIP) incrementally builds 
up the set of constraints known to be in P = .  It  starts by assuming P =  is 
empty, and at  each iteration finds at  least one more constraint (often many 
more) that is a member of P', or determines that P" is already completely 
specified, in which case the algorithm terminates. 



18 R.A. Abrams, J .N.  Hagstrom 

To start the algorithm, we check for the existence of a feasible direction 
d so that all of the nonlinear constraints evaluated at  x*  + t d  for sufficiently 
small t > 0 will hold strictly, that is, we look for a d that satisfies 

If such a d exists, then P' is empty and all of the nonlinear constraints 
can be satisfied strictly and the algorithm terminates. If no such d exists, then 
the linear program 

(FD-P) max 0 .  d 

s.t. ~ g i ( x * ) ~ d  5 -1, i = 1 , 2 , .  . . rn 
A d  = 0 

has no feasible solution and by the duality theorem of linear programming its 
dual 

(FD-D) min - cri 

set .  Vgi(x*)ai + A'P = 0 (23) 

cr 2 0 

must be either infeasible or unbounded. However, 0 is a feasible solution of 
(FD-D), and thus if (FD-P) has no feasible solution, (FD-D) must be un- 
bounded. In that case some feasible solution to (FD-D) has at least one posi- 
tive component in a. 

Let a be a feasible solution of (FD-D) with at least one component, for 
example the first component, a1, positive. We will show that the first nonlinear 
constraint must hold as an equality for all feasible solutions. Suppose, to  the 
contrary, that for some feasible solution of (CP), the first nonlinear constraint 
holds strictly. Then there must exist a feasible direction d of (CP) satisfying 

Now "left" multiply the constraint (23) of (FD-D) by this feasible direction 
vector d .  The first summand of the left hand side consists of the positive a1 

times the (negative) inner product dTvS1. Thus the first summand is nega- 
tive. Similarly all others are nonpositive. Noting that dTAT/? = 0, we see that 
the left hand side is negative and the right hand side is zero - a contradic- 
tion. Therefore we conclude that whenever an a, is positive the corresponding 
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dTvg i  cannot be negative. Hence the corresponding constraints of (CP) can 
never hold strictly and are members of P=. Thus if we solve (FD-D), and 
find one or more positive ai, we know that the corresponding constraints are 
members of P'. 

The next step is to  replace nonlinear constraints known to be members 
of P= with linear constraints. The assumption of faithful convexity means 
that gi(x) in P' can be broken into linear and strictly convex parts. Since 
by definition a constraint belonging to  P' is constant on the feasible set, 
the strictly convex part of the constraint and the linear part must each be 
constant on the feasible set. I t  then follows that the argument of the strictly 
convex part of the function must be constant on the feasible set. Therefore 
we can replace the nonlinear constraint by linear constraints which require 
i) that the argument of the strictly convex part of the constraint equal its 
unique value on the feasible set, and ii) that the linear part of the constraint 
equal its unique value on the feasible set. The result is that we can write (CP) 
as a convex program with at  least one fewer nonlinear constraint. 

We repeatedly apply the above method until all constraints are determined 
to be in P= and have been replaced by linear constraints, or the only solutions 
of (FD-D) have a = 0. When the only solutions of (FD-D) have a = 0,  all 
of the remaining nonlinear constraints hold strictly for some feasible solution 
of (CP), which by Proposition 1 means that a Generalized Braess Paradox 
exists. If all nonlinear constraints are in P=, we will have reduced the (CP) 
to a problem with a convex objective function and linear constraints. The 
optimality of x* may then be determined by solving a single linear program, 
e.g., by seeking a feasible direction of descent of the objective function. 

If the problem contains linear inequality constraints, these should be put 
in a separate grouping and handled in a manner similar to  that of the linear 
equality constraints. The only differences would be that the feasible direction 
problem (FD-P) needs an additional set of constraints, the corresponding dual 
variables are nonnegative in (FD-D), and Equation (23) has one additional 
term. These modifications will be made in the example that follows. 

As an illustration we apply the above method to Example 1 of Section 5 .  
The network is shown in Figure 1, and the link cost functions are given in 
Table 2. The equilibrium solution for a total flow of 6 units is shown in Table 
2 ,  as are the system optimal flows and improved flows to be determined by 
the above method. 

First formulate the convex program (R-EIP) using the data from Figure 
2. Because the equilibrium solution has flow on all links, Z is equal to zero 
and may be omitted from the formulation. As there is only one destination, 
we omit the superscripts from the formulation. Also denote the top node in 
Figure 1 as node 2 and the bottom node as node 3. 

(R-EIP) 

min 1.42: + 5.422 + x2 JG + 2.42: + 7 . 8 ~ ~  + X 4 \ / G  + 22;  
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Next we formulate the primal feasible direction problem (FD-P) which 
searches for a direction, d ,  that will make the nonlinear constraints hold 
strictly. 

(FD-P) 1 .4dx ,  + d,, - dU8  < O 
1 .6dx2  + d,, - d,, < -1 
2 . 4 4 ,  + d,, - d,, < O 

1.6dx4  + d,, - dUa  < - 1  
2dx ,  + d,, - d,, < 0 

dXl + d x z  = 0 
-dx ,  + d x ,  + d x ,  = 0 
-dx ,  - d,, + d x ,  = 0 

-dx4 - d x ,  = 0 
d,, = 0 
d ,  5 0  

The existence of a solution to this set of inequalities is equivalent to  the 
Slater Condition, which requires that the nonlinear constraints be satisfied 
strictly a t  some feasible point. Although the Slater Condition will turn out 
to hold for this problem, in general it cannot be expected to  hold, and, in 
fact, it does not hold in Examples 2 and 3. We first convert the above set of 
inequalities into a linear program by forming an objective function with cost 
coefficients all equal to zero. Then form the dual of the linear program which 
we denote (FD-D). We denote the dual variables corresponding to  the nonlin- 
ear constraints of (R-EIP) (second and fourth constraints) by aj for j = 2 , 4  
and those corresponding to the linear constraints by /3j for all other values of j. 
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As pointed out above, (FD-D) is either unbounded or it has an optimal 
solution with optimal objective function value equal to zero. We find that the 
optimal solution of (FD-D) has a 2  = 0 and a4 = 0. Therefore, we know that 
(FD-P) has an optimal solution which is a feasible direction leading to  a point 
that satisfies both nonlinear constraints of (R-EIP) strictly. From Proposition 
1 it follows that a Generalized Braess Paradox exists. 

The optimal solution to (FD-P), that is, the direction vector leading to  an 
interior point, may be obtained from the dual prices of (FD-D). An improved 
flow for the original network, demonstrating the Generalized Braess Paradox, 
may then be obtained by moving in this direction. The optimal solution to  (R- 
EIP) is shown in Table 2. I t  is very close to the solution obtained by moving 
in the direction given by the solution to (FD-P). The optimal solution to  (R- 
EIP) reduces travel cost by 22% for travelers moving along the path defined 
by Links 1, 3, and 5 ,  and does not increase travel cost for any travelers when 
compared with the equilibrium solution. 

When the algorithm is applied to a network with multiple origin-destination 
pairs, a significant benefit becomes apparent. For each link k, the constraints 
corresponding to the various destinations d all have the same cost function F'k. 

Suppose that for a link k with strictly convex cost function it is known that for 
one destination dl the constraint indexed by (k,d)  belongs to P Z .  Then the 
unique feasible value of Fk will be known, not only for the constraint indexed 
by (k, d), but for every constraint involving that link k and other destinations. 
Thus the nonlinear constraints of all destinations involving that link may be 
replaced by linear constraints. As a result of this special structure of (R-EIP), 
a t  each iteration of Kerzner's algorithm we will eliminate all of the nonlinear 
constraints corresponding t o  at least one link. If a:, corresponding to a cost 
constraint indexed by (k, d),  is positive for more than one value of k, we will 
eliminate all of the nonlinear constraints corresponding to  those values of k 
also. I t  follows that the number of linear programs that need to  be solved is 
bounded above by the number of links in the network. General formulations 
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of (FD-P) and (FD-D) for Kerzner's algorithm as applied to  (R-EIP) may be 
found in an earlier version of this paper a t  [Hag041 . 

B Convexity of the Objective Function of (EIP) 

In this appendix, we provide an elementary proof of the convexity of the 
system cost when the link cost function is monotone and component-wise 
convex. We thank the editors for pointing out that this result can be viewed 
as a special case of Equation (9) in [HLN84]. The approach in [HLN84] uses 
derivatives of F, which are not required in the proof below. 

Proposition 2. If for x 2 0, the components of F(x) are convex, and F(x) 
is  monotone, then the system cost function x . F(x) is convex. 

Proof. By definition g(x) = x . F(x) is convex if 

or in terms of the vectors x and F(x), 

Thus we must show that (24) holds. The convexity of the components of 
F and the nonnegativity of the components of Ax + (1 - X ) y  give 

The vector function F(x) is monotone for x > 0 if 

Expanding this definition of the monotonicity of F gives: 

x .F(y)  + y .F(x) I x .F(x)  + y .F(y) (26) 

Using (26) to substitute into the last term of the right-hand side of (25) yields 

which establishes (24) ,  as was to  be shown. 
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1 Introduction 

To encourage each traveller to choose a route in a transportation network that 
would collectively benefit all travellers, Hearn and Ramana [HeR98] proposed 
in 1998 a framework for determining the prices and locations a t  which to 
toll the network. This framework requires solving a congestion or toll pricing 
problem, an optimization problem with linear constraints that describe the 
set of all valid tolls or the toll set. Coefficients for the constraints depend on 
an optimal solution to  the system problem, i.e., the traffic assignment problem 
(see, e.g., Florian and Hearn, [FlH95]) that minimizes the total travel delay 
among all travellers. 

For small transportation networks, it is possible to  compute an exact op- 
timal solution to  the system problem. However, obtaining such a solution for 
larger networks may be either impossible or impractical. When implemented 
on computers, algorithms for the system problem must perform all numerical 
computations using finite precision. This naturally induces small numerical 
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inaccuracies because to  perform some mathematical operations precisely re- 
quires infinite precision. Furthermore, the system problem is generally a non- 
linear program for which most algorithms require in theory an infinite number 
of iterations to reach an exact optimal solution. In practice, it is common to 
terminate these algorithms when they find a solution with a small optimality 
gap, e.g., 10E-4. 

On the other hand, using an approximate solution for the system prob- 
lem (or an approximate system solution) to determine the coefficients for the 
constraints defining the toll set may cause the toll pricing problem to become 
infeasible, numerically (e.g., because of finite precision) or otherwise. To over- 
come this infeasibility, Hearn and Ramana [HeR98] employ a penalty function 
approach and Hearn et al. [HYROl] relax one of the constraints defining the 
toll set. For the latter, the relaxation is based on a parameter defined by an 
optimal solution to the penalty problem in [HeR98]. 

This paper studies the viability of using an approximate system solution in 
defining the toll set. Specifically, when an approximate system solution makes 
the toll set empty, this paper alleviates this inconsistency by relaxing one or 
more constraints, some of which are similar to those used in [HYROl]. How- 
ever, our approach to relaxation does not require solving a penalty problem. 
Moreover, this paper also addresses three issues relating to the use of an ap- 
proximate system solution. The first issue is whether an approximate system 
solution yields a consistent set of constraints defining the toll set. When it does 
not, the second issue is to find practical methods for relaxing the constraints 
in order to generate tolls that causes travellers to  use the transportation net- 
work in nearly the most efficient manner. Finally, the last issue is to ascertain 
how well these methods work theoretically and empirically. 

The remainder of the paper assumes that the travel demands are fixed. 
Results for the elastic demand case are similar and given in the Appendix. 
Section 2 defines two types of toll sets, system and non-system, and discusses 
their properties. Section 3 derives a relaxed toll set using an approximate 
system solution and shows that the tolls from this set have the desirable 
property. Section 4 gives an alternate representation of the relaxed toll set. 
Section 5 reports encouraging results for four transportation networks from 
the literature and Section 6 concludes the paper. 

2 System and Non-System Toll Sets 

To define toll sets, consider the two traffic assignment problems in transporta- 
tion science literature, the system and user problems. (See, e.g., [FlH95].) Let 
6 = ( N ,  A) be a network with n/ and A denoting the set of nodes and arcs, 
respectively. Associated with 6, there are also a node-arc incidence matrix, A, 
and a set of commodities or origin-destination pairs, IC. For each commodity 
k E K ,  bk E ~ 1 ~ 1  and xk E RY' denote the corresponding (fixed) demand 
and arc flow vectors, respectively. Hence, v = Ck xk is the vector of the total 
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(or aggregate) flow on every arc and the set of feasible aggregate flow vectors 
can be described as follows: 

where xk  2 0 means xk > 0,Va. (More generally, x y means x, 2 y,,Va.) 
Without loss of generality, we can assume throughout the paper that V is 
bounded and, therefore, compact. (See, e.g., [FlH95].) 

Let s(v) be a travel cost vector in which each element, s,(v), is the cost 
to  traverse arc a.  This cost does not include any toll and can be measured in 
monetary or time units. For simplicity, we assume that s,(v) is differentiable 
for all a ,  i.e., v s (%) ,  the Jacobian of s(v),  exists for all v. Then, the system 
optimal (SOPT) problem (or, more simply, system problem) is to find a feasi- 
ble aggregate flow vector that minimizes the total travel cost or delay among 
all travellers. Mathematically, the system problem can be stated as follows: 

?? = a r g m i n { ~ ( v ) ~ v  : v E V). 

Instead of minimizing the total travel delay, an alternate traffic assign- 
ment problem, i.e., the user equilibrium problem (or, more simply, the user 
problem), assumes that each traveller tries to minimize his or her own travel 
time. The objective of the user problem is to find a solution for which no 
traveller can improve his or her travel time by unilaterally changing routes. In 
particular, v* solves the user problem (or UOPT) if it satisfies the following 
variational inequality: 

Alternately, we say that v* solves VI[s(v), V]. 
The travel delay at  the user solution, ~ ( v * ) ~ v * ,  is generally larger than the 

one at  the system solution, S ( U ) ~ V .  In this sense, the user solution does not 
utilize the network in the most efficient manner. Mathematically, we can im- 
pose tolls on arcs in order to  make travellers use the network more efficiently. 
For a given toll vector, p, let v*(p) solve VI[s(v) + p, V], i.e., v*(p) satisfies 
the following tolled user equilibrium condition: 

We refer to  v* (p)  as the solution to the tolled user equilibrium problem and it 
is the user equilibrium flow resulting from imposing the toll P on the network. 

Similar to  [HeR98], we assume herein that V is a unique solution to SOPT 
and v*(p) is a unique solution t o  VI[s(v) + p, V] for all /3 E R I * ~ .  Below, we 
refer to these two assumptions as [A] and [B], respectively. For example, both 
[A] and [B] hold when we use the Bureau of Public Road (BPR) function for 
travel costs, i.e., s,(v) = ~ ( 1 . 0  + B,(v, /~,)~)  and T,, B,, and y, are positive. 
More generally, both assumptions hold when s,(v) is a continuous convex 
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function for each a and the cost vector s(v) is strictly monotone on {v : v > 0). 
These two assumptions allow us to  define P as a valid or feasible toll vector if 
v*(p) = is, i.e., if the tolled user equilibrium solution associated with /3 equals 
the system solution. (See [HeR98] for a more general definition of a valid toll.) 
Then, the toll set is the set of all valid toll vectors, i.e., I ( E )  = {PJv* (P) = B). 
The following result from [HeR98] describes I ( E )  algebraically. 

Theorem 1. The toll set, I @ ) ,  is the set consisting of the /3 component of 
every pair (p, p) that satisfies the following linear system 

Observe that the above toll set is based on g ,  the optimal solution to  
SOPT. To distinguish this toll set from others (to be defined later), we refer 
to  I ( i s )  as the "(unrestricted) system toll set." As defined above, /3 in the 
system toll set is unrestricted. (In practice, positive tolls represent payment 
for road usage and negative tolls represent subsidies for the same purpose.) 
Moreover, the system toll set is nonempty. In fact, /3 = -s(E) belongs to the 
system toll set because p = -s(v) and pk = 0 for all k trivially satisfy (1) 
and (2).  In addition, the optimality condition for the system problem also 
implies that Pmscp = ~ s ( i s ) ~ E  E I (G) .  (See, e.g., [HeR98].) Transportation 
economists (see, e.g., Arnott and Small [ArS94]), generally refer to  Pmscp as 
the marginal social cost vector. Using -s(v) and V S ( U ) ~ E ,  Hearn and Ramana 
show in [HeR98] that I ( E )  is unbounded. Because an arbitrarily large toll is 
impractical, we assume that all toll vectors in I @ )  are bounded and, when 
not explicitly stated, the constraint jlpll 5 B, where B is a sufficiently large 
number, is included in all toll sets described herein. 

When P is required to  be nonnegative, we refer to the set I + @ )  = {P > 
Olv* (p) = a) as the "nonnegative system toll set." Algebraically, I + @ )  is the 
toll set described in Theorem 1 with an additional nonnegativity constraint 
on p. In practice, I + @ )  is nonempty. Practical traffic assignment models 
(see, e.g., [FGS87], [FlH95], [HLV87], and [LMP75]) typically use travel cost 
functions whose Jacobians, ~ s ( u ) ,  are both nonnegative and diagonal. This 
makes Bmscp nonnegative and I + ( F )  nonempty. Later, we provide a condition 
under which the latter holds without requiring the Jacobian to be nonnegative. 

Consider the case when it is not practical to  compute is exactly. Let G 
denote an approximate solution to SOPT. Without specifying the quality of 
the approximation, all that can be claimed is that G is a feasible aggregate 
flow vector and the toll set based on G, or the non-system toll set, is I ( 5 )  = 

{PIv*(,B) = G). In words, this is the set of toll vectors whose tolled user 
equilibrium solution equals the aggregate flow vector G. As shown below, the 
algebraic characterization of I ( G )  is essentially the same as that of I @ ) .  
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Theorem 2. The nonsystem toll set, T(q,  is the set consisting of the /3 com- 
ponent of every pair (p ,  p) that satisfies the following linear system: 

Proof. Because of assumption [B], Z must solve VI[s(v) + p, V] uniquely for 
every /3 E I @ ) .  From Proposition 1.2.1 in Facchinei and Pang [FaP03], Z 
solves VI[s(v) + p, V] if and only if there exist pk and ok that satisfy the 
following KKT conditions: 

The pair (/3, p), where p is determined by the above KKT conditions, sat- 
isfies (3) and (4). The first and third KKT conditions imply that (3) holds. 
Multiplying the first KKT conditions by Zk and summing the resulting equa- 
tions together yield 

Because Ck Zk = Z, AZ" bk and (Zk)"ok = 0, the above equation reduces 
to (4). 

Conversely, let (p, p) satisfy (3) and (4) and set ok  equal to s(Z)+p-ATpk 
for all Ic.  Then, it follows from (3) and (4) that u k  2 0 and C k ( Z k ) T o k  = 0, 
respectively. The latter also implies that ( Z k ) " u h u s t  individually equal 
to  zero because Zk 2 0 and o k  2 0. Thus, the above KKT conditions are 
satisfied and, using the above result from [FaP03], Z solves VI[s(v) + /3, V], 
i.e., P E I @ ) .  

In the above proof, assumption [B] is essential. Without uniqueness, there 
may be alternate tolled user equilibrium solutions not equal to Z. In addition, 
the non-system toll set described above is always nonempty because, as in the 
system toll set, -s(Z) E T(q. 

Consider the nonnegative and non-system toll set, i.e., T+(Z) = {/3 2 
Olu*(p) = 5). The algebraic representation of I + @ )  is the same as described 
in the above theorem with the addition of the nonnegativity constraint on /3. 
However, the example below illustrates that T+(Z) can be empty. 

The network in Figure 1 represents a transportation system with three 
nodes and four arcs where the travel cost function for every arc is constant 
and equals 1. There are two OD pairs, (1,3) and (2,3), each with a travel 
demand of 2 units. Table 1 displays a set of feasible flow vectors for the 
transportation system. For OD pair (1,3), the flow vector Z('l3) corresponds 
to  sending one unit of flow along each of the two possible paths, 1 + 2 -+ 3 
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OD pairs Demands 
(1,3) 2 
(293) 2 
Travel Demands 

Travel Cost function: s,,(v,,) = 1, V arc (i, j )  

Fig. 1. A Counterexample 

and 1 -, 3. Similarly, z ( ~ > ~ )  corresponds to  send one unit of flow along paths 
2 + 1 + 3 and 2 + 3. Clearly, the aggregate flow vector 5 = + Z(2'3) 
is not system optimal because sending two units of flow along arcs (1,3) and 
(2,3) satisfies both travel demands and is less costly. 

Table 1. Feasible Flow Vectors for the Network in Figure 1 

Because the two OD pairs can be treated as one commodity, the nonneg- 
ative and nonsystem toll set, T+(i?), reduces to the following linear system: 

The equality constraint in the above system can be equivalently written as 

This equation implies that the four inequalities in the system must hold at  
equality, i.e., 
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Adding the first and third equations together yields 

However, this is impossible because Pij 2 O,V( i ,  j ) .  Thus, I + ( G )  = 8. 
The following theorem provides a necessary and sufficient condition under 

which I f  (5 )  is nonempty. Independently, Fleischer et al. [FJM04] provide a 
different, but equivalent, condition for the nonemptiness of the nonnegative 
and non-system toll set. The condition in the theorem below is related to an 
earlier work on bounded traffic assignment problem in [Hea80] that was later 
continued in [Berg51 and [BHR97] under the setting of congestion pricing. 

Theorem 3. For any G E V ,  the set T+(q  is nonempty if and only if G solves 
VI[s(v),V], where V = {vlv = Ck x k ,  Axk = bk,xk > 0 ,v  < G}. 

Proof. Using Proposition 1.2.1 in [FaP03], i? solve VI[s (v ) ,  V] if and only if 
there exist pk,  ak ,  and ,B that satisfies the following KKT conditions: 

In the above system, ,B is the multiplier vector corresponding to the upper 
bounds v < G in V and the complementarity condition pT(v - G) = 0 is 
not required because v = G satisfies every upper bound in V exactly. By an 
argument similar to  the one in Theorem 2, the above conditions are equivalent 
to  those that describe 'T+(G).  Thus, the theorem holds. 

The corollary below provides a similar condition for the nonnegative sys- 
tem toll set and follows immediately from the above theorem. 

Corollary 1. The nonnegative system toll set, I+(E), is nonempty if and only 
if 21 solves V I [ S ( ~ ) , ~ ] ,  where 7 = {vlv = Ck xk,  Axk = bk ,  xk 2 0, v 5 21). 

3 Relaxed Toll Set 

Consider the situation in which an algorithm terminates and produces G as an 
approximate solution to SOPT with some desired optimality gap. Using The- 
orem 3 from the previous section, it is possible to determine whether I+(q 
is nonempty. However, I + ( G )  is often empty in practice. This section resolves 
this difficulty by finding nonnegative tolls that satisfy the conditions in Theo- 
rem 2 approximately. Moreover, the focus is on defining a nonnegative relaxed 
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toll set based on G when v s ( 3  is nonnegative. (When /3 is unrestricted, the 
system and non-system toll sets are nonempty. As such, they require no relax- 
ation. When vs(U) is nonnegative, the same holds for the nonnegative system 
toll set.) 

The first condition in Theorem 2 is 

s(G) + /3 2 A ~ ~ ~ ,  Qk E IC. 

When multiplied by Zk and summed together, the above implies that (s(G) + 
p)TG > C k  b z p k  because AZk = bk and Ck Zk = G. Therefore, the equality 
in (4) can be replaced by an inequality '5.' This replacement motivates the 
definition of a relaxed toll set I + @ ,  E),  for some E > 0, as the set of all /? for 
which there exists a corresponding p satisfying the following conditions: 

Let -Emscp = min{(s(G) + V S ( G ) ~ G ) ~ ( U  - G) : u E V). In Hearn [Hea82], 
Emscp is the optimality gap for SOPT at i7 and the following theorem shows 
that I+(??, €mscP) is nonempty. 

Theorem 4. If vs(G) is nonnegative, then I+(:, tmscp) # 0, wh.ere Emscp > 
0 is as defined above. 

Proof. Note that 

Emscp = ( ~ ( 3  + V S ( G ) ~ G ) ~ G  - min{(s(q + V S ( G ) ~ G ) ~ U  : u E V) 
= (s(G) + ~ m s c p ) ~ G  - min( ( s (3  + Pmscp )T~  : u E V). 

From linear programming duality, the following holds 

Let ,Z denote an optimal solution to  the linear program in the last equation. 
Then, the pair (Pmscp, ,5) satisfies the relaxed toll condition with E = Emscp, 

Because vs(G) is nonnegative, Pmscp > 0. So, Pmscp E I + ( G ,  ~ m s ~ p )  and 
fmscp) # 0. 

As shown above, Emscp can be computed with little effort because many 
algorithms (see, e.g., [FGS87], [LMP75], and [HLV87]) for SOPT compute 
Emscp and terminate when they find a i7 E V such that the corresponding 
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Emscp < E, for some small E > 0. Instead of emsep, it is also possible to choose 
E by solving the following linear program: 

E* = min (s(G) + /?)TG - C b r p k  
(0,~) k 

s.t. s(G) + ,B > ATpk, Vk, 

Because I + ( G ,  Emscp) # 8, the above optimization is feasible. In addition, 
c* < Emscp. 

One important property of the system toll sets (unrestricted or otherwise) 
is that,  for any /3 in I(??) (or I + @ ) ) ,  ?? solves VI[s(v) + P,V], i.e., the system 
solution also solves the user equilibrium problem with the toll vector P. How- 
ever, this property only holds approximately for the relaxed toll set. Assume 
that G solves SOPT approximately, i.e., 

Then, for any P E I + @ ,  &mscp), the following must hold 

I t  follows from the above that 

where the first equality holds because of the strong duality theorem in linear 
programming. Observe that the last inequality implies that G solves VI[s(v) + 
P,V] approximately. Thus, Z approximately solves both SOPT and the tolled 
user equilibrium problem. 

For a slightly stronger statement, Theorem 5 below demonstrates that,  
for any 7 > 0, there exists a 6 > 0 such that jlv*(pl) - all < 7 when P1 E 
I + ( Z ,  Ernscp) and 115 - E /  I < S. (Here, 1 / . I I represents the Euclidean norm.) 
In words, the theorem states that a toll vector from the relaxed toll set yields 
a tolled user equilibrium solution that is approximately system optimal. To 
establish this theorem, the following lemmas are necessary. 

Lemma 1. Let P be a compact set, cl(.) be continuous and strongly monotone 
with modulus a (i, e., (el (q) - cl ( 7 1 ~ ) ) ~  (vl - 712) 2 allvl - v2 1 1 2 ) ,  and c2(.) be 
continuous. If pl and pz solve VAcl (.), PI and V4c2 (.), PI, respectively, then 
llpz - Plll < ;llcz(Pd - ~l(P2)Il .  
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Proof. See Dafermos and Nagurney [DaN84]. 

Lemma 2. For i = 1 and 2, let Fi = { x / U i x  < r i ,  W i x  = t i ) ,  where Ui and 
Wi are ( 1  x n)  and (m x n) matrices, respectively, and ri and t i  are vectors 
i n  R' and R m ,  respectively. If x2 E F2, then there exists a x l  E F such that 

11x1 - ~ 2 1 1  5 ff(U1, Wl )  , where g(ul,  W l )  is a 

finite real number associated with U1 and W I .  

Proof. See Robinson [Rob73]. 

Lemma 3. Let s ( v )  be continuously differentiable and 115 - 511 5 6 for some 
6 > 0 .  For any p' E I + @ ,  E ) ,  there must exist a p E I f  ( E )  and constants 
K1 and K2 such that lip' - 5 K I S  + K 2 c  

Proof. The conditions defining I + @ )  and I + @ ,  E )  can be written more com- 
pactly as follows: 

-P 5 0,  
A~~ - I P  5 I s @ ) ,  ( 5 )  

p + BT,8 - < - s ( v ) ~ F ,  

and 
-P 5 0, 

ATp' - I/?' < Is( - ,  ) ( 6 )  
-bTp' + T P 1  < - s ( V ) ~ ~ ?  + E .  

where A = diag(A, A , .  . . , A ) ,  and bT = ( b l T ,  bzT, s ,  , b , K i T ) .  To further 
simplify our notation, let (U1, r l )  and (U2, r2) denote the pairs of matrix and 
right-hand-side vector for (5) and ( 6 ) ,  respectively. Because P' E I + @ ,  E ) ,  

there must exists a p' such that (PI ,  p') solves ( 6 ) .  From Lemma 2 ,  there must 
exist a pair ( p ,  p) satisfying ( 5 )  for which the following hold 



Relaxed Toll Sets 33 

where the first inequality follows from Lemma 2, the second from the fact 
that 11[x]+11 5 IIxli, the third from the definition of Ui and ri and the tri- 
angle inequality and the fourth from Cauchy-Schwarz inequality. In the fifth 
inequality, u l  and u2 are some points between v and ii and the gradient 
of S ( V ) ~ V  is s(v) + V S ( U ) ~ U .  Furthermore, the inequality holds because of 
Cauchy-Schwarz inequality, the differentiability of s(v) ,  and the mean value 
theorem. Finally, the last inequality is true because we assume earlier that 
IIPll 5 B and the continuous functions ~ s ( v )  and s(v) + ~ s ( v ) ~ v  are bounded 
on the compact set V by some constants L1 and L2, respectively. By let- 
ting K1 = (B + L1 + L2)a(U1) and K2  = cr(Ul), the above reduces to 

w 

Theorem 5. Let s(.)  be strongly monotone with modulus a .  For any 7 > 0, 
there exists a 6 > 0 such that Ilv*(P1) - Gll < rl whenever P1 E I + @ ,  Emsq) 
and /lG-vll 5 8. 

Proof. For any p' E T+(ii ,  Emscp), Lemma 3 implies that there exists a P E 
I + @ )  such that lIP1 -PI1 5 K16+ K z ~ m s c p .  As defined earlier, Emscp depends 
on ii. In particular, Emscp -4 0 as 6 + 0. When combining the latter with the 
fact that a, K1, and K2  are constant and independent of 7 it must be possible 
to  choose S SO that ( l /a)(K16 + K2Emscp) < 7.  

Let p1 E I + ( i i , ~ ~ ~ ~ ~ )  and /3 E I + @ ) .  Then Lemma 1 implies that the 
solutions v*(P1) and U to VI[s(v) + p', V] and VI[s(v) + p, V], respectively, 
must satisfy 

Therefore, the above choice of 6 implies the theorem holds. W 
Because E* < Emscp, the above theorem also holds when E* replaces Emscp. 

4 Disaggregate Representation of Relaxed Toll Sets 

The second condition (2) in Theorem 1 is an aggregation of a number of 
complementarity conditions as shown in the proof of Theorem 2. When (2) is 
relaxed, the resulting relaxed toll set T+(ii ,  E)  may be larger than necessary. 
To define smaller relaxed toll sets, (2)  can be disaggregated into its original 
form. 

Using the argument in, e.g., Theorem 2, it is possible to show that I + @ )  
is equivalent to  the set consisting of the P component of every vector (P, p, a) 
that satisfies the following linear system 
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S(D) + /3 - ATpk = o k l  'dk E K, 
(:lT ak = 0, 'dk E IC, 

ak 2 0, 'dk E IC, 
P 2 0. 

The second equation is an aggregation of the complementarity condition for 
each arc (i ,  j )  E A, i.e., x$utj = 0. Thus, the above system is equivalent to 
the following: 

~ i j  (5) + Pij 2 pf - pk , 'dk E IC, (i, j )  E A, 
i sij(E) + Pij 5 pj ,  'dk E IC, (i, j) E A : ?Efj > 0, 

Pij 2 0 'd(i , j)  E A. 

As before, let Z = Ck Zk denote an approximate SOPT solution. Then, a 
relaxed toll set in the disaggregate form, 17+(Z, 0 ,  is the set consisting of the 
/3 component of every vector (p,  p) that satisfies the following linear system 

k s i j ( ~ )  + hj 2 p" pi, 'dk E IC, ( i ,  j) E A, 
sij(G)+Pij 5 p f - p j  + ~ ~ , ~ k E ~ , ( i , j )  E A : Z &  > 0 ,  

Pij 2 0 'd(i , j)  E A. 

Unlike E ( a  constant) in I + ( Z ,  E), < is a nonnegative vector in the relaxed toll 
set IT+@, <). Below are two properties of this (disaggregate) toll set. 

Theorem 6. For any Z E V, let Pmscp = V s ( G ) T ~  and, for all k E IC and - 
(i, j )  E A such that Zfj > 0, let = sij  (5) + [Pmscp]. . -pt +p i ,  where is an 

23 

optimal solution to the linear program in Theorem 4. If vs(Z)  is nonnegative, 
then IT+ (Z, F) # 0. 

Proof. Recall from Theorem 4 that 

For all k E IC and ( i , j )  E A such that Z,k, > 0, let = sZj(2i) + [PmscpIij - 
p: +pf, where p i s  an optimal solution to  the above linear program. Moreover, 

its constraints also ensure that z$ 2 0 and, when combined with the definition 

of $, the following must hold 

Then, the nonnegativity of vs(Z)TZ implies that [Pmscplij > 0 for all ( i ,  j )  E 

A. Therefore, Pmscp E 17+(Z, F) and 17+(5, r) # 0. 
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Proof. Multiplying the second equation in the definition of 1T+(G,<) by Ztj 
yields 

Then, summing the above equations together and recognizing that AZk = bk 
yield that (s(G) + p)TG 5 E b r p k  + E,  where E = Ek C(i,j)EA Ztj<&. Thus, 

k € K  
,B E Df(G,J)  implies that P E I f ( i ? , e ) ,  i.e., 17+(G,E)  C I + @ , € ) .  W 

Instead of choosing < as in Theorem 6, it is also possible to  choose < that 
solves one of the following two problems: 

min z 
(PAEJ )  

s.t. sij(G) +Pij = p>p; +<&, 'dk E K, ( 2 ,  j )  E A, 
<,"j 5 2, 'dk E K, (2 ,  j )  E A : Ztj > 0, 
E&, L 0 'dk E K, (i, j )  E A, 
Pij L 0 'd(i, j )  E A. 

Both problems yield a < that makes lTf (5, <) nonempty. 

5 Numerical Results 

To illustrate the effectiveness of the relaxed toll sets, 17+ (G, <) and I+ (C, E) , 
we solved the MINSYS problem originally introduced in [Berg51 and [BHR97] 
and later referred to as the minimum toll revenue problem in [Dia99]. Using 
the (aggregate) relaxed toll set I + ( G ,  E ) ,  the (aggregate) minimum toll revenue 
(AMR) problem can be stated as follows: 

m i n { F p  : p E If (G, E)).  

The objective function in AMR is simply the sum of the product of the flow 
and the toll amount on each arc, i.e., the toll revenue. Using U+(G, <) instead 
of I+ (G ,  E ) ,  the disaggregate minimum toll revenue (DMR) problem can be 
defined as follows: 

m i n { $ ~  : P E 1T+(G, 5)). 

Data for our experiments are from four transportation networks whose 
attributes are listed in Table 2. For each network, we used the restricted sim- 
plicial decomposition or RSD (see, Hearn et al. [HLV87]) to obtain a solution 
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Table 2. Network Attributes 

Network Links Nodes Commodities 

Sioux Falls[LMP75] 76 24 528 

Hull [FGS87] 798 501 138 

Stockholm [HeR98] 962 416 1,623 

Winnipeg [FGS87] 2836 1052 4,344 

to SOPT with a relative optimality gap of Because they are readily 
k k available from RSD, we set E = Emscp and <& = sij(i?) + [Pmscp]i3 - pi + pj 

in AMR and DMR, respectively. Both problems, AMR and DMR, were im- 
plemented in GAMS [GAM80] and solved using CPLEX 8.1 [CPL96]. 

Table 3 reports the results for the four networks. For Sioux Falls, the 
SOPT solution from RSD provides a consistent toll set and E can be set to 
zero. The same does not hold for the remaining three networks. The values of 
their Emscp are listed in the table along with the ratio ~,,,,/s(iT)~i? to provide 
the magnitude of emscp relative to the total travel delay a t  the approximate 
SOPT solution. The last two sets of columns compare the tolled user equi- 

Table 3. Numerical Results 

Total Delay Error Link Flow Error 

Networks E,,,, (AMR) (DMR) (AMR) (DMR) 

Sioux Falls 0 0 0% 0% 0% 0% 

Hull 4.85 9.593-5 0.07% 0.07% 2.6% 1.3% 

Stockholm 1,134.12 9.743-5 0.06% 0.01% 0% 0% 
Winnipeg 107.82 9.223-5 0.05% 0.04% 0.1% 0.3% 

librium solutions, v*(P), using toll vectors from AMR and DMR against the 
approximate SOPT solution, i7, from RSD. The two columns under the head- 
ing "Total Delay Error" reports ( ~ ( v * ( P ) ) ~ v * ( / ? )  - s(i?)Ti?)/(s(iT)Ti7), i.e., the 
error in travel delay relative to the delay a t  the approximate system solution, 
6. The remaining two columns (under the heading "Link Flow Error") reports 
the percentage of arcs with relatively large link flow errors. In calculating this 
percentage, we only consider arcs with a moderately large amount of flow, i.e., 
we consider arcs in the set A' = {alu:(P) > 0.25C, or iT, > 0.25Ca), where 
C, is the capacity of arc a .  Then, the link flow error is the percentage of arcs 
in A' such that  'v:(e)-'ai > 0.10. Observe that results in the last two columns 

Y a  

indicate that  the relaxation based on the marginal social costs produces good 
toll vectors for they yield tolled user equilibrium solutions that  are approxi- 
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mately optimal t o  SOPT.  However, DMR on average yields tolls with slightly 
less error. 

6 Conclusions 

Congestion or toll pricing problems in [HeR98] require a solution t o  the  system 
problem (the traffic assignment problem tha t  minimizes the  total travel delay) 
t o  define a toll set, i.e., a set of all valid tolls. Instead of an  exact solution, it 
is more practical t o  obtain an  approximate solution to  the  system problem for 
large networks. In  this paper, we provide necessary and sufficient conditions 
to  determine whether the  toll set constructed from an approximate solution is 
empty. When i t  is so, we derive alternative toll sets based on relaxed optimality 
conditions. With  carefully chosen parameters, tolls from the  relaxed toll sets 
possess the  desirable property, i.e., they induce travellers t o  choose routes 
tha t  are nearly system optimal. Numerical solutions from four transportation 
networks in the  literature also verify empirically the  previous statement. 

Acknowledgements. This research was partially supported by NSF 
grants DMI-9978642 and DMI-0300316. 

References 

Arnott, R., Small, K.: The Economics of Traffic Congestion. American 
Scientist, 82,  446-455 (1994). 
Bai, L., Hearn, D.W., Lawphongpanich, S.: A Heuristic Method for the 
Minimum Toll Booth Problem. Technical Report, Department of Indus- 
trial and Systems Engineering, Univeristy of Florida, Gainesville, FLorida 
(2003) 
Bai, L., Hearn, D.W., Lawphongpanich, S.: Decomposition Techniques on 
the Minimum Toll Revenue Problem. Networks, forthcoming in 2004. 
Bazaraa, hl., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: The- 
ory and Algorithm. John Wiley & Sons (1993) 
Bergendorff, P.: The Bounded Flow Approach to Congestion Pricing. Mas- 
ters Thesis, Royal Institute of Technology, Stockholm (1995) 
Bergendorff, P., Hearn, D.W., Ramana, M.V.: Congestion Toll Pricing of 
Traffic Networks. In: Pardalos, P.M., Hearn, D.W., Hagers, W.H. (eds) 
Network Optimization. Lecture Notes in Economics and Mathematical 
Systems, Vol 450, Springer-Verlag, 51-71 (1997) 
CPLEX, CPLEX Optimization, Inc., Incline Village, NV (1996) 
Dafermos, S., Nagurney, A.: Sensitivity Analysis for the Asymmetric 
Network Equilibrium Problem. Mathematical Programming, 28, 174-184 
(1984) 
Dial, R.: Minimal Revenue Congestion Pricing Part I: A Fast Algo- 
rithm for the Single-Origin Case. Transportation Research-B, 33, 189-202 
(1999) 



38 L. Bai et al. 

[FaPOS] Facchinei, F. ,  Pang, J.-S.: Finite-Dimensional Variational Inequalities and 
Complementarity Problems, Vol 1, Springer (2003) 

[FJM04] Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous users in Mul- 
ticommodity Networks and Generalized Congestion Games. In Proceed- 
ings 45th Annual Symposium on Foundations of Computer Science, IEEE, 
277-285 (2004) 

[FGS87] Florian, M., GuBlat, J.,  Spiess, H.: An Efficient Implementation of the 
PARTAN Variant of the Linear Approximation Method for the Network 
Equilibrium Problem. Networks, 17 ,  319-339 (1987) 

[Heago] Hearn, D.W.: Bounding Flows in Traffic Assignment Models. Research 
Report No. 80-4, Department of Industrial and Systems Engineering, Uni- 
versity of Florida, Gainesville, FL (1980) 

[FlH95] Florian, M., Hearn, D.W.: Network Equilibrium Model and Algorithms. 
Network Routing, In: Ball, M.0 ,  et al. (eds.) Handbook in OR and MS. 
Vol. 8 ,  Elsevier Science (1995) 

[GAM80] GAMS, General Algebraic Modeling System, GAMS Development Cor- 
poration (1995) 
Gartner, N.H.: Optimal traffic assignment with elastic demands: A Re- 
view, Part I.  Analysis Framework. Transportation Science, l 4 (2 ) ,  174-191 
(1980) 
Hearn, D.W.: The Gap Function of a Convex Program. Operations Re- 
search Letters, 1, 67-71 (1982) 
Hearn, D.W., Lawphongpanich, S. ,  Ventura, J . :  Restricted Simplicia1 De- 
composition: Computation and Extensions. Mathematical Programming 
Study, 31,  99-118 (1987) 
Hearn, D.W., Ramana, M.: Solving Congestion Toll Pricing Models. In: 
Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation 
Modeling. Kluwer Academic Publishers, 109-124 (1998) 
Hearn, D.W., Yildirim, M.B., Ramana, M., Bai, L.: Computational Meth- 
ods for Congestion Toll Pricing Models. In IEEE Intelligent Transporta- 
tion System Conference Proceedings, Oakland, 257-262 (2001) 
Hearn, D.W., Yildirim, M.B.: A Toll Pricing Framework for Traffic As- 
signment Problems with Elastic Demand. In: Gendreau, M., Marcotte, P. 
(eds.) Current Trends in Transportation and Network Analysis: Miscel- 
lanea in Honor of Michael Florian, Kluwer Academic Publishers (2001) 
LeBlanc, L.J . ,  Morlok, E.K., Pierskalla, W.P.: An Efficient Approach 
to Solving the Road Network Equilibrium Traffic Assignment Problem. 
Transportation Research, 9, 309-318 (1975) 
Robinson, S.: Bounds for Error in the Solution Set of a Perturbed Linear 
Program. Linear Algebra and its Applications, 6,  69-81 (1973) 
Yang, H., Bell, M.G.H.: Traffic Restraint, Road Pricing and Network 
Equilibrium. Transportation Research B: Methodological, 33(4),  303-314 
(1997) 
Zhang, H.M., Ge, Y.E.: Modeling variable demand equilibrium under 
second-best road pricing. Working Paper, Institute of Transportation 
Studies, University of California at  Davis (2002) 



Relaxed Toll Sets 39 

Appendix 

Relaxed Toll Sets for the Elastic Demand Case 

This appendix describes the results concerning the toll sets when demands 
are elastic. Many results for the fixed demand case naturally extend to the 
case with elastic demands. The presentation below follows the same outline 
as in the main part of the paper. 

A Elastic Demand System and User Problems 

To state the traffic assignment problems with elastic demands, let tk  and 
wk(tk) denote the travel demand and the inverse demand function for com- 
modity k, respectively. For each k, Ek is a vector in ~ 1 ~ 1  with exactly two 
nonzero elements, one equals 1 at  the origin node and the other equals -1 at  
the destination node. Then, the set of feasible flow-demand vectors is 

Without loss of generality, we assume V,, is bounded, thus, compact. (See, 
e.g., [FlH95].) 

Among several alternatives (see, e.g., [Gar80], [YaB97] and [ZhG97]), one 
system problem with elastic demands maximizes the net user benefit, i.e., the 
difference between the user benefit as measured by CkEK /ik wk(z)dz and the 
total delay (or cost) s ( v ) ~ v .  In its minimization form, this system problem 
can be written as 

As in the fixed demand case, the corresponding user problem with elastic 
demand is a variational inequality. In particular, (v*, t*)  is a solution to the 
user equilibrium problem if the pair satisfies the following: 

s ( v * ) ~ ( v  - v*) - ~ ( t * ) ~ ( t  - t*) > 0, 'd (v,  t )  E VED. 

For a given toll vector p, (v*(,B),t*(P)) is a solution to  the tolled user 
equilibrium problem if the pair satisfies the following: 

As in the fixed demand case, we assume throughout this appendix that 
the system, user, and tolled user equilibrium problems have unique solutions. 
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B System and Non-system Toll Sets 

Analogous to  the fixed demand case, the system toll set when demands are 
elastic is T(i7,i) = {PIv*(P) = i7,t*(P) = t). Under the uniqueness assump- 
tions stated earlier, Hearn and Yildirim [HeYOl] prove that T(5,t) consists 
of the p component of every pair (p, p) that satisfies the following system: 

In [HeYOl], Hearn and Yildirim show that both T(U,i)  and 7 + ( ~ , ~ )  are 
nonempty. The latter assumes that vs (E)  is nonnegative. 

Let (i?,i) denote a flow-demand vector feasible to V,,. Then, the non- - 
system toll set is 7(i?,i) = { ~ I L J * ( / ~ )  = v, t*(P) = F} and, using an argument 
similar to  the one in Theorem 2, the following holds. 

Theorem 8. The toll set T(i?,i), where (Z ,q  E V,,, is the set consisting of 
the p component of every pair (p, p) that satisfies the following linear system: 

The theorem below shows that the non-system toll set is nonempty for 
any non-trivial (i?, i) E VED. 

Theorem 9. For any (i?,i) E V,, such that i? # 0, P = ~ s ( q ~ i ? - c u Z  E 7( i? ,q  

when a = [(s(Z) + ~ s ( G ) ' i ? ) ~  i? - w(qTfl/G%. 

Proof. Consider the following direction finding problem associated with VI(s(v)+ 
Fl V,,) at (i?, i) : 

DIFL-ED(~) : min (s(i?) + j?)T c xk - w(qTd 
k E K  

The dual of DIR-ED@) is 

'dk 1 

Vk. 

max 0 
s.t. ATpk < s ( q  + P, Vk, 

E z p k  2 WZD~(&) ,  Vk, 
pk unrestricted, Vk. 
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The relationships between the primal and dual problems in linear pro- 
gramming imply that the objective value of the direction finding problem is 
bounded below by zero. Thus, (u, d) = (0, 0),  where u = Ck zk,  is an optimal 
solution because its objective value equals the lower bound. Furt_hermore, the 
dual of DIR-ED has a feasible solution, say Then the pair (P, satisfies 
the linear system in Theorem 1. The first two conditions of the linear system 
in Theorem 8 follow from the first two constraints of the dual problem and 
our choice of p ensures that the following holds 

Thus, the last condition in the linear system is also satisfied and p E T(G, g .  

As defined above, CY is zero and p = vs (qTG,  when (G,g solves the - 
system problem. Moreover, other choices for a and p exist. For example, 

= Vs(qTG - os(ii), where a = [(s(G) + VS(G)TG)~ G - ~(?)~f l / s (G) 'G,  is 
also valid when s (qTG # 0. 

The following theorem provides a necessary and sufficient condition under 
which the nonnegative and non-system toll set is nonempty. The proof is 
omitted because it is similar to  that of Theorem 3 in the main part of the 
paper. 

Theorem 10. For any ( 5 , g  E V,,, T+(G,T) is nonempty if and only if 
( 5 , g  solves VI[(s(v), -w(t)),VED], where V,, = {(v,t)lv = C k z k , A z k  = 

~ ~ t ~ , 2 ~  > O,tk > 0 , ~  < G}. 

C Relaxed Toll Set 

In this and the following sections, we focus on the relaxations of the (unre- 
stricted) non-system toll set. However, similar results also hold for the non- 
system toll set requiring tolls to  be nonnegative. 

For a given E > 0, the relaxed toll set T(G, E )  is the set consisting of the 
p component of the pair (p, p) that satisfies the following: 

s ( q  + p > A~~~~ 'dk E K, 
wk(Tk) < E T P ~ ,  'dk E K, 

( s ( q  + p)TG < w(ijTT+ E. 

Then, the following results are analogous to those in Section 3. 

Theorem 11. For any (5, g E V,,, let E,,,~ = (s(5) + vs(G)T5)TG- w(qTC 
Then, I(G, ~mscp) # 0. 
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Proof. From the discussion in Section B, the optimal objective value of DIR- 
ED (Pmscp) is zero, where Pmscp = v s ( q T Z  as before. Thus Emscp can be 
equivalently expressed as follows: 

As in Theorem 4 in the main part of the paper, the vector Pmscp and an 
optimal solution, ,5, to the dual of DIR-ED(Pmscp) form a pair of (P, p) that 
belongs to T(G, K E ~ ~ ~ ~ ) .  

Theorem 12. Let s(v) and w(t) be strongly monotone with modula ct and y, 
respectively. For any q > 0, there exists a 6 > 0 such that jl (v* (P) - C, t* (P) - 
i ) / j2  I q whenever /3 E 'T(i7, < emscp) and jl(Z - v , t -  i)// < 6. 

Proof. Because both s(v) and w(t) are strong monotone, (s(v), -w(t)) is also 
strongly monotone with modulus min{a, 7). The rest of the proof requires 
lemmas and uses an argument similar to the one in Theorem 5 .  

The following linear program also provides an E for which 7 ( 5 , <  E) is 
nonempty. 

E* = min ( s ( q  + p)TZ - w(qTT 
(L3.0) 

D Disaggregate Representation of Relaxed Toll Sets 

Let (C, q be an approximate system solution. For a given pair of (J, p )  such 
that J, p 2 0 , the following are three possible disaggregate representations of 
a relaxed toll set, all of which are analogous to the one presented in Section 
4. 

1. 111 (5, K [, p )  = the set of the /3 component of every pair (P, p) that satisfies 
the following: 

2. D2(Z, < J) = the set of the P component of every pair (P, p) that satisfies 
the following: 
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3. 113 (5, < p)  = the set of the P component of every pair ( P ,  p) that satisfies 
the following: 

Because the last two sets contain subsets of the constraints appeared in 
the first, I12(G,< J )  and II3(G,<p) are relaxations of II1(G,< <,,!A). Thus, 
II1(GIK J ,  p) must be a subset of both I12(G,< t )  and I13(G, < p).  

The following theorem shows that I I1(Z,  J ,  p) is nonempty. This in turn 
implies that both 112 ( 5 ,  < [) and D 3  (G, < p) are also nonempty. 

Theorem 13. For any (5,i) E V,,, let 
- 

1. J&, = sij(G) + [/3mscv]ij -pf S F $ ,  for all k and arc (i, j) such that f t j  > 0,  
and 

2. p k  = E T F ~  - wk(Tk), for all k such that & > 0,  

where is an optimal solution to the dual of GAP-ED(Pmscp). Then, 
I I1(Gl<Flp)  # 0 .  

Proof. Because j5 solves the dual of GAP-ED(Pmscp),  it satisfies 

The above implies that both and pi, defined above are nonegative and 
satisfy the following: 

Thus, (Pmscp, $, , ,Ek)  satisfies the conditions defining D 1 ( 2 ,  < r, jli), i.e., 

nl(z,tlFlp) # 0 .  rn 
- 

Corollary 2. For any (8,i) E V,,, let J / ;  = s,(G)+ [pmscp],  z + $ ,  where 

p i s  an optimal solution to the dual of GAP-ED(PmScp).  Then, I12(G,<f) # 0 .  

Corollary 3. For any (G,T) E V,,, let pi, = E:Fk - w k ( & ) ,  where p is an 
optimal solution to the dual of GAP-ED(Pmscp).  Then, I13(G,K ,E) # 8. 

Furthermore, if D1(Z,  5 c ,  p) is nonernpty, then multiplying the second and 
fourth conditions in the relaxed toll set by Efj and rk yields the following: 
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Because i? = Ck Zk and A ~ Z ~  = EkTk, the above equations imply that ( ~ ( i ? )  3. 
-k k 

- 
' i ?  < w ( q T t +  E, where t = Ck C(i,j)Eaxij<ij + C k t k p k .  Thus, if P C P) - 

D1(i?, i; ,F, p) ,  P must be in I ( 5 ,  i; t) as well, i.e., D1(i?, t ,  p)  C I(i?, < E ) .  

Similarly, IT2 (i?, () 2 I @ ,  E) and D3 (Z, i; p)  2 I @ ,  < E)  when t is chosen 
in a similar manner. 



Dynamic Pricing: A Learning Approach 

Dimitris Bertsimasl and Georgia Perakis2 

Sloan School of Management, Massachusetts Institute of Technology, Cambridge, 
MA 02139, U.S.A., dberts im0mit .  edu 
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, 
MA 02139, U.S.A., georgiap0mit . edu 

Summary. We present an optimization approach for jointly learning the demand 
as a function of price, and dynamically setting prices of products in order to maxi- 
mize expected revenue. The models we consider do not assume that the demand as 
a function of price is known in advance, but rather assume parametric families of de- 
mand functions that are learned over time. In the first part of the paper, we consider 
the noncompetitive case and present dynamic programming algorithms of increasing 
computational intensity with incomplete state information for jointly estimating the 
demand and setting prices as time evolves. Our computational results suggest that 
dynamic programming based methods outperform myopic policies often significantly. 
In the second part of the paper, we consider a competitive oligopolistic environment. 
We introduce a more sophisticated model of demand learning, in which the price 
elasticities are slowly varying functions of time, and allows for increased flexibility 
in the modeling of the demand. We propose methods based on optimization for 
jointly estimating the Firm's own demand, its competitors' demands, and setting 
prices. In preliminary computational work, we found that optimization based pricing 
methods offer increased expected revenue for a firm independently of the policy the 
competitor firm is following. 

Key words: Dynamic Pricing, Learning, Dynamic Programming, MPEC 

1 Introduction 

I n  this paper we study pricing mechanisms for firms competing for the  same 
products in a dynamic environment. Pricing theory has been extensively stud- 
ied by researchers from a variety of fields over the  years. These fields include, 
among others, economics (see for example, [Wo93]), marketing (see for exam- 
ple, [LKM92]), revenue management (see for example, [MV99]) and telecom- 
munications (see for example, [Ke94], [KMT98], [PT98], [VD99], [VaSS]). In 
recent years, t he  rapid development of information technology, the  Internet 
and E-commerce has had very strong influence on the  development of pricing 
and revenue management. 

Mathematical and Computational Models for Congestion Charging, pp. 45-80 
0 2006 Springer Science and Business Media, Inc. 
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The overall goal of this paper is to address the problem of setting prices 
for a firm in both noncompetitive and competitive environments, in which 
the demand as a function of price is not known, but is learned over time. A 
firm produces a number of products which require (and compete for in the 
competitive case) scarce resources. The products must be priced dynamically 
over a finite time horizon, and sold to the appropriate demand. Our research 
(contrasted with traditional revenue management) considers pricing decisions, 
and takes capacity as given. 

Problem Characteristics 

The pricing problem we will focus on in this paper has a number of charac- 
teristics: 

a) The demand as a function of price is unknown a priori and is learned over 
time. As a result, part of the model we develop in this paper deals with 
learning the demand as the firm acquires more information over time. That 
is, we exploit the fact that over time firms are able to acquire knowledge 
regarding demand behavior that can be utilized to improve profitability. 
Much of the current research does not consider this aspect but rather 
considers demand to  be an exogenous stochastic process following a cer- 
tain distribution. See [BM97], [CSSOO] , [FH97], [F95], [GvR94], [GvR97], 
[GiOO] , [PT98]. Assuming that the demand follows an exogenous distribu- 
tion that is known in advance, is often too strong an assumption. It  is 
often unrealistic to  consider that demand can be known in advance accu- 
rately. Rather, in this paper we use a learning approach. The advantage of 
this approach is that it is data driven. That is, it uses the data acquired 
so far, in order to  estimate what the true demand is. As a firm acquires 
more data it keeps re-evaluating the true demand and hence gets a better 
estimate of it. As a result, this approach is practical and does not rely on 
assumptions that are often unrealistic. 

b) Products are priced dynamically over a finite time horizon. This is an 
important aspect since the demand and the data of the problem evolve 
dynamically. There exists a great deal of research that does not consider 
the dynamic and the competitive aspects of the pricing problem jointly. An 
exception to  this involves some work that applies differential game theory 
(see [Bag84], [Bas86], [DJ88]). 

c) We explicitly allow competition in an oligopolistic market, that is, a market 
characterized by a few firms on the supply side, and a large number of 
buyers on the demand side. A key feature of such a market (in contrast to 
a monopoly) is that the profit one firm receives depends not just on the 
prices it sets, but also on the prices set by the competing firms. That is, 
there is no perfect competition in an oligopolistic market since decisions 
made by all the firms in the market impact the profits received by each 
firm. One can consider a cooperative oligopoly (where firms collude) or a 
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noncooperative oligopoly. In this paper we focus on the latter. The theory 
of oligopoly dates back t o  the work of [£+77], [Fr82], [Fr83]. 

d) We consider products that are perishable, that is, there is a finite horizon 
to  sell the products, after which any unused capacity is lost. Moreover, the 
marginal cost of an extra unit of demand is relatively small. For this reason, 
our models in this paper ignore the cost component in the decision-making 
process and refer to  revenue maximization rather than profit maximiza- 
tion. 

Literature Review 

Several models have been proposed for monopolistic versions of this prob- 
lem. McGill and Van Ryzin [MV99], Weatherford and Bodily [WB92] as well 
as Williamson [Wig21 and the references therein provide a thorough review 
of revenue management models. More recently, Bitran and Caldentey [BC02] 
provide an overview of pricing models for the monopolistic version of the rev- 
enue management problem in which a perishable and non-renewable set of 
resources satisfy stochastic price-sensitive demand processes over a finite pe- 
riod of time. They survey results for deterministic as well as non-deterministic, 
single as well as multi-product, and static as well as dynamic pricing cases. 
Elmaghraby and Keskinocak [EK] review the literature and current practices 
in dynamic pricing in industries where capacity or inventory is fixed in the 
short run and perishable. They classify monopolistic models on the basis of 
whether inventory can be replenished or not, whether demand is dependent 
over time or not, and whether customers are myopic or strategic optimizers. 
Yano and Gilbert [YS04] review models for joint pricing and production under 
a monopolistic setup. 
On the competitive side, Vives [Vi99] discusses the development of oligopoly 
pricing models. A survey by Chan et al. [CSSSOl] summarize research on joint 
pricing, inventory control and production decisions in a supply chain. Fur- 
thermore, they survey literature on price and quantity competition in supply 
chain settings. Cachon and Netessine [CN] also survey the problem of compe- 
tition from a supply chain perspective where the problem is characteristically 
a periodic production-review model. They discuss both non-cooperative and 
cooperative games in static and dynamic settings. 
Pricing models in traditional revenue management research can be classified 
into two broad categories: static and dynamic. Static pricing models are based 
on aggregated demand distributions and can be seen as a special case of the 
multi-product newsvendor problem with fixed production costs and perishable 
product with no salvage. The extension of the newsvendor problem with price 
as a decision variable was studied by Zabel [Za70], Young [Yo78], Dada and 
Petruzzi [DPOl], etc. Other relevant research includes [Za72], [Th74], [DP99] 
and [FH97] who study the single-product, multi-period combined pricing and 
inventory control problem that is typically solved by dynamic programming. 
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Dynamic pricing models represent demand as a controllable stochastic point 
process with price dependent intensity. Gallego and van Ryzin [GvR94] and 
Zhao and Zheng [ZZOO] consider the problem of optimally pricing a given in- 
ventory of a single product over a finite planning period before it perishes or is 
sold at  salvage value. There is no reordering. Gallego and van Ryzin [GvR97] 
and Paschalidis and Tsitsiklis [PT98] extend this type of model to the dynamic 
pricing of multiple products whose production draws from a shared supply of 
resources. Kleywegt [KlOl] gives an optimal control formulation of the multi- 
period dynamic pricing problem. Kachani and Perakis [KP02] propose a de- 
terministic fluid model for dynamic pricing and inventory management for 
non-perishable products in capacitated and competitive make-to-stock man- 
ufacturing systems. 
Some recent work explicitly considers the presence of competition within the 
pricing framework. Dockner and Jorgensen [DJ88] provide a treatment of the 
optimal pricing strategies for oligopolistic markets from a marketing perspec- 
tive but not a computational perspective. Federgruen and Heching [BF99] 
develops a stochastic general equilibrium inventory model for supply chains 
in an oligopoly environment where the policies involve prices, service level 
targets and inventory control with linear models of demand. 
There are two different classes of dynamic pricing models in the literature. The 
first one, is a periodic production-review model suitable for supply chain prob- 
lems. In this model each firm starts with a given level of inventory/capacity 
a t  the beginning of the time horizon. At each period the firm sets his/her 
price level and realizes a certain demand that is a function of all price levels. 
A decision regarding additional production is also made at  every period after 
reviewing inventory/capacity levels. Production costs, inventory holding costs, 
and cost of back orders are part of such models. On the other hand, in the 
second class of models (such as the model we introduce in this paper), the firm 
does not have the option to  produce additional inventory/capacity between 
periods but rather the total capacity of the product the firm has available for 
sale is a given in the beginning of the time horizon. As a result, the product 
for sale is perishable. For example, such a model is suited for airlines that are 
selling seats on a particular flight, or hotels selling advance room reservations 
for a particular day or weekend. It  is difficult, if not impossible, to increase 
the capacity of an aircraft or a hotel a t  short notice and requires considerable 
expense, advance notice and planning. For the purposes of the pricing process, 
the capacity (or in general the inventory of the product) can be assumed to be 
fixed. Note that for these problems, there are no holding or backorder costs. 
There are no holding costs since there is no tangible product that the seller 
has to  hold on to  from period to period if unsold. There are no backorder costs 
since the seller can sell only if she has the product in inventory and loses the 
sale otherwise. Note that this case is not a trivial extension of the periodic 
production review model. 
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1.1 Application Areas 

There are many markets where the framework we consider in this paper 
applies. Examples include airline ticket pricing, as well as toll pricing in a 
transportation network. In this market the products that the consumers are 
demanding, are represented by the origin-destination (0-D) pairs during a 
particular time window. In the airline application, the resources are the flight 
legs (more appropriately seats on a particular flight leg) which have limited 
capacity. There is a finite horizon to sell the products, after which any unused 
capacity is lost (perishable products). The airlines compete with one another 
for the product demand which is of stochastic nature. Another application is 
toll pricing in a transportation network (see for example, [SGKOl], [SKSK] 
and [Su02]). As in the case of airlines, the firm (e.g. the transportation au- 
thorities) are seeking to  set prices (represented in this case by tolls) on the 
network's roads (for example, highways). The capacity for each road in this 
case is represented by the maximum number of cars that can be on the road 
without degrading the travel time to an undesirable level. The tolls can be 
updated dynamically as traffic conditions (represented for example through 
the demand) change. I t  is important for the authorities to get a good estimate 
of the demand in order to set accurately the corresponding tolls. This update 
can be done for example, every 30 minutes, using as information the past toll 
prices as well as the number of cars (demand) that entered the road (for exam- 
ple, the highway) during the previous 30 minute periods. The transportation 
authorities seek to maximize toll revenue since some highways are privately 
financed. This is the case for example in the SR 91 Express Lane in Orange 
County California (see [Su02]). Other industries sharing the same features in- 
clude the service industry (for example, hotels, car rentals, and cruise-lines), 
the retail industry (for example, department stores) and finally, pricing in an 
e-commerce environment. All these industries attempt to  intelligently match 
capacity with demand via revenue management. 

1.2 Contributions 

a) In the first part of the paper, we develop pricing mechanisms when there 
is incomplete demand information, by jointly setting prices and learning 
the firm's demand without assuming any knowledge of it in advance. 

b) In the second part of the paper, we introduce a model of demand learning, 
in which there is competition but also price elasticities are slowly varying 
functions of time. This model allows for increased flexibility in the model- 
ing of the demand in the presence of both uncertainty and competition. We 
propose methods based on optimization for jointly estimating the Firm's 
own demand, its competitors' demands, and setting prices. 
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1.3 Structure 

The remainder of this paper is organized as follows. In Section 2, we focus on 
the dynamic pricing problem in a non-competitive environment. We consider 
jointly the problem of demand estimation and pricing using ideas from dy- 
namic programming with incomplete state information. We present an exact 
algorithm as well as several heuristic algorithms that are easy to  implement 
and discuss the various resulting pricing policies. In Section 3, we extend our 
previous model to  also incorporate the aspect of competition. We propose an 
optimization approach to perform the firm's own demand estimation, its com- 
petitors' prices prediction and finally, its own price setting. Finally, in Section 
4, we conclude with conclusions and open questions. 

2 A Learning Approach for Dynamic Pricing, Part I: 
Without Competition 

In this section, we consider a dynamic pricing problem for a perishable product 
in a non-competitive environment. We focus on a market with a single product 
and a single firm with overall capacity c available for sale over the time horizon 
T. In the beginning of each period t ,  the firm knows the previous price and 
demand realizations, that is, d l , .  . . , dt-1 and P I , .  . . ,pt-1 (and as a result, 
the leftover capacity ct = c - c::: d,). This is the data available to the firm. 
In this section, we assume that the firm's true demand is an unknown linear 
function of the form 

dt = Po + P1pt + et, 

that is, it depends on the current period prices p t ,  unknown parameters Po, ,8' 
and a random noise f t  N (0 , c2 ) .  Notice that in this model we assume 
that the parameters of the demand as a function of the price are not time 
dependent. In part I1 of this paper, due to the presence of competition we 
consider a more general demand model where the true parameters also vary 
with time. The firm's objectives are to estimate its demand dynamically and 
set prices in order to  maximize its total expected revenue. Let 'P =[pmi,,p,,,] 
be the set of feasible prices. We assume that 'P is selected in such a way that 
the demand di > 0, i = 1,. . . , T with probability 1. 
This part of the paper is organized as follows. In Section 2.1, we present 
a demand estimation model. In Section 2.2, we consider the joint demand 
estimation and pricing problem through a dynamic programming formulation. 
Using ideas from dynamic programming with incomplete state information, 
we are able to reduce this dynamic programming formulation to  an eight- 
dimensional one. Nevertheless, this formulation is still difficult to  solve, and 
we propose an approximation that allows us to further reduce the problem to 
a five dimensional dynamic program. In Section 2.3, we separate the demand 
estimation from the pricing problem and consider several heuristic algorithms. 
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In particular, we consider a one-dimensional dynamic programming heuristic 
as well as a myopic policy heuristic. To gain intuition, we find closed form 
solutions in the deterministic case. Finally, in Section 2.4, we consider some 
examples and offer insights. 

2.1 Demand Estimation 

As we mentioned at time t the firm has observed the previous price and 
demand realizations, that is, d l ,  . . . , dtP1 and p l ,  . . . , pt-1 and assumes a linear 
demand model dt = ,BO+/?lpt+et, with ~t N(0 ,  a2) .  The parameters PO,,B1 
and a are unknown and are estimaLed as follows. 
We denote by x, = [l, p,]' and by p, the vector of the parameter estimates a t  
time s, ( & ? , ~ ~ ) .  We estimate this vector of the demand parameters through 
the solution of the least square problem, 

Given d l ,  . . . , dt-1 and p l ,  . . . , pt-1, the least squares estimates are 

The next proposition gives a recursive formula for these estimates that will 
be useful in the remainder of the paper. 

Proposition 1. The least squares estimates (1) can be generated by the fol- 
lowing iterative process 

A 

where p:, is an arbitrary vector, and the matrices HtPl are generated by 

Although a proof can be easily derived using standard results, see for example 
[Ri95], for the sake of completeness we provide a proof in the appendix. 
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Notice that the matrix Ht-1 is singular, and hence not invertible, when 

Notice that the only solution to  the above equality is pl = pz = . . . = pt-1. If 
the matrix Ht-l is nonsingular, then the inverse is 

Therefore, 

As a result, we can express the estimates of the demand parameters in period 
t in terms of earlier estimates as 

The estimate for the variance a2 at  time t is given by 
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Notice that the variance estimate is based on t - 1 pieces of data, with two 
parameters already estimated from the data, hence there are t - 3 degrees of 
freedom. Such an estimate is unbiased (see [Ri95]). 

2.2 An Eight-Dimensional DP for Determining Pricing Policies 

The difficulty in coming up with a general framework for dynamically de- 
termining prices is that the parameters Po and of the true demand are 
not directly observable. What is observable though are the realizations of de- 
mand and price in the previous periods, that is, d l ,  . . . , dt-1 and pl , . . . , pt-1. 
This seems to  suggest that ideas from dynamic programming with incomplete 
state information may be useful (see [Be95]). As a first step in this direc- 
tion, during the current period t ,  we consider a dynamic program with state 
space (dl,  . . . , dtPl ,  p l ,  . . . , pt-1, ct), control variable the current price pt and 
randomness coming from the noise t t .  We observe though that as time t in- 
creases, the dimension of the state space becomes huge and therefore, solving 
this dynamic programming formulation is not possible. In what follows we 
will illustrate that we can considerably reduce the high dimensionality of the 
state space. 

First we introduce the notation, $s,t = , , s = t ,  . ,T, which is 
, 

the current tkme t e~ t imate  of the parameters for future times s = t ,  . . . , T. 
Notice that /3t,t = Pt. Similarly to Proposition 1, we can update our least 

A ,. 
squares estimates through &+1,t = Bt,t + H;'x, (6, - xi,&,,) . Notice that 
Cnce i_n theJeginning of period t demand-dt is not known, we ieplaced it with 
Dt = ,@ + /3:pt + ~ t .  As a result, vector Pt+l,t is a random variable. A useful 
observation we need to make is that in order to  calculate matrix Ht we need 

t- 1 t-1 
to keep track of the quantities C p: and p,. These will be as a result 

r=l  ,=I 
part of the state space in the new dynamic programming formulation. 

It  is natural to  assume that the variance estimates change with time and 
do not remain constant in future periods. This is the case since the estimate 
of the variance will be affected by the prices. That is, 

This observation implies that we need to find a way to estimate the variance 
for the future periods from the current one. We denote by ;i:+l,t the estimate 
(in the current period, t )  of next period's variance. 
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Proposition 2. The estimate of next period's variance in the current period 
t is given by,  

Although a proof of this proposition easily follows using standard results (see 
for example, [Ri95]), for the sake of completeness we also provide a proof in 
the Appendix. 
This proposition suggests that in order to  estimate in period s, the next 
period s + 1 variance from the variance in period s, we need to keep track of 
the following quantities 

This observation allows us to provide an eight-dimensional dynamic program- 
ming formulation with state space given by, 

We are now able to  formulate the following dynamic program where the 
control is the price and the randomness is the noise. The idea behind this 
dynamic programming formulation is that we set the prices by optimizing 
the revenue over the time horizon and at the same time learning the parame- 
ters of the demand by appropriately updating them from the previous period 
estimates. 
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An Eight-Dimensional DP Pricing Policy 

for s =max(4 , t ) ,  . . . ,  T -  1 :  
s-1 s-1 s-1 s- 1 

where 

with noise ~ ~ , t  N N(0 ,  and variance 2:,, given from the recursive formula 
in (3).  Eq. (4) represents the Bellman equation for the eight dimensional 

DP. Specifically, the term p, min {(p:,, + pj,tps + s,,t) , c,} represents the 

revenue at  period s ,  and the arguments of Js+l( . )  the evolution of the eight 
dimensional state. 

Notice that in the DP recursion s = max(4, t), . . . , T, because we need at  
least three data points in order to  estimate three parameters. 

2.3 A Five-Dimensional DP for Determining Pricing Policies 

Although the previous DP formulation is the correct framework for determin- 
ing pricing policies, it has an eight-dimensional state space which makes the 
problem computationally intractable. For this reason we consider in this sec- 
tion an approximation that gives rise to  a lower dimensional dynamic program 
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that is computationally tractable. In particular, we relax the assumption that 
the noise at time t changes in time and is affected by future pricing decisions. 
In particular, we consider 

Specifically, we assume (as an approximation) that the estimate of the variance 
of the noise only depends on the current time t ,  and does not change with 
future times s. 

Moreover, as in the previous section 

t-1 
To calculate the matrix H t  we need to  keep track of the quantities C p: and 

r=1 
t-1 

C P T .  
r=l 

This gives rise to  a dynamic programming formulation with state variables, 

A Five-Dimensional DP Pricing Policy 

for s = max(4, t ) , .  . . , T  - 1 : 

( 
s-l  s-1 

J S  c s ,  E l i  ) E s { ( , t + ~ ~ , t ~ s + s )  1 

T=l r=l 

with 
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Although this latter approach is more tractable it is still fairly complex to 
solve. To make the computations tractable we discretize the values of the 
parameters. See Subsection 2.5 for some preliminary numerical examples. 

2.4 Pricing Heuristics 

In the previous two subsections, we considered two dynamic programming for- 
mulations for determining pricing policies. The first was an exact formulation 
with an eight-dimensional state space that was computationally intractable, 
while the second was an approximation with a five-dimensional state space 
that is more tractable. Nevertheless, although this latter approach is tractable 
it is still fairly complex to  solve. Both of these formulations were based on the 
idea of performing jointly the demand estimation with the pricing problem. 
In this section, we consider two heuristics that are approximations but yet 
are computationally very easy to perform. They are based on the idea of 
separating the demand estimation from the pricing problem. 

One-Dimensional D P  Pricing Policy 
,.. 

In the beginning of period t ,  the firm computes the estimates ,@ and P i  and 
solves a one-dimensional dynamic program assuming that these parameter 
estimates are valid over all future periods. That is, this heuristic approach 
ignores the fact that these estimates will in fact be affected by the current 
pricing decisions. In particular, 

d^, =F:+$P^,lp,+e,, s = t  , . . .  , T  
E, N ( 0 ,  at2), s = t  , . . .  ,T, 

with 

Subsequently, the firm solves the following dynamic program in the beginning 
of period t: 

for s = max(4,t) , . . .  , T  - 1 : 

J,(c,) = max ECa 
Ps min {(P; + F;p, + E,) 1 cs} + 

P ,  €7' [Js+l (cs - min { (P; + 8% + El) 1 c, }) 
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In this dynamic programming formulation the remaining capacity represents 
the state space, the prices are the controls and the randomness comes from 
the noise. 

Deterministic One-Dimensional DP  Policy 

To gain some intuition, in what follows we examine the deterministic case 
(that is, when the noise E, = 0). As a first step we formulate the dynamic 
optimization problem as a strictly concave optimization problem. In period t 
a_nd for tJe remaining of the time horizon after having computed the estimates 
p: and ptl, the firm sets prices by solving the following problem. 

Since the parameter ,@ < 0, the demand is strictly decreasing with respect 
to  the price. As a result, at the optimal solution ds = @ + ,@pS. Since if this 
was not the case and at the optimal solution ds < &'+,?ips, by increasing the 
price to pyew so that ds = &' + & p ~ e w  and keeping d, as before, we would get 
a higher revenue. This is a contradiction, (see also [PS03] for more details). 

This observation allows us to  reformulate the problem as a strictly concave 
optimization problem, 

s=t 
ps E P ,  s = t ,  . . . ,  T 

After having computed the estimates fi: and @, the firm solves the following 
DP in the beginning of period t (t  = 1,. . . ,T),  
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This deterministic one-dimensional DP policy has a closed form solution. 
We establish its solution in two parts. Since the dynamic program is deter- 
ministic, an optimal solution is given by an open-loop policy (that is, we can 
solve for an optimal price path versus an optimal pricing policy, i.e. there is 
no dependence on the state). For the proofs that follow, we need to introduce 
the following definition. 

Definition 1. A price vector p = (p t , .  . . ,pT)'  leads to premature stock- 
out if 

m 

Lemma 1. The optimal solution given b y  the one-dimensional DP is unique 
and satisfies pt = . . . = p ~ .  

Proof. First we will show that any optimal solution must satisfy pt = . . . = p r ,  
then we will prove uniqueness. Suppose there exists an optimal solution p* for 
which the above does not hold. Then at least two of the prices are different 
and at  least one price is less than p,,,. Without loss of generality, assume that 
pt # pt+l (the argument holds for any two prices). We will show that such a 
solution cannot be optimal. Next we will show that the optimal solution must 
satisfy, 

T T 

s=t s=t 
This is true since otherwise we could increase at least one of the prices 

by a small amount (since at least one is strictly less than p,,,,), and achieve 
greater revenue by selling the same number of units ct at a slightly higher 
average price (contradicting the optimality of the solution). Therefore, the 
firm does not expect a premature stock-out and the optimal objective value - 

1 '  

is given by, r* = p: (2 + pjp:) . Notice that the revenue generated in 
9 = t  

periods t and t + <i s  given by, 

In what follows, consider setting price in periods t and t+l .  Therefore, 
the revenue generated in periods t and t + 1 is given by, 

Comparing (9) with (8) we notice that the total revenue has been in- 
creased. This is a contradiction. Hence, any optimal solution must satisfy 
pt = . . . = p r .  

Since problem (7) is strictly concave, the solution is unique. 
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We use this result to prove the following theorem. 

Theorem 1. Let 

Then, in the deterministic case, the one-dimensional D P  has the following 
closed form solution for s = t ,  . . . , T :  

Proof. From Lemma 1, the optimal solution sat i~f iesf~ = . . . = p ~ .  Thus, the 
capacity constraint in (7) simplifies to  (T-t+l)(,Bf+Pjp) 5 ct. Thus, problem 
(7) can be reformulated as a single variable concave quadratic optimization 
problem, the result follows. 

We note that in the deterministic case the policies given by the one and 
five-dimensional DPs are equivalent. This follows since in the deterministic 
case E, = 0 and as a result, the future demand p a m e t  estimate_s arz not 
affected by the current pricing decision. Hence, ( P ~ + l , t ,  PB+l,t)' = (Pt,t, P:,,)'. 
Therefore, the five-dimensional DP can be reduced to  the following three 
dimensional DP, 

Moreover, notice that the one-dimensional DP policy in the deterministic case 
is given by, 

+J,+I (cs - min { ( R  + Ptp,) , c,}) . 

When the firm uses the five-dimensional DP policy, since in the beginning 

of period t ,  (p:,,, p:,,) = (p;, &) ,  for all s = t , .  . . ,T ,  it follows, just like 

in the case of the one-dimensional DP policy, that the current parameter 
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estimates are valid over all future periods. The DPs solved for both policies 
are in that case equcalent. _The only difference is that the five-dimensional 
DP explicitly treats PF and P: as (constant) states while the one-dimensional 
DP implicitly treats 2 and ,@ as (constant) states. This observation leads us 
to conclude that the two policies are equivalent. 

The Myopic Pricing Policy 

Finally, we introduce the last heuristic pricing policy, the myopic pricing 
policy. This policy maximizes the expected current period revenue over each 
period, without considering future implications of the pricing decisions. In 
~ e r i o d  t 

Quantity ct denotes the remaining capacity in the beginning of period t .  
Clearly the myopic policy is suboptimal since it does not take into account 
the number of periods left in the planning horizon. However, when capacity is 
sufficiently large the expected revenue obtained through the myopic and the 
one-dimensional DP policy become the same. This follows from the observa- 
tion that when capacity is sufficiently large, both methods maximize current 
expected revenue. This myopic approach is optimal since the firm does not 
run the risk of stocking out before the end of the planning horizon that is, 
there are no future implications of the current pricing decision. 

2.5 Computational Results 

In the previous subsections, we introduced dynanzic pricing policies for revenue 
maximization with incomplete demand information based on DP (one, five 
and eight dimensional) as well as a myopic policy which we consider as a 
benchmark. We have implemented all methods except the eight-dimensional 
DP, which is outside today's computational capabilities. 

We consider an example where true demand is given by dt = 60 - pt + E,, 

with ~t = 0 initially and E~ N N(0, a2),  where a = 4. The prices belong in the 
set F = (20, 2 1 , .  . . , 401, the total capacity is c = 400 and the time horizon 
is T = 20. As we discussed in the previous_subgections we consider a linear 
model for estimating the demand, that is, dt = PF + &pt.  

We first assume a model of demand assuming that ct = 0, and we apply 
both the myopic and the one-dimensional DP policies, which are optimal in 
this case. In order to  show the effect of demand lea r~ ing  we plot in Fgures 
1 and 2 the least squares estimates of the intercept Pt  and the slope P j .  In 
particular, we plot the average estimate of the parameters within one standard 
deviation. We notice that the estimates of the demand parameters indeed tend 
to  the true demand parameters over time. 

In Table 1, we compare the total revenue and average price from the rny- 
opic and the one-dimensional DP policies, over 1,000 simulation runs. In gen- 
eral, as we mentioned earlier, for very large capacities both policies lead to 
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the same revenue. The results of Table 1 suggest that the one-dimensional 
DP outperforms the myopic policy significantly (by 28.65%). Moreover, the 
standard deviation of the revenue given by the one-dimensional DP policy is 
3.5 times lower than the revenue given by the myopic policy. In addition, the 
one-dimensional DP leads to  a higher and more stable price compared to  the 
price given by the myopic policy. 

We next consider the case that N N(O,16). In Table 2, we report the 
total revenue and average price from the myopic, one-dimensional DP and 
five-dimensional DP policies, over 1,000 simulation runs. We consider T = 8 
periods. For all policies, we compute average revenue over the periods t = 
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Table 1. Comparison of total revenue and average price for the myopic and the 
one-dimensional DP policies for E L  = 0, over 1000 simulation runs with T = 20 and 
c = 400 

I I 

Std (Price)l 2.811 0.651 

4 , .  . . ,8 ,  as in the first 3 periods we do not have enough observations to start 
the five dimensional DP. For the first three periods, we use p = 30. 

Table 2. Comparison of total revenue and average price for the myopic, the one- 
dimensional and five-dimensional DP policies for ~ t  N N(O,16), over 1000 simulation 
runs with T = 8 and c = 125 

282.0 394.2 
Ave. (Price) 
Std (Price) 

The results of Table 2 agree with intuition that the more computationadly 
intensive methods lead to higher revenues. In particular, the one-dimensional 
D P  policy outperforms the myopic policy (by 9.4%), and the five-dimensional 
D P  policy outperforms the one-dimensional D P  policy (by 2.09%). In this 
experiment, the variability of the revenue and the price was comparable among 
the three policies. 

Overall, we feel that this example (as well as several others of similar 
nature) offers the following insights: 

1. All the methods we considered succeed in estimating accurately the de- 
mand parameters over time. 

2. The class of D P  policies outperforms the myopic policy. In addition, rev- 
enue increases with higher complexity of the DP method, that  is the five- 
dimensional D P  policy outperforms the one-dimensional D P  policy. 

3 A Learning Approach for Dynamic Pricing, Part 11: 
With Competition 

In this section, we consider a dynamic pricing model in a competitive setting. 
In particular, we focus on an oligopolistic market where several firms compete 
for a single perishable product in a dynamic environment. As time progresses 



64 D. Bertsimas, G.  Perakis 

the firms competing in the market are learning their demand and setting 
prices over the leftover time horizon. As a result, the firm apart from trying 
to  estimate its own demand, it also needs to  predict its competitors' demands 
and pricing policies. Given the increased uncertainty due to  competition, we 
use a more flexible model of demand, in which the firm considers that its own 
true demand as well as its competitors' demands have parameters that are 
time varying. Models of the type we consider in this section, were introduced 
in a more general context in [BGT99], and have nice asymptotic properties 
that we review shortly. Specifically, the J competing firms have total capacity 
c l ,  cz, . . . , c~ respectively, over a finite time horizon T. At time t ,  firm k has 
leftover capacity of the product for sale ck,t, k = 1,. . . , J, for the remainder 
of the time horizon. In the beginning of each period t ,  Firm 1 knows the 
past realizations of its own demand dl,,, its own prices pl,, as well as its 
competitors' prices pk,,, where k E (-1) = ( 2 , .  . . , J) and s = 1 , .  . . , t  - 1. 
Notice that it is not realistic to  assume that the firm directly observes its 
competitors' demands. 

We assume that each firm's true demand is an unknown linear function, 
where the true demand parameters are time varying, that is, for firm k = 
1 , .  . . , J demand is of the form 

the coefficients P;,,,P;,~ 2 0, 1 E {-k) = (1 , .  . . , k - 1, k + 1 , .  . . , J), /32,t 5 0. 
The coefficients vary slowly with time, i.e., 

This model assumes that demand for each firm k = 1 , .  . . , J depends on its 
own as well as its competitors current period prices pl, t ,  p ~ , t , .  . . , p ~ , t ,  unknown 
parameters P;,t, Pi,t,  . . . , Pist ,  and a random noise ~ k , t  N(0,  o&),  k = 
1 , .  . . , J. The parameters bk(i), i = 0 , 1 , .  . . , J are pre-specified constants, 
called volatility parameters, and impose the condition that the coefficients 
P&, Pk,t , .  . . , are Lipschitz continuous. For example setting Sl;(i) = 0, for 
some i, implies that the ith parameter of the demand is constant in time (this 
is the usual regression condition). 
Firm 1's objectives are to estimate its own demand, its competitors' reac- 
tions and finally, set its own prices dynamically in order to maximize its total 
expected revenue. 

The results in [BGT99] suggest that if the true demand is Lipschitz con- 
tinuous, then the linear model of demand with time varying parameters we 
consider will indeed converge to the true demand. Moreover, the rate of con- 
vergence is faster than other alternative models. While we could use this model 
in the noncompetitive case of the previous section, it would lead to very high 
dimensional DPs that we could not solve exactly. 
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The remainder of this section is organized as follows. In Section 3.1, we 
present the firm's demand estimation model. In Section 3.2, we present a 
model that will allow the firm to predict its competitors1 prices but also a 
model that the firm performs to  set its own prices. Finally, in Section 3.3, we 
present some computational results. 

3.1 Demand Estimation 

Each firm at time t estimates its own demand to be 

A 

where dk,t is a point estimate of the current period demand and ~ k , t  is a 
random noise for firm k =J,. . . ,_J. The point estimat: of the demand in 
current period t is given by dx,t = P;,, + ,@tpk,t  + xljk &pI,t , k = 1, . . . , J. 
The parameter estimates are based on the price and demand realizations in 
the previous periods. 

We assume that the parameter estimates Bj$, k = 1 , .  . . , J that describe 
how each firm's own price affects its own demand, are negative. This is a rea- 
sonable assumption since it states that the dem_and is decreasing in the firm's 
own price. Moreover, the parameter estimates DL,,, k # 1, k, 1 E (1 , .  . . , J )  are 
nonnegative, indicating that if the competitors set for example, high prices 
they will increase the firm's own demand. 

The firm makes the following distributional assumption on the random 
noise for each firm's demand, 

~ k , t  N N(O,??i,t), where k = 1 , .  . . , J 

and the demand variance estimated for each firm is, 

Notice that for the same reason as in the noncompetitive case, the variance 
estimates ??;,,, for k = 1 , .  . . , J, have t - J - 2 degrees of freedom. Notice 
that when the market is a duopoly (i.e., there are two firms competing in 
the market), then J = 2 and the degrees of freedom are t - 4 and hence the 
denominator in the variance estimates is - 4. A 

A 

For each firm k = 1,. . . , J we denote by Dl, = (Pk,1,. . . , Pk,t-I), the vector of ,. - ,. ,-. 
the estimate of its demand parameters, where Pk,t = (P;,t, . . , 
In order to  estimate its own demand, Firm 1 solves a regression-type problem. 
I t  minimizes the absolute value of the error, that is, the sum over the data 
acquired so far (i.e., from the past time periods) of the absolute value of the 
difference between the observed demand dl,,, and the estimate of the demand 
A 

dl,, = e,, + Pk,,pk,, + Zlik&,,pi,,, 7 = 1, .  . . , t  - 1. Alternatively, we 
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could replace the absolute value with a square and consider a more traditional 
regression-type model. Nevertheless, the absolute value will allow us to  convert 
the problem into a linear optimization problem which is computationally more 
tractable. That is, we solve the following optimization problem. 

Note that we impose the constraint that the parameters are varying slowly 
with time. This is reflected in the numbers 61(i). As we mentioned above, this 
problem can be transformed to a linear optimization model, which makes it 
attractive_computationally. 

Let (Pi,r)*,  i = 0 ,1 , .  . . , J, T = 1, .  . . , t  - 1 be an optimal solution of 
this problem. Firm 1 would like now to use this information in order to es- 
timate for theparameters in the future, for example in period t parameters 
(Py,t, pi,t, . . . , We propose as an estimate the average: 

that is, the new estimate is an average of the estimates of the N previous 
periods. In particular, if we choose N = 1, we take the new estimate to  be 
equal to  the estimate for the previous period. 

3.2 Competitor's price prediction and own price setting 

In order for Firm 1 to set its own prices in current period t ,  apart from esti- 
mating its own demand, it also needs to  predict how its competitors' (Firm 
2 , .  . . , J) will react and set their prices in period t .  Unfortunately, it is not 
realistic to assume that Firm 1 observes the past demand realizations of its 
competitors. Nevertheless, it is more realistic to assume that the information 
available to Firm 1 a t  each time period, includes, apart from the realizations 
of its own demand, also the prices each firm has set in all the previous periods 
(for example, one can easily find out the fares airlines are charging over the 
internet). We will assume that Firm 1 believes that its competitors are also 
setting prices optimally. As a result, Firm 1 will estimate the demand param- 
eters of its competitors using as data the past realizations of prices. That is, 
Firm 1 tries to  guess the parameters of its competitors' demands (by assum- 
ing the demand of each competitor also belongs to a parametric family with 
unknown parameters) through an optimization problem that would exploit 
the actual observed competitors' prices. This suggests that Firm 1 needs to 
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solve an inverse optimization problem. For ease of reading, we first describe 
the formulation in the setting of two competing firms. We denote by pisT 
the vector of demand parameters for the remaining periods t ,  . . . , T .  Vector 
&(61T) denotes the estimate Firm 1 makes for the price of Firm 2 ,  as a func- 
tion of the estimates of the parameters of the demand function of Firm 2. It  
is a vector of the prices over the remaining time periods t ,  . . . , T .  Notice that 
Firm 2 is an optimizer, therefore, a t  time t it sets its prices by optimizing its 
total expected revenue (price times expected demand) over the leftover time 
horizon [t, TI, under the constraint that the demand for the remaining time 
should not exceed the leftover capacity of the product ~ 2 , ~ .  

We denote with d2,min 2. 0 the minimum allowable allocation Firm 2 is 
willing to  make at each time period (note that this can be equal to  zero). c2,t 
denotes the leftover capacity at time t for Firm 2 and as a result, is equal to 

t-1 , ..-. A 

c2 - (P& + , B & P ~ , ~  + Notice that part of optimization problem 
7=0 

(11) involves the estimate of the price of Firm 1 as perceived by Firm 2 .  
As a result, we use notation p:,T to  denote what Firm 1's estimate is of what 
Firm 2 believes for Firm 1's pricing. The solution of this optimization problem 
(i.e. the price for Firm 2) is a function of the parameters of the competitor's 
(Firm 2) demand from period t to T .  Note that we set these parameters 
(see also a discussion in the previous subsection) as an average of the past 
parameter estimates (see for example, (10) for Firm 1).  In conclusion, the 
previous discussion leads us to conclude that problem (11) gives an estimate 

..-. 
5-2,T(P2,T), 7 = 1,. . . , t  - 1. 

The reason for the previous analysis came from the fact that Firm 1 was 
trying to  estimate the demand parameters for Firm 2 without being able to  
directly observe the past demand realizations but rather deduce this informa- 
tion through the past price realizations. The last step in this process is for 
Firm 1 to estimate the demand parameters for Firm 2 by solving a regression- 
type of model. That is, minimizing the sum over the time periods so far of 
the absolute value of the difference between the so far observed prices of Firm 
2 and the parametric solution of the price of Firm 2 in terms of its demand 
parameters from (11). Notice that as in the previous section an alternative is 
to minimize the squared difference. Nevertheless, absolute values allow us to  
reformulate the problem as a linear optimization problem which is tractable. 
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In summary, Firm 1 solves the following optimization problem in order to 
estimate the demand parameters of Firm 2, 

A 

Since parameter pi , ,  1 0, it follows that problem (11) is a concave quadratic 
optimization problem. 
Notice that  this formulation extends to  J competing firms. Similarly to before, 
Firm 1 estimates the demand parameters for Firm k E (-1) = (2 , .  . . , J) by 
solving the following optimization problem 

A 

where ck(Pk), for k E (-1) = (2 , .  . . , J) is the vector solving 

Price p;,, denotes what Firm 1's estimate is of what Firm k believes for its cor- 
responding competitors' pricing. Furthermore, dk,min denotes the minimum 
allowable allocation Firm k is willing to make at  each time period (note that 
this can be equal to zero). We denote the feasible region of problem (12) as 
K ( p l ) ,  where is a vector of prices representing what Firm 1's estimates are 
of what the competitors' believe for their corresponding competitors' pric- 
ing. Since problem (12) is a concave quadratic optimization problem, we can 
reformulate it as a variational inequality problem. 
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Lemma 2. Problem (12) that  F i r m  k solves i n  order t o  de termine  i t s  pricing 
policy us  a funct ion of i t s  demand  parameters,  i s  equivalent t o  the  following 
variational inequality problem 

The proof follows easily since the feasible region is a compact, convex set and 
the optimization objective is a concave function. 

Furthermore, since Firm 1's competitors k E (-1) = (2 , .  . . , J) simulta- 
neously solve this problem, we can combine variational inequality problems 
(13) into the following single quasi variational inequality. 

In this case the feasible region K(p l )  = {p = (p2, .  . . , p ~ )  : pk E K(pLk),  k = 

2, .  . . , J) is the joint feasible region that combines the feasible regions K(pLk).  
This formulation gives rise to  the following MPEC formulation describing 

the problem Firm 1 is solving in order to guess its competitors' parameters. 

where p^lc(,Bk), k E (-1) = (2 , .  . . , J) satisfies quasi variational inequality 

(14). 

Own Price Setting Policy 

The last step involves Firm 1's own price setting problem. Firm 1 sets 
its prices by maximizing expected revenues over the remaining time horizon. 
That is, 
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As before, dl,min denotes the minimum allowable allocation Firm 1 is will- 
ing to  make at each period (note that this can be zero). This optimiza- 

-. -, 

tion model uses the estimates of the parameters P:,, = & zt-' l=t-l-N(P1,1)*, 
i = 0,1, . . . , J, for r = t ,  . . . , T (i.e., an average of Firm 1's own demand 
estimation problem from the past periods), as well as the prediction of its 

A 

competitors' price Pk,, = & c : T L ~ - ~ ( ~ ~ , ~ ) * ,  r = t , .  . . , T, k = 2 , .  . . , J. 
To make the analysis more transparent in the remainder of the paper we 

will present in detail the case of two competing firms. Nevertheless, the anal- 
ysis easily extends to  the case of several competing firms. We will distinguish 
between the uncapacitated and the capacitated versions of the problem. 

Uncapacitated Case 

First we would like to point out that in the uncapacitated case problem (11) 
separates by time period. Furthermore, as we mentioned above, we assume 
that Firm 1 believes that Firm 2 is also a revenue maximizer. As a result, 
Firm 2 solves the optimization problem, 

This problem has a closed form solution of the form 

Price P:,, denotes what Firm 1's estimate is of what Firm 2 believes for Firm 
1's pricing. Examples of such estimates include: = PI,,, = pl,,-l, or 
an average of price realizations from several periods prior to  period r. 

Firm 1 will then estimate the demand parameters for Firm 2 by solving 
the following optimization problem 
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As in the model for estimating the current period demand for Firm 1, 
d2(i), i = 0,1 ,2 ,  are volatility parameters that we assume to be prespecified -. 
constants. The solutions (Pi,,)*, i = 0,1,2,  of this optimization model allow 
Firm 1 to estimate its competitor's current period demand by setting: 

Own Price Setting Policy 

After the previous analysis, Firm 1's own price setting problem follows eas- 
ily. As before, since the problem is uncapacitated, this optimization problem 
also separates by time period. As a result, Firm 1 sets its prices by maximizing 
its current period t revenues. That is, 

This optimization model uses the estimates of the parameters 6,, , i = 0,1 ,2 ,  
that we described in Firm 1's own demand estimation problem, as well as the 

prediction of the competitor's price jiz,t = " ~ t i ~ ; t p ' ~ t .  Notice that this latter 
-202 , - ,  - -. 

part also involves the estimates of the demand parameters Pi,,, i = 0 , 1 , 2  
arising through the inverse optimization problem in the competitor's price 
prediction problem. 

Capacitated Case 

We assume that both firms face a total capacity cl and c2 respectively that 
they need to  allocate in the total time horizon. Quantities cl,t and cz,l denote 
the leftover capacities of Firm 1 and 2 respectively in the beginning of period 
t .  As before, Firm 1 makes the behavioral assumption that Firm 2 is also a 
revenue maximizer. As a result, in general Firm 2 will solve problem (11). In 
order to  perform some computations and derive some insights, in what follows 
we will assume that the firms solve their price setting problems myopically. 
As a result, the price prediction problem that Firm 1 solves for predicting its 
competitor's prices becomes 

As in the uncapacitated case, pi,, denotes Firm 1's estimate of what Firm 2 
assumes for Firm 1's own pricing. Examples include: p:,T = pl,,, or PI,,-1, or 



72 D. Bertsimas, G .  Perakis 

considering an average of the prices Firm 1 sets in several previous periods. 
We can now estimate Firm 2's demand parameters through the following 
optimization model 

where B2.t E argmaxpw2 pmin {(& + P&P + & , t ~ : , t )  , c2.t) .  

Let (&,,)*, i = 0,1 ,2 ,  T = l l  . . . , t  - 1 be optimal solutions to  this opti- 
mization problem. As before, Firm 1 estimates its competitor's current period 
demand parameters as 

Myopic Own Price Setting Policy 

After computing its own and its competitor's demand parameter estimates 
and establishing a prediction on the price of its competitor for the current 
period, Firm 1 is ready to set its own current period price. As in the uncapac- 
itated case, Firm 1 solves the current period revenue maximization problem, 
that is, 

where cl,t = cl - dl,, is Firm 1's remaining capacity in period 
A. -. 

t. Moreover, the demand parameters ,B;,, = ~ k l i - , ~ ( , B i , ~ ) * ,  = 
A. + ~ t - 1  l=t-l-N(,Bi,l)*, i = 0,1,2,  and finally, the estimates of the competitor's 

prices are 

3.3 Computational Results 

We consider two firms competing for one product. The true models of demand 
for the two firms respectively are as follows: 
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where the ~ l , t ,  E Z , ~  N N(O,16). Moreover, the prices for both firms range in 
the sets PI = Pz = [loo, 9001, the time horizon is T = 150 and finally we 
assume that  pl , l  = p z , ~  = 500. Finally, we assume an uncapacitated setting. 

We compare three pricing policies: (a) random pricing, (b) price matching, 
and (c) optimization based pricing using the methods we outlined in this sec- 
tion. A firm employing the random pricing policy chooses a price at  random 
from the feasible price set. In particular, we consider a discrete uniform distri- 
bution over the set of integers [loo, 9001. A firm employing the price matching 
policy sets, in the current period, the price its competitor set in the previous 
period. Finally, a firm employing optimization based pricing first solves the 
demand estimation problem in order to  estimate its current period parameter 
estimates using linear programming, supposes its competitor will repeat its 
previous period pricing decision, and then uses myopic pricing in order to set 
its prices. In Table 3, we report the revenue from the three strategies, over 
1000 simulation runs. 

Table 3. A comparison of revenues under random, matching, optimization based 
pricing policies 

In order to obtain intuition from Table 3, we fix the strategy the competitor 
is using, and then see the effect on revenue of the policy followed by Firm 
1. If Firm 2 is using the random pricing policy, it is clear that  Firm 1 has a 
significant increase in revenue by using an optimization based policy. Similarly, 
if Firm 2 is using a matching policy, again the optimization based policy 
leads to  significant improvements in revenue. Finally, if Firm 2 is using an 
optimization based policy, then the matching policy is slightly better than 
the optimization based policy. However, given that the margin is small and 
given the variability in the estimation process, it might still be possible for 
the optimization based policy to  be stronger. I t  is thus fair to  say, that at  
least in this example, no matter what policy Firm 2 is using, Firm 1 seems to  
be better off by using an optimization based policy. 

Firm 1 
Opt 
Rand 

Firm 2 
Rand 
Rand 

1 Avg(Rev) 
3,126,000 
2.638.800 

2 Avg(Rev) 
2,909,200 
2.616.900 

1 Std(Rev) 
70,076 
63.112 

2 Std(Rev) 
109,790 
61.961 
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4 Conclusions 

We introduced models for dynamic pricing in an oligopolistic market. In the 
first part of the paper, we studied models in a noncompetitive environment in 
order to understand the effects of demand learning. By considering the frame- 
work of dynamic programming with incomplete state information for jointly 
estimating the demand and setting prices for a firm, we proposed increasingly 
more computationally intensive algorithms that outperform myopic policies. 
Our overall conclusion is that dynamic programming models based on incom- 
plete information are effective in jointly estimating the demand and setting 
prices for a firm. 

In the second part of the paper, we studied pricing in a competitive en- 
vironment. We introduced a more sophisticated model of demand learning in 
which the price elasticity is a slowly varying function of time. This allows 
for increased flexibility in the modeling of the demand. We outlined methods 
based on optimization for jointly estimating the Firm's own demand, its com- 
petitors' demands, and setting prices. In preliminary computational work, we 
found that optimization based pricing methods offer increased revenue for a 
firm independently of the policy the competitor firm is following. 
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Appendix 

Proof of Proposition 1 A A 

The first order conditions of the least squares problem for Pt and Pt-1 respec- 
tively, imply that 

t - 2  

(d ,  - x:Wpl) x ,  = 0. 

A 

If we write, pt = Pt-1 + a, where a is some vector, it follows from (15) that 

This in turn implies that ,  

Subtracting (16) from (17) we obtain that 

Proof of Proposition 2 
Let t be the current time and s 2 t .  We first relate the variance in period s ,  

with the variance in the next period s + 1, 
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By expanding this last equation and separating the period s terms from the 
previous period s - 1 we obtain 

Substituting Eq. (18) we obtain 

We substitute (20) into (19) to  obtain that EIZ:+l,tlds] is equal to: 

Since in the beginning of period s, ds = B;,t + ,',pS + ~ , , t ,  and taking expec- 
tations over cs,t with E [ E ~ , ~ ]  = 0 and E [ E : , ~ ]  = s!,,, we obtain Eq. ( 3 ) .  
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Summary. We study congestion pricing of road networks with users differing only 
in their time values. In particular, we analyze the marginal social cost (MSC) pricing, 
a tolling scheme that charges each user a penalty corresponding to the value of the 
delays inflicted on other users, as well as its implementation through fixed tolls. We 
show that the variational inequalities characterizing the corresponding equilibria can 
be stated in symmetric or nonsymmetric forms. The symmetric forms correspond 
to optimization problems, convex in the fixed-toll case and nonconvex in the MSC 
case, which hence may have multiple equilibria. The objective of the latter problem 
is the total value of travel time, which thus is minimized at  the global optima of that 
problem. Implementing close-to-optimal MSC tolls as fixed tolls leads to equilibria 
with possibly non-unique class specific flows, but with identical close-to-optimal 
values of the total value of travel time. Finally we give an adaptation, to the MSC 
setting, of the Frank-Wolfe algorithm, which is further applied to some test cases, 
including Stockholm. 

Key words: Multi-Class Traffic Assignment, Congestion Pricing, Marginal 
Social Cost 

1 Introduction 

Traffic in large cities has become a major problem for society. It  is inefficient, 
causes accidents and pollutes the environment. It  has become a common view- 
point among transportation economists that charging some kind of fee from 
the users of the road network is necessary. The European Commission [ECOl, 
p. 771 plans to  propose a framework directive, setting out the principles of an 
infrastructure-charging system, including a common methodology for setting 
charging levels which incorporate external costs. In 1998, the Swedish Govern- 
ment [SG98] recommended that transport taxes and fees should correspond as 
close as possible to  the marginal costs caused by the transport. Road pricing 
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has further been implemented in Singapore, London, and several Norwegian 
cities. In the Stockholm region, various studies have considered different toll 
patterns and performed social cost and benefit analyses for various time hori- 
zons. Moreover, the Stockholm city government has decided to  carry out a 
full-scale trial of road pricing. Events such as these make questions related to 
the choice of pricing system and fee levels highly timely. 

By request of the Swedish Institute for Transport and Communications 
Analysis (SIKA), the consulting firm Inregia [IngOl] attempted to calculate 
marginal cost road charges for Stockholm County for three user classes (work 
and school trips, business trips, and other trips) with different time values 
(0.98, 3.30 and 0.19 SEK/min. respectively) estimated from travel surveys. 
In this implementation, the marginal cost tolls were updated by the method 
of successive average, resulting in slow convergence and large link volume 
oscillations. This led to  the initiation of a research project whose results are 
presented here. 

In transportation science, the classical marginal social cost pricing theory 
(e.g., [BMW56]) suggests that for the most efficient usage of a congested road 
network with homogeneous users, each user should be charged a toll equal to 
the total value of time loss inflicted on other users of the network. In the case 
of fixed travel demand, this will induce an equilibrium that is system optimal 
in the sense that the total cost of network usage is minimal, assuming that all 
users have fixed and identical time values. To calculate this toll pattern, one 
modifies the link cost functions by adding the external cost term and solves 
for a user-optimal solution, using e.g. the Frank-Wolfe algorithm. The solution 
is unique in the terms of link flows and tolls, provided that the modified link 
travel cost functions are positive and strictly increasing (see, e.g., [Pat94, Ch 
21). Once the tolls are fixed and implemented, the user-optimal flow pattern 
will be system-optimal. 

However, it is well known that travelers may have widely varying time 
values. In Stockholm, for instance, estimated time values for different trip 
purposes vary by a factor of more than seventeen, as indicated above. Hence, 
since tolls cannot be charged in time units, but have to  be levied in monetary 
equivalents, different user groups will react differently to  a given toll scheme. 
Therefore, methods to  compute tolled equilibria need to account for these 
different reactions, leading to multi-class user equilibrium problems. 

Dafermos [Daf73] has shown that in the case with multiple user classes, a 
modification of the link cost functions similar to the one above yields a user- 
optimizing flow that is also system-optimizing (assuming, however, convexity 
of the system objective). 

Netter [Net71], on the other hand, argues that the assumption of convexity 
of the total travel cost is unrealistic in the context of marginal cost pricing in 
multi-class transportation networks. When link travel times depend on class 
specific volumes on the links and are different for different user classes, the user 
equilibrium is not generally unique even in toll-free networks or in networks 
with fixed tolls. So, even if the planner knows the tolls corresponding to the 
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system optimum, the achievement of this optimum will not necessarily follow 
from the implementation of these tolls. In Section 5 of this article, we provide 
an example that supports Netter's statement in [Net7l]. 

Notwithstanding the practical difficulties in its implementation, tolls based 
on marginal social costs are useful for evaluating other tolling policies when 
used in conjunction with the relative welfare index introduced by Verhoef et 
al. [VNR95]. 

Hearn and co-authors (e.g., [HY02], [HR98]) argue that instead of marginal 
social cost tolls, it might be worthwhile contemplating alternative tolls achiev- 
ing the systems optimum; optimizing some other objective, such as the number 
of toll booths. 

Using an entertaining parable in two companion papers ([Diagga] and 
[Diaggb]), Dial studies the problem of determining "optimal" congestion tolls 
under continuous distribution of time values over the users. He addresses how 
such tolls can be determined by solving a variational inequality and provides a 
solution method. However, Lindberg [Lin05] indicates that [Dia99a] contains 
several flaws. 

Yang and Huang [YH04] consider the social optimum in terms of cost, as 
well a s  the system optimum in terms of time, in the context of users with dif- 
ferent time values. For the cost optimum they demonstrate that the optimum 
flows are equilibrium flows for a fixed-toll problem with marginal social cost 
tolls. However, they claim that the total social cost is a strictly convex func- 
tion (Section 3.1). We provide a counterexample to  this in Section 5 below. 
Concerning the time optimum, they show by an interesting argument that 
there exists a monetary toll pattern that minimizes the total travel time in 
the network. The corresponding tolls can be calculated by consecutively solv- 
ing two optimization problems with linear constraints - one with a convex 
objective and the other with a linear objective. 

While minimizing the total travel time might be an interesting task from 
a pure transportation planning view, the overall economic efficiency, in the 
case of fixed travel demand for all user classes, requires minimization of the 
total value of travel time 

In many case studies, problems related to  user heterogeneity have been 
circumvented by application of an average time value to all users. However, 
as shown by Eliasson [EliOO], such models can lead to  erroneous conclusions 
about the efficiency of the resulting toll system. 

The subject of the current paper is the study of tolled equilibria and 
marginal cost pricing in networks with several user classes that differ only by 
their time values. Possible applications include modeling of individual trav- 
elers that have different trip purposes (e.g. work, business, leisure etc.) and 
therefore perceive the relation between travel time and monetary cost in dis- 
similar ways. Forerunners of the current paper are Engelson, Lindberg and 
Daneva [ELDO31 and Engelson and Lindberg [EL02]. 

For the remainder, Section 2 of the paper is mainly devoted to basic defi- 
nitions, including that of a multi-class equilibrium, and to  statements of the 
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variational inequalities characterizing equilibria. For cases with symmetric 
cost functions we show that all stable equilibria correspond to  local minima 
of the corresponding objective. 

Realizing that marginal social cost tolls need to  be implemented as fixed 
tolls, we consider multi-class equilibria under fixed tolls in Section 3. We show 
that the variational inequality defining the fixed-toll equilibrium can be stated 
in nonsymmetric or symmetric forms, and thus it has a corresponding "equiva- 
lent" optimization formulation based on the symmetric form. We demonstrate 
that the optimization formulation is convex, but show that the class specific 
link flows are not necessarily unique. In spite of this, the total value of travel 
time is unique. 

Section 4 is devoted to the case with flow-dependent tolls based on 
marginal social cost (MSC tolls). Again the variational inequality can be 
stated in symmetric or nonsymmetric forms. The optimization problem corre- 
sponding to  the symmetric version has a non-convex objective function, which 
turns out to  be the total value of travel time. Finding the MSC tolls thus cor- 
responds to  a form of welfare optimization. However, due to non-convexity, 
there may be multiple local optima which implies multiple equilibria. Im- 
plementing equilibrium tolls as fixed tolls does not necessarily achieve the 
corresponding equilibrium, but still gives flows with the same total value of 
travel time. Thus, using fixed tolls we can achieve the same levels of welfare 
(in the form of total value of travel time) as when optimizing over all feasible 
flows. 

In Section 5 ,  we first consider a simple example illustrating the noncon- 
vexity of the total value of travel time function; an example which is then 
expanded to  demonstrate that this function is non-convex in general. Section 
6 outlines an algorithm of Frank-Wolfe type for the marginal cost toll case, 
an algorithm that is applied in Section 7 to the classical Sioux Falls network 
and to  that of Stockholm. 

2 User equilibria in networks with several user classes 

This section defines multi-class equilibria and characterizes them as varia- 
tional inequalities (VI). In addition, the stability of such equilibria and the 
conditions under which these VI1s can be addressed as optimization problems 
are also considered. 

As noted in the introduction, when studying tolled equilibria one needs to 
consider multi-class equilibria, i.e. with user classes having different percep- 
tions of travel costs. Dafermos [Daf73] studies such equilibria, with equilibrium 
definitions, however, that are nonstandard today. Multi-class equilibrium def- 
initions have also been given by Netter [Net711 and Van Vliet [VBS86], but in 
publications not easily accessible. Due to these circumstances, we will state 
equilibrium definitions of Wardrop type. We also state corresponding varia- 
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tional inequalities characterizing equilibria, as well as symmetry conditions 
guaranteeing the existence of corresponding optimization problems. 

Consider a road network consisting of nodes n E N and directed links 
a E A. Let W c N x N be the set of OD pairs. Assume that OD demands 
q$ between the OD pairs w E W for each user class k E K are given. For 
each link a ,  there are associated continuously differentiable cost functions 
ck : $ I f x K  + !R+ that represent the cost of traversing link a for a user in 
class k and depends on the class specific volumes in glJ links. For the time 
being, ck is a general function, but it will be endowed with special structure 
in the next section. We also let ck denote the (column) vector of link costs 
(or functions) for class k, c, the (row) vector of class costs for link a ,  and c 
the (matrix of) class specific link costs. We will use the same convention for 
other entities indexed by a and k. 

Let R, be the set of routes (or paths) connecting OD pair w and 
R = UWGw Rw,  the set of all routes. In analogy with c, let h = (h!) be 
the matrix of class k flows on routes r ,  with columns hk (of class k route 
flows) and rows h, (of class flows on route r ) .  Let the set of feasible route 
flows be H = {h E ! R f x K  : CrERw hb = q;,'dw E W, k E K ) .  Further, de- 
note by F the set of feasible link flows (or volumes), i.e. 
F = {f E ! R $ ~ ~ :  3h E H,'da E A, k E K ft = CrERbarh;) ,  where 6,, is 
1 if route r traverses link a ,  and 0 otherwise. Introducing the link-route in- 
cidence matrix A = (S,,), and using the indexing convention, we see that 
f" Ahk,  f = Ah and F = A H .  

Let C = (C:) be the matrix of total travel costs for users of class k on 
route r, with columns c k .  We assume that C: is additive over the links, i.e. 
that C: (h) = C,  6,,ck (Ah), or with our notation conventions, Ck  = ATck 
and C = ATc. 

Definition 1. (Multi-class Wardrop equilibrium) The route flow matrix E 
H is a (route flow) multi-class equilibrium if) for any OD pair and class, each 
route that is used by the class (i.e. has positive flow) has cost not greater than 
the cost of any other route for that OD pair and class. 

In similarity to the single class case, the equilibrium definition can alterna- 
tively be stated as a variational inequality (VI) in the set of feasible route 
flows or in the set of link flows. We will use (*, *) to denote the inner product 
between vectors (or matrices) of appropriate dimensions. 

Lemma 1. A route flow h E H is an equilibrium if and only if A fu@lls the 
variational inequality 

Using the relationship f* = A i l  (1) is equivalent to 

'df E  F. 
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Proof. The lemma is a simple extension of the single class result (pp. 299 - 
300) in Smith [Smi79]. 

In view of the lemma, we introduce the following notion. 

Definition 2. The link flow matrix f* E F is a (link flow multi-class) equilib- 
rium if it satisfies the VI in (2). 

Variational inequalities are usually solved by reduction to optimization prob- 
lems (or series of such). When the VI is symmetric, in the sense that the link 
specific cost functions are symmetric, i.e. when 

then c ( f )  = V I  (f ), the gradient of some differentiable primitive function I : 
W t x K  -+ 8. (This follows e.g. from Green1s/Stoke's theorem, or the Symmetry 
Principle, see, e.g., [OR70, p. 951) In this case, the VI (2) says that there are 
no feasible descent directions for I at  f*, a necessary condition for a local 
minimum of I over F (see, eg . ,  [Zan69, Lemma 2.111). Note however that the 
VI (2) can be fulfilled also at  other points, such as saddle points. Dafermos 
[Daf73] claims that the symmetry condition (3) is usually satisfied in real 
transportation networks. Netter [Net71], on the other hand, argues that,  for 
general link travel cost functions c t ,  condition (3) is not fulfilled in general. 
In sections 3 and 4 of this paper, we shall show that validity of the symmetry 
conditions may depend on the units in which the costs are specified. 

If, in addition to  ct being symmetric, I is convex, then the VI (2) is 
equivalent to  the optimization problem 

min I ( f )  s.t. f E F, (4) 

since in this case (2) is a necessary and sufficient condition for a global mini- 
mum of I over F. Summing up: 

Proposition 1. When c is symmetric, i.e. fulfilling (3), it has a primitive 
function I ,  such that c ( f )  = V I  ( f ) .  In this case the variational inequality (2) 
is equivalent to the condition that there is no feasible descent direction to I at 
f*. Moreover, if I is convex, then the multi-class equilibria f E F correspond 
exactly to the global optima of problem (4). Uniqueness of the solution to (4) 
and hence uniqueness of the equilibrium is guaranteed if I is strictly convex. 

Sandholm [San02] studies single class traffic equilibria, and introduces a type 
of continuous time, dynamic adjustment process whereby route flow (on 
the average) shifts from costlier routes to cheaper routes (in the sense that 
(C, dhldt) < 0 unless h is an equilibrium). Such a shift is quite rational from 
the point of view of the users. Therefore we will call such a process a rational 
adjustment process. (In [San02], Sandholm uses the more neutral term valid.) 
For single class equilibrium problems with a primitive function, Sandholm 
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[San02] shows that such a process will converge to  an equilibrium in the route 
flow space, and hence also in the link flow space. Such adjustment processes 
can in an obvious way be introduced also in the multi-class case, converging 
to  equilibria also in this case. It  is now natural to give the following definition. 

Definition 3. A mul t i  class equilibrium f i s  locally stable, i f  any  ratio- 
nal adjustment  process started i n  a neighborhood of a route flow matr ix  
h E Hcorresponding to  f ,  will converge to  a n  h corresponding to  f ,  and u n -  
stable otherwise. 

Stable equilibria are of interest because if an equilibrium is not locally stable, 
it can typically not be upheld, since if the route flow pattern is exposed to a 
small change (e.g. due t o  a temporary change of the traffic conditions) then 
users will deviate from the equilibrium (by the dynamic adjustment process). 
We are now in a position to state and prove 

Theorem 1. Assume that  the matr ix  cost function c has a primitive funct ion 
I .  T h e n  all locally stable multi-class equilibria are local opt ima t o  problem (4). 

Proof. If f = Ah is an equilibrium which is not a local optimum to I ( f ) ,  
then there is f = A h  E F ,  in the neighborhood of f with lower objective 
values than f. An adjustment process started in such an h cannot converge to  
an h* such that f = Ah*, since the objective values have to  decrease during 

the process (due to that $ ~ ( f )  = (VI, df /d t )  = (c ,  g ~ h )  = (ATc, dh/dt) = 

(C, d h l d t )  < 0 ) .  Hence, all locally stable equilibria correspond to local optima. 

3 Fixed-Toll Multi-Class Equilibria with Class Specific 
Time Values 

As noted above, marginal social cost tolls typically need to  be implemented 
as fixed tolls. Further, travelers with different time values react differently to  
such tolls. Therefore, in this section we specialize general multi-class equilibria 
to the case where the classes only differ in their time values, and where the 
tolls are fixed. In particular we show that the VI1s characterizing equilibria can 
be stated in symmetric or nonsymmetric forms, hence allowing corresponding 
optimization formulations. We further show that,  although this optimization 
problem is convex, the equilibrium class flows need not be unique. In spit,e of 
this the total value of travel time turns out to be unique. 

Assumption 1 Below, i t  is  assumed that the class specific travel cost of link 
a for users  of class k depends linearly o n  two components: the link toll pa and 
the travel t ime  ta( f;Ot) ,  which is  a positive, nondecreasing, nonconstant ,  and 
twice differentiable funct ion of  the total volume fiat = Ck f t  o n  the link. In 
particular, this  linear relation i s  mediated through class specific t ime  values 
vk > 0 ,  assumed distinct.  



88 Leonid Engelson and Per Olov Lindberg 

Remark 1. Please note that the tolls pa in this section could as well be any flow 
independent monetary cost ( eg ,  the gasoline cost if one assumes the gasoline 
consumption to  be just proportional to the trip distance). Hence the derived 
results are still valid in this "more general" case. 

Under Assumption 1, the travel disutilities can be expressed either in time or 
in monetary units. Thus we define the generalized cost E: and the generalized 
time i?k of link a for class k respectively as 

and 

fk ( f )  = ta (f;Ot) + palvk. (6) 

Note that E and t are separable over the links, in the sense that $ ( f )  and 
f:(f) only depend on fa. For this reason we will write ?:(fa) rather than ?k( f )  
and correspondingly for i?k ( f ) .  

Switching between E; and i?;, one just scales all link and route costs for a 
given user class with the same scalar (vk or l /vk) .  This does not change the 
equilibria, since Def. 1 is scale invariant in the cost. 

Definition 4. A fixed-toll multi-class user equilibrium (with class specific 
time values), is a multi-class Wardrop equilibrium with link costs ck equal 
to Ek or, equivalently, to Ek. 

By Lemma 1, these equilibria are the solutions to the VI's (1) or ( 2 ) ,  with 
these same link costs. 

Checking symmetry of E and i?, we only have to  check the "intra-link" 
version of (3), by separability. We then see, using afAot/i3f: = 1, that 

a z k ( f a )  = ~ ~ t b ( f ; ~ ' )  which in general differs from vit;(fAot) = for a f  a 

k # 1, since th(f;Ot) > 0 for some f;Ot. Thus the Z; do not fulfill (3) .  On the 
other hand, 

whence the i?k do fulfill (3), implying that f ( f )  = ~ l ( f )  for an appropriate 
primitive function 7, which can be seen to  be (up to an additive constant) 

f:", 

7 ( f )  = 1 / tu (u)du + f j ~ u / v k  . 
a E A  k E K  1 

Since the link times t, are assumed nondecreasing, 7 ( f )  is convex. Hence 
equilibrium link flows f: can be obtained as solutions to  the optimization 
problem (4) with I = 7. In summary we have showed 
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Theorem 2. T h e  equivalent cost functions ~5 and f: are nonsymmetr ic  and 
symmetr ic  respectively. T h e  fixed-toll multi-class equilibria can be determined 
as the opt ima t o  problem (4) with convex objective I = I ,  according to  (7). 

Van Vliet et al. [VBS86] also recognize similar symmetric and non- 
symmetric properties in a traffic equilibrium problem with multiple user 
classes. On the other hand, the transportation science literature does not seem 
to recognize that these properties indirectly lead to the existence of an opti- 
mization problem equivalent to  a nonsymmetric VI. In particular, standard 
references, such as Nagurney [Nag931 and Patriksson [Pat94], often claim that 
a VI, (F(x*) ,  x - x*) > 0,  Vx E S (a feasible region), has an equivalent op- 
timization problem only when F is a gradient of a function or (equivalently) 
when F has a symmetric Jacobian. However, the above discussion demon- 
strates that it is possible, in some cases, to obtain an optimization problem 
equivalent to  a VI via a reformulation even when the Jacobian of F is non- 
symmetric or when F is not a gradient of a function. 

When implementing a computed set of tolls (pa),cA, uniqueness of the 
fixed-toll equilibrium is important, so that one does indeed achieve the solu- 
tion computed. The following proposition is an extension of the well known 
uniqueness theorem for the single class user equilibrium (e.g. [Pat94, Thm. 
2.51.) 

Proposition 2. Assume that the link t imes  t ,  are strictly increasing. Let the 
link flows f , g  E F be two  fixed-toll multi-class equilibria corresponding t o  the 
same set of tolls (pa),EA. T h e n  

( a )  the total volume and the travel t ime  o n  each link are the same i n  both 
equilibria; 

(b)  for each user class and each link, the generalized link t ime  and the gener- 
alized link cost are the same i n  both equilibria; 

( c )  for each user class and each route, the generalized route cost and general- 
ized route t ime  are the same i n  both equilibria. 

Proof. Since the link travel times t ,  are increasing, the objective (7) of prob- 
lem (4) is strictly convex with respect to  the total link volumes. Hence the 
total link volumes are unique, whence the link travel times are unique too. 
This proves (a). Assertions (b) and (c) follow because generalized link times 
and costs as well as generalized route times and costs only depend on the link 
travel times, the (fixed) tolls and the class specific time values. 

Note, however, that the solution need not be unique in the terms of the 
class specific link volumes (f:), e.g. if there are two routes (between the same 
nodes) with the same sum of tolls. Indeed, if both routes are used by two 
different classes in an equilibrium (whence the route times must be equal too), 
then part of the users of the first class can be moved from one route to the other 
and exchanged for users of the other class. The new flow pattern obviously is 
an equilibrium too, since the total link flows and hence the link times are not 
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changed. This non-uniqueness implies that it is possible that implementation 
of a computed equilibrium may lead to  other solutions than the computed 
one. The next result shows that the situation is still well behaved, though, in 
that the total value of travel time , 

is unique. Let us further introduce the total generalized cost in the net- 
work, G( f )  = C,  X I ,  ckfj = C,  X I ,  Vktaf: + C,  Ck paf;, and P(f) = 

C ,  C ,  fi, the total toll revenue. Then, obviously, 

Proposition 3. Assume that the link travel times are strictly increasing. Con- 
sider a fixed-toll multi-class equilibrium for a given set of tolls. Then the total 
value of travel time is unique, i.e. V(f)  = V(g) for any two distinct equilibria 
f and g. 

Proof. By Prop. 2(a), the total toll revenue, P ( f ) ,  is unique. Hence, by (8), 
V( f )  is unique if G( f )  is. On the other hand, the total generalized cost for class 
k can be expressed in route flows instead of link flows. Using Def. 1 we thus get 

k k 
G(f)  = C a , ,  'if: = C w , ,  C r E R w  6;'; = C w , ,  C r c ~ ~ ~ ,  nkh! = C w , ,  nwqw 
where nk is the minimal generalized class k cost for routes connecting OD 
pair w. It  follows from Prop. 2(c) that the n; are the same in both equilibria. 
Thus the total generalized cost G(f )  is unique and the proposition is proved. 

The possibility of nonuniqueness of multi-class equilibria, when the link 
costs depend only on the total flows, was noted by Toint and Wynter [TW96], 
in observing that the Jacobian ( a c i / d f A )  in a is singular. Toint and Wynter 
considered this to  be a problematic property which should be avoided for link 
cost functions. In view of Proposition 3, we consider this nonuniqueness no 
more problematic in our case than the standard nonuniqueness of route flows 
in single class equilibrium problems. Further discussions of nonuniqueness of 
multi-class equilibria may be found in Konishi [Kon04]. 

We will finally discuss the continuity of the total link flows (of fixed-toll 
equilibria) with respect to the tolls. This is an interesting property in its own 
right, but it will also be instrumental in proving that one can through fixed 
tolls (at least approximately) achieve the same levels of total travel time as 
through flow dependent tolls (Thm 5, below). 

First note that since the total equilibrium link flows f t o t  = (f;Ot) are 
unique for given tolls p,  f t o t  is a function of the tolls p. 

Proposition 4. Assume that the link travel times are strictly increasing. 
Then the total equilibrium link flows f^tot(p) is a continuous function of the 
tolls p. 
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Proof. The proof will be by contradiction. Thus assume that there is a set of 
tolls p and a sequence converging to  p, such that f t o t l ( n )  = f*tot(p(n)) 
does not converge to f to t  = pot ( F ) .  By compactness of F we may assume that 

the class specific link flows f (") = ( f;"")), corresponding to f converge 
to  some $ = ($:) with pot # f to t .  Let dn) = (~~ t , ( f ; "~ ' ( " ) )  + p?)) be the 
user specific link costs corresponding to f ("1. Since f (") is an equilibrium for 
the tolls p ( n ) ,  it fulfills the VI (c("), f - f(")) 2 0,'df E F. 

But f (")converges to  $ and converges to 2 = ( vk t a (po t )  +pa).  Thus by 

continuity, f fulfills the VI (2, f - $) 2 0, 'd f E F, whence f is an equilibrium 

for p. Hence fltotand f to t  are different equilibrium link flows for p, contradict- 
ing uniqueness. Thus the introductory assumption is false, and f^tot(p) is a 
continuous function of p. rn 

Remark 2. Please note that we only used the uniqueness of f*tot(p) plus the 
standard properties of compactness of F, continuous dependence of c on its 
parts and the continuity of the inner product. Hence, the proof will go through 
in other similar cases. 

As a corollary we have 

Theorem 3. For the fixed-toll multi-class equilibrium problem the total equi- 
librium link flows f^tot(p) as well as the total (equilibrium) value of travel time, 
v ( f t o t  (p)), the total (equilibrium) generalized cost, ~ ( f ^ t " ~  (p)), and the total 
(equilibrium) toll revenue, p(f^tot(p)), depend continuously on the tolls p. 

Proof. The continuity of f^tot(p)was proved already in Prop. 3. From this 
follows that  the equilibrium link times are continuous functions of p. Thus 
also the generalized costs c are continuous, whence the same is true for the 
minimal generalized route costs, .irk, and hence also for the total generalized 

cost G(f = C w e w  C T E R ,  ~ k q i .  
The continuity of the total toll revenue, P, follows directly from that of 

f^tot(p). Finally, since V = G - P, the continuity of V follows. rn 

4 Tolls based on marginal social costs 

In this section we first look at flow dependent marginal social cost tolls. Again 
the VI characterizing equilibria can be stated in symmetric or non-symmetric 
forms. The symmetric one corresponds to an optimization problem, where 
the objective is the total value of travel time, later shown to be nonconvex 
in general (Section 5). Then we look at the implementation of these tolls as 
fixed tolls. We show that the flow dependent equilibria are indeed equilibria 
to the corresponding fixed-toll problem, which however may also have other 
equilibria. All these equilibria, however have the same total value of travel 
time. 
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Thus, we now first consider a situation where the tolls are based on 
marginal congestion costs, or marginal social costs (MSC). Internalizing the 
external congestion costs, the authorities make the users pay for the delays 
they inflict on other users and are interested in the traffic volumes that are 
established in the network and the corresponding toll values. A marginal user 
inflicts a delay t i  (f;Ot) on all other users on link a. However, the monetary 
value of this delay is different for the different users and equal to v m t i  ( fko t )  
for users belonging to  class m. The flow-dependent MSG toll then is a sum of 
all delay values for the users of the link caused by a marginal user, i.e. 

Substituting (9) into (5) or (6) gives the MSG link costs 

or the MSG link t imes  

Definition 5. A multi-class MSG equilibrium (with class specific t ime  val- 
ues) ,  is  a multi-class Wardrop equilibrium with link costs c t  equal to  C! or, 
equivalently, t o  fk. 

By Lemma 1, these equilibria are the solutions to the VI's (1) or (2),  with 
these same link costs. 

For the fixed-toll multi-class equilibrium problem, generalized time Ek was 
symmetric. Differentiating the MSC link times (11) with respect to flow vari- 

ables yields 9 = t i  (f;Ot) + kt: (f;Ot) ) urn fr + -&ti (f;Ot) ui, which af, mEK 

is different from in general. 

(To see this in more detail, note that equality holds if and only if 
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0 = tb: (fPt) C vmf,m + (., + .c?k)tb ( f A O t )  1 

which cannot hold for all fr summing up to f;Ot.) 

Hence the symmetry condition (3) does not hold, which precludes direct 
application of optimization methods to  equilibrium search based on l;. How- 
ever, differentiating the MSC costs gives 

Hence, 2; is symmetric, and there is a primitive function I ( f ) ,  such that 
07 ( f )  = 2 ( f ) .  I t  is easily checked that (up to  a constant) 

Note that y(f)  = V(f) ,  the total value of travel time in the network. As 
explained in the introduction, minimization of V(f)  corresponds to the most 
efficient usage of the road network. 

Summing up, using Prop. 1, we have the following result. 

Proposition 5. The equivalent cost functions 2; and fk are symmetric and 
non-symmetric respectively. The MSC multi-class equilibria are flow matri- 
ces f E F where the total value of travel time V( f )  has no feasible descent 
directions. 

V( f )  is in general non-convex and the VI (2) can have multiple solutions (see 
section 5). As noted before, all local minima of V(f )  (and maybe also some 
other points) in F are MSC multi-class equilibria. 

Theoretically, one can distinguish between the three kinds of equilibria: 
global minima of V(f)  on F, local minima that are not global minima, and 
other equilibria. From the application point of view, the most interesting equi- 
libria are the ones that minimize V(f )  globally on F. However, there are no 
efficient methods for finding global minima of general non-convex functions. 
Various iterative descent methods can be used for finding local minima. The 
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quality of achieved minima depends however, on the starting points of the 
algorithm. Equilibria of the third kind are of little interest. Since they are 
not local minima, there are points with better objective values V ( f )  arbitrary 
close to  them, and starting an iterative descent in such a neighbor, will give a 
local optimum of lower objective value. By Thm. 1 such equilibria are further 
unstable. 

MSC tolls typically need to be implemented as fixed tolls. The theorem 
below, shows that the multi-class MSC equilibrium flows are fixed-toll equilib- 
ria with the computed MSC tolls as fixed tolls. But, as mentioned before, the 
equilibrium with fixed tolls is not necessarily unique. Therefore, implementing 
MSC tolls as fixed tolls, the resulting fixed-toll equilibrium need not coincide 
with the MSC equilibrium. Prop. 3, however, saves the day. 

Theorem 4. Assume that the travel t ime  functions ta are strictly increasing. 
Let f be a multi-class MSC equilibrium, and let I j  = ( I j a )  = ( p a ( ! ) ) )  defined 
by (9)) be the corresponding vector of link tolls. T h e n  f is  also a fixed-toll 
multi-class equilibrium for fixed tolls p = Ij. 

~f flis another fixed-toll equilibrium for tolls p = fi, then  ~ ( f )  = ~ ( f ) ,  i.e. 
the total value of travel t ime  is  unique. 

Proof. Being an MSC equilibrium, f fulfills (by Lemma 1) the VI (2) with 
k - -k C,  - c,, i.e. V g  E F, 

But since I j a  = pa(!),  f also fulfills the VI Qg E El 

implying that fis a fixed-toll multi-class equilibrium for fixed tolls p = Ij. 
If f is another fixed toll equilibrium for p = I j ,  it follows from Prop. 3 that 

~ ( f )  = W ) .  
To clarify the above discussion, it might be illuminating to consider the 

following multi-class problems studied in sections 3 and 4, explicitly or im- 
plicitly. 

(PI): determination of fixed-toll equilibria, 
( P 2 ) :  determination of MSC equilibria, i.e. equilibria under flow dependent 

MSC tolls, and 
( P 3 ) :  finding f E F minimizing the total cost of travel time, V ( f ) .  
Further as a combination of (P I )  and ( P 3 )  we may consider 
(P4): determining fixed tolls p, minimizing the total equilibrium cost of 

travel time v ( f ( p ) )  over all fixed-toll equilibria f ( p ) .  
Of these four problems (P4) is the most important from an application 

viewpoint. 
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In section 3 we showed how to solve (PI ) .  Theorems 4 and 1 show that 
problems (Pz)-(P4) are in fact equivalent if we restrict our interest to locally 
stable equilibria and are content with local minima. They are all solved by 
minimizing V( f )  over F. In particular the minimal value of V(f^(p)) over 
fixed-toll equilibria is the same as the minirrial value of V(f)  over all of F. 

The nonuniqeness displayed above also shows that it is not altogether triv- 
ial, that implementing MSC tolls, as fixed tolls, will give flows that minimize 
total value of travel time. Yang and Huang [YH04] show that the minimum of 
V is also a fixed-toll equilibrium. This is however only necessary for being able 
to  implement the equilibrium through fixed tolls, since there are also other 
equilibria to  the fixed-toll problem. Theorem 4 proves the suficiency, namely 
that all such equilibria have the same (minimal) value for V. 

There are further problems with implementing MSC tolls. Computing the 
MSC tolls, e.g. by applying the Frank-Wolfe method to  problem (4) with 
objective I(f) = V(f) ,  one will never arrive at  the equilibrium. Thus, one 
will have to implement close-to-equilibrium tolls as fixed tolls. We know that 
equilibrium tolls, implemented as fixed tolls, will give fixed-toll equilibria with 
the same total value of travel time as the MSC equilibrium (Thm. 4). When 
implementing close-to-equilibrium tolls the situation is not a priori obvious, 
though. 

Theorem 5. Let the functions t ,  be strictly increasing and f ( n )  = (f:'(n)) 
be a sequence of multi-class flow matrices, converging to an MSC-equilibrium 

f Let f tot>(")  be the corresponding total link flows, and p(") = (p?)) = 
. . 

( t ~ ( f ~ o t " n ' )  x, v k  f,$("') the corresponding MSC tolls. Further let f ' ~~ (p ( " ) )  

be the (unique) fixed-toll equilibrium link flows corresponding to p(n), and v ( ~ )  
the corresponding unique total values of travel time. Then converges to 
V f ) .  

Proof. Since V is continuous, V(f(")) -+ ~ ( f ) ) .  Further, p(") converges to 
p = (p,(f)) = (t ' (fFt) Ck vkf:)  by continuity of pa( f ) ,  see (9). Since the 
achieved V in the fixed-toll case depends continuously on p (by Thm 3), v ( ~ )  
converges to  V ,  the total value of travel time for fixed tolls p. But, by Thm 4, 
the values of V agree in the MSC and the fixed-toll problem, i.e. V = ~ ( f ) .  
Thus v ( ~ )  -, ~ ( f ) .  

The theorem says that one is justified in implementing close-to-equilibrium 
MSC tolls as fixed tolls, but it does not tell how close one needs to  be. For 
that,  a more elaborate analysis probably is needed. 

5 Nonconvexity of V 

In this section, we will show that the MSC objective V(f)  in general is non- 
convex. We will however start with a small illuminating example that will be 
instrumental in showing non-convexity. 



96 Leonid Engelson and Per Olov Lindberg 

Consider a network consisting of a single OD pair w connected by two 
links a and b with identical travel time functions t, (u) = tb (u) = u (Figure 
1). Assume there are two user classes with time values vl  = 1 and v2 = 5, 
respectively, and with travel demands qh = qi = 100. 

Fig. 1. The example network 

The feasible set is seen to be 

F = {f = (f,l, f:, fbl, fi) E R4+ : fal + fbl = fa2 + fb2 = 100) * 

Introducing the independent variables f, = (fi, f : ) ,  F can be more compactly 
described as F = {f E R4 : f: E [O, 1001 , ft = 100 - f:, k = 1,2) .  

Without tolls, there is a continuous set of user equilibria 

Note that the total volume and hence the travel time on each link is constant 
across k.  Considering these equilibria as fixed-toll equilibria (with toll 0) this 
is in line with Prop. 2. 

Introduction of MSC pricing leads to the MSC objective 

or, in terms of the independent variables 

( f )  = (f 1 + p) (fa1 + 5 f2) + (200 - fal - fa2) (600 - fi - 5f3 . 

In Fig. 2 we display the level curves and negative gradient directions of V as 
functions of the independent variables. We see that there are three equilibria: 
first two equilibria corresponding to local (and global) minima, fil) = (0, 80) 
and fi2) = (100, 20), both with objective value 56000, and with corresponding 
MSC tolls p(l) = (400, 200) and p(2) = (200, 400), respectively; finally one 
corresponding to a saddle point, f (3 )  = (50, 50) with toll p(3) = (300, 300) 
and objective 60000. 

When the tolls p( l )  or p(2) are enforced as fixed tolls, the only existing 
(1) 

user equilibria are f, and fr' respectively. Implementation of the tolls p(3), 

however, does not affect the route choice, whence there is the same set of 
equilibria F as in the situation without tolls. Thus an equilibrium flow pattern 
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with fixed equilibrium tolls p(3) need not coincide with f (3).  However, in line 
with Proposition 3 and Theorem 4, these flow patterns are equivalent both 
from the individual and the social points of view, since total flow and travel 
time along each link, and the total value of travel time and toll revenues at 
any point in F is the same as a t  f ( 3 ) .  

a 

Fig. 2. Equilibria (e) ,  level curves and negative gradients of the function V 

This example shows that V( f )  is not convex in general. The example may 
seem very specialized, but the two links could represent two routes between 
two nodes in a network with at  least two user classes. In this form it can be 
used to  show that V( f )  is in general non-convex. 

In the general setting, we have several (> 2) user classes, differing only 
in their time values. Road networks (and demands) moreover typically have 
the following property: There exist two nodes nl and nz connected by two 
link-disjoint paths pj,  j = 1,2,  such that each p j  is a subpath of two routes 
r; E R,  k = 1,2 ,  and there are two classes, k = 1,2,  say, such that for a given 
k ,  r f ,  j = 1,2,  connect the same OD-pair wk with class Ic demand q:, > 0. Let 
us call such networks multi-route, multi-class networks. In particular, if there 
is an OD-pair w with at  least two routes in R,, and with positive demand for 
a t  least two classes, we have a multi-route multi-class network. 

Theorem 6.  Consider a multi-route multi-class network with strictly increas- 
ing travel time functions t,. Then the objective V(f )  in the tolled MSC equi- 
librium problem is nonconvex (on the feasible set). 
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Proof. Let us use the notations of the definition of a multi-route multi-class 
network. Consider a feasible matrix of route flows, where h: > 0 is the class 
k route flow along r! ( j  = 1,2;  k = 1,2) ,  existing according to  the definition. 

Denote hk = + h;, and let (h,k);~::i be new route flows along r: varying 
over positive values so that hf + h i  = hkl  but keep all other route flows fixed. 
In this way we get feasible route (and hence link) flows. 

We will show that V(Ah) is nonconvex as a function of (h,k):~t:i. As in 
the example, we can view pj,  j = 1 ,2  as two links. Let hl = (hf)k=1,2, be the 
independent variables, and h2 = (h;)k=1,2, the "dependent" variables, thus 
being a linear function of hl .  

When varying hl (and hence h2) the contribution to V(Ah) from links not 
in {pj)j=1,2 is constant, thus giving no contribution to  the hessian. 

Let hy t  = hi + h:, and for an a in pj  let fAot be the sum of the route flows 
in a other than h!. Thus f:Ot = hy t  + f :~~ .  

Let V(hl) be the nonconstant part of V(Ah) as a function of hl (i.e. 
excluding the constant terms mentioned above). Then, 

V(hl)  = Cj=1,2 C a c p j  t,(hyt + f;Ot)(ul hi + u2hj + . u ,~ ;o~ ) ,  where 6, is 
the mean time value of the route flows in f ia t .  Thus 

- - x [t' ( hp t  + f ; ~ ~ ) ( u l h ;  + 7~2hf $ vaf;Ot) + t a (hp t  + f ; ~ ~ ) ~ k ]  - ah: - aEp1 -a 

CaEpz [ t i (hp t  + f ; ~ ~ ) ( v l  h i  + u2h; + .U,~;O~) + t a (hp t  + f:ot)uk], 

An easy check gives that d e t ( ~ V )  = -B2(ul + ~ 2 ) ~  < 0. Thus V and 
hence V are nonconvex. 

This theorem shows that the MSC toll problem is in general nonconvex 
except for very special networks. This resolves the question, raised in Dial 
[Diagga], whether V(f)  is convex or not in general, and refutes the statement 
in Yang and Huang [YH04] that V(f) is convex. 
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6 A Frank-Wolfe algorithm for the multi-class MSC 
equilibria 

As noted in section 4, the equilibria in the case with flow-dependent MSC 
tolls, can be determined by solving the optimization problem (4), with the 
objective V of (12). To this end one can use (an adaptation of) the Frank- 
Wolfe method. 

To streamline the algorithm, let w,(f,) = C k u k  f! be the total 'tflow 
value" in link a. Note that the MSC link cost can be written 

ck = ukta (fjot) + th (fjot)wa ( f a ) ,  (13) 

and that the objective can be written V( f )  = C, t,( f~t)w,(f , ) .  
Also note that both f t o t  = (fkot) and w = (w,) vary linearly with f = (f:). 

Thus, instead of storing the whole vector fa = (f;)kEK for each link a it is 
enough to store xu = (fkot, w,(f,)) to be able to compute the link costs for 
the different classes. This may be important when there are many user classes. 

In analogy to  the standard single class case, linearizing the objective V, 
problem (4) decomposes into independent shortest path problems, one for each 
OD pair and class, and the extreme point solution to the linearized problem 
is composed of the all-or-nothing solutions corresponding to these shortest 
paths. The detailed implementation of this is straightforward. 

In the same way that the classical Frank-Wolfe method can be shown to 
converge to  a global optimum for a convex problem, this version can be shown 
to converge to  a solution to the VI (2) (see, e.g., [Zan69, p 158-1621). 

7 Some experimental results 

We have applied the methods and results of the current paper to  3 test prob- 
lems: the two link network (presented in section 5), the classical Sioux Falls 
network and the large Stockholm network. 

7.1 The two link network 

The algorithm has first been applied to  the two link network with two user 
classes described in the example of Section 5, although with a quadratic vol- 
ume delay function t, ( f )  = tb  ( f )  = l+ f 2 ,  and time values ul = 1 and va = 2. 
Qualitatively, the location of equilibria and their properties are the same as in 
the example. Due to the symmetric network structure with two identical links, 
the algorithm, when started under free flow conditions, quickly reaches the 
saddle point equilibrium and gets stuck there. This behavior, though improb- 
able for real networks, suggests that it may be worthwhile, after obtaining an 
equilibrium, to make a short step in a random direction and make additional 
iterations to  see if the process converges to the same equilibrium. 



100 Leonid Engelson and Per Olov Lindberg 

When the algorithm was started from another feasible link volume ma- 
trix, it converged to one of the local optima, although experiencing a lot of 
zigzagging. 

7.2 Sioux Falls 

In this network, we used three user classes, with time values from the Stock- 
holm case, v = (.98, 3.30, .19). We also set the class fractions of demand for 
each OD-pair equal to the Stockholm fractions (.754, .036, .210). See [ELDOS] 
for more details of the experiments. 

Note, that since the problem is nonconvex, we do not get an underestimate 
of the optimal value, when we solve the linearized problem. Instead, we have 
to  stop the iterations when the improvement gets to too small. 

Starting in the free flow solution, and performing the large number of it- 
erations (N=10000) that would give a relative error of lop6 in the classical 
single class case, we get an objective value of V(f)  = 71.09, compared to  the 
untolled value V(f )  = 74.80, i.e. a decrease of 5%. The iteration history of 
the "relative error" ( ~ ( f  (i)) - ~ ( f  ( N ) ) ) / ~ ( f  (N))  versus i becomes approxi- 
mately linear in a log-log diagram, similar to the single class case, showing 
that convergence is comparable to  that case (see [ELDOS]). 

To test for the existence of multiple local optima, we started a t  10 random 
extreme point solutions. For iteration counts that would give relative errors 
of low3 in the free flow run these runs all gave relative errors of the same 
magnitude (assuming that the previous long run gave the optimum) This 
indicates that there is only one local optimum (see [ELDOS]) conforming with 
the observations in Dial [Dia99b]. 

7.3 Stockholm 

To apply the algorithm to the Stockholm case (1250 centroids, 4635 regular 
nodes and 18044 links), it has been implemented as a macro in EMME/2. In 
the initial iterations of the algorithm, we minimize the convex hull, convV, of 
V, rather than V itself (see [LE04]). This approach on the one hand provides 
lower bounds for V, which we do not get from the linearizations in the Frank- 
Wolfe algorithm, due t o  the nonconvexity of V; on the other hand it speeds 
up the initial convergence (Figure 3). 

As can be seen in Figure 4, satisfactory link flow differences between con- 
secutive iterations (i.e. lower than 100 veh./h) are obtained after approx- 
imately 50 iterations of the Frank-Wolfe algorithm. This is a substantial 
progress compared to the method of successive averages used in Inregia's 
study (see Section 1). 

To check the uniqueness of the MSC equilibrium, ten initial flow patterns 
have been generated as random convex combinations (with exponentially dis- 
tributed weights) of fifteen different extreme solutions to  the multi-class as- 
signment problem. Starting from each initial pattern, 80 iterations of the 
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Fig. 3. Rel. errors for V ( f )  (Stockholm), when minimizing convV (solid) or V 
(dashed) 

Fig. 4. Convergence of link volumes (Stockholm). Horizontal axis: iteration number. 
Vertical axis: maximal absolute difference of total link flows between consecutive 
iterations 
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Frank-Wolfe method have been performed. As might be seen from Figure 5, 
the interseries standard deviation diminishes approximately as the iteration 
number to the power -0.75. Thus minimizations starting from different initial 
flows result, after a large number of steps, in essentially the same link flow 
pattern. This suggests that there is only one local minimum and conforms to 
observations above and in Dial [Diaggb]. 

10 

Iteration 

Fig. 5. Uniqueness check. Horizontal axis (log scale): iteration number (i) 

Vertical axis (log scale): Interseries standard deviation a (i) = 
10 -k . 2 -k . 10 

& E E E [fk (s, i )  - fa (%)I where fa (2) = & C f,X (s,  i)  and f,X ( s ,  2)  
s=l a E A  k E K  s=l 

is the flow of class k on link a at  iteration i of series s. 

8 Concluding remarks 

In this paper we have studied tolled multi-class traffic equilibria. In particular 
we have pointed at  some problematic points (concerning symmetry) in stating 
the equilibrium problems, in the non-uniqueness of their solutions, and in the 
implementation of computed MSC equilibria through fixed tolls, as well as 
suggested some solutions. In our opinion, the main contributions of this paper 
are the following: 

I t  elucidates that some asymmetric variational inequalities may be restated 
in a symmetric form, and hence have a corresponding optimization formula- 
tion, contrary to their first appearance. This is in particular true for fixed-toll 
multi-class equilibria and for MSC-toll equilibria. 

It  clarifies the relation between the (flow dependent) MSC-tolls and their 
implementation as fixed tolls in a multi-class setting. In particular, it shows 
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tha t  the  matrix of class specific flows a t  a stable MSC-equilibrium, which also 
is a local minimum t o  the  total value of travel time, is an  equilibrium for the  
corresponding fixed-toll problem. Further, in spite of tha t  this latter equilib- 
rium is not unique, the  total value of travel time is. I t  moreover demonstrates 
tha t  implementing close-to-optimal MSC-tolls as fixed-toll equilibria, will lead 
t o  close-to-optimal fixed-toll equilibria. 

The  paper further shows tha t  the  total value of travel time of heteroge- 
neous users in general is nonconvex, settling a question raised by Dial [Dia99a], 
and disproving a claim made by Yang and Huang [YH04]. 

Acknowledgments. This research was partially supported by the  Swedish 
Agency for Innovation Systems (VINNOVA), grant 2001-03833. 

The  authors thank M. Daneva, Department of Mathematics, Linkoping 
University, for the  computations for the  Sioux Falls case. 

References 

Beckmann, M.,  McGuire, C.B., Winsten, C.B.: Studies in the Economics 
of Transportation. Yale University Press, New Haven (1956) 
Dafermos, S.C.: Toll Patterns for Multiclass-User Transportation Net- 
works. Transportation Science, 7, 211-223 (1973) 
Dial, R.B.: Network-optimized road pricing: Part I: A parable and a 
model. Operations Research, 47, 54-64 (1999) 
Dial, R.B.: Network-optimized road pricing: Part 11: Algorithms and ex- 
amples. Operations Research, 47, 327-336 (1999b) 
Eliasson, J.: The use of average values of time in road pricing. A note on a 
common misconception. In: Eliasson, J.: Transport and location analysis. 
Dissertation, Dept. of Infrastructure and Planning, Royal Institute of 
Technology, Stockholm (2000) 
Engelson, L., Lindberg, P.O., Daneva, M.: Multi-Class User Equilibria 
under Social Marginal Cost Pricing. Operations Research Proceedings, 
174-179, Springer (2003) 
Engelson, L. ,  Lindberg, P.O.: Congestion Pricing of Road Networks with 
Users having Different Time Values. Technical Report, LiTH-MAT-R- 
2002-10, revised 2004-06-30 (2002) 
European Commission: White Paper. European Transport Policy for 
2010: Time to Decide. European Communities, Brussels (2001) 
Hearn, D.W., Ramana, M.V.: Solving Congestion Toll Pricing Models. 
In: Marcotte, P., Nguyen, S. (eds) Equilibrium and Advanced Trans- 
portation Modeling. Kluwer Academic Publishers, 109-124 (1998) 
Hearn, D.W., Yildirim, M.B.: A Toll Pricing Framework for Traffic As- 
signment Problems with Elastic Demand. In: Gendreau, M., Marcotte, 
P. (eds) Transportation and Network Analysis: Current Trends. Kluwer 
Academic Publishers, 135-145 (2002) 
Inregia: Case Study: asterleden. A basis for planning of transport sys- 
tems in cities. Stockholm, (In Swedish) (2001) 



104 Leonid Engelson and Per Olov Lindberg 

Konishi, H.: Uniqueness of User Equilibrium in Transportation Networks 
with Heterogeneous Commuters. to appear in Transp. Sc. (2004) 
Lindberg, P.O. A note on two papers by Dial, forthcoming (2005) 
Lindberg, P.O., Engelson, L.: Convexification of the Traffic Equilibrium 
Problem with Social Marginal Cost Tolls. Operations Research Proceed- 
ings 2003, Springer, Berlin, 141-148 (2004) 
Nagurney, A.: Network Economics: A Variational Inequality Approach. 
Kluwer, Boston (1993) 
Netter, M.: Equilibrium and Marginal Cost Pricing on a Road Network 
with Several Traffic Flow Types. In: Newell, G.F. (ed.) Proceedings of 
the 5 t h  International Symposium on the Theory of Traffic Flow and 
Transportation. Elsevier, 155-163 (1971) 
Ortega, J .M.,  Rheinboldt, W.C.: Iterative solution of nonlinear equations 
in several variables. Academic Press (1970) 
Patriksson, M.: The Traffic Assignment Problem: Models and Methods. 
VSP, Utrecht (1994) 
Sandholm, W.H.: Evolutionary Implementation and Congestion Pricing. 
Review of Economic Studies, 69, 667-689 (2002) 
Smith, M.J.: Existence, uniqueness, and stability of traffic equilibria, 
Transp. Res., 1 3 B ,  259-304 (1979) 
Swedish Government: Government proposition 1997/98:56. Transport 
politics for sustainable development. (In Swedish) (1998) 
Toint, Ph., Winter, L.: Asymmetric Multiclass Traffic Assignment: A 
Coherent Formulation. In: Lesort, J.-B. (ed.) Transportation and Traffic 
Theory: Proceedings of the 13th International Symposium on Trans- 
portation and Traffic Theory, Lyon, France, 24-26 July (1996) 
Van Vliet, D., Bergman, T . ,  Scheltes, W.H.: Equilibrium Traffic Assign- 
ment with Multiple User Classes. Proceedings PTRC 1 4 ~ ~  Summer An- 
nual Meeting, 111-122 (1986) 
Verhoef, E.T., Nijkamp, P., Rietveld, P.: Second-best regulation of road 
transport externalities. Journal of Transport Economics and Policy, 29, 
147-167 (1995) 
Yang, H., Iluang, H-J.: The multi-class, multi-criteria traffic network 
equilibrium and systems optimum problem. Transp. Res., 38B ,  1-15 
(2004) 
Zangwill, W. :  Nonlinear Programming: A Unified Approach. Prentice 
Hall, Englewood Cliffs, N.J. (1969) 



Network Equilibrium Models for Analyzing 
Toll Highways 
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Summary. The construction of toll highways by concessions awarded to private 
companies leads to the need of forecasting their usage in order to estimate the future 
stream of revenues. Two main modeling approaches for this problem that result in 
variants of multiclass network equilibrium models, are presented and commented 
upon. 

Key words: Traffic equilibrium, congestion pricing, transportation. 

1 Introduction 

The construction of new highways, in both developed and developing coun- 
tries, is often assigned to private companies which operate these new facilities 
as concessions. The users are charged tolls according to the extent that  they 
travel on the new facilities. The derived revenues finance the construction and 
operation of the highway for a certain period of time, after which the highway 
becomes property of the state government that awarded the concession. 

Economic theory is not respected by such toll highway enterprises. If one 
were to  follow the dictates of the economic literature on tolling congested 
facilities, then a toll would have to  be imposed on some or all of the links 
of the congested network. In 1952, William Vickrey, a Nobel Prize winner 
in Economics and the father of Congestion Pricing, suggested that fares for 
New York City subways should be increased in peak times and in high-traffic 
sections and be lowered in others. Later, he made a similar proposal for road 
pricing. Vickrey considered time-of-day pricing as a classic application of mar- 
ket forces to  balance supply and demand. Those who are able can shift their 
schedules t o  cheaper hours, reducing congestion, air pollution and energy use 
- and increasing use of roads or other utilities. According to Vickrey, "you're 
not reducing traffic flow, you're increasing it, because traffic is spread more 
evenly over time." He also claimed that "even some proponents of congest,ion 
pricing don't understand that." 
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Despite the sound economic theory that supports it, the public in general 
opposes tolling. Because of this, elected government officials are reluctant to  
impose tolls on roads and highways, a resource often thought of as "free" 
good. When the committee chaired by Professor Reuben Smead of University 
College in the U.K. supported the proposition that charging road tolls would 
increase economic welfare, Sir Alec D. Home, the prime minister a t  the time, 
lamented that "if we are re-elected we will never again set up a study like this 
one." Notwithstanding the public's opposition, the mayor of London (Mr. Ken 
Livingstone) recently implemented a flat congestion toll of £5 for access to 
the city center. In doing so, London joins Singapore and Oslo as one of a few 
cities around the world to impose systematic congestion tolls. 

The study of tolls within the context of network equilibrium models was 
advanced recently by the contributions of Hearn and Ramana [HR98] and 
Hearn and Yildirim [HY02]. This line of research, initiated by Don Hearn, 
led to  the understanding of a variety of toll schemes that all render a "user 
optimal" route choice to a "system optimal" route choice. The latter minimizes 
travel time for all the travelers on the network. 

However, the models described in this paper correspond to  the actual anal- 
yses carried out in many countries for the construction of toll highways as 
stand alone enterprises. There is no value judgment implied by the statement 
of these models; rather, they are a testimony to  the flexibility and adapt- 
ability of network equilibrium models to  a variety of different situations and 
circumstances. The purpose of this paper is to  identify and analyse the various 
approaches that have been used to  predict the usage of tolled facilities among 
different classes of users. Essentially, the new facilities (e.g., new highways) 
provide shorter travel times and, given the value of time of different classes 
of users, one must determine the trade-off between increased travel cost and 
reduced travel time in order to predict their usage. 

The paper is organized as follows. The next section introduces notation and 
definitions. Section 3 deals with deterministic models and Section 4 described 
a demand function based approach to  this problem. In Section 5 a small 
numerical example is given. In Section 6, some large scale applications of 
these models are described and Section 7 offers some conclusions. 

2 Notation and Definitions 

A road network R = (N, A) consists of nodes n ,  n E N and directed arcs a ,  
a E A which may carry vehicular traffic. The demand for travel is subdivided 
into classes c, c E C which may correspond to different vehicle types or 
different socio-economic characteristics. The demand for travel of class c for 
origin-destination (0-D) pairs i, i E I c N x N is denoted g,C. These demands 
use paths k ,  k E K," where K," is the set of paths used by class c for travel 
between 0 - D  pair i. In its simplest form, the travel cost function for class c 
on arc a is the sum of the travel time function denoted as s,(.) and a toll, t:, 
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that is converted into time units by the factor 8': 

In the above equation, v,C denotes the number of class c vehicles on arc a and 

To determine the choices that travelers make between "toll" and "non-toll" 
alternatives, stated preference analyses are carried out. Usually, the result of 
a stated preference analysis is a set of logit functions of the form 

1 
p(using toll facility) = 

1 + exp(acAcost + ,BcAtime) ' v c  E C, (2) 

where aC and ,BC are nonnegative parameters, Acost is the difference in the 
cost of the trip (usually positive if a toll facility is used) and Atime is the 
difference in the trip time (usually negative if a toll facility is used). 

The perceived value of time for each class c of travellers is determined as 
the ratio QC = ,BC/aC The cost of a path is denoted $(v) and is simply 

where 6; = 1 if arc a belongs to path k and zero otherwise. Later, it is useful 
to write the cost of a path as 

where tz = 6akQCt: may be viewed as the toll cost of path k .  The link 
a € A  

fixed costs tEmay be used to  model toll plazas or tolls which vary with the 
distance traveled on the toll facility. It  suffices to define t: proportional to  the 
length of the arc. 

3 Models Based on Generalized Cost Path Choice 

In such models, the demand for each class, g,C, c E C ,  i E I is fixed and 
known and users are assumed to  make their choice of a toll based only on the 
generalized cost differences between paths that include tolled facilities and 
those that do not. The usage of the tolled facilities may then be deduced from 
the flows on links a ,  a E A with positive tolls, i.e., t; > 0. The resulting model 
is the classical multiclass (or multi-user) network equilibrium models which 
satisfies the user equilibrium condition of [Wa52] 
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where ut are the shortest travel times for 0 -D  pairs i ,  i E I and classes 
c, c E C and subject to  conservation of flow and nonnegativity constraints. 
It  is well-known (see [Da73], [Va76], [Sp95] that this network equilibrium 
problem is equivalent to solving the convex cost minimisation problem 

min x s , ( r )d r  + x x v'OCtC (6) 

The numerical solution of this model by the linear approximation method is 
well-known and will not be repeated again here. It  is perhaps worthwhile to 
point out that the flows by class, vz, are not unique, nor are the path flows 
hk l  but the arc flows v, are indeed unique. 

This model has been used extensively in many toll facility studies since 
most popular transportation planning software packages offer, as a standard 
model, a generalized cost multi-class network equilibrium model. The only 
published references known to the author are [Me951 and [Me95]. These arti- 
cles describe the models used for the analysis of Highway 407, a toll facility 
which bypasses the city of Toronto, Canada. 

In this formulation the link cost functions, s,(v,), a E A, are relatively 
simple, since they do not model asymmetric costs due to  different vehicle 
types. If more complex functions were used, the resulting multiclass model 
would be considerably more complex and would require the solution of a 
variational inequality model (see [FH95]). 

4 Models Based on Explicit Choice of Tolled Facilities 

Such models are based on logit functions obtained from stated preference 
analyses to determine the probability (or proportion) that a user in each class 
will use paths that include tolled facilities. Let g,Ct denote the number of users 
in class c who are willing to pay tolls and gtn denote the number of those 
who are not. That is, gt  = g,Ct + gSn, i E I, c E C, and, as in the path based 
approach, the total demand for each class gt ,  i E I, c E C is assumed to  be 
fixed and known. Also, let Kf t  and Kfn denote the sets of paths that contain 
tolled facilities and those that do not, respectively. The resulting multi-class 
network equilibrium model with explicit choice functions may be stated as 
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sin (v) = utn, if hk > 0 
sin (v) 2 utn, if hk = 0 

} k € I C n ,  ~ E I ,  c E C  

gin, gtt 2 0, i E I, c E C, (16) 

where t t t  is the average toll paid for all traffic of 0 - D  pair i that uses toll 
roads. 

Clearly there is a difficulty with this formulation, since the paths used are 
not known before computing the equilibrium flows. In addition, the number of 
possible paths is exceedingly large. On the other hand, there is an equivalent 
formulation in terms of pk, the proportion of demand that uses path k. In 
particular, the path flows, hk, may be written as 

and the arc flows may be expressed as 

An = A - {toll links} (20) 

Then, the costs of paths containing and not containing tolled facilities are, 
respectively, 

Gt (v) = C d,ksa(v,), k E K t t  , i E I (22) 
a € A  

The formulation in the space of path flow proportions , pk, consists of 

1) The user equilibrium inequalities (9) - (10) 
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2) The conservation of flow equations 

4) Nonnegativity constraints (14) - (15). 

This formulation highlights the importance of the path proportions pk  and 
the large dimension of the problem. For example, with 9 user classes, one 
would have 18 flow vectors for each link. For a network of 1000 x 1000 0 -D  
pairs, one would consider explicitly a number of paths of the order of lo6  
and one would need to  keep a t  least 18 matrices, each of size lo6. While it 
is possible to restate this model in the form of a variational inequality and 
search for rigorous solution algorithms, the actual solution methods used in 
most applications rely on heuristic algorithms that have performed well but 
that are not supported by convergence proofs. 

In order to simplify the model, it is sometimes assumed that the vehi- 
cles of the different classes are homogeneous and that the 0 -D  travel costs 
(impedances) may be simplified t o  

utt = U: and utn = u;, i E I, c E C (27) 

that is, all the toll payers may be aggregated into one class and all the non 
toll payers may be aggregated into one class. This is partly justified by the 
implicit assumption that the toll is perceived at the demand function level, 
prior to the trip, and once the decision to pay or not to  pay the toll is made, 
the path choice is no longer governed by generalized cost, but only by time. 
However, this assumption is not made in the following "heuristic" solution 
algorithm: 

I Explicit Choice Tolled Assignment Heuristic I 

Step 0 (Initialization) : 1 = 0, choose g ~ ~ " ) ,  g:n(0), i E I, c E C ;  
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Step 1 (Compute path costs and times) 
Solve a two-class network equilibrium problem by the linear approximation 
method: 

to  find u:") and uy") and, while doing so compute 

which are the tolls for each class and 0 - D  pair. The path proportions 
p t ) ,  k t K~""), k t KT") are computed from the step sizes of the linear 
approximation method a t  each iteration. 

Step 2 (Modify demand): 1 = 1 + 1; 
att, gtnare recomputed by using the logit functions for each class c: 

Step 3 (Convergence test) 

~f F a x  gft(') - g:"('-')I 5 E ,  STOP ; 
Z,C II 

otherwise, return to  Step 1. 

The step sizes A(')  may be chosen to implement the method of successive 
averages (MSA) or any other reasonable sequence of step sizes. The algorithm 
still requires at least 2 lCI 0 - D  matrices, and there are 2 /C /  link flow vectors, 
vgt and vgn, a E A. 

No convergence proof is given in this paper, however in numerous applica- 
tions in practice, the algorithm has demonstrated good empirical convergence. 
It  is evident that,  if the algorithm terminates, the resulting demands and flows 
satisfy approximately the model formulation. 

A block diagram representation of this heuristic algorithm is in Figure 1. 
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Initialization, 1 = 0 

I I 

1 I Solve a multiclass network ] 
equilibrium mode to obtain 

Uf~(l) , U f n ( i ) ,  t ,ci i l ) ,  i 

by using the logit functions 

Set1=1+ 1 

compute g,cn"' , gf'(r' , i E I . 
Converge? c 

Fig. 1. Block diagram of heuristic algorithm 

5 A Small Numerical Example 

A small network of three links and one origin-destination pair is used to  
illustrate the difference between the two approaches for predicting the usage 
of toll highways. The network is given in Figure 2. 

Input : 0 - D  Demand Network Volume Delay 
Functions 

1 2  a 

b t, = IO(I+O.~S(V, 1200)~) 

2 t, = 20(1+0.15(Vb 1400)") 

t, = 25(l+o.l5(V,l300)~) 

Fig. 2. The network and the demand 

Figures 3,4,5 show successively the equilibrium flows without tolls, with 
a toll of 2 units on the middle link and a value of time of 1.2 and with the 
application of a demand function where the probability of using a toll facility 
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Average travel time Link flows Travel times 

1 miO 1 465 @a 1 th=25.4 @ 

2 NIA 177 t, =25.4 

Fig. 3. The equilibrium flows without tolls 

Toll cost Link flows Travel times 

Fig. 4. The equilibrium flows with a toll of 2 units and value of time of 1.2 

Travel times 

Fig. 5. The equilibrium flows obtained by using the demand function 

is given by the function 

P,(toll) = 1/(1 + exp(.2556(time difference) + ,3067 * toll)'. 

For this model convergence was reached after 4 iterations. The toll facility, 
which is the middle link, carries 420.10 trips in the simple model compared 
to 438.28 trips when the demand function is used. For this solution the pro- 
portion of toll trips given by the logit function is .438972 

6 Some Large-Scale Applications 

The algorithm described in Section 4 has been used in numerous applications 
in Europe, North America and Asia. Most of these applications are confiden- 
tial and the results may not be reported in an academic paper. However, a 
pilot application of very large scale, carried out on the network used for trans- 
portation planning in Southern California may be reported in this paper. The 
network consists of 2,450 zones, 46,000 arcs. The demand for travel is sub- 
divided into High Occupancy Vehicles (HOV) and Low Occupancy Vehicles 

The constants in this function were chosen so that their ratio is exactly 1.2. 
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(LOV). Tolls were envisioned on some of the regional highways. The logit 
function 

P,(using toll) = 1/(1 + exp(0.5647(u: - uy) + 0.4199(t:)) 

was used to  determine the probability of using the toll facility. The model 
described in the previous section was adapted to handle the HOV and LOV 
demand. A two-class (HOV, LOV) network equilibrium model was used to find 
the initial travel times and toll costs. The logit function was used to obtain 
four matrices corresponding t o  the demand for HOVtoll, HOVnOtoll, LOVt,ll, 
and LOV,,toll, and a four-class network equilibrium assignment was carried 
out in Step 1 of the heuristic algorithm. The convergence criterion for an E = 1 
(1 trip) was satisfied after four iterations of the algorithm. The computations 
were carried out with the EMME/:! (INRO, 1996) software package. 

Both these models were applied in Mexico City for the evaluation of a 
26 km section of an urban autoroute (Chamapa Highway). They produced 
different results, which is not surprising. The explicit choice model was used 
in the final analysis. The generalized cost path based approach was used in 
several applications in North America, Europe, Asia and Australia. 

7 CONCLUSIONS 

The intuitive heuristic solution algorithm for the explicit choice function ap- 
proach was used successfully in practice in numerous applications. It is an 
example of the compromises that one must make in order to  solve large-scale 
non-standard network equilibrium models. The results obtained are quite sen- 
sitive to  the coding of the network and the quality of the stated preference 
model calibrations. The costs of building toll highways are so large that they 
justify careful use of travel demand and network models to predict the poten- 
tial ridership. 
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Summary. The paper by Tobin and F'riesz [ToF88] brought the classic nonlinear 
programming subject of sensitivity analysis to transportation science. It is still the 
most widely used device by which "gradients" of traffic equilibrium solutions (that 
is, flows and/or demands) are calculated, for use in bilevel transportation planning 
applications such as network design, origin-destination (OD) matrix estimation and 
problems where link tolls are imposed on the users in order to reach a traffic man- 
agement objective. However, it is not widely understood that the regularity con- 
ditions proposed by them are stronger than necessary. Also, users of their method 
sometimes misunderstand its limitations and are not aware of the computational 
advantages offered by more recent methods. In fact, a more often applicable for- 
mula was proposed already in 1989 by Qiu and Magnanti [Qih189], and Bell and 
Iida [Be1971 describe one of the cases in practice in which the formula by Tobin and 
Friesz [ToF88] would not be able to generate sensitivity information, because one of 
their regularity conditions fails to hold. 

This paper provides a short overview of a sensitivity formula that provides di- 
rectional derivatives of traffic equilibrium flows, route and link costs, and demands, 
exactly when they exist, and which are found in [PaR03] and [Pat04]. For the sim- 
plicity of the presentation, we provide the analysis for the simplest cases, where the 
link travel cost and demand functions are separable, so that we can work with opti- 
mization formulations; this specialization was first given in [JoP04]. The connection 
between directional derivatives and the gradient is that exactly when the directional 
derivative mapping of the traffic equilibrium solution is linear in the parameter, the 
solution is differentiable. 

The paper then provides an overview of the formula of Tobin and F'riesz [ToF88], 
and illustrates by means of examples that there are several cases where it is not appli- 
cable: First, the requirement that the equilibrium solution be strictly complementary 
is too strong-differentiable points may not be strictly complementary. Second, the 
special matrix invertibility condition implies a strong requirement on the topology 
of the traffic network being analyzed and which may not hold in practice, as noted 
by Bell and Iida [BeI97](page 97); moreover, the matrix condition may fail to hold 
at  differentiable points. 

Mathematical and Computational Models for Congestion Charging, pp. 117- 142 
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The findings of this paper are hoped to motivate replacing the previous ap- 
proach with the more often applicable one, not only because of this fact but equally 
importantly because it is intuitive and also can be much more efficiently utilized: 
the sensitivity problem that provides the directional derivative is a linearized traffic 
equilibrium problem, and the sensitivity information can be generated efficiently by 
only slightly modifying a state-of-the-art traffic equilibrium solver. This is essential 
for bringing the use of sensitivity analysis in transportation planning beyond the 
solution of only small problems. 

Key words: Traffic equilibrium, sensitivity analysis, bilevel programming, 
MPEC. 

1 Introduction 

Performing a sensitivity analysis of traffic equilibria means evaluating the di- 
rections of change that occur in the flows and travel costs as parameters in 
the cost and demand functions change. A sensitivity analysis is particularly 
useful in control and pricing applications since, if we can anticipate the effects 
of a change in, say, the traffic infrastructure, on the behaviour of the trav- 
ellers, then we can utilize this knowledge to  optimize these changes according 
to some goal fulfillment, like a reduction in flows or delays, a higher revenue 
from congestion tolls, etc. Such problems constitute instances of bilevel op- 
timization problems, or mathematical programs with equilibrium constraints 
(MPEC), which is the scientific field within operations research and mathe- 
matical programming that is associated with hierarchical optimization prob- 
lems, and which also includes the origin-destination (OD) matrix estimation 
problem. (The monograph [LPR96] provides a good overview of MPEC mod- 
els and methods.) Several algorithms for MPEC problems rely on efficiently 
and generally applicable sensitivity analysis tools; it is in this framework that 
are findings can best be utilized. 

Recently, the authors have been involved in a project having the goal to 
provide a precise sensitivity analysis of elastic and fixed demand traffic equi- 
librium problems, focusing on general models involving possibly non-separable 
and non-invertible link cost and demand functions; cf. [PaR02, PaR03, JoP04, 
Pat04, Pat051. Our focus here is on the special case of separable link cost and 
demand functions, the latter also being invertible, in which case we can work 
directly on optimization formulations. We illustrate how to perform a sensi- 
tivity analysis efficiently in practice by using a modification of state-of-the-art 
traffic equilibrium software. 

In 1988, Tobin and FYiesz did the transportation science community the 
great service of bringing to  it the  nonlinear programming topic of sensitivity 
analysis, with their publication [ToF88]. Their analysis is quite accessible to 
practitioners; for example, they utilize the rather intuitive implicit function 
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theorem in their analysis. It  also remains the most popular tool for producing 
sensitivity analysis information in traffic equilibrium problems. 

We illustrate through examples how their formula is however less applica- 
ble in several ways. Moreover, it relies on calculations with very large matri- 
ces, and therefore cannot be applied to  large-scale networks. Our sensitivity 
analysis problem is however quite structured and need not involve matrix cal- 
culations at  all; it amounts to  solving a perturbed, affine traffic equilibrium 
problem, which is no more difficult to  solve than the original one. 

2 The Traffic Model 

Let = ( N ,  C) be a transportation network, where N and C are the sets 
of nodes and directed links, respectively. For certain ordered pairs of nodes, 
(p, q) E C, where node p is an origin, node q is a destination, and C is a subset 
of N x N, there is a transport demand, which may be given by a function of 
the travel cost. We assume that the network is enough connected, such that 
a t  least one route joins each origin-destination (OD) pair. 

Wardrop's user equilibrium principle states that for every OD pair (p, q) E 
C, the travel costs of the routes utilized are equal and minimal for each in- 
dividual user. We denote by Rpq the set of simple (loop-free) routes for OD 
pair (p, q), by h, the flow on route r E Rpq, and by c, the travel cost on the 
route as experienced by an individual user. 

We introduce the parameter (that is, control variable) to  be present in 
the sensitivity analysis: it is denoted p, and is assumed to be of dimension d. 
This parameter could be present in one or both of the travel cost and demand 
functions. We assume that the travel cost function has the form c(p, .) : Y?yi H 
!Rlnl given a value of p, where 1x1 denotes the total number of routes in the 
network. Further, for a given value of the vector p, the demand function is 
given by g(p, .) : ! R C  H Y?yi. (We introduce the notation !R+ := { x  E !R 1 x 2 
0 )  and%++ := { x ~ Y ? I x > 0 ) . )  

In an application to  OD estimation, d is in the order of ICI, while d = ICl 
holds in equilibrium network design, pricing and control models. 

We also introduce the matrix r E (0, l)lRIXIC1, which is the route-OD pair 
incidence matrix (i.e., the element y,,k is 1 if route r joins OD pair k = (p, q) E 
C, and 0 otherwise). Then, demand-feasibility is described by the conditions 
that h E !Ry' and 

r T h  = g(p, (1) 

holds, while the Wardrop equilibrium conditions for the route flows are that 

holds, where the value of n,, := npq(p, h) is the minimal route cost in OD 
pair (p, q) a t  equilibrium. By the non-negativity of the route flows, the system 
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(1)-(2) can more compactly be written as the mixed complementarity problem 
(MCP) 

where a i b, for two arbitrary vectors a ,  b E En, means that aTb = 0. (By 
nonnegativity, this implies that a j  . bj  = 0 for all j . )  

As we are interested in the sensitivity of link flows, we will assume that the 
route cost is additive. For each link 1 E C, the travel cost has the form tl(p,  vl), 
where v E !JiLi is the vector of link flows. The route and link travel costs and 
flows are related through a link-route incidence matrix, A E (0, l)~Llxlnl, 
whose element X1, equals one if route r E R utilizes link 1 E C, and zero oth- 
erwise. Route r has an additive route cost c,(p, h) if it is the sum of the costs 
of using all the links defining it. In other words, c,(p, h) = Xlrtl(p,vl). 
In short, then, c(p, h) = ATt(p,v). Also, implicit in this relationship is the as- 
sumption that the pair (h, v) is consistent, in the sense that v equals the sum 
of the route flows: v = Ah. We shall use the representation in terms of v, as 
it is an entity for which we can introduce conditions ensuring that uniqueness 
holds a t  equilibrium. 

As could be noted above, the link travel cost is assumed to be separable 
(that is, the travel cost of link 1 depends only on vl). A separability assumption 
is made also with respect to the demand function, which is supposed to  be of 
the form gk(p, Tk), k E C, for a given value of the vector p. 

In order to be able to  work with an optimization formulation, which fur- 
thermore admits a unique solution (v*, d*) and is such that we can apply 
sensitivity analysis theory, we introduce the following assumption, which is 
supposed t o  hold throughout: 

Assumption 1 (Properties of the network model) 

(a) For each 1 E C, the link travel cost function t l ( . ,  .) is continuously differ- 
entiable, and strictly increasing in its second argument. 

(b) For each k E C, the demand function gk(., .) is continuously differentiable, 
non-negative, upper bounded, and strictly decreasing in its second argu- 
ment. The function gk(p, .) is therefore invertible, and has a single-valued 
inverse, Ek(p, .), which also is continuously differentiable and strictly de- 
creasing. 

The optimization formulation that we will work with is the following stan- 
dard one for elastic demand traffic assignment (e.g., [Pat94]): 

v = Ah, 

h 2 01~1. 
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For future use, let C denote the set of feasible vectors (h ,  v, d) in the problem 
(4), that is, 

The variational inequality problem, that characterizes the solution (h*, v*, d*) 
to this problem, is stated as that of finding (h*, v*, d*) E C such that 

t(p, v * ) ~ ( v  - u * )  - [(P, d*)T(d - d*) > 0, (h, v, d) E C. (5) 

To see that this expression characterizes the Wardrop conditions stated earlier 
in (3), we notice that ( 5 )  is equivalent to  (h* , v* , d*) solving the following linear 
program: 

Its LP dual is to  

where T and a are, respectively, the LP dual variables for the constraints (6b) 
and (6c). The dual variable a is eliminated by using (7d). The complemen- 
tarity conditions between the two LP problems can then be written as 

0inI 5 h* I ( ~ ~ t ( ~ , v * )  - h*) 2 OiRI ,  (8) 

which is identical to  the Wardrop condition (3a). The condition (3b) is ob- 
tained as follows: from (6b) and (7c), r T h *  = d* = g ( p , ~ * ) .  As t(p, .) and 
-g(p, .) both are strictly monotone, the objective function of (4) is strictly 
convex; therefore, the solution in (v*, d*) to  (4), and equivalently to  the vari- 
ational inequality (5) and to the Wardrop conditions (3) ,  is unique. We see 
that from (7c)-(7d), also the dual entities (x*, a * )  are unique. 

3 The basis for our sensitivity analysis 

The basis of our sensitivity analysis is a result which is stated for a general 
variational inequality problem with a differentiable mapping, f : !Rd x Xn H 

Bn in the parameters p E !Rd and variables x E !Rn: find x* E X such that 
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f (,I, x * ) ~ ( x  - x*) 2 0, x E X ,  

where X c !Rn is a polyhedral set. 
Equivalently, we can write this in a more natural form as follows: 

where Nx(x)  denotes the normal cone to X at  x: 

We let S : !Rd =f !Rn denote the mapping that assigns to  each vector p E 8" 
the set S(p) of solutions to this problem: 

S(P)  := {x*  E X I f ( P , X * ) ~ ( X  - x*) L 0, x E X ) ,  p E !Rd. (10) 

(The notation "3" signifies that the mapping S in general is a point-to-set 
mapping.) Letting p = p* be the current value of the parameter vector, we are 
interested in the direction of change of the solution x* as p* is perturbed along 
a direction p'. This directional derivative of S is the solution to an auxiliary 
variational inequality, which has the following form: find x' E K such that 

where 

K := TX(X*) n f (p*, x * ) ~ ,  U lb )  
r(p', x') := V, f (p*,x*)pf + V, f (p*, x*)xf.  (11~) 

We let DS(p*lx*) : !Rd 3 !Rn denote the mapping that assigns to each per- 
turbation p E Rd t,he set DS(p*lx*)(pf) of solutions to  this problem: 

DS(p*/x*)(pf)  := {x'  E K / r ( , o ' , ~ ' ) ~ ( z  - x') 2 0, x E K ) ,  p' E !Rd. 

The set K denotes the set of variations around x* that,  roughly speaking, 
retains feasibility and optimality to  the first order. Tx denotes the tangent 
cone to  X ,  which means that if X is defined by linear constraints, we have 
that 

where A consists of the rows Ai of A corresponding to  the binding inequality 
constraints a t  x*,  that is, the indices i with Aix* = bi.  Further, for any vector 
z E !Rn, zL := { y  E !Rn I zTy = 0 )  is the orthogonal subspace associated 
with the vector z .  The mapping r is a linearization of f around (p*, x*); it is 
an affine mapping in x' . 
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We remark that the two polyhedral cones Tx(x) and Nx(x)  in fact are 
polar to each other: 

This classic result in polyhedral theory lies behind some of the development 
of the results of this section. 

Suppose now that f (p, .) is monotone on X around p = p*, and that the 
parameterization is such that rank Vp f (p*, x*) = n. (The latter result can 
always be fulfilled by including enough dummy parameters.) We say that the 
mapping S is strongly regular at  p* ([Rob80, Rob851) if S is single-valued 
and Lipschitz continuous on some neighbourhood of p*. Then, according to a 
result by Dontchev and Rockafellar [DoROl], 

S is strongly regular a t  p* DS(p*Ix*) is single-valued. (12) 

Moreover, then the unique solution XI to  (11) is the directional derivative of 
the solution x* to (9) a t  p*, in the direction of p'. A sufficient condition for the 
property of single-valuedness of D S  in (12) to hold is, by Kyparisis [Kyp88, 
Lemma 2.11, that 

V, f ( p * ,  x*) is positive definite on ( K  - K ) .  (13) 

We refer to  this as a sufficient second-order condition. The set K - K is the 
subspace consisting of all vectors z of the form z = a-P for some a and /3 in K .  
A stronger result than directional differentiability can also be obtained under 
additional assumptions: according to a result of Kyparisis [KypgO], under the 
strong regularity assumption above, 

S is differentiable a t  p* DS(p* / x*)(pl) E -K, p' E !Rd. 

Moreover, if further K is a subspace, that is, if I< = K n (-K), then the 
gradient can be represented as 

for any n x .t matrix Z such that .ZTZ is nonsingular and z E K n (-K) if and 
only if z = Z y  for some y E Be, where ! is the dimension of K n (-K). This 
differentiability result is a kind of implicit function theorem; the relationship 
in (12) shows how the implicit function theorem naturally extends to  more 
general cases. 

We refer to  this latter property not because we will establish sufficient 
conditions for its application in the present context (this has already been 
done in [Pat04, PatO5j), but to  remark that the heuristic sensitivity analysis 
that is developed in the paper [ToF88] and its follow-up [CSFOO] strives to  
utilize (14). Unfortunately, not only does the property DS(p* I x*)(pl) E - K  
fail to  hold in many cases (cf. [Pat04, Pat051, as well as below), but also there 
may not exist a nonsingular matrix of the kind that is referred to  above (cf. 
[BeI97, page 971). 
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4 Sensitivity analysis of separable traffic equilibria 

We first identify the sensitivity problem in our notation. Let 

Then, we can identify the sensitivity problem through the following identifi- 
cations: 

where 

h; free if h: > 0 
h; > 0 if h: = O  and c,(p*,h*) =ni 
hb = 0 if h: = 0 and c,(p*, h*) > ni 
[T E Rk, k E C ]  

By the monotonicity and separability of t and -<, the resulting sensitiv- 
ity variational inequality can be equivalently written as the following convex 
quadratic optimization problem to 

I r I 1 dtl(p*,v;) 
min q+I(u1, dl) := [V,t(p*, v*)p ] u + 5 C 
("',di) avl 

w2 
1EC 

The derivation follows the same pattern as that in [PaR02, PaR03, Pat04, 
Pat051. The sensitivity problem is closely related to  the original model. Two 
main differences are notable: the link cost and demand functions are replaced 
by their linearizations, and the sign restrictions on h are replaced by individual 
restrictions on the route flow perturbations hb that depend on whether the 
route in question was used at  equilibrium or not, cf. the set H f .  Although 
the appearance of HI depends on the choice of route flow solution h*, it 
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is an interesting fact that the possible choices of v' in K does not; this is a 
general consequence of aggregation, which was also utilized in [PaR02, PaR03, 
JoP04, Pat04, Pat051. In summary, it appears that the sensitivity problem can 
be solved using software similar to those for the original traffic equilibrium 
model, provided of course that route flow information can be extracted. 

We now apply the result (12) in the previous section. The result states 
that the sensitivity problem provides directional derivatives, provided that 
the solution is unique. So, under what circumstances will the optimal solution 
to  (15) be unique? Similarly, which entities in the solution to the problem (4) 
[flow, travel cost, demand] have directional derivatives? 

Clearly, we cannot apply the theory of the previous section to the problem 
stated in (h ,  v, d), since h* is not unique. As (v*, d*) is unique, we could project 
the problem onto this space. This is simply accomplished by redefining 

further, we would let 

We stress that this type of projection of the problem is only valid thanks 
to  the particular relationships between the link and routes flows; normally, a 
projection such as the one above does not preserve the regularity properties we 
are utilizing. (In [QiM89, Yen951 it is established that the route flow variables 
can be gotten rid of by always choosing a particular value of them, namely 
that which minimizes, over the equilibrium set of route flows, the route flow 
vector's Euclidean norm; this operation preserves regularity. We can consider 
our projection to be based on exactly that type of choice.) 

As we are also interested in the sensitivity of the travel costs, we will, 
for the first time, introduce yet another modification: we introduce a dummy 
variable, s E %lc l ,  which will take on the (negative) value 

S* = - t ( p * ,  v*) 

of the link travel cost at equilibrium, and likewise a variable, n- E %ICI,  to  
take on the (negative) value 

77: = -<(,I*, d*) 

of the equilibrium OD travel costs. [Note that n: = -n*, where n* is given 
in (8).] In the sensitivity problem, then, s' and will equal the (negative of 
the) link and OD travel cost perturbation, respectively. 

The problem which will be analyzed is the following: in (9), let 
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The variational inequality corresponding to  (9) states that,  a t  p*, 

t(p*, v * ) ~ ( v  - u*) - E ( ~ * ,  d*)T(d - d*) 2 0, (v, d) E CPrOj, 

S* = -t(p*, v*), 

n? = -5(p*, d*), 

so it is entirely equivalent to the VIP in (5). The reason for introducing the 
last two rows of the problem, that is, the extra variables (s ,x-) ,  is that by 
doing so, we have direct access to the sensitivity of the travel costs, through 
the corresponding elements (s', n') of x'. 

The sensitivity problem has the form of (ll), with 

i V,t(p*, v*)pl + Vvt(p*, v*)vl 

r (p', x') = - [V&(P*~ d * ) ~ '  + Vd<(p*, d*)dl] 
s' + Vpt(p*,v*)pl + Vvt(p*, v*)vl 

-nL - [V&(P*, d*)pf + OdE(p*, d*)dl] 

and 

3h' E H' : r T h '  = dl; v' = Ah' . I 
The sensitivity optiinizatiori problem in (v', d') is (15), and the value of (s', d )  
is then given by 

that is, the cost perturbations are given by a kind of chain rule. The result 
to  follow establishes that this chain rule provides uniquely given values of 
(s', TI_) even when v' is not unique. 

Before we apply the sensitivity analysis results in the previous section 
to  the present problem, we mention an important fact which allowed us in 
[JoP04] to  provide stronger results for optimization formulations than for 
the general variational inequality models in [PaR02, PaR03, Pat04, Pat051: 
for a differentiable, convex problem, the gradient of the objective function is 
invariant over the solution set (cf. [BuFSl]). The following result stems from 
Josefsson and Patriksson [JoP04]. 
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Theorem 1 (sensitivity of separable traffic equilibrium problems). Let Assump- 
tion 1 hold, and consider an arbitrary vector p* E !Rd. Then, the solu- 
tion (v*,d*) to (4) is unique, and so are the (negative) travel cost entities 
(s*, T?) = -(t(p*, v*), <(p*, d*)). Let p' E !Rd be an arbitrary perturbation. 

(a) In the solution to (15), the travel cost perturbations (s', T') are unique; 
therefore, the values 

are the directional derivatives of, respectively, the equilibrium link and OD 
travel costs, a t  p*, in the direction of p'. 

(b) Assume that the link travel cost function t(p*, .) is such that 

Assume further that the demand function g(p*, .) is such that 

Then, in the solution to (15), the values of the link Aow and demand pertur- 
bation v1 and d' are unique; therefore, the value v' (respectively, d') is the 
directional derivative of the equilibrium link Aow (respectively, demand), at  
p*, in the direction of p'. 

Note that the second-order condition (18) is equivalent to the condition 
that 

Obviously, this condition on the demand function derivative (or its inverse) is 
not needed in the case when we consider fixed demands. 

An interesting aspect of this result is that the cost perturbations (s', n'), 
which are related to the perturbations (v', d') through a kind of chain rule, are 
not dependent on the perturbations (v', dl) to be unique. This is in contrast 
to  the type of analysis offered by Tobin and Friesz [ToF88], see also [BeI97, 
Section 5.41, where the sensitivity of the costs is considered an implication of 
that of the flows and demands. (Not to mention that it will sometimes fail, 
cf. [JoP04, Pat04, Pat051.) 

In the Tables 1 and 2 we summarize the most important notation for the 
readers' convenience. 

5 An illustrative example 

The following small numerical example, taken from Josefsson and Patriksson 
[JoP04], illustrates the workings of our analysis. 
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Table 1. Network and traffic equilibrium notation 

Notation Explanation 
4 = ( N ,  C) directed graph of nodes and links 
C c N x N set of commodities/OD pairs 

%, set of directed routes in OD pair (p, q) E C 
p E sd vector of control variables 
r E (0, l)lnlxlcl route-OD pair incidence matrix 
h,, r E Rpq flow on route r in the OD pair (p, q)  

c, = c,(p, h) travel cost of route r given control variable values and 
route flows 

T P ~  least route cost in OD pair (p, q) E C at equilibrium 

gpq = gpq(p, T) travel demand given control variable values and travel costs 

Epq = &(p, d) inverse travel demand given control variable values and 
demands 

A E (0, l ) lL1xlnl  link-route incidence matrix 
V I ,  1 E C  flow on link 1 
tl = tl (p, v) travel cost of link 1 given control variable values and link 

flows 
C polyhedral set of feasible flows in terms of (h,  v, d) 
~ p r o j  polyhedral set of feasible flows in terms of (v, d) 
a l b  orthogonality requirement 

Table 2. Analysis notation 

Notation Explanation 
f : X ++ Y the mapping f maps a point in X to a point in Y 
f : X HH Y the mapping f maps a point in X to a subset of Y 
x problem variable 
X polyhedral feasible set in the variational problem 
f : X H sn cost mapping in the variational problem 

NX (2) normal cone to the set X at x 
TX (2) tangent cone to the set X at x 
S(P) set of solutions to the variational problem given control variable 

values 
PI direction of change (perturbation) of control variables 
x1 direction of change (perturbation) of solution vector in the 

variational problem 
K polyhedral feasible set in the perturbation problem 
DS(p*lx*)(pl) set of solutions to the perturbation problem given perturbation 
zL orthogonal subspace to z E sn 
s vector of (negative) link travel costs 
T- vector of (negative) OD least travel costs 

T h e  network of Braess [Bra681 is classic in the  analysis of system optimal 
solutions. Consider the  network in Figure 1. 
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Fig. 1. Braess' traffic network 

For this problem [where link (1,2) has a travel cost that is deliberately 
chosen so that the third route is not used but still has the same cost], we have 
the data given in Table 3. 

Table 3. Network data 

Link ti, (p ,  vij ) OD pair d,, 

2: ( p , 2 )  50 + vPz 
3: (1, q )  50 + v l ,  
4 :  (2,  q )  1 0 ~ 2 ,  
5:  ( 1 , 2 )  2 3 + p + v n  

The data corresponds to an instance of the fixed (and unperturbed) de- 
mand traffic equilibrium problem, which can be written as that to  

s.t, r T h  = d, 

v = Ah, 

h > Oln l ,  

where d t is the vector of demands. 
Solving the fixed demand traffic equilibrium problem with p = p* = 0, we 

obtain the link flow solution v* = (3 ,3 ,3 ,3 ,  o ) ~ .  The cost of the three routes 
{1,3), {2,4), and {1,5,4) ,  are in fact the same, namely 83, but the route 
flows are 3 on each of the first two, and zero on the third. (This unique route 
flow solution is non-strictly complementary.) 
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Since the parameter p is present on link (1,2) ,  which has link flow zero at 
equilibrium, it looks clear that a positive value of p' should lead to no changes 
[since the flow on link (1,2) cannot be negative] whereas a negative value of 
p' should imply that 7.4, is positive. Indeed, that is the case. 

In this special case where demand is fixed and unperturbed, the sensitivity 
problem is that t o  

s.t. rThl = Olcl, 

v 1  = Ah', 
h E H'. 

For any p' E 3, therefore, we have that 

and the constraints specify that 

h: + h(, + hl, = 0, 

-4, + hi + hi = 0, 

-vL2 + h(, = 0, 

-v& + 12; = 0, 

-v& + hb + hk = 0, 

-4, + hi = 0, 

hl, 2 0. 

Letting p' = 1, the optimal solution is h' = oT and v' = oT. 
Letting p' = -1, the optimal solution is h' = &(-I, -1, 2)T and v' = 
1 =(I ,  -1, -l,l ,  2)T. 

This is therefore also a case where the traffic equilibrium solution is non- 
differentiable, since clearly the directional derivative mapping is not linear. 

6 A sensitivity analysis tool 

In [JoP04], the disaggregate simplicia1 decomposition (DSD) method of [Lap921 
for the fixed demand problem (19) was taken as the building block of the sen- 
sitivity analysis tool. (In the case of elastic demands, one can still solve a 
fixed demand problem, by first utilizing the fixed demand transformation of 
Gartner [Gar80].) It  has the advantage of utilizing route flow information, 
and therefore the close resemblance between the original problem (19) and 
the sensitivity problem (15) can be utilized fully. 
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The DSD algorithm was recoded in Matlab for experimentational pur- 
poses, fully aware of the fact that the CPU time will be perhaps two orders of 
magnitude larger than a final C or Fortran implementation. We refer to  the 
paper [Lap921 for the basics of the DSD algorithm, but remind the reader that 
the most central points of the algorithm are the following: a t  some iteration 
point (h i , vT)  of consistent route and link flows, the current travel costs are 
used to  solve a shortest route problem for each origin node. The routes that 
then are generated are compared to  sets 'kPq C Rpq that have been generated 
and stored previously, and those sets are augmented with any routes that 
were not known already. (This process is the column, or route, generation 
one.) With those subsets of the routes at hand, the restricted master problem 
(RMP)-which is the original problem (19) except that 'kp, replaces R,, for 
each (p, q) E C-is solved using one of several methodologies implemented. 
The highly structured RMP is either solved by using a gradient projection 
method or a diagonalized Newton method. (In practice, it appears that the 
former is the best for smaller networks, but that the Newton method wins for 
large enough cases.) 

The similarity of the sensitivity problem to the equilibrium problem meant 
that much of the code from the DSD algorithm implementation could be 
reused. Of course, in the sensitivity context, flow and cost derivatives take 
the place of flows and costs themselves. For simplicity, these derivatives can 
be considered "virtual" costs and flows. The restricted master problem solver 
code then only had t o  be altered slightly to allow the subset of the routes that 
were used at  equilibrium to take on negative "flow" values. 

In order to  set up the sensitivity problem, except for the flows and costs, 
the main part concerns the routes to be included. Remember that only least- 
cost routes are valid, some of which have a non-negativity requirement (if it is 
unused). In order t o  construct this set of routes, we first included only those 
routes that were used in the equilibrium solution. In order to compensate 
for the possibility that the equilibrium solution might not perfectly identify 
these routes, a "fuzzn-factor was used. In other words, to determine whether 
a route was used, the route flow was compared not to  zero but to a very 
small positive number, obtained by multiplying the OD-pair demand by a 
tiny factor. In other words, a sign restriction may be included for a route that 
has a very small amount of flow at  the terminal flow of the DSD algorithm. 
Any remaining set of routes that are potentially interesting for the sensitivity 
problem could then be included based on a final shortest route calculation and 
a graph search, together with a "fuzzn-factor similar to the above, allowing 
for near-shortest routes to  be included as well. 

This set of routes then is the one that defines the sensitivity problem; no 
further route generation is necessary, and so the only problem left is a convex 
quadratic RMP with some variables being free and some being sign restricted. 
Virtually the same algorithm as in the RMP for the original problem can be 
used; the only special case stems from the sign restrictions. Further details 
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on the implementation of this algorithm can be found in the first author's 
master's thesis [Jos03]. 

7 A dissection of the sensitivity analysis of Tobin and 
Friesz 

7.1 The analysis 

We show, by means of both analytical and numerical tools, some examples 
in which the sensitivity analysis presented in [ToF88] requires too strong as- 
sumptions. 

The strong monotonicity condition 

The analysis is performed on a problem similar to  (19) but where the fixed 
demand is also perturbed. In order to  ensure local uniqueness, they introduce 
the following condition: 

(Condition l-strong monotonicity) t(p,  .) is strongly monotone in a neighbour- 
hood of p*. 

This condition is stronger than necessary, as we have already seen. 

The strict complementarity condition 

The analysis is based on first selecting a particular equilibrium route flow 
solution. Among the conditions stated, the route flow is supposed to be strictly 
complementary. The definition is however not the one commonly used, it being 
the following: a route flow solution h* is strictly complementary if and only 
if that it is complementary (that is, that 0 5 h: i [cT(p*, h*) - n,,(p*)] 2 0 
holds for all r E R,,, (p, q) E C), and 

In other words, our use of the term strict complementarity means that for an 
arbitrary route r E R,,, it is either used (h: > 0) or it is more expensive than 
the least costly route used in the OD pair [cT(p*, h*) > ~ , , ( p * ) ] .  

Tobin and F'riesz state a definition of traffic equilibrium in terms of total 
link flows v only, and which unfortunately is not consistent with the standard 
definition, given in (2). Their definition of a user equilibrium in terms of 
the vector v is that there exists a vector A* E such that for every link 
1 = (i, j )  E C, 

vl" = O  ===+ tl(V*) 2 A; -A,., 

vl" > 0 ===+ t,(v*) = A; - A,.. 
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An inherent problem with this definition is that the aggregated potential 
differences, X5 - X f ,  are not consistent with our node price vectors .irk, k E C, 
associated with the shortest route problem for OD pair k a t  v*. 

In order to illustrate this inconsistency, in comparing our definition with 
theirs, we must take into account that their definition assumes that we utilize 
the link-node representation of flows while we utilize the link-route represen- 
tation. We can easily define vectors .irk of equilibrium costs for each commodity 
also in the former setting, where then these vectors are of size /N/, since they 
are defined by node prices. Given an OD pair k E C defined by an origin s 
and a destination t ,  both being nodes in N, we would define these node prices 
by ~ i k  for each node i E N, and the OD travel cost would be given by the 
difference between the node prices at the terminal and initial node, that is, 
by T t k  - .ir,k. Further, along a shortest route in which link (i, j) E C is used, 
we would have that tij (vij) = .irjk - ~ ~ k .  

So, the above inconsistency would be described as follows: a t  a traffic 
equilibrium, .irjk - nZk # 71;*, - .ir& may hold for two OD pairs k and K. (For 
example, it can happen as soon as link (i, j )  lies on a shortest route in the 
OD pair k but not in K.) 

Based on the equilibrium definition, however, the authors define a strict 
complementarity criterion for the perturbed problem: 

(Condition 2-strict complementarity) For each link 1 = (i, j )  E C, v; = 0 ==+ 

tl(p*, v*) > - Xf holds. 

So, whenever the total link flow vector v* is positive, this condition is sat- 
isfied. Clearly, it is therefore not compatible with the strict complementarity 
condition (21). 

In any case, the strict complementarity condition is not a necessary con- 
dition for the differentiability of the traffic equilibrium solution, although our 
strict complementarity condition is sufficient. An example below will illustrate 
this fact. 

The linear independence condition 

Next, we are asked to  restrict the network 6 to  G+ = (N, C+),  where 1 E C+ 
if and only if v; > 0, that is, to  the network corresponding to the links having 
a positive flow given p*. Consequently, there are possibly some routes that 
will be removed as well. The + notation to  follow reflects this restriction. 

Under the assumptions stated so far, the set HT(p*) of equilibrium route 
flows is a bounded polyhedron. The next condition states that an equilibrium 
route flow vector h; is selected such that it is a "non-degenerate extreme 
point" of H$ (p*): 

(Condition 3-linear independence) An equilibrium route flow h$ is chosen such 
that it is an extreme point of H;(p*) which has exactly as many routes with 
a positive flow as the rank of the matrix [AT 1 r+]. 
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The rank of this matrix is never higher than the number of links with a 
positive flow at  v* plus 1CI. The authors state an LP problem that can be 
used to  generate such a point, but also remark in their Theorem 6 that the 
sensitivity values do not depend on this choice, as long as it is an extreme 
point of HT ( p * ) .  

A final restriction is then made, such that we remove all the indices in the 
vector h; for which the flow is zero. (We do not change the notation to  reflect 
this restriction.) The sensitivity problem is then finally set up as follows: 

7.2 Examples 

A case of differentiability where strict complementarity does not 
hold 

To show that strict complementarity is not necessary for differentiability, we 
consider the network depicted in Figure 2. 

Fig. 2. A traffic network 

There are two OD pairs, (1,2) and (4,2),  with a fixed and unperturbed 
demand of 2 and 1 units of flow, respectively. The link cost functions are given 
by 

We have four routes: {I), {2,3), (41, and {5,3), two for each OD pair. 
With p* = 0, the unperturbed traffic equilibrium solution is v* = 

( l , l , l , l , l ) T .  The route flow is unique: h* = ( l , l , O , l ) T .  We see that the 
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travel cost on route 3 is 2, as is the case for route 4, so this is a non-strictly 
complementary equilibrium solution. Since it is the unique route flow, we do 
not comply with the conditions (21) for strict complementarity. 

In order to  check if the solution v* is nevertheless differentiable at p* = 0, 
we solve the sensitivity problem for both p' := 1 and p' := -1. For p' = 1, 
we obtain the following unique solution to  the sensitivity problem (20), thus 
being the directional derivative of v* with respect to the direction p1 = 1 at 
p* = 0: v' = (-1,1,1,O, o ) ~ .  The effect, as we can see, of perturbing link 
1's cost such that it becomes more expensive, is that of sending flow in the 
cycle {-1,2,3}, where the minus reflects that flow is sent backwards on link 1. 
When solving the sensitivity problem for p' := -1, we obtain the directional 
derivative v 1  = $ (1, -1, -1, 0, o ) ~ ,  that is, the negative of the directional 
derivative of v* in the direction of p' := 1. This proves that the directional 
derivative mapping is linear, and thus that the derivative of v* with respect 
to p' a t  p* = 0 equals 

At the same time, we have here shown that the sufficient matrix condition 
(13) indeed is only sufficient; it is not satisfied here because the set of feasible 
route flow perturbations is the entire space and the partial Jacobian of t 
with respect to v a t  the pair (v*, p*) is the non-positive definite diagonal 
matrix with diagonal entries (2 ,1 ,0 ,1 ,1) ;  yet the equilibrium solution is even 
differentiable. 

This is then an example where the analysis formula (22) is not applicable, 
although the solution is differentiable. 

A case of differentiability where the formula (22) fails 

Consider the network shown in Figure 3. 

Fig. 3. Network for the first counter-example 



136 M. Josefsson, M. Patriksson 

There is a single OD pair, (1,3),  with a fixed demand of 2 units of flow. 
The link cost functions are given by 

We have four routes: {1,3), {1,4), {2,3), and {2,4). 
With p* = 0, the unperturbed traffic equilibrium solution is v*  = 

(1,1,1, I ) ~ .  We can easily see that the solution is differentiable; it is strictly 
complementary even. The derivative with respect to  p at  p* moreover is 

This is intuitive: if the value of p increases, then the flow on link 1 should 
decrease, whence link 2 must increase its flow with the same amount. If, on 
the other hand, the value of p decrease, the reverse should happen. 

Consider then the workings of the formula (22) outlined above. We obvi- 
ously fulfill Condition 1 on the travel cost functions. We also satisfy Condi- 
tion 2, because v* > 01~1. Also, then, G+ = G. We last try to comply with the 
linear independence Condition 3, by choosing the right equilibrium route flow 
solution. Note then that 

has rank 3. So, we should find a route flow solution, h*, in which exactly 3 
routes have a positive flow. This is however impossible; the only alternatives 
are 2 or 4. To see why, suppose that the flow on the first route, {1,3), is 
a E [O,l]. Then, the flows on the routes {1,4) and {2,3) must both be 1 - a ,  
in order to  comply with the total flow on the links. This implies that the flow 
on route {2,4) is a. This shows that for any value of a E [O, 11, the number 
of routes having a non-zero flow is either 2 or 4. Since we cannot comply with 
Condition 3, the formula (22) fails, even though the gradient exists. 

The problems regarding the applicability of the formula (22) associated 
with the rank Condition 3 was first observed and commented on by [BeI97, 
p. 971; our example however seems to  be the first that has been worked out 
in detail. 

A case of non-differentiability where the formula (22) may provide 
a result 

Consider the network shown in Figure 4. 
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Fig. 4. Network for the second counter-example 

In this examplc, there are three OD pairs, with the following fixed de- 
mands: 

d l z  := 1; d l 3  := 1; d32 := 1. 

The link cost functions are given by 

(We thereby comply with Condition 1.) With p* = 0, thc unique equilibrium 
link volume is v* = (1,1, I ) ~ .  In this case, the route flow is unique: the flow 
on route {(1,2)) is 1; the flow on route {(1,3), (3,2)) is 0; the flow on route 
{(1,3)) is 1; and the flow on route {(3,2)) is 1 as well. 

This solution is non-strictly complementary by our definition, since the 
route {(1,3), (3,2)) is of least cost but it cannot bc used. It is however strictly 
complementary according to Condition 2, which we thereby satisfy. 

We also see that a small negative perturbation in p would not affect the 
equilibrium solution, since the link {(1,2)) (that is, the first route in the first 
OD pair) is already utilized to send all the demand in the first OD pair. But 
if the perturbation is positive, we see that thc flow in route {(1,2)) would 
decrease, and the flow on the route {(1,3), (3,2)) would increase. This is then 
a case where the directional derivative (which of course exists) is not linear, 
so p* = 0 is a point of non-differentiability. 

What happens if we wish to apply the formula (22)? Wc here have that 

which has rank 4. Since the flow on the route {(1,3), (3,2)) is rcstricted to 
zero, in all fairness, the formula then breaks down. But it does not really do 
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so for the right reason; there is every possibility of believing that the formula 
might still work if we either still include the route, or if we were to  delete it. 
In both cases, the formula (22) does produce a result, which in none of the 
two cases can be interpreted as the value of the gradient a t  p*. 

7.3 The gradient formula of Cho, Smith, and Friesz 

The sensitivity analysis of [CSFOO] is somewhat related to that in [ToF88]. It  
replaces all the three conditions 1-3 mentioned in the previous section with 
weaker ones, and further provides an analysis entirely in link flows. We briefly 
discuss this analysis below. 

(Condition 1-strict monotonicity) t(p, .) is strictly monotone in a neighbour- 
hood of p*. Further, the Jacobian matrix V,t(p*, v*) is positive definite. 

(Condition 2-strict complementarity) There exists a strictly complementary 
route flow h* E H*(p*).  

Notice that these two conditions together imply differentiability, but that 
they are stronger then necessary; the latter utilizes the classic definition of 
strict complementarity, as we do in this paper. 

We are first asked to  consider, as in [ToF88], the graph G+, which only 
includes links 1 E C with vl* > 0 at  p*. In order to  state the differences between 
the analysis in [CSFOO] and [ToF88] more clearly, we do not introduce the + 
notation here, and assume, from now on, that 6 = G+. 

Next, suppose that we, for each OD pair (p, q) E C, remove the routes 
r E R,, whose cost is higher than X ~ T ; ; ~ .  Thus, we reach a network which we 
may denote by Go, in which the set R is replaced by the subset Ro of least-cost 
routes a t  v*. By Condition 2, they must also be the routes with positive flow 
at  h*. 

The sensitivity analysis proceeds with a further reduction: 

(Condition 3-linear independence) Select a subset of the rows of Ao, such that 
the resulting matrix [(A;)T I To] has full (column) rank. 

Note that there is no requirement on the rank itself, and therefore this 
condition is milder than the Condition 3 in [ToF88]. 

The sensitivity formula is similar to  that in (22), but provides the sensitiv- 
ity in the link flow space directly, and therefore does not require the selection 
of a particular equilibrium route flow solution. It  is however much more com- 
plicated in the sense that the translation between the spaces in h and v implies 
that several sub-matrices of, for example, A6 must be constructed, collected, 
inverted and multiplied: 

where A{ contains the rows of A. which are not present in A;, and 
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7.4 Conclusion 

While being applicable to  a wider selection of situations than the analysis in 
[ToF88], the analysis in [CSFOO] is still not valid for problems with a non- 
strictly complementary equilibrium solution, since it relies on the implicit 
function theorem. Its main drawback is however its complexity; the formula 
(23) reached in [CSFOO] is rather non-intuitive and computationally burden- 
some to use. It  is also clear from the papers that have been written and 
referred t o  during the past two-three years that the analysis in [ToF88] is the 
one favoured, despite the fact that it is less generally applicable. 

Interestingly, shortly after Tobin and Friesz published their paper, Qiu 
and IvIagnanti [QiM89] published the first paper which develops a sensitivity 
analysis of traffic equilibria based on Robinson's strong regularity condition 
(albeit under slightly stronger assumptions than necessary; cf. [Pat04]); it is 
based on a linearized traffic equilibrium model which is similar to  (15) in the 
case of a separable problem. Their paper did however not get much attention 
from the transportation science community. (See [Pat041 for an account of the 
history of the sensitivity analysis of traffic equilibria, and a list of references 
its utilization.) One of the few who has utilized the results of Qiu and Mag- 
nanti is [Den94], who applied it in the context of OD matrix estimation. He 
compared numerically the Qiu/Magnanti sensitivity analysis formulas to  that 
of Tobin/Friesz, and found that the former was significantly more robust and 
efficient to use. Our above findings clearly are supportive of that claim. 

The paper [JoPO4] provides a first application of our sensitivity formulas 
to  network design problems, with encouraging results. 

Acknowledgment. An anonymous reviewer provided remarks that improved 
the clarity of the presentation. 
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Summary. We propose an application of a new set of models referred to as "Stable 
Dynamics" which provide a flexible yet rigorous way to model traffic congestion in 
large urban areas. Data requirements are extremely low, since supply and demand 
data can be given by GIs systems. This approach is based on the requirements that 
(1) the maximum entering flow for each link is given and that (2) Wardrop principle 
holds. In this paper, we supplement this basic model by parking choice. We focus 
on the case where the commuters use private and public transportation from the 
origin to the destination (and back to the origin). We propose a consistent model 
of both for the day commuting and the morning-evening commuting and show that 
such extension can be formulated as standard convex mathematical problems. 

Key words: Morning and Evening Commute, Traffic Congestion, Stable Dy- 
namics, Parking, Park and Ride. 

1 Introduction 

Parking plays an increasingly important role in the study of traffic conges- 
tion. This is due to  the fact that the number of cars has dramatically increased 
over the last decades (the increase in car ownership remains of course very 
different across countries, even in Western Europe). As a result, traffic con- 
ditions tend to  deteriorate in many cities, and as a corollary, the loss of time 
while searching for parking has substantially increased in many congested 
cities. Economists and traffic engineers have advocated road pricing since the 
last decade. Early research in this direction is due to  Vickrey and Roth (see 
[Vic59, Rot651). However, road pricing remains, with a few exceptions, very 
difficult to  implement in practice, as discussed a t  length for example in several 
European projects, such as MC-ICAM or REVENUE. Transportation experts 
tend to agree that such frictions are not only the result of technological con- 
straints, but especially of legal and sociological barriers or constraints. Some 
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exceptions exist for example in Hong Kong, Singapore, California, Norway 
and more recently London, where road pricing has been successfully imple- 
mented. On the whole, public acceptance of road pricing remains low, even 
if it seems to  have improved recently, and even if transport management has 
improved substantially during the last decades. Current models are focused 
on the standard commute, without taking park and ride into account as well 
as many other subtle aspects of activity patterns. In this paper, we wish to  
study some simple dimensions of this complex decision process, for a t  least 
two reasons. 

(a) One major impact of road pricing is the modal shift, which can be encour- 
aged by park and ride policies. 

(b) Parking can be (and have been) priced with a much higher public accep- 
tance than road pricing, and is therefore an interesting alternative to take 
into account in the general picture. 

There are few recent developments of the economic analysis of parking 
pricing (see [AR99, YTT911; for an analysis of parking pricing with time of 
the day dependent congestion, see also [APLglJ). The perception of parking 
has evolved over time. About two decades ago, traffic planners believed that 
parking problems were a consequence of insufficient parking places. This naive 
view is true only if one neglects the medium and long run adjustment decisions 
made by the drivers (such as mode choice and relocation). Over the last few 
years, it has been recognized that the transport systems are more complex, 
in the sense that more parking places in a downtown reduces search time 
for parking (and cruising), which decreases the generalized cost of cars and 
therefore induces an undesirable modal shift in favor of automobiles [AH90]. 
Pricing parking can, however, be used to  control congestion. Parking fees have 
proven to  be much more acceptable, and they potentially provide easy-to- 
implement second-best policy instruments, to  regulate automobile congestion 
[AG99]. Park and Ride may induce mode shift downtown. Still, adequate 
management of parking remains a complex task since it requires optimization 
along several dimensions: the optimal location of parking lots, their optimal 
capacity and the optimal parking charge (which, in a dynamic context, may 
depend on the time of the day and on the length of stay). 

Many studies have been performed and models developed to  study the 
driver's choice behavior; in particular search behavior has attracted a lot of 
attention (see [BMS81], [TR98], and [APgl]).  However, those models are often 
complex and are therefore not applicable to  large networks. We have preferred 
to  develop a more comprehensive and consistent parking model a t  the expense 
of simplifying drivers' behavior when searching for parking. In particular, we 
focus on the choice of a parking place but do not take into account search 
behavior (although search costs and parking congestions are included in our 
setting). 

The choice of a parking place is a binding decision, since it provides con- 
straints on the subsequent trips, or on the return trip. The return trip does 
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affect the morning commute, and it is therefore (potentially) erroneous to  treat 
the morning and evening commute separately. Most studies have concentrated 
on one trip from an origin to  a destination, for example for the morning com- 
mute or in the context of a shopping trip involving the choice of a parking 
place [TLOO, V0951. However, to the best of our knowledge, no theoretical 
study has considered a unified mathematical formulation for the whole day 
trip chaining for a population of users travelling in a large congested network. 
I t  is not clear, for example, how the standard Beckmann objective functions 
should be extended to  take into account interdependent morning and evening 
commute decisions. Here, we wish to study the combined choice of private 
transportation, of a parking space and of the alternative modes (e.g. public 
transportation) used once the car is parked. In order to  accomplish this task, 
we have developed a combined model for the morning and the evening com- 
mute. We focus our attention on car drivers and consider that each driver has 
access to  one (or several) parking places, with endogenous access time and 
given parking charges (of course this latter could be zero). The complexity 
of this problem is due to  the fact that the morning and the evening peaks 
cannot be treated in isolation. If a driver chooses a specific parking lot in the 
morning, s/he necessarily has to return to  the same lot after work. One way 
to  solve this problem is to  model the whole trip explicitly as follows: 

(a) Home to parking lot trip; 
(b) Parking lot to work and back to the parking lot trip (using another mode, 

such as bus, street car or even walking); 
(c) Parking lot to  home trip. 

If the parking lot of a user is located at  home, it means that this user does 
not travel by car, while if it is located at  destination, it means that only car 
is used for the morning and evening commute. 

We use in our description the Stable Dynamics approach introduced in 
[NesOO] (see also [NP03] for more examples and developments. We have shown 
in [NP03] that Stable Dynamics can be used to compute the equilibrium and 
the optimal solutions on simple networks such as the Braess network, only us- 
ing logical arguments). This formulation is based on two simple assumptions, 
which characterize the supply side and drivers1 behavior. First (see Assump- 
tion I) ,  it is assumed that each driver selects the minimum travel time route. 
Second (see Assumption 2),  it is assumed that the outflow of each road can- 
not exceed a given value that we refer to as the capacity: either the outflow 
is lower than the capacity and the travel time is the free travel time or it is 
equal to  the capacity and the travel time is larger or equal t o  the minimum 
travel time. These set of assumptions is sufficient to  characterize equilibrium 
in a general large network (but not the out-of-equilibrium solution as defined 
in game theory). 

The purpose of this paper is to  develop an integrated treatment of different 
park-and-ride problems using the Stable Dynamics approach. In Section 2,  we 
introduce the notation, briefly summarize the concepts underlying Stable Dy- 
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namics and present the corresponding mathematical formulation. In Section 
3, we consider two cases: either the drivers are travelling during the same time 
period from the origin to  the destination and back, or the morning and the 
evening can be treated as two independent periods (on the supply side, but of 
course not on the demand side). In Section 4, we consider a charging policy for 
the parking lots and extend in this direction the mathematical formulation of 
the park and ride commute. In Section 5 we provide a simple example which 
illustrates our model. Concluding remarks are presented in Section 6. 

2 Notations and generalities 

Suppose we have a transportation network R composed by set of nodes N  
and set of directed arcs A: 

For this network we define the set of origin-destination pairs (OD-pairs): 

OD = {(i, j), i, j EN,  i # j}. 

Each OD-pair (i, j) generates a demand d(i,j). Usually, this demand is consid- 
ered as an average flow of drivers, which need to travel from origin node i to 
destination node j; so the demand is a non-negative real number. Sometimes 
it is necessary to work with cumulative demand, which is the total number of 
drivers N(i,j) travelling from origin i t o  destination j during a time window 
A. In this case, we assume that the drivers generate a constant flow in the 
network. Thus, 

N(i,j) = d(i,j) . A. 

Further, for each OD-pair (i, j )  let us define a (finite) set of routes con- 
necting i and j :  

The P-component of the root incidence vector a E R(i,j), is equal to one if 
the arc p is included in this route; otherwise this component is equal to zero. 

For each arc p E A we introduce the minimal free traffic travel time fp. 
Let us introduce also the second characteristic of the arc, the maximal output 
flow fp .  In urban network the maximal flow depends on the number of lanes 
of the road, the duration of the green light a t  the intersection, the weather 
conditions, etc. As it was shown in [NesOO, NP031, even from this restricted 
(and easily available) information we can retrieve the equilibrium travel time. 
Formally, this equilibrium solution can be derived from two assumptions. The 
first one is behavioral. We are looking for the solutions in which all drivers 
travel along the shortest paths computed with respect to existing (unknown) 
system of arc travel time. 
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Assumption 1 Given a n  established arc travel t ime  pattern t = { t p ) p E A  i n  
the network R, t 2 f = { $ } P E A ,  each driver chooses one of the cheapest (with 
respect to  t )  paths t o  travel f rom origin t o  destination. 

The second assumption characterizes a performance of the arc and the 
congestion pattern. I t  says that either a road is uncongested, and then the 
travel time is equal t o  the minimal free traffic travel time, or, the route is 
congested and then the travel time on the arc must be found from a global 
analysis of the congestion in the network based on Assumption 1. Formally, 
our assumption looks as follows. 

Assumption 2 T h e  flow fp ,  observed o n  arc P, never exceeds f7a. I f  f p  < fp ,  
t h e n  the travel t i m e  o n  this  arc i s  equal t o  fp (that is  the free t r a f i c  travel 
t ime) .  If ffp = fb, then  the travel t ime  t p  can be any  value greater o r  equal t o  
6 .  

Assumption 2 can be justified as follows. Consider a congested urban road 
equipped with a traffic light. Let us measure the output flow of this road. 
Clearly, in average the flow is constant and it depends only on the number of 
lanes, on the duration and the fraction of green light, etc. On the other hand, 
the travel time on this road does no t  depend on the output flow. It  depends 
only on the size of the queue, which can be arbitrarily large. 

We refer to  the models, which compute the equilibrium patterns satisfying 
Assumptions 1 and 2, the Stable Dynamic  models [NesOO, NP03]. The main 
advantage of these models is that they do not use any arc travel time functions. 
They just rely on basic and easily available parameters of the roads. One 
could think that this approach oversimplifies the complexity of the real world. 
However, we can see that in many cases we get intuitively correct solutions. 
Let us provide the reader with a simple example. 

Fig. 1. Two routes in parallel 

Example 1. Consider a network R consisting of two nodes 1 and 2. These 
nodes are connected by two parallel arcs directed to the second node. Let the 
performance characteristics of the arcs be related as follows: 
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Then the equilibrium solution (t*, f * )  depends on the demand flow d(1,q in 
the following way: 

3) d(l,2) = fi : t; E [fl , tz],  f; = d(l,2), fil = 0. 

It  is clear that for the third case in (1) we indeed cannot say more about t; 
since it can depend on a constant queue accumulated at  this arc. For more 
examples and discussion see Nesterov and Palma [NP03]. 

Note that ,  in general, we get user-equilibrium solutions, which are different 
from the social optimum. Indeed, for the second situation in (I) ,  the optimal 
solution is given by 

Thus, the optimal cost is &fi + & .  (d(1,2) - A), which is strictly less than the 
user-equilibrium cost G . d(l,2). 

We now show a way to find the Stable Dynamics solutions for general 
networks. Let us fix some arc travel time pattern t in network R .  Then, for 
each OD-pair (i, j )  we can compute the shortest-path travel time. This value 
is a function of t and it has the following analytical form 

Thus, T(i,j)(t) is a concave piece-wise linear function o f t .  I t  is well defined for 
any t E Rm. Therefore it is subdifferentiable on Rm. Its subdifferential 

aT(i,j)(t) = Conv {a E R(i,j) : (a,  t )  = T(i,j)(t))  (2) 

has a very interesting interpretation. Any vector g E 19T[~,~)(t) describes an 
arc loading pattern of network R by a unit of flow from origin i to  destination 
j, which satisfies Assumption 1. 

Let us introduce now the cost function 

Consider the following max-flow arc performance model [NesOO]: 

Using the cost function C(t)  and the constraints (3) ,  we can compose an 
optimization problem, the solution of which satisfies Assumptions 1, 2. 
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Theorem 1. The arc travel time t* and the arc flow vector f *  is an equilib- 
rium solution of the model (3) if and only if t* is a solution to the problem 

and f *  = f - s*, where s* 2 0 is a vector of optimal dual multipliers for the 
inequality constraints in (4). 

The proof of this theorem can be found in [NesOO]. Note that the optimiza- 
tion problem (4) has an interesting interpretation. The objective function in 
(4) is composed of two terms. The first one, the function C ( t ) ,  is the loading 
of the network; that is the total number of drivers travelling in the network 
at  a given moment. The term (f ,  t - f )  represents the total number of drivers 
waiting in the queues at  the same moment. Thus, their difference, 

represents the number of cars involved in free traffic. In other words, Theorem 
1 says that a t  user equilibrium this number is maximal. 

The goal of this paper is to  develop a Park-And-Ride model in the frame- 
work of Stable Dynamics. 

3 Park and ride models 

We are going to  model the situation when a driver can leave his car a t  a special 
parking place and continue the trip to destination by public transport. The 
main difference with respect to  the standard models is that now we have to 
take into account the way drivers come back. In order to describe our models, 
we need to introduce additional data: 

1. The list of destinations D C: N, d = /Dl. 
2 .  The list of parking lots P C N, p = /PI .  
3 .  The cost .irk of parking lot k E P, .ir = { T ~ ) ~ ~ ~  E RP. 
4. A two-way cost c ( k , j ) ,  k E P, j E V,  for travelling between the parking lot 

k and destination j by public transport. 

We need to use a monetary value of time per unit flow, which is denoted by 
a. It  is assumed to  be the same for all drivers. 

In accordance to activity pattern of the drivers, we consider two different 
Park-And-Ride models. 

3.1 Day period 

In this situation, the drivers go to  their destinations and come back in the 
same period of the day. So, in both directions they observe on the roads the 
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same driving conditions. Let characterize these conditions by some arc travel 
time vector t E Rm. Then the cost function for OD-pair ( i ,  j )  is as follows: 

Note that this function is qualitatively different from T(i , j )  ( t )  since it cannot 
be implemented as a shortest path function of a single network. Nevertheless, 
T&)(x , t )  is still a concave piece-wise linear function of t ,  and it can be 
computed by a standard shortest-path technique. 

Since in the current situation the strategies of drivers become more com- 
plicated, we need to modify Assumption 1. Indeed, the strategy now includes 
the choice of the parking place and the choice of the two-way route. Thus, we 
need to assume the following. 

Assumption 3 Given a n  established arc travel t ime  pattern t = i n  
the network R, t L f = { & ) P E A ,  and the  system.^ o f  prices {.irk) and { q k , j ) ) ,  
each driver chooses one o f  the cheapest strategies to  travel from origin to  
destination and come back to  the origin. 

In this case, similar to the Stable Dynamics approach, we can find an equi- 
librium solution from an appropriate convex optimization problem. Indeed, let 
us form the total cost function of our model: 

Then, taking into account Assumptions 2 and 3, can form the following convex 
optimization problem: 

Find q 5 ~  ( T )  = max [cD(.ir, t )  - a . (f, t - i$ : t 2 t;] . 
t (6) 

Theorem 2. Let t* be the optimal solution to  the problem ( 6 )  and f* = f - 
s * / a ,  where s* > 0 is  a vector of optimal dual multipliers for the inequality 
constraints i n  (6 ) .  T h e n  the pair ( t* ,  f *)  delivers a n  equilibrium solution to  
o u r  problem i n  the following sense: 

(a) T h e  arc travel t ime  vector t* and the arc flow pattern f * satisfy Assumpt ion  
2. 

(b) T h e  arc flow pattern f * i s  composed of  OD-flows { g ; i , j ) ) ( i , j ) E o ~ ,  

which satisfy Assumpt ion  3 with respect t o  the cost functions (5). 

Proof. The proof of this theorem consists of a straightforward application of 
Karush-Kuhn-Tucker conditions to  problem (6)) taking into account the flow 
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interpretation of subgradients of functions T i j )  (T, t*) .  Indeed, let us fix T and 
write down the Lagrangean for problem (6): 

By the Karush-Kuhn-Tucker conditions, for the optimal solution t* of prob- 
lem (6) there exists a vector of dual multipliers s* > 0 and a vector 
g* E a,CD(T,t*) such that 

Now we need to find an interpretation of the vector g*. Clearly, 

g* E & C D ( r ,  t*) = C d ( i > j ) & ~ & ) ( n ,  t*) ,  
( i , j )EOV 

In view of representation (2),  the set $&T&)(n-,t*) is composed by all arc 
loads of the network by a unit of flow, which goes from origin i to destination 
j and comes back, and which satisfies Assumption 3. Thus, expression (7) is 
justified. Item (a) of the theorem follows from the second line of conditions 

(8). rn 

3.2 Morning-evening peak periods 

In this situation, the drivers go to their destinations in the morning and come 
back in the evening. Hence, the driving conditions for two directions can be 
completely different. Therefore we introduce for the morning period an arc 
travel time variable t M ,  and for the evening period another arc travel time 
variable tE. Then the cost function for OD-pair (i, j )  is as follows: 

( t )  = i [ T(i ,k ) ( tM)  + T i  + c(k,j) + a .  T(k,i)(tE)] , t = ( tM, tE) .  

(9) 
As before, T(~$(T,  t )  is a concave piece-wise linear function of t .  

We need to use the following modification of Assumption 3. 

Assumption 4 Given established arc travel time patterns t" and tE for the 
morning and the evening peak periods, and the systems of prices { T ~ )  and 
{ c ( ~ , ~ ) ) ,  each driver chooses one of the cheapest strategies to travel from origin 
to destination and to come back. 

Since we work with different periods of day, we need to  pass to  cumulative 
demands. Then, the total cost function of our model becomes 
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Thus, taking into account Assumption 2, we come to the following convex 
optimization problem: 

Find ~ M E ( T )  = mfx [ c M E ( a , t )  a . A .  ( f , t M  + t E  - 2t) : tb* 2 i, tE 2 f] 
(10) 

Theorem 3. Let t* = (tM*, tE*) be an optimal solution to the problem (lo),  
sM* > 0 be a vector of optimal dual multipliers for the inequality constraints 
tM 2 f, and sE* > 0 be a vector of optimal dual multipliers for the inequality 
constraints tE > f. Denote f M* = f - sM*/(aA) ,  and f E* = f - sE*/ (aA) .  
Then the pattern (tM*, tE*, f M*, f E*) delivers an equilibrium solution to our 
problem in the following sense: 

(a) The patterns (tM*, fM*)  and (tE*, f E * )  satisfy Assumption 2. 
(b) The arc flow patterns f M* and fE*  are composed of OD-flows, which sat- 

isfy Assumption 4 with respect to the cost functions (9). 

The proof of this theorem is very similar to that of Theorem 2. 

4 Pricing policy 

Note that the solutions of problems (6), ( lo) ,  depend on n,  the prices of 
the parking places. Moreover, since functions T[ j )  (T, t )  and T(:$ (T, t )  are 
jointly concave in ( ~ , t ) ,  the functions +D(n)  and $ME(T) are concave in T. 
This opens a possibility to  control the solutions of these problems as functions 
of n. Let us show how we can solve, for example, the problem of filling the 
parking lots. For simplicity, we do that for the day-period model (see Section 
3.1). 

For each parking lot k 6 P we introduce the following characteristics: 

1. nk, the number of parking places in the lot. 
2. bk, the upper bound for the time spent in the parking lot. 

Using these characteristics, we can compute 

the upper bound for the car flow through this parking lot. We can define also 
.irk, the lower bound for the price of the parking place at  lot k. As usual, we 
denote 

7 = { q k ) k ~ ~ ,  3 = { " k ) k ~ ~ .  

The question we want to  answer is as follomw Which system of parking 
prices T > 7i ensures the absence of parking congestion? In other words, we 
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want to guarantee that the car flow through any parking lot k does not exceed 
fik - 

Consider the following convex optimization problem: 

Theorem 4. Let (n*, t*)  be the optimal solution t o  the problem ( l l ) ,  s* > 0 
be a vector of optimal dual multipliers for  the inequality constraints t 2 i, 
and Q* 2 0 be a vector of optimal dual multipliers for  the inequality constraint 
.ir > ?i. Denote f * = f - s * / a  and q* = fi- Q*. T h e n  the pattern (n*, t*, f * ,  q*) 
delivers a n  equilibrium solution to  problem (11) i n  the following sense: 

(a) T h e  arc travel t ime  vector t* and the arc flow pattern f * satisfy Assumpt ion  
2. 

(b) T h e  arc flow pattern f * i s  composed by OD-flows, which satisfy Assump-  
t ion  3 with respect to  the cost CD(n*,  t * ) .  

(c) T h e  parking flow pattern 17% does no t  exceed the bound q. 
(d) T h e  additional toll a h  = nk - ?ik is  strictly positive only for congested 

parking lots, that i s  q i  = i j h .  

The proof of this theorem consists in a straightforward application of 
Karush-Kuhn-Tucker conditions and follows the lines of the proof of Theo- 
rem 2. 

As for the pure Stable Dynamic model (4), we can provide the problem (11) 
with some interpretation. The objective function in this problem is composed 
of three terms. The first one, CD(n* ,  t * ) ,  represents the total flow of expenses 
spent in the network, which include the value of travel time, parking place and 
the cost of public transportation. From this amount we subtract the cost of the 
waiting time (social lost) and the extra charges for the parking places (pure 
transfer). Thus, we maximize an "efficient" payment of the drivers, which can 
be interpreted as a monetary value of the mobility in the system generated 
each unit of time. 

Clearly, a similar pricing model can be developed for the situation de- 
scribed in Section 3.2. 

5 Simple illustration of the model 

Let us consider a simple example. Our network consists of three nodes. Node 
1 is the origin. A Park-And-Ride facility is located at  intermediate node 2. 
And there is a parking lot available at destination 3. All parking lots have 
unlimited capacities. We denote by ni the price of parking at  node i, i = 2 , 3 .  
The price of a two-way public transportation ticket from node 2 to  3 is c2 ,3  

Our network is shown on Figure 2. All nodes are connected by two-way 
streets. Both directions of each street have identical characteristics (free traffic 
travel time and capacity). Nodes 1 and 2 are connected by a street with 
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parameters El > 0 and fi = ca. Nodes 2 and 3 are connected by two streets. 
The short one has characteristics t2 > 0 and f2 < w, and the long one is 
characterized by f3 > and f3 = m. Let us consider the day-period model 

E 3 > t ; , f 7 j = C O  

Origin Destination 

w 

1 tl , fl = 00 2 t 2 ,  72 3 

Fig. 2. Simple Park-And-Ride model 

described in Section 3.1. In view of complete symmetry in our network, the 
equilibrium solutions for both directions of each street will be the same. So, we 
will have only three travel-time variables t = ( t l ,  t2, t3) and three equilibrium 
flow variables f = ( f l ,  f 2 ,  f3). Since there is no congestion possible on the 
streets 2 and 3, we are sure that at equilibrium t l  = El and t3 = E3. Thus, the 
cost function of OD-pair (1,3) depends only on the single variable t2: 

Thus, given any demand flow d(i,3), the equilibrium Stable Dynamics solution 
can be found from the following problem: 

Since the cost function is bounded from above, the solution to this problem 
exists for any level of demand. Let us discuss its structure for different vari- 
ants of parking prices 7rz and ~ 3 ,  and public transportation price C 2 , 3  In our 
analysis we assume that 

which means that on an empty network it is better to travel by car. 
1. Trafic ban: 7r2 + c2,3 < 2aG + 7r3. In this situation all drivers will park 

at  node 2 independent of the level of demand. In this situation 

2. Controllable congestion: 2aEz + 7r3 < 7r2 + C2,3 < ht3 + n3. In this 
situation no driver uses street 3. The usage of street 2 depends on the demand 
level. If d(1,3) < f2,  then the parking lot at node 2 is empty. Nevertheless, there 
is no congestion on street 2. 

If d(1,3) > f;L, then the level of congestion on street 2 can be found from 
the condition: 
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Again, there is no reason to  use street 3. But the parking lot at node 2 is used. 
Note that the equilibrium travel time at  street 2 is a function of the parking 
prices: 

1 tz = %[7r2  - T 3  -k Q , 3 ]  2 f 2 .  

Since the number of cars on street 2 is equal to fi . t2 ,  it is possible to avoid 
an excessive usage of street 2 by regulating price differential of the parking 
lots. 

3. Over-pricing: 2 a t 3  + 7r3 < 7rz + ~ $ 3 .  In this situation the price of the 
parking lot a t  node 2 is too high. Thus, the drivers avoid it and we obtain the 
equilibrium solution from the model considered in Example 1. 

Note that in our analysis the parking lot a t  node 2 can be seen as a 
substitute for street 3. 

6 Discussion and concluding remarks 

We have developed a mathematical formulation to describe Park and Ride 
for the morning and evening commutes. This tool is based on the Stable 
Dynamics theory. It  allows addressing parking policies at both the local and 
the global or strategic levels. This approach relies on the idea that parking 
policies should be studied as one element of a comprehensive transportation 
system and cannot be studied in isolation. The proposed framework also takes 
into account parking management and congestion in a consistent manner and 
within the same standard convex formulation. 

Some important steps are still missing at  this stage. The proposed method- 
ology is able to compare alternative parking policies, but is unable to  select 
the best policies to  be implemented. This would require the addition of a sup- 
plementary step involving optimization of the parking location considering a 
given pricing strategy. 

In order to  simplify the presentation, we have assumed that the morning 
and the evening O/D matrices were the same. This does need to  be true, and 
the proposed approach can easily be extended, with additional notation, to 
the case where the morning and the evening O/D matrices differ. We have not 
considered more complex (and realistic) activity patterns, but it is clear that 
the proposed formulation can be extended to more complex set of activity 
patterns (including several stops). 

Finally, we have assumed, for the sake of simplicity, that the O/D matri- 
ces were exogenous. This hypothesis is not restrictive since in our previous 
formulation (see [NP03]) we have proposed a method to describe trip gen- 
eration and distribution as a part of the same mathematical formulation of 
Stable Dynamics. This extension adds one additional level in the optimiza- 
tion procedure, but does not modify the approach proposed in this paper. 
Recently, researchers have started to  model parking within the context of the 
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monocentric city [APOl]. In particular, they evaluate the  impact of parking 
management on land use. These long-term issues (requiring endogenous O/D 
matrices) are important and should be considered for large-scale networks. 
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Summary. We suppose given a variable demand model with some control param- 
eters to represent prices, a smooth function V which measures departure from equi- 
librium and a smooth function Z which measures overall disbenefit. We suppose that 
we wish to minimise Z subject to the constraint that the disequilibrium function 
V is no more than E ,  where we think of c as a small positive number. The paper 
suggests a simultaneous descent direction to solve this bilevel optimisation problem; 
such a direction reduces Z and V simultaneously and may often be computed by 
simply bisecting the angle between -VZ and -VV. The paper shows that follow- 
ing a direction A which employs the simultaneous descent direction ns its central 
element leads, under natural conditions which preclude edge effects (where a flow 
may be zero or a price may be maximum), to the set of those approximate equilibria 
(where V 5 E )  at which Z is stationary. 

Then the method is extended on the one hand to deal with edge effects (allowing 
a route flow to be zero or a price to be the maximum permitted), by ensuring that the 
direction A followed anticipates nearby edges of the feasible region, using reduced 
gradients instead of gradients, and on the other hand to deal with signal controls. 

Within the optimisation procedure proposed here, optimisation and equilibration 
move in parallel and the need to compute a sequence of approximate equilibria is 
avoided 

Key words: Bilevel Optimisation, Transportation Networks, Pricing, Con- 
trol, Equilibrium 

1 Introduction 

1.1 Purpose of the paper 

I t  is important t o  model transportation networks so that  various alternative 
strategies designed by planners may be tested in a model prior to  implemen- 
tation. But it also important to  devise methods of optimising network models 
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subject to natural assumptions concerning travellers choices, so that the com- 
puter modelling actually makes suggestions to  the planners. Modelling may 
then further assist decision-makers with their future designs, by taking a more 
pro-active role in strategy design. In this paper we give and justify a possi- 
ble method of optimising prices within an equilibrium transportation model. 
The method is based on simultaneous descent directions; these reduce two 
objective functions simultaneously. 

1.2 Practical and general equilibration modelling background 

The need to  consider the several parts of a transportation equilibrium model 
as a single unity has been emphasised in [COM96], for example; this study was 
part of the US Travel Model Improvement Program. In the UK, this same need 
has also been described by the Department of the Environment, Transport and 
the Regions (see, [DofE98] and [SAC99]). This need leads directly to fairly 
general variable demand equilibrium models. 

Many transport equilibrium models, together with a number of solution 
methods, have been proposed. See, e.g., [BMW56], [Eva76], [Gargo], [Bar021 
and [BB03]. 

In this paper we adopt a specific variable demand equilibrium model within 
which some interactions, including that between the flows along certain arcs 
and costs felt on others and between the costs of travel between certain OD 
pairs and the flows generated between other OD pairs, may readily be rep- 
resented; this model is similar to  that suggested in [CC61] and [AM83]. The 
model combines the standard user equilibrium route-choice principle stated 
in [War521 and a demand for travel between each OD pair which may vary 
with the costs of travel between the various OD pairs. 

1.3 Optimising prices and signals within equilibrium models 

The need to optimise signal controls subject to equilibrium within an equilib- 
rium transportation model was pointed out in [A1174]. 

Many others have also considered this type of bilevel optimisation prob- 
lem. See, e.g., [AL79], [TGA79], [Mar83], [Mar86], [Fis84], [TF88], [Dav94], 
[YY94], [Yan96a], [Yan96b], [Yan96c], [Chi97], [CSX99], [PRO21 and [CW02]. 
All these essentially seek to  solve the same problem as we do here. Migdalas 
[Mig95] provides an interesting survey of some solution techniques which have 
been proposed. The problem, shortly stated, is as follows. 

First problem statement: Given a smooth objective function, 6 n d  op- 
t imal  prices and signal green-times allowing for  travellers' decisions. 

Here we weaken this problem as follows. 
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Second problem statement: Given a smooth objective function, find 
flows, prices and signal green-times which comprise a n  approximately station- 
ary point, allowing approximately for travellers' choices. 

This is a bilevel problem because we choose to  allow for travellers' choices 
by constraining transport flows to  be an equilibrium or an approximate equi- 
librium; already for fixed prices this is itself an optimisation problem. 

Bilevel problems in a wider context have also been studied by very many 
people including, e.g., [GS94], [LPR96] and [0Z95]. 

The basic equilibration and optimisation ideas in this paper are natural de- 
velopments of the Lyapunov equilibration methods described in [Smi84a] and 
[Smi84b] and build directly upon the half-space and cone projection methods 
developed (and very slightly tested) in a series of papers: [SXY97], [SXY98], 
[SXYG98], [CSXYOl], [CS98], and [CSOl]. This paper also builds directly on 
[Smi05a]. However the basic idea of using a direction which is the average 
of the steepest descent direction of the constraint function and the steep- 
est descent direction of the given objective function may be traced back to 
Zoutendijk. 

The advances presented here are as follows: 

1. The optimisation method here may be properly applied to  a wider variety 
of real-life problems than that in [CSXYOl] as the conditions on the cost 
and demand functions are more general here, 

2. The optimisation method here also embraces a better dynamic, Armijo- 
like, step length rule; the aim of this is to  guarantee that a stationary point 
is indeed approached fairly economically from a computational viewpoint, 
and 

3. The optimisation method here extends that in [Smi05a], by changing the 
search direction so as to  allow for hard constraints; this permits (for ex- 
ample) route-flows to  be zero and prices to be at  their maximum at a 
stationary point. 

These advances allow more general and more simple proofs of convergence 
and might also be expected to  be much more efficient computationally than 
the methods demonstrated in previous work. Some details not given here are 
given in [Smi05b]. 

Using the algorithm here the approach to a stationary point is typically 
via points which are not themselves approximate equilibria, so that the op- 
timisation and the equilibration move in parallel and the need to  compute a 
sequence of approximate equilibria is avoided. 

Previously, [FLOO] and [RM04] both consider descent methods which have 
elements in common with the simultaneous descent method outlined here. 

In [CQW02], Cohen et al. are critical of [CSOl]. However they do not 
consider the smoothed search direction in that paper; they consider only a 
more simple discontinuous search direction. This means that their comments 
are not relevant to  this current paper. 
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2 The Model 

2.1 The main variables 

We suppose that in our model network there are K OD pairs, that OD pair 
i j  is joined by Nij routes and so the total number of routes is N = Cij Nij. 
The main variables are as follows: 

Xijr = the flow (in, e.g., vehicles per minute) along the r th  route joining OD 
pair i j ,  

X = the route flow vector comprising all the Xijr, 
Xj  = the cost of travel between OD pair i j  ( in minutes per vehicle, say), and 
Y = the cost vector comprising all the Y,, . 

Costs are in minutes per vehicle; so that a flow times a cost is dimensionless. 
Let oN denote the zero N-vector, + m N  denote the N-vector with infinite 

co-ordinates. Then we define [oN ,+mN)  to be [ O , + W ) ~  and [O",+mK) to  
be [0, ~ m ) ~ .  

2.2 Cost functions and demand functions 

The central supposition throughout is that we are given two functions: the 
cost function C(.)  and the demand function D(.).  

Here Cijr(X) is the cost of traversing the rth route joining OD pair i j  
when the flow vector is X 2 0 and Dij(Y) is the total flow between OD pair 
i j  when the OD cost vector is Y where Y > 0. 

We suppose that the cost function C(.)  is defined throughout [oN, + a N )  
and that the demand function D ( . )  is defined throughout [oK, +mK) .  Thus, 
including domains and co-domains, our two given functions are: 

C : [oN, + m N )  -+ [oN, + m N )  and D : [oK, + m K )  + [oK1 + m K ) ,  

2.3 The functions T and S 

We define the two functions 

T : [ O N ,  + m N )  -+ [OK,  + m K )  and S : [oK, + m K )  -+ [oN, +mN) 

as follows. For each i j  and each i, j and r :  

Tii ( X )  = C Xi,, for all X E [oN, + m N )  
r 

and 
Sijr(Y) = Y,j for all Y E [oK, + m K ) .  

Ti j (X) gives the total flow from node i to  node j and Sijr(Y) spreads each 
cost Yij over all routes joining node i and j .  
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2.4 Assumptions 

Positivity of C and non-negativity of D 

We suppose that,  always, C (X)  > 0 for all X E [oN, + m N )  and D(Y)  > 0 
for all Y E [oN, + m N ) .  

Boundedness 

We suppose always (i) that D( . )  is bounded and (ii) that C( . )  is bounded on 
bounded sets. 

Monotonicity 

We also suppose that C : [oN, + m N )  + [oN, + m N )  is monotone. That is we 
suppose: 

[c(x') - c ( x 2 ) I T ( x 1  - x2) > 0 

for all X' E [oN, + m N )  and X 2  E [oN, +mN) .  We also suppose that -D : 
[oK, + m K )  + -[oK, + m K )  is monotone. 

It  is easy to show that if C and -D are both monotone then 

is also a monotone function 

Continuous differentiability 

We also usually suppose that C and D are differentiable throughout their 
domains and that their derivatives or Jacobians C' and D' are continuous. 
(We assume that Jacobians or derivatives also exist a t  boundary points with 
suitable restricted definitions.) 

3 Variable Demand Equilibrium 

3.1 Definition of equilibrium 

Suppose given a (flow-vector, cost-vector) pair (c) in which all x,, > 0 

and all Xj > 0. This vector will sometimes be writtei  (X, Y). A vector (X,  Y) 
will be called an equilibrium if the following hold: 

1. (X, Y) E [ON, + m N )  X [OK,  + m K ) .  
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2. For each i j r ,  the cost Cijr(X) of traversing the rtlL route joining OD pair 
i j  equals Xj. 

3. For each i j  the demand Dij(Y) generated by the cost vector Y equals the 
total flow Tij(X) = Cr XijT actually occurring from node i to node j .  

So in this case (X,  Y) is a variable demand equilibrium pair if and only if 
(X ,Y)  E [ON,  + m N )  x [oK, +coK); 

Xj - Cijr(X) = 0 for all i , j , r ;  and 

Dtj(Y) - Tij(X) = 0 for all i ,  j. (2) 

The equilibrium equations (2) may be written, using ( I ) ,  in vector form: 

Here we have assumed for simplicity that a t  equilibrium all XijT > 0 and all 
Y,j > 0. To relax this initial assumption and so to  allow the possibility that 
a listed route may have a high cost and zero flow at equilibrium we revise 
(2) to  introduce a partial complementarity condition. The revised equilibrium 
condition is as follows. For each i ,  j and r :  

Y,j - CijT(X) < 0 and Y,j - CijT(X) < 0 implies 

XijT = 0; and Dij(Y) - Tij(X) = 0. (3) 

[The expression Dij(Y) - Tij(X) = 0 may be similarly replaced by Dij(Y) - 
Tij(X) 5 0 and Dij(Y) - Tij(X) < 0 implies Xj = 0. This change would 
make (2) exactly into a complementarity problem instead. We choose not to  
make this change here as it proves to  be unnecessary under our positivity 
assumption in Section 2.4 above.] 

The set of equilibria, or solutions to (3) ,  will be denoted by E. 

3.2 Proofs of existence of equilibria 

We give here two proofs of existence of equilibria. The first proof is a stan- 
dard proof using continuity and has some similarity to  that given in [AM83]. 
The second proof utilises monotonicity (as well as continuity) and serves to 
introduce the algorithms proposed in the paper. The set F defined below is 
common to both proofs. 

The closed bounded feasible set F and the objective function V 

The natural feasible set is [oN, +mN)  x [ o K ,  +cmK), but this is unbounded. 
Suppose now that our positivity and boundedness assumptions, in 2.4 above, 
hold. Under these conditions we are able to specify a bounded feasible set F .  

First we define upper bounds UXijT and UYij for Xijr and Xj  as follows: 
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and 
uu,, = 2sup{Cijr(X); X E [oN ,  UX])  

where U X  is the vector of all the UXijT. 
Now define the bounded feasible set F of (X,  Y) pairs by putting: 

where UY is the vector of all the UYij. 
Given the set F ,  consider the objective function V : F + R+ where, for 

all (X,  Y) E F: 

Here y+ = max{y, 0 )  and y$ = (y+)2 for all real numbers y. 

Proof of existence using continuity 

Let (X,  Y) E F .  It  is clear that if (X,  Y)  is an equilibrium then V(X,  Y)  = 
0.  Our first task is to  show the converse; that,  under natural conditions, if 
( X , Y )  E F and V(X ,Y)  = 0  then (X,  Y) is an equilibrium. This result 
follows from Lemma 1 below. 

Lemma 1. Suppose that the functions C and D satisfy our positivity and 
boundedness assumptions in Section 2.4 above. Let (X,  Y) E F. Then V(X,  Y) > 
0  if (X,  Y) satisfies m y  one of the following conditions: 

1. For some i j r ,  0  < XijT < $lJxijr and Yij > ; U x j .  
2. For some i j r ,  ~ux,,, < XijT < UXijT and 0  < Y,j < UY,j. 
3. For some i j r ,  0  < Xijr 5 UXijT and Y,j = 0.  
4. For some i j ,  Dij (Y) - Tij ( X )  > 0 .  
5. For some i j ,  Dij (Y) - Tij ( X )  < 0 .  
6. For some i j r ,  Xj  < CijT(X) and XijT > 0 .  

This lemma shows that if (X ,  Y) E F and V(X,  Y)  = 0  then 

None of the XijT exceed ii7xijT (as neither 2 nor 3 can hold). 
None of the Y,j exceed $ U x j  (as neither 1 nor 2 can hold. 
The vector (X,  Y) is an equilibrium (as none of 1, 2, 4, 5, nor 6 can hold). 
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Hence, (X,  Y)  satisfies the equilibrium condition (3) in Section 3.1 and also 
belongs to  [oN , i UX] x [oK, i UY]. 

Proof. Suppose that Condition 1 holds. Then 

V(X,  Y)  2 (UXqT - ~ i j r ) ~ [ ~ j  - CijT(x)]: 
1 1 

> ( - U X ~ ~ T ) ~ [ - U Y , ~  - cijr(x)]"+ 0 
2 2 

by definition of U x j .  
Suppose now that Condition 2 holds. Then 

by definition of UXijT. 
Suppose now that Condition 3 holds. Then 

by positivity of C and XijT. 
Suppose now that Condition 4 holds. Then there are two cases: xj > 

$ U x j  and xj < i U x j .  

Y,j > p Y , j  =+ V ( X , Y )  > 0 

since (1) or (2) must hold. Also 

Suppose now that Condition 5 holds. Then again there are two cases: 
Y,j > 0 and Y,j = 0. Firstly, Y,j > 0 +- V ( X , Y )  > Y,j[Tij(X) - Dij(Y)12 > 0. 
On the other hand, condition (5) here ensures that Ti j (X) > Dij(Y) 2 0 in 
any case and hence there is an XijT > 0. But we also know that CijT(X) > 0 
always and so 

and therefore V(X,  Y) > X$T.[CijT(X) - Xj]? = X$ICijT(X) > 0. 
Suppose finally that Condition 6 holds. Then again 

Thus the lemma is proved. 
A related results is as follows. 
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Lemma 2. Suppose C and D satisfy the positivity, non-negativity and bound- 
edness assumptions in Section 2.4 above. Suppose also that ( X , Y )  is an 
equilibrium in [oN, +cmN) x [oK, +mK) . Then (X,  Y)  is an equilibrium in 
+F = [oN, ~ U X ]  x [oK, ~ u Y ] .  

Proof. We only have to rule out the possibility of an equilibrium outside ;F. 
Suppose then that (X,  Y) is an equilibrium, possibly outside ;F. From the 
equilibrium conditions: Kj  -Cij,(X) < 0 and Xijr < Tij ( X )  = Dij (Y). Hence 
for all i j r :  

by definition of UYij and also 

by definition of UXijr. 
Thus any equilibrium ( X , Y )  E [oN, + m N )  x [oK, +cmK) also belongs to 

the smaller set $F = [oN, ~ U X ]  x [oK, ~ U Y ]  c F .  H 

Theorem 1 (A standard existence theorem using continuity). Sup- 
pose that C and D satisfy the positivity, non-negativity and boundedness con- 
ditions in Section 2.4, and that F is as constructed above. Suppose also that 
C and D are both continuous. Then an equilibrium exists, and the set of equi- 
libria is a non-empty subset of [oN, ;UX] x [oK, ~ u Y ] .  

Proof. For each (X,  Y)  in F ,  put @((X, Y))  = P r o j ~ ( ( X ,  Y)  + (S(Y) - 
C ( X ) ,  D(Y)-T(X)) .  Then, @ : F -+ F is continuous and F is closed, bounded 
and convex; so there is a fixed point of @ by Brouwer's fixed point theorem. 
This point must be a zero of V. By Lemma 1, this point must belong to 
[oN, ~ U X ]  x [oK, ~ U Y ]  and also satisfies the equilibrium conditions and so 
is an equilibrium in ;F c F. By Lemma 2 there are no equilibria outside 
[oN, ~ U X ]  x [oK, ~ u Y ] ,  and therefore the set of equilibria is a non-empty 
subset of loN, i U X ]  x loK, ~ u Y ] .  rn 

Proof of existence using monotonicity 

Theorem 2. Suppose that C and D satisfy all the conditions listed in Section 
2.4, and that F is as constructed above. Then an equilibrium exists, and the 
set of equilibria is a non-empty closed bounded convex subset of [oN, ~ U X ]  x 
[OK, ~ u Y ] .  

Proof. We are given that C and -D are both monotone and it follows that 
( C ( X )  - S ( Y ) ,  T ( X )  - D(Y))  is a monotone function of (X,  Y)  on F .  

Consider the search direction A(X,  Y) = (A1(X, Y),  A2(X,  Y))  where the 
i jr th component of the flow direction A1(X, Y) is for each i j r  given by: 
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and the i j th  component of the cost direction A2(X ,Y)  is for each ij given by: 

The whole search direction 

for all (X,  Y) E F .  (The direction (4) is precisely the algorithm (D)  direction, 
introduced in [Smi84a] and [Smi84b], in this setting, utilising the function 
(C(X)  - S(Y) ,T (X)  - D(Y))  on the set F = [oN, UX] x [oK, UY].) 

Since (C(X)  - S(Y) ,  T (X)  - D(Y))  is a monotone continuously differen- 
tiable function of (X,  Y) on F, it follows from [Smi84a] and [Smi84b] that 
A(X ,  Y) is a descent direction for objective V at (X,  Y) (unless V(X, Y)  = 0 
in which case (X,  Y) is an equilibrium) and also that there is a positive real 
number h such that for each (X,  Y) E F, (X,  Y) + tA(X,  Y) E F for each t 
such that 0 < t < h. 

Thus, for any ( X , Y )  in F, A(X,Y)  is a feasible descent direction for V 
at  (X,  Y); unless V(X,  Y)  = 0. 

Now V(X, Y) is a continuous function of (X,  Y) on the compact set F = 

[oN, UX] x [oK, UY]. Therefore V attains its greatest lower bound on this set 
a t  say (X* ,  Y*).  If V(X*,  Y*) > 0, d ( X * ,  Y*) is a feasible descent direction 
for V at  (X* ,  Y*) contradicting the definition of (X* ,Y*) .  

This contradiction arises from the assumption that V(X*,Y*)  > 0. It  
follows that V(X* ,  Y*) = 0 and an equilibrium does exist in F .  

Moreover by a standard lemma (Minty's lemma) the set of equilibria is 
under the present conditions also convex, since ( C  - S, T - D )  is monotone. 
Since V is continuous the set E = {(X,  Y) E F; V(X, Y) = 0) is also closed. 

Thus there is a non-empty closed convex set E of equilibria such that 
E c [oN, ~ U X ]  x [oK, ~ u Y ] .  

4 An Equilibration Method 

4.1 The basic condition 

We now impose the following basic condition on all following work. 

a There is a fixed set of N routes joining K OD pairs. 
a C and -D are monotone and continuously differentiable. 
a F = [oN, UX] x [oK, UY] . 
a The set of equilibria is a non-empty subset of [oN, ~ U X ]  x [oK, ~ u Y ] .  

Any pair (X,  Y) in F will be called feasible. A natural question is now: 
Given the two functions C and D satisfying the above conditions, how do we 
approximate or estimate a variable demand equilibrium (X,  Y)? 
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In order to  estimate an equilibrium (X,  Y), we use an iterative scheme 
which approximates the equilibrium conditions more and more closely. A very 
general algorithm which includes almost all algorithms for solving this variable 
demand problem is to  start anywhere in F and update (X,  Y) as follows: 
(XI ,  Y1) is any feasible starting value for (X,  Y)  and following some rule or 
algorithm: 

( X ~ , Y ~ )  4 ( x 2 , y 2 )  4 ( ~ 3 ~ ~ 3 )  4 . ,  . 
We shall now suppose that we have an algorithm which generates an infinite 
sequence such as that above, and that for any feasible start point all the 
succeeding pairs are also feasible in that they all belong to F .  

4.2 Definition of convergence and a Lyapunov function 

The sequence (X1,Y1) 4 (X2 ,  Y2) -+ (X3,  Y3) + * s is said to converge to  
the equilibrium set E if (i) the equilibrium set E is non-empty and (ii) the 
Euclidean distance dis t ( (Xn,  Yn) ,  E )  between ( X n ,  Yn)  and the equilibrium 
set E tends to zero as n oo. 

In [Smi84a] and [Smi84b], Smith shows that (given the basic condition 
above) there is a continuous real-valued function G defined for all (X,  Y)  E F 
such that 

G ( X , Y ) > O i f ( X 1 Y ) ~ F \ E ;  
0 G(X, Y) = 0 if (X,  Y) E E ;  and 

A(X,  Y) . VV(X, Y) 5 -G(X, Y) for all (X,  Y) E F .  

Thus V is a Lyapunov function for the dynamical system: 

d( (X( t ) ,  Y (t))/dt = A((X( t ) ,  Y (t))  for all t 2 0, 

(X(O), Y(0)) = (xO, YO) E F.  

Here (XO,Yo)  is an arbitrary start point E F. The steepness of the descent 
of the Lyapunov function V at  (X,  Y),  as (X,  Y) follows A,  is estimated by 
G. That is: 

We may take the function G to be as follows: 

G(X,  Y) = 

~ { ~ ~ ~ ~ [ ~ i j ~ ( x )  - ~ j ] :  + (UXijr - ~ i j r ) ~ [ ~ j  - c i j r ( x ) ] i }  
ijr 

+ { [ i  ( )  - i ( I  + ( U  - ) [ D  (Y) - T ( x )  } (5) 
i j 
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4.3 The projection ProjF 

Throughout all algorithms described here, all (X,  Y)  generated will be feasible 
or belong to  F .  Any "tentative values" of (X,  Y)  generated by an equilibrating 
(or, later, optimising) algorithm which are not feasible will always be projected 
back onto F. 

For each (X,  Y) E EXNSK the projection P ro jF (X ,Y)  of (X,  Y) onto the 
relevant feasible set (F here) is defined as follows, by projecting each co- 
ordinate of X and each co-ordinate of Y independently. Thus: 

Then, for each (X,  Y) E R ~ + ~ ,  we put P r o j ~ ( X ,  Y) = ( p r o j l  (x),  p r o j 2 ( y ) )  E 

F, and Pro jF(X,  Y) is the point of F closest to  (X,  Y).  

5 Dynamic Armijo-Like Step Lengths 

Suppose that the basic condition in Section 4.1 holds. We reduce V to zero by 
moving (X,  Y) continually in the direction A(X,  Y) specified in (4) in Section 
3.2 above. 

Given V, A,  and G, to  show descent to equilibrium over the whole trajec- 
tory generated by an equilibrium-seeking algorithm which follows A we need 
to specify step length choices in some detail. We follow a dynamic Armijo-like 
scheme very close to  that described in [Smi84b]. 

Henceforth we will let z stand for (X,  Y) and zn stand for ( X n ,  Yn). 

5.1 A dynamic Armijo-like algorithm 

Here we suppose that if we are a t  iteration n, at  a non-equilibrium (Xn ,  Yn) = 

z, where the search direction is A(z,) and the step length actually used at 
z, is u, then our next z will be 

where P r o j ~  denotes projection onto F .  The real number u, > 0 will be 
called a used step length and t ,  > 0 will be called a step length. 

For the purposes of most of this section we will suppose that if u, is a used 
step length then PTOjF(zn + u,A(z,)) = z, + u,A(z,). That is, we suppose 
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that the projection operator does not actually do anything; so the boundary 
of the feasible set F is here having no effect. To determine u, we specify a 
dynamic Armijo-like scheme based on a continuous function G such as that 
given above. 

To motivate the scheme, it is clear that if the step length t a t  z were very 
small then the change in V = V(z + tA(z))  - V(z) would be more negative 
than - i tG(z) .  So the slope of V(z + tA(z))  against t would be at  least as 
steep as - iG(z )  for small t .  We do not wish to have such small steps t as the 
reduction in V might be very small, by virtue of the small step size t .  

On the other hand if t is large the slope of V(z+tA(z))  against t can be no 
steeper than - iG(z )  on average; for if the average gradient of V(z + tA(z)) 
against t were < -$G(z) for large t then V(z + tA(z)) would sometimes be 
< V(z) - i tG (z )  and this would be negative for large t ,  which is impossible. 
(Of course, by its definition, V 2 0 always.) We do not wish to have steps this 
large as the reduction in V might be very small, due to a shallow negative 
slope (or perhaps V may even increase, due to a positive slope). 

So we seek step lengths which give rise to slopes between -gG(z) and 
- iG(z) .  Such step lengths have an Armijo property and allow convergence 
to equilibrium to be shown. 

The dynamic Armijo (z,, t,-l)-updating equilibration algorithm 
in detail 

To be specific, we start a t  an arbitrary zl E F and to = 1. This oth or initial 
step length to is fairly arbitrary, but it must be positive. 

If we are a t  a current non-equilibrium point z, E F ,  and the previous 
possible step length was t,-l, then we are to update z, and t,-l (for n > 1) 
according to some fairly simple rules as follows. 

Firstly, z, is kept fixed and tnPl is halved to  obtain: 

where the halving ceases as soon as: 

for the first time. p = 0 is allowed here; it may be that 

already. The halving surely ceases by definition of G. 
Secondly let u, = ( ; ) ~ t , - ~  for this p (this is to be the used step length at 

2,) and let z,+l = z, + u,A(z,). 
Finally update tnPl as follows: 

0 if V[z, + u,A(z,)] - V(z,) < -gu,G(z,), put t, = 2%; 
0 if -iu,G(z,) 5 V[z, + u,A(z,)] - V(z,,) < -$u,G(z,), put tn = 21,; 

and 
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These are three mutually exclusive possibilities and they together exhaust all 
1 eventualities since, by choice of u, = (5)Pt,-l, 

is not possible. 
Clearly not all t, are in fact used to move z. The used step lengths are 

the u,. I t  is clear that 

for all used step lengths u,. (It would be natural to  stop when V(z,) is less 
than some preassigned positive number.) 

6 Convergence to Equilibrium 

Suppose that the basic condition in Section 4.1 holds. For any starting point 
zl  E F and with an initial "previous" step length to = 1 we suppose that 
the dynamic Armijo-like algorithm specified above in Section 5.1 generates an 
infinite trajectory: 

~11ZZrz3,"' 1 Z n , " '  

where each z, E F and an infinite sequence 

of possible non-negative step lengths. We assume that these sequences are 
infinite: so we never actually hit the equilibrium set E.  (If the sequence hits 
an equilibrium we simply stop.) 

To prove convergence, we use proof by contradiciton. Suppose that {z,) 
is an infinite sequence generated by our algorithm which does not converge 
to  the equilibrium set E = {z E F; V(z) = 0). Then, since F is closed and 
bounded, {z,} must have a non-equilibrium limit point. 

Let w E F be such a non-equilibrium limit point of the sequence {z,), so 
that V(w) > 0. 

Now in the appendix we show that V(z,) is eventually less than V(w) and 
therefore, since {V(z,,)} is decreasing, {V(z,)} cannot have V(w) as a limit 
point. Hence, as V is continuous, {z,) cannot in fact have w as a limit point. 
This provides the contradiction we seek. 

It  follows that the sequence {z,} has no non-equilibrium limit points. 
Hence all limit points of the sequence {z,)  are equilibria and the sequence 
{z,) must converge to  the set of equilibria or dist(z,, E) -+ 0. 
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7 Optimising Prices 

Now we suppose that there is a specified smooth function Z which is regarded 
as a measure of total disbenefit. We will seek to minimise Z at  an equilibrium 
by charging prices for traversing certain arcs or routes in the network, thus 
influencing the equilibrium traffic distribution. Of course if Z depends on the 
prices charged then charges will also influence Z directly. 

7.1 Assumption concerning Z 

We suppose throughout that Z is a continuously differentiable, non-constant 
function of the route-flow vector X ,  the O D  cost vector Y and the new route- 
price vector P .  

7.2 Adding an arc-price vector p or a route-price vector P 

Suppose that for each arc a in the network a price pa can be charged. Suppose 
also that the vector p of all the pa is confined to some polyhedral closed 
bounded set of feasible arc-price vectors p. For many arcs the only feasible 
charge might be zero. For each feasible set of arc price vectors p route ijr (the 
rth route joining node i to node j )  will be subject to  a corresponding charge 
Pij, (the sum of the relevant pa) and the vector P of all possible route prices 
Pij, will be confined to some polyhedral closed bounded set FPriCe of feasible 
route-price vectors. Let (X,  Y) E F and P E F,,i,,. Then the vector (X,  Y, P )  
will be called a user-equilibrium if and only if for all i, j and r ,  

Y,j - Cijr(X) - Pij, 5 0 and 

Y,j - Cij,(X) - Pij, < 0 implies Xij, = 0, and Dij(Y) - Tij(X) = 0 

Our basic condition given in Section 4.1 is now supposed to hold for each fixed 
P E FPriCe. Further, we now suppose that the feasible set F is enlarged so 
that ;F contains all equilibria for all the given control vectors P E FPrice. 

Given our smooth objective function Z = Z(X,  Y, P ) ,  we now wish to 
approximate an optimal (X,  Y, P )  or at least a stationary (X ,  Y, P )  as follows: 
(XI ,  Yl, PI )  is any starting value for (X,  Y, P) E F x F,,,,, and (XI ,  Yl, P I )  + 

(Xz, yz, P2) -+ (X3, y3, P3) -) . . . . 
The previous V and A now involve P naturally. For all (X,  Y, P )  E F x 

Fprice we put: 
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and 
A(X,  Y, P) = (A'(x, Y, P), A ~ ( x ,  Y, P)). 

This is the direction (4) suitably changed. Allowing for P, the previous equi- 
librium constraint 

(X,  Y) E F and V(X,  Y) = 0 

now becomes: 

(X,  Y, P )  E F x F,,,,, and V(X, Y, P )  = 0. 

We will also write: H = F x FPrice and suppose that 

where we here also suppose that all the NH functions hi are linear. Nonega- 
tivity constraints are to  be part of this set of linear constraints defining the 
set H of feasible (X,  Y, P). 

7.3 The price-enhanced basic condition and a constraint 
qualification 

For the rest of the paper, we now assume that the following control-enhanced 
basic conditions hold. 

There  i s  a fixed set of N routes  joining K O D  pairs. 
F = [o*, UX] x [oK, UY]. 

0 C and  - D  are cont inuously  differentiable m o n o t o n e  funct ions  of X and  
Y, respectively. 
There  i s  a closed bounded polyhedral set FPri,, of  feasible route-price vec- 
tors .  

0 For each P E Fprice, t h e  set Ep of equilibria i s  a n o n - e m p t y  subset of  
;F = [oN, ~ U X ]  x [oK, ~ u Y ] .  

We have already defined the projection of a point onto a feasible set. Now 
we define the projection Projs[v](x) of a vector v based at  x E S onto the set 
S as follows. 

Projs  [v] (x) = limt-o+ [$ ( ~ r o j s  (x + tv) - x)] 
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Suppose that (X,  Y, P) E H is not an equilibrium so that V(X,  Y, P) > 0. It  
follows that for this (X,  Y, P), A(X,  Y, P) is a feasible descent direction for V 
with P fixed and hence that:  

Here only (X,  Y)  varies in F and P is fixed in FPTice 
It follows at  once that: 

Here (X,  Y, P) varies in H. 
Replacing (X, Y, P )  by just x,  the equilibrium condition 

(X,  Y, P) E F x FPric, and V(X,  Y, P )  = 0 

becomes: x E H and V(x) = 0. 
Also (6) above may now be written: 

P r 0 . j ~  [-VV] (x) # o if V(X) > 0. (7) 

Condition (7) may naturally be thought of as a constraint qualification 
applying to  the set E, = {x E H; V(x) 5 E )  of approximate equilibria, for any 
positive E .  Suppose that condition (7) holds and suppose that x is any point in 
the set H r- E, such that V(x) = E and hi(x) = 0 for i = 1 , 2 , 3 , .  . . , I; and no 
others. Then there is a direction 6 = P r o j ~ [ - V V ] ( x )  such that 6.descV(x) > 
0 and 6.deschi(x) 2 0 for i = 1 , 2 , 3 , .  . . , k .  That is: there is a feasible descent 
direction for V on the edge of any E, provided E > 0. 

Now the proposed optimisation algorithm, where ( X I ,  Y1, P I )  is any start- 
ing value for (X,  Y, P) in H and 

becomes: x1 is any starting value for x in H and 

7.4 The simplest simultaneous descent direction 

We wish to  minimise Z(X,  Y, P )  = Z(x)  subject to  V(X,  Y, P )  = V(x) being 
zero or small, so we need to  optimise V and Z simultaneously in some way. 

Initially we let x lie in the interior of H. We also need our control-enhanced 
basic condition above in Section 7.3. We make the further initial basic assump- 
tion that VZ(x)  # 0 for all x E H. 

Now, under o w  control-enhanced basic conditions in Section 7.3 above, 
V(x) > 0 implies VV(x) # 0. So we may now let (for x E H and V(x) > 0): 
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descV(x) = -VV(x)/llVV(x)l/, 

descZ(x) = -VZ(x)//lVZ(x)ll  and 
1 1 

desc(Z, V) (x) = -descV(x) + -descZ(x). 
2 2 (8) 

This direction (8), if non-zero, reduces V and Z simultaneously. In any case 
this direction is never an ascent direction, for either V or Z .  

However descV is not defined at  any x for which V(x) = 0 and also 
changes sharply in the vicinity of any such point. So it is natural to change 
this direction (8) slightly so that it is defined everywhere and is smoothly 
varying. This may be done by enlarging the equilibrium set E. We are led to 
put (where E > 0): 

E, = {x E H :  0 5 V(x) 5 E) 

and for all x E H :  

This direction (9) is identical in form and similar in motivation to  direction 
(2.3) in [CSOl]; desc(Z, V)(x) is there the projection of descZ(x) onto the 
hyperplane of locally-constant V but here is the average of the two directions. 
The present direction (9), using the average, has been introduced so as to 
allow a more straightforward effective step length selection procedure to  be 
designed. This is outlined below. 

For any x in the interior of H the zeros of A(x) coincide exactly with 
points x in E, at  which Z is stationary; or those points in E, for which there 
is no descent direction for Z which remains inside E,. We will now show this. 
We will also show later that an algorithm following direction (9) leads, under 
natural conditions, to the set of points x a t  which Z is stationary provided a 
dynamic Armijo-like step length rule is adopted. 

In [CQW02], Cohen et al. are critical of [CSOl]; however they only con- 
sider the discontinuous direction (2.1) in that paper and do not refer to  the 
smoothed direction (2.3) which has motivated direction (9) above. Thus their 
comments do not impact the optimisation methods described in this current 
paper. 

7.5 Optimality conditions in the interior of H 

Definitions of &-feasible descent and elinear optimality (for x in 
the interior of H) 

Given 2 and given x E i n tH ,  the vector u will be called an &-feasible descent 
direction at x (in the interior of H) if and only if u.[descZ(x)] > 0 and either 

V(x) = E and u.[descV(x)] 2 0. 
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Then x* (in the interior of H) is said to  be E-linearly-optimal if and only if 
V(x*) 5 E and there is no &-feasible Z-descent direction at  x*. 

E-linear-optimality conditions (in the interior of H) 

In this section we derive optimality conditions for any x in the interior of 
H. These results are particularly useful if H happens to  have been chosen 
correctly; so that the upper and lower bounds on x = (X, Y, P) are not binding 
when this optimality condition holds. 

For x in the interior of H, we let A,(x) be given by (9) above and show 
how this vector may be used to classify points x according to  whether they 
are E-linearly-optimal or not. 

Observe that desc(Z, V)(x) = $ d e s c ~ ( x )  + ;descZ(x) (if non-zero) is a 
direction in which both V and Z decline; and is never a direction of increase 
for either V or Z .  So if x E i n t H  and ; d e s c ~ ( x )  + idescZ(x) is non-zero 
then x is not E-linearly-optimal and also &(x) reduces both V and Z .  This 
is the crux. 

Here we show that a t  least for x E in tH,  4 , (x)  = 0 if and only if x is E- 
linearly-optimal. To do this we consider the following four mutually exclusive 
cases (for x in the interior of H ) :  

1. V(x) > E,  

2. 0 5 V(x) < E,  

3. V(x) = E and desc(Z, V)(x) # 0, and 
4. V(x) = E and desc(Z, V)(x) = 0. 

In each of the first three of these cases we show that x is not &-linearly- 
optimal by showing that A,(x) is a non-zero direction in which either the 
degree of disequilibrium, V, declines (Case 1); or is a direction in which Z 
improves maintaining V < E (Cases 2 and 3).  We also show that,  in Case 4, 
x is E-linearly-optimal and also that in this case A,(x) = 0. 

Case 1 (V(x) > E ) :  In this case x $ E, and also 

is non-zero as descV(x) is non-zero and desc(Z, V)(x) is never a direction in 
which V ascends. Of course x is not &-feasible and so is not E-linearly-optimal. 
Here following 4, (x) reduces V. 

Case 2 (0 < V(x) < E): In this case x E E, and 

is again non-zero as descZ(x) is non-zero and desc(Z, V)(x) is never a di- 
rection in which Z ascends. Here following &(x) reduces Z while of course 
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maintaining V < E .  

Case 3 (V(x) = E and desc(Z,V)(x) # 0): In this case x E E, and 
A(x) = desc(Z, V)(x) is non-zero and so is a simultaneous descent direction 
for both V and 2. Thus A,(x) is an &-feasible Z-descent direction at x so x 
is not E-linearly-optimal. Here again following A,(x) reduces Z maintaining 
V 5 E.  

Case 4 (V(x) = E and desc(Z, V)(x) = 0): In this case also x E E,. Now 
desc(Z, V)(x) = 0 and so descV(x) = -descZ(x). Consider any Z-descent 
direction u. Then u.[descZ(x)] > 0 and so u.[descV(x)] = u.[-descZ(x)] < 0, 
and u is not an &-feasible direction at x. Thus there is no &-feasible Z-descent 
direction from x and also V(x) 5 E ,  SO x is E-linearly-optimal. In this case 
A,(x) = 0. 

Conclusion: We have shown that (at least for x E intH) zeros of A,(x) 
coincide with points x E E, at which there is no &-feasible descent direction 
for Z at x. Such points are E-linearly-optimal. We have also shown that A,(x) 
is an H-feasible descent direction for V if x is not in E, and that A,(x) is an 
(H- and) &-feasible descent direction for Z if x is in E, and so is not &-linearly- 
optimal. Thus, at least for x in the interior of H, A,(x) is an excellent arbiter 
of E-linear-optimality at x; and for those x which are not E-linearly-optimal 
indicates a sensible non-zero direction for moving x. 

7.6 A dynamic Armijo-like optimisation algorithm 

Here we outline briefly the main changes in the previous equilibration algo- 
rithm needed to create an optimisation version. 

Now we suppose that if we are at iteration n; at a non-E-linearly-optimal 
x, E H where the search direction is A,(x,) and the step length actually 
used at x, is u, then our next x will be x,+l = Proj(x, + u,A,(x,)) where 
P r o j  now denotes projection onto H. 

Initially we suppose that if u, is any used step length then Proj(x, + 
u,A,v(x,)) = x, + u,A,(x,). That is, we suppose that the projection oper- 
ator does not actually do anything; and so the boundary of the feasible set H 
is here having no effect. 

Let, for x E H ,  

GI(x)  = -VV(x).A,(x) and Gz(x) = -VZ(x).A,(x). 

Unlike in the previous pure equilibration case where there is a formula for G, 
here Gl(x)  and Gz(x) must both be estimated in an algorithm using a two- 
point estimation where the second point lies a short distance in the direction 
A, from the first. 

For our purposes here we specify a simple dynamic Armijo-like optimisa- 
tion scheme based on the previous dynamic Armijo-like equilibration scheme 
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but now taking account of the two objective functions V and Z and the two 
continuous gap functions G1 and G2 above, instead of just the previous V and 
the previous G. 

As before we update (x,,t,-1). To be specific, we start a t  an arbitrary 
x l  E H and (arbitrarily as before) to  = 1. 

If we are a t  a current non-E-linearly-optimal point x, and the previous 
possible step length was t,-l then we are to update x, and t,-l (for n 2 1) 
according to the following rules. These imitate the earlier equilibration rules. 
To be most general we will, in this algorithm statement, set 

V[y] = V ( P r o j H ( ~ ) )  for all y E R ~ + ~ .  

The update of (x,, t,-l) depends on whether V(x,) > E or V(x,) < E. 

I. Suppose that V(x,) > E. In this case the algorithm is essentially the 
equilibration algorithm above. Firstly, x, is kept fixed and t,-l is halved as 

1 2  before to obtain the sequence t,-l, (a)t,-1, ( 5 )  tnPl ,  . . . , (;)pt,-l where 
the halving ceases as soon as: 

V[xn + ( i )Ptn- l&(xn)]  - V(xn) < -(j$)(;)Ptn-iGi(x,) 

for the first time. p = 0 is allowed here; it may be that 

already. The halving surely ceases by definition of G1 since &(x,) is always 
a descent direction for V at  x, if V(x,) > E .  

Then let u, = ( + ) ~ t , - ~  for this p (this is to  be the used step length at  
x,) and let x,+l = x, + u,A, ( x , ~ ) .  

Finally, update t,-l as follows: 

These are three mutually exclusive possibilities and they together exhaust all 
eventualities since, by choice of u, = ( i ) ~ t , - ~ ,  

is not possible. 

11. Suppose that V(x,) < E. Firstly, x, is kept fixed and t,-l is halved to 
1 1 2  1 obtain the sequence tnPl ,  (T)tn- l ,  (?)  tnPl , .  . . , (5)"t,-lwhere the halving 

ceases as soon as: 

Z [ X ~  + ( i ) ~ t n - ~ n a ( ~ n ) ]  - Z(xn) < -i (;) 'tn-1~2(xn) 

and 



180 M.J. Smith 

for the first time. We allow p = 0 here as before. The halving surely ceases by 
definition of G2 and the 2-descent property of A, maintaining V < E, because 
x, is not E-linearly-optimal. 

Then let u, = (;)pt,-~ for this p (this is to be the used step length at 
x,) and le t  x,+l =x,+unA,(x,).  

Finally update tnPl as follows: 

Again these are three mutually exclusive possibilities and they together ex- 
haust all eventualities since, by choice of u, = ($)~t , -1 ,  

is not possible. 
The algorithm is terminated as soon as V(x,) - E and Gz(z,) are both 

less than preassigned tolerances. 

8 Convergence to a Stationary Point 

We assume that our price-enhanced basic condition, given in Section 7.3, 
holds. 

8.1 Convergence preliminaries 

For any starting point x l  E H and with an initial step length to = 1 we 
suppose that the algorithm specified above in Section 7.6 generates an infinite 
trajectory: 

xl,xZ,X3,"' , x n , " '  

and an infinite sequence to ,  t l ,  t2 ,  tg,  . . . , tn ,  . . . of possible step lengths. 
To prove convergence in this case we will use proof by contradiction. So 

we suppose that {x,) is a given infinite sequence generated by our algorithm 
which does not converge to  the set 0, of E-linearly-optimal points. Then not 
all limit points of the sequence {x,) belong to 0, and since H is closed and 
bounded the sequence has a limit point w which is not in 0 , .  

Thus we now make the basic assumption that w is not &-linearly optimal 
and is also a limit point of (2,). We will show that this leads to  a contra- 
diction. This will show that,  in fact, if the sequence {x,) is generated by the 
algorithm then all limit points of the sequence {x,) are in 0, and so (as H 
is closed and bounded) dist(xn, 0 , )  -+ 0 as n -+ co. 
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8.2 Convergence proof 

Theorem 3. Let our objective function Z satisfy: V Z ( x )  # 0 for all x in  H .  
Let our price-enhanced basic condition in Section 7.3 hold. Suppose that the 
sequence {x,} is generated b y  the optimisation algorithm in Section 7.6 and 
also lies in the interior of H ,  let x* be the limit of any subsequence of the 
above sequence {x,), and let x* E i n tH .  Then x* is E-linearly-optimal. 

Proof. Suppose that x* is the limit of a subsequence of the above sequence 
and that x* E in tH.  We will show that none of the following three alternatives 
can occur: 

1. V ( x * )  > E l  

2 .  0 I V ( x * )  < El  

3. V ( x * )  = E and desc(Z, V ) ( x )  # 0.  

I t  will then follow that Case 4 in Section 7.5 above holds or that V ( x * )  = E 

and desc(Z, V ) ( x * )  = 0. In this case x* is &-linearly optimal. 
So let x* be the limit of a subsequence (in the interior of H ) .  

Ruling out Case 1: This is essentially as before with equilibration in Section 
6. 

Ruling out Case 2: Suppose that Case 2 does hold or that V ( z * )  < E. Then 

Now [l - V ( x * ) / ~ ] d e s c Z ( x * )  is a descent direction for Z at  x* (and 
desc(Z, V ) ( x * )  is never ascent) so [ V Z ( x * ) ]  . &(x*)  < 0. 

A small enhancement of the equilibration argument in Section 6 above 
and the appendix below now works in this case too, but with Z instead of V ,  
ruling out Case 2. 

Ruling out Case 3: Suppose that Case 3 does hold or that V ( x * )  = E and 
desc(Z, V ) ( x * )  is non-zero. Then 

and (being non-zero) is a descent direction for both V and Z at  x*.  
An enhancement of the equilibration argument in Section 6 and the ap- 

pendix now works in this case too, but this argument must in this case be 
applied to  both V and 2 .  The radius r in this latter case is to  be the minimum 
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of two radii, one ensuring a suitable reduction in V (so that V < V(x*) = E 

still, once the ball B(x*,  r )  is left) and the other ensuring a suitable reduction 
in Z (so that Z < Z(x*) once the ball B (x* , r )  is left). This rules out (3) 
as then the sequence {x,) can never return to be close to x* again, and x* 
cannot be a limit point of the sequence {x,). 

Conclusion: It  follows from the arguments above that if x* is any limit point 
in the interior of H, Case 4 in Section 7.5 must hold or: 

V(x*) = E and desc(Z, V)(x*)  = 0. 

In this case x* is E-linearly-optimal, as we have seen from the &-linearly- 
optimality conditions above in Section 7.5. 

9 Allowing for the Boundary of H 

We now take account of the boundary of H by re-designing the search direction 
A,. We change the directions 

descV(x), descZ(x) and desc(Z, V)(x) 

for those x close to the boundary of H to new directions called: 

descHV(x), d e s c ~ Z ( x )  and ~ ~ S C H  ( 2 ,  V) (x). 

We also change A, to the new direction AH,. Sometimes, on the boundary of 
H ,  these changes are achieved by a straightforward projection onto H. Near to 
the boundary of H the change is in general a convex combination of different 
projections onto different subsets of H. 

In order to  specify the new directions for all x in H we order the NH 
constraint function values h,:(x) a t  x in order of decreasing size. So we always 
have 

0 L hl (x) L hz (x) L h3 (x) > hq (2) . . . L h~~ (x).  

Closeness: For the purposes of this paper we shall suppose that x in H is 
close to  the boundary "hk = On if 0 2 hk(x) 2 -1. This specification may be 
subject to  obvious variation, especially in the case that H is a box. In this 
case we might normalise the h,: so that each h,: takes the value 0 on one face 
and -100 (say) on the opposing face. Thus the "1" here is to  be thought of 
as a number which is small compared to  the separation (according to  the h 
functions) of the faces defining H .  If H is not a box then we might suppose 
that the "non-box" h functions are arranged to have a minimum value of 
about -100 in H. 
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9.1 z close to one of the constraints defining H 

Suppose first that x is close to  the boundary of just one of the constraints 
defining H: given by hl(x)  5 0. So let us agree that 0 2 hl (x)  > -1 and 
hk(x)  < -1 for all k > 1. For any such x we define the new d e s c ~ V ( x )  by 
linearly interpolating between 

1. descoV(x) (which is the "original" descV(x)) and 
2. desclV(x) (obtained by projecting descV(x) onto the single constraint 

{x; hl(x)  2 0) as if x were such that hl(x) = 0). 

We need to specify precisely: descoV(x), desclV(x) and the linear inter- 
polation. We also need to  do the same for descZ and desc(Z, V). 

descoV(x): Of course we let descoV(x) = descV(x). (It is the result of 
projecting descV(x) onto zero constraints). 

desqV(x):  We define desclV(x), the "modified" descV(z), to be the pro- 
jection of descV(x) onto the 1 constraint hl(x)  < 0 as if x were such that 
hl(x) = 0. This projection may be calculated by solving the following min- 
imisation problem in vl: 

min I descV(x) + vldeschl (x) / I 
s t .  vl 2 0. 

Let the solution be v;. Then, desclV(x) = descV(x) + vTdeschl(x). 

Interpolation (descHV(x) when 0 2 hl(x)  > -1 and hi(x) < -1 for 
i > 1): Here we combine descoV(x) and desclV(x) by using x-dependent 
weights wo = 0 - hl(x)  and wl = hl(x)  - (-I), and putting d e s c ~ V ( x )  = 
wodes@V(x) + wldesclV(x). Thus we have defined descaV(x) for all x such 
that 0 > hl(x)  > -1 and hi(x) < -1 if i > 1; by linear interpolation between 
descoV(x) and desclV(x). 

We define descHZ(x) similarly and also we define desca(Zl V)(x)  simi- 
larly too as follows. 

desco(Zl V)(z) :  We put desco(Zl V)(x) = desc(Z, V)(x) = i d e s c ~ ( z )  + 
i d e s c ~ ( z ) .  This expression also arises by solving the following minimisation 
problem in A ,  p: 

min I IXdescV(x) + pdescZ(x) 1 1  
s.t. X + p = l l  

A > o , p > o .  

If the solution is A* and p* then of course A* = i, p* = i. 
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descl (2, V ) ( x ) :  In this case, we need to project descV and descZ " simul- 
taneously" onto the single constraint h l ( x )  < 0,  as if h l ( x )  were = 0. So now 
we solve the following minimisation problem in A,  p and vl:  

If the solution is A*, p* and v f ,  then desq (2, V ) ( x )  = A*descV(x) + 
p*descZ(x) + vrdeschl ( x ) .  

Interpolation (descH(Z,  V ) ( x )  when 0 > h l ( x )  > -1 and h i (x )  < -1 
for i  > 1): Here we combine naturally desco (2, V )  ( x )  and descl (2, V )  ( x )  
by using weights wo = 0 - h l ( x )  and wl = h l ( x )  - (-1) and putting 
descH (2, V ) ( x )  = wodesco (2, V )  ( x )  + wldescl (2, V )  ( x ) .  Thus we have de- 
fined desca(Z, V ) ( x )  for all x such that 0 2 h l ( x )  > -1; by linear interpola- 
tion between desco (2, V )  ( x )  and descl (2, V )  ( 2 ) .  

Comment: These modified vectors all have the character of a reduced gradient; 
the reduction being embodied in terms like wlv;deschl(x) which, for 0 > 
h l ( x )  > -1, have the effect of reducing those components of the original 
descV(x) or descZ(x) or desc(Z, V ) ( x )  pointing towards the edge of H .  If 
x is actually on the edge of H then these modified vectors will have zero 
components pointing outwards. For example, if h l ( x )  = 0 and descV(x) . 
V h l ( x )  > 0 (so that descV(x) points out of H )  then descHV(x) .Vhl (x)  = 0 
(so that the modification descHV(x) does not point out of H ) .  

9.2 x close to two of the constraints defining H 

To show how to extend the above ideas we consider just the two-constraint 
modification of desc(Z, V ) .  So now suppose that 0 > h l ( x )  > hz (x )  > -1 
and h i (x )  < -1 if i > 2. In this case we need to project descV and descZ 
"simultaneously" onto the two constraints h l ( x )  < 0 and h z ( x )  5 0 as if 
h l ( x )  = 0 and h z ( x )  = 0. More precisely, we now solve the minimisation 
problem in A, p, v1, v2: 

min 1 I AdescV(x) + pdescZ(x) + vldeschl ( x )  + vzdeschz(x) 1 1  
s.t. A + p = 1, 

A,p,v1,vz > 0. 

If the solution is A*,  p*, v; and v i ,  then descz(Z, V ) ( x )  = A*descV(x) + 
p*descZ(x) + v,*deschl(x) + v,*desch2(x). The suffix "2" indicates that there 
are two constraint functions, hl and h z ,  involved in the projection. 
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Interpolation (descH(2, V ) ( x )  when 0 > h l ( x )  > ha(x) > -1 and hi (x)  < 
- 1 for i > 2): We combine desco (2, V )  ( x )  , descl (2, V )  ( x )  and descz (2, V )  ( x )  , 
just defined by using weights wo = 0 - h l ( x ) ,  wl = h l ( x )  - h2(x) ,  and 
wz = hz(x)  - (-1) as follows: 

~ ~ S C H  (2,  V )  ( x )  = wodesco(Z, V )  ( x )  + wldescl(Z, V )  ( x )  + wzdesca (2, V )  ( x ) .  

Thus we have defined d e s C ~ ( 2 ,  V )  ( x )  for all x  such that 0 2 h l ( x )  > hz(x)  2 
-1 and h i (x )  < -1 for i  > 2; by linear interpolation between the values 
desco (2, V )  ( x )  , descl(2, V )  ( x )  and desc2 (2, V )  ( x ) .  

9.3 x close to three of the constraints defining H 

Here we follow exactly the same lines as shown above to  obtain just descH 
(2, V )  ( x )  for an x  such that 0 > h1 ( x )  > hz ( x )  > hg ( x )  > - 1 and h, ( x )  < -1 
for i > 3. We focus just on the interpolation stage. 

We combine desco (2,  V )  ( x )  , descl(Z, V )  ( x )  , desc2 (2, V )  ( x )  , and descg 
(2, V ) ( x ) ,  by using weights wo = 0 - hl ( x ) ,  wl = hl ( s )  - hz (x ) ,  wa = 

hz (x )  - h 3 ( x ) ,  and wg = h3(x )  - (-1) as follows: 

descH (2, V )  ( x )  = wodesco(Z, V )  ( x )  + wldescl(2, V )  ( x )  

+wzdesc2 (2, V )  ( x )  + wgdescg (2, V )  (s) .  (10) 

9.4 Generalisation: x close to several constraint boundaries 

For any x  in H close to  the boundary of H ,  there is k ( x )  > 1 such that 

and h i (x )  < -1 for i  > k ( x ) .  ( k ( x )  is the number of the H-constraint bound- 
aries x  is close to.) 

The above special specifications may now be generalised naturally to give 
d e s c ~ V ( x ) ,  descHZ(x)  and d e s c ~  (2, V ) ( x )  at any such x  in H ,  however many 
constraint boundaries this x  is close to; that is, whatever k ( x )  may be. Here 
we just outline the general extrapolation procedure for descH(Z, V )  where 
k ( x )  > 0. 

For each j  satisfying 1 < j  < k ( x ) ,  we solve the problem: 

min 1 lXdescV(x) + pdescZ(x) + C ~ i d e s c h i ( ~ )  1 1  
l < i < k ( x )  

s.t. X + p = 1, 

X,p,ui > 0 for 1 I i  < j  

vi = 0 for i  > j .  

The sum is over k ( x )  2 1 terms. If the solution is X j ,  p j ,  vg , v i ,  u;, . . , ui then 
(vl  = 0 for i  > j and) descj(Z, V ) ( x )  is defined by: 
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Then these special descj (2, V) (x) (for j = 1,2,  . . . , k(x)) are combined 
with desco(Z, V)(x) to  form the whole vector descH(z, V)(x) as follows: 

where 

and W k ( s )  = hk(X)(~) - (-1). 
There are k(x) + 1 terms here including the ~~'"erm desco(2, V)(x) = 

desc(2, V)(x),  which is calculated as if there are no constraints. For any x in 
H satisfying hi(x) < -1 for all i, so that x is not close to  any of the boundaries 
of H, 

Reduced direction at x: As a consequence of the above specifications we 
are now able to amend the definition of A,(x) for x in H, reducing the degree 
to  which this vector points toward nearby boundaries of H .  We obtain: 

This is a continuous function of x in H. I t  is also, if V(x) = E ,  an H-feasible 
simultaneous descent direction, for both 2 and V, provided such a direction 
exists. 

9.5 S imul taneous  descent  allowing for t h e  b o u n d a r y  of H 

Here we generalise the earlier "interior to H"  approach to the case where 
points generated may be close to  or on the boundary of H, using AH,. 

Definition of a n  &-feasible 2-descent  vector  a t  x E H n E, (for x 
possibly on the boundary of H ) :  The vector u is an &-feasible 2-descent vector 
a t  x E H n E, if: 

u . descZ(z) > 0, 

u . deschi(x) > 0 if hi(x) = 0 (for all i)  and 

u . descV(x) > 0 if V(x) = E .  



Bilevel Optimisation of Prices and Signals 187 

Definition of E-linear-optimality (for x possibly on the boundary of 
H ) :  x is E-linearly-optimal if x E H n E,, and there is no &-feasible Z-descent 
direction from x. 

E-linear-optimality conditions (valid also at points on the 
boundary of H) 

Let x belong to H and let E > 0. Now we consider five cases: 

1. V(x) > E,  

2.  0 < V(x) < E and descHZ(x) # 0, 
3. V(x) = E and descH(Z, V) (x) # 0, 
4. 0 < V(x) < E and descHZ(x) = 0, and 
5 .  V(x) = E and d e s c ~ ( Z ,  V)(x) = 0. 

In each of the first three of these cases we show that x is not &-linearly- 
optimal and that AH, is then a direction in which either the degree of dis- 
equilibrium, V, improves (Case 1);  or is a direction in which Z improves 
maintaining V < E (Cases 2 and 3). We also show that,  in Cases 4 and 5 ,  x is 
E-linearly-optimal. 

Case 1 (V(x) > E): In this case AH, = [V(x)/&]descH(Z, V)(x)  + 
[V(X)/E- l]descHV(x) is non-zero as descHV(x) is non-zero (as, for example, 
the algorithm (D) direction is an H-feasible descent direction) and of course 
x is not feasible and so is not E-linearly-optimal. Here following AH, reduces 
v .  

Case 2 (0 < V(x) < E and d e s c ~ Z ( x )  # 0): In this case AH, = 
[V(x)/~]descH ( 2 ,  V) (x) + [l - V(x) /&]desc~Z(x )  is again non-zero as d e s c ~  
Z(x)  is non-zero and is a feasible descent direction for Z at  x so x is not 
E-linearly-optimal. Here following AH, reduces Z maintaining V < E. 

Case 3 (V(x) = E and descH(Z, V)(x) # 0): In this case AH,(%) = 

descH(Z, V)(x) # 0, and is a simultaneous descent direction for both V and 
Z .  Thus AH,(x) is non-zero and is a feasible descent direction at  x so x is not 
E-linearly-optimal. Here following AH, reduces Z maintaining V < E. 

Case 4 (0 5 V(x) < E and descHZ(x) = 0): In this case there is clearly 
no feasible descent direction for Z at  x so x is E-linearly-optimal. dH,(x)  = 
0. 

Case 5 (V(x) = E and descH(Z,V)(x) = 0): In this case d ~ , ( x )  = 
descH(Z, V)(x) = 0. Consider any H-feasible Z-descent direction u from x. 
Then (by the following lemma) u . descV(x) < 0, and u is not an &-feasible 
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direction. Thus there is no &-feasible descent direction and x is &-linearly- 
optimal. AH, (x )  = 0. 

Lemma 3. Suppose that x E H n E,, V ( x )  = E ,  d e s c ~ ( Z ,  V ) ( x )  = 0 and 
h i ( x )  = 0 for just those i = 1,2,3,  . . . k .  Let u be an H-feasible 2-descent 
direction at x ,  so that u.descZ(x) > 0 and u,deschi(x) 2 0 for i = 1,2 ,3 , .  . . k .  
Then u . descV(x) < 0 and u is not an &-feasible direction. 

Proof. Suppose that x E H n E, ,V(x )  = E ,  hi(%) = 0 for just those i = 
1,2,3,  . . . , k and deXH (2, V ) ( x )  = 0. Suppose now also that u satisfies: 

u . descZ(x) > 0; u . deschi(x) 2 0 for i = 1,2,3,  . . . , k ;  u . descV(x) 2 0. 

By condition (7)  in Section 7.3, if x is any point in the set H n E, such 
that V ( x )  = E and h i (x )  = 0 for i = 1,2 ,3 , .  . . , k then there is a direction 6 
such that 

S . deschi(x) 2 0 for i = 1 ,2 ,3 , .  . . , k and 6 .  descV(x) > 0. 

This 6 is an H-feasible descent direction for V at  x .  Then for a sufficiently 
small Q > 0: 

( u  + 06) . descZ(x) > 0,  

( u  + Q S )  . deschi ( x )  2 0 for i = 1,2, . . . , k and 

( u  + Q S )  . descV(x) > 0. 

This direction ( u  + Q S )  reduces both Z and V and is H-feasible and so 
descH(Z, V ) ( x )  # 0, which is not so. It  follows that if the Z-descent vector 
u satisfies u . descZ(x) > 0 ,  and u . deschi(x) > 0 for i = 1,2 ,3 , .  . . , k then 
u . descV(x) < 0,  as required. This result is connected to the lemma due to 
Farkas. 

10 Convergence to a Stationary Point in H 

The general idea is as before. 

10.1 Convergence proof 

Theorem 4. Suppose now that the sequence {x,) is generated b y  the algo- 
rithm described above in Section 7.6 with A, there replaced b y  the new direc- 
tion AH,; as before we start at any X I  in H and any to > 0.  Suppose that our 
price-enhanced basic condition in Section 7.3 holds. Let x* E H be the limit 
of any subsequence of the above sequence {x,).  Then x* is E-linearly-optimal. 

Proof. Suppose that x* E H is the limit of a subsequence of the sequence 
(2,). Consider the following alternatives: 
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1. V(x*) > E l  

2. 0 I V(x*) < & and descHZ(z*) # 0, 
3. V(x*) = E and descH(Z, V)(x*) # 0, 
4. 0 < V(x*) < E and descHZ(x*) = 0 or 
5. V(x*) = E and descs(Z, V)(x*) = 0. 

Rather as before, ruling out Case 1 ensures that x* is in E,, and ruling 
out Cases 2 and 3 then ensures that Case 4 or 5 must hold. It  then follows 
from the previous work that x* E E, and is E-linearly-optimal. 

Cases 1, 2, and 3 are ruled out by arguments similar to  those already 
utilised in the proof of Theorem 3 in Section 8.2, but using the new direction. 
These arguments work as the new direction is continuous. The argument in 
Section 6 needs to  be extended and utilised in this case, as it was in Theorem 
3. Some of the detail here is omitted and is given in [Smi05b]. 

Thus for any limit x*, of any subsequence, either Case 4 or 5 must hold 
and in each of these two cases x* is E-linearly-optimal, as we have seen from 
the E-linear-optimality conditions in Section 9.5 above. 

11 Optimisation in the Payne-Thompson Model 

The basic structure exploited above is as follows: there is a function @ such 
that -@(x,p) is a smooth monotone function of the non-control vector x for 
each fixed control vector p. Thus this same optimisation approach may, at 
first sight, be applied with different interpretations of @, x and p. These dif- 
ferent interpretations correspond to  different equilibrium models and different 
control parameters. 

It  is in fact possible to  weaken these condition somewhat in various di- 
rections. However the above structure may already be applied t o  a variety of 
models with price variables present. 

For example, the same approach, utilising just the above monotone struc- 
ture, is applicable if prices are included within: 

Stochastic variable demand models, 
The Evans [Gravity + Wardrop] model (see [Eva76], 
Variable or fixed demand explicit queueing models, 
A variable demand explicit queueing model which allows a special respon- 
sive control policy; and 
A variable demand explicit queueing model where prices and signal con- 
trols are optimised. 

Here we just consider the last of the list above. In this case there are con- 
straints involving both state variables and control variables. This introduces 
complications in the previous approach which we do not address here. 
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11.1 Introduction to the Payne-Thompson model 

In order to  study ramp control on freeways, [PT75] introduced an equilibrium 
model with queueing delays at bottlenecks. In their model as long as a bot- 
tleneck is saturated the queueing delay at  the bottleneck is independent of 
flow, and is represented by an independent non-negative variable determined 
by the equilibrium conditions; but if the bottleneck is unsaturated then the 
bottleneck delay must be zero. Bringing in the delays at  bottlenecks in this 
way, as separate variables, allows ramp metering to  be modelled sensibly. The 
"new" independent bottleneck delays are here added to costs arising from a 
more standard cost-flow function which may be thought of as applying to the 
rest of the arc. 

We here consider the Payne-Thompson model with capacity constraints 
and explicit queueing delays. We insert signal green-times as in [Smi87]. 

11.2 The Payne-Thompson model with prices and controls 

Let v, denote the traffic flow along arc a ,  let s, be the saturation flow at  the 
exit of arc a (both in vehicles per minute), let b, be the bottleneck delay or 
cost a t  the exit of arc a (in minutes per vehicle) and let q, be the proportion 
of time that arc a is green. 

We assume given non-decreasing arc cost functions c, : R+ 4 R+ (typ- 
ically with c,(v,), in minutes per vehicle, defined for all v, 2 0). Then the 
whole cost (in minutes/vehicle) of traversing arc a is to be c,(v,) + b, where 
v,, q, and b, must together satisfy the "delay-equilibrium" condition: 

v, 5 qasa and if v, < gas, then b, = 0 

or 

(v, q) is supply-feasible and unsaturated bottlenecks cause no delay. 

Then we make the following definitions: 

v,(X) = flow along arc a = C Xijv* 

relevant i j r  

Cij,.(X) = non-bottleneck cost of travel along route i j r  = C c,(v,). 
relevant a 

Bi,,(b) = bottleneck delay or cost on route i j r  = b,. 
relevant a 

The equilibrium conditions already introduced now become (for a fixed 
price vector P and a fixed arc green-time vector q ) :  for all i, j ,  r, a ,  
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xj - CijT(X) - BijT(b) - Pij, 5 0 and 

Y,j - Cij,(X) - BijT(b) - PijT < 0 implies XijT = 0; 

Dij(Y) - Tij(X) = 0; and 

va(X) - saqa 5 0 and 

va(X) - s,q, < 0 implies b, = 0. 

(All variables satisfy non-negativity constraints.) 
This is the equilibrium model introduced by Payne and Thompson, with 

the unvarying route-price vector P and now the arc-green-time vector q added. 
Suppose as before that the vector P of all route prices PtjT is confined to 

some polyhedral closed bounded set F,,,,, of feasible route-price vectors. 
Suppose now that for each signal stage k a green-time Qk is awarded. 

Suppose also that the vector Q of all the Qk is confined to some polyhedral 
closed bounded set of feasible Q. Then some arcs a will be subject to  a cor- 
responding green-time q, (the sum of the relevant Qk)  and the vector q of all 
arc green-times will be confined to some polyhedral closed bounded set F,,,,, 
of feasible green-time vectors. 

It  is easy to  check that,  for each (P,  q), - (the left hand side above) is a 
monotone function of (X,  Y, b). This strongly suggests that the optimisation 
method described previously, suitably developed, may be utilised in this rather 
different equilibrium setting. 

12 Conclusion 

This paper has specified a method for approximately solving bilevel optimi- 
sation problems, in which a stationary point of a given objective Z is sought 
subject to  the flow pattern being an approximate variable demand equilib- 
rium. It  has been shown that if the cost function and - (the demand function) 
are monotone and smooth then there are limit points and any interior limit 
point generated by the suggested algorithm is an approximate equilibrium (at 
which V < E) which is stationary for the objective function Z .  The method 
utilises the "simultaneous descent" direction; this is obtained under certain 
(interior) conditions simply by bisecting the angle between -VV and -VZ; 
in this direction V and Z simultaneously decline. 

The paper has also shown how the simultaneous descent direction may 
be modified close to  the boundary of the feasible region. Now, under our 
conditions, (1) the search direction obtained is continuous and (2) the linear 
H-feasibility constraints, together with the nonlinear equilibrium constraint 
V < E, satisfy a constraint qualification. This has allowed the approach also to 
work when the hard feasibility constraints are active during the optimisation 
process or a t  a limit point. 

Finally the paper has shown the direction of an extension so as to optimise 
signal controls and prices; using a network equilibrium model with explicit 
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queueing delays introduced by Payne and Thompson. It  would be possible to  
introduce signal controls without moving to the Payne-Thompson model; but 
this model is a "natural" for signal control. 

Of course the optimisation problem here is non-convex so a variety of start 
points should be taken and the optimisation procedure followed from each. 
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Appendix 

This appendix justifies the argument in Section 6. 

Descent of {V( z , ) )  below V ( w )  if w  is a limit point of the sequence 
(2,) and V( ,w)  > 0  

Suppose that our basic condition in Section 4.1 holds. 
Suppose that the sequence {(z,, t n P l ) )  has been derived using the equili- 

bration algorithm above (in Section 5.1) so that z,+l = z, +u,A,(z,) for all 
n  = 1,2,  . . . .  

Also let V ( w )  > 0  and suppose that w  is a limit point of {z,). 
Initially we assume that w  lies in the interior of F .  
In this appendix we show that,  given such a sequence {z,) and such a w ,  

there is a suffix k such that V ( z k )  < V ( w ) .  Now V(z,)  is strictly decreasing 
and so it further follows that 

if n  > k and thus V ( w )  cannot be a limit point of the sequence {V(z , ) ) .  
However V  is continuous and it therefore also follows that the w  cannot be a 
limit point of the sequence {z,). This is the contradiction required in Section 
6. 

To show that this contradiction does in fact arise from our assumptions 
above, suppose now that A, and G  are as in Sections 3.2 and 4.2 above. 

Let r  > 0 and B ( w , r )  be the closed ball of radius r  > 0  centered at  
w  E in tF .  Suppose that r  is so small that B ( w , r )  lies entirely inside in tF .  

Since V  is continuous and V ( w )  > 0,  V ( z )  > 0 for z  sufficiently close to w  
and so there is a possibly even smaller r > 0 such that 

The function G is positive and continuous on the compact set B ( w ,  r )  arid 
so assumes its least value g = g (w , r )  > 0  at some point of B ( w ,  r ) .  Therefore 
for such r  > 0: 

V V ( z )  . A,(z )  5 -G( z )  5 -g < 0 for all z E B ( w ,  r ) .  

for all ( z ,  t )  in F  x [0, q] where q  = q (w ,  r )  > 0  is chosen so that z  + tA , ( z )  E 
in tF  if z  E B ( w , r )  and 0  5 t < q. This latter product set allows, via the 
second co-ordinate space [0, q ] ,  for all points on a closed partial ray [ z ,  z + 
q A a ( z ) ]  emanating from z  in direction A,(z ) .  

We already know from above that 

V V ( Z  + . = V V ( Z )  . A,(z) 5 -G(z)  I -9 
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for all z E B(w, r). Also VV(z + tA,(z)) . &(z) is continuous on the compact 
set B(w,  r )  x [O, 71 and so VV(z + tA,(z)) . &(z) is uniformly continuous on 
B(w, r )  x [O, 771. Hence there is a real number h such that 0 < h < 7 and 

/VV(Z + t n , ( ~ ) )  . A&) - VV(Z + 7&(2)) . A, (x )~  < i g  

if (z, t )  and (x, T) are two points in B(w,  r )  x [0, 71 less than or equal to  a 
distance h apart. 

Now consider, in the above inequality, letting x = z E B(w, r )  and T = 0. 
We deduce that,  for z E B(w, r )  and 0 5 t 5 h 5 7: 

Hence, for an arbitrary z E B(w, r )  and for all 0 5 t 5 h, 

Let z E B(w, r) and let 0 5 t 5 h. Then, for this z E B(w, r )  and t ,  integrating 
the above inequality from 0 to t :  

3 3 V(Z + tA,(z)) - V(Z) < -zG(z)t 5 -agt. 

Let t = u, 5 h in the above inequality. Then by the statement of the algo- 
rithm, 

Consider z,+l and u,+l. If z,+l E B(w,  r )  still then integrating as before: 

V(znt1 + $nAa(z)) - V(z) I - $ ~ ( z n + l ) ( i t n )  5 -kG(zn+l)( i tn)  
1 as 2t, = U, 5 h. It  follows that t, is halved no more than once to obtain 

u,+1 and so 

It  follows that for any given (zi ,ui)  E B(w, r )  there is a constant a = a(u i )  > 
0 such that if 

j > i and zi, zi+l, zi+2,. . . , zj E B ( w ,  r) 

then 
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Now let i 5 n < j .  Then 

V(zn + unA(zn)) - V(zn) I -:gun I - iga(u i )  

Hence 

and so adding over n = i , i  + 1 , i  + 2 , .  . . , j, 

V(zj+l) - V(&) 5 -(j - i);ga(ui) 

Since V ( Z ~ + ~ )  2 0, it follows that 

Hence: 

So the sequence {z,) certainly exits the ball B ( w , r )  whenever it enters 
this ball. 

Now w is not an equilibrium (so V(w) > 0) and is also a limit point of 
the sequence (2,). Hence, for any real number a satisfying 0 < a < 1, it now 
follows that there are two natural numbers i and j, depending on a ,  such that 
l < i < j ,  

Now let M = M ( w , r )  = sup{llA,(x)ll;z E B(w,r)} .  Then, by the defini- 
tion of i and j :  

By the algorithm statement, 

for all n and so it follows that 
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Adding these: 

by (11). 
Therefore: 

1 < --g(l - a ) r / M  + M a r  
8 

if a is sufficiently small. 
We have now shown as desired that there is a suffix k = j + 1 such that 

V(zk) < V(w). Now V(z,) is strictly decreasing and so it further follows that 

V ( 4  < V k k )  < V(w) 

if n > k and thus V(w) cannot be a limit point of the sequence {V(z,)). How- 
ever, as we remarked above, V is continuous and it therefore also follows that 
the w cannot be a limit point of the sequence {z,). This is the contradiction 
required in Section 6. 

A very similar argument applies if we suppose that w is a non-equilibrium 
limit point on the boundary of F .  There are no major changes as the direction 
A,(z) is feasible even when z lies on the boundary of F. One change to the 
above proof is to  replace B ( w ,  r )  by F n B(w, r ) .  
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Summary. The classical road tolling problem is to toll network links such that, 
under the principles of Wardropian User Equilibrium (UE) assignment, a System 
Optimising (SO) flow pattern is obtained. Such toll sets are however non-unique, 
and further optimisation is possible: for example, minimal revenue tolls create the 
desired SO flow pattern at minimal additional cost to the users. In the case of 
deterministic assignment, the minimal revenue toll problem is capable of solution by 
various methods, such as linear programming [BHR97] and heuristically by reduction 
to a multi-commodity max-flow problem [DiaOO]. However, it is generally accepted 
that deterministic models are less realistic than stochastic, and thus it is of interest to 
investigate the principles of tolling under stochastic modelling conditions. This paper 
develops methodologies to examine the minimal revenue toll problem in the case of 
Stochastic User Equilibrium. Tolling solutions for both 'true' System Optimum and 
Stochastic System Optimum under SUE are derived, using both logit and probit 
assignment met hods. 

Key words: Traffic assignment; Stochastic user equilibrium; Probit model; 
Logit model; Optimal tolls; Marginal social costs. 

1 Introduction 

1.1 General Background to Road User Charging 

Road Tolling is a commonly used term, but can be used t o  describe different 
situations. For example there are many instances of 'toll roads' particularly in 
continental Europe, whereby a charge is made for travel along usually a section 
of high quality trunk road. Similarly a charge may be made t o  use a short 
length of road, primarily in the  case of a tunnel or a bridge as is common in 
the  UK. Such charges are usually either fixed or related to  distance travelled, 
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and payment is made at a toll-booth at  one end of the charged section, either 
electronically, or by actual payment a t  the booth. 

Congestion charging by means of implementing road user tolls, has been 
much discussed, but has been implemented in relatively few cities. Toll rings 
exist and are operational in Oslo and Bergen in Norway, and area-charging 
schemes exist in Singapore and now in London. These operational road user 
charging schemes have used a cordon system, which has the benefit of be- 
ing transparent and easy to  implement, and acts to  discourage drivers from 
entering the controlled area, but once the driver is within the cordon, there 
is no additional incentive to choose a route that would be beneficial to  the 
system as a whole. Intuitively it would seem logical that if road tolls are to be 
implemented, they should in some way be optimal; that is they should be as 
effective as possible with regard to  specified criteria. It  may be a political ob- 
jective to  maximise revenue, within limits of political acceptability, whilst not 
seeking particularly to  discourage road users or to lessen congestion, which 
would lead to  relatively cheap tolls. If instead congestion reduction were the 
primary objective, tolls would be set very high to  discourage usage, an ex- 
treme case of which would be to completely restrict traffic and impose high 
fines for violation. If optimality is desired however, suitable criteria must first 
be defined. Theoretically this is often considered by fixing network demand, 
and then considering how that traffic may be assigned throughout the network 
such that the overall network cost is minimised. 

Whilst operational schemes are cordon based, trials have however been 
carried out in which tolling schemes have been tested with road pricing mea- 
sures such as: distance travelled, time spent travelling and congestion caused 
(Cambridge study [MMOO], [Iso98]), which demonstrate that the technology 
to implement a path or link based tolling system for urban areas does exist, 
and so such schemes may be feasible for actual in~plementation in the future. 
There is also current political interest in the UK regarding more developed 
tolling schemes: The Commission for Integrated Transport recently published 
a report 'Paying for Road Use' (CfIT, 2002), which suggests the introduction 
of nationwide road user charging. The report is of particular interest in that it 
suggests the use of marginal social cost pricing on all roads (i.e. motorways, A 
Roads, minor roads, city centres etc), balanced by a reduction (or abolition), 
of Vehicle Excise Duty, combined with a reduction in fuel duty, so that the 
result desired would be fiscal neutrality. Such a scheme would rely on charg- 
ing for travel along a link, rather than passing across a cordon, and would 
therefore require similar technology to implement as would be required for a 
minimal revenue toll scheme. 

1.2 Modelling the Effect of Road Tolls 

Traffic assignment models seek to replicate the traffic pattern that is created 
when drivers choose their routes across a network from their origin to their 
destination. 
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In the case of deterministic assignment, it is assumed that drivers, with 
perfect network knowledge, will act selfishly to minimise their personal travel 
cost, resulting in the Wardropian User Equilibrium (UE) flow pattern. This 
occurs when the objective function (1) is minimised, (link flows x and link 
costs c ) .  

Tolls may then be imposed to 'force' a UE assignment t o  result in an 
alternative desired flow pattern. The Social (or System) Optimum (SO) is 
one such desired flow pattern, where the Total Network Travel Cost (TNTC) 
is minimised (2), and occurs when all used routes between any OD pair have 
equal marginal cost. 

zso (x)  = C x a ~ a  (511) (2) 
a 

The flow patterns that minimise the functions in (1) and (2) satisfy 
Wardrop's first and second equilibrium principles, respectively, and they are 
hereafter referred to  as the UE and SO solutions. In the context of tolling the 
flow pattern that minimises the function (3) below satisfies Wardrop's first 
principle in the presence of tolls or the tolled user-equilibrium principle. 

When T, = ca(xz)x: , where x* is the SO solution and ca(x:) denotes the 
first derivative of c,at x* , it is well known that the SO solution also minin~ises 
(3). In the literature, ca(x:)z: is referred to as the Marginal Social Cost 
Price (MSCP) toll. Such toll sets are however not unique and other toll sets 
exist which also minimise (3), e.g. [HR98] formulate the problem (Minimum 
Revenue or MinRev) of finding tolls as a linear program with the objective of 
minimising the revenue collected. When tolls are allowed to  be negative they 
may be considered to  be usage subsidies; in this case it is of interest to require 
that the toll revenue collected should equal the usage subsidies given out i.e. 
where fiscal neutrality is achieved. 

The Minimal Revenue toll problem has, in the case of deterministic as- 
signment, been solved such that the System Optimal solution is obtained, by 
various methods: for example, Linear Programming [BHR97], reduction to a 
multi-commodity max-flow problem [DiaOO] and simplex method via CPLEX 
[HR98]. 

Route spreading, which is an observed phenomenon in traffic assignment, 
can be modelled by applying cost-flow relations to simulate congestion as in 
the case of deterministic assignment. Stochastic assignment methods however 
assume that instead of drivers having a 'perfect' knowledge of the varying OD 
costs of a network, they have a variable perception of these costs. Stochastic 
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user equilibrium (SUE) assignment is based on the premise that each driver 
will act t o  minimise their perceived route cost, which follows a distribution 
such as those given in the logit or probit models. Traditionally deterministic 
assignment has been used to  model congested urban networks. If the same 
methods are applied though to un-congested inter-urban networks they tend 
to result in an All-or-Nothing type solution that is unrealistic in practice. 
Stochastic methods may be used to successfully model inter-urban networks, 
but it is desirable to  have a single method that will be capable of modelling 
both extremes (and the middle ground). Thus Stochastic User Equilibrium 
(SUE) methods have been developed [MH97a, MH97bI. I t  would seem logical 
that drivers do perceive costs differently from each other, either because of 
different levels of network knowledge or different priorities (e.g. avoidance of 
right turns or roundabouts, minimising distance or time), and so the use of 
a stochastic method would seem to be more realistic and thus it is useful to  
extend the concept of tolling to the stochastic case. 

This paper therefore develops methodologies to  examine the minimal rev- 
enue toll problem in the case of Stochastic User Equilibrium. A discussion of 
stochastic assignment methods is given in section 2. 

In examining the case of Stochastic User Equilibrium the 'desired flow pat- 
tern' to be created must first be determined. The classical economics solution 
of replacing cost flow functions with marginal cost flow functions, does not 
generally result in the total network cost being minimised in the stochastic 
case [Yan99]. Thus tolls which are analogous to  Marginal Social Cost Pric- 
ing (MSCP) in the deterministic case do not give the Deterministic System 
Optimal flow solution. 

If the 'true' system optimal flow pattern is desired, it may be possible to  
derive tolls that are unrelated to MSCP. It is not obvious if such tolls exist 
or under which conditions they may exist and, if they are found to exist, if 
they are unique. If toll sets exist which are not unique, then as in the case of 
UE, it would be possible to  impose additional constraints, and to search for 
(for example) minimal revenue tolls. Tolling methodologies to  approach the 
SO solution under SUE are developed in section 3. 

However, it may be more desirable in the stochastic case to produce instead 
a 'Stochastic System Optimum' (SSO) where the perceived total network cost 
is minimised, i.e. the SSO solution is that flow pattern which minimises the 
total of the travel costs perceived by drivers. This SSO solution may also be 
characterised as that which maximises consumer surplus [Yan99]. Tolling to  
achieve the SSO solution is the subject of section 4. 

2 Stochastic Assignment Models 

Stochastic methods are based on the assumption that a driver minimises their 
perceived cost, or chooses the alternative that gives the highest utility. Utility 
functions Uk may be expressed as the sum of a deterministic component Vk and 
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a random error component tk, where k is a member of the set of alternatives. 
That  is. 

The probability that an alternative is chosen is the same as the prob- 
ability that that alternative has highest utility in the choice set. Whilst not 
being entirely exhaustive [She85], the most commonly used stochastic method 
models assume either a Normal distribution (probit models), or the Gumbel 
distribution (logit models), for the drivers' perception error tk . 

The logit model is based on the use of the logistic function, which is a 
choice function used to  choose between two or many alternatives. 

I t  may be written: 

where pi is the probability of choosing alternative i ,  C, is the cost associated 
with route i and Q is a dispersion parameter; the lower the value of 8, the 
higher the level of uncertainty, conversely a high value of Q would correspond 
to  drivers having an accurate view of actual route costs, i.e. the deterministic 
case. 

The logit formulation has the advantage of mathematical tractability, and 
has been used initially for that reason, but logit based loadings have a sig- 
nificant disadvantage in that they do not account for overlapping paths in a 
satisfactory manner. For example three completely distinct paths would have 
flow assigned in the same way as a single path together with two paths includ- 
ing a significant overlap. If each path had around equal cost, then each path 
would be assigned around one third of the traffic irrespective of any overlap. 
In addition the logit method assigns traffic based on an absolute difference 
in cost (time), for example a five minute difference in journey time will pro- 
duce the same route choice proportions whether the difference relates to  route 
times of 5 and 10 mins or route times of 200 and 205 mins. In the first case 
one route takes twice as long as another, whilst in the second, the five-minute 
difference may well not be perceived as 'any difference at  all'. I t  would seem 
reasonable to require a model to  account for the difference in journey time in 
relation to the total journey time when assigning traffic. 

The probit model assumes that the random error term is normally dis- 
tributed, and that the joint density function of the errors tk, is Multivariate 
Normal (MVN). Thus the probability distribution of cost for each link is Nor- 
mal, with mean p being the value of the link cost flow relation, and variance 
a2 assumed to be proportional to  the mean. 
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At link level costs are often assumed to be independent, but in general it 
may be assumed that  link costs also follow a Multivariate Normal distribu- 
tion. The probit model solves the problem of overlapping paths by the use of 
correlations between the path cost perception errors. 

There are various methods of solution for probit-SUE, such as: 

1. Numerical integration of a multiple integral. Feasible numerical integra- 
tion approaches now exist [RM02] which can be used for networks with 
up to around twenty alternative routes. 

2. The Stochastic Assignment Method SAM [MH97a, MH97b1, a heuristic 
based on 'Clarke's Method' [Cla61], where a successive approximation 
method is used; the maximum of two normally distributed random vari- 
ables being approximated by another Normal variable. 

3. Monte Carlo simulation, whereby a random value representing the per- 
ceived travel time of a link is sampled from the density function for that 
link, and an All-or-Nothing assignment is carried out based on the set 
of sampled perceived travel times across all network links. The process 
of sampling and assignment is repeated (multiple times) and averaged to  
give the final flow pattern. 

The methodology developed within this paper however does not depend 
on any particular stochastic assignment method being used. 

3 System Optimal Road Tolls 

3.1 Path-based methodology 

If it is desired that an SUE assignment using the original cost-flow functions 
with the addition of a toll, should produce the SO flow pattern that is obtained 
under deterministic assignment, where the TNTC is minimised, then using 
logit-based SUE this may be formulated as below: 

where D is the OD demand, Ci and Xi are the path costs and flows at  the SO 
solution which may be found using deterministic assignment methods, and Ti 
are the desired path tolls to  be determined. 

The %oil difference' between pairs of path tolls for each OD pair may then 
be found by the division of pairs of equations, thus: 

A resulting order of magnitude of path tolls (for each OD pair) may be 
deduced, and assuming tolls to  be non-negative, and seeking minimal revenue 
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tolls, the smallest toll path (for each OD pair) may be set as zero, and the 
remaining path tolls calculated. 

It  would appear that the use of the logistic function to  determine path 
differences requires all path flows to be non-zero, as zero flows would clearly 
result in infinite tolls (9). (It should also be noted here that this problem would 
also apply in the case of the probit model). There are consequently difficulties 
to  be encountered when dealing with more complex networks, Smith et al. 
[SEL94] where there will generally exist technically feasible paths which have 
zero flow at  SO. 

I t  is however possible to  divide the set of feasible paths into two sets, Rofor 
zero-flow paths and Q1 for non-zero flow paths as defined below; 

Let R0 = {k : XI, = 0) and Q1 = {i : Xi > 0) 
Then V i, j E R1, let Ti and Tj satisfy (9) and tJ k E QO, let TI, = M 

Then, the path flows, Xi(T),  associated with the above tolls are: 

exp -Q(Ci + Ti) 
Xi(T) = D C exp -Q(Ci + Ti) + C exp -Q(Ci + M) ' 

tJi E R1 (10) 

i€n l  iED0 

XI,(T) = D exp -Q(CI, + M )  
C exp -Q(Ci + Ti) + C exp -Q(Ci + M )  ' 

V k E R O  (11) 

i€nl  i€n0 

It  is clear that Xi(T)  -+ Xi and Xk(T)  --+ 0 as M + m. 
Hence for any E > 0, there exists a sufficiently large M such that Xi - 

Xi(T) < E ,  Vi E R1, and Xk(T)  I:&, tJ k E RO. 
Thus it is possible to determine viable path toll sets, which will create a 

flow pattern approaching the true SO flow pattern, as closely as is desired 
under logit SUE. However in the limiting case (E -+ 0), M (the toll on zero- 
flow paths) will tend to  infinity, and so an appropriate degree of closeness to  
the SO solution would need t o  be determined. 

This is illustrated using the 9-node network with 2 origins and 2 destina- 
tions as shown in Figure 1 below. This network has been frequently used in 
the literature [BHR97] and [DiaOO]; a modified version is used here (with 4 
vertical links (5-6, 7-8) carrying zero flow removed), to render the network 
acyclic, and thus limit the path enumeration matrix so that 24 viable paths 
are obtained (six paths between each of the four OD pairs). 

The link cost functions are of BPR type as shown where (cL0),~,) for each 
link are given on the diagram, z a  is link flow, ca is link cost, ciO) is free flow 
link cost and Ya is link capacity. 

For the above network, the minimum TNTC = 2253.92. All links have non- 
zero flow at the Wardropian SO solution but this is not true of all paths: in a 
Wardropian SO assignment using 100 iterations of the Method of Successive 
Averages [She85], 3 paths were completely unused. Assigning a toll M to the 
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OD Pair: [ I  ,3] [I ,4] [2,3] [2,4] 
Demand: 10 20 30 40 
c,(x,) = c,(O)(1 + 0.1 5 (x,/Y,)~) 

Fig. 1. Nine-node network diagram, showing OD demand and link cost-flow rela- 
t ions 

The path tolls correspond t o  the paths given in the path-link incidence 
matrix A (Appendixl), with 6 paths for each OD pair. 

A difficulty with this method is that although viable path toll sets can be 
determined, it is not necessarily possible to  derive consistent link-based toll 
sets. This inconsistency may be demonstrated by combining sets of paths as 
is given in Figure 2 below. 

zero-flow paths, a viable toll set is given below for Q = 0.1. When M=50, 
TNTC = 2253.99. 

Pdth 3 
Path h11=16 Path Toll=18 

OD pair] [1,3] 

Fig. 2. Path combinations from Bergendorff's nine-node network 

Considering OD pair [1,4], paths 2 and 5 together contain the same links as 
paths 3 and 4 together; therefore for consistent link tolls the total toll on paths 

T= 112 9 M 0 M 2/15 16 18 16 12 0111 1 45 5 M 0116 11 7 28 19 0 
[1,41 [2,31 [WI 
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2 and 5 (total=28) should equal the total toll on paths 3 and 4 (total=34). 
This is clearly not the case (similar examples of inconsistency may also be 
demonstrated); so consistent link tolls may not be determined. Also whilst it 
is not problematic to  assign large tolls (tending to infinity) on paths with zero 
flow, it would clearly not be desirable to assign such tolls to  links. 

Thus it must be considered whether a path-based tolling methodology 
would be sensible for implementation, even if developing efficient path-based 
assignment methods [RosOl], could be utilised. A tolling solution where the 
same link has a different cost depending on the overall route travelled would 
intuitively not appear to be equitable or practicable. Also the technology re- 
quired to  implement a path-based tolling scheme, would require vehicle track- 
ing (at least in an urban context), which although technically feasible would 
result in concern over privacy issues. 

Further, the path difference equations used require the use of logit as- 
signment, which does not model networks with overlapping paths as well as 
probit. If a network with only two links is used, it is possible to solve for tolls 
algebraically in the probit case, but this is not the case for any more complex 
network. Consequently this method is not considered to be of potential use 
for practical implementation. 

3.2 Link-Based Methodology 

A link-based methodology to  derive tolls that would create a flow pattern 
approaching the SO is therefore desirable. It was assumed from the previous 
results, that link-based tolls might not be sufficient to  replicate the desired 
SO flow pattern in the limiting case, but that good sub-optiinality would be 
acceptable for practical purposes. 

The objective is still to minimise the total network travel cost, and this is 
attempted by seeking a link flow pattern that approaches the flows obtained 
under deterministic SO assignment. Thus links where the flow is higher than 
that desired have link costs progressively increased by the addition of a toll 
until the desired flow pattern is approached, as in the heuristic procedure 
given below: 

Step 1: Find the SO solution and let Fso, Cso and TNTCso denote the 
corresponding flow pattern, link cost, and total network travel cost. 
Step 2: Link toll vector set to  zero: To= 0 
Step 3: Set n = 0 
Step 4: Perform SUE assignment: C, and F, obtained 
Step 5: Calculate: P = (F, - Fso)(iC, - Csol) 
Step 6: Determine link j where P ( j )  is greatest. 
Step 7: Perform iteration to  calculate t ( j )  s.t F ( j )  = Fso(j)  to  required 
degree of accuracy. 

The internal iteration in step 7 only regards the output flow for the single link 
whereP(j) is greatest as per step 6, and results in the link tolls shown in Table 1. 
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7a: Set t ( jo )  = ICj, - Cso, I where Cj,is the current cost on link j (as per 
step 4) 
7b: Set m=l 
7c: Perform SUE assignment, calculate ICjm - Cso, I 
7d: Set t(j,) = t(j,-I) + lCjm - Cso, I 
7e: Calculate P(j,): Stop if sufficiently close to zero and let t(j,) = t ( j ) ,  
or set 
m = m + 1 and repeat from step 7c. 
Step 8: T,+l = T, + t ; where t(i)  = t ( j )  when i = j and t(i)  = 0 
otherwise 
Step 9: Calculate TNTC: Stop if TNTC sufficiently close to TNTCso or 
set n = n + 1 and repeat from Step 4. 

This method is illustrated using the previously used 9-node network (see 
Figure I) ,  with logit SUE where 19 = 0.1. 

In Step 1 a deterministic SO assignment determines the desired link flow 
set, and the link costs are calculated for these flows. The minimum value of 
the TNTC is also recorded (for this example TNTCso = 2253.9). An initial 
toll vector is then set with all tolls being zero (Step 2).  An SUE assignment is 
then completed, and the link costs, link flows and the TNTC compared with 
those desired. 

The toll set is constructed in a step-wise process, where only a single link 
toll is considered in each iteration; thus the link to  be tolled in that iteration 
must be chosen. Steps 4 and 5 determine which link is chosen: choosing simply 
the link where the flow was most in excess of the desired SO flow for that link 
would not take into account the relative costs, and so a product of flow and 
cost difference is used here, although this may be refined in future work. 
As only non-negative tolls are being imposed, the absolute value of the cost 
difference is used, so that the chosen link, where the value of the product is 
greatest has a flow strictly greater than that desired. 

Table 1 below shows the stepwise construction of a toll set. 
I t  can be seen from Table 1 and from the graph in Figure 3 below, that 

the first few iterations are by far the most significant, and no great benefit is 
gained from continuing to approach the TNTCso for many iterations. Further 
if it is desirable to keep as many links toll free as possible, it is not then sensible 
to continue to add small tolls on additional links, to  reduce the TNTC only 
by tiny amounts. 

The link toll set resulting from the 12 iterations given above, is shown 
in Figure 4 below, where link width is proportional to  the size of the link 
toll. The TNTC achieved after 12 iterations is only 0.02% greater than the 
Minimum TNTC. However if the process was stopped after only 4 iterations, 
the TNTC achieved is still only 0.6% greater than TNTCso and 4 links that 
could be tolled, would remain toll-free. 

A more efficient interpolation procedure is being refined for the internal iteration 
for use in larger networks. 



Minimal Revenue Network Tolling 211 

teratior 

t l  (1-5) 
t 2  (5-7) 
13 (7-3) 
14 (1-6) 
t~ (2 -5 )  
t 6  (5-9) 
17 (9-7) 
ts (6-9) 
ts (9-8) 
. l o  (7-4) 
ti1 (8-3) 
tiz(2-6) 
ti3 (6-8) 
t i 4  (8-4) 
TNTC 
REV 

Table 1. Iterative building of 'Optimising' toll set 

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

TNTC and Revenue: 0 = 0.1 
3000 , 

Fig. 3. Total Toll Revenue required for reduction in TNTC 

1000 

TNTCso = 2253.9 

TNTC = 2254.4 

-- - 

Fig. 4. logit toll-set for Bergendorff's network (0 = 0.1) - 12 iterations 

0 I 1 

0 5 10 -TNTC 15 

Iteration -t- Rev 



212 K.  Stewart, M. Maher 

Whilst this methodology has been demonstrated using logit assignment, it 
may equally be used for other stochastic assignment models. Figure 5 below, 
shows the reduction in TNTC achieved for different values of the dispersion 
parameter Q using logit assignment, and for the variability parameter P = 0.5 
using probit assignment. (The Stochastic Assignment Method SAM [MH97a, 
MH97bl was used here to obtain the probit results). 

I t  must be noted that the method used does not result in the TNTC strictly 
decreasing at  every iteration, although the overall trend is that it does reduce 
as the desired flow pattern is approached. The internal iteration at Step 7, 
has in these examples been used to reduce the flow on a particular link so 
that it is very close to the desired flow value for that link at  SO. During this 
internal iteration process, at some point the value of the difference product 
P will be greatest for a new link, after this point, the overall TNTC may no 
longer decrease. It  is possible to amend this internal iteration, so that the link 
toll is determined at the minimal value for the TNTC that can be achieved 
by just varying the toll on this link. However it appears in practice that as 
this will generally give a smaller toll being added at  each iteration, that it 
causes a greater number of the main iterations to be required. Consequently, 
the objective at  each internal iteration is that the flow difference on that link 
should be reduced to (approximately) zero. 

TNTC for various Stochastic Assignments 
2500 

2400 

2300 

2200 I I , 2 , 
0 2 4 6 8 10 

Iteration 

Fig. 5. TNTC with increasing iterations for various Stochastic Assignments 

It  of interest to note that if the logit and probit models are to be compared 
using the relation: 

Var(Uk) = 7r2/(6Q2) (12) 

Cascetta [Cas9O], where Uk is the probit utility function as in equation ( I ) ,  
then despite the link variances in the probit case obviously being different for 
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each link, an approximate correspondence can be found in this case between 
probit /? = 0.5, and a logit sensitivity parameter of 8 z 0.5. I t  can be observed 
in Figure 5 above, that the graphs for ,O = 0.5 and d = 0.5 predominantly 
coincide. 

4 Stochastic Social Optimum Road Tolls 

In the case of stochastic user equilibrium, it could be argued that it is not 
the 'actual' or deterministic total travel cost that should be minimised, but 
rather the perceived total network travel cost. 

In the case of deterministic assignment, it is well known that that the Total 
Network Travel Cost is minimised and the System Optimal flow pattern is ob- 
tained, when cost-flow functions are replaced by marginal cost-flow functions. 
Recent work by Maher et al. [MSR05] has shown that the analogous case is 
true under stochastic assignment. Thus MSCP tolls may be easily found using 
existing link-based assignment methods. 

The minimal revenue toll problem is thus similar to  that in the determinis- 
tic case, and may be solved by linear programming. For comparative purposes 
a numerical example is included below. 

4.1 An illustrative example 

As in the deterministic case equally optimal toll sets exist for this network, 
and so further optimisation is possible. I t  is of interest to obtain as many 
links with zero tolls as possible, but even with this provision, in this example, 
there were four equally-optimal toll sets for each value of 8. A possible Min- 
Rev toll-set is given below in Table 2 for various d. The links corresponding 
to  the zero-flow paths are highlighted. Other zero-toll links may be observed, 
although it must be remembered that there are other equally optimal solutions 
that are not shown. Despite the existence of three distinct zero-toll trees for 
varying values of the sensitivity parameter, the change in individual link-toll 
values as 8 varies appears to be reasonably smooth. 

The zero-toll trees are shown in Figure 6 below; the zero-toll links being 
represented by the bold print arrows. As 8 increases the driver's assumed per- 
ceived knowledge of network costs increases, so that as t' tends to infinity, the 
logit stochastic assignment tends towards a deterministic assignment, and the 
final zero-toll tree (t'=5) is indeed the same as that obtained by deterministic 
methods. 

5 Summary 

In attempting to approach the 'true' SO flow pattern through tolling, the 
algebraic logit formulation derived path-tolls that could not then be separated 
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Table 2. Minimal revenue toll sets as 6' varies 

Fig. 6. Zero-toll trees as 6' varies. 

into consistent link tolls. Also the issue of small path flows encountered in the 
logit case would result in unreasonably large tolls on some routes. Further, 
algebraic methods are untenable in the probit case, and so such methods were 
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not felt to  be desirable, and instead an iterative heuristic link based method 
has been derived. 

For the toy-network used here for illustration the desired SO flow pat- 
tern where TNTC was minimised could be closely approached, within a small 
number of iterations. This method does however require extension to examine 
larger networks to see how close to  the TNTC it is possible to  get in general. 
A sensible trade off between the cost imposed upon the drivers to  achieve 
the reduction in TNTC, and the actual reduction obtained would need to  
be established for practical purposes. In addition it may be desirable to re- 
quire certain links to  be zero-tolled, and this could be included in this type of 
process. 

In attempting to achieve the Stochastic Social Optimum flow pattern, by 
use of minimal-revenue tolling, the marginal social cost price tolls, known to 
create the desired flows, were used as a starting point. Path enumeration was 
then required to  use these to derive minimal revenue path-based tolls and 
from these, link-based tolls. The minimal-revenue toll problem in this case is 
analogous to  that for deterministic assignment, but with the stochastic nature 
of the assignment causing all used paths not to  have a common cost. I t  would 
be possible here to  use an iterative method similar to  that used in seeking to  
approach the 'true' SO, but if possible it would be more desirable to  utilise 
the easily established MSCP tolls as a starting point, but to  derive a fully link 
based procedure. This is an area of ongoing work. 

The desired flow pattern to  be achieved in the stochastic case remains 
though an issue to  be resolved. Is it more desirable in the stochastic case to 
minimise 'real' or 'perceived' costs throughout a network? 

6 Future Work 

This paper has been based on the assumption of a fixed demand stochastic 
equilibrium model. It  is clear that imposing tolls on a network, will directly 
affect demand as well as being able to influence route choice. Elastic demand 
may be readily included in stochastic equilibrium models [MH97a, MH97b], 
and in the SSO case, MSCP tolls may be derived by using marginal cost 
functions in an SUEED algorithm. However for all other feasible toll sets, 
such as to  seek minimal revenue tolls, additional work will be required. It  
has been shown that in the deterministic case with elastic demand, that all 
valid tolls generate the same toll revenue [HY02], and further work is required 
to  determine whether this result extends to tolling to achieve SSO under 
SUEED. The heuristic to  approach the 'true SO' which has been developed 
in this paper presupposes that the desired flow pattern is fixed, and may be 
determined. In the case of elastic demand, further iteration will be required 
to  account for the change in the 'desired flow pattern' as each link toll is 
increased. This is the subject of future work. 
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Summary. This paper considers the optimal toll design problem that uses the 
Probit model to determine travellers' route-choices. Under probit, the route flow 
solution to the resulting stochastic user equilibrium (SUE) is unique and can be 
stated implicitly as a function of tolls. This reduces the toll design problem to an 
optimization problem with only nonnegativity constraints. Additionally, the gradient 
of the objective function can be approximated using the chain rule and the first order 
Taylor approximation of the equilibrium condition. To determine SUE, this paper 
considers two techniques. One uses Monte-Carlo simulation to estimate route choice 
probabilities and the method of successive averages with its prescribed step length. 
The other relies on the Clark approximation and computes an optimal step length. 
Although both are effective at solving the toll design problem, numerical experiments 
show that the technique with the Clark approximation is more robust on a small 
network. 

Key words: Network Design Problem, Probit SUE, Optimal toll, Sensitivity 
Analysis 

1 Introduction 

Transport can be considered as an  economic market where travellers are eco- 
nomics agents with the  aim of inaximising (or minimising) their utility (or 
disutility). With the  cross-effect of one user's strategy on another through the  
congestion in the network, the concept of Nash's equilibrium can be invoked to  
define the  converged travellers' strategies (e.g. route, mode, depa.rture time, or 
destination choices). The  Nash equilibrium occurs when no individual (trav- 
eller) can change their strategy to  decrease their own disutility. However, it is 
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O 2006 Springer Science and Business Media, Inc. 



220 A. Sumalee et al. 

well known that under the assumption of individual utility maximization, the 
converged equilibrium point of the transport system may not be the optimal 
travel pattern for the overall system, nor for other aggregated objectives of 
the traffic system manager (e.g. total travel time, environmental impact, or 
social welfare). 

Road pricing has been proposed as the means to direct the traffic equi- 
librium condition to  a more desirable state ([Kni24], [WalGl]). Early devel- 
opments of the theory of road pricing have been mainly associated with the 
concept of deterministic user equilibrium, namely Wardrop's user equilibrium 
(UE) principle [War52]. UE is a special case of Nash's equilibrium condition 
and has been widely adopted as the modelling assumption for representing 
travellers' behaviour. The key assumption of UE is that the traveller has per- 
fect information regarding their travel choices and the alternatives. Despite 
questions about the realism of the assumption, the UE model has played a 
major role in the analysis of road pricing, in which a number of researchers 
over the years have focussed on deriving optimal toll patterns under the UE 
condition (e.g. [YH98], [SNROl], [Ver02]; [MLSS02], [SS04], [Sum04]). 

The key element of microeconomic theory lies in understanding the con- 
sumer's behaviour. The concept of a random utility model (RUM) has been 
developed to better represent the individual's choice making process. RUM 
may be integrated with the traffic equilibrium model by representing the pay- 
off function, or disutility, as a random utility term. This random disutility 
of travel is widely referred to  as the perceived disutility/cost of travel. The 
equilibrium point can then be defined as the situation where no traveller can 
switch his/her strategy to  improve his or her perceived cost of travel. With 
this setting, we obtain the concept of Stochastic User Equilibrium (SUE). 
Apart from the enhanced realism of the behavioural model underlying the 
SUE model, the algorithmic advantage of using an SUE model in optimal toll 
design has also been previously implied (e.g. [Dav94], [PR03]). This issue will 
be discussed later on in the paper. 

Many error structures have been proposed for SUE. They include the com- 
monly used independent Weibull and multivariate normal that lead to  the logit 
and probit models respectively [She85], as well as more general cross-nested 
logit models [PB99], mixed error component models [NDF02] and gamma link 
component distributions [CB02]. 

Among the logit and probit models, the former is more popular because 
of its closed form expression for the choice probabilities. Several researchers 
(e.g., [SEL94], [AK5], [Yan99]) have used the logit model to  study toll pricing 
under SUE. However, the underlying assumption for the logit model is rather 
restrictive. In particular, it assumes that travel alternatives are uncorrelated 
and have no overlapping structure. Generally, this is referred to  as the 'in- 
dependence of irrelevant alternatives' assumption or IIA. On the other hand, 
despite its complexity the probit model can overcome the IIA issue of the 
overlapping routes. Thus, the probit SUE will be adopted as the model for 
travellers' behaviour in this paper. 
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The paper is organised into five further sections. The next section presents 
the formulation of the optimal toll design problem with SUE and the defini- 
tion of SUE. Then, section 3 explains the treatment of variable demand (elas- 
tic demand) with the probit SUE and the different computational methods 
adopted for solving the probit SUE. Section 4 reformulates the optimal toll 
design with SUE in the form of an implicit program, and the algorithm for 
solving this problem is presented. Section 5 provides numerical results using 
a test network. Finally, section 6 concludes the paper. 

2 Problem Formulation of Optimal Toll Design with 
Stochastic User Equilibrium 

The problem discussed in this paper is the optimal toll design problem where 
the response from the users to the toll imposed is assumed to follow a random 
utility model. We focus on the case of an automobile network with a single 
mode, single user class, and single time period. The underlying network is a 
directed graph with N nodes and a set of links denoted A. The demand matrix 
q has entries q,,, representing the travel demand from origin r to destination 
s ,  where r, s = 1,. . . , N. The vector of link flows is x, with link costs t ( x ) ,  so 
that t,(x,) is the cost (without toll) of travelling along link a E A when the 
link flow is x,. Let pa denote the toll level of link a E A. Then the generalised 
travel cost on link a is ta(x,) +,&. In addition, let Kr, be the set of routes 
connecting node r to node s. Associated with K,, is the link-route incidence 
matrix, AT", whose element, SLYk, equals 1 if link a is on route k that connects 
node r to  node s .  An assignment of flows to all routes is denoted by the vector 
f ,  with fl" 0 'dk,  r ,  s. The assignment f is feasible for demand q if and only 
if 

and the (convex) set of feasible route flows is denoted F .  For any f E F, c( f )  
denotes the associated vector of route costs where 

Travellers are allowed to respond to the toll imposed by changing their 
routes or deciding not to  travel (the precise mechanism for achieving this is 
described in section 3). The responses of the travellers are assumed to follow 
the Stochastic User Equilibrium condition (SUE). Let @ be a mapping from 
3?lPi + 3?lKl that gives the vector f of feasible route flows satisfying the SUE 
condition, given a toll vector p .  Let Z(f, p )  be the objective function that 
we wish to  optimise. We can then formulate the optimization problem for 
determining the optimal toll as: 
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Note that this problem can be considered as a mathematical program with 
equilibrium constraints (MPEC). As noted previously by many authors, this 
formulation can also be applied to  the UE case, but with a mapping between 
the link flow vector and the toll vector, since the route flow in UE is not 
unique. 

This paper assumes that the route choice behaviour follows a random 
utility model. In particular, the perceived cost of the k-th route is a random 
variable of the form: 

where c k  = ck(f)  is the mean perceived route cost and the random errors 
(EI ,  ~ 2 ,  ...) follow some joint probability density function with zero mean vec- 
tor. These random error terms represent the fact that individual drivers have 
their own assessment of both network conditions and of the cost of taking dif- 
ferent routes (including their personal preferences for some routes over others). 

Given the route cost vector c ,  PLS(c) denotes the proportion of drivers 
who perceive route k to be the cheapest route from r to  s ,  i.e. 

where Pr( . )  denotes probability. Then, the stochastic user equilibrium (SUE) 
can be stated as follows: 

At SUE, no driver can improve their perceived travel cost by unilaterally 
changing route. 

The SUE route flow assignment (for f E F) is, therefore, the solution to  
the following fixed-point problem: 

This states that,  for a given OD pair, the flow on the k-th route consists 
of those drivers who perceive this to be the best route. Since f is defined to  
be a feasible set of flows, the total number of drivers on all routes connecting 
r to s matches the total travel demand from this origin to this destination. A 
network route flow vector satisfying SUE will be denoted fr. This fixed-point 
condition defines the mapping @ between the SUE flows and the toll vector. 

With the SUE, several properties that UE does not possess can be gained. 
Consider first a simplified network structure in which the only routes are non- 
overlapping and consist of single links, and that for given tolls the vector of 
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link travel cost functions is continuous and strictly increasing in the vector of 
link flows. In this case, for given link tolls, there are unique UE link flows and 
route flows (see e.g. [Smi79]). 

In UE, a route will be used if and only if the travel cost on this route 
is the minimum 0 - D  travel cost (compared to all other routes connecting 
the same 0 - D  pair). This can be represented as a complementarity condi- 
tion: 0 < f L S I  (Cis  - CTS*) > 0, where CTS* denotes the minimum travel 
cost from origin r to  destination s and x i y  = x . y = 0. This complemen- 
tarity condition is non-differentiable when flS = (CIS - CTS*) = 0. Thus, 
when including this condition into the optimal toll design problem, one may 
face a non-differentiable optimization problem. This is an example of a wider 
phenomenon arising from the complementarity condition as constraints to  op- 
timization problems ([PR02], [LPR96]). 

In general network structures, while the set of link flow solutions to  the UE 
model a t  given tolls is a singleton under the assumption that the vector of link 
travel cost functions is continuous and strictly monotonic [Smi79], it is well 
known that the UE route flow solutions are typically non-unique. Therefore, 
route-based solution strategies are commonly faced with an additional hurdle 
of selecting a single UE route flow solution from a convex set, for example 
by an arbitrary choice of extreme point (e.g. [TF88]) or by an additional 
model selecting the 'most likely' route flows (e.g. [LLPROI]). Still, establishing 
desirable properties of a sequence of such 'unique' UE route flow solutions, as 
the tolls are altered, may be extremely problematic. 

For problems with continuous and strictly monotone link cost functions as 
above, under mild conditions on the choice probability model, SUE is known 
to give rise to solutions (a) in which all routes are active, a t  least in theory, 
and (b) that are unique in the route flow domain (e.g. [CC95]). Therefore, it 
is natural t o  ask, is solving the optimal toll problem with an SUE network 
model actually easier than with a UE? At the same time, one is adopting a 
model that,  from a behavioural perspective, is arguably superior in terms of 
its representation of the uncertainty and heterogeneity that surely exists in 
traveller decisions. 

3 Probit Equilibrium with Variable Demand: 
Formulation and Solution Algorithm 

The SUE model in section 2 assumes that travel demands are fixed. In this sec- 
tion, we allow demands to  vary. Maher et al. [MHK99] assume that the demand 
for OD pair ( r , s )  is a function of the expected minimum travel time between 
the origin and destination, i.e. qTs depends on E [min {Cis : k E KT,)]. When 
the logit route-choice is used, the demand function resulting from the assump- 
tion can be mathematically expressed in a closed form (see, e.g. [BDK86], 
[GPOl]) but this is not the case for probit. 
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To make our model more manageable under probit, we add to  the original 
network a pseudo-link (r ,s)  for each OD pair. The amount of flow on pseudo 
link (r ,s)  represents the number of drivers who decide not to  travel from r 
to  s. The perceived travel cost on each pseudo link (or link zero) is cgS + 
&gS, where cgS represents the deterministic disutility of not travelling and &gS 
is the associated random error in accordance with the probit model. Then, 
the proportion of drivers who decide not to travel is given by the following 
expressions: 

and the condition for SUE can be written in the same manner for those with 
fixed demand: 

where K;, = KT, U {0}, with fiS the number of drivers electing to not travel. 
Moreover, q,,now represents the number of potential drivers, some of whom 
choose the pseudo link, i.e. decide not t o  travel. 

The probit model assumes that perceived route costs are derived from 
normally distributed perceived link costs: 

with Ta N (ta ,a2) ,  with a: constant. In this paper we assume that the 
perceived link costs, {T,), are independent. The distribution of perceived 
route costs is therefore multivariate normal, C - MVN (c, C ) ,  centred on 
the deterministic route costs. This results in a variance-covariance matrix, C, 
where the perceived costs of routes that have links in common are correlated. 

To determine a solution that satisfies the above equilibrium condition, any 
algorithm that solves a probit-based SUE problem with fixed demand can be 
used. In Section 5 ,  we consider the following algorithms: 

The method of successive averages (MSA) algorithm (see [She85]) with 
probit choice fractions estimated by a Monte Carlo (MC) simulation. 
A step-length algorithm recently proposed by Maher and Hughes [MH97] 
that uses the equivalent optimization formulation of SUE [DS77] with 
the Clark approximation ([Cla61], [HSD82]) for computing probit choice 
probabilities. 
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4 Implicit Programming Approach to Optimal Toll 
Design 

Assume that the travel cost of link a ,  t ,  (x) is continuous for each a and the 
travel cost vector, t (x ) ,  is strictly monotone. Then, the route-flow solution 
of the probit-based SUE problem is unique (see e.g. [CC95]) and the optimal 
toll design problem can be formulated as follows: 

where x* (P)denotes a link flow solution to the probit SUE problem at toll 
vector p. 

As stated above, the optimal toll design problem is an optimization prob- 
lem with simple bounds. Many algorithms for such a problem typically require, 
a t  minimum, calculating the gradient of the objective function at  the current 
solution. When Z is relatively simple, its gradient can be approximated. To 
illustrate, consider the revenue function, i.e. Z (x* (p)  , P) = PT . X* ( P ) .  In 
this case. 

where Vpx* (p)  denotes the Jacobian of x* at  P. 
From the relationship between link and route flow, we can define the Ja- 

cobian of x*at Bas: 

where f *  (p)  is a vector of SUE route flow solution at  P, A is the link-route 
incidence matrix whose element, ba,k,  equals 1 if link a is on route k, and 
Vpf* (P) denotes the Jacobian o f f *  at  P. To approximate Vpf* (P) ,  consider 
the 'gap' function: 

where P is the route-choice probability operator as defined in Section 2. As- 
suming all functions are differentiable, the first order Taylor approximation 
of 9 (f* (PI, P) at ( f ,  P )  = ( f*  (Po) 1 Po) is: 

( f ,  p )  % 9 (f * (Po) , Po) + 51 (f - f*  (Po)) + J2 (P  - Po) . 
where J1 and J2 are the Jacobians of 9 evaluated at  ( f*  (Po) , Po) with respect 
to  f a t  p, respectively, i.e., J1 = V f 9  (f* (Po) ,Po)  and Jz = Vp@ (f* (Po), Po). 
(See [BI97], [Dag79], and [CW02] for the calculation of J1 and J2) .  Because 
9 (f* (p)  , P) = 0 for all p, the above reduces to 

0 = 0 + Jl (f - f *  (Po)) + Jz (P - Po). 
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When J1 is non-singular, the above implies that - J i l  Jz  is an approximation 
of the Jacobian of f*  (P) a t  Po, i.e., 

or 
lim f* (PI - f *  (PO) + JC'JZ (P P o )  o. 

P+Po IlP - Poll 
For the above example, VpZ (x* (P) , P) = x* (P) - AJF' J ~ P  

5 Numerical Experiments 

5.1 Definition of the test network 

The network adopted for the test has seven nodes connected by 18 links, with 
six pseudo-links representing the no-travel options for each OD movement 
(as required in the variable demand probit SUE model). Figure 1 shows the 
topology of the network. There are six OD pairs: (1, 5), (1, 7),  (5, I ) ,  (5, 
7),  (7, I ) ,  and (7, 5). Table A.1 in the Appendix gives the origin-destination 
'potential demand' matrix. The link cost functions are based on the BPR 

n, 
function t i (s i )  = ai + bi (?) where ai,  bz, ni, and hi are given in Table A.2 

in the Appendix. Note that for the 'no travel' or 'pseudo' links, there is only a 
constant parameter associated with the disutility of not conducting a trip, i.e. 
bi= 0 for such links. As in [She851 the probit link error terms are independent 
and normally distributed with zero mean and standard deviations as listed in 
Table A.2 in the Appendix. 

Tolls are implemented by adding the tolls to  the free flow costs. When an 
additional cost is added to  the free flow parameter for a pseudo-link, this can 
be thought of as representing an increase in the no-travel cost (for that OD 
movement) representing the increase in the utility of conducting a trip. There 
are 36 routes among the six OD pairs. 

For the variance-covariance matrix, we have adopted the common ap- 
proach used in the probit model [She851 of assuming the path cost covariance 
matrix is derived from independent Normal link cost error distributions. For 
these distributions, the variance for link j (excluding pseudo-links) is assumed 
to be a; = a .  a; where a is a link-independent scaling factor and aj is the 
free flow travel cost for link j, and for the pseudo-links the variances are set 
to  the mean of the variances on the real links. 

Different values of acan be used to define different levels of the perception 
error of the travellers on the travel time/cost resulting in different behavioural 
models. Several values a are adopted to  investigate effect of the behavioural 
model on the route choice behaviour, the resulting flows, and the optimal toll 
levels ( a  = 0, 0.3, 1, 3). 
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The objective function adopted in the test is a combination of the revenue 
and the actual total travel time. The revenue, R, is simply calculated by 
summing the tolls multiplied by the relevant link flows for the tolled links. The 
total travel time, TTT, is calculated from only the real links (since the flow 
on the pseudo-links does not travel); it is the sum of the link flows multiplied 
by the link travel times (without the toll included). 

Fig. 1. The topology of the test network (without the pseudo-links) 

The objective function is Z = p R + ( l  - p)  (-TTT) where p is a weighting 
factor with 0 < p < 1. The gradient of the objective function with respect to 
tolls can be derived as follows: 

vpz  = (x* (p)  - A J ; ~  ~ ~ p )  

where V,t denotes the Jacobian of the travel cost with respect t o  flows, and 
J1 and J2 are as defined in Section 4. 

To demonstrate the behaviour of the test network, the revenue generated 
and total travel time for different toll levels applied to  each link in turn are 
shown in Figure 2 below. In these tests the covariance scaling factor, a,  is 
set to  1. From the figures, the revenue levels generated are most sensitive to 
tolls on links 1,4, 21 and 24. The network diagram above shows that these are 
the links that cannot be avoided (by the relevant OD movements); the only 
alternative "route" is the no-travel option. Thus, it is no surprise to  observe 
that these links can generate the highest revenues. For the other links in the 
network, travellers can avoid the tolled link by changing route. For the total 
travel time, tolling on certain links (e.g. link 8) increases the total travel time 
as we increase the toll. For other links (eg .  link 4) the opposite occurs. With 
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the weighting factor p= 0.5 the objective function values as each link is tolled 
individually are shown in Figure 3. 

Fig. 2. Revenue and total travel time for different toll levels on each link 

Fig. 3. Objective function levels for different toll levels applied to each link in turn 

5.2 Comparison of different SUE solution algorithms 

In this section, the two alternative algorithms proposed for solving the SUE 
problem (described in section 3.2) are tested. We consider the case of tolling 
links 14, 15, and 16 simultaneous with a uniform toll. For this one-dimensional 
problem the gradient of the objective function at  each toll level can be plotted 
as shown in Figures 4 and 5. Three different levels of a are adopted for the 
test (a = 0.3, 1, and 3). Six curves are plotted, three for each method with 
different a in each figure. Figure 4 compares the gradient of the objective as 
calculated by 'numerical differencing' (a finite difference approximation) and 
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by sensitivity analysis (see Section 4) in which the SUE flows are calculated by 
the first method (MSA + MC-estimated choice probabilities). Figure 5 shows 
the same comparison but the SUE flows are calculated by the second method 
(Clark approximation + optimal step length). In both figures, the curves with 
the bold line are the gradients calculated from numerical differencing and the 
broken lines are the gradients from the sensitivity analysis. 

Gradlent Comparison: nurnrrlcal d h r m n c *  and S.A 

.20W 1 I 1 
0 0.1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Toll 

Fig. 4. Gradients of the objective at different toll levels calculated from the numer- 
ical differencing (solid line) and sensitivity analysis (broken line). MSA calculations 
using the MC simulation and predefined step-length. 

In both cases, the gradients calculated by the sensitivity analysis method 
are reasonably smooth. In Figure 4, the numerical differencing produces a 
non-smooth gradient that is caused by the non-smooth objective function as 
calculated from the MC simulation and pre-defined step length. Although 
the Clark approximation does have disadvantages (in terms of where this 
approximation is valid) the resulting link flows (and hence objective function 
values) are much smoother than the corresponding values calculated on the 
basis of the MC simulation. The gradients calculated by numerical differencing 
of the SUE flows resulting from the Clark approximation based approach 
(bold line in Figure 5) are visually as smooth as the gradients calculated via 
sensitivity analysis in the same figure (broken line). 

Obviously, different methods significantly influence the smoothness of the 
objective function. The MC based method does suffer from the unpredictabil- 
ity of the random trial process which may not guarantee the same SUE 
flows/route choice probabilities with different runs. On the other hand, the 
benefit of the MC based method is that with a high number of the trials the 
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Gradient Comparison: numerical difference [Clark Approximation] and S.A. 
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Fig. 5. Gradients of the objective at different toll levels calculated from the numer- 
ical differencing (solid line) and sensitivity analysis (broken line). MSA calculations 
using the Clark approximation and optimal step-length. 

accuracy of the estimation of the route choice probability may be improved, 
but one can never be sure what constitutes a sufficient number of trials. The 
Clark approximation, despite its possible drawback on the accuracy of the 
approximation, does produce very good results in terms of the smoothness 
of the objective function. Nevertheless, in both cases the sensitivity analysis 
method can eventually define a smooth trend of the gradient reflecting the real 
property of the problem. The reason is that the sensitivity analysis method 
estimates the gradient based on a single point (see previous section). Thus, 
it does not suffer from the poor convergence of the SUE flows from one toll 
level to  another whereas the numerical differencing, which uses two points of 
SUE flows, suffers from this error. 

Based on this comparison, we decided to adopt the second approach (Clark 
approximation + optimal step length) for the tests in the following sections. 

5.3 Effect of probit variances on the optimal toll policy 

This section presents some numerical results using the optimization approach 
explained in Section 4 to  find the optimal tolls for different cases. The sequen- 
tial quadratic programming (SQP) algorithm in MATLAB ('fmincon' solver) 
is adopted to  solve the problem, with the Jacobian of the objective function 
supplied (using the approach described in Section 4). Before applying the 
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optimization algorithm to the test, we explore the effect of the behavioural 
model parameters on the objective function. Three different sets of tests are 
conducted. In the first set of tests, we apply the uniform toll level on link 8, 
11, 14, and 15 with four different values of a .  Similarly, the second set of tests 
involves imposing the uniform tolls on link 14, 15, and 16 making a pricing 
cordon around node 5. The third set of tests is to put the toll on link 4 only. 

For all tests, we provide the plots the corresponding objective function 
values (see Figures 6, 7, and 8 below). Different values of the scaling param- 
eter a show the influence of the behavioural model on the objective function 
profile. The first observation is the smoothing effect of the a parameter on the 
objective function. When a= 0 (UE case), non-smoothness of the objective 
function is apparent. This property of the MPEC with UE is well documented 
where the objective function can be non-differentiable a t  some point. 

On the other hand, the objective function curves with a > 0 appear to 
be smooth. As the probit variances increase (with a ) ,  so drivers become less 
reactive to  changes due to  the toll and there is non-zero probability for each 
route to  be used. This property of the SUE model contributes to the smooth- 
ness of the objective function with respect to the toll. As mentioned earlier, 
although the main incentive of introducing the probit SUE in place of UE is 
to  increase the realism of the lower level model for the optimal toll problem, 
the SUE model may also make the optimal toll problem become easier to  deal 
with. The other observation is the possible change of the optimal toll solution 
for the different values of a. With all tests, the value of the optimal toll levels 
do change according to  the level of a. 

Uniform toll appllcd to links B 11 14 151 

Fig. 6 .  Revenue, total travel time, and objective function curves with different 
values of a and different uniform toll levels on link 8, 11, 14, and 15 



232 A. Sumalee et al. 

Uniform toll applied to links [14 15 161 

Toll 

Fig. 7. Revenue, total travel time, and objective function curves with different 
values of crand different uniform toll levels on link 14, 15, and 16 

Uniform toll appllrd to links [4] 

Fig. 8. Revenue, total travel time, and objective function curves with different 
values of &and different toll levels on link 4 
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Table 1 shows the results from applying the optimization algorithm to find 
the optimal uniform toll applied to links 14, 15, and 16 with different values 
of a. 

Table 1. Optimal toll on links 14, 15, 16 with differenta found by the optimization 
algorithm 

Figure 7 can be used to  verify that the optimization algorithm can find 
the real optimal toll level for each case. Again, as mentioned the optimal toll 
levels change with the levels of a. Unfortunately, we cannot observe any clear 
relationship between the optimal toll and the level of a from the results. 

The optimization algorithm is also applied to the find the optimal toll 
level on all links (except the pseudo links) simultaneously and the optimal 
toll level on each link in turn, again with different levels of a.  Table 2 shows 
the result with the optimal toll on each link simultaneously and Table 3 shows 
the results with the toll on each link in turn. 

Note that the column 'objective function at  optimal toll' shows the abso- 
lute value of the objective function at  that toll level. The objective function 
adopted here, as explained, is a weighted sum of the revenue and negative 
total travel time. Therefore, it is possible that the objective function may be- 
come negative even a t  the optimal toll. This does not mean the optimal toll 
generate dis-benefit, since the objective at  the no toll scenario is a negative 
figure as well. Column 'benefit' in both tables presents the relative improve- 
ment of the objective of each toll policy compared with the no-toll situation. 
The optimization algorithm successfully solved all the scenarios reported here. 

For the case with the tolls on all links, the improvement of the overall 
objective function increases as a increases. When all links are tolled, the links 
with the highest toll levels are links 4, 14, and 15. However, when each link 
is tolled individually, the links with the highest optimal tolls are links 1, 4, 
21, and 24. Imposing the tolls on one of these link individually is actually 
equivalent to imposing the toll on all of the demand for some OD movement 
since these links are the feeding links of the demand from different OD pairs 
to  the network (hence there is no alternative routes that avoid the tolls). The 
link generating the highest objective is link 4. The result may be that link 4 
imposes the toll directly to  a significant level of the demand in the network 
(the level of the demand coming from node 1 is highest compared to  the other 
origin nodes, see Table A1 in the Appendix). 
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Table 2. Results from optimizing all link tolls simultaneously 

Benefi 
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Table 3. Results from optimizing each tolled link individually 

Benefil 

886.44 
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6 Conclusions 

The traditional assumption of travellers' response to  a road toll is the deter- 
ministic user equilibrium model. We have argued in this paper that a better 
representation of travellers' responses may be achieved through an improved 
behavioural model following random utility theory, as achieved through the 
probit SUE model. Optimal toll design with the probit SUE is then formu- 
lated, with the probit SUE framework extended in a novel way to  include 
variable demand, by adding pseudo links to the network. The optimal toll 
problem with probit SUE can be categorised as a MPEC. However, the unique- 
ness and smoothness of the route choice probabilities in probit SUE, given a 
toll vector, help us in developing an optimization algorithm for tackling this 
problem, by reformulating the MPEC as an implicit programming problem. 
The key element in developing an algorithm to solve the reformulated opti- 
mal toll problem is the Jacobian of the objective function with respect to  the 
tolls, which can be estimated in practice by applying the sensitivity analysis 
method. 

In particular, we used the Sequential Quadratic Programming (SQP) al- 
gorithm in MATLAB to solve the optimal toll problems. The algorithm was 
applied to  a test network (with 18 links and six OD pairs). Firstly, we tested 
the accuracy of two different algorithms for solving the probit SUE, one com- 
bining MSA with MC-based choice probabilities, and a second using Clark 
approximation method with optimal step length computation. The results 
show the instability of the MC based method. This is thought to  be due to  
the lack of consistency in the convergence properties of the MC method at  'ad- 
jacent' (very similar) tolls. Clark approximation, on the other hand, produces 
a smoother objective function. However, there exists some uncertainty regard- 
ing the accuracy of the Clark approximation in estimating the probit route 
choice probabilities. Nevertheless, with both methods the sensitivity analysis 
can produce a reasonably smooth gradient due to the fact that in deriving 
the gradient of the objective, the sensitivity analysis method is only based 
on a single point of solution, hence reducing the uncertainty of the converged 
solution between two toll levels. 

The second test concerned the influence of the behavioural parameters on 
the optimal toll solution. Different scaling parameters, which determine the 
magnitude of terms in the variance-covariance matrix of the probit model, 
were tested. The results showed some changes of the objective function curves 
with different scaling parameters, resulting in changes to  the optimal toll so- 
lution. This result highlights the importance of calibrating the behavioural 
model in order to accurately determine the optimal toll policy. The last set 
of tests applied the optimization algorithm to the test (tolls on all links si- 
multaneously and tolls on each link individually). The optimization algorithm 
successfully solved all test problems. 

Despite encouraging results from these tests, further research is still re- 
quired in order to make the algorithm work efficiently with a large scale ap- 
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plication. Firstly, although the  theory of the  probit model suggests tha t  all 
routes will always be used, in practice some routes may have a very small 
probability of being used, and these routes will be eliminated from the  choice 
set due t o  the  limitation of machine precision. In the  current algorithm, we 
assume a fixed set of predetermined used routes, even when the  toll is varied. 
This assumption can be relaxed easily within the  iterative procedure to  allow 
the  set of used routes t o  be changed dynamically with the  toll level, updat-  
ing the  route set a t  each iteration. The second issue is concerned with the  
computational burden of the  calculation of the  probit SUE. A more efficient 
algorithm exploiting other estimation techniques of the  multi-dimensional in- 
tegral is being investigated in order to  increase the  efficiency of the  algorithm 
in solving a large scale SUE problem. Last but  not least, we wish t o  explore 
the  development of the  optimization algorithm itself, aiming to  improve i t  by 
better exploiting the  structure of the  problem, or through alternative refor- 
mulations of the  problem. 
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Appendix 

Table 4. OD potential demand matrix for the test network 

Links 13 and 22 are the pseudo links for 0-D 1-5 and 1-7 respectively. 
links 2 and 23 are the pseudo links for 0-D 5-1 and 5-7 respectively. Links 3 
and 17 are the pseudo links for 0-D 7-1 and 7-5 respectively. 

O/D 
1 
5 
7 

Table 5. Link travel time parameters for the test network 

22 
23 
24 

1 

675 
1050 

0.8 
0.2 
0.0125 

5 
1125 

850 

7 
1050 
850 

0 
0 
0.0026515 

0.041498 
0.041498 
0.0125 

1 
1 
1800 

1 
1 
4.5 




