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Abstract

The Bioconductor R package multtest implements widely ap-
plicable resampling-based single-step and stepwise multiple testing
procedures (MTP) for controlling a broad class of Type I error rates.
The current version of multtest provides MTPs for tests concerning
means, differences in means, and regression parameters in linear and
Cox proportional hazards models. Typical testing scenarios are il-
lustrated by applying various MTPs implemented in multtest to the
Acute Lymphoblastic Leukemia (ALL) data set of Chiaretti et al.
(2004), with the aim of identifying genes whose expression mea-
sures are associated with (possibly censored) biological and clinical
outcomes.

15.1 Introduction

Current statistical inference problems in biomedical and genomic data anal-
ysis routinely involve the simultaneous test of thousands, or even millions,
of null hypotheses. Examples include:

• identification of differentially expressed genes in microarray exper-
iments, i.e., genes whose expression measures are associated with
possibly censored responses or covariates;

• tests of association between gene expression measures and Gene
Ontology (GO) annotation;
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• identification of transcription factor binding sites in ChIP-Chip
experiments (Keleş et al., 2004);

• genetic mapping of complex traits using single nucleotide polymor-
phisms (SNP).

The above testing problems share the following general characteristics: in-
ference for high-dimensional multivariate distributions, with complex and
unknown dependence structures among variables; a broad range of pa-
rameters of interest, e.g. regression coefficients and correlations; many
null hypotheses, in the thousands or even millions; complex dependence
structures among test statistics.

Motivated by these applications, we have developed resampling-based
single-step and stepwise multiple testing procedures (MTP) for controlling
a broad class of Type I error rates. The main steps in applying a MTP
are listed in the flowchart of Table 15.1. The different components of our
multiple testing methodology are treated in detail in a collection of related
articles (Dudoit et al., 2004a,b; Pollard and van der Laan, 2004; van der
Laan et al., 2004a,b) and a book in preparation (Dudoit and van der Laan,
2004). In order to make this general methodology accessible, we have im-
plemented several MTPs in the Bioconductor R package multtest, which is
the subject of the current chapter. An expanded version of this chapter is
available on-line as a technical report (Pollard et al., 2004).

15.2 Multiple hypothesis testing methodology

15.2.1 Multiple hypothesis testing framework

Hypothesis testing is concerned with using observed data to test hypotheses,
i.e., make decisions, regarding properties of the unknown data generating
distribution. For example, microarray experiments might be conducted on
a sample of patients in order to identify genes whose expression levels are
associated with survival. Below, we discuss in turn the main ingredients of
a multiple testing problem.

Data. Let X1, . . . , Xn be a random sample of n independent and identi-
cally distributed (i.i.d.) random variables, X ∼ P ∈ M, where the data
generating distribution P is an element of a particular statistical model M
(i.e., a set of possibly non-parametric distributions). In a microarray exper-
iment, for example, X is a vector of gene expression measurements, which
we observe for each of n arrays.

Null and alternative hypotheses. Define M null hypotheses H0(m) ≡
I[P ∈ M(m)] in terms of a collection of submodels, M(m) ⊆ M, m =
1, . . . , M , for the data generating distribution P . The corresponding alter-
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Table 15.1. Multiple hypothesis testing flowchart.

Provide data set
MTP arguments: X, W, Y, Z, Z.incl, and Z.test

⇓
Define parameters of interest, ψ(m)

⇓
Define null and alternative hypotheses, H0(m) and H1(m)

⇓
Specify test statistics, Tn(m)

MTP arguments: test, robust, standardize, alternative, and psi0

⇓
Estimate test statistics null distribution, Q0n

MTP arguments: nulldist and B

⇓
Select Type I error rate, θ(FVn,Rn

)
MTP arguments: typeone and alpha (and also k and q)

⇓
Apply MTP

MTP argument: method
FWER Pr(Vn > 0) Single-step maxT procedure (sec. 15.2.3)

Single-step minP procedure (sec. 15.2.3)
Step-down maxT procedure (sec. 15.2.4)
Step-down minP procedure (sec. 15.2.4)

gFWER Pr(Vn > k) Single-step T (k + 1) procedure
(sec. 15.2.3)
Single-step P (k + 1) procedure
(sec. 15.2.3)
Augmentation procedure (sec. 15.2.5)

TPPFP Pr(Vn/Rn > q) Augmentation procedure (sec. 15.2.5)
General θ(FVn

) Single-step common cutoff procedure
(sec. 15.2.3)
Single-step common quantile procedure
(sec. 15.2.3)

⇓
Summarize results

adjusted p-values, rejection regions, and confidence regions
MTP arguments: get.adjp, get.cutoff, and get.cr
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native hypotheses are H1(m) ≡ I[P /∈ M(m)]. In many testing problems,
the submodels concern parameters, i.e., functions of the data generating
distribution P , Ψ(P ) = ψ = (ψ(m) : m = 1, . . . , M), such as means, differ-
ences in means, correlation coefficients, and regression parameters.

Test statistics. A testing procedure is a data-driven rule for deciding
whether or not to reject each of the M null hypotheses H0(m) based on an
M -vector of test statistics, Tn = (Tn(m) : m = 1, . . . , M), that are functions
of the observed data. Denote the typically unknown (finite sample) joint
distribution of the test statistics Tn by Qn = Qn(P ).

Single-parameter null hypotheses are commonly tested using t-statistics,
i.e., standardized differences,

Tn(m) ≡ Estimator − Null value
Standard error

=
√

n
ψn(m) − ψ0(m)

σn(m)
. (15.1)

For tests of means, Tn(m) is the usual one-sample or two-sample t-statistic,
where ψn(m) and σn(m) are based on empirical means and variances, re-
spectively. In some settings, it may be appropriate to use (unstandardized)
difference statistics, Tn(m) ≡

√
n[ψn(m) − ψ0(m)] (Pollard and van der

Laan, 2004). Test statistics for other types of null hypotheses include F -
statistics, χ2-statistics, and likelihood ratio statistics.

Multiple testing procedure. A multiple testing procedure (MTP) pro-
vides rejection regions, Cn(m), i.e., sets of values for each test statistic
Tn(m) that lead to the decision to reject the null hypothesis H0(m). In
other words, a MTP produces a random (i.e., data-dependent) subset Rn

of rejected hypotheses that estimates the set of true positives,

Rn = R(Tn, Q0n, α) ≡ {m : H0(m) is rejected} = {m : Tn(m) ∈ Cn(m)},
(15.2)

where the long notation R(Tn, Q0n, α) emphasizes that the MTP depends
on: (i) the data through the test statistics Tn; (ii) a (estimated) test statis-
tics null distribution, Q0n, for deriving rejection regions; and (iii) the
nominal level α, i.e., the desired upper bound for a suitably defined Type
I error rate. Unless specified otherwise, it is assumed that large values of
the test statistic, Tn(m), provide evidence against the corresponding null
hypothesis H0(m).

Example. Suppose that, as in the analysis of the ALL data set of Chiaretti
et al. (2004) (Section 15.4), one is interested in identifying genes that are
differentially expressed in two populations of ALL cancer patients, those
with the B-cell subtype and those with the T-cell subtype. The data consist
of random vectors X of microarray expression measures on M genes and
an indicator Y for the ALL subtype (1 for B-cell, 0 for T-cell). Then, the
parameter of interest is an M -vector of differences in mean expression mea-
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Table 15.2. Type I and Type II errors in multiple hypothesis testing. H0 is the set
of true null hypotheses, H1 is the set of false null hypotheses (i.e., true positives),
and Rn is the set of rejected null hypotheses.

Null hypotheses
not rejected rejected

true |Rc
n ∩H0| Vn = |Rn ∩H0| h0 = |H0|

(Type I errors)
Null hypotheses

false Un = |Rc
n ∩H1| |Rn ∩H1| h1 = |H1|

(Type II errors)

M − Rn Rn = |Rn| M

sures in the two populations, ψ(m) = E[X(m)|Y = 1] − E[X(m)|Y = 0],
m = 1, . . . , M . To identify genes with higher mean expression measures
in the B-cell compared to T-cell ALL subjects, one can test the one-
sided null hypotheses H0(m) = I[ψ(m) ≤ 0] vs. the alternative hypotheses
H1(m) = I[ψ(m) > 0], using two-sample Welch t-statistics

Tn(m) ≡ X̄1,n1(m) − X̄0,n0(m)√
n−1

0 (m)σ2
0,n0

(m) + n−1
1 (m)σ2

1,n1
(m)

, (15.3)

where nk(m), X̄k,nk
(m), and σ2

k,nk
(m) denote, respectively, the sample

sizes, sample means, and sample variances, for patients with tumor sub-
type k, k = 0, 1.

Type I and Type II errors. In any testing situation, two types of er-
rors can be committed: a false positive, or Type I error, is committed by
rejecting a true null hypothesis, and a false negative, or Type II error, is
committed when the test procedure fails to reject a false null hypothesis.
The situation can be summarized by Table 15.2.

Type I error rates. When testing multiple hypotheses, there are many
possible definitions for the Type I error rate and power of a test procedure.
Accordingly, we define Type I error rates as parameters, θn = θ(FVn,Rn

),
of the joint distribution FVn,Rn

of the numbers of Type I errors Vn and
rejected hypotheses Rn (Dudoit et al., 2004b; Dudoit and van der Laan,
2004). Such a general representation covers the following commonly-used
Type I error rates.
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Generalized family-wise error rate (gFWER), or probability of at least
(k + 1) Type I errors,

gFWER(k) ≡ Pr(Vn > k). (15.4)

When k = 0, the gFWER is the usual family-wise error rate (FWER),
or probability of at least one Type I error, FWER ≡ Pr(Vn > 0).

Tail probabilities for the proportion of false positives (TPPFP) among the
rejected hypotheses,

TPPFP (q) ≡ Pr(Vn/Rn > q), q ∈ (0, 1). (15.5)

False discovery rate (FDR), or expected value of the proportion of false
positives among the rejected hypotheses (Benjamini and Hochberg,
1995),

FDR ≡ E[Vn/Rn]. (15.6)

The convention that Vn/Rn ≡ 0 if Rn = 0 is used. Error rates based
on the proportion of false positives (e.g., TPPFP and FDR) are especially
appealing for large-scale testing problems such as those encountered in ge-
nomics, compared to error rates based on the number of false positives (e.g.,
gFWER), as they do not increase exponentially with the number of tested
hypotheses.

Adjusted p-values. The notion of p-value extends directly to multiple
testing problems, as follows. Given a MTP Rn(α) = R(Tn, Q0n, α), the
adjusted p-value P̃0n(m) = P̃ (Tn, Q0n)(m), for null hypothesis H0(m), is
defined as the smallest Type I error level α at which one would reject
H0(m), that is,

P̃0n(m) ≡ inf {α ∈ [0, 1] : m ∈ Rn(α)} (15.7)
= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m)} , m = 1, . . . , M.

As in single hypothesis tests, the smaller the adjusted p-value, the
stronger the evidence against the corresponding null hypothesis. Reporting
the results of a MTP in terms of adjusted p-values, as opposed to the binary
decisions to reject or not the hypotheses, provides flexible summaries that
can be used to compare different MTPs and do not require specifying the
level α ahead of time.

Confidence regions. For the test of single-parameter null hypotheses
and for any Type I error rate of the form θ(FVn), Pollard and van der
Laan (2004) and Dudoit and van der Laan (2004) provide results on the
correspondence between single-step MTPs and θ-specific confidence regions.
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15.2.2 Test statistics null distribution

The choice of null distribution Q0 is crucial, in order to ensure that (finite
sample or asymptotic) control of the Type I error rate under the assumed
null distribution Q0 does indeed provide the required control under the
true distribution Qn(P ). For error rates θ(FVn) (e.g., gFWER), defined as
arbitrary parameters of the distribution of the number of Type I errors Vn,
we propose as null distribution the asymptotic distribution Q0 = Q0(P ) of
the M -vector Zn of null value shifted and scaled test statistics (Dudoit and
van der Laan, 2004; Dudoit et al., 2004b; Pollard and van der Laan, 2004;
van der Laan et al., 2004b),

Zn(m) ≡

√
min

{
1,

τ0(m)
V ar[Tn(m)]

}{
Tn(m) + λ0(m) − E[Tn(m)]

}
. (15.8)

For the test of single-parameter null hypotheses using t-statistics, the null
values are λ0(m) = 0 and τ0(m) = 1. For testing the equality of K
population means using F -statistics, the null values are λ0(m) = 1 and
τ0(m) = 2/(K − 1), under the assumption of equal variances in the differ-
ent populations. By shifting the test statistics Tn(m) as in Equation (15.8),
the number of Type I errors V0 under the null distribution Q0, is asymp-
totically stochastically greater than the number of Type I errors Vn under
the true distribution Qn = Qn(P ).

Note that we are only concerned with Type I error control under the
true data generating distribution P . The notions of weak and strong con-
trol (and associated subset pivotality, Westfall and Young (Westfall and
Young, 1993), p. 42-43) are therefore irrelevant to our approach. In addi-
tion, we propose a null distribution for the test statistics, Tn ∼ Q0, and
not a data generating null distribution, X ∼ P0 ∈ ∩M

m=1M(m). The latter
practice does not necessarily provide proper Type I error control, as the
test statistics’ assumed null distribution Qn(P0) and their true distribution
Qn(P ) may have different dependence structures, in the limit, for the true
null hypotheses.

Resampling procedures, such as the bootstrap procedure of section
15.2.2, may be used to conveniently obtain consistent estimators Q0n of
the null distribution Q0 and of the corresponding test statistic cutoffs and
adjusted p-values (Dudoit and van der Laan, 2004; Dudoit et al., 2004b;
Pollard and van der Laan, 2004; van der Laan et al., 2004b). This boot-
strap procedure is implemented in the internal function boot.resample and
may be specified via the arguments nulldist and B of the main user-level
function MTP.

Having selected a suitable test statistics null distribution, there remains
the main task of specifying rejection regions for each null hypothesis, i.e.,
cutoffs for each test statistic, such that the Type I error rate is controlled
at a desired level α. Next, we summarize the approaches to this task that
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Bootstrap estimation of the null distribution Q0

1. Let P �
n denote an estimator of the data generating distribution P .

2. Generate B bootstrap samples, each consisting of n i.i.d.
realizations of a random variable X# ∼ P �

n . For the non-parametric
bootstrap, samples of size n are drawn at random, with replacement
from the observed data.

3. For the bth bootstrap sample, b = 1, . . . , B, compute an M -vector of
test statistics, and arrange these in an M × B matrix,
T#

n =
[
T#

n (m, b)
]
, with rows corresponding to the M null

hypotheses and columns to the B bootstrap samples.

4. Compute row means, E[Tn
#(m, ·)], and row variances,

V ar[Tn
#(m, ·)], of the matrix T#

n , to yield estimates of the true
means E[Tn(m)] and variances V ar[Tn(m)] of the test statistics,
respectively.

5. Obtain an M × B matrix, Z#
n =

[
Z#

n (m, b)
]
, of null value shifted

and scaled bootstrap statistics Z#
n (m, b), by row-shifting and scaling

the matrix T#
n as in Equation (15.8) using the bootstrap estimates

of E[Tn(m)] and V ar[Tn(m)] and the user-supplied null values
λ0(m) and τ0(m).

6. The bootstrap estimate Q0n of the null distribution Q0 is the
empirical distribution of the B columns Z#

n (·, b) of matrix Z#
n .

have been implemented in the multtest package. The chosen procedure is
specified using the method argument to the function MTP.

15.2.3 Single-step procedures for controlling general Type I
error rates θ(FVn)

Control of a Type I error rate θ(FVn
) can be obtained by substituting the

known, null distribution FR0 of the number of rejected hypotheses for the
unknown, true distribution FVn of the number of Type I errors. We propose
the following single-step common cutoff and common quantile procedures
(Dudoit et al., 2004b; Pollard and van der Laan, 2004).

General θ-controlling single-step common cutoff procedure

The set of rejected hypotheses is of the form Rn(α) ≡ {m : Tn(m) > c0},
where the common cutoff c0 is the smallest (i.e., least conservative) value
for which θ(FR0) ≤ α. For gFWER(k) control, the procedure is based on
the (k +1)st ordered test statistic. The adjusted p-values for the single-step
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T (k + 1) procedure are given by

p̃0n(m) = PrQ0 (Z◦(k + 1) ≥ tn(m)) , m = 1, . . . , M, (15.9)

where Z◦(m) denotes the mth ordered component of Z = (Z(m) : m =
1, . . . , M) ∼ Q0, so that Z◦(1) ≥ . . . ≥ Z◦(M). For FWER control (k = 0),
one recovers the single-step maxT procedure.

General θ-controlling single-step common quantile procedure

The set of rejected hypotheses is of the form Rn(α) ≡ {m : Tn(m) >
c0(m)}, where c0(m) = Q−1

0,m(δ0) is the δ0-quantile of the marginal null
distribution Q0,m of the test statistic for the mth null hypothesis, i.e., the
smallest value c such that Q0,m(c) = PrQ0(Z(m) ≤ c) ≥ δ0 for Z ∼ Q0.
Here, δ0 is chosen as the smallest (i.e., least conservative) value for which
θ(FR0) ≤ α.

For gFWER(k) control, the procedure is based on the (k + 1)st ordered
unadjusted p-value. Specifically, let Q̄0,m ≡ 1 − Q0,m denote the survivor
functions for the marginal null distributions Q0,m and define unadjusted
p-values P0(m) ≡ Q̄0,m[Z(m)] and P0n(m) ≡ Q̄0,m[Tn(m)], for Z ∼ Q0 and
Tn ∼ Qn, respectively. The adjusted p-values for the single-step P (k + 1)
procedure are given by

p̃0n(m) = PrQ0 [P ◦
0 (k + 1) ≤ p0n(m)] , m = 1, . . . , M, (15.10)

where P ◦
0 (m) denotes the mth ordered component of the M -vector of un-

adjusted p-values P0 = [P0(m) : m = 1, . . . , M ], so that P ◦
0 (1) ≤ . . . ≤

P ◦
0 (M). For FWER control (k = 0), one recovers the single-step minP

procedure.

15.2.4 Step-down procedures for controlling the family-wise
error rate

Step-down MTPs consider hypotheses successively, from most significant to
least significant, with further tests depending on the outcome of earlier ones.
van der Laan et al. (2004b) propose step-down common cutoff (maxT) and
common quantile (minP) procedures for controlling the family-wise error
rate, FWER.

FWER-controlling step-down common cutoff (maxT) procedure
Let On(m) denote the indices for the ordered test statistics Tn(m), so that
Tn(On(1)) ≥ . . . ≥ Tn(On(M)). Consider the distributions of maxima of
test statistics over the nested subsets of ordered null hypotheses On(h) ≡
{On(h), . . . , On(M)}. The adjusted p-values are given by

p̃0n[on(m)] = max
h=1,...,m

PrQ0

{
max

l∈�n(h)
Z(l) ≥ tn[on(h)]

}
, (15.11)
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where Z = [Z(m) : m = 1, . . . , M ] ∼ Q0.

FWER-controlling step-down common quantile (minP) proce-
dure.
Let On(m) denote the indices for the ordered unadjusted p-values P0n(m),
so that P0n[On(1)] ≤ . . . ≤ P0n[On(M)]. Consider the distributions of
minima of unadjusted p-values over the nested subsets of ordered null hy-
potheses On(h) ≡ {On(h), . . . , On(M)}. The adjusted p-values are given
by

p̃0n(on(m)) = max
h=1,...,m

PrQ0

{
min

l∈�n(h)
P0(l) ≤ p0n[on(h)]

}
, (15.12)

where P0(m) ≡ Q̄0,m[Z(m)] and P0n(m) ≡ Q̄0,m[Tn(m)], for Z ∼ Q0 and
Tn ∼ Qn, respectively.

15.2.5 Augmentation multiple testing procedures for
controlling tail probability error rates

van der Laan et al. (2004a), and subsequently Dudoit et al. (2004a) and
Dudoit and van der Laan (2004), propose augmentation multiple testing
procedures (AMTP), obtained by adding suitably chosen null hypotheses to
the set of null hypotheses already rejected by an initial gFWER-controlling
MTP. Adjusted p-values for the AMTP are shown to be simply shifted ver-
sions of the adjusted p-values of the original MTP. Denote the adjusted
p-values for the initial FWER-controlling procedure Rn(α) by P̃0n(m).
Order the M null hypotheses according to these p-values, from small-
est to largest, that is, define indices On(m), so that P̃0n[On(1)] ≤ . . . ≤
P̃0n[On(M)].

gFWER-controlling augmentation multiple testing procedure

For control of gFWER(k) at level α, given an initial FWER-controlling
procedure Rn(α), reject the Rn(α) = |Rn(α)| null hypotheses specified by
this MTP, as well as the next An(α) most significant hypotheses,

An(α) = min{k, M − Rn(α)}. (15.13)

The adjusted p-values P̃+
0n[On(m)] for the new gFWER-controlling AMTP

are simply k-shifted versions of the adjusted p-values of the initial FWER-
controlling MTP, with the first k adjusted p-values set to zero. That is,

P̃+
0n[On(m)] =

{
0, if m ≤ k

P̃0n[On(m − k)], if m > k
. (15.14)
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The AMTP thus guarantees at least k rejected hypotheses.

TPPFP-controlling augmentation multiple testing procedure

For control of TPPFP (q) at level α, given an initial FWER-controlling
procedure Rn(α), reject the Rn(α) = |Rn(α)| null hypotheses specified by
this MTP, as well as the next An(α) most significant hypotheses,

An(α) = max
{

m ∈ {0, . . . , M − Rn(α)} :
m

m + Rn(α)
≤ q

}
(15.15)

= min
{⌊

qRn(α)
1 − q

⌋
, M − Rn(α)

}
,

where the floor �x� denotes the greatest integer less than or equal to x,
i.e., �x� ≤ x < �x� + 1. That is, keep rejecting null hypotheses until the
ratio of additional rejections to the total number of rejections reaches the
allowed proportion q of false positives. The adjusted p-values P̃+

0n[On(m)]
for the new TPPFP-controlling AMTP are simply mq-shifted versions of
the adjusted p-values of the initial FWER-controlling MTP. That is,

P̃+
0n(On(m)) = P̃0n(On(�(1 − q)m�)), m = 1, . . . , M, (15.16)

where the ceiling �x� denotes the least integer greater than or equal to x.

FDR-controlling procedures

Given any TPPFP-controlling procedure, van der Laan et al. (2004a) derive
two simple (conservative) FDR-controlling procedures. The more general
and conservative procedure controls the FDR at nominal level α, by control-
ling TPPFP (α/2) at level α/2. The less conservative procedure controls
the FDR at nominal level α, by controlling TPPFP (1 −

√
1 − α) at level

1 −
√

1 − α. The reader is referred to the original article for details and
proofs of FDR control (Section 2.4, Theorem 3). In what follows, we refer
to these two MTPs as conservative and restricted, respectively.

15.3 Software implementation: R multtest package

The MTPs proposed in Sections 15.2.3 - 15.2.5 are implemented in the
latest version of the Bioconductor R package multtest (Version 1.5.4). We
stress that all the bootstrap-based MTPs implemented in multtest can be
performed using the main user-level function MTP. Note that the multtest
package also provides several simple, marginal FWER-controlling MTPs,
available through the mt.rawp2adjp function, which takes a vector of unad-
justed p-values as input and returns the corresponding adjusted p-values.
For greater detail on multtest functions, the reader is referred to the pack-
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age documentation, in the form of help files, e.g., ?MTP, and vignettes, e.g.,
openVignette("multtest").

15.3.1 Resampling-based multiple testing procedures: MTP

function

The main user-level function for resampling-based multiple testing is MTP.

> args(MTP)

function (X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL,

Z.test = NULL, na.rm = TRUE, test = "t.twosamp.unequalvar",

robust = FALSE, standardize = TRUE, alternative = "two.sided",

psi0 = 0, typeone = "fwer", k = 0, q = 0.1,

fdr.method = "conservative", alpha = 0.05, nulldist = "boot",

B = 1000, method = "ss.maxT", get.cr = FALSE, get.cutoff = FALSE,

get.adjp = TRUE, keep.nulldist = FALSE, seed = NULL)

INPUT.

Data. The data, X, consist of a J-dimensional random vector, observed
on each of n sampling units (patients, cell lines, mice, etc.). Other
data components include weights W, a possibly censored continuous
or polychotomous outcome Y, and additional covariates Z, whose use is
specified with the arguments Z.incl and Z.test. The argument na.rm

controls the treatment of missing values (NA). It is TRUE by default, so
that an observation with a missing value in any of the data objects’
jth component (j = 1, . . . , J) is excluded from the computation of
any test statistic based on this jth variable.

Test statistics. In the current implementation of multtest, the following
test statistics are available through the argument test: one-sample
t-statistics for tests of means; equal and unequal variance two-sample
t-statistics for tests of differences in means; paired t-statistics; multi-
sample F -statistics for tests of differences in means in one-way and
two-way designs; t-statistics for tests of regression coefficients in linear
models and Cox proportional hazards survival models. Robust, rank-
based versions of the above test statistics can be specified by setting
the argument robust to TRUE (the default value is FALSE).

Type I error rate. The MTP function controls by default the FWER (ar-
gument typeone="fwer"). Augmentation procedures (Section 15.2.5),
controlling other Type I error rates such as the gFWER, TPPFP, and
FDR, can be specified through the argument typeone. Details regard-
ing the related arguments k, q, and fdr.method are available in the
package documentation. The nominal level of the test is determined
by the argument alpha, by default 0.05.
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Test statistics null distribution. The test statistics null distribution is es-
timated by default using the non-parametric version of the bootstrap
procedure of section 15.2.2 (argument nulldist="boot"). Permutation
null distributions are also available via nulldist="perm". The number
of resampling steps is specified by the argument B, by default 1,000.

Multiple testing procedures. The MTP function implements the single-step
and step-down (common cutoff) maxT and (common quantile) minP
MTPs for FWER control, described in Sections 15.2.3 and 15.2.4, and
specified through the argument method. In addition, augmentation
procedures (AMTPs) are implemented in the functions fwer2gfwer,
fwer2tppfp, and fwer2fdr, which take FWER adjusted p-values as
input and return augmentation adjusted p-values for control of the
gFWER, TPPFP, and FDR, respectively. These AMTPs can also be
applied directly via the typeone argument of the main function MTP.

Output control. Additional arguments allow the user to specify which
combination of MTP results should be returned.

OUTPUT.

The S4 class/method object-oriented programming approach was adopted
to summarize the results of a MTP. The output of the MTP function is an
instance of the class MTP , with the following slots,

> slotNames("MTP")

[1] "statistic" "estimate" "sampsize" "rawp"

[5] "adjp" "conf.reg" "cutoff" "reject"

[9] "nulldist" "call" "seed"

MTP results. An instance of the MTP class contains slots for the following
MTP results: statistic, an M -vector of test statistics; estimate, an
M -vector of estimated parameters; rawp, an M -vector of unadjusted
p-values; adjp, an M -vector of adjusted p-values; conf.reg, lower and
upper simultaneous confidence limits for the parameter vector; cut-
off, cutoffs for the test statistics; reject, rejection indicators (TRUE
for a rejected null hypothesis).

Null distribution. The nulldist slot contains the M × B matrix for the
estimated test statistics null distribution.

Reproducibility. The slot call contains the call to the function MTP, and
seed is an integer specifying the state of the random number generator
used to create the resampled data sets.
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15.3.2 Numerical and graphical summaries

The following methods were defined to operate on MTP instances and sum-
marize the results of a MTP. The print method returns a description of an
object of class MTP . The summary method returns a list with the the fol-
lowing components: rejections, number(s) of rejected hypotheses; index,
indices for ordering the hypotheses according to significance; summaries,
six number summaries of the distributions of the adjusted p-values, unad-
justed p-values, test statistics, and parameter estimates. The plot method
produces graphical summaries of the results of a MTP. The type of display
may be specified via the which argument. Methods are also provided for
subsetting ([) and conversion (as.list).

15.4 Applications: ALL microarray data set

15.4.1 ALL data package and initial gene filtering

We illustrate some of the functionality of the multtest package using the
Acute Lymphoblastic Leukemia (ALL) microarray data set of Chiaretti
et al. (2004), available in the data package ALL. The main object in this
package is ALL, an instance of the class exprSet . The genes-by-subjects ma-
trix of 12,625 Affymetrix expression measures (chip series HG-U95Av2) for
each of 128 ALL patients is provided in the exprs slot of ALL. The phenoData

slot contains 21 phenotypes (i.e., patient level responses and covariates) for
each patient. Note that the expression measures have been obtained using
the three-step robust multichip average (RMA) preprocessing method, im-
plemented in the package affy. In particular, the expression measures have
been subject to a base 2 logarithmic transformation. For greater detail,
please consult the ALL package documentation and Appendix A.1.1.

> library("ALL")

> library("hgu95av2")

> data(ALL)

Our goal is to identify genes whose expression measures are associated
with (possibly censored) biological and clinical outcomes such as: tumor
cellular subtype (B-cell vs. T-cell), tumor molecular subtype (BCR/ABL,
NEG, ALL1/AF4), and time to relapse. Alternative analyses of this data
set are discussed in Chapters 10, 12, 16, 17, and 23. Before applying the
MTPs, we perform initial gene filtering as in Chiaretti et al. (2004) and
retain only those genes for which: (i) at least 20% of the subjects have a
measured intensity of at least 100 and (ii) the coefficient of variation (i.e.,
the ratio of the standard deviation to the mean) of the intensities across
samples is between 0.7 and 10. These two filtering criteria can be readily
applied using functions from the genefilter package.
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> ffun <- filterfun(pOverA(p = 0.2, A = 100), cv(a = 0.7,

+ b = 10))

> filt <- genefilter(2^exprs(ALL), ffun)

> filtALL <- ALL[filt, ]

> filtX <- exprs(filtALL)

> pheno <- pData(filtALL)

The new filtered data set, filtALL, contains expression measures on 431
genes, for 128 patients.

15.4.2 Association of expression measures and tumor cellular
subtype: Two-sample t-statistics

In this example we examine use of FWER-controlling step-down minP MTP
with two-sample Welch t-statistics and bootstrap null distribution.

Different tissues are involved in ALL tumors of the B-cell and T-cell
subtypes. The phenotypic data include a variable, BT, which encodes the
tissue type and stage of differentiation. In order to identify genes with
higher mean expression measures in B-cell ALL patients compared to T-
cell ALL patients, we create an indicator variable, Bcell (1 for B-cell, 0 for
T-cell), and compute, for each gene, a two-sample Welch (unequal variance)
t-statistic. We choose to control the FWER using the bootstrap-based step-
down minP procedure with B = 100 bootstrap iterations, although more
bootstrap iterations are recommended in practice.

> table(pData(ALL)$BT)

B B1 B2 B3 B4 T T1 T2 T3 T4

5 19 36 23 12 5 1 15 10 2

> Bcell <- rep(0, length(pData(ALL)$BT))

> Bcell[grep("B", as.character(pData(ALL)$BT))] <- 1

> seed <- 99

> BT.boot <- cache("BT.boot", MTP(X = filtX, Y = Bcell,

+ alternative = "greater", B = 100, method = "sd.minP",

+ seed = seed))

running bootstrap...

iteration = 100

Let us examine the results of the MTP stored in the object BT.boot.

> summary(BT.boot)

MTP: sd.minP

Type I error rate: fwer

Level Rejections

1 0.05 273
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Min. 1st Qu. Median Mean 3rd Qu. Max.

adjp 0.00 0.000 0.000 0.364 1.000 1.00

rawp 0.00 0.000 0.000 0.354 1.000 1.00

statistic -34.40 -1.570 2.010 2.060 5.380 22.30

estimate -4.66 -0.317 0.381 0.326 0.995 4.25

The summary method prints the name of the MTP (here, sd.minP, for
step-down minP), the Type I error rate (here, fwer), the number of re-
jections at each Type I error rate level specified in alpha (here, 273 at
level α = 0.05), and six number summaries (mean and quantiles) of
the adjusted p-values, unadjusted p-values, test statistics, and parameter
estimates (here, difference in means).

The following commands may be used to obtain a list of genes that are
differentially expressed in B-cell vs. T-cell ALL patients at nominal FWER
level α = 0.05, i.e., genes with adjusted p-values less than or equal to 0.05.
Functions from the annotate and annaffy packages may then be used to
obtain annotation information on these genes (e.g., gene names, PubMed
abstracts, GO terms) and to generate HTML tables of the results (see
Chapters 7 and 9). Here, we list the names of the first two genes only.

> BT.diff <- BT.boot@adjp <= 0.05

> BT.AffyID <- geneNames(filtALL)[BT.diff]

> mget(BT.AffyID[1:2], env = hgu95av2GENENAME)

$"1005_at"

[1] "dual specificity phosphatase 1"

$"1065_at"

[1] "fms-related tyrosine kinase 3"

Various graphical summaries of the results may be obtained using the
plot method, by selecting appropriate values of the argument which. Fig-
ure 15.1 displays four such plots. We see (top left) that the number of
rejections increases slightly when nominal FWER is greater than 0.6, and
then increases quickly as FWER approaches 1. Similarly, the adjusted p-
values for many genes are close to either 0 or 1 (top right) and the test
statistics for genes with small p-values do not overlap with those for genes
with p-values close to 1 (bottom left). Together these results indicate that
there is a clear separation between the rejected and accepted hypotheses,
i.e., between genes that are declared differentially expressed and those that
are not.

> par(mfrow = c(2, 2))

> plot(BT.boot)
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Figure 15.1. B-cell vs. T-cell ALL – FWER-controlling step-down minP MTP. By
default, four graphical summaries are produced by the plot method for instances
of the class MTP .

15.4.3 Augmentation procedures

In the context of microarray gene expression data analysis or other high-
dimensional inference problems, one is often willing to tolerate some false
positives, provided their number is small in comparison to the number of
rejected hypotheses. In this case, the FWER is not a suitable choice of
Type I error rate, and one should consider other rates that lead to larger
sets of rejected hypotheses. The augmentation procedures of Section 15.2.5,
implemented in the function MTP, allow one to reject additional hypotheses,
while controlling an error rate such as the generalized family-wise error
rate (gFWER), the tail probability for the proportion of false positives
(TPPFP), or the false discovery rate (FDR). We illustrate the use of the
fwer2tppfp and fwer2fdr functions, but note that the gFWER, TPPFP,
and FDR can also be controlled directly using the main MTP function, with
appropriate choices of arguments typeone, k, q, and fdr.method.

TPPFP control.

> q <- c(0.05, 0.1, 0.25)

> BT.tppfp <- fwer2tppfp(adjp = BT.boot@adjp, q = q)

> comp.tppfp <- cbind(BT.boot@adjp, BT.tppfp)

> mtps <- c("FWER", paste("TPPFP(", q, ")", sep = ""))

> mt.plot(adjp = comp.tppfp, teststat = BT.boot@statistic,

+ proc = mtps, leg = c(0.1, 430), col = 1:4,
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+ lty = 1:4, lwd = 3)

> title("Comparison of TPPFP(q)-controlling AMTPs\n based on SD minP MTP")

Figure 15.2 (left) shows that, as expected, the number of rejections in-
creases with the allowed proportion q of false positives when controlling
TPPFP (q) at a given level α.

FDR control. Given any TPPFP-controlling MTP, van der Laan et al.
(2004a) derive two simple (conservative) FDR-controlling MTPs. Here,
we compare these two FDR-controlling approaches, based on a TPPFP-
controlling augmentation of the step-down minP procedure, to the marginal
Benjamini and Hochberg (Benjamini and Hochberg, 1995) and Benjamini
and Yekutieli (Benjamini and Yekutieli, 2001) procedures, implemented in
the function mt.rawp2adjp. The following code chunk first computes ad-
justed p-values for the augmentation procedures, then for the marginal
procedures, and finally makes a plot of the numbers of rejections vs. the
nominal FDR for the four MTPs.

> BT.fdr <- fwer2fdr(adjp = BT.boot@adjp, method = "both")$adjp

> BT.marg.fdr <- mt.rawp2adjp(rawp = BT.boot@rawp,

+ proc = c("BY", "BH"))

> comp.fdr <- cbind(BT.fdr, BT.marg.fdr$adjp[

+ order(BT.marg.fdr$index), -1])

> mtps <- c("AMTP Cons", "AMTP Rest", "BY", "BH")

> mt.plot(adjp = comp.fdr, teststat = BT.boot@statistic,

+ proc = mtps, leg = c(0.1, 430), col = c(2,

+ 2, 3, 3), lty = rep(1:2, 2), lwd = 3)

> title("Comparison of FDR-controlling MTPs")

Figure 15.2 (right) shows that the AMTPs based on conservative bounds
for the FDR (“AMTP Cons”and“AMTP Rest”) are more conservative than
the Benjamini and Hochberg (“BH”) MTP for nominal FDR less than 0.4,
but less conservative than “BH” for larger FDR. The Benjamini and Yeku-
tieli (“BY”) MTP, a conservative version of the Benjamini and Hochberg
MTP (with ∼ log M penalty on the p-values), leads to the fewest rejections.

15.4.4 Association of expression measures and tumor
molecular subtype: Multi-sample F -statistics

The phenotype data include a variable, mol.bio, which records chromo-
somal abnormalities, such as the BCR/ABL gene rearrangement; these
abnormalities concern primarily patients with B-cell ALL and may be re-
lated to prognosis. To identify genes with differences in mean expression
measures between different tumor molecular subtypes (BCR/ABL, NEG,
ALL1/AF4, E2A/PBX1, p15/p16), within B-cell ALL subjects, one can
perform a family of F -tests. Tumor subtypes with fewer than 10 subjects
are removed from the analysis. Adjusted p-values and test statistic cutoffs
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Figure 15.2. B-cell vs. T-cell ALL – TPPFP and FDR-controlling AMTPs. Plots
of number of rejected hypotheses vs. nominal Type I error rate. Left: Comparison
of TPPFP-controlling AMTPs, based on the FWER-controlling bootstrap-based
step-down minP procedure, for different allowed proportions q of false positives.
Right: Comparison of four FDR-controlling MTPs.

(for nominal levels α of 0.01 and 0.10) are computed as follows for the
FWER-controlling bootstrap-based single-step maxT procedure.

> BX <- filtX[, Bcell == 1]

> Bpheno <- pheno[Bcell == 1, ]

> mb <- as.character(Bpheno$mol.biol)

> table(mb)

mb

ALL1/AF4 BCR/ABL E2A/PBX1 NEG p15/p16

10 37 5 42 1

> other <- c("E2A/PBX1", "p15/p16")

> mb.boot <- cache("mb.boot", MTP(X = BX[, !(mb %in%

+ other)], Y = mb[!(mb %in% other)], test = "f",

+ alpha = c(0.01, 0.1), B = 100, get.cutoff = TRUE,

+ seed = seed))

running bootstrap...

iteration = 100

> mb.rej <- summary(mb.boot)$rejections

> mb.rej

Level Rejections

1 0.01 416

2 0.10 418
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For control of the FWER at nominal level α = 0.01, the bootstrap-
based single-step maxT procedure with F -statistics identifies 416 genes as
having significant differences in mean expression measures between tumor
molecular subtypes.

15.4.5 Association of expression measures and time to
relapse: Cox t-statistics

The bootstrap-based MTPs implemented in the main MTP function
(nulldist="boot") allow the test of hypotheses concerning regression pa-
rameters in models for which the subset pivotality condition may not hold
(e.g., logistic and Cox proportional hazards models). The phenotype infor-
mation in the ALL package includes the original remission status of the
ALL patients (remission variable in the data.frame pData(ALL)). There
are 66 B-cell ALL subjects who experienced original complete remission
(remission="CR") and who were followed up for remission status at a later
date. We apply the single-step maxT procedure to test for a significant asso-
ciation between expression measures and time to relapse amongst these 66
subjects, adjusting for sex. Note that most of the code below is concerned
with extracting the (censored) time to relapse outcome and covariates from
slots of the exprSet instance ALL.

> cr.ind <- (Bpheno$remission == "CR")

> cr.pheno <- Bpheno[cr.ind, ]

> times <- strptime(cr.pheno$"date last seen", "%m/%d/%Y") -

+ strptime(cr.pheno$date.cr, "%m/%d/%Y")

> time.ind <- !is.na(times)

> times <- times[time.ind]

> cens <- ((1:length(times)) %in% grep("CR", cr.pheno[time.ind,

+ "f.u"]))

> rel.times <- Surv(times, !cens)

> patients <- (1:ncol(BX))[cr.ind][time.ind]

> relX <- BX[, patients]

> relZ <- Bpheno[patients, ]

> cox.boot <- cache("cox.boot", MTP(X = relX, Y = rel.times,

+ Z = relZ, Z.incl = "sex", Z.test = NULL, test = "coxph.YvsXZ",

+ B = 100, get.cr = TRUE, seed = seed))

For control of the FWER at nominal level α = 0.05, the bootstrap-based
single-step maxT procedure identifies 22 genes whose expression measures
are significantly associated with time to relapse. Using the function mget,
we examine the names of these genes.

> cox.diff <- cox.boot@adjp <= 0.05

> sum(cox.diff)

[1] 22
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> cox.AffyID <- geneNames(filtALL)[cox.diff]

> mget(cox.AffyID, env = hgu95av2GENENAME)

$"106_at"

[1] "runt-related transcription factor 3"

$"1403_s_at"

[1] "chemokine (C-C motif) ligand 5"

$"182_at"

[1] "inositol 1,4,5-triphosphate receptor, type 3"

$"286_at"

[1] "histone 2, H2aa"

$"296_at"

[1] "tubulin, beta 2"

$"33232_at"

[1] "cysteine-rich protein 1 (intestinal)"

$"34308_at"

[1] "histone 1, H2ac"

$"35127_at"

[1] "histone 1, H2ae"

$"36638_at"

[1] "connective tissue growth factor"

$"37027_at"

[1] "AHNAK nucleoprotein (desmoyokin)"

$"37218_at"

[1] "BTG family, member 3"

$"37343_at"

[1] "inositol 1,4,5-triphosphate receptor, type 3"

$"38124_at"

[1] "midkine (neurite growth-promoting factor 2)"

$"39182_at"

[1] "epithelial membrane protein 3"

$"39317_at"

[1] "cytidine monophosphate-N-acetylneuraminic acid

hydroxylase (CMP-N-acetylneuraminate monooxygenase)"
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$"39331_at"

[1] "tubulin, beta 2"

$"39338_at"

[1] "S100 calcium binding protein A10 (annexin II ligand,

calpactin I, light polypeptide (p11))"

$"40147_at"

[1] "vesicle amine transport protein 1 homolog (T californica)"

$"40567_at"

[1] "tubulin, alpha 3"

$"40729_s_at"

[1] "allograft inflammatory factor 1"

$"41071_at"

[1] "serine protease inhibitor, Kazal type 2 (acrosin-

trypsin inhibitor)"

$"41164_at"

[1] "immunoglobulin heavy constant mu"

Figure 15.3 is a plot of the Cox regression coefficient estimates (circles)
and corresponding confidence regions (text indicating the level) for the five
genes with the smallest adjusted p-values. The plot illustrates that the level
α = 0.05 confidence regions corresponding to the significant gene does not
include the null value ψ0 = 0 for the Cox regression parameters (red line).
The confidence regions for the next four genes, do include 0.

> plot(cox.boot, which = 5, top = 5, sub.caption = NULL)

> abline(h = 0, col = "red")

15.5 Discussion

The multtest package implements resampling-based multiple testing proce-
dures that can be applied to a broad range of testing problems in biomedical
and genomic data analysis. Ongoing efforts involve expanding the class of
MTPs implemented in multtest, enhancing software design and the user in-
terface, and increasing computational efficiency. Specifically, regarding the
offering of MTPs, we envisage the following new developments.

• Expanding the class of available tests, by adding test statistic clo-
sures for tests of correlations, quantiles, and parameters in generalized
linear models (e.g., logistic regression).
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Figure 15.3. Time to relapse – FWER-controlling single-step maxT MTP. Plot of
Cox regression coefficient estimates and corresponding confidence intervals for the
fifteen genes with the smallest adjusted p-values, based on the FWER-controlling
bootstrap-based single-step maxT procedure (plot method, which=5).

• Expanding the class of resampling-based estimators for the test
statistics null distribution (e.g., parametric bootstrap, Bayesian
bootstrap), possibly using a function closure approach.

• Providing parameter confidence regions and test statistic cutoffs for
other Type I error rates than the FWER.

• Implementing the new augmentation multiple testing procedures pro-
posed in Dudoit et al. (2004a) and Dudoit and van der Laan (2004),
for controlling tail probabilities Pr(g(Vn, Rn) > q) for an arbitrary
function g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn.

Efforts regarding software design and the user interface include the
following.

• Providing a formula interface for a symbolic description of the tests
to be performed (cf. model specification in lm).

• Providing an update method for objects of class MTP , to facili-
tate the reuse of available estimates of the null distribution when
implementing new MTPs.

• Extending the MTP class to keep track of results for several MTPs.




