

Statistics for Biology and Health
Series Editors
W. Wong, M. Gail, K. Krickeberg, A. Tsiatis, J. Samet

Robert Gentleman Rafael A. Irizarry
Vincent J. Carey Sandrine Dudoit
Wolfgang Huber

Editors

Bioinformatics and
Computational Biology
Solutions Using R
and Bioconductor

With 128 Illustrations

Editors
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N, M2-B876
PO Box 19024
Seattle, Washington 98109-1024 USA
rgentlem@fhcrc.org

Vincent J. Carey
Channing Laboratory
Brigham and Women’s Hospital
Harvard Medical School
181 Longwood Ave Boston MA 02115 USA
stvjc@channing.harvard.edu

Wolfgang Huber
European Bioinformatics Institute
European Molecular Biology

Laboratory
Cambridge, CB10 1SD UK
huber@ebi.ac.uk

Rafael A. Irizarry
Department of Biostatistics
Johns Hopkins Bloomberg

School of Public Health
615 North Wolfe Street
Baltimore, MD 21205 USA
rafa@jhu.edu

Sandrine Dudoit
Division of Biostatistics
School of Public Health
University of California,

Berkeley
140 Earl Warren Hall, #7360
Berkeley, CA 94720-7360

USA
sandrine@stat.berkeley.edu

Series Editors
Wing Wong
Department of Statistics
Stanford University
Stanford, CA 94305
USA

M. Gail
National Cancer Institute
Rockville, MD 20892
USA

K. Krickeberg
Le Chätelet
F-63270 Manglieu
France

A. Tsiatis
Department of Statistics
North Carolina State University
Raleigh, NC 27695
USA

J. Samet
Department of Epidemiology
School of Public Health
Johns Hopkins University
615 Wolfe Street
Baltimore, MD 21205
USA

Library of Congress Control Number: 2005923843

ISBN-10: 0-387-25146-4 Printed on acid-free paper.
ISBN-13: 978-0387-25146-2

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in China. (EVB)

9 8 7 6 5 4 3 2 1

springeronline.com

Preface

During the past few years, there have been enormous advances in ge-
nomics and molecular biology, which carry the promise of understanding
the functioning of whole genomes in a systematic manner. The challenge
of interpreting the vast amounts of data from microarrays and other high
throughput technologies has led to the development of new tools in the
fields of computational biology and bioinformatics, and opened exciting
new connections to areas such as chemometrics, exploratory data analysis,
statistics, machine learning, and graph theory.

The Bioconductor project is an open source and open development soft-
ware project for the analysis and comprehension of genomic data. It is
rooted in the open source statistical computing environment R. This book’s
coverage is broad and ranges across most of the key capabilities of the
Bioconductor project. Thanks to the hard work and dedication of many
developers, a responsive and enthusiastic user community has formed. Al-
though this book is self-contained with respect to the data processing and
data analytic tasks covered, readers of this book are advised to acquaint
themselves with other aspects of the project by touring the project web
site www.bioconductor.org.

This book represents an innovative approach to publishing about sci-
entific software. We made a commitment at the outset to have a fully
computable book. Tables, figures, and other outputs are dynamically gen-
erated directly from the experimental data. Through the companion web
site, www.bioconductor.org/mogr, readers have full access to the source
code and necessary supporting libraries and hence will be able to see how
every plot and statistic was computed. They will be able to reproduce those
calculations on their own computers and should be able to extend most of
those computations to address their own needs.

Acknowledgments

This book, like so many projects in bioinformatics and computational bi-
ology, is a large collaborative effort. The editors would like to thank the
chapter authors for their dedication and their efforts in producing widely
used software, and also in producing well-written descriptions of how to
use that software.

We would like to thank the developers of R, without whom there would
be no Bioconductor project. Many of these developers have provided ad-
ditional help and engaged in discussions about software development and
design. We would like to thank the many Bioconductor developers and
users who have helped us to find bugs, think differently about problems,
and whose enthusiasm has made the long hours somewhat more bearable.

We would also like to thank Dorit Arlt, Michael Boutros, Sabina
Chiaretti, James MacDonald, Meher Majety, Annemarie Poustka, Jerome

Ritz, Mamatha Sauermann, Holger Sültmann, Stefan Wiemann, and Seth
Falcon, who have contributed in many different ways to the production of
this monograph. Much of the preliminary work on the MLInterfaces pack-
age, described in Chapter 16, was carried out by Jess Mar, Department
of Biostatistics, Harvard School of Public Health. Ms Mar’s efforts were
supported in part by a grant from Insightful Corporation.

The Bioconductor project is supported by grant 1R33 HG002708 from
the NIH as well as by institutional funds at both the Dana Farber Cancer
Institute and the Fred Hutchinson Cancer Research Center. W.H. received
project-related funding from the German Ministry for Education and Re-
search through National Genome Research Network (NGFN) grant FKZ
01GR0450.

Seattle Robert Gentleman
Boston Vincent Carey
Cambridge (UK) Wolfgang Huber
Baltimore Rafael Irizarry
Berkeley Sandrine Dudoit

February 2005

vi Preface

xviii Contributors

J. Gentry, Center for Cancer Research, Massachusetts General Hospital,
Boston, MA, USA

F. Hahne, Division of Molecular Genome Analysis, German Cancer Re-
search Center, Heidelberg, FRG

L. Harris, Department of Cancer Biology, Dana Farber Cancer Institute,
Boston, MA, USA

T. Hothorn, Institut für Medizininformatik, Biometrie und Epidemiologie,
Friedrich-Alexander-Universität Erlangen-Nürnberg, FRG

W. Huber, European Molecular Biology Laboratory, European Bioinfor-
matics Institute, Cambridge, UK

J. Ibrahim, Department of Biostatistics, University of North Carolina,
Chapel Hill, NC, USA

J. D. Iglehart, Department of Cancer Biology, Dana Farber Cancer Insti-
tute, Boston, MA, USA

R. A. Irizarry, Department of Biostatistics, Johns Hopkins Bloomberg
School of Public Health, Baltimore, MD, USA

X. Li, Department of Biostatistics and Computational Biology, Dana Far-
ber Cancer Institute, Boston, MA, USA

X. Lu, Department of Biostatistics, Harvard School of Public Health,
Boston, MA, USA

A. Miron, Department of Cancer Biology, Dana Farber Cancer Institute,
Boston, MA, USA

A. C. Paquet, Department of Biostatistics, University of California, San
Francisco, CA, USA

K. S. Pollard, Center for Biomolecular Science and Engineering, University
of California, Santa Cruz, USA

D. Scholtens, Department of Preventive Medicine, Northwestern Univer-
sity, Chicago, IL, USA

Q. Shi, Department of Cancer Biology, Dana Farber Cancer Institute,
Boston, MA, USA

Contents

I Preprocessing data from genomic experiments 1

1 Preprocessing Overview 3
W. Huber, R.A. Irizarry, and R. Gentleman
1.1 Introduction . 3
1.2 Tasks . 4

1.2.1 Prerequisites . 5
1.2.2 Stepwise and integrated approaches 5

1.3 Data structures . 6
1.3.1 Data sources . 6
1.3.2 Facilities in R and Bioconductor 7

1.4 Statistical background . 8
1.4.1 An error model . 9
1.4.2 The variance-bias trade-off 11
1.4.3 Sensitivity and specificity of probes 11

1.5 Conclusion . 12

2 Preprocessing High-density Oligonucleotide Arrays 13
B.M. Bolstad, R.A. Irizarry, L. Gautier, and Z. Wu
2.1 Introduction . 13
2.2 Importing and accessing probe-level data 15

2.2.1 Importing . 15
2.2.2 Examining probe-level data 15

2.3 Background adjustment and normalization 18
2.3.1 Background adjustment 18
2.3.2 Normalization . 20
2.3.3 vsn . 24

2.4 Summarization . 25
2.4.1 expresso . 25
2.4.2 threestep . 26
2.4.3 RMA . 27
2.4.4 GCRMA . 27
2.4.5 affypdnn . 28

viii Contents

2.5 Assessing preprocessing methods 29
2.5.1 Carrying out the assessment 30

2.6 Conclusion . 32

3 Quality Assessment of Affymetrix GeneChip Data 33
B.M. Bolstad, F. Collin, J. Brettschneider, K. Simpson, L. Cope,
R.A. Irizarry, and T.P. Speed
3.1 Introduction . 33
3.2 Exploratory data analysis 34

3.2.1 Multi-array approaches 35
3.3 Affymetrix quality assessment metrics 37
3.4 RNA degradation . 38
3.5 Probe level models . 41

3.5.1 Quality diagnostics using PLM 42
3.6 Conclusion . 47

4 Preprocessing Two-Color Spotted Arrays 49
Y.H. Yang and A.C. Paquet
4.1 Introduction . 49
4.2 Two-color spotted microarrays 50

4.2.1 Illustrative data . 50
4.3 Importing and accessing probe-level data 51

4.3.1 Importing . 51
4.3.2 Reading target information 52
4.3.3 Reading probe-related information 53
4.3.4 Reading probe and background intensities 54
4.3.5 Data structure: the marrayRaw class 54
4.3.6 Accessing the data 56
4.3.7 Subsetting . 56

4.4 Quality assessment . 57
4.4.1 Diagnostic plots . 57
4.4.2 Spatial plots of spot statistics - image 59
4.4.3 Boxplots of spot statistics - boxplot 60
4.4.4 Scatter-plots of spot statistics - plot 61

4.5 Normalization . 62
4.5.1 Two-channel normalization 63
4.5.2 Separate-channel normalization 64

4.6 Case study . 67

5 Cell-Based Assays 71
W. Huber and F. Hahne
5.1 Scope . 71
5.2 Experimental technologies 71

5.2.1 Expression assays 72
5.2.2 Loss of function assays 72

Contents ix

5.2.3 Monitoring the response 72
5.3 Reading data . 73

5.3.1 Plate reader data 74
5.3.2 Further directions in normalization 76
5.3.3 FCS format . 77

5.4 Quality assessment and visualization 79
5.4.1 Visualization at the level of individual cells 79
5.4.2 Visualization at the level of microtiter plates . . . 82
5.4.3 Brushing with Rggobi 83

5.5 Detection of effectors . 85
5.5.1 Discrete Response 85
5.5.2 Continuous response 88
5.5.3 Outlook . 90

6 SELDI-TOF Mass Spectrometry Protein Data 91
X. Li, R. Gentleman, X. Lu, Q. Shi, J.D. Iglehart, L. Harris, and
A. Miron
6.1 Introduction . 91
6.2 Baseline subtraction . 93
6.3 Peak detection . 95
6.4 Processing a set of calibration spectra 96

6.4.1 Apply baseline subtraction to a set of spectra . . . 98
6.4.2 Normalize spectra 99
6.4.3 Cutoff selection . 100
6.4.4 Identify peaks . 101
6.4.5 Quality assessment 101
6.4.6 Get proto-biomarkers 102

6.5 An example . 105
6.6 Conclusion . 108

II Meta-data: biological annotation and visualiza-
tion 111

7 Meta-data Resources and Tools in Bioconductor 113
R. Gentleman, V. J. Carey, and J. Zhang
7.1 Introduction . 113
7.2 External annotation resources 115
7.3 Bioconductor annotation concepts: curated persistent

packages and Web services 116
7.3.1 Annotating a platform: HG-U95Av2 117
7.3.2 An Example . 118
7.3.3 Annotating a genome 119

7.4 The annotate package . 119
7.5 Software tools for working with Gene Ontology (GO) . . . 120

x Contents

7.5.1 Basics of working with the GO package 121
7.5.2 Navigating the hierarchy 122
7.5.3 Searching for terms 122
7.5.4 Annotation of GO terms to LocusLink sequences:

evidence codes . 123
7.5.5 The GO graph associated with a term 125

7.6 Pathway annotation packages: KEGG and cMAP 125
7.6.1 KEGG . 126
7.6.2 cMAP . 127
7.6.3 A Case Study . 129

7.7 Cross-organism annotation: the homology packages 130
7.8 Annotation from other sources 132
7.9 Discussion . 133

8 Querying On-line Resources 135
V. J. Carey, D. Temple Lang, J. Gentry, J. Zhang, and R.
Gentleman
8.1 The Tools . 135

8.1.1 Entrez . 137
8.1.2 Entrez examples . 137

8.2 PubMed . 138
8.2.1 Accessing PubMed information 139
8.2.2 Generating HTML output for your abstracts . . . 141

8.3 KEGG via SOAP . 142
8.4 Getting gene sequence information 144
8.5 Conclusion . 145

9 Interactive Outputs 147
C.A. Smith, W. Huber, and R. Gentleman
9.1 Introduction . 147
9.2 A simple approach . 148
9.3 Using the annaffy package 149
9.4 Linking to On-line Databases 152
9.5 Building HTML pages . 153

9.5.1 Limiting the results 153
9.5.2 Annotating the probes 154
9.5.3 Adding other data 155

9.6 Graphical displays with drill-down functionality 156
9.6.1 HTML image maps 157
9.6.2 Scalable Vector Graphics (SVG) 158

9.7 Searching Meta-data . 159
9.7.1 Text searching . 159

9.8 Concluding Remarks . 160

10 Visualizing Data 161

Contents xi

W. Huber, X. Li, and R. Gentleman
10.1 Introduction . 161
10.2 Practicalities . 162
10.3 High-volume scatterplots 163

10.3.1 A note on performance 164
10.4 Heatmaps . 166

10.4.1 Heatmaps of residuals 168
10.5 Visualizing distances . 170

10.5.1 Multidimensional scaling 173
10.6 Plotting along genomic coordinates 174

10.6.1 Cumulative Expression 178
10.7 Conclusion . 179

III Statistical analysis for genomic experiments 181

11 Analysis Overview 183
V. J. Carey and R. Gentleman
11.1 Introduction and road map 183

11.1.1 Distance concepts 184
11.1.2 Differential expression 184
11.1.3 Cluster analysis . 184
11.1.4 Machine learning . 184
11.1.5 Multiple comparisons 185
11.1.6 Workflow support 185

11.2 Absolute and relative expression measures 185

12 Distance Measures in DNA Microarray Data Analysis. 189
R. Gentleman, B. Ding, S. Dudoit, and J. Ibrahim
12.1 Introduction . 189
12.2 Distances . 191

12.2.1 Definitions . 191
12.2.2 Distances between points 192
12.2.3 Distances between distributions 195
12.2.4 Experiment-specific distances between genes 198

12.3 Microarray data . 199
12.3.1 Distances and standardization 199

12.4 Examples . 201
12.4.1 A co-citation example 203
12.4.2 Adjacency . 207

12.5 Discussion . 208

13 Cluster Analysis of Genomic Data 209
K. S. Pollard and M. J. van der Laan
13.1 Introduction . 209

xii Contents

13.2 Methods . 210
13.2.1 Overview of clustering algorithms 210
13.2.2 Ingredients of a clustering algorithm 211
13.2.3 Building sequences of clustering results 211
13.2.4 Visualizing clustering results 214
13.2.5 Statistical issues in clustering 215
13.2.6 Bootstrapping a cluster analysis 216
13.2.7 Number of clusters 217

13.3 Application: renal cell cancer 222
13.3.1 Gene selection . 222
13.3.2 HOPACH clustering of genes 223
13.3.3 Comparison with PAM 224
13.3.4 Bootstrap resampling 224
13.3.5 HOPACH clustering of arrays 224
13.3.6 Output files . 226

13.4 Conclusion . 228

14 Analysis of Differential Gene Expression Studies 229
D. Scholtens and A. von Heydebreck
14.1 Introduction . 229
14.2 Differential expression analysis 230

14.2.1 Example: ALL data 232
14.2.2 Example: Kidney cancer data 236

14.3 Multifactor experiments . 239
14.3.1 Example: Estrogen data 241

14.4 Conclusion . 248

15 Multiple Testing Procedures: the multtest Package and
Applications to Genomics 249
K. S. Pollard, S. Dudoit, and M. J. van der Laan
15.1 Introduction . 249
15.2 Multiple hypothesis testing methodology 250

15.2.1 Multiple hypothesis testing framework 250
15.2.2 Test statistics null distribution 255
15.2.3 Single-step procedures for controlling general

Type I error rates θ(FVn
) 256

15.2.4 Step-down procedures for controlling the
family-wise error rate 257

15.2.5 Augmentation multiple testing procedures for
controlling tail probability error rates 258

15.3 Software implementation: R multtest package 259
15.3.1 Resampling-based multiple testing procedures:

MTP function . 260
15.3.2 Numerical and graphical summaries 262

15.4 Applications: ALL microarray data set 262

Contents xiii

15.4.1 ALL data package and initial gene filtering 262
15.4.2 Association of expression measures and tumor

cellular subtype: Two-sample t-statistics 263
15.4.3 Augmentation procedures 265
15.4.4 Association of expression measures and tumor

molecular subtype: Multi-sample F -statistics . . . 266
15.4.5 Association of expression measures and time to

relapse: Cox t-statistics 268
15.5 Discussion . 270

16 Machine Learning Concepts and Tools for Statistical
Genomics 273
V. J. Carey
16.1 Introduction . 273
16.2 Illustration: Two continuous features; decision regions . . 274
16.3 Methodological issues . 276

16.3.1 Families of learning methods 276
16.3.2 Model assessment 281
16.3.3 Metatheorems on learner and feature selection . . 283
16.3.4 Computing interfaces 284

16.4 Applications . 285
16.4.1 Exploring and comparing classifiers with the ALL

data . 285
16.4.2 Neural net initialization, convergence, and tuning . 287
16.4.3 Other methods . 287
16.4.4 Structured cross-validation support 288
16.4.5 Assessing variable importance 289
16.4.6 Expression density diagnostics 289

16.5 Conclusions . 291

17 Ensemble Methods of Computational Inference 293
T. Hothorn, M. Dettling, and P. Bühlmann
17.1 Introduction . 293
17.2 Bagging and random forests 295
17.3 Boosting . 296
17.4 Multiclass problems . 298
17.5 Evaluation . 298
17.6 Applications: tumor prediction 300

17.6.1 Acute lymphoblastic leukemia 300
17.6.2 Renal cell cancer . 303

17.7 Applications: Survival analysis 307
17.8 Conclusion . 310

18 Browser-based Affymetrix Analysis and Annotation 313

xiv Contents

C.A. Smith
18.1 Introduction . 313

18.1.1 Key user interface features 314
18.2 Deploying webbioc . 315

18.2.1 System requirements 315
18.2.2 Installation . 315
18.2.3 Configuration . 316

18.3 Using webbioc . 317
18.3.1 Data Preprocessing 317
18.3.2 Differential expression multiple testing 318
18.3.3 Linked annotation meta-data 320
18.3.4 Retrieving results 321

18.4 Extending webbioc . 322
18.4.1 Architectural overview 322
18.4.2 Creating a new module 324

18.5 Conclusion . 326

IV Graphs and networks 327

19 Introduction and Motivating Examples 329
R. Gentleman, W. Huber, and V. J. Carey
19.1 Introduction . 329
19.2 Practicalities . 330

19.2.1 Representation . 330
19.2.2 Algorithms . 330
19.2.3 Data Analysis . 331

19.3 Motivating examples . 331
19.3.1 Biomolecular Pathways 331
19.3.2 Gene ontology: A graph of concept-terms 333
19.3.3 Graphs induced by literature references and

citations . 334
19.4 Discussion . 336

20 Graphs 337
W. Huber, R. Gentleman, and V. J. Carey
20.1 Overview . 337
20.2 Definitions . 338

20.2.1 Special types of graphs 341
20.2.2 Random graphs . 343
20.2.3 Node and edge labeling 344
20.2.4 Searching and related algorithms 344

20.3 Cohesive subgroups . 344
20.4 Distances . 346

Contents xv

21 Bioconductor Software for Graphs 347
V. J. Carey, R. Gentleman, W. Huber, and J. Gentry
21.1 Introduction . 347
21.2 The graph package . 348

21.2.1 Getting started . 349
21.2.2 Random graphs . 352

21.3 The RBGL package . 352
21.3.1 Connected graphs 355
21.3.2 Paths and related concepts 357
21.3.3 RBGL summary . 360

21.4 Drawing graphs . 360
21.4.1 Global attributes 363
21.4.2 Node and edge attributes 363
21.4.3 The function agopen and the Ragraph class 365
21.4.4 User-defined drawing functions 366
21.4.5 Image maps on graphs 368

22 Case Studies Using Graphs on Biological Data 369
R. Gentleman, D. Scholtens, B. Ding, V. J. Carey, and W. Huber
22.1 Introduction . 369
22.2 Comparing the transcriptome and the interactome 370

22.2.1 Testing associations 371
22.2.2 Data analysis . 373

22.3 Using GO . 374
22.3.1 Finding interesting GO terms 375

22.4 Literature co-citation . 378
22.4.1 Statistical development 380
22.4.2 Comparisons of interest 382
22.4.3 Examples . 382

22.5 Pathways . 387
22.5.1 The graph structure of pathways 388
22.5.2 Relating expression data to pathways 390

22.6 Concluding remarks . 393

V Case studies 395

23 limma: Linear Models for Microarray Data 397
G.K. Smyth
23.1 Introduction . 397
23.2 Data representations . 398
23.3 Linear models . 399
23.4 Simple comparisons . 400
23.5 Technical Replication . 403
23.6 Within-array replicate spots 406

xvi Contents

23.7 Two groups . 407
23.8 Several groups . 409
23.9 Direct two-color designs . 411
23.10 Factorial designs . 412
23.11 Time course experiments 414
23.12 Statistics for differential expression 415
23.13 Fitted model objects . 417
23.14 Preprocessing considerations 418
23.15 Conclusion . 420

24 Classification with Gene Expression Data 421
M. Dettling
24.1 Introduction . 421
24.2 Reading and customizing the data 422
24.3 Training and validating classifiers 423
24.4 Multiple random divisions 426
24.5 Classification of test data 428
24.6 Conclusion . 429

25 From CEL Files to Annotated Lists of Interesting Genes 431
R.A. Irizarry
25.1 Introduction . 431
25.2 Reading CEL files . 432
25.3 Preprocessing . 432
25.4 Ranking and filtering genes 433

25.4.1 Summary statistics and tests for ranking 434
25.4.2 Selecting cutoffs . 437
25.4.3 Comparison . 437

25.5 Annotation . 438
25.5.1 PubMed abstracts 439
25.5.2 Generating reports 441

25.6 Conclusion . 442

A Details on selected resources 443
A.1 Data sets . 443

A.1.1 ALL . 443
A.1.2 Renal cell cancer . 443
A.1.3 Estrogen receptor stimulation 443

A.2 URLs for projects mentioned 444

References 445

Index 465

List of Contributors

B. M. Bolstad, Department of Statistics, University of California, Berkeley,
CA, USA

J. Brettschneider, Department of Statistics, University of California, Berke-
ley, CA, USA

P. Buhlmann, Swiss Federal Institute of Technology, Zürich, CH

V. J. Carey, Channing Laboratory, Brigham and Women’s Hospital, Har-
vard Medical School, Boston, MA, USA

F. Collin, Department of Statistics, University of California, Berkeley, CA,
USA

L. Cope, Division of Oncology Biostatistics, The Sidney Kimmel Compre-
hensive Cancer Center, Johns Hopkins Medical School, Baltimore, MD,
USA

M. Dettling, Division of Oncology and Biostatistics, The Sidney Kimmel
Comprehensive Cancer Center, Johns Hopkins Medical School, Baltimore,
MD, USA

B. Ding, Medical Affairs Biostatistics, Amgen Inc., Thousand Oaks, CA,
USA

S. Dudoit, Department of Biostatistics, University of California, Berkeley,
CA, USA

L. Gautier, Independent investigator, Copenhagen, DK

R. Gentleman, Program in Computational Biology, Fred Hutchinson Can-
cer Research Center, Seattle, WA, USA

0. Contributors xix

K. Simpson, The Walter and Eliza Hall Institute of Medical Research, Mel-
bourne, Australia

C. A. Smith, Department of Molecular Biology, The Scripps Research In-
stitute, La Jolla, CA, USA

G. K. Smyth, The Walter and Eliza Hall Institute of Medical Research,
Melbourne, Australia

T. P. Speed, Department of Statistics, University of California, Berkeley,
CA, USA

D. Temple Lang, Department of Statistics, University of California, Davis,
CA, USA

M. J. van der Laan, Department of Biostatistics, University of California,
Berkeley, CA, USA

A. von Heydebreck, Global Technologies, Merck KGaA, Darmstadt, FRG

Z. Wu, Department of Biostatistics, Johns Hopkins Bloomberg School of
Public Health, Baltimore, MD, USA

Y. H. Yang, Department of Biostatistics, University of California, San Fran-
cisco, CA, USA

J. Zhang, Department of Medical Oncology, Dana-Farber Cancer Institute,
Boston, MA, USA

Part I

Preprocessing data from
genomic experiments

1

Preprocessing Overview

W. Huber, R. A. Irizarry, and R. Gentleman

Abstract
In this chapter, we give a brief overview of the tasks of microarray

data preprocessing. There are a variety of microarray technology
platforms in use, and each of them requires specific considerations.
These will be described in detail by other chapters in this part of the
book. This overview chapter describes relevant data structures, and
provides with some broadly applicable theoretical background.

1.1 Introduction

Microarray technology takes advantage of hybridization properties of nu-
cleic acid and uses complementary molecules attached to a solid surface,
referred to as probes, to measure the quantity of specific nucleic acid tran-
scripts of interest that are present in a sample, referred to as the target.
The molecules in the target are labeled, and a specialized scanner is used to
measure the amount of hybridized target at each probe, which is reported as
an intensity. Various manufacturers provide a large assortment of different
platforms. Most manufacturers, realizing the effects of optical noise and
non-specific binding, include features in their arrays to directly measure
these effects. The raw or probe-level data are the intensities read for each
of these components. In practice, various sources of variation need to be
accounted for, and these data are heavily manipulated before one obtains
the genomic-level measurements that most biologists and clinicians use in
their research. This procedure is commonly referred to as preprocessing.

The different platforms can be divided into two main classes that are
differentiated by the type of data they produce. The high-density oligonu-
cleotide array platforms produce one set of probe-level data per microarray
with some probes designed to measure specific binding and others to mea-
sure non-specific binding. The two-color spotted platforms produce two sets

4 W. Huber et al.

of probe-level data per microarray (the red and green channels), and lo-
cal background noise levels are measured from areas in the glass slide not
containing probe.

Despite the differences among the different platforms, there are some
tasks that are common to all microarray technology. These tasks are de-
scribed in Section 1.2. The data structures needed to effectively preprocess
microarray data are described in Section 1.3. In Section 1.4 we present sta-
tistical background that serves as a mathematical framework for developing
preprocessing methodology. Detailed description of the preprocessing tasks
for this platforms are described in Chapters 2 and 3. The specifics for the
two-color spotted platforms are described in Chapter 4. Chapters 5 and 6
describe preprocessing methodology for related technologies where similar
principles apply.

1.2 Tasks

Preprocessing can be divided into 6 tasks: image analysis, data import,
background adjustment, normalization, summarization, and quality assess-
ment. Image analysis permits us to convert the pixel intensities in the
scanned images into probe-level data. Flexible data import methods are
needed because data come in different formats and are often scattered
across a number of files or database tables from which they need to be
extracted and organized. Background adjustment is essential because part
of the measured probe intensities are due to non-specific hybridization and
the noise in the optical detection system. Observed intensities need to be
adjusted to give accurate measurements of specific hybridization. With-
out proper normalization, it is impossible to compare measurements from
different array hybridizations due to many obscuring sources of variation.
These include different efficiencies of reverse transcription, labeling, or hy-
bridization reactions, physical problems with the arrays, reagent batch
effects, and laboratory conditions. In some platforms, summarization is
needed because transcripts are represented by multiple probes. For each
gene, the background adjusted and normalized intensities need to be sum-
marized into one quantity that estimates an amount proportional to the
amount of RNA transcript. Quality assessment is an important procedure
that detects divergent measurements beyond the acceptable level of ran-
dom fluctuations. These data are usually flagged and not used, or down
weighted, in subsequent statistical analyses.

The complex nature of microarray data and data formats makes it nec-
essary to have flexible and efficient statistical methodology and software.
This part of the book describes what Bioconductor has to offer in this ca-
pacity. In the rest of this section, we describe prerequisites necessary to
perform these tasks and two general approaches to preprocessing.

1. Preprocessing Overview 5

1.2.1 Prerequisites

A number of important steps are involved in the generation of the raw data.
The experimental design includes the choice and collection of samples (tis-
sue biopsies or cell lines exposed to different treatments); the choice of
probes and array platform; the choice of controls, RNA extraction, amplifi-
cation, labeling, and hybridization procedures; the allocation of replicates;
and the scheduling of the experiments. The experimental design must take
into account technical, logistic, and financial boundary conditions. Its qual-
ity determines to a large extent the utility of the data. A fundamental
guideline is the avoidance of confounding between different biological fac-
tors of interest or between a biological factor of interest and a technical
factor that is anticipated to affect the measurements. The experiment then
has to be carried out, which requires great skill and expertise.

In the image analysis step, we extract probe intensities out of the scanned
images containing pixel-level data. The arrays are scanned by the detector
at a high spatial resolution to produce a digitized image in which each probe
is represented by dozens of pixels. To obtain a single overall intensity value
for each probe, the associated pixels need to be identified (segmentation)
and their intensities summarized (quantification). In addition to the overall
probe intensity, further auxiliary quantities may be calculated, such as an
estimate of apparent unspecific “local background” intensity, or spot qual-
ity measures. Various software packages offer different segmentation and
quantification methods. They differ in their robustness against irregulari-
ties and in the amount of human interaction that they require. The different
platforms present different problems which implies that the types of image
analysis algorithms used are quite different. Currently, Bioconductor does
not offer image processing software. Thus, the user will need alternative
software to process the image pixel-level data. However, import functions
that are compatible with most of the existing image analysis products are
available. For an evaluation of image analysis methods for two-color spot-
ted arrays see, for example, the study of Yang et al. (2002a). Details on
image analysis methodology for high-density oligonucleotide arrays were
described by Schadt et al. (2001).

1.2.2 Stepwise and integrated approaches

The stepwise approach to microarray data preprocessing starts with probe-
level data as input, performs the tasks sequentially and produces an
expression matrix as output. In this matrix, rows correspond to gene
transcripts, columns to conditions, and each element represents the abun-
dance or relative abundance of a transcript. Subsequent biological analyses
work off the expression matrix and generally do not consider the statis-
tical manipulations performed on the probe-level data. The preprocessing
task are divided into a set of sequential instructions: for example, subtract

6 W. Huber et al.

the background, then normalize the intensities, then summarize replicate
probes, then summarize replicate arrays. The modularity of this approach
allows us to structure the analysis work-flow. Software, data structures, and
methodology can be easily re-used. For example, the same machine learning
algorithm can be applied to an expression matrix irrespective of whether the
data were obtained on high-density oligonucleotide chips or two-color spot-
ted arrays. A potential disadvantage of the stepwise approach is that each
step is independently optimized without considering the effect of previous
or subsequent steps. This could lead to sub-optimal bottom-line results.

In contrast, integrated approaches solve specific problems by carrying
out the analysis in one unified estimation procedure. This approach has
the potential of using the available data more efficiently. For example,
rather than calculating an expression matrix, one might fit an ANOVA-
type linear model to the probe-level data, which includes both technical
covariates, such as dye and sample effects, and biological covariates, such
as treatment effects (Kerr et al., 2000). In the affyPLM package, the weight-
ing and summarization of the multiple probes per transcript on Affymetrix
chips is integrated with the detection of differential expression. Another ex-
ample is the vsn method (Huber et al., 2002), which integrates background
subtraction and normalization in a non-linear model.

Stepwise approaches are often presented as modular data processing
pipelines; integrated approaches are motivated by statistical models with
parameters representing quantities of interest. In practice, data analysts
will often choose to use a combination of both approaches. For example,
a researcher may start with the stepwise approach and do a first round of
high-level analyses that motivates an integrated approach that is applied to
obtain final results. Bioconductor software allows users to explore, adapt,
and combine stepwise and integrated methods.

1.3 Data structures

1.3.1 Data sources

The basic data types that we deal with in microarray data preprocessing
are probe and background intensities, probe annotations, array layout, and
sample annotations. Typically, they come in the form of rectangular tables,
stored either in flat files or in a database server. The probe intensities
are the result of image processing. The format in which they are reported
varies between different vendors of image processing software. Examples
are discussed in Sections 2 and 4.

The probe annotations are usually provided by the organization that se-
lected the probes for the array. This may be a commercial vendor, another
laboratory, or the experimenters themselves. For high-density oligonu-
cleotide arrays, the primary annotation is the sequence. In addition, there

1. Preprocessing Overview 7

may be a database identifier of the gene transcript that the probe is in-
tended to match and possibly the exact location. Often, the probe sequences
are derived from cDNA sequence clusterings such as Unigene (Pontius et al.,
2003). For spotted cDNA arrays, the primary probe identifier is often a
clone ID in a nucleotide sequence database. The largest public nucleotide
sequence databases are EMBL in Europe, DDBJ in Japan, and Genbank
in the United States. Through a system of cross-mirroring, their contents
are essentially equivalent. These databases contain full or partial sequences
of a large number of expressed sequences. Their clone identifiers can be
mapped to genomic databases such as Entrez Gene, H-inv, or Ensembl.
Further annotations of the genes that are represented by the probes are
provided by various genomic database, for example genomic locus, dis-
ease associations, participation in biological processes, molecular function,
cellular localization. This will be discussed in Part II of the book.

The array layout is provided by the organization that produced the
array. As a minimum, the layout specifies the physical position of each
probe on the array. In principle, this can be done through its x- and y-
coordinates. For spotted arrays, it is customary to specify probe coordinates
through three coordinates: block, row, and column, where the block coordi-
nate addresses a particular sub-sector of the array, and the row and column
coordinates address the probe within that sub-sector. Details are discussed
in Sections 2 and 4.

The sample annotations describe the labeled cDNA that has been hy-
bridized to the array. This includes technical information on processing
protocols (e.g., isolation, amplification, labeling, hybridization) as well as
the biologically more interesting covariates such as treatment conditions
and harvesting time points for cell lines or histopathological and clinical
data for tissue biopsies and the individuals that the biopsies originated
from. A table containing this information can sometimes be obtained from
the laboratory information management system (LIMS) of the lab that
performed the experiments. Sometimes, it is produced ad hoc with office
spreadsheet software.

1.3.2 Facilities in R and Bioconductor

Specific data structures and functions for the import and processing of
data from different experimental platforms are provided in specialized pack-
ages. We will see a number of examples in the subsequent sections. A more
general-purpose data structure to represents the data from a microarray
experiment is provided by the class exprSet in the package Biobase.

The design of the exprSet class supports the stepwise approach to mi-
croarray preprocessing, as discussed in Section 1.2. This class represents a
self-documenting data structure, with data separated into logically distinct
but substantively interdependent components. Our primary motivation was
to link together the large expression arrays with the phenotypic data in such

8 W. Huber et al.

a way that it would be easy to further process the data. Ensuring correct
alignment of data when subsets are taken or when resampling schemes are
used should be left to well-designed computer code and generally should
not be done by hand.

The general premise is that there is an array, or a set of arrays, that
are of interest. The exprSet structure imposes an order on the sample-
specific expression measures in the set, provides convenient access to probe
and sample identifier codes, allows coordinated management of standard
errors of expression, and couples to this expression information sample-
and experiment-level information, following the MIAME standard (Brazma
et al., 2001). This data structure is straightforwardly employed with data
from single-channel experiments, for ratio quantities derived from double-
channel experiments, and for protein mass-spectrometry data. It can be
extended, using formal inheritance infrastructure, to accommodate other
output formats. One advantage to the use of exprSets is demonstrated in
Chapter 16 where we describe the use of a uniform calling sequence for many
machine learning algorithms (package MLInterfaces). This greatly simplifies
individual users’ interactions and will simplify the design and construc-
tion of graphical user interfaces. Establishment of a standardized calling
paradigm is most simply accomplished when there are structural standards
for the inputs. Both users and developers will profit from closer acquain-
tance with the exprSet structure, especially those who are contemplating
complex downstream workflows.

1.4 Statistical background

The purpose of this section is to provide a general statistical framework
for the following components of preprocessing: background adjustment,
normalization, summarization, and quality assessment. More specific is-
sues relating to the individual technological platforms will be discussed in
Chapters 2–4.

With a microarray experiment, we aim to make statements about the
abundances of specific molecules in a set of biological samples. However,
the quantities that we measure are the fluorescence intensities of the differ-
ent elements of the array. The measurement process consists of a cascade of
biochemical reactions and an optical detection system with a laser scanner
or a CCD camera. Biochemical reactions and detection are performed in
parallel, allowing up to a million measurements on one array. Subtle varia-
tions between arrays, the reagents used, and the environmental conditions
lead to slightly different measurements even for the same sample.

The effects of these variations may be grouped in two classes: systematic
effects, which affect a large number of measurements (for example, the mea-
surements for all probes on one array; or the measurements from one probe

1. Preprocessing Overview 9

across several arrays) simultaneously. Such effects can be estimated and ap-
proximately removed. Other kinds of effects are completely random, with
no well-understood pattern. These effects are commonly called stochastic
components or noise.

Stochastic models are useful for preprocessing because they permit us
to find optimal estimates of the systematic effects. We are interested in
estimates that are precise and accurate. However, given the noise structure
of the data, we sometimes have to sacrifice accuracy for better precision
and vice versa. An appropriate stochastic model will aid in understanding
the accuracy-precision, or bias-variance, trade-off.

Stochastic models are also useful for construction of inferential state-
ments about experimental results. Consider an experiment in which we
want to compare gene expression in the colons of mice that were treated
with a substance and mice that were not. If we have many measurements
from two populations being compared, we can, for example, perform a
Wilcoxon test to obtain a p-value for each transcript of interest. But often
it is not possible, too expensive, or unethical, to obtain so many replicate
measurements for all genes and for all conditions of interest. Often, it is
also not necessary. Models that provide good approximations of reality can
add power to our statistical results.

Quality assessment is yet another example of the usefulness of stochas-
tic models: if the distribution of a new set of data greatly deviates from
the model, this may direct our attention to quality issues with these
data. Chapter 3 demonstrates an example of the use of models for quality
assessment.

1.4.1 An error model

A generic model for the value of the intensity y of a single probe on a
microarray is given by

Y = B + αS (1.1)

where B is a random quantity due to background noise, usually composed
of optical effects and non-specific binding, α is a gain factor, and S is the
amount of measured specific binding. The signal S is considered a random
variable as well and accounts for measurement error and probe effects. The
measurement error is typically assumed to be multiplicative so we write:

log(S) = θ + φ + ε. (1.2)

Here θ represents the logarithm of the true abundance, φ is a probe-specific
effect, and ε accounts for measurement error. This is the additive-
multiplicative error model for microarray data, which was first proposed
by Rocke and Durbin (2001) and in a closely related form by Ideker et al.
(2000).

10 W. Huber et al.

6 8 10 12 14 16

0.
0

0.
4

0.
8

log2(intensity)

de
ns

ity

1 2 3 4 5 6

6
8

10
12

14

array

lo
g 2

(in
te

ns
ity

)

a) b)

Figure 1.1. a) Density estimates of data from six replicate Affymetrix arrays. The
x-axis is on a logarithmic scale (base 2). b) Box-plots.

Different arrays will have different distributions of B and different values
of α, resulting in quite different distributions of the values of Y even if
S is the same. To see this, let us look at the empirical distribution of six
replicate Affymetrix arrays.

> library("affy")

> library("SpikeInSubset")

> data("spikein95")

> hist(spikein95)

> boxplot(spikein95)

The resulting plots are shown in Figure 1.1.
Part of the task of preprocessing is to eliminate the effect of background

noise. Notice in Figure 1.1 that the smallest values attained are around
64, with slight differences between the arrays. We know that many of the
probes are not supposed to be hybridizing to anything (as not all genes
are expressed), so many measurements should indeed be 0. A bottom line
effect of not appropriately removing background noise is that estimates of
differential expression are biased. Specifically, the ratios are attenuated to-
ward 1. This can be seen using the Affymetrix spike-in experiment, where
genes were spiked in at known concentrations. Figure 1.2a shows the ob-
served concentrations versus nominal concentrations of the spiked-in genes.
Measurements with smaller nominal concentrations appear to be affected
by attenuation bias. To see this, notice that the curve has a slope of about
1 for high nominal concentrations but gets flat as the nominal concen-
tration gets closer to 0. This is consistent with the additive background
noise model (1.1). Mathematically, it is easy to see that if s1/s2 is the
true ratio and b1 and b2 are approximately equal positive numbers, then
(s1 + b1)/(s2 + b2) is closer to 1 than the true ratio, and the more so the
smaller the absolute values of the si are compared to the bi.

1. Preprocessing Overview 11

−2 0 2 4 6 8

6

8

10

12

14

Nominal Log (Base 2) Concentration

Lo
g

(B
as

e
2)

 P
M

 In
te

ns
ity

−3 −2 −1 0 1 2 3

5
6

7
8

9

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

a) b)

Figure 1.2. a) Plot of observed against nominal concentrations. Both axes are
on the logarithmic scale (base 2). The curve represents the average value of all
probes at each nominal concentration. Nominal concentrations are measured in
picomol. b) Normal quantile-quantile plot of the logarithmic (base 2) intensities
for all probes with the same nominal concentration of 1 picomol.

Figure 1.2b shows a normal quantile-quantile plot of logarithmic inten-
sities of probes for genes with the same nominal concentration. Note that
these appear to roughly follow a normal distribution. Figure 1.2 supports
the multiplicative error assumption of model 1.1.

1.4.2 The variance-bias trade-off

A typical problem with many preprocessing algorithms is that much pre-
cision is sacrificed to remove background effects and improve accuracy.
Model (1.1) can be used to show that subtracting unbiased estimates of
background effects leads to exaggerated variance for genes with small val-
ues of a. In fact, background estimates that are often used in practice, such
as the “local background values” from many image analysis programs for
two-color spotted arrays and the mismatch (MM) value from Affymetrix
arrays, tend to be over -estimates, which makes the problem even worse.

Various researchers have used models similar to Equation (1.1) to de-
velop preprocessing algorithms that improve both accuracy and precision
in a balanced way. Some of these methods propose variance stabilizing
transformations (Durbin et al., 2002; Huber et al., 2002, 2004), others use
estimation procedures that improve mean squared error (Irizarry et al.,
2003b). Some examples will be provided in Chapters 2 and 4.

1.4.3 Sensitivity and specificity of probes

The probes on a microarray are intended to measure the abundance of
the particular transcript that they are assigned to. However, probes may

12 W. Huber et al.

differ in terms of their sensitivity and specificity. This fact is represented
by the existence of φ in model (1.2). Here, sensitivity means that a probe’s
fluorescence signal indeed responds to changes in the transcript abundance;
specificity, that it does not respond to other transcripts or other types of
perturbations.

Probes may lack sensitivity. Some probes initially identified with a gene
do not actually hybridize to any of its products. Some probes will have been
developed from information that has been superseded. In some cases, the
probe may correspond to a different gene or it may in fact not represent
any gene. There is also the possibility of human error (Halgren et al., 2001;
Knight, 2001).

A potential problem especially with short oligonucleotide technology is
that the probes may not be specific, that is, in addition to matching the
intended transcript, they may also match some other gene(s). In this case,
we expect the observed intensity to be a composite from all matching tran-
scripts. Note that here we are limited by the current state of knowledge
of the human transcriptome. As our knowledge improves, the information
about sensitivity of probes should also improve.

1.5 Conclusion

Various academic groups have demonstrated that the use of modern sta-
tistical methodology can substantially improve accuracy and precision of
bottom-line results, relative to ad hoc procedures introduced by designers
and manufacturers of the technology. In the following chapters, we provide
some details of how Bioconductor tools can be used to do this, not only in
microarray platforms, but also in other related technologies.

2

Preprocessing High-density
Oligonucleotide Arrays

B. M. Bolstad, R. A. Irizarry, L. Gautier, and
Z. Wu

Abstract
High-density oligonucleotide expression arrays are a widely used

microarray platform. Affymetrix GeneChip arrays dominate this
market. An important distinction between the GeneChip and other
technologies is that on GeneChips, multiple short probes are used
to measure gene expression levels. This makes preprocessing par-
ticularly important when using this platform. This chapter begins
by describing how to import probe-level data into the system and
how these data can be examined using the facilities of the AffyBatch
class. Then we will describe background adjustment, normalization,
and summarization methods. Functionality for GeneChip probe-level
data is provided by the affy, affyPLM, affycomp, gcrma, and affypdnn
packages. All these tools are useful for preprocessing probe-level data
stored in an AffyBatch object into expression-level data stored in an
exprSet object. Because there are many competing methods for this
preprocessing step, it is useful to have a way to assess the differences.
In Bioconductor, this can be carried out using the affycomp package,
which we discuss briefly.

2.1 Introduction

The most popular microarray application is measuring genome-wide expres-
sion levels. High-density oligonucleotide expression arrays are a commonly
used technology for this purpose. Affymetrix GeneChip arrays dominate
this market. In this platform, the choice of preprocessing method can have
enormous influence on the quality of the ultimate results. Many prepro-
cessing methods have been proposed for high-density oligonucleotide array
data. In this chapter, we discuss methodology and Bioconductor tools

14 B.M. Bolstad et al.

that are useful for preprocessing Affymetrix GeneChip probe-level data.
However, many of the procedures described here apply to high-density
oligonucleotide platforms in general.

A number of mass-produced arrays or array sets are commercially avail-
able from Affymetrix. These include arrays for the organisms human,
mouse, rat, arabidopsis, Drosophila, yeast, zebrafish, canine, and E. coli.
It is also possible to purchase custom arrays with user-specified sequences
on the array. However, there are no substantive differences in the processing
of the data from the chips, so the discussion here is applicable regardless
of the organism being studied.

For more details about the GeneChip platform, we refer the reader to
the Affymetrix Web site and general overviews provided by Lipshutz et al.
(1999) and Warrington et al. (2000). For detailed information about sample
preparation, hybridization, scanning, and basic default analysis, see the
Affymetrix Microarray Suite Users Guide (Affymetrix, b) and the GeneChip
Expression Analysis Technical Manual (Affymetrix, c). To learn about an
alternative high-density oligonucleotide technology, we refer the reader to
an overview of Nimblegen arrays (Singh-Gasson et al., 1999).

Affymetrix GeneChip arrays use short oligonucleotides to probe for genes
in an RNA sample. Genes are represented by a set of oligonucleotide probes
each with a length of 25 bases. Because of their short length, multiple probes
are used to improve specificity. Affymetrix arrays typically use between 11
and 20 probe pairs, referred to as a probeset , for each gene. One component
of these pairs is referred to as a perfect match probe (PM) and is designed to
hybridize only with transcripts from the intended gene (specific hybridiza-
tion). However, hybridization to the PM probes by other mRNA species
(non-specific hybridization) is unavoidable. Therefore, the observed inten-
sities need to be adjusted to be accurately quantified. The other component
of a probe pair, the mismatch probe (MM), is constructed with the inten-
tion of measuring only the non-specific component of the corresponding PM
probe. Affymetrix’s strategy is to make MM probes identical to their PM
counterpart except that the 13-th base is exchanged with its complement.

The outline for this chapter is as follows. First, in Section 2.2, we describe
methods for importing and accessing the probe-level data. In Section 2.3,
we describe background adjustment and normalization procedures. Next,
in Section 2.4 we describe different methods available for summarization. In
Section 2.5 we describe tools for assessment and comparison of preprocess-
ing methodology. Finally, in Section 2.6, we give some concluding remarks.
Chapter 3 then addresses the important subject of quality assessment.

2. Preprocessing HDO Arrays 15

2.2 Importing and accessing probe-level data

In the Affymetrix system, the raw image data are stored in so-called DAT
files. Currently, Bioconductor software does not handle the image data, and
the starting point for most analyses are the CEL files. These are the result
of processing the DAT files using Affymetrix software to produce estimated
probe intensity values. Each CEL file contains data on the intensity at each
probe on the GeneChip, as well as some other quantities.

2.2.1 Importing

To import CEL file data into the Bioconductor system, we use the ReadAffy

function. A typical invocation is:

> library("affy")

> Data <- ReadAffy()

which will attempt to read all the CEL files in the current working direc-
tory and return the probe-level data in an object of class AffyBatch. The
AffyBatch class is described in Section 2.2.2. The function list.celfiles()

can be used to show the CEL files that are located in your current working
directory. Note that the functions getwd and setwd can be used for getting
and setting the working directory. If a specific set of CEL files are to be
read, the filenames argument of ReadAffy should be supplied. If the widget

argument is set TRUE, a graphical user interface can be used to choose files
and enter sample information.

Affymetrix provides probe information in what are referred to as CDF
files. These files denote which probe belongs to which probeset and whether
the probe is a PM or MM. Bioconductor offers the information via ready
made CDF packages, which work in conjunction with the AffyBatch class
and are available for most mass produced chips. The affy package is designed
to automatically load a CDF package when it is needed; when the package
does not exist on the users system, it will attempt to download and install
it. For custom arrays, the package makecdfenv can be used to transform the
Affymetrix provided CDF files into a suitable R package. The information
in the CDF file can be imported into R using the read.cdffile function
from the makecdfenv package.

2.2.2 Examining probe-level data

The AffyBatch object is a container for storing probe-level data and related
phenotypic information for a particular experiment. It extends the exprSet
class described in Chapter 1. The main difference is that instead of con-
taining an expression-level matrix, the AffyBatch class stores a probe-level
intensity matrix. The cdfName component of the AffyBatch class contains a

16 B.M. Bolstad et al.

character string denoting which CDF package should be used to map the
probe to probesets.

The affy package provides a number of methods for the AffyBatch class
that permit the close examination of probe-level data. We provide various
examples based on the Dilution data available in the affydata package.
This data set represents a small part of a large Dilution experiment. More
information about the experiment can be found by accessing its help page
through typing

> ? Dilution

To load the data, we can use the following code.

> library("affydata")

> data(Dilution)

The pm and mm accessor functions return the PM and MM probe intensi-
ties. A useful feature is the ability to access the probe intensities for one or
several probesets by providing the name (or a vector of names) as a second
argument in the call to the accessor function. To see the intensities of the
first three probes in the probeset with ID 1000 at, we can use:

> pm(Dilution, "1001_at")[1:3,]

20A 20B 10A 10B

1001_at1 129 93.8 130 73.8

1001_at2 223 129.0 174 112.8

1001_at3 194 146.8 155 93.0

If no probeset name is specified, then a matrix containing all the PM probe
intensities is returned. To associate rows of the matrix with probesets, the
function probeNames returns a vector of probeset IDs where the ith entry
corresponds to the ith row of the PM matrix. The same conventions apply
to the mm methods. The functions sampleNames and geneNames access the
names of the samples and Affymetrix probeset IDs stored in the AffyBatch
object, respectively.

The probe-response pattern for a particular probesets can be examined
visually by plotting the probe intensities across probes or across arrays.
Such plots are shown in Figure 2.1. The code follows:

> matplot(pm(Dilution, "1001_at"), type = "l", xlab = "Probe No.",

+ ylab = "PM Probe intensity")

> matplot(t(pm(Dilution, "1001_at")), type = "l",

+ xlab = "Array No.", ylab = "PM Probe intensity")

The phenoData slot of the AffyBatch class is where phenotypic data is
stored. The function pData can be used to access this information.

> pData(Dilution)

liver sn19 scanner

20A 20 0 1

2. Preprocessing HDO Arrays 17

5 10 15

10
0

20
0

30
0

40
0

Probe No.

P
M

 P
ro

be
 in

te
ns

ity

10
0

20
0

30
0

40
0

Array No.

P
M

 P
ro

be
 in

te
ns

ity

1 2 3 4

a) b)

Figure 2.1. Examining the probe response pattern for a particular probeset a)
across probe or b) across arrays.

20B 20 0 2

10A 10 0 1

10B 10 0 2

For the Dilution, object we see that the phenotypic data consists of the
concentrations of RNA from two different samples, obtained from liver and
central nervous system total RNA, along with the ID of the scanner used.
For the four arrays (20A, 20B, 10A and 10B) in the Dilution data set, all
entries in the sn19 columns are zero, indicating that no central nervous
system RNA was used. The A samples were scanned using scanner 1, and
the B samples were scanned using scanner 2. The 10 and 20 in the sample
names represent the concentration of RNA used.

To examine probe intensity behavior for a number of different arrays
we can use the hist and boxplot methods. Applying these methods to
an instance of AffyBatch produces plots such as those in Figure 1.1 of
Chapter 1. In general, these boxplots are useful for identifying differences
in the level of raw probe-intensities between arrays. Differences between
arrays in the shape or center of the distribution often highlight the need
for normalization.

The MA-plot of two vectors Y1 and Y2 is a 45-degree rotation and axis
scaling of their scatter plot. Instead of Y2,j versus Y1,j for j = 1, . . . , J ,
we plot Mj = Y2,j − Y1,j versus Aj = (Y2,j + Y1,j)/2. If Y1 and Y2 are
logarithmic expression values, then this plot is particularly useful for mi-
croarray data, because Mj will represent the log fold change for gene j, and
Aj will represent average log intensity for that gene, and both quantities
are of interest. The affy package provides two methods to create MA-plots:
mva.pairs and MAplot. The mva.pairs function plots all pairwise MA-plots

18 B.M. Bolstad et al.

comparing all arrays in the AffyBatch. When comparing many arrays, it
becomes prohibitive to look at all pairwise comparisons. A more sensible
approach is to examine MA-plots against a reference array, which we can do
using the function MAplot. A reference array is created by taking probe-wise
medians across all the arrays in the AffyBatch, then MA-plots are created
for each array compared to this reference array.

The inter-quartile range (IQR) and median of the M values are displayed
in the plot. Loess curves which differ from the M = 0 axis demonstrate
overall differences in the intensity level between each array and the reference
array. If the assumption that most genes are not differentially expressed
holds, then these curves would ideally be close to a horizontal line at M = 0.
An example of these plots can be seen in Figure 3.3 of Chapter 3. Various
arguments make the MAplot quite flexible. Details are available from the
documentation.

2.3 Background adjustment and normalization

Preprocessing Affymetrix expression arrays usually involves three steps:
background adjustment, normalization, and summarization. Bioconductor
software implements a wide variety of methods for each of these steps. Self-
contained routines for background correction and normalization usually
take an AffyBatch as input and return a processed AffyBatch. Routines
for summarization produce exprSet objects containing expression summary
values. These will be discussed in more details in Section 2.4.

2.3.1 Background adjustment

Many background adjustment methods have been proposed in the microar-
ray literature. In this section we describe the three background adjustment
method that have been implemented in the affy package. The methods
implemented in the gcrma package are described in Section 2.4.4.

RMA convolution. This is an implementation of the background ad-
justment carried out as part of the RMA method developed by Irizarry
et al. (2003b). These authors found various problems with using the MM
probes in the preprocessing steps and proposed a procedure that uses only
the PM intensities. In this procedure, the PM values are corrected, array
by array, using a global model for the distribution of probe intensities. The
model was motivated by the empirical distribution of probe intensities. In
particular the observed PM probes are modeled as the sum of a Gaussian
noise component, B, with mean µ and variance σ2 and an exponential
signal component, S, with mean α. To avoid the possibility of negatives ex-
pression values, the normal distribution is truncated at zero. Given that we
have the observed intensity, Y , then this leads to the following adjustment.

2. Preprocessing HDO Arrays 19

E (S|Y = y) = a + b
φ
(

a
b

)
− φ

(
y−a

b

)
Φ
(

a
b

)
+ Φ

(
y−a

b

)
− 1

, (2.1)

where a = s−µ−σ2α and b = σ. Note that φ and Φ are the standard normal
density and distribution functions, respectively. Although in principle MM
probe intensities could be adjusted by this procedure, this implementation
of RMA’s background adjustment only transforms the PM intensities.

To produce a background adjusted AffyBatch for the Dilution data set,
the following code can be used.

> Dilution.bg.rma <- bg.correct(Dilution, method = "rma")

MAS 5.0 background. This background adjustment method is out-
lined in the Statistical Algorithms Description Document (Affymetrix,
2002) and used in the MAS 5.0 software (Affymetrix, b). The chip is di-
vided into a grid of k (default k = 16) rectangular regions. For each region,
the lowest 2% of probe intensities are used to compute a background value
for that grid. Then each probe intensity is adjusted based upon a weighted
average of each of the background values. The weights are dependent on
the distance between the probe and the centroid of the grid. In particular,
the weights are:

wk (x, y) =
1

d2
k (x, y) + s0

where dk (x, y) is the Euclidean distance from location (x, y) to the centroid
of region k. The default value for the smoothing coefficient s0 is 100. Special
care is taken to avoid negative values or other numerical problems for low-
intensity regions. Note this method corrects both PM and MM probes.
A background adjusted AffyBatch could be produced using the following
code:

> Dilution.bg.mas <- bg.correct(Dilution, method = "mas")

Ideal mismatch. Originally, the suggested purpose of the MM probes
was that they could be used to adjust the PM probes (Affymetrix, a) for
probe-specific non-specific binding by subtracting the intensity of the MM
probe from the intensity of the corresponding PM probes. However, this
becomes problematic because, for data from a typical array, as many as 30%
of MM probes have intensities higher than their corresponding PM probe
(Naef et al., 2001). Thus, when raw MM intensities are subtracted from
the PM intensities many negative expression values result, which makes
little sense, because an expression value should not be below zero. Another
drawback is that the negative values preclude the use of logarithms.

To remedy the negative impact of using raw MM values, Affymetrix
introduced the concept of an Ideal Mismatch (IM) (Affymetrix, 2001),
which was guaranteed, by design, to be smaller than the corresponding

20 B.M. Bolstad et al.

PM intensity. The goal is to use MM when it is physically possible and a
quantity smaller than the PM in other cases. This is done by computing
the specific background, (SB), for each probeset. This is a robust average
of the log ratios of PM to MM for each probe pair in the probeset. If i is
the probe and k is the probeset, then for the probe pair indexed by i and
k the ideal mismatch IM is given by

IM
(k)
i =

⎧⎪⎪⎨⎪⎪⎩
MM

(k)
i when MM

(k)
i < PM

(k)
i ,

PM
(k)
i

2SBk
when MM

(k)
i ≥ PM

(k)
i and SBk > τc,

PM
(k)
i

2τc/(1+(τc−SBk)/τs) when MM
(k)
i ij ≥ PM

(k)
i and SBi ≤ τc,

where τc and τs are tuning constants, referred to as the contrast τ (with
a default value of 0.03) and the scaling τ (with a default value of 10),
respectively. The adjusted PM intensity is obtained by subtracting the
corresponding IM from the observed PM intensity.

2.3.2 Normalization

As described in Chapter 1 normalization refers to the task of manipu-
lating data to make measurements from different arrays comparable. A
comparison and analysis of a number of normalization methods, as applied
to high-density oligonucleotide data, was carried out by Bolstand et al.
(2003). To perform a normalization procedure on an AffyBatch the generic
function normalize may be used. Many methods have been proposed. In
this Section we describe the methods implemented in the affy package.

Scaling. For this normalization method, which is used by Affymetrix in
versions 4.0 and 5.0 of their software (Affymetrix, a,b), a baseline array is
chosen and all the other arrays are scaled to have the same mean intensity
as this array. This is equivalent to selecting a baseline array and then fitting
a linear regression, without an intercept term, between each array and the
chosen array. Then, the fitted regression line is used as the normalizing
relationship. This method is outlined in Table 2.1. One modification is to
remove the highest and lowest intensities when computing the mean, that
is, a trimmed mean is used. Affymetrix removes the highest and lowest 2%
of the data. Affymetrix has proposed using scaling normalization after the
computation of expression values, but it may also be used on probe-level
data. Another modification is to use a target mean value in place of the
mean intensity on the baseline array.

An AffyBatch can be scale normalized using the following code:

> Dilution.norm.scale <- normalize(Dilution, method = "constant")

Non-linear methods. Methods that perform non-linear adjustments
between arrays have been proposed and tend to out-perform linear adjust-
ments such as the scaling method. Numerous non-linear relationships have

2. Preprocessing HDO Arrays 21

Pick a column of X to serve as baseline array, say column j.
Compute the (trimmed) mean of column j. Call this X̃j .
for i = 1 to n, i �= j do

Compute the (trimmed) mean of column i. Call this X̃i.
Compute βi = X̃j/X̃i.
Multiply elements of column i by βi.

end for

Table 2.1. Scaling normalization algorithm.

been proposed including cross-validated splines (Schadt et al., 2001), run-
ning median lines (Li and Wong, 2001b), and loess smoothers (Bolstand
et al., 2003). For a typical implementation, the normalizing relationship is
fitted using a rank-invariant set of points, that is, a set of points that has
same rank ordering on each array.

An outline of the procedure is given in Table 2.2.

Pick a column of X to serve as the baseline array, say column j.
for i = 1 to n, i �= j do

Fit a smooth non-linear relationship mapping column i to the baseline
j. Call this f̂i

Normalized values for column j are given by f̂i (Xj)
end for

Table 2.2. Non-linear normalization algorithm.

Non-linear normalization can be performed using the code below.

> Dilution.norm.nl <- normalize(Dilution, method = "invariantset")

Quantile normalization. The goal of quantile normalization, as dis-
cussed by Bolstand et al. (2003), is to impose the same empirical
distribution of intensities to each array. A quantile-quantile plot will have
a straight diagonal line, with slope 1 and intercept 0, if two data vectors
have the same distribution. Thus, plotting the quantiles of two data vec-
tors against each other and then projecting each point onto the 45-degree
diagonal line yields a transformation that gives the same distribution to
both data vectors.

In n dimensions, a quantile-quantile plot where all data vectors have
the same distribution would have the points lying on the line described by
the vector

(
1√
n
, . . . , 1√

n

)
. This extension to n dimensions motivates the

quantile normalization algorithm described in Table 2.3.
The quantile normalization method is a specific case of the transforma-

tion x′
i = F−1 [G (xi)], where G is estimated by the empirical distribution

of each array and F is the empirical distribution of the averaged sample
quantiles. This transformation is illustrated in Figure 2.2. Extensions of

22 B.M. Bolstad et al.

Given n vectors of length p, form X, of dimension p × n, where each
array is a column.
Sort each column of X separately to give Xs.
Take the mean, across rows, of Xs and create X ′

s, an array of the same
dimension as X, but where all values in each row are equal to the row
means of Xs.
Get Xn by rearranging each column of X ′

s to have the same ordering as
the corresponding input vector.

Table 2.3. Quantile normalization algorithm.

Figure 2.2. The quantile normalization method transforms the distribution of
intensities from one distribution to another.

the method can be implemented where F−1 and G are more smoothly esti-
mated. However, for high-density oligonucleotide data, the current method
has been found to perform satisfactorily in practice.

The quantile normalization method discussed here is not the only nor-
malization method based upon quantiles. Workman et al. (2002) fit splines
to subsets of quantiles to estimate the normalizing relation, Sidorov et al.
(2002) implemented a non-parametric method of giving each array the same
distribution, and Amaratunga and Cabrera (2001) describe a procedure

2. Preprocessing HDO Arrays 23

very similar to quantile normalization. To apply the procedure described
by Bolstand et al. (2003) use the code below.

> Dilution.norm.quantile <- normalize(Dilution,

+ method = "quantiles")

Cyclic loess. The cyclic loess method is a generalization of the global
loess method, which is described in Yang et al. (2002b), where Cy5 and Cy3
channel intensities are normalized on cDNA microarrays by using MA-plots.
When dealing with single-channel array data, it is pairs of arrays that are
normalized to each other. The cyclic loess method normalizes intensities for
a set of arrays by working in a pairwise manner. With only two arrays, the
algorithm is identical to that in Yang et al. (2002b). With more than two
arrays, only part of the adjustment is made. In this case, the procedure
cycles through all pairwise combinations of arrays, repeating the entire
process until convergence. One drawback is that this procedure requires
O
(
n2
)

loess normalizations although usually only one or two complete
cycles through the data are required.

The cyclic loess algorithm is outlined in Table 2.4. The indices i and j in
this algorithm index arrays, and k is used to represent probes or probesets.
Convergence is measured by how much additional adjustment has occurred
on that iteration through the data set. Using a subset of the data to fit
the loess normalization curves can dramatically reduce the computational
burden.

Let X be a p × n matrix with columns representing arrays and rows
probes or probesets.
log transform the data: X ← log X
repeat

for i = 1 to n − 1 do
for j = i + 1 to n do

for k = 1 to p do
Compute Mk = xki − xkj and Ak = 1

2 (xki + xkj)
end for
fit a loess curve for M on A. Call this f̂ .
for k = 1 to p do

M̂k = f̂(AK)
set ak = (Mk − M̂k)/n
xki = xki + ak and xkj = xki − ak

end for
end for

end for
until convergence or the maximum number of iterations is reached
Revert to the original scale X ← exp(X)

Table 2.4. Cyclic Loess Algorithm.

24 B.M. Bolstad et al.

This procedure can be carried out using the affy package by specify the
method to be loess in the call to the normalize function.

> Dilution.norm.loess <- normalize(Dilution, method = "loess")

Contrast normalization. The contrast normalization method, de-
scribed by Astrand (2003), is another generalization of the methods
described by Yang et al. (2002b). In brief, the data are transformed to
a set of contrasts, a non-linear MA-plot normalization is performed, and
then a reverse transformation is applied. It requires only O(n) loess nor-
malizations, which is considerably fewer than with the cyclic loess method.
As with the cyclic loess method, a subset of the data can be used to fit
the loess curves, leading to considerably reduced running times. One way
that the subset may be chosen is to use a rank-invariant set of probes; see
Schadt et al. (2001) for a method to select such a set. Further details about
the algorithm are given by Astrand (2003). The calling sequence is given
below.

> Dilution.norm.contrast <- normalize(Dilution,

+ method = "contrast")

2.3.3 vsn

The vsn method combines background correction and normalization into
one single procedure (Huber et al., 2002, 2003). This is in contrast to the
other methods, which consider background correction and normalization as
separate tasks. A possible advantage of the combined approach is that infor-
mation across arrays can be shared to estimate the background correction
parameters, which are otherwise estimated separately for each array.

For a data matrix xki, with k counting over the probes and i over the
arrays, it fits a normalization transformation

xki �→ hi(xki) = glog
(

xki − ai

bi

)
, (2.2)

where bi is the scale parameter for array i, ai is a background offset, and
glog is the so-called generalized logarithm or attenuated logarithm (Rocke
and Durbin, 2003). One of the nice properties of the glog function is that
with appropriate values of ai and bi, the data from the different arrays are
not just adjusted to each other, but also the variances across replicates are
approximately independent of the mean.

Software for fitting the model (2.2) and applying the transformation is
provided in the vsn package. We can use the following code to normalize
an AffyBatch.

> library("vsn")

> Dil.vsn <- normalize(Dilution, method = "vsn")

2. Preprocessing HDO Arrays 25

The transformation parameters are returned in the preprocessing slot of
the description slot of the returned AffyBatch object, and users are referred
to the manual page of the helper function vsnh and the package vignette
for details.

2.4 Summarization

Summarization is the final stage in preprocessing Affymetrix GeneChip
data. It is the process of combining the multiple probe intensities for each
probeset to produce an expression value. Bioconductor packages provide
a number of functions that carry out summarization to produce gene ex-
pression values. Some of these functions also perform background correction
and normalization. In particular, these functions accept raw probe intensity
data stored in AffyBatch objects and return expression value stored in an
exprSet . Two general functions, expresso and threestep, provide the ability
to produce expression measures using a wide variety of user specified pre-
processing methods. Functions optimized for computing specific expression
measures such as rma, gcrma, and expressopdnn are also available.

2.4.1 expresso

The expresso function provides quite general facilities for computing
expression summary values. In particular it allows most background ad-
justment, normalization, and summarization methods to be combined.
The trade-off is that expresso is often considerably slower than the func-
tions that have been optimized for producing specific expression measures.
The names of background correction, PM correction, and summarization
methods available to expresso can be found by typing bgcorrect.methods

pmcorrect.methods and express.summary.stat.methods, respectively. For ex-
ample, calling the function normalize.methods on an AffyBatch will list the
available normalization methods:

> normalize.methods(Dilution)

[1] "constant" "contrasts" "invariantset"

[4] "loess" "qspline" "quantiles"

[7] "quantiles.robust" "vsn"

To control which background correction, normalization, PM correc-
tion and summarization method is used, the bgcorrect.method, normal-

ize.method, pmcorrect.method, and summary.method arguments should be
used. For instance, suppose we want to calculate an expression summary
where we use the RMA convolution background, a scaling normalization,
and then summarization by averaging the PM probes. The following call
to expresso produces such expression values:

26 B.M. Bolstad et al.

> eset <- expresso(Dilution, bgcorrect.method = "rma",

+ normalize.method = "constant", pmcorrect.method = "pmonly",

+ summary.method = "avgdiff")

An implementation of the PM-only model based expression index de-
veloped by Li and Wong (2001a) can be performed using expresso in this
way:

> eset <- expresso(Dilution, normalize.method = "invariantset",

+ bg.correct = FALSE, pmcorrect.method = "pmonly",

+ summary.method = "liwong")

The reduced model can be obtained by changing the pmcorrect.method to
"subtractMM".

MAS 5.0 expression values (Affymetrix, b) can also be reproduced using
expresso. However the function mas5, a wrapper for expresso, is available:

> eset <- mas5(Dilution)

2.4.2 threestep

The affyPLM package provides the threestep function that provides the
user with a great deal of control and the ability to compute very gen-
eral expression measures. Because threestep is primarily implemented in
compiled code, it is typically faster than expresso. Although there is some
overlap in functionality between the two functions, there are also some ex-
pression measures that may only be computed by one of the functions.
Another difference is that threestep always returns expression measures in
log2 scale, whereas expresso imposes no such restriction.

The background.method, normalize.method, and summary.method argu-
ments of threestep control which preprocessing methods are used at each
stage. For background.method, some of the available methods are RMA.2, the
RMA convolution model; IdealMM, the ideal mismatch; MAS, MAS 5 back-
ground correction; and MASIM, which is the MAS 5 background followed
by the ideal mismatch correction. Normalization options include quan-

tile, quantile.probeset, and scaling. The summarization methods can be
divided into two classes, those that are single array and those that are multi-
array. The single array methods include average.log, averaging on the log2

scale; log.average, log of the average on the natural scale; median.log, me-
dian on the log scale; log.median, log of the median on the natural scale;
tukey.biweight, a robust average on the log2 scale; and log.2nd.largest,
which gives the log of the second largest probe intensity in the probeset.
The multiple array methods include: lm, a linear model fit on the log2 scale;
rlm, the same model fit using M-estimation; and median.polish, which fits
a similar model using an alternative robustness procedure.

For example, to compute expression measures where the ideal mismatch
is subtracted from PM, then quantile normalization between arrays is car-

2. Preprocessing HDO Arrays 27

ried out, and probesets are summarized by using a robust average, one can
use the following code:

> library("affyPLM")

> eset <- threestep(Dilution, background.method = "IdealMM",

+ normalize.method = "quantile", summary.method = "tukey.biweight")

2.4.3 RMA

RMA (Irizarry et al., 2003a,b) is an expression measure consisting of three
particular preprocessing steps: convolution background correction, quantile
normalization, and a summarization based on a multi-array model fit ro-
bustly using the median polish algorithm (Emerson and Hoaglin, 1983). In
Bioconductor, the easiest way to compute RMA expression values is to use
the rma function.

> eset <- rma(Dilution)

The function justRMA can be used instead of rma in cases where there are
a large number of CEL files to process and no other low-level analysis is
desired. As input, you specify a vector of CEL file names and it will output
an exprSet containing expression values. Notice that justRMA combines the
functionality of ReadAffy and rma. By never creating an AffyBatch object,
it uses less memory.

2.4.4 GCRMA

The default background noise adjustment, provided as part of the Affy-
metrix system, is based on the difference PM −MM . However, MMs have
been observed to detect some specific signal, so the PM − MM transfor-
mation is likely to overadjust. In addition, Irizarry et al. (2003b) found
that the PM − MM transformation results in expression estimates with
exaggerated variance. As an alternative, RMA was introduced with a back-
ground adjustment step that ignores the MM intensities. This approach
sacrificed some accuracy for large gains in precision. However, because the
global background adjustment in RMA ignores the different propensities of
probes to undergo non-specific binding (NSB), the background is often un-
derestimated. Therefore, a method that does adequate non-specific binding
correction without much sacrifice in precision would be desirable.

The characteristics of each probe are determined by its sequence. Since
the probe sequences were released by the manufacturer, their relationship
with non-specific hybridization has been partly revealed. A statistical model
that uses this information to describe background noise has been proposed
by Wu et al. (2005). Using the sequence information an affinity measure
is computed. A background adjustment method motivated by this model
has been implemented and together with quantile normalization and the

28 B.M. Bolstad et al.

median polish procedures, used by RMA, define a new expression measure
called GCRMA. Details are available from Wu et al. (2005).

To compute the GCRMA expression measure, we need the probe se-
quences. This information is available, for most mass-produced chip types,
from the Bioconductor project via the probe packages. The matchprobes
package provides utilities to manipulate the information in the probe pack-
ages. When using gcrma, the necessary probe package is determined and
loaded automatically. If necessary, the package is automatically downloaded
from the Internet and installed.

The function gcrma computes GCRMA expression measures from Affy-
Batch objects and returns them in exprSet objects as demonstrated in the
following example.

> library("gcrma")

> Dil.expr <- gcrma(Dilution)

In many cases, researchers will deal with the same type of chip repeatedly.
Unless told otherwise, the gcrma computes the sequence dependent affinities
every time. The affinity information can be computed once and saved for
future analysis in the following way:

> ai <- compute.affinities(cdfName(Dilution))

> Dil.expr <- gcrma(Dilution, affinity.info = ai)

The default background correction method in GCRMA uses both probe
affinity information and the observed MM intensities (type="fullmodel").
Users can choose to use only affinity information by setting type="affinities"

or to use only MM intensities with type="mm".

> Dil.expr2 <- gcrma(Dilution, affinity.info = ai,

+ type = "affinities")

Similar to the justRMA, the function justGCRMA can be used to compute
expression measures directly from CEL files.

2.4.5 affypdnn

The package affypdnn implements the position-dependent nearest neighbor
(PDNN) approach described by Zhang et al. (2004). This package was not
only designed to perform the preprocessing and transform probe intensities
to expression values but also to provide easy access to intermediate results
and a working environment from which one can develop similar methods.

In the PDNN approach, non-specific-binding and specific-binding are pre-
dicted from the sequence of each probe using the PDNN model. In this
model, each pair of bases at each pair of locations gets assigned a weight.
These weights are then used to estimate expression levels for which one cor-
rects for the non-specific and specific effects of each probe. Please refer to

2. Preprocessing HDO Arrays 29

Zhang et al. (2004) for the details. Software for computing these expression
levels is available at the PerfectMatch Web site.

In PDNN, the weights are obtained first. The weights used by Per-
fectMatch for the HG-U95Av2, HG-U133A, and MG-U74A arrays can be
downloaded. We included this information in the affypdnn package, and it
can be accessed as follows:

> library("affypdnn")

> energy.files <- list.files(system.file("exampleData",

+ package = "affypdnn"), "^pdnn-energy-parameter")

> energyfile <- file.path(system.file("exampleData",

+ package = "affypdnn"), energy.files[1])

> ep <- read.table(energyfile, nrows = 80, header = TRUE)

> Wg <- as.vector(ep[33:56, 2])

> Wn <- as.vector(ep[57:80, 2])

Wg and Wn represent the position-dependent weights given to a particular
base for the specific and non-specific parts, respectively. By plotting these
(figure not shown), we see that the middle base pairs get most of the weight,
which is true of the model used by gcrma.

The procedure for obtaining estimates of expression levels is relatively
complicated. However, the function expressopdnn is a wrapper that auto-
matically fits the model described by Zhang et al. (2004). We first need to
compute the parameters needed for the model. These only depend on the
chip type and not on the data at hand:

> hgu95av2.pdnn.params <- pdnn.params.chiptype(energyfile,

+ probes.pack = "hgu95av2probe")

> attach(hgu95av2.pdnn.params)

> par.ct <- list(params.chiptype = hgu95av2.pdnn.params)

> eset <- expressopdnn(Dilution[, 1], findparams.param = par.ct)

> detach("hgu95av2.pdnn.params")

Notice this function does not rely on expresso because the PerfectMatch
algorithm is not modular. However, the function expressopdnn permits us
to perform background correction and normalization steps.

2.5 Assessing preprocessing methods

The existing alternatives for background correction, normalization, and
summarization yield a great number of different possible methods for pre-
processing probe-level data. Identifying which method is best suited to a
given inquiry can be an overwhelming task. The affycomp package provides
a graphical tool for the assessment of preprocessing procedures for Affymet-
rix probe-level data. Plots and summary statistics offer a picture of how
an expression measure performs in several important areas. This picture

30 B.M. Bolstad et al.

facilitates the comparison of competing expression measures and the se-
lection of methods suitable for a specific investigation. A benchmark data
set consisting of a dilution study and two spike-in studies are used. Be-
cause the truth is known for these data, it is possible to identify statistical
features of the data for which the expected outcome is known in advance.
Those features highlighted in a suite of graphs are justified by questions of
biological interest and motivated by the presence of appropriate data.

The benchmark data are freely available to the public. URLs for down-
loading the Affymetrix and GeneLogic data sets are given in Appendix A.2.
1) For the dilution study by GeneLogic, two sources of total RNA, human
liver tissue and a central nervous system cell line (CNS), were hybridized
to human arrays (HG-U95Av2) in a range of dilutions and proportions.
2) For the spike-in studies, different cRNA fragments were added to the
hybridization mixture of the arrays at different picomolar concentrations.
The cRNAs were spiked-in at a different concentration on each array (apart
from replicates). The experiments were done in a cyclic Latin square de-
sign with each concentration appearing once in each row and column. All
arrays had a common background RNA. The data can be obtained from
the Affymetrix data download Web site. One series was carried out on the
HG-U95A chip and another one on the HG-U133Atag chip.

Two phenoData objects are included in the affycomp package, and they
give specific information on the experimental design.

> library("affycomp")

> data(dilution.phenodata)

> data(spikein.phenodata)

> data(hgu133a.spikein.phenodata)

2.5.1 Carrying out the assessment

There are three main functions: assessDilution, assessSpikeIn, and
assessSpikeIn2. Each one of these performs various assessments; as-

sessSpikeIn2 was created after feedback from users. These function take
as arguments an instance of class exprSet and a character string giving the
name of the expression measure being assessed.

The argument for assessDilution must contain expression measures for
the 60 arrays in the dilution experiment, and they must be in the order
given by dilution.phenodata. If one has the data in a file, the function
read.dilution can be used to import them. The file must be stored as a
comma-delimited text file with the first row containing the CEL file names
and the first column containing the Affymetrix probeset identifiers. Exam-
ple files are available from the affycomp Web site. Similarly, the functions
read.spikein and read.newspikein can be used to read the data from the
HG-U95A and HG-U133Atag spike-in experiments, respectively.

2. Preprocessing HDO Arrays 31

Once the data are imported, the assessments can be performed in various
ways: The function assessDilution works on an exprSet containing the
data from the dilution experiment. The function assessSpikeIn works on an
exprSet containing the data from either of the spike-in experiments but not
both at the same time. The function assessAll is a wrapper for the above
two and takes two exprSet arguments containing the dilution experiment
data and the data from either of the spike-in experiments (but not both).
The function affycomp is a wrapper that works similar to assessAll but
creates some figures and tables. The function assessSpikeIn2 works on an
exprSet containing the data from either of the spike-in but not both.

The package contains some examples of the output from the above func-
tions applied to data from RMA and MAS 5.0. Specifically, examples of
the output of assessAll using the spike-in data is from HG-U95A.can be
loaded using

> data(rma.assessment)

> data(mas5.assessment)

To obtain results from the HGU133 spike-in data, we can use the data sets
rma.assessment.133 and mas5.assessment.133. Finally, the following contain
the results from assessSpikeIn2: mas5.assessment2, mas5.assessment2.133,
rma.assessment2, rma.assessment2.133.

The outputs of these functions are lists. Most the components of the
list are themselves list with various necessary information to create the
assessment figures and tables. Two exceptions are components containing
the type of assessment and the method name. For more details, see the
affycomp package documentation.

The package provides 7 different assessment plots. Descriptions of the mo-
tivation and interpretation for each of these plots were given by Cope et al.
(2004). In this chapter, we demonstrate assessment figure 1, an MA-plot ,
and assessment figure 4a, a signal detection plot. To produce assessment
figure 1, shown in Figure 2.3a, we use:

> affycompPlot(rma.assessment$MA)

The function affycompPlot can take more than one assessment as arguments
and make comparative figures. To produce assessment figure 4a, shown in
Figure 2.3b, we use:

> affycompPlot(rma.assessment$Signal, mas5.assessment$Signal)

One can use the function affycompTable to create tables of summary statis-
tics. Various other table-making functions are described in the help file for
affycompTable.

The affycomp package provides many tools for assessing preprocessing
algorithms. These tools benchmark different characteristics of the resulting
expression measures. The assessments can be viewed as plots or summary

32 B.M. Bolstad et al.

2 4 6 8 10 12 14

−5

0

5

Figure 1

A

M 1 11 1 11 11 1 11112 2
2

2
22 22 2

2

−12

223 3

3
3

3
3 33 3

3

−11

−11

3
4 4

4
4

44 44
4

−10

−10

−10

45 5

5 5 55 5
5

−9

−9

−9

−9

56 6

6 6 66 6

−8
−8

−8
−8
−8

7 7
7 777

−7
−7 −7

−7−7−7−7

8 8
8 88

−6

−6
−6 −6

−6−6−6−6

9 99 9

−5
−5

−5 −5 −5−5−5
−5

−5

1010
10

−4
−4

−4
−4

−4 −4−4−4
−4

−4

1111

−3
−3−3 −3

−3
−3 −3−3

−3
−3

−3

12

−2 −2−2−2 −2−2 −2 −2−2−2
−2−2

−1−1 −1−1−1 −1−1 −1 −1−1−1−1−1

∞∞
∞∞ ∞∞ ∞∞

∞∞
∞∞

∞∞ ∞∞
∞∞
∞∞

∞∞
∞

∞
∞∞

− ∞

− ∞− ∞

− ∞

− ∞− ∞− ∞
− ∞

− ∞
− ∞

− ∞− ∞
− ∞− ∞

−2 0 2 4 6 8 10

4
6

8
10

12

Figure 4a

Nominal concentration (in picoMolar)

O
bs

er
ve

d
ex

pr
es

si
on

RMA
MAS 5.0

a) b)

Figure 2.3. affycomp assessment. a) An MA plot with the expected log fold change
indicated for spike-in probesets. This plot is called assessment figure 1 in the affy-
comp package. b) Average observed concentrations versus nominal concentrations
(assessment figure 4a).

statistics. The details were given by Cope et al. (2004). More information
on the implementation is available in the affycomp vignette.

2.6 Conclusion

The packages described here provide access to GeneChip probe-level data.
This permits users to develop and implement alternative preprocessing al-
gorithms to those provided by the manufacturer. The suite of packages
has been designed to balance user control with convenience. Graphical user
interfaces, object-oriented programming, and modular function design en-
hance the convenience of the packages. Nonetheless, the balance is skewed
greatly in favor of user control. We believe that this is appropriate. Microar-
ray technology is still quite new and although the ease of use of proprietary
analysis platforms for commercial chips is substantial, the cautious user
will retain as much hands on control of the process as possible.

3

Quality Assessment of
Affymetrix GeneChip Data

B. M. Bolstad, F. Collin, J. Brettschneider, K.
Simpson, L. Cope, R. A. Irizarry, and T. P.
Speed

Abstract
This chapter covers quality assessment for Affymetrix GeneChip

data. The focus is on procedures available from the affy and affy-
PLM packages. Initially some exploratory plots provided by the affy
package, including images of the raw probe-level data, boxplots, his-
tograms, and M vs A plots are examined. Next methods for assessing
RNA degradation are discussed, specifically we compare the stan-
dard procedures recommended by Affymetrix and RNA degradation
plots. Finally, we investigate how appropriate probe-level models
yield good quality assessment tools. Chip pseudo-images of residuals
and weights obtained from fitting robust linear models to the probe
level data can be used as a visual tool for identifying artifacts on
GeneChip microarrays. Other output from the probe-level modeling
tools provide summary plots that may be used to identify aberrant
chips.

3.1 Introduction

Obtaining gene expression measures for biological samples through the use
of Affymetrix GeneChip microarrays is an elaborate process with many po-
tential sources of variation. In addition, the process is both costly and time
consuming. Therefore, it is critical to make the best use of the information
produced by the arrays, and to ascertain the quality of this information.
Unfortunately, data quality assessment is complicated by the sheer volume
of data involved and by the many processing steps required to produce the
expression measures for each array. Furthermore, quality is a term which

34 B.M. Bolstad et al.

has some dependency on context to which it is applied. In this chapter
methods for relative quality assessment are discussed. From the viewpoint
of a user of GeneChip expression values, lower variability data, with all
other things being equal, should be judged to be of higher quality.

Before any use is made of more complex methods, an initial examination
of the data can often show evidence of possible quality problems. In some
cases arrays are beyond correction, even with normalization, and removing
the array from the data set is warranted. Automatic ways to detect prob-
lematic arrays are an important, yet difficult, application. In this chapter
various graphical tools that can be used to facilitate the decision of whether
to remove an array from further analysis are presented.

Throughout this chapter data from a large acute lymphoblastic leukemia
(ALL) study (Ross et al., 2004) are used to demonstrate the quality assess-
ment methods. The ALLMLL package contains an instance of AffyBatch
representing a subset of the original data. For illustrative purposes an even
smaller subset of the data is used and the files are renamed. The follow-
ing code loads the data set, subsets 8 of the arrays from the data set and
then names them with letters a through h. We will use these 8 arrays to
demonstrate the different quality assessment procedures.

> library("affy")

> library("ALLMLL")

> data(MLL.B)

> Data <- MLL.B[, c(2, 1, 3:5, 14, 6, 13)]

> sampleNames(Data) <- letters[1:8]

3.2 Exploratory data analysis

Exploratory data analysis has been the tool of choice for detection of prob-
lematic arrays. A typical first step is to look at images of the raw probe-level
data. However, for microarray data the largest values are orders of magni-
tude larger than the bulk of the data and this results in a non-informative
image. A simple solution is to examine an image plot of the log intensities.
The image function can be used to create chip images of the raw intensities.

> palette.gray <- c(rep(gray(0:10/10), times = seq(1,

+ 41, by = 4)))

> image(Data[, 1], transfo = function(x) x, col = palette.gray)

> image(Data[, 1], col = palette.gray)

Figure 3.1 compares chip images of natural scale and log-scale intensities
for chip a. The log-scale plot demonstrates that there is a strong spatial
artifact on this array not seen in the original scale plot.

3. Affymetrix Quality Assessment 35

a) b)

Figure 3.1. a) Image of probe intensities, using a linear mapping from the chips
dynamical range to the grayscale. b) As a) but using logarithmically transformed
intensities. The letter a above the figures indicates that these plots are for the
array with this name.

3.2.1 Multi-array approaches

Looking at the distribution of probe intensities across all arrays at once can
sometimes demonstrate that one array is not like the others. The boxplot
gives a simple summary of the distribution of probes. In the affy package
the boxplot method is available for the AffyBatch class. The following code
creates boxplots of the unprocessed log scale probe-level data for the 8
arrays in the data set.

> library("RColorBrewer")

> cols <- brewer.pal(8, "Set1")

> boxplot(Data, col = cols)

The RColorBrewer package is used to select a nice color palette. Figure
3.2 shows the results. Notice how array f clearly stands out from the
rest. However, a discrepancy in this plot is not conclusive evidence of a
quality problem. Many times such differences can be reduced using the
normalization procedures discussed in Chapter 2.

Looking at histograms of the probe-level data can also reveal problems.
The hist function creates smoothed histograms (or density estimators) of
the intensities for each array. The following code creates these histograms
and adds a legend to aid in the identification of each array.

> hist(Data, col = cols, lty = 1, xlab = "Log (base 2) intensities")

> legend(12, 1, letters[1:8], lty = 1, col = cols)

Figure 3.2 shows such histograms for this data set. Notice that array a,
shown in red, has a bimodal distribution. This is usually indicative of a

36 B.M. Bolstad et al.

spatial artifact as that seen in Figure 3.1. The second mode is usually the
result of an entire section of the array having abnormally high values.

a b c d e f g h

6
8

10
12

6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Log (base 2) intensities

de
ns

ity

a
b
c
d
e
f
g
h

a) b)

Figure 3.2. a) Boxplots of unprocessed log scale probe intensities for 8 arrays
from the ALLMLL data set. b) Smoothed histograms of raw log scale intensities.

Another useful exploratory tool for quality assessment purposes is the
MA-plot , described in Chapter 2. Since these plots show log fold change
on the y-axis, the information provided is closely related to the quantities
that are eventually used to obtain final results for tasks such as detecting
differentially expressed genes. As described in Chapter 2, to avoid mak-
ing an MA-plot for every pairwise comparison, each array can instead be
compared to a synthetic array created by taking probe-wise medians. The
MA-plot gives us a better idea of how bad quality arrays affect bottom line
results. A loess curve is fitted to the scatter-plot to summarize any non-
linear relationship. Since there are only 8 arrays in this data set, MA-plots
for all 8 can be examined using the following code.

> par(mfrow = c(2, 4))

> MAplot(Data, cex = 0.75)

> mtext("M", 2, outer = TRUE)

> mtext("A", 1, outer = TRUE)

The results can be seen Figure 3.3. Quality problems are most apparent
from an MA-plot where the loess smoother oscillates a great deal or if the
variability of the M values seems greater than those of other arrays in the
data set. In this case the first MA-plot, corresponding to array a, suffers
from both these problems.

3. Affymetrix Quality Assessment 37

Figure 3.3. MA-plot of eight arrays plotted with common pseudo-array reference.

3.3 Affymetrix quality assessment metrics

Affymetrix software (Affymetrix, b) produces a number of quantities for
quality assessment of GeneChip data. These are: Average Background,
Scale Factor, Percent Present and 3′/5′ ratios. Average Background is the
average of the 16 background values calculated according to the method
discussed in Section 2.3.1. The Scale Factor refers to the constant βi, from
Section 2.3.2 by which every intensity on the chip is multiplied by in the
scaling normalization. Percent Present is the percentage of probesets called
“present” according to the Affymetrix detection algorithm. GeneChip ar-
rays include several RNA quality control genes, most notably β−Actin and
GAPDH, each represented by 3 probesets, one from the 5′ end, one from
the middle and one from the 3′ end of the targeted transcript. The ratio of
the 3′ expression to the 5′ expression for these genes serves as a measure
of RNA quality. Using Bioconductor, the simpleaffy package can compute
these values. First we load the package and compute the quality assessments
as follows:

> library("simpleaffy")

> Data.qc <- qc(Data)

The average background for each array can then be shown by simply typing:

> avbg(Data.qc)

38 B.M. Bolstad et al.

a b c d e f g h

68.2 67.3 42.1 61.3 53.6 128.4 49.4 49.3

According to the guidelines recommended by Affymetrix, the average
background values should be comparable to each other. Notice the large
background value for array f. This might be indicative of a problem.

The scale factors can be computed using:

> sfs(Data.qc)

[1] 9.77 4.91 10.49 7.05 7.56 2.48 13.53 8.09

Affymetrixrecommends that these values be within 3-fold of each other. In
this example there appears to be a problem with, for example, arrays f and
g.

The percentage of present calls can be obtained with the following code:

> percent.present(Data.qc)

a.present b.present c.present d.present e.present f.present

21.7 26.5 25.6 23.5 23.4 25.3

g.present h.present

18.0 24.4

These should be similar for replicate samples with extremely low values
being a possible indication of poor quality.

Finally, the 3′/5′ ratios are available via the ratios method. In the fol-
lowing piece of code we demonstrate these ratios for the first two quality
control probesets.

> ratios(Data.qc)[, 1:2]

AFFX-HSAC07/X00351.3’/5’ AFFX-HUMGAPDH/M33197.3’/5’

a 0.970 0.1639

b 0.324 0.0580

c 0.466 -0.1557

d 1.257 0.5755

e 0.604 -0.1402

f 0.672 0.2467

g 0.380 -0.0183

h 0.485 0.2768

Affymetrix suggests 3 as a safe threshold value for the 3′/5′ ratios, and
recommends caution if that threshold is exceeded.

3.4 RNA degradation

As discussed in the previous section, 3′/5′ ratios for several control genes
can be used for quality assessment purposes. However, there are only a few
of these genes, and the 3′/5′ ratios can be quite variable even with high

3. Affymetrix Quality Assessment 39

quality data. Therefore, rather than using the expression measures of only
a few genes to assess quality, a more global indicator of RNA degradation
is desirable.

For every GeneChip probeset, the individual probes are numbered
sequentially from the 5′ end of the targeted transcript. When RNA degrada-
tion is sufficiently advanced, PM probe intensities should be systematically
elevated at the 3′ end of a probeset when compared to the 5′ end. This can
in fact be observed in some cases, and has been exploited by the AffyRNAdeg

function. The approach is very simple. Let Yij denote the log transformed
PM probe data from the jth probe in the ith probeset on a single GeneChip.
The log transformation is not crucial to the measurement of degradation
itself, and results are quite similar without this transformation. Rather,
this step is included out of a conviction that the log scale is approximately
the right scale for analyzing expression array data.

For any single probeset the probe effects dominate even the most dra-
matic signs of degradation. Thus, a 3′/5′ trend only becomes apparent on
the average over large numbers of probesets. Accordingly, define Y·j to be
the average log intensity taken over all probesets, at probe position j. it
has been observed that Y·j is roughly linear in j as shown in Figure 3.4.
Typically, the Y·j intensities are slightly lower at both ends relative to the
middle, and a distinct 3′/5′ trend is apparent even with good RNA.

Such plots suggest that a simple linear model may describe the rela-
tionship between Y·j and j quite well. A regression estimate of the slope
can be used as the starting point for a measure of degradation. The mea-
sure should be comparable across chips, so first the data from each chip
is rescaled to make SE(Y·j) ≈ 1. Specifically, suppose that there are N
probesets, each having m PM probes. For j in {1, 2, ..., m}, define σ̂j to
be the standard deviation of the N probe intensities at position j. Then
σ̂j/

√
N approximates the standard error for each probe position mean and

the scaled mean Y·j/(σ̂j/
√

N) has a standard error of approximately 1.
When these quantities are regressed against integer values j, the slope es-
timate is easily interpreted in terms of standard error. A slope of 1 means
that average probe intensity increases by 1 standard error with each step
toward the 3′ end of the transcripts.

To illustrate the procedures available for assessing RNA degradation, a
data set where three arrays were hybridized with amplified RNA and the
other three hybridized with RNA processed using the default procedure
suggested by Affymetrix is used. The amplified RNA is likely to have a dif-
ferent 3′/5′ trend . The affy package includes two functions related to this
measure of degradation. The primary function is AffyRNAdeg, which calcu-
lates probe position means and slopes. Degradation plots can be produced
as follows:

> library("AmpAffyExample")

> data(AmpData)

40 B.M. Bolstad et al.

RNA digestion plot

5' <−−−−−> 3'
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

60

Figure 3.4. Each line represents one of 6 HG-U133A chips. Plotted on the Y axis
is mean intensity by probeset position. Intensities have been shifted from original
data for a clearer view, but slope is unchanged.

> sampleNames(AmpData) <- c("N1", "N2", "N3", "A1",

+ "A2", "A3")

> RNAdeg <- AffyRNAdeg(AmpData)

> plotAffyRNAdeg(RNAdeg, col = c(2, 2, 2, 3, 3,

+ 3))

Figure 3.4 shows the resultant plot. The lines from amplified RNA data are
in green and the standard arrays are in red. Notice that the amplified RNA
arrays have much higher slopes than those from the normal procedure. This
is likely due to degradation. A summary of the slopes can be viewed in the
following way:

> summaryAffyRNAdeg(RNAdeg)

N1 N2 N3 A1 A2 A3

slope 2.3e+00 2.21e+00 2.56e+00 5.38e+00 4.32e+00 5.68e+00

pvalue 3.9e-08 8.13e-08 3.12e-09 9.03e-12 4.91e-10 5.35e-12

How large must the slope be to consider the array to have too much
degradation? Unfortunately, different chip types have different character-
istic slopes. This phenomenon can be attributed to differences in probeset

3. Affymetrix Quality Assessment 41

Chip type Mean Q1 Median Q3

HG-U95A 26.1 4 10 32
MG-U74Av2 21.9 3 8 26
HG-U133A 40.7 15 28 53

Table 3.1. The probes in a single probeset are physically near one another on the
actual transcript. The distribution of inter-probe distances varies from chip to
chip however. All distances are measured in single bases; Q1 and Q3 represent
the first and third quartiles respectively.

architecture. Some older GeneChips have about 12000 probesets on each
chip with probesets containing 16 probe pairs. The newer arrays, on the
other hand, have only 11 probe pairs in each probeset, and contain about
22000 probesets on each chip. On any chip, all probes in the probeset are
taken from a single continuous sequence that is usually about 600 bases
long. The probes in larger probesets are necessarily quite close to one an-
other within the base sequence and sometimes even overlap. The 3′/5′ trend
is of course less pronounced in these probesets. Table 3.1 gives the distribu-
tion of inter-probe distances within each probeset on three common array
types.

Experience will give the user a sense of what is typical for a given chip
type. For high quality RNA, a slope of 0.5 is typical for HG-U95 and MG-
U74 chips, while 1.7 is typical for HG-U133A chips. Slopes that exceed these
values by a factor of 2 or higher might indicate degradation. However, in
general, the actual value is less important than agreement between chips.
If all the arrays have similar slopes then comparisons within genes across
arrays may still will be valid. You could lose data on some genes altogether
- as some mRNA species may have degraded completely, while others only
partially. Mixing chips with very different 3′/5′ trends is very likely to
introduce extra bias into the experiment. Therefore, a plot with one or more
arrays with very different slope is indicative of a possible problem. Possible
causes include poor sample handling or differences in RNA amplification
methods.

3.5 Probe level models

For the summarization component, the RMA procedure described in Chap-
ter 2 assumes the following linear model for the the background adjusted
normalized probe-level data Ygij :

log(Ygij) = θgi + φgj + εgij , (3.1)

with θgi representing the log-scale expression level for gene g on array i, φgj

is the effect of the j-th probe representing gene i, and ε the measurement
error. RMA uses median polish to estimate θ robustly. Equation 3.1 is re-

42 B.M. Bolstad et al.

ferred to as a probe level model (PLM). Because median polish (Emerson
and Hoaglin, 1983) is an ad-hoc procedure, there is no formal way of, for
example, obtaining standard errors. However, θ can be robustly estimated
with procedures such as those described by Huber (1981), which are im-
plemented in R by the function rlm from the packageMASS (Venables and
Ripley, 2002). The affyPLM package provides functions that fit model 3.1
to probe-level data using these robust regression procedures.

The class PLMset has been defined to deal with the results of fitting a
PLM as described in this section. It is similar to the AffyBatch class ex-
cept it has further components holding the weights, residuals, parameter
and standard error estimates, and other related robust model fit informa-
tion. The fitPLM function permits us to fit these models. The default is to
compute an expression measure just like RMA except using M-estimator
robust regression instead of the median polish algorithm.

> library("affyPLM")

> Pset1 <- fitPLM(AmpData)

> show(Pset1)

The are a number of functions for accessing the output of this fitting func-
tion including coef and se which return θ̂gi and SE

(
θ̂gi

)
respectively. The

final weights from the fitting procedure can be accessed using weights.
While residuals can be accessed using resid. However, it is more useful to
examine these quantities graphically.

3.5.1 Quality diagnostics using PLM

Numerous useful quality assessment tools can be derived from the out-
put of the PLM fitting procedures. The large variability due to the strong
probe effect φ sometimes makes it difficult to observe artifacts in the data.
However, PLMs account for the probe effect and therefore this obscuring
variability is not present in, for example, the residuals. Specifically, chip
pseudo-images of these residuals, the weights used by robust regression to
down-weight outliers, and the sign of the residuals tend to be more visually
informative than the image of the raw probe intensities. The following code
can be used to draw chip pseudo-images for the third array in the RNA
degradation data set:

> par(mfrow = c(2, 2))

> image(AmpData[, 3])

> image(Pset1, type = "weights", which = 3)

> image(Pset1, type = "resids", which = 3)

> image(Pset1, type = "sign.resids", which = 3)

Figure 3.5 displays the resulting chip pseudo-images. Figure 3.5A is an
image of the log intensities with no obvious spatial artifact. Figure 3.5B
shows PLM weights and a “ring” artifact is clearly visible. This artifact

3. Affymetrix Quality Assessment 43

can been seen in all the PLM images. Weight images uses topographical
coloring so that light areas indicate high weights and dark green areas in-
dicate significant down-weighting of mis-performing probes. These weights
are obtained from the robust regression procedure for which small weights
are associated with outliers. Images based on residuals are colored blue for
negative residuals and red for positive residuals. For the raw residuals this
means that the most negative residuals are the darkest blue, residuals at,
or near, zero are white and the most positive residuals are the most intense
red. It is also possible to view the negative or positive residuals in isolation
by providing type="neg.resids" or type="pos.resids" as an argument to
image. The image of the signs of the residuals can sometimes make visible
effects that might not be apparent in the other plots, magnitude is ignored
with blue representing negative and red representing positive. These images
highlight the power of the PLM procedures at detecting a subtle artifact
that might otherwise be missed completely.

Figure 3.5. Chip pseudo-images based on PLM fit make visible subtle artifacts.
Images of A) the raw probe intensities (log transformed) B) weights C) residuals
and D) sign of the residuals.

It is not uncommon to have small artifacts on such images. Frequently
there are small blemishes, and usually these are inconsequential. This is
because in modern array designs, the probes for each probeset are not
contiguously next to each other, but rather they are spread throughout the
array. Hence, a spatially localized artifact will at most affect a few probes
in a probeset. In addition, procedures such as RMA, are robust to outliers.

44 B.M. Bolstad et al.

With larger artifacts, an issue of concern is whether data from a partic-
ular array is of poorer quality relative to other arrays in the data set. This
question can be addressed using other procedures provided by the affyPLM
package. These techniques are demonstrated using the ALLMLL data.

> Pset2 <- fitPLM(MLL.B)

Recall that array a was observed as having a bimodal histogram in Sec-
tion 3.2.1. A pseudo chip-image of the residuals for this array, shown in
Figure 3.6, makes the bright region along one side of the chip apparent
even more clearly than the image of raw intensities. In addition the intense
blue regions indicate that the other side of the array is dimmer than ex-
pected relative to other arrays in the data set. This array has an obvious
large artifact and thus its quality is suspect. Should the array be removed
from the data set before beginning further downstream analysis? To help
answer this question two graphical procedures based on output from PLM
fitting procedure can be used.

Figure 3.6. An image of the residuals identifies the bright area along one edge of
the array.

The first of these procedures is the Relative Log Expression (RLE) plot.
This plot is constructed in the following manner. First, start with the log

3. Affymetrix Quality Assessment 45

scale estimates of expression θ̂gi for each gene g on each array i. Next
compute the median value across arrays for each gene, mg, and define
the relative expression as Mgi = θ̂gi − mg. These relative expressions are
then displayed with a boxplot for each array. In many situations it is not
unreasonable to assume that that majority of genes are not changing in
expression between experimental conditions. These non-differential genes
are reflected on the RLE plot by the boxes. Ideally, these boxes would have
small spread and be centered at M = 0. An array that has quality problems
may result in a box that has greater spread or is not centered near M = 0.
To create this plot for the ALLMLL data set use:

> Mbox(Pset2, ylim = c(-1, 1), col = cols, names = NULL,

+ main = "RLE")

The resulting plot, shown in Figure 3.7a, shows that the box for the array
with spatial effects deviates considerably from the remaining boxes. Numer-
ical summaries based on these plots, such as Bi = medg (Mgi) for a bias
measure and Vi = IQRg (Mgi) for a variability measure, may be examined
as an alternative to the plot.

The other graphical tool is the Normalized Unscaled Standard Error
(NUSE) plot. In this case, we start with the standard error estimates ob-
tained for each gene on each array from the PLM fit. To account for the
fact that variability differs considerably between genes standardize these
standard error estimates so that the median standard error across arrays
is 1 for each gene. Specifically, NUSE values are computed using

NUSE
(
θ̂gi

)
=

SE
(
θ̂gi

)
medi

(
SE

(
θ̂gi

)) .

The NUSE values are then shown with a boxplot for each by array. This
can be accomplished using the following code:

> boxplot(Pset2, ylim = c(0.95, 1.5), col = cols,

+ names = NULL, main = "NUSE", outline = FALSE)

Lower quality arrays are indicated on this plot by boxes that are signif-
icantly elevated or more spread out relative to the other arrays. For the
ALLMLL data set, the NUSE plot in Figure 3.7b further demonstrates the
problem with this array. The median NUSE value for each array provide
suitable numerical summary values for this method. High values of median
NUSE are indicative of a problematic array. However, it should be noted
that these values are not comparable across data set since NUSE is relative
only within a data set.

Figure 3.8 compares median NUSE with the quality metrics recom-
mended by Affymetrix. On each boxplot the array with the artifact is
indicated by a point. The array known to be problematic has an extremely
high median NUSE value which is easy to distinguish from the other 19 ar-

46 B.M. Bolstad et al.

1 3 5 7 9 11 13 15 17 19

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

RLE

1 3 5 7 9 11 13 15 17 19

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

NUSE

a) b)

Figure 3.7. a) RLE plot for the 20 HGU-133B arrays in the ALLMLL data set.
The array with the spatial effect deviates considerably from the other arrays.
b) NUSE plot for the same arrays. The array with the significant spatial effect
deviates considerably from the remaining arrays.

●

1.
00

1.
05

1.
10

1.
15

1.
20

NUSE

● ●

40
60

80
10

0
12

0

Avg bg

●

2
4

6
8

10
12

14

SF

●

16
18

20
22

24
26

28

PP

●

●

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

3'/5'

●

Figure 3.8. Comparing median NUSE with Affymetrix quality metrics for the
ALLMLL data set. The aberrant array is indicated on each plot.

3. Affymetrix Quality Assessment 47

rays. In contrast, the Average Background, Scale Factor, Percent Present
and the GAPDH 3′/5′ ratio measures for this array are not even the largest
value among the 20 arrays. The advantage that PLM based assessments
have over the Affymetrix quality standards is that they are directly related
to the quality of the expression measures produced.

3.6 Conclusion

This chapter demonstrated a series of graphical tools and statistical
summaries useful for quality assessment of Affymetrix GeneChip data.
Thoughtful use of well known summary plots such as histogram and box-
plots provides useful first steps in the assessment of array quality. More
advanced procedures, such as fitting probe level models and summarizing
residuals and weights from these fits, further aid the analyst in the decision
of whether an array should be removed from the data set.

4

Preprocessing Two-Color
Spotted Arrays

Y. H. Yang and A. C. Paquet

Abstract

Preprocessing of two-color spotted arrays can be broadly divided
in two main categories: quality assessment and normalization. In this
chapter, we will focus on functions from the arrayQuality and marray
packages that perform these tasks. The chapter begins by describ-
ing various data structures and tools available in these packages for
reading and storing primary data from two-color spotted arrays. This
is followed by descriptions of various exploratory tools such as MA-
plots, spatial plots, and boxplots to assess data quality of an array.
Finally, algorithms available for performing appropriate normaliza-
tion to remove sources of systematic variation are discussed. We will
illustrate the above-mentioned functions using a case study.

4.1 Introduction

In this chapter, we discuss the various packages in the Bioconductor project
that focus on preprocessing for two-color spotted arrays. Such packages in-
clude marray, arrayQuality, limma, vsn, and arrayMagic. In particular, we
will focus on aspects related to importing data from image analysis soft-
ware, quality assessment and normalization. In Section 4.2, we give a brief
introduction to the two-color spotted arrays platform and describe a data
set used to illustrate our methodology and software. In Section 4.3, we de-
scribe the basic functions of importing and accessing the probe-level data.
In Section 4.4, we demonstrate various quality assessment tools available
to the user. Next, in Section 4.5 we describe the main preprocessing steps
of normalization and background adjustment. In Section 4.6, we conclude
by demonstrating the utility of Bioconductor software with a case study.

50 Y.H. Yang and A.C. Paquet

4.2 Two-color spotted microarrays

Two-color spotted microarrays were first developed in the Brown and Bot-
stein Labs at Stanford. These arrays consist of thousands of different DNA
sequences printed in a high-density array on a glass microscope slide us-
ing a robotic arrayer. The probes are obtained from PCR-amplification
of cDNA clones. More recently, synthetic oligonucleotides have been used.
The relative abundance of complementary target molecules in a pair of
samples can be assessed by monitoring the differential hybridization to
the array. For mRNA samples, the two samples or targets are reverse-
transcribed into cDNA, labeled using different fluorescent dyes (usually a
red-fluorescent dye, Cyanine 5 or Cy5, and a green-fluorescent dye, Cyanine
3 or Cy3), then mixed in equal proportions and hybridized to the arrayed
DNA probes. After this competitive hybridization, the slides are imaged
using a scanner, and fluorescence measurements are made separately for
each dye at each spot on the array. The ratio of red and green fluorescence
intensities for each spot is intended to be indicative of the relative abun-
dance of the corresponding molecule in the two nucleic acid target samples.
See the Supplement to Nature Genetics (1999) for a more detailed intro-
duction to the biology and technology of two-color spotted microarrays and
oligonucleotide chips.

4.2.1 Illustrative data

We will demonstrate our methodology using gene expression data provided
by the Erle Lab from UC San Francisco. Specifically, we will use data
from their integrin α4β7 experiment. This experiment studied the cell ad-
hesion molecule integrin α4β7, which assists in directing the migration of
blood lymphocytes to the intestine and associated lymphoid tissues. The
goal of the study was to identify differentially expressed genes between the
α4β7+ and α4β7− memory T helper cells. Further details and results of
the experiments can be found in the article by Rodriguez et al. (2004).

For this illustration, we have selected a subset of data from the original
data set consisting of 6 replicated slides from different subjects. Complete
information about the array platform and data from each of the individual
arrays is available from the GEO database at NCBI (series accession num-
ber GSE1039). Each hybridization involved β7+ cell RNA from a single
subject (labeled with one dye) and β7− cell RNA from the same subject
(labeled with the other dye). Target RNA was hybridized to microarrays
containing 23,184 probes including the Operon Human version 2 set of
70-mer oligonucleotide probes and 1760 control spots. Microarrays were
printed using 12 × 4 print-tips, and each grid consisted of a 21 × 23 spots
matrix.

Each array was scanned using an Axon GenePix 4000B scanner, and
images were processed using GenePix 5.0 software. The resulting files

4. Preprocessing Two-Color Arrays 51

are available from GEO, with sample identifiers GSM16689, GSM16687,
GSM16694, GSM16706, GSM16686, and GSM16724, respectively. To re-
trieve the data from GEO one can use the AnnBuilder package. The
code below shows how to retrieve the data for the file 6Hs.166.gpr
(corresponding to sample ID GSM16689) into an R object.

> library("AnnBuilder")

> samp.6Hs.166 <- queryGEO(GEO(), "GSM16689")

The file contains 23184 rows corresponding to the probes (spots) and its
columns correspond to the different statistics from the image analysis out-
put and to basic probe information such as gene names, spot ID, and spot
coordinates. Alternatively, the data can be obtained from the Bioconductor
experimental data package beta7. The package includes hybridization infor-
mation, which is stored in a tab-delimited file Targetbeta7.txt. Further
example data sets and illustrations can also be found in the documentation
of the packages marray and limma.

4.3 Importing and accessing probe-level data

Spotted arrays provide flexibility in the choice of the DNA sequences spot-
ted on the slide. Therefore, a specific data structure is needed so that
probe annotation information can be easily customized. In Bioconductor
there are two main data structures that are used to store two-color spotted
array information. These are the marrayRaw class from the marray package
and the RGList class from the limma package. After preprocessing probe-
level data, objects are converted to instances of the exprSet class from the
Biobase package. The convert package allows users to convert between these
three data structures. In this section, we focus on the marray package and
illustrate how to read in two-color spotted array data. This task can also
be performed within the limma package and some details are available in
Chapter 23.

4.3.1 Importing

The raw image data are usually stored in pairs of 16-bit Tagged Image File
Format (TIFF) files, one for each fluorescent dye. Specialized image analy-
sis software is used to determine which pixels in the image correspond to the
fluorescence emitted by the labeled samples hybridized to the array (fore-
ground) or to the glass slide (background). Then, intensity measurements
and various statistics are extracted for each spot. As mentioned in Sec-
tion 1, Bioconductor does not provide image processing utilities and relies
on other software. Some of the statistical issues and existing solutions were
described by Dudoit and Yang (2003). Different image processing programs
provide the resulting probe-level data in different file formats. Some of the

52 Y.H. Yang and A.C. Paquet

formats supported by marray include GenePix’s .gpr, Spot’s .spot, SMD’s
.xls, and Agilent’s .txt files. The import functions can be extended to
handle a wide range of other alternatives.

In a two-color spotted array experiment, the information needed to per-
form an appropriate statistical analysis can be divided into three main
components: 1) the sample target information, 2) the probe information,
and 3) the probe spot and background intensities. The classes marrayRaw
and marrayNorm allow to store these components and provide methods to
link them. These classes permit all the data and metadata related to one
microarray experiment to be stored in one object. The class marrayRaw
is designed to store raw data, whereas an R object of class marrayNorm
stores normalized data.

4.3.2 Reading target information

We refer to the file that lists the microarray hybridizations and describes
which RNA samples were hybridized to each array as the target file. A
target file is typically a tab-delimited text file that consists of the exact
name of each image processing file you would like to include in the data
analysis and the corresponding names for the Cy3 and Cy5 labeled target
(sample) information. It should also include other variables of interest that
are useful for downstream analysis or for quality assessment. Examples in-
clude subject identification number, gender, and age; date of hybridization
and scanning conditions.

The main function used to read target information in the marray package
is read.marrayInfo, which will create an R object of class marrayInfo. For
example, the target information for the beta7 study can be read with:

> datadir <- system.file("beta7", package = "beta7")

> TargetInfo <- read.marrayInfo(file.path(datadir,

+ "TargetBeta7.txt"))

> TargetInfo

An object of class "marrayInfo"

@maLabels

[1] "6Hs.195.1.gpr" "6Hs.168.gpr" "6Hs.166.gpr"

[4] "6Hs.187.1.gpr" "6Hs.194.gpr" "6Hs.243.1.gpr"

@maInfo

FileNames SubjectID Cy3 Cy5 Date of Blood Draw

1 6Hs.195.1.gpr 1 b7 - b7 + 2002.10.11

2 6Hs.168.gpr 3 b7 + b7 - 2003.01.16

3 6Hs.166.gpr 4 b7 + b7 - 2003.01.16

4 6Hs.187.1.gpr 6 b7 - b7 + 2002.09.16

5 6Hs.194.gpr 8 b7 - b7 + 2002.09.18

6 6Hs.243.1.gpr 11 b7 + b7 - 2003.01.13

Date of Scan

4. Preprocessing Two-Color Arrays 53

1 2003.07.25

2 2003.08.07

3 2003.08.07

4 2003.07.18

5 2003.07.25

6 2003.08.06

@maNotes

[1] "Files were loaded from beta7 package."

We see for example that the first array 6Hs.195.1.gpr was done using
samples from subject 1, β7− cells were labeled with Cy3 and β7+ cells
with Cy5. This information will be used in downstream analysis to account
for dye-swaps or to check for potential confounding factors.

4.3.3 Reading probe-related information

Probe-related information refers to descriptions of the spotted probe se-
quences (e. g. gene names and annotations; quality control information on
PCR and printing conditions). The array fabrication information includes
the dimensions of the spot and grid matrices and for each probe on the array
its coordinates. In addition, the plate origin of the probes and informa-
tion on the spotted control sequences (e. g. negative controls, housekeeping
genes, spike in controls) are included. This information is stored separately
using two objects: an object of class marrayInfo on the probe annotation
information and an object of class marrayLayout to store array fabrication
information.

In general, users will find that most image analysis output files include
probe related information. If you are using GenePix or Spot image anal-
ysis software, array layout, and probe information are stored in what is
referred to as a .gal file, which is a tab-delimited text file with rows
corresponding to spotted probe sequences and columns containing various
coordinates and annotations. The main function to use for reading .gal
files is read.Galfile. In most instances, .gpr files will also contain the cor-
responding gene annotation information stored in the .gal file, and thus
the function read.Galfile can read a .gpr file and extract the relevant
layout and probe related annotations as well.

> galinfo <- read.Galfile("6Hs.166.gpr", path = datadir)

Users can modify the arguments of the function to specify which columns
represent probe annotations and array fabrication (printer layout) informa-
tion. The function read.Galfile returns a list of 3 components: an object
gnames of class marrayInfo that stores probe annotation information; an ob-
ject layout of class marrayLayout that stores array fabrication information;
and a numerical vector named neworder, which represents the sequential
order of the probes. Probes are assumed to be ordered by blocks, starting

54 Y.H. Yang and A.C. Paquet

from the left to the right and top to bottom, and spots within each block
are also ordered from left to right and from top to bottom.

4.3.4 Reading probe and background intensities

Microarray image processing results are usually stored in text files and,
by default, they are assumed to be tab-delimited. These can be loaded
into R using read.marrayRaw. The marray package also provides customized
functions for specific image analysis outputs: read.Spot, read.Agilent and
read.GenePix for Spot, Agilent, and GenePix, respectively. These functions
are simply “wrapper” functions around read.marrayRaw. The read functions
will set up the probe annotation and array layout objects. This requires
that all arrays in the batch have the same layout and the same spotted
probe sequences. The following commands illustrate how to read in the
raw expression data for two .gpr files, 6Hs.166.gpr and 6Hs.168.gpr.

> setwd(datadir)

> files <- c("6Hs.166.gpr", "6Hs.187.1.gpr")

> mraw <- read.GenePix(files, name.Gb = NULL, name.Rb = NULL)

Here, we have set the arguments name.Gb and name.Rb to NULL, which
instructs the function to ignore the “local background” values. If both
of its arguments fnames or targets are not specified, then the function
read.GenePix will read in all files in the current working directory. Users
are encouraged to first read the target file information and use the argu-
ment targets to read in fluorescence intensities. This will ensure that the
foreground and background intensity data are read and stored in the same
order as in the target file. The object mraw now contains the (unnormal-
ized) intensity data for a batch of arrays. It is an object of class marrayRaw
and contains slots for the matrices of Cy3 and Cy5 intensities (maGb, maRb,
maGf, maRf), spot quality weights (maW), layout parameters of the arrays
(maLayout), description of the probes spotted onto the arrays (maGnames),
and mRNA target information (maTargets).

You can verify the integrity of a marrayRaw object using:

> library("beta7")

> checkTargetInfo(beta7)

4.3.5 Data structure: the marrayRaw class

The marrayRaw class stores and links information about the probes (genes)
and targets (samples), and the measured intensity data for a batch of
microarrays. We use the term batch of microarrays for a collection of mi-
croarrays with the same print layout. Figure 4.1 shows how the marrayRaw
class structure is related to a two-color spotted array.

The marrayRaw class can be divided in three main components:

4. Preprocessing Two-Color Arrays 55

Figure 4.1. Relationship between two-color spotted array information and
marrayRaw class structure.

1. Target information: An R object of class marrayInfo is used to
store information on the target samples that were hybridized to each
microarray.

2. Probe information: This information is stored using two objects:
an object of class marrayLayout to store array fabrication infor-
mation and an object of class marrayInfo for the probe annotation
information.

• The marrayLayout class is used for the definition of unique co-
ordinates for each spot. It contains the dimensions of the grid
matrix representing the print-tip groups (maNgr × maNgc), the
dimensions within each print-tip group (maNsr × maNsc), and
the total number of spots (maNspots). The slot maSub is a logical
vector indicating which spots are currently being stored in the
slots containing Cy3 and Cy5 background and foreground fluo-
rescence intensities. Its length is equal to the number of spots for
the complete array layout, which is defined as maNgr × maNgc ×
maNsr × maNsc. This feature is often useful to import data from
a non-complete array layout.

• The marrayInfo class stores various probe identifiers and anno-
tations related to the probe sequences spotted on the microarray
slides.

3. Intensity measures: Foreground and background intensities for both
channels are stored as matrices in separate slots (maRf, maGf, maRb,
maGb). Another slot maW is provided to store a spot quality weight
matrix. For each matrix, rows correspond to spotted probe sequences
and columns to arrays in the batch.

56 Y.H. Yang and A.C. Paquet

4.3.6 Accessing the data

For marrayRaw and marrayNorm objects, various accessor methods are
defined to extract stored information. Methods are also available to extract
commonly used statistics such as

M = log2

Cy5
Cy3

= log2(Cy5) − log2(Cy3) (4.1)

A = log2

√
Cy5 · Cy3 =

1
2

[log2(Cy5) + log2(Cy3)] , (4.2)

which are returned by the functions maM and maA. The functions maLG and
maLR compute the green and red log intensities respectively. The function
maGeneTable creates a data.frame of spot coordinates and gene names. It
can be used to retrieve gene names or their position on the array. The
following command will print the first 4 rows and the first 5 columns of the
data.frame containing spotted sequences information for the beta7 data.

> maGeneTable(beta7)[1:4, 1:5]

Grid.R Grid.C Spot.R Spot.C ID

H200000297 1 1 1 1 H200000297

H200000303 1 1 1 2 H200000303

H200000321 1 1 1 3 H200000321

H200000327 1 1 1 4 H200000327

The default background adjustment method is to subtract the measured
background intensities from the measured probe intensities. Various image
processing algorithms produce suboptimal background measurements re-
sulting in background adjustment procedure that increase variance with no
gains in accuracy. If one has data created from one of these image process-
ing algorithms, one can avoid subtracting background using the following
code:

> beta7nbg <- beta7

> beta7nbg@maGb <- beta7nbg@maRb <- 0 * beta7nbg@maRb

Users should note that there are other background estimation and ad-
justment procedures that provide a better trade-off between accuracy and
variability. More details on alternate background estimation methods can
be found in the references (Dudoit and Yang, 2003; Huber et al., 2002).

4.3.7 Subsetting

In many instances, one is interested in accessing only a subset of arrays in
a batch and/or spots in an array. The subsetting method "[" was defined
for this purpose. The first index refers to probes and the second to arrays.
Thus, to access the first 100 probe sequences in the second and third arrays
in the beta7, you can use:

4. Preprocessing Two-Color Arrays 57

> beta7sub <- beta7[1:100, 2:3]

Furthermore, subsetting certain information according to the print-run lay-
out can be achieved using the function maCoord2Ind. This can be used to
remove some positional controls before further analyses are carried out.
For example, to get the index of the first 3 spots on the last row of each
grid, you should first calculate the grid and spot coordinates for these spots
using maCompCoord, then convert these coordinates back to the index using
maCoord2Ind. For more details on these functions, please refer to the on-line
help. The following code provides a simple example:

> coord <- maCompCoord(1:maNgr(beta7), 1:maNgc(beta7),

+ maNsr(beta7), 1:3)

> ind <- maCoord2Ind(coord, L = maLayout(beta7))

4.4 Quality assessment

Before proceeding to normalize the arrays or any higher level analysis,
it is important to consider (and ensure) the quality of the data. Quality
information is often also a useful feedback to the microarray users. For
spotted array experiments, quality assessment can be divided into four
components: print-run quality, mRNA quality, general hybridization qual-
ity, and spot quality. In this section, we will focus on“general hybridization
quality”, which refers to the global assessment of the array hybridization
performance. Such assessments help to determine if the quality of the ex-
perimental data is acceptable or if some hybridizations should be repeated.
In this section, we describe the various exploratory data analysis plots
and tools provided in the packages marray and arrayQuality which help to
identify potential problems with the dyes, uneven hybridizations, or other
experimental artifacts.

4.4.1 Diagnostic plots

The package arrayQuality gives users a quick visual way to assess the quality
of individual arrays by providing per-slide diagnostic plots. An example is
shown in Figure 4.2. It provides a display of various commonly used qualita-
tive array assessment plots. These include MA-plots, which can be used to
assess intensity biases, spatial plots, which can reveal uneven hybridization
artifacts, histograms that assess the signal to noise ratios for each channel,
and dot plots to help evaluate the consistency of replicate control elements.
If one has already imported the data into an object of class marrayRaw
or RGList , the following command will generate these quality diagnostic
plots for each array in the R object.

> maQualityPlots(beta7)

58 Y.H. Yang and A.C. Paquet

Figure 4.2. Diagnostic plot for qualitative array quality assessment. The display
incorporates 8 separate panels that address various aspects of array quality.

In addition, to complement the qualitative aspect of the evaluation process,
the package also provides a framework to introduce some quantitative mea-
sures. The first step involves generating a database of good-quality arrays
from different print-runs and experiments. The next step is to determine a
series of quantitative quality measures. New hybridization results are com-
pared to a database of good results based on the series of quantitative
measures. The comparison is visualized through a “comparative boxplot”
using the function qualBoxplot. All results are compiled in a HTML report,
as shown in Figure 4.3.

The main wrapper functions in the arrayQuality package for generat-
ing both qualitative and quantitative diagnostic plots for GenePix, Spot
and Agilent arrays are respectively: gpQuality, spotQuality and agQuality.
These functions will perform data input as well as quality assessment as
described in the following two steps.

1. Copy the raw data files from the same print-run in to the same
directory and start R in this directory.

2. Depending on your file format, use either gpQuality, spotQuality or
agQuality. For example, if the data are text files generated from
Agilent’s image analysis software, the user should use the following
command.

> agQuality()

The aim of these functions is to make the quality assessment tools easily
accessible to users that are not expert programmers. However, for users who

4. Preprocessing Two-Color Arrays 59

Figure 4.3. HTML report showing quality assessment for a batch of arrays. Each
row contains quality assessment results for an individual array, consisting of both
the qualitative diagnostic plot and the quantitative comparative boxplot.

like more flexibility, the rest of this section will describe other functions that
allow investigators to explore their data more closely.

4.4.2 Spatial plots of spot statistics - image

The generic function image creates an image plot of the array in gray scale
or color using statistics such as the intensity log–ratio M , a spot quality
measure (e.g., spot size or shape), or a test statistic. This graphical tool
can be used effectively to explore spatial defects in the data like print-tip
or cover-slip effects. In addition to existing color palette functions, such as
rainbow and heat.colors, users can generate more flexible color palettes us-
ing the functions brewer.pal from the package RColorBrewer and maPalette

from the package marray.
Useful diagnostic plots are images of the Cy3 and Cy5 background in-

tensities; these images may reveal hybridization artifacts such as scratches
on the slides, drops, or cover-slip effects. The following command produces
an image of the Cy5 background intensities for the fifth array of the beta7
data using a white-to-red color palette

> image(beta7[, 5], xvar = "maRb", bar = TRUE)

The result is shown in Figure 4.4a. In Figure 4.4b, we see the log–ratio
values M for the third array using a blue-to-gray-to-yellow color palette.

> RGcol <- maPalette(low = "blue", mid = "gray",

+ high = "yellow", k = 50)

> image(beta7[, 3], xvar = "maM", col = RGcol)

Furthermore, we can highlight regions of interest using the argument
overlay. Figure 4.4b was generated with the following commands:

60 Y.H. Yang and A.C. Paquet

Figure 4.4. a): Spatial plot of the red background intensities for the first beta7
array in the batch using white–to–red color palette. b) M -values for the third
array using a blue-to-gray-to-yellow color palette. c) A-values of array 1 using a
white–to–blue color palette. White square represent missing spots. Flagged spots
(Flags value less than -50) are highlighted in black.

> flags <- beta7@maW[, 1] < -50

> image(beta7[, 1], xvar = "maA", overlay = flags)

4.4.3 Boxplots of spot statistics - boxplot

Boxplots of spot statistics by plate, print-tip-group, or slide can be useful
to identify spots or hybridization artifacts. The function boxplot and asso-
ciated methods produce boxplots of microarray spot statistics for R objects
with classes marrayRaw and marrayNorm. Figure 4.5a displays boxplots
of unnormalized log–intensities A for each of the 61 384-well plates for the
third beta7 array. The plot was generated by the following commands:

> par(mar = c(5, 3, 3, 3), cex.axis = 0.7)

> boxplot(beta7[, 3], xvar = "maPlate", yvar = "maA",

+ outline = FALSE, las = 2)

Notice the use of the function par, which allows us to set the figure
margins and the axes font size. The boxplots in Figure 4.5a show that the
last few 384-well plates clearly stand out by having lower intensity A values.
This is expected as a large collection of negative control spots were placed
in these particular plates. This is useful to identify potential printing errors
during array fabrication. The function boxplot may also be used to produce
boxplots of spot statistics for all arrays in a batch. Such plots are useful
for example when assessing the need for between-array normalization to
deal with scale differences among different arrays. The following command

4. Preprocessing Two-Color Arrays 61

Figure 4.5. a) Boxplots by 384-well plates of the log–intensities A for the third
array in the beta7 data set. b) Boxplots of log–ratios M across all six arrays in
beta7 data set.

Figure 4.6. Pre–normalization MA-plot for the second beta7 array with probes
corresponding to empty controls highlighted in blue and probes corresponding to
large fold change [abs(M) > 2] highlighted in red.

produces a boxplot of the unnormalized intensity log–ratios M for each
array, as shown Figure 4.5b.

> boxplot(beta7, main = "beta7 arrays", las = 2)

4.4.4 Scatter-plots of spot statistics - plot

The generic function plot produces scatter-plots of microarray spot statis-
tics for the classes marrayRaw and marrayNorm. In addition, the function

62 Y.H. Yang and A.C. Paquet

points, lines, and text allow users to highlight and annotate subsets of
points on the plot and display fitted curves from robust local regression or
other smoothing procedures. We typically represent microarray data using
a MA-plot , where we plot the log–ratios (M) on the y-axis and the average
log intensities (A) on the x-axis, as described in Section 2.2.2 of Chap-
ter 2. Figure 4.6 displays the MA-plot for the beta7 arrays, with the empty
controls highlighted in blue. Probes that have an unnormalized M -value
greater than log2(4) = 2 are highlighted in red. The argument subset is a
vector of either logical or numeric values indicating the subset of points to
be plotted. Figure 4.6 was generated with the following commands:

> plot(beta7nbg[, 2], lines.func = NULL, legend.func = NULL)

> points(beta7nbg[, 2], subset = abs(maM(beta7nbg)[,

+ 2]) > 2, col = "red", pch = 18)

> points(beta7nbg[, 2], subset = maControls(beta7nbg) ==

+ "Empty", col = "blue", pch = 18)

As the number of probes on the microarray increases, it becomes harder
to visualize all spots and print-tip information on the same graph. The
function plotPrintTipLoess in limma uses co-plot to display MA-plot infor-
mation with individual loess curves for separate print-tip groups. This plot
allow users to get a better idea of the performance of each print-tip.

4.5 Normalization

The purpose of normalization is to identify and remove systematic tech-
nical variation while retaining the biological signal. Among the sources of
technical variation are different labeling efficiencies and scanning properties
of the Cy3 and Cy5 dyes, different scanning parameters, print-tip, spatial,
and plate effects. Normalization procedures aim to ensure that the observed
differences in intensity indeed reflect the differential gene expression and
not artifactual biases due to such technical factors.

There is a bias-variance trade-off : more complex normalization proce-
dures tend to be able to remove more of the technical variation than
simple procedures — but they might also remove more of the biological sig-
nal. And they might even introduce new sources of variation of their own,
for example, due to the uncertainty with which the optimal normalization
parameters can be estimated. The choice between different methods and
method settings for the optimal trade–off is not simple, and it is currently
mostly done manually on an ad hoc basis. A more thorough discussion of
these issues and a proposal to achieve some automation is given by Xiao
et al. (2005).

Normalization is closely related to quality assessment. In an ideal ex-
periment, no normalization would be necessary, as the technical variations
would have been avoided in the first place. In a real experiment, a certain

4. Preprocessing Two-Color Arrays 63

amount of technical variations cannot be avoided, and can be accounted for
and corrected in the subsequent analysis through a normalization proce-
dure. However, if the technical variations become too large, they turn into
a quality problem. The decision of when to discard a set of measurements
(e. g., a slide) or when to try to correct it via normalization is not simple.

We group normalization methods for two-color arrays in two classes: two-
channel normalization methods try to adjust the within–array contrasts
M [Equation (4.1)], using the values of A, as well as other factors such
as print-tip, PCR-plate, spatial position as covariates. Separate-channel
normalization methods try to adjust on the original intensities (or suit-
ably transformed versions), using the same factors as above, but not A, as
covariates.

4.5.1 Two-channel normalization

The process of two-channel normalization can be separated into two main
components: location and scale. In general, methods for location and scale
normalization adjust the center and spread of the distribution of log–ratios.
The normalized intensity log–ratios Mnorm are generally given by

Mnorm =
M − l

s
, (4.3)

where l and s denote the location and scale normalization values, respec-
tively. Methods differ in how exactly they parameterize Equation (4.3), and
in how they estimate the parameters. For example, in global median loca-
tion normalization (argument m in Table 4.1), the parameter l is assumed
to be the same for all spots on an array, whereas in global A-dependent
normalization it is assumed to be a smooth function of A, and the function
is estimated using the scatter-plot smoother loess.

The main functions for two-channel normalization are maNorm in mar-
ray and normalizeWithinArrays in limma. Both functions allow the user to
choose from a set of four basic location normalization procedures, which
are described in Table 4.1. The function maNorm operates on an object of
class marrayRaw (or possibly marrayNorm, if normalization is performed
in several steps) and returns an object of class marrayNorm. The following
command performs print-tip loess normalization:

> beta7norm <- maNorm(beta7, norm = "p")

Location normalization centers log–ratios around zero by accounting for
intensity and spatial dependent bias. However, it does not adjust for dif-
ferences in scale between multiple arrays. Therefore, scale normalization is
important when scale differences between multiple arrays can lead to one
or more arrays having undue weight in summarizing log–ratios across ar-
rays. The functions for performing scale normalization are maNormScale in
marray and normalizeBetweenArrays in limma. Users should note that we

64 Y.H. Yang and A.C. Paquet

Procedures Description Argument
None No normalization. n
Median Global median location normalization. m
Loess Global A-dependent normalization using

the scatter-plot smoother loess. l
Print-tip loess A-dependent normalization using

the scatter-plot smoother p
loess within print-tip groups.

2D loess 2D–spatial normalization using
the loess function. twoD

Table 4.1. Different two-channel normalization procedures.

recommend to check the need for performing such normalization manually
on a case-to-case basis, as there is a trade–off between the possible gain in
bias achieved by scale normalization and the increase in variability intro-
duced by this additional step. In cases where the scale differences are fairly
small, it may be preferable to perform only a location normalization. The
code below performs a scale normalization across arrays:

> beta7norm.scale <- maNormScale(beta7norm)

4.5.2 Separate-channel normalization

The normalization methods we have described so far transform the M
values directly. The red and green absolute intensities are not normalized
separately. This is because spot-to-spot variation introduced by the print-
ing process can be quite large. While in general we do not expect absolute
intensities from replicate arrays to be similar, the co-hybridization tech-
nique permits the spot effect to be partially or completely canceled out
in the M values. Thus, we expect M values from replicate arrays to be
closely related. However, as technology improves the spot-to-spot variation
is reduced. This has led to the development of normalization strategies that
work on the absolute intensities directly (Yang and Thorne, 2003; Huber
et al., 2002), referred to as separate-channel normalization methods. These
are particularly useful because they improve the quality of across array
comparisons.

One approach of a separate-channel normalization method is based on the
function normalizeBetweenArrays in the limma package. The method pro-
ceeds in two stages, a within-array step followed by a between-array step.
The within-array step is the same as in the two-channel location described
in Section 4.5.1. The between-array step addresses the comparability of
the distributions of log intensities between arrays. The argument method of
the function normalizeBetweenArrays provides various choices. One possi-
bility is to use the quantile normalization method proposed by Bolstand

4. Preprocessing Two-Color Arrays 65

0 5 10 15

0.
00

0.
05

0.
10

0.
15

RG densities

Intensity

D
en

si
ty

0 5 10 15

0.
00

0.
05

0.
10

0.
15

RG densities

Intensity

D
en

si
ty

a) b)

Figure 4.7. a) Single channel densities for red and green single-channel inten-
sity distributions after print-tip group normalization but before separate-channel
normalization. b) Single-channel densities after quantile normalization.

et al. (2003). The following commands show how to take the results from
within array print-tip normalization and perform a between-array quantile
normalization. The resulting density plots are shown in Figure 4.7.

> beta7norm@maW <- matrix(0, 0, 0)

> beta7.p <- as(beta7norm, "MAList")

> beta7.pq <- normalizeBetweenArrays(beta7.p, method = "quantile")

> plotDensities(beta7.p)

> plotDensities(beta7.pq)

Another approach is the vsn–method proposed by Huber et al. (2002).
For a data matrix xki, it fits the normalization transformation

xki �→ hi(xki) = glog
(

xki − ai

bi

)
. (4.4)

This is the same as Equation (2.2) from Section 2.3.3, but here i runs
over arrays and color channels; k, as before, indexes the probes. As an
extension to Equation (4.4), the function vsn can also accommodate for a
more highly parameterized model, in which different subsets of spots, for
example different subgrids, require different scale and offset parameters.
This can be achieved by setting its argument strata. Please note that vsn

expects unnormalized (“raw”) data as input.
Users can set the method argument to vsn in normalizeBetweenArrays

and the function will return an object of class MAList with normalized
intensities converted to the log base 2 scale.

> library("vsn")

> beta7.vsn <- normalizeBetweenArrays(as(beta7,

+ "RGList"), method = "vsn")

66 Y.H. Yang and A.C. Paquet

Figure 4.8. The upper panels show pairwise scatter-plots between the red and
green intensities from the first three arrays in the beta7 data set. The intensities
were normalized with the separate-channel normalization method vsn. The lower
panels show the correlation coefficients. Intensities from the same array (and with
different colors) tend to be more correlated than those between different arrays.

Alternatively, this can be done by calling the function vsn directly. It
will take a marrayRaw object as the input and return the transformed
intensities in an object of class exprSet .

> beta7.vsn <- vsn(beta7)

The matrix of generalized log transformed intensities can be accessed via

> b7 <- exprs(beta7.vsn)

b7 is a matrix with 23184 rows and 12 columns. In the following code, we
make a pairs plot between the first six columns.

> upPan <- function(...) {

+ points(..., col = "darkblue")

+ abline(a = 0, b = 1, col = "red")

+ }

4. Preprocessing Two-Color Arrays 67

> lowPan <- function(x, y, ...) {

+ text(mean(par("usr")[1:2]), mean(par("usr")[3:4]),

+ signif(cor(x, y), 2), cex = 2)

+ }

> pairs(b7[, 1:6], pch = ".", lower.panel = lowPan,

+ upper.panel = upPan)

The result is shown in Figure 4.8.

4.6 Case study

In this section, we describe a complete analysis of the beta7 data set. We
start with the probe-level data and end with a list of genes of possible
scientific interest.

1. To begin, users should create a directory and move all the relevant
image processing output files (e.g., .gpr files) and a file containing
target (or samples) descriptions (e.g., Targetbeta7.txt file) to that
directory. For this illustration, the data has been gathered in the data
directory beta7.

2. Start R in the desired working directory, and load the beta7 package.

> library("beta7")

3. Load preprocessing packages: The following command will load
arrayQuality, marray and limma.

> library("arrayQuality")

4. Data input: Read in the target file containing information about
the hybridizations.

> TargetInfo <- read.marrayInfo("TargetBeta7.txt")

5. Read in the raw fluorescent intensities data. By default we assume
that the file names are provided in the first column of the target file.

> mraw <- read.GenePix(targets = TargetInfo)

6. Array quality assessment: The following command generates di-
agnostic plots for a qualitative assessment of slide quality. An example
of diagnostic plot is shown in Figure 4.2.

> maQualityPlots(mraw)

7. Normalization: The next step is to perform some normalization of
the data. This step aims at removing sources of systematic variation
other than differential expression.

> normdata <- maNorm(mraw)

68 Y.H. Yang and A.C. Paquet

8. Data output (a): When the preprocessing of your data is completed,
you can export your normalized log–ratios M data to a text file. This
can be useful if you would like to perform further analysis using other
bioinformatics software or packages.
> write.marray(normdata)

9. Data output (b): An R object of class exprSet is the main input
used in most Bioconductor packages for downstream analysis. Users
will be able to use the package convert to coerce the object normdata

from class marrayNorm to the object mdata of class exprSet .
> library("convert")

> mdata <- as(normdata, "exprSet")

10. Identify differentially expressed genes: The next few steps in
this case study illustrate a typical downstream analysis which aims
to identify differentially expressed genes between β7+ and β7−. To
begin, we will estimate the log–ratios between these two samples using
the lmFit function in the limma package. Users can specify dye-swaps
samples using the argument design, which allows for appropriate av-
eraging across multiple arrays. More details on linear models will be
discussed in Chapter 23.
> LMres <- lmFit(normdata, design = c(1, -1, -1,

+ 1, 1, -1), weights = NULL)

11. Compute moderated t-statistics and log–odds of differential expres-
sion by empirical Bayes methods from limma. Theoretical details can
be found in Smyth (2004), and we refer readers to Chapter 23 for
more examples.
> LMres <- eBayes(LMres)

12. HTML output: You can show the top 10 differentially expressed
genes based on log–odds ratios (default) and export them into an
HTML file. Figure 4.9 shows an example. If probe-related annota-
tions such as oligo IDs or Genbank accession numbers are provided,
the function table2html will create hyper-links to various external
database web sites.
> restable <- topTable(LMres, number = 10, resort.by = "M")

> table2html(restable, disp = "file")

After we have carefully assessed the quality of individual arrays and
performed appropriate normalization procedures, we are now in a position
to address the main question for which the beta7 microarray experiment was
designed, that is, the identification of genes that are differentially expressed
between β7+ and β7− memory T helper cells. Other Bioconductor packages
such as EBarrays, genefilter, limma and siggenes may be used to address this
question.

4. Preprocessing Two-Color Arrays 69

Figure 4.9. Example of a HTML report displaying differentially expressed genes
for the beta7 experiment.

5

Cell-Based Assays

W. Huber and F. Hahne

Abstract
This chapter describes methods and tools for processing and vi-

sualizing data from high-throughput cell-based assays. Such assays
are used to examine the contribution of genes to a biological process
or phenotype (Carpenter and Sabatini, 2004). In principle, this can
be done for any gene or combination of genes and for any biological
process of interest. There is a variety of technologies, but all of them
rely on the availability of genomic resources such as whole genome
sequences, full-length cDNA libraries, siRNA collections; or on li-
braries of protein-specific ligands (compounds). Typically, all or at
least large parts of the experimental procedures and data collection
are automated. Cell-based assays offer the potential for clustering
of genes based on their functional profiles (Piano et al., 2002) and
epistatic analyses to elucidate complex genetic networks (Tong et al.,
2004).

5.1 Scope

The special-purpose software used in this chapter is from the package prada.
It provides facilities for importing and storing data from cell-based assays,
for visualization, and for initial quality control and preprocessing. The focus
is on data that was obtained through flow cytometry. For the subsequent
statistical inference and modeling, we use general purpose tools such as
linear and local regression and hypothesis testing.

5.2 Experimental technologies

We start by describing some high-throughput technologies that can be used
to perturb the activity of proteins and to monitor the cellular response.

72 W. Huber and F. Hahne

5.2.1 Expression assays

Expression assays probe the role of a protein in a cellular process or path-
way of interest by increasing its abundance. Cells are transfected with a
vector that contains the encoding DNA sequence. Usually, a short sequence
encoding for the Green Fluorescent Protein (GFP) or one of its variants
is attached at one of the ends, resulting in either an N- or C-terminally
tagged protein. This way, the protein’s overabundance in each individual
cell can be monitored through its fluorescence.

This is an elegant and versatile technology. However, care has to be
taken to obtain meaningful results. To avoid artifacts caused by non-specific
or cross-reactive effects, one aims to limit the amount of over-expression:
ideally, the abundance of the expressed protein is small compared to the
abundance of the endogenous protein. Artifacts might also be caused by the
fluorescence tag masking a protein’s functional sites or localization signals.
Confidence can be increased when the results are consistent for both N-
and C-terminal tag orientations (Wiemann et al., 2004).

In addition to probing for a phenotypic response, one can observe the
tagged protein’s localization in the cell by fluorescence microscopy (Simp-
son et al., 2000).

5.2.2 Loss of function assays

Loss of function assays are complementary to expression assays. Here, one
aims to implicate proteins in cellular processes by observing the effect of
their removal or partial removal. This can be achieved by knocking out a
protein’s encoding gene, disabling its mRNA by RNA interference (RNAi),
or by inhibiting its activity through a small compound. RNAi has become
popular (Meister and Tuschl, 2004) due to its ease and applicability to
almost every gene. Genome-scale RNAi libraries for a number of model
organisms are now available (Giaever et al., 2002; Kamath et al., 2003;
Boutros et al., 2004), and they are quickly becoming a versatile and widely
applicable tool of functional genomics. Among the challenges of this tech-
nology are the difficulty to monitor the success of each knock-down and to
guarantee its specificity.

5.2.3 Monitoring the response

In principle any cellular process can be probed. This could be the (de-
)activation of a certain pathway, differentiation, morphological changes,
changes in viability, and so on. In some contexts, this is also called a phe-
notype. Phenotypes can be registered at various levels of detail: as a yes/no
alternative, as a single quantitative variable, or as a more complex feature
such as an image or a time series. There are three major technologies:

• plate reader

5. Cell-Based Assays 73

• flow cytometry
• automated microscopy

Each of these is able to deal with experiments in a 96- or 384-well format.
The plate reader offers the highest throughput but also the lowest resolu-
tion. It measures the overall fluorescence of a population of cells, possibly
at different wave-lengths, in each well. Each well may correspond, for exam-
ple, to the silencing of a different transcript mediated by a specific siRNA.
Such a plate reader may process a 96-well plate within a minute, and a
whole eukaryotic transcriptome can be screened in a few hours.

Flow cytometry offers much more detail: here, fluorescence intensities
as well as morphological parameters such as cell size and granularity are
measured for each cell individually. This allows to make statements that
go beyond population averages. Furthermore, it is possible to compare cells
within the same well, for example, by correlating their individual level of
over-expression to the strength of their response. This can be considerably
more sensitive than just comparing the averages of treatment and control in
different wells. The throughput is lower: it takes about four to five hours to
screen one 96-well plate, depending on cell density and counting accuracy.
The technology is rather robust and reliable, and commercially available
flow cytometry machines have become standard laboratory equipment.

Automated microscopy offers the most detail but also has the lowest
throughput. The technology is currently evolving rapidly (Liebel et al.,
2003; Gerlich and Ellenberg, 2003; Huisken et al., 2004). The data that
are available for each cell can be a 2D planar image, a 3D image obtained
from confocal microscopy, or even a 4D movie with temporal as well as
spatial resolution. The discussion of image analysis tasks, such as segmen-
tation, tracking, and feature extraction is beyond the scope of this book.
They are also currently not supported by Bioconductor packages. However,
once quantitative features have been extracted for each cell, the further
statistical analysis might proceed along similar lines as described below.

5.3 Reading data

Depending on the means of acquisition, data are stored in different formats.
Usually, it is possible to transform the primary data from the recording
instrument into a rectangular table that is amenable for reading through
the function read.table or one of its relatives. In flow cytometry, a useful
standard has been established, which we will describe in Section 5.3.3. First,
we load the packages prada and facsDorit, which contains example data sets.

> library("prada")

> library("facsDorit")

74 W. Huber and F. Hahne

5.3.1 Plate reader data

Let us look at a data set that was measured by Boutros et al. (2004).
They used a library of 19,470 double-stranded (ds) RNAs targeting the
corresponding set of genes in cultured Drosophila cells. By knocking out
each gene in turn, their goal was to get a comprehensive list of genes that
are essential for cell growth, and viability. The data are read from the file
BoutrosKiger.tab, which we have provided in the facsDorit package.

> viab <- read.table(system.file("extdata", "BoutrosKiger.tab",

+ package = "facsDorit"), header = TRUE, as.is = TRUE,

+ sep = "\t")

> viab[1:2,]

LocationID Plate Col Row AmpliconLen PeptideLen ID

1 973108_A01 973108 A 1 1161 505 HDC00002

2 973108_A02 973108 A 2 1007 510 HDC00008

Kc1 Kc2 S2R1 S2R2

1 471792 461639 945714 805464

2 1012685 1205919 647040 647415

The experiments were done on Kc167 and on S2R+ cells, each in dupli-
cate. The viability of the cells after dsRNA treatment was recorded by a
plate reader measuring luciferase activity, which was indicative of ATP lev-
els. Genes with a viability phenotype were found from those dsRNAs that
showed low luciferase activity. The measurements are in columns Kc1, Kc2,
S2R1, and S2R2. The 21312 rows of the data frame viab correspond to the
19470 dsRNAs, whose identifiers are in the column ID, plus 1842 controls
and empty wells. The column Plate contains the identifier of the 96-well
plate in which the dsRNAs are kept, and the columns Col and Row contain
the coordinates within the plate. For the screening experiment, every set
of four consecutive 96-well plates was combined into a 384-well plate, so
we also calculate the identifier for the 384-well plates, using the integer
division operator %/%:

> viab$Plate384 <- with(viab, (Plate - min(Plate))%/%4)

The boxplots in Figure 5.1a indicate locations and scales of the distributions
of Kc1, one of the two series of measurements on Kc167 cells, grouped by
384-well plate.

> rg <- 1000 * c(250, 2000)

> boxplot(log(Kc1) ~ Plate384, data = viab, outline = FALSE,

+ col = "#A6CEE3", ylim = log(rg))

A further view of the data is provided by the scatterplot between the two
replicates,

> fac <- factor(viab$Plate384)

> colors <- rainbow(nlevels(fac))[as.integer(fac)]

> perm <- sample(nrow(viab))

5. Cell-Based Assays 75

0 3 6 9 12 16 20 24 28 32 36 40 44 48 52 56

12
.5

13
.0

13
.5

14
.0

14
.5

0 3 6 9 12 16 20 24 28 32 36 40 44 48 52 56

12
.5

13
.0

13
.5

14
.0

14
.5

a) b)

Figure 5.1. a) Boxplots of the log(Kc1) values grouped by Plate384. Different
384-well plates have different overall signal strengths. One can see long-range
trends or block effects across plates. Furthermore, there are a few outlier plates
with low signal. b) After normalization.

Figure 5.2. Scatterplots of Kc1 versus Kc2 values, colored by Plate384, a) before
normalization, with logarithmic axis scaling, b) after logarithmic transformation
and normalization.

> plot(viab[perm, c("Kc1", "Kc2")], col = colors[perm],

+ pch = ".", log = "xy", xlim = rg, ylim = rg)

The plot is shown in Figure 5.2a. We plot the points in randomly permuted
order perm in order to avoid visual artifacts that derive from the order of
the rows in viab. It appears that some normalization is necessary, similar
to the normalization for microarray intensities discussed in Chapters 2 and
4. If we assume that the plate effects are multiplicative, we can adjust for
them by fitting a robust linear model on the logarithmic scale,

> library("MASS")

> expts <- c("Kc1", "Kc2", "S2R1", "S2R2")

76 W. Huber and F. Hahne

> allMedian <- log(median(as.matrix(viab[, expts])))

> for (ex in expts) {

+ lmRes <- rlm(log(viab[[ex]]) ~ fac)

+ viab[[paste("norm", ex, sep = "")]] <- residuals(lmRes) +

+ allMedian

+ }

The coefficients of lmRes absorb the plate effects, and the biologically inter-
esting effects are contained in the residuals. We retain the overall median
allMedian, so the numerical values of the normalized intensities are in the
same range as the unnormalized ones. The result is shown in Figures 5.1b
and 5.2b.

Genes with a viability phenoytpe can now be found from those dsRNAs
that show low luciferase activity in both experimental repeats in either one
or both of the cell lines. For example, in Figure 5.2b, one might select the
genes in the lower left part of the scatterplot.

> score <- rowMeans(viab[, paste("normKc", 1:2,

+ sep = "")])

> sel <- order(score)[1:3]

> viab[sel, 1:7]

LocationID Plate Col Row AmpliconLen PeptideLen

20903 973331_H05 973331 H 5 719 425

12176 973238_A02 973238 A 2 301 455

21310 973331_H05 973331 H 5 719 425

ID

20903 HDC08326

12176 HDC17664

21310 HDC08326

Note that the fluorescence data themselves do not suggest an unambiguous
cutoff for the selection; rather, such a cutoff has to be chosen according
to conventional trade-offs between false positives and false negatives. Con-
trol dsRNAs that hit known effectors and non-effectors are useful for the
calibration of this choice.

5.3.2 Further directions in normalization

Instead of invoking the linear modeling machinery of rlm in the code ex-
ample above, it would have been possible to simply calculate and subtract
the mean or median of the logarithmic intensities for each plate and add
the overall median. The advantage of the presented approach is that it can
be extended to more complex normalizations that take into account fur-
ther factors such as spatial effects within the plates or continuous-valued
covariates such as time.

5. Cell-Based Assays 77

In the code example above, we have called rlm separately for each of the
four experiments. Alternatively, we can attempt to fit one overall model to
the data, with a model formula such as

> lmRes <- rlm(log(luc) ~ expt * fac, data = rViab)

where rViab is a reshaped, ”long” version of the data frame viab, obtained
through the function reshape from the stats package, luc is its column
containing the fluorescence intensities, and the factor expt codes the four
experiments Kc1, Kc2, S2R1, S2R2. However, if approached in this naive
manner, the calculation will be slow and memory-consuming due to the
large matrices involved. It appears reasonable to employ the symmetries of
the problem.

5.3.3 FCS format

FCS is a file standard for flow cytometry data now adopted by the ma-
jor manufacturers of instruments and driver software. The current version
is FCS 3.0 (Seamer et al., 1997). It contains the specifications needed to
describe the flow cytometric measurements on one sample of cells and the
accompanying meta-data in a single file. An FCS file is divided into seg-
ments: header, text, data, and an optional analysis segment. The header
segment provides plain text numbers with byte offsets that point to start
and end positions of the other segments. The text segment describes the
experiment, the instrument and its settings, the specimen, specifications
of the different fluorescence channels, plus any additional information the
creator of the file wanted to include. These descriptions are provided in the
form of keyword–value pairs. The data segment contains the actual fluo-
rescence values in a binary format. The optional analysis segment can be
used to describe subsequent analyses.

The function readFCS can be used to read data from FCS 3.0 files and
transform them into an object of class cytoFrame. Here we use files from an
experiment that screened for effectors of the MAP-kinase signaling path-
way. The experiment was done at the German Cancer Research Center by
Meher Majety (Wiemann et al., 2004).

> sampleDir <- system.file("extdata", "map", package = "facsDorit")

> B05 <- readFCS(file.path(sampleDir, "060304MAPK controls.B05"))

> B05

cytoFrame object with 1575 cells and 8 observables:

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

slot ’description’ has 146 elements

The cytoFrame class has two slots description and exprs, which repre-
sent the text and data sections of the FCS file, respectively. The function
description returns a named character vector, whose elements are the val-

78 W. Huber and F. Hahne

ues and whose names are the keys. The current example file contains 146
key-value pairs, we print three of them:

> description(B05)[c(130, 137, 139)]

$DATE &1Sample Vol &3Mixing Vol

"03-Jun-04" "200" "180"

The function exprs returns a matrix which contains the fluorescence in-
tensities. Its rows correspond to the cells and its columns to the different
fluorescence channels.

> exprs(B05)[1:2,]

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

[1,] 621 454 973 1023 434 1023 566 3

[2,] 648 607 431 792 301 278 663 3

The experiments that we are interested in comprise more than one FCS
file. We may be looking at samples of cells that were transfected with
different genes or were fixed at different time points. Flow cytometry ma-
chines often allow the automated, serial processing of multiple samples in
microtiter plate format, and their vendor software usually provides an auto-
mated naming for the resulting files. For example, the directory sampleDir

contains 96 files, corresponding to the 96 wells of a microtiter plate. The files
have extensions .A01, .A02, . . ., .H12. In addition, the file plateIndex.txt
keeps track of the samples contained in each well. It is a rectangular table
with one row for each sample and a mandatory column named name with
the names of the corresponding FCS files. The data can be read using

> mapk <- readCytoSet(path = sampleDir,

+ phenoData = "plateIndex.txt")

> pData(mapk)[1:2,]

name clone wellnr

1 060304MAPK controls.A01 mock 1

2 060304MAPK controls.A02 mock 2

The resulting object is of class cytoSet . It has two slots: phenoData and
frame. The phenoData slot is used to keep track of the covariates that are
associated with each sample, and it functions in an analogous manner as
for exprSet objects.

The slot frame is used to store the data from the individual wells, in par-
ticular, the fluorescence intensities. It is an R environment that contains
a set of cytoFrame objects. The constructor and validity methods of the
cytoSet class make sure that the component cytoFrame objects are compat-
ible, in particular, that they have the same number of fluorescence channels
and that these have the same names. We have defined subset operators [

and [[for cytoSet objects that work similarly to those for lists:

> mapk[[1]]

5. Cell-Based Assays 79

cytoFrame object with 210 cells and 8 observables:

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

slot ’description’ has 146 elements

> exprs(mapk[[1]])[1:2,]

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

[1,] 651 409 67 711 234 139 620 36

[2,] 235 1023 140 424 96 0 582 36

There is an important difference to lists, though, and users of the cytoSet
are referred to the Note on storage and performance in its manual page.

5.4 Quality assessment and visualization

For cell-based assays, the quality of the data can be assessed on multiple
levels: at that of single cells, entire wells, entire plates, all measurements
from one transfection construct, and so on. We discuss some examples.

5.4.1 Visualization at the level of individual cells

Let us first have a closer look at flow cytometry data in general. For each
individual cell, we can measure,

• Forward light scatter (FSC): this is a measure of a cell’s size; the
details depend on the experimental setup and the instrument.

• Sideward light scatter (SSC): this is a measure of a cell’s granularity,
that is, the appearance and structure of the cell surface as well as
the amount of light-impermeable internal structures like lysosomes.
A large value indicates high granularity.

• Several fluorescence channels that measure the abundance of fluo-
rophores, which may be bound to specific antibodies for surface or
intracellular markers or be encoded by and expressed from a tagged
transcript.

The optical apparatus of a flow cytometry instrument is optimized for
detecting fluorescent light. Measurements of morphological properties via
the light scatter are usually not particularly accurate. Nonetheless they can
be used for a rough segmentation of the cell populations.

Experimental cell populations are often contaminated by cell debris, cell
conjugates, precipitates, or air bubbles. The instrument may not be able
to discriminate these contaminants from single, living cells, and hence they
may end up in the measured data. To a certain extent, it is possible to
discriminate such contaminations by their size using the FSC signal and by
their granularity using the SSC signal. We can look at the joint distribution
of FSC and SSC by means of the scatterplot:

80 W. Huber and F. Hahne

Figure 5.3. Scatterplot of flow cytometry data: FSC vs. SSC.

> x <- exprs(B05)[, c("FSC-H", "SSC-H")]

> plot(x, pch = 20, col = densCols(x))

The result is shown in Figure 5.3. We have used the function densCols to
obtain a coloring of the points that is indicative of their local density.1 The
measurements with very small FSC and SSC values at the lower left corner
of the plot are most likely due to debris, and we want to omit them from
the subsequent analysis. This can be done manually, by defining certain
thresholds (“gates”) on the FSC and SSC values.

It is desirable to automate such a task. In Figure 5.3, we can observe that
the main population of cells has roughly an elliptical shape. Consequently,
we assume that the main population can be approximated by a bivariate
normal distribution in the FSC–SSC space, and that outliers can be iden-
tified by having a low probability density in that distribution. Contours of
equal probability density are ellipses, and we select those cells as outliers
that lie outside a certain density threshold. This functionality is provided
by the function fitNorm2. It fits a bivariate normal distribution into the
data by robust estimation of its center and its 2 × 2 covariance matrix.

> nfit <- fitNorm2(x, scalefac = 2)

The parameter scalefac controls the probability density threshold. Its value
corresponds to the distance from the center in the Mahalanobis metric. We
can plot the result of this selection procedure together with the computed
probabilities in false color coding using the function plotNorm2.

> plotNorm2(nfit, ellipse = TRUE)

1The visualization of scatterplots with many points is discussed in more detail in

Section 10.3.

5. Cell-Based Assays 81

Figure 5.4. Outlier selection in the FSC-SSC plot: the points outside the ellipse,
which is a contour of equal probability density in a bivariate normal distribution,
can be considered outliers. The center of the distribution is marked by a red cross.
The two panels correspond to two different values of the parameter scalefac: a)
scalefac=2, b) scalefac=3.

The plot is shown in Figure 5.4. The return value nfit of the call to fitNorm2

is a list. One of the list elements is the logical vector nfit$sel. It has the
same length as the number of data points, and a value of TRUE indicates
that the point lies within the ellipse.

> B05.sel <- B05[nfit$sel,]

Figure 5.5 shows a comparison between the scatterplots of the two fluores-
cence channels FL1-H and FL4-H using the “clean” data B05.sel as well
as the original data B05. In this example, FL4-H measures the effect of
the perturbation in the MAP-kinase assay through the signal of a specific
antibody, whereas FL1-H measures the overabundance of the respective
effector protein via its YFP-tag.

> myPlot <- function(x) {

+ ex <- exprs(x)[, c("FL1-H", "FL4-H")]

+ plot(ex, pch = 20, col = densCols(ex))

+ }

> myPlot(B05)

> myPlot(B05.sel)

The convenience function myPlot allows us to produce the two similar plots
in Figure 5.5 without repeatedly specifying the plot options.

The composition of a population of cells can also be used to get an
overview of other properties. An unusually high proportion of contaminants
may indicate problems during growth or experimental treatment; similarly,
an unusual location or covariance of the fitted normal distribution. As

82 W. Huber and F. Hahne

Figure 5.5. Scatterplots of FL1-H vs FL4-H. a) using all data (B05), b) using
selected data only (B05.sel). Through the selection, we have reduced the propor-
tion of data points with very small values of FL4-H, which apparently correspond
to artifacts unrelated to the cell population of interest.

these quantities depend on instrument settings, cell line, and experimental
treatment, such criteria will have to be adapted for each experiment.

Fitting a unimodal normal distribution as in Figure 5.4 is appropriate if
the cell population is homogeneous and we screen for a phenotype that does
not strongly affect the cell morphology. We note that flow cytometry is often
also used to analyze more complex samples consisting of morphologically
different sub-populations of cells, for example, whole blood samples. For
these, more sophisticated clustering, mixture modeling, and classification
algorithms are in order.

5.4.2 Visualization at the level of microtiter plates

Microtiter plates come in different formats, usually as a rectangular ar-
rangement of 4×6 = 24, 8×12 = 96, or 16×24 = 384 wells. Each well may
contain cells that were treated in a different manner. The wet lab handling
of the plates is usually automated at least to some degree. A visualization of
per-well statistics is provided by the function plotPlate. Figure 5.6 shows
an example for a plate plot of a 96-well plate that indicates the number of
cells that were found in each well.

> nrCells <- csApply(mapk, nrow)

> plotPlate(nrCells, nrow = 8, ncol = 12, main = "Cell number",

+ col = brewer.pal(9, "YlOrBr"), width = 6.3)

5. Cell-Based Assays 83

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H

Cell number

50
0

10
00

15
00

20
00

Figure 5.6. Plate plot indicating cell number. Cell number depends on factors
like the condition of cells before plating, culture conditions, and purity of the
reagents. Here, cell numbers at the edges of the plate are consistently low, which
may indicate a handling problem.

Other quantities of interest include average fluorescences of each well, e.g.,
to monitor expression efficiency or artifactual shifts in the response.

The amount of information included in a plate plot can be expanded by
decorating it with tool-tips and hyperlinks. When viewed in a browser, a
tool-tip is a short textual annotation – for example, a gene name – that is
displayed when the mouse pointer moves over a plot element. A hyperlink
can be used to display more detailed information, even a graphic, in another
browser window or frame. For example, underlying the values that are
displayed in a plate plot such as Figure 5.9 can be a complex statistical
analysis for each individual well, whose details can be displayed on demand
by hyperlinking them to the corresponding well icons in the plate plot. For
this purpose, the package geneplotter provides the function imageMap. From
the output of the function platePlot and a list of hyper-links and tool-tips,
it produces an HTML image map, which can be viewed with a web browser.

5.4.3 Brushing with Rggobi

The example data from Section 5.4.1 is four-dimensional: each cell is
described by the four parameters FSC-H, SSC-H, FL1-H, and FL4-H. Al-
though static scatterplots can only display two variables at a time, there
are a number of interactive visualization techniques that can help to get
insight into slightly higher-dimensional data sets. One of them is brushing .
Here, one displays several two- or one-dimensional projections of the data.
Interactive subset selections of the data are then simultaneously marked in
all plots. Such a functionality can be achieved from within R; for exam-
ple, see the package iSPlot. An alternative is to use an external program,

84 W. Huber and F. Hahne

Figure 5.7. Brushing between scatterplots with Rggobi.

ggobi (Swayne et al., 2003), which has an elegant interface to R via the
Rggobi package. Figure 5.7 shows an example for brushing between FSC-H
vs. SSC-H and FL1-H vs. FL4-H scatterplots of the apoptosis assay data.

> library("Rggobi")

> x <- exprs(B05)

> gg <- ggobi(x)

> gg$setGlyphs(5, 1, 1:nrow(x))

> gg$setColors(rep(9, nrow(x)))

> gg$scatterplot("FL1-H", "FL4-H")

> gg$setBrushColor(5)

> gg$setMode("Brush")

5. Cell-Based Assays 85

5.5 Detection of effectors

We discuss two types of responses, which call for different methods of
statistical analysis: discrete responses caused by on-off mechanisms and
continuous responses that reflect a more gradual effect. Each type will be
exemplified by a representative experiment.

5.5.1 Discrete Response

Apoptosis, or programmed cell death, is a strongly evolutionarily conserved
cellular mechanism that plays a crucial role in development, growth, and
tissue maintenance. One key player of this pathway is the enzyme caspase-
3, that gets activated upon onset of apoptosis in most cell types. This
activation is a rapid and irreversible step taking less than five minutes. Once
the cell receives a signal to undergo apoptosis, most or all of its caspase-3
molecules are proteolytically cleaved, which then inevitably leads to the
death of the cell. Thus caspase-3 activation can be used to measure the
apoptotic state of a cell, and it can be considered an on-off switch.

In a study that was performed by Mamatha Sauermann at the Ger-
man Cancer Research Center, caspase-3 activation was monitored using a
fluorochrome-coupled antibody specific for the activated form of caspase-3.
The fluorescence was recorded in the FL4-H channel. Cells were transfected
with expression vectors encoding different potential effector proteins and a
fluorescent YFP tag whose fluorescence was recorded in the FL1-H channel.
We first load and preprocess the data.

> preprocess <- function(x) {

+ for (i in 1:length(x)) {

+ dat <- exprs(x[[i]])

+ fn <- fitNorm2(dat[, c("FSC-H", "SSC-H")],

+ scalefac = 1.5)

+ x[[i]] <- dat[fn$sel,]

+ }

+ return(x)

+ }

> apo <- readCytoSet(path = system.file("extdata",

+ "apoptosis", package = "facsDorit"),

+ phenoData = "plateIndex.txt")

> apoP <- preprocess(apo)

The preprocess function removes, for each well, the debris identified by fit-

Norm2, as described in Section 5.4.1. The FL4-H (corresponding to caspase-3
activation) and FL1-H intensities (corresponding to YFP fluorescence) of
mock transfected cells can now be used to define thresholds for approxi-
mately separating apoptotic from non-apoptotic cells and expressing from
non-expressing cells.

86 W. Huber and F. Hahne

> calcthr <- function(x) {

+ h <- hubers(x)

+ h$mu + 2.5 * h$s

+ }

> mock <- exprs(apoP[[1]])[, c("FL1-H", "FL4-H")]

> plot(mock, pch = ".", xlab = "protein expression",

+ xlim = c(0, 1023), ylab = "caspase-3 activation",

+ ylim = c(0, 1023))

> thrYFP <- calcthr(mock[, 1])

> thrCASP3 <- calcthr(mock[, 2])

> abline(v = thrYFP, h = thrCASP3, col = "red",

+ lty = 2)

The above code assumes that for mock transfected cells the fluorescence
values in both channels have a unimodal distribution, i.e., that almost
all cells are in a non-apoptotic state and that they do not express YFP.
Location and scale of these distributions can then be used for setting the
separation thresholds. These values are robustly estimated by the function
hubers from the package MASS. The plot is shown in Figure 5.8b.

We can now use the function thresholds to discretize the data into four
subsets and obtain a contingency table. The dependency between the counts
can be assessed using Fisher’s exact test.

> cide <- exprs(apoP[[6]])[, c("FL1-H", "FL4-H")]

> ct <- thresholds(cide, xthr = thrYFP, ythr = thrCASP3)

[,1] [,2]

[1,] 11 302

[2,] 8890 3957

> fisher.test(ct)

Fisher’s Exact Test for Count Data

data: ct

p-value < 2.2e-16

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.0080 0.0295

sample estimates:

odds ratio

0.0162

Figure 5.9 shows results of such an analysis for a 96-well microtiter plate.
Not all wells were populated during the experiment, and these are omitted
from the plate plot. The false color coding represents the negative logarithm
of the odds ratios for those cases with p-values less than 0.01.

> calcOdds <- function(x) {

+ ct <- thresholds(x[, c("FL1-H", "FL4-H")],

5. Cell-Based Assays 87

protein expression

ca
sp

as
e−

3
ac

tiv
at

io
n

untransfected
apoptotic cells

(UA)

transfected
apoptotic cells

(TA)

untransfected
non−apoptotic cells

(UN)

transfected
non−apoptotic cells

(TN)

a)

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

protein expression

ca
sp

as
e−

3
ac

tiv
at

io
n

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

protein expression

ca
sp

as
e−

3
ac

tiv
at

io
n

b) c)

Figure 5.8. a) YFP fluorescence (FL1-H) can be used to approximately separate
expressing from non-expressing cells, caspase-3 activation (FL4-H) to separate
apoptotic from non-apoptotic cells. b) Scatterplot for a control population of
mock-transfected cells, which can be used to determine the separation thresh-
olds. c) Scatterplot for a population of cells that were transfected with an
apoptosis-inducing CIDE3-YFP expression construct.

88 W. Huber and F. Hahne

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H

log odds ratios

0.
0

0.
5

1.
0

1.
5

2.
0

act

Figure 5.9. Plate plot classifying apoptosis pathway effectors. The color code
represents the log odds ratio log[(TA/TN)/(UA/UN)]. The numbers TA, TN ,
UA, and UN are defined in Figure 5.8.

+ xthr = thrYFP, ythr = thrCASP3)

+ f <- fisher.test(ct)

+ res <- -log10(f$estimate)

+ return(ifelse((f$p.value > 0.01 | is.infinite(res)),

+ 0, res))

+ }

> odds <- csApply(apoP, calcOdds)

> cols <- brewer.pal(9, "Reds")[c(rep(1, 4), 2:9)]

> plotPlate(odds, nrow = 8, ncol = 12, main = "log odds ratios",

+ desc = c("act", ""), col = cols, width = 6.3,

+ na.action = "omit", ind = pData(apo)$wellnr)

5.5.2 Continuous response

Signaling in cells involves a system of proteins and small molecules that
build up complex interacting pathways. Selective phosphorylation is one
mechanism for passing signals along a cascade of proteins. Proteins with the
ability to phosphorylate other molecules are called kinases. One prominent
example of a kinase signaling cascade is the MAP-kinase pathway, which
plays an important role in cell-cycle regulation. The activity of this pathway
can be continuously regulated both in a positive and in a negative manner.
In contrast to the previous section, where the response was essentially a
“yes/no” decision, here the response is of a gradual nature. This calls for
the use of regression analyses to assess the effect of overexpressed proteins.
We return to the data set from Section 5.3. In that assay, an antibody
against one of the cascade kinases, ERK, was used to monitor the activity
of the MAP-kinase pathway. The over-expressed proteins were tagged with

5. Cell-Based Assays 89

Figure 5.10. Regression analysis for MAP-kinase effectors: a) activator (MEK),
b) repressor (DSPP), c) neutral (ERK).

fluorescent YFP. In this data set, the wells within each row are replicates,
so we will combine the data from these wells. This is accomplished by the
function combineFrames. The function preprocess, which was defined above,
removes debris.

> mapkP <- preprocess(combineFrames(mapk, factor(pData(mapk)$clone)))

Figure 5.10 shows the fitted robust local regressions for a known activa-
tor, a repressor, and a protein with no effect on MAP-kinase activation. The
function locfit.robust is provided by the package locfit (Loader, 1999).

> groups <- c("MEK", "DSPP", "ERK")

> for (i in groups) {

+ dat <- exprs(mapkP[[i]])[, c("FL1-H", "FL4-H")]

+ lcft <- locfit.robust(x = dat[, 1], y = dat[,

+ 2], deg = 1, alpha = 1, maxk = 512)

+ plot(dat, pch = 20, col = densCols(dat), main = i)

+ lines(lcft, col = "red", lwd = 2)

+ }

As a measure of the effect of the overexpressed protein, we use the esti-
mated slope of the regression line for moderately expressing cells. To make
the slopes comparable across different experiments it can also be useful to
consider the z–score, that is the ratio of the estimated slope and its stan-
dard error. The following code computes local slope and z–score for the
example data in Figure 5.10 at YFP intensities of 600.

> sapply(groups, function(i) {

+ dat <- exprs(mapkP[[i]])[, c("FL1-H", "FL4-H")]

+ dlcft <- locfit.robust(x = dat[, 1], y = dat[,

+ 2], deg = 1, alpha = 1, deriv = 1, maxk = 512)

+ pp <- preplot(dlcft, newdata = 600, band = "local")

90 W. Huber and F. Hahne

+ c(delta = pp$fit, zscore = pp$fit/pp$se.fit)

+ })

MEK DSPP ERK

delta 0.0339 -0.131 0.00406

zscore 5.3583 -16.659 0.68103

5.5.3 Outlook

We have shown three examples of cell-based assays: a genome-wide screen
for viability in Section 5.3.1, a sensitive over-expression screen for a
discrete response, apoptosis, in Section 5.5.1, and the monitoring of a
continuous-valued response in MAP-kinase signaling in Section 5.5.2. We
have discussed normalization, quality assessment, visualization, and statis-
tical modeling of these data. The package prada provides data structures to
manage these data. It also provides some specialized visualization and anal-
ysis routines; moreover, we have encouraged the reader to try out and adapt
general-purpose statistical procedures, such as the local linear regression
from the package locfit.

Besides the two response type discussed in this chapter, many other kinds
of response or phenotype may be of interest, for example, time courses,
microscopy images, particular features of the cells, even developmental fea-
tures of small organisms such as worms or fish embryos. R and Bioconductor
offer a large and steadily growing number of methods to import, process
and statistically analyze this kind of data.

After the conversion of data from each individual well into quantities
such as odds ratios, z-scores, the next step will usually be the summariza-
tion of data from multiple technical or biological replicates, further quality
control, and the scoring and selection of “hits”. Finally in order to inter-
pret the results derived from our assays, we will want to assign our hits to
known pathways, compare hit lists, investigate epistatic relationships, and
integrate our data with other modes of experimentation such as expression
profiles or protein interactions. For this, many of the methods described in
the remainder of this book will be useful.

Acknowledgement

We would like to thank Dorit Arlt, Mamatha Sauermann, Meher Majety,
Stefan Wiemann, and Michael Boutros for giving us access to their data
and for many fruitful discussions about the analysis.

6

SELDI-TOF Mass Spectrometry
Protein Data

X. Li, R. Gentleman, X. Lu, Q. Shi, J. D.
Iglehart, L. Harris, and A. Miron

Abstract
The term proteome is used to denote the set of proteins encoded

by a genome, and proteomics is the study of the expression and in-
teractions of the proteins, which can depend on many factors such
as cell type, treatment, tissue type, developmental state, and disease
state. Conceptually, this is similar to the transcriptomics technolo-
gies discussed in Chapters 2–4; however, due to the more complicated
chemistry of proteins, compared to RNA, the field has a different
and diverse set of technologies and produces a wide range of spe-
cific challenges. Here we discuss one particular mass spectrometry
technology.

6.1 Introduction

SELDI-TOF-MS is surface enhanced laser desorption/ionization time-of-
flight mass spectrometry, a proprietary process of Ciphergen r©,1 a leading
manufacturer of hardware and software for proteomic research. SELDI-
TOF is a technology that can be used to profile protein markers from
tissue or bodily fluids, such as serum. For ease of exposition, we will use
the term protein, even when in some cases the term polypeptide would be
more accurate.

Typically, biological samples from different patients or different con-
ditions are compared. The sets of differentially expressed proteins are
identified, and it is hoped that they will reveal biological processes or path-
ways that are involved in the different outcomes or different phenotypes

1Ciphergen is a registered trademark of Ciphergen Biosystems, Inc.

92 X. Li et al.

under study. This technology is often employed to identify biomarkers that
can aid in diagnosis, prognosis or treatment, and the identified proteins
could potentially serve as drug targets.

The technology has been used to study several different diseases using
various bodily fluids. Cerebral spinal fluid was used to investigate markers
for severe psychiatric disease (Johnston-Wilson et al., 2001). The urine
of patients receiving radiocontrast media during cardiac catheterization
provided markers of renal function (Hampel et al., 2001). In oncology the
technology has been applied, for example, to transitional cell carcinoma
(Vlahou et al., 2001), pancreatic cancer (Rosty et al., 2002), prostate cancer
(Wang et al., 2001), ovarian cancer (Petricoin et al., 2002), and breast
cancer (Vlahou et al., 2003).

We give a simple description of how the SELDI-TOF-MS technology
works and refer the reader to Ciphergen’s manual (Ciphergen, 2000) for
more specific details. Biological samples are prepared and usually processed
via some form of fractionation. Fractionation is the process of splitting
the original sample into subsamples which contain proteins that are more
homogeneous. The samples are placed on the active surface of an array, each
in its own spot. Depending on the surface chemistry of the array, a specific
subset of proteins in the sample are captured through chemical interactions.
After binding and washing off weakly bound proteins, an energy absorbing
molecule (EAM) solution is applied to the array surface and allowed to
dry and crystallize. The array is then placed in a reader and queried with
a laser beam. The laser ionizes the proteins, which become charged and
gaseous. They fly away from a metal anode with a positive charge down
a tube toward an ion detector, resulting in different times-of-flight (TOF)
depending on the masses and charges of the polypeptides. The masses are
then derived from a quadratic equation that relates TOF and the mass over
charge ratio (m/z) of a polypeptide. The parameters of the equation are
calibrated using known proteins or polypeptides under the same instrument
conditions.

Charge z is quantized; it comes in multiples of the charge of the electron.
Typically, the ionized polypeptides have unit charge, but some have higher
charge numbers. For example, if a polypeptide has two elementary charges,
it will have the same m/z value as a polypeptide half of its mass but with
only one charge. In the m/z spectrum, such proteins’ will be superimposed
on each other; disentangling them is important. For each sample, we ob-
tain a complete spectrum of m/z values with peaks indicating abundant
proteins. The output data are often stored as comma delimited files with
two columns, the mass over charge (m/z) values and the intensities. Each
file represents one measured spectrum. Careful layout of replicate samples
helps to reduce between run and spatial variations.

The proteins that are detected are dependent on many factors including
the array surface, the EAM used and the fractionations that were used. In a
sense, different values of these will yield different data sets and most of the

6. Mass Spectrometry 93

parameters we discuss should be examined independently on the different
data sets. We also note, that the output data from a single set of samples,
given all of these options can be extremely large.

Before the output data can be analyzed to find biomarkers, a number
of technical challenges in processing the SELDI-TOF-MS raw data (Fung
and Enderwick, 2002; Baggerly et al., 2004; Yasui et al., 2004) need to
be resolved. Although the specific details and methods are different from
those used to process microarray data the general concepts are the same.
For example, some of these fall in the realm of quality assessment while
others carry out normalization and still others perform feature extraction.
In the following sections, we shall explore those issues and discuss some
possible solutions.

We have written a number of software routines to handle these data
and have combined them into an Rpackage, PROcess. The routines remove
baseline drift, detect peaks, normalize spectra, and align peaks to a set of
proto-biomarkers. We also provide a routine for quality assessment of the
spectra and a data-driven routine for selecting a cutoff point in spectra to
reduce variability. This functionality helps to improve the quality of the
processed data for subsequent machine learning efforts.

6.2 Baseline subtraction

We first load the required software and example data that are available
from the PROcess package. We read in a raw spectrum and plot it.

> library("PROcess")

> fdat <- system.file("Test", package = "PROcess")

> fs <- list.files(fdat, pattern = "\\.*csv\\.*",

+ full.names = TRUE)

> f1 <- read.files(fs[1])

> plot(f1, type = "l", xlab = "m/z")

> title(basename(fs[1]))

In Figure 6.1, we see an elevated, non-constant baseline for m/z between
about 2,000 and 10,000. At larger m/z, the baseline levels off to a plateau.
This elevated baseline is mostly caused by the chemical noise in the EAM
and by ion overload. Ideally a spectrum should rest more or less on the
horizontal line y = 0. In order to make different spectra comparable,
the baseline is subtracted from each raw spectrum. This step is similar
to background subtraction in microarrays.

The removal of the baseline can be achieved by subtracting from a spec-
trum an estimate of its bottom. We estimate the bottom of a spectrum using
local regression. A robust version of local regression should be used so that
peaks do not inflate the estimate of the bottom. This can be achieved by
fitting a local regression to the points below a certain quantile or to local

94 X. Li et al.

0 5000 10000 15000 20000

10
20

30
40

50
60

m/z

In
te

ns
ity

122402imac40−s−c−192combined i11.csv

Figure 6.1. A raw spectrum. The x-axis corresponds to the m/z ratio, y-axis to
ion intensity.

minima. Although we implemented both methods in PROcess, our experi-
ence suggests that using local minima to estimate the baseline yields better
results. The process of baseline subtraction may introduce negative net in-
tensity values, which are awkward for subsequent analyses. We have found
that using local minima in the regression tends to yield fewer negative
values. The algorithm we propose is as follows:

1. For each spectrum find local minima by either a moving window, or
by segmenting the m/z range. If the latter, we split the m/z range on
the log scale into n equally-spaced intervals and find a given quantile,
e. g., the minimum, for each interval.

2. Fit a local regression to data below the local quantiles for each spec-
trum. A constant bandwidth can be used if the baseline is estimated
from segmented data.

3. Subtract the estimated baseline from each spectrum.

The following code creates Figure 6.2, a spectrum with its baseline
removed.

> bseoff <- bslnoff(f1, method = "loess", bw = 0.1,

+ xlab = "m/z", plot = TRUE)

> title(basename(fs[1]))

6. Mass Spectrometry 95

0 5000 10000 15000 20000

0
10

20
30

40
50

60

m/z

In
te

ns
ity

●

●

●

Raw
Baseline
Processed

122402imac40−s−c−192combined i11.csv

Figure 6.2. Spectrum baseline subtraction. Green: the raw spectrum; Red: the
estimated baseline of the raw spectrum; Blue: the raw spectrum minus the
estimated baseline.

Caution needs to be employed in choosing the bandwidth; too small a
bandwidth may result in the removal of some peaks, especially wide short
peaks, which may be potentially important.

6.3 Peak detection

Once we have the baseline-adjusted spectra, the next step is peak detection.
The peaks represent specific, abundant polypeptides in the sample. Ulti-
mately, interest is centered on the set of polypeptides that are differentially
expressed between different samples.

We locate peaks using the following algorithm. First, the spectrum is
smoothed using moving averages of ks nearest neighbors. Smoothing helps
to remove spurious peaks. However, it should not be too vigorous because
we want to retain short and wide peaks and also because we need precise
estimates in peak locations. In the function isPeak, described below, ks

corresponds to the parameter sm.span. Local variability is computed as
the median of the absolute deviations (MAD) of kv nearest neighbors. The
reason for using MAD instead of the standard deviation is that the standard
deviation is not robust and tends to over-estimate local variability in the
proximity of high peaks. Given that high peaks are sparse in the whole
spectrum, MAD reduces the contribution of high peaks to the estimated

96 X. Li et al.

noise. In isPeak, kv corresponds to the parameter span. The use of a large
value ensures that extended clusters of peaks are not treated as noise.

Once this has been done, local maxima of the smoothed spectrum are
identified. Three thresholds are used in peak calling are:

1. the signal to noise ratio, which is calculated as the local smooth
divided by the local estimate of variation;

2. the detection threshold for the whole spectrum: below which the
intensities are considered as zero;

3. the shape ratio, which is computed as the area under the curve within
a small distance (default 0.3%) of a peak candidate, as identified by
the first two criteria, divided by the maximum of all such peak areas
of a spectrum.

The first threshold is set to select peak candidates, for example, we retain
peaks with signal to noise ratio greater than 2. The second threshold is used
to keep out low peaks in relatively flat regions, where the local variation is
nearly zero and the signal to noise ratio alone might select small peaks. The
third threshold helps discard single spike peaks. Given the limited precision
of the technology, a single spike is more likely to be a technical abnormality
than a true signal. The parameters can all be set by the users and we suggest
that some experimentation be used to find appropriate settings.

We use the following code to do peak detection on the baseline-subtracted
spectrum bseoff obtained in the last section.

> pkgobj <- isPeak(bseoff, span = 81, sm.span = 11,

+ plot = TRUE, zerothrsh = 2, area.w = 0.003,

+ ratio = 0.2, main = "a)")

The result is shown in Figure 6.3a. Often it is helpful to inspect peaks in
a particular range of m/z values, this is provided by the function specZoom

(see Figure 6.3b).

> specZoom(pkgobj, xlim = c(5000, 10000), main = "b)")

6.4 Processing a set of calibration spectra

We have seen in the previous two sections the issues we need to resolve
for a single spectrum. In this section, we discuss the additional problems
encountered when a set of spectra are considered simultaneously. We pre-
sume that all individual spectra have been processed according to the
recommendations given above.

Because of measurement variations, peaks in individual spectra that cor-
respond to the same protein may not be in alignment. We compare peak
locations are across spectra, and those which are close to each other (typ-
ically within a distance ε) are identified with a single m/z value. After

6. Mass Spectrometry 97

0 5000 10000 15000 20000

0
10

20
30

40
a)

m/z

sm
oo

th
ed

 s
pe

ct
ru

m

●

●

●
●

●

●

●●●

● ●

●
●

●

●

●

o
smooth
peaks
local sigma

5000 6000 7000 8000 9000 10000

0
10

20
30

40

b)

m/z

sm
oo

th
ed

 s
pe

ct
ru

m

●

●

●

o
smooth
peaks
local sigma

Figure 6.3. a) A spectrum with detected peaks marked by red circles. b) Zoom
in produced by the function specZoom.

alignment, all spectra will use a set of common peaks and two peaks that
correspond to the same protein should have the same m/z value.

Raw spectra exhibit not only variation in peak positions but also in
amplitude. Hence some normalization in the vertical direction is generally
also needed. There is often substantial noise observed for low values of m/z
and excluding it before normalizing is preferred. So, we first find a suitable
cutoff point. Once that is identified, a normalization procedure is applied
to each spectrum for values of m/z larger than the selected cutoff value.
In most cases, normalization is based on standardizing the area under the
estimated (adjusted) spectra; we give details below.

For a given experiment, different combinations of biological samples, ar-
ray types and EAM may call for different sets of parameters for processing
the raw spectra. We recommend using bslnoff and isPeak on a few spectra
from each run to tune the parameters to get satisfactory results in baseline
subtraction and peak detection. But, in general, different values will be
used for different experimental conditions.

98 X. Li et al.

We now demonstrate the batch functionality of this package using a set
of 8 spectra from a calibration data set, where the same five proteins are
present in the samples. Their masses are 1084, 1638, 3496, 5807, and 7034
atomic mass units (amu, often also called a Dalton). We use the following
code to read in the eight spectra, plot them, and mark the protein positions
by red vertical lines for each of them in Figure 6.4.

> amu.cali <- c(1084, 1638, 3496, 5807, 7034)

> plotCali <- function(f, main, lab.cali) {

+ x <- read.files(f)

+ plot(x, main = main, ylim = c(0, max(x[, 2])),

+ type = "n")

+ abline(h = 0, col = "gray")

+ abline(v = amu.cali, col = "salmon")

+ if (lab.cali)

+ axis(3, at = amu.cali, labels = amu.cali,

+ las = 3, tick = FALSE, col = "salmon",

+ cex.axis = 0.94)

+ lines(x)

+ return(invisible(x))

+ }

> dir.cali <- system.file("calibration", package = "PROcess")

> files <- dir(dir.cali, full.names = TRUE)

> i <- seq(along = files)

> mapply(plotCali, files, LETTERS[i], i <= 2)

We observe the following features of the eight spectra. First, there is
baseline drift. Second, only two out of the five proteins, those with 3496
amu and 5807 amu are unequivocally present. The protein with 7034 amu
is relatively short and of similar magnitude to other short peaks in the
spectra. Third, the two smallest proteins, those with 1084 amu and 1638
amu are not visually discernible for all eight spectra. Finally, we observe
that there is a lot of noise at low m/z values.

6.4.1 Apply baseline subtraction to a set of spectra

We subtract the baselines from this set of spectra by using the following
command:

> Mcal <- rmBaseline(dir.cali)

The function rmBaseline simply calls bslnoff once for each spectrum. The
baseline-subtracted spectra are stored column-wise in the matrix Mcal with
m/z values as row-names and spectrum names as column-names.

6. Mass Spectrometry 99

0 5000 10000 15000 20000

0
20

60
10

0

A10
84

16
38

34
96

58
07

70
34

0 5000 10000 15000 20000

0
20

60
10

0

B10
84

16
38

34
96

58
07

70
34

0 5000 10000 15000 20000

0
20

60
10

0

C

0 5000 10000 15000 20000

0
20

60
10

0

D

0 5000 10000 15000 20000

0
20

60
10

0

E

0 5000 10000 15000 20000

0
20

60
10

0

F

0 5000 10000 15000 20000

0
20

60
10

0

G

0 5000 10000 15000 20000

0
20

60
10

0

H

Figure 6.4. Eight calibration spectra.

6.4.2 Normalize spectra

Because of the variations in the amplitude of spectra, we normalize a set
of spectra using a procedure called total ion normalization. For each spec-
trum, we calculate its area under the curve (AUC) for m/z values greater
than the selected cutoff and then scale all spectra to the median AUC.
This step helps to reduce variation due to experimental noise, for exam-
ple, systematic effects between samples due to varying amounts of applied
protein, degradation over time in the sample or change in the instrument
sensitivity. If intensities at m/z values are taken at equally spaced time
points, the sum of intensities of a spectrum can be seen as the AUC up to a
constant. This method of normalization relies on the assumptions that on
average, the number of proteins that are being over-expressed is approx-

100 X. Li et al.

imately equal to the number of proteins being under-expressed, and that
the number of proteins whose expression levels change is small relative to
the total number of proteins bound to the protein array surface. Cipher-
gen’s internal studies (Fung and Enderwick, 2002) on replicates of the same
sample run on a number of spots of the same ProteinChip Array surface
type have shown improvements in the coefficient of variation on the order
of 15%-20%. This normalization step is similar to those carried out when
preprocessing microarrays, and is done for exactly the same reasons.

We normalize the baseline-subtracted spectra for the cutoff point m/z =
400 by issuing the following command.

> M.r <- renorm(Mcal, cutoff = 400)

The matrix M.r will be used later for identifying proto-biomarkers.

6.4.3 Cutoff selection

The observed spectra are not reliable throughout the whole m/z range.
First, there are some negative m/z values reported by the instrument.
These results from measurements outside the valid range of the quadratic
equation relating TOF to mass and should be discarded. Second, we observe
that the noise is very large at small m/z values. As mentioned earlier,
chemical noise and ion overloading cause the baseline of a spectrum to
elevate. They have a larger effect at smaller mass-over-charge (m/z) values
(Fung and Enderwick, 2002; Baggerly et al., 2004). We want to choose
a cutoff point such that the magnitude of the noise is relatively stable
above that point. The cutoff should be chosen large enough to eliminate the
initial noisy region but small enough to retain any peaks that correspond
to real observable proteins. In order to compare spectra and to carry out
the normalization the same cutoff should be used for all spectra.

Estimating a good cutoff is difficult. The existence of technical replicates
can facilitate the computation. Once a group of spectra that will be used
for common cutoff selection and a cutoff point have been determined, the
following algorithm may be used:

1. Baseline-subtracted spectra within the group are normalized to the
median of the sums of intensities of spectra.

2. The standard deviation of intensities at each m/z value is calculated.

3. The mean of those standard deviations is computed.

These steps should be carried out for different cutoff points, and a plot of
the average standard deviations versus cutoff points should be examined.
The following code carries out these calculations, and the resultant plot is
shown in Figure 6.5.

> cts <- round(10^(seq(2, 4, length = 14)))

> sdsFirst <- sapply(cts, avesd, Ma = Mcal)

6. Mass Spectrometry 101

> plot(cts, sdsFirst, xlab = "cutpoint", pch = 21,

+ bg = "red", log = "x", ylab = "average sd")

●
● ●

●

●

●
●

●
● ●

● ●

●

●

●

100 200 500 1000 2000

0.
16

0.
20

0.
24

0.
28

cutpoint

av
er

ag
e

sd

Figure 6.5. Average standard deviations versus cutoff points.

Figure 6.5 shows that the average of standard deviations first increases
slightly and then decreases with the first local minimum at around 400.
This indicates that 400 may be a suitable cutoff point because it seems to
be outside of the noisy portion associated with low m/z values.

6.4.4 Identify peaks

For a single baseline-adjusted spectrum, we have shown in Section 6.3 how
peaks can be located by using the function isPeak. For a set of spectra, we
can use the function getPeaks, which runs isPeak on a batch of spectra. The
following code identifies peaks in the eight individual calibration spectra.

> peakfile <- "calipeak.csv"

> getPeaks(M.r, peakfile, ratio = 0.1)

6.4.5 Quality assessment

Quality assessment is necessary because sometimes experiments can go
wrong. Spectra of poor quality will not help in subsequent analysis in ma-
chine learning and may substantially affect estimates. We need to identify
and eliminate them.

One type of failure results in a spectrum that has large amount of noise
and very few peaks. In PROcess, we use three parameters, Quality, Retain,
and Peak to assess the quality of a set of spectra; this is based on the
approach proposed in Mani and Gillette (2004).

102 X. Li et al.

The function quality computes the three quantities for each spectrum.
For a given baseline-adjusted spectrum, the algorithm is:

1. estimate the noise by subtracting from each spectrum its moving
average with a window size of 5 points;

2. calculate the noise envelope as 3 times the standard deviation of the
noise (as estimated from the previous step) in a 250–point window;

3. calculate the area under each spectrum A0;

4. calculate the area after subtracting the noise envelope from the
spectrum A1;

5. obtain three statistics for each spectrum:

(a) Quality : A1/A0,
(b) Retain: the number of points with height greater than 5 times

noise envelope over the total number of points in the spectrum,
(c) Peak : the ratio of the number of peaks in each spectrum detected

to the average number of peaks for all spectra in a run.

Quality is a measure of separation of signal from noise, Retain is the
number of high peaks in a single spectrum, and Peak is the number of
peaks in a spectrum relative to the average number of peaks of the whole
set of spectra being considered. A spectrum is deemed of poor quality and
might need to be excluded from subsequent analyses if it meets the following
3 conditions simultaneously: Quality < 0.4, Retain < 0.1, and Peak < 0.5.

For our set of calibration spectra, the following command carries out the
quality assessment:

> qualRes <- quality(M.r, peakfile, cutoff = 400)

Quality Retain peak

060503peptidecalib 1_128.csv 0.414 0.171 0.970

060503peptidecalib 1_16.csv 0.456 0.141 0.970

060503peptidecalib 1_2.csv 0.497 0.118 0.970

060503peptidecalib 1_256.csv 0.410 0.178 0.727

060503peptidecalib 1_32.csv 0.356 0.130 0.970

060503peptidecalib 1_4.csv 0.522 0.143 1.212

060503peptidecalib 1_64.csv 0.479 0.143 1.212

060503peptidecalib 1_8.csv 0.417 0.120 0.970

From the output, we see that none of the spectra in the calibration data
set failed our quality control requirements.

6.4.6 Get proto-biomarkers

We now turn our attention to the problem of peak alignment – that is,
identifying those peaks, across spectra, that are likely to represent the same
protein. The observed variation in peak location is not simply a constant

6. Mass Spectrometry 103

shift but is proportional to the value of m/z. Currently, the accuracy in
the m/z position is believed to be within 0.3% of the observed m/z value.

Once the peaks are detected, we generate an interval around each peak
that is centered at the m/z value for the peak (if a peak was observed to
have m/z of x then the interval would be [0.997 x, 1.003 x]). We treat those
intervals as a partially ordered set and use the locations of the maximal
cliques to define the locations of the proto-biomarkers (Gentleman and
Vandal, 2001). We call the peaks aligned across spectra proto-biomarkers
and use the centers of the resulting intervals as the locations of the aligned
peaks. For each spectrum, we determine which actual peaks are represented
by a proto-biomarker and use the maximum value (within a spectrum) as
the height of that proto-biomarker.

The function pk2bmkr uses this method to align the peaks and obtain
the proto-biomarkers. The function has a parameter binary for outputting
intensity or peak absence/presence (0/1) along with the m/z values. As dis-
cussed in Yasui et al. (2004) the absolute intensity values themselves may
not be reliable for establishing proto-biomarkers because of the presence
of experimental noise. Reducing the absolute intensity measures into peak
absence or presence is an alternative. After the proto-biomarkers are ob-
tained, statistical inference and machine learning algorithms can be applied
to them.

Because the calibration data set contains eight homogeneous spectra, we
used a criterion that a peak is retained if it is present for at least half of
the spectra. The following code reads the results from the peak detection
step, peakfile, aligns the peaks from the individual spectra and writes the
proto-biomarkers into the file calibmk.csv.

> bmkfile <- "calibmk.csv"

> bmk1 <- pk2bmkr(peakfile, M.r, bmkfile, p.fltr = 0.5)

> mk1 <- round(as.numeric(gsub("M", "", names(bmk1))))

> mk1

[1] 2906 3498 5812 7036

The last three proto-biomarkers, 3498, 5812, and 7036, are within 0.3%
of the m/z values of three proteins (3496, 5807, and 7034) of the five known
to be present in the calibration samples. Hence they can be considered to
be the proteins used for the calibration samples.

A peak at 2906 is detected in some of the samples. It may correspond
to the protein with mass 5807 amu with two charges, as its m/z is close
to 5807/2 = 2903.5. To examine whether some peaks are a result of larger
proteins with two charges, we can overlay, on each spectrum, the spectrum
obtained by multiplying m/z values by 2. The following code does that
for the eight calibration spectra. The function plotCali was defined above
(page 98).

104 X. Li et al.

> plotCali2 <- function(...) {

+ x <- plotCali(...)

+ lines(x[, 1] * 2, x[, 2] + 25, col = "blue")

+ }

> mapply(plotCali2, files, LETTERS[i], i <= 2)

Figure 6.6. Eight calibration spectra, black is the original spectrum and blue is
the spectrum with m/z values multiplied by 2, and shifted upwards by 25 to aid
the visualization. Note the alignment of some black and blue peaks - indicating
the possibility of doubly charged polypeptides.

As seen from Figure 6.6, the black and blue seem to overlap in two places,
5807 of black with 2×2906 of blue and 7034 of black with 2×3496 of blue.
Because proteins with masses 3496 amu and 7034 amu are known to be

6. Mass Spectrometry 105

present in the sample, we do not investigate further. Because no protein
with mass around 2906 amu was supposed to be present in the calibration
sample and because twice this m/z value is within 0.3% of 5807, the mass
of a protein that was supposed to be present, the proto-biomarker 2906
may be the 5807 amu protein but with two charges. We tried other sets
of parameter values but failed to detect peaks at m/z = 1084 and 1638
without finding other spurious peaks.

6.5 An example

One hundred sixty–seven samples were collected from 155 subjects in CPT
tubes with plasma isolated and stored at -80◦C until needed. Among the 167
samples, 55 were HER2 positive (A), 64 were normal healthy women (B), 35
were mostly ER/PR positive (C), and 13 samples were from a single healthy
woman (D). Samples labeled D are the only ones from a single subject; all
the other samples represent different individuals. Samples were thawed and
aliquoted into 100 µl vials. The samples were fractionated so that proteins
were separated into subsets of proteins based on biophysical characteristics.
Fractions 4 and 5 (f45) were processed by the Ciphergen IMAC protocol
with EAM of CHCA. This data set is stored in the ProData package also
available from Bioconductor. The spectrum ID, the phenotype group, and
the proto-biomarkers preprocessed by Ciphergen’s software are stored in
the exprSet : f45bmk of the same package.

We process these data using the tools and procedures described
previously. We start with baseline subtraction.

> library("ProData")

> f45c <- system.file("f45c", package = "ProData")

> fs <- dir(f45c, full.names = TRUE)

> M1 <- rmBaseline(f45c)

Because the D samples are all from the same person, and hence represent
biological replicates, they are ideally suited for use in selecting the cutoff
as described in Section 6.4.3. We use the functions regexp and match to
match the names of the spectra in colnames(M1) to the names in the sample
annotation table pData(f45cbmk).

> data(f45cbmk)

> SpecGrp <- pData(f45cbmk)

> fns <- colnames(M1)

> gi <- regexpr("i+[0-9]+", fns)

> specName <- substr(fns, gi, gi + attr(gi, "match.length") -

+ 1)

> mt <- match(SpecGrp[, 2], toupper(specName))

> M2 <- M1[, mt]

> colnames(M2) <- SpecGrp[, 2]

106 X. Li et al.

Next we calculate the average standard deviations versus cutoff points plot,
as explained in Section 6.4.3.

> sdsSecond <- sapply(cts, avesd, Ma = M2[, SpecGrp[,

+ 1] == "D"])

> plot(cts, sdsSecond, xlab = "cutpoint", pch = 21,

+ bg = "red", log = "x", ylab = "average sd")

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

100 200 500 1000 2000

0.
30

0.
40

0.
50

cutpoint

av
er

ag
e

sd

Figure 6.7. Average standard deviations versus cutoff points, calculated on the
samples from group D.

From Figure 6.7, a m/z value of 1000 seems to be a reasonable choice for
cutoff. We normalize the spectra after dropping all m/z values below 1000.

> nM <- renorm(M2, cutoff = 1000)

After normalization, we proceed to peak detection and quality control.

> peakfile <- "f45cpeak.csv"

> getPeaks(nM, peakfile, ratio = 0.1)

> qu <- quality(nM, peakfile, cutoff = 1000)

> bad <- qu[, 1] < 0.4 & qu[, 2] < 0.1 & qu[, 3] <

+ 1/2

> sum(bad)

[1] 0

No failed spectra were detected. Before aligning the peaks, we exclude the
control group, D from the following steps and proceed with 55 samples in
group A, 64 in B, and 35 in C, a total of 154 spectra.

PROcess provides a visual tool gelmap for a quick discernment of patterns
that may be present within different groups. Because the spectrum data
are very large, we need to run a binning function to reduce the data before

6. Mass Spectrometry 107

running gelmap. To best show the patterns, we restrict the m/z values to
be under 10,000 and show the intensity on the log scale. Notice that a
gelmap is very similar to a heatmap and represents a false color display
with samples on one axis, features on the other, and the color of a cell
determined by the experimental data. In this setting, our users preferred
grayscale, but any set of colors could be used, and either rows or columns
could be rearranged to identify interesting subsets.

> Ma <- binning(nM1, breaks = 300)

> colnames(Ma) <- SpecGrp[!drop, 1]

> par(xpd = TRUE)

> marks <- c(2666, 5055, 7560, 7934)

> sel <- as.numeric(rownames(Ma)) < 10000

> gelmap(log(Ma + 1)[sel,], at.mz = marks, at.col = c(25,

+ 90, 135), col = gray(10:0/10))

> segments(x0 = 1013 * c(1, 1), y0 = c(55, 119),

+ x1 = 10000 * c(1, 1), y1 = c(55, 119), col = "red")

> arrows(marks, c(-5, -5), marks, c(1, 1), length = 0.08,

+ angle = 20, col = "red")

Figure 6.8. A gel-like image representing the spectrum data from 154 samples
(rows) at 300 m/z values (columns).

Figure 6.8 shows that the spectrum intensities at m/z values 5055, 7560,
and 7934 are higher in the cancer groups A and C than in the normal group

108 X. Li et al.

B. Furthermore, the spectrum intensities at m/z =2666 are higher in the
normal group B than in the cancer groups A and C.

Next we align the peaks from individual spectra. In this step, we wish
to drop those proto-biomarkers that appear in very few spectra. Because
our smallest group is group C with 35 spectra, we shall set the filtering
parameter p.fltr to be no greater than 35/154 = 0.21. The following code
gives us a list of aligned proto-biomarkers.

> peakfile1 <- "f45cpeak1.csv"

> getPeaks(nM1, peakfile1, ratio = 0.1)

> bmkfile <- "f45cbmk.csv"

> bmk <- pk2bmkr(peakfile1, nM1, bmkfile, p.fltr = 0.1,

+ eps = 0.003)

> mks <- round(as.numeric(gsub("M", "", names(bmk))))

> length(mks)

[1] 65

> mks[1:12]

[1] 2024 2231 2360 2488 2556 2666 2669 2670 2671 2672 2735

[12] 2736

We have detected 65 proto-biomarkers and printed the first 12 of them.
We can detect proto-biomarkers that are nearly exact multiples of each
other, and hence potentially represent the same protein, using the function
is.multiple. For example, we can find which proteins might have two to
five charges by executing the following code.

> mults <- is.multiple(mks, k = 2:5)

> mults[[1]]

2H+

2360

We have detected 13 proto-biomarkers that may have corresponding peaks
with smaller m/z values that may represent the same protein. Taking the
first component of the returned list as an example, the peak at 2360 may
correspond to the same protein that caused a peak at around 4720, but
some copies of it picked up two charges.

6.6 Conclusion

Measurements of protein abundance are likely to play an important role
in the detection and diagnosis of disease. Although these tools are not
currently as well developed as DNA microarrays, they nonetheless hold
great promise. In this chapter, we have produced a flexible set of tools and
a paradigm for analyzing SELDI-TOF data. We emphasize the need for,

6. Mass Spectrometry 109

and the use of, good methods for quality control – the conclusions that
can be drawn depend heavily on the quality of the data that have been
collected. We have made our software freely available, and users can easily
modify different aspects of our approach.

Part II

Meta-data: biological
annotation and
visualization

7

Meta-data Resources and Tools
in Bioconductor

R. Gentleman, V. J. Carey, and J. Zhang

Abstract

Closing the gap between knowledge of sequence and knowledge
of function requires aggressive, integrative use of biological research
databases of many different types. For greatest effectiveness, analysis
processes and interpretation of analytic results must be guided using
relevant knowledge about the systems under investigation. However,
this knowledge is often widely scattered and encoded in a variety of
formats. In this section, we consider some of the different sources
of biological information as well as the software tools that can be
used to access these data and to integrate them into an analysis.
Bioconductor provides tools for creating, distributing, and accessing
annotation resources in ways that have been found effective in work-
flows for statistical analysis of microarray and other high-throughput
assays.

7.1 Introduction

In this monograph we will use the terms annotation and meta-data in-
terchangeably. Both terms refer to the large body of information that is
available, primarily through databases, on different aspects of the biolog-
ical systems under study. This includes sequence information, catalogs of
gene names and symbols, structural information, and virtually any relevant
publication. We use the term meta-data, which means data about data, as
well as the term annotation, because in many of the analyses existing meta-
data are used to annotate analytic resources or results. Among the many
challenges faced when using meta-data is to develop tools that adequately
track the data as it evolves. The tools used to model these data should be

114 R. Gentleman et al.

Figure 7.1. Kyoto Encyclopedia of Genes and Genomes DBGET schematic.

modular and should be capable of adapting to rapid changes in meta-data
inputs.

We note the importance of version tracking. All persistent, curated meta-
data resources should have version numbers that are incremented when
new builds are made or when new meta-data are added to the set of cu-
rated data. Whenever version information for on-line Web services is made
available, it should be propagated through to the consumer.

The relationship between biological annotation and a data-analytic
workflow is inherently complex. Annotation may be used to perform
dimension-reduction at an early stage, to introduce constraints on relation-
ships between statistical model parameters in the model-building stage, or
to interpret discovered patterns at the conclusion of data analysis; to name
but a few of the potential uses.

Figure 7.1 (Kanehisa, 1997; Kanehisa et al., 2004) is a useful schematic
of biological and biochemical research archives that may be queried interac-
tively. Major classes of data resources cover genes and gene products (DNA,
Protein, MotifDic components), pathways and gene clusters (KEGG com-
ponent), biochemical pathway elements (Ligand component), and scientific
literature (PubMed, LITDB, OMIM).

Complementary to the data resources catalogued in Figure 7.1 are assay-
oriented annotation resources. These resources provide the links between
assay probe identifiers and associated sequence catalog entries. Compre-
hensive assay-oriented annotation can be found at the Gene Expression
Omnibus (GEO) and at TIGR’s Resourcerer. Assay-oriented annotation is
also typically provided by assay manufacturers.

7. Meta-data Resources 115

Bioconductor provides access to annotation through two complementary
mechanisms. One is based on curated, downloadable modules and the other
is via direct real-time queries to Web services. The choice between real-time
query resolution and use of curated packages introduces a dilemma between
currency and reproducibility. On-line resolution will often lead to different
results for a given query issued at different times. The alternative is to
have locally curated and assembled data resources and to resolve all queries
with respect to those data. In this case, some obsolete information may be
used. However, two users resolving identifiers against the same version of a
curated meta-data resource will get the same answers.

Much of what needs to be done to link different resources is essentially
database technology. Our efforts in assembling annotation data for mi-
croarray experiments are represented by the AnnBuilder technology (Zhang
et al., 2003). This software is used to construct all the meta-data packages
distributed by Bioconductor.

The remainder of the section is as follows: this introductory chapter
characterizes meta-data resources covered by Bioconductor, gives details
of coverage (distinguishing curated data packages from interactive Web
services), and provides examples of working with Gene Ontology, path-
way databases, organism annotation, platform annotation, and platform
archives. Subsequent chapters address concepts and tools for using R to
query external annotation resources, tools for annotating analysis results,
and visualization methods.

7.2 External annotation resources

An annual catalog of public databases relevant to molecular biology can
be found in the first issue of each volume of the journal Nucleic Acids
Research. The on-line category list covers nucleotide, RNA, and protein se-
quence, “structure”databases (small molecules, carbohydrates, nucleic acid
and protein structures), vertebrate and non-vertebrate genome databases,
pathways, human genes and diseases, microarray data, and proteomics
resources. Brief comments on some of the resources that are commonly en-
countered in Bioconductor annotation follow. In certain cases, descriptive
information is taken verbatim from web site content.

LocusLink is a catalog of genetic loci that connects curated sequence
information to official nomenclature such as, sequence accessions, EC num-
bers (see below), UniGene clusters, homology, and map locations; to name
but a few. During the writing of this monograph LocusLink was replaced
by EntrezGene and we must apologize to the reader for the inconsis-
tent and somewhat interchangable use of these two terms throughout the
monograph.

116 R. Gentleman et al.

UniGene defines sequence clusters. Large-scale sequencing of transcribed
sequences has provided a large set of expressed sequence tags (ESTs). There
are many more ESTs than there are genes and some method of grouping
them is needed. UniGene focuses on protein-coding genes of the nuclear
genome (excluding rRNA and mitochondrial sequences). Ideally there is a
one-to-one mapping between UniGene clusters and gene loci.

RefSeq is a non-redundant data set of transcripts and proteins of known
genes for a variety of species, including human, mouse, and rat.

Enzyme Commission (EC) numbers are assigned to different enzymes
and linked to genes through their association with LocusLink identifiers.

Gene Ontology (GO) is a structured vocabulary of terms describing gene
products according to relevant molecular function, biological process, or
cellular component.

PubMed is a service of the National Library of Medicine. PubMed pro-
vides a very rich resource of data and tools for working with papers
published in journals that are related to medicine and health. Genes are
linked to published papers in different ways; perhaps the most commonly
used linkage is via LocusLink identifiers. The data source, while large, is
not comprehensive and not all papers have been abstracted.

The Protein Research Foundation curates LITDB , which covers all
articles dealing with peptides from scientific journals accessible in Japan.

OMIM provides a keyword-driven search interface to narratives about
inherited conditions that are heavily hyperlinked to relevant scientific
literature.

Coordinated approaches to establishing public archives of descriptive
information about microarray platforms have been undertaken by NCBI
with Gene Expression Omnibus (GEO), by TIGR with the Resourcerer
database, and by EBI with ArrayExpress.

The NetAffx
TM

Analysis Center provides tools that correlate experimen-
tal data assayed using the AffymetrixGeneChip technology.

7.3 Bioconductor annotation concepts: curated
persistent packages and Web services

The MetaData node of the Bioconductor portal provides an extensive cat-
alog of R packages that encode annotation resources. These are distributed
for installation and immediate use in R. In this section, we will illustrate
interfaces to several of these annotation packages.

Each of the different biological data resources uses its own set of iden-
tifiers for distinguishing between the different entities that it documents,
e.g., LocusLink, UniGene, EC, and so on. One of the roles of an annotation
service is to provide links between these different sets of identifiers and to

7. Meta-data Resources 117

make it possible to use the different resources without having to understand
their internal structure and labeling conventions.

For microarray-based assays we have taken the approach that for each
distinct chip we will produce a collection of hash tables that provide access
from the chip specific probe labels to the different identifiers associated
with a reasonably large set of biological data. A hash table is simply a
mapping from a set of keys, or known identifiers, to a set of values. Most of
the Bioconductor meta-data packages use hash tables to provide mappings
from one set of identifiers to the associated values. In R, hash tables are
available through the environment class of objects. The annotate package
contains much of the software infrastructure that is needed to simplify the
user interface. The DPExplorer widget from tkWidgets provides a GUI for
examining the contents of the different data packages.

7.3.1 Annotating a platform: HG-U95Av2

For our example we make use of one of the most widely used Affymet-
rix platforms, the HG-U95Av2 GeneChip. The annotation files provide
mappings from the manufacturers identifiers to different targets, such as
LocusLink identifier or chromosomal location. To access the data you must
first load the package. We then list the contents of this package to see all the
different targets for which mappings have been provided. It is important to
note that the associations and data are likely to undergo constant change
and that you will want to update the meta-data packages on a regular basis.

> library("hgu95av2")

> ls("package:hgu95av2")

[1] "hgu95av2" "hgu95av2ACCNUM"

[3] "hgu95av2CHR" "hgu95av2CHRLENGTHS"

[5] "hgu95av2CHRLOC" "hgu95av2ENZYME"

[7] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME"

[9] "hgu95av2GO" "hgu95av2GO2ALLPROBES"

[11] "hgu95av2GO2PROBE" "hgu95av2GRIF"

[13] "hgu95av2LOCUSID" "hgu95av2MAP"

[15] "hgu95av2MAPCOUNTS" "hgu95av2OMIM"

[17] "hgu95av2ORGANISM" "hgu95av2PATH"

[19] "hgu95av2PATH2PROBE" "hgu95av2PMID"

[21] "hgu95av2PMID2PROBE" "hgu95av2QC"

[23] "hgu95av2REFSEQ" "hgu95av2SUMFUNC"

[25] "hgu95av2SYMBOL" "hgu95av2UNIGENE"

We can see in the output above that there are mappings to LocusLink,
to KEGG, OMIM, gene symbols, chromosome, and chromosomal location.
You can find out how many probes are mapped for each target by invoking
the function hgu95av2; all meta-data packages have a function, with the
same name as the package, that prints out some quality control information.

118 R. Gentleman et al.

For some meta-data we also provide reverse mappings, for example from GO
identifiers to all Affymetrixprobes (hgu95av2GO2PROBE). Other information
is also provided such as the name of the organism (hgu95av2ORGANISM) and
the lengths of the chromosomes (hgu95av2CHRLENGTHS).

7.3.2 An Example

Each of the chip-specific data packages provided by Bioconductor contains
a hash table that maps from the probes on the array to KEGG pathways.
Its suffix will be PATH, and so, for the HG-U95Av2 chip, the KEGG data
are stored in hgu95av2PATH. The mapping from pathway IDs to all probes
that are associated with the pathway are provided in the table with the
suffix PATH2PROBE (i.e., hgu95av2PATH2PROBE).

In this example, we want to find the pathways that the gene BAD is
involved in. The probeset associated with BAD is 1861_at. Now, equipped
with this information we can find the pathways that BAD is associated
with. Once we know these pathways, we can then find all the members
of each pathway that are represented on the HG-U95Av2 GeneChip; but
remember that in some cases a gene is represented by multiple different
probesets.

> BADpath <- hgu95av2PATH$"1861_at"

> mget(BADpath, KEGGPATHID2NAME)

$"01510"

[1] "Neurodegenerative Disorders"

$"04210"

[1] "Apoptosis"

$"05030"

[1] "Amyotrophic lateral sclerosis (ALS)"

> allProbes <- mget(BADpath, hgu95av2PATH2PROBE)

> sapply(allProbes, length)

01510 04210 05030

59 154 28

These can then be used to reduce an analysis to only those probes that
are involved in a particular pathway, or to separate an analysis by pathway,
perhaps by adding a term to a model. Once the pathway identifier has been
obtained, it can be used together with the cMAP package and the graph
package to carry out a variety of interesting analyses. See Section 7.6.2 for
more details.

7. Meta-data Resources 119

7.3.3 Annotating a genome

In the previous section, we consider assay- or platform-specific annotation
packages. These are ideal for working with data from a single experiment.
However they do have some limitations. Each contains only meta-data links
for the probes that were assayed. In some situations, you will want to have
access to meta-data information for all genes within a species. There are
a few such packages available through Bioconductor, such as YEAST and
humanLLMappings. However, these packages tend to be very large (and
there is much redundancy).

In the next code chunk, we show the contents of the YEAST package.
It is very similar to the assay specific packages in terms of the contents,
except the primary keys are the systematic names for the yeast genes; such
as YBL088C

> library("YEAST")

> ls("package:YEAST")

[1] "YEAST" "YEASTALIAS"

[3] "YEASTCHR" "YEASTCHRLENGTHS"

[5] "YEASTCHRLOC" "YEASTDESCRIPTION"

[7] "YEASTENZYME" "YEASTENZYME2PROBE"

[9] "YEASTGENENAME" "YEASTGO"

[11] "YEASTGO2ALLPROBES" "YEASTGO2PROBE"

[13] "YEASTMAPCOUNTS" "YEASTORGANISM"

[15] "YEASTPATH" "YEASTPATH2PROBE"

[17] "YEASTPMID" "YEASTPMID2PROBE"

[19] "YEASTQC"

7.4 The annotate package

The annotate package is one of the foundational packages in Bioconductor.
Functions provided in annotate cover various annotation processes including
harvesting of curated persistent packages and simple HTTP queries to web
service providers. Package annotate contains a certain amount of interface
code that provides common calling sequences for the assay based meta-data
packages provided by Bioconductor.

A variety of accessor functions have names beginning with get. These
should be used when writing software as they are intended to define our
API. For casual use, you can use any accessing methods you prefer.

The functions getGI and getSEQ perform Web queries to NCBI to ex-
tract the GI or nucleotide sequence corresponding to a GenBank accession
number. GI numbers are a series of digits that the NCBI assigns to each
sequence that it processes.

> ggi <- getGI("M22490")

> ggi

120 R. Gentleman et al.

[1] "179503"

> gsq <- getSEQ("M22490")

> substring(gsq, 1, 40)

[1] "GGCAGAGGAGGAGGGAGGGAGGGAAGGAGCGCGGAGCCCG"

The functions, getGO, getSYMBOL, getPMID, and getLL simplify the decoding
of manufacturer identifiers:

> getSYMBOL("1000_at", "hgu95av2")

[1] "MAPK3"

> getGO("1000_at", "hgu95av2")[[1]][[1]]

[1] "GO:0005524"

The functions whose names start with pm work with lists of PubMed
identifiers for journal articles.

> hoxa9 <- "37809_at"

> absts <- pm.getabst(hoxa9, "hgu95av2")

> substring(abstText(absts[[1]][[1]]), 1, 60)

[1] "Members of the homeobox family of transcription factors are "

7.5 Software tools for working with Gene Ontology
(GO)

An ontology is a structured vocabulary that characterizes some concep-
tual domain. The Gene Ontology (GO) Consortium defines three ontologies
characterizing aspects of knowledge about genes and gene products. These
ontologies are molecular function (MF), biological process (BP), and cel-
lular component (CC). For explicit descriptions of these categories, you
should consult the GO Web page.

The molecular function of a gene product is what it does at the bio-
chemical level. This describes what the gene product can do, but without
reference to where or when this activity actually occurs. Examples of
functional terms include “enzyme,”“transporter,” or “ligand.”

A biological process is a biological objective to which the gene product
contributes. There is often a temporal aspect to a biological process. Bio-
logical processes usually involve the transformation of a physical thing. In
some sense they are larger than a molecular function, and several molecular
activities will be coordinated to carry out a biological process. The terms
“DNA replication” or “signal transduction” describe general biological pro-
cesses. A pathway is not the same as a biological process in that pathways
include dependencies and dynamics that are not relevant to the notion of

7. Meta-data Resources 121

a biological process. It is not always easy to distinguish between a molec-
ular function and a biological process. The GO consortium suggests that a
process must have more than one distinct step.

A cellular component is a part of a cell that is a component of
some larger object or structure. Examples of cellular components include
“chromosome,”“nucleus,” and “ribosome.”

The GO ontologies are structured as directed acyclic graphs (DAGs)
that represent a network in which each term may be a child of one or more
parents. We use the expressions GO node and GO term interchangeably.
Child terms are more specific than their parents. The term“transmembrane
receptor protein-tyrosine kinase” is child of both “transmembrane receptor”
and “protein tyrosine kinase.” For each of the three different ontologies,
there is a root node that has the ontology name associated with it, and
that node is the most general node for terms in the respective ontology.

The relationship between a child and a parent can be either a is a relation
or a has a (part of) relation. For example, “mitotic chromosome” is a child
of“chromosome”and the relationship is an is a relation. On the other hand,
a“telomere” is a child of “chromosome”with the has a relation. Child terms
may have more than one parent term and may have a different relationship
with different parents.

Number of terms
BP 8578
CC 1335
MF 6891

Table 7.1. Number of GO terms per ontology.

Table 7.1 presents the number of terms associated with each of the three
ontologies. For example, we see that for version 1.7.0 of the GO package
there are 8578 terms in the biological process (BP) ontology.

Each term in the ontology is associated with a unique identifier. For ex-
ample, the term“transcription factor complex” is in the molecular function
ontology and has the GO label GO:0005667. The terms, and their parent–
child relationships are provided by GO; but GO does not provide data on
the mapping of gene products to terms. That process is carried out by the
Gene Ontology Annotation project (GOA).

7.5.1 Basics of working with the GO package

Bioconductor’s GO package encodes GO and simplifies navigation and in-
terrogation of the structured vocabulary. The GO package also includes
information on the mapping between GO terms and LocusLink identifiers.

122 R. Gentleman et al.

For precision and conciseness, all indexing of GO resources employs the
7 digit tags with prefix GO:. Three very basic tasks that are commonly
performed in conjunction with GO are

• navigating the hierarchy, determining parents and children of selected
terms, and deriving subgraphs of the overall DAG constituting GO;

• resolving the mapping from GO tag to natural language characteri-
zations of function, location, or process;

• resolving the mapping between GO tags or terms and elements of
catalogs of genes or gene products.

To support these basic tasks, Bioconductor provides a number of dif-
ferent sets of mappings in the GO package (which provides encodings of
the hierarchical structure of tags/terms and decodings of tags into natural
language strings) and in assay-specific data packages such as the hgu95av2
data package (which provides mappings from Affymetrix probe identifiers
to GO tags).

7.5.2 Navigating the hierarchy

Finding parents and children of different terms is handled by using the
PARENT and CHILDREN mappings. These are available as R environments
with names constructed using GO as a prefix, one of MF, BP, or CC to select
subontology, and one of either PARENT or CHILDREN as a suffix. To find the
children of "GO:0008094" we use:

> get("GO:0008094", GOMFCHILDREN)

[1] "GO:0004003" "GO:0008722" "GO:0015616" "GO:0043142"

We use the term offspring to refer to all descendants (children, grandchil-
dren, and so on) of a node. Similarly we use the term ancestor to refer to
the parents, grandparents, and so on, of a node. The sets of terms (but
not their relationships) can be obtained from the OFFSPRING and ANCESTOR
environments.

> get("GO:0008094", GOMFOFFSPRING)

[1] "GO:0004003" "GO:0008722" "GO:0015616" "GO:0043142"

[5] "GO:0017116" "GO:0043140" "GO:0043141"

7.5.3 Searching for terms

All GO terms are provided in the GOTERM environment. It is relatively easy
to search for a term with the word chromosome in it using eapply and grep

or agrep.

7. Meta-data Resources 123

> hasChr <- eapply(GOTERM, function(x) x[grep("chromosome",

+ Term(x))])

> lens <- sapply(hasChr, length)

> hasChr <- hasChr[lens > 0]

> length(hasChr)

[1] 64

We see that there are 64 terms that have the word chromosome in them.
To generalize this, we can write a function:

> GOTerm2Tag <- function(term) {

+ GTL <- eapply(GOTERM, function(x) {

+ grep(term, x@Term, value = TRUE)

+ })

+ Gl <- sapply(GTL, length)

+ names(GTL[Gl > 0])

+ }

Now we can apply this to find the term(s) in which some other phrase, for
example, “transcription factor binding” is used:

> hasTFA <- GOTerm2Tag("transcription factor binding")

> hasTFA

[1] "GO:0003719" "GO:0008134"

The function GOTerm2Tag can be extended in several ways. More of the
arguments to grep can be exposed. Users could then use quite general regu-
lar expressions (Friedl, 2002) allowing users to ignore capitalization, ignore
multiple endings among many other things. The function agrep may be used
in place of grep to allow for alternate spellings and approximate matches.

7.5.4 Annotation of GO terms to LocusLink sequences:
evidence codes

The mapping of genes to GO terms is carried out separately by GOA
(Camon et al., 2004). Both GO and GOA provide regular updates that
account for both changes in GO and new mappings of genes to terms. The
data from GOA consist of mappings between GO terms and LocusLink
identifiers. But rather than map a LocusLink identifier to all terms that
apply, only the most specific terms are used. The mapping to all less specific
GO terms is implied.

In the GO package mappings from GO terms to specific genes are pro-
vided in the environment named GOLOCUSID. For each term, the set of
LocusLink identifiers mapped to that term corresponds to the set of genes
for which that term is a most specific mapping. To get all LocusLink IDs
associated with a specific GO term use, GOALLOCUSID.

124 R. Gentleman et al.

Term Definition
IMP inferred from mutant phenotype
IGI inferred from genetic interaction
IPI inferred from physical interaction
ISS inferred from sequence similarity
IDA inferred from direct assay
IEP inferred from expression pattern
IEA inferred from electronic annotation
TAS traceable author statement
NAS non-traceable author statement
ND no biological data available
IC inferred by curator

Table 7.2. GO evidence codes.

Four environments in the GO package address the association between
LocusLink sequence entries and GO terms: GOLOCUSID, GOALLOCUSID, GOLO-
CUSID2GO, and GOLOCUSID2ALLGO. The associations are labeled with the GO
evidence codes characterizing the association. Definitions of evidence codes
in use are briefly indicated in Table 7.2; more details are available on the
GO Web site. We particularly want to draw your attention to the evi-
dence code IEA, which stands for inferred from electronic annotation. This
annotation is used when no curator has checked the annotation.

In some analyses, it will be important to make use of these annotation
codes. For example, if you are analyzing data and want to study relation-
ships between sequence similarity and molecular function, then you should
remove all annotations made on the basis of ISS to avoid circularity in your
arguments.

In the next code chunk, we find the GO identifier for “transcription fac-
tor binding” and use that to get all LocusLink identifiers that have that
annotation. Then we look at a table of the different evidence codes that
were used.

> gg1 <- get(GOTerm2Tag("^transcription factor binding$"),

+ GOLOCUSID)

> table(names(gg1))

IDA IMP IPI ISS NAS TAS

9 1 8 17 4 28

In this next example, we consider the gene with LocusLink ID 7355,
which is SLC35A2.

> ll1 <- GOLOCUSID2GO[["7355"]]

> length(ll1)

[1] 9

> sapply(ll1, function(x) x$Ontology)

7. Meta-data Resources 125

GO:0000139 GO:0015785 GO:0005459 GO:0008643 GO:0006012

"CC" "BP" "MF" "BP" "BP"

GO:0016021 GO:0015780 GO:0005338 GO:0005351

"CC" "BP" "MF" "MF"

We see that there are 9 different GO terms. We can get only those mappings
for the BP ontology by using getOntology. We can get the evidence codes
using getEvidence, and we can drop those codes we do not wish to use by
using dropEcode. In the next code chunk, we first find all mappings and
then remove those for which the evidence code is “IEA”.

> getOntology(ll1, "BP")

[1] "GO:0015785" "GO:0008643" "GO:0006012" "GO:0015780"

> getEvidence(ll1)

GO:0000139 GO:0015785 GO:0005459 GO:0008643 GO:0006012

"IEA" "TAS" "TAS" "IEA" "TAS"

GO:0016021 GO:0015780 GO:0005338 GO:0005351

"IEA" "IEA" "IEA" "IEA"

> zz <- dropECode(ll1, code = "IEA")

> getEvidence(zz)

GO:0015785 GO:0005459 GO:0006012

"TAS" "TAS" "TAS"

7.5.5 The GO graph associated with a term

We have shown how to determine the tag associated with a term. Starting
with“transcription factor activity,”we can construct the graph based on the
GO relationships within the molecular function hierarchy. This is done by
finding the parents (less specific terms), and then recursively finding their
parents until the root node is reached. This graph is called the induced graph
or the induced GO graph and an example is shown in Figure 19.2. More
details on manipulating graphs are given in Part IV of this monograph.

7.6 Pathway annotation packages: KEGG and cMAP

A biological pathway can in some instances be modeled as a directed graph
with labeled nodes and edges. In this section, we consider pathway data
supplied by KEGG and cMAP. Here we concentrate on the data and its
structure and refer the reader to Part IV of this monograph for more details
on the graph manipulation tools that are available. Some interesting per-
spectives on modeling data of this form are presented in Bower and Bolouri
(2001); Krishnamurthy et al. (2003); Sirava et al. (2002).

126 R. Gentleman et al.

7.6.1 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) provides a data
resource that is primarily concentrated on pathways. KEGG associates each
pathway with a number, and there are currently 236 available in the KEGG
package. For each pathway there is a name and a KEGG identifier for
that pathway (the relationships are stored in KEGGPATHID2NAME). Genes are
associated with a pathway in a species specific manner and the resulting
data are stored in KEGGPATHID2EXTID.

Data available in the KEGG package includes:

KEGGEXTID2PATHID which provides mappings from either Lo-
cusLink (for human, mouse, and rat) or Open Reading Frame
(yeast) to KEGG pathways, a second environment, KEGGPATHID2EXTID
contains the mappings in the other direction.

KEGGPATHID2NAME which provides mappings from the KEGG
path ID to a name (textual description of the pathway). Only the
numeric part of the KEGG pathway identifiers is used (and not the
three letter species codes).

ath dme hsa mmu rno sce
Counts 108 108 135 127 118 101

Table 7.3. Pathway counts per species

The species and pathway counts for the current offerings in KEGG are
given in Table 7.3. There are many more species specific pathways available
from KEGG and users that would like to make use of them should do so
through the SOAP interface discussed in Chapter 8.

If we consider one pathway, say 00140, then we can find its name and
examine the different sets of gene identifiers for each species (in this case
we will only examine human and yeast). Species specific mappings, from a
pathway to the genes it contains, are indicated by gluing together a three
letter species code, such as hsa for homo sapiens, to the numeric pathway
code.

> KEGGPATHID2NAME$"00140"

[1] "C21-Steroid hormone metabolism"

> KEGGPATHID2EXTID$hsa00140

[1] "1109" "1583" "1584" "1585" "1586" "1589" "3283" "3284"

[9] "3290" "3291" "6718"

> KEGGPATHID2EXTID$sce00140

[1] "YGL001C"

7. Meta-data Resources 127

And it is relatively easy to determine which pathways your favorite gene
happens to be involved in. We look up PAK1, which has LocusLink ID
5058 in humans, and find that it is involved in three pathways, hsa04010,
hsa04510 and hsa04810. For mice, the LocusLink ID for PAK1 is 18479.

> KEGGEXTID2PATHID$"5058"

[1] "hsa04010" "hsa04510" "hsa04810"

> KEGGEXTID2PATHID$"18479"

[1] "mmu04010" "mmu04810"

One of the case studies in Chapter 22 includes examples where gene
expression data are related to KEGG pathways. The association of other
data, such as gene expression data, with pathway membership clearly has
some potential. The GenMAPP project (Doniger et al., 2003) provides some
tools for linking gene expression data with pathway data.

7.6.2 cMAP

The cancer Molecular Analysis Project (cMAP) is a project that provides
software and data for the comprehensive exploration of data relevant to
cancer. cMAP provides pathway data in a format that is amenable to
computational manipulation.

cMAP uses a graphical model of pathways in which molecular species and
processes define graph nodes and associations of molecules with processes
determine graph edges. A minimal pathway, which they term an interaction,
consists of one process node and its adjacent molecule nodes. The model is
basically a hierarchical one: interactions are sets of nodes (molecules and
processes) and edges defining types of relationships between molecules and
processes; pathways are sets of interactions.

cMAP has pathway data from both Biocarta and from KEGG, reorga-
nized to allow for relatively easy access. In the cMAP package the data are
stored in environments with the suffix PATHWAY; the environment cMAPKEGG-
PATHWAY contains all KEGG pathways and cMAPCARTAPATHWAY contains those
from BioCarta.

In the cMAP package each element of a PATHWAY is a list with five
components. The components are source, process, reversible, condition,
and component. The source element is a character string indicating whether
the interactions between molecules are from a BioCarta or KEGG path-
way. The process element is a character string describing the process the
key molecule is involved. Potential values include reaction, modification,
transcription, translocation, macroprocess, or a more specific subtype of
macroprocess including any term from the GO biological process ontology.
The reversible element is a Boolean value indicating whether the inter-
action is reversible. The condition element is a character string indicating

128 R. Gentleman et al.

the biological process the interactions take place. Potential values include
any term from the GO biological process ontology.

Perhaps the most important piece of information comes from the compo-
nent attribute. This attribute contains a set of keys for the INTERACTION
database (for KEGG it would be cMAPKEGGINTERACTION). Each element of
the interaction environments has the following components:

id the molecule ID of the interacting molecule, this can be used to ex-
tract further information from the cMAP molecule environments (for
KEGG it would be cMAPKEGGMOLECULE),

edge indicating the way two molecules interact; possible values are input,
agent, inhibitor, and output,

role the function of the key molecule; potential values include any term
from the GO molecular function ontology,

location a GO cellular component ontology indicating the location of the
interaction,

activity an abstract term that can be one of inactive, active, active1,
active2.

We briefly explore some of the data that is available in the INTER-
ACTION databases. In version 1.7.0 of this package all of the KEGG
interactions are labeled as reaction, whereas the BioCarta interactions
have a much more detailed set of descriptions.

> keggproc <- eapply(cMAPKEGGINTERACTION, function(x) x$process)

> table(unlist(keggproc))

character(0)

> cartaproc <- eapply(cMAPCARTAINTERACTION, function(x) x$process)

> length(table(unlist(cartaproc)))

[1] 0

In the cMAP package, molecules have different attributes; they are de-
scribed briefly below, and elaborated further in the manual pages of the
cMAP package.

type The type of molecule, this can be one of “protein,” “complex,”
“compound,” or “rna”.

extid A set of external identifiers, so the molecule can be mapped to other
annotation resources.

component A set of molecule identifiers, and other data, for the con-
stituents of a “complex” molecule. Only “complex” molecules should
have this attribute.

7. Meta-data Resources 129

member A set of molecule identifiers for molecules that belong to the
same protein family as the key molecule.

7.6.3 A Case Study

In many cases, working with the cMAP data will yield a set of interac-
tions. These can be obtained by searching for specific pathways, for specific
molecules, or any of a number of different actions. These interactions must
then be combined into a single, possibly unconnected, graph. Interactions
are connected on the basis of molecular identity (there should be a single
node for each basic molecule with the same post-translational modifications
located in the same cellular location).

You may want to label the different components of that graph in different
ways. For example, if you use the software on the cMAP site they suggest
that molecule labels can specify the location and any post-translational
modifications while process labels can specify the generic nature of the
process. cMAP makes use of GO vocabularies for some of the labeling. You
can use edge labels to specify the general nature of each molecule’s role
in the process (i.e., input, output, agent, inhibitor). We note that both
the graph package and the Rgraphviz package can facilitate these kinds of
labeling (see Part IV of this monograph).

There are 85 pathways in the KEGG collection. Each pathway is iden-
tified by its KEGG ID (the three-letter species code followed by the five
digit pathway code) and the pathway information is stored as a list. We
can find the names of the KEGG pathways, and easily see which species are
represented. We first find the names, then extract the first three characters,
which should be the species code, and summarize these in a table. We can
also obtain complete information on a pathway, by extracting it, and in the
code chunk below we show how to obtain pathway information and use the
pathway labeled hsa00020 as an example.

> cMK <- ls(cMAPKEGGPATHWAY)

> spec <- substr(cMK, 1, 3)

> table(spec)

spec

hsa map

81 4

> cMK[[2]]

[1] "hsa00020"

> pw2 <- cMAPKEGGPATHWAY[[cMK[2]]]

> names(pw2)

[1] "id" "organism" "source" "name"

[5] "component"

130 R. Gentleman et al.

> pw2$name

[1] "citrate cycle (tca cycle)"

> pw2$component

[1] 63 71 3473 80 68 78 79 77 72 65 55

[12] 82 74 84 75 64 83 61 58 59 69 81

[23] 60 56 73 66 76 1367 62 54

We drill down into the KEGG-related environments to learn more
about constituents of this pathway. We select the first element of the
pw2$component; it is an interaction so we first extract it, and then explore
its components.

> getI1 <- get("63", cMAPKEGGINTERACTION)

> unlist(getI1[1:4])

source process reversible condition

"KEGG" NA "TRUE" NA

> unlist(getI1[[5]][[2]])

id edge role location activity

2 NA NA NA NA

We find that ATP is an input to the citrate cycle:

> get("2", cMAPKEGGMOLECULE)[[2]][7:8]

AS AS

"adenosine 5’-triphosphate" "ATP"

As we have demonstrated these data are quite rich and can be used to
develop a number of fairly sophisticated pathway analysis tools.

7.7 Cross-organism annotation: the homology
packages

The HomoloGene project at the NCBI provides resources for the detec-
tion of homologs among annotated genes for a variety of organisms with
sequenced genomes. Two genes are said to be homologous if they have
descended from a common ancestral DNA sequence. The data have been
abstracted into a collection of homology packages which we will briefly
describe. There is one homology package for each species (the data are
too large for a single combined package). Each package name begins with
the three letter species name (i.e., for Homo sapiens it is hsa) and a suf-
fix of homology. We load hsahomology in the next code chunk. There we
can see that the mappings provided are between HomoloGene’s identifiers
and a variety of other commonly used identifiers, namely LocusLink and
UniGene.

7. Meta-data Resources 131

> library("hsahomology")

> ls("package:hsahomology")

[1] "hsahomology" "hsahomologyACC2HGID"

[3] "hsahomologyDATA" "hsahomologyHGID"

[5] "hsahomologyHGID2ACC" "hsahomologyHGID2LL"

[7] "hsahomologyLL2HGID" "hsahomologyMAPCOUNTS"

[9] "hsahomologyORGCODE" "hsahomologyQC"

The data linking genes is provided in hsahomologyDATA where the primary
keys are the HomoloGene identifiers and the values are lists of homologous
genes. Each element in the list represents a gene that is homologous to
the key. There are three different types of homology that are recorded and
represented in the data. A single letter is used (and it is stored as the
homoType). The type can be either B (reciprocal best best between three
or more organisms), b (reciprocal best match between two organisms), or
c (curated homology relationship between two organisms). If the type is
either B or b, then the percent similarity is given (it is the percent of
identity of base pair alignment between the homologous sequences) and
this value is stored as homoPS. If the type is c, then a URL giving the source
of the homology relationship is given as homoURL.

Each species has a unique code assigned to it. For example the code
for Homo sapiens is 9606 and this is used to label each homology. The
Homologene project uses its own set of gene identifiers, and so users must
map to these identifiers using the environments described above. To find the
homologs for estrogen receptor 1 (ESR1) we use its LocusLink ID (2099)
and find the corresponding HomoloGene ID. Then, we can find the likely
homologs.

> esrHG <- hsahomologyLL2HGID$"2099"

> hesr <- get(as.character(esrHG), hsahomologyDATA)

> sapply(hesr, function(x) x$homoOrg)

10090 10090 10116 10090 10116 8022 8355 8364 9823 7955

"mmu" "mmu" "rno" "mmu" "rno" "omy" "xla" "xtr" "ssc" "dre"

9913

"bta"

We see the different organisms that have known potential homologs with
ESR1. Duplicated species names in this list indicate that there is more than
one potential homolog for the gene of interest.

Another task that someone might often want to carry out is to find all
potential homologs in one species, starting with the genes in a different
species. Suppose, for example that we want to find all Xenopus Laevis
homologs for human genes, then the following code carries out the necessary
computations.

> hXp <- eapply(hsahomologyDATA, function(x) {

+ gd <- sapply(x, function(x) if (!is.na(x$homoOrg) &&

132 R. Gentleman et al.

+ x$homoOrg == "xla")

+ TRUE

+ else FALSE)

+ x[gd]

+ })

> lh <- sapply(hXp, length)

> hXp2 <- hXp[lh > 0]

And we are left with 7021 human genes that have a potential homolog
in Xenopus Laevis. The data in hXp2 tells us about the strength of the
homology, what type of match was performed and the LocusLink ID (if
there is one) or sequence identifier (either GenBank or RefSeq). These can
then easily be used in any further analyses.

7.8 Annotation from other sources

The function, readGEOAnn, from annotate queries the Gene Expression Om-
nibus (GEO) for information about a microarray platform. The GEO Web
site should be inspected for its structure, scope, and for details of its
platform and archive enumeration system.

TIGR’s Resourcerer project provides formatted descriptive information
for many different microarray platforms. The Resourcerer package provides
some tools to help Bioconductor users obtain and use these resources. The
basic approach is to download the relevant files from the Resourcerer Web
site, and then to transform them for use in Bioconductor. Users can ac-
cess the data provided by Resourcerer in the form of a matrix by using
the getResourcerer function. Alternatively, the resourcerer2BioC function
in the Resourcerer package will transform any data set provided by TIGR
Resourcerer into a platform annotation package for R. The resultant pack-
age takes the same form as all other Bioconductor meta-data packages and
hence can be used with all of the tools that are discussed in this book. Con-
sult the Resourcerer project for information on what platform descriptions
are the describe.

To build packages based on Resourcerer data, users will need to have
both the Resourcerer package and the AnnBuilder packages installed. The
resourcer2BioC function accepts the name of a Resourcerer file, and down-
loads that file to produce the appropriate meta-data package. This can be
quite time-consuming and resource-intensive as it involves downloading and
manipulating large data files.

Another prominent public archive for microarray experimental resources
is EBI ArrayExpress. Many of the experiments archived there are encoded
in MAGE-ML, an XML dialect governed by the MAGE Object Model
devised by MGED, the Microarray Gene Expression Data Society. The
RMAGEML package can be used to deserialize these XML archives to R

7. Meta-data Resources 133

objects of the marray class. The RMAGEML package includes extensive
examples and documentation illustrating this process.

7.9 Discussion

As we noted at the beginning of this chapter, analyzing genomic data relies
heavily on the appropriate use of biological meta-data. Meta-data pro-
vide substantial opportunities for more sophisticated modeling of emerging
large-scale experimental data resources. Expertise in the use and interpre-
tation of diverse meta-data resources will become increasingly important
over the coming years. It will be worthwhile to familiarize yourself with
the different types of data and with methods for using them in different
analytical agendas.

In this chapter, we have presented a number of different strategies that
can be used to provide access to meta-data resources. For the most part,
we have concentrated on creating small data packages that can be down-
loaded and used without access to other resources. However, that approach
will need to evolve as the volume of relevant meta-data surpasses readily
manageable limits. At the same time, database technology is improving,
and powerful databases can be run on small computers (laptops) without
extensive specialized knowledge. Since R has fairly seamless interactions
with databases, our next moves in this area will be to develop database
schemata that can be used interchangeably with the data packages that
are now being supplied.

8

Querying On-line Resources

V. J. Carey, D. Temple Lang, J. Gentry, J.
Zhang, and R. Gentleman

Abstract
Many different meta-data resources are available on-line, and sev-

eral of these provide a Web services model for interactions. R and
Bioconductor support the use of different technologies (including
HTTP, SOAP, and XML-RPC) for accessing different Web services. In
this chapter we describe the tools for accessing Web services and
demonstrate their use in a number of examples.

Our view is very similar to that proposed by Stein (2002), who
emphasized Web services as the basic computational resource for
bioinformatics. Well-designed Web services will play an essential role
in solving many bioinformatic problems and R has the capability of
playing many different roles, both on the client and the server side.

8.1 The Tools

The familiar phrase surfing the Web connotes active travel between various
information sources. In fact, one does not visit a Web site in any concrete
sense. When the browser is directed to a given URL, it emits a request for
information to the target server, and information returned by the server
(typically HTML documents and images) is rendered locally in the browser.
For integrating different software products across the Internet, commonly
implemented standards are essential. Most of these standards are codified
by the W3C consortium, and readers are referred to W3C Web sites for
more details.

Web communication models support a wide variety of interactions be-
yond requesting and receiving HTML documents. A web service is a
software application that is identified by a uniform resource identifier
(URI) where the software interface, i.e., the services provided, can be
discovered remotely. Definitions and descriptions are generally accessible

136 V. J. Carey et al.

through standardized requests to Web servers. A Web service supports di-
rect interactions with external software, clients, using messages exchanged
via Internet protocols. The client packages up the request, which may in-
clude data, in a pre-specified format, and sends the request to the web
service over the Internet. The Web service carries out the requested com-
putations and returns the result in a pre-specified format that the user then
parses to extract the desired components.

In many cases, the data and requests are marked up in the eXtensible
Markup Language (XML). XML is a standard mechanism for marking up
data and text in a structured way. Servers and clients use XML dialects
to negotiate queries on service availability, to submit requests, and to en-
code the results of requested computations. A tutorial discussion of XML
concepts and tools for processing XML in R is provided in the on-line
complements.

The Simple Object Access Protocol (SOAP) uses XML to structure re-
quests and responses for Web service interactions. The SOAP protocol
includes rules for encapsulating requests and responses (e.g., rules for spec-
ifying addresses, selecting methods, or specifying error handling actions),
and for encoding complex data types that form parts of requests and re-
sponses (e.g., encoding arrays of floating point numbers). Examples are
provided in the on-line complements.

Closely related to SOAP is the Web Services Description Language
(WSDL) which provides a protocol for finding and describing Web ser-
vices. XML and SOAP are tools that are used to interact with the web
service, but it is also necessary to be able to locate particular services, and,
given a service, to find out which queries it will respond to and the type of
arguments that must be supplied. This is the role of WSDL. It allows for
programmatic detection of services and construction of calls. This is a form
of reflectance where one piece of software can locate another and determine
the appropriate calling sequence.

Functionality for XML and SOAP in R is supplied through the Omegahat
Project in the form of R packages XML and SSOAP. An additional sup-
porting package, RCurl provides services for downloading files using URL
syntax. Most of the tools that we describe in this chapter are built on top
of these packages.

Using this software infrastructure the Bioconductor Project provides
tools to support different Web services. These tools fulfill two roles, first
they provide access to the specific services and second they act as proto-
types that you can use to design and implement software to access Web
services that interest you. In the remainder of this chapter, we discuss some
of the different Web services available. We begin with a general discussion of
the Entrez system. Subsequently we consider a set of tools that are tailored
to querying PubMed. Our last example uses Kanehisa and Goto (2000) as
it also provides a variety of services and a variety of interfaces.

8. Querying 137

8.1.1 Entrez

An interesting aspect of the Entrez system is that it supports the notion of
a workspace. After certain queries have been executed, the user can obtain
a WebEnv key, which can be used to restrict future operations to the results
from the previous query. Thus, users can first select interesting PubMed
articles (for example) and then operate only on the set that they have
selected.

A brief description of some of the Entrez utilities follows.

EInfo Either lists all available databases or provides information on a
specific database, depending on the supplied arguments.

ESearch This service allows users to perform a variety of searches of the
different databases. If the usehistory argument is set, then Entrez
will save the results (on their side) and return a WebEnv key that can
be used by other Entrez services.

ESummary ESummary provides summaries of a list of primary IDs for a
database or of the results of a previous search or action (using WebEnv.

ELink The ELink service provides links to external or related articles for
primary IDs.

EFetch It returns the records for requested IDs (or those in the current
Entrez environment) in a variety of formats.

EPost This services allows users to upload files to their current Entrez
environment. These are then treated in the same manner as Entrez
generated data.

EGQuery EGQuery is used to list the count across the NCBI databases
of responses to a single query.

8.1.2 Entrez examples

In this example, we initiate a request to the EInfo utility to provide a list
of all the databases that are available through the NCBI system. These can
then be queried in turn to determine what their contents are.

> ezURL <- "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/"

> library("XML")

> z <- xmlTreeParse(paste(ezURL, "einfo.fcgi", sep = ""),

+ isURL = TRUE, handlers = NULL, asTree = TRUE)

> dbL <- xmlChildren(z[[1]]$children$eInfoResult)$DbList

> dbNames <- xmlSApply(dbL, xmlValue)

> length(dbNames)

[1] 29

> dbNames[1:5]

138 V. J. Carey et al.

DbName DbName DbName DbName

"pubmed" "protein" "nucleotide" "structure"

DbName

"genome"

We see that at the time the query was issued, there were 29 databases.
The names of five of them are listed, and the others are all available. Parsing
of the XML is handled by fairly standard tools, and in particular we want to
draw attention to the apply-like functions. Because XML document objects
have complex R representations, the use of xmlSApply and other dedicated
functions will generally simplify the code that needs to be written. For
large documents, xmlEventParse (SAX style parser) will be preferred to
xmlTreeParse (DOM style parsing). See the on-line complements for further
details.

This example employs and HTTP request to activate CGI. The Entrez
SOAP interface is very similar and provides no additional functionality.
SOAP may be preferred in some instances, because WSDL provides an
opportunity to auto-generate the software needed to make queries.

8.2 PubMed

The National Library of Medicine (NLM) provides support for a number
of different Web services. In this section we describe a set of tools that
we have developed to query PubMed. The software for carrying out these
interactions is contained in the annotate package, and more details and
documentation are provided as part of that package. Some of our earlier
work in this area was reported in Gentleman and Gentry (2002).

There are four functions in annotate that provide the support for
accessing on-line data resources. They are:

genbank Users specify GenBank identifiers and can request the related
links to be rendered in the browser or returned in XML.

pubmed Users specify PubMed identifiers and can request them to be
rendered in the browser or returned in XML. More details on parsing
and manipulating the XML are given below.

locuslinkByID Users specify LocusLink identifiers, and the appropriate
links are opened in the browser. LocusLink does not provide XML so
there is currently no download option. The user can request that the
URL be rendered or returned.

locuslinkQuery Users specify a string that will be used as the LocusLink
query and the species of interest (there can be several). The user can
request either that the URL be rendered or returned.

8. Querying 139

The function locuslinkByID takes a set of known LocusLink identifiers
and constructs a URL that will have these rendered. The user can either
save the URL (perhaps to send to someone else or to embed in an HTML
page, see Chapter 9 for more details).

The function locuslinkQuery takes a character string to be used for
querying PubMed. For example, this function call,

locuslinkQuery("leukemia", "Hs")

will find all human genes that have the word leukemia associated with them
in their LocusLink records. Note that the R code is merely an interface to
the services provided by NLM and NCBI and users are referred to those
sites for complete descriptions of the underlying databases and algorithms.

8.2.1 Accessing PubMed information

In this section we demonstrate how to query PubMed and how to operate
on the data that are returned. As noted above, these queries generate XML,
which must then be parsed to provide the specific data items of interest.
Our example is based on example data from the package Biobase. Users
should be able to easily replace these data with their own.

> library("annotate")

> data(eset, package = "Biobase")

> affys <- geneNames(eset)[491:500]

> affys

[1] "31730_at" "31731_at" "31732_at" "31733_at" "31734_at"

[6] "31735_at" "31736_at" "31737_at" "31738_at" "31739_at"

Here we have selected an arbitrary set of 10 genes from our sample data
for which abstracts will be sought. eset uses Affymetrixidentifiers as gene
names, but for the pubmed function, we need to use PubMed ID values.
The following code performs the translation.

> library("hgu95av2")

> ids <- getPMID(affys, "hgu95av2")

> ids <- unlist(ids, use.names = FALSE)

> ids <- unique(ids[!is.na(as.numeric(ids))])

> length(ids)

[1] 56

> ids[1:8]

[1] "12477932" "12408966" "8325638" "8175896" "1889752"

[6] "12679040" "9315667" "9199346"

We used getPMID to obtain the PubMed identifiers that are related to the
selected probes. Duplicates and missing values are removed and we are left
with 56 distinct PMIDs.

140 V. J. Carey et al.

In the next code chunk, we show how to generate the query and store
the results in a variable named x. This object is of class XMLDocument and
to manipulate it we will use functions provided by the XML package.

> x <- pubmed(ids)

> a <- xmlRoot(x)

> numAbst <- length(xmlChildren(a))

[1] 56

Our search has obtained 56 abstracts from PubMed that can be processed
locally. For easy review, the annotate package also provides a pubMedAbst

class, which will take the XML tree from a call to pubmed and extract the
interesting sections.

> arts <- xmlApply(a, buildPubMedAbst)

> class(arts[[7]])

[1] "pubMedAbst"

attr(,"package")

[1] "annotate"

The function xmlApply applies the function buildPubMedAbst to all children
nodes of the root a, and returns the result in the list arts. The function
buildPubMedAbst converts the XML representation of the abstract into an
object of class pubMedAbst . One of the abstracts is printed below.

> arts[[7]]

An object of class ’pubMedAbst’:

Title: Interference with the expression of a novel

human polycomb protein, hPc2, results in

cellular transformation and apoptosis.

PMID: 9315667

Authors: DP Satijn, DJ Olson, J van der Vlag, KM

Hamer, C Lambrechts, H Masselink, MJ Gunster,

RG Sewalt, R van Driel, AP Otte

Journal: Mol Cell Biol

Date: Oct 1997

The pubMedAbst class has a number of different slots. They are:

authors The list of authors (represented as a character vector).

pmid The PubMed record number.

abstText The actual abstract (in text).

articleTitle The title of the article.

journal The journal it is published in.

pubDate The publication date.

8. Querying 141

We can extract the text by applying the absText function to each of the
R objects.

> absts <- sapply(arts, abstText)

> class(absts)

[1] "character"

Once the abstracts have been assembled, they can be searched in R using
tools such as grep and agrep. Suppose, for example, that we wanted to know
which abstracts have the term cDNA in them, then the following code chunk
shows how to identify these abstracts.

> found <- grep("cDNA", absts)

> goodAbsts <- arts[found]

> length(goodAbsts)

[1] 18

So 18 of the articles related to our genes of interest mention the term
cDNA in their abstracts. Although this approach is not as sophisticated as
many text-mining procedures, it can be used to quickly identify papers of
potential interest.

Next we use the same set of PubMed IDs with the genbank function.
By default, the genbank function assumes that the ID values passed in are
Genbank accession numbers so we use the type argument to indicate that
we are using PubMed IDs.

> y <- genbank(ids[1:10], type = "uid")

> b <- xmlRoot(y)

> class(b)

[1] "XMLNode"

8.2.2 Generating HTML output for your abstracts

Rather than access the data and manipulate it directly, many users prefer
to have static Web pages constructed. A fairly comprehensive treatment of
Bioconductor tools and strategies is given in Chapter 9. In the following
code chunk, we compute the pages and save the output into temporary
files.

> fname <- tempfile()

> pmAbst2HTML(goodAbsts, filename = fname)

> fnameBase <- tempfile()

> pmAbst2HTML(goodAbsts, filename = fnameBase, frames = TRUE)

Figures 8.1 and 8.2 illustrate the results of directing the browser to the
resulting files.

142 V. J. Carey et al.

Figure 8.1. pmAbst2HTML without frames.

Figure 8.2. pmAbst2HTML with frames.

8.3 KEGG via SOAP

Kanehisa and Goto (2000) provides a rich resource of genomic and biological
meta-data. As noted in Chapter 7, the Bioconductor provides mappings to
KEGG pathways and other data through static, curated data packages.

8. Querying 143

However, this approach will not be sufficient for all needs. In addition to
providing data for downloading over the Internet, KEGG supports a SOAP
interface. The URI for their API is given in Appendix A.2. The API is quite
general, and KEGGSOAP maintains bindings to a large subset of the KEGG
functions. Users can extend this interface to achieve functionalities not
currently provided in KEGGSOAP. Among the more interesting functions
are:

• get.genes.by.pathway, which gets all genes in the named pathway.

• get.enzymes.by.pathway, which gets all enzymes in the named
pathway.

• get.motifs.by.gene, which queries the Pfam, TIGRFAM, PROSITE
pattern, or PROSITE profile databases for the motifs of a given gene.

• get.genes.by.motifs, which searches the databases implied by the
motif IDs for genes containing the specified motifs.

Users can query KEGG according to pathway. In the example below we
query KEGG for both the genes and the enzymes that are involved in the
E. coli citrate cycle, pathway number 00020.

> KEGGPATHID2NAME$"00020"

[1] "Citrate cycle (TCA cycle)"

> genes <- get.genes.by.pathway("path:eco00020")

> enzymes <- get.enzymes.by.pathway("path:eco00020")

> enzymes[1:4]

[1] "ec:1.1.1.37" "ec:1.1.1.42" "ec:1.2.4.2" "ec:1.3.99.1"

A motif is a locally conserved region of a sequence or a short sequence
pattern shared by a set of sequences. In many situations, we are interested
in finding genes that share a common motif, or in finding the motifs that are
present in a particular gene. Users need to specify the databases that they
would like to use, or the motifs in which they are interested. In general
it will be necessary to look at the manual pages, or the KEGG API to
determine the appropriate nomenclature needed to construct the call. We
demonstrate a couple of simple calls in the code chunk below.

> motifs <- get.motifs.by.gene("eco:b0002", "pfam")

Type: SOAPStruct & length = 5

> unlist(motifs[[1]][1:6])

genes_id score

"eco:b0002" "-1"

motif_id end_position

"pfam:AA_kinase" "284"

144 V. J. Carey et al.

definition start_position

"Amino acid kinase family" "1"

> genes <- get.genes.by.motifs(c("pf:DnaJ", "ps:DNAJ_2"),

+ 1, 10)

Type: SOAPStruct & length = 10

> genes[1:3]

chaperone DnaJ chaperone DnaJ

"aae:aq_1735" "aae:aq_703"

curved DNA-binding protein

"aci:ACIAD0406"

Note that these queries return SOAP structures that will require further
processing.

8.4 Getting gene sequence information

The function getSeq4Acc can be used to obtain the nucleotide sequence
for any provided GenBank or RefSeq accession numbers. The Biostrings
package can then be used to do matching in nucleic acid sequences. Readers
interested in pattern matching should consult the vignette and manual
pages for the Biostrings package for more details.

In the code below, a single accession number is selected and then the
nucleotide sequence is downloaded.

> ps <- ls(env = hgu95av2ACCNUM)

> myp <- ps[1001]

> myA <- get(myp, hgu95av2ACCNUM)

> myseq <- getSEQ(myA)

> nchar(myseq)

[1] 4839

> substr(myseq, 1, 10)

[1] "TCCGGTTTTT"

Alternatively, RefSeq identifiers, for either nucleic acid sequences or
protein sequences, can be used.

> rsp <- getSEQ("NP_004327")

> substr(rsp, 1, 10)

[1] "MDTPENVLQM"

> rsn <- getSEQ("NM_004336")

> substr(rsn, 1, 10)

[1] "GAGCCGACTG"

8. Querying 145

One use for nucleotide sequence data is to check whether the probes on
the microarray are actually in the the associated gene. The hgu95av2probe
package provides probe sequence information for the AffymetrixHG-
U95Av2 GeneChip. The probe data are stored as a data.frame with 6
columns:

sequence the sequence of the 25mer

x the x position of the probe on the array

y the y position of the probe on the array

Probe.Set.Name the AffymetrixID for the probeset

Probe.Interrogation.Position the location (in bases) of the 13th base
in the 25mer, in the target sequence

Target.Strandedness whether the 25mer is a sense or an antisense match
to the target sequence.

Using both the nucleotide sequence and the probe sequence informa-
tion the Biostrings package can be used to do the matching. Biostrings
has many different options and algorithms, including incomplete and
partial matching, along with the ability to use the extended nucleotide
alphabet (Cornish-Bowden, 1985).

> library("hgu95av2probe")

> wp <- hgu95av2probe$Probe.Set.Name == myp

> myPr <- hgu95av2probe[wp,]

> library("Biostrings")

> mybs <- NucleotideString(myseq, "DNA")

> match1 <- matchDNAPattern(as.character(myPr[1,

+ 1]), mybs)

> m1m <- as.matrix(match1)

> m1m

[,1] [,2]

[1,] 4735 4759

> myPr[1, 5] == m1m[1, 1] + 13 - 1

[1] TRUE

And we can see that in this case the 13th nucleotide is indeed in exactly
the place that has been predicted. It is relatively straightforward to check
the other 25-mers.

8.5 Conclusion

The mechanics of issuing annotation requests to on-line providers will
evolve along with Web protocols, provider populations, and contents of

146 V. J. Carey et al.

on-line databases. New technologies, such as those emerging in the seman-
tic web initiative, may increase the efficiency with which on-line resources
are harvested.

The Bioconductor approach to meta-data query resolution support
described here emphasizes the requirements of flexibility and programma-
bility. Developers supporting researchers with clearly patterned workflows
related to annotation can create user-friendly, higher-level query processing
facilities on the basis of the tools described here.

9

Interactive Outputs

C. A. Smith, W. Huber, and R. Gentleman

Abstract
In this chapter, we discuss creation of interactive outputs. We fo-

cus on the generation of reports, marked up in HTML, that link sets
of genes with on-line resources, such as those supplied by the EBI or
the NCBI, and which can be shared between different investigators.
We discuss both the simple creation of these pages as well as some of
the underlying software tools that can be used to construct new and
different outputs. Although linked Web pages form the most com-
monly used outputs, we also consider some other tools that can be
used to produce Web graphics that respond to the mouse in different
ways.

9.1 Introduction

The advent of the World Wide Web revolutionized the way biologists, statis-
ticians, and scientists from many other disciplines locate and disseminate
research. Additionally, journals now afford authors the chance to deposit
significant quantities of supplementary material on-line. This expands the
amount of data that can be communicated far beyond that of a few figures
and tables and generates new demands and opportunities. For many ge-
nomic experiments the outputs of the analysis are both large and complex.
Conveying these outputs in a manner that is conducive to understanding
and exploration suggests changes from publishing static printed materials
to more interactive methods.

In this chapter, we discuss some methods for producing linked outputs,
mostly of gene lists, that can be easily shared among investigators, re-
gardless of their geographic locations. We also consider some other uses of
interactive outputs such as the imagemap function that can be used to add
tool tips to a graphic. A tool tip is a small window, containing text, that
pops up when the mouse goes over a predefined location. Tool tips allow

148 C. Smith et al.

developers to annotate their graphical outputs in a way that does not clut-
ter them with text, but allows readers to interactively navigate and query
the graphic.

Bioconductor includes many tools that leverage the Web browser for
doing and reporting on microarray analyses. This chapter describes their
capabilities and use. There is a relatively primitive, but easy to use, function
(htmlpage) in the annotate package as well as a more sophisticated suite of
tools provided by the annaffy package. Both can be used to create annotated
lists of expressed genes. Those tabular lists are linked to numerous external
sources of information, including NCBI’s LocusLink, GO, or the metabolic
pathway database from KEGG. annaffy takes advantage of Bioconductor’s
pre-built annotation packages for most popular chips in the Affymetrix
platform. Users with other types of chips can use the tools in AnnBuilder, or
Resourcerer to build the appropriate annotation packages if they so desire.

Some of the Web interaction packages of Bioconductor are slanted to-
wards Affymetrix analyses. This is a consequence of both the modularity
of the Affymetrix platform and the research demands that prompted the
development of the packages in the first place. Spotted arrays tend to be
less uniform, and the selection and layout of the spots can vary between
laboratories and between print-runs.

We will use data included in the annaffy package as the basis for our
examples and we first load that package. The data arise from a microarray
experiment which used the Affymetrix HG-U95Av2 GeneChip. There are
eight total samples in the set, four control samples and four experimental
samples. 250 expression measures were selected at random from the results,
and another 250 probe IDs were selected at random and assigned to those
expression measures.

We first discuss the simple interface provided by htmlpage. Following that
we discuss the annaffy package in some detail and finish this chapter with
some examples of using the imagemap.

9.2 A simple approach

The construction of a linked Web page requires substantial coordination.
First, the genes are identified by some analysis, and then the manufacturer’s
identifiers must be linked to the other biological identifiers of interest (e.g.,
GO or KEGG). This can be done using the Bioconductor annotation pack-
ages. Next, the appropriate link text must be found and finally the HTML
must be generated and printed to a file.

In our example, we make use of the 10 probes in the aafExpr example
data set numbered from 41 to 50.

> library("annaffy")

> data(aafExpr)

9. Interactive Outputs 149

> gN <- geneNames(aafExpr)[41:50]

> syms <- unlist(mget(gN, hgu95av2SYMBOL))

> lls <- unlist(mget(gN, hgu95av2LOCUSID))

> syms

31848_at 31901_at 32010_at 32073_at 32155_at

"CADPS" "KCNAB2" "EAN57" "JMJD2A" "TFAP2A"

32230_at 32354_at 32443_at 32498_at 32525_r_at

"EIF3S2" "NPAS3" "ZNF157" "GRM2" NA

Now we have obtained the Affymetrix IDs as well as LocusLink IDs and
the gene symbols for the probesets of interest. We want to create a Web
page with this information, and have the LocusLink identifiers linked to
the appropriate page at the NCBI, the Affymetrix identifiers linked to the
appropriate Web resources from Affymetrix and the symbols not linked.
The code is quite simple; linked identifiers are placed first, then the appro-
priate resources are indicated. Next we specify the other values that will
be output and these are followed by the column labels. Finally we specify
the name of the output file and call htmlpage to produce the output.

> gl <- list(gN, lls)

> repository <- list("affy", "ll")

> othernames <- list(syms)

> head <- c("Probe ID", "Symbol", "LocusLink")

> fName <- "out.html"

> htmlpage(gl, fName, title = "My Interesting Genes",

+ othernames, head, repository = repository)

Now the file, out.html can be opened in any Web browser and a table
is displayed. It has 10 rows and 3 columns. The Affymetrix identifiers are
linked to the appropriate location on the Affymetrix Web site and the
LocusLink identifiers are linked to the appropriate pages at the NCBI.
This file is available as part of the on-line complements.

9.3 Using the annaffy package

Now that we have seen a simple model for generating interactive Web
pages, we can turn our attention to the more sophisticated interface pro-
vided by the annaffy package. This package was designed to help facilitate
interactions between microarray analysis results and Web-based databases.
It provides classes and methods for accessing those resources both inter-
actively, from the command line, as well as through statically generated
HTML pages.

annaffy uses a different class for each type of annotation data. This
approach was taken in order to take advantage of the object oriented pro-
gramming paradigm in R and in particular the automatic dispatching based
on the class of the arguments to a function. Readers unfamiliar with R’s

150 C. Smith et al.

object-oriented programming paradigm are referred to Chambers (1998)
for more details.

Some of the different classes defined and used are listed below and the
others are documented in the annaffy package:

aafSymbol gene symbol

aafGenBank GenBank accession number

aafLocusLink NCBI Gene IDs (almost never more than one)

aafGO Gene Ontology identifiers, names, types, and evidence codes

aafPathway KEGG pathway identifiers and names

For each class, there is a constructor method with the same name as
the class. This function takes as arguments a vector of probe identifiers as
well as the name of the appropriate Bioconductor meta-data package. If
the data package for the chip is not already loaded, the constructor will
attempt to load it. The constructor finds the appropriate mapping from
the supplied probe identifiers to the requested data and returns an object
of class aafList which contains instances of the appropriate class. Note that
annaffy handles missing annotation data in different ways, depending on the
type of data. The value NA is used if there is no known mapping from the
probe identifier to the requested output. For the purpose of demonstration,
we will use the hgu95av2 meta-data package and probe IDs from the aafExpr

data set (these have already been loaded).
In this next code chunk, we first access the Affymetrix probe IDs from the

data, aafExpr and then use the aafSymbol method to find the gene symbols
that are associated with those probe IDs. As mentioned above, symbols is
an instance of the aafList class. R’s subsetting functions provide access
to the different mappings. In the code chunk below, we access the gene
symbols, and note that here a missing value is encoded as a zero length
string.

> probeids <- geneNames(aafExpr)

> symbols <- aafSymbol(probeids, "hgu95av2")

[1] "You have package hgu95av2 but the incorrect version"

> symbols[55:57]

An object of class "aafList"

[[1]]

An object of class "aafSymbol"

[1] "MRPS14"

[[2]]

An object of class "aafSymbol"

[1] "TDRD3"

9. Interactive Outputs 151

[[3]]

An object of class "aafSymbol"

character(0)

All annotation constructors return their results as aafList objects, which
act like normal lists but have special behavior when used with certain
methods. One such method is getText, which returns a simple textual
representation of most annaffy objects.

> getText(symbols[55:57])

[1] "MRPS14" "TDRD3" ""

Other annotation constructors return more complex data structures, for
example GO has a much richer structure and the object returned reflects
that.

> gos <- aafGO(probeids, "hgu95av2")

> gos[[3]]

An object of class "aafGO"

[[1]]

An object of class "aafGOItem"

@id "GO:0008083"

@name "growth factor activity"

@type "Molecular Function"

@evid "IEA"

[[2]]

An object of class "aafGOItem"

@id "GO:0008083"

@name "growth factor activity"

@type "Molecular Function"

@evid "TAS"

[[3]]

An object of class "aafGOItem"

@id "GO:0007399"

@name "neurogenesis"

@type "Biological Process"

@evid "TAS"

The GO constructor, aafGO, returns an aafList of aafGO objects, which
are in turn lists of aafGOItem objects. Within each of those objects, there
are four slots: id, name, type, and evidence code. The individual slots can
be accessed with the @ operator.

152 C. Smith et al.

9.4 Linking to On-line Databases

One of the most important features of the annaffy package is its ability to
create hyperlinks to various public on-line databases. Readers are referred
to Chapter 7 for more details on the contents, structure, and use of the
different meta-data resources. Most of the annotation classes in annaffy
have a getURL method that returns single or multiple URLs, depending on
the object type. These functions mimic other functions that provide similar
functionality in other Bioconductor packages (most notably annotate). In
the example code given below, we print out the URL for inspection. Making
use of a URL involves initiating some form of Internet protocol request, for
example using a url connection or opening the link in the Web browser
using browseURL.

The simplest annotation class that produces a URL is aafGenBank . Most
Affymetrix probes have corresponding GenBank accession numbers, even
those missing other annotation data. The GenBank database provides in-
formation about the expressed sequence that was used to design the probes
on the GeneChip. Additionally, it provides information about the func-
tional parts of the sequence and the the authors that initially sequenced
the gene fragment. The code chunk below demonstrates the steps needed
to construct the URL, which is printed.

> gbs <- aafGenBank(probeids, "hgu95av2")

> getURL(gbs[[1]])

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=

nucleotide&term=U41068%5BACCN%5D&doptcmdl=GenBank

NCBI Gene is a very useful on-line database that links to many other
data sources not currently used in constructing Bioconductor meta-data
packages. The NCBI Gene database was previously known as LocusLink .
The class retains that name for historical reasons. Code demonstrating the
construction of the appropriate URLs is given below. For the remainder of
this section we suppress the printing of the resultant URLs.

> lls <- aafLocusLink(probeids, "hgu95av2")

> getURL(lls[[2]])

If you are interested in exploring the area of the genome surrounding a
probe, the aafCytoband provides a link to NCBI’s on-line genome viewer.
It includes adjacent genes and other genomic annotations.

> bands <- aafCytoband(probeids, "hgu95av2")

> getURL(bands[[2]])

For primary literature information about a gene, use the aafPubMed
class. It will provide a link to a list of abstracts on PubMed that describe
the gene of interest. The list abstracts that can be accessed in this way

9. Interactive Outputs 153

are by no means exhaustive and will sometimes only include the paper in
which the gene was cloned.

> pmids <- aafPubMed(probeids, "hgu95av2")

> getURL(pmids[[2]])

A number of interesting queries can be done with the GO class. You can
display the GO family hierarchy for a set of GO IDs at once.

> getURL(getURL(gos[[1]]))

You can also show the family hierarchy for a single GO ID. See Chapter 22
for other methods of processing the GO hierarchy.

> getURL(gos[[1]][[4]])

http://godatabase.org/cgi-bin/go.cgi?open_0=GO:0005592

The last link type of note is that for KEGG pathway information. Most
genes are not currently annotated with pathway data. However, for those
that are, it is possible to retrieve schematics of the biochemical pathways
a gene is involved in.

> paths <- aafPathway(probeids, "hgu95av2")

> getURL(paths[[5]])

9.5 Building HTML pages

In addition to using annaffy interactively through R, it may also be desir-
able to generate annotated reports summarizing your microarray analysis
results. Such a report can be used by a scientist collaborator with no knowl-
edge of either R or Bioconductor. Additionally, by having all the annotation
and statistical data presented together on one page, connections between,
and generalizations about, the data can be made in an efficient manner.

The primary role of these functions from the annaffy package is to produce
such reports in HTML. Additionally, it can easily format the same report
as tab-delimited text for import into a table, spreadsheet, or database. It
supports nearly all the annotation data available through Bioconductor.
Additionally, it has facilities for including and coloring user data in an
informative manner.

9.5.1 Limiting the results

HTML reports generated by annaffy can grow to become quite large unless
some measures are taken to limit the results. Multi-megabyte Web pages
are unwieldy and should be avoided. Doing a ranked statistical analysis is
one way to limit results, and will be shown here. We will rank the expres-
sion measures by putting their two-sample Welch t-statistics in order of
decreasing absolute value.

154 C. Smith et al.

The first step is to load the multtest package, which will be used to
compute the t-statistics.

> library("multtest")

The mt.teststat function requires a vector that specifies which samples
belong to the different observation classes. That vector can be produced
directly from the first covariate of pData.

> class <- as.integer(pData(aafExpr)$covar1) - 1

Using the class vector, we calculate the t-statistic for each of the probes.
We then generate an index vector that can be used to order the probes
themselves in increasing order. As a last step, we produce the vector of
ranked probe identifiers. Later annotation steps will only use the first 50
of those probes.

> teststat <- mt.teststat(exprs(aafExpr), class)

> index <- order(abs(teststat), decreasing = TRUE)

> probeids <- geneNames(aafExpr)[index]

9.5.2 Annotating the probes

Once there is a list of probes, annotation is quite simple. The only decision
that needs to be made is which classes of annotation to include in the
table. Including all the annotation classes, which is the default, may not be
a good idea. If the table grows too wide, its usefulness may decrease. To see
which columns of data can be included, use the aaf.handler function. When
called with no arguments, it returns all of the annotation types annaffy can
handle.

> aaf.handler()

[1] "Probe" "Symbol"

[3] "Description" "Function"

[5] "Chromosome" "Chromosome Location"

[7] "GenBank" "LocusLink"

[9] "Cytoband" "UniGene"

[11] "PubMed" "Gene Ontology"

[13] "Pathway"

To avoid typing errors, you should subset the vector instead of retyping
each column name.

> anncols <- aaf.handler()[c(1:3, 8:9, 11:13)]

[1] "Probe" "Symbol" "Description"

[4] "LocusLink" "Cytoband" "PubMed"

[7] "Gene Ontology" "Pathway"

This may still be too many columns, but it is possible, at a later stage, to
choose to either not show some of the columns or remove them altogether.

9. Interactive Outputs 155

Figure 9.1. HTML table with annotation links.

Now we generate the annotation table with the aafTableAnn function
using the hgu95av2 meta-data package.

> anntable <- aafTableAnn(probeids[1:50], "hgu95av2",

+ anncols)

To see what has been produced so far, use the saveHTML method to gen-
erate the HTML report. Using the optional argument open=TRUE will open
the resulting file in your browser, as seen in Figure 9.1.

> saveHTML(anntable, "ex1.html", title = "Example Table without Data")

9.5.3 Adding other data

To add other data to the table, just use any of the other table constructors
to generate your own table, and then merge the two. For instance, listing the
t-statistics along with the annotation data is quite useful. annaffy provides
the option of coloring signed data, making it easier to assimilate.

> testtable <- aafTable("t-statistic" = teststat[index[1:50]],

+ signed = TRUE)

> table <- merge(anntable, testtable)

After HTML generation, a one line change to the style sheet header
will change the colors used to show the positive and negative values. In
fact, with the use of cascading style sheets (CSS), it is possible to heavily
customize the appearance of the tables very quickly, even on a column by
column basis.

156 C. Smith et al.

annaffy also provides an easy way to include expression data in the ta-
ble. It colors the cells with varying intensities of green to show relative
expression values. Additionally, because of the way merge works, it will al-
ways match probe ID rows together, regardless of their order. This allows a
quick sanity check on the other statistics produced, and can help decrease
user error. You can check, for example, that the t-statistics and ranking
seem reasonable given the expression data.

> exprtable <- aafTableInt(aafExpr, probeids = probeids[1:50])

> table <- merge(table, exprtable)

> saveHTML(table, "example2.html", title = "Example Table with Data")

Producing a tab-delimited text version uses the saveText method. The
text output also includes more digits of precision than the HTML; see
Figure 9.2.

> saveText(table, "example2.txt")

Figure 9.2. HTML table with data columns added.

9.6 Graphical displays with drill-down functionality

Visualization is an essential part of a virtually every analysis. More details
on the visualization methods presented here are available in Chapter 10.
With the large complex data sets that are common in functional genomics,
it is often useful to choose a hierarchical approach to the presentation of the
information, with one or a few overview plots, which then allow readers to

9. Interactive Outputs 157

interactively drill-down and reveal more detailed information on particular
features of interest.

For example, one might want to augment the heatmap of Chapter 10,
Figure 10.2, by adding clinical data on the tumor samples and patient,
and bioinformatic annotations on the genes. Including these in a static dis-
play would be difficult and likely to result in a very cluttered visualization
where the primary message (the heatmap) is largely obscured. A popular
but decidedly cumbersome and error-prone approach is to copy and paste
the sample and gene identifiers into a separate database or spreadsheet
application and to use that to look up the information. A functionality
that allows the data analyst to associate the appropriate meta-data di-
rectly with the graphical output but leaves the reader free to select and
inspect those entities of interest seems to provide substantial benefits and
overcomes many of the stated difficulties.

There are a number of graphics formats and associated viewers that
support this kind of drill-down, and we discuss two of these: HTML image
maps and scalable vector graphics (SVG).

9.6.1 HTML image maps

An HTML image map consists of (at least) two files: the actual image file
itself, in some graphic format suitable for rendering in a Web browser or
other similar tool and an HTML file that contains the image annotation.
The following HTML fragment shows a schematic example.

<html><body>
<!-- further HTML here -->
...

<map name="foo">
<area shape="rect" coords="100,20,110,30"

href="http://...." title="alpha-helical ferredoxin"/>
<area shape="rect" coords="210,300,280,310"

href="http://...." title="RNase III endonuclease domain"/>
...

</map>
<!-- further HTML here -->

</body></html>

The image is called myImage.png and is included using standard HTML.
When the file that contains these commands is rendered in a browser,
the image is rendered and the series of area statements are evaluated. The
example assumes that the image file myImage.png exists and has dimensions
of at least 280 pixels in the x-direction and 310 pixels in the y-direction.
The text in the title parameter of the area tag will be used as a tool-tip

158 C. Smith et al.

for the corresponding area of the image, and the href parameter defines a
hyperlink .

Tool-tips are short bits of explanatory text that are displayed when the
mouse pointer moves into a certain region and disappear when the pointer
leaves the region. The mouse-sensitive areas are specified by their shape and
coordinates. In the example, the first area is the rectangular region with
x-coordinates between 100 and 110 and y-coordinates between 20 and 30.
The area tag allows many more parameters, for which we refer the reader
to the documentation of the HTML language.

The imageMap from the package geneplotter can be used to generate an
HTML fragment such as shown above from a specification of coordinates,
tool-tips, and hyperlinks. In many cases, the hard part in using it with
a plot produced by R will be the determination of the coordinates of the
plot elements that are supposed to be mapped. For two specialized types of
plots, support for this is already provided: for plate plots (see Figure 5.6),
the function plotPlate in the package prada returns a list that contains the
coordinates of the relevant plot elements, namely the circles that represent
the wells. These coordinates then simply need to be passed to the imageMap

function. For graphs, the package Rgraphviz defines a generic function im-

ageMap, which takes a graph layout as input. Users can use this function to
add tool-tips and hyper-links to the graph’s nodes (see Section 21.4.5).

Image files can be produced, in a variety of formats, using built-in R
commands. For example, the png device of R will often be a convenient
choice. In addition, R has the devices jpeg and bitmap, the latter is a
unified interface to many different bitmap file formats.

The interactivity of an image map cannot be adequately reproduced in a
printed book; for an example we refer the reader to the on-line complements
for this volume for an example. Or, they can simply try the example for
the imageMap function and view the results on their own computer.

9.6.2 Scalable Vector Graphics (SVG)

SVG is a modularized language for describing two-dimensional vector and
mixed vector/raster graphics in XML (W3C, 2003). Version 1.1 is dated
January 2003. This is a very general and powerful graphics language, and
among other things, it allows the annotation of graphics elements with
tool-tips and hyper-links.

The R package RSvgDevice, which is available from CRAN , provides a
graphics device that produces SVG output. Viewers for SVG, while not
plentiful, are available for most platforms. A freely available basic viewer
that can also be used as a browser plug-in is provided by Adobe Systems
Incorporated.

9. Interactive Outputs 159

9.7 Searching Meta-data

We now turn our attention to other programmatic interactions with the
biological meta-data. Readers are referred to Chapter 8 for a detailed
discussion of some of the other tools and capabilities in both R and Biocon-
ductor. In order to facilitate the formulation and testing of such different
hypotheses, annaffy includes functions to search annotation meta-data us-
ing various criteria. These search functions return character vectors of
Affymetrix probe IDs that can be used to subset data and annotation.

9.7.1 Text searching

Currently, there are two simple search functions available in annaffy. The
first is a text search that matches against the textual representation of bi-
ological meta-data. Recall that textual representations are extracted using
the getText method. For complex annotation structures, the textual repre-
sentation can include a variety of information, including numeric identifiers
and textual descriptions. For the purposes of demonstration, we will use
the hgu95av2 annotation data package available through Bioconductor.

The textual search is most straightforwardly applied to the Symbol, De-
scription, and Pathway meta-data types. A specialized GO search will be
discussed subsequently. For instance, to find all annotated kinases on a
chip, a user can simply perform a text search of Description for kinases. It
is important to emphasize that the search performed is based entirely on
data supplied as part of the Bioconductor annotation packages.

> kinases <- aafSearchText("hgu95av2", "Description",

+ "kinase")

> kinases[1:5]

[1] "1000_at" "1001_at" "1008_f_at" "1010_at"

[5] "1015_s_at"

> length(kinases)

[1] 696

One can search multiple meta-data types with multiple queries all with
a single function call. For instance, to find all genes with “ribosome” or
“polymerase” in the Description or Pathway annotation, use the following
function call.

> probes <- aafSearchText("hgu95av2", c("Description",

+ "Pathway"), c("ribosome", "polymerase"))

> print(length(probes))

[1] 198

When doing searches of multiple annotation data types or multiple terms,
by default, the search returns all probe IDs matching any of the search

160 C. Smith et al.

criteria. That can be altered by changing the logical operator from or to
and using the logic="AND" argument. This is useful because aafSearchText

does not automatically split a search query into separate words (this is often
referred to as tokenizing) as Google and many other search engines do. For
example, “DNA polymerase” finds all occurrences of that exact string. To
find all probes whose description contains both “DNA” and “polymerase,”
use the following function call.

> probes <- aafSearchText("hgu95av2", "Description",

+ c("DNA", "polymerase"), logic = "AND")

> print(length(probes))

[1] 42

Another useful application of text searching is to map a vector of Gen-
Bank accession numbers onto a vector of probe ids. This comes in handy if
you wish to filter microarray data based on the output of a BLAST query.
Here we take a list of GenBank IDs and find every probe ID that contains
one of those GenBank IDs in its annotation.

> gbs <- c("AF035121", "AL021546", "AJ006123", "AL080082",

+ "AI289489")

> aafSearchText("hgu95av2", "GenBank", gbs)

[1] "1954_at" "32573_at" "32955_at" "34040_s_at"

[5] "35581_at" "38199_at"

The text search is always case insensitive. Individual search terms are
treated as Perl compatible regular expressions so you should be cau-
tious of special regular expression characters. See Friedl (2002) for further
information about how to use regular expressions.

9.8 Concluding Remarks

In this section we have provided a brief tour of some of the tools that can
be used to construct interactive outputs. Our own use of them is largely as
a method for communicating results to colleagues that are not necessarily
computer savvy. We have found that they are an effective mechanism for
communicating, especially at the early stages of manuscript preparation.
They ensure that all authors are looking at, and talking about, the same
outputs. We have also found them useful for providing on-line complements
to published papers, seminars and workshops.

10

Visualizing Data

W. Huber, X. Li, and R. Gentleman

Abstract
Visualization is an essential part of exploring, analyzing, and

reporting data. Visualizations are used in all chapters in this mono-
graph and in most scientific papers. Here we review some of the
recurring concepts in visualizing genomic and biological data. We
discuss scatterplots to investigate the dependency between pairs
of variables, heatmaps for the visualization of matrix-like data,
the visualization of distance relationships between objects, and the
visualization of data along genomic coordinates.

10.1 Introduction

Visualization has long been recognized as an essential part of exploratory
data analysis practice and of reporting the results of an analysis. It is also
instrumental in quickly answering goodness-of-fit and data quality ques-
tions. A well-designed plot has the ability to reveal things that we did not
anticipate, and in many cases it should permit the reader to easily con-
trast what was observed with what should have been observed if certain
assumptions held.

Given the importance of visualization methods for the comprehension of
microarray and other high-throughput experiments, it is similarly impor-
tant that good tools for producing plots and diagnostic displays be readily
available. In this chapter, we will consider some of the basic tools. Vi-
sualizations are used in many places throughout this monograph, and in
most cases specialized tools are described alongside the examples. Silhou-
ette plots are discussed in Chapter 13, while plotting methods for graphs
and networks are covered in detail in Part IV, specifically in Chapters 21
and 22. Spatial plots are useful for detecting spatial patterns, and applica-
tions to microarray quality control and to the analysis of data measured on
microtiter-plates have been shown in Chapters 3, 4, and in Section 5.4.2.

162 W. Huber et al.

High-throughput biological data from functional genomics, proteomics,
etc., create many challenges for visualization methods. The data sets are
large, and in most cases it is essential that the data be related to known
biological information, for example the mapping of the probe sequences to
genomic loci.

One of the strengths of R is the fact that plots are highly customizable.
You can easily create your own visualizations and then make tools available
to others so they can create similar plots. The grid and lattice packages offer
new and expanded capabilities compared to the base graphics system. Many
of the contributed packages on Bioconductor and CRAN extend the graph-
ical capabilities of R or provide specialized graphical outputs for particular
applications. From Bioconductor, we mention the arrayMagic, arrayQuality,
and aCGH packages for microarray data visualization, from CRAN, gclus
for the ordering of panels in scatterplot matrices and parallel coordinate
displays by a merit index, scatterplot3d for 3D scatter plots, vcd for the
visualization of categorical data.

10.2 Practicalities

In statistics and in other areas of science, there have been many good
books about the visualization of data. We recommend the following mono-
graphs: Cleveland (1993, 1994), Bertin (1973), Tufte (2001), and Tufte
(1990). Merely drawing a plot does not constitute visualization. Visualiza-
tion is about conveying important information to the reader accurately. It
should reveal information that is in the data and should not impose struc-
ture on the data. These are not trivial requirements, and there are many
examples of plots that are full of irrelevant clutter or that distort the facts.

Color is an important aspect of visualization. We particularly note the
work of Brewer (1994a,b), some of which has been implemented in the
R package RColorBrewer. Brewer showed that specific color schemes are
appropriate for specific tasks. For example, a color scheme that is suitable
for comparing ordinal data is different from one suitable for the display of
nominal data.

An important notion is that of distance in color space. For quantita-
tive data, distances in color space should reflect an appropriate distance
measure in data space. A related requirement is that the available room in
color space should be used to convey as much information as possible. Color
schemes should be intuitive, consistent, and ergonomic. A now famous ex-
ample for an unergonomic color scheme is the red-green color scheme that
has been widely used for the display of microarray data. That color scheme
is undesirable because a sizeable proportion of the audience is red-green
color-blind and hence unable to interpret these plots.

10. Visualizing Data 163

The complexity and richness of genomic data argues persuasively for
some form of interactivity. However, the interactive visualization capabili-
ties in R itself are somewhat limited. The functions locator and identify

can be used in conjunction with other functions to provide some interactive
graphics but their use is not widespread. More comprehensive capabilities
are provided by add-on packages such as tcltk and RGtk (available from
Omegahat). Both offer the potential for interactive graphical interfaces.
The package iSPlot, which is based on RGtk, provides tools for creating in-
teractive, linked plots (brushing). Options for the production of graphical
displays with drill-down functionality have been discussed in Chapter 9.6.
Another option for interactive visualization that includes brushing and 3D
scatterplots is the visualization program GGobi (Swayne et al., 2003), which
has an elegant interface to R via the Rggobi package. An example for this
is described in Section 5.4.3.

10.3 High-volume scatterplots

Scatterplots are a powerful tool for the visualization of data from two vari-
ables with a small or intermediate number of observations. However, it is
difficult to get a good impression of the distribution of the data when the
number of observations gets large and the points become so dense that
they form a featureless blot. Methods for plotting large data sets have
been studied systematically for many years. The work of Carr et al. (1987)
is of particular relevance, and their method of dividing the data into a
two-dimensional histogram of hexagonal bins has been implemented in the
hexbin package.

In Figure 10.1a, we show a scatterplot of the data from two Affymetrix
GeneChips with 409,600 probes each. The code below loads an example
data set, extracts the intensity vector of the first two arrays, transforms
them to the logarithmic scale, and calculates the sum A and difference M of
the two vectors. The matrix multiplication operator %*% provides a compact
and fast way to this.

> library("affydata")

> data("Dilution")

> x <- log2(exprs(Dilution)[, 1:2])

> x <- x %*% cbind(A = c(1, 1), M = c(-1, 1))

> plot(x, pch = ".")

Above a certain threshold density of points it is not possible to visually
distinguish between more or less dense regions: the plot becomes a feature-
less black shape. Some relief from this problem is provided by the hexagonal
binning algorithm in the hexbin package.

164 W. Huber et al.

> library("hexbin")

> library("geneplotter")

> hb <- hexbin(x, xbins = 50)

> plot(hb, colramp = colorRampPalette(brewer.pal(9,

+ "YlGnBu")[-1]))

In the call to hexbin we need to specify the parameter xbins, which is
the number of bins that are used for the x-dimension, and determines the
hexagon size. Note that the hexagons are equilateral, which implies that the
variables along the x and y dimensions are on comparable scales. We use the
YlGnBu colormap from the RColorBrewer package, which is appropriate for
sequential variables. The map extends in nine steps from light yellow to dark
blue. We remove the first step, which is too close to the white background
color and interpolate into a smooth color ramp with the colorRampPalette.
The result is shown in Figure 10.1b.

An alternative approach is provided by the function smoothScatter in the
package prada.

> library("prada")

> smoothScatter(x, nrpoints = 500)

The result is shown in Figure 10.1c. A variation on this theme is the func-
tion densCols, which calculates the local density of data points for each
observation, and returns a false color representation (Figure 10.1d).

> plot(x, col = densCols(x), pch = 20)

10.3.1 A note on performance

Scatterplots like the one in Figure 10.1a can take a long time to render, and
when saved in a vector graphics format such as PDF or Postscript, they
tend to produce large files. More importantly, they are not informative and
hide rather than reveal the structure of the data. Many of these problems
can be ameliorated by the use of a binning method such as the hexagon
binning shown in Figure 10.1b. For such plots, the file size and the drawing
time, is proportional to the number of bins and, once the binning has been
carried out, independent of the number of data points.

We note that the reduction to hexagon bins can also be used to speed up
regression or smoothing algorithms, which can be applied to observations
located at the bin centers using weights that correspond to the bin counts.
This makes the complexity of these algorithms independent of the number
of data points. If the bin size is chosen appropriately there will be no
noteworthy loss in the precision of the fitted curves.

A

M

c) d)

Figure 10.1. Four different visualizations of the same data, the mean-difference
plot of the unprocessed probe intensities from a pair of microarrays. Panel a)
shows the usual scatterplot. Because of the large number of points, it is a rather
featureless black blot. Panel b) shows the result of a hexagon binning procedure.
The color code at each hexagon represents the number of data points that it
contains. In panel c) we see a color representation of a smooth density on the
(x, y)-plane calculated from the data using a kernel density estimator. In the
sparse regions of the density, the plot is augmented by black dots that represent
individual data points. In the denser regions, these are omitted. Note that at
the boundary between sparse and dense region (as assigned by the algorithm),
a visual artifact is created. Panel d) shows the usual scatterplot, however with
points colored according to the local density.

10. Visualizing Data 165

10. Visualizing Data 165

166 W. Huber et al.

10.4 Heatmaps

Heatmaps, or false color images have a reasonably long history, as has the
notion of rearranging the columns and rows to show structure in the data.
They were applied to microarray data by Eisen et al. (1998) and have
become a standard visualization method for this type of data.

A heatmap is a two-dimensional, rectangular, colored grid. It displays
data that themselves come in the form of a rectangular matrix. The color
of each rectangle is determined by the value of the corresponding entry
in the matrix. The rows and columns of the matrix can be rearranged
independently. Usually they are reordered so that similar rows are placed
next to each other, and the same for columns. Among the orderings that
are widely used are those derived from a hierarchical clustering, but many
other orderings are possible. If hierarchical clustering is used, then it is
customary that the dendrograms are provided as well. In many cases the
resulting image has rectangular regions that are relatively homogeneous
and hence the graphic can aid in determining which rows (generally the
genes) have similar expression values within which subgroups of samples
(generally the columns).

The function heatmap is an implementation with many options. In par-
ticular, users can control the ordering of rows and columns independently
from each other. They can use row and column labels of their own choos-
ing or select their own color scheme. They can also add a colored bar to
annotate either the row or the column data (e.g., to show the association
with some phenotype). And perhaps most importantly they can take the
standard R implementation and extend it in any way they would like.

We return to the ALL example to provide a demonstration of a heatmap.
We select two small subgroups of patients for this examination, the
ALL1/AF4 group and the E2A/PBX1 group.

> library("ALL")

> data("ALL")

> selSamples <- ALL$mol.biol %in% c("ALL1/AF4",

+ "E2A/PBX1")

> ALLs <- ALL[, selSamples]

> ALLs$mol.biol <- factor(ALLs$mol.biol)

> colnames(exprs(ALLs)) <- paste(ALLs$mol.biol,

+ colnames(exprs(ALLs)))

There are 15 samples and they are stored in the exprSet object ALLs. Among
the total of 12625 probes in this data set, we select those with mean ex-
pression larger than 100 in at least one of the two groups, and a p value of
the two-sample t test of less than 0.0002.

> library("genefilter")

> meanThr <- log2(100)

> g <- ALLs$mol.biol

10. Visualizing Data 167

P
B

X
1

36
00

1

P
B

X
1

24
01

9

P
B

X
1

08
01

8

P
B

X
1

28
00

3

/P
B

X
1

LA
L5

/A
F

4
26

00
8

/A
F

4
04

00
6

/A
F

4
31

00
7

/A
F

4
16

00
4

/A
F

4
19

00
5

/A
F

4
24

00
5

/A
F

4
63

00
1

/A
F

4
28

02
8

/A
F

4
15

00
4

/A
F

4
28

03
2

38514_at
41139_at
39929_at
39318_at
41827_f_at
37579_at
1520_s_at
1007_s_at
39424_at
40235_at
1498_at
35260_at
38340_at
34897_at
1134_at
39614_at
38285_at
37493_at
717_at
182_at
1044_s_at
753_at
34800_at
40454_at
33355_at
32872_at
37625_at
1854_at
39829_at
266_s_at
32063_at
37981_at
39402_at
37343_at
40113_at
39781_at
35164_at
32529_at
36643_at
41275_at
33238_at
2059_s_at
33412_at
31901_at
33283_at
40365_at
40396_at
1988_at
37033_s_at
36203_at
1081_at
36452_at
32378_at
1389_at
36937_s_at
37475_at
38521_at
38063_at
1914_at
36873_at
37558_at
37809_at
41470_at
38994_at
32184_at
36638_at
34583_at
1065_at
40782_at
897_at
38413_at
37544_at
39003_at
37471_at
33777_at
1140_at
34308_at
33352_at
38717_at
37099_at
41401_at

Figure 10.2. A heatmap comparing the ALL1/AF4 group (brown) to the
E2A/PBX1 group (light blue).

> s1 <- rowMeans(exprs(ALLs)[, g == levels(g)[1]]) >

+ meanThr

> s2 <- rowMeans(exprs(ALLs)[, g == levels(g)[2]]) >

+ meanThr

> s3 <- rowttests(ALLs, g)$p.value < 2e-04

> selProbes <- (s1 | s2) & s3

> ALLhm <- ALLs[selProbes,]

This results in a set of 81 probes. We can now draw the heatmap for
this data set, Figure 10.2. The results are quite striking and we can easily
separate the two groups. We have chosen to use a set of colors from the
RColorBrewer package that come from a diverging palette. Diverging palettes
are designed to put equal emphasis on mid-range values and the extremes
at both ends of the data range. You may want to try a number of choices,
different palettes are given in the RColorBrewer package.

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> spcol <- ifelse(ALLhm$mol.biol == "ALL1/AF4",

+ "goldenrod", "skyblue")

> heatmap(exprs(ALLhm), col = hmcol, ColSideColors = spcol)

168 W. Huber et al.

10.4.1 Heatmaps of residuals

Statistical models try to explain the observed data in terms of systematic
effects and residual random variation. One example is the functional model
with additive error

Y = f(x) + ε, (10.1)

where Y is the vector of observed data, x represents a set of explanatory
variables, the function f models the systematic dependence of the observed
quantities on the explanatory variables, and ε represents the random error.
Often, interest centers on the estimation of f and there are many different
methods that can be employed to obtain an estimate, f̂ . Equipped with f̂ ,
we can compute the residuals, ε̂ = Y − f̂ .

The residuals often play an important role in assessing the fit of the
model, and a failure of f̂ to adequately capture the structure that is present
in Y is usually reflected in the residuals. A similar approach can be used
for gene expression data; in many cases we estimate some model to explain
the observed data, and hence we can use that model to obtain a matrix of
residuals.

To demonstrate the approach, we will use the estrogen data. These
are explained in Appendix A.1.3. We preprocess the data, define a linear
model, and obtain the resulting object fit in the same way as described in
Chapter 14 on pages 241 and 244.

For each probeset, we have eight measurements, and the model has four
coefficients: an overall baseline, the treatment effect [estrogen stimulation
yes (+) or no (-)], the time effect (10h or 48h), and the interaction between
treatment and time, that is, the difference in the treatment effect between
the 10h and 48h time points. That leaves four residual degrees of freedom
for each probeset.

We can now compare the expression values that would be predicted by
this model to actual expression values. For this, we first define a function
predict.MArrayLM that produces a synthetic expression matrix according
the fitted model, and then calculate the difference between these values
and the values in the exprSet esEset.

> predict.MArrayLM <- function(f, design = f$design) {

+ return(f$coefficients %*% t(design))

+ }

> esFit <- predict(fit)

> res <- exprs(esEset) - esFit

It is difficult to visualize the full data set with 12625 probesets all ot once,
hence let us focus on the 50 probesets with the largest estimated values of
the treatment–time interaction:

> sel <- order(fit$coefficients[, "ES:T48"], decreasing = TRUE)[1:50]

> four.groups <- as.integer(factor(colnames(exprs(esEset))))

10. Visualizing Data 169

−
 4

8

−
 4

8

−
 1

0

−
 1

0

+
 1

0

+
 1

0

+
 4

8

+
 4

8

34363_at
904_s_at
40041_at
1913_at
34031_i_at
36489_at
851_s_at
36572_r_at
41058_g_at
527_at
36837_at
36863_at
35907_at
542_at
34736_at
1945_at
1943_at
40145_at
32263_at
1599_at
34563_at
37157_at
40347_at
34852_g_at
1592_at
40697_at
894_g_at
36654_s_at
36620_at
33266_at
1651_at
40619_at
34851_at
1158_s_at
40874_at
38116_at
35995_at
38065_at
543_g_at
39230_at
41354_at
33412_at
40407_at
37242_at
39092_at
37228_at
38414_at
38158_at
39109_at
40412_at

Figure 10.3. Heatmap of the estrogen data for the 50 probesets with the highest
treatment–time interaction. The horizontal color bar corresponds to the 2 × 2
factor levels for treatment and time.

> csc <- brewer.pal(4, "Paired")[four.groups]

> heatmap(exprs(esEset)[sel,], col = hmcol, ColSideColors = csc)

The resulting heatmap is shown in Figure 10.3.

> heatmap(res[sel,], col = hmcol, ColSideColors = csc)

In Figure 10.4, we see that the array in the leftmost column has pre-
dominantly positive (red) residuals for the 50 probes shown here. Further
inspection reveals that the overall distribution of all 12625 residuals for
that array is approximately symmetric about 0. Also, the size of the resid-
uals for this array is much larger than those of, say, the second array. The
dependence of the residuals between different probes and the heteroskedas-
ticity point to problems with data quality or normalization. Note that the
residuals are, by the nature of the linear model, not independent across
arrays: the fit is such that the residuals within each factor level sum up to
zero. In this example, each factor level corresponds to two arrays, so the
residuals from one array are −1 times those of the other. Due to the way
that the column reordering in the heatmap function works, this leads to the
antisymmetry of the plot about the vertical line between the fourth and
fifth column.

170 W. Huber et al.

+
 4

8

−
 1

0

+
 1

0

−
 4

8

−
 4

8

+
 1

0

−
 1

0

+
 4

8

542_at
36837_at
527_at
40697_at
36489_at
40347_at
36572_r_at
1599_at
34736_at
39109_at
40041_at
33266_at
34852_g_at
40145_at
904_s_at
35907_at
38065_at
34851_at
34563_at
37157_at
40412_at
38158_at
543_g_at
32263_at
1913_at
34031_i_at
1158_s_at
1592_at
34363_at
1943_at
37228_at
38414_at
40619_at
36620_at
41354_at
41058_g_at
851_s_at
39230_at
40407_at
1945_at
36654_s_at
894_g_at
40874_at
37242_at
33412_at
36863_at
39092_at
38116_at
1651_at
35995_at

Figure 10.4. Heatmap of the residuals of the linear model for the estrogen data
described in Section 14.3.1. In such a plot, we can look for patterns in the residuals
that might indicate problems with the model fit.

10.5 Visualizing distances

The data-analytic and modeling aspects of distances are covered in some
detail in Chapter 12. In this section, we will discuss some of the tools
that are used to visualize distances and expose some of their strengths and
weaknesses.

While the dendrogram has been widely used to represent distances be-
tween objects, it cannot really be considered to be a visualization method.
Dendrograms do not necessarily expose structure that exists in the data.
In many cases they impose structure on the data, and when that is the
case it is dangerous to interpret the observed structure. Hierarchical clus-
tering creates a new set of between-object distances, corresponding to the
path lengths between the leaves of the dendrogram. It is interesting to ask
whether these new distances reflect the distances that were used as inputs
to the hierarchical clustering algorithm. The cophenetic correlation [e.g.
Sneath and Sokal (1973, p. 278)], implemented in the function cophenetic,
can be used to measure the association between these two different distance
measures.

As an example, we compute between sample distances for the ALL data.
We first standardize the gene expression values across samples and then
use Euclidean distance on the standardized values as the metric between

10. Visualizing Data 171

samples (so the distance measured is equivalent to a correlation-based
distance).

> standardize <- function(z) {

+ rowmed <- apply(z, 1, median)

+ rowmad <- apply(z, 1, mad)

+ rv <- sweep(z, 1, rowmed)

+ rv <- sweep(rv, 1, rowmad, "/")

+ return(rv)

+ }

> ALLhme <- exprs(ALLhm)

> ALLdist1 <- dist(t(standardize(ALLhme)))

> ALLhc1 <- hclust(ALLdist1)

> plot(ALLhc1, xlab = "", sub = "", main = "ALLhc1")

In Figure 10.5a, we see that there is a substantial difference between two
groups. If instead of selecting probes based on their t-statistic from the
two-sample comparison, we had selected probes simply on their overall
variability, a different picture emerges.

> ALLsub2 <- exprs(ALLs[(s1 | s2),])

> rowMads <- apply(ALLsub2, 1, mad)

> ALLsub2 <- ALLsub2[rowMads > 1.4,]

> ALLdist2 <- dist(t(standardize(ALLsub2)))

> ALLhc2 <- hclust(ALLdist2)

> plot(ALLhc2, xlab = "", sub = "", main = "ALLhc2")

The resulting dendrogram is shown in Figure 10.5b. The two groups still
separate, but the differences are not as strong and the within group
variability is larger.

In the next code chunk, we compute the cophenetic distances for both
data sets and then compare them to the original distances. High correlations
indicate good agreement between the original distances and those assigned
by hierarchical clustering. We note that the correlations are very good, and
indicate that the dendrogram is a better match for the t-test selected genes
than for those selected on the basis of overall variability. The scatterplots
are shown in Figure 10.6.

> ALLcph1 <- cophenetic(ALLhc1)

> cor(ALLdist1, ALLcph1)

[1] 0.99

> plot(ALLdist1, ALLcph1, pch = "|", col = blue)

> ALLcph2 <- cophenetic(ALLhc2)

> cor(ALLdist2, ALLcph2)

[1] 0.877

> plot(ALLdist2, ALLcph2, pch = "|", col = blue)

172 W. Huber et al.

A
LL

1/
A

F
4

26
00

8

A
LL

1/
A

F
4

04
00

6

A
LL

1/
A

F
4

19
00

5

A
LL

1/
A

F
4

28
02

8

A
LL

1/
A

F
4

28
03

2

A
LL

1/
A

F
4

16
00

4

A
LL

1/
A

F
4

15
00

4

A
LL

1/
A

F
4

31
00

7

A
LL

1/
A

F
4

24
00

5

A
LL

1/
A

F
4

63
00

1

E
2A

/P
B

X
1

36
00

1

E
2A

/P
B

X
1

24
01

9

E
2A

/P
B

X
1

08
01

8

E
2A

/P
B

X
1

28
00

3

E
2A

/P
B

X
1

LA
L50

5
10

15
20

25
30

35

ALLhc1

H
ei

gh
t

E
2A

/P
B

X
1

08
01

8

E
2A

/P
B

X
1

24
01

9

E
2A

/P
B

X
1

36
00

1

E
2A

/P
B

X
1

28
00

3

E
2A

/P
B

X
1

LA
L5

A
LL

1/
A

F
4

15
00

4

A
LL

1/
A

F
4

28
03

2

A
LL

1/
A

F
4

28
02

8

A
LL

1/
A

F
4

63
00

1

A
LL

1/
A

F
4

04
00

6

A
LL

1/
A

F
4

26
00

8

A
LL

1/
A

F
4

19
00

5

A
LL

1/
A

F
4

24
00

5

A
LL

1/
A

F
4

16
00

4

A
LL

1/
A

F
4

31
00

74
6

8
10

12
14

ALLhc2

H
ei

gh
t

a) b)

Figure 10.5. Dendrograms for the ALL1/AF4 and E2A/PBX1 samples. The clus-
tering was obtained a) using the 81 probes in ALLhme that were selected in
Section 10.4 by the t-statistic, b) using the 58 probes in ALLsub2 that were filtered
for their overall variability.

|

| |
|

|

|

|

|

|||

|

|

| || | |

|

|

|

| | |

|

|

|

|
| |

|

|

|

||
|

|

|

|

| |

|

|

|

|||

|

|

|

|

|

|

|

|||

|

|

||

|

|

|||

|

|

||

|

| ||

|

|

|

|

|||

|

|

|| | |

|

|

|
| |

|

|

|

|

|

|

||

|

||

|

|

5 10 15 20 25 30 35

5
10

15
20

25
30

35

ALLdist1

A
LL

cp
h1

|

|

| | |

|

|

|

||

|

|

|

|| | | |

|

|

|

|| |

|

|

|

| ||

|

|

|

|

|

|

|

|

|

| |

|

|

|

||

|

|

|

|

|

|

|

|

| |

|

|

|

| |

|

|

| |

|

|

|

| |

|

|||

|

|

|

|

||

|

|

|

||| |

|

|

|

|

|

|

|

|

|

|

|

| |

|

| |

|

|

4 6 8 10 12 14

4
6

8
10

12
14

ALLdist2

A
LL

cp
h2

a) b)

Figure 10.6. Scatterplots of actual distances versus cophenetic distances. a) Dis-
tances calculated with t-test selected probes, b) variability-selected probes. Each
pair of distances is shown by a vertical bar. Note that the cophenetic distances
only take on a discrete set of values.

10. Visualizing Data 173

10.5.1 Multidimensional scaling

Another useful tool for examining distances is multidimensional scaling
(MDS). Starting from a matrix of all pairwise distances or dissimilarities
between n objects, the aim of MDS is to arrange n points in a k-dimensional
Euclidean space such that the distances between the points are as much
like the given distances as possible. There are a variety of ways in which
“like” can be strictly defined, and these lead to different flavors of MDS.
See the references (Cox and Cox, 2001; Ripley, 1996a; Borg and Groenen,
1997) for more details on MDS.

In R there are three different MDS functions that are readily available,
cmdscale in the stats package, and isoMDS and sammon in MASS.

cmdscale computes classical metric MDS, which uses a least-squares
definition of “like.” Its solution can be found by computing the eigen-
decomposition of a suitably defined matrix, the so-called doubly centered
matrix of squared distances. A nice property of classical MDS is that the
dimensions are nested, that is, the first two dimensions of the k = 3 solution
are the same as the k = 2 solution.

To assess the goodness-of-fit of a classical MDS solution, cmdscale returns
two statistics. One is the sum of the eigenvalues for the components S
divided by the sum of the absolute value of all eigenvalues, and the other
is S divided by the sum of all positive eigenvalues. To decide how many
dimensions are necessary to adequately represent your data, it is useful to
look at the scree plot , that is the plot of the goodness-of-fit statistic as a
function of k. A criterion for the choice of k is to pick a solution for which
adding more dimensions does not significantly improve the goodness-of-fit.

isoMDS provides one form of non-metric MDS. It chooses a k-dimensional
configuration to minimize the loss-function

s2 =

∑
i �=j

[f(pij) − dij]2∑
i �=j

d2
ij

, (10.2)

where pij is the original distance matrix, f is a monotonic transformation,
and dij are the distances between the MDS points. s is also called the
stress.

Yet another variant of non-metric MDS is provided by sammon, which
uses a different kind of loss-function. The different variants of MDS lead to
different relative importances of large versus small distances to the fitted
MDS solution. In some cases, one may be more interested in preserving the
local similarities at the expense of more distant relationships, whereas in
other cases, it may just be the global structure that one is interested in and
that should be preserved in the low-dimensional reduction.

In the code below, we use both metric MDS (cmdscale) and the Sammon
version of non-metric MDS (sammon). We request the computation of eigen-

174 W. Huber et al.

values for cmdscale so that we can explore the goodness-of-fit question. The
results are shown in Figure 10.7.

> library(MASS)

> cm1 <- cmdscale(ALLdist1, eig = TRUE)

> cm1$GOF

[1] 0.908 0.908

> samm1 <- sammon(ALLdist1, trace = FALSE)

> cm2 <- cmdscale(ALLdist2, eig = TRUE)

> cm2$GOF

[1] 0.646 0.646

> samm2 <- sammon(ALLdist2, trace = FALSE)

> ALLscol <- c("goldenrod", "skyblue")[as.integer(ALLs$mol.biol)]

> plot(cm1$points, col = ALLscol, ...)

We note that there is an opportunity for circularity to enter into your
analysis; if you select genes, as we did, based on a two-sample t-test, then
it should come as no surprise that the samples fall in two groups.

In our last example of a visualization method for distances, we make
use of the heatmap function described in the previous section. Here we call
heatmap with both sym=TRUE and we specify our own distance function. The
resulting plot is shown in Figure 10.8. Where we can see that it is symmetric
and again there is a strong indication that there are two (or possibly three)
groups of samples.

> heatmap(as.matrix(ALLdist2), sym = TRUE, col = hmcol,

+ distfun = function(x) as.dist(x))

10.6 Plotting along genomic coordinates

Some of the genetic defects that are associated with cancer such as deletions
and amplifications induce correlations in expression that are related to
chromosomal proximity. Genomic regions of correlated transcription have
also been identified in normal tissues (Su et al., 2004). This motivates the
development of tools that relate gene expression to chromosomal location.

Genomic DNA is double stranded: one strand is called the sense strand ,
the other the antisense strand . The sense strand is sometimes also called
the Watson or “+” strand, and the antisense strand is sometimes called the
Crick or “-” strand. Both strands can contain coding sequences for genes,
and the visualization methods we consider reflect this.

The plotting functions that we consider in this section are available in
the geneplotter package. We first build the object chrLoc,

10. Visualizing Data 175

●

●

●
●●

●

●

●

●

●●
●

●

●

●

−20 −10 0 10

−
10

−
5

0
5

a) metric / t−test

Component 1

C
om

po
ne

nt
 2

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10

−
10

−
5

0
5

b) Sammon / t−test

Component 1
C

om
po

ne
nt

 2

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

c) metric / MAD

Component 1

C
om

po
ne

nt
 2

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
2

2
4

6

d) Sammon / MAD

Component 1

C
om

po
ne

nt
 2

Figure 10.7. MDS plots of the ALL data. The patients with E2A/PBX are col-
ored red and those with ALL1/AF4 are colored blue. The four panels compare
different methods of MDS and feature selection. a) metric MDS using t-test se-
lected features, b) Sammon MDS using t-test selected features, c) metric MDS
using MAD selected features, d) Sammon MDS using MAD selected features.

> library("geneplotter")

> chrLoc <- buildChromLocation("hgu95av2")

which is of class chromLocation. It contains the location of all genes that
were assayed on the HG-U95Av2 chip, on which the example data set ALL
was measured. We select the highly expressing genes using s1 and s2 from
above and compute the mean expression for each probe separately for the
two groups of patient samples, ALL1/AF4 and E2A/PBX1.

> ALLch <- ALLs[s1 | s2,]

> m1 <- rowMeans(exprs(ALLch)[, ALLch$mol.biol ==

+ "ALL1/AF4"])

176 W. Huber et al.

P
B

X
1

08
01

8

P
B

X
1

24
01

9

P
B

X
1

36
00

1

/P
B

X
1

LA
L5

P
B

X
1

28
00

3

1/
A

F
4

15
00

4

1/
A

F
4

28
03

2

1/
A

F
4

28
02

8

1/
A

F
4

63
00

1

1/
A

F
4

04
00

6

1/
A

F
4

26
00

8

1/
A

F
4

16
00

4

1/
A

F
4

31
00

7

1/
A

F
4

19
00

5

1/
A

F
4

24
00

5

ALL1/AF4 24

ALL1/AF4 19

ALL1/AF4 3

ALL1/AF4 16

ALL1/AF4 26

ALL1/AF4 04

ALL1/AF4 63

ALL1/AF4 28

ALL1/AF4 28

ALL1/AF4 15

E2A/PBX1 2

E2A/PBX1 L

E2A/PBX1 3

E2A/PBX1 2

E2A/PBX1 0

Figure 10.8. A heatmap of the between-sample distances.

> m2 <- rowMeans(exprs(ALLch)[, ALLch$mol.biol ==

+ "E2A/PBX1"])

Next, we compute the deciles of the combined data. We will color the genes
in each decile differently.

> deciles <- quantile(c(m1, m2), probs = seq(0,

+ 1, 0.1))

> s1dec <- cut(m1, deciles)

> s2dec <- cut(m2, deciles)

> gN <- names(s1dec) <- names(s2dec) <- geneNames(ALLch)

In the following code, we select a sequential color palette from the RColor-
Brewer package and define a plot layout with three panels. We then use the
function cPlot to plot horizontal lines, one for each chromosome, on which
the gene locations are marked by vertical ticks. The function cPlot is then
used to color the selected probes in gN according to the decile in which they
are in.

> colors <- brewer.pal(10, "RdBu")

> layout(matrix(1:3, nr = 1), widths = c(5, 5, 2))

> cPlot(chrLoc, main = "ALL1/AF4")

> cColor(gN, colors[s1dec], chrLoc)

> cPlot(chrLoc, main = "E2A/PBX1")

> cColor(gN, colors[s2dec], chrLoc)

> image(1, 1:10, matrix(1:10, nc = 10), col = colors,

10. Visualizing Data 177

(3.48,6.68]

(6.68,6.87]

(6.87,7.06]

(7.06,7.25]

(7.25,7.48]

(7.48,7.75]

(7.75,8.07]

(8.07,8.52]

(8.52,9.31]

(9.31,13.7]

Figure 10.9. Side-by-side whole genome plots comparing expression levels in
ALL1/AF4 and E2A/PBX1.

+ axes = FALSE, xlab = "", ylab = "")

> axis(2, at = (1:10), labels = levels(s1dec), las = 1)

The result is shown in Figure 10.9. Genes are represented by short vertical
lines which go up if the gene is on the sense strand and down if it is on the
anti-sense strand. Although not all differences are obvious, some inspec-
tion reveals that there appear to be some real differences on Chromosomes
20 and 22. We will explore Chromosome 22 further using a related, but
more detailed, chromosomal plotting mechanism, provided by the function
plotChr.

plotChr produces one plot per chromosome. Each sample has two smooth
lines. The one in the top half of the plot represents genes on the sense strand
and the line in the bottom half of the plot represents expression for genes
encoded on the anti-sense strand. Low expression values are near the center
line, and high expression values are toward the edge of the plot.

> par(mfrow = c(1, 1))

> msobj <- Makesense(ALLs, "hgu95av2")

178 W. Huber et al.

Chromosome 22

Representative Genes

S
m

oo
th

ed
 E

xp
re

ss
io

n

10
5

0
5

36
22

9_
at

33
33

0_
at

41
34

2_
at

38
70

1_
at

38
18

1_
at

32
11

5_
r_

at

37
28

3_
at

33
76

7_
at

32
81

7_
at

36
54

6_
r_

at

10
35

_g
_a

t

32
85

2_
at

13
65

_a
t

36
01

8_
at

41
26

3_
at

35
63

4_
at

35
14

4_
at

38
50

7_
at

32
80

6_
at

39
37

5_
g_

at

39
83

5_
at

Figure 10.10. Plot of the expression data of individual ALL1/AF4 and E2A/PBX1
samples. Each sample is plotted as a continuous line, the x-values are determined
by the location of the gene on the chromosome and the y values are expression
values. To remove some of the noise, the lines have been smoothed.

> plotChr("22", msobj, col = ifelse(ALLs$mol.biol ==

+ "ALL1/AF4", "#EF8A62", "#67A9CF"), log = FALSE)

We can see in the plot of Chromosome 22 in Figure 10.10 that there
are a few loci of interest, two on the anti-sense strand and one of the
sense strand. Next we could try to extract the relevant genes and try to
understand whether these differences in expression might be related to the
outcome.

10.6.1 Cumulative Expression

The function alongChrom plots gene expression with the genes ordered by
their chromosomal location. It can sometimes be useful to look at cumu-
lative expression, that is, the running sum of expression values along the
chromosome. The motivation for this is that on the level of individual loci,
the technical and biological variability between samples can be large enough
to obscur systematic differences due to copy number changes, while the
cumulative values are more precise.

J.-P. Bourquin compared gene expression profiles between children with
Down’s syndrome (trisomy 21) and a transient myeloid disorder and

10. Visualizing Data 179

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Cumulative expression levels by genes in chromosome 21
 scaling method: none

Representative Genes

C
um

ul
at

iv
e

ex
pr

es
si

on
 le

ve
ls

C
X

A
D

R
JA

M
2

Z
N

F
29

4
B

A
C

H
1

S
O

D
1

C
21

or
f6

6
IF

N
A

R
2

G
A

R
T

S
O

N
IT

S
N

1
D

S
C

R
1

R
U

N
X

1
C

B
R

3
H

LC
S

T
T

C
3

D
S

C
R

3
D

Y
R

K
1A

K
C

N
J1

5
C

21
or

f1
07

B
3G

A
LT

5
R

IP
K

4
A

B
C

G
1

T
M

P
R

S
S

3
P

K
N

O
X

1
C

21
or

f1
24

C
21

or
f3

3
P

F
K

L
U

B
E

2G
2

P
O

F
U

T
2

S
LC

19
A

1
C

O
L6

A
1

LS
S

+ − + + + − + + + − − − + + − +

Figure 10.11. Cumulative expression profiles along Chromosome 21 for samples
from 10 children with trisomy 21 and a transient myeloid disorder, colored in red,
and children with different subtypes of acute myeloid leukemia (M7), colored in
blue.

children with different subtypes of acute myeloid leukemia (M7). In Fig-
ure 10.11, we show cumulative expression for patient samples (10 from each
group). Those with Down syndrome are colored red. There is a fairly good
divergence between the two groups.

10.7 Conclusion

We have shown suggestions for the visualization of different aspects of mi-
croarray expression data. There are many more visualizations that might
also be useful to comprehend the data. In particular, for plots along genomic
coordinates, the increasing density and resolution of microarray probes,
with applications such as chromatin immuno precipitation (ChIP) arrays,
genomic tiling arrays, SNP chips, and DNA copy number arrays (Solinas-
Toldo et al., 1997; Snijders et al., 2001), and the desire to integrate and
report these data are generating many new challenges for visualization.

Part III

Statistical analysis for
genomic experiments

11

Analysis Overview

V. J. Carey and R. Gentleman

Abstract

Chapters in this part of the book address tasks common in the
downstream analysis (after preprocessing) of high-dimensional data.
The basic assumption is that preprocessing has led to a sample for
which it is reasonable to make comparisons between samples or be-
tween feature-vectors assembled across samples. Most examples are
based on microarray data, but the principles are much broader and
apply to many other sources of data. In this overview, the basic
concepts and assumptions are briefly sketched.

11.1 Introduction and road map

Chapters in this section address approaches for deriving biological knowl-
edge and formally testing biological hypotheses on the basis of experimental
data. We concentrate on DNA microarray data, but other high-throughput
technologies such as protein mass spectrometry, array comparative genomic
hybridization (aCGH), or chromatin immuno-precipitation (ChIP) are also
relevant.

The major focus of this section is on the application of unsupervised
and supervised machine learning technologies to the analyses of these large
complex data sets. We begin by considering distance measures, as these
play an important role in machine learning. We next consider supervised
and unsupervised machine learning in some detail and consider multiple
testing methodologies and their application to the problems considered in
the earlier chapters. The final chapter reviews a Bioconductor approach to
browser-based workflow support for downstream analysis.

184 V. J. Carey and R. Gentleman

11.1.1 Distance concepts

It is both common and fruitful to invoke metaphors of spatial organiza-
tion when discussing high-dimensional data structures arising in various
disciplines. Thus while it is sometimes physically sensible to speak of the
distance between two genes as a quantity measured in base pairs along
a chromosome, it is also sometimes appropriate to speak of the distance
between two genes as a quantity measured by the correlation of expres-
sion values obtained on a series of samples. The former concept of distance
is precise but breaks down for genes present on different chromosomes,
whereas the latter concept of distance can be made meaningful in a wide
variety of settings. Chapter 12 describes conceptualizations and formalisms
of distances for general structures represented in mathematical models of
multidimensional spaces. The implications for microarray data analysis are
numerous. The definition of a gene cluster in expression space over a series
of samples is crucially dependent on selection of a distance definition. Clus-
ter structures and inferences on co-regulation may change when aspects of
the underlying distance model are altered. Distances among samples de-
fined in terms of sample phenotype or clinical features are also of interest,
but the mathematical construction of a distance function for such features
can be complex.

11.1.2 Differential expression

A very common objective of microarray studies is the identification of sets
of genes that are consistently expressed at different levels under differ-
ent conditions. Chapter 14 illustrates this activity with data on leukemia,
kidney cancer, and estrogen responsiveness.

11.1.3 Cluster analysis

Identification of shared patterns of expression across samples is basic to
exploratory reasoning about co-regulation. Chapter 13 describes new de-
velopments in hierarchical clustering based on intensive resampling and
evaluation of strength of cluster membership based on the silhouette func-
tion. This function, defined formally in Section 13.2.7, measures the relative
magnitudes of within- and between-cluster proximities.

11.1.4 Machine learning

The volume of information in high-throughput bioinformatics gives rise to
some doubts that traditional approaches to exploratory and confirmatory
statistical inference can discover the latent patterns from which new biolog-
ical understanding can be developed. Machine learning theory and methods

11. Analysis Overview 185

attack problems of pattern recognition in voluminous noisy data with min-
imal human input. Chapter 16 describes basic concepts of computational
learning theory and illustrates a number of applications of such tools as
neural nets and random forests to microarray data. Chapter 17 specializes
the focus to learning procedures based on weighted voting results among
ensembles of learners.

11.1.5 Multiple comparisons

Effective use of statistics with data involves recognizing the inherent trade-
off between sensitivity and specificity of inference procedures. In the context
of differential expression studies, the sensitivity of a procedure is related to
its tendency to identify differential expression when it is actually present.
The specificity of a procedure is related to its tendency to refrain from
identifying differential expression when it is in fact not present. When large
numbers of inferences are attempted, as is common in microarray studies,
the calibration of sensitivity and specificity of procedures is complex and
requires understanding of statistical dependencies among the test statis-
tics used for inference. Chapter 15 reviews the key concepts and illustrates
fundamental tools available in Bioconductor.

11.1.6 Workflow support

Inference with Affymetrix microarray data proceeds from capture of CEL
files with minimally processed intensities, specification of sample-level
covariates, selection of analysis strategies, calibration of multiple test proce-
dures, and interpretation of resulting gene sets using biological meta-data.
The webbioc package (Chapter 18) is a browser-based interface that guides
users through these steps.

11.2 Absolute and relative expression measures

One of the main differences between the Affymetrix and cDNA array tech-
nologies is that Affymetrix arrays are typically used to measure the overall
abundance of a probe sequence in a target sample, whereas cDNA arrays
typically measure the relative abundance of a probe sequence in two target
samples. That is, the expression measures for Affymetrix arrays are typi-
cally absolute (log) intensities, whereas they are (log) ratios of intensities
for cDNA arrays. In many cases, one of the samples in a cDNA array hy-
bridization is a common reference used across multiple slides and whose
sole purpose is to provide a baseline for direct comparison of expression
measures between arrays.

186 V. J. Carey and R. Gentleman

For Affymetrix arrays, a direct comparison of expression measures be-
tween genes is problematic because the measurement units are not the
same across genes. The measured fluorescence intensities are roughly pro-
portional to mRNA abundance, but the proportionality factor is different
for each gene. When using short oligonucleotide arrays, it is a function of the
probes used and in particular of the frequencies of the different nucleotides
in each probe. What we mean specifically is that between-sample, within-
gene comparisons are valid and sensible, but within-sample, between-gene
comparisons are not easy to make. If for gene X patient i has an estimated
expression measure of 100, while for gene Y that same patient has an ex-
pression value of 200, these observed data tell us nothing about the real
relative abundance of the mRNAs for these two genes. There could, in fact
be more copies of the mRNA for gene X. On the other hand, if a second
patient, j, say has an expression measure of 200 for gene X, we would con-
clude that the abundance of mRNA for X in patient j is likely higher than
that observed in patient i.

For cDNA arrays, abundance is not measured directly but rather rela-
tive to some standard reference. Consider a patient with estimated relative
abundance of 1 for gene X and 2 for gene Y. Then, we infer that gene X is
expressed at approximately the same level in patient i as in the reference
sample, while gene Y has approximately twice the abundance in patient i
as in the reference sample. Note that we still do not know if the absolute
abundance is the same or not since the we do not know the true abundance
of either mRNA in the reference sample.

In some sense, the distinction between the two types of expression mea-
sures is artificial, as one could always select a particular Affymetrix array
to use as a reference and take ratios of all expression measures to this ref-
erent. This will not be quite as successful as it is for cDNA arrays, because
with cDNA arrays both the sample of interest and the reference sample
are co-hybridized to the same slide. Co-hybridization is a form of blocking,
and blocking in experimental design can provide substantial increases in
precision.

We would like to stress that whether there is any real difference between
the use of absolute and relative measures depends on the distance being
considered, as demonstrated below.

A secondary consideration, that will not be explored here, is that differ-
ences in the probes can affect the variability of the expression measures. For
short oligonucleotide arrays, there is some evidence that the variability of
the estimated expression levels can be quite different across probes for the
same gene. The variability may be a function of the mean level of expression
(Rocke and Durbin, 2001), but there can be other substantial sources of
variation as well. It is unlikely that this phenomenon is restricted to short
oligonucleotide data. In particular, one would expect cDNA array data to
exhibit similar behavior. Taking ratios with respect to a common reference

11. Analysis Overview 187

(that was subjected to the same hybridization and scanning conditions)
may provide some relief.

12

Distance Measures in DNA
Microarray Data Analysis.

R. Gentleman, B. Ding, S. Dudoit, and J.
Ibrahim

Abstract
Both supervised and unsupervised machine learning techniques

require selection of a measure of distance between, or similarity
among, the objects to be classified or clustered. Different measures
of distance or similarity will lead to different machine learning per-
formance. The appropriateness of a distance measure will typically
depend on the types of features being used in the learning process.

In this chapter, we examine the properties of distance measures
in the context of the analysis of gene expression data from DNA mi-
croarray experiments. The feature vectors represent transcript levels,
i.e., mRNA abundance or relative abundance, either across biological
samples (if comparing genes) or across genes (if comparing samples).

We consider different aspects of distances that help address the
heterogeneity of the data and differences in interpretation depending
on the source of the data (cDNA arrays versus short oligonucleotide
arrays). Traditional measures, such as Euclidean and Manhattan dis-
tances as well as correlation-based distances, are considered. Other
dissimilarity functions, which involve comparisons of distributions
based on the Kullback-Leibler and mutual information criteria, are
also examined.

12.1 Introduction

Genomic experiments generate large and complex multivariate data sets.
Machine learning approaches are important tools in microarray data anal-
ysis, for the purposes of identifying patterns in expression among genes
and/or biological samples, and for predicting clinical or other outcomes us-
ing gene expression data. Chapters 13, 16, and 17 consider different aspects

190 R. Gentleman et al.

of machine learning in more detail. We briefly review some of the concepts
here as motivation for the discussion in this chapter.

Inherent in every machine learning approach is a notion of a distance or
similarity between the objects to be clustered or classified. In general, any
distance measure can be used with any machine learning algorithm. The
choice of distance measure is probably more important than the choice
of machine learning algorithm, and some attention should be paid to
the selection of an appropriate measure for each problem. In this chap-
ter, we describe distances in quite general terms and consider both their
mathematical properties as well as their implementation in different R
packages.

The notion of distance is explicit in clustering procedures that operate
directly on a matrix of pairwise distances between the objects to be clus-
tered, e.g., partitioning around medoid (PAM) and hierarchical clustering
(Kaufman and Rousseeuw, 1990). Certain supervised learning methods,
such as nearest neighbor classifiers, also involve explicitly specifying a dis-
tance. Although the choice of distance may not be as transparent for other
supervised approaches, observations are in fact assigned to classes on the
basis of their distances from objects known to be in the classes. For in-
stance, linear discriminant analysis is based on the Mahalanobis distance
[Mardia et al. (1979); Ripley (1996a); see Equation (12.3) below] of the ob-
servations from the class means. The weighted gene voting scheme of Golub
et al. (1999) is a variant of a special case of linear discriminant analysis, also
known as naive Bayes classification. In addition, the distance and its be-
havior are intimately related to the scale on which measurements are made.
The choice of a transformation and distance should thus be made jointly
and in conjunction with the choice of a classifier or clustering procedure.

In this chapter, we consider the impact of distance selection on the analy-
sis of genomic data. We assume that the data have been preprocessed using
appropriate techniques and normalization methods and that the researcher
is presented with an array containing G features (genes) for I samples. For
microarray data there are potentially two values per feature: an estimate of
the abundance of mRNA for that gene and a standard error of estimated
abundance.

Our development goes as follows. In the next section, we give a general
introduction to distances and discuss specific classes of distances. We pro-
vide formal definitions and discuss the relevant resources available in R.
Then in Section 12.3, we focus on gene expression data from Affymetrix
and two-color cDNA microarray experiments and discuss standardization
and issues specific to these two platforms. We provide some examples of the
use of different distance measures, in particular we make use of literature
co-citation data, in Section 12.4. Visualization methods for distance data
are described in Chapter 10.

12. Distances 191

12.2 Distances

Distances, metrics, dissimilarities, and similarities are related concepts.
We provide some general definitions and then consider specific classes of
distance measures.

12.2.1 Definitions

Any function d that satisfies the following five properties is termed a metric:

(i) non-negativity d(x,y) ≥ 0;

(ii) symmetry d(x,y) = d(y,x);

(iii) identification mark d(x,x) = 0;

(iv) definiteness d(x,y) = 0 if and only if x = y;

(v) triangle inequality d(x,y) + d(y, z) ≥ d(x, z).

A function that satisfied only properties (i)-(iii) is termed a distance. For
many of the techniques we will consider, distances are sufficient. Hence, we
will generally refer to distances (which include metrics) and only mention
metrics specifically when properties (iv) and (v) are relevant.

A similarity function S is more loosely defined and satisfies the three
following properties

(i) non-negativity S(x,y) ≥ 0;

(ii) symmetry S(x,y) = S(y,x);

(iii) S(x,y) increases in a monotone fashion as objects x and y are more
and more similar.

A dissimilarity function satisfies (i) and (ii), but for (iii), S(x,y) increases
as objects x and y are more and more dissimilar. It is worth noting that
there is, in fact, no need to require symmetry although some adjustments
generally need to be made if the measures are not symmetric. The airplane
flight time between two cities is an example of an asymmetric distance.

Many options are available in selection of a distance for machine learn-
ing tasks. Because there are many different types of data (e.g., ordinal,
nominal, continuous) and approaches for analyzing these data, the litera-
ture on distances is quite broad. References that consider the application
of distances in either clustering or classification include: Duda et al. (2001,
Section 4.7); Gordon (1999, Chapter 2); Kaufman and Rousseeuw (1990,
Chapter 1); (Mardia et al., 1979, Chapter 13).

As noted above, we are most concerned with a situation where G features
have been measured for I observations, or samples. There is substantial
interest in applying some form of machine learning to both the samples

192 R. Gentleman et al.

(e.g., to identify patients with similar patterns of mRNA expression) and
the features (e.g., to identify genes with similar patterns of expression).

We distinguish between two main classes of distance measures. Consider
computing the distance between the expression profiles of two genes across
I samples. In the first approach, we view the gene expression profiles as
two I-vectors in some space and compute distances in a pairwise (within-
sample) manner (Section 12.2.2). In contrast, the second approach ignores
the natural pairing of observations and instead, views the two gene expres-
sion profiles as two different samples generated from underlying probability
density functions for mRNA expression measures. In this case, distances be-
tween densities or distribution functions are relevant (Section 12.2.3). Of
course, one is certainly not limited to an either-or approach. It may, in
fact, be quite sensible to devise measures that combine the two. Genes
with expression patterns that are similar in both aspects are possibly more
interesting than those that are close in only one.

12.2.2 Distances between points

For m-vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) consider distances of
the form

d(x,y) = F [d1(x1, y1), . . . , dm(xm, ym)], (12.1)

where the dk are themselves distances for each of the k = 1, . . . , m features.
We refer to these functions as pairwise distance functions, as the pairing
of observations within features is preserved. This representation is quite
general: there is no need for the dk to be the same. In particular, features
may be of different types (e.g., the data may consist of a mixture of contin-
uous and binary features) and may be weighed differentially (e.g., weighted
Euclidean distance).

Common metrics within this class include the Minkowski metric, with
zk = dk(xk, yk) = |xk − yk| and F (z1, . . . , zm) = (

∑m
k=1 zλ

k)1/λ. Special
cases of the Minkowski metric considered in this chapter are the Manhattan
and Euclidean metrics corresponding to λ = 1 and λ = 2, respectively.

EUC Euclidean metric

deuc(x,y) =

√√√√ m∑
i=1

(xi − yi)2. (12.2)

MAN Manhattan metric

dman(x,y) =
m∑

i=1

|xi − yi|.

Correlation-based distance measures have been widely used in the mi-
croarray literature (Eisen et al., 1998). They include one minus the standard

12. Distances 193

Pearson correlation coefficient and one minus an uncentered correlation co-
efficient (or cosine correlation coefficient) considered by Eisen et al. (1998),
Spearman’s rank correlation, and Kendall’s τ (Conover, 1971).

COR Pearson sample correlation distance

dcor(x,y) = 1 − r(x,y) = 1 −
∑m

i=1(xi − x)(yi − y)√∑m
i=1(xi − x)2

∑m
i=1(yi − y)2

.

EISEN Cosine correlation distance

deisen(x,y) = 1 − x′y
‖x‖‖y‖ = 1 − |

∑m
i=1 xiyi|√∑m

i=1 x2
i

∑m
i=1 y2

i

which is a special case of Pearson’s correlation with x and y both
replaced by zero.

SPEAR Spearman sample correlation distance

dspear(x,y) = 1 −
∑m

i=1(x
′
i − x′)(y′

i − y′)√∑m
i=1(x

′
i − x′)2

∑m
i=1(y

′
i − y′)2

.

where x′
i = rank(xi) and y′

i = rank(yi).

TAU Kendall’s τ sample correlation

dtau(x,y) = 1 − τ(x,y)| = 1 −
|
∑m

i=1

∑m
j=1 Cxij

Cyij

m(m − 1)

where Cxij = sign(xi − xj) and Cyij = sign(yi − yj).

Note that we have transformed the correlations by subtracting them from
one. This is done so that two vectors that are strongly positively correlated
are regarded as close together. Using this transformation, data that exhibit
a strong negative correlation will be far apart. In some cases, you might
want to treat negative and positive correlations similarly, and that can be
achieved by using the absolute value of the correlation. Correlation-based
measures are in general invariant to location and scale transformations and
tend to group together genes whose expression patterns are linearly related.
While correlation-based distances have many nice properties, they tend
to be adversely affected by outliers and then the non-parametric versions
(SPEAR or TAU) are preferred.

When the data are standardized using the mean and variance, so that
both x and y are m-vectors with zero mean and unit length, there is a
functional relationship between the Pearson correlation coefficient r(x,y)
and the Euclidean distance. The relationship is

deuc(x,y) =
√

2m[1 − r(x,y)].

We note that expression values are generally measured with error. The
standard deviation of measurement errors can be estimated and is some-
times available along with intensity measures in the form of “standard

194 R. Gentleman et al.

errors.” This variability information can be exploited in errors-in-variables
models. This is the approach taken by Tadesse et al. (2005) for modeling
survival data. Estimated standard errors can also be used when considering
Kullback-Leibler distances, as is shown below.

Finally, we mention the Mahalanobis distance. Consider a situation where
a pair of vectors, x and y, are generated from some multivariate distri-
bution with mean vector µ and variance-covariance matrix Σ. Then the
Mahalanobis distance between them is defined as

(x − y)′Σ−1(x − y). (12.3)

When Σ is unknown, it is generally replaced with the sample variance-
covariance matrix. In general terms, the Mahalanobis distance reflects the
notion that the data are more variable in some directions than in others.

Distances and transformations. Distances and data transformations
are closely related. If g is an invertible, possibly non-linear, transformation
g : x → x′, then this can be used to induce a new metric d′ via

d(x,y) = d[g−1(x′), g−1(y′)] = d′(x′,y′).

The metric d operates on the original variables x, whereas d′ works on the
transformed variables x′, and the two are equivalent, even though they can
have quite different functional forms. Conversely, the same distance func-
tion, say deuc from Equation (12.2), can lead to quite different distances,
between the same data points, when applied on different scales. Hence
the choice of the scale is important. For microarray data, at least three
different scales are generally considered: that of the original scanned fluores-
cence intensities, the logarithmically transformed scale, or the generalized
logarithmic (variance-stabilized) scale proposed by Huber et al. (2002)
and Durbin et al. (2002). A more general discussion of transformations
in regression can be found, for example, in Ryan (1997).

Practicalities. Many pairwise distances can be computed in R using
the dist function, including euclidean, manhattan. The function returns
an object of class dist , which represents the distances between the rows of
the input argument (which can be either a matrix or a dataframe). This
function assumes that distances are symmetric and saves storage space by
using a lower-triangular representation for the returned value.

The function daisy in the cluster package also provides distance computa-
tions. This function returns an object of class dissimilarity which contains
the distances between the rows of the input matrix or dataframe. This
class inherits from the dist class so that it will automatically use methods
appropriate to that class. When some of the input variables are categori-
cal, such as sex, then it makes no sense to compute distances between the
numerical encodings and daisy has functionality to compute appropriate
between-observation distances.

12. Distances 195

The package bioDist has implementations of the various correlation dis-
tances, such as spearman.dist and tau.dist. These functions return objects
of class dist .

The functions in cluster take either a data matrix or a dissimilarity ma-
trix as input. Other machine learning algorithms are less flexible and may
require that the user manipulate the data in order to alter the distance
measure that is used. An approach toward standardization is considered in
Chapter 16.

12.2.3 Distances between distributions

The distances enumerated in the preceding section treat the expression
measurements as points in some metric space, where each observation (gene
or sample, depending on the problem) contributes one point and the co-
ordinates are given by the corresponding expression measures. Distances
are computed in a pairwise manner within features (samples when genes
are being compared, and vice versa). A different approach is to consider
the data for each feature as an independent sample from a population. In
this case, we are interested in questions such as whether the shape of the
distribution of features is similar between two genes. For example whether
they are bimodal or, perhaps have long right-tails. Other authors have also
considered using distances between distributions as a means of analyzing
genomic data. For example, Butte and Kohane (2000) suggest binning the
data and then using a mutual information distance. Quite a different ap-
proach to the comparison of distributions is taken in Gentleman and Carey
(2003, Section 2.4.3); see also Section 16.4.6 below.

Alternatively, for each gene, across samples, we can consider the data as
random I-vectors from some distribution. The simplest case is to assume
that the expression measures for a particular gene follow an I-dimensional
multivariate normal distribution with diagonal variance-covariance matrix.
Using this approach, each gene provides a multivariate observation. Each of
the I measurements for a given gene come from different samples, which are
assumed to be independent, and hence the estimated variance-covariance
matrix is diagonal. This approach can be used when both expression levels
and their associated standard errors are available. The observed expression
values are used to estimate the mean vector and the observed standard
errors are used to estimate the variance-covariance matrix.

Many different distance measures can be used to assess the similarities
between two densities. We consider two measures that are not actu-
ally distances: the Kullback-Leibler information and Hamming’s mutual
information.

196 R. Gentleman et al.

Kullback-Leibler Information. The Kullback-Leibler Information
(KLI) measure between densities f1 and f2 is defined as

KLI(f1, f2) = E1 {log[f1(X)/f2(X)]}

=
∫

log[f1(x)/f2(x)]f1(x)dx, (12.4)

where X is a random variable with density f1, and E1 denotes expectation
with respect to f1. This ratio can be infinite and hence so can the KLI. The
KLI is not a distance because it is not symmetric. KLI does not satisfy the
triangle inequality either.

The KLI can be symmetrized in a number of ways, including the approach
described in Cook and Weisberg (1982, p. 163). They define the Kullback-
Leibler Distance (KLD) to be,

2dKLD(f1, f2) = KLI(f1, f2) + KLI(f2, f1).

The measure is symmetric and positive if f1 and f2 are different, however,
it still does not satisfy the triangle inequality.

In the special case where f1 = Nm(µ1, Σ1) and f2 = Nm(µ2, Σ2), and as-
suming that Σ1 and Σ2 are positive definite, the expression for dKLD(f1, f2)
simplifies and we get:

2dKLD(f1, f2) = (µ1 − µ2)T Σ−1
2 (µ1 − µ2)

+ log(|Σ1|/|Σ2|) + tr(Σ1Σ−1
2) − m. (12.5)

However, this simplification involves making a strong assumption and re-
quires knowledge of both variance-covariance matrices. Note that if Σ1 and
Σ2 are identical, this is a form of Mahalanobis distance. However, we should
emphasize that the treatment here is slightly different.

To compute between gene distances from microarray data, the expres-
sion measures for a given gene, across samples, can be treated as a single
observation from an I-dimensional multivariate normal distribution. For
each gene, we estimate the mean in each coordinate (sample) by the ob-
served expression measure for that sample, and we estimate the variances
using, for example, the Li and Wong estimated standard errors for Affymet-
rix data (Li and Wong, 2001a). When viewed from this perspective, KLD
(Equation 12.5) is more similar to the distances in Section 12.2.2 than it is
to either KLI or the mutual information distance described below. This is
a model that accounts for measurement error, though not as explicitly as
an errors-in-variables approach.

Mutual Information. Closely related to the KLI is the mutual infor-
mation (MI). The MI measures the extent to which two random variables
X and Y are dependent. Let f(·, ·) denote the joint density function and
f1(·) and f2(·) the two marginal densities for X and Y , respectively. Then
the MI is defined as

MI(f1, f2) = Ef

{
log

[
f(X, Y)

f1(X)f2(Y)

]}
, (12.6)

12. Distances 197

and is zero in the case of independence. We note that like KLI, MI is not a
distance although we will sometimes refer to it as if it were. This can easily
be determined by noticing the relationship between the MI distance and the
KLI. The MI is basically the KLI between f(x, y) and g(x, y) = f1(x)f2(y),
where g(x, y) is the joint distribution obtained by assuming that the two
marginals are independent,

KLI(f, g) =
∫

x

∫
y

log[f(x, y)/g(x, y)]f(x, y)dxdy

= Ef

{
log

[
f(X, Y)

f1(X)f2(Y)

]}
= MI(f1, f2).

MI and KLD focus on very different aspects of distributions and that
is reflected in their performance. MI is large when the joint distribution
is quite different from the product of the marginals. Thus, it attempts to
measure the distance from independence. KLD, on the other hand, measures
how much the shape of one distribution resembles that of the other.

Joe (Joe, 1989) considers MI and its role as a multivariate measure of
association. He shows that if the transformation,

δ∗ = [1 − exp(−2MI)]1/2 (12.7)

is used, then δ∗ takes values in the interval [0, 1] and can be interpreted as
a a generalization of the correlation. He further notes that δ∗ is related to
Kendall’s τ . We will make the further transformation to 1− δ∗ so that our
measure has the same interpretation as the other correlation-based distance
measures discussed in this chapter.

Practicalities. The distances being considered are functionals of the
underlying probability density functions. Given the observed data, there
are many different methods for providing the appropriate estimates. We
consider three of the more commonly used methods in this chapter. The
simplest method is to assume some parametric distribution for the data
and to estimate the parameters for that distribution; these can then be
used, together with the functional form of the density, to estimate the
mutual information. A second approach is to roughly group the data and
to then treat it as discrete. A third approach is to use density estimation
followed by either numerical integration or explicit calculation. The second
and third approaches involve some form of smoothing, and this should be
dealt with explicitly. Much work remains to be done before any method
can be recommended for general use.

To apply the binning approach, the samples are separately divided into
k common bins and then each sample is treated as if it were data from a
discrete distribution. This approach can be problematic, as the estimated
KLI will be infinite whenever a bin has an observation from f1 but not one

198 R. Gentleman et al.

from f2. In our experience, this occurs quite often. We note that there are
other problems with the binning approach; a straightforward calculation
shows that the binned version of MI distance tends to the logarithm of the
number of sample points as the number of bins goes to infinity, since in the
limit every point will end up in a bin of its own.

An alternative procedure is to employ a density estimation procedure
followed by numerical integration. One could standardize the data (shift so
that a measure of central location is approximately zero and scale so that
a measure of dispersion is approximately unity), estimate the densities and
then apply numerical integration (using the range −3 to 3) to estimate
KLI in Equation (12.4). This approach could be extended to MI as well.
There are many good density estimation routines available in R, and one-
dimensional integration is straightforward. In our examples for MI, we used
the binning approach because density estimation followed by numerical
integration proved too computationally expensive.

We have created the bioDist package, which contains code for some of
the methods described here. It is used in the examples given later in this
chapter. bioDist contains an implementation of the KL distances that rely
on binning; KLdist.matrix and one that uses density estimation followed by
numerical integration, KLD.matrix . For mutual information there are two
functions, mutualInfo that computes the distance from independence and
MIdist that computes the transformation in Equation (12.7). We note that
the computations are not terribly fast computing these distances on very
large data sets is time consuming.

12.2.4 Experiment-specific distances between genes

The between-gene distances considered thus far do not take into account the
structure or design of the microarray experiment. Such distance measures
may be appropriate for situations where there is no particular structure
of interest among the arrays, e.g., when the target samples hybridized to
the arrays are viewed as a random sample from a particular population.
However, microarray experiments can be highly structured, as in time-
course and multifactorial experiments. It is desirable to derive between-gene
distances that reflect the design of the experiment under consideration.
Such distances may serve to produce a more vivid visualization of the data
and to permit focus on more meaningful patterns in gene expression. In this
section, we consider some modifications that are more suitable for data
arising from designed experiments or other situations where the samples
have specific relationships to one another.

Instead of computing distances directly on the genes-by-arrays data ma-
trices, one may use covariate information (e.g., treatment, cell type, dose,
time) to derive suitable transformations of this matrix. Linear models and
extensions thereof (e.g., generalized linear models) can be used to estimate
experiment specific effects for each gene and hence produce new gene pro-

12. Distances 199

files. For factorial experiments studying the simultaneous gene expression
response to two treatments, say, the new profiles could be based on main
effects and interactions. In time-course experiments, it makes sense to con-
sider distances that are not time-exchangeable and use the time index in
an essential way. This could be done by penalizing for non-smoothness as
in Sobolev metrics, where the squared Sobolev distance between two func-
tions is based on the sum of squared distances, in some standard metric
(e.g., L2), between the two functions, their first derivatives, second deriva-
tives, etc., up to some order p. For time-course data with a large enough
number of equally spaced time points, one of the standard wavelet decom-
positions could be used to decompose expression profiles into potentially
interpretable quantities corresponding to local frequency components.

The use of covariate information as described above produces new pro-
files for each gene. Distances can then be computed for the new profiles,
and genes can be clustered based on these distances. A preliminary appli-
cation of such an approach can be found in Lin et al. (2004), for a study
of spatial differential expression in the mouse olfactory bulb experiment.
Distances on the new profiles can also be used to match profiles to a library
of profiles of interest for a particular experiment, by ranking projections of
the new gene profiles along specified directions in an appropriate geometric
representation of the problem. For instance, in factorial experiments across
time, interesting reference profiles for main effects and interactions might
include: cyclical, early, or late effects, or the effects over time for a known
gene.

12.3 Microarray data

For our purpose, gene expression data on G genes for I mRNA samples
may be summarized by a G × I matrix X = (xgi), where xgi denotes
the expression measure of gene g in mRNA sample i. The expression levels
might be either absolute (e.g., Affymetrix oligonucleotide arrays) or relative
to the expression levels of a suitably defined common reference sample (e.g.,
cDNA microarrays.)

12.3.1 Distances and standardization

The behavior of the distance is closely related to the scale on which the ob-
servations have been made. Standardization of features is thus an important
issue when considering distances between objects and is one method of mak-
ing the features comparable. However, standardization also has the effect
of removing some of the potentially interesting features in the data. Thus,
in some cases it will be sensible to explore other approaches to obtaining
comparability across features.

200 R. Gentleman et al.

In the context of microarray data, one may standardize genes and/or
samples. When standardizing genes, expression measures are transformed
as follows

xgi =
xgi − center(xg.)

scale(xg.)

where center(xg.) is some measure of the center of the distribution of the
set of values xgi, i = 1, . . . , I, such as mean or median, and scale(xg.) is
a measure of scale such as the standard deviation, interquartile range, or
MAD (median absolute deviation about the median). Alternatively, one
may want to standardize arrays (samples) if there is interest in clustering
or classifying them (rather than clustering or classifying the genes). Now
we use

xgi =
xgi − center(x.i.)

scale(x.i)
,

where the centering and scaling operations are carried out across all genes
measured on sample (or array) i.

We now consider the implications of the preceding discussion on stan-
dardization in the context of both relative mRNA expression measurements
(cDNA) and absolute (Affymetrix) mRNA expression measurements. Con-
sider the standard situation where xgi represents the expression measure on
a log scale for gene g on patient (i.e., array or sample) i. Let ygi = xgi−xgA,
where patient A is our reference. Then, the relative expression measures ygi

correspond to the standard data available from a cDNA experiment with
a common reference. The use of relative expression measures represents a
location transformation for each gene (gene centering). Now, suppose that
we want to measure the distance between patient samples i and j. Then,
for the classes of distances considered in Equation (12.1) of Section 12.2.2,

d(y.i,y.j) =
G∑

g=1

dg(ygi, ygj) =
G∑

g=1

dg(xgi − xgA, xgj − xgA).

When the dg(x, y) are functions of x−y alone, then d(y.i,y.j) = d(x.i,x.j),
and it does not matter if we look at relative (the y’s) or absolute (the x’s)
expression measures.

Suppose that we are interested instead in comparing genes and not
samples. Then the distance between genes g and h is

d(yg.,yh.) =
I∑

i=1

di(ygi, yhi) =
I∑

i=1

di(xgi − xgA, xhi − xhA).

If d(x,y) has the property that d(x − c,y) = d(x,y) for any c, then the
distance measure is the same for absolute and relative expression measures.

Thus, for Minkowski distances, the distance between samples is the same
for relative and absolute expression measures. This does not hold for the

12. Distances 201

distance between genes. On the other hand, distances based on the Pear-
son correlation yield the same distances between genes for both relative
and absolute measures. This does not hold for the distance between sam-
ples. Arguments can be made in favor of either approach: invariance of (i)
gene distances or (ii) sample distances, for absolute and relative expression
measures. The data analyst will have to weigh these and other biological
considerations when selecting a distance measure.

12.4 Examples

For our examples in this chapter we make use of the data reported in
Chiaretti et al. (2004) and described in Appendix A. We consider only the
subset of patients that have a reciprocal translocation between the long
arms of Chromosomes 9 and 22 that has been causally related to chronic
and acute leukemia (Cilloni et al., 2002). They are labeled BCR/ABL.

We select genes for our distance measurements by first carrying out a
non-specific filtering (as described in Chapter 14) where we imposed three
requirements: the gene must have an expression level greater than log(100)
in at least 25% of the samples, it must have an IQR that is larger than
0.5, and it must have median expression level greater than log(300). Genes
that passed all three filters will be referred to as expressed. We then ad-
justed each gene across samples by subtracting the median and dividing by
the MAD (median absolute deviation from the median). This step makes
computations between genes and across different distance measures more
comparable. By standardizing the genes, we have made the four distances,
EISEN, COR, EUC, and MAN, more similar than they would be if we
worked with untransformed data.

The code below shows how we constructed our filters, using genefilter
and then the resulting manipulations, to restrict the data to those selected
genes. Finally, we standardize the genes, across samples, as described above.

> library("genefilter")

> data(ALL)

> Bsub <- (ALL$mol == "BCR/ABL")

> Bs <- ALL[, Bsub]

> f1 <- pOverA(0.25, log2(100))

> f2 <- function(x) (IQR(x) > 0.5)

> f3 <- function(x) (median(2^x) > 300)

> ff <- filterfun(f1, f2, f3)

> selected <- genefilter(Bs, ff)

> sum(selected)

[1] 637

> BSub <- Bs[selected,]

> eS <- exprs(BSub)

202 R. Gentleman et al.

> mads <- apply(eS, 1, mad)

> meds <- apply(eS, 1, median)

> e1 <- sweep(eS, 1, meds)

> e2 <- sweep(e1, 1, mads, FUN = "/")

> BSubStd <- BSub

> exprs(BSubStd) <- e2

We now show how some of the distance measures we have discussed can
be applied to the ALL data. In order to have a small set of genes to work
with, we select genes that are in the GO BP category GO:0006917, which
corresponds to the induction of apoptosis.

> library("GO")

> library("annotate")

> GOTERM$"GO:0006917"

GOID = GO:0006917

Term = induction of apoptosis

Synonym = apoptosis signaling

Synonym = positive regulation of apoptosis

Definition = A process that directly activates any

of the steps required for cell death by

apoptosis.

Ontology = BP

> library("hgu95av2")

> apop <- hgu95av2GO2ALLPROBES$"GO:0006917"

> inboth <- apop %in% row.names(e2)

> whsel <- apop[inboth]

> exprApop <- e2[whsel,]

> unlist(mget(whsel, hgu95av2LOCUSID))

36199_at 39020_at 2031_s_at 39723_at 1635_at

1611 10572 1026 8454 25

1636_g_at 39730_at 34740_at 41763_g_at 38050_at

25 25 2309 7073 9774

Next we load the bioDist package and compute some pairwise distances
between probesets.

> library("bioDist")

> man <- dist(exprApop, "manhattan")

> MI <- MIdist(exprApop)

> KLsmooth <- KLD.matrix(exprApop)

> KLbin <- KLdist.matrix(exprApop)

False color representations of the distance matrices are shown in Fig-
ure 12.1. We have used the transformation of mutual information distance
described in Equation (12.7). The KL distances are small the more sim-
ilar the shape of the two densities and are larger if the shapes are quite
different.

12. Distances 203

KLsmooth

36
19

9_
at

39
02

0_
at

20
31

_s
_a

t

39
72

3_
at

16
35

_a
t

16
36

_g
_a

t

39
73

0_
at

34
74

0_
at

41
76

3_
g_

at

38
05

0_
at

38050_at

41763_g_at

34740_at

39730_at

1636_g_at

1635_at

39723_at

2031_s_at

39020_at

36199_at

0
1

2
3

4
5

KLbin

36
19

9_
at

39
02

0_
at

20
31

_s
_a

t

39
72

3_
at

16
35

_a
t

16
36

_g
_a

t

39
73

0_
at

34
74

0_
at

41
76

3_
g_

at

38
05

0_
at

38050_at

41763_g_at

34740_at

39730_at

1636_g_at

1635_at

39723_at

2031_s_at

39020_at

36199_at

0
1

2
3

4
5

a) b)
MI

36
19

9_
at

39
02

0_
at

20
31

_s
_a

t

39
72

3_
at

16
35

_a
t

16
36

_g
_a

t

39
73

0_
at

34
74

0_
at

41
76

3_
g_

at

38
05

0_
at

38050_at

41763_g_at

34740_at

39730_at

1636_g_at

1635_at

39723_at

2031_s_at

39020_at

36199_at

0.
00

0.
05

0.
10

0.
15

c)

Figure 12.1. False color representation of the distance matrices. a) KLsmooth, b)
KLbin, c) MI.

To further compare the distances, we produced pairwise scatterplots of
the different distances in Figure 12.2. From that we can see the general
positive correlation of the KL based distances and note that, as expected,
there is little relationship between the MI distance and the KL distances –
they are measuring different things.

12.4.1 A co-citation example

We now consider an example that relates distances and co-citation in the
medical literature as measures of biological similarity. This approach can
be contrasted with the one taken in Chapter 22. Two or more genes that
share a common reference (i.e. were written about in the same paper) are
more likely to be meaningfully biologically related than genes that are never
jointly mentioned in any paper. Joint mention of genes A and B does not
imply that these genes are strongly or even remotely biologically related.

204 R. Gentleman et al.

MI

0 1 2 3 4 5

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
1

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●
●

KLsmooth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●●
●

0.04 0.06 0.08 0.10 0.12 0.14 0.16

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

KLbin

Figure 12.2. Pairwise scatterplots of different distances computed between the
same set of points.

However, the data resource is large, there have been a number of studies
that make use of co-citation data, and it is an active research area (Jenssen
et al., 2001; Masys et al., 2001). Our approach is simple but could easily
be extended to make use of other data sources as they become available.

Data on co-citation were obtained from PubMed. See Chapter 7 for more
details on this reference database. We mapped Affymetrix identifiers to
their corresponding LocusLink values and from there to PubMed identifiers
(PMIDs).

We distinguish two relationships between genes that can be identified
from these data. Any two genes that directly share a citation are called
adjacent . Two genes will be called accessible if they can be connected,
possibly by other genes, through a co-citation path. To be specific, suppose
that genes X and Y are co-cited and that X and Z are also co-cited. Then
we would say that X and Y are adjacent (as are X and Z) and that Y and
Z are accessible. In the literature co-citation context, accessibility is too
weak a relationship to explore further.

Next we selected a target gene and then determined the 100 genes closest
to that target using the different distance measures under consideration,
namely COR, SPEAR, TAU, EUC, MAN, KLD, and MI. We first look at

12. Distances 205

1636_g_at

−2 −1 0 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

−
3

−
2

−
1

0
1●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

−
2

−
1

0
1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1635_at

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

39730_at

Figure 12.3. Scatterplot of multiple expressed probesets for ABL1

the agreement among distances in terms of percentages of common genes
chosen.

As an example, we selected ABL1 as the target gene, which has 8
probesets on the HG-U95Av2 GeneChip. The filtering steps left us with
3 probesets that satisfied our selection criterion (see Figure 12.3). We em-
phasize the fact that these three probesets should be measuring the same
thing and certainly the correlations, Figure 12.3, do appear quite strong.
So we anticipate that starting with any one of them, we would find that
the other two were close to the one we started with. To test this, we carried
out the following experiment.

For each of the 3 expressed probesets a list of the 100 closest probesets,
using each of the 7 distance measures, was computed. The between-list
agreement, in terms of whether a probeset was selected or not, is shown
next.

$"1636_g_at"

cor spear tau euc man kld

spear 0.73

tau 0.72 0.94

euc 0.74 0.66 0.67

man 0.65 0.65 0.66 0.81

206 R. Gentleman et al.

kld 0.19 0.15 0.13 0.10 0.09

mi 0.23 0.26 0.28 0.26 0.32 0.13

$"1635_at"

cor spear tau euc man kld

spear 0.85

tau 0.85 0.93

euc 0.75 0.71 0.69

man 0.69 0.70 0.69 0.84

kld 0.15 0.17 0.18 0.15 0.15

mi 0.35 0.36 0.36 0.39 0.41 0.21

$"39730_at"

cor spear tau euc man kld

spear 0.77

tau 0.75 0.95

euc 0.78 0.71 0.71

man 0.69 0.74 0.74 0.81

kld 0.22 0.19 0.20 0.23 0.23

mi 0.29 0.31 0.30 0.31 0.34 0.22

As we can see, the agreement among the correlational distances (i.e.
COR, SPEAR and TAU) and Minkowski metric distances (i.e., EUC and
MAN) are good, especially those between the nonparametric correlational
distances (i.e., SPEAR and TAU). There is not much commonality between
the distributional distances (i.e., KLD and MI) and other distances and the
agreement within the distributional distances is also low. For each of the
multiple probesets, we further look at the rank of the other two probesets
chosen by the various distance measures.

1636_g_at

cor spear tau euc man kld mi

[1,] 2 2 2 2 2 NA 10

[2,] 1 1 1 1 1 NA 1

1635_at

cor spear tau euc man kld mi

[1,] 2 1 2 1 1 NA 23

[2,] 1 2 1 2 2 55 1

39730_at

cor spear tau euc man kld mi

[1,] 1 1 1 1 1 NA 1

[2,] 2 2 2 2 2 NA 3

We can see that whenever one of the multiple probesets for ABL1 was
chosen as target probeset, the other two probesets for the same gene were
always the top two probesets using correlational or metric distances. MI
also captured the other multiple probesets in the top list although the
ranks tended to be larger. Again we see that KLD fared worst. Note that
here we used discrete versions of KLD (symmetrized) and MI. The missing

12. Distances 207

values reported for kld arise because the other probesets for ABL1 were
not always chosen.

12.4.2 Adjacency

We now compare co-citation and distance. Recall that two genes are called
adjacent if they are cited together in any article, and in a sense this is a
measure of similarity. So we might then ask whether any of the distance
measures under consideration reflect this same measure of similarity. To
answer that question we examine how many of the co-cited genes are within
the top 100 list for each of the different distances. We first subset the
original data set to include probesets that have been cited, this reduced
the number of probesets to 632. There were 38 genes that were co-cited
with ABL1 in the humanLLMappings package, out of which 2 were in the
filtered ALL data set. We then used the 7 distance measures to generate
the top 100 probesets and computed the number of genes among those 100
closest that had co-citations with the target gene. The results are shown
below

1636_g_at 1635_at 39730_at

cor 0 1 1

spear 1 1 1

tau 1 0 1

euc 1 2 1

man 1 1 1

kld 0 1 0

mi 0 1 0

Notice that both EUC and MAN did quite well and that KLD seemed to
fare the worse. The Hypergeometric distribution can be used to assess the
significance of the results given above. Consider an urn with 629 balls in
it. Of these 2 are colored white, the remainder are black. Under the null
hypothesis that there is no relationship between co-citation and being close,
as computed by one of the distances, then each selection of the 100 nearest
genes is like drawing 100 balls from the urn and counting how many white
ones were selected. The computation of p-values is easily carried out.

P(X >= 1) P(X >= 2) P(X >= 3)

0.4068 0.0678 0.0040

Note that the assumption of independence among the enumerated events
required for applicability of the Hypergeometric model is not tenable for
these data. Thus this Hypergeometric computation should be regarded as
a rough approximation to the truth.

208 R. Gentleman et al.

12.5 Discussion

Distances are an integral part of all machine learning algorithms and hence
play a central role in the analysis of most experimental data. The distance
that is used for any particular task can have a profound effect on the output
of the machine learning method, and it is therefore essential that users
ensure that the same distance method is used when comparing machine
learning algorithms.

It is also important that the investigator be able to select, and use, a
distance that is appropriate for the task at hand. There is no single distance
that is always relevant, and similarity can be measured in many ways. We
find R to be a good platform for these sorts of analyses, as it has a wealth
of built-in distance functions, and supports the addition of new distance
functions straightforwardly.

13

Cluster Analysis of Genomic
Data

K. S. Pollard and M. J. van der Laan

Abstract
We provide an overview of existing partitioning and hierarchical

clustering algorithms in R. We discuss statistical issues and methods
in choosing the number of clusters, the choice of clustering algorithm,
and the choice of dissimilarity matrix. We also show how to visualize
a clustering result by plotting ordered dissimilarity matrices in R. A
new R package hopach, which implements the Hierarchical Ordered
Partitioning And Collapsing Hybrid (HOPACH) algorithm, is pre-
sented (van der Laan and Pollard, 2003). The methodology is applied
to a renal cell cancer gene expression data set.

13.1 Introduction

As the means for collecting and storing ever larger amounts of data develop,
it is essential to have good methods for identifying patterns. For example,
an important goal with large-scale gene expression studies is to find bio-
logically important subsets of genes or samples. Clustering algorithms have
been widely applied to microarray microarray data analysis (Eisen et al.,
1998).

Consider a study in which one collects on each of I randomly sampled
subjects (or more generally, experimental units) a J-dimensional gene ex-
pression profile Xi, i = 1, . . . , I: for example, Xi can denote the gene
expression profile of cancer tissue relative to healthy tissue within a ran-
domly sampled cancer patient. To view clustering as a statistical procedure
it is important to consider Xi as an observation of a random vector with
a population distribution we will denote with P . These I independent and
identically distributed (i.i.d.) observations can be stored in an observed
J × I data matrix X. Genes are represented by I-dimensional vectors

210 K. S. Pollard and M. J. van der Laan

[Xi(j) : i = 1, . . . , I], while the samples are represented by J-dimensional
vectors Xi. The goal could now be to cluster genes or samples. A cluster is
a group of similar elements. Each cluster can be represented by a profile,
either a summary measure such as a cluster mean or one of the elements
itself, which is called a medoid or centroid.

13.2 Methods

13.2.1 Overview of clustering algorithms

For the sake of presenting a unified view of available clustering algorithms,
we generalize the output of a clustering algorithm as a sequence of clus-
tering results indexed by the number of clusters k = 2, 3, . . . and options
such as the choice of dissimilarity metric. The algorithm is a mapping from
the empirical distribution of X1, . . . , XI to this sequence of k-specific clus-
tering results. For instance, this mapping could be the construction of an
agglomerative hierarchical tree of gene clusters using 1 minus correlation
as dissimilarity and single linkage as distance between clusters. Given a
clustering algorithm, consider the output if the algorithm were applied to
the data generating distribution P (i.e., infinite sample size). We call this
output a clustering parameter, where we stress that any variation in the
algorithm results in a different parameter. An example is the J-dimensional
vector of gene cluster labels produced by applying a particular partitioning
method (e.g., k-means using Euclidean distance) with a particular number
of clusters (e.g., k = 5) to P . We might think of these as the true cluster
labels, in contrast to the observed labels from a sample of size I. Another
parameter is the k-dimensional vector of cluster sizes produced by the same
algorithm.

We will focus on non-parametric clustering algorithms, in which one
makes no assumptions about the data generating distribution P . Model
based clustering algorithms are based on assuming that the vectors Xi

are i.i.d. from a mixture of distributions (e.g., a multivariate normal mix-
ture). The clustering result is typically a summary measure, such as the
conditional probabilities of cluster membership (given the data), of the
maximum likelihood estimator of the data generating distribution (Fraley
and Raftery, 1998, 2000). Of course, if one only views this mixture model
as a working model to define a clustering result, then these approaches
fall in the category of non-parametric clustering algorithms. In this case,
however, statistical inference cannot be based on the working model, and,
contrary to the case in which one assumes this mixture model to contain
the true data generating distribution, there does not exist a true number
of clusters.

13. Cluster Analysis 211

13.2.2 Ingredients of a clustering algorithm

We review here the choices one needs to consider before performing a clus-
ter analysis.

Dissimilarity matrix: All clustering algorithms are (either implicitly or
explicitly) indexed by a choice of dissimilarity measure, which quantifies
the distinctness of each pair of elements (see Chapter 12). For clustering
genes, this is a J ×J symmetric matrix. Typical choices of dissimilarity in-
clude Euclidean distance, Manhattan distance, 1 minus correlation, 1 minus
absolute correlation and 1 minus cosine-angle (i.e., : 1 minus uncentered
correlation). The R function dist allows one to compute a variety of dissim-
ilarities. Other distance functions are available in the function daisy from
the cluster package or from the bioDist package. In hopach we have writ-
ten distancematrix and implemented specialized versions of many of the
standard distances. Data transformations, such as standardization of rows
or columns, are some times performed before computing the dissimilarity
matrix.

Number of clusters: One must specify the number of clusters or an
algorithm for determining this number. In Section 13.2.7, we discuss and
compare methods for selecting the number of clusters, including various
data-adaptive approaches.
Criterion: Clustering algorithms are deterministic mappings that aim to
optimize some criterion. This is often a real-valued function of the clus-
ter labels that measures how similar elements are within clusters or how
different elements are between clusters. The choice of criterion can have a
dramatic effect on the clustering result. We recommend a careful study of
a proposed criterion so that the user fully understands its strengths and
weaknesses (i.e., its scoring strategy) in evaluating a clustering result. Sim-
ulations are a useful tool for comparing different criteria.

Searching strategy: One sensible goal is to find the clustering result
that globally maximizes the selected criterion. Because of computational
issues, heuristic search strategies (that guarantee convergence to a local
maximum) are often needed. If the user prefers a tree structure linking all
clusters, then forward or backward selection strategies are often used, and
they do not correspond with local maxima of the criterion.

13.2.3 Building sequences of clustering results

We can classify clustering algorithms by their searching strategies. Fig-
ure 13.1 compares the clustering results from a partitioning (pam) and a
hierarchical (diana) algorithm.

212 K. S. Pollard and M. J. van der Laan

Partitioning: Partitioning methods, such as self-organizing maps (SOM)
(Törönen et al., 1999), partitioning around medoids (PAM) (Kaufman and
Rousseeuw, 1990), and k-means, map a collection of elements (e.g., genes)
into k ≥ 2 disjoint clusters by aiming to maximize a particular criterion.
In this case, a clustering result for k = 2 is not used in computing the
clustering result for k = 3.
Hierarchical: Hierarchical methods involve constructing a tree of clusters
in which the root is a single cluster containing all the elements and the
leaves each contain only one element. These trees are typically binary; that
is, each node has exactly two children. The final level of the tree can be
viewed as an ordered list of the elements, though most algorithms produce
an ordering that is very dependent on the initial ordering of the data, and
is thus not necessarily distance based.
A hierarchical tree can be divisive (i.e., built from the top down by re-
cursively partitioning the elements) or agglomerative (i.e., built from the
bottom up by recursively combining the elements) . The R function di-

ana [R package cluster, Kaufman and Rousseeuw (1990)] is an example of
a divisive hierarchical algorithm, while agnes (R package cluster,Kaufman
and Rousseeuw (1990)) and Cluster (Eisen et al., 1998) are examples of
agglomerative hierarchical algorithms. Agglomerative methods can be em-
ployed with different types of linkage, which refers to the distance between
groups of elements and is typically a function of the dissimilarities between
pairs of elements. In average linkage methods, the distance between two
clusters is the average of the dissimilarities between the elements in one
cluster and the elements in the other cluster. In single linkage methods
(nearest neighbor methods), the dissimilarity between two clusters is the
smallest dissimilarity between an element in the first cluster and an element
in the second cluster.
Hybrid: The hierarchical ordered partitioning and collapsing hybrid
(HOPACH) algorithm (van der Laan and Pollard, 2003) builds a tree of
clusters, where the clusters in each level are ordered based on the pairwise
dissimilarities between cluster medoids. This algorithm starts at the root
node and aims to find the right number of children for each node by alter-
nating partitioning (divisive) steps with collapsing (agglomerative) steps.
The resulting tree is non-binary with a deterministically ordered final level.

Several R packages contain clustering algorithms. Table 13.2.3 provides
a non-exhaustive list. We use the agriculture data set from the pack-
age cluster to demonstrate code and output of some standard clustering
methods.

> library("cluster")

> data(agriculture)

> part <- pam(agriculture, k = 2)

> round(part$clusinfo, 2)

13. Cluster Analysis 213

−15 −5 0 5

−
4

−
2

0
2

4
PAM

Component 1

C
om

po
ne

nt
 2

These two components explai

●

●

●

●

●

●

●

●

B

DK

D

GR

E

F

IRL

I

L

NL

P

UK B
N

L D
U

K
F I

D
K L

G
R P

E
IR

L0
5

10
15

20
25

DIANA

Divisive Coefficient = 0.87
agriculture

H
ei

gh
t

Figure 13.1. Partitioning versus hierarchical clustering. The agriculture data
set from the package cluster contains two variables (Gross National Product per
capita and percentage of the population working in agriculture) for each country
belonging to the European Union in 1993. The countries were clustered by two
algorithms from the package: (i) pam with two clusters and (ii) diana. The results
are visualized as a clusplot for pam and a dendrogram for diana.

size max_diss av_diss diameter separation

[1,] 8 5.42 2.89 8.05 5.73

[2,] 4 7.43 4.30 12.57 5.73

> hier <- diana(agriculture)

> par(mfrow = c(1, 2))

> plot(part, which.plots = 1, labels = 3, col.clus = 3,

+ lwd = 2, main = "PAM")

> plot(hier, which.plots = 2, lwd = 2, main = "DIANA")

214 K. S. Pollard and M. J. van der Laan

Package Functions Description
cclust Convex clustering methods
class SOM Self-organizing maps
cluster agnes AGglomerative NESting

clara Clustering LARge Applications
diana DIvisive ANAlysis
fanny Fuzzy Analysis
mona MONothetic Analysis
pam Partitioning Around Medoids

e1071 bclust Bagged clustering
cmeans Fuzzy C-means clustering

flexmix Flexible mixture modeling
fpc Fixed point clusters, clusterwise

regression and discriminant plots
hopach hopach, boothopach Hierarchical Ordered Partitioning and

Collapsing Hybrid
mclust Model-based cluster analysis
stats hclust, cophenetic Hierarchical clustering

heatmap Heatmaps with row and column
dendrograms

kmeans k-means

Table 13.1. R functions and packages for cluster analysis (CRAN, Bioconductor).

13.2.4 Visualizing clustering results

Chapter 10 describes a variety of useful methods for visualizing gene expres-
sion data. The function heatmap, for example, implements the plot employed
by Eisen et al. (1998) to visualize the J × I data matrix with rows and
columns ordered by separate applications of their Cluster algorithm to both
genes and arrays. Figure 13.2 shows an example of such a heat map. Heat
maps can also be made of dissimilarity matrices (Figure 13.6 and Chap-
ter 10), which are particularly useful when clustering patterns might not
be easily visible in the data matrix, as with absolute correlation distance
(van der Laan and Pollard, 2003).

As we see in Figures 13.2 and 13.1, there appears to be two clusters, one
with four countries and another with eight. All visualizations make that
reasonably obvious, although in different ways.

> heatmap(as.matrix(t(agriculture)), Rowv = NA,

+ labRow = c("GNP", "% in Agriculture"), cexRow = 1,

+ xlab = "Country")

13. Cluster Analysis 215

E

IR
L P

G
R

U
K D B

N
L F I L

D
K

Country

GNP

% in Agriculture

Figure 13.2. Heatmap for hierarchical clustering of the countries in the agricul-

ture data set. The function hclust produces a dendrogram that is equivalent to
that produced by diana with left and right children swapped at several nodes.
Note that the ordering of countries in the diana tree depends a great deal on
their order in the input data set, so that permuting the rows before running the
algorithm will produce a different tree. The hopach (and to a lesser degree the
hclust tree) is not sensitive to the initial order of the data.

13.2.5 Statistical issues in clustering

Exploratory techniques are capable of identifying interesting patterns in
data, but they do not inherently lend themselves to statistical inference.
The ability to assess reliability in an experiment is particularly crucial with
the high dimensional data structures and relatively small samples presented
by genomic experiments (Getz G., 2000; Hughes et al., 2000; Lockhart and
Winzeler, 2000). Both jackknife (K.Y. et al., 2001) and bootstrap (Kerr
and Churchill, 2001; van der Laan and Bryan, 2001) approaches have been
used to perform statistical inference with gene expression data. van der
Laan and Bryan (2001) present a statistical framework for clustering genes,
where the clustering parameter θ is defined as a deterministic function S(P)
applied to the data generating distribution P . The parameter θ = S(P) is
estimated by the observed sample subset S(PI), where the empirical distri-
bution PI is substituted for P . Most currently employed clustering methods

216 K. S. Pollard and M. J. van der Laan

fit into this framework, as they need only be deterministic functions of the
empirical distribution. The authors also establish consistency of the clus-
tering result under the assumption that I/ log[J(I)] → ∞ (for a sample of
I J-dimensional vectors), and asymptotic validity of the bootstrap in this
context.

An interesting approach to clustering samples is to first cluster the genes
and then cluster the samples using only the gene cluster profiles, such as
medoids or means (Pollard and van der Laan, 2002b). In this way, the
dimension of the data is reduced to the number of gene clusters so that
the multiplicity problem for comparing subpopulations of samples is much
less. Gene cluster profiles (particularly medoids) are very stable and hence
the comparison of samples will not be affected by a few outlier genes [see
also Nevins et al. (2003)]. Pollard and van der Laan (2002b) generalize
the statistical framework proposed in van der Laan and Bryan (2001) to
any clustering parameter S(P), including algorithms that involve clustering
both genes and samples.

13.2.6 Bootstrapping a cluster analysis

Though the clustering parameter θ = S(P) might represent an interest-
ing clustering pattern in the true data generating distribution/population,
when applied to empirical data PI , it is likely to find patterns due to noise.
To deal with this issue, one needs methods for assessing the variability of
θI = S(PI). One also needs to be able to test if certain components of θI

are significantly different from the value of these components in a specified
null experiment. Note that θI and PI depend on the sample size I.

To assess the variability of the estimator θI , we propose to use the boot-
strap. The idea of the bootstrap method is to estimate the distribution of θI

with the distribution of θ∗I = S(P ∗
I), where P ∗

I is the empirical distribution
based on an i.i.d. bootstrap sample [i.e., a sample of I i.i.d. observations
X∗

i (i = 1, . . . , I) from PI]. The distribution of θ∗I is obtained by applying
the rule S to P ∗

I , from each of B bootstrap samples, keeping track of pa-
rameters of interest. The distribution of a parameter is approximated by
its empirical distribution over the B samples. There are several methods
for generating bootstrap samples.

• Non-parametric: Resample I arrays with replacement.

• Smoothed non-parametric: Modify non-parametric bootstrap
sampling with one of a variety of methods (e.g., Bayesian bootstrap
or convex pseudo-data) for producing a smoother distribution.

• Parametric: Fit a model (e.g., multivariate normal, mixture of
multivariate normals) and generate observations from the fitted
distribution.

13. Cluster Analysis 217

The non-parametric bootstrap avoids distributional assumptions about the
parameter of interest. However, if the model assumptions are appropriate,
or have little effect on the estimated distribution of θI , the parametric
bootstrap might perform better.

13.2.7 Number of clusters

Consider a series of proposed clustering results. With a partitioning al-
gorithm, these may consist of applying the clustering routine with k =
2, 3, . . . , K clusters, where K is a user-specified upper bound on the num-
ber of clusters. With a hierarchical algorithm the series may correspond to
levels of the tree. With both types of methods, identifying cluster labels
requires choosing the number of clusters. From a formal point of view, the
question “How many clusters are there?” is essentially equivalent to ask-
ing “Which parameter is correct?” as each k defines a new parameter of
the data generating distribution in the non-parametric model for P . Thus,
selecting the correct number of clusters requires user input and typically
there is no single right answer. Having said this, one is free to come up
with a criterion for selecting the number of clusters, just as one might have
an argument to prefer a mean above a median as location parameter. This
criterion need not be the same as the criterion used to identify the clusters
in the algorithm.

Overview of methods for selecting the number of clusters. Cur-
rently available methods for selecting the number of significant clusters
include direct methods and testing methods. Direct methods consist of op-
timizing a criterion, such as functions of the within and between cluster
sums of squares (Milligan and Cooper, 1985), occurrences of phase transi-
tions in simulated annealing (Rose et al., 1990), likelihood ratios (Scott and
Simmons, 1971), or average silhouette (Kaufman and Rousseeuw, 1990).
The method of maximizing average silhouette is advantageous because it
can be used with any clustering routine and any dissimilarity metric. A
disadvantage of average silhouette is that, like many criteria for selecting
the number of clusters, it measures the global clustering structure only.
Testing methods take a different approach, assessing evidence against a
specific null hypothesis. Examples of testing methods that have been used
with gene expression data are the gap statistic (Tibshirani et al., 2000), the
weighted average discrepant pairs (WADP) method (Bittner et al., 2000), a
variety of permutation methods (Bittner et al., 2000; Hughes et al., 2000),
and Clest (Fridlyand and Dudoit, 2001). Because they typically involve re-
sampling, testing methods are computationally much more expensive than
direct methods.

Median Split Silhouette. Median split silhouette (MSS) is a new di-
rect method for selecting the number of clusters with either partitioning
or hierarchical clustering algorithms (Pollard and van der Laan, 2002a).
This method was motivated by the problem of finding relatively small,

218 K. S. Pollard and M. J. van der Laan

possibly nested clusters in the presence of larger clusters (Figure 13.3). It
is frequently this finer structure that is of interest biologically, but most
methods find only the global structure. The key idea is to evaluate how
well the elements in a cluster belong together by applying a chosen clus-
tering algorithm to the elements in that cluster alone (ignoring the other
clusters) and then evaluating average silhouette after the split to determine
the homogeneity of the parent cluster. We first define silhouettes and then
describe how to use them in the MSS criterion.

Suppose we are clustering genes. The silhouette for a given gene is cal-
culated as follows. For each gene j, calculate the average dissimilarity aj

of gene j with other genes in its cluster. For each gene j and each cluster l
to which it does not belong, calculate the average dissimilarity bjl of gene
j with the members of cluster l. Let bj = minl bjl. The silhouette of gene
j is defined by the formula: Sj = (bj − aj)/ max(aj , bj). Heuristically, the
silhouette measures how well matched an object is to the other objects in
its own cluster versus how well matched it would be if it were moved to the
next closest cluster. Note that the largest possible silhouette is 1, which
occurs only if there is no dissimilarity within gene j’s cluster (i.e., aj = 0).
A silhouette near 0 indicates that a gene lies between two clusters, and a
silhouette near -1 means that the gene is very similar to elements in the
neighboring cluster and hence is probably in the wrong cluster.

For a clustering result with k clusters, split each cluster into two or more
clusters (the number of which can be determined, for example, by maxi-
mizing average silhouette). Each gene has a new silhouette after the split,
which is computed relative to only those genes with which it shares a par-
ent. We call the median of these for each parent cluster the split silhouette,
SSi, for i = 1, 2, . . . , k, which is low if the cluster was homogeneous and
should not have been split. MSS(k) = median(SS1, . . . , SSk) is a mea-
sure of the overall homogeneity of the clusters in the clustering result with
k clusters. We advocate choosing the number of clusters which minimizes
MSS. Note that all uses of median can be replaced with mean for a more
sensitive, less robust criterion.

The following example of a data set with nested clusters demonstrates
that MSS and average silhouette can identify different numbers of clus-
ters. The data are generated by simulating a J = 240 dimensional vector
consisting of eight groups of thirty normally distributed variables with the
following means: µ ∈ (1, 2, 5, 6, 14, 15, 18, 19). The variables are uncorre-
lated with common standard deviation σ = 0.5. A sample of I = 25 is
generated and the Euclidean distance computed.

> mu <- c(1, 2, 5, 6, 14, 15, 18, 19)

> X <- matrix(rnorm(240 * 25, 0, 0.5), nrow = 240,

+ ncol = 25)

> step <- 240/length(mu)

> for (m in 1:length(mu)) X[((m - 1) * step + 1):(m *

+ step),] <- X[((m - 1) * step + 1):(m * step),

13. Cluster Analysis 219

+] + mu[m]

> D <- dist(X, method = "euclidean")

Next, we check the number of clusters k identified by average silhouette
with the function silcheck and by MSS with the function msscheck, both
provided in the package hopach. These return a vector with the number of
clusters optimizing the corresponding criterion in the first entry and the
value of the criterion in the second.

> library("hopach")

> k.sil <- silcheck(X)[1]

> k.mss <- msscheck(as.matrix(D))[1]

> pam.sil <- pam(X, k.sil)

> pam.mss <- pam(X, k.mss)

We plot the distance matrix with the J = 240 variables ordered according
to their pam cluster labels with each choice of k. We mark the two sets of
cluster boundaries on each axis.

> image(1:240, 1:240, as.matrix(D)[order(pam.sil$clust),

+ order(pam.mss$clust)], col = topo.colors(80),

+ xlab = paste("Silhouette (k=", k.sil, ")", sep = ""),

+ ylab = paste("MSS (k=", k.mss, ")", sep = ""),

+ main = "PAM Clusters: Comparison of Two Criteria",

+ sub = "Ordered Euclidean Distance Matrix")

> abline(v = cumsum(pam.sil$clusinfo[, 1]), lty = 2, lwd = 2)

> abline(h = cumsum(pam.mss$clusinfo[, 1]), lty = 3, lwd = 2)

We have previously reported simulation results for MSS on a variety of
data sets and relative to other direct methods (Pollard and van der Laan,
2002a). We refer the reader to the figures in that manuscript for further
illustration of the MSS methodology.

HOPACH algorithm. The R package hopach implements the Hierar-
chical Ordered Partitioning and Collapsing Hybrid (HOPACH) algorithm
for building a hierarchical tree of clusters (Figure 13.4). At each node, a
cluster is split into two or more smaller clusters with an enforced ordering
of the clusters. Collapsing steps uniting the two closest clusters into one
cluster are used to correct for errors made in the partitioning steps. The
hopach function uses the median split silhouette criterion to automatically
choose (i) the number of children at each node, (ii) which clusters to col-
lapse, and (iii) the main clusters (pruning the tree to produce a partition
of homogeneous clusters). We describe the method as applied to clustering
genes in an expression data set X, but the algorithm can be used much
more generally. We will use the notation PAM(X, k, d) for the PAM al-
gorithm applied to the data X with k clusters (k < 10 for computational
convenience) and dissimilarity d.

Initial level: Begin with all elements at the root node.

220 K. S. Pollard and M. J. van der Laan

Figure 13.3. Median split silhouette (MSS) versus average silhouette. The Eu-
clidean distance matrix from a data set with nested clusters is plotted here with
the variables ordered according to their cluster labels. Blue corresponds to small
and peach to large dissimilarity. The nested structure of the data is visible. Lines
mark the boundaries of the PAM clusters, with the number of clusters k de-
termined either by minimizing MSS or maximizing average silhouette. Average
silhouette is more robust and therefore typically identifies fewer clusters.

1. Partition: Compute PAM(X, k, d) and MSS(k) for k = 2, . . . , 9. Accept
the minimizer k1 of MSS(k) and corresponding partition PAM(x, k1, d) as
the first level of the tree. Also compute MSS(1). If MSS(1) < MSS(k1),
print a warning message about the homogeneity of the data.
2. Order: Define the distance between a pair of clusters (i.e., linkage) as
the dissimilarity between the corresponding medoids. If k1 = 2, then the
ordering does not matter. If k1 > 2, then order the clusters by (a) building
a hierarchical tree from the k1 medoids or (b) maximizing the empiri-
cal correlation between distance j − i in the list and the corresponding
dissimilarity d(i, j) across all pairs (i, j) with i < j with the function
correlationordering.
3. Collapse: There is no collapsing at the first level of the tree.

Next level: For each cluster in the previous level of the tree, carry out the
following procedure.
1. Partition: Apply PAM with k = 1, . . . , 9 as in level 1, and select the
minimizer of MSS(k) and corresponding PAM partitioning.
2. Order: Order the child clusters by their dissimilarity with the medoid of
the cluster next to the parent cluster in the previous level.
3. Collapse: Beginning with the closest pair of medoids (which may be on
different branches of the tree), collapse the two clusters if doing so improves
MSS. Continue collapsing until a collapse is rejected (or until all pairs of
medoids are considered).The medoid of the new cluster can be chosen in a

13. Cluster Analysis 221

Figure 13.4. The HOPACH hierarchical tree unfolding through the steps of the
clustering algorithm. First, the root node is partitioned and the children in the
next level are ordered deterministically using the same dissimilarity matrix that
is used for clustering. Next, each of these nodes is partitioned and its children
are ordered. Before the next partitioning step, collapsing steps merge any similar
clusters. The process is iterated until the main clusters are identified. Below the
main clusters, the algorithm is run down without collapsing to produce a final
ordered list.

variety of ways, including the nearest neighbor of the average of the two
corresponding medoids.
Iterate: Repeat until each node contains no more than 2 genes or a maxi-
mum number of levels is reached (for computational reasons the limit is 16
levels in the current implementation).

Main clusters: The value of MSS at each level of the tree can be used
to identify the level below which cluster homogeneity improves no further.
The partition defined by the pruned tree at the selected level is identified
as the main clusters.

The path that each gene follows through the HOPACH tree is encoded
in a label with one digit for each level in the tree. Because we restrict the
number of child clusters at each node to be less than ten, only a single
digit is needed for each level. Zero denotes a cluster that is not split. A
typical label of a gene at level 3 in the tree looks like 152, meaning that
the gene is in the second child cluster of the fifth child cluster of the first

222 K. S. Pollard and M. J. van der Laan

cluster from level 1. In order to look at the cluster structure for level l of the
tree, simply truncate the final cluster labels to l digits. Chapter 20 provides
some relevant concepts and notation regarding paths and path labelling in
graphs.

We refer the reader to van der Laan and Pollard (2003) for a comparison
of HOPACH with other clustering algorithms. In simulations and real data
analyses, we show that hopach is better able to identify small clusters and
to produce a sensible final ordering of the elements than other algorithms
discussed here.

13.3 Application: renal cell cancer

The renal cell cancer data package kidpack contains expression measures
for 4224 genes and 74 patients. The tumor samples (labeled green) are
compared to a common reference sample (labeled red). Log ratios measure
expression in the control relative to each tumor.

13.3.1 Gene selection

To load the kidpack data set:

> library("kidpack")

> data(eset, package = "kidpack")

> data(cloneanno, package = "kidpack")

First, select a subset of interesting genes. Such a subset can be chosen in
many ways, for example with the functions in the genefilter and multtest
packages. For this analysis, we will simply take all genes (416 total) with
log ratios greater than 3-fold in at least half of the arrays. This means that
we are focusing on genes that are suppressed in the kidney tumor samples
relative to the control sample. One would typically use a less arbitrary
subset rule. We use the IMAGE ID (Lennon et al., 1996) as the gene name,
adding the character ”B” to the name of the second copy of any IMAGE
ID.

> library("genefilter")

> ff <- pOverA(0.5, log10(3))

> subset <- genefilter(abs(exprs(eset)), filterfun(ff))

> kidney <- exprs(eset)[subset,]

> dim(kidney)

> gene.names <- cloneanno[subset, "imageid"]

> is.dup <- duplicated(gene.names)

> gene.names[is.dup] <- paste(gene.names[is.dup],

+ "B", sep = "")

> rownames(kidney) <- gene.names

13. Cluster Analysis 223

> colnames(kidney) <- paste("Sample", 1:ncol(kidney),

+ sep = "")

13.3.2 HOPACH clustering of genes

It is useful to compute the dissimilarity matrix before running hopach, be-
cause the dissimilarity matrix may be needed later in the analysis. The
cosine-angle dissimilarity defined in Chapter 12 is often a good choice for
clustering genes.

> gene.dist <- distancematrix(kidney, d = "cosangle")

> dim(gene.dist)

[1] 416 416

Now, run hopach to cluster the genes. The algorithm will take some time
to run.

> gene.hobj <- hopach(kidney, dmat = gene.dist)

> gene.hobj$clust$k

[1] 84

> table(gene.hobj$clust$sizes)

1 2 3 4 5 7 9 18 24 42 80 112

52 8 13 3 1 1 1 1 1 1 1 1

> gene.hobj$clust$labels[1:5]

[1] 22200 22200 21300 23200 43000

The hopach algorithm identifies 84 gene clusters. Many of the clusters are
1 to 4 genes, though some are much larger. The cluster labels show the
relationships between the clusters and how they evolved in the first few
levels of the tree. Next, we examine how close clones that represent the
same gene (i.e., genes with a ”B” in their name) are to one another in the
HOPACH final ordering.

> gn.ord <- gene.names[gene.hobjfinord]

> Bs <- grep("B", gn.ord)

> spaces <- NULL

> for (b in Bs) {

+ name <- unlist(strsplit(gene.names[gene.hobjfinord][b],

+ "B"))

+ spaces <- c(spaces, diff(grep(name, gn.ord)))

+ }

> table(spaces)

spaces

1 4 6 14 17 35 53 54 72 90 129

5 1 1 1 1 1 1 1 1 1 1

224 K. S. Pollard and M. J. van der Laan

Five of the fifteen pairs of replicate clones appear next to each other, and
all of them appear closer to one another than expected for a random pair
of clones.

13.3.3 Comparison with PAM

The hopach clustering results can be compared to simply applying PAM
with the choice of k that maximizes average silhouette (using the function
silcheck).

> bestk <- silcheck(dissvector(gene.dist), diss = TRUE)[1]

> pamobj <- pam(dissvector(gene.dist), k = bestk,

+ diss = TRUE)

> round(pamobj$clusinfo, 2)

size max_diss av_diss diameter separation

[1,] 68 0.96 0.64 1.10 0.39

[2,] 348 0.94 0.45 1.21 0.39

While hopach identifies 84 clusters of median size 1, pam identifies 2 larger
clusters. This result is typical in the sense that hopach tends to be more ag-
gressive at finding small clusters, whereas pam is more robust and therefore
only identifies the global patterns (i.e., fewer, larger clusters).

13.3.4 Bootstrap resampling

For each gene and each hopach cluster we can compute the proportion of
bootstrap data sets where the gene is in the cluster. These are estimates
of the membership of the gene in each cluster and can be considered as a
form of fuzzy clustering.

> bobj <- boothopach(kidney, gene.hobj, B = 100)

The argument B controls the number of bootstrap resampled data sets used.
The default value is B= 1000, which represents a balance between precision
and speed. For this example, we use B= 100 since larger values have much
longer run times. The bootplot function makes a barplot of the bootstrap
reappearance proportions (see Figure 13.5).

> bootplot(bobj, gene.hobj, ord = "bootp", main = "Renal Cell Cancer",

+ showclusters = FALSE)

13.3.5 HOPACH clustering of arrays

The HOPACH algorithm can also be applied to cluster samples (i.e., ar-
rays), based on their expression profiles across genes. This analysis method
differs from classification, which uses knowledge of class labels associated
with each sample (i.e., array). Euclidean distance may be a good choice for

13. Cluster Analysis 225

Figure 13.5. The bootplot function makes a barplot of the bootstrap reappear-
ance proportions for each gene and each cluster. These proportions can be viewed
as fuzzy cluster memberships. Every cluster is represented by a different color.
The genes are ordered by hopach cluster, and then by bootstrap estimated mem-
bership within cluster and plotted on the vertical axis. Each gene is represented
by a very narrow horizontal bar. The length of this bar that is each color is pro-
portional to the percentage of bootstrap samples in which that gene appeared in
the cluster represented by that color. If the bar is all or mostly one color, then
the gene is estimated to belong strongly to that cluster. If the bar is many col-
ors, the gene has fuzzy membership in all these clusters. The continuity of colors
across the genes indicates that nearby clusters are more likely to “swap” genes
than more distant clusters.

clustering arrays, because it measures differences in magnitude, which is
often what we are interested in detecting when comparing the expression
profiles for different samples. A comparison of magnitude is valid, because
we expect the data from different arrays to be on the same scale after
normalization has been performed.

> array.hobj <- hopach(t(kidney), d = "euclid")

> array.hobj$clust$k

[1] 51

51 array clusters are identified. The function dplot can be used to visualize
the ordered dissimilarity matrix corresponding with the HOPACH tree’s
final level. Clusters of similar arrays will appear as blocks on the diagonal
of the matrix (Figure 13.6). We can label the arrays from patients with

226 K. S. Pollard and M. J. van der Laan

Renal Cell Cancer: Array Clustering
Ordered Distance Matrix

chchchchchchchchp
pp
pp
pp
pp
pp

ccp
ccp
ccccccccccccchcccccccccccccccccc

cc cc cc cc cc cc cc cc cc ch cc cc cc cc cc cc p cc p cc p p p p p p p p p p p ch ch ch ch ch ch ch ch

Figure 13.6. HOPACH clustering of patients with Euclidean distance. Patients are
ordered according to the final level of the tree. Red corresponds to small distance
and white to large distance. Dotted lines indicate the clusters boundaries in the
level of the tree with minimum MSS. Many patients cluster alone, but there are
several small groups of very similar patients. The ordering of patients by hopach

coincides well with tumor type. cc: clear cell, p: papillary, ch: chromophobe.

different tumor types (clear cell, papillary, and chromophobe) and examine
how these labels correspond with the clusters.

> tumortype <- unlist(strsplit(phenoData(eset)$type, "RCC"))

> dplot(distancematrix(t(kidney), d = "euclid"), array.hobj,

+ labels = tumortype, main = "Renal Cell Cancer: Array Clustering")

13.3.6 Output files

Gene clustering and bootstrap results table. The makeoutput function
is used to write a tab delimited text file that can be opened in a spreadsheet
application or text editor. The file will contain the hopach clustering results,
plus possibly the corresponding bootstrap results, if these are provided. The
argument gene.names can be used to insert additional gene annotation, in
this case accession numbers.

> gene.acc <- cloneanno[subset, "AccNumber"]

> makeoutput(kidney, gene.hobj, bobj, file = "kidney.out",

+ gene.names = gene.acc)

13. Cluster Analysis 227

Figure 13.7. MapleTree zoom view of a single cluster in the kidney data. Genes are
ordered according to their bootstrap membership. Red represents overexpression
in control relative to tumor samples, and green is the opposite.

Bootstrap fuzzy clustering in MapleTree. MapleTree (Lisa Simirenko)
is an open source, cross-platform, visualization tool for graphical browsing
of results of cluster analyses. The software can be found at SourceForge.
The boot2fuzzy function takes the gene expression data, plus corresponding
hopach clustering output and bootstrap resampling output, and writes the
(.cdt, .fct, and .mb) files needed to view these fuzzy clustering results
in MapleTree.

> gene.desc <- cloneanno[subset, "description"]

> boot2fuzzy(kidney, bobj, gene.hobj, array.hobj,

+ file = "kidneyFzy", gene.names = gene.desc)

The three generated files can be opened in MapleTree by going to the
Load menu and then Fuzzy Clustering Data. The heat map contains only
the medoid genes (cluster profiles). Double clicking on a medoid opens a
zoom window for that cluster, with a heat map of all genes ordered by
their bootstrap estimated memberships in that cluster, with the highest
membership first. Figure 13.7 contains the zoom window for gene cluster
15. The medoid and two other genes have high bootstrap reappearance
probabilities.

HOPACH hierarchical clustering in MapleTree. The MapleTree
software can also be used to view HOPACH hierarchical clustering results.
The hopach2tree function takes the gene expression data, plus correspond-
ing hopach clustering output for genes or arrays, and writes the (.cdt, .gtr,
and optionally .atr) files needed to view these hierarchical clustering re-
sults in MapleTree. These files can also be opened in other viewers such
as TreeView (Michael Eisen), jtreeview (Alok Saldanha), and GeneXPress
(Eran Segal).

> hopach2tree(kidney, file = "kidneyTree", hopach.genes = gene.hobj,

+ hopach.arrays = array.hobj, dist.genes = gene.dist,

+ gene.names = gene.desc)

The hopach2tree function writes up to three text files. A .cdt file is al-
ways produced. When hopach.genesis not NULL, a .gtr is produced, and
gene clustering results can be viewed, including ordering the genes in the
heat map according to the final level of the hopach tree and drawing the
dendrogram for hierarchical gene clustering. Similarly, when hopach.arrays

is not NULL, an .atr file is produced, and array clustering results can

228 K. S. Pollard and M. J. van der Laan

Figure 13.8. MapleTree HOPACH hierarchical view of a section of the gene tree
and all of the array tree. Red represents overexpression in control relative to tumor
samples, and green is the opposite. Two copies of the clone with I.M.A.G.E. ID
469566 appear near each other in the tree.

be viewed. These files can be opened in MapleTree by going to the Load
menu and then HOPACH Clustering Data. By clicking on branches of the
tree, a zoom window with gene names for that part of the tree is opened.
Figure 13.8 illustrates this view for a section of the the kidney data in
MapleTree.

13.4 Conclusion

This chapter has provided an overview of clustering methods in R, includ-
ing the new hopach package. The variety of available dissimilarity measures,
algorithms and criteria for choosing the number of clusters give the data
analyst the ability to choose a clustering parameter that meets particular
scientific goals. Viewing the output of a clustering algorithm as an estimate
of this clustering parameter allows one to assess the reliability and repeata-
bility of the observed clustering results. This kind of statistical inference
is particularly important in the context of analyzing high-dimensional ge-
nomic data sets. Visualization tools, including data and distance matrix
heatmaps, help summarize clustering results.

14

Analysis of Differential Gene
Expression Studies

D. Scholtens and A. von Heydebreck

Abstract
In this chapter, we focus on the analysis of differential gene

expression studies. Many microarray studies are designed to de-
tect genes associated with different phenotypes, for example, the
comparison of cancer tumors and normal cells. In some multi-
factor experiments, genetic networks are perturbed with various
treatments to understand the effects of those treatments and their
interactions with each other in the dynamic cellular network. For
even the simplest experiments, investigators must consider several
issues for appropriate gene selection. We discuss strategies for gene-
at-a-time analyses, nonspecific and meta-data driven prefiltering
techniques, and commonly used test statistics for detecting differ-
ential expression. We show how these strategies and statistical tools
are implemented and used in Bioconductor. We also demonstrate
the use of factorial models for probing complex biological systems
and highlight the importance of carefully coordinating known cellu-
lar behavior with statistical modeling to make biologically relevant
inference from microarray studies.

14.1 Introduction

Microarray technology is used in a wide variety of settings for detecting
differential gene expression. Classic statistical issues such as appropriate
test statistics, sample size, replicate structure, statistical significance, and
outlier detection enter into the design and analysis of gene expression stud-
ies. Adding to the complexity is the fact that the number of samples I in a
microarray experiment is inevitably much less than the number of genes J
under investigation and that J is often on the scale of tens of thousands,

230 D. Scholtens and A. von Heydebreck

thus creating a tremendous multiple testing burden (see Chapter 15 for
further discussion). Investigators must ensure that the experimental design
gives access to unambiguous tests of the key substantive hypotheses. This
is a challenging task in the complex, dynamic cellular network. We begin
our discussion in Section 14.2 by examining general issues in differential
expression analysis relevant to most microarray experiments, illustrating
these principles with case studies of the ALL and kidpack data in Sections
14.2.1 and 14.2.2. We then examine multifactor models in Section 14.3 with
a case study of the estrogen data in Section 14.3.1.

14.2 Differential expression analysis

Fundamental to the task of analyzing gene expression data is the need
to identify genes whose patterns of expression differ according to phe-
notype or experimental condition. Gene expression is a well coordinated
system, and hence measurements on different genes are in general not in-
dependent. Given more complete knowledge of the specific interactions and
transcriptional controls, it is conceivable that meaningful comparisons be-
tween samples can be made by considering the joint distribution of specific
sets of genes. However, the high dimension of gene expression space pro-
hibits a comprehensive exploration, while the fact that our understanding
of biological systems is only in its infancy means that in many cases we
do not know which relationships are important and should be studied. In
current practice, differential expression analysis will therefore at least start
with a gene-by-gene approach, ignoring the dependencies between genes.

A simple approach is to select genes using a fold-change criterion. This
may be the only possibility in cases where no, or very few replicates, are
available. An analysis solely based on fold change however does not al-
low the assessment of significance of expression differences in the presence
of biological and experimental variation, which may differ from gene to
gene. This is the main reason for using statistical tests to assess differential
expression. Generally, one might look at various properties of the distribu-
tions of a gene’s expression levels under different conditions, though most
often location parameters of these distributions, such as the mean or the
median, are considered. One may distinguish between parametric tests,
such as the t-test, and non-parametric tests, such as the Mann-Whitney
test or permutation tests. Parametric tests usually have a higher power if
the underlying model assumptions, such as normality in the case of the t-
test, are at least approximately fulfilled. Non-parametric tests do have the
advantage of making less stringent assumptions on the data-generating dis-
tribution. In many microarray studies however, a small sample size leads to
insufficient power for non-parametric tests. A pragmatic approach in these

14. Differential Expression 231

situations is to employ parametric tests, but to use the resulting p-values
cautiously to rank genes by their evidence for differential expression.

When performing statistical analysis of microarray data, an important
question is determining on which scale to analyze the data. Often the
logarithmic scale is used in order to make the distribution of replicated
measurements per gene roughly symmetric and close to normal. A variance-
stabilizing transformation derived from an error model for microarray
measurements (see Chapter 1) may be employed to make the variance of
the measured intensities independent of their expected value (Huber et al.,
2002). This can be advantageous for gene-wise statistical tests that rely on
variance homogeneity, because it will diminish differences in variance be-
tween experimental conditions that are due to differences in the intensity
level – however of course differences in variance between conditions may
also have gene-specific biological reasons, and these will remain untouched.

One or two group t-test comparisons, multiple group ANOVA, and more
general trend tests are all instances of linear models that are frequently
used for assessing differential gene expression. As a parametric method,
linear modeling is subject to the caveats discussed above, but the convenient
interpretability of the model parameters often makes it the method of choice
for microarray analysis. Due to the aforementioned lack of information
regarding coregulation of genes, linear models are generally computed for
each gene separately. When the lists of genes of interest are identified,
investigators can hopefully begin to study their coordinated regulation for
more sophisticated modeling of their joint behavior.

The approach of conducting a statistical test for each gene is popular,
largely because it is relatively straightforward and a standard repertoire
of methods can be applied. However, the approach has a number of draw-
backs: most important is the fact that a large number of hypothesis tests is
carried out, potentially leading to a large number of falsely significant re-
sults. Multiple testing procedures allow one to assess the overall significance
of the results of a family of hypothesis tests. They focus on specificity by
controlling type I (false positive) error rates such as the family-wise error
rate or the false discovery rate (Dudoit et al., 2003). This topic is covered
in detail in Chapter 15. Still, multiple hypothesis testing remains a prob-
lem, because an increase in specificity, as provided by p-value adjustment
methods, is coupled with a loss of sensitivity, that is, a reduced chance
of detecting true positives. Furthermore, the genes with the most drastic
changes in expression are not necessarily the “key players” in the relevant
biological processes. This problem can only be addressed by incorporating
prior biological knowledge into the analysis of microarray data, which may
lead to focusing the analysis on a specific set of genes. Also if such a biologi-
cally motivated preselection is not feasible, the number of hypotheses to be
tested can often be reasonably reduced by non-specific filtering procedures,
discarding, e.g., genes with consistently low intensity values or low variance
across the samples. This is especially relevant in the case of genome-wide

232 D. Scholtens and A. von Heydebreck

arrays, as often only a minority of all genes will be expressed at all in the
cell type under consideration.

Many microarray experiments involve only few replicates per condition,
which makes it difficult to estimate the gene-specific variances that are used,
e.g., in the t-test. Different methods have been developed to exploit the vari-
ance information provided by the data of all genes (Baldi and Long, 2001;
Tusher et al., 2001; Lönnstedt and Speed, 2002; Kendziorski et al., 2003).
In the limma package, an Empirical Bayes approach is implemented that
employs a global variance estimator s2

0 computed on the basis of all genes’
variances. The resulting test statistic is a moderated t-statistic, where in-
stead of the single-gene estimated variances s2

g, a weighted average of s2
g

and s2
0 is used. Under certain distributional assumptions, this test statistic

can be shown to follow a t-distribution under the null hypothesis with the
degrees of freedom depending on the data (Smyth, 2004).

In the following examples, we demonstrate the use of Bioconductor pack-
ages, especially multtest and limma, to identify differentially expressed
genes.

14.2.1 Example: ALL data

In this example, we consider a subset of the ALL data representing 79
samples from patients with B-cell acute lymphoblastic leukemia that were
investigated using HG-U95Av2 Affymetrix GeneChip arrays (Chiaretti
et al., 2004). The probe-level data were preprocessed using RMA (Irizarry
et al., 2003b), described in Chapter 2, to produce log (base 2) expression
measurements. Of particular interest is the comparison of samples with the
BCR/ABL fusion gene resulting from a translocation of the chromosomes 9
and 22 with samples that are cytogenetically normal. In the following code
chunk, we load the data and define the subset of samples we are interested
in – 37 BCR/ABL samples and 42 normal samples (labeled NEG). The
exprSet object eset contains the relevant data.

> library("ALL")

> data(ALL)

> pdat <- pData(ALL)

> subset <- intersect(grep("^B", as.character(pdat$BT)),

+ which(pdat$mol %in% c("BCR/ABL", "NEG")))

> eset <- ALL[, subset]

Many of the genes represented by the 12625 probesets on the array are
not expressed in B-cell lymphocytes (either in their normal condition or in
any of the disease states being considered), which are the cells that were
measured in this experiment. Hence the probesets for these genes can, and
should, be removed from the analysis. Furthermore, we want to discard
probesets with a low variability across all samples. In the next code chunk,
we require expression measurements to be above 100 fluorescence units in

14. Differential Expression 233

at least 25% of the samples, and the interquartile range (IQR) across the
samples on the log base 2 scale to be at least 0.5. This non-specific filtering
is accomplished with functions from the package genefilter.

> library("genefilter")

> f1 <- pOverA(0.25, log2(100))

> f2 <- function(x) (IQR(x) > 0.5)

> ff <- filterfun(f1, f2)

> selected <- genefilter(eset, ff)

> sum(selected)

[1] 2391

> esetSub <- eset[selected,]

We are left with 2391 probesets for further analysis. Using the multtest
package, we perform a permutation test for equality of the mean expression
levels in the two groups for each of these probesets. By default, the function
mt.maxT computes Welch t-statistics, which allow for unequal variances in
the two groups. The number of permutations B determines the granularity
of the permutation p-values. Depending on the multiple testing procedure
to be applied, the user may have to choose a value of B that is considerably
larger than the number of tests being performed.

> cl <- as.numeric(esetSub$mol == "BCR/ABL")

> resT <- mt.maxT(exprs(esetSub), classlabel = cl,

+ B = 10000)

> ord <- order(resT$index)

> rawp <- resT$rawp[ord]

> names(rawp) <- geneNames(esetSub)

Figure 14.1 shows the histogram of unadjusted permutation p-values, as
given by the vector rawp. The high proportion of small p-values suggests
that a substantial fraction of the genes are differentially expressed between
the two groups. In order to control the family-wise error rate (FWER),
that is, the probability of at least one false positive in the set of significant
genes, we have used the permutation-based maxT-procedure of Westfall
and Young (Westfall and Young, 1993), as implemented in the function
mt.maxT. We obtain 18 genes with an adjusted p-value below 0.05:

> sum(resT$adjp < 0.05)

[1] 18

A comparison of this number to the height of the leftmost bar in the his-
togram suggests that we may be missing a large number of differentially
expressed genes. The FWER is a very stringent criterion, and in some
microarray studies, only few genes may be significant in this sense, even
if many more are truly differentially expressed. A more liberal criterion is
provided by the false discovery rate (FDR), that is, the expected proportion
of false positives among the genes that are called significant. We use the

234 D. Scholtens and A. von Heydebreck

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Figure 14.1. Histogram of p-values for the gene-by-gene comparison between
BCR/ABL positive and cytogenetically normal leukemias.

procedure of Benjamini and Hochberg (1995) as implemented in multtest
to control the FDR at a level of 0.05, which leaves us with 102 significant
genes (note however that this procedure makes certain assumptions on the
dependence structure between genes):

> res <- mt.rawp2adjp(rawp, proc = "BH")

> sum(res$adjp[, "BH"] < 0.05)

[1] 102

Effects of non-specific filtering

As indicated above, the aim of non-specific filtering is to remove genes that,
e.g., due to their low overall intensity or variability, are unlikely to carry
information about the phenotypes under investigation. The researcher will
be interested in keeping the number of tests as low as possible while keeping
the interesting genes in the selected subset.

If the truly differentially expressed genes are overrepresented among
those selected in the filtering step, the FDR associated with a certain
threshold of the test statistic will be lowered due to the filtering. This
appears plausible for two commonly used global filtering criteria: Intensity-
based filtering aims to remove genes that are not expressed at all in the
samples studied, and therefore cannot be differentially expressed. Also
concerning the variability across samples, a higher overall variance of the
differentially expressed genes may be expected, because their between-class
variance adds to their within-class variance.

To investigate these presumed effects, we compare the scores for inten-
sity and variability that we used in the beginning for gene selection with

14. Differential Expression 235

the absolute values of the t-statistic, which we now compute for all 12625
probesets.

> IQRs <- esApply(eset, 1, IQR)

> intensityscore <- esApply(eset, 1, function(x) quantile(x,

+ 0.75))

> abs.t <- abs(mt.teststat(exprs(eset), classlabel = cl))

The result is shown in Figure 14.2. Gene selection by the interquartile
range (IQR) indeed seems to lead to a higher concentration of differentially
expressed genes, whereas for the intensity-based criterion, the effect is less
pronounced.

rank(intensity score)

ab
s.

t

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

Figure 14.2. Plots of the absolute values of the t-statistic (y-axis) against the
ranks of the values of the two filtering criteria: left, interquartile range (IQR),
right, overall intensity score. The larger dark dots indicate the 95%-quantiles
of the absolute value of the t-statistic computed for moving windows along the
x-axis.

Using Gene Ontology data

A source of valuable biological data that is easily accessible through Biocon-
ductor software is the Gene Ontology (GO). It is known that many of the
effects due to the BCR/ABL translocation are mediated by tyrosine kinase
activity. It will therefore be of interest to examine genes that are known
to have tyrosine kinase activity. The term GO:0004713 from the molecular
function portion of the GO hierarchy refers to protein-tyrosine kinase
activity. We can obtain all Affymetrix probesets that are annotated at
that node, either directly or by inheritance, using the following command.

> tykin <- unique(lookUp("GO:0004713", "hgu95av2",

+ "GO2ALLPROBES"))

> length(tykin)

236 D. Scholtens and A. von Heydebreck

[1] 352

We see that 352 probesets are annotated at this particular term, 48 of
which were selected by our non-specific filtering step. We focus our attention
on these 48 probesets and repeat the permutation t-test analysis. In the
analysis of the GO-filtered data, 6 probesets have FWER-adjusted p-values
less than 0.05. They are printed below, together with the adjusted p-values
from the first analysis that involved 2391 genes.

[1] "GO analysis"

40480_s_at 1635_at 1636_g_at 39730_at 2039_s_at

0.0001 0.0001 0.0001 0.0001 0.0005

36643_at

0.0286

[1] "All Genes"

1635_at 1636_g_at 39730_at 40480_s_at 2039_s_at

0.0001 0.0001 0.0001 0.0015 0.0149

36643_at

0.4691

Due to the reduced number of tests in the analysis focused on tyrosine
kinases, we are left with more significant genes after correcting for multiple
testing. For instance, the probeset 36643_at, which corresponds to the
gene DDR1, was not significant in the unfocused analysis, but would be if
instead the investigation was oriented toward studying tyrosine kinases.

14.2.2 Example: Kidney cancer data

The kidpack package contains gene expression data from 74 renal cell car-
cinoma (RCC) patient biopsy samples, which were measured on two-color
cDNA arrays together with a common reference sample. The data set is
described in detail in the Appendix A.1.2 and in Sültmann et al. (2005).
The RCC samples belong to three different histological types, clear cell
(ccRCC), papillary (pRCC) and chromophobe (chRCC):

> pdat <- pData(esetSpot)

> table(pdat$type)

ccRCC chRCC pRCC

52 9 13

In the following, we illustrate how the differences in gene expression
between these types can be investigated using the limma package (see also
Chapter 23 for a more detailed description of limma). We are going to fit a
linear model to the expression levels of each gene. limma expects the model
to be specified by the design matrix, which can either be defined directly
or be constructed from a formula via the function model.matrix, which is
what we do here:

14. Differential Expression 237

> design <- model.matrix(~-1 + factor(pdat$type))

> colnames(design) <- c("ccRCC", "chRCC", "pRCC")

This simple design matrix corresponds to the following parametrization:

yik = αk + εik i = 1, 2, . . . , nk; k = 1, 2, 3,

where k indicates the tumor type and i the individual samples. Note that
the model is parameterized without an intercept term, and the estimated
coefficients α̂k from a least squares fit are the mean expression values for
the three cancer types.

To exploit the information of replicate measurements of each cDNA clone,
limma allows fitting linear models to the spot intensities taking the corre-
lation between replicate spots into account (Smyth et al., 2005). First, the
correlation between replicate spots is estimated for each gene separately
with restricted maximum likelihood (REML) based on a mixed effects linear
model. An overall estimate of the correlation between replicates is com-
puted as a robust average of the individual correlations on the hyperbolic
arc tangent scale (atanh), and this overall estimate is then used when fit-
ting a linear model for each gene. The same procedure can be applied in the
case of several hybridizations (technical replicates) per cell or tissue sample
(biological replicate). In our case, we estimate the correlation between the
two replicate spots per clone (argument ndups). The 4224 different clones
are listed in separate row blocks in the expression data matrix, hence their
spacing is 4224:

> dupcor <- duplicateCorrelation(exprs(esetSpot),

+ design = design, ndups = 2, spacing = 4224)

> fit <- lmFit(esetSpot, design = design, ndups = 2,

+ spacing = 4224, correlation = dupcor$cor)

> dupcor$cor

[1] 0.407

By default, lmFit fits a linear model by the least squares method, but it also
allows robust regression. We are now interested in the expression differences
between any two of the cancer types. For this purpose, we set up a contrast
matrix whose columns represent the pairwise differences between the model
coefficients. With the function contrast.fit, we can compute estimated
coefficients and standard errors for these contrasts from our original model
fit:

> contrast.matrix <- makeContrasts(ccRCC - chRCC,

+ ccRCC - pRCC, chRCC - pRCC, levels = design)

> contrast.matrix

ccRCC - chRCC ccRCC - pRCC chRCC - pRCC

ccRCC 1 1 0

chRCC -1 0 1

pRCC 0 -1 -1

238 D. Scholtens and A. von Heydebreck

> fit2 <- contrasts.fit(fit, contrast.matrix)

Moderated t-statistics for these contrasts, where the gene-specific variances
are augmented with a global variance estimator computed from the data
of all genes, are obtained with the function eBayes:

> fit3 <- eBayes(fit2)

The topTable function produces a table of the top ranking genes, sorted
by default by their log-odds for differential expression (see below). Here
we show the output of topTable for the third contrast, referring to the
comparison of chRCC and pRCC.

> topTable(fit3, coef = 3, n = 8, adjust.method = "fdr")

ID M A t P.Value B

2600 321496 2.68 -0.1154 18.5 1.12e-37 82.7

2729 502969 1.88 -0.1703 13.6 6.45e-25 53.4

1804 133812 1.81 -0.5036 13.3 3.00e-24 51.5

2859 725766 1.92 -0.1276 12.9 1.69e-23 49.5

3734 306257 -1.53 0.1353 -12.4 3.84e-22 46.3

1879 357297 1.36 -0.3215 11.7 3.38e-20 41.7

1905 774064 1.74 -0.4917 11.4 1.15e-19 40.4

2750 738532 1.37 0.0461 11.3 3.47e-19 39.2

For the column P.value, different methods to adjust the p-values for
multiple testing can be chosen, which allow to control the family-wise error
rate or the false discovery rate. Here we have chosen the FDR-based p-
value adjustment according to Benjamini and Hochberg (1995). Further
columns produced by topTable contain for each gene an identifier Name

(in our case the Image ID of the respective cDNA clone), the estimated
contrast coefficient M, the average expression value across all samples A,
the moderated t-statistic t, and the log-odds for differential expression B,
corresponding to a Bayesian interpretation of the moderated t-statistic.
The interpretation of the values of M and A depends on the nature of the
data used as input for lmFit. In our case, the column M contains expression
differences on a generalized natural log scale relative to a common reference
sample, and the values of A do not refer to absolute intensities but are given
by the average of a gene’s generalized log-ratio values with respect to the
reference sample across all chips.

When testing different contrasts per gene simultaneously, the issue of
multiple comparisons arises, that is, it is of interest to evaluate the sig-
nificance of each single contrast in the light of the whole set of contrasts.
The limma function decideTests allows the identification of significant test
results in the sense of multiple testing across genes, as well as in the sense
of multiple comparisons across contrasts. For the latter, the following ap-
proach is pursued with the argument method="nestedF": The moderated
t-statistic for a particular contrast is called significant at a certain level α
(resulting from multiple testing adjustment across genes) if the moderated

14. Differential Expression 239

F -test for that gene is still significant at level α when setting all the larger
t-statistics for that gene to the same absolute value as the t-statistic in ques-
tion. The function decideTests yields a matrix, where for each gene each
contrast is marked as non-significant (zero), significantly positive (one), or
significantly negative (minus one). In our example, we want to know how
many genes are differentially expressed when fixing the significance level α
of the moderated F -test so that it corresponds to a FDR of 0.05:

> clas <- decideTests(fit3, method = "nestedF",

+ adjust.method = "fdr", p = 0.05)

> colSums(abs(clas))

ccRCC - chRCC ccRCC - pRCC chRCC - pRCC

1243 981 931

To assess the effect of using the single spot measurements opposed to the
commonly used averaging across duplicate spots, we compare the results
to those of an analogous analysis based on a data matrix datAvDup where
the expression values of duplicate spots have been averaged.

> nclones <- 4224

> datAvDup <- (exprs(esetSpot)[1:nclones,] +

+ exprs(esetSpot)[nclones + 1:nclones,])/2

> fitAvDup <- lmFit(datAvDup, design = design)

> fit2AvDup <- contrasts.fit(fitAvDup, contrast.matrix)

> fit3AvDup <- eBayes(fit2AvDup)

The comparison of the resulting p-values (again for the comparison of
chRCC and pRCC) suggests that the spot-wise analysis yields higher power
(Figure 14.3).

14.3 Multifactor experiments

Multifactor microarray experiments often involve the application of treat-
ments in combination to model organisms such as genetically identical cell
lines or mice. The equal reference point from which these experiments start
theoretically limits naturally occurring interindividual variability, thus al-
lowing differential gene expression to be attributed to the treatments or
experimental conditions under investigation. Frequently, these experiments
are designed to investigate the perturbation of genetic networks by various
combinations of treatments, thus allowing the initial steps of genetic net-
work reconstruction. In factorial designs, effects of the treatments and their
interactions can be conveniently quantified in a linear model. As long as the
contrasts of interest are specified with careful accounting for the transcrip-
tion and translation mechanisms affected by the treatments, investigators
can often assign very meaningful biological interpretations to their results.

240 D. Scholtens and A. von Heydebreck

Figure 14.3. Comparison of base 10 logarithms of p-values for the comparison
between chRCC and pRCC. x-axis: analysis based on average expression val-
ues across duplicate spots, y-axis: spot-wise analysis incorporating correlation
between duplicate spots.

One significant difficulty with linear modeling in the microarray setting
is model checking. Studentized residuals from the classic linear modeling
paradigm are often inappropriate in designs with only a few replicates due
to the large number of linear dependencies relative to the number of residu-
als. Specialized algorithms are often useful for very small designs; in Section
14.3.1, we discuss a technique for outlier detection in a factorial experiment
with just two replicates. The development of multivariate permutation tests
for the high-throughput setting would help alleviate this problem (Pesarin,
2001).

Multifactor linear models have been used for a variety of purposes in
microarray studies. In addition to identifying differentially expressed genes
due to treatments applied in combination, linear models have been very
useful for data preprocessing of cDNA microarrays (see Chapter 4). In
the estrogen example, we illustrate the interpretability of multifactor linear
models for single channel arrays; the results extend naturally to two-color
competitive hybridization platforms. We use the limma package for our

14. Differential Expression 241

analysis, but factDesign and daMA are also available for the analysis of
factorial designed microarray experiments.

14.3.1 Example: Estrogen data

The package estrogen contains 8 Affymetrix HG-U95Av2 CEL files from
an experiment involving breast cancer cells. We first perform quantile nor-
malization and calculate expression estimates using RMA (Irizarry et al.,
2003b).

> library("estrogen")

> library("limma")

> library("hgu95av2cdf")

> datadir <- system.file("extdata", package = "estrogen")

> targets <- readTargets("phenoData.txt", path = datadir,

+ sep = "")

> covdesc <- list("present or absent", "10 or 48 hours")

> names(covdesc) <- names(targets)[-1]

> pdata <- new("phenoData", pData = targets[, -1],

+ varLabels = covdesc)

> rownames(pData(pdata)) <- targets[, 1]

> gc()

> esAB <- ReadAffy(filenames = file.path(datadir,

+ targets$filename), phenoData = pdata)

> esEset <- rma(esAB)

This collection of eight arrays is a subset of 32 arrays from a 24 factorial
experiment with two replicates for each treatment condition on an estro-
gen receptor positive (ER+) breast cancer cell line, the complete analysis
of which is discussed in Scholtens et al. (2004). Upon binding to estro-
gen, the estrogen receptor (ER) acts as a transcription factor for specific
genes, either stimulating or repressing their expression and causing a host of
downstream effects. The investigators were interested in identifying primary
and secondary targets of estrogen in these cells, and noting any changes in
mRNA transcript behavior for the targets over time. After serum starvation
of all eight samples, four samples were exposed to estrogen and then har-
vested for microarray analysis after 10 hours for two samples and 48 hours
for the other two. The remaining four samples were left untreated and har-
vested after 10 hours for two samples, and 48 hours for the other two. An
exprSet named esEset contains expression levels for 12,625 probesets for
the 8 samples described above, as well as the corresponding phenoData
that specify the 22 factorial design.

> esEset

Expression Set (exprSet) with

12625 genes

8 samples

242 D. Scholtens and A. von Heydebreck

phenoData object with 2 variables and 8 cases

varLabels

estrogen: present or absent

time.h: 10 or 48 hours

> pData(esEset)

estrogen time.h

low10-1.cel absent 10

low10-2.cel absent 10

high10-1.cel present 10

high10-2.cel present 10

low48-1.cel absent 48

low48-2.cel absent 48

high48-1.cel present 48

high48-2.cel present 48

Outlier detection. Before applying linear models to each gene, it may
be of interest to investigate the presence of outliers in the data. The single
outlier detection method available in factDesign focuses on differences be-
tween replicates, thus preserving the independence and normality assumed
for the original observations. First, replicate pairs with differences that are
significantly larger than expected are identified according to an adjusted
F -statistic using the outlierPair function. Next, a median absolute devi-
ation filter is applied using madOutPair to ensure one of the observations
is indeed the single outlier. If no single outlier is detected, madOutPair will
return NA. For example, in Figure 14.4 728 at has a replicate pair with a
large difference, but neither observation appears to be outside the range
of the other data. On the other hand, 33379 at has one observation that
indeed appears to be a single outlier.

> library("factDesign")

> op1 <- outlierPair(exprs(esEset)["728_at",],

+ INDEX = pData(esEset))

> op1

$test

[1] TRUE

$pval

[1] 0.0143

$whichPair

[1] 7 8

> madOutPair(exprs(esEset)["728_at",], op1[[3]])

[1] NA

> op2 <- outlierPair(exprs(esEset)["33379_at",],

+ INDEX = pData(esEset))

> madOutPair(exprs(esEset)["33379_at",], op2[[3]])

14. Differential Expression 243

●

●

●

●

● ●

●

●

Conditions

lo
g

2
E

xp
re

ss
io

n
E

st
im

at
e

●

●
et

1

et
2

E
t1

E
t2

eT
1

eT
2

E
T

1

E
T

2

5.6

5.7

5.8

5.9

6.0

728_at

●

●

●

● ●

●

●
●

Conditions
lo

g
2

E
xp

re
ss

io
n

E
st

im
at

e

●

●

et
1

et
2

E
t1

E
t2

eT
1

eT
2

E
T

1

E
T

2

4.65

4.70

4.75

33379_at

Figure 14.4. Both probesets contain a replicate pair with a larger difference than
the other pairs for that probeset, however the single outlier is not obvious for
728 at.

[1] 1

The user must determine what to do with observations that appear to
be single outliers, keeping in mind that removing single outliers assumes
that the changes in expression across experimental conditions are small
compared to the outlier effects. For probe 33379 at, it could be the second
observation that is the outlier if true expression happens to be high at the
earlier time in the absence of estrogen. In this application, we choose to
leave the single outliers in the data set to preserve the balanced design.

Describing the Linear Model. The 22 factorial design of the estrogen
experiment makes it a natural fit for linear model analysis. In Equation
(14.1), yji is the observed expression level for gene j in sample i (i =
1, ..., 8) with xESi = 1 if estrogen is present and 0 otherwise and xTIMEi =
1 if gene expression was measured at 48 hours and 0 otherwise. Using
this parameterization, µj is the expression level of untreated gene j at 10
hours, βESj and βTIMEj represent the effects of estrogen and time on the
expression level of gene j, respectively, and the interaction term βES:TIMEj

quantifies any change in estrogen effect over time for gene j. The error term
εji is assumed to be normally distributed with mean 0 and variance σ2

j .

yji = µj + βESjxESi + βTIMEjxTIMEi + βES:TIMEjxESixTIMEi + εji

(14.1)
We use functions from the limma package to estimate the linear model

parameters for every gene using least squares, and call the estimates µ̂j ,
β̂ESj , β̂TIMEj , and β̂ES:TIMEj . For gene j, the samples that were not
treated with estrogen and were measured at 10 hours will have estimated

244 D. Scholtens and A. von Heydebreck

expression values of µ̂j . The estrogen-treated, 10-hour samples will have
estimates µ̂j + β̂ESj . The untreated, 48-hour samples will have estimates
µ̂j + β̂TIMEj . The estrogen-treated, 48-hour samples will have estimates
µ̂j + β̂ESj + β̂TIMEj + β̂ES:TIMEj . In what follows, we drop the j subscripts
for ease of notation, but the linear model parameters are understood to be
gene-specific.

> pdat <- pData(esEset)

> design <- model.matrix(~factor(estrogen) * factor(time.h),

+ pdat)

> colnames(design) <- c("Intercept", "ES", "T48",

+ "ES:T48")

> fit <- lmFit(esEset, design)

> fit$coefficients[1:3,]

Intercept ES T48 ES:T48

1000_at 10.33 -0.3725 -0.122 0.2725

1001_at 5.80 0.1075 0.191 0.0350

1002_f_at 5.66 -0.0676 -0.215 0.1944

Suppose we are interested in identifying genes that demonstrate response
to estrogen at 10 and/or 48 hours. Genes affected by estrogen at 10 hours
will demonstrate a difference in their untreated 10-hour expression levels
and their estrogen-treated 10-hour expression levels. Using the linear model
parameterization, these genes can be identified as those for which the null
hypothesis

H0,ES10 : µ = µ + βES or H0,ES10 : βES = 0 (14.2)

is rejected. Rejection of H0,ES10 indicates a difference in the untreated
10-hour and estrogen-treated 10-hour experimental conditions. A similar
null hypothesis can be constructed for genes affected by estrogen at 48
hours. We can compare the untreated, 48-hour expression levels to the
estrogen-treated 48-hour expression levels by testing the null hypothesis

H0,ES48 : µ + βTIME = µ + βTIME + βES + βES:TIME or (14.3)
H0,ES48 : βES + βES:TIME = 0. (14.4)

One way to select genes affected by estrogen at either or both time points
is to simultaneously test both contrasts

H0,ES :
{

βES = 0
βES + βES:TIME = 0 (14.5)

and then classify the genes according to whether they were affected by
estrogen at 10 hours, 48 hours, or both.

14. Differential Expression 245

lo
w

10
−

1.
ce

l

lo
w

10
−

2.
ce

l

hi
gh

10
−

1.
ce

l

hi
gh

10
−

2.
ce

l

lo
w

48
−

1.
ce

l

lo
w

48
−

2.
ce

l

hi
gh

48
−

1.
ce

l

hi
gh

48
−

2.
ce

l

37043_at
31798_at
39755_at
947_at
239_at
32174_at
32186_at
1536_at
37294_at
846_s_at
38653_at
40425_at
36890_at
41439_at
33878_at
39642_at
981_at
33252_at
1854_at
2042_s_at
36134_at
40533_at
36833_at
1803_at
1505_at
1515_at
1775_at
37686_s_at
37985_at
38116_at
910_at
38368_at
35995_at
1884_s_at
35141_at
1824_s_at
33901_at
40078_at
673_at
480_at
40117_at
41583_at
39756_g_at
41400_at
35312_at

Figure 14.5. Heatmap of expression levels for genes identified as estrogen targets
at both 10- and 48-hour time points.

> contM <- cbind(es10 = c(0, 1, 0, 0), es48 = c(0,

+ 1, 0, 1))

> fitC <- contrasts.fit(fit, contM)

> fitC <- eBayes(fitC)

> esClas <- classifyTestsF(fitC, p = 1e-05)

> print(colSums(abs(esClas)))

es10 es48

51 83

Heatmaps can be a helpful way to visualize the results of linear model
analyses for factorial designed experiments. Here we examine three separate
heatmaps for genes affected at 10 and 48, only 10, and only 48 hours.

The heatmap in Figure 14.5 helps identify collections of genes that show
similar, consistent patterns of up- or down-regulation by estrogen. For these
genes, we notice consistent effects for both time points. No genes in this ex-
ample demonstrate up-regulation at one time point and down-regulation at
the other, although such expression behavior could be detected by the con-
trasts we tested. Further experiments examining the joint behavior of these
genes could clarify effects of estrogen on breast cancer cellular pathways
that are consistent over time.

246 D. Scholtens and A. von Heydebreck

lo
w

10
−

1.
ce

l

lo
w

10
−

2.
ce

l

hi
gh

10
−

1.
ce

l

hi
gh

10
−

2.
ce

l

lo
w

48
−

1.
ce

l

lo
w

48
−

2.
ce

l

hi
gh

48
−

1.
ce

l

hi
gh

48
−

2.
ce

l

36634_at

34363_at

38827_at

35249_at

37485_at

1126_s_at

Estrogen target at 10 hours only

Figure 14.6. Heatmap of expression levels for genes identified as estrogen targets
at 10 hours only.

For the 10-hour only target genes, the heatmap in Figure 14.6 identifies
two similar clusters. Note that the genes that are up-regulated at 10 hours
return to their original expression level at 48 hours, whereas the genes that
are down-regulated at 10 hours stay down throughout the course of the
experiment.

The heatmap in Figure 14.7 shows genes that were chosen as estrogen
targets at 48 hours only and reveals that most of those genes had changes
in expression earlier in the experiment. One might conclude that the genes
affected at 10 hours comprise the direct targets of estrogen, that is, those
genes that are directly stimulated or inhibited by the estrogen-bound ER.
The 48-hour targets may be genes further downstream in estrogen-affected
pathways. While that is appealing, the time sequence data alone are not
strong enough to allow such conclusions.

Multifactor experiments, when designed very carefully with the appro-
priate biological context and estimable contrasts in mind, can lead to
highly informative information regarding the genetic network. As stated
previously, the estrogen data set consists of a subset of a larger 24 facto-
rial experiment. In additional to estrogen and time, the investigators also
exposed the breast cancer cells to cyclohexamide (CX), a translational in-
hibitor, as well as a drug, here called Z. Translational inhibition by CX

14. Differential Expression 247

lo
w

10
−

1.
ce

l

lo
w

10
−

2.
ce

l

hi
gh

10
−

1.
ce

l

hi
gh

10
−

2.
ce

l

lo
w

48
−

1.
ce

l

lo
w

48
−

2.
ce

l

hi
gh

48
−

1.
ce

l

hi
gh

48
−

2.
ce

l

40898_at
38551_at
2031_s_at
893_at
32272_at
32609_at
38254_at
33308_at
1544_at
38875_r_at
35227_at
36374_at
34238_at
32263_at
349_g_at
1943_at
1087_at
40079_at
33730_at
2049_s_at
40767_at
757_at
38065_at
39337_at
1476_s_at
38131_at
1592_at
40697_at
33255_at
36813_at
40195_at
1651_at
38414_at
39109_at
40412_at
33371_s_at
40619_at
34851_at

Estrogen target at 48 hours only

Figure 14.7. Heatmap of expression levels for genes identified as estrogen targets
at 48 hours only.

presents a problem for normalization because the presumption that most
genes are not differentially expressed is violated. Nevertheless, CX was cru-
cial to the interpretable experimental design as explained in what follows.
The full linear model for this factorial experiment consists of all four main
effects for CX, ES, Z, and TIME, as well as all possible interactions.

Rather than rely on time sequence alone, CX was a key factor in this
experiment for correctly identifying primary and secondary targets. For pri-
mary targets, estrogen can cause changes in mRNA levels regardless of the
presence of CX. In the presence of CX, however, mRNA from the primary
targets cannot be translated into protein, therefore preventing downstream
transcriptional changes for the secondary targets. At the ten hour time
point, primary estrogen targets were identified by testing

H0,primary : µ + βCX = µ + βCX + βES + βCX:ES = 0 or
H0,primary : βES + βCX:ES = 0 (14.6)

as a low p-value for this test of contrast would indicate that the expression
level of the gene when exposed only to CX was different than when exposed
to both ES and CX. Estrogen targets for which H0,primary (14.6) was not
rejected, but H0,ES10 (14.2) was rejected, were identified as secondary tar-

248 D. Scholtens and A. von Heydebreck

gets because they were affected by estrogen, but not in the presence of CX.
The fact that CX prevented expression level change due to ES indicated
that translation of some other ES target gene’s mRNA into protein was
required for ES stimulation or repression of the secondary ES target. Sim-
ilar tests of contrasts were also performed in this experiment to determine
which genes were affected by the drug Z, and whether Z executed its ac-
tion through transcriptional of translational control of the gene expression
mechanism.

14.4 Conclusion

In summary, microarrays are used in a wide variety of experimental settings
for the detection of differential gene expression. Although the goals and
design concerns of these experiments vary, concepts including gene filter-
ing, multiple comparisons adjustment, and gene selection according to the
appropriate test statistic apply in general to these experiments. The Bio-
conductor packages help address these concerns, thereby providing insight
into biological pathways and providing a platform for future hypothesis
development.

15

Multiple Testing Procedures:
the multtest Package and
Applications to Genomics

K. S. Pollard, S. Dudoit, and M. J. van der
Laan

Abstract

The Bioconductor R package multtest implements widely ap-
plicable resampling-based single-step and stepwise multiple testing
procedures (MTP) for controlling a broad class of Type I error rates.
The current version of multtest provides MTPs for tests concerning
means, differences in means, and regression parameters in linear and
Cox proportional hazards models. Typical testing scenarios are il-
lustrated by applying various MTPs implemented in multtest to the
Acute Lymphoblastic Leukemia (ALL) data set of Chiaretti et al.
(2004), with the aim of identifying genes whose expression mea-
sures are associated with (possibly censored) biological and clinical
outcomes.

15.1 Introduction

Current statistical inference problems in biomedical and genomic data anal-
ysis routinely involve the simultaneous test of thousands, or even millions,
of null hypotheses. Examples include:

• identification of differentially expressed genes in microarray exper-
iments, i.e., genes whose expression measures are associated with
possibly censored responses or covariates;

• tests of association between gene expression measures and Gene
Ontology (GO) annotation;

250 K. S. Pollard et al.

• identification of transcription factor binding sites in ChIP-Chip
experiments (Keleş et al., 2004);

• genetic mapping of complex traits using single nucleotide polymor-
phisms (SNP).

The above testing problems share the following general characteristics: in-
ference for high-dimensional multivariate distributions, with complex and
unknown dependence structures among variables; a broad range of pa-
rameters of interest, e.g. regression coefficients and correlations; many
null hypotheses, in the thousands or even millions; complex dependence
structures among test statistics.

Motivated by these applications, we have developed resampling-based
single-step and stepwise multiple testing procedures (MTP) for controlling
a broad class of Type I error rates. The main steps in applying a MTP
are listed in the flowchart of Table 15.1. The different components of our
multiple testing methodology are treated in detail in a collection of related
articles (Dudoit et al., 2004a,b; Pollard and van der Laan, 2004; van der
Laan et al., 2004a,b) and a book in preparation (Dudoit and van der Laan,
2004). In order to make this general methodology accessible, we have im-
plemented several MTPs in the Bioconductor R package multtest, which is
the subject of the current chapter. An expanded version of this chapter is
available on-line as a technical report (Pollard et al., 2004).

15.2 Multiple hypothesis testing methodology

15.2.1 Multiple hypothesis testing framework

Hypothesis testing is concerned with using observed data to test hypotheses,
i.e., make decisions, regarding properties of the unknown data generating
distribution. For example, microarray experiments might be conducted on
a sample of patients in order to identify genes whose expression levels are
associated with survival. Below, we discuss in turn the main ingredients of
a multiple testing problem.

Data. Let X1, . . . , Xn be a random sample of n independent and identi-
cally distributed (i.i.d.) random variables, X ∼ P ∈ M, where the data
generating distribution P is an element of a particular statistical model M
(i.e., a set of possibly non-parametric distributions). In a microarray exper-
iment, for example, X is a vector of gene expression measurements, which
we observe for each of n arrays.

Null and alternative hypotheses. Define M null hypotheses H0(m) ≡
I[P ∈ M(m)] in terms of a collection of submodels, M(m) ⊆ M, m =
1, . . . , M , for the data generating distribution P . The corresponding alter-

15. Multiple Testing 251

Table 15.1. Multiple hypothesis testing flowchart.

Provide data set
MTP arguments: X, W, Y, Z, Z.incl, and Z.test

⇓
Define parameters of interest, ψ(m)

⇓
Define null and alternative hypotheses, H0(m) and H1(m)

⇓
Specify test statistics, Tn(m)

MTP arguments: test, robust, standardize, alternative, and psi0

⇓
Estimate test statistics null distribution, Q0n

MTP arguments: nulldist and B

⇓
Select Type I error rate, θ(FVn,Rn

)
MTP arguments: typeone and alpha (and also k and q)

⇓
Apply MTP

MTP argument: method
FWER Pr(Vn > 0) Single-step maxT procedure (sec. 15.2.3)

Single-step minP procedure (sec. 15.2.3)
Step-down maxT procedure (sec. 15.2.4)
Step-down minP procedure (sec. 15.2.4)

gFWER Pr(Vn > k) Single-step T (k + 1) procedure
(sec. 15.2.3)
Single-step P (k + 1) procedure
(sec. 15.2.3)
Augmentation procedure (sec. 15.2.5)

TPPFP Pr(Vn/Rn > q) Augmentation procedure (sec. 15.2.5)
General θ(FVn

) Single-step common cutoff procedure
(sec. 15.2.3)
Single-step common quantile procedure
(sec. 15.2.3)

⇓
Summarize results

adjusted p-values, rejection regions, and confidence regions
MTP arguments: get.adjp, get.cutoff, and get.cr

252 K. S. Pollard et al.

native hypotheses are H1(m) ≡ I[P /∈ M(m)]. In many testing problems,
the submodels concern parameters, i.e., functions of the data generating
distribution P , Ψ(P) = ψ = (ψ(m) : m = 1, . . . , M), such as means, differ-
ences in means, correlation coefficients, and regression parameters.

Test statistics. A testing procedure is a data-driven rule for deciding
whether or not to reject each of the M null hypotheses H0(m) based on an
M -vector of test statistics, Tn = (Tn(m) : m = 1, . . . , M), that are functions
of the observed data. Denote the typically unknown (finite sample) joint
distribution of the test statistics Tn by Qn = Qn(P).

Single-parameter null hypotheses are commonly tested using t-statistics,
i.e., standardized differences,

Tn(m) ≡ Estimator − Null value
Standard error

=
√

n
ψn(m) − ψ0(m)

σn(m)
. (15.1)

For tests of means, Tn(m) is the usual one-sample or two-sample t-statistic,
where ψn(m) and σn(m) are based on empirical means and variances, re-
spectively. In some settings, it may be appropriate to use (unstandardized)
difference statistics, Tn(m) ≡

√
n[ψn(m) − ψ0(m)] (Pollard and van der

Laan, 2004). Test statistics for other types of null hypotheses include F -
statistics, χ2-statistics, and likelihood ratio statistics.

Multiple testing procedure. A multiple testing procedure (MTP) pro-
vides rejection regions, Cn(m), i.e., sets of values for each test statistic
Tn(m) that lead to the decision to reject the null hypothesis H0(m). In
other words, a MTP produces a random (i.e., data-dependent) subset Rn

of rejected hypotheses that estimates the set of true positives,

Rn = R(Tn, Q0n, α) ≡ {m : H0(m) is rejected} = {m : Tn(m) ∈ Cn(m)},
(15.2)

where the long notation R(Tn, Q0n, α) emphasizes that the MTP depends
on: (i) the data through the test statistics Tn; (ii) a (estimated) test statis-
tics null distribution, Q0n, for deriving rejection regions; and (iii) the
nominal level α, i.e., the desired upper bound for a suitably defined Type
I error rate. Unless specified otherwise, it is assumed that large values of
the test statistic, Tn(m), provide evidence against the corresponding null
hypothesis H0(m).

Example. Suppose that, as in the analysis of the ALL data set of Chiaretti
et al. (2004) (Section 15.4), one is interested in identifying genes that are
differentially expressed in two populations of ALL cancer patients, those
with the B-cell subtype and those with the T-cell subtype. The data consist
of random vectors X of microarray expression measures on M genes and
an indicator Y for the ALL subtype (1 for B-cell, 0 for T-cell). Then, the
parameter of interest is an M -vector of differences in mean expression mea-

15. Multiple Testing 253

Table 15.2. Type I and Type II errors in multiple hypothesis testing. H0 is the set
of true null hypotheses, H1 is the set of false null hypotheses (i.e., true positives),
and Rn is the set of rejected null hypotheses.

Null hypotheses
not rejected rejected

true |Rc
n ∩H0| Vn = |Rn ∩H0| h0 = |H0|

(Type I errors)
Null hypotheses

false Un = |Rc
n ∩H1| |Rn ∩H1| h1 = |H1|

(Type II errors)

M − Rn Rn = |Rn| M

sures in the two populations, ψ(m) = E[X(m)|Y = 1] − E[X(m)|Y = 0],
m = 1, . . . , M . To identify genes with higher mean expression measures
in the B-cell compared to T-cell ALL subjects, one can test the one-
sided null hypotheses H0(m) = I[ψ(m) ≤ 0] vs. the alternative hypotheses
H1(m) = I[ψ(m) > 0], using two-sample Welch t-statistics

Tn(m) ≡ X̄1,n1(m) − X̄0,n0(m)√
n−1

0 (m)σ2
0,n0

(m) + n−1
1 (m)σ2

1,n1
(m)

, (15.3)

where nk(m), X̄k,nk
(m), and σ2

k,nk
(m) denote, respectively, the sample

sizes, sample means, and sample variances, for patients with tumor sub-
type k, k = 0, 1.

Type I and Type II errors. In any testing situation, two types of er-
rors can be committed: a false positive, or Type I error, is committed by
rejecting a true null hypothesis, and a false negative, or Type II error, is
committed when the test procedure fails to reject a false null hypothesis.
The situation can be summarized by Table 15.2.

Type I error rates. When testing multiple hypotheses, there are many
possible definitions for the Type I error rate and power of a test procedure.
Accordingly, we define Type I error rates as parameters, θn = θ(FVn,Rn

),
of the joint distribution FVn,Rn

of the numbers of Type I errors Vn and
rejected hypotheses Rn (Dudoit et al., 2004b; Dudoit and van der Laan,
2004). Such a general representation covers the following commonly-used
Type I error rates.

254 K. S. Pollard et al.

Generalized family-wise error rate (gFWER), or probability of at least
(k + 1) Type I errors,

gFWER(k) ≡ Pr(Vn > k). (15.4)

When k = 0, the gFWER is the usual family-wise error rate (FWER),
or probability of at least one Type I error, FWER ≡ Pr(Vn > 0).

Tail probabilities for the proportion of false positives (TPPFP) among the
rejected hypotheses,

TPPFP (q) ≡ Pr(Vn/Rn > q), q ∈ (0, 1). (15.5)

False discovery rate (FDR), or expected value of the proportion of false
positives among the rejected hypotheses (Benjamini and Hochberg,
1995),

FDR ≡ E[Vn/Rn]. (15.6)

The convention that Vn/Rn ≡ 0 if Rn = 0 is used. Error rates based
on the proportion of false positives (e.g., TPPFP and FDR) are especially
appealing for large-scale testing problems such as those encountered in ge-
nomics, compared to error rates based on the number of false positives (e.g.,
gFWER), as they do not increase exponentially with the number of tested
hypotheses.

Adjusted p-values. The notion of p-value extends directly to multiple
testing problems, as follows. Given a MTP Rn(α) = R(Tn, Q0n, α), the
adjusted p-value P̃0n(m) = P̃ (Tn, Q0n)(m), for null hypothesis H0(m), is
defined as the smallest Type I error level α at which one would reject
H0(m), that is,

P̃0n(m) ≡ inf {α ∈ [0, 1] : m ∈ Rn(α)} (15.7)
= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m)} , m = 1, . . . , M.

As in single hypothesis tests, the smaller the adjusted p-value, the
stronger the evidence against the corresponding null hypothesis. Reporting
the results of a MTP in terms of adjusted p-values, as opposed to the binary
decisions to reject or not the hypotheses, provides flexible summaries that
can be used to compare different MTPs and do not require specifying the
level α ahead of time.

Confidence regions. For the test of single-parameter null hypotheses
and for any Type I error rate of the form θ(FVn), Pollard and van der
Laan (2004) and Dudoit and van der Laan (2004) provide results on the
correspondence between single-step MTPs and θ-specific confidence regions.

15. Multiple Testing 255

15.2.2 Test statistics null distribution

The choice of null distribution Q0 is crucial, in order to ensure that (finite
sample or asymptotic) control of the Type I error rate under the assumed
null distribution Q0 does indeed provide the required control under the
true distribution Qn(P). For error rates θ(FVn) (e.g., gFWER), defined as
arbitrary parameters of the distribution of the number of Type I errors Vn,
we propose as null distribution the asymptotic distribution Q0 = Q0(P) of
the M -vector Zn of null value shifted and scaled test statistics (Dudoit and
van der Laan, 2004; Dudoit et al., 2004b; Pollard and van der Laan, 2004;
van der Laan et al., 2004b),

Zn(m) ≡

√
min

{
1,

τ0(m)
V ar[Tn(m)]

}{
Tn(m) + λ0(m) − E[Tn(m)]

}
. (15.8)

For the test of single-parameter null hypotheses using t-statistics, the null
values are λ0(m) = 0 and τ0(m) = 1. For testing the equality of K
population means using F -statistics, the null values are λ0(m) = 1 and
τ0(m) = 2/(K − 1), under the assumption of equal variances in the differ-
ent populations. By shifting the test statistics Tn(m) as in Equation (15.8),
the number of Type I errors V0 under the null distribution Q0, is asymp-
totically stochastically greater than the number of Type I errors Vn under
the true distribution Qn = Qn(P).

Note that we are only concerned with Type I error control under the
true data generating distribution P . The notions of weak and strong con-
trol (and associated subset pivotality, Westfall and Young (Westfall and
Young, 1993), p. 42-43) are therefore irrelevant to our approach. In addi-
tion, we propose a null distribution for the test statistics, Tn ∼ Q0, and
not a data generating null distribution, X ∼ P0 ∈ ∩M

m=1M(m). The latter
practice does not necessarily provide proper Type I error control, as the
test statistics’ assumed null distribution Qn(P0) and their true distribution
Qn(P) may have different dependence structures, in the limit, for the true
null hypotheses.

Resampling procedures, such as the bootstrap procedure of section
15.2.2, may be used to conveniently obtain consistent estimators Q0n of
the null distribution Q0 and of the corresponding test statistic cutoffs and
adjusted p-values (Dudoit and van der Laan, 2004; Dudoit et al., 2004b;
Pollard and van der Laan, 2004; van der Laan et al., 2004b). This boot-
strap procedure is implemented in the internal function boot.resample and
may be specified via the arguments nulldist and B of the main user-level
function MTP.

Having selected a suitable test statistics null distribution, there remains
the main task of specifying rejection regions for each null hypothesis, i.e.,
cutoffs for each test statistic, such that the Type I error rate is controlled
at a desired level α. Next, we summarize the approaches to this task that

256 K. S. Pollard et al.

Bootstrap estimation of the null distribution Q0

1. Let P �
n denote an estimator of the data generating distribution P .

2. Generate B bootstrap samples, each consisting of n i.i.d.
realizations of a random variable X# ∼ P �

n . For the non-parametric
bootstrap, samples of size n are drawn at random, with replacement
from the observed data.

3. For the bth bootstrap sample, b = 1, . . . , B, compute an M -vector of
test statistics, and arrange these in an M × B matrix,
T#

n =
[
T#

n (m, b)
]
, with rows corresponding to the M null

hypotheses and columns to the B bootstrap samples.

4. Compute row means, E[Tn
#(m, ·)], and row variances,

V ar[Tn
#(m, ·)], of the matrix T#

n , to yield estimates of the true
means E[Tn(m)] and variances V ar[Tn(m)] of the test statistics,
respectively.

5. Obtain an M × B matrix, Z#
n =

[
Z#

n (m, b)
]
, of null value shifted

and scaled bootstrap statistics Z#
n (m, b), by row-shifting and scaling

the matrix T#
n as in Equation (15.8) using the bootstrap estimates

of E[Tn(m)] and V ar[Tn(m)] and the user-supplied null values
λ0(m) and τ0(m).

6. The bootstrap estimate Q0n of the null distribution Q0 is the
empirical distribution of the B columns Z#

n (·, b) of matrix Z#
n .

have been implemented in the multtest package. The chosen procedure is
specified using the method argument to the function MTP.

15.2.3 Single-step procedures for controlling general Type I
error rates θ(FVn)

Control of a Type I error rate θ(FVn
) can be obtained by substituting the

known, null distribution FR0 of the number of rejected hypotheses for the
unknown, true distribution FVn of the number of Type I errors. We propose
the following single-step common cutoff and common quantile procedures
(Dudoit et al., 2004b; Pollard and van der Laan, 2004).

General θ-controlling single-step common cutoff procedure

The set of rejected hypotheses is of the form Rn(α) ≡ {m : Tn(m) > c0},
where the common cutoff c0 is the smallest (i.e., least conservative) value
for which θ(FR0) ≤ α. For gFWER(k) control, the procedure is based on
the (k +1)st ordered test statistic. The adjusted p-values for the single-step

15. Multiple Testing 257

T (k + 1) procedure are given by

p̃0n(m) = PrQ0 (Z◦(k + 1) ≥ tn(m)) , m = 1, . . . , M, (15.9)

where Z◦(m) denotes the mth ordered component of Z = (Z(m) : m =
1, . . . , M) ∼ Q0, so that Z◦(1) ≥ . . . ≥ Z◦(M). For FWER control (k = 0),
one recovers the single-step maxT procedure.

General θ-controlling single-step common quantile procedure

The set of rejected hypotheses is of the form Rn(α) ≡ {m : Tn(m) >
c0(m)}, where c0(m) = Q−1

0,m(δ0) is the δ0-quantile of the marginal null
distribution Q0,m of the test statistic for the mth null hypothesis, i.e., the
smallest value c such that Q0,m(c) = PrQ0(Z(m) ≤ c) ≥ δ0 for Z ∼ Q0.
Here, δ0 is chosen as the smallest (i.e., least conservative) value for which
θ(FR0) ≤ α.

For gFWER(k) control, the procedure is based on the (k + 1)st ordered
unadjusted p-value. Specifically, let Q̄0,m ≡ 1 − Q0,m denote the survivor
functions for the marginal null distributions Q0,m and define unadjusted
p-values P0(m) ≡ Q̄0,m[Z(m)] and P0n(m) ≡ Q̄0,m[Tn(m)], for Z ∼ Q0 and
Tn ∼ Qn, respectively. The adjusted p-values for the single-step P (k + 1)
procedure are given by

p̃0n(m) = PrQ0 [P ◦
0 (k + 1) ≤ p0n(m)] , m = 1, . . . , M, (15.10)

where P ◦
0 (m) denotes the mth ordered component of the M -vector of un-

adjusted p-values P0 = [P0(m) : m = 1, . . . , M], so that P ◦
0 (1) ≤ . . . ≤

P ◦
0 (M). For FWER control (k = 0), one recovers the single-step minP

procedure.

15.2.4 Step-down procedures for controlling the family-wise
error rate

Step-down MTPs consider hypotheses successively, from most significant to
least significant, with further tests depending on the outcome of earlier ones.
van der Laan et al. (2004b) propose step-down common cutoff (maxT) and
common quantile (minP) procedures for controlling the family-wise error
rate, FWER.

FWER-controlling step-down common cutoff (maxT) procedure
Let On(m) denote the indices for the ordered test statistics Tn(m), so that
Tn(On(1)) ≥ . . . ≥ Tn(On(M)). Consider the distributions of maxima of
test statistics over the nested subsets of ordered null hypotheses On(h) ≡
{On(h), . . . , On(M)}. The adjusted p-values are given by

p̃0n[on(m)] = max
h=1,...,m

PrQ0

{
max

l∈�n(h)
Z(l) ≥ tn[on(h)]

}
, (15.11)

258 K. S. Pollard et al.

where Z = [Z(m) : m = 1, . . . , M] ∼ Q0.

FWER-controlling step-down common quantile (minP) proce-
dure.
Let On(m) denote the indices for the ordered unadjusted p-values P0n(m),
so that P0n[On(1)] ≤ . . . ≤ P0n[On(M)]. Consider the distributions of
minima of unadjusted p-values over the nested subsets of ordered null hy-
potheses On(h) ≡ {On(h), . . . , On(M)}. The adjusted p-values are given
by

p̃0n(on(m)) = max
h=1,...,m

PrQ0

{
min

l∈�n(h)
P0(l) ≤ p0n[on(h)]

}
, (15.12)

where P0(m) ≡ Q̄0,m[Z(m)] and P0n(m) ≡ Q̄0,m[Tn(m)], for Z ∼ Q0 and
Tn ∼ Qn, respectively.

15.2.5 Augmentation multiple testing procedures for
controlling tail probability error rates

van der Laan et al. (2004a), and subsequently Dudoit et al. (2004a) and
Dudoit and van der Laan (2004), propose augmentation multiple testing
procedures (AMTP), obtained by adding suitably chosen null hypotheses to
the set of null hypotheses already rejected by an initial gFWER-controlling
MTP. Adjusted p-values for the AMTP are shown to be simply shifted ver-
sions of the adjusted p-values of the original MTP. Denote the adjusted
p-values for the initial FWER-controlling procedure Rn(α) by P̃0n(m).
Order the M null hypotheses according to these p-values, from small-
est to largest, that is, define indices On(m), so that P̃0n[On(1)] ≤ . . . ≤
P̃0n[On(M)].

gFWER-controlling augmentation multiple testing procedure

For control of gFWER(k) at level α, given an initial FWER-controlling
procedure Rn(α), reject the Rn(α) = |Rn(α)| null hypotheses specified by
this MTP, as well as the next An(α) most significant hypotheses,

An(α) = min{k, M − Rn(α)}. (15.13)

The adjusted p-values P̃+
0n[On(m)] for the new gFWER-controlling AMTP

are simply k-shifted versions of the adjusted p-values of the initial FWER-
controlling MTP, with the first k adjusted p-values set to zero. That is,

P̃+
0n[On(m)] =

{
0, if m ≤ k

P̃0n[On(m − k)], if m > k
. (15.14)

15. Multiple Testing 259

The AMTP thus guarantees at least k rejected hypotheses.

TPPFP-controlling augmentation multiple testing procedure

For control of TPPFP (q) at level α, given an initial FWER-controlling
procedure Rn(α), reject the Rn(α) = |Rn(α)| null hypotheses specified by
this MTP, as well as the next An(α) most significant hypotheses,

An(α) = max
{

m ∈ {0, . . . , M − Rn(α)} :
m

m + Rn(α)
≤ q

}
(15.15)

= min
{⌊

qRn(α)
1 − q

⌋
, M − Rn(α)

}
,

where the floor �x� denotes the greatest integer less than or equal to x,
i.e., �x� ≤ x < �x� + 1. That is, keep rejecting null hypotheses until the
ratio of additional rejections to the total number of rejections reaches the
allowed proportion q of false positives. The adjusted p-values P̃+

0n[On(m)]
for the new TPPFP-controlling AMTP are simply mq-shifted versions of
the adjusted p-values of the initial FWER-controlling MTP. That is,

P̃+
0n(On(m)) = P̃0n(On(�(1 − q)m�)), m = 1, . . . , M, (15.16)

where the ceiling �x� denotes the least integer greater than or equal to x.

FDR-controlling procedures

Given any TPPFP-controlling procedure, van der Laan et al. (2004a) derive
two simple (conservative) FDR-controlling procedures. The more general
and conservative procedure controls the FDR at nominal level α, by control-
ling TPPFP (α/2) at level α/2. The less conservative procedure controls
the FDR at nominal level α, by controlling TPPFP (1 −

√
1 − α) at level

1 −
√

1 − α. The reader is referred to the original article for details and
proofs of FDR control (Section 2.4, Theorem 3). In what follows, we refer
to these two MTPs as conservative and restricted, respectively.

15.3 Software implementation: R multtest package

The MTPs proposed in Sections 15.2.3 - 15.2.5 are implemented in the
latest version of the Bioconductor R package multtest (Version 1.5.4). We
stress that all the bootstrap-based MTPs implemented in multtest can be
performed using the main user-level function MTP. Note that the multtest
package also provides several simple, marginal FWER-controlling MTPs,
available through the mt.rawp2adjp function, which takes a vector of unad-
justed p-values as input and returns the corresponding adjusted p-values.
For greater detail on multtest functions, the reader is referred to the pack-

260 K. S. Pollard et al.

age documentation, in the form of help files, e.g., ?MTP, and vignettes, e.g.,
openVignette("multtest").

15.3.1 Resampling-based multiple testing procedures: MTP

function

The main user-level function for resampling-based multiple testing is MTP.

> args(MTP)

function (X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL,

Z.test = NULL, na.rm = TRUE, test = "t.twosamp.unequalvar",

robust = FALSE, standardize = TRUE, alternative = "two.sided",

psi0 = 0, typeone = "fwer", k = 0, q = 0.1,

fdr.method = "conservative", alpha = 0.05, nulldist = "boot",

B = 1000, method = "ss.maxT", get.cr = FALSE, get.cutoff = FALSE,

get.adjp = TRUE, keep.nulldist = FALSE, seed = NULL)

INPUT.

Data. The data, X, consist of a J-dimensional random vector, observed
on each of n sampling units (patients, cell lines, mice, etc.). Other
data components include weights W, a possibly censored continuous
or polychotomous outcome Y, and additional covariates Z, whose use is
specified with the arguments Z.incl and Z.test. The argument na.rm

controls the treatment of missing values (NA). It is TRUE by default, so
that an observation with a missing value in any of the data objects’
jth component (j = 1, . . . , J) is excluded from the computation of
any test statistic based on this jth variable.

Test statistics. In the current implementation of multtest, the following
test statistics are available through the argument test: one-sample
t-statistics for tests of means; equal and unequal variance two-sample
t-statistics for tests of differences in means; paired t-statistics; multi-
sample F -statistics for tests of differences in means in one-way and
two-way designs; t-statistics for tests of regression coefficients in linear
models and Cox proportional hazards survival models. Robust, rank-
based versions of the above test statistics can be specified by setting
the argument robust to TRUE (the default value is FALSE).

Type I error rate. The MTP function controls by default the FWER (ar-
gument typeone="fwer"). Augmentation procedures (Section 15.2.5),
controlling other Type I error rates such as the gFWER, TPPFP, and
FDR, can be specified through the argument typeone. Details regard-
ing the related arguments k, q, and fdr.method are available in the
package documentation. The nominal level of the test is determined
by the argument alpha, by default 0.05.

15. Multiple Testing 261

Test statistics null distribution. The test statistics null distribution is es-
timated by default using the non-parametric version of the bootstrap
procedure of section 15.2.2 (argument nulldist="boot"). Permutation
null distributions are also available via nulldist="perm". The number
of resampling steps is specified by the argument B, by default 1,000.

Multiple testing procedures. The MTP function implements the single-step
and step-down (common cutoff) maxT and (common quantile) minP
MTPs for FWER control, described in Sections 15.2.3 and 15.2.4, and
specified through the argument method. In addition, augmentation
procedures (AMTPs) are implemented in the functions fwer2gfwer,
fwer2tppfp, and fwer2fdr, which take FWER adjusted p-values as
input and return augmentation adjusted p-values for control of the
gFWER, TPPFP, and FDR, respectively. These AMTPs can also be
applied directly via the typeone argument of the main function MTP.

Output control. Additional arguments allow the user to specify which
combination of MTP results should be returned.

OUTPUT.

The S4 class/method object-oriented programming approach was adopted
to summarize the results of a MTP. The output of the MTP function is an
instance of the class MTP , with the following slots,

> slotNames("MTP")

[1] "statistic" "estimate" "sampsize" "rawp"

[5] "adjp" "conf.reg" "cutoff" "reject"

[9] "nulldist" "call" "seed"

MTP results. An instance of the MTP class contains slots for the following
MTP results: statistic, an M -vector of test statistics; estimate, an
M -vector of estimated parameters; rawp, an M -vector of unadjusted
p-values; adjp, an M -vector of adjusted p-values; conf.reg, lower and
upper simultaneous confidence limits for the parameter vector; cut-
off, cutoffs for the test statistics; reject, rejection indicators (TRUE
for a rejected null hypothesis).

Null distribution. The nulldist slot contains the M × B matrix for the
estimated test statistics null distribution.

Reproducibility. The slot call contains the call to the function MTP, and
seed is an integer specifying the state of the random number generator
used to create the resampled data sets.

262 K. S. Pollard et al.

15.3.2 Numerical and graphical summaries

The following methods were defined to operate on MTP instances and sum-
marize the results of a MTP. The print method returns a description of an
object of class MTP . The summary method returns a list with the the fol-
lowing components: rejections, number(s) of rejected hypotheses; index,
indices for ordering the hypotheses according to significance; summaries,
six number summaries of the distributions of the adjusted p-values, unad-
justed p-values, test statistics, and parameter estimates. The plot method
produces graphical summaries of the results of a MTP. The type of display
may be specified via the which argument. Methods are also provided for
subsetting ([) and conversion (as.list).

15.4 Applications: ALL microarray data set

15.4.1 ALL data package and initial gene filtering

We illustrate some of the functionality of the multtest package using the
Acute Lymphoblastic Leukemia (ALL) microarray data set of Chiaretti
et al. (2004), available in the data package ALL. The main object in this
package is ALL, an instance of the class exprSet . The genes-by-subjects ma-
trix of 12,625 Affymetrix expression measures (chip series HG-U95Av2) for
each of 128 ALL patients is provided in the exprs slot of ALL. The phenoData

slot contains 21 phenotypes (i.e., patient level responses and covariates) for
each patient. Note that the expression measures have been obtained using
the three-step robust multichip average (RMA) preprocessing method, im-
plemented in the package affy. In particular, the expression measures have
been subject to a base 2 logarithmic transformation. For greater detail,
please consult the ALL package documentation and Appendix A.1.1.

> library("ALL")

> library("hgu95av2")

> data(ALL)

Our goal is to identify genes whose expression measures are associated
with (possibly censored) biological and clinical outcomes such as: tumor
cellular subtype (B-cell vs. T-cell), tumor molecular subtype (BCR/ABL,
NEG, ALL1/AF4), and time to relapse. Alternative analyses of this data
set are discussed in Chapters 10, 12, 16, 17, and 23. Before applying the
MTPs, we perform initial gene filtering as in Chiaretti et al. (2004) and
retain only those genes for which: (i) at least 20% of the subjects have a
measured intensity of at least 100 and (ii) the coefficient of variation (i.e.,
the ratio of the standard deviation to the mean) of the intensities across
samples is between 0.7 and 10. These two filtering criteria can be readily
applied using functions from the genefilter package.

15. Multiple Testing 263

> ffun <- filterfun(pOverA(p = 0.2, A = 100), cv(a = 0.7,

+ b = 10))

> filt <- genefilter(2^exprs(ALL), ffun)

> filtALL <- ALL[filt,]

> filtX <- exprs(filtALL)

> pheno <- pData(filtALL)

The new filtered data set, filtALL, contains expression measures on 431
genes, for 128 patients.

15.4.2 Association of expression measures and tumor cellular
subtype: Two-sample t-statistics

In this example we examine use of FWER-controlling step-down minP MTP
with two-sample Welch t-statistics and bootstrap null distribution.

Different tissues are involved in ALL tumors of the B-cell and T-cell
subtypes. The phenotypic data include a variable, BT, which encodes the
tissue type and stage of differentiation. In order to identify genes with
higher mean expression measures in B-cell ALL patients compared to T-
cell ALL patients, we create an indicator variable, Bcell (1 for B-cell, 0 for
T-cell), and compute, for each gene, a two-sample Welch (unequal variance)
t-statistic. We choose to control the FWER using the bootstrap-based step-
down minP procedure with B = 100 bootstrap iterations, although more
bootstrap iterations are recommended in practice.

> table(pData(ALL)$BT)

B B1 B2 B3 B4 T T1 T2 T3 T4

5 19 36 23 12 5 1 15 10 2

> Bcell <- rep(0, length(pData(ALL)$BT))

> Bcell[grep("B", as.character(pData(ALL)$BT))] <- 1

> seed <- 99

> BT.boot <- cache("BT.boot", MTP(X = filtX, Y = Bcell,

+ alternative = "greater", B = 100, method = "sd.minP",

+ seed = seed))

running bootstrap...

iteration = 100

Let us examine the results of the MTP stored in the object BT.boot.

> summary(BT.boot)

MTP: sd.minP

Type I error rate: fwer

Level Rejections

1 0.05 273

264 K. S. Pollard et al.

Min. 1st Qu. Median Mean 3rd Qu. Max.

adjp 0.00 0.000 0.000 0.364 1.000 1.00

rawp 0.00 0.000 0.000 0.354 1.000 1.00

statistic -34.40 -1.570 2.010 2.060 5.380 22.30

estimate -4.66 -0.317 0.381 0.326 0.995 4.25

The summary method prints the name of the MTP (here, sd.minP, for
step-down minP), the Type I error rate (here, fwer), the number of re-
jections at each Type I error rate level specified in alpha (here, 273 at
level α = 0.05), and six number summaries (mean and quantiles) of
the adjusted p-values, unadjusted p-values, test statistics, and parameter
estimates (here, difference in means).

The following commands may be used to obtain a list of genes that are
differentially expressed in B-cell vs. T-cell ALL patients at nominal FWER
level α = 0.05, i.e., genes with adjusted p-values less than or equal to 0.05.
Functions from the annotate and annaffy packages may then be used to
obtain annotation information on these genes (e.g., gene names, PubMed
abstracts, GO terms) and to generate HTML tables of the results (see
Chapters 7 and 9). Here, we list the names of the first two genes only.

> BT.diff <- BT.boot@adjp <= 0.05

> BT.AffyID <- geneNames(filtALL)[BT.diff]

> mget(BT.AffyID[1:2], env = hgu95av2GENENAME)

$"1005_at"

[1] "dual specificity phosphatase 1"

$"1065_at"

[1] "fms-related tyrosine kinase 3"

Various graphical summaries of the results may be obtained using the
plot method, by selecting appropriate values of the argument which. Fig-
ure 15.1 displays four such plots. We see (top left) that the number of
rejections increases slightly when nominal FWER is greater than 0.6, and
then increases quickly as FWER approaches 1. Similarly, the adjusted p-
values for many genes are close to either 0 or 1 (top right) and the test
statistics for genes with small p-values do not overlap with those for genes
with p-values close to 1 (bottom left). Together these results indicate that
there is a clear separation between the rejected and accepted hypotheses,
i.e., between genes that are declared differentially expressed and those that
are not.

> par(mfrow = c(2, 2))

> plot(BT.boot)

15. Multiple Testing 265

0.0 0.2 0.4 0.6 0.8 1.0

30
0

35
0

40
0

Type I error rate

N
um

be
r

of
 r

ej
ec

te
d

hy
po

th
es

es Rejections vs. Error Rate

0 100 200 300 400

0.
0

0.
4

0.
8

Number of rejected hypotheses

S
or

te
d

A
dj

us
te

d
p−

va
lu

es

Ordered Adjusted p−values

−30 −10 0 10 20

0.
0

0.
4

0.
8

Test statistics

A
dj

us
te

d
p−

va
lu

es

Adjusted p−values vs. Statistics

0 100 200 300 400

0.
0

0.
4

0.
8

Index

A
dj

us
te

d
p−

va
lu

es

Unordered Adjusted p−values

Figure 15.1. B-cell vs. T-cell ALL – FWER-controlling step-down minP MTP. By
default, four graphical summaries are produced by the plot method for instances
of the class MTP .

15.4.3 Augmentation procedures

In the context of microarray gene expression data analysis or other high-
dimensional inference problems, one is often willing to tolerate some false
positives, provided their number is small in comparison to the number of
rejected hypotheses. In this case, the FWER is not a suitable choice of
Type I error rate, and one should consider other rates that lead to larger
sets of rejected hypotheses. The augmentation procedures of Section 15.2.5,
implemented in the function MTP, allow one to reject additional hypotheses,
while controlling an error rate such as the generalized family-wise error
rate (gFWER), the tail probability for the proportion of false positives
(TPPFP), or the false discovery rate (FDR). We illustrate the use of the
fwer2tppfp and fwer2fdr functions, but note that the gFWER, TPPFP,
and FDR can also be controlled directly using the main MTP function, with
appropriate choices of arguments typeone, k, q, and fdr.method.

TPPFP control.

> q <- c(0.05, 0.1, 0.25)

> BT.tppfp <- fwer2tppfp(adjp = BT.boot@adjp, q = q)

> comp.tppfp <- cbind(BT.boot@adjp, BT.tppfp)

> mtps <- c("FWER", paste("TPPFP(", q, ")", sep = ""))

> mt.plot(adjp = comp.tppfp, teststat = BT.boot@statistic,

+ proc = mtps, leg = c(0.1, 430), col = 1:4,

266 K. S. Pollard et al.

+ lty = 1:4, lwd = 3)

> title("Comparison of TPPFP(q)-controlling AMTPs\n based on SD minP MTP")

Figure 15.2 (left) shows that, as expected, the number of rejections in-
creases with the allowed proportion q of false positives when controlling
TPPFP (q) at a given level α.

FDR control. Given any TPPFP-controlling MTP, van der Laan et al.
(2004a) derive two simple (conservative) FDR-controlling MTPs. Here,
we compare these two FDR-controlling approaches, based on a TPPFP-
controlling augmentation of the step-down minP procedure, to the marginal
Benjamini and Hochberg (Benjamini and Hochberg, 1995) and Benjamini
and Yekutieli (Benjamini and Yekutieli, 2001) procedures, implemented in
the function mt.rawp2adjp. The following code chunk first computes ad-
justed p-values for the augmentation procedures, then for the marginal
procedures, and finally makes a plot of the numbers of rejections vs. the
nominal FDR for the four MTPs.

> BT.fdr <- fwer2fdr(adjp = BT.boot@adjp, method = "both")$adjp

> BT.marg.fdr <- mt.rawp2adjp(rawp = BT.boot@rawp,

+ proc = c("BY", "BH"))

> comp.fdr <- cbind(BT.fdr, BT.marg.fdr$adjp[

+ order(BT.marg.fdr$index), -1])

> mtps <- c("AMTP Cons", "AMTP Rest", "BY", "BH")

> mt.plot(adjp = comp.fdr, teststat = BT.boot@statistic,

+ proc = mtps, leg = c(0.1, 430), col = c(2,

+ 2, 3, 3), lty = rep(1:2, 2), lwd = 3)

> title("Comparison of FDR-controlling MTPs")

Figure 15.2 (right) shows that the AMTPs based on conservative bounds
for the FDR (“AMTP Cons”and“AMTP Rest”) are more conservative than
the Benjamini and Hochberg (“BH”) MTP for nominal FDR less than 0.4,
but less conservative than “BH” for larger FDR. The Benjamini and Yeku-
tieli (“BY”) MTP, a conservative version of the Benjamini and Hochberg
MTP (with ∼ log M penalty on the p-values), leads to the fewest rejections.

15.4.4 Association of expression measures and tumor
molecular subtype: Multi-sample F -statistics

The phenotype data include a variable, mol.bio, which records chromo-
somal abnormalities, such as the BCR/ABL gene rearrangement; these
abnormalities concern primarily patients with B-cell ALL and may be re-
lated to prognosis. To identify genes with differences in mean expression
measures between different tumor molecular subtypes (BCR/ABL, NEG,
ALL1/AF4, E2A/PBX1, p15/p16), within B-cell ALL subjects, one can
perform a family of F -tests. Tumor subtypes with fewer than 10 subjects
are removed from the analysis. Adjusted p-values and test statistic cutoffs

15. Multiple Testing 267

0.0 0.2 0.4 0.6 0.8 1.0

3
0

0
3

5
0

4
0

0

Type I error rate

N
u
m

b
e
r

o
f

re
je

c
te

d
 h

y
p

o
th

e
s
e

s

FWER
TPPFP(0.05)
TPPFP(0.1)
TPPFP(0.25)

Comparison of TPPFP(q)−controlling AMTPs
 based on SD minP MTP

0.0 0.2 0.4 0.6 0.8 1.0
3
0
0

3
5
0

4
0

0

Type I error rate

N
u
m

b
e
r

o
f
re

je
c
te

d
 h

y
p
o
th

e
s
e
s

AMTP Cons
AMTP Rest
BY
BH

Comparison of FDR−controlling MTPs

Figure 15.2. B-cell vs. T-cell ALL – TPPFP and FDR-controlling AMTPs. Plots
of number of rejected hypotheses vs. nominal Type I error rate. Left: Comparison
of TPPFP-controlling AMTPs, based on the FWER-controlling bootstrap-based
step-down minP procedure, for different allowed proportions q of false positives.
Right: Comparison of four FDR-controlling MTPs.

(for nominal levels α of 0.01 and 0.10) are computed as follows for the
FWER-controlling bootstrap-based single-step maxT procedure.

> BX <- filtX[, Bcell == 1]

> Bpheno <- pheno[Bcell == 1,]

> mb <- as.character(Bpheno$mol.biol)

> table(mb)

mb

ALL1/AF4 BCR/ABL E2A/PBX1 NEG p15/p16

10 37 5 42 1

> other <- c("E2A/PBX1", "p15/p16")

> mb.boot <- cache("mb.boot", MTP(X = BX[, !(mb %in%

+ other)], Y = mb[!(mb %in% other)], test = "f",

+ alpha = c(0.01, 0.1), B = 100, get.cutoff = TRUE,

+ seed = seed))

running bootstrap...

iteration = 100

> mb.rej <- summary(mb.boot)$rejections

> mb.rej

Level Rejections

1 0.01 416

2 0.10 418

268 K. S. Pollard et al.

For control of the FWER at nominal level α = 0.01, the bootstrap-
based single-step maxT procedure with F -statistics identifies 416 genes as
having significant differences in mean expression measures between tumor
molecular subtypes.

15.4.5 Association of expression measures and time to
relapse: Cox t-statistics

The bootstrap-based MTPs implemented in the main MTP function
(nulldist="boot") allow the test of hypotheses concerning regression pa-
rameters in models for which the subset pivotality condition may not hold
(e.g., logistic and Cox proportional hazards models). The phenotype infor-
mation in the ALL package includes the original remission status of the
ALL patients (remission variable in the data.frame pData(ALL)). There
are 66 B-cell ALL subjects who experienced original complete remission
(remission="CR") and who were followed up for remission status at a later
date. We apply the single-step maxT procedure to test for a significant asso-
ciation between expression measures and time to relapse amongst these 66
subjects, adjusting for sex. Note that most of the code below is concerned
with extracting the (censored) time to relapse outcome and covariates from
slots of the exprSet instance ALL.

> cr.ind <- (Bpheno$remission == "CR")

> cr.pheno <- Bpheno[cr.ind,]

> times <- strptime(cr.pheno$"date last seen", "%m/%d/%Y") -

+ strptime(cr.pheno$date.cr, "%m/%d/%Y")

> time.ind <- !is.na(times)

> times <- times[time.ind]

> cens <- ((1:length(times)) %in% grep("CR", cr.pheno[time.ind,

+ "f.u"]))

> rel.times <- Surv(times, !cens)

> patients <- (1:ncol(BX))[cr.ind][time.ind]

> relX <- BX[, patients]

> relZ <- Bpheno[patients,]

> cox.boot <- cache("cox.boot", MTP(X = relX, Y = rel.times,

+ Z = relZ, Z.incl = "sex", Z.test = NULL, test = "coxph.YvsXZ",

+ B = 100, get.cr = TRUE, seed = seed))

For control of the FWER at nominal level α = 0.05, the bootstrap-based
single-step maxT procedure identifies 22 genes whose expression measures
are significantly associated with time to relapse. Using the function mget,
we examine the names of these genes.

> cox.diff <- cox.boot@adjp <= 0.05

> sum(cox.diff)

[1] 22

15. Multiple Testing 269

> cox.AffyID <- geneNames(filtALL)[cox.diff]

> mget(cox.AffyID, env = hgu95av2GENENAME)

$"106_at"

[1] "runt-related transcription factor 3"

$"1403_s_at"

[1] "chemokine (C-C motif) ligand 5"

$"182_at"

[1] "inositol 1,4,5-triphosphate receptor, type 3"

$"286_at"

[1] "histone 2, H2aa"

$"296_at"

[1] "tubulin, beta 2"

$"33232_at"

[1] "cysteine-rich protein 1 (intestinal)"

$"34308_at"

[1] "histone 1, H2ac"

$"35127_at"

[1] "histone 1, H2ae"

$"36638_at"

[1] "connective tissue growth factor"

$"37027_at"

[1] "AHNAK nucleoprotein (desmoyokin)"

$"37218_at"

[1] "BTG family, member 3"

$"37343_at"

[1] "inositol 1,4,5-triphosphate receptor, type 3"

$"38124_at"

[1] "midkine (neurite growth-promoting factor 2)"

$"39182_at"

[1] "epithelial membrane protein 3"

$"39317_at"

[1] "cytidine monophosphate-N-acetylneuraminic acid

hydroxylase (CMP-N-acetylneuraminate monooxygenase)"

270 K. S. Pollard et al.

$"39331_at"

[1] "tubulin, beta 2"

$"39338_at"

[1] "S100 calcium binding protein A10 (annexin II ligand,

calpactin I, light polypeptide (p11))"

$"40147_at"

[1] "vesicle amine transport protein 1 homolog (T californica)"

$"40567_at"

[1] "tubulin, alpha 3"

$"40729_s_at"

[1] "allograft inflammatory factor 1"

$"41071_at"

[1] "serine protease inhibitor, Kazal type 2 (acrosin-

trypsin inhibitor)"

$"41164_at"

[1] "immunoglobulin heavy constant mu"

Figure 15.3 is a plot of the Cox regression coefficient estimates (circles)
and corresponding confidence regions (text indicating the level) for the five
genes with the smallest adjusted p-values. The plot illustrates that the level
α = 0.05 confidence regions corresponding to the significant gene does not
include the null value ψ0 = 0 for the Cox regression parameters (red line).
The confidence regions for the next four genes, do include 0.

> plot(cox.boot, which = 5, top = 5, sub.caption = NULL)

> abline(h = 0, col = "red")

15.5 Discussion

The multtest package implements resampling-based multiple testing proce-
dures that can be applied to a broad range of testing problems in biomedical
and genomic data analysis. Ongoing efforts involve expanding the class of
MTPs implemented in multtest, enhancing software design and the user in-
terface, and increasing computational efficiency. Specifically, regarding the
offering of MTPs, we envisage the following new developments.

• Expanding the class of available tests, by adding test statistic clo-
sures for tests of correlations, quantiles, and parameters in generalized
linear models (e.g., logistic regression).

15. Multiple Testing 271

1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

Top 5 Hypotheses

Hypotheses

E
st

im
at

es

o o

o
o o

0.05
0.05 0.05 0.05 0.05

0.05

0.05

0.05

0.05 0.05

Estimates & Confidence Regions

Figure 15.3. Time to relapse – FWER-controlling single-step maxT MTP. Plot of
Cox regression coefficient estimates and corresponding confidence intervals for the
fifteen genes with the smallest adjusted p-values, based on the FWER-controlling
bootstrap-based single-step maxT procedure (plot method, which=5).

• Expanding the class of resampling-based estimators for the test
statistics null distribution (e.g., parametric bootstrap, Bayesian
bootstrap), possibly using a function closure approach.

• Providing parameter confidence regions and test statistic cutoffs for
other Type I error rates than the FWER.

• Implementing the new augmentation multiple testing procedures pro-
posed in Dudoit et al. (2004a) and Dudoit and van der Laan (2004),
for controlling tail probabilities Pr(g(Vn, Rn) > q) for an arbitrary
function g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn.

Efforts regarding software design and the user interface include the
following.

• Providing a formula interface for a symbolic description of the tests
to be performed (cf. model specification in lm).

• Providing an update method for objects of class MTP , to facili-
tate the reuse of available estimates of the null distribution when
implementing new MTPs.

• Extending the MTP class to keep track of results for several MTPs.

16

Machine Learning Concepts and
Tools for Statistical Genomics

V. J. Carey

Abstract
In this chapter, supervised machine learning methods are de-

scribed in the context of microarray applications. The most widely
used families of machine learning methods are described, along
with various approaches to learner assessment. The Bioconductor
interfaces to machine learning tools are described and illustrated.
Key problems of model selection and interpretation are reviewed in
examples.

16.1 Introduction

Machine learning refers to computational and statistical inference processes
employed to create, on the basis of observational data, reusable algorithms
for prediction. The term machine is introduced to reflect the view that
the creation of the predictive algorithm should occur with minimal human
intervention, and the predictions for future observations should occur with
no human intervention.

This chapter is focused on the subdiscipline of machine learning known
as supervised learning, in which some a priori knowledge about the phe-
nomena under investigation is available to guide the learning process. This
is in contrast to unsupervised learning methods such as cluster analysis,
where structure or labelings are imposed solely on the basis of the data
configuration, with no a priori classification or labeling available.

Primary concerns of supervised learning methods are

• establishing acceptable quantitative representations of features and
distance concepts supporting quantitative comparison of feature sets
(see Chapter 12),

274 V. J. Carey

• creating algorithmic classifiers that reach decisions without human
intervention,

• evaluating the performance of algorithmic classifiers,

• interpreting features of the performance of an algorithmic classifier
to engender new substantive knowledge in the domain to which it is
applied, and

• devising general principles of classifier construction.

Each one of these concerns leads to difficult research questions in a vari-
ety of domains. Accounts used in the preparation of this chapter include
texts by Ripley (1996a), Duda et al. (2001), Hastie et al. (2001), Schölkopf
and Smola (2001), and Vapnik (1998). The Journal of Machine Learning
Research is published electronically at www.jmlr.org/papers. A special is-
sue of the journal Machine Learning, devoted to applications in functional
genomics, was published in 2003 (v. 52).

An abstract statement of a pattern recognition problem is as follows. We
have I objects, each bearing J-vector of features xi, i = 1, . . . , J , and a
class label y. The solution to the pattern classification problem consists
of a function C(x) that computes the class label y of the object bearing
feature vector x. Machine learning involves estimating the function C on
the basis of “training samples,” and evaluating the performance of an esti-
mated function Ĉ using “test samples.”Thus we have y, the true class label
associated with feature vector x, C(·), an element of a set C of computable
functions from elements of the feature space to elements of the set of class
labels, and Ĉ(·), an element of C selected on the basis of a training set of
feature vectors.

Statistical considerations are central to the theory of machine learning.
We will consider applications in genomics, where commitments to para-
metric statistical models for features and class-feature relations are hard to
justify. Sample splitting , cross-validation and the bootstrap are fundamental
tools for non-parametric evaluation of machine learning applications.

The next Section introduces applied machine learning with a very re-
stricted example involving two probesets in the ALL data. Subsequent
sections review families of learning methods, principles of model assessment,
and detailed examples with the ALL data package.

16.2 Illustration: Two continuous features; decision
regions

To set the stage for review of machine learning concepts and implementa-
tion, Figure 16.1 depicts decision regions produced by four different machine

16. Machine Learning 275

Figure 16.1. Decision regions for the distinction between two subtypes of acute
lymphatic leukemia (ALL). The subtypes are those tumors with fusion of the
BCR and ABL genes and without. As features, two randomly selected genes
are used: olfactory receptor 6 B1 (OR6B1, probeset 31424 at) and somatostatin
(SST, probeset 37782 at). Four different machine learning procedures are used to
derive the decision regions. If the color of (x, y) is peach, the subject bearing gene
expression levels (x, y) is predicted to have status NEG; if the color is turquoise,
the subject is predicted to have BCR/ABL positive status.

learning procedures to a single set of ALL data. We will explicitly define
the different procedures in subsequent sections.

Each of the panels in Figure 16.1 constitutes a solution to the pattern
recognition problem as described above. Given values of expression on
HG-U95Av2 probesets 31424 at (OR6B1) and 37782 at (SST) measured
on B-cells derived from an ALL patient, the class of the patient’s malig-
nancy is predicted according to the color of the point (OR6B1, SST). The
display exposes a number of issues in the deployment of machine learning
tools that must be addressed in applications.

• The decision regions are confined by the ranges of feature values ob-
served up to the time of model construction. Applications of machine
learning tools need to explicitly define how decisions are reached when
feature values are presented that are outside the range of those used

276 V. J. Carey

to construct the model. Reasonable procedures for extrapolation may
be available in some contexts; in others, a declaration of outlier may
be necessary.

• The use of sharp decision boundaries is often artificial. Feature com-
binations that are on or are very close to a boundary may more
realistically lead to decisions of doubt . A declaration of doubt may
be of interest in its own right, or may be an indication that fur-
ther studies are in order for the subject bearing the hard-to-classify
features.

• It is clear that the different procedures do not agree in detail. In
fact, each of the procedures depends upon a configuration of tuning
parameters. Changes to the values of the tuning parameters can sub-
stantially alter the appearance of the decision regions. Effective choice
of tuning parameter configuration is a central problem in applications
of machine learning methods.

• Selection of machine learning procedure families or tuning parameter
configurations should be governed by accuracy and practical utility
of the resulting decision procedure. Sample reuse methods are widely
employed for accuracy assessment, but there is no widely applica-
ble optimality framework for structuring the accuracy assessment or
matching the learning procedure to the problem at hand.

• The decision regions have very different geometries; the CART pro-
cedure forms compound dichotomies that are simple to express but
may lead to unintuitive decision procedures corresponding to islands
or narrow channels in the feature space. Such complex feature con-
figurations may represent statistical artifacts, or may be indications
of important feature interactions.

In summary, machine learning applications must address extrapolation,
acknowledgment of doubt, tuning parameter selection, uncertain appraisal
of performance, and plausibility of the detailed decision procedure created
by the learner. Software tools for machine learning, in conjunction with the
comprehensive data analysis environment R, can help the analyst tackle
these problems. There are many methods for machine learning implemented
and available as packages in R and Bioconductor.

16.3 Methodological issues

16.3.1 Families of learning methods

Most machine learning methods construct classifiers through optimization.
A family of classifiers Ĉ(·) is indexed by a parameter ψ ∈ Ψ. The predictions

16. Machine Learning 277

Ĉψ(x) are compared to the true classes y using some loss measure l(Ĉ, y),
and the Ĉψ that minimizes this loss among ψ ∈ Ψ is selected for future
use. Classes of machine learning methods can be defined by the structure
of l or by features of the decision regions that can be formed.

The mathematical details of methodologies to be catalogued here can be
obtained in the references cited in Section 16.1. We focus on conceptual
definitions and illustrations to allow room for software demonstration.

Linear methods. Chapter 5 of Duda et al. (2001) defines linear
discriminant functions for classification

g(x) = wtx + w0 (16.1)

where x ∈ Rp is a p-dimensional feature vector, w is a p-dimensional weight
vector, and w0 is called a “threshold weight.” For a two-category problem,
classification proceeds by determining the sign of g(x). For K > 2 cate-
gories, category-specific weight vectors and threshold weights are defined
leading to the system

gi(x) = wt
ix + w0i, i = 1, . . . , K

and classification proceeds by determining the value of i for which gi is
maximized.

It is common to include in the family of linear methods those that do
not employ only linear combinations of x, the raw features, but also allow
various transformation of x to enter the linear form of Equation (16.1).

The learning process determines values of w and w0 from observed data.
There are many approaches reviewed in the references noted above. Algo-
rithms for obtaining linear discriminant functions are neatly schematized
in Table 5.1 of Duda et al. (2001).

Nonlinear methods.
Nonlinear models are familiar in applied statistics (Bates and Watts,

1988). The basic statistical setup for a random continuous response Y with
predictor x is

Y = f(x; θ) + ε, f ∈ FΘ, θ ∈ Θ

where FΘ is a family of functions indexed by a parameter θ ∈ Θ, and ε is
a random error term. Key challenges in the application of nonlinear statis-
tical models include specifying models for errors, motivating restriction to
function families FΘ, and optimizing the resulting objective functions.

A widely used nonlinear model for classification is the neural network.
There is a complex taxonomy of these models. Figure 16.2 schematizes a
“generic feed-forward network” after Figure 5.1 of Ripley (1996a). Let yk

denote the kth output element, then the model corresponding to Figure
16.2 is

yk = fk

⎡⎣αk +
∑
j→k

wjkfj

⎛⎝αj +
∑
i→j

wijxi

⎞⎠⎤⎦ (16.2)

278 V. J. Carey

Figure 16.2. Generic feed-forward neural network with one hidden layer of size
three, five inputs and three outputs.

where the f· have linear or nonlinear forms [the logistic function f(x) =
(1 + e−x)−1 is commonly used], xi is the ith input feature,

∑
j→k

denotes

summation restricted to connected units, and α· and w·· are parameters
to be estimated. See Ripley (1996a) for generalization to multiple hidden
layers with skip-layer connections. A review of Bayesian inference methods
with neural network models is given in Titterington (2004).

Regularized methods. Regularized methods are those for which the
loss function has the form

l(Ĉ, c) = l0(Ĉ, c) + λK, (16.3)

where K is a non-negative measure of classifier complexity, and λ is a
tuning parameter. Small values of λ diminish the penalty associated with
high values of K, allowing more complex models to be competitive in the
optimization search space. Smoothing splines (Wahba, 1990) are a widely
used implementation of this framework for continuous responses, and these
methods are basic to the generalized additive models of Hastie and Tib-
shirani (1990), the logspline models of Stone et al. (1997), and to certain
formulations of support vector machines [see Section 12.3.2 of Hastie et al.
(2001)].

The measurement of classifier complexity is a basic concern of computa-
tional learning theory. We examine some of the relevant concepts in Section
16.3.2 below.

Local methods. The classifier definition of expression (16.1) leads to
decision boundaries that are hyperplanes in the (possibly transformed) fea-
ture space. Such boundaries may be too rigid in certain applications. Local
methods of estimation and classification provide greater flexibility.

A basic tool for localization is the concept of a kernel function. A kernel
K is a bounded function on the feature space which integrates to unity
[section 6.1 of Ripley (1996a)]. The function should peak around zero, and

16. Machine Learning 279

for two points x and y in feature space, K(x−y) is regarded as a measure of
their proximity. The multivariate Gaussian density is a frequently encoun-
tered kernel. Kernel estimation of probability densities is widely practiced;
the Parzen estimator of a density on the basis of N points has the form

f̂(x) = (Nλ)−1
∑

i

Kλ(x, xi)

where λ plays the role of a bandwidth, e.g., Kλ(x, y) = φ(|x−y|/λ), where φ
is the standard Gaussian density. For classification, the class-specific density
estimates can be used to compute Bayes rule:

P̂ r(C = j|x = x0) =
π̂j f̂j(x0)∑
k π̂kf̂j(x0)

.

An alternative to the use of a proper kernel (with integral 1) defines K to
be constant over k nearest neighbors, and zero elsewhere. The proportions
of classes in this k-neighborhood give a local estimate of the posterior class
distribution, and the class prediction for the neighborhood is the most
common class in the neighborhood. When k = 1, the feature space is tiled
by the Dirichlet tessellation, and all points on each tile are classified to the
class of the data point contained in the tile (Section 6.2 of Ripley (1996a)).

Tree-structured models. Tree-structured models for classification
have a long history. Breiman et al. (1984) defined the classification and
regression tree (CART) procedures implemented in R through packages
rpart and tree. The basic output is a sequence of predicates in x that define
the nodes (splits) and leaves (terminal groupings) of a binary tree.

For concreteness, Figure 16.3 displays the tree corresponding to the
CART panel of Figure 16.1. The splitting sequence begins with a predi-
cate that divides the entire data set into two subsets. In Figure 16.3, the
predicate is “OR6B1 < 7.167”. This leads to two nodes, one predominantly
occupied by samples of class BCR/ABL, the other predominantly NEG.
Tree construction proceeds recursively, with the objective of creating nodes
that are purest with respect to the distribution of the response. Options
are available for selecting the measure of node purity, and for defining when
the splitting procedure terminates.

A generalization of the CART procedure is the random forests method-
ology of Breiman (2001). Whereas CART uses all variables and all relevant
cases when creating nodes in a single tree that represents the outcome of
the learning process, random forests creates a large number of trees de-
veloped on random samples of the input cases. The input data for each
tree is based on a bootstrap sample from the original data. The variables
used for constructing splits are a random subsample of the complete set
of variables. All trees are grown fully, with no pruning. The classification
for a given feature vector is given by the majority vote over all trees on its
class.

280 V. J. Carey

NEG
(18:21)

BCR/ABL
(9:2)

BCR/ABL
(6:0)

BCR/ABL
(3:2)

BCR/ABL
(2:0)

NEG
(1:2)

NEG
(9:19)

BCR/ABL
(6:5)

BCR/ABL
(6:3)

BCR/ABL
(3:0)

BCR/ABL
(3:3)

BCR/ABL
(2:0)

NEG
(1:3)

NEG
(0:2)

NEG
(3:14)

BCR/ABL
(3:2)

BCR/ABL
(2:0)

NEG
(1:2)

NEG
(0:12)

OR6B1>=7.167
OR6B1< 7.167

SST< 5.316
SST>=5.316

SST>=5.545
SST< 5.545

SST>=5.31
SST< 5.31

OR6B1< 6.969
OR6B1< 6.947

OR6B1< 7.027
OR6B1>=7.027

SST< 5.336
SST>=5.336

SST< 5.055
SST>=5.055

OR6B1>=6.947
OR6B1< 6.947

Figure 16.3. Tree-structured model for prediction of BCR/ABL vs NEG status
in ALL data. Only two probesets were employed; the rpart minsplit parameter
was set to 4. Notation: each node is labeled with the name of the majority class,
and the composition of the node is given as (n:m), where n is the number of
BCR/ABL outcomes, and m is the number of NEG outcomes.

Boosting. Boosting refers to an iterative approach to classifier construc-
tion. Briefly, one begins with a training set and a“weak learner” (procedure
with generalization error just better than chance). In the first stage, a weak
classifier is built on the basis of all the training data. In subsequent stages,
observations that are difficult to classify are given greater weights than
those that are classified correctly, and weak learners are constructed with
reweighted data at each stage. After a prespecified number of iterations, a

16. Machine Learning 281

weighted vote is used to classify each training instance. See Chapter 17 for
full details.

16.3.2 Model assessment

PAC learning theory. “Probably almost correct” (PAC) learners have
measurable generalization properties. Let F denote a probability model.
The data are realizations of (X, c(X)), where X

iid∼ F , and the class labels
c(X) ∈ {1, . . . , K}. F itself is of no interest. Instead, we seek Ĉ(·) ∈ C
close to c(·), where C is a set of classifiers that may be of finite or infi-
nite cardinality. PAC learning theory defines the following framework: Let
T (n) denote a population of training sets of size n, then the objective is Ĉ
satisfying

PrT (n)

[
PrF {Ĉ(X) �= c(X)} < ε

]
> 1 − δ

where ε and δ are small positive numbers. In words, the proportion of
training data sets of size n for which the classification error of Ĉ is less
than ε (that is, Ĉ is almost correct), is no greater than 1 − δ (that is,
Ĉ is highly probably almost correct). Section 2.8 of Ripley (1996a) and
Section 5.2 of Schölkopf and Smola (2001) review probability inequalities
that permit probabilistic bounding of generalization error using estimates
of training set error.

An important concept in PAC learning theory is the complexity of the
class C, as measured by the Vapnik-Chervonenkis (VC) dimension. Con-
sider a set F of functions fj , j = 1, . . ., with subsets of the feature space
X as domains and the set of class labels as common range. (This set F is
unrelated to the parametric function set introduced in Section 16.3.1.) F
shatters a set of points X ⊂ X if for any class labeling of points in X, some
fj ∈ F may be found that computes the labeling. The VC dimension of F is
the cardinality of the largest subset X of X for which some f ∈ F shatters
X. For example, if the class labels are binary, X is R2, and F is the set of
linear discriminators, it can be seen that the VC dimension of F is three.

Proposition 2.6 of Ripley (1996a) is a characteristic application of VC
dimension calculations, relating the discrepancy between true and observed
classification error rates to the number of training samples n. Let err(g)
[êrr(g)] denote the true [observed] classification error rate for classifier g.
If d is the (finite) VC dimension of F and

n ≥ ε−216[log(4/δ) + d log 32e/ε2], (16.4)

then

Pr

{
sup
g∈F

|êrr(g) − err(g)| > ε

}
< δ.

For use in practice, one must know the VC dimension for the family of
classifiers in use. Typically only upper bounds on the VC dimension are

282 V. J. Carey

available. Ripley (1996b, section 5.7) reports illustrative results for a class
of neural networks. If C is the class models of form (16.2) where the total
number of input, output, hidden, and bias units is M , the total number
of weights is W , and the f· are all threshold functions [that is, of the
form f(x) = I(x > c), where I(·) is an indicator function], then the VC
dimension d of C satisfies

d ≤ 2W log2 eM.

This may be plugged in to the sample size relation (16.4) to design a train-
ing experiment leading to a classifier with specified probability that the
discrepancy between true generalization error and estimated classification
error is greater than ε. In practice, the theoretical bounds may be quite
loose.

Sample splitting. Data splitting is the practice of dividing data into
training and test sets, using the test set to assess predictive ability of the
trained model. Cross-validation is the practice of systematically partition-
ing the data, using each partition as a test set for the model built on its
complement. The “leave-one-out” species of cross-validation for a data set
of size n leads to n model fits, each using n − 1 records.

A basic concern in data splitting in both the training vs. test and cross-
validation paradigms is the choice of split, which should be justified on the
grounds of maximizing both predictive ability of the final model and the
accuracy of the assessment of the predictive ability. Picard and Berk (1990)
provide useful formalism. In the framework of the linear model y = Xβ+e,
where y is an n-vector of responses, X is n×p full rank, and e is an n-sample
from N(0, σ2), the problem is to partition X and y as Xt = (Et||V t),
yt = (yt

E ||yt
V), where E connotes estimation (training) resource, V connotes

validation (testing) resource and superscript t denotes the matrix transpose
operation. There are nE estimation units and nV validation units, nE +
nV = n. Picard and Berk derive a goodness of split criterion by summing
(squared) integrated mean squared error estimated on the training set with
residual variance estimated on the validation set. They demonstrate that
this criterion is approximately minimized for least squares problems when
EtE/nE = V tV/nV = XtX/n. These authors recommend reserving 25%
to 50% of the available data for validation, using an approximately matched
split, to correct for optimism arising from model selection and other data
analytic practices, and to confront extrapolation requirements that may
emerge when new predictions are required.

Unfortunately, computing tools for conveniently identifying optimal
splits do not seem to exist. Methods for the construction of optimal de-
signs (Johnson and Nachtsheim, 1983) and for the development of matched
subsets of observational study cohorts (Rosenbaum, 1995) will require
adaptation to support application in data splitting. A very recent dis-
cussion paper by Efron (2004) reviews cross-validation and model-based
alternatives for accurately assessing prediction error.

16. Machine Learning 283

Bootstrapping and bagging. The sample splitting concept is intuitive
but simple implementations are generally inefficient. Resampling and en-
semble methods are an important advance for both learning and appraisal
of learner performance. See Chapter 17 for details.

16.3.3 Metatheorems on learner and feature selection

The No Free Lunch Theorem [Section 9.2.1 of Duda et al. (2001)] states
that all learning algorithms have the same expected generalization error,
when the expectation is taken over all possible classification functions c(·).
The interpretation given by Duda et al. is that

[i]f the goal is to obtain good generalization performance,
there are no context-independent or usage-independent reasons
to favor one learning or classification method over another.
If one algorithm seems to outperform another in a particular
situation, it is a consequence of its fit to the particular pat-
tern recognition problem, not the general superiority of the
algorithm (p.454 of Duda et al. (2001))

The ugly duckling theorem [Section 9.2.2 of Duda et al. (2001)] states
that there is no problem- or purpose-independent selection of features that
may be used to define similarity among objects for classification. Here sim-
ilarity is measured by counting the number of predicates (drawn from
a finite stock) shared by the two feature vectors being compared. The
theorem establishes that the number of predicates shared by any pair of
patterns is a fixed constant, independent of the choice of patterns. Thus
domain-specific knowledge will play an essential role in the identification
of genuinely informative feature sets.

Finally, there is interest in understanding the role of classifier complex-
ity as a determinant of classifier generalization ability. Domingos (1999)
distinguishes two forms of Occam’s razor , nunquam ponenda est plurali-
tas sin necesitate, that have been espoused in the literature of machine
learning methods. The first form states that the simpler of two classifiers
with common generalization error should be preferred, because simplic-
ity is intrinisically desirable. The second form states that the simpler of
two classifiers with common training set error should be preferred, because
simplicity is associated with lower generalization error. Domingos provides
extensive argumentation against the second form. A basic theme is that the
first form is valid and plays a significant role in science in general, but that
apparent simplicity of machine learning methods is often secured through
hidden violations of the first form of Occam’s razor (Domingos, 1999).

284 V. J. Carey

16.3.4 Computing interfaces

S-PLUSTM and R have been distinguished among statistical computing en-
vironments for their support of a wide variety of machine learning methods
with relatively straightforward interfaces. In R, the package bundle VR has
long provided functions for discriminant analysis, classification and regres-
sion trees, nearest neighbor classification, and fitting of feed-forward neural
networks. The e1071 package provides tools for fitting support vector ma-
chine models and for systematically tuning a number of machine learning
methods. Other packages such as locfit, logspline, gpls, gam and mgcv im-
plement local and regularization-based procedures for density estimation
and regression, which can serve as components of classification methods
(Hastie et al., 2001, Section 6.6). A number of other packages related to
machine learning can be found on CRAN.

All of the fitting functions provided in the packages noted here have a
standard formula interface. Given a data frame or environment d in which
bindings of formula variables may be determined, an R command with form

ans <- f(y~x, data=d, p1=P1, ...)

will return an object describing the model specified by function f on re-
sponses y and predictors x in data frame d with values of additional
parameters such as p1 set optionally. In most cases the resulting object
ans will respond to the method call predict() (with optional newdata pa-
rameter) with a vector of predicted of the same type as y. However, there
is considerable diversity in the structures and behaviors of the objects re-
turned by machine learning routines in various R packages. This diversity
makes it difficult to compare procedures, or to create generic downstream
processing methods that work on the basis of the learning results or use
the trained learner to do additional predictions.

Bioconductor provides a new package, MLInterfaces, that aims to sim-
plify the use of machine learning tools and to simplify and make more
uniform the use of their outputs. Presently, MLInterfaces caters for input
data structures derivable from exprSet instances. The general pattern is

ans <- fB(eset, respname, inds, opt1=O1, ...)

where f is the name of an established fitting function (examples are nnet,
knn, rpart, so that the corresponding methods to be called are nnetB,
knnB, rpartB.) The first argument is always an exprSet instance, the second
argument is a character value naming a phenoData variable in the exprSet
instance, and the third argument is an integer vector identifying the proper
subset of the samples in the exprSet instance that are to be used as a
training set. The object returned by an MLInterfaces method is of class
MLOutput , which is extended by classes classifOutput and clustOutput .
See the manual pages for details.

16. Machine Learning 285

Package Functions covered
1 class knn1, knn.cv, lvq1, lvq2, lvq3, olvq1, som

SOM

2 cluster agnes, clara, diana, fanny, silhouette

3 e1071 bclust, cmeans, cshell, hclust, lca

naiveBayes, svm

4 gbm gbm

5 ipred bagging, ipredknn, lda, slda

6 MASS isoMDS, qda

7 nnet nnet

8 pamr cv, knn, pam, pamr

9 randomForest randomForest

10 rpart rpart

11 stats kmeans

Table 16.1. Packages and functions covered by MLInterfaces.

Table 16.1 gives the names of the functions for which interfaces have
been constructed. S4 generic methods are identified by appending “B” to
the native function name.

16.4 Applications

16.4.1 Exploring and comparing classifiers with the ALL data

In order to allow illustrative computations to complete rapidly on cheap
hardware, we filter the ALL data (original size 12625 genes × 128 ar-
rays) to those samples that have molecular biology classification NEG or
BCR/ABL, and we use limma to identify the top 500 differentially expressed
genes.

First we filter on tumor status selecting only B-cell samples, and we add
the two-level indicator factor bcrabl to the exprSet all2:

> bio <- which(ALL$mol.biol %in% c("BCR/ABL", "NEG"))

> isb <- grep("^B", as.character(ALL$BT))

> kp <- intersect(bio, isb)

> all2 <- ALL[, kp]

> tmp <- all2$mol.biol == "BCR/ABL"

> tmp <- ifelse(tmp, "BCR/ABL", "NEG")

> pData(all2)$bcrabl <- factor(tmp)

Now we work with limma to identify the Ndiff = 500 most differentially
expressed genes, using the moderated t-statistic to measure differential
expression:

286 V. J. Carey

> library("limma")

> des <- model.matrix(~all2$bcrabl)

> fit <- lmFit(all2, des)

> fit2 <- eBayes(fit)

> Tdiff <- topTable(fit2, coef = 2, Ndiff)

> all2 <- all2[as.numeric(rownames(Tdiff)),]

We begin with an example of linear discriminant analysis. The full set of
parameters to method ldaB is found by

> args(ldaB)

function (exprObj, classifLab, trainInd, prior, tol = 1e-04,

method, CV = FALSE, nu, metric = "euclidean", ...)

NULL

To obtain the interpretations of the parameters listed here, see the manual
page for class::lda. We will use the first 40 observations as the training
set and accept all default parameter settings.

> l1 <- ldaB(all2, "bcrabl", 1:40)

The report on the classification includes basic identifying information, tab-
ulation of predictions on the test set, and summaries of the distribution
of estimated class membership probabilities computed for each test record.
The confusion matrix for the test set (all observations beyond the 40th) is:

> confuMat(l1)

predicted

given BCR/ABL NEG

BCR/ABL 13 3

NEG 3 20

The rows are the true class labels and the columns are the predicted class
labels. The test set misclassification rate is 6/39.

k-Nearest neighbor (k-NN, here with k = 1) is computed by calling a
different function with identical arguments.

> k1 <- knnB(all2, "bcrabl", 1:40)

> confuMat(k1)

predicted

given BCR/ABL NEG

BCR/ABL 15 1

NEG 2 21

Here the test set misclassification rate is 3/39.

16. Machine Learning 287

16.4.2 Neural net initialization, convergence, and tuning

Feed-forward neural nets can be used quite conveniently. The large number
of inputs (500 in this case) necessitates manual setting of the MaxNWts
parameter. We begin with a 5 hidden unit model:

> n1 <- nnetB(all2, "bcrabl", 1:40, size = 5, MaxNWts = 10000)

> confuMat(n1)

predicted

given BCR/ABL NEG

BCR/ABL 16 0

NEG 10 13

Note that if we perform the same call again, the behavior can be quite
different.

> n1b <- nnetB(all2, "bcrabl", 1:40, size = 5, MaxNWts = 10000)

> confuMat(n1b)

predicted

given BCR/ABL

BCR/ABL 16

NEG 23

This is because the nnet procedure employs random initializations. One
can obtain reproducible nnet fits by calling set.seed prior to invoking the
procedure. Setting a fixed seed prior to invoking any randomized algorithm
is a good idea in case data-dependent debugging is required. Handling seeds
in simulation contexts requires care.

The behavior of a neural net model in nnet depends on the number of
units (size), functional form of of the f· of Equation (16.2), and the setting
of a decay parameter corresponding to λ of Equation (16.3).

> n2 <- nnetB(all2, "bcrabl", 1:40, size = 6, decay = 0.05,

+ MaxNWts = 10000)

> confuMat(n2)

predicted

given BCR/ABL NEG

BCR/ABL 14 2

NEG 2 21

The e1071 package includes software for automatically searching through
the tuning parameter space for nnet models.

16.4.3 Other methods

MLInterfaces makes it convenient to experiment with a variety of learning
tools. The following code can be used for the gradient boosting machine:

288 V. J. Carey

> g1 <- gbmB(all2, "bcrabl", 1:40, n.minobsinnode = 3,

+ n.trees = 1000)

> confuMat(g1)

predicted

given BCR/ABL NEG

BCR/ABL 14 2

NEG 6 17

For random forests:

> rf1 <- randomForestB(all2, "bcrabl", 1:40, importance = TRUE)

> confuMat(rf1)

predicted

given BCR/ABL NEG

BCR/ABL 13 3

NEG 4 19

Finally, a default support vector machine:

> s1 <- svmB(all2, "bcrabl", 1:40)

> confuMat(s1)

predicted

given BCR/ABL NEG

BCR/ABL 14 2

NEG 3 20

16.4.4 Structured cross-validation support

Cross-validation refers to a family of methods whereby estimates or pre-
dictions are developed through a sequence of partitions or subsamplings
of the full data set. The MLInterfaces package provides a generic method
xval to support controlled application of cross-validation methods to data
in exprSet objects. The arguments are:

> args(xval)

function (data, classLab, proc, xvalMethod, group, indFun, niter,

...)

NULL

The data parameter should be an instance of the exprSet class. classLab
is a string identifying the phenoData element to be used for classification.
proc is the name of a machine learning generic method provided in MLIn-
terfaces (e.g., knnB, nnetB). xvalMethod takes value "LOO" (leave one out),
"LOG" (leave group out), or "FUN" (evaluate a subsampling function to de-
rive the training and validation sets for each cross-validation iteration). We
illustrate with the k-NN analysis of the ALL data:

> xvloo <- xval(all2, "bcrabl", knnB, "LOO")

16. Machine Learning 289

> table(given = all2$bcrabl, predicted = xvloo)

predicted

given BCR/ABL NEG

BCR/ABL 35 2

NEG 5 37

We now have a different appraisal of performance of the k-NN procedure.
In our initial example in Section 16.4.1, we explicitly partitioned the data
and evaluated performance based on the test set. Here we have a sequence
of partitions in which each data point is used as a test set of size one.

16.4.5 Assessing variable importance

Two of the learning tools supported by MLInterfaces provide very conve-
nient measures of variable importance. The random forests algorithm has a
bootstrap-based measure. For every tree grown in the forest, the out-of-bag
cases are classified and the number of correct classifications is recorded. The
values of variable m are randomly permuted across out-of-bag cases and
the classification is performed again. The accuracy importance measure
reported by the varImpPlot function is the average decrease in accuracy
induced by permutation divided by an estimate of its standard error.

The gradient boosting machine also offers a measure of relative impor-
tance of variables. An abstract expression of this measure for the mth

variable is (Friedman, 2000)

Im =

⎛⎝EX

[
∂Ĉ(x)
∂xm

]2

· varX [xm]

⎞⎠1/2

,

but Friedman notes that only an approximation can be used. See his paper
for the specific definition. The gbm package produces the approximate rel-
ative importance through the summary function. The MLInterfaces package
includes generic methods for extracting and structuring variable impor-
tance measures from those procedures that compute them, and for plotting
these measures; see Figure 16.4.

16.4.6 Expression density diagnostics

Machine learning methods can be applied to other aspects of data analy-
sis. The edd package includes tools to permit the use of various machine
learning techniques to the classification of gene-specific marginal densities
of expression values across samples. Assessment of these marginal densities
is important for decisions about transformation and choice of method for
comparing expression distributions.

290 V. J. Carey

MTSS1
SYNE2
FGFR1

UPP1
FYN
TTN

MARCKS
KLF9

PLOD2
B4GALT1

ABL1
GNA12

SEMA6A
HSRTSBETA

RANBP2L1
ABL1

ALDH1A1
TF

ACVR2
YES1

Relative importance

0 2 4 6 8 10

Figure 16.4. Relative variable importance measures from the gradient boosting
machine algorithm.

To illustrate, let us consider a deliberately selected pair of genes from
the ALL data. For the NEG and BCR/ABL phenotypes, we have the
histograms shown in Figure 16.5.

We see suggestions of bimodality in several of these histograms. The edd

method compares the empirical distribution of expression for each gene in
an exprSet to a catalogue of parametrically or empirically defined distribu-
tions that may be specified by the user. The documentation and vignettes
for the edd package should be consulted for details.

> neg <- edd(gg[, gg$mol.biol == "NEG"])

> as.character(neg)

[1] ".75N(0,1)+.25N(4,1)" "logN(0,1)"

> bcr <- edd(gg[, gg$mol.biol == "BCR/ABL"])

> as.character(bcr)

[1] "B(2,8)" "t(3)"

The procedure classifies the shapes of the NEG genes as Gaussian mix-
ture and lognormal, and of the BCR/ABL genes as Gaussian and t3 (a
heavy-tailed distribution). This particular classification employed k-NN

16. Machine Learning 291

4.0 4.5 5.0 5.5

0.
0

0.
5

1.
0

1.
5

NEG

10
41

_a
t

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

NEG

10
45

_s
_a

t

4.0 4.5 5.0

0.
0

0.
5

1.
0

1.
5

BCR/ABL

10
41

_a
t

3 4 5 6

0.
0

0.
4

0.
8

1.
2

BCR/ABL

10
45

_s
_a

t

Figure 16.5. Gene- and phenotype-specific histograms for expression of two genes
in the ALL data.

with k = 1 to predict the class of distributional shape of the four vectors
of gene expression values (two genes by two strata) using a large collection
of simulated samples from specified distributions as the training set. All
vectors are scaled to unit MAD and zero median before the training and
predictions are carried out, so that this procedure is focused on distribu-
tional shape. The edd function is a general interface to various forms of
training-set construction and machine learning approaches to this distribu-
tional shape classification problem. For additional applications, including a
display of diversity of distributional shapes in vectors of expression values
derived from Golub’s leukemia data (Golub et al., 1999), see the example
for edd.

16.5 Conclusions

We have seen that application of machine learning procedures always re-
quires informed involvement of human investigators. The metatheorems of
Section 16.3.3 indicate that effective learning via feature selection and op-
timization cannot be purely mechanical. Thus there will always be a role

292 V. J. Carey

for comparative experimental application of various machine learning pro-
cedures to a given problem. Bioconductor interfaces that simplify routine
aspects of comparative machine learning in genomic contexts have been
illustrated. Future developments will support more convenient integration
of machine learning methods with proper accommodation of doubt and
outlier decisions into the high-level analytic workflow.

17

Ensemble Methods of
Computational Inference

T. Hothorn, M. Dettling, and P. Bühlmann

Abstract

Prognostic modeling of tumor classes, disease status, and survival
time based on information obtained from gene expression profiling
techniques is studied in this chapter. The basic principles of ensemble
methods like bagging, random forests, and boosting are explained.
The application of those methods to data from patients suffering
acute lymphoblastic leukemia or renal cell cancer is illustrated. The
problem of identifying the best method for a certain prediction task
is addressed by means of benchmark experiments.

17.1 Introduction

Recent technological developments have opened new perspectives in bio-
medical research and clinical practice, and they also have changed the way
in which statistics makes progress. The main challenge is to develop com-
putational inference tools that can deal with very high dimensional data
sets containing thousands of input variables for a few dozens of experiments
only. In particular, such data structures emerge from the gene expression
microarray technology and from protein mass spectroscopy analysis.

In this chapter, we focus on tumor prognosis with gene expression data.
Given efficient data analysis tools, information from biotechnology may
represent a promising supplement to tumor prediction based on traditional
clinical factors. Let us assume that we are given previous experience from
a cohort of I patients, which mathematically amounts to a learning sample

L = {(y1, x1), (y2, x2), . . . , (yI , xI)}.

294 T. Hothorn et al.

The input variable xi ∈ RJ contains the vector-valued gene expression
profile of J genes for the ith patient. Initially, we focus on a dichotomous
response, yi ∈ {0, 1}, coding for two different populations or classes, as for
example different cancers or tumor subtypes. Multiclass prediction and the
analysis of survival data are discussed in Sections 17.4 and 17.7

We systematically exploit the information in the learning sample, L, to
define a rule that predicts disease status, the response variable, from the
gene expression profile x. This rule can then be applied to novel cancer pa-
tients for establishing an early and precise prognosis, which is often crucial
for a treatment with few side-effects and good cure rates. From a mathe-
matical viewpoint, this amounts to learning a function g : RJ → R, which
can be applied in order to predict the class membership of an observation
with expression profile x via some fixed transformation f . For example,
g(x|L) = log{p̂(x)/[1 − p̂(x)]}, where p̂(x) = P̂ r[Y = 1|X = x] is the
probability of class 1 given the inputs x, and f(g) = χ(g > 0) is a thresh-
old that yields a classification rule respecting equal misclassification costs,
where χ denotes the indicator function. In the sequel, such procedures are
referred to as classifiers. Although supervised classification is a well-known
methodology in statistics, finding solutions to problems with many input
variables or genes J but a very limited number of patients I is challeng-
ing. A promising approach that is suitable for high-dimensional prediction
problems in bioinformatics is to use ensemble methods that aggregate many
simple classifiers into a powerful committee.

In contrast to using just a single fit from a particular method, ensemble
techniques aim at improving the predictive ability of a relatively sim-
ple statistical learning technique by constructing a weighted sum thereof.
Technically, the ensemble is written as

gE(M)(·|L) =
M∑

m=1

αmgm(·|Lm),

where Lm is a reweighted version of the learning sample L and αm are
weights. Here, gm is a base procedure, which we term the weak learner.
For example, gm(x) may be a simple estimate of the log-odds ratio,
log{p̂(x)/[1 − p̂(x)]}. The choice of the reweighted sample, Lm, the ag-
gregation weights, αm, as well as of the weak learner are the art in this
methodology. Bagging, boosting and random forests are such methods,
which will be discussed below. The final ensemble estimator depends on the
choice of the weak learner. The most prominent choice in high-dimensional
problems are recursive partitioning methods, “classification and regression
trees”, as they incorporate some form of feature selection and tend to work
well when there are more input variables than there are observations.

We refer to Breiman et al. (1984) for a detailed description on recursive
partitioning methods. The rpart package (Therneau and Atkinson, 1997)
implements the methodology described by Breiman et al. (1984).

17. Ensemble Methods 295

17.2 Bagging and random forests

Bagging (Breiman, 1996a) is a rather simple but effective ensemble method.
Its name is an acronym for bootstrap aggegating, which suggests the prin-
cipal idea of this procedure: predictions of weak learners fitted to bootstrap
samples Lm of the original learning sample L are aggregated by a majority
vote.

A bootstrap sample from the original learning sample L is an i.i.d. ran-
dom sample of I observations (y∗

i , x∗
i), i = 1, . . . , I, where the probability

of selecting observation (y∗
i , x∗

i) from L is 1/I. A bootstrap sample is thus
a sample from the empirical distribution function of the learning sample.
The algorithm is as follows:

1. Draw M bootstrap samples Lm, m = 1, . . . M , from the original
learning sample L.

2. Fit a weak learner for each of the bootstrap samples gm(·|Lm), and
construct the classifiers, f(gm(·|Lm)).

3. Aggregate the classifiers using weights αm = 1/M , yielding the
ensemble

gE(M)(·|L) = M−1
M∑

m=1

f(gm(·|Lm)).

The bagging ensemble votes for class 1 if the majority of the M weak
learners votes for 1; and vice versa. More generally, the ensemble predicts
class 1 when the fraction of weak learners predicting class 1 exceeds some
number, ν.

It has been argued that for unstable estimation methods such as decision
trees, bagging reduces the variance while the bias remains approximately
the same (Bühlmann and Yu, 2002).

It is rather straightforward to implement the bagging procedure in high-
level languages like S. The basic ingredient is a tree building algorithm used
for fitting trees to bootstrap samples of the learning sample.

> simple_bagging <- function(x, lsample, M = 100,

+ nu = 0.5) {

+ I <- nrow(lsample)

+ bsample <- rmultinom(M, I, rep(1, I)/I)

+ pred <- rep(0, nrow(x))

+ rpc <- rpart.control(xval = 0, cp = 0.01)

+ for (m in 1:M) {

+ weaktree <- rpart(y ~ ., data = lsample,

+ weights = bsample[, m], control = rpc)

+ prtree <- predict(weaktree, newdata = x,

+ type = "class")

+ pred <- pred + (prtree == levels(lsample$y)[2])

+ }

296 T. Hothorn et al.

+ factor(pred/M > nu, levels = levels(lsample$y))

+ }

First, M random index vectors representing M bootstrap samples are drawn
from the multinomial distribution. A classification tree is fitted to the learn-
ing sample lsample using weights = bsample[,m] representing the mth
bootstrap sample. Large trees, without applying any form of pruning what-
soever, are grown. The vector pred, of length I, which counts the number
of trees predicting the second class is updated. Finally, the function returns
a factor coding the ensemble predictions obtained for observations x from
a simple majority vote.

A simple but extremely successful modification to this algorithm is the
random forest approach (Breiman, 2001). The basic idea is to modify the
tree growing algorithm leading to even weaker components of the ensemble.
This is achieved by choosing a small random subset of inputs available for
splitting at each stage of the recursive partitioning algorithm building the
tree. Thus, the input variables actually used in each of the weak learners
are, to a large extent, determined at random.

17.3 Boosting

Boosting was introduced to the machine learning literature by Freund and
Schapire (1996) and has demonstrated empirical success on a wide variety
of especially high-dimensional prediction problems. The basic notion was
that in each boosting iteration, the cases that were misclassified in the pre-
vious round get their weights increased, whereas the weights are decreased
for cases that were correctly classified. Thus, unlike bagging and random
forests, both the aggregation weights αm and the reweighted learning sam-
ples Lm depend on the previous function fits g1(·|L1), . . . , gm−1(·|Lm−1).
However, boosting can be viewed as a forward stagewise strategy, working
by iterative optimization of an empirical risk function

R[L, p(x), L] =
1
I

I∑
i=1

L[yi, p(xi)], p(x) = Pr[Y = 1|X = x],

from the learning set L via constrained (imposed by the weak learner)
functional gradient descent, where L(·, ·) is a statistically motivated loss
function. If we employ the binomial log-likelihood

L[y, p(x)] = y · log[p(x)] + (1 − y) · [1 − p(x)],

a continuous surrogate for the 0/1-misclassification loss and a very estab-
lished criterion for binary classification, it has been shown that the resulting
logitboost algorithm (Friedman et al., 2000) yields an approximation to half

17. Ensemble Methods 297

of the log-odds ratio. That is,

gE(M)(x|L) =
M∑

m=1

αmgm(x|Lm) ≈ 1
2

log
(

p(x)
1 − p(x)

)
.

Hence, logitboost is a linear expansion in terms of weak learners gm(·|Lm)
on the logit scale, constructed by stagewise optimization of the binomial
log-likelihood. Estimated conditional class probabilities are obtained by the
simple transformation,

p(x) =
1

1 + exp[−2gE(M)(x)]
,

which can be used for class prediction, using a threshold that depends
on the misclassification costs. Logitboost has been demonstrated to be a
competitive prediction algorithm for tumor classification with microarray
data (Dettling and Bühlmann, 2003, 2004). The procedure works as follows.

1. Initialize p(xi) = 1/2, i = 1, . . . , I; m = 1; gE(0)(·|L) ≡ 0.

2. Build the pseudo-response for each observation i

wi = p(xi)[1 − p(xi)]

ui =
yi − p(xi)

wi
,

setup-up the new learning sample

Lm = {(ui, xi); i = 1, . . . , I}

and fit the weak learner gm(·|Lm) with case weights wi.

3. Update ensemble gE(m)(·|L) = gE(m−1)(·|L) + 1
2gm(·|Lm) and

p(xi) = 1/{1 + exp[−2gE(m)(xi|L)]}

4. Repeat until m = M .

Predictions are computed with αm = 1/2 and f(z) = χ[exp(1 − 2z) > 1
2].

The definition of the weights wi in the logitboost algorithm is such that
each weak learner is forced to focus on observations close to the decision
boundary, i.e., data points where the boosting classifier is in doubt about
the predicted class. The final number of boosting iterations M regulates the
complexity of the prediction model, early stopping is a form of shrinkage.

In the context of microarray data, we recommend a default value of
M = 100, which is a reasonable compromise between computing time, pre-
dictive accuracy and prevention of overfitting. This choice was shown to be
empirically superior to approaches where M was estimated on the training
data via cross validation (Dettling and Bühlmann, 2003). Provided that an
interface to the weak learning algorithm is present, an implementation of
boosting in high-level languages, like S, is straightforward.

298 T. Hothorn et al.

17.4 Multiclass problems

A popular approach for dealing with multiclass problem is to split them
in multiple binary ones. In the context of microarray data, we have col-
lected some empirical evidence for the success of this strategy (Dettling and
Bühlmann, 2003). The simplest solution is the one-against-all approach,
which works by defining the response in the kth problem as y(k) = 1 if
y = k, and y(k) = 0 else. Then, we boost K times on the modified data
L(k) = {(y(k)

1 , x1), . . . , (y
(k)
I , xI)}. The estimated conditional class proba-

bilities are normalized and can in turn be used for maximum likelihood
classification via,

p̂(k)(x) =
P̂ rL(k)(y(k) = 1|x)

K−1∑
k=0

P̂ rL(k)(y(k) = 1|x)
, k = 1, . . . , K

ŷ(x) = argmax
k∈{0,...,K−1}

p̂(k)(x).

Depending on the data, other schemes may be more accurate for splitting
polytomous into multiple binary problems.

Note that no additional procedures are necessary in order to deal
with multiclass responses for bagging trees or random forests: Estimated
conditional class probabilities arise directly from the ensemble of trees.

17.5 Evaluation

The choice of an appropriate classifier for a prediction problem at hand is
by no means obvious. The problem can be separated into the method se-
lection and the error rate estimation tasks. The first task is concerned with
choosing the best method available from a, possibly huge, set of statistical
procedures capable of dealing with the problem. For error rate estimation,
we try to come up with a realistic assessment of the prediction error of the
selected procedure. This information is extremely important when we need
to take the decision whether it is worth or even ethical to apply a certain
classifier in realistic settings.

The prediction error can be measured by a scalar loss function L(y, ŷ)
assessing the goodness of the prediction ŷ for some response y. When the
response is a categorical variable with classes {0, . . . , K − 1}, the mis-
classification error L(y, ŷ) = χ(y �= ŷ) is an often used loss function.
However, this choice is not necessarily the one we are interested in. When
we are faced with a two class problem aiming at predicting whether a
person suffers a rare but dangerous disease or not the loss of missing
an affected person is much higher compared to the loss induced by a
false positive. For such problems, the misclassification loss is of the form

17. Ensemble Methods 299

L(y, ŷ) = c1χ(y = 0, ŷ = 1) + c2χ(y = 1, ŷ = 0) for some misclassification
costs c1, c2. We may be also interested in measuring the accuracy of the
estimated probability p̂(x). Then, the negative log-likelihood can serve as
a useful loss function.

A major problem is that the learning sample used for model fitting can
not be directly used for the estimation of the prediction error of that model.
Such an estimate would be optimistically biased because the same obser-
vations were used for model building and evaluation. Resampling methods
like the bootstrap or cross-validation have been studied extensively, a prac-
tical introduction can be found in Hastie et al. (2001). Here, we will use the
notion of out-of-bag estimation (Breiman, 1996b) for error rate estimation.
When a bootstrap sample of the original learning sample L is drawn some
observations are left out due to sampling with replacement. Those observa-
tions are an independent sample from the distribution of interest and can
be used for the assessment of the prediction error. We can draw random
samples from the distribution of the prediction error as follows.

1. Draw B bootstrap samples Lb, b = 1, . . . B, from the original learning
sample L.

2. Fit a model to each bootstrap sample Lb, i.e. g(·|Lb) and assess the
error pb by the loss averaged over the predictions of the observations
in the out-of-bootstrap sample

pb = |L \ Lb|−1
∑

(y,x)∈L\Lb

L(f(g(x|Lb)), y), b = 1, . . . , B.

The B error rates can now be visualized, for example by boxplots, or
can be described via estimates of parameters such as the mean or variance.
When multiple candidate models are under consideration, we obtain a sam-
ple of B error rates for each of them. Those data distributions can be used
to identify the best or a set of the best algorithms. The null-hypothesis
of equality of the bootstrap-distributions of the prediction error of several
algorithms can be tested, for example by means of the Friedman test. It
should be noted that a rejection of this hypothesis should not be general-
ized to the population from which the data were drawn, as the inference
is conditional on the given learning sample. All that we can conclude is
whether a finite number B of bootstrap replicates is sufficient for detecting
performance differences in the exact bootstrap distributions, with B = ∞
(or from the typically infeasible exact multinomial distribution induced by
the bootstrap), of the different algorithms. Theoretical justification and il-
lustration of this approach can be found elsewhere (Hothorn et al., 2004b).

300 T. Hothorn et al.

17.6 Applications: tumor prediction

17.6.1 Acute lymphoblastic leukemia

In this first example, we apply ensemble methods to construct a model
that regresses the stage of acute lymphoblastic leukemia (ALL) on the
microarray expression levels. We are primarily interested in two questions.
We would like to investigate whether there is any information about the
stage of the disease covered by the microarray expression levels. That is,
we will test the null-hypothesis that the stage of the disease is independent
of the expression levels measured. If we are able to reject this global null-
hypothesis, we then want to build a model that allows us to predict the stage
of the disease of a patient based on the microarray expression levels only.
Data from patients suffering from both T- and B-cell ALL are available from
the study of Chiaretti et al. (2004), and we restrict ourselves to patients
with B-cell leukemia.

The package ALL offers a data object ALL, an object of class exprSet ,
which contains the data of patients suffering from both T- and B-cell
leukemia.

We are provided with expression levels of 12625 genes for 128 patients.
For the analysis here, we restrict the data to patients suffering B-cell
leukemia, with 4 subclasses, and to expression levels of genes with standard
deviation on the log-scale between 0.08 and 0.18.

> cvv <- apply(exprs(ALL), 1, function(x) sd(log(x)))

> ok <- cvv > 0.08 & cvv < 0.18

> BStagelev <- paste("B", 1:4, sep = "")

> BALL <- ALL[ok, ALL$BT %in% BStagelev]

> pData(phenoData(BALL))$BStage <- factor(BALL$BT,

+ levels = BStagelev)

Although ordered, we treat the disease stages as nominal. The class dis-
tribution of the stages of the disease (BALL$BStage) can be inspected
via

> table(BALL$BStage)

B1 B2 B3 B4

19 36 23 12

Although we found 3716 genes showing a reasonable variation among
the patients, some mild form of univariate variable selection will help to
circumvent computational difficulties and speedup the computations. Here,
we measure the association between the rank of the expression levels of each
gene and the stage of the disease, our response variable, by means of a linear
statistic based on the genewise ranks of the expression levels and a matrix
of dummy-codings for the response. The statistics are standardized by their

17. Ensemble Methods 301

conditional expectation and variance (Strasser and Weber, 1999) and the
100 genes associated with the largest standardized statistics are selected.

> response <- BALL$BStage

> I <- ncol(exprs(BALL))

> expressions <- t(apply(exprs(BALL), 1, rank))

> Iindx <- 1:I

> var_selection <- function(indx, expressions, response,

+ p = 100) {

+ y <- switch(class(response), factor = {

+ model.matrix(~response - 1)[indx, , drop = FALSE]

+ }, Surv = {

+ matrix(cscores(response[indx]), ncol = 1)

+ }, numeric = {

+ matrix(rank(response[indx]), ncol = 1)

+ })

+ x <- expressions[, indx, drop = FALSE]

+ n <- nrow(y)

+ linstat <- x %*% y

+ Ey <- matrix(colMeans(y), nrow = 1)

+ Vy <- matrix(rowMeans((t(y) - as.vector(Ey))^2),

+ nrow = 1)

+ rSx <- matrix(rowSums(x), ncol = 1)

+ rSx2 <- matrix(rowSums(x^2), ncol = 1)

+ E <- rSx %*% Ey

+ V <- n/(n - 1) * kronecker(Vy, rSx2)

+ V <- V - 1/(n - 1) * kronecker(Vy, rSx^2)

+ stats <- abs(linstat - E)/sqrt(V)

+ stats <- do.call("pmax", as.data.frame(stats))

+ return(which(stats > sort(stats)[length(stats) -

+ p]))

+ }

> selected <- var_selection(Iindx, expressions,

+ response)

The function var_selection takes an index vector of observations between
1 and I and returns a vector of length p indicating which genes have been
selected. Now, we are able to fit a random forest model to the data using the
package MLInterfaces, see Chapter 16, which provides an unified interface
to machine learning procedures including the randomForest package (Liaw
and Wiener, 2002). Here, we use the data of all observations except the Ith
one as learning sample and obtain information from the model on the Ith
observation.

> rf <- randomForestB(BALL[selected,], "BStage",

+ Iindx[-1], sampsize = I - 1)

> print(rf)

MLOutput instance, method= randomForest

Call:

302 T. Hothorn et al.

randomForestB(exprObj = BALL[selected,], classifLab = "BStage",

trainInd = Iindx[-1], sampsize = I - 1)

predicted class distribution:

B2

1

The forest predicts the disease status of the first patient being B2, which
is the correct decision in this case.

The framework for the evaluation of classifiers sketched in Section 17.5
can be implemented as follows. We loop over B bootstrap samples, perform
variable selection for the current bootstrap sample and fit four models to
the selected genes of this bootstrap sample. First, a random forest model
where only mtry = 3 genes are evaluated in each node of the classifica-
tion trees, bagging (which corresponds to random forest without random
sampling of genes) and logitboost with M = 100 boosting iterations. In
addition, we include a model that does not use any information about the
expression levels. To be more specific, for each bootstrap sample we esti-
mate (guess) the class with maximal prior probability for all observations.
The misclassification errors computed for each model and bootstrap sample
are stored into a dataframe performance.

> set.seed(290875)

> B <- 100

> performance <- as.data.frame(matrix(0, nrow = B,

+ ncol = 4))

> colnames(performance) <- c("RF", "Bagg", "LBoost",

+ "Guess")

> for (b in 1:B) {

+ bsample <- sample(Iindx, I, replace = TRUE)

+ selected <- var_selection(bsample, expressions,

+ response)

+ rf3 <- randomForestB(BALL[selected,], "BStage",

+ bsample, mtry = 3, sampsize = I)

+ predicted3 <- factor(rf3@predLabels, levels = levels(response))

+ performance[b, 1] <- mean(response[-bsample] !=

+ predicted3)

+ rfBagg <- randomForestB(BALL[selected,],

+ "BStage", bsample, mtry = length(selected),

+ sampsize = I)

+ predictedBagg <- factor(rfBagg@predLabels,

+ levels = levels(response))

+ performance[b, 2] <- mean(response[-bsample] !=

+ predictedBagg)

+ lb <- logitboostB(BALL[selected,], "BStage",

+ bsample, 100)

+ predictedlb <- factor(lb@predLabels, levels = levels(response))

+ performance[b, 3] <- mean(response[-bsample] !=

+ predictedlb)

17. Ensemble Methods 303

+ performance[b, 4] <- mean(response[-bsample] !=

+ levels(response)[which.max(tabulate(response[bsample]))])

+ }

The distributions of the misclassification errors of all four models can be
analyzed by the appropriate procedures for paired observations. The global
null-hypothesis of equality of all three models can be tested using

> friedman.test(as.matrix(performance))

Friedman rank sum test

data: as.matrix(performance)

Friedman chi-squared = 181, df = 3, p-value <

2.2e-16

which leads to a rejection indicating that there are global differences be-
tween the performances of the four candidate models. This result allows us
to conclude that there is a relationship between expression levels and the
stage of B-cell leukemia. A parallel coordinate plot and boxplots help us to
investigate where the differences come from:

> matplot(1:ncol(performance), t(performance), xlab = "",

+ ylab = "Misclassification error", type = "l",

+ col = "#377EB8", lty = 1, axes = FALSE)

> axis(1, at = 1:ncol(performance), labels = colnames(performance))

> axis(2)

> box()

> boxplot(performance, col = "#4DAF4A")

The result is shown in Figure 17.1. Figure 17.1 gives impression that the
three ensemble methods perform better than guessing. Random forests and
bagging seem to perform equally well, the amount of the difference can be
inspected by confidence intervals, for example via

> t.test(performance$RF, performance$Bagg, paired = TRUE,

+ conf.int = TRUE)$conf.int

[1] 0.000231 0.022961

attr(,"conf.level")

[1] 0.95

We emphasize again, see end of Section 17.5, that the Friedman test and
the graphical illustrations indicate whether there are differences among the
theoretical bootstrap distributions (with B = ∞), although we compute
with B = 100 only.

17.6.2 Renal cell cancer

In this second application, we focus on the relationship between gene ex-
pression levels and response variables describing either clinical subtypes of

304 T. Hothorn et al.

M
is

cl
as

si
fic

at
io

n
er

ro
r

RF Bagg LBoost Guess

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

●

●

●●

●

●

●

●●

●

●

●

●

RF Bagg LBoost Guess
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

Figure 17.1. Parallel coordinates plot and boxplots of the misclassification errors
of random forest (RF), bagging (Bagg), logitboost (LBoost) and guessing (Guess)
for 100 bootstrap samples for the ALL data.

renal cell cancer or, most interesting in a clinical setting, the survival time
of the patients. The package kidpack offers data of a study by Sültmann
et al. (2005); for more background information we refer to the Appendix.

The analysis is very similar to the steps described for the ALL data in
Section 17.6.1.

First, we load the package kidpack which offers the data in form of an
exprSet .

> set.seed(290875)

> data(eset)

> pData(phenoData(eset))$type <- as.factor(eset$type)

The class distribution of clear cell renal cell cancer ccRCC, papillary renal
cell cancer pRCC and chromophobe renal cell cancer chRCC is

> table(pData(phenoData(eset))$type)

ccRCC chRCC pRCC

52 9 13

Again, a standardized linear statistic for each gene is applied to perform
variable selection:

> response <- eset$type

> expressions <- t(apply(exprs(eset), 1, rank))

> I <- ncol(exprs(eset))

> Iindx <- 1:I

17. Ensemble Methods 305

> selected <- var_selection(Iindx, expressions,

+ response)

and a random forest model for the Ith patient can be fitted to 100 selected
genes using

> rf <- randomForestB(eset[selected,], "type",

+ Iindx[-1], sampsize = I - 1)

> rf

MLOutput instance, method= randomForest

Call:

randomForestB(exprObj = eset[selected,], classifLab = "type",

trainInd = Iindx[-1], sampsize = I - 1)

predicted class distribution:

ccRCC

1

The misclassification error for the four models (random forest, bagging, log-
itboost, and guessing) applied to bootstrap samples of the data is computed
along the following lines:

> B <- 100

> performance <- as.data.frame(matrix(0, nrow = B,

+ ncol = 4))

> colnames(performance) <- c("RF", "Bagg", "LBoost",

+ "Guess")

> for (b in 1:B) {

+ bsample <- sample(Iindx, I, replace = TRUE)

+ selected <- var_selection(bsample, expressions,

+ response)

+ rf3 <- randomForestB(eset[selected,], "type",

+ bsample, mtry = 3, sampsize = I)

+ predicted3 <- factor(rf3@predLabels, levels = levels(response))

+ performance[b, 1] <- mean(response[-bsample] !=

+ predicted3)

+ rfBagg <- randomForestB(eset[selected,],

+ "type", bsample, mtry = length(selected),

+ sampsize = I)

+ predictedBagg <- factor(rfBagg@predLabels,

+ levels = levels(response))

+ performance[b, 2] <- mean(response[-bsample] !=

+ predictedBagg)

+ lb <- logitboostB(eset[selected,], "type",

+ bsample, 100)

+ predictedlb <- factor(lb@predLabels, levels = levels(response))

+ performance[b, 3] <- mean(response[-bsample] !=

+ predictedlb)

+ performance[b, 4] <- mean(response[-bsample] !=

+ levels(response)[which.max(tabulate(response[bsample]))])

+ }

306 T. Hothorn et al.

M
is

cl
as

si
fic

at
io

n
er

ro
r

RF Bagg LBoost Guess

0.
0

0.
1

0.
2

0.
3

0.
4

●

●
●

●
●

●

●
●

●

RF Bagg LBoost Guess

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 17.2. Parallel coordinates plot and boxplots of the misclassification errors
of random forest (RF), bagging (Bagg), logitboost (LBoost), and guessing (Guess)
for 100 bootstrap samples for the renal cell cancer data.

Again, the global null-hypothesis of equality of the performance of the
candidate models can be rejected

> friedman.test(as.matrix(performance))

Friedman rank sum test

data: as.matrix(performance)

Friedman chi-squared = 202, df = 3, p-value <

2.2e-16

which, in the light of Figure 17.2, can be explained by the superior perfor-
mance of the ensemble methods compared to the model where we guess the
prediction from the prior distribution of the classes itself. Random forests
seem to perform a little bit better compared to bagging and logitboost, as
the (non-simultaneous) confidence intervals for the difference indicate:

> t.test(performance$RF, performance$Bagg, paired = TRUE,

+ conf.int = TRUE)$conf.int

[1] -0.02847 -0.00833

attr(,"conf.level")

[1] 0.95

> t.test(performance$RF, performance$LBoost, paired = TRUE,

+ conf.int = TRUE)$conf.int

[1] -0.02741 -0.00245

attr(,"conf.level")

[1] 0.95

17. Ensemble Methods 307

17.7 Applications: Survival analysis

Mainly in clinical studies, the disease-free survival time or overall survival
time is of major interest. For each observation, we are provided with the
time for which each patient was at risk and whether an event, recurrence or
death, occurred. Observations may have been stopped due to other reasons
(a lethal accident) or end of follow-up. More formally, the response variable
is now bivariate with yi ∈ R+ × {0, 1}. We are interested in an estimate
of the expected survival time for a patient with expression levels x, i.e., an
estimate of the conditional probability that a patient will survive time t,
given the patients gene expression levels.

Basically, the ingredients of the bagging algorithm for the two-class prob-
lem can be applied to those problems as well. However, it is a challenge to
aggregate the predictions of the multiple trees in order to come up with a
ensemble prediction. A simple average of the predicted survival time did not
prove to be of much use (Dannegger, 2000). As an alternative, Hothorn et al.
(2004a) suggested to aggregate observations instead of predictions directly
and compute one single prediction based on aggregated observations. For
each of the M survival trees fitted to bootstrap samples Lm, m = 1, . . . , M ,
we extract the observations from the bootstrap sample that are elements
of the same terminal node as the predictor value x of interest. Those ob-
servations, of course containing many tied values, are collected over all M
bootstrap rounds, and then one single Kaplan-Meier curve is computed
which serves as the ensemble’s prediction.

> remove <- is.na(eset$survival.time)

> seset <- eset[, !remove]

> response <- Surv(seset$survival.time, seset$died)

> response[response[, 1] == 0] <- 1

> expressions <- t(apply(exprs(seset), 1, rank))

> exprDF <- as.data.frame(t(expressions))

> I <- nrow(exprDF)

> Iindx <- 1:I

The survival time of patients with renal cell cancer is now treated as the
response variable of interest. First, we remove all observations where the
survival time is missing (14 observations) from the data set and define the
survival time of one patient, who died immediately, as one.

The response variable is now an object of class Surv . A slightly different
test statistic needs to be used for the variable selection. Here, we use logrank
scores as implemented in the cscores method from package exactRankTests
and the expression values for each gene and measure the association be-
tween the rank of the expression level of each gene and the logrank scores
by a standardized statistic. Because of the small number of patients with
information on the survival time being available, we only select 25 genes at
a time.

308 T. Hothorn et al.

> selected <- var_selection(Iindx, expressions,

+ response)

The ensemble of survival trees is fitted to the data using the bagging method
of package ipred (Peters et al., 2002). The predictions for each observation in
the learning sample are computed based on trees whose corresponding boot-
strap samples did not contain the specific observation (out-of-bootstrap
prediction) and are therefore not affected by overfitting problems. In addi-
tion, we compute a simple Kaplan-Meier curve for the survival times via
survfit. The model fit of both procedures may be assessed by means of
the Brier score for censored data (Graf et al., 1999) implemented in the
function sbrier.

> bagg <- bagging(response ~ ., data = exprDF[,

+ selected], ntrees = 100)

> prKM <- predict(bagg)

> sbrier(response, prKM)

integrated Brier score

0.170

attr(,"time")

[1] 1 65

> sbrier(response, survfit(response))

integrated Brier score

0.207

attr(,"time")

[1] 1 65

The Brier scores for the Kaplan-Meier estimate and bagging seem to indi-
cate that the survival ensemble fits the data better than a model without
knowledge of the gene expression data and hence that there is information
about the survival time contained in the expression levels of the genes. The
predicted survival curves for each patient and the simple Kaplan-Meier
estimate of all survival times are depicted in Figure 17.3 where we see a
reasonable differentiation between the patients. The clinical subtypes of
the patients are color encoded. Except for one patient suffering chromo-
phobe renal cell cancer with poor prognosis, the estimated survival curves
for patients suffering papillary and chromophobe subtypes indicate a longer
survival compared to patients with clear cell renal cell cancer. To assess this
finding, we need to perform a benchmark comparison with a model that
predicts the survival time without knowledge of the gene expression values,
i.e., a simple Kaplan-Meier estimate.

> set.seed(290875)

> B <- 100

> performance <- as.data.frame(matrix(0, nrow = B,

+ ncol = 2))

> colnames(performance) <- c("Bagging", "Kaplan-Meier")

17. Ensemble Methods 309

> plot(survfit(response), lwd = 4, conf.int = FALSE,

+ xlab = "Survival time in month", ylab = "Probability")

> col <- c("lightgray", "darkblue", "red3")

> type <- factor(seset$type)

> table(type)

type

ccRCC chRCC pRCC

45 3 12

> for (i in 1:length(prKM)) lines(prKM[[i]], lty = 2,

+ col = col[as.numeric(type)[i]])

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival time in month

P
ro

ba
bi

lit
y

Figure 17.3. Out-of-bootstrap predicted survival curves for each patient (dashed
lines) and overall Kaplan-Meier curve (thick solid line). Clinical subtypes of
patients are color encoded: gray (ccRCC), blue (pRCC), and red (chRCC).

> for (b in 1:B) {

+ bsample <- sample(Iindx, I, replace = TRUE)

+ selected <- var_selection(bsample, expressions,

+ response)

+ bagg <- bagging(response ~ ., data = exprDF[,

+ selected], subset = bsample, ntrees = 100)

+ pr <- predict(bagg, newdata = exprDF[-bsample,

+])

+ KM <- survfit(response[bsample])

+ performance[b, 1] <- sbrier(response[-bsample],

+ pr)

+ performance[b, 2] <- sbrier(response[-bsample],

+ KM)

+ }

310 T. Hothorn et al.

B
rie

r
sc

or
es

Bagging Kaplan−Meier

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

●

Bagging Kaplan−Meier

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Figure 17.4. Parallel coordinates plot and boxplots of the Brier scores of 100
bootstrap samples for renal cell cancer survival.

The visualizations of the Brier scores in Figure 17.4 indicate differences
with respect to the variability but not with respect to the mean Brier score,
and hence we cannot conclude that the survival time of a patient can be
adequately modeled based on information derived from gene expression pro-
filing. Note that this benchmark experiment is based on a learning sample
of 60 patients, 42 of which are censored. This implies that, on average, only
38 unique patients are included in one bootstrap learning sample, which
explains the large variability.

17.8 Conclusion

Modeling the relationship between a clinically interesting response vari-
able, such as tumor subtype of survival time, and gene expression levels of
thousands of genes for only a small number of patients is a challenge to
statistical methodology. The analyses in this chapter give an overview on
ensemble methods for modeling high-dimensional gene expression data and
illustrate both advantages and shortcomings. For samples involving on the
order of 100 patients, ensemble methods seem appropriate for constructing
models for the prediction of tumor subtypes of renal cell cancer or stages
of B-cell leukemia. It should be noted though that ensemble methods as
used here are not more than black-box prediction methods. Modeling cen-
sored time-to-event data in such a high-dimensional setting is even more
difficult, especially when a substantial number of patients are censored. Fi-
nally, we would like to mention that much research is currently conducted
in the field of ensemble methods in both statistics and machine learning,

17. Ensemble Methods 311

and one can expect further methodological developments and new software
packages offering more functionality in the near future.

18

Browser-based Affymetrix
Analysis and Annotation

C. A. Smith

Abstract
webbioc is a CGI-based interface to Bioconductor methods for

preprocessing and analyzing Affymetrix data. It wraps up the func-
tionality of a number of Bioconductor packages into a consistent
environment that can be deployed for use by small groups or large
departments. Without ever seeing a command prompt, it will take
the user from raw data to annotated lists of the most significantly dif-
ferentially expressed genes. It will optionally make use of a back-end
computer cluster for batch processing. This chapter will discuss the
appropriate circumstances under which webbioc should be deployed
and the pros and cons of using it versus the typical command line en-
vironment of R. Installation and configuration will be fully covered.
Use of the Web-based interface will be visually demonstrated. Finally,
we will describe how to expand the interface by adding additional
analysis modules.

18.1 Introduction

webbioc is a Web interface for several of the Bioconductor microarray anal-
ysis packages. It represents a significant departure from the command-line
interface discussed thus far. It is designed to be installed at local sites as a
shared bioinformatics resource. webbioc currently only provides Affymetrix
analysis, although collaborations on a cDNA module are of some interest.
The existing modules provide a workflow that takes users from CEL files to
differential expression with multiple hypothesis testing control and finally
to meta-data annotation of the gene lists.

A number of other projects add a Web interface to R. The Shaw Labo-
ratory at the Baylor College of Medicine has compiled a useful list of many

314 C.A. Smith

such projects.1 Current Web interface projects can be subdivided based on
their answers for two architectural decisions: 1) Whether to allow users to
enter their own R code. 2) Whether to maintain a user’s R session across
multiple form submissions. webbioc answers no to both. It does not allow
user entry of R code and executes a new instance of R each time the user
submits a form.

As a consequence of those decisions, webbioc is much less flexible than
an interactive R session. It can only perform a preset list of tasks on user
data. New tasks must be explicitly programmed. However, in some cases,
“less is more.” A user does not need to remember any command syntax.
Depending on the number of commands that must be executed to do an
analysis, the Web interface may actually be faster and less error-prone. A
number of other advantages are discussed in the next section.

18.1.1 Key user interface features

webbioc expands on the infrastructure and algorithmic strengths of Biocon-
ductor in the R environment and adds a number of usability enhancements
to the experience of using Bioconductor:

• Short learning curve. Using the Web interface, the user does not need
to know how to use either a command line interface or the R language.
Depending on the programming savvy of the user, R tends to take a
long time to fully master. On the other hand, webbioc abstracts away
much of the complexity and presents an interface that is very quickly
understood by most any biologist.

• Ease of installation. After an initial installation by a system ad-
ministrator, there is no need to install additional software on user
computers. Installing and maintaining an R installation with all the
Bioconductor packages can be a daunting task, often best suited to a
system administrator. Using webbioc, only one such installation needs
to be maintained.

• Discoverability. Graphical user interfaces are significantly more dis-
coverable than command line interfaces. That is, a user browsing
around a software package is much more likely to discover and use
new features if they are graphically presented. Additionally, a unified
user interface for the different Bioconductor packages can help show
how they can be used together in a data-processing pipeline. Ideally,
a user should be able to start using the Web interface without reading
external documentation.

1http://franklin.imgen.bcm.tmc.edu/R.web.servers/.

18. Browser-based Annotation 315

• Documentation. Embedding context-sensitive on-line help into the
interface helps first-time users make good decisions about which
statistical approaches to take. Because of its power, Bioconductor
includes a myriad of options for analysis. Helping the novice statis-
tician wade through that pool of choices is an important aspect of
webbioc.

18.2 Deploying webbioc

18.2.1 System requirements

webbioc requires a number of packages external to R. Here are a number of
the most important requirements. A full listing can be found in the webbioc
vignette.

• Unix/Linux/Mac OS X: webbioc was written in a Unix environ-
ment and depends on many Unix conventions including path names,
directory structure, and interprocess communication. It will not run
under Windows.

• Perl 5.8: The Web interface and much of the core logic uses Perl.
webbioc uses several Perl modules where are only available in Perl 5.8
and later.

• Netpbm: The Netpbm series of programs handle graphics manipu-
lation.

• SGE or PBS (optional): webbioc has been developed and tested
with two batch queueing systems, the Sun Grid Engine and the
Portable Batch System. When using a batch queueing system, web-
bioc requires that there be a shared filesystem mounted in the same
place on the Web server as on the execution nodes. Please note that
these are optional as webbioc can also run jobs by forking to the
background. Adding support for other batch queueing systems is a
straightforward matter.

18.2.2 Installation

To install webbioc, first verify that the webbioc package is installed. Next
create a directory within the Web server’s CGI directory that will hold
all the Perl scripts. One might typically call that directory bioconductor.
Copy all the files from R_LIBS/webbioc/cgi/ into that directory.

Next verify that the file permissions are correct on the copied files.
Go to the directory to which you copied the files. Use the command:
chmod 755 *.cgi to make the CGI scripts executable and the command:
chmod 644 *.pm to make the support modules readable.

316 C.A. Smith

You must now decide how you want to link the Bioconductor Web in-
terface into your existing Web site. It was designed to integrate seamlessly
into an existing site design. webbioc includes a very rudimentary home page
in R_LIBS/webbioc/www/. You may either use this as a starting point or
create your own. Please note that you may have to change the links slightly
depending on where you place the CGI scripts.

The last step of the installation is to create two directories where the Web
interface can store files. Remember that if you are using a batch queueing
system, these two directories must be shared between the Web server and
all execution nodes via NFS (or some other file sharing mechanism). If
other users have access to any of the machines running the Web interface,
we recommend setting the permissions of these directories so that only the
Web server user can read them.

The first directory will be for storing uploaded files. The largest type
of file uploaded will probably be CEL files. They are typically around 10
MB each. Therefore, depending on expected server usage, the directory
should be kept on a partition with hundreds of megabytes to gigabytes of
free space. It can be stored anywhere and does not necessarily have to be
Web-accessible.

The second directory will be used for storing the results of jobs that
clients submit. Job results will typically be anywhere from 5 MB to 5
KB. The free space necessary for this directory is again subject to usage.
This directory must be accessible via the Web server to allow results to
be delivered asynchronously. Both directories should be regularly purged
of old files.

To facilitate installation and updating of meta-data packages, webbioc
includes a function to download and install every meta-data package from
the Bioconductor Web site. The following uses reposTools to install all meta-
data packages and update any out-of-date meta-data packages. (Change the
path name to match your system.)

library("webbioc")
installReps("/library/install/path")

Make sure to run R with a user who has permission to write to the library
directory. Depending on your site, you may wish to set up a cron job to
execute this code approximately once per month to check for updates or
additions to the meta-data packages. If packages are already up-to-date, it
will not waste bandwidth nor CPU by re-installing them.

18.2.3 Configuration

Beyond putting the CGI scripts and HTML page in the right places and
setting up directories to receive files, all configuration is done through
the Site.pm file. Configuration options for specifying file locations, batch

18. Browser-based Annotation 317

queueing system, and HTML header and footer information are located in
that file. Full details can be found in the webbioc vignette.

18.3 Using webbioc

Although webbioc is designed to be modular and allow the user to use
different combinations of analyses, the current selection of modules lend
themselves to a linear workflow. The basic sequence involves: 1) Prepro-
cessing raw .CEL files into a set of normalized gene expression measures. 2)
Finding differentially expressed genes using basic statistical tests controlled
by multiple testing procedures. 3) Annotating the gene list with meta-data
linking to various on-line resources. That workflow will be demonstrated
here.

18.3.1 Data Preprocessing

The first step in preprocessing Affymetrix data is uploading CEL files con-
taining the raw intensity values from the PM/MM oligonucleotide probe
pairs. To begin, the user first creates a new Upload Manager session, which
is uniquely and privately identified by a token consisting of roughly 25 al-
phanumeric characters. The user should record the session token for future
use and to avoid uploading large raw data files more than once. The session
token can optionally be stored in a cookie for convenience.

For this demonstration, we will be using six CEL files from a spike-in
study that used the HG-U95A chip. The study is described in Section 2.5.
The six chips represent three replicates each of identical samples with 14
gene groups spiked-in at a simulated fold change of 2. The gene groups
were spiked-in at varying concentrations ranging from 0 to 1024 pM. The
Upload Manager with the six CEL files can be seen in Figure 18.1.

After the user selects the number of CEL files for preprocessing, web-
bioc provides a succinct but powerful interface for reordering and renaming
samples, producing more coherent reports. The user has the choice of using
a high-performance implementation of the RMA expression or creating a
custom expression measure using different routines for background correc-
tion, normalization, PM correction, and multi-probe summarization. Log
base 2 transformation of the data can be easily disabled if so desired. The
main options screen can be seen in Figure 18.2.

Results of preprocessing are returned in two formats. The first is a tab-
delimited text file that can be opened in Excel or any other microarray
analysis software. Second, webbioc creates an exprSet that can be further
utilized by the Web interface for subsequent analysis. The exprSet is fully
compatible with R on any platform, if the user alternatively wishes to

318 C.A. Smith

Figure 18.1. Spike-In CEL files stored with the Upload Manager.

perform further local analysis. The results output screen can be seen in
Figure 18.3.

Thus webbioc may be used to provide biologists easy access to some of
the advanced Affymetrix preprocessing routines, such as GCRMA, available
only through Bioconductor.

18.3.2 Differential expression multiple testing

A common task is to query for significantly differentially expressed genes.
This is accomplished with the multtest module of webbioc. For the
most part, it leverages functionality found in that package while adding
some additional statistical and graphing tools. An example of the main
configuration page for the multtest module can be seen in Figure 18.4.

Before starting to use the multtest module, you must first indicate which
exprSet to analyze and how many sample classes there are. In almost all
cases, that will be two, one for a baseline and another for an experimen-
tally varied group. You may want to use more than two groups if you were
interested in analysis using multiclass tests such as the F-test. After decid-
ing how many classes there are, you must assign each sample to a class.

18. Browser-based Annotation 319

Figure 18.2. RMA preprocessing using custom sample labels.

You may also ignore individual chips, completely excluding them from the
analysis.

After assigning classes to each sample, you must chose a statistical test
and a suitable multiple testing procedure. There are a broad array of choices
here and describing them all would be beyond the scope of this chapter.
Either of the t-tests is often a good choice for a differential expression test.
However, one must recognize the weaknesses of using such procedures with
small sample sizes. For more in-depth information about multiple testing
procedures, see Chapter 15.

A final important choice to make is how to compute the raw p-values
which are then adjusted by the multiple testing procedure. Choosing para-
metric will use the classical methods based on continuous distributions to
determine p-values. On the other hand, you my also choose to use per-
mutation methods developed specifically for the multtest package. In most
cases the permutation methods will take significantly longer to compute.
The affects of both can easily be investigated using the Web interface.

In addition to producing a list of significantly differentially expressed
genes, the Web interface produces a number of diagnostic plots including
an M vs. A plot, Normal quantile-quantile plot, and a multiple testing

320 C.A. Smith

Figure 18.3. Plain text and R object output from preprocessing.

procedure selectivity plot. The Web interface distinguishes selected genes
in the corresponding plots by highlighting them in red. In this case, the
100 genes with the smallest p-values are highlighted. See Figure 18.5. For
more information about visualizing data see Chapter 10.

The Web interface also allows the user to select a specific subset of genes
for focused analysis. In the case of the Affymetrix spike-in experiment, we
may wish to investigate how the theoretical fold changes correlate with
the observed fold changes. Figure 18.6 shows the text box where a list
of probeset IDs can be entered. Also note the expression values can be
included in the output HTML table.

The resulting HTML page can be seen in Figure 18.7. With the exception
of probeset IDs 1708 at and 37777 at, each of the fold changes should be
2. However one observes that the fold change values are lower than their
spiked-in concentrations. It is a known artifact of the RMA preprocessing
method.

18.3.3 Linked annotation meta-data

Completing the analysis workflow, the Web interface includes a module
that exposes the functionality of annaffy. The user can produce annotation
for either their own probeset list or use a list previously identified with
the multtest module. The interface allows the user to select exactly which

18. Browser-based Annotation 321

Figure 18.4. Finding significant differences in expression using Welch’s two-sample
t-test and Benjamini and Yekutieli False Discovery Rate control.

columns from the saved aafTable and annotation meta-data should be in-
cluded in the final report. The interface for appending annotation can be
seen in Figure 18.8. The resulting annotated list of the spiked in genes can
be seen in Figure 18.9.

18.3.4 Retrieving results

Each webbioc module produces a single result report per analysis. Each set
of results is associated with a unique job ID which that with the name
of the module and is followed by pseudo-random alphanumeric characters.
For convenience, users may choose to receive e-mail notification when jobs
complete. In addition, the Web interface keeps a log of every job associ-
ated with a given Upload Manager session token. The log links directly to
individual result pages. The log for the analyses shown here can be seen in
Figure 18.10.

322 C.A. Smith

Figure 18.5. Log fold change (M) vs. mean expression level (A) and normal quan-
tile-quantile plot. 100 most significantly differentially expressed genes highlighted
in red. Multiple testing selectivity plot not shown.

Figure 18.6. Testing only the spiked-in genes.

18.4 Extending webbioc

18.4.1 Architectural overview

webbioc is written in a combination of Perl, R, and shell scripts. For most
processing, the Perl-driven Web interface dynamically creates an R script,
which is run in batch mode. A shell script controls the execution of R and
catches any errors that result.

The Web interface can be configured to execute the shell script in one
of two ways. In the single-machine configuration, Perl forks an auxiliary

18. Browser-based Annotation 323

Figure 18.7. HTML table with statistics and log expression measures. Lower than
expected fold changes are observed.

thread that then runs the script. However, webbioc can also be configured
to use the Portable Batch System (PBS) or the Sun Grid Engine (SGE)
to send the job to another computer for processing.

If used in a cluster configuration, webbioc depends on having a shared
partition between the Web server and all the compute nodes. This is typ-
ically accomplished with NFS. The shared partition allows the compute
nodes to push results directly out to the user without directly interacting
with the Web server.

Microarray analysis is very data intensive and tends to produce large
files. Thus special care must be taken to efficiently move data back and
forth between the Web-client and the server. webbioc uses two different
systems for exchanging data with the client, one for input and the other
for output.

The Upload Manager handles all files to be processed by Bioconductor.
When users start a session with the upload manager, they are granted a
unique token that identifies the session. Using that short random string of
letters and numbers, they may access their uploaded files from any of the
Bioconductor tools. In that way, users must only upload files a single time.
Upload manager sessions are meant to be temporary, with any files being
automatically deleted after a given amount of time.

For output of results, webbioc creates static HTML pages on the fly
that contain relevant images or files. Like the upload manager, job results
are uniquely identified and are only temporarily stored. Because saving
old results can potentially fill up the disk, those should be automatically
purged on a regular basis.

324 C.A. Smith

Figure 18.8. Annotating statistical data with columns of linked meta-data.

The results of one job may need to be the input of another. For instance,
expression summary data created by preprocessing using affy needs to be
supplied to multtest for detection of differentially expressed genes. To fa-
cilitate that data exchange, the Web interface will optionally copy results
back to the upload manager for processing by other packages.

The data interchange format used by webbioc is the R binary file format.
By convention, each file contains only one object. Additionally, instead of
using the common .Rda or .Rdata extensions, webbioc uses the class of the
stored object as the file extension. This provides a useful abstraction that
many computer users have come to understand and expect. The extensions
are merely for the benefit of the user as the Web interface ignores them.

18.4.2 Creating a new module

In general, each of the modules in webbioc attempt to encapsulate the
functionality of a single Bioconductor package. That design decision can
be seen in the affy, multtest, and annaffy modules, that expose much of the
functionality of their respective packages. The affy module leverages the
modular nature of the affy package and includes preprocessing components
from gcrma and vsn.

18. Browser-based Annotation 325

Figure 18.9. Final HTML table with linked annotation, fold change, and
t-statistics.

Figure 18.10. Log linking to results of every job associated with a given session
token.

An important part of the design of webbioc is that modules take stan-
dardized input formats in the form of R objects. For instance, multtest takes
an exprSet object as input, the Bioconductor standard for storing microar-
ray data sets. annaffy takes an aafTable object as input, that includes all
the information it will need to add annotation. Thus when you create your
own packages, it is important to determine what the inputs and outputs
will be. If you are creating a cDNA preprocessing module, you would likely
want to create an exprSet as your output. If you were implementing some
other method for finding differentially expressed genes, you might want to
produce an aafTable. Remember that all data is exchanged through files
stored in the Upload Manager, with a single R object per file.

Once you have determined the functionality and input/output of your
module, you need to plan the steps of the user interface. If your mod-
ule takes a varying number of input parameters, you may first need a
screen where the user selects that number and then produce the appro-
priate HTML form based on the user input. (An alternative could be to
use JavaScript to dynamically create an appropriately sized form without

326 C.A. Smith

having the initial page.) Examples of that can be seen by looking at the
source of the affy.cgi and multtest.cgi scripts.

The main structure of the currently implemented modules is as follows:
1) Initialize instances of the CGI and FileManager objects to be used during
script instances, linking the FileManager object to the current session. 2)
Next decide which processing step the user is working on and call the corre-
sponding step function. 3) Each step is handled by a function that handles
all the processing and HTML display. The initial form is also handled by
a function, making a separate HTML page unnecessary. 4) A generate_r
function creates the text R code that is executed by the job control sys-
tem. That text is passed to the create_files function that generates
the necessary scripts for batch execution. 5) Finally, after any module-
specific functions, there is an error function that displays problems with
processing.

18.5 Conclusion

The Web interface in the webbioc package offers a complete solution
for doing statistical analysis of Affymetrixbased microarray experiments.
Through the affy package, it gives the user the ability to explore many
combinations of background correction, normalization, and summarization
in probe-level preprocessing. Second, it leverages the multtest package for
multiple comparisons testing and global control of the error rate. Several
visualizations are also provided. Finally, the results of both analysis stages
can be fully annotated using annaffy. Though limited to a largely linear
workflow, enough flexibility is programmed in to provide many possibilities
for interactive analysis.

Beyond its current abilities, webbioc provides a template and infrastruc-
ture for building interfaces for other types of microarray analysis including
clustering, classification, and other novel methods for assessing differential
expression. In order to handle the large file sizes inherent in microarray
data, it provides an easy mechanism to transfer and store raw data on the
server. Additionally, it allows users to easily backtrack and determine ex-
actly which parameters led to a given result. Finally, it is built from the
ground up to make use of a back-end computing cluster for batch data
processing and will thus scale to a large number of users.

Part IV

Graphs and networks

19

Introduction and Motivating
Examples

R. Gentleman, W. Huber, and V. J. Carey

19.1 Introduction

Graphs are fundamental structures of discrete mathematics and have found
applications in many scientific disciplines that consider networks of inter-
acting elements (Strogatz, 2001). A graph consists of a set of nodes and
a set of edges that connect nodes. The nodes are entities of interest and
the edges represent relationships between the entities. For example, the
entities may be a set of proteins in a cell, and the relationship modeled
may be the existence of a physical interaction between two proteins. We
will use the notation G = (V,E) to specify a graph G, with V denoting
the node set, and E denoting the edge set. Elements of E relate pairs of
elements of V . Edges can be assigned weights, directions, and types. Some
applications make use of specialized forms of graphs such as multigraphs,
bipartite graphs, and hypergraphs (Gallo et al., 1993; Berge, 1973). These
are defined in Section 20.2.1 below.

It is now common to encounter publications in the biosciences that make
explicit use of graphs and graph theory. In this part of the book, we dis-
cuss a body of software that is available for working with graphs to build
mathematical and statistical models for experimental data. This chapter
provides a general discussion of practicalities of using graphs for data
analysis, presenting three motivating examples with some illustrations of
software functionality. We address the formal concepts of graph theory and
algorithms on graphs in Chapter 20 and provide a detailed description of
the relevant software resources available in Bioconductor in Chapter 21.
Finally, in Chapter 22 we present some case studies.

330 R. Gentleman et al.

19.2 Practicalities

Using graphs as models for data analysis and data representation poses a
number of challenges. In many cases, the data that are available to con-
struct the graphs of interest are imperfect. The process of constructing
a graphical model on the basis of experimental data must address three
potential complications: false positives, relationships that appear in the
experimental data, but are not real; false negatives, relationships that are
real and were probed experimentally, but were not detected; and untested
relationships, where no information is available. In order to make appropri-
ate use of the data, we will need to keep these issues in mind as we explore
the resultant graphs. Uncertainty is usually not part of a purely mathemat-
ical approach to graph theory, but it cannot be ignored in the context of
experimental data. Uncertainty affects how we use and think about graphs
or networks. Uncertainty of relationships being modeled also impacts the
design of software, the choice of algorithms, and the interpretation of the
output.

We caution the reader against over-interpretation of graphical models.
Differences between graphs may be entirely due to artifacts, such as the
bias of biomedical research toward matters related to human disease. For
example, if one type of gene or gene product is well studied and there are
many experimental tools that can be used to study it, then graphs based on
it are likely to contain many edges. On the other hand less is known about
genes that are hard to study, or that are not directly implicated in diseases,
and the resultant graphs tend to be sparse. Hence an observed difference
may be merely a reflection of how extensively the genes were studied.

19.2.1 Representation

An abstract graph can be represented for computational purposes in many
different ways. Bioconductor supports representations based on node and
edge lists, adjacency matrices, and from-to matrices. Software has been
developed to translate between representations, a process sometimes re-
ferred to as “coercion.” The representation used for a graph can have a
profound effect on the running time of algorithms that are applied to it. It
is advisable to make timing comparisons on different representations before
committing to a particular one. The most appropriate or efficient strategy
for representing the graph will depend on many factors such as the size of
the graph and the types of operations that are going to be applied to it.
More details are provided in Section 21.2.

19.2.2 Algorithms

We emphasize the reuse of existing, tested implementations of graph algo-
rithms. Bioconductor provides interfaces to many of the algorithms coded

19. Graph Introduction 331

in the open source Boost graph library (Siek et al., 2002). A prototype
interface to LEDA (Melhorn and Näher, 1999) is also available.

Good implementations for many algorithms required in bioinformatics
are still needed. Algorithms adapted to deal with incompleteness and un-
certainty are of particular interest. For example, Scholtens and Gentleman
(2004) developed a special form of clique that is appropriate for protein
complex data where different forms of uncertainty are prevalent. For hy-
pergraphs, Krishnamurthy et al. (2003) describe an extension of DFS, and
Klamt and Gilles (2004) developed an analog of the mincut algorithm for
biochemical reaction networks.

19.2.3 Data Analysis

Graphs play roles in three complementary areas related to data analysis.
First, graphs provide a data structure for knowledge representation. Ex-
amples include metabolic and signal transduction networks that are stored
in graph form. This provides the user with a computational object that
can easily and naturally be used and that reflects, in software, the phys-
ical objects and relationships of interest. Graphs are used for knowledge
representation in the Gene Ontology (GO), and bipartite graphs between
genes and scientific papers that cite them are another form of knowledge
representation.

A second application of graphs to statistical methodology is their use
in exploratory data analysis (EDA). A knowledge-representation graph can
be juxtaposed with observed data to guide the discovery of interesting
phenomena in the observations. Examples include the mapping of gene
expression data onto static knowledge-based graphs (Storch et al., 2002;
Zhou et al., 2002; Doniger et al., 2003).

A further role for graphs is in statistical inference. For example, one might
want to make inferential statements such as that two genes are related
due to significantly frequent co-citation, or that gene expression is related
to protein complex co-membership (Ge et al., 2001). In this context, we
have found that random graphs play an important role and we consider a
variety of random graph models, such as the Erdös-Rényi model, as well as
simulation models that randomly permute the labels on the nodes.

19.3 Motivating examples

19.3.1 Biomolecular Pathways

The behavior of a biological system depends on the properties of its indi-
vidual components as well as on their interaction networks. Graphs are a
natural tool for the analysis and modeling of such networks. Figure 19.1
shows an illustration of the integrin-mediated cell-adhesion pathway, as

332 R. Gentleman et al.

Figure 19.1. The integrin-mediated cell adhesion pathway as rendered by KEGG.

provided by KEGG (Kanehisa and Goto, 2000). Taken as a graph, V is
the set of proteins, complexes, and processes comprising this description
of the integrin-mediated cell adhesion pathway, and E is their set of inter-
actions. In order to be able to perform queries and computations on this
pathway, we need to have it in a machine-readable format. The package
graph contains a manually curated version of this graph.

> library("graph")

> data("integrinMediatedCellAdhesion")

> class(IMCAGraph)

The function acc(g,n) is a method from the graph package that returns all
nodes that are accessible in the graph g through a path from node n. This
allows us to ask, for example, which nodes are downstream of the “son of
sevenless” (SOS) protein.

> s <- acc(IMCAGraph, "SOS")

$SOS

Ha-Ras Raf MEK

1 2 3

ERK MYLK MYO

4 5 6

F-actin cell proliferation

7 5

We can also ask which of the nodes has the highest number of out-going
edges.

> deg <- degree(IMCAGraph)$outDegree

> deg[which.max(deg)]

19. Graph Introduction 333

transcription factor activity

DNA binding

transcription regulator activity

molecular_function

nucleic acid binding

binding

GO

Figure 19.2. Graph of GO relationships for the term“transcription factor activity.”

ITGB

6

Although the graph object IMCAGraph was curated manually from the
visual representation of the pathway in Figure 19.1, there are now public
databases that represent biological pathways in a formal, ontology-based
manner. Examples include KEGG (Kanehisa and Goto, 2000), reac-
tome (Joshi-Tope et al., 2005), BioCarta (biocarta.com), and the National
Cancer Institute cMAP (see Section 7.6.2).

19.3.2 Gene ontology: A graph of concept-terms

In the parlance of computer science, an ontology is an explicit formal spec-
ification of how to represent objects, concepts, and other entities that exist
in some subject area of interest and the relationships that hold among them.
It provides a structured vocabulary for that subject area. GO (Chapter 7) is
an ontology whose subject area is the description of gene products. The re-
lationships between terms are structured as a directed acyclic graph (DAG)
in which each term may be a child of one or more parents. Child terms are
stipulated to be more specific than their parents. Child terms may have
more than one parent term and they may have different relationships with
the different parents.

As an example, the term“transcription factor activity”is in the molecular
function (MF) ontology and has the GO label GO:0003700. We can learn
about GO’s treatment of this term by extracting the corresponding record
from the GOTERM environment.

334 R. Gentleman et al.

> library("GO")

> library("GOstats")

> GOTERM$"GO:0003700"

GOID = GO:0003700

Term = transcription factor activity

Definition = Any protein required to initiate or

regulate transcription; includes both gene

regulatory proteins as well as the general

transcription factors.

Ontology = MF

The induced graph for this term, based on the MF hierarchy, can be
produced using the GOGraph function of the package GOstats.

> tfG <- GOGraph("GO:0003700", GOMFPARENTS)

The graph is shown in Figure 19.2. We can also look at the children of
GO:0003700, these are terms about transcription factor activity that are
more specific.

> tfch <- GOMFCHILDREN$"GO:0003700"

[1] "GO:0003705"

> tfchild <- mget(tfch, GOTERM)

$"GO:0003705"

GOID = GO:0003705

Term = RNA polymerase II transcription factor

activity, enhancer binding

Definition = Functions to initiate or regulate RNA

polymerase II transcription by binding a

promoter or enhancer region of DNA.

Ontology = MF

Mappings between manufacturer identifiers for microarray probes and GO
terms are available in Bioconductor meta-data packages. These packages,
organized by chip model numbers (e.g., hgu95av2 for the Affymetrix HG-
U95Av2 GeneChip). The mapping data resources include the evidence
codes that characterize the reasons for linking a gene product to a GO
term (see Section 7.5.4 for more details).

19.3.3 Graphs induced by literature references and citations

The National Library of Medicine’s PubMed resource provides access to
more than 11 million citations to medical and biological literature in the
form of Web-accessible detailed provenance information, abstracts, and
hyperlinks. We have described the basic functioning of this resource in

19. Graph Introduction 335

LL:142940

LL:1736

LL:10728

LL:7011

LL:7012

LL:7015

PM:12736709

PM:12135483

PM:10591218

PM:10556300

PM:9888995

PM:9590285

Figure 19.3. A bipartite graph between genes (LocusLink identifiers, nodes
starting with “LL”) and articles (PubMed identifiers, nodes starting with “PM”).

Chapter 7. Here we have a look at its graph structures. Each paper ab-
stracted by PubMed contains a list of the specific genes that are mentioned
in the corresponding paper. The genes are identified by LocusLink IDs.

Our analysis employs an affiliation network in the parlance of social
network analysis. We form a bipartite graph, where one set of nodes corre-
spond to papers indexed in PubMed and the other set of nodes correspond
to LocusLink identifiers. Edges in this graph relate LocusLink identifiers
(genes) to PubMed identifiers (papers). An example for such a graph, rep-
resenting a subgraph of the neighborhood of the DKC1 gene (LocusLink
identifier 1736), is shown in Figure 19.3. In a general approach, these edges
may have weights and other attributes associated with them, but we can
consider them as merely representing a citation relationship between a gene
and a paper.

Different transformations of this bipartite graph are interesting. Let A
denote its adjacency matrix, where the rows represent genes, the columns
represent papers, and a one (zero) in the (i, j) entry indicates that gene i
was cited (not cited) in paper j. Two other matrices are of immediate in-
terest, the so-called one-mode graphs that represent relationships between
genes or between papers. In the following, we use Boolean matrix multi-
plication, in which non-zero outputs of ordinary matrix multiplication are
converted to ones. The matrix G = AA′ is the adjacency matrix of the
graph representing gene-gene co-citation. If Gi,j is non-zero then genes i
and j are jointly cited in at least one paper. The matrix H = A′A is the
adjacency matrix of the graph representing relationships among papers. If

336 R. Gentleman et al.

Hi,j is non-zero then there is some gene that papers i and j both mention.
We will consider the properties of these graphs and describe software and
different operations that can be performed in Section 22.4.

19.4 Discussion

There are many problems in computational biology that can be represented
and tackled in terms of graphs and algorithms on graphs. There is a great
need for software, and in particular for software that integrates data an-
alytic capabilities with methods for querying and manipulating graphs.
We have produced an approach to such an environment in Bioconductor,
however much remains to be done.

We have discussed three examples. Pathways, where the interest is in
better understanding functional relationships between the components.
The ontology example indicates the importance of embedding terminology
graphs and their mappings to bioinformatic objects in an environment that
provides ready access to statistical and graph-theoretic algorithms. The lit-
erature example indicates the importance of integrating graph structures
and algorithms with text mining software, to support the interpretation of
data analytic results through links to the biomedical literature.

20

Graphs

W. Huber, R. Gentleman, and V. J. Carey

Abstract
In this chapter, we describe and discuss various definitions and al-

gorithms for graphs, their representation, and uses. The presentation
is formal and we leave references to software and usage for the later
chapters. Our goal is to use graphs to explore, navigate, represent,
and model biological data. Hence, we must often specialize general
concepts and ideas to the tasks at hand. Some of our motivation is
taken from the area of social network analysis where many similar
problems have been considered and there is a rich history of both
concepts and methods.

20.1 Overview

Graphs provide natural models for systems of related entities. The entities
and their relationships define the interpretation of the graph. The bulk of
this chapter concerns the mathematical notation, definitions, and abstrac-
tions needed to discuss graphs. We begin by reviewing basic definitions
of graph structures, connectivity properties and measures, and operations
on graphs that are useful in various bioinformatic contexts. The treatment
is not comprehensive, and we refer readers to more complete references
such as Gross and Yellen (1999), Sedgewick (2002), and Berge (1973). We
have based our presentation and notation on that used in Gross and Yellen
(1999).

Graphs will be employed as models for systems of objects and relation-
ships between these objects. The relationships are modeled as two-place
relations: for objects a and b and relationship R in the model, the notation
R(a, b) is interpreted as “a has relation R to b.” When R(a, b) is true, the
representing graph will possess an edge between nodes a and b; otherwise,
a and b are not directly connected by any edge.

338 W. Huber et al.

Relationships modeled by edges may be dichotomous [R(a, b) holds or
does not hold] or we may consider a more general interpretation of R as
a two-place function with discrete or continuous range. Such valued rela-
tions are often represented by using weights on the edges in the graph.
Additional complexity can be accommodated by introducing formal types
as features of modeled relations. For example, a graph with genes as nodes
can simultaneously model homologies among genes using edges of one type
and co-citation in medical literature using edges of another type. Regula-
tory networks can also be modeled using graphs. In this case, the nodes
represent the genes or gene products involved in the process, and the di-
rected edges represent different actions such as activation, enhancement, or
inhibition of the target gene by the regulatory element.

In some cases, such as transcription factor networks, the relationships
between nodes in the graph are directed. There is no conceptual difficulty
in mixing directed relationships and undirected relationships within the
same graph.

20.2 Definitions

The graph G = (V,E) is a structure that consists of two sets. The elements
of V are called nodes (the term vertex is also commonly used) and the
elements of E are referred to as edges. Each edge has either one or two
nodes associated with it; they are called its endpoints. Both nodes and
edges can have types and various other attributes associated with them.
We use the notation |S| to denote the cardinality of the set S. Thus |V |
denotes the the number of nodes in G. We will also use the notation V (G)
to denote the node-set of graph G, and E(G) to denote the edge-set of
graph G.

We will use a backslash to denote set difference, so that S\T denotes
those elements in the set S that are not in T . When dealing with graphs G
and U , we use G\U to denote the graph H, satisfying V (H) = V (G)\V (U)
and E(H) given by E(G)\F (G, U), where F (G, U) is the set of edges in G
possessing endpoints in V (U).

Edges are binary relations that join two nodes. An edge is said to be
incident at a node if the node is an endpoint for the edge. A self-loop is an
edge that joins one node to itself. A proper edge is an edge that is not a
self-loop, and a multi-edge is a set of two or more edges that have the same
endpoints. A directed edge is an edge where one endpoint is designated the
head and the other the tail . Directed edges join the tail node to the head
node but not vice versa. A directed graph, or digraph, is a graph where all
edges are directed. The underlying graph of a digraph is the graph that
results from making all directed edges undirected edges.

20. Graphs 339

s

p

q

r

Figure 20.1. A simple graph.

Two nodes are said to be adjacent if they are joined by an edge. Two
edges are adjacent edges if they are joined by a node. The degree of node
v is denoted deg(v) and is equal the number of proper edges incident at
v plus twice the number of v’s self-loops. For directed graphs we define in
degree to be the number of edges directed at the node and out degree to
be the number of edges that go out from the node (edges whose tail is at
the node of interest). A complete graph is a graph such that every pair of
nodes is joined by an edge.

In Figure 20.1 node p has a self-loop, there is no edge between nodes p

and r. The other edges are all directed, as there are arrowheads only on
one end.

In a graph a walk from node v0 to node vn is an alternating sequence of
nodes and edges, W = 〈v0, e1, v1, · · · , vn−1, en, vn〉 such that the endpoints
of ei are vi−1 and vi for i = 1, . . . , n. In a digraph we refer to the analogous
structure as a directed walk. The length of a walk when no edge weights
are defined is the number of edges traversed. If edge weights are defined,
the length will be computed by summing the edge weights. A walk is said
to be closed if v0 = vn, so that it starts and ends at the same node. Soft-
ware for working with walks is discussed in Section 21.3.2 and Figure 21.7
demonstrates some of the concepts.

A node v is said to be reachable from node u if there is a walk from u
to v. A graph is said to be connected if there is a walk between every pair
of nodes in the graph, otherwise it is said to be disconnected. A digraph is
said to be weakly connected if its underlying graph is connected. Two nodes
w and z in a digraph are said to be mutually reachable if there is a directed
walk from w to z and a directed walk from z to w. A digraph is said to
be strongly connected if every pair of nodes in the digraph are mutually

340 W. Huber et al.

reachable. Figure 21.6 demonstrates some of the differences between strong
and weak connectivity.

The distance between two nodes u and v in a graph is the length of the
shortest walk joining them. For a digraph the directed distance is the length
of the shortest directed walk. Note that the distance function so defined for
digraphs may not be symmetric in its arguments. We define a trail to be
a walk with no repeated edges and a path to be a walk with no repeated
nodes, except possibly the first and last. A non-trivial closed path is called
a cycle.

For a graph G = (V,E) the connectivity is defined to be the minimum
number of edges whose removal results in a disconnected graph. This num-
ber is denoted k(G). If k(G) = l, then G is said to be l–connected. A cut in
G is a set of edges whose removal disconnects the graph. A minimum cut
is a cut with the minimum number of edges. If C is a minimum cut set of
a non-trivial graph G, then |C| = k(G). The connectivity of the graph in
Figure 20.1 is 2.

Connectivity properties can also be described in terms of nodes. Interest
often accrues to those nodes whose deletion from a connected graph G
results in a disconnected graph. A cut-set is a node set U such that G\U
has more components (formally defined below) than G does. A cut-node is
a cut-set consisting of a single element.

A subgraph of G = (V,E) is a graph H = (W, F) where W is subset of
V , and F is a subset of E, and all edges in F have their endpoints in W .
A subgraph H is said to span G if V = W , that is, if their node sets are
the same. An induced subgraph is a subgraph that is defined in terms of a
node set S and contains all edges from E that have both endpoints in S.
If G is a directed graph, then so are all subgraphs. Subgraphs can also be
induced by edge sets in an analogous manner. The boundary of a subgraph
H is the set of nodes S in V \W such that every element s of S has an edge
to at least one node in W . We denote by T the set of edges in E that have
one endpoint in S and the other in W .

A clique is a subset of the nodes in V such that every pair of nodes in the
subset is joined by an edge. If the clique is a proper subset of no other clique,
then we call it a maximal clique. Any node adjacent to a node v is said
to be a neighbor of v. A component of a graph G is a maximal connected
subgraph. In a graph G we refer to the component of a node v as the set of
nodes that are reachable from v and denote this C(v). Cliques are one type
of cohesive subgroup. That is, they are sets of nodes for which there is a
high degree of relatedness as demonstrated by the existence of many edges.
For our purposes, such a notion of cohesive subgroup will be too restrictive,
and we will consider these ideas in more detail in Section 20.3. A spanning
tree of a graph is a subgraph that both spans the original graph and is itself
a tree. A graph is connected if and only if it contains a spanning tree.

We now diverge somewhat from the standard graph theoretic terminol-
ogy. Our reason for doing so is that the concepts we are about to address,

20. Graphs 341

ug1

a b

c

d

complement(ug1)

a

b

c d

ug2

a b

c

d

complement(ug2)

a

b c d

intersection(ug1, ug2)

a b c

d

union(ug1, ug2)

a b

c

d

Figure 20.2. Set operations on graphs.

including graph unions and intersections, will need to be tailored to our par-
ticular situation. In many of our analyses we will be considering a graph
defined in terms of a fixed and scientifically relevant set of nodes (for ex-
ample all genes in a genome). Our experiment or analysis will be working
with different subsets of that large well defined set of nodes and edges.

In this general context our graphs, G and H have node sets that are
subsets of the larger universal node set. We define the union of two graphs
G and H to be the graph F satisfying V (F) = V (G) ∪ V (H) and E(F) =
E(G) ∪ E(H). The intersection graph is defined analogously, substituting
∩ for ∪ in the previous definition. The complement of a graph G = (V,E)
is the graph G′ = (V,E′) where E′ are those edges in the complete graph
on V that are not in E. These concepts are presented in Figure 20.2.

20.2.1 Special types of graphs

There are a few special types of graphs that deserve a bit more attention
because they play important roles in some of the applications that we will
consider. The main ones are bipartite graphs, hypergraphs, and directed
acyclic graphs (DAGs).

342 W. Huber et al.

Bipartite Graphs. If the nodes of a graph G = (V,E) can be parti-
tioned into two sets U and W such that every edge in E is an undirected
relationship between one node in U and one node in W , then G is said to
be a bipartite graph. Note that there can be no edges between the elements
of U or between the elements of W . Thus relationships between nodes in
U are mediated through the nodes in W and vice versa.

Two graphs called one mode graphs can be derived from a bipartite
graph. If U and W form the node partition of a bipartite graph G, then the
edges in the one mode graph on U (resp. W) are determined by whether or
not the two nodes both have edges in G to a common element of W (resp.
U).

A common representation for bipartite graphs is in terms of the n = |U |
by m = |W | adjacency matrix, A, where Ai,j = 1 if there is an edge from
ui to wj and otherwise Ai,j = 0. We note that usual notions of valued edges
or edges with types can also be easily accommodated in this representation.

The mode of a network is the number is the number of partitions of
the node set determined by some general node property. For example, a
two-mode network can be used to describe the relationships between genes
and scientific papers, or between proteins and protein complexes. In each
of these cases, the node set can be partitioned by node type. Two-mode
graphs are often referred to as affiliation networks.

In social network analysis, the two types of nodes are often referred to
as actors and events. Among the basic ideas that are represented by such
graphs is the concept that relationships between actors is mediated by the
events that they attend (or the clubs or social groups that they belong
to). In Chapter 22, we consider the relationships between genes due to
co-citation and the relationship between proteins due to co-membership in
protein complexes can be represented by a bipartite graph.

It is worth noting that adjacency in the one-mode graphs means that
both nodes have an edge to (at least one) common node in the other node
set. However, accessibility is less easy to interpret. Two nodes ui and uj that
are accessible, but not adjacent have a connection or relationship between
them is less direct – they are connected by a sequence of related actors and
events but do not themselves share memberships directly.

Bipartite graphs can be directed . In this case the edges could, for exam-
ple, represent temporal relationships. If we consider a biochemical reactions,
then the different molecules involved form one node set while the reactions
form the other. An edge from a molecule to a reaction denotes an input
and an edge from a reaction to a molecule would denote a product. Because
chemical reactions typically involve multiple inputs and produce multiple
outputs, these graphs can be viewed as multivariate generalizations of the
usual graphs (where edges represent binary relationships). This concept is
formalized in the next section.

Hypergraphs. Hypergraphs are closely related to bipartite graphs
(Berge, 1973; Gallo et al., 1993). Hypergraphs generalize the graph con-

20. Graphs 343

cept, allowing for the specification of relationships that are one to many
and many to many.

A hypergraph G can be defined as a pair (V,E), where V is a set of nodes,
and E is a set of hyperedges between the vertices. Each hyperedge is a set
of vertices, Ei = {u, v, . . .}, where u, v, . . . ∈ V .

A directed hypergraph G can be represented by a pair H = (V,E), where
V is the set of nodes and E = {E1, E2, . . . , Em} is the set of hyperedges.
A directed hyperedge is an ordered pair, Ei = (X, Y), of disjoint subsets
of nodes; X is the tail of Ei while Y is the head. A path P from a node
s to a node t is a sequence s = (V0, E1, V1, . . . , En, Vn = t) of alternating
nodes and hyperedges where (1) each hyperedge Ei is distinct, (2) for any
i ∈ {0, 1, . . . , n − 1}, Vi = tail(Ei+1), and (3) for any i ∈ {1, . . . , n − 1},
Vi = head(Ei).

Directed acyclic graphs. An important class of directed graphs are
the directed acyclic graphs, which are simply directed graphs with no cycles.
We note that a tree is a connected graph that has no cycles, however, we
will not consider trees in any great detail.

DAGs have found very many uses in statistics. They form the basis for
graphical models (Lauritzen, 1996; Edwards, 2000). They also play impor-
tant roles in structuring concepts, both GO and MeSH are represented
as DAGs. In Chapter 22, we demonstrate some of their uses in different
specific problems.

20.2.2 Random graphs

Support of random graph generation in Bioconductor currently operates
under the constraint that the node set is fixed and edges are randomly
generated in a user-selectable fashion.

The most commonly explored formulation is based on randomly selecting
edges from a complete graph (Erdös and Rényi, 1959) and is often referred
to as the Erdös-Rényi model. After the user specifies the number of nodes
and desired number of edges, a graph is generated by sampling edges, with-

out replacement, from the set of
(

n
2

)
= n(n − 1)/2 possible edges. An

equivalent version allows the user to specify a fixed probability that any
two nodes are joined by an edge.

Random graphs can also be modeled in terms of node degree distributions
(Newman et al., 2001). An algorithm for simulating random graphs with
an arbitrary degree distribution was given by Newman et al. (2002).

A third type of random graph is generated by assuming the existence
of some node attributes or latent variables that determine the presence,
and possibly the weight, of edges between them. In this model, the nodes
are associated with a set of identically distributed, independent random
variables. The occurrence and weight of edges is determined by a function
f that maps the pairs of random variables into some output space. For

344 W. Huber et al.

example, suppose that there are M binary attributes that can be associated
with each node. In one scenario edges are deemed to exist between nodes u
and v if they share the presence of at least one attribute. In other cases, the
edge may be valued to represent the number of shared attributes or, in some
cases, the attributes may themselves have real values and the edge weight
could be the sum of the values of the shared attributes. The scheme is quite
general. Random realizations of the node attributes can be generated using
standard simulation procedures.

Although such random graph algorithms can be valuable for testing
algorithms and for demonstration, their use for generating a reference dis-
tribution or a null model in a statistical analysis of a real-world graph
should be approached with caution. In applications, we have noted that
graphs realized from these models possess features that seem incompatible
with the observed graph, and hence basing inference on simulations from
such models is problematic. In many cases a permutation-type test, for
example permuting the node labels, may be more sensible.

20.2.3 Node and edge labeling

A standard (1-based) node labeling of a graph G = (V, E) is a one-to-one
mapping between the integers from 1 to |V | and the nodes in G. A standard
edge labeling of G is the one-to-one mapping between the integers from 1
to |V | choose 2 such that the edge labeled 1 is between nodes 1 and 2, the
edge labeled 2 is between nodes 1 and 3 and so on. This definition does not
handle multi-edges and self-loops, but can be extended. Standard node and
edge labelings are useful for the implementation of algorithms on graphs.

20.2.4 Searching and related algorithms

Breadth first search (BFS) and depth first search (DFS) are two strategies
for traversing a graph to discover properties of nodes or paths of substantive
interest. Conceptually each algorithm starts with a specified node and then
traverses all edges and nodes in a specific way. For DFS, at each node the
next node to visit is one that goes “deeper” into the graph. For BFS, all
nodes adjacent to the current node are visited before any of their descendant
nodes are. Examples are shown in Section 21.3.1 and Figure 21.5.

Algorithms for finding connected components and cut sets are often based
on DFS. Flow maximization problems are typically addressed using BFS.

20.3 Cohesive subgroups

Finding collections or subsets of nodes that have a close relationship to
each other is often of fundamental importance. Identification of maximal

20. Graphs 345

cliques has limited interest as the maximality criterion is so restrictive.
When dealing with imperfect systems or experimental data, we will need
to deal with the problems that arise due to various types of missingness,
false positives, false negatives, and unexplored relationships. In this setting,
we will need a notion of cohesive subgroup that is appropriate for these sorts
of problems.

Our development here follows that of Wasserman and Faust (1994). They
consider a number of different notions of cohesive subgroups that include
n-cliques, k-plexes and λ-sets.

In this section, we let Gs denote a subgraph of G = (V,E) with nodes
Vs and edges Es defined as members of E with both end-points in Vs.

n-cliques. An n-clique is a sub-graph with nodes Vs such that the dis-
tance d(v, u) between nodes v and u satisfies d(v, u) ≤ n for all nodes
v, u ∈ Vs.

k-plexes. A k-plex is a maximal subgraph, Vs, containing vs nodes, in
which each node is adjacent to no fewer than vs − k nodes. Let degs(u)
denotes the degree of node u within the subgraph Vs. Then a k-plex is a
subgraph Vs such that degs(u) ≥ vs − k, for all u ∈ Vs, and such that there
is no node w in V \Vs such that degs(w) ≥ vs − k. For valued relationships,
the requirement may be changed to require the existence of edges with
value greater than δ.

One way to view this definition is that we are allowing up to k false
negative edges per node. False positive edges, if infrequent, are unlikely to
cause problems, because the probability that all nodes within a subgraph
have a false positive edge to the same node tends to be negligible. There are
exceptions, however, and in some cases the experimental technology being
used may induce correlated false positive, or false negative, edges.

k-core. A k-core is defined similarly to a k-plex, with the main difference
being that for a k-core, the minimum number of edges that must exist is
specified, rather than the maximum number that can be missing. Again a
slight, but obvious, modification is needed to address graphs with valued
relationships.

Within-to-without comparisons. Another way to think of a cohesive
subgroup is as a set of nodes that are more similar (or related) to each
other than they are to the other nodes. When viewed in this manner, one
might look for regions of the graph in which the concentration of edges
between nodes in that region is larger than the concentration of edges from
that region to the rest of the graph.

Some of these ideas have been embodied in the notions of λ-sets (Borgatti
et al., 1990). Let λ(w, u) denote the minimum number of edges that must be
cut (or removed) so that there is no path between nodes w and u. For any
graph G = (V,E), a set of nodes W ⊂ V is a λ-set if for all u, v, w ∈ W and
l ∈ V \W λ(u, v) ≥ λ(w, l). Borgatti et al. (1990) note that the members
of a λ-set do not need to be adjacent; they can be quite distant from each
other.

346 W. Huber et al.

20.4 Distances

The path-length between any two nodes in a graph induces a distance
between the nodes. In many cases, the shortest path will be used, but
other alternatives may be appropriate for specific applications. If the graph
has weighted edges, then these can easily be accommodated. Multi-graphs
(graphs with multiple types of edges) can have different distances deter-
mined by the different types of edges. Other notions of distance, such as the
number of paths that exist between two points, or the number of edge-cuts
required to separate two nodes, can also be used. As noted in Chapter 12,
the distance measure used can have a large effect, and the appropriate
distance measure will usually be problem-specific.

In some cases, the natural structure of the graph will suggest different
distances. For example, GO (Chapter 7) is represented as three different
directed acyclic graphs (DAGs), each with a root. In some cases, the three
are linked by a common root. Various methods for assessing similarity based
on GO have been used (Balasubramanian et al., 2004):

• the similarity between subgraph gi and subgraph gj , s(gi, gj) is
computed as the length of the shortest shared path to the root node.

• the similarity between subgraph gi and subgraph gj , s(gi, gj) is
computed as |gi ∩ gj | divided by |gi ∪ gj |.

These measures can easily be combined across ontologies. For example, one
might want to require similarity both in terms of function and in terms of
cellular location. For microarray experiments, distances between genes can
be computed based on these measures by first finding, for each gene, the
induced GO graph and then applying the above measures. Significance can
often be assessed using a resampling scheme.

Once a decision has been made about a distance measure for objects
organized in a graph, standard tools for cluster analysis or multidimensional
scaling can be applied to the inter-object distances. See Chapter 12 for more
details on distances and Chapter 10 for more details visualizing distances.

We end on a cautionary note. Just because one can easily compute dis-
tances and paths in a graph does not mean that one should do this. If
we consider the co-citation graphs as exemplars of affiliation networks,
one must interpret relationships in the one-mode graphs quite carefully.
Whereas the affiliation network describes relationships between sets of
actors and sets of events, the one-mode networks describe relationships
between pairs of actors and pairs of events. Inference should not be made
about groups that are larger than two.

21

Bioconductor Software for
Graphs

V. J. Carey, R. Gentleman, W. Huber, and J.
Gentry

Abstract
We describe software tools for creating, manipulating, and visu-

alizing graphs in the Bioconductor project. We give the rationale
for our design decisions and provide brief outlines of how to make
use of these tools. The discussion mirrors that of Chapter 20 where
the different mathematical constructs were described. It is worth dif-
ferentiating between packages that are mainly infrastructure (sets of
tools that can be used to create other pieces of software) and packages
that are designed to provide an end-user application. The packages
graph, RBGL, and Rgraphviz are infrastructure packages. Software de-
velopers may use these packages to construct tools aimed at specific
applications areas, such as the GOstats package.

21.1 Introduction

Computing with graphs for bioinformatics requires attention to three ba-
sic problems. First, data structures that represent graphs and that can be
readily employed in bioinformatic modeling and statistical computing are
required. Second, algorithms for graph traversal and analysis (including
shortest-path and cut-set determination, connectivity measurement, and
decompositions) must be adapted to the structures and modeling activi-
ties that we want to address. Third, methods for layout, annotation, and
visualization of graph structures are needed. Because graphs in bioinfor-
matics will tend to be large and complex, dynamic visualization tools that
facilitate interactive focus and change of view will be at a premium.

The data structure problem is addressed by the Bioconductor package
graph. Package RBGL is currently the primary source of software for graph

348 V. J. Carey et al.

algorithms. Package Rgraphviz is the primary graph visualization resource.
The graph package is entirely a creation of the Bioconductor core. Pack-
ages RBGL and Rgraphviz are interfaces to third party projects. The Boost
Graph Library (Siek et al., 2002) is a C++ library devoted to portable
implementation of Standard Template Library (STL) concepts for graph
computations, and is at the heart of RBGL. Graphviz (Gansner and North,
1999) is a C/C++ library devoted to layout and visualization of graphs en-
countered in telecommunications research. We greatly appreciate the fact
that the Boost and Graphviz groups have produced high-quality software
with sufficiently open licenses to meet our requirements.

21.2 The graph package

The graph package contains the fundamental classes and methods that are
needed to manipulate graphs and that the other two packages rely on.
Interested readers are referred to the vignettes included in that package for
more a more detailed discussion of some of the issues raised here.

Graphs can have distinct but equivalent representations. Different rep-
resentations will be efficient for different sorts of problems, and some
experimentation or exploration may be needed to determine what is an
efficient representation for a given problem. Many different texts (Cormen
et al., 1990; Sedgewick, 2002) provide more than one implementation. The
most appropriate or efficient strategy for representing the graph will depend
on many factors such as the size of the graph and the sorts of operations
that are going to be applied to it. Sedgewick (2002, Table 17.1) provides
details of the efficiency of different operations on graphs depending on their
representation. We envisage an extremely wide range of sizes to be of in-
terest to the users of our software, from graphs that contain a few tens of
nodes up to those containing millions or more. We also envisage that a very
wide range of algorithms and other manipulations will be of interest. Some
users will want to have very efficient representations for very large graphs,
while others, perhaps exploring different cellular pathways, will want an
extremely rich set of classes for nodes and edges. They will want to be
able to represent in a graph objects of different types (proteins, molecules,
RNA) and different relationships between objects and processes (enhances,
inhibits, modifies).

Representation of a graph by its node and edge lists is a natural approach
in R. Another representation is the adjacency matrix, which encodes the
existence of an edge by a non-zero entry in an n × n matrix. This repre-
sentation can be inefficient for undirected graphs (and is usually replaced
by the upper triangular portion), but is suitable for directed graphs. The
SparseM and Matrix packages, from CRAN, allow compact representation
of large, sparse graphs using a sparse matrix encoding of the adjacencies.

21. Software for Graphs 349

For bipartite graphs, an adjacency matrix is commonly used. The graph
package supports these and other representations and provides facilities
for converting between representations. There are also tools for serializ-
ing graphs to the GXL (Winter, 2001) and Tulip (David and Mathieu,
2004) formats. The Graphviz (Gansner and North, 1999) project supplies
a gxl2dot translator, so R graphs can be converted to the Graphviz dot
format.

The package graph defines the virtual class graph. It provides a uniform
user interface to the various concrete classes that implement particular
graph representations. Currently, graph provides the classes graphNEL for
a node and edge-lists representation and graphH for a hash table rep-
resentation. There are also tools to coerce to and from a sparse matrix
representation.

In working with genomic data, we have found that two special types of
graphs arise often enough that special implementations are advantageous.

The clusterGraph class represents the output of clustering algorithms.
For this type of graph, all nodes that are assigned to a cluster have edges
to all other nodes within that cluster, but there are no between-cluster
edges. Edges can have weights, and these could for example depend on the
distance between the nodes. The graphs are undirected and the edges are
not typed.

The distGraph class represents a graph explicitly by inter-node distances.
The representation for this class is essentially as a distance matrix, which
holds the n times n − 1 distinct inter-node distances. Simple operations
are defined on these graphs such as thresholding so that all edges whose
distance is larger than some specified limit are removed. We note that this
is not the same as using a graph to derive distances (see Chapter 20) but
rather that some relevant distances (perhaps based on physical attributes
of the nodes, such as mRNA expression levels) are used to define the edge
weights in a graph where the objects are represented as nodes.

21.2.1 Getting started

We begin by loading the graph library. Next we can create a graph from
scratch by specifying its nodes and edges. We have also indicated that we
want the graph to be a directed graph, using the edgemode argument.

> library("graph")

> myNodes <- c("s", "p", "q", "r")

> myEdges <- list(s = list(edges = c("p", "q")),

+ p = list(edges = c("p", "q")), q = list(edges = c("p",

+ "r")), r = list(edges = c("s")))

> g <- new("graphNEL", nodes = myNodes, edgeL = myEdges,

+ edgemode = "directed")

> g

350 V. J. Carey et al.

s

p

q

r

Figure 21.1. Visualization of the directed graph g.

A graph with directed edges

Number of Nodes = 4

Number of Edges = 7

The graph that we have created is of class graphNEL and uses the node-
edge lists representation. A plot is shown in Figure 21.1. We can find out
about the nodes, edges, and node degrees of g:

> nodes(g)

[1] "s" "p" "q" "r"

> edges(g)

$s

[1] "p" "q"

$p

[1] "p" "q"

$q

[1] "p" "r"

$r

[1] "s"

> degree(g)

$inDegree

s p q r

1 3 2 1

$outDegree

21. Software for Graphs 351

a

b

c

d

e

f

g

Figure 21.2. Visualization of the graph g2, which is used in the examples for the
functions adj and acc.

s p q r

2 2 2 1

The functions adj and acc provide the names of the adjacent and acces-
sible nodes. For the graph, g2, that is displayed in Figure 21.2, the result
of applying these functions is

> adj(g2, "c")

$c

[1] "b" "d"

> acc(g2, c("b", "f"))

$b

a c d

3 1 2

$f

g

1

Note that the acc method returns information both on the identities of ac-
cessible nodes and the lengths of the walks to these nodes from the specified
source nodes.

Functions that perform basic manipulations on graphs carry out the spec-
ified changes on a copy of the input graph and return the copy. They do
not alter the input graph. These include clearNode, which removes all edges
(of all types) from the specified node or nodes. combineNodes lets you group
a set of nodes into a single new node. The function join combines its two
arguments into a new graph. Nodes with identical labels are amalgamated,

352 V. J. Carey et al.

as are edges with identical labels. For directed graphs, the function ugraph

returns the underlying undirected graph.
We can also explore operations such as the union, intersection, and

complement of graphs using the correspondingly named functions. These
operations are defined more fully in Chapter 20 and are illustrated in
Figure 20.2.

21.2.2 Random graphs

Generating random graphs can be useful for testing algorithms. Random
graphs are also used as a null model in statistical inference. The graph
package provides three methods of random graph generation. randomEGraph
for random edge graphs, randomNodeGraph for graphs with specified node
degree distributions, and randomGraph for random graphs based on latent
variables. These are discussed in more detail in Section 20.2.2. In the next
example we create an undirected random edge graph,

> set.seed(123)

> nodeNames <- sapply(0:99, function(i) sprintf("N%02d",

+ i))

> rg <- randomEGraph(nodeNames, edges = 50)

It is shown in Figure 21.3. The degree of each node can be obtained through
the degree function. Figure 21.4 shows the overall degree distribution,
obtained through the commands

> deg <- degree(rg)

> hist(deg)

Notice that as a consequence of the generation method, the resulting node
degree distribution is Binomial, with parameters n, the number of possible
edges incident at each node, and p, the ratio of the number of edges in the
graph to the total number of possible edges. We have superimposed the
exact Binomial calculations over the histogram in Figure 21.4.

> size <- numNodes(rg) - 1

> prob <- numEdges(rg)/choose(numNodes(rg), 2)

21.3 The RBGL package

The RBGL package provides a direct interface to many of the graph algo-
rithms available in the Boost Graph Library (Siek et al., 2002). Table 21.1
lists the main functionalities currently provided. Most of these interfaces
were contributed by Li Long of the Swiss Institute for Bioinformatics.

The next two subsections review tasks involved with using RBGL to do
computations on graph connectivity and shortest paths.

21. Software for Graphs 353

Figure 21.3. A random edge graph with 100 nodes and 50 edges.

deg

F
re

qu
en

cy

0 1 2 3 4

0
10

20
30

● ●

●

●
●

Figure 21.4. Histogram of the degree distribution of a random edge graph with
100 nodes and 50 edges. The black dots represent the density of a binomial
distribution with size=99 and prob=0.01.

354 V. J. Carey et al.

RBGL functions Comments
Traversals

bfs BFS
dfs DFS

Shortest paths
dijkstra.sp Single-source, nonnegative weights
bellman.ford.sp Single-source, general weights
dag.sp Single-source, DAG
johnson.all.pairs.sp Returns distance matrix

Minimal spanning trees
mstree.kruskal Returns edge list and weights
prim.minST As above

Connectivity
connectedComp Returns list of node-sets
strongComp As above
edgeConnectivity Returns index and minimum

disconnecting set
init.incremental.- Special processing for
components evolving graphs
incremental.components
same.component Boolean in the incremental setting

Maximum flow algorithms
edmunds.karp.max.flow List of max flow, and edge-
push.relabel.max.flow specific flows

Vertex ordering
tsort Topological sort
cuthill.mckee.ordering Reduces bandwidth
sloan.ordering Reduces wavefront
min.degree.ordering Heuristic

Other functions
transitive.closure Returns from-to matrix
isomorphism Boolean
brandes.betweenness.- Indices and dominance measure

centrality
circle.layout Returns vertex coordinates
kamada.kawai.spring.layout Returns vertex coordinates

Table 21.1. Names of key functions in RBGL. Working examples for all functions
are provided in the package manual pages.

21. Software for Graphs 355

21.3.1 Connected graphs

We can obtain the connected components of the graph rg generated in the
previous section using the connComp function.

> cc <- connComp(rg)

> table(listLen(cc))

1 2 3 4 15 18

36 7 3 2 1 1

cc is a list whose elements are the individual connected components (rep-
resented by their node names). We see that the graph has one large
component of size 18 and another one of size 15. It also has 36 single-
tons. Let us have a closer look at the largest connected component, see
Figure 21.5.

> wh <- which.max(listLen(cc))

> sg <- subGraph(cc[[wh]], rg)

We can perform a depth first search (DFS) on this graph.

> dfs.res <- dfs(sg, node = "N14", checkConn = TRUE)

> nodes(sg)[dfs.res$discovered]

[1] "N14" "N94" "N40" "N69" "N02" "N67" "N45" "N53" "N28"

[10] "N46" "N51" "N64" "N07" "N19" "N37" "N35" "N48" "N09"

The result of a call to dfs is a list with two elements, discovered and finish.
The numeric vector discovered contains the discovery order of the nodes,
and finish is the order of completion. We see that N94 is the first node
visited after N14, N40 is the second, and so on. In Figure 21.5, the graph is
rendered with both the node labels and the order in which they are visited.
A complementary search algorithm is breadth first search (BFS):

> bfs.res <- bfs(sg, "N14")

> nodes(sg)[bfs.res]

[1] "N14" "N94" "N64" "N37" "N48" "N40" "N69" "N67" "N07"

[10] "N19" "N35" "N09" "N02" "N45" "N28" "N53" "N46" "N51"

Here, the output is simply the vector of node names in BFS order.
For directed graphs, the function connComp calculates the weakly connected

components. The function strongComp implements Tarjan’s algorithm to
obtain the strongly connected components (Tarjan, 1975). To illustrate this,
we use graph g2 from Figure 21.2, and the results are shown in Figure 21.6.

> sc <- strongComp(g2)

> wc <- connComp(g2)

356 V. J. Carey et al.

a) a connected subgraph

 N02

 N07

 N09

 N14

 N19

 N28

 N35
 N37

 N40

 N45

 N46

 N48

 N51

 N53

 N64

 N67

 N69

 N94

b) DFS

5

13

18

1

14

9

16
15

3

7

10

17

11

8

12

6

4

2

c) BFS

13

9

12

1

10

15

11
4

6

14

17

5

18

16

3

8

7

2

Figure 21.5. a) The graph sg, the largest connected component of the graph in
Figure 21.3. b) Nodes of the graph are labeled with respect to visiting order in a
depth first search (DFS). c) Visiting order in a breadth first search (BFS).

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a) b)

Figure 21.6. a) Colors represent the four strongly connected components of graph
g2. b) The weakly connected components are colored the same.

21. Software for Graphs 357

21.3.2 Paths and related concepts

An important class of algorithms that we will often use are shortest path
algorithms. The efficiency of shortest path algorithms depends on the prop-
erties of the edge weights. It is relevant to distinguish graphs that have
a common edge weight, edge weights that are nonnegative integers, edge
weights that are nonnegative reals, and edge weights that are arbitrary
reals.

There are several variants of the shortest path problem: in the single-
pair problem, we look for the shortest path between two given nodes. In
the single-source or equivalently in the single-destination problem, we look
for all shortest paths from one node to every other node in the graph.
Finally, in the all-pairs problem, we look for all shortest paths between all
pairs of nodes. There is no algorithm for solving the single-pair problem
that is asymptotically faster than algorithms that solve the single-source
problem.

Let us first look at the single-source shortest path algorithms that are
provided in the Boost Graph Library. If all edge weights are the same,
the shortest path is most efficiently found by a breadth first search. If
the edge weights are different, but all positive, Dijkstra’s shortest path
algorithm (Dijkstra, 1959; Cormen et al., 1990) is preferred, dijkstra.sp.
The function sp.between is a convenience wrapper that allows users to
specify multiple start and end nodes. In that case, the function returns a
list whose elements are themselves lists with elements: path, length, and
pweights. If two nodes are not connected, i.e. there is no path between
them, then the distance is reported as infinity, Inf.

In the next example we create a random edge graph that has 100 nodes
N00, . . . , N99 and nEdges=100 edges. The graph is shown in Figure 21.7.

> set.seed(123)

> rg2 <- randomEGraph(nodeNames, edges = nEdges)

> fromNode <- "N43"

> toNode <- "N81"

> sp <- sp.between(rg2, fromNode, toNode)

> sp[[1]]$path

[1] "N43" "N08" "N88" "N73" "N50" "N89" "N64" "N93" "N32"

[10] "N12" "N81"

> sp[[1]]$length

[1] 10

For the single-source problem, we can call the function dijkstra.sp

directly.

> allsp <- dijkstra.sp(rg2, start = fromNode)

> sum(!is.finite(allsp$distances))

[1] 26

358 V. J. Carey et al.

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

● ● ●●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●●

● ●

Figure 21.7. The shortest path between nodes N43 and N81 in the graph rg2 is
colored in red.

The return value allsp is a list with three elements: start, the name of
the start node, distances, the vector of distances to all other nodes in the
graph, and penult, the vector of predecessor nodes on the path from start.
We see that 26 nodes are not connected to N43, and for these the value
of distance is infinity (Inf). The histogram of the finite values is shown
in Figure 21.8. The vector of penultimate nodes penult can be used to
reconstruct all shortest paths,

> i1 <- match(fromNode, nodes(rg2))

> i2 <- match("N15", nodes(rg2))

> pft <- RBGL::extractPath(i1, i2, allsp$penult)

> nodes(rg2)[pft]

[1] "N43" "N08" "N88" "N83" "N61" "N21" "N15"

If we need to calculate the shortest path lengths between all pairs of nodes,
an efficient algorithm is provided by the function johnson.all.pairs.sp.

> ap <- johnson.all.pairs.sp(rg2)

> table(signif(ap, 3))

21. Software for Graphs 359

distances from N43

F
re

qu
en

cy

0 2 4 6 8 10

0
5

10
15

20

all pairwise distances

F
re

qu
en

cy

0 2 4 6 8 10

0
20

0
60

0
10

00

a) b)

Figure 21.8. a) Histogram of the distances from N43 to all other accessible nodes
in the graph rg2 from Figure 21.7. b) Histogram of all pairwise distances.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

a) b)

Figure 21.9. a) The regular lattice gr, a graph with nine nodes and twelve
undirected edges. b) A minimal spanning tree for this graph.

0 1 2 3 4 5 6 7 8 9 10 11

100 200 378 698 1032 1162 956 604 290 92 20 2

Inf

4466

A minimal spanning tree can be calculated with mstree.kruskal.

> mst <- mstree.kruskal(gr)

> mst$edgeList

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 3 9 9 8 8 7 5

[2,] 2 6 6 8 5 7 4 2

The function returns a list with three elements: nodes contains the node
names, edgeList is a from-to matrix representation of the tree’s edges, and

360 V. J. Carey et al.

weights contains their weights. Figure 21.9 shows the example graph gr and
one of its minimal spanning trees. There is a direct relationship between
minimal spanning trees and single linkage hierarchical clustering. We note
that algorithms for computing minimal spanning trees are also provided in
the R packages ade4 (Chessel et al., 2004) and ape (Paradis et al., 2004).
The latter focuses on phylogenetic trees, which are an important special
case of graphs.

21.3.3 RBGL summary

Table 21.1 indicates the scope of current Boost algorithms covered by
RBGL. Maximum flow algorithms will be interfaced in the near future. Be-
cause bipartite graphs and hypergraphs are likely to play a substantial role,
we will also need specialized algorithms for them. Both Klamt and Gilles
(2004) and Krishnamurthy et al. (2003) discuss algorithms specialized for
hypergraphs.

Further experience is needed to establish the structures of outputs that
most effectively support use of graph algorithms in bioinformatic workflows.
Currently RBGL functions return a variety of list and matrix structures, and
reduction in diversity of output formats will be undertaken as experience
accumulates.

21.4 Drawing graphs

Drawing a graph can be an important aid to understanding the structure
of the relationships encoded in the graph. Graph drawing consists of graph
layout , embedding the nodes and edges in a two-dimensional plane, and
graph rendering , which embellishes the layout with symbols that identify
and describe nodes and edges, and graph display , which puts the rendering
on a viewable surface. A nice overview of the problems and some of the
solutions is given in Battista et al. (1999).

We note that graph layout is not, in general, automatic. Users that want
publication-quality graphs will need to expend some time and energy trying
different parameter settings and manually adjusting the node and edge
attributes until they are satisfied. The figures in this section were laid out
using the Graphviz (Gansner and North, 1999) library for rendering graphs.
Graph layout is a substantial and difficult problem, and Graphviz offers
a number of different layout algorithms. Our interface to Graphviz, the R
package Rgraphviz, was designed to allow access to as much of the Graphviz
functionality as possible, while retaining a user interface that is familiar to
users of R and that allows users to freely combine graph visualization with
the computational and visualization capabilities of R.

21. Software for Graphs 361

s

p

q

r

s

p

q

r

a) b)

Figure 21.10. a) Result of a call to plot(g), where g is the graph that we con-
structed on page 349. b) Result of a call to plot with a non-default value for the
global attributes parameter attr, see page 363.

The strategy is as follows. An instance of the graph class is passed to
Graphviz. It returns an object that contains the layout information for that
graph. The layout indicates which nodes go where, and how the edges are
drawn between them. Essentially, the layout consists of the two-dimensional
(x- and y-) coordinates of the graph’s nodes and a parameterization of the
trajectories of the edges. In simple layouts, the edges are straight lines,
specified by their start and end points. In more complex layouts, the edges
are Bezier curves, which are parameterized by planar locations of knots.
The layout can then be displayed through R’s graphics devices. In the
simplest case, these steps can be performed through one single call to the
function plot with an object of class graph:

> library("Rgraphviz")

> plot(g)

The result is shown in Figure 21.10.
For more fine-grained control of the layout, the rendering, or the display,

it is possible to access the functions and data structures that are associ-
ated with each intermediate step. The available options may be grouped in
different categories:

• The choice of the layout algorithm.
• Global properties, such as size, aspect ratio, and background color of

the plot.
• Properties of the nodes, such as labels, shape, fill and outline color.

These may be set for all nodes or on a per node basis.
• Properties of the edges, such as labels, line style, color. Again, these

may be set for all edges or per edge.

362 V. J. Carey et al.

a) dot layout b) neato layout c) twopi layout

Figure 21.11. Three different graph layout algorithms applied to the same directed
graph. a) dot aims at visualizing the hierarchies in a directed graph. b) neato tries
to arrange the nodes in a way that, as much as possible, the edges do not overlap
and have the same length. c) twopi aims at visualizing the radial structure of the
graph.

Rgraphviz allows users to access any of the three different layout algo-
rithms available in Graphviz, see Figure 21.11. dot is a hierarchical layout
algorithm for directed graphs with four main phases: cycles are broken,
nodes are assigned to layers, nodes are rearranged in layers to minimize
edge crossings, and finally edges are computed as splines. neato is a layout
algorithm for undirected graphs and is closely related to statistical multidi-
mensional scaling. It creates a virtual physical model and optimizes for low
energy configurations. It was recently augmented with a scalable stress ma-
jorization algorithm. twopi is a circular layout (Wills, 1997). Basically, one
node is chosen as the center and put at the origin. The remaining nodes are
placed on a sequence of concentric circles centered about the origin, each
a fixed radial distance from the previous circle. All nodes distance 1 from
the center are placed on the first circle; all nodes distance 1 from a node on
the first circle are placed on the second circle; and so forth. Each of these
layouts can be viewed in Figure 21.12.

Although these layout algorithms provide a flexible set of alternatives
many problems and issues remain. In particular, there are rather substan-
tial differences between drawing graphs and visualization. Many graph
layout algorithms can be viewed as multi-objective optimization prob-
lems, and their solution is generally handled using optimization software.
Visualization is different and typically has as one of its objectives the no-
tion of accurately conveying information to the intended audience. In a
number of papers H. Purchase (Purchase, 2000; Ware et al., 2002) has be-
gun investigations into effective information visualization from graphs. We
propose extending the available layout algorithms to the types of graphs
that are prevalent in bioinformatics and computational biology. In carry-
ing out those extensions we will pay particular attention to the issues of
visualization in a biological context.

21. Software for Graphs 363

a) dot layout b) neato layout c) twopi layout

Figure 21.12. Three different graph layout algorithms applied to the same
bipartite graph.

21.4.1 Global attributes

Global attributes are set via a list and passed in as the attrs argument
to the plot function, or, as we will see later, to the agopen function.
Default values for all attributes can be generated through the function
getDefaultAttrs.

> defAttrs <- getDefaultAttrs()

> names(defAttrs)

[1] "graph" "cluster" "node" "edge"

> names(defAttrs$node)

[1] "shape" "fixedsize" "fillcolor" "label"

[5] "color" "fontcolor" "fontsize" "height"

[9] "width"

> defAttrs$node$fillcolor

[1] "transparent"

The function getDefaultAttrs takes two arguments, a partial global at-
tribute list, whose entries override the defaults, and the layout algorithm
to be used (dot, neato, or twopi).

> nodeA <- list(fillcolor = "lightblue")

> edgeA <- list(color = "goldenrod")

> attrs <- getDefaultAttrs(list(node = nodeA, edge = edgeA))

> plot(g, attrs = attrs)

The result is shown in Figure 21.10b.

21.4.2 Node and edge attributes

Graphviz allows users to set a wide range of attributes on nodes and edges.
It is possible to define subsets of nodes that are to be treated as a group.

364 V. J. Carey et al.

Spt5

YNL201C

Pph3

YBL046W

strong weak

Figure 21.13. The graph g from Figure 21.1, rendered with customized node and
edge attributes.

Much, but not all, of this flexibility has been carried over into Rgraphviz.
In addition, because Rgraphviz uses R’s graphics for the rendering, users
can use any of that functionality to control the actual plotting. As we will
see in some of the examples, this provides an extremely flexible plotting
system. The full details of the different layout parameters can be obtained
from the Graphviz documentation and the Rgraphviz documentation.

The attributes of individual nodes and edges are set via the nodeAttrs

and edgeAttrs arguments to the plot (or agopen) function. For example, the
visualization of the graph g2 in Figure 21.2 was plotted using the commands

> cc <- connectedComp(g2)

> colors <- rep(c("#D9EF8B", "#E0F3F8"), listLen(cc))

> names(colors) <- unlist(cc)

> plot(g2, nodeAttrs = list(fillcolor = colors))

In the first line, we calculate cc, the list of the connected components of
g2. In the second and third line, different colors are assigned to different
components, and then these colors are used for the plot command.

By default, nodes use the node name as their label and edges do not have
a label. However, both can have custom labels supplied via attributes. In
the next code chunk, we set several attributes and then render the graph
g, which we have already seen in previous examples, with these attributes.

> globA <- list(node = list(width = "3", height = "1",

+ shape = "box"))

> nodeA <- list(label = c(p = "YNL201C", q = "Pph3",

+ r = "YBL046W", s = "Spt5"), shape = c(p = "ellipse",

+ q = "circle"))

> edgeA <- list(label = c("p~q" = "strong", "r~s" = "weak"),

+ color = c("p~q" = "red", "r~s" = "blue"))

> plot(g, attrs = globA, edgeAttrs = edgeA, nodeAttrs = nodeA)

21. Software for Graphs 365

The attributes here are solely for demonstration and have no further
meaning. The result is shown in Figure 21.13.

21.4.3 The function agopen and the Ragraph class

Often, it is useful to separate the tasks of graph layout, rendering, and
display. For example, one may want to use the node coordinates in the
layout for further calculations in R, or produce several versions of a graph
visualization with the same layout. Performance can also be an issue: the
layout of large graphs can take considerable time, and often it is convenient
to store the layout in an R object for reuse.

Layout is performed through the function agopen. It takes arguments
layoutType, attrs, nodeAttrs, and edgeAttrs, which are described above,
as well as a number of additional arguments that control the layout. For
details, we refer to the manual page of agopen. It returns an object of
class Ragraph, which contains the laid out graph, that is, the x- and y-
coordinates of each nodes and parameterized curves for the edges. This
needs to be distinguished from the class graph, which contains the abstract,
mathematical graph.

> lg <- agopen(g, attrs = globA, edgeAttrs = edgeA,

+ nodeAttrs = nodeA, name = "ex1")

The layout is contained in two lists of AgNode and AgEdge objects. We can
access these through functions of the same name:

> ng <- AgNode(lg)

> length(ng)

[1] 4

> class(ng[[1]])

[1] "AgNode"

attr(,"package")

[1] "Rgraphviz"

> slotNames(ng[[1]])

[1] "center" "name" "txtLabel" "height"

[5] "rWidth" "lWidth" "color" "fillcolor"

[9] "shape" "style"

The slot named center of ng[[1]] is an object of class xyPoint , and we can
access the 2-vector of x- and y- coordinates through the function getPoints.

> sapply(ng, function(x) getPoints(x@center))

[,1] [,2] [,3] [,4]

[1,] 568 235 374 572

[2,] 524 414 218 36

366 V. J. Carey et al.

Similarly, for the edges:

> eg <- AgEdge(lg)

> slotNames(eg[[1]])

[1] "splines" "sp" "ep" "head"

[5] "tail" "arrowhead" "arrowtail" "arrowsize"

[9] "color" "lty" "lwd" "txtLabel"

> sapply(eg, function(x) (x@color))

[1] "black" "black" "black" "red" "black" "blue"

The slot splines contains a list of BezierCurve objects that parameterize
the trajectory of the edge. This class is used to describe Bezier curves and
there is a lines method to facilitate drawing.

> eg[[1]]@splines[[1]]

460,488 415,473 364,457 322,442

21.4.4 User-defined drawing functions

As we have seen, Rgraphviz’s plot method for graph and Ragraph objects
provide built-in node drawing facilities which are simple to use and will be
adequate in many cases. But one of the real strengths of the Ragraph plot

method lies in the possibility of specifying user-defined node drawing func-
tions. This permits generation of arbitrarily complex node displays. These
displays can make use of the full computational and graphical versatility
of R. An example is shown in the code chunk below, and the result is dis-
played in Figure 21.14. The argument drawNode of the plot method can be
either a single function (which is then called for each node in turn) or a list
of functions (one for each node). In the next code chunk, we define a func-
tion drawThermometerNode that draws a thermometer symbol at each node
location. Thermometer symbols can be used to represent numbers between
0 and 1. The result is shown in Figure 21.14.

> prop <- seq(0.2, 0.8, length = numNodes(g))

> colors <- brewer.pal(numNodes(g), "Set2")

> names(prop) <- names(colors) <- nodes(g)

> drawThermometerNode <- function(node) {

+ x <- getX(getNodeCenter(node))

+ y <- getY(getNodeCenter(node))

+ w <- getNodeLW(node) + getNodeRW(node)

+ h <- getNodeHeight(node)

+ nm <- name(node)

+ symbols(x, y, thermometers = cbind(w, h, prop[nm]),

+ fg = colors[nm], inches = FALSE, add = TRUE,

+ lwd = 3)

+ }

21. Software for Graphs 367

Figure 21.14. The graph g plotted with a custom node drawing function
drawNode.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0

x

y

●

●

●

●

●

0
1
2
3
4

Figure 21.15. “Manual” rendering and display of a laid out graph.

> lg <- agopen(g, name = "")

> plot(lg, drawNode = drawThermometerNode)

Complete flexibility can be obtained by extracting the x- and y- coordi-
nates of the nodes, the parameterizations of the edges, and relevant other
attributes from the Ragraph object, and then displaying the graph through
R’s generic plotting facilities or through another specialized visualization
package. In this way, it is possible to combine the graph layout capa-
bilities of Graphviz with the versatility of R and its add-on packages in
computation and visualization.

368 V. J. Carey et al.

The layout layoutRandomEGraph that is used in the next example was
calculated on page 352. The result is shown in Figure 21.15.

> par(bg = "#606060")

> nr <- AgNode(layoutRandomEGraph)

> x <- sapply(nr, function(j) getX(getNodeCenter(j)))

> y <- sapply(nr, function(j) getY(getNodeCenter(j)))

> dg <- degree(rg) + 1

> colors <- rev(colorRampPalette(brewer.pal(9, "GnBu"))(max(dg)))

> plot(x, y, pch = 16, col = colors[dg])

> for (ed in AgEdge(layoutRandomEGraph)) for (s in splines(ed)) {

+ lines(bezierPoints(s), lty = 3, col = "#f0f0f0")

+ }

> legend(max(x), max(y), paste(0:max(degree(rg))),

+ col = colors, xjust = 1, text.col = "white",

+ pch = 16)

21.4.5 Image maps on graphs

A graph visualization provides a global overview over the relationships
between nodes. Often, it is useful to be able to drill down and to get more
specific information about particular nodes or edges of interest.

A simple but often effective method to provide drill-down facilities is
based on the ability of Web browsers to display images with tooltips and
hyperlinks. Tooltips are short bits of explanatory text that are displayed
when the mouse pointer moves into a certain region, and disappear when
the pointer leaves the region. By clicking on a hyper-link, one can display
another graphic or HTML page in a different browser window or browser
frame.

Although the production of the “drill down information” is up to the
user, the method imageMap in the Rgraphviz package offers some help in
the generation of the HTML image map that can be read by the browser
together with the bitmap image containing the graph visualization.

The function takes as arguments a graph layout object of class Ragraph,
a connection con, a named list tags of tool tips and/or hyper-link tags, the
name of the bitmap image file imgname, and its dimensions width height.

> imageMap(object, con, tags, imgname, width, height)

Using this approach, all possible drill down queries need to be precom-
puted and stored, and the responses are then simply navigated in the
graphical user interface of a Web browser. This can be compared to an
approach where an R process dynamically accepts and responds to queries.
Both approaches have their advantages and disadvantages. It is possible to
build interactive mouse-driven user interfaces to R programs, either using
R’s own graphics or the tcltk or RGtk packages.

22

Case Studies Using Graphs on
Biological Data

R. Gentleman, D. Scholtens, B. Ding, V. J.
Carey, and W. Huber

Abstract
In this chapter we consider four specific data-analytic and infer-

ential problems that can be addressed using graphs. We demonstrate
the use of the software and methods described in Chapters 20 and 21
on real problems in computational biology. We will show how one can
investigate relationships between gene expression and protein-protein
interaction data, how GO annotations can be used to analyze gene
sets, how literature citations can be related to experimental data,
and how gene expression data can be mapped on pathways.

22.1 Introduction

In our first example, we demonstrate how graphs can be used to per-
form an analysis that relates gene expression data to protein complex
co-membership data. The question of interest was whether genes in a pro-
tein complex are more likely to have a similar pattern of gene expression
than genes in different complexes. More details are reported by Balasub-
ramanian et al. (2004), which in turn was based on the work of Ge et al.
(2001). Balasubramanian et al. (2004) used two graphs defined on a com-
mon set of nodes: the genes present in yeast. The relationship represented
by the edges in the first graph is co-membership in a cluster of correlated
expression, while the edges in the second graph represent co-membership
in a protein complex.

In our second example, we consider sets of genes and use the Hypergeo-
metric distribution to identify GO terms that have an over-representation
of the selected genes. Other categorizations, such as pathways, or
chromosomal location (e.g., cytochrome band), can be analyzed similarly.

370 R. Gentleman et al.

In the third example, data from the National Library of Medicine (NLM)
are used to provide links between genes and scientific articles. We note that
these relationships can be phrased in terms of a bipartite graph and use
that observation together with standard techniques from social networks
analysis to identify interesting relationships between genes and papers.

In the fourth example, we explore pathway data and demonstrate one
way of relating gene expression data to pathway information. The analysis
is mainly exploratory and demonstrates some of the benefits that accrue
from linking R and Graphviz.

22.2 Comparing the transcriptome and the
interactome

Our title for this section is largely the same as that of Ge et al. (2001); and
we will demonstrate how to carry out the bulk of the analysis that they
report, using tools in the packages graph, Rgraphviz, and RBGL. We will
make use experimental data from the yeastExpData package.

The methods that we will consider can be implemented in many other
ways but the advantage to using a graph-based approach is the abstraction
that it provides. The models are similar to those discussed by Balasub-
ramanian et al. (2004) and we refer the interested reader to the GraphAT
package which can be used to reproduce their results.

Ge et al. (2001) assembled gene expression data from a yeast cell-cycle
experiment (Cho et al., 1998), literature protein-protein interaction (PPI)
data, and yeast two-hybrid data. We have curated the data slightly to make
it simpler to carry out the analyses. In particular, we reduced the data to
the 2885 genes that were common to all experiments.

The relevant data sets are ccyclered, which is a dataframe with 11
columns and 2885 rows describing the set of common genes, and litG,
which is a graph representing the curated set of literature predicted protein-
protein interactions. We note that this data set is not up to date, but retain
it because it provides answers that coincide with those of Ge et al. (2001).

The information about which cluster a gene is in can be obtained from
ccyclered. We use that to create a cluster graph (see Section 21.2). In the
cluster graph, edges are between all genes that are in the same cluster, and
no edges connect genes from different clusters. The graph ccClust has 30
complete subgraphs.

> library("yeastExpData")

> data(ccyclered)

> clusts <- split(ccyclered[["Y.name"]], ccyclered[["Cluster"]])

> cg1 <- new("clusterGraph", clusters = clusts)

> ccClust <- connectedComp(cg1)

22. Graph Case Studies 371

We next turn our attention to a brief exploration of the literature based
collection of protein-protein interactions. We make use of the data in litG

and examine the connected components found therein.

> data(litG)

> ccLit <- connectedComp(litG)

> cclens <- listLen(ccLit)

> table(cclens)

cclens

1 2 3 4 5 6 7 8 12 13 36 88

2587 29 10 7 1 1 2 1 1 1 1 1

We see that most of the proteins, 2587, do not have edges to others, and
that there are a few, rather large sets of connected proteins. The largest
one contains 88, the next largest 36. We plot these in Figures 22.1 and 22.2.

> ord <- order(cclens, decreasing = TRUE)

> sG1 <- subGraph(ccLit[[ord[1]]], litG)

> sG2 <- subGraph(ccLit[[ord[2]]], litG)

22.2.1 Testing associations

It is now easy to determine how many pairs of genes have both a protein-
protein interaction and are found in the same expression cluster. To
compute this, we simply find the intersection of the cluster-graph and the
literature graph.

> commonG <- intersection(cg1, litG)

A graph with undirected edges

Number of Nodes = 2885

Number of Edges = 42

We see there are 42 edges in common. This might seem like a small number,
but in fact it is significantly larger than what would be expected by chance.
There are several ways to test this. One way is to generate an appropriate
null distribution and to compare the observed value, 42, to the values from
this distribution. To generate the null distribution, there are some reasons
to consider random edge graphs (Erdös and Rényi, 1959), and this is what
Ge et al. (2001) did. However, if one examines the random graphs gen-
erated using the random edge model, they seldom resemble the structure
in the graph based on the observed data. We propose generating the null
distribution by permuting the node labels on the observed data graph.

In the next code chunk, we show a small function that performs the
node label permutation test. Notice, from Figure 22.3, that the maximum
number of edges in the intersection of the permuted graphs is much smaller
than that observed in our data, 42. This justifies our assertion that there

372 R. Gentleman et al.

YDR382W

YER009W

YFL039C

YLR229C

YLR340W

YDL127W

YER111C YGR109C

YGR152C

YJL187C

YKL042W

YKL101W

YLR212C

YLR313C

YMR199W

YNL289W

YPL256C

YPR120C

YOR160W

YDR388W

YJL157C

YOR036W

YPL031C

YCL027W

YLL024C

YOR027W

YOR185C

YPL240C

YMR294W

YNL004W

YNL243W

YOL039W

YOR098C

YAL040C

YBR200W

YGR108W

YPL242C

YPR119W

YCL040W

YAL005C YLR216C

YBR133C

YER114C

YDL179W

YHR005C

YJL194W

YLR079W

YLR319C

YMR109W

YDR432W

YDR356W

YEL003W

YHR061C

YHR172W

YLL021W
YNL126W

YPL016W

YDR085C

YHR102W

YOL016C

YBR160W

YMR308C

YHL007C

YKL068W

YAL029C

YBR109C

YGL016W

YLR293C

YML065W

YLR200W

YML094W

YMR092C

YMR186W

YDR309C

YHR129C

YAL041W

YBL016W

YBL079W

YOR127W

YPL174C

YDR103W

YDR323C

YDR184C

YHR069C

YOL021C

YOR181W

YBR155W

YPL140C

Figure 22.1. The largest PPI connected component.

is a significant relationship between gene expression pattern and protein
complex co-membership, consistent with the findings of Ge et al. (2001).

> nodePerm <- function(g1, g2, B = 1000) {

+ n1 <- nodes(g1)

+ sapply(1:B, function(i) {

+ nodes(g1) <- sample(n1)

+ numEdges(intersection(g1, g2))

+ })

+ }

> set.seed(123)

> nPdist <- nodePerm(litG, cg1)

22. Graph Case Studies 373

YBR009C

YBR010W

YNL030W

YNL031C

YOL139C

YAR007C

YBR073W

YER095W

YJL173C

YNL312W

YBL084C

YDR146C

YLR127C

YNL172W

YLR134W

YMR284W

YER179W
YIL144W

YML104C

YOR191W

YDL008W

YDL030W

YDL042C

YDR004W

YGR162W

YMR117C

YDR386W

YDR485C

YDL043C

YDR118W

YMR106C

YML032C

YDR076W

YDR180W

YDL013W

YDR227W

Figure 22.2. Another large PPI connected component.

22.2.2 Data analysis

Now that we have satisfied our testing curiosity, we might want to carry
out a little exploratory data analysis. There are clearly some questions that
are of interest including:

• Which of the expression clusters have intersections and with which
of the literature clusters?

• Are there expression clusters that have a number of literature cluster
edges going between them (and hence suggesting that the expression
clustering was too fine or that the genes involved in the literature
cluster are not cell-cycle regulated).

• Are there known cell-cycle regulated protein complexes, and do the
genes involved tend to cluster together in both graphs?

374 R. Gentleman et al.

Histogram of nPdist

nPdist

F
re

qu
en

cy

5 10 15 20

0
20

40
60

80

Figure 22.3. A histogram of the number of common edges as computed by a node
label permutation model.

• Is the expression behavior of genes that are involved in multiple pro-
tein complexes different from that of genes that are involved in only
one complex?

Many of these questions require access to more information. For example,
we need to know more about the pattern of expression related to each of
the gene expression clusters so that we can try to interpret them better. We
need to have more information about the likely protein complexes from the
literature data so that we can better identify reasonably complete protein
complexes and given them, then identify those genes that are involved in
more than one complex. But, the most important fact to notice is that all
of the substantial calculations and computations (given the meta-data) can
be phrased in terms of operations on graphs. This makes it both simple to
think about what to do as well as to carry out the operations.

22.3 Using GO

In this section, we consider some of the ways in which data from GO can
be used. A fairly extensive description of GO is given in Chapter 7 and we
will presume that the reader is familiar with that material. Other more de-
tailed examples involving GO and the analysis of genomic data are available
through the vignettes in the GOstats package and in reference (Gentleman,
2004).

We make use of the ALL data (Chiaretti et al., 2004) to provide exam-
ples of how to make use of GO data in different data analytic situations.
We select the B-cell leukemia cases, and from these, we will compare those

22. Graph Case Studies 375

with BCR/ABL to those with no observed cytogenetic abnormalities (la-
beled NEG). To reduce the set of genes for consideration, we applied two
different sets of filters. Gene filtering is considered in more detail in Chap-
ter 14 and by von Heydebreck et al. (2004). A non-specific filter was used
to remove genes that showed little or no change in expression level across
experiments. The resulting data set had 2391 probes remaining. To select
genes whose expression values were associated with the phenotypes of inter-
est (BCR/ABL and NEG), we used the mt.maxT function from the multtest
package, which computes a permutation based t-test for comparing two
groups.

After adjustment for multiple testing, there were only 19 probes (which
correspond to 16 genes) with an adjusted p-value below 0.05. Using those
genes, we obtain the set of most-specific GO terms in the MF ontology that
they are annotated at. We then use these terms, together with the parent-
child relationships, to find the GO graph that contains all less specific terms
and we refer to that graph as the induced GO graph. This graph is rendered
in Figure 22.4. Nodes are labeled by the most specific four digits in their
GO label, that is GO:0005125 is labeled as 5125. The most specific terms
are at the top of the graph and arrows go from more specific nodes to less
specific ones. The node in the bottom center is the MF node. Clearly some
sort of interactivity would be beneficial and you might consider using the
imageMap function from the Rgraphviz package.

22.3.1 Finding interesting GO terms

In our example, we have selected a set of genes that are thought to be
expressed differently in two subgroups of interest but these same methods
apply equally to sets of genes that have been obtained in other ways, say
by some form of clustering. Then questions that arise are: whether genes
that comprise a cluster have a common function; are involved in common
processes; or perhaps, are co-located in some compartment of the cell.

The test is quite straightforward. Given a set of genes and a categoriza-
tion of those genes, say using one of the three ontologies, we find the set of
all unique GO terms within the ontology that are associated with one or
more of the genes of interest (i.e., the induced GO graph). Next, for each
term, we count the interesting genes annotated at that node and obtain
the number of genes assayed that are annotated at the node. Basically, we
form the two-way table that identifies a gene as interesting, or not, and as
being annotated at the node, or not. The unique LocusLink identifiers, and
not the manufacturers identifiers, should be used because there are often
multiple probes for a single LocusLink identifier on each chip.

We can ask if there are more interesting genes at the node than one
might expect by chance. If that is true, then that term can be thought
of as being overrepresented in the data. This question can be answered
using a Hypergeometric distribution. The function GOHyperG, available in

376 R. Gentleman et al.

5524

3677

4713

6740 3676

3824

4672

0554

3674

5488

6301

6773

7076

0166

6772

3700

8270

0528

6914

3169 6872

3167

4715

5515

55253924

5198

6818 9001

6817

6787

0693

8234

4871

4197

8233

4175 3779 5509

5200

8092

37133714

3712

8134

5215

5131

5159

5148

5102

5126

5125

Figure 22.4. The induced GO graph for the selected genes; truncated GO
identifiers are used as labels.

the GOstats package, takes as input a set of LocusLink identifiers, finds the
induced GO graph and performs the Hypergeometric test at each node.

There are some issues that arise in the interpretation of the resultant p-
values. First, we note that often very many hypotheses will have been tested
and that some form of p-value correction will be needed. However, there
is no simple or straightforward way to do that. The different hypotheses
are not independent by virtue of the way that GO is structured and even
with this difficulty addressed, we are most likely interested in patterns of p-
values that correspond to structure in GO rather than single p-values that
exceed some threshold. For these reasons, we prefer to report unadjusted
p-values and leave corrections to the discretion of the user. These and other
issues were considered in more detail by Gentleman (2004), however, much
more research in this area is needed.

A second issue that arises is the fact that nodes of the induced GO graph
with few genes annotated at them will typically have small p-values. This
phenomenon occurs due to the way that we selected nodes for evaluation
and the structure of GO. Recall that a gene annotated any node is also
annotated at all less specific nodes in the GO hierarchy. Many genes are
annotated out quite far into the leaves of the GO graph and hence at

22. Graph Case Studies 377

GO ID Term p n
1 GO:0005131 growth hormone receptor b... 0.002 1
2 GO:0005148 prolactin receptor bindin... 0.004 2
3 GO:0005159 insulin−like growth facto... 0.011 6
4 GO:0003924 GTPase activity 0.014 101
5 GO:0008270 zinc ion binding 0.014 557
6 GO:0030693 caspase activity 0.021 12
7 GO:0004715 non−membrane spanning pro... 0.021 12
8 GO:0046914 transition metal ion bind... 0.026 663
9 GO:0043169 cation binding 0.029 1034

10 GO:0005488 binding 0.04 4825
11 GO:0005525 GTP binding 0.041 181
12 GO:0019001 guanyl nucleotide binding 0.043 187
13 GO:0004713 protein−tyrosine kinase a... 0.043 187
14 GO:0043167 ion binding 0.048 1185
15 GO:0046872 metal ion binding 0.048 1185
16 GO:0005126 hematopoietin/interferon−... 0.065 37
17 GO:0017076 purine nucleotide binding 0.087 976
18 GO:0000166 nucleotide binding 0.091 990

Table 22.1. GO terms, p-values, and numbers of genes for a selection of GO
categories.

nodes that have relatively few other genes annotated there. Calculation of
the Hypergeometric p-values for these nodes results in very small p-values.
Others have dealt with this issue by defining the concept of depth in the
GO graph (the number of edges to the root node) and then only using
nodes that are neither too deep nor too shallow.

In the next code chunk, we show how to take an induced GO graph,
gGO, and a set of interesting genes, gNsLL, and find the Hypergeometric
p-values. This is done using GOHyperG. Because the data come from a HG-
U95Av2 chip, we use the set of genes on that chip as the set of all genes
in the Hypergeometric test. We then make use of the resultant p-values to
provide colors for the nodes.

> gNsLL <- unique(unlist(mget(names(gde), env = hgu95av2LOCUSID,

+ ifnotfound = NA)))

> gGhyp <- GOHyperG(gNsLL)

In Figure 22.5, we reproduce the plot from Figure 22.4 except that we
have now colored the nodes according to the p-value obtained from the
Hypergeometric test described above. The nodes in Figure 22.5 are colored
either dark red or light blue depending on whether the unadjusted Hyper-
geometric p-value was less than 0.1 or not. The GO terms for the nodes
colored red are printed below. The relevant biology suggests that these are
quite reasonable.

378 R. Gentleman et al.

0.42

0.35

0.043

0.59

0.58

0.16

1

0.04

0.091

0.27

0.014

0.021

0.14

0.0410.014

0.18

0.11

0.79

0.1

0.43

0.35 0.24 0.52

0.13

0.31

0.190.12

0.3

0.33

0.82

0.0018

0.011

0.0036

0.51

0.065

0.24

Figure 22.5. The induced GO graph colored according to unadjusted
Hypergeometric p-values, whose values are given in the nodes.

We see in Table 22.1 that the nodes with the smallest p-values do tend
to be the nodes with few genes annotated at them. However, there are also
some nodes with quite small p-values and large counts, such as GO:0008270
and GO:0003924, and these would surely be of some interest in subsequent
explorations.

It is interesting to note that we can also ask, and answer, the question
about underrepresented GO terms. That is, we can find nodes in the GO
graph that, given their size, should have contained one or more interesting
genes, under the null hypothesis.

22.4 Literature co-citation

In this section, we consider the graph structure of literature co-citation data
and explore some of the ways it can be used to help add meaning to a data
analysis. The basic statistical models and paradigm will be presented first,
and subsequently we apply them to co-citation via PubMed; see Chapter 7
for more details on PubMed. There are many different problems that can
be addressed using these data, but we will consider only a few of them.

22. Graph Case Studies 379

One of the problems in providing concrete recommendations is the lack
of a gold standard against which to measure the performance of the vari-
ous tools. We have used a number of examples where we believe one can
make a reasonable statement about whether two genes are related and
then contrast the different measures and adjustments with respect to their
agreement with this point of view. Of course, your opinion might be dif-
ferent, and in that case you would naturally select a test statistic to use
accordingly. More details on the approach and more extensive examples
were given by Ding and Gentleman (2004).

One can consider citation in terms of a bipartite graph. The genes rep-
resent one type of node and the scientific papers represent the other type
of node. An edge exists between a gene and a paper if the gene is cited in
the paper. In this graph, there are no edges between papers and no edges
between genes. The relationships between genes are mediated by the papers
and the relationships between papers are mediated by the genes. From this
bipartite graph, we can generate two one mode graphs. One is the graph
whose nodes are genes and an edge exists between two genes if they are
co-cited in one or more papers. Edge weights can be used in this graph to
count the number of co-citations. The second type of one mode graph that
is of some interest is the graph whose nodes represent papers, and an edge
exists between two papers if they co-cite at least one gene. Edge weights
can be used to represent the number of genes that have been co-cited.

In the context of a co-citation graph (see Section 20.2.1 for more details),
the actor size is the number of papers that cite the gene of interest, while
the event size is the number of genes that are cited by a specific paper. We
note that some adjustment for either actor or event size can improve the
inference and should be considered; we discuss this in Section 22.4.2. For
example co-citation in a paper such as that by Strausberg et al. (2002),
which cites more than 15,000 genes, has very little information and one
would not generally treat co-citation in this paper as indicating any re-
lationship between genes. On the other hand, co-citation in a paper that
discusses only two or three genes is a much stronger indication of an intrin-
sic biological relationship. Interested readers are referred to Section 22.4.1
below, Chapter 8 of the book by Wasserman and Faust (1994), and the
article of Ding and Gentleman (2004) for further considerations.

The concepts of adjacency, reachability, and connectedness can all be
applied to bipartite graphs, and hence to affiliation networks. Of these, the
strongest and most interpretable property will be adjacency. If we consider
the co-citation network, the notion of a relationship based on reachability
seems very vague and would be difficult to interpret. Similarly, it will be
difficult to place much meaning on the path length between two genes,
or two papers. We also note that that notions reachability, diameter, and
connectedness in the one mode networks are likely to be of little biological
interest. In a co-citation graph, only the direct co-citations are likely to be
important. Two genes that are co-cited will share an edge, and it is not clear

380 R. Gentleman et al.

gene2

gene1 n11 n12 n1.

n21 n22 n2.

n.1 n.2 n

Table 22.2. Notational conventions for a two-way table.

that the existence of a path, say through some third gene, is any evidence
of a relationship. One might be willing to argue that the existence of many,
very short paths between two genes of interest constitutes evidence of a
relationship, but that requires a different approach.

22.4.1 Statistical development

For many of the two-way tables that arise in bioinformatics, one of the
entries in the table is much much larger than the other ones. For example,
with co-citation comparisons, or when comparing annotation at a particular
GO term with some other property, we find that most genes have neither
property and so one entry in the two-way table is very large compared to
the other three. To facilitate discussion, we will use the convention that
the n22 entry in the two-way table is the one with the very large number.
To further ease the exposition, we will base some of the discussion on the
notion that we want to compare two genes, gene1 and gene2, on the basis
of their co-citations in the medical literature.

When one entry in the table (Table 22.2) is much larger than the others,
the actual distribution of the test statistics may be quite far from the
asymptotic distributions that are commonly used to assess significance. It
may be prudent to rely on test statistics that either do not use n22 or
which do not depend heavily on it. Some of these were studied by Ding and
Gentleman (2004) and we discuss their findings here. Ding and Gentleman
(2004) considered a wide range of statistics and recommended the three
following statistics as performing well, under different situations.

• Concordance measure

n11

• Jaccard Index (Jaccard, 1912)
n11

n11 + n12 + n21

• Hubert’s Γ (Hubert, 1987; Good, 1994)
n11n22 − n12n21√

(n11 + n12)(n21 + n22)(n11 + n21)(n12 + n22)

The range of the Jaccard Index is [0,1] and for Hubert’s Γ the range is
[-1,1]. Hubert’s Γ is equivalent to the fourfold correlation coefficient.

22. Graph Case Studies 381

Ding and Gentleman (2004) carried out an empirical study of the per-
formance of the different test statistics together with adjustments for both
event size and actor size. Although there is no gold standard by which
to compare these different test statistics, it is nonetheless important to at-
tempt to understand the properties of the different test statistics. Notions of
power and size are therefore approximate, and based on comparisons where
a biological association between genes could be determined, and other cases
using genes where it was very unlikely that any true biological association
exists. That is, Ding and Gentleman (2004) considered genes that are likely
to have a biologically meaningful relationship, as well as those that, despite
frequent co-citation, are not likely to have a biologically meaningful rela-
tionship. They found that the χ2 and odds ratio based statistics do not, in
general, perform as well as the Concordance, Jaccard Index and Hubert’s
Γ based statistics. They also found that actor size adjustment tends to
make tests too conservative, whereas event-size adjusted Concordance and
Jaccard Index tend to be too anti-conservative. The necessary software for
carrying out these tests is provided in the CoCiteStats package.

Let N denote the set of actors, with cardinality n, and let M denote
the set of events, with cardinality m. We denote the affiliation matrix as
A, where Ai,j is 1 if actor i was present at event j. The corresponding one
mode networks can be then be found as as XN = AA′ and XM = A′A.
Note that in XM the i, j entry is the number of events that both actor i and
actor j attended. In some cases we will be interested in Boolean versions of
these matrices, that is versions of XM and XN that have entries that are
zero or one, which indicate whether actors i and j attended one or more
events together.

We return to the subject of actor and event size adjustments. We note
that a very large event (a paper that cites very many genes) is likely to co-
cite two genes, but the information about their relationship is weaker than
if they were co-cited in a paper that cited only a small number of genes.
Considering, instead, actors we see that an actor (or gene) that attends
many events is much more likely to be affiliated with other actors than an
actor that attends few events. In the context of co-citation, this says that
a well studied gene is more likely to be associated with other genes than a
recently discovered, or recently studied, gene.

One argument that is often made in social network theory is that the
measure of association between actors should be logically independent of
the event size. When the data are presented in the form of a two-way table,
the odds ratio is one measure of association that is logically independent
of group size. An alternative discussed in Wasserman and Faust (1994) is
to normalize either of XM or XN so that all row and column totals are
equal; this idea will not be explored here.

The use of XN intrinsically assumes equal weighting of papers. The size
of the papers, however, may also play a key role in deciding significance of
association between genes and some adjustment may be needed. There are

382 R. Gentleman et al.

various ways of doing this, but in principle one should down-weight large
papers as their information content is less. We consider a weight equal to
the inverse of the number of genes cited for each paper, i.e., paper size.

22.4.2 Comparisons of interest

Now we revise the gene-gene contingency table, Table 22.2, for the case
where the comparison of interest is between two genes, gene1 and gene2,
on the basis of co-citation. We let n′

ij =
∑

l∈Pubij
1/Nl, i, j = 1, 2 where Nl

is the size of paper l, i.e., the number of genes cited by PubMed l, Pub11 is
the set of papers citing both genes; Pub12 citing gene1 but not gene2, Pub21

citing gene2 but not gene1, and Pub22 are those citing neither genes. Hence
n′

ij is a weighted version of nij where the weight depends on the number
of genes cited by each paper. We can then use the three statistics proposed
in Section 22.4.1, Concordance, Jaccard’s index, and Hubert’s Γ, with nij

replaced by n′
ij .

22.4.3 Examples

We begin with a small example to clarify some of the relevant issues. TRO
and BYSL form a complex mediating cell adhesion. Suzuki et al. (1999)
studied expression of these two genes in human placenta. These two genes
are the only two human gene products referred to in this paper (PMID:
10026108). Conversely, they were also co-cited in Strausberg et al. (2002)
(PMID: 12477932) where ESTs were generated from libraries enriched for
full-length cDNAs; there is no direct association between the genes they
have cited other than the fact that their cDNA sequences can be obtained.
So we can see that the paper by Suzuki et al. (1999) is very informa-
tive about these two genes, and their potential relationship, while that by
Strausberg et al. (2002) is not.

We consider the Concordance measure, Hubert’s Γ, and the Jaccard
Index. For all three we also consider gene size adjustments, paper size
adjustments and both gene and paper size adjustments, thus yielding four
statistics for each of these.

Example 1

We first look at the association between two genes, BYSL with LocusLink
ID 705 and TRO with LocusLink ID 7216. As noted above, they have been
co-cited twice (PMID: 12477932,10026108) where the second paper cited
only these two genes and the first one cited 14596 genes. Even though one
of the papers citing both is general (PMID: 12477932), the other (PMID:
10026108) is a very specific paper discussing the two genes. Moreover, the
two genes were cited in only 4 and 8 papers respectively, hence we believe
that there is an association between them and we would like to use a test
statistic that is capable of detecting that relationship.

22. Graph Case Studies 383

7216
705 2 2 4

6 74666 74672
8 74668 74676

Concordance Jaccard Hubert
None 2.0000 0.2000 0.3535

(0.0000) (0.0600) (0.0800)
GS 0.9911 0.9824 0.9822

(0.1000) (0.1000) (0.1000)
PS 0.5001 0.0832 0.1579

(0.0000) (0.0000) (0.0000)
BOTH 0.9855 0.9715 0.9710

(0.0800) (0.0800) (0.0800)

Table 22.3. PubMed co-citation: Locuslink ID 705 and 7216.

Using a Hypergeometric distribution the exact p-value for testing the
null hypothesis that gene 705 and 7216 are not related is 0.377 when no
edge weights are considered, indicating no significant association between
them. Failure to account for the edge weights may offer an explanation.

Table 22.3 reports the results for the three statistics from Section 22.4.1.
For each statistic, we also considered four versions: no adjustment (None),
gene size adjustment (GS), paper size adjustment (PS) and both gene and
paper size adjustment (Both). The numbers listed in each entry are the
score and p-value (in parentheses).

Results from Concordance, Jaccard Index, and Hubert’s Γ are quite
consistent, the original Concordance statistic and paper size adjusted Con-
cordance, Jaccard Index, and Hubert’s Γ are significant at 0.05 level. This
suggests that paper size adjustment is useful especially as one of the papers
under investigation is extremely large in size. The adjustments for gene size
all lead to non-significant results.

An analysis using GO by Ding and Gentleman (2004) indicated that the
two genes are highly significantly related in their biological processes.

Example 2

The previous example suggests that both the number of co-citations and the
paper size are important in determining the level of significance. To see this
more clearly, we consider genes 10038 (ADPRTL2) and 10039 (ADPRTL3)
which are co-cited four times. The sizes of the papers citing 10038 and
10039 are 3,2,2,2, all relatively small compared with previous examples.
Moreover, the genes were cited 7 and 8 times respectively.

384 R. Gentleman et al.

10039
10038 4 3 7

4 74665 74669
8 74668 74676

Concordance Jaccard Hubert
None 4.0000 0.3636 0.5345

(0.0000) (0.0000) (0.0000)
GS 0.9937 0.9875 0.9874

(0.0000) (0.0000) (0.0000)
PS 1.8333 0.3771 0.5476

(0.0000) (0.0000) (0.0000)
BOTH 0.9956 0.9913 0.9913

(0.0000) (0.0000) (0.0000)

Table 22.4. PubMed co-citation: Locuslink ID 10038 and 10039.

All results reported in Table 22.4 are significant. This suggests that if
paper size is small then there is no obvious need for paper size adjustment;
almost all the statistics, with or without adjustment, yield similar results.

Application to gene lists. Here we use the test statistics, suggested
above, but aggregate them over the set of genes in the gene list or over the
boundary of the gene list.

Given a list of genes, D, one can find the boundary of that list, with
respect to the one mode co-citation graph XN . This boundary is simply
the set of genes that were co-cited one or more times with the genes in D.
Because there are many papers that cite thousands of genes, the boundary
itself will not be very interesting, and we will typically restrict our attention
to those genes where the sum of the edge weights exceeds some threshold.
This cut-off can be determined empirically.

Once the boundary has been determined, we might want to find those
genes that have a particularly strong association with the genes in D. While
parametric tests are not generally available, a resampling test can be used
to assess significance. Alternatively, we can compute pairwise relationships
between the members of D itself. These distances, could then be analyzed,
using multidimensional scaling or they could form the basis for yet another
graph.

We return to the ALL example begun in Section 22.3. In that exam-
ple, we selected genes whose expression values were associated with the
phenotypes of interest (BCR/ABL and NEG) using a permutation-based
t-test to compare the two groups. We found 19 probes, corresponding to 16
genes, that had adjusted p-values below 0.05. Suppose that we wanted to
find out whether there are subsets of these genes that are closely related,
according to co-citation. We can also ask if there are other genes that are

22. Graph Case Studies 385

closely related to the selected genes that we did not find. We first obtain
the unique LocusLink identifiers and then map these to the set of papers
that cite the genes. We begin with the data object intLLc that contains
the LocusLink identifiers for the selected genes. For each of these we first
obtain the number of citations for each gene.

> papersByLL <- mget(intLLc, humanLLMappingsLL2PMID,

+ ifnotfound = NA)

> ncit <- sapply(papersByLL, length)

> ncit

25 687 195 2534 23145 7277 841 4599 2273 87

68 5 7 28 3 10 94 24 10 6

6935 9697 9900 3937 1396 8835

10 5 4 11 4 12

We see that the number of citations ranges from 94 to 3. Next, we can
construct a simple co-citation graph, on these genes and here we need only
concern ourselves with this rather small set of papers. The paper sizes were
also computed and they range from 14596 to 1.

> num <- length(papersByLL)

> grels <- vector("list", length = num)

> names(grels) <- names(papersByLL)

> for (i in 1:num) {

+ curr <- papersByLL[[i]]

+ grels[[i]] <- lapply(papersByLL, function(x) {

+ mt <- match(x, curr, 0)

+ if (any(mt > 0))

+ curr[mt]

+ else NULL

+ })

+ }

> for (i in 1:num) grels[[i]] <- grels[[i]][-i]

We have now computed the edges that are present in our graph. Next we
want to see which papers co-cite genes from among our list.

> gr2 <- lapply(grels, function(x) {

+ slen <- sapply(x, length)

+ x[slen > 0]

+ })

> table(unlist(gr2))

12477932 14702039

132 30

We notice that all of the co-citations between the genes we have selected
are due to two papers, one by Strausberg et al. (2002) and a similar one by
Ota et al., and hence there is no information about relationships between
these genes to be gleaned from the currently available medical literature.

386 R. Gentleman et al.

We can take a more exploratory approach. For instance, starting with the
same set of genes, the boundary of their co-citation graph can be examined.
That is, we are looking for all genes that have a co-citation with one or
more of the genes in our list. We will need to discount the very large papers,
and hence we will make use of edge weights in constructing our graph and
subsequently will trim those elements of the boundary with edge weights
that are small.

Finding the boundary is relatively straightforward. Given our list of
genes, we first find their citations, and using those citations we find the
information on genes cited in those papers. In the next code chunk, a sim-
ple function, LL2wts, that carries out this computation is provided. Given a
set of LocusLink IDs it finds all papers that cite these genes. Then, taking
those papers, it finds all genes they cite and creates a weight vector, where
the weights are 1 over the papers sizes. Finally, a list of the named weight
vectors is output.

> LL2wts <- function(inList) {

+ pBLL <- mget(inList, humanLLMappingsLL2PMID,

+ ifnotfound = NA)

+ numL <- length(inList)

+ ans <- NULL

+ for (i in 1:numL) {

+ lls <- mget(as.character(pBLL[[i]]),

+ humanLLMappingsPMID2LL,

+ ifnotfound = NA)

+ lens <- sapply(lls, length)

+ names(lens) <- NULL

+ wts <- rep(1/lens, lens)

+ wtsbyg <- split(wts, unlist(lls, use.names = FALSE))

+ ans[[i]] <- sapply(wtsbyg, sum)

+ }

+ ans

+ }

> vv <- LL2wts(intLLc)

Given vv, we can answer a number of questions. For example, we can
find which of the elements of vv have the largest weights, we can see which
genes are connected to more than one gene in our list of interesting genes,
and of those, which have relatively high weights.

> allLL <- unique(unlist(sapply(vv, names)))

> bdrywts <- rep(0, length(allLL))

> names(bdrywts) <- allLL

> for (wvec in vv) bdrywts[names(wvec)] <- bdrywts[names(wvec)] +

+ wvec

> wts <- bdrywts[!(allLL %in% intLLc)]

> sum(wts > 1)

[1] 20

22. Graph Case Studies 387

> range(wts[wts > 1])

[1] 1.08 9.00

We can see that there are 20 genes that have weights that are larger than
1 and hence might warrant further study. We can find those that are on the
HG-U95Av2 chip by using the chip-specific annotation pacakge, hgu95av2.

> LL95 <- unlist(as.list(hgu95av2LOCUSID))

> bdryLL <- names(wts[wts > 1])

> onC <- match(bdryLL, LL95, 0)

> unlist(mget(names(LL95[onC]), hgu95av2SYMBOL))

517_at 1084_at 2043_s_at 1441_s_at 2024_s_at

"SHFM3P1" "ABL2" "BCR" "FAS" "LYN"

879_at 32725_at 38350_f_at 40567_at 34448_s_at

"MX2" "BID" "TUBA2" "TUBA3" "CASP2"

36143_at 38281_at 486_at 1765_at 38755_at

"CASP3" "CASP7" "CASP9" "CASP10" "FADD"

1867_at 40969_at 35681_r_at

"CFLAR" "SOCS3" "ZFHX1B"

22.5 Pathways

In this section, we consider some uses of pathway information in the analysis
of gene expression data. Although the concept of a pathway does not have
a rigorous definition, the general concept is widely used. For example, the
biological process ontology from GO describes itself as being less than a
pathway.

Associating gene expression data with pathways has been considered by
many others, including Doniger et al. (2003). In some applications, one
might render a pathway and color the nodes (genes) according to changes
in expression across experimental conditions. Although this approach has
some appeal, there are other uses for pathway data. Pathways can be used
to perform subgroup analysis where interest is restricted to a set of genes
that are associated with a particular pathway. However, there are many
situations where one would not expect the expression levels to change.
For example, many signal transduction pathways are known to end in the
activation of a transcription factor. Thus, to know if the pathway is active,
it seems more reasonable to study the targets of the transcription factor
than the constituent elements of the pathway.

In our first example, we consider the network structure of the pathways
themselves. We make use of the bipartite graph that relates genes and
pathways and study the one mode network on pathways that results from
it. In our second example, we take a single pathway, the integrin-mediated

388 R. Gentleman et al.

cell-adhesion pathway, and render it in different ways, using gene expression
data to modify the outputs.

22.5.1 The graph structure of pathways

Consider the bipartite graph where one set of nodes are genes and the
other set of nodes are pathways. We are interested in understanding the
relationships between pathways due to shared genes, or shared sets of
genes. We represent the bipartite graph in terms of an incidence matrix;
see Section 20.2.1 for more details.

We construct the graph based on the data available from the HG-U95Av2
GeneChip array from Affymetrix. It might be of more interest to consider
the construction of this graph based on all mappings for a given organism
rather than restricting our attention to a particular chip, but this restriction
makes the computations manageable. The construction is considered in
some detail as readers are likely to find it useful for creating their own
bipartite graphs. There are two relevant mappings, those from probes to
pathways, and the converse, from pathways to probes. For the HG-U95Av2
chips these are available as hgu95av2PATH, which holds the mappings from
probesets to the pathways, and hgu95av2PATH2PROBE, which contains the
mappings from pathways to probesets. We first load the necessary libraries
and then look to see how many pathways different genes are annotated at.

> library("hgu95av2")

> library("annotate")

> genel <- unlist(eapply(hgu95av2PATH, length))

> table(genel)

genel

1 2 3 4 5 6 7 8 10 11

11264 635 363 208 71 33 6 10 7 10

12 13 15

7 3 8

We see that some genes are annotated at many pathways, while most are
annotated at only one. Since genes are annotated at pathways using Lo-
cusLink identifiers we next reduce the data by removing any duplicate
probes.

> pathLL <- eapply(hgu95av2PATH2PROBE, function(x) {

+ LLs <- getLL(x, "hgu95av2")

+ unique(LLs)

+ })

> pLens <- sapply(pathLL, length)

> range(pLens)

[1] 1 219

> uniqLL <- unique(unlist(pathLL, use.names = FALSE))

22. Graph Case Studies 389

We see that pathway sizes are between 1 and 219 for LocusLink identifiers
from this chip. We note that these sizes are with respect to the set of
genes that we have information on. The actual size (number of genes) in
a pathway could be quite different, and for some calculations we will want
the actual set of genes, but for others we will need to focus on those genes
for which we have data.

Now that we have computed pathLL, that is really all that is needed. We
can find out how many pathways there are (136), and how many unique Lo-
cusLink identifiers there are (2297). In the incidence matrix representation
of our bipartite graph, we let LocusLink identifiers denote the rows and
pathways denote the columns. The data in pathLL are easily transformed
to an adjacency matrix where the pathways are the columns, and the genes
are the rows.

> Amat <- sapply(pathLL, function(x) {

+ mtch <- match(x, uniqLL)

+ zeros <- rep(0, length(uniqLL))

+ zeros[mtch] <- 1

+ zeros

+ })

Now that we have an incidence matrix for the pathways, we can construct
the one mode graphs for genes and for pathways. We leave the gene graph
for the reader to explore and instead consider the pathway graph. The
diagonal entries of pwGmat will be the counts of the number of genes in
each pathway. We set these to zero so that they do not get interpreted as
self-loops.

> pwGmat <- t(Amat) %*% Amat

> diag(pwGmat) <- 0

> pwG <- as(pwGmat, "graphNEL")

Although we could use Rgraphviz to lay out the graph, it has too many
nodes and edges to provide a meaningful visualization using standard layout
methodologies. Further research is needed to develop good layout strategies
for this graph. However, we can examine some of the basic characteristics
of the graph.

We can find the connected components.

> ccpwG <- connectedComp(pwG)

> sapply(ccpwG, length)

1 2 3 4 5

132 1 1 1 1

We see that there are four singletons, and otherwise all the pathways are
connected by the genes that are assayed on the HG-U95Av2 chip. In the
next code chunk we find and print the names of the singletons.

390 R. Gentleman et al.

Histogram of degree(pwG)

degree(pwG)

F
re

qu
en

cy

0 10 20 30 40 50

0
10

20
30

Figure 22.6. The degree distribution of the pathway graph.

> library("KEGG")

> for (i in ccpwG) {

+ if (length(i) == 1)

+ cat(get(i, KEGGPATHID2NAME), "\n")

+ }

Basal transcription factors

Retinol metabolism

Proteasome

Chondroitin / Heparan sulfate biosynthesis

These pathways might be connected to each other, or to other pathways,
through genes that were not assayed.

We computed the degree distribution of the pathway graph and plotted
a histogram in Figure 22.6. Pathways are the nodes in this graph, and so
we see that some pathways have many edges to other pathways, and hence
are quite central. It might be useful to use edge weights to indicate the
number of shared genes, and this could then be used in coloring the edges
or perhaps in thresholding them.

Other analyses might focus on finding shared components, for example
finding out whether one pathway is wholly contained within another. We
will need good layout algorithms for single pathways. We will also need
layout mechanisms for joining together different pathways.

22.5.2 Relating expression data to pathways

We now consider a method for relating gene expression data to pathways.
Other approaches have been considered, in particular by the GenMAPP
project (Doniger et al., 2003), and some of our own work has been reported

22. Graph Case Studies 391

in R News (Gentry et al., 2004). We consider the integrin-mediated cell-
adhesion pathway, as represented at KEGG . The KEGG pathway label
is hsa04510 and the graphical representation from KEGG was shown in
Figure 19.1. Users can either access the KEGG Web site directly, or they
can use the KEGGSOAP package to obtain more information about this
pathway. For any microarray experiment, Bioconductor meta-data packages
can be used to find associations between probes and the genes involved in
different KEGG pathways.

To obtain the pathway graph, you have several different options. You
can construct one yourself, based on the available data and potentially
expert biological advice, or you can make use of the information from the
cMAP project, which is available in the cMAP package. For this particular
pathway, we have already taken the information available in KEGG and
used that to construct a graph representation of the pathway. The relevant
data structures are constructed from two objects in the graph package.
The object IMCAGraph is an instance of the graphNEL class, representing the
pathway as a mathematical graph with named nodes and directed edges.
The object IMCAAttrs is a list of plotting attributes for each node in the
graph, such as the color.

We return to the ALL data and ask whether or not there are differences
between the two groups (BCR/ABL and NEG) with respect to expression
levels of genes in this pathway. We use the subset of the ALL data computed
in Section 22.3. However, we do not carry out any gene selection, instead
we consider the expression levels of the different genes in this pathway, and
how those levels depend on phenotype (whether the samples are BCR/ABL
or NEG).

Next, we obtain the mapping between the probes on the Affymetrix array
and the genes in the pathway.

> hsa04510 <- hgu95av2PATH2PROBE$"04510"

> hsaLLs <- getLL(hsa04510, "hgu95av2")

There are 52 nodes in this pathway, and of these 45 represent genes. We
find that there are 114 probesets for these genes on the HG-U95Av2 chip.
There are many different ways to deal with the duplicate probesets, and
here we take the simplistic approach of just selecting the first match. We
note that an appropriate investigation of these data would involve a more
detailed consideration of how to deal with multiple probes per gene.

In the next code chunk, we extract the LocusLink identifiers associated
with each node in the graph and then for each of these take the first probeset
that maps to it. We also check to see which of the genes in the pathway have
no probes associated with them; these will have a value of NA in whProbe.

> LLs <- unlist(sapply(IMCAAttrs$LocusLink, function(x) x[1]))

> whProbe <- match(LLs, hsaLLs)

> probeNames <- names(hsaLLs)[whProbe]

392 R. Gentleman et al.

ITGB

ITGA

ILK

CAV

SHC FYN

GRB2 SOS Ha−Ras Raf MEK

ERK

MYLK

MYO

ACTN VCL TLN

PXN

ZYX VASP

SH3D5

TNS

CAPN

CAPNS

SRC

FAK BCAR1

CSK
CRK

DOCK1

GRF2

RAP1

JNK

GIT2

ARHGEF

PAK

p85 p110

VAV

PDPK1 AKT

RAC

CDC42RHO
PI5K

ROCK
MYO−P

maintenance

motility

F−actin

proliferation

Phosphatidyl−
inositol

signaling
system

Figure 22.7. The integrin-mediated cell-adhesion network.

> names(probeNames) <- names(LLs)

> pN <- probeNames[!is.na(probeNames)]

We lay out the graph using agopen, as we want to render the same graph
several times.

> IMCg <- agopen(IMCAGraph, "", attrs = IMCAAttrs$defAttrs,

+ nodeAttrs = IMCAAttrs$nodeAttrs, subGList = IMCAAttrs$subGList)

> plot(IMCg)

In Figure 22.7 we see the pathway laid out, with nodes that represent
genes colored green. Now that we have found a set of probes that map
to each gene in the pathway, we split the data into those with BCR/ABL
and those that have no abnormalities and render the pathway, once for
each group. For each group, we will plot a pie chart for each node. The pie
chart will reflect a split, across the gene, of the samples for that gene. We
will use splits of (0, 6], for low, (6, 8.5] for moderate and (8.5,∞] for high,

22. Graph Case Studies 393

levels of expression. This visualization is different from one that colors
nodes according to whether the genes are more highly expressed in one
group than the other. It allows the reader to compare the distribution of
expression, for each gene, between the two phenotypes.

Now that we have found the expression levels and computed the counts
for each of the probes, we are ready to layout the graph and then render it,
once for each phenotype we are interested in. The resulting plots are shown
in Figure 22.8. Using pie charts for the nodes in the graph is easily done, and
the procedure is documented in the Rgraphviz package. We note that due to
the modular nature of the graph drawing procedures in Rgraphviz, virtually
any R plot can be used for the nodes in a graph; see also Section 21.4.4. It
is also easy to simply color the nodes according to which group has higher
levels of expression, as is done by many others.

The graphs themselves are quite interesting. The similarity in distribu-
tion of expression levels, especially for those genes on the right half of the
graph is remarkable. On the left side, we draw your attention to FYN,
which has about 3/4 of the samples in the high range for BCR/ABL while
for the NEG samples about 3/4 of the samples are moderate.

22.6 Concluding remarks

In this chapter, we have presented four case studies that made use of
the tools that were introduced in the earlier chapters of this section. Our
purpose was not to promulgate the examples themselves, but rather to
demonstrate the flexibility of the software tools that are available and to
emphasize that virtually any analysis can be undertaken, with a small
amount of additional programming. You should only be limited by your
ideas and the available data.

There are still many questions to answer, and much software needs to
be written. We will need specialized graph algorithms to deal with the fact
that many biological relationships are measured with error, and hence usual
constructs and algorithms may fail or be unusable when false negative and
false positive relationships exist. Visualizing graphs, as opposed to layout, is
a difficult problem and one that is starting to get some attention. We hope
that the tool kit of graph algorithms and methods described here, linked to
the R statistical computing framework, will foster many new developments.

394 R. Gentleman et al.

a) pie chart graph for BCR/ABL

No Data

0−6

6−8.5

8.5+

b) pie chart graph for NEG

No Data

0−6

6−8.5

8.5+

Figure 22.8. Pie chart graphs representing gene expression data for a) BCR/ABL
samples, b) NEG samples.

Part V

Case studies

23

limma: Linear Models for
Microarray Data

G. K. Smyth

Abstract
A survey is given of differential expression analyses using the

linear modeling features of the limma package. The chapter starts
with the simplest replicated designs and progresses through exper-
iments with two or more groups, direct designs, factorial designs
and time course experiments. Experiments with technical as well
as biological replication are considered. Empirical Bayes test statis-
tics are explained. The use of quality weights, adaptive background
correction and control spots in conjunction with linear modelling is
illustrated on the β7 data.

23.1 Introduction

limma is a package for differential expression analysis of data arising from
microarray experiments. The package is designed to analyze complex exper-
iments involving comparisons between many RNA targets simultaneously
while remaining reasonably easy to use for simple experiments. The cen-
tral idea is to fit a linear model to the expression data for each gene.
The expression data can be log-ratios, or sometimes log-intensities, from
two-color microarrays or log-intensity values from one-channel technolo-
gies such as Affymetrix. Empirical Bayes and other shrinkage methods are
used to borrow information across genes making the analyses stable even
for experiments with small number of arrays (Smyth, 2004; Smyth et al.,
2005).

limma is designed to be used in conjunction with the affy or affyPLM
packages for Affymetrix data as described in Chapters 2 and 25. With two-
color microarray data, the marray package may be used for preprocessing as
described in Chapter4. limma itself also provides input and normalization

398 G.K. Smyth

functions that support features especially useful for the linear modeling
approach.

This chapter gives a survey of differential expression analyses starting
with the simplest replicated designs and progressing through experiments
with two or more groups, factorial designs, and time course experiments.
For the most part, this chapter does not analyze specific data sets but gives
instead generic code which can be applied to any data set arising from the
designs described. Analyses of specific data sets are given in Chapters 4, 14,
16, and 25. One purpose of this chapter is to place these analyses in context
and to indicate how the methods would be extended to more complex
designs. This chapter was prepared using limma version 1.8.18.

23.2 Data representations

The starting point for this chapter and many other chapters in this book
is that an experiment has been performed using a set of microarrays hy-
bridized with two or more different RNA sources. The arrays have been
scanned and image-analyzed to produce output files containing raw inten-
sities, usually one file for each array. The arrays may be one-channel with
one RNA sample hybridized to each array or they may be two-channel or
two-color with two RNA samples hybridized competitively to each array.

Expression data from experiments using one-channel arrays can be rep-
resented as a data matrix with rows corresponding to probes and columns
to arrays. The rma function in the affy package produces such a matrix
for Affymetrix arrays. The output from rma is an exprSet object with the
matrix of log-intensities in the exprs slot. See Chapters 2 and 25 for details.

Experiments using two-color arrays produce two data matrices, one each
for the green and red channels. The green and red channel intensities are
usually kept separate until normalization, after which they are summa-
rized by a matrix of log-ratios (M -values) and a matrix of log-averages
(A-values). See Chapter 4 for details.

Two-color experiments can be divided into those for which one-channel
of every array is a common reference sample and those that make direct
comparisons between the RNA samples of interest without the intermedi-
ary of a common reference. Common reference experiments can be treated
similarly to one-channel experiments with the matrix of log-ratios taking
the place of the matrix of log-intensities. Direct two-color designs require
some special techniques. Many features of limma are motivated by the de-
sire to obtain full information from direct designs and to treat all types of
experiment in a unified way.

Sections 23.3 to 23.11 will assume that a normalized data object called
MA or eset is available. The object eset is assumed to be of class exprSet
containing normalized probeset log-intensities from an Affymetrix experi-

23. Linear Models Case Study 399

ment, while MA is assumed to contain normalized M and A-values from an
experiment using two-color arrays. The data object MA might be an mar-
rayNorm object produced by maNorm in the marray package or an MAList
object produced by normalizeWithinArrays or normalizeBetweenArrays in
the limma package, although marrayNorm objects usually need some fur-
ther processing after normalization before being used for linear modeling
as explained in Section 23.4. The examples of Sections 23.4 to 23.11 remain
valid if eset or MA is just a matrix containing the normalized log-intensities
or log-ratios.

Apart from the expression data itself, microarray data sets need to in-
clude information about the probes printed on the arrays and information
about the targets hybridized to the arrays. The targets are of particular
interest when setting up a linear model. In this chapter, the target labels
and any associated covariates are assumed to be available in a targets frame
called targets, which is just a data.frame with rows corresponding to ar-
rays in the experiment. In an exprSet object, this data frame is often stored
as part of the phenoData slot, in which case it can be extracted by targets

<- pData(eset). Despite the name, there is no implication that the covari-
ates are phenotypic in nature, in fact they often indicate genotypes such
as wild-type or knockout. In an marrayNorm object, the targets frame is
often stored as part of the maTargets slot, in which case it can be extracted
by targets <- maInfo(maTargets(MA)). limma provides the function read-

Targets for reading the targets frame directly from a text file, and doing
so is often the first step in a microarray data analysis.

23.3 Linear models

limma uses linear models to analyze designed microarray experiments (Yang
and Speed, 2003; Smyth, 2004). This approach allows very general exper-
iments to be analyzed nearly as easily as a simple replicated experiment.
The approach requires two matrices to be specified. The first is the de-
sign matrix, which provides a representation of the different RNA targets
that have been hybridized to the arrays. The second is the contrast matrix,
which allows the coefficients defined by the design matrix to be combined
into contrasts of interest. Each contrast corresponds to a comparison of in-
terest between the RNA targets. For very simple experiments, the contrast
matrix may not need to be specified explicitly.

The first step is to fit a linear model using lmFit, which fully models the
systematic part of the data. Each row of the design matrix corresponds to an
array in the experiment and each column corresponds to a coefficient. With
one-channel data or common reference data, the number of coefficients will
be equal to the number of distinct RNA sources. With direct-design two-
color data, there will be one fewer coefficients than distinct RNA targets,

400 G.K. Smyth

or the same number if a dye-effect is included. One purpose of this step is
to estimate the variability in the data.

In practice, one might be interested in more or fewer comparisons be-
tween the RNA targets than there are coefficients. The contrast step, which
uses the function contrasts.fit, allows the fitted coefficients to be com-
pared in as many ways as there are questions to be answered, regardless of
how many or how few these might be.

Mathematically, we assume a linear model E[yj] = Xαj where yj con-
tains the expression data for the gene j, X is the design matrix, and αj is
a vector of coefficients. Here yT

j is the jth row of the expression matrix and
contains either log-ratios or log-intensities. The contrasts of interest are
given by βj = CT αj where C is the contrasts matrix. The coefficients

component of the fitted model produced by lmFit contains estimated val-
ues for the αj . After applying contrasts.fit, the coefficients component
now contains estimated values for the βj .

With one-channel or common reference microarray data, linear modeling
is much the same as ordinary ANOVA or multiple regression except that a
model is fitted for every gene. With data of this type, design matrices can be
created in the same way that one would do when modeling univariate data.
With data from two-color direct designs, linear modeling is very flexible and
powerful but the formation of the design matrix may be less familiar. The
function modelMatrix is provided to simplify the construction of appropriate
design matrices for two-color data.

23.4 Simple comparisons

The simplest possible microarray experiment is one with a series of replicate
two-color arrays all comparing the same two RNA sources. For a three-array
experiment, comparing wild-type (wt) and mutant (mu) RNA, the targets
frame might contain the following entries:

FileName Cy3 Cy5
File1 wt mu
File2 wt mu
File3 wt mu

A list of the top genes that show evidence of differential expression between
the mutant and wild-type might be found for this experiment by

> fit <- lmFit(MA)

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

where MA holds the normalized data. The default design matrix used here is
just a single column of ones. This experiment estimates the fold change of
mutant over wild-type. Genes that have positive M -values are more highly

23. Linear Models Case Study 401

expressed in the mutant, whereas genes with negative M -values are more
highly expressed in the wild-type. The analysis is analogous to the classical
single-sample t-test except that empirical Bayes methods have been used
to borrow information between genes.

A simple modification of the above experiment would be to swap the
dyes for one of the arrays. The targets frame might now be

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu

and the analysis would be

> design <- c(1, -1, 1)

> fit <- lmFit(MA, design)

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

Alternatively, the design matrix could be constructed, replacing the first of
the above code lines, by

> design <- modelMatrix(targets, ref = "wt")

where targets is the targets frame.
If there are at least two arrays with each dye orientation, for example

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu
File4 mu wt

then it may be useful to estimate probe-specific dye-effects. The dye-effect
is estimated by an intercept term in the linear model. Including the dye-
effect uses up one degree of freedom, which might otherwise be used to
estimate the residual variability, but may be valuable if many genes show
non-negligible dye-effects.

Integrin α4β7 experiment. Chapter 4 introduces a data example with six
replicate arrays including three dye-swaps in which integrin β7+ memory
T help cells play the role of “mutant” and β7- cells play the role of “wild-
type.”Here, we continue from the“quick start”section of that chapter where
an marrayNorm object normdata is created and a top table gene listing is
presented. For this data it proves important to include a dye effect.

> design <- cbind(Dye = 1, Beta7 = c(1, -1, -1,

+ 1, 1, -1))

> fit <- lmFit(normdata, design, weights = NULL)

> fit <- eBayes(fit)

Now

402 G.K. Smyth

> topTable(fit, coef = "Dye", adjust = "fdr")

reveals significant dye effects for many genes.
Note the use of weights=NULL in the above fit. This is needed because

the function read.GenePix used to input the data populates the maW slot of
the data object with GenePix r© spot quality flags rather than with weights.
The flags are just indicators that take on various negative values to indicate
suspect spots with zero representing a normal spot, whereas functions in R
that accept “weights” expect them to be numeric non-negative values with
zero indicating complete unreliability. For this reason, it was necessary to
use weights=NULL to tell lmFit to ignore the weights slot in normdata. Much
better however is to convert the flags into quantitative weights. The code
below gives weight zero to all spots with negative flags and weight one to
all unflagged spots. This improves the power of the analysis and increases
the number of apparently differentially expressed genes.

> w <- 0 + (maW(normdata) >= 0)

> fit <- lmFit(normdata, design, weights = w)

> fit <- eBayes(fit)

> tab <- topTable(fit, coef = "Beta7", adjust = "fdr")

> tab$Name <- substring(tab$Name, 1, 20)

> tab

ID Name M A t

6647 H200017286 GPR2 - G protein-cou -2.451 7.79 -14.72

11025 H200018884 Homo sapiens cDNA FL -1.598 6.62 -12.12

6211 H200019655 KIAA0833 - KIAA0833 -1.610 7.98 -10.91

11431 H200015303 CCR9 - Chemokine (C- 1.501 10.11 9.94

4910 H200003784 SEMA5A - Sema domain -1.349 6.81 -8.69

3152 H200012024 ITGA1 - Integrin, al 1.316 6.98 9.67

22582 H200017325 IFI27 - Interferon, 1.319 7.15 7.74

7832 H200004937 Homo sapiens cDNA FL -1.226 6.30 -8.96

20941 H200008015 PTPRJ - Protein tyro -0.885 11.01 -7.55

9314 H200006462 LMNA - Lamin A/C -1.213 7.93 -8.65

P.Value B

6647 0.0112 5.56

11025 0.0236 4.65

6211 0.0337 4.11

11431 0.0494 3.60

4910 0.1006 2.84

3152 0.1006 2.50

22582 0.1045 2.15

7832 0.1045 2.15

20941 0.1045 2.00

9314 0.1045 1.99

In this table, M is the log2 fold change, with positive values indicating higher
expression in the β7+ cells. For the meaning of the other columns, see
Section 23.12.

23. Linear Models Case Study 403

23.5 Technical Replication

In the previous sections, we have assumed that all arrays are biological
replicates. Now consider an experiment in which two wild-type and two
mice from the same mutant strain are compared using two arrays for each
pair of mice. The targets might be

FileName Cy3 Cy5
File1 wt1 mu1
File2 wt1 mu1
File3 wt2 mu2
File4 wt2 mu2

The first and second and third and fourth arrays are technical replicates. It
would not be correct to treat this experiment as comprising four replicate
arrays because the technical replicate pairs are not independent, in fact
they are likely to be positively correlated.

One way to analyze these data is the following:

> biolrep <- c(1, 1, 2, 2)

> corfit <- duplicateCorrelation(MA, ndups = 1,

+ block = biolrep)

> fit <- lmFit(MA, block = biolrep, cor = corfit$consensus)

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

The vector biolrep indicates the two blocks corresponding to biological
replicates. The value cofit$consensus estimates the average correlation
within the blocks and should be positive. This analysis is analogous to
mixed model analysis of variance (Milliken and Johnson, 1992, Chapter 18)
except that information has been borrowed between genes. Information is
borrowed by constraining the within-block correlations to be equal between
genes and by using empirical Bayes methods to moderate the standard
deviations between genes (Smyth et al., 2005).

If the technical replicates were in dye-swap pairs as

FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 mu2 wt2

then one might use

> design <- c(1, -1, 1, -1)

> corfit <- duplicateCorrelation(MA, design, ndups = 1,

+ block = biolrep)

> fit <- lmFit(MA, design, block = biolrep, cor = corfit$consensus)

404 G.K. Smyth

> fit <- eBayes(fit)

> topTable(fit, adjust = "fdr")

In this case, the correlation corfit$consensus should be negative be-
cause the technical replicates are dye-swaps and should vary in opposite
directions.

This method of handling technical replication using duplicateCorre-

lation is somewhat limited. If for example one technical replicate was
dye-swapped and the other not,

FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 wt2 mu2

then there is no way to use duplicateCorrelation because the technical
replicate correlation will be negative for the first pair but positive for the
second. An alternative strategy is to include a coefficient in the design
matrix for each of the two biological blocks. This could be accomplished
by defining

> design <- cbind(MU1vsWT1 = c(1, -1, 0, 0), MU2vsWT2 = c(0,

+ 0, 1, 1))

> fit <- lmFit(MA, design)

This will fit a linear model with two coefficients, one estimating the mu-
tant vs. wild-type comparison for the first pair of mice and the other
for the second pair of mice. What we want is the average of the two
mutant vs. wild-type comparisons, and this is extracted by the contrast
(MU1vsWT1+MU2vsWT2)/2:

> cont.matrix <- makeContrasts(MUvsWT = (MU1vsWT1 +

+ MU2vsWT2)/2, levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

The technique of including an effect for each biological replicate is well
suited to situations with a lot of technical replication. Here is a larger
example from a real experiment. Three mutant mice are to be compared
with three wild-type mice. Eighteen two-color arrays were used with each
mouse appearing on six different arrays:

> targets

FileName Cy3 Cy5

1391 1391.spot wt1 mu1

1392 1392.spot mu1 wt1

1340 1340.spot wt2 mu1

1341 1341.spot mu1 wt2

23. Linear Models Case Study 405

1395 1395.spot wt3 mu1

1396 1396.spot mu1 wt3

1393 1393.spot wt1 mu2

1394 1394.spot mu2 wt1

1371 1371.spot wt2 mu2

1372 1372.spot mu2 wt2

1338 1338.spot wt3 mu2

1339 1339.spot mu2 wt3

1387 1387.spot wt1 mu3

1388 1388.spot mu3 wt1

1399 1399.spot wt2 mu3

1390 1390.spot mu3 wt2

1397 1397.spot wt3 mu3

1398 1398.spot mu3 wt3

The comparison of interest is the average difference between the mutant
and wild-type mice. duplicateCorrelation could not be used here because
the arrays do not group neatly into biological replicate groups. In any case,
with six arrays on each mouse it is much safer and more conservative to fit
an effect for each mouse. We could proceed as

> design <- modelMatrix(targets, ref = "wt1")

> design <- cbind(Dye = 1, design)

> colnames(design)

[1] "Dye" "mu1" "mu2" "mu3" "wt2" "wt3"

The above code treats the first wild-type mouse as a baseline reference so
that columns of the design matrix represent the difference between each of
the other mice and wt1. The design matrix also includes an intercept term
which represents the dye effect of Cy5 over Cy3 for each gene. If no dye
effect is expected then the second line of code can be omitted.

> fit <- lmFit(MA, design)

> cont.matrix <- makeContrasts(muvswt = (mu1 + mu2 +

+ mu3 - wt2 - wt3)/3, levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

The contrast defined by the function makeContrasts represents the average
difference between the mutant and wild-type mice, which is the comparison
of interest.

This general approach is applicable to many studies involving biological
replicates. Here is another example based on a real example conducted
by the Scott Lab at the Walter and Eliza Hall Institute (WEHI). RNA is
collected from four human subjects from the same family, two affected by
a leukemia-inducing mutation and two unaffected. Each of the two affected
subjects (A1 and A2) is compared with each of the two unaffected subjects
(U1 and U2):

406 G.K. Smyth

FileName Cy3 Cy5
File1 U1 A1
File2 A1 U2
File3 U2 A2
File4 A2 U1

Our interest is to find genes that are differentially expressed between the
affected and unaffected subjects. Although all four arrays compare an af-
fected with an unaffected subject, the arrays are not independent. We need
to take account of the fact that RNA from each subject appears on two
different arrays. We do this by fitting a model with a coefficient for each sub-
ject and then extracting the contrast between the affected and unaffected
subjects:

> design <- modelMatrix(targets, ref = "U1")

> fit <- lmFit(MA, design)

> cont.matrix <- makeContrasts(AvsU = (A1 + A2 -

+ U2)/2, levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

23.6 Within-array replicate spots

Robotic printing of spotted arrays can be set up to print more than one spot
from each well of the DNA plates. Such printing means that each probe
is printed two or more times a fixed distance apart. The most common
printing is in duplicate, with the duplicates being either side-by-side or in
the top and bottom halves of the array. The second option means that the
arrays are printed with two sub-arrays each containing a complete set of
probes.

Duplicate spots can be effectively handled by estimating a common value
for the intra-duplicate correlation (Smyth et al., 2005). Suppose that each
probe is printed twice in adjacent positions, side-by-side by columns. Then
the correlation may be estimated by

> corfit <- duplicateCorrelation(MA, design, ndups = 2,

+ spacing = "columns")

Here spacing="rows" would indicate replicates side-by-side by rows and
spacing="topbottom" would indicate replicates in the top and bottom halves
of the arrays. The spacing may alternatively be given as a numerical value
counting the number of spots separating the replicate spots.

The estimated common correlation is corfit$consensus. This value
should be a large positive value, say greater than 0.4. The correlation is
then specified at the linear modeling step:

23. Linear Models Case Study 407

> fit <- lmFit(MA, design, ndups = 2, spacing = 1,

+ cor = corfit$consensus)

The object fit contains half as many rows as does MA, i.e., results for the
multiple printings of each probe have been consolidated. See Chapter 14 for
an example of this analysis applied to the Kidney cancer study. The analysis
given there demonstrates the greater power of the duplicate correlation
approach compared to simply averaging the log-ratios from the replicate
spots.

23.7 Two groups

Suppose now that we wish to compare two wild-type (Wt) mice with
three mutant (Mu) mice using two-color arrays hybridized with a common
reference RNA (Ref):

FileName Cy3 Cy5
File1 Ref WT
File2 Ref WT
File3 Ref Mu
File4 Ref Mu
File5 Ref Mu

The interest is to compare the mutant and wild-type mice. There are two
major ways in which this comparison can be made. We can (1) create
a design matrix that includes a coefficient for the mutant vs. wild-type
difference, or (2) create a design matrix which includes separate coefficients
for wild-type and mutant mice and then extract the difference as a contrast.

For the first approach, the design matrix might be

> design

WTvsREF MUvsWT

Array1 1 0

Array2 1 0

Array3 1 1

Array4 1 1

Array5 1 1

This is sometimes called the treatment-contrasts parameterization. The first
coefficient estimates the difference between wild-type and the reference for
each probe, while the second coefficient estimates the difference between
mutant and wild-type. For those not familiar with model matrices in linear
regression, it can be understood in the following way. The matrix indicates
which coefficients apply to each array. For the first two arrays, the fitted
values will be just the WTvsREF coefficient. For the remaining arrays, the

408 G.K. Smyth

fitted values will be WTvsREF + MUvsWT, which is equivalent to mutant vs.
reference. Differentially expressed genes can be found by

> fit <- lmFit(MA, design)

> fit <- eBayes(fit)

> topTable(fit, coef = "MUvsWT", adjust = "fdr")

There is no need here to use contrasts.fit because the comparison of
interest is already built into the fitted model. This analysis is analogous
to the classical pooled two-sample t-test except that information has been
borrowed between genes.

For the second approach, the design matrix should be

WT MU

Array1 1 0

Array2 1 0

Array3 0 1

Array4 0 1

Array5 0 1

We will call this the group-means parameterization. The first coefficient
represents wild-type vs. the reference and the second represents mutant vs.
the reference. Our interest is in the difference between these two coefficients.
Differentially expressed genes can be found by

> fit <- lmFit(MA, design)

> fit2 <- contrasts.fit(fit, c(-1, 1))

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust = "fdr")

The genelist will be the same as for the first approach.
The design matrices can be constructed manually or using the built-in

R function model.matrix. Let Group be the factor defined by

> Group <- factor(c("WT", "WT", "Mu", "Mu", "Mu"),

+ levels = c("WT", "Mu"))

For the first approach, the treatment-contrasts parameterization, the design
matrix can be computed by

> design <- cbind(WTvsRef = 1, MUvsWT = c(0, 0,

+ 1, 1, 1))

or by

> design <- model.matrix(~Group)

> colnames(design) <- c("WTvsRef", "MUvsWT")

For the second approach, the group-means parameterization, the design
matrix can be computed by

> design <- cbind(WT = c(1, 1, 0, 0, 0), MU = c(0,

+ 0, 1, 1, 1))

23. Linear Models Case Study 409

or by

> design <- model.matrix(~0 + Group)

> colnames(design) <- c("WT", "Mu")

Suppose now that the experiment had been conducted with one-channel
arrays such as Affymetrix rather than with a common reference, so the
targets frame might be

FileName Target
File1 WT
File2 WT
File3 Mu
File4 Mu
File5 Mu

The one-channel data can be analyzed exactly as for the common refer-
ence experiment. For the treatment-contrasts parameterization, the design
matrix is as before

> design

WT MUvsWT

Array1 1 0

Array2 1 0

Array3 1 1

Array4 1 1

Array5 1 1

except that the first coefficient estimates now the mean log-intensity for
wild-type mice rather than the wild-type versus reference log-ratio. For
the group-means parameterization, the design matrix is as before but the
coefficients now represent mean log-intensities for wild-type and mutant
rather than log-ratios versus the wild-type. Design and contrasts matrices
are computed exactly as for the common reference experiment.

See Chapter 25 for a complete data analysis of a two group experiment
with six Affymetrix arrays, three in each group, from the Affymetrix spike-
in experiment.

23.8 Several groups

The above approaches for two groups extend easily to any number of
groups. Suppose that three RNA targets are to be compared using Affy-
metrix arrays. Suppose that the three targets are called “RNA1,”“RNA2,”
and “RNA3” and that the column targets$Target indicates which one was
hybridized to each array. An appropriate design matrix can be created using

> f <- factor(targets$Target, levels = c("RNA1",

+ "RNA2", "RNA3"))

410 G.K. Smyth

> design <- model.matrix(~0 + f)

> colnames(design) <- c("RNA1", "RNA2", "RNA3")

To make all pair-wise comparisons between the three groups, one could
proceed

> fit <- lmFit(eset, design)

> contrast.matrix <- makeContrasts(RNA2 - RNA1,

+ RNA3 - RNA2, RNA3 - RNA1, levels = design)

> fit2 <- contrasts.fit(fit, contrast.matrix)

> fit2 <- eBayes(fit2)

A list of top genes for RNA2 versus RNA1 can be obtained from

> topTable(fit2, coef = 1, adjust = "fdr")

Acceptance or rejection of each hypothesis test can be decided by

> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison
is obtained from

> vennDiagram(results)

The statistic fit2$F and the corresponding fit2$F.p.value combine the
three pair-wise comparisons into one F -test. This is equivalent to a one-
way ANOVA for each gene except that the residual mean squares have been
moderated across genes. Small p-values identify genes which vary in any way
between the three RNA targets. The following code displays information
on the top 30 genes:

> o <- order(fit2$F.p.value)

> fit2$genes[o[1:30],]

Now suppose that the experiment had been conducted using two-color
arrays with a common reference instead of Affymetrix arrays. For example,
the targets frame might be

FileName Cy3 Cy5
File1 Ref RNA1
File2 RNA1 Ref
File3 Ref RNA2
File4 RNA2 Ref
File5 Ref RNA3

For this experiment, the design matrix could be formed by

> design <- modelMatrix(targets, ref = "Ref")

and everything else would be as for the Affymetrix experiment.

23. Linear Models Case Study 411

CD4

CD8 DN

12
13 17

16

15

14

Figure 23.1. A direct design to compare three DC populations using six two-color
microarrays. Each arrow represents an array, the head pointing toward the target
labeled Cy5. Figure by Suzanne Thomas and James Wettenhall.

23.9 Direct two-color designs

A direct design is one in which there is no single RNA source that is
hybridized to every array. As an example, we consider an experiment con-
ducted by Dr. Mireille Lahoud at the WEHI to compare gene expression
in three different populations of dendritic cells (DC). This experiment in-
volved six cDNA microarrays in three dye-swap pairs, with each pair used
to compare two DC types (Figure 23.1). The targets frame was:

SlideNumber FileName Cy3 Cy5
12 ml12med.spot CD4 CD8
13 ml13med.spot CD8 CD4
14 ml14med.spot DN CD8
15 ml15med.spot CD8 DN
16 ml16med.spot CD4 DN
17 ml17med.spot DN CD4

There are many valid choices for a design matrix for such an experiment.
We chose the design matrix as

> design <- modelMatrix(targets, ref = "CD4")

> design

CD8 DN

ml12med 1 0

ml13med -1 0

ml14med 1 -1

ml15med -1 1

ml16med 0 1

ml17med 0 -1

In this design matrix, the CD8 and DN populations have been compared
back to the CD4 population. The coefficients estimated by the linear model
will correspond to the log-ratios of CD8 vs. CD4 (first column) and DN vs.
CD4 (second column). A linear model was fit using

> fit <- lmFit(MA, design)

412 G.K. Smyth

All pairwise comparisons between the three DC populations were made by

> cont.matrix <- cbind("CD8-CD4" = c(1, 0), "DN-CD4" = c(0,

+ 1), "CD8-DN" = c(1, -1))

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

23.10 Factorial designs

Factorial designs are those where more than one experimental dimension
is being varied and each combination of treatment conditions is observed.
Suppose that cells are extracted from wild-type and mutant mice and these
cells are either stimulated (S) or unstimulated (U). RNA from the treated
cells is then extracted and hybridized to a microarray. We will assume for
simplicity that the arrays are one-channel arrays such as Affymetrix. This
section explains the form of the analysis for a hypothetical experiment. A
detailed analysis of an actual factorial experiment, the Estrogen data, is
given in Chapter 14. Consider the following targets frame:

FileName Strain Treatment
File1 WT U
File2 WT S
File3 Mu U
File4 Mu S
File5 Mu S

The two experimental dimensions or factors here are Strain and Treat-
ment. Strain specifies the genotype of the mouse from which the cells are
extracted, and Treatment specifies whether the cells are stimulated or not.
All four combinations of Strain and Treatment are observed, so this is a
factorial design. It will be convenient for us to collect the Strain/Treatment
combinations into one vector as follows:

> TS <- paste(targets$Strain, targets$Treatment,

+ sep = ".")

> TS

[1] "WT.U" "WT.S" "Mu.U" "Mu.S" "Mu.S"

It is especially important with a factorial design to decide what are the
comparisons of interest. We will assume here that the experimenter is in-
terested in 1) which genes respond to stimulation in wild-type cells, 2)
which genes respond to stimulation in mutant cells, and 3) which genes
respond differently in mutant compared to wild-type cells. These are the
questions that are most usually relevant in a molecular biology context.
The first of these questions relates to the WT.S vs. WT.U comparison and the

23. Linear Models Case Study 413

second to Mu.S vs. Mu.U. The third relates to the difference of differences,
i.e., (Mu.S-Mu.U)-(WT.S-WT.U), which is called the interaction term.

We describe first a simple way to analyze this experiment using limma
commands in a similar way to that in which two-sample designs were ana-
lyzed. Then we will go on to describe a traditional statistical approach using
factorial model formulas. The two approaches are equivalent and yield iden-
tical bottom-line results. The most basic approach is to fit a model with a
coefficient for each of the four factor combinations and then to extract the
comparisons of interest as contrasts:

> TS <- factor(TS, levels = c("WT.U", "WT.S", "Mu.U",

+ "Mu.S"))

> design <- model.matrix(~0 + TS)

> colnames(design) <- levels(TS)

> fit <- lmFit(eset, design)

This fits a model with four coefficients corresponding to WT.U, WT.S, Mu.U

and Mu.S, respectively. Our three contrasts of interest can be extracted by

> cont.matrix <- makeContrasts(WT.SvsU = WT.S -

+ WT.U, Mu.SvsU = Mu.S - Mu.U, Diff = (Mu.S -

+ Mu.U) - (WT.S - WT.U), levels = design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

We can use topTable to look at lists of differentially expressed genes for
each of three contrasts, or else

> results <- decideTests(fit2)

> vennDiagram(results)

to look at all three contrasts simultaneously.
The analysis of factorial designs has a long history in statistics, and a

system of factorial model formulas has been developed to facilitate the
analysis of complex designs. It is important to understand though that the
above three molecular biology questions do not correspond to any of the
usual parameterizations used in statistics for factorial designs. Suppose for
example that we proceed in the usual statistical way,

> Strain <- factor(targets$Strain, levels = c("WT",

+ "Mu"))

> Treatment <- factor(targets$Treatment, levels = c("U",

+ "S"))

> design <- model.matrix(~Strain * Treatment)

This creates a design matrix which defines four coefficients with the
following interpretations:

414 G.K. Smyth

Coefficient Comparison
Intercept: baseline level of unstimulated wt WT.U

StrainMu: unstimulated strain effect Mu.U-WT.U

TreatmentS: stimulation effect for wt WT.S-WT.U

StrainMu:TreatmentS: interaction (Mu.S-Mu.U)-(WT.S-WT.U)

This is called the treatment-contrast parameterization. Note that one of
our comparisons of interest, Mu.S-Mu.U, is not represented and instead the
comparison Mu.U-WT.U, which might not be of direct interest, is included.
We need to use contrasts to extract all the comparisons of interest:

> fit <- lmFit(eset, design)

> cont.matrix <- cbind(WT.SvsU = c(0, 0, 1, 0),

+ Mu.SvsU = c(0, 0, 1, 1), Diff = c(0, 0, 0,

+ 1))

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

This extracts the WT stimulation effect as the third coefficient and the
interaction as the fourth coefficient. The mutant stimulation effect is ex-
tracted as the sum of the third and fourth coefficients of the original model.
This analysis yields the same results as the previous analysis. It differs from
the previous approach only in the parameterization chosen for the linear
model, i.e., in the coefficients chosen to represent the four distinct RNA
targets.

23.11 Time course experiments

Time course experiments are those in which RNA is extracted at several
time points after the onset of some treatment or stimulation. Simple time
course experiments are similar to experiments with several groups covered
in Section 23.8. Here we consider a two-way experiment in which time
course profiles are to be compared for two genotypes. Consider the targets
frame

FileName Target
File1 wt.0hr
File2 wt.0hr
File3 wt.6hr
File4 wt.24hr
File5 mu.0hr
File6 mu.0hr
File7 mu.6hr
File8 mu.24hr

The targets are RNA samples collected from wild-type and mutant an-
imals at 0-, 6- and 24-hour time points. This can be viewed as a

23. Linear Models Case Study 415

factorial experiment but a simpler approach is to use the group-mean
parameterization.

> lev <- c("wt.0hr", "wt.6hr", "wt.24hr", "mu.0hr",

+ "mu.6hr", "mu.24hr")

> f <- factor(targets$Target, levels = lev)

> design <- model.matrix(~0 + f)

> colnames(design) <- lev

> fit <- lmFit(eset, design)

Which genes respond at either the 6-hour or 24-hour times in the wild-
type? We can find these by extracting the contrasts between the wild-type
times.

> cont.wt <- makeContrasts("wt.6hr-wt.0hr", "wt.24hr-wt.6hr",

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.wt)

> fit2 <- eBayes(fit2)

Choose genes so that the expected false discovery rate is less than 5%.

> sel.wt <- p.adjust(fit2$F.p.value, method = "fdr") <

+ 0.05

Any two contrasts between the three times would give the same result. The
same gene list would be obtained had "wt.24hr-wt.0hr" been used in place
of "wt.24hr-wt.6hr" for example.

Which genes respond in the mutant?

> cont.mu <- makeContrasts("mu.6hr-mu.0hr", "mu.24hr-mu.6hr",

+ levels = design)

> fit2 <- contrasts.fit(fit, cont.mu)

> fit2 <- eBayes(fit2)

> sel.mu <- p.adjust(fit2$F.p.value, method = "fdr") <

+ 0.05

Which genes respond differently in the mutant relative to the wild-type?

> cont.dif <- makeContrasts(Dif6hr = (mu.6hr - mu.0hr) -

+ (wt.6hr - wt.0hr), Dif24hr = (mu.24hr - mu.6hr) -

+ (wt.24hr - wt.6hr), levels = design)

> fit2 <- contrasts.fit(fit, cont.dif)

> fit2 <- eBayes(fit2)

> sel.dif <- p.adjust(fit2$F.p.value, method = "fdr") <

+ 0.05

23.12 Statistics for differential expression

limma provides functions topTable and decideTests, which summarize the
results of the linear model, perform hypothesis tests and adjust the p-values

416 G.K. Smyth

for multiple testing. Results include (log) fold changes, standard errors, t-
statistics, and p-values. The basic statistic used for significance analysis is
the moderated t-statistic, which is computed for each probe and for each
contrast. This has the same interpretation as an ordinary t-statistic except
that the standard errors have been moderated across genes, i.e., shrunk
toward a common value, using a simple Bayesian model. This has the effect
of borrowing information from the ensemble of genes to aid with inference
about each individual gene (Smyth, 2004). Moderated t-statistics lead to p-
values in the same way that ordinary t-statistics do except that the degrees
of freedom are increased, reflecting the greater reliability associated with
the smoothed standard errors. Chapter 25 demonstrates the effectiveness
of the moderated t approach on a test data set for which the differential
expression status of each probe is known.

A number of summary statistics are presented by topTable for the top
genes and the selected contrast. The M -value (M) is the value of the contrast.
Usually this represents a log2-fold change between two or more experi-
mental conditions although sometimes it represents a log2-expression level.
The A-value (A) is the average log2-expression level for that gene across
all the arrays and channels in the experiment. Column t is the moderated
t-statistic. Column p-value is the associated p-value after adjustment for
multiple testing. The most popular form of adjustment is "fdr", which is
Benjamini and Hochberg’s method to control the false discovery rate (Ben-
jamini and Hochberg, 1995). The meaning of "fdr" adjusted p-values is as
follows. If all genes with p-value below a threshold, say 0.05, are selected as
differentially expressed, then the expected proportion of false discoveries in
the selected group is controlled to be less than the threshold value, in this
case 5%.

The B-statistic (lods or B) is the log-odds that the gene is differentially
expressed (Smyth, 2004, Section 5). Suppose for example that B = 1.5.
The odds of differential expression is exp(1.5) = 4.48, i.e, about four and
a half to one. The probability that the gene is differentially expressed is
4.48/(1 + 4.48) = 0.82, i.e., the probability is about 82% that this gene is
differentially expressed. A B-statistic of zero corresponds to a 50-50 chance
that the gene is differentially expressed. The B-statistic is automatically
adjusted for multiple testing by assuming that 1% of the genes, or some
other percentage specified by the user in the call to eBayes, are expected
to be differentially expressed. The p-values and B-statistics will normally
rank genes in the same order. In fact, if the data contains no missing values
or quality weights, then the order will be precisely the same.

As with all model-based methods, the p-values depend on normality and
other mathematical assumptions which are never exactly true for microar-
ray data. It has been argued that the p-values are useful for ranking genes
even in the presence of large deviations from the assumptions (Smyth et al.,
2003, 2005). Benjamini and Hochberg’s control of the false discovery rate
assumes independence between genes, although Reiner et al. (2003) have

23. Linear Models Case Study 417

argued that it works for many forms of dependence as well. The B-statistic
probabilities depend on the same assumptions but require in addition a
prior guess for the proportion of differentially expressed genes. The p-values
may be preferred to the B-statistics because they do not require this prior
knowledge.

The eBayes function computes one more useful statistic. The moderated
F -statistic (F) combines the t-statistics for all the contrasts into an overall
test of significance for that gene. The F -statistic tests whether any of the
contrasts are non-zero for that gene, i.e., whether that gene is differentially
expressed on any contrast. The denominator degrees of freedom is the same
as that of the moderated-t. Its p-value is stored as fit$F.p.value. It is
similar to the ordinary F -statistic from analysis of variance except that the
denominator mean squares are moderated across genes.

23.13 Fitted model objects

The output from lmFit is an object of class MArrayLM . This section gives
some mathematical details describing what is contained in such objects,
following on from the Section 23.3. This section can be skipped by readers
not interested in such details.

The linear model for gene j has residual variance σ2
j with sample value

s2
j and degrees of freedom fj . The output from lmFit, fit say, holds the

sj in component fit$sigma and the fj in fit$df.residual. The covariance
matrix of the estimated β̂j is σ2

jC
T (XT VjX)−1C where Vj is a weight

matrix determined by prior weights, any covariance terms introduced by
correlation structure, and any iterative weights introduced by robust esti-
mation. The square-roots of the diagonal elements of CT (XT VjX)−1C are
called unscaled standard deviations and are stored in fit$stdev.unscaled.
The ordinary t-statistic for the kth contrast for gene j is tjk = β̂jk/(ujksj)
where ujk is the unscaled standard deviation. The ordinary t-statistics can
be recovered by

> tstat.ord <- fit$coef/fit$stdev.unscaled/fit$sigma

after fitting a linear model if desired.
The empirical Bayes method assumes an inverse Chi-square prior for the

σ2
j with mean s2

0 and degrees of freedom f0. The posterior values for the
residual variances are given by

s̃2
j =

f0s
2
0 + fjs

2
j

f0 + fj

where fj is the residual degrees of freedom for the jth gene. The output
from eBayes contains s2

0 and f0 as fit$s2.prior and fit$df.prior and the

418 G.K. Smyth

s̃2
j as fit$s2.post. The moderated t-statistic is

t̃jk =
β̂jk

ujks̃j

This can be shown to follow a t-distribution on f0 +fj degrees of freedom if
βjk = 0 (Smyth, 2004). The extra degrees of freedom f0 represent the extra
information that is borrowed from the ensemble of genes for inference about
each individual gene. The output from eBayes contains the t̃jk as fit$t with
corresponding p-values in fit$p-value.

23.14 Preprocessing considerations

This section discusses some aspects of preprocessing that are often ne-
glected but that are important for linear modeling and assessing differential
expression for two-color data. The construction of spot quality weights has
already been briefly addressed in Section 23.4. Other important issues are
the type of background correction used and the treatment of control spots
on the arrays.

Background correction is more important than often appreciated because
it impacts markedly on the variability of the log-ratios for low intensity
spots. Chapter 4 shows an MA-plot for the β7 data illustrating the fanning
out of log-ratios at low intensities when ordinary background subtraction
is used. Many more spots are not shown on the plot because the back-
ground corrected intensities are negative leading to NA log-ratios. Fanning
out of the log-ratios is undesirable for two reasons. First, it is undesirable
than any log-ratios should be very variable, because this might lead those
genes being falsely judged to be differentially expressed. Second, the em-
pirical Bayes analysis implemented in eBayes delivers most benefit when
the variability of the log-ratios is as homogeneous as possible across genes.
Chapter 4 shows that simply ignoring the background is a viable option.
Another option is vsn normalization, a model-based method of stabiliz-
ing the variances that includes background correction (Huber et al., 2002,
2003). Here we illustrate a third option using the β7 data, the model-based
background correction method "normexp" implemented in the background-

Correct function. This method uses the available background estimates
but avoids negative corrected intensities and reduces variability in the log-
ratios. Background correction is still an active research area and the optimal
method has not yet been determined, but the adaptive methods "normexp"

and "vsn" have been found to perform well in many cases.
For convenience, we read in the β7 data again using the limma function

read.maimages. A filter f is defined so that any spot that is flagged as “bad”
or “absent” is given zero weight.

23. Linear Models Case Study 419

> beta7.dir <- system.file("beta7", package = "beta7")

> targets <- readTargets("TargetBeta7.txt", path = beta7.dir)

> f <- function(x) as.numeric(x$Flags > -75)

> RG <- read.maimages(targets$FileName, source = "genepix",

+ path = beta7.dir, wt.fun = f)

> RG$printer <- getLayout(RG$genes)

Here RG is an RGList data object. The data read by read.maimages differs
slightly from read.GenePix because read.maimages reads mean foreground
intensities for each spot, whereas read.GenePix reads median foreground
intensities, although this difference should not be important here. The fol-
lowing code applies "normexp" background correction and then applies an
offset of 25 to the intensities to further stabilize the log-ratios.

> RGne <- backgroundCorrect(RG, method = "normexp",

+ offset = 25)

Now normalize and prepare for a linear model fit as in Section 23.4.

> MA <- normalizeWithinArrays(RGne)

> design <- cbind(Dye = 1, Beta7 = c(1, -1, -1,

+ 1, 1, -1))

It is usually wise to remove uninteresting control spots from the data before
fitting the linear model. Control spots can be identified on arrays by setting
the controlCode matrix in the marray package before using read.GenePix or
by using controlStatus in the limma package. For the β7 data, control
codes have already been set in the mraw object, so we can restrict the fit to
interesting probes by

> isGene <- maControls(mraw) == "probes"

> fit <- lmFit(MA[isGene,], design)

> fit <- eBayes(fit)

> tab <- topTable(fit, coef = "Beta7", adjust = "fdr")

> tab$Name <- substring(tab$Name, 1, 20)

> tab[, -(1:3)]

ID Name M A t

5626 H200019655 KIAA0833 - KIAA0833 -1.481 8.63 -11.40

6029 H200017286 GPR2 - G protein-cou -1.977 8.18 -10.89

10115 H200018884 Homo sapiens cDNA FL -1.044 7.25 -10.79

10488 H200015303 CCR9 - Chemokine (C- 1.309 10.59 10.45

19217 H200001929 EPLIN - Epithelial p -0.864 8.86 -9.18

19346 H200008015 PTPRJ - Protein tyro -0.855 11.05 -8.84

20200 H200005842 GFI1 - Growth factor 0.762 11.66 8.57

10500 H200015731 SCYA5 - Small induci 1.540 11.12 8.33

3561 H200007572 Homo sapiens, clone 0.858 7.42 8.33

18292 H200000831 LRRN3 - Leucine-rich 0.803 9.55 8.01

P.Value B

5626 0.0109 5.30

6029 0.0109 5.03

420 G.K. Smyth

10115 0.0109 4.98

10488 0.0109 4.79

19217 0.0261 3.99

19346 0.0300 3.74

20200 0.0327 3.55

10500 0.0327 3.36

3561 0.0327 3.36

18292 0.0390 3.10

Comparing this table to that in Section 23.4 shows more significant results
overall, suggesting that the adaptive background correction has reduced
variability and improved power. The vsn method could have been applied
here by substituting

> MA <- normalizeBetweenArrays(RG, method = "vsn")

for the background correction and normalization steps above. This also
gives good results for the β7 data, with fewer significant results but with
less attenuated fold change estimates compared to "normexp."

23.15 Conclusion

This chapter has demonstrated the ability of the linear modeling approach
to handle a wide range of experimental designs. The method is applicable
to both one- and two-channel microarray platforms. The method is flexible
and extensible in principle to arbitrarily complex designs. Some ability
has also been demonstrated to accommodate both technical and biological
replication in the assessment of differential expression, although here only
simple experimental structures can so far be accommodated. The survey
of different designs given in this chapter complements the treatments of
individual data sets given in other chapters of the book.

24

Classification with Gene
Expression Data

M. Dettling

Abstract
A survey is given of tasks related to the construction and evalu-

ation of classifiers applied to a renal cell cancer data set. Balanced
sample splitting, non-specific filtering, linear discriminant analysis,
nearest-neighbor prediction, and support vector machines are all con-
cretely illustrated using the MLInterfaces package. Evaluations based
on single and multiple random splits of data are compared. The en-
tire presentation is given in a very generic programming format, to
facilitate the adaptation and variation, by other investigators, of the
techniques used here.

24.1 Introduction

The field of class prediction with microarray data has seen a lot of research
activity in recent years. Owing to this effort, gene expression profiling is
getting more and more established in clinical practice. The most promi-
nent applications lie within cancer research: microarrays are often used to
support exact phenotyping in early stages of the disease, which potentially
allows for tailored treatment and better cure rates.

Class prediction is depicted as a simplified flowchart in Figure 24.1. It
requires a training data set, consisting of both gene expression profiles xi

and phenotypic information yi for a large enough number I of patients’
samples. By statistical learning, we establish a class prediction rule C that
reveals the connection between the outcome yi and the gene profile xi.
The rule C can for example be based on a classifier like a support vector
machine (SVM). The learning process then includes the choice of predictor
variables, the tuning of parameters, and the fitting of the SVM. Once the

422 M. Dettling

rule C is determined, it can be used in a prospective manner to predict the
unknown phenotypes of new, independent samples, e.g., in the clinic on a
new cancer patient, whose yet unknown phenotype has to be predicted on
the basis of his gene expressions xν .

This chapter contains an easy-to-follow generic recipe for class predic-
tion with R. It starts by explaining how to retrieve data and terminates
by showing how to summarize class prediction results. The main focus
lies on learning classification rules, which, because it usually requires user
interaction, is the most complex and laborious step in a class prediction
analysis.

24.2 Reading and customizing the data

We here rely on the fully preprocessed renal cell cancer data set of Sült-
mann et al. (2005). It is available as package kidpack and contains 74 gene
expression profiles with 4224 genes each, obtained from patients that suffer
from one of three renal cancer subtypes. We set the random seed (allowing
for reproducibility of the analysis that follows) and load the data via

> set.seed(32)

> library("kidpack")

> data(eset)

We continue with an optional, non-mandatory step in the classification
analysis. For illustrative purposes later in Section 24.5, we remove the first
10 samples from the data set.

> test <- (1:10)

> train <- (1:length(eset$type))[-test]

> trEset <- eset[, train]

We regard trEset, containing gene expression data and additional pheno-
typic information about 64 samples, as our training data set.

Training data T = {(x1, y1), . . . , (xI , yI)}
↓

Learn prediction rule C(·)
↓

Apply prediction rule to test data xν

↓
Yields prediction ŷν = C(xν)

Figure 24.1. Class prediction as a simplified flowchart

24. Classification 423

24.3 Training and validating classifiers

In this chapter, we describe how to learn the prediction rule from the train-
ing data set. Above all, it is very important to note that the comparison
of classification methods cannot be done on the basis of in-sample errors.
This always favors the more complex methods and will lead to non-reliable
conclusions. Thus, we need to mimic a training/test-situation on the train-
ing data set. Here, we rely on random divisions (Dudoit et al., 2002), where
an arbitrary two thirds of the training data are used as learning set, while
the remaining third will serve as a validation set. Other popular choices for
defining learning and validation sets include k-fold cross validation (Am-
broise and McLachlan, 2002) and out-of-bag estimation in conjunction with
bootstrapping (Efron and Tibshirani, 1997). For our random divisions, we
first define the sample size of the data chunks.

> t.size <- length(trEset$type)

> l.size <- round((2/3) * t.size)

> v.size <- t.size - l.size

Especially when only a small number of samples (or classes with very
few samples) are present, it is beneficial to rely on balanced sampling for
the random division into learning and validation set. This can be done as
follows:

> K <- nlevels(factor(trEset$type))

> l.samp <- NULL

> props <- round(l.size/t.size * table(trEset$type))

> props[1] <- l.size - sum(props[2:K])

> for (k in 1:K) {

+ y.num <- as.numeric(factor(trEset$type))

+ l.samp <- c(l.samp, sample(which(y.num ==

+ k))[1:props[k]])

+ }

> v.samp <- (1:t.size)[-l.samp]

The objects l.samp and v.samp now contain the sample indices assigned to
the learning and validation sets, respectively. A quick check shows that the
class distribution is indeed balanced

> table(trEset$type[l.samp])

ccRCC chRCC pRCC

31 5 7

> table(trEset$type[v.samp])

ccRCC chRCC pRCC

14 3 4

As the next step, we will perform gene selection. Due to the presence of
noisy genes, this generally has a positive effect on the predictive perfor-

424 M. Dettling

mance. Another plus is that gene selection saves much computing time.
We here rely on the simple F -statistic, also known as “between to within
sums-of-squares ratio” (Dudoit et al., 2002). The package multtest contains
an implementation of this procedure. Please note that this step can easily
be replaced by a different variable selection procedure of choice, proposals
in the literature are vast.

> library("multtest")

> yl.num <- as.numeric(factor(trEset$type[l.samp])) -

+ 1

> xl.mtt <- exprs(trEset[, l.samp])

> f.stat <- mt.teststat(xl.mtt, yl.num, test = "f")

> best.genes <- rev(order(f.stat))[1:200]

> trselEset <- trEset[best.genes,]

The function mt.teststat does not take instances of the exprSet-class as
input. Because it only works with numerical input, we have to extract and
transform our x- and y-variables. Moreover, it is very important to note
that the variable selection is done on the learning set only. If it was done on
the entire training data set, we would necessarily introduce a selection bias
and inhibit a fair, reliable class prediction. We here preselect an arbitrary
number of 200 genes, a number that was found to be reasonable according
to several publications (Dudoit et al., 2002; Dettling and Bühlmann, 2003).
Though strictly, the number of genes is a tuning parameter which would
need to be optimized, i.e., it may be necessary to generate predictions with
different gene sets.

We proceed to fitting several classifiers. We begin with diagonal linear
discriminant analysis [DLDA, Dudoit et al. (2002)], a method derived from
classical LDA. It relies on the assumption of a common, diagonal covariance
matrix for the two classes. Both the assumptions of zero correlation between
genes and equal correlation across classes may not reflect the truth, but due
to the complexity of gene expression data and the usually very small sample
size, DLDA has shown very promising empirical results (Dudoit et al.,
2002; Dettling and Bühlmann, 2004; Dettling, 2004). An implementation
of DLDA can be found in the package sma, but we will access this classifier
through the interface that is provided by the package MLInterfaces.

> library("sma")

> library("MLInterfaces")

> l.samp <- as.integer(l.samp)

> dlda.predic <- stat.diag.daB(trselEset, "type",

+ l.samp)

> conf.matrix <- confuMat(dlda.predic)

> error.rate <- function(cm) 1 - sum(diag(cm))/sum(cm)

> dlda.error <- error.rate(conf.matrix)

We calculate the mean by comparing the predicted to the actual y-values
and store them in dlda.error. For comparison, we will now evaluate the k

24. Classification 425

nearest neighbor classifier [kNN, Dudoit et al. (2002)], which is available
in R after loading the package class. However, we will again rely on MLIn-
terfaces for accessing this classifier. When presented with a sample, kNN
works by identifying the k closest observations in the 200-dimensional in-
put space and assigns the class label that is prevalent among the neighbors.
The number of neighbors k is a tuning parameter. In the following, we will
evaluate the performance of k ∈ {1, 3, 5}.

> library("class")

> knn.error <- numeric(3)

> for (k in c(1, 3, 5)) {

+ i <- ((k - 1)/2) + 1

+ knn.predic <- knnB(trselEset, "type", l.samp,

+ k = k, prob = FALSE)

+ knn.error[i] <- error.rate(confuMat(knn.predic))

+ }

Tuning the number of neighbors k requires a for-loop over the candidate
set {1, 3, 5}. Again, we compare the predicted to the actual y-values and
compute the error rate. Finally, we will consider a third, more modern
and sophisticated classification procedure. This is a support vector ma-
chine [SVM, Burges (1998)]. It tries to separate the samples through a
hyperplane, usually in a transformed, high-dimensional feature space. An
implementation is available in the R package e1071, but again, we are using
the interface which is provided by MLInterfaces. SVMs are flexible classi-
fiers, allowing for a variety of tuning options. We rely here on a radial basis
kernel and show how to optimize the cost parameter c, which determines
the penalization of outlying learning samples that are on the ’wrong’ side
of the hyperplane, as well as the parameter γ that regulates the shape of
the radial basis kernel. As shown below, coding an optimization over the
two parameters c and γ already requires two nested loops.

> library("e1071")

> svm.error <- matrix(0, nrow = 3, ncol = 3)

> for (cost in 0:2) {

+ for (gamma in (-1):1) {

+ i <- cost + 1

+ j <- gamma + 2

+ svm.fit <- svmB(trselEset, "type", l.samp,

+ cost = 2^cost, gamma = 2^gamma/nrow(exprs(trselEset)),

+ type = "C-classification")

+ svm.error[i, j] <- error.rate(confuMat(svm.fit))

+ }

+ }

Again, the y-values on the validation sample are predicted, the error rate
is computed and stored in the matrix svm.error.

426 M. Dettling

Meanwhile, we have applied three different classification procedures and
have generated 13 predictions of the y-values of the validation set. The time
has come for an evaluation of error rates evaluation of the error rates.

> dlda.error

[1] 0

> knn.error

[1] 0.0476 0.0000 0.0476

> svm.error

[,1] [,2] [,3]

[1,] 0.0476 0.0476 0.0952

[2,] 0.0476 0.0476 0.0952

[3,] 0.0476 0.0476 0.0952

We observe that DLDA yields the best result, with error-free prediction
on the validation sample. The most accurate kNN classifier uses k = 3
neighbors and also results in perfect predictions. The best SVM, at c =
22 and γ = 21

200 performs with an estimated error rate of 4.76% on the
validation set. According to these results, we conjecture that either DLDA
or kNN are most suitable for the training data set.

However, a somewhat bitter taste remains. Our conclusion depends on a
single, random division of the training data set into learning and validation
sets. The error rates and our decision might have been different for another
random partition. A way to reduce the variability and haphazardness of
our decision is to consider multiple random divisions. The next chapter
discusses their implementation and evaluation.

24.4 Multiple random divisions

In fact, we do nothing else than repeating the code presented in Section
24.3. Due to random sampling, we will create different learning and vali-
dation sets in every run, and so can we expect the error rates to be. This
section deals with how to optimally implement these repetitions in R. A spe-
cial focus will be laid on storing, displaying, and analyzing the error rates.
A convenient way to take is wrapping all the code from Section 24.3 in a
function that is called randiv. Its input consists of the training data stored
in trEset, whereas the output is a list containing the error rate objects
dlda.error, knn.error and svm.error.

> randiv <- function(trEset) {

+ "#body suppressed; repeat all the code from Section 24.3"

+ list(dlda = dlda.error, knn = knn.error, svm = svm.error)

+ }

24. Classification 427

We will now define arrays for storing the errors rates and then create a
loop for running the randiv function 50 times. Please note that running
this chunk of code may take a few dozens of seconds.

> runs <- 50

> dlda.errors <- numeric(runs)

> knn.errors <- matrix(0, nrow = 3, ncol = runs)

> svm.errors <- array(0, dim = c(3, 3, runs))

> for (r in 1:runs) {

+ results <- randiv(trEset, r)

+ dlda.errors[r] <- results$dlda

+ knn.errors[, r] <- results$knn

+ svm.errors[, , r] <- results$svm

+ cat("This was run", r, "of", runs, "\n")

+ }

For a first and quick overview of the predictive performance, we average the
error estimates over the 50 runs, which, as before in Section 24.3, leaves us
with a single number, the estimated error rate. Note that computing means
in arrays is best done via the apply-command.

> mean(dlda.errors)

[1] 0.0467

> apply(knn.errors, 1, mean)

[1] 0.0590 0.0571 0.0600

> apply(svm.errors, c(1, 2), mean)

[,1] [,2] [,3]

[1,] 0.0657 0.0810 0.139

[2,] 0.0610 0.0705 0.129

[3,] 0.0562 0.0695 0.129

Indeed, the error-free classification of DLDA and kNN in Section 24.3 was
a more or less lucky punch, based on a fortunate random partition into
learning and validation set. When averaging over 50 such divisions, we
observe that still DLDA yields the lowest mean error rate, but at 4.67%.
Again, k = 3 is the best choice for the NN classifier, with an error rate of
5.71%. The best SVM is again the one with parameters c = 22 and γ =
2−1/200, resulting in 5.62% false predictions. However, the analysis of mean
error rates alone only superficially reflects the huge amount of computing
we have done. For a better evaluation of variability and performance of the
classifiers, a graphical presentation of the results is very beneficial. We do
so by following the suggestions of Hothorn et al. (2004b) in their paper
about how to perform benchmark studies. Figure 24.2 presents the results
for DLDA, 3NN, and the two best SVMs. The left panel displays a boxplot ,
with the median error rate highlighted in red. The right panel shows density
curves, where the vertical red lines show the mean error rate.

428 M. Dettling

0 0.05 0.1 0.15 0.2

SVM2

SVM1

kNN

● ●●DLDA

Boxplot
0 0.05 0.1 0.15 0.2

0

10

0

10

0

10

0

10

Density

Figure 24.2. Analysis of the error rates on the renal cancer data set for Diagonal
Linear Discriminant Analysis (DLDA), the three nearest neighbor method (kNN)
and two Support Vector Machines (SVM1 with c = 22 and γ = 21/200; SVM2
with c = 22 and γ = 20/200). The left panel contains boxplots, where the median
error rate is highlighted in red. The right panel shows barplots, where the mean
error rate is displayed in red.

Our search for the most suitable classifier on the renal cancer training data
set trEset can now be regarded as complete. By looking at the distribution
of the error measures in Figure 24.2, we notice that the actual differences
between the classifiers are not as big as the differences in the mean error
rates might suggest. Even without performing a formal analysis, it becomes
obvious that the differences among the classifiers do not reach statistical
significance. Moreover, DLDA has not only the smallest mean error rate,
but also the largest variability, bearing a small but potentially serious risk
of performing clearly worse than kNN and SVM.

Finally, I would like to put emphasis on the fact that an analysis as
presented in this chapter can never serve to choose the generally correct
or best classifier for test data prediction. Rather, we collected empirical
evidence that DLDA may be a suitable choice for the renal cancer data set.
Additionally, our analysis has been designed for illustrative purposes and is
not overly complete. Parameters which may clearly affect the performance,
such as the variable selection procedure and the number of genes, have not
been broadly evaluated. There may be other classification methods that
outperform all the methods that have been considered here.

24.5 Classification of test data

At the beginning of our analysis in Section 24.2, we put aside the first ten
samples from the renal cancer data set. Here and now, they are considered

24. Classification 429

as additional test samples whose (unknown) phenotype needs to be pre-
dicted. According to the conclusion from Section 24.4, we are using DLDA
with 200 genes, selected by the F -statistic. Because we now predict inde-
pendent test samples, gene selection and classifier fitting are done on the
entire training data set.

> yt.num <- as.numeric(factor(trEset$type)) - 1

> xt.mtt <- exprs(trEset)

> f.stat <- mt.teststat(xt.mtt, yt.num, test = "f")

> best.genes <- rev(order(f.stat))[1:200]

> selEset <- eset[best.genes,]

> dlda.predic <- stat.diag.daB(selEset, "type",

+ train)

> dlda.predic@RObject$pred - 1

[1] 0 0 0 0 0 2 0 2 1 0

In a clinical setting, these predictions may be used to decide about treat-
ment. Regarding the importance of the decisions, it would be very useful to
provide a confidence measure for the predictions, i.e., a conditional proba-
bility estimate. Unfortunately, neither of the standard implementations of
DLDA, kNN and SVM do easily or reliably allow to do so.

If in the later course of the disease, the phenotype of the patients be-
came apparent, or could easily be determined by additional testing, it would
be possible to verify the microarray-based predictions. Because we are in
a cartoon situation with given test set labels, we can check the predic-
tive accuracy rightaway. An excellent means of visualization are confusion
matrices.

> confuMat(dlda.predic)

predicted

given 1 2 3

ccRCC 7 0 0

chRCC 0 1 0

pRCC 0 0 2

We are happy to observe that DLDA made correct assignments to all our
test patients.

24.6 Conclusion

In this chapter, we have shown an exemplary class prediction case study
with microarray data. Besides the methods that have been used here, many
other variable selection tools, classification procedures, and error rate esti-
mation schemes exist, and may be used instead. The presented code should
be generic enough so that it is obvious how to implement such alternative

430 M. Dettling

methods. The main reason for only presenting a limited amount of clas-
sifiers, variable selection tools, and tuning parameters were to keep this
case study simple, to provide easily understandable code and to fulfill re-
strictions in code running time. For real applications however, an extensive
search is desirable.

I will conclude this chapter by emphasizing again that the key to a reli-
able class prediction lies in avoiding selection bias, i.e., by properly splitting
the training data into learning and validation sets, and choosing all the
parameters before the optimal classifier is applied to test data.

25

From CEL Files to Annotated
Lists of Interesting Genes

R. A. Irizarry

Abstract

One of the most popular applications of microarray technology
is the identification of genes that are differentially expressed in two
populations. With Affymetrix GeneChip technology, there are several
steps between hybridization and the selection of interesting genes.
The steps of preprocessing to improve signal to noise ratios, choosing
a summary statistic for appropriate ranking of genes, and deciding
on a final filter for candidate genes are largely statistical in nature. In
this chapter, we demonstrate Bioconductor tools useful for creating
such lists. We start from the raw probe level data (CEL files) and
conclude with the creation of annotated reports.

25.1 Introduction

The identification of genes that are differentially expressed in two popu-
lations is a popular application of Affymetrix GeneChip technology. Due
to the cost of this technology, experiments using a small number of arrays
are common. A situation we often see is the case where three arrays are
used for each population. In this chapter, we give an example of how to
quickly create lists of genes that are interesting in the sense that appear
to be differentially expressed, starting from the raw probe level data (CEL
files). See Chapters 14 and 23 for more on the analysis of differential expres-
sion. In Section 25.2, we briefly describe the functions necessary to import
the data into Bioconductor. In Section 25.3 we talk about preprocessing.
In Section 25.4, we describe ways in which to rank genes and decide on a
cutoff. Finally, in Section 25.5 we describe how to make annotated reports
and examine the PubMed literature related to the genes in our list.

432 R.A. Irizarry

25.2 Reading CEL files

The affy package is needed to import the data into Bioconductor.

> library("affy")

As described in Chapter 2, we believe better results can be obtained by
starting your analysis from the probe level data as opposed to the expression
level data, provided by the Affymetrix software suite MAS 5.0. These data
are contained in what we call the CEL files. These usually have extension
.CEL. The function ReadAffy can be used to import these data into instances
of the AffyBatch described in Chapter 2.

In this chapter, we do not include an example of how to read in the
data. Instead we use an already created AffyBatch object, named spikein95,
available through the package SpikeInSubset.

> library("SpikeInSubset")

> data(spikein95)

These data are a six array subset (2 sets of triplicates) from a calibration
experiment performed by AffymetrixḞor the purpose of this experiment, we
replace the current phenoData, describing the calibration experiment, with
information needed for our example dealing with two populations.

> pd <- data.frame(population = c(1, 1, 1, 2, 2,

+ 2), replicate = c(1, 2, 3, 1, 2, 3))

> rownames(pd) <- sampleNames(spikein95)

> vl <- list(population = "1 is control, 2 is treatment",

+ replicate = "arbitrary numbering")

> phenoData(spikein95) <- new("phenoData", pData = pd,

+ varLabels = vl)

The assignment to phenoData above, can also be done using the function
read.phenoData. For more details on this object, please refer to Chapter 7.

25.3 Preprocessing

The next step is to preprocess the data in spikein95 to obtain expression
measures for each gene on each of the six arrays. In Chapter 2, we described
various options for doing this. Here we simply use RMA (Irizarry et al.,
2003b).

> eset <- rma(spikein95)

The rma function will background correct, normalize, and summarize the
probe level data, as described by Irizarry et al. (2003b), into expression
level data. The expression values are in log base 2 scale. The information is
saved in an instance of the exprSet class, which contains similar information

25. End to End Case Study 433

to the AffyBatch class. Specifically, the exprSet contains expression level
as opposed to probe level data. Details about the exprSet and AffyBatch

classes can be found in Chapter 1.
A matrix with the expression information is readily available. The fol-

lowing code extracts the expression data and demonstrates the dimensions
of the matrix storing the data:

> e <- exprs(eset)

> dim(e)

[1] 12626 6

We can see that in this matrix, rows represent genes and columns represent
arrays. To know which columns go with what population, we can rely on
the phenoData information inherited from spikein95.

> pData(eset)

population replicate

1521a99hpp_av06 1 1

1532a99hpp_av04 1 2

2353a99hpp_av08 1 3

1521b99hpp_av06 2 1

1532b99hpp_av04 2 2

2353b99hpp_av08r 2 3

We can conveniently use $ to access each column and create indexes
denoting which columns represent each population:

> Index1 <- which(eset$population == 1)

> Index2 <- which(eset$population == 2)

We will use this information in the next section.
Notice we are only demonstrating the use of RMA. Other options are

available through the functions mas5 and expresso. If you find expresso too
slow, the package affyPLM provides an alternative, threestep, that is faster
owing to use of C code.

25.4 Ranking and filtering genes

Now we have, in e, a measurement xijk of log (base 2) expression from each
gene j on each array i for both populations k = 1, 2. For ranking purposes, it
is convenient to quantify the average level of differential expression for each
gene. A naive first choice is to simply consider the average log fold-change:

dj = x̄j2 − x̄j1

with

x̄j2 = (x1j2+x2j2+x3j2)/3 and x̄j1 = (x1j1+x2j1+x3j1)/3, for j = 1, . . . , J.

434 R.A. Irizarry

To obtain d, we can use the rowMeans function, which provides a much faster
alternative to the commonly used function apply:

> d <- rowMeans(e[, Index2]) - rowMeans(e[, Index1])

Various authors have noticed that the variability of fold-change measure-
ments usually depends on over-all expression of the gene in question. This
means that the evidence that large observed values of d provide, should be
judged by conditioning on some value representing over-all expression. An
example is average log expression:

> a <- rowMeans(e)

The MA-plot 25.1A shows d plotted against a. We restrict the y-axis to
log fold changes of less than 1 in absolute value (fold change smaller than
2). We do this because in this analysis only one gene reached a fold change
larger than 2. To see this we can use the following line of code:

> sum(abs(d) > 1)

[1] 1

25.4.1 Summary statistics and tests for ranking

In Figure 25.1A we can see how variance decreases with the value of a.
Also, different genes may have different levels of variation. Should we then
consider a ranking procedure that takes variance into account? A popular
choice is the t-statistic. The t-statistic is a ratio comparing the effect size
estimate d to a sample based within group estimate of the standard error:

s2
j =

1
2

3∑
i=1

(xij2 − x̄j2)2/3 +
1
2

3∑
i=1

(xij1 − x̄j1)2/3, for j = 1, . . . , J.

To calculate the the t-statistic, dj/sj , we can use the function rowttests

from the package genefilter, as demonstrated in the following code:

> library("genefilter")

> tt <- rowttests(e, factor(eset$population))

The first argument is the data matrix, the second indicates the two groups
being compared.

Do our rankings change much if we use the t-statistic instead of average
log fold change? The volcano plot is a useful way to see both these quantities
simultaneously. This figure plots p-values (more specifically − log10 the p-
value) versus effect size. For simplicity we assume the t-statistic follows a
t-distribution. To create a volcano plot, seen in Figure 25.1B, we can use
the following simple code:

25. End to End Case Study 435

> lod <- -log10(tt$p.value)

> plot(d, lod, cex = 0.25, main = "B) Volcano plot for t-test")

> abline(h = 2)

This Figure demonstrates that the t-test and the average log fold change
give us different answers.

Figure 25.1. A) MA-plot. B) Volcano plot for the t-test. C) As B) but with
restricted x-axis, blue diamonds denoting the top 25 genes ranked by average fold
change and red circles to denoting the top 25 genes ranked by smallest p-value.
D) As C) but for the moderated t-test.

Figure 25.1C is like Figure 25.1B but we restrict the x-axis to [−1, 1] to
get a better view of most of the data. We also add blue diamonds to denote
the top 25 genes ranked by average fold change and red circles to denote
the top 25 genes ranked by smallest p-value. The following lines of code
permit us to create this figure:

436 R.A. Irizarry

> o1 <- order(abs(d), decreasing = TRUE)[1:25]

> o2 <- order(abs(tt$statistic), decreasing = TRUE)[1:25]

> o <- union(o1, o2)

> plot(d[-o], lod[-o], cex = 0.25, xlim = c(-1,

+ 1), ylim = range(lod), main = "C) Close up of B)")

> points(d[o1], lod[o1], pch = 18, col = "blue")

> points(d[o2], lod[o2], pch = 1, col = "red")

There is a relatively large disparity. Possible explanations are 1) Some
genes have larger variance than others. Large variance genes that are
not differentially expressed have a higher chance of having large log fold
changes. Because the t-statistics take variance into account, these do not
have small p-values. 2) With only three measurements per group the es-
timate of the standard error of the effect size is not stable and some
genes have small p-values only because, by chance, the denominator of
the t-statistic was very small. Figure 25.1C demonstrates both of these
explanations are possible.

Do we use average fold change or the t-statistic to rank? They both ap-
pear to have strengths and weaknesses. As mentioned, a problem with the
t-statistic is that there is not enough data to estimate variances. Many re-
searchers have proposed alternative statistics that borrow strength across
all genes to obtain a more stable estimate of gene-specific variance. The
resulting statistics are referred to as modified t-statistics. Because they re-
duce the possibility of large values they are also referred to as penalized,
attenuated, or regularized t-statistics. The are many versions of modified
t-statistics, for example the statistic used by SAM (Tusher et al., 2001),
and it is impossible to describe them all in this chapter.

An example of such a modified t-statistic is given by Smyth (2004) and
is available in the limma package. It is denoted the moderated t-statistic.
This statistic is based on an empirical Bayes approach, described in detail
by the above mentioned references, can be implemented with the following
code:

> library("limma")

> design <- model.matrix(~factor(eset$population))

> fit <- lmFit(eset, design)

> ebayes <- eBayes(fit)

For more details on the above code please see Chapter 23. One detail we
will point out is that, as part of its output, the lmFit function produces the
values we have stored in d and tstat previously computed.

Figure 25.1D demonstrates the empirical Bayes approach improves on
the t-statistic in terms of not giving high rank to genes only because they
have small sample variances. To see this notice that we now have fewer
genes with small p-values (large in the y-axis) that have very small log fold
changes (values close to 0 in the x-axis).

25. End to End Case Study 437

25.4.2 Selecting cutoffs

We have presented three statistics that can be used to rank genes. Now we
turn our attention to deciding on a cutoff. A naive approach is to consider
genes attaining p-values less than 0.01. However, because we are testing
multiple hypotheses, the p-values no longer have the typical meaning. No-
tice that if all the 12626 (number of genes on array) null hypotheses are
true (no genes are differentially expressed) we expect 0.01×12626 = 126.26
false positives. In our data set we have

> sum(tt$p.value <= 0.01)

[1] 46

Various approaches have been suggested for dealing with the multiple
hypothesis problem. . The suggested procedures usually provide adjusted p-
values that can be used to decide on appropriate cutoffs. However, different
procedures result in different interpretations of the resulting lists. For a
detailed discussion, please see Chapter 15. In Section 25.5, we demonstrate
simple code that can be used, along with the results of the eBayes function
described above, to construct lists of genes based on adjusted p-values.

An alternative ad hoc procedure is to use the MA and volcano plots to
look for groups of genes that appear to be departing from the majority.
For example, in Figure 25.1C we can restrict our attention to the small
cluster of genes in the upper right corner having small p-value and large
fold changes.

25.4.3 Comparison

We deviate slightly from our analysis to demonstrate that the moderated
t-statistic appears to perform better than average log fold change and the
t-test.

Because we are using a spike-in experiment we can assess the three com-
peting statistics. First we obtain the names of the genes that were spiked-in.
This is available in the original phenoData.

> data(spikein95)

> spikedin <- colnames(pData(spikein95))

> spikedIndex <- match(spikedin, geneNames(eset))

Because in this experiment replicate RNA, except for the spiked-in ma-
terial, was hybridized to all arrays, only the 16 spiked-in genes should be
differentially expressed. This means that a perfect ranking procedure would
assign ranks from 1 to 16 to the 16 spiked-in genes. The following code
shows that the moderated t-statistic is performing better than its three
competitors.

> d.rank <- sort(rank(-abs(d))[spikedIndex])

> t.rank <- sort(rank(-abs(tt$statistic))[spikedIndex])

438 R.A. Irizarry

> mt.rank <- sort(rank(-abs(mtstat))[spikedIndex])

> ranks <- cbind(mt.rank, d.rank, t.rank)

> rownames(ranks) <- NULL

> ranks

mt.rank d.rank t.rank

[1,] 1 1 1

[2,] 2 2 3

[3,] 3 3 5

[4,] 6 4 8

[5,] 7 5 13

[6,] 8 6 17

[7,] 9 9 19

[8,] 10 11 27

[9,] 11 12 28

[10,] 12 14 29

[11,] 16 16 45

[12,] 25 53 70

[13,] 28 86 71

[14,] 48 226 93

[15,] 77 331 390

[16,] 465 689 900

The results above permit us to see how many true positives we would have
in a list of any size ranked by each of the three statistics. To do this, we
simply count the number of spiked-in genes with ranks smaller or equal to
the size of the list. As an example notice that in a list of the top 25 genes,
we would obtain 12, 11, and 7 true positives for the moderated t-statistic.
This demonstrates that the choice of ranking statistic can have an effect
on your final results. Also notice that this is just one analysis, and one
would expect different results with a new data set. We encourage users to
run this analysis on other data sets and assess the performance of different
alternative procedures.

25.5 Annotation

Let us now consider a list of interesting genes and create a report. As an
example we will consider the top 10 genes as ranked by the moderated
t-statistic. To do this we can use the topTable function from the limma
package in the following way:

> tab <- topTable(ebayes, coef = 2, adjust = "fdr",

+ n = 10)

This function creates a table showing various interesting statistics. This
line of code shows us the first 5 entries:

> tab[1:5,]

25. End to End Case Study 439

ID M A t P.Value B

779 1708_at -7.061 7.95 -73.53 9.87e-13 8.65

6252 36202_at 0.853 9.37 9.98 3.12e-03 4.59

6362 36311_at 0.832 8.56 8.36 1.27e-02 3.57

3284 33264_at 0.712 4.92 7.43 2.71e-02 2.84

2674 32660_at 0.655 8.68 7.36 2.71e-02 2.77

By specifying coef as 2 we define d as our parameter of interest. The ar-
gument n defines how many top genes to include in the table. Finally,
through adjust we are instructing topTable to calculate the false discovery
rate adjustment for the p-values obtained from eBayes using the procedure
described by Benjamini and Hochberg (1995). See Chapter 23 for details.

In the remainder of this Chapter, we will use the Affymetrix identifiers
to obtain biological meta-data information about these 10 genes. We can
obtain these using the ID column of tab:

> genenames <- as.character(tab$ID)

25.5.1 PubMed abstracts

Chapters 8 and 9 describe powerful tools for combining important biological
information about the genes we are studying with the results obtained with
simple statistical analysis as the one presented here. In this section, we
present a simple example.

We start by identifying the appropriate annotation packages we need:

> annotation(eset)

[1] "hgu95a"

Bioconductor contains the annotation for both HG-U95A and HG-U95Av2
chips in the annotation package hgu95av2.

> library("hgu95av2")

The annotate package contains many functions that can be used to query
the PubMed database and format the results. Here we show how some of
these can be used to obtain abstracts with references to a list of genes
and report findings in the form of a Web page. Specifically, to get the
abstract information we can use the pm.getabst in the annotate package
(which requires the XML package):

> library("XML")

> library("annotate")

> absts <- pm.getabst(genenames, "hgu95av2")

The return value absts is a list of the same length as the genenames argu-
ment. Each of the list’s components corresponds to a gene and is itself a
list. Each component of this list is an abstract for that gene. To see the
fourth abstract for the first gene, we type the following:

440 R.A. Irizarry

> absts[[1]][[4]]

An object of class ’pubMedAbst’:

Title: Cyclin-dependent kinase 5 prevents neuronal

apoptosis by negative regulation of c-Jun

N-terminal kinase 3.

PMID: 11823425

Authors: BS Li, L Zhang, S Takahashi, W Ma, H Jaffe,

AB Kulkarni, HC Pant

Journal: EMBO J

Date: Feb 2002

Please be careful using the function pm.getabst because it queries PubMed
directly. Too many queries of PubMed can get you banned.

To only see the titles for, say, the second probeset, we can type the
following.

> titl <- sapply(absts[[2]], articleTitle)

> strwrap(titl, simplify = FALSE)

[[1]]

[1] "Generation and initial analysis of more than 15,000"

[2] "full-length human and mouse cDNA sequences."

[[2]]

[1] "Primary-structure requirements for inhibition by the"

[2] "heat-stable inhibitor of the cAMP-dependent protein"

[3] "kinase."

[[3]]

[1] "Identification of an inhibitory region of the"

[2] "heat-stable protein inhibitor of the cAMP-dependent"

[3] "protein kinase."

[[4]]

[1] "Structure of a peptide inhibitor bound to the"

[2] "catalytic subunit of cyclic adenosine"

[3] "monophosphate-dependent protein kinase."

[[5]]

[1] "Inhibition of protein kinase-A by overexpression of"

[2] "the cloned human protein kinase inhibitor."

[[6]]

[1] "Isolation and characterization of cDNA clones for an"

[2] "inhibitor protein of cAMP-dependent protein kinase."

Here we used the strwrap function to format the text to fit the page width.

25. End to End Case Study 441

Having these abstracts as R objects is useful because, for example, we
can search for words in the abstract automatically. The code below searches
for the word “protein” in all the abstracts and returns a logical value:

> pro.res <- sapply(absts, function(x) pm.abstGrep("[Pp]rotein",

+ x))

> pro.res[[2]]

[1] FALSE TRUE TRUE TRUE TRUE TRUE

A convenient way to view the abstracts is to create a Web page:

> pmAbst2HTML(absts[[2]], filename = "pm.html")

The above code creates an HTML file with abstracts for the second probeset
in genenames.

25.5.2 Generating reports

The object top gives us valuable information about the top 10 genes. How-
ever, it is convenient to create a more informative table. We can easily add
annotation to this table and create an HTML document with hyperlinks
to sites with more information about the genes. The following code obtains
the locus link and symbol for each of our selected genes.

> ll <- getLL(genenames, "hgu95av2")

> sym <- getSYMBOL(genenames, "hgu95av2")

With these values available, we can use the following code to creates an
HTML page useful for sharing results with collaborators.

> tab <- data.frame(sym, tab[, -1])

> htmlpage(ll, filename = "report.html", title = "HTML report",

+ othernames = tab, table.head = c("Locus ID",

+ colnames(tab)), table.center = TRUE)

The above HTML report only connects with locus link. To create a report
with more annotation information, we can use the annaffy package. Below
are a few lines of code that create a useful HTML report with links to
various annotation sites.

> library("KEGG")

> library("GO")

> library("annaffy")

> atab <- aafTableAnn(genenames, "hgu95av2", aaf.handler())

> saveHTML(atab, file = "report2.html")

To see the type of Web page that is created by the functions used above,
please see Chapters 9 and 18.

442 R.A. Irizarry

25.6 Conclusion

We have demonstrated how one can use Bioconductor tools to go from the
raw data in CEL files to annotated reports of a select group of interesting
genes. We presented only one way of doing this. There are many alternatives
also available via Bioconductor. We hope that this chapter serves as an
example of a useful analysis and also of the flexibility of Bioconductor.

Details on selected resources

A.1 Data sets

Here we describe three data sets that are used in many different examples
throughout the book.

A.1.1 ALL

The ALL data were reported by Chiaretti et al. (2004) The data were
normalized using quantile normalization, and expression estimates were
computed using RMA (Irizarry et al., 2003b). We consider the comparison
of the 37 samples from patients with the BCR/ABL fusion gene resulting
from a chromosomal translocation (9;22) with the 42 samples from the
NEG group.

They are available in the R package ALL.

A.1.2 Renal cell cancer

The kidpack package contains gene expression data from 74 renal cell carci-
noma (RCC) patient biopsy samples (Sültmann et al., 2005). The samples
were hybridized to two-color cDNA arrrays with PCR products of 4224
clones spotted in duplicate. These clones had been selected by their pre-
sumed relevance to cancer and on the basis of a previous genome-wide
array study of kidney cancer. A pool of various RCC samples was used as
a reference sample, which was always labeled with the red dye. The data
were normalized with the vsn package, and we base our analysis on the
generalized log-ratio values quantifying the difference between the tumor
samples and the reference sample. The exprSet object esetSpot contains the
normalized expression values and patient data. The RCC samples belong
to three different histological types, clear cell (ccRCC), papillary (pRCC),
and chromophobe (chRCC).

A.1.3 Estrogen receptor stimulation

The data are from eight samples from an estrogen receptor positive breast
cancer cell line. After serum starvation, four samples were exposed to es-
trogen and then harvested for analysis with Affymetrix human genome
U-95Av2 genechips after 10 hours for two samples and 48 hours for the
other two. The remaining four samples were left untreated and harvested

Appendix A

at corresponding times. The data are explained in more detail by Scholtens
et al. (2004) and are available in the estrogen package.

A.2 URLs for projects mentioned

Below, we list URLs for different projects and computational resources that
were discussed in the text.

AmiGO http://www.godatabase.org/

BioCarta www.biocarta.com

Bioconductor www.bioconductor.org

BioPAX www.biopax.org

BOOST www.boost.org

cMAP http://cmap.nci.nih.gov

CRAN http://cran.r-project.org

Entrez http://www.ncbi.nlm.nih.gov/entrez

GEO www.ncbi.nlm.nih.gov/geo

GO www.geneontology.org
The evidence codes: www.geneontology.org/GO.evidence.html

Graphviz www.graphviz.org

KEGG KEGG: www.kegg.org
The dbget archive: www.genome.jp/dbget/dbget.links.html
The SOAP API: http://www.genome.ad.jp/kegg/soap

libcurl http://curl.haxx.se

NAR Nucleic Acids Research on-line category listing http://www3.oup.
co.uk/nar/database/c

Omegahat http://www.omegahat.org

OMIM http://www.ncbi.nlm.nih.gov/Omim

PubMed www.ncbi.nlm.nih.gov/entrez

R http://www.r-project.org

Reactome www.reactome.org

Resourcerer http://pga.tigr.org/tigr-scripts/magic/r1.pl

W3C http://w3c.org

444 Appendix A. Details on Selected Resources

References

Affymetrix. Affymetrix Microarray Suite Users Guide. Affymetrix,
Santa Clara, CA, version 4.0 edition, 1999a. 19, 20

Affymetrix. Affymetrix Microarray Suite Users Guide. Affymetrix,
Santa Clara, CA, version 5.0 edition, 2001b. 14, 19, 20, 26, 37

Affymetrix. Statistical algorithms reference guide. Technical report,
Affymetrix, Santa Clara, CA, 2001. 19

Affymetrix. Statistical algorithms description document. Technical
report, Affymetrix, Santa Clara, CA, 2002. 19

Affymetrix. GeneChip r© Expression Analysis Technical Manual.
Affymetrix, Santa Clara, CA, rev 4.0 edition, 2003c. 14

D. Amaratunga and J. Cabrera. Analysis of data from viral DNA
microchips. Journal of the American Statistical Association, 96:1161–
1170, 2001. 22

C. Ambroise and G. McLachlan. Selection bias in gene extraction on
the basis of microarray gene-expression data. Proc. Natl. Acad. Sci.
of the U.S.A., 99:6562–6566, 2002. 423

M. Astrand. Contrast normalization of oligonucleotide arrays.
Journal of Computational Biology, 10:95–102, 2003. 24

K. A. Baggerly, J. S. Morris, and K. R. Coombes. Reproducibility
of SELDI-TOF protein patterns in serum: comparing datasets from
different experiments. Bioinformatics, 20:777–85, 2004. 93, 100

R. Balasubramanian, T. LaFramboise, D. Scholtens, et al. A graph
theoretic approach to testing associations between disparate sources
of functional genomics data. Bioinformatics, 20:3353–3362, 2004.
346, 369, 370

P. Baldi and A. Long. A Bayesian framework for the analysis of mi-
croarray expression data: regularized t-test and statistical inferences
of gene changes. Bioinformatics, 17:509–519, June 2001. 232

446 References

D. M. Bates and D. G. Watts. Nonlinear regression analysis and its
applications. Wiley, New York, 1988. 277

G. D. Battista, P. Eades, R. Tamassia, et al. Graph Drawing: Algo-
rithms for the visualization of graphs. Prentice Hall, Upper Saddle
River, 1999. 360

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society, Series B, 57:289–300, 1995. 234, 238, 254,
266, 416, 439

Y. Benjamini and D. Yekutieli. The control of the false discovery rate
in multiple hypothesis testing under dependency. Annals of Statistics,
29:1165–88, 2001. 266

C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam,
1973. 329, 337, 342

J. Bertin. Semiologie Graphique. Walter de Gruyter, Inc., Berlin, 2
edition, 1973. 162

M. Bittner, P. Meltzer, Y. Chen, et al. Molecular classification of
cutaneous malignant melanoma by gene expression profiling. Nature,
406:536–540, 2000. 217

B. M. Bolstand, R. A. Irizarry, M. Astrand, et al. A comparison
of normalization methods for high density oligonucleotide array data
based on variance and bias. Bioinformatics, 19:185–193, 2003. 20,
21, 23, 64

I. Borg and P. Groenen. Modern Multidimensional Scaling. Springer-
Verlag, New York, 1997. 173

S. P. Borgatti, M. G. Everett, and P. R. Shirey. LS sets, lambda sets
and other cohesive subsets. Social Networks, 12:337–357, 1990. 345

M. Boutros, A. A. Kiger, S. Armknecht, et al. Genome-wide RNAi
analysis of growth and viability in Drosophila cells. Science, 303:
832–835, 2004. 72, 74

J. M. Bower and H. Bolouri, editors. Computational Modeling of
Genetic and Biochemical Networks. MIT Press, Cambridge, 2001.
125

A. Brazma, P. Hingamp, J. Quackenbush, et al. Minimum informa-
tion about a microarray experiment (MIAME): toward standards for
microarray data. Nature Genetics, 29:365–371, 2001. 8

L. Breiman. Bagging predictors. Machine Learning, 24:123–140,
1996a. 295

L. Breiman. Out-of-bag estimation. Technical report, Statistics
Department, University of California Berkeley, 1996b. URL ftp:
//ftp.stat.berkeley.edu/pub/users/breiman/. 299

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001. 279,
296

L. Breiman, J. H. Friedman, R. A. Olshen, et al. Classification and
Regression Trees. Wadsworth, 1984. 279, 294

C. A. Brewer. Color use guidelines for mapping and visualization.
In A. MacEachren and D. Taylor, editors, Visualization in Modern
Cartography. Elsevier Science, Tarrytown, NY, 1994a. 162

C. A. Brewer. Guidelines for use of the perceptual dimensions of color
for mapping and visualization. In J. Bares, editor, Color Hard Copy
and Graphic Arts III, volume 2171, pages 54–63. Proceedings of the
International Society for Optical Engineering (SPIE), Bellingham,
1994b. 162

P. Bühlmann and B. Yu. Analyzing bagging. Annals of Statistics,
30:927–961, 2002. 295

C. Burges. A tutorial on support vector machines for pattern recog-
nition. Knowledge Discovery and Data Mining, 2:121–167, 1998.
425

A. Butte and I. Kohane. Mutual information relevance networks:
Functional genomic clustering using pairwise entropy measurements.
Pacific Symposium on Biocomputing, 5:415–426, 2000. 195

E. Camon, M. Magrane, D. Barrell, et al. The Gene Ontology an-
notation (GOA) database: sharing knowledge in Uniprot with Gene
Ontology. Nucleic Acids Res, 32:D262–D266, 2004. 123

A. E. Carpenter and D. M. Sabatini. Systematic genome-wide screens
of gene function. Nature Reviews in Genetics, 5:11–22, 2004. 71

D. B. Carr, R. Littlefield, W. Nicholson, et al. Scatterplot ma-
trix techniques for large N. Journal of the American Statistical
Association, 83:424–436, 1987. 163

J. M. Chambers. Programming with Data: A Guide to the S Language.
Springer-Verlag, New York, 1998. 150

D. Chessel, A. B. Dufour, and J. Thioulouse. The ade4 package
— I: One-table methods. R News, 4(1):5–10, 2004. URL http:
//CRAN.R-project.org/doc/Rnews. 360

S. Chiaretti, X. Li, R. Gentleman, et al. Gene expression profile of
adult T-cell acute lymphocytic leukemia identifies distinct subsets of

References 447

448 References

patients with different response to therapy and survival. Blood, 103:
2771–2778, 2004. 201, 232, 249, 252, 262, 300, 374, 443

R. Cho, M. Campbell, E. Winzeler, et al. A genome-wide transcrip-
tional analysis of the mitotic cell cycle. Molecular Cell, 2:65–73, 1998.
370

D. Cilloni, A. Guerrasio, E. Giugliano, et al. From genes to therapy:
the case of Philadelphia chromosome-positive leukemias. Annal of
the New York Academy of Sciences, 963:306–312, 2002. 201

Ciphergen. ProteinChip System Users Guide. Ciphergen Biosystems,
2000. 92

W. S. Cleveland. Visualizing Data. Hobart Press, Summit, New
Jersey, 1993. 162

W. S. Cleveland. The Elements of Graphing Data (Revised). Hobart
Press, Summit, New Jersey, 1994. 162

W. Conover. Practical Nonparametric Statistics. John Wiley& Sons,
New York, 1971. 193

R. D. Cook and S. Weisberg. Residuals and Influence in Regression.
Chapman & Hall, New York, 1982. 196

L. Cope, R. Irizarry, H. Jaffee, et al. A benchmark for Affymetrix
GeneChip expression measures. Bioinformatics, 20:323–331, 2004.
31, 32

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
McGraw-Hill, New York, 1990. 348, 357

A. Cornish-Bowden. Nomenclature for incompletely specified bases
in nucleic acid sequences: recommendations 1984. Nucleic Acids Res,
13:3021–3030, 1985. 145

T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall
CRC, 2001. 173

F. Dannegger. Tree stability diagnostics and some remedies for
instability. Statistics in Medicine, 19:475–491, 2000. 307

A. David and B. Mathieu. Tulip: a system dedicated to the vi-
sualization of huge graphs, 2004. http://www.tulip-software.org.
349

M. Dettling. Bagboosting for tumor classification with gene
expression data. Bioinformatics, 24:3583–93, 2004. 424

M. Dettling and P. Bühlmann. Boosting for tumor classification with
gene expression data. Bioinformatics, 19:1061–1069, 2003. 297, 298,
424

M. Dettling and P. Bühlmann. Finding predictive gene groups from
microarray data. Journal of Multivariate Analysis, 90:106–131, 2004.
297, 424

E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959. 357

B. Ding and R. Gentleman. Testing gene associations using co-
citation. Technical report, The Bioconductor Project, Boston, 2004.
379, 380, 381, 383

P. Domingos. The role of Occam’s razor in knowledge discovery. Data
Mining and Knowledge Discovery, 3:409–425, 1999. 283

S. W. Doniger, N. Salomonis, K. D. Dahlquist, et al. Mappfinder: us-
ing Gene Ontology and GenMAPP to create a global gene-expression
profile from microarray data. Genome Biology, 4:R7, 2003. 127, 331,
387, 390

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification.
Wiley, New York, 2001. 191, 274, 277, 283

S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimi-
nation methods for the classification of tumors using gene expression
data. Journal of the American Statistical Association, 97:77–87, 2002.
423, 424, 425

S. Dudoit, J. P. Shaffer, and J. C. Boldrick. Multiple hypothesis test-
ing in microarray experiments. Statistical Science, 18:71–103, 2003.
231

S. Dudoit and M. J. van der Laan. Multiple Testing Procedures
and Applications to Genomics. Springer, New York, 2004. (in
preparation). 250, 253, 254, 255, 258, 271

S. Dudoit, M. J. van der Laan, and M. D. Birkner. Multiple testing
procedures for controlling tail probability error rates. Technical Re-
port 166, Division of Biostatistics, University of California, Berkeley,
2004a. URL www.bepress.com/ucbbiostat/paper166. 250, 258,
271

S. Dudoit, M. J. van der Laan, and K. S. Pollard. Multiple testing.
Part I. Single-step procedures for control of general Type I error
rates. Statistical Applications in Genetics and Molecular Biology, 3
(1):Article 13, 2004b. URL www.bepress.com/sagmb/vol3/iss1/
art13. 250, 253, 255, 256

S. Dudoit and Y. H. Yang. Bioconductor R packages for ex-
ploratory analysis and normalization of cDNA microarray data. In

References 449

450 References

G. Parmigiani, E. S. Garrett, R. A. Irizarry, and S. L. Zeger, edi-
tors, The Analysis of Gene Expression Data: Methods and Software.
Springer-Verlag, New York, 2003. 51, 56

B. P. Durbin, J. S. Hardin, D. M. Hawkins, et al. A variance-
stabilizing transformation for gene-expression microarray data.
Bioinformatics, 18 Suppl. 1:S105–S110, 2002. 11, 194

D. Edwards. Introduction to Graphical Modelling. Springer-Verlag,
New York, 2000. 343

B. Efron. The estimation of prediction error: Covariance penalties and
cross-validation. Journal of the American Statistical Association, 99:
619–632, 2004. 282

B. Efron and R. Tibshirani. Improvements on cross-validation:
The .632+ bootstrap method. Journal of the American Statistical
Association, 92:348–360, 1997. 423

M. B. Eisen, P. T. Spellman, P. O. Brown, et al. Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci.
of the U.S.A., 95:14863–14868, 1998. 166, 192, 193, 209, 212, 214

J. D. Emerson and D. C. Hoaglin. Analysis of two-way tables by
medians. In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors,
Understanding robust and exploratory data analysis, pages 166–206.
John Wiley & Sons, Inc., New York, 1983. 27, 42

P. Erdös and A. Rényi. On random graphs. Publicationes
Mathematicae, 6:290–297, 1959. 343, 371

C. Fraley and A. Raftery. How many clusters? Which cluster-
ing method? Answers via model-based cluster analysis. Computer
Journal, 41(8):578–588, 1998. 210

C. Fraley and A. Raftery. Model-based clustering, discriminant
analysis, and density estimation. Technical Report 380, Univ. of
Washington, Dept. of Statistics, October 2000. 210

Y. Freund and R. E. Schapire. Experiments with a new boosting
algorithm. In L. Saitta, editor, Machine Learning: Proceedings of the
Thirteenth International Conference, pages 148–156, San Francisco,
1996. Morgan Kaufmann. 296

J. Fridlyand and S. Dudoit. Applications of resampling methods
to estimate the number of clusters and to improve the accuracy of
a clustering method. Technical Report 600, Statistics Department,
University of California, 2001. 217

J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol,
2 edition, 2002. 123, 160

J. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, 29:1189–1232, 2000. 289

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regres-
sion: A statistical view of boosting. Annals of Statistics, 28:337–407,
2000. with Discussion. 296

E. T. Fung and C. Enderwick. ProteinChip clinical proteomics:
Computational challenges and solutions. Computational Proteomics
Supplement, 32:34–41, 2002. 93, 100

G. Gallo, G. Longo, S. Nguyen, et al. Directed hypergraphs and
applications. Discrete Applied Mathematics, 42:177–201, 1993. 329,
342

E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Software Practice and
Experience, 30:1203–1233, 1999. 348, 349, 360

H. Ge, Z. Liu, G. Church, et al. Correlation between transcrip-
tome and interactome mapping data from Saccharomyces cerevisiae.
Nature Genetics, 29:482–486, 2001. 331, 369, 370, 371, 372

R. Gentleman. Using GO for statistical analyses. In J. Antoch, editor,
Compstat 2004 – Proceedings in Computational Statistics, pages 171–
180, Heidelberg, 2004. Physica Verlag, Heidelberg, Germany. 374,
376

R. Gentleman and V. J. Carey. Visualization and annotation of ge-
nomic experiments. In G. Parmigiani, E. S. Garrett, R. A. Irizarry,
and S. L. Zeger, editors, The Analysis of Gene Expression Data:
Methods and Software. Springer-Verlag, New York, 2003. 195

R. Gentleman and J. Gentry. Querying PubMed. R News, 2(2):28–31,
2002. URL http://CRAN.R-project.org/doc/Rnews. 138

R. Gentleman and A. C. Vandal. Computational algorithms for
censored data problems using intersection graphs. Journal of
Computational and Graphical Statistics, 10:403–421, 2001. 103

J. Gentry, V. Carey, E. Gansner, and R. Gentleman. Laying out
pathways with Rgraphviz. R News, 4(2):14–18, 2004. URL http:
//CRAN.R-project.org/doc/Rnews. 391

D. Gerlich and J. Ellenberg. 4D imaging to assay complex dynamics
in live specimens. Nature Cell Biology, Suppl:14–19, 2003. 73

D. E. Getz G., Levine E. Coupled two-way clustering analysis of
gene microarray data. Proc. Natl. Acad. Sci. of the U.S.A., 97:12079–
12084, 2000. 215

References 451

452 References

G. Giaever, A. M. Chu, L. Ni, et al. Functional profiling of the
Saccharomyces cerevisiae genome. Nature, 418:387–391, 2002. 72

T. R. Golub, D. K. Slonim, P. Tamayo, et al. Molecular classification
of cancer: Class discovery and class prediction by gene expression
monitoring. Science, 286:531–537, 1999. 190, 291

P. Good. Permutation Tests: A Practical Guide to Resampling
Methods for Testing Hypotheses. Springer-Verlag, 1994. 380

A. D. Gordon. Classification. Chapman & Hall CRC, 2nd edition,
1999. 191

E. Graf, C. Schmoor, W. Sauerbrei, et al. Assessment and comparison
of prognostic classification schemes for survival data. Statistics in
Medicine, 18:2529–2545, 1999. 308

J. Gross and J. Yellen. Graph Theory and its Applications. CRC
Press, 1999. 337

R. G. Halgren, M. R. Fielden, C. J. Fong, et al. Assessment of clone
identity and sequence fidelity for 1189 IMAGE cDNA clones. Nucleic
Acids Res, 29:582–588, 2001. 12

D. Hampel, C. Sansome, M. Sha, et al. Toward proteomics in
uroscopy: urinary protein profiles after radiocontrast medium ad-
ministration. Journal of the American Society for Nephrology, 12:
1026–1035, 2001. 92

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman
& Hall, Boca Raton, 1990. 278

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements
of Statistical Learning : Data Mining, Inference, and Prediction.
Springer-Verlag, New York, 2001. 274, 278, 299

T. Hothorn, B. Lausen, A. Benner, et al. Bagging survival trees.
Statistics in Medicine, 23:77–91, 2004a. 307

T. Hothorn, F. Leisch, A. Zeileis, et al. The design and analysis
of benchmark experiments. Technical report, SFB Adaptive Infor-
mations Systems and Management in Economics and Management
Science, 2004b. URL http://www.wu-wien.ac.at/am/reports.
htm. 299, 427

P. J. Huber. Robust statistics. John Wiley & Sons, Inc, New York,
New York, 1981. 42

W. Huber, A. von Heydebreck, H. Sültmann, et al. Variance stabiliza-
tion applied to microarray data calibration and to the quantification
of differential expression. Bioinformatics, 18 Suppl. 1:S96–S104, 2002.
6, 11, 24, 56, 64, 65, 194, 231, 418

W. Huber, A. von Heydebreck, H. Sültmann, et al. Parameter es-
timation for the calibration and variance stabilization of microarray
data. Statistical Applications in Genetics and Molecular Biology, 2
(1), 2003. 24, 418

W. Huber, A. von Heydebreck, and M. Vingron. Encyclopedia of
Genetics, Genomics, Proteomics and Bioinformatics, chapter Error
models for microarray intensities. John Wiley & Sons, 2004. 11

L. H. Hubert. Assignment Methods in Combinatorial Data Analysis.
Dekker, 1987. 380

T. Hughes, M. Marton, A. Jones, et al. Functional discovery via a
compendium of expression profiles. Cell, 102:109–126, 2000. 215,
217

J. Huisken, J. Swoger, F. Del Bene, et al. Optical sectioning deep in-
side live embryos by selective plane illumination microscopy. Science,
305:1007–1009, 2004. 73

T. Ideker, V. Thorsson, A. Siegel, et al. Testing for differentially
expressed genes by maximum-likelihood analysis of microarray data.
Journal of Computational Biology, 7:805–818, 2000. 9

R. A. Irizarry, B. M. Bolstad, F. Collin, et al. Summaries of Affy-
metrix GeneChip probe level data. Nucleic Acids Res, 31:e15, Feb
2003a. 27

R. A. Irizarry, B. Hobbs, F. Collin, et al. Exploration, normalization,
and summaries of high density oligonucleotide array probe level data.
Biostatistics, 4:249–64, 2003b. 11, 18, 27, 232, 241, 432, 443

P. Jaccard. The distribution of flora in the alpine zone. The New
Phytologist, 11:37–50, 1912. 380

T.-K. Jenssen, A. Laegreid, J. Komorowski, et al. A literature net-
work of human genes for high-throughput analysis of gene expression.
Nature Genetics, pages 21–28, 2001. 204

H. Joe. Relative entropy measures of multivariate association.
Journal of the American Statistical Association, 84:157–164, 1989.
197

M. E. Johnson and C. J. Nachtsheim. Some guidelines for construct-
ing exact D-optimal designs on convex design spaces. Technometrics,
25:271–277, 1983. 282

N. L. Johnston-Wilson, C. M. Bouton, J. Pevsner, et al. Emerging
technologies for large-scale screening of humdan tissues and fluids
in the study of severe psychiatric disease. International Journal of
Neuropsychopharmacology, 4:83–92, 2001. 92

References 453

454 References

G. Joshi-Tope, M. Gillespie, I. Vastrik, et al. Reactome: a knowledge-
base of biological pathways. Nucleic Acids Res, 33 Database Issue:
428–432, 2005. 333

R. S. Kamath, A. G. Fraser, Y. Dong, et al. Systematic functional
analysis of the Caenorhabditis elegans genome using RNAi. Nature,
421:231–237, 2003. 72

M. Kanehisa. A database for post-genome analysis. Trends in
Genetics, 13:375–376, 1997. 114

M. Kanehisa and S. Goto. KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res, 28:27–30, 2000. 136, 142, 332, 333

M. Kanehisa, S. Goto, S. Kawashima, et al. The KEGG resources
for deciphering the genome. Nucleic Acids Res, 32:D277–D280, 2004.
114

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data. Wiley,
1990. 190, 191, 212, 217

S. Keleş, M. J. van der Laan, S. Dudoit, et al. Multiple testing
methods for ChIP-Chip high density oligonucleotide array data. Tech-
nical Report 147, Division of Biostatistics, University of California,
Berkeley, 2004. URL www.bepress.com/ucbbiostat/paper147. 250

C. Kendziorski, M. Newton, H. Lan, et al. On parametric empirical
Bayes methods for comparing multiple groups using replicated gene
expression profiles. Statistics in Medicine, 22:3899–3914, 2003. 232

M. Kerr and G. A. Churchill. Bootstrapping cluster analysis: Assess-
ing the reliability of conclusions from microarray experiments. Proc.
Natl. Acad. Sci. of the U.S.A., 98:8961–8965, 2001. 215

M. K. Kerr, M. Martin, and G. A. Churchill. Analysis of variance for
gene expression microarray data. Journal of Computational Biology,
7:819–837, 2000. 6

S. Klamt and E. D. Gilles. Minimal cut sets in biochemical reaction
networks. Bioinformatics, 20:226–234, 2004. 331, 360

J. Knight. When the chips are down. Nature, 410:860–861, 2001. 12

L. Krishnamurthy, J. Nadeau, G. Ozsoyoglu, et al. Pathways database
system: an integrated system for biological pathways. Bioinformatics,
19:930–937, 2003. 125, 331, 360

Y. K.Y., H. D.R., and R. W.L. Validating clustering for gene
expression data. Bioinformatics, 17:309–318, 2001. 215

S. L. Lauritzen. Graphical Models. Clarendon Press, 1996. 343

G. Lennon, C. Auffray, M. Polymeropoulos, et al. The IMAGE
consortium: an integrated molecular analysis of genomes and their
expression. Genomics, 33:151–152, 1996. 222

C. Li and W. H. Wong. Model-based analysis of oligonucleotide ar-
rays: Expression index computation and outlier detection. Proc. Natl.
Acad. Sci. of the U.S.A., 98:31–36, 2001a. 26, 196

C. Li and W. H. Wong. Model-based analysis of oligonucleotide ar-
rays: model validation, design issues and standard error application.
Genome Biology, 2(8):RESEARCH0032, 2001b. 21

A. Liaw and M. Wiener. Classification and regression by randomFor-
est. R News, 2(3):18–22, 2002. URL http://CRAN.R-project.org/
doc/Rnews. 301

U. Liebel, V. Starkuviene, H. Erfle, et al. A microscope-based screen-
ing platform for large-scale functional protein analysis in intact cells.
FEBS Letters, 554:394–398, 2003. 73

D. M. Lin, Y. H. Yang, J. A. Scolnick, et al. Spatial patterns of gene
expression in the olfactory bulb. Proc. Natl. Acad. Sci. of the U.S.A.,
101:12718–12723, 2004. 199

R. J. Lipshutz, S. Fodor, T. Gingeras, et al. High density synthetic
ologonucleotide arrays. Nature Genetics, Suppl. 21:20–24, 1999. 14

C. Loader. Local Regression and Likelihood. Springer, New York,
1999. 89

D. Lockhart and E. Winzeler. Genomics, gene expression and DNA
arrays. Nature, 405:827–836, 2000. 215

I. Lönnstedt and T. Speed. Replicated microarray data. Statistica
Sinica, 12:31–46, 2002. 232

D. R. Mani and M. Gillette. Proteomic data analysis: Pattern recog-
nition for medical diagnosis and biomarker discovery. In M. M.
Kantardzic and J. Zurada, editors, New Generation of Data Mining
Applications, Piscataway, 2004. IEEE Press. 101

K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic
Press, 1979. 190, 191

D. R. Masys, J. B. Welsh, J. L. Fink, et al. Use of keyword hierarchies
to interpret gene expression patterns. Bioinformatics, 17:319–326,
2001. 204

G. Meister and T. Tuschl. Mechanisms of gene silencing by double-
stranded RNA. Nature Genetics, 431:343–9, 2004. 72

References 455

456 References

K. Melhorn and S. Näher. LEDA. Cambridge University Press, 1999.
331

G. W. Milligan and M. C. Cooper. An examination of procedures for
determining the number of clusters in a data set. Psychometrika, 50:
159–179, 1985. 217

G. A. Milliken and D. E. Johnson. Analysis of Messy Data Volume
1: Designed Experiments. Chapman & Hall, New York, 1992. 403

F. Naef, D. A. Lim, N. Patil, and M. A. Magnasco. From features
to expression: High-density oligonucleotide array analysis revisited.
http://xxx.lanl.gov/abs/physics/0102010, 2001. 19

J. Nevins, E. Huang, H. Dressman, et al. Towards integrated clinico-
genomic models for personalized medicine: combining gene expression
signatures and clinical factors in breast cancer outcomes prediction.
Human Molecular Genetics, 12:R153–R157, 2003. 216

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs
with arbitrary degree distributions and their applications. Technical
report, Cornell University, 2001. 343

M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph
models of social networks. Proc. Natl. Acad. Sci. of the U.S.A., 99:
2566–2572, 2002. 343

E. Paradis, J. Claude, and K. Strimmer. APE: Analyses of phylo-
genetics and evolution in R language. Bioinformatics, 20:289–290,
2004. 360

F. Pesarin. Multivariate Permutation Tests with Applications in
Biostatistics. Wiley, 2001. 240

A. Peters, T. Hothorn, and B. Lausen. ipred: Improved predictors.
R News, 2(2):33–36, 2002. URL http://CRAN.R-project.org/doc/
Rnews. ISSN 1609-3631. 308

E. F. Petricoin, A. M. Ardekani, B. A. Hitt, et al. Use of proteomic
patterns in serum to identify ovarian cancer. Lancet, 359:572–577,
2002. 92

F. Piano, A. J. Schetter, D. G. Morton, et al. Gene clustering based
on RNAi phenotypes of ovary-enriched genes in C. elegans. Current
Biology, 12:1959–1964, 2002. 71

R. Picard and K. Berk. Data splitting. American Statistician, 44:
140–147, 1990. 282

K. Pollard and M. van der Laan. A method to identify significant
clusters in gene expression data. In SCI2002 Proceedings, volume II,

pages 318–325, Orlando, 2002a. International Institute of Informatics
and Systemics. 217, 219

K. Pollard and M. van der Laan. Statistical inference for simultaneous
clustering of gene expression data. Mathematical Biosciences, 176(1):
99–121, 2002b. 216

K. S. Pollard, S. Dudoit, and M. J. van der Laan. Multiple testing
procedures and applications to genomics. Technical Report 164, Di-
vision of Biostatistics, University of California, Berkeley, 2004. URL
www.bepress.com/ucbbiostat/paper164. 250

K. S. Pollard and M. J. van der Laan. Choice of a null distribution
in resampling-based multiple testing. Journal of Statistical Planning
and Inference, 125:85–100, 2004. 250, 252, 254, 255, 256

J. Pontius, L. Wagner, and G. Schuler. UniGene: a unified view of
the transcriptome. In: The NCBI Handbook. National Center for
Biotechnology Information, Bethesda, 2003. 7

H. C. Purchase. Effective information visualization: a study of graph
drawing aesthetics and algorithms. Interacting with Computers, 13:
147–162, 2000. 362

A. Reiner, D. Yekutieli, and Y. Benjamini. Identifying differentially
expressed genes using false discovery rate controlling procedures.
Bioinformatics, 19:368–375, 2003. 416

B. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, 1996a. 173, 190, 274, 277, 278, 279,
281

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, 1996b. 282

D. M. Rocke and B. Durbin. A model for measurement error for
gene expression arrays. Journal of Computational Biology, 8:557–569,
2001. 9, 186

D. M. Rocke and B. Durbin. Approximate variance-stabilizing trans-
formations for gene-expression microarray data. Bioinformatics, 19:
966–972, 2003. 24

M. Rodriguez, A. C. Paquet, Y. Yang, et al. Differential gene ex-
pression by memory/effector T helper cells bearing the gut-homing
receptor integrin α4β7. BMC Immunology, 4:5–13, 2004. 50

K. Rose, E. Gurewitz, and G. Fox. Statistical mechanics and phase
transitions in clustering. Physical Review Letters, 65:945–948, 1990.
217

P. Rosenbaum. Observational studies. Springer, 1995. 282

References 457

458 References

M. E. Ross, X. Zhou, G. Song, et al. Gene expression profiling of
pediatric acute myelogenous leukemia. Blood, 102:2951–2959, 2004.
34

C. Rosty, L. Christa, S. Kuzdzal, et al. Identification of
hepatocarcinoma-intestine-pancreas / pancreatitis-associated protein
I as a biomarker for pancreatic ductal adenocarcinoma by protein
biochip technology. Cancer Research, 62:1868–1875, 2002. 92

T. Ryan. Modern Regression Methods. Wiley, New York, 1997. 194

E. E. Schadt, C. Li, B. Ellis, et al. Feature extraction and normaliza-
tion algorithms for high-density oligonucleotide gene expression array
data. Journal Cellular Biochemistry, Suppl. 37:120–125, 2001. 5, 21,
24

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press,
Cambridge, 2001. 274, 281

D. Scholtens and R. Gentleman. Making sense of high-throughput
protein-protein interaction data. Statistical Applications in Genetics
and Molecular Biology, 3:Article 39, 2004. 331

D. Scholtens, A. Miron, F. Merchant, et al. Analyzing factorial de-
signed microarray experiments. Journal of Multivariate Analysis, 90:
19–43, 2004. 241, 444

A. Scott and M. Simmons. Clustering methods based on likelihood
ratio criteria. Biometrics, 27:387–397, 1971. 217

L. C. Seamer, C. B. Bagwell, L. Barden, et al. Proposed new data
file standard for flow cytometry, version FCS 3.0. Cytometry, 28:
118–122, 1997. 77

R. Sedgewick. Algorithms, 3rd Edition. Addison Wesley, Boston,
2002. 337, 348

I. A. Sidorov, D. A. Hosack, D. Gee, et al. Oligonucleotide microarray
data distribution and normalization. Information Sciences, 146:67–
73, 2002. 22

J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library.
Addison Wesley, Boston, 2002. 331, 348, 352

J. C. Simpson, R. Wellenreuther, A. Poustka, et al. Systematic sub-
cellular localization of novel proteins identified by large-scale cDNA
sequencing. EMBO Reports, 1:287–292, 2000. 72

S. Singh-Gasson, R. D. Green, Y. Yue, et al. Maskless fabrication of
light-directed oligonucleotide microarrays using a digital micromirror
array. Nature Biotechnology, 17:974–978, 1999. 14

M. Sirava, T. Schaäfer, M. Kaufmann, et al. BioMiner – model-
ing, analyzing, and visualizing biochemical pathways and networks.
Bioinformatics, 18, Suppl 2:S219–S230, 2002. 125

G. Smyth. Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Statistical Applica-
tions in Genetics and Molecular Biology, 3:Article 3, 2004. 68, 232,
397, 399, 416, 418, 436

G. K. Smyth, J. Michaud, and H. Scott. The use of within-array
replicate spots for assessing differential expression in microarray ex-
periments. Bioinformatics, 21:to appear, 2005. 237, 397, 403, 406,
416

G. K. Smyth, Y. H. Yang, and T. Speed. Statistical issues in cDNA
microarray data analysis. Methods in Molecular Biology, 224:111–36,
2003. 416

P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy: The Prin-
ciples and Practice of Numerical Classification. Freeman, 1973.
170

A. M. Snijders, N. Nowak, R. Segraves, et al. Assembly of microar-
rays for genome-wide measurement of DNA copy number. Nature
Genetics, 29:263–264, 2001. 179

S. Solinas-Toldo, S. Lampel, S. Stilgenbauer, et al. Matrix-based
comparative genomic hybridization: Biochips to screen for genomic
imbalances. Genes Chromosomes Cancer, 20:399–407, 1997. 179

L. Stein. Creating a bioinformatics nation. Nature, 417:119–120,
2002. 135

C. J. Stone, M. H. Hansen, C. Kooperberg, et al. Polynomial splines
and their tensor products in extended linear modeling (disc: P1425-
1470). The Annals of Statistics, 25:1371–1425, 1997. 278

K. F. Storch, O. Lipan, I. Leykin, et al. Extensive and divergent
circadian gene expression in liver and heart. Nature, 417:78–83, 2002.
331

H. Strasser and C. Weber. On the asymptotic theory of permutation
statistics. Mathematical Methods of Statistics, 8:220–250, 1999. 301

R. Strausberg, E. Feingold, L. Grouse, et al. Generation and initial
analysis of more than 15,000 full-length human and mouse cDNA
sequences. Proc Natl Acad Sci U S A., 99:16899–903, 2002. 379,
382, 385

S. H. Strogatz. Exploring complex networks. Nature, 410:268–276,
2001. 329

References 459

460 References

A. I. Su, T. Wiltshire, S. Batalov, et al. A gene atlas of the mouse
and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci.
of the U.S.A., 101:6062–6067, 2004. 174

H. Sültmann, A. von Heydebreck, W. Huber, et al. Gene expression in
kidney cancer is associated with novel tumor subtypes, cytogenetic
abnormalities and metastasis formation. Clinical Cancer Research,
11:646–655, 2005. 236, 304, 422, 443

Supplement to Nature Genetics (1999). The Chipping Forecast,
volume 21, January 1999. 50

N. Suzuki, J. Nakayama, I. M. Shih, et al. Expression of trophinin,
tastin, and bystin by trophoblast and endometrial cells in human
placenta. Biol Reprod., 60:621–7, 1999. 382

D. F. Swayne, D. T. Lang, A. Buja, et al. GGobi: Evolving from
xgobi into an extensible framework for interactive data visualization.
Computational Statistics and Data Analysis, 43:423–444, 2003. 84,
163

M. G. Tadesse, J. G. Ibrahim, and R. Gentleman. Bayesian error–
in–variables survival model for the analysis of GeneChip arrays.
Biometrics, in press, 2005. 194

R. E. Tarjan. Depth first search and linear graph algorithms. SIAM
Journal on Computing, 1:146–160, 1975. 355

T. M. Therneau and E. J. Atkinson. An introduction to recursive
partitioning using the rpart routine. Technical report, Section of
Biostatistics, Mayo Clinic, Rochester, 1997. URL http://www.mayo.
edu/hsr/techrpt/61.pdf. 294

R. Tibshirani, G. Walther, and T. Hastie. Estimating the num-
ber of clusters in a dataset via the gap statistic. Technical report,
Department of Statistics, Stanford University, 2000. 217

D. M. Titterington. Bayesian methods for neural networks and
related models. Statistical Science, 19:128–139, 2004. 278

A. H. Y. Tong, G. Lesage, G. D. Bader, et al. Global mapping of the
yeast genetic interaction network. Science, 303:808–813, 2004. 71

P. Törönen, M. Kolehainen, G. Wong, et al. Analysis of gene expres-
sion data using self-organizing maps. FEBS Letters, 451:142–146,
1999. 212

E. Tufte. Envisioning Information (2e). Graphics Press, Cheshire,
1990. 162

E. Tufte. The Visual Display of Quantitative Information (2e).
Graphics Press, Cheshire, 2001. 162

V. Tusher, R. Tibshirani, and G. Chu. Significance analysis of mi-
croarrays applied to the ionizing radiation response. Proc. Natl. Acad.
Sci. of the U.S.A., 98:5116–5121, 2001. 232, 436

M. van der Laan and J. Bryan. Gene expression analysis with the
parametric bootstrap. Biostatistics, 2:445–461, 2001. 215, 216

M. van der Laan and K. Pollard. Hybrid clustering of gene expres-
sion data with visualization and the bootstrap. Journal of Statistical
Planning and Inference, 117:275–303, 2003. 209, 212, 214, 222

M. J. van der Laan, S. Dudoit, and K. S. Pollard. Augmentation pro-
cedures for control of the generalized family-wise error rate and tail
probabilities for the proportion of false positives. Statistical Applica-
tions in Genetics and Molecular Biology, 3(1):Article 15, 2004a. URL
www.bepress.com/sagmb/vol3/iss1/art15. 250, 258, 259, 266

M. J. van der Laan, S. Dudoit, and K. S. Pollard. Multiple testing.
Part II. Step-down procedures for control of the family-wise error
rate. Statistical Applications in Genetics and Molecular Biology, 3(1):
Article 14, 2004b. URL www.bepress.com/sagmb/vol3/iss1/art14.
250, 255, 257

V. Vapnik. Statistical Learning Theory. Wiley, 1998. 274

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S
(4e). Springer, New York, 2002. 42

A. Vlahou, C. Laronga, L. Wilson, et al. A novel approach toward
development of a rapid blood test for breast cancer. Clinical Breast
Cancer, 4:203–209, 2003. 92

A. Vlahou, P. F. Schellhammer, S. Mendrinos, et al. Development
of a novel proteomic approach for the detection of transitional cell
carcinoma of the bladder in urine. American Journal of Pathology,
154:1491–1502, 2001. 92

A. von Heydebreck, W. Huber, and R. Gentleman. Differential ex-
pression with the Bioconductor project. In Encyclopedia of Genetics,
Genomics, Proteomics and Bioinformatics. Wiley, New York, 2004.
375

Scalable Vector Graphics (SVG) 1.1 Specification W3C Recommen-
dation. W3C, 14 January 2003. http://www.w3.org/TR/SVG11/.
158

G. Wahba. Spline models for observational data. SIAM Press,
Philadelphia, 1990. 278

S. Wang, D. L. Diamond, G. M. Hass, et al. Identification of
prostate specific membrane antigen (PSMA) as the target of mono-

References 461

462 References

clonal antibody 107-1a4 by ProteinChip array surface-enhanced laser
desorption/ionization (SELDI) technology. International Journal of
Cancer, 92:871–876, 2001. 92

C. Ware, H. Purchase, L. Colpoys, et al. Cognitive measurements of
graph aesthetics. Information Visualization, 1:103–110, 2002. 362

J. A. Warrington, S. Dee, and M. Trulson. Large-scale genomic anal-
ysis using Affymetrix GeneChip. In M. Schena, editor, Microarray
Biochip Technology, chapter 6, pages 119–148. BioTechniques Books,
Natick, 2000. 14

S. Wasserman and K. Faust. Social Network Analysis, Methods and
Applications. Cambridge University Press, Cambridge, 1994. 345,
379, 381

P. Westfall and S. Young. Resampling-based multiple testing: exam-
ples and methods for p-value adjustment. Wiley, New York, 1993.
233, 255

S. Wiemann, D. Arlt, W. Huber, et al. From ORFeome to Biology:
A Functional Genomics Pipeline. Genome Research, 14:2136–2144,
2004. 72, 77

G. Wills. Nicheworks - interactive visualization of very large graphs.
In Graph Drawing ’97 Conference Proceedings. Springer-Verlag
Lecture Notes in Computer Science, New York, 1997. 362

A. Winter. Exchanging Graphs with GXL. Technical Report 9/2001,
Universität Koblenz-Landau, Institut für Informatik, 2001. URL
http://www.uni-koblenz.de/fb4. 349

C. Workman, L. J. Jensen, H. Jarmer, et al. A new non-linear
normalization method for reducing variability in DNA microarray
experiments. Genome Biology, 3(9):research0048, 2002. 22

Z. Wu, R. Irizarry, R. Gentleman, F. Martinez Murillo, and
F. Spencer. A model based background adjustement for oligonu-
cleotide expression arrays. Journal of the American Statistical
Association, in press, 2005. 27, 28

Y. Xiao, M. R. Segal, and Y. H. Yang. Stepwise normalization of two-
channel spotted microarrays. Statistical Applications in Genetics and
Molecular Biology, 4(1), 2005. 62

Y. H. Yang, M. J. Buckley, S. Dudoit, et al. Comparison of
methods for image analysis on cDNA microarray data. Journal of
Computational and Graphical Statistics, 11:108–136, 2002a. 5

Y. H. Yang, S. Dudoit, P. Luu, et al. Normalization for cDNA
microarray data: a robust composite method addressing single and

multiple slide systematic variation. Nucleic Acids Res, 30:e15, 2002b.
23, 24

Y. H. Yang and T. P. Speed. Design and analysis of comparative
microarray experiments. In T. P. Speed, editor, Statistical Analy-
sis of Gene Expression Microarray Data, pages 35–91. Chapman &
Hall/CRC Press, Boca Raton, 2003. 399

Y. H. Yang and N. Thorne. Normalization for two-color cDNA mi-
croarray data. In Science and Statistics: A Festschrift for Terry
Speed, volume 40, pages 403–418. IMS Lecture Notes, Monograph
Series, 2003. 64

Y. Yasui, M. Pepe, M. L. Thompson, et al. A data-analytic strategy
for protein biomarker discovery: profiling of high-dimensional pro-
teomic data for cancer detection. Bioinformatics, 20:777–785, 2004.
93, 103

J. Zhang, V. Carey, and R. Gentleman. An extensible application
for assembling annotation for genomic data. Bioinformatics, 19(1):
155–56, 2003. 115

L. Zhang, M. F. Miles, and K. D. Aldape. A model of molecular
interactions on short oligonucleotide mic roarrays: implications for
probe design and data analysis. Nature Biotechnology, 21(7):818–821,
2004. 28, 29

X. Zhou, M. C. Kao, and W. H. Wong. Transitive functional anno-
tation by shortest-path analysis of gene expression data. Proc. Natl.
Acad. Sci. of the U.S.A., 99:12783–8, 2002. 331

References 463

Index

t-statistic, 434
[(function), 78
[[(function), 78
%/% (function), 74

aaf.handler (function), 154
aafCytoband (class), 152
aafGenBank (class), 152
aafGO (class), 151
aafGO (function), 151
aafGOItem (class), 151
aafList (class), 150, 151
aafList (function), 150
aafPubMed (class), 152
aafSearchText (function), 160
aafSymbol (function), 150
aafTable (class), 321, 325
aafTableAnn (function), 155
absText (function), 141
acc (function), 332
accessibility (graphs), 204, 332, 342,

351
aCGH (package), 162
actor, 342, 346
actor size, 379
additive-multiplicative error model,

9, 231
ade4 (package), 360
adjacency (graphs), 204, 339, 342,

351, 379
affiliation network, 335, 342, 346, 379
affinity, 27
affy, 432
affy (package), 13–47, 262, 324, 326,

397, 398, 432
AffyBatch (class), 13, 15–20, 24, 25,

27, 28, 34, 35, 42
affycomp (function), 31

affycomp (package), 13, 29–32
affycompPlot (function), 31
affycompTable (function), 31
affydata (package), 16
Affymetrix, 13–47
affypdnn (package), 13, 28, 29
affyPLM (package), 6, 13, 26, 33, 42,

44, 397, 433
AffyRNAdeg (function), 39
AgEdge (class), 365
agnes (function), 212, 214
agnes, clara, diana, fanny, silhouette

(function), 285
AgNode (class), 365
agopen (function), 363–365, 392
agQuality (function), 58
agrep (function), 122, 123, 141
ALL, 384
ALL (package), 166, 170, 175, 230,

232, 262, 268, 274, 300, 443
ALLMLL (package), 34, 36, 44–46
alongChrom (function), 178
AmiGO, 444
annaffy (package), 148–156, 159, 264,

320, 324–326, 441
AnnBuilder (package), 51, 115, 132,

148
annotate (package), 117, 119, 132,

138, 140, 148, 152, 264, 439
annotation, 113, 438
ANOVA, 410, 417
antisense strand, 174
ape (package), 360
apoptosis, 85
apply (function), 427, 434
ArrayExpress, 116
arrayMagic (package), 49, 162
arrayQuality (package), 49–68, 162

466 Index

assay, expression, 72
assay, loss of function, 72
assessAll (function), 31
assessDilution (function), 30, 31
assessSpikeIn (function), 30, 31
assessSpikeIn2 (function), 30, 31

B-statistic, 416–417
background adjustment, 4, 18–25, 56,

418–420
bagging, 294
bagging (function), 308
bagging, ipredknn, lda, slda

(function), 285
balanced sampling, 423
baseline subtraction, 93
bclust (function), 214
bclust, cmeans, cshell, hclust, lca

(function), 285
beta7 (package), 50–69, 418–420
beta7 experiment, 50–51, 401–402
Bezier curves, 361
BezierCurve (class), 366
bias-variance trade-off, 9, 62
Biobase (package), 7, 51, 139
BioCarta, 444
Bioconductor, 444
bioDist (package), 195, 198, 202, 211
BioPAX, 444
Biostrings (package), 144, 145
bipartite graph, 329, 342, 379, 387
bitmap (function), 158
BOOST, 444
boosting, 280, 294
boot2fuzzy (function), 227
boothopach (function), 214
bootplot (function), 224, 225
bootstrap, 216, 224, 227, 274, 299
boundary, 340, 384, 386
boxplot, 9, 35, 61, 427
boxplot (function), 17, 35, 60
brewer.pal (function), 59
Brier score, 308
browseURL (function), 152
brushing, 83, 163
buildPubMedAbst (function), 140

caspase-3, 85
cclust (package), 214

CDF file, 15
CDF package, 15
CEL file, 15, 431
centroid, 210
CGI, 315
chromLocation (class), 175
clara (function), 214
class (package), 214, 285, 425
classification, 293–311, 421
classification and regression tree

(CART), 279
classifOutput (class), 284
clearNode (function), 351
clique, 331, 340
closed, 339
cluster (package), 194, 195, 211–214,

285
cluster analysis, 209
cluster graph, 370
clusterGraph (class), 349
clustering, agglomerative, 212
clustering, divisive, 212
clustering, hierarchical, 212, 217
clusters, number of, 210, 211, 217, 220
clustOutput (class), 284
cMAP, 127, 391, 444
cMAP (package), 118, 125, 127, 128,

391
cmdscale (function), 173, 174
cmeans (function), 214
CoCiteStats (package), 381
coef (function), 42
colorRampPalette (function), 164
combineFrames (function), 89
combineNodes (function), 351
common reference, 398–400, 407–410
complement, 341
complete graph, 339
component, 340
computational learning theory, 185
confusion matrix, 429
connComp (function), 355
connected, 339
connected components, 371, 389
connection (class), 368
connectivity, 340
contingency table, 86, 380, 387
contrast matrix, 399–415
contrast.fit (function), 237

Index 467

control spots, 419
convert, 68
convert (package), 51, 68
cophenetic (function), 170, 214
correlationordering (function), 220
cPlot (function), 176
CRAN, 158, 444
Crick strand, 174
cross validation, 274, 282, 288, 299,

423
cscores (function), 307
cut, 340
cut-node, 340
cut-set, 340
cv, knn, pam, pamr (function), 285
cycle, 340
cytoband, 152
cytoFrame (class), 78
cytoSet (class), 78, 79

daisy (function), 194, 211
daMA (package), 241
DAT file, 15
data import, 15
data splitting, 282
data.frame (class), 56, 145, 268
decideTests, 410
decideTests (function), 238, 239
degree, 339
degree (function), 352
degrees of freedom, 417
dendrogram, 170
densCols (function), 164
density curves, 427
description (function), 77
design matrix, 399–415
dfs (function), 355
diagonal linear discriminant analysis,

424
diana (function), 211–215
differential expression, 229–248, 397,

431
digraph, 338
dijkstra.sp (function), 357
direct two-color design, 398, 400,

411–412
directed acyclic graphs, 343
directed bipartite graph, 342
directed edge, 338

directed graph, 338
dissimilarity, 191, 210–212, 218, 223,

225
dissimilarity (class), 194
dist (class), 194, 195
dist (function), 194, 211
distance, 191, 211, 212
distancematrix (function), 211
distGraph (class), 349
dot, 362
doubt, 276
DPExplorer (function), 117
dplot (function), 225
drawNode (function), 367
drawThermometerNode (function),

366
drill down, 157, 163, 368
dropEcode (function), 125
dye effect, 401–405
dye swap, 401–405
dye-swap, 53, 68

e1071, 425
e1071 (package), 214, 284, 285, 287,

425
eapply (function), 122
EBarrays (package), 68
eBayes (function), 238, 437, 439
edd (function), 290
edd (package), 289, 290
empirical Bayes, 397, 416, 418
ensemble methods, 293–311
Entrez, 444
EntrezGene, 115
environment (class), 78
Enzyme Commission (EC), 116
error model, 9, 231
error rate, 298, 424, 427
estrogen (package), 168, 230, 240,

241, 243, 246, 444
event, 342, 346
event size, 379
evidence codes, 124
exactRankTests (package), 307
exploratory data analysis, 34, 161
expresso (function), 25, 26, 29
expressopdnn (function), 25, 29
exprs (function), 77, 78
exprSet, 7

468 Index

exprSet (class), 7, 8, 13, 15, 18, 25,
27, 30, 51, 66, 68, 78, 105, 166,
168, 232, 241, 262, 268, 284,
285, 300, 304, 317, 318, 325,
398, 399, 443

extrapolation, 276

F-statistic, 410
facsDorit (package), 73, 74
factDesign (package), 241, 242
factorial design, 412–414
false discovery rate, 416, 417
false negatives, 330
false positives, 330
fanny (function), 214
FCS format, 77
fitNorm2 (function), 80, 81, 85
fitPLM (function), 42
flexmix (package), 214
flow cytometry, 77
for (function), 425
fpc (package), 214
fractionation, 92

gal file, 53
gam (package), 284
gbm (function), 285
gbm (package), 285, 289
gclus (package), 162
gcrma (function), 25, 28
gcrma (package), 13, 18, 28, 29, 324
GenBank, 152, 160
genbank (function), 141
Gene Expression Omnibus (GEO),

116
Gene Ontology, 116, 159
GeneChip, 13–47
genefilter (package), 68, 201, 222, 233,

262, 434
GenePix, 419
geneplotter (package), 83, 158, 174
GEO, 444
get (function), 119
get.enzymes.by.pathway (function),

143
get.genes.by.motifs (function), 143
get.genes.by.pathway (function), 143
get.motifs.by.gene (function), 143
getDefaultAttrs (function), 363

getEvidence (function), 125
getGI (function), 119
getGO (function), 120
getLL (function), 120
getOntology (function), 125
getPMID (function), 120, 139
getPoints (function), 365
getResourcerer (function), 132
getSEQ (function), 119
getSeq4Acc (function), 144
getSYMBOL (function), 120
getText (function), 151, 159
getURL (function), 152
getwd (function), 15
GGobi, 84, 163
GO, 151, 153, 159, 235, 346, 374, 444
GO (package), 121–124
GOGraph (function), 334
GOHyperG (function), 375, 377
GOstats (package), 334, 347, 374, 376
GOTerm2Tag (function), 123
gpls (package), 284
gpQuality (function), 58
gpr file, 53
graph, 338
graph (class), 349, 361, 365, 366
graph (package), 118, 129, 332,

347–349, 352, 370, 391
graph display, 360
graph layout, 360
graph rendering, 360
GraphAT (package), 370
graphH (class), 349
graphNEL (class), 349, 350
Graphviz, 444
grep (function), 122, 123, 141
grid (package), 162

hclust (function), 214, 215
head, 338
heat.colors (function), 59
heatmap, 157, 214, 227, 245
heatmap (function), 166, 169, 174,

214
hexbin (function), 164
hexbin (package), 163
hgu95av2 (function), 117
hgu95av2 (package), 122, 150, 155,

159, 334, 387, 439

Index 469

hgu95av2probe (package), 145
hist (function), 17, 35
histogram, 35
homologous, 130
HOPACH, 212, 219, 223, 224, 227
hopach (function), 214, 215, 219,

222–227
hopach (package), 209, 211, 214, 219,

228
hopach2tree (function), 227
housekeeping genes, 53
hsahomology (package), 130
HTML, 153
HTML report, 441
htmlpage (function), 148, 149
hubers (function), 86
humanLLMappings (package), 119,

207
hypergraph, 329, 342, 343
hyperlink, 83, 158, 368

ideal mismatch, 19
identify (function), 163
image (function), 34, 43, 59
image analysis, 4, 5
image map, 157
imageMap (function), 83, 158, 368,

375
imagemap (function), 147, 148
in degree, 339
incident at, 338
induced graph, 125, 334
induced subgraph, 340
intersection, 341
ipred (package), 285, 308
isoMDS (function), 173
isoMDS, qda (function), 285
isPeak (function), 95, 96
iSPlot (package), 83, 163

join (function), 351
jpeg (function), 158
justGCRMA (function), 28
justRMA (function), 27, 28

Kaplan-Meier, 307
KEGG, 126, 142, 153, 391, 444
KEGG (package), 125, 126
KEGGSOAP (package), 143, 391

kernel function, 278
kidpack (package), 222, 230, 236, 304,

422, 443
KLD.matrix (function), 198
KLdist.matrix (function), 198
kmeans (function), 214, 285
knn1, knn.cv, lvq1, lvq2, lvq3, olvq1,

som (function), 285
knnB (function), 288
Kullback-Leibler Information, 196

lattice (package), 162
ldaB (function), 286
learning sample, 293
learning set, 423
Li and Wong algorithm, 26
libcurl, 444
limma (package), 49, 51, 62–64, 67,

68, 232, 236–238, 240, 243,
285, 397–420, 436, 438

linear model, 397–420
lines (function), 62, 366
list.celfiles() (function), 15
LITDB, 116
LL2wts (function), 386
lmFit (function), 68, 237, 238, 436
locator (function), 163
locfit (package), 89, 90, 284
locfit.robust (function), 89
LocusLink, 115, 149, 152
locuslinkByID (function), 139
locuslinkQuery (function), 139
loess (function), 64
logical (class), 55
logspline (package), 284

MA-plot, 17, 31, 36, 57, 62, 434
maA (function), 56
machine learning, 273
maCompCoord (function), 57
maCoord2Ind (function), 57
madOutPair (function), 242
maGeneTable (function), 56
Mahalanobis distance, 194
makecdfenv (package), 15
makeoutput (function), 226
maLG (function), 56
MAList (class), 65, 399
maLR (function), 56

470 Index

maM (function), 56
maNorm (function), 63
maNormScale (function), 63
maPalette (function), 59
MAplot (function), 17, 18
marray (package), 49–68, 397, 399,

419
marrayInfo (class), 52, 53, 55
marrayLayout (class), 53, 55
MArrayLM, 417–418
MArrayLM (class), 417
marrayNorm (class), 52, 56, 60, 61,

63, 68, 399, 401
marrayRaw (class), 51, 52, 54–57, 60,

61, 63, 66
MAS 5.0, 19
mas5 (function), 26
MASS (package), 86, 173, 285
match (function), 105
matchprobes (package), 28
matrix (class), 261
Matrix (package), 348
maximal clique, 340
mclust (package), 214
medoid, 210, 216, 220, 221, 227
merge (function), 156
meta-data, 113, 320
method (function), 64, 65
metric, 191
mgcv (package), 284
MIdist (function), 198
minimal spanning tree, 359
mismatch probe, 14
MLInterfaces (package), 8, 284, 285,

287–289, 301, 421, 424, 425
MLOutput (class), 284
MM, 14, 16
mm (function), 16
mode, 342
model.matrix (function), 236
moderated t-statistic, 436
moderated F-statistic, 417
moderated t-statistic, 416
mona (function), 214
msscheck (function), 219
mstree.kruskal (function), 359
mt.maxT (function), 233, 375
mt.teststat (function), 154, 424
MTP (class), 261, 262, 265, 271

multi-edge, 338
multidimensional scaling, 173
multifactor experiments, 239
multigraph, 329
multiple testing, 231, 318, 437
multtest (package), 154, 222, 232–234,

249, 250, 256, 259, 260, 262,
270, 318–320, 324–326, 375,
424

mutual information, 196
mutualInfo (function), 198
mva.pairs (function), 17
myPlot (function), 81

naiveBayes, svm (function), 285
NAR, 444
nearest neighbor classifier, 425
neato, 362
NetAffx, 116
Nimblegen, 14
nnet (function), 285, 287
nnet (package), 285, 287
nnetB (function), 288
no free lunch theorem, 283
normalization, 4, 20–25, 62–67, 75,

99–100, 419
normalize (function), 20
normalizeBetweenArrays (function),

63–65
normalizeWithinArrays (function), 63

Occam’s razor, 283
odds ratio, 381
oligonucleotide array, 3, 13–47
Omegahat, 444
OMIM, 116, 444
one mode graphs, 342
one-against-all, 298
one-channel microarray, 398–409
one-mode graph, 335
ontology, 120, 333
out degree, 339
outlier, 242, 276
outlierPair (function), 242

PAC learning theory, 281
pairwise comparisons, 410
pam (function), 211, 213, 214, 219,

224

Index 471

pamr (package), 285
par (function), 60
partitioning, 212
Parzen estimator, 279
path, 340, 357
pattern recognition, 274
PBS, 323
pData (class), 154
pData (function), 16
peak detection, 95
perfect match probe, 14
performance, 299
Perl, 315
phenoData, 432
phenoData (class), 241, 284, 399
platePlot (function), 83
PLMset (class), 42
plot (function), 61, 361, 363, 364, 366
plotCali (function), 103
plotChr (function), 177
plotNorm2 (function), 80
plotPlate (function), 82, 158
plotPrintTipLoess (function), 62
PM, 14, 16
pm (function), 16, 120
png (function), 158
points (function), 62
prada (package), 71–90, 158, 164
predict.MArrayLM (function), 168
prediction, 423
prediction error, 298
preprocess (function), 85, 89
preprocessing, 3–109, 317–318, 432
prior, 418
probe packages, 28
probe-level data, 49
probeNames (function), 16
probes, 399
probeset, 14
PROcess (package), 93, 94, 101, 106
ProData (package), 105
proper edge, 338
proteomics, 91
PubMed, 116, 138, 152, 378, 439, 444
pubmed (function), 140
pubMedAbst (class), 140

qualBoxplot (function), 58

quality assessment and control, 4,
33–47, 57–62, 79–84, 101–102

quality flags, 402
quality weights, 402
quantile normalization, 21

R, 444
Ragraph (class), 365–368
rainbow (function), 59
randiv (function), 426, 427
random divisions, 423
random forest, 279, 294
random graphs, 352
random seed, 422
randomEGraph (function), 352
randomForest (function), 285
randomForest (package), 285, 301
randomGraph (function), 352
randomNodeGraph (function), 352
ranking, 433
ratios (function), 38
RBGL (package), 347, 348, 352, 354,

360, 370
RColorBrewer (package), 35, 59, 162,

164, 167, 176
RCurl (package), 136
reactome, 333, 444
read (function), 54
read files, 419
read.Agilent (function), 54
read.cdffile (function), 15
read.Galfile (function), 53
read.GenePix (function), 54, 419
read.marrayInfo (function), 52
read.marrayRaw (function), 54
read.newspikein (function), 30
read.spikein (function), 30
read.Spot (function), 54
read.table (function), 73
ReadAffy (function), 15, 27
readFCS (function), 77
readGEOAnn (function), 132
readTargets (function), 399
RefSeq, 116
regexp (function), 105
replicate arrays, 400
replicate spots, within-array, 406–407
reposTools (package), 316
reshape (function), 77

472 Index

resid (function), 42
residual variance, 417
resourcer2BioC (function), 132
Resourcerer, 116, 444
Resourcerer (package), 132, 148
resourcerer2BioC (function), 132
Rggobi (package), 84, 163
RGList (class), 51, 57, 419
Rgraphviz (package), 129, 158, 347,

348, 360, 362, 364, 366, 368,
370, 375, 389, 393

RGtk (package), 163, 368
rlm (function), 42, 76, 77
RMA, 18, 27, 432
rma (function), 25, 27, 432
RMAGEML (package), 132, 133
RNA interference, 72
rowMeans (function), 434
rowttests (function), 434
rpart (function), 285
rpart (package), 279, 280, 285, 294
RSvgDevice (package), 158

SAM, 436
sammon (function), 173
sample splitting, 274
saveHTML (function), 155
saveText (function), 156
sbrier (function), 308
Scalable Vector Graphics, 158
scatterplot3d (package), 162
scree plot, 173
se (function), 42
search text, 159
selection bias, 424
self-loop, 338
sense strand, 174
separate-channel normalization, 64
set.seed (function), 287
setwd (function), 15
SGE, 323
shatters, 281
siggenes (package), 68
silcheck (function), 219, 224
silhouette, 161, 184, 217, 218
similarity function, 191
simpleaffy (package), 37
sma (package), 424
smoothScatter (function), 164

SOAP, 136
SOM (function), 214, 285
sp.between (function), 357
span, 340
spanning tree, 340
SparseM (package), 348
spearman.dist (function), 195
specZoom (function), 97
spike-in, 320
SpikeInSubset (package), 432
spotQuality (function), 58
SSOAP (package), 136
stats (package), 77, 173, 214, 285
stress, 173
strongComp (function), 355
strongly connected, 339
strwrap (function), 440
subgraph, 340
summarization, 4, 25
summary (function), 289
support vector machine, 421, 425
Surv (class), 307
survfit (function), 308
survival time, 307
SVG, 158

t-statistic, 68, 417
t-test, pooled, 408
table2html (function), 68
tail, 338
target, 50
target file, 52, 399
targets, 399
targets frame, 399
tau.dist (function), 195
tcltk (package), 163, 368
technical replication, 403–406
test data, 428
test sample, 429
text (function), 62
threestep (function), 25, 26
thresholds (function), 86
time course experiment, 414–415
tkWidgets (package), 117
tool-tip, 83, 147, 157
tooltip, 368
topTable (function), 238, 438, 439
total ion normalization, 99
trail, 340

Index 473

training data set, 421
treatment contrasts, 414
tree, 279, 343
tree (package), 279
two-channel normalization, 63
two-color spotted array, 3, 49–68, 398
two-way table, 86, 380–387
twopi, 362

ugly duckling theorem, 283
ugraph (function), 352
underlying, 338
uniform resource identifier, 135
UniGene, 116
union, 341
untested relationships, 330
URL, 152
url (function), 152

validation set, 423
Vapnik-Chervonenkis (VC)

dimension, 281
var selection (function), 301
variable selection, 301, 424
varImpPlot (function), 289
vcd (package), 162
Venn diagram, 410
vertex, 338
volcano plot, 434
vsn (function), 65, 66
vsn (package), 6, 24, 49, 65, 66, 324,

418, 420, 443
vsnh (function), 25

W3C, 444
walk, 339
Watson strand, 174
weakly connected, 339
Web interface, 313
web service, 135, 136
webbioc (package), 185, 313–318,

321–326
weights (function), 42
within block correlation, 403

XML (class), 140
XML (package), 136, 140
xmlApply (function), 140
xmlEventParse (function), 138

xmlSApply (function), 138
xmlTreeParse (function), 138
xyPoint (class), 365

YEAST (package), 119
yeastExpData (package), 370

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

