
1. Energy Transfer Between Radiation
and Atomic Transitions

In this introductory chapter we shall outline the basic ideas underlying the operation
of solid-state lasers. In-depth treatments of laser physics can be found in a number of
excellent textbooks [1.1, 2].

1.1 Optical Amplification

To understand the operation of a laser we have to know some of the principles gov-
erning the interaction of radiation with matter.

Atomic systems such as atoms, ions, and molecules can exist only in discrete
energy states. A change from one energy state to another, called a transition, is asso-
ciated with either the emission or the absorption of a photon. The wavelength of the
absorbed or emitted radiation is given by Bohr’s frequency relation

E2 − E1 = hν21, (1.1)

where E2 and E1 are two discrete energy levels, ν21 is the frequency, and h is the
Planck’s constant. An electromagnetic wave whose frequency ν21 corresponds to
an energy gap of such an atomic system can interact with it. To the approximation
required in this context, a solid-state material can be considered an ensemble of very
many identical atomic systems. At thermal equilibrium, the lower energy states in the
material are more heavily populated than the higher energy states. A wave interacting
with the substance will raise the atoms or molecules from lower to higher energy
levels and thereby experience absorption.

The operation of a laser requires that the energy equilibrium of a laser material be
changed such that energy is stored in the atoms, ions, or molecules of this material. This
is achieved by an external pump source which transfers electrons from a lower energy
level to a higher one. The pump radiation thereby causes a “population inversion.”
An electromagnetic wave of appropriate frequency, incident on the “inverted” laser
material, will be amplified because the incident photons cause the atoms in the higher
level to drop to a lower level and thereby emit additional photons. As a result, energy
is extracted from the atomic system and supplied to the radiation field. The release of
the stored energy by interaction with an electromagnetic wave is based on stimulated
or induced emission.

Stated very briefly, when a material is excited in such a way as to provide more
atoms (or molecules) in a higher energy level than in some lower level, the material
will be capable of amplifying radiation at the frequency corresponding to the energy
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level difference. The acronym “laser” derives its name from this process: “Light
Amplification by Stimulated Emission of Radiation.”

A quantum mechanical treatment of the interaction between radiation and matter
demonstrates that the stimulated emission is, in fact, completely indistinguishable
from the stimulating radiation field. This means that the stimulated radiation has the
same directional properties, same polarization, same phase, and same spectral charac-
teristics as the stimulating emission. These facts are responsible for the extremely high
degree of coherence, which characterizes the emission from lasers. The fundamental
nature of the induced or stimulated emission process has already been described by
A. Einstein and M. Planck.

In solid-state lasers, the energy levels and the associated transition frequencies
result from the different quantum energy levels or allowed quantum states of the
electrons orbiting about the nuclei of atoms. In addition to the electronic transitions,
multiatom molecules in gases exhibit energy levels that arise from the vibrational and
rotational motions of the molecule as a whole.

1.2 Interaction of Radiation with Matter

Many of the properties of a laser may be readily discussed in terms of the absorption
and emission processes which take place when an atomic system interacts with a radi-
ation field. In the first decade of this century Planck described the spectral distribution
of thermal radiation, and in the second decade Einstein, by combining Planck’s law
and Boltzmann statistics, formulated the concept of stimulated emission. Einstein’s
discovery of stimulated emission provided essentially all of the theory necessary to
describe the physical principle of the laser.

1.2.1 Blackbody Radiation

When the electromagnetic radiation in an isothermal enclosure, or cavity, is in thermal
equilibrium at temperature T , the distribution of radiation density �(ν) dν, contained
in a bandwidth dν, is given by Planck’s law

�(ν) dν = 8πν2 dν

c3

hν

ehν/kT − 1
, (1.2)

where �(ν) is the radiation energy density per unit frequency ((J s)/cm3), k is
Boltzmann’s constant, and c is the velocity of light. The spectral distribution of ther-
mal radiation energy vanishes at ν = 0 and ν → ∞, and has a peak, which depends
on the temperature.

The factor

8πν2

c3
= pn (1.3)
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in (1.2) gives the density of radiation modes per unit volume and unit frequency
interval. The factor pn can also be interpreted as the number of degrees of free-
dom associated with a radiation field, per unit volume, per unit frequency interval.
The expression for the mode density pn ((modes s)/cm3) plays an important role in
connecting the spontaneous and the induced transition probabilities.

For a uniform, isotropic radiation field, the following relationship is valid:

W = �(ν)c

4
, (1.4)

where W is the blackbody radiation (W/cm2), which will be emitted from an opening
in the cavity of the blackbody. Many solids radiate like a blackbody. Therefore, the
radiation emitted from the surface of a solid can be calculated from (1.4).

According to the Stefan–Boltzmann equation, the total black body radiation is

W = σ T 4, (1.5)

where σ = 5.68 × 10−12 W/(cm2 K4). The emitted radiation W has a maximum
which is obtained from Wien’s displacement law

λmax

μm
= 2893

T/K
. (1.6)

For example, a blackbody at a temperature of 5200 K has its radiation peak at 5564 Å,
which is about the center of the visible spectrum.

A good introduction to the fundamentals of radiation and its interaction with
matter can be found in [1.2].

1.2.2 Boltzmann’s Statistics

According to a basic principle of statistical mechanics, when a large collection of
similar atoms is in thermal equilibrium at temperature T, the relative populations of
any two energy levels E1 and E2, such as the ones shown in Fig. 1.1, must be related
by the Boltzmann ratio

N2

N1

= exp

(−(E2 − E1)

kT

)
, (1.7)

Fig. 1.1. Two energy levels with popu-

lation N1, N2 and degeneracies g1, g2,

respectively
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where N1 and N2 are the number of atoms in the energy levels E1 and E2, respectively.
For energy gaps large enough that E2 − E1 = hν21 � kT, the ratio is close to zero,
and there will be very few atoms in the upper energy level at thermal equilibrium. The
thermal energy kT at room temperature (T ≈ 300 K) corresponds to an energy gap hν

with ν ≈ 6 × 1012 Hz, which is equivalent in wavelength to λ ≈ 50 μm. Therefore,
for any energy gap whose transition frequency ν21 lies in the near-infrared or visible
regions, the Boltzmann exponent will be very small at normal temperatures. The
number of atoms in any upper level will then be very small compared to the lower
levels. For example, in ruby the ground level E1 and the upper laser level E2 are
separated by an energy gap corresponding to a wavelength of λ ≈ 0.69 μm. Since
h = 6.6 × 10−34 W s2, then E2 − E1 = hc/λ = 2.86 × 10−19 W s. With k = 1.38 ×
10−23 (W s)/K and T = 300 K, it follows that N2/N1 ≈ exp(−69). Therefore at
thermal equilibrium virtually all the atoms will be in the ground level.

Equation (1.7) is valid for atomic systems having only nondegenerate levels. If
there are gi different states of the atom corresponding to the energy Ei , then gi is
defined as the degeneracy of the i th energy level.

We recall that atomic systems, such as atoms, ions, molecules, can exist only
in certain stationary states, each of which corresponds to a definite value of energy
and thus specifies an energy level. When two or more states have the same energy,
the respective level is called degenerate, and the number of states with the same
energy is the multiplicity of the level. All states of the same energy level will be
equally populated therefore the number of atoms in levels 1 and 2 is N1 = g1 N ′

1 and
N2 = g2 N ′

2, where N ′
1 and N ′

2 refer to the population of any of the states in levels 1
and 2, respectively. It follows then from (1.7) that the populations of the energy levels
1 and 2 are related by the formula

N2

N1

= g2

g1

N ′
2

N ′
1

= g2

g1

exp

(−(E2 − E1)

kT

)
. (1.8)

At absolute zero temperature, Boltzmann’s statistics predicts that all atoms will be in
the ground state. Thermal equilibrium at any temperature requires that a state with a
lower energy be more densely populated than a state with a higher energy. Therefore,
N2/N1 is always less than unity for E2 > E1 and T > 0. This means that optical
amplification is not possible in thermal equilibrium.

1.2.3 Einstein’s Coefficients

We can most conveniently introduce the concept of Einstein’s A and B coefficients
by loosely following Einstein’s original derivation. To simplify the discussion, let
us consider an idealized material with just two nondegenerate energy levels 1 and 2
having populations of N1 and N2, respectively. The total number of atoms in these
two levels is assumed to be constant

N1 + N2 = Ntot. (1.9)
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Radiative transfer between the two energy levels which differ by E2 − E1 = hν21

is allowed. The atom can transfer from state E2 to the ground state E1 by emitting
energy; conversely, transition from state E1 to E2 is possible by absorbing energy.
The energy removed or added to the atom appears as quanta of hν21. We can identify
three types of interaction between electromagnetic radiation and a simple two-level
atomic system: absorption, spontaneous emission, and stimulated emission.

Absorption. If a quasimonochromatic electromagnetic wave of frequency ν21 passes
through an atomic system with energy gap hν21, then the population of the lower level
will be depleted at a rate proportional to both the radiation energy density �(ν) and
the population N1 of that level

∂ N1

∂t
= −B12�(ν)N1, (1.10)

where B12 is a constant of proportionality with dimensions cm3/(s2 J).
The product B12�(ν) can be interpreted as the probability per unit frequency for

which transitions are induced by the effect of the field.

Spontaneous Emission. After an atom has been raised to the upper level by absorp-
tion, the population of the upper level decays spontaneously to the lower level at a
rate proportional to the upper level population.

∂ N2

∂t
= −A21 N2, (1.11)

where A21 is a constant of proportionality with dimensions s−1. The quantity A21,
being a characteristic of the pair of energy levels in question, is called the spontaneous
transition probability because this coefficient gives the probability that an atom in level
2 will spontaneously change to a lower level 1 within a unit of time.

Spontaneous emission is a statistical function of space and time. With a large
number of spontaneously emitting atoms there is no phase relationship between the
individual emission processes; the quanta emitted are incoherent. Spontaneous emis-
sion is characterized by the lifetime of the electron in the excited state, after which
it will spontaneously return to the lower state and radiate away the energy. This can
occur without the presence of an electromagnetic field.

Equation (1.11) has a solution

N2(t) = N2(0) exp

(−t

τ21

)
, (1.12)

where τ21 is the lifetime for spontaneous radiation of level 2. This radiation lifetime
is equal to the reciprocal of the Einstein’s coefficient,

τ21 = A−1
21 . (1.13)

In general, the reciprocal of the transition probability of a process is called its
lifetime.
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Stimulated Emission. Emission takes place not only spontaneously but also under
stimulation by electromagnetic radiation of appropriate frequency. In this case, the
atom gives up a quantum to the radiation field by “induced emission” according to

∂ N2

∂t
= −B21�(ν21)N2, (1.14)

where B21 again is a constant of proportionality.
Radiation emitted from an atomic system in the presence of external radiation

consists of two parts. The part whose intensity is proportional to A21 is the spontaneous
radiation; its phase is independent of that of the external radiation. The part whose
intensity is proportional to �(ν)B21 is the stimulated radiation; its phase is the same
as that of the stimulating external radiation.

The probability of induced transition is proportional to the energy density of
external radiation in contrast to spontaneous emission. In the case of induced transition
there is a firm phase relationship between the stimulating field and the atom. The
quantum which is emitted to the field by the induced emission is coherent with it.

But we shall see later that the useful parameter for laser action is the B21 coefficient;
the A21 coefficient represents a loss term and introduces into the system photons that
are not phase-related to the incident photon flux of electric field. Thus the spontaneous
process represents a noise source in a laser.

If we combine absorption, spontaneous, and stimulated emission, as expressed by
(1.10, 11, and 14), we can write for the change of the upper and lower level populations
in our two-level model

∂ N1

∂t
= −∂ N2

∂t
= B21�(ν)N2 − B12�(ν)N1 + A21 N2. (1.15)

The relation

∂ N1

∂t
= −∂ N2

∂t
(1.16)

follows from (1.9).
In thermal equilibrium, the number of transitions per unit time from E1 to E2 must

be equal to the number of transitions from E2 to E1. Certainly, in thermal equilibrium

∂ N1

∂t
= ∂ N2

∂t
= 0. (1.17)

Therefore we can write

N2 A21 + N2�(ν)B21 = N1�(ν)B12

Spontaneous Stimulated Absorpion
emission emission

. (1.18)

Using the Boltzmann equation (1.8) for the ratio N2/N1, we then write the above
expression as

�(ν21) = (A21/B21)

(g1/g2)(B12/B21) exp (hν21/kT ) − 1
. (1.19)
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Comparing this expression with the blackbody radiation law (1.2), we see that

A21

B21

= 8πν2hν

c3
and B21 = g1 B12

g2

. (1.20)

The relations between the A’s and B’s are known as Einstein’s relations. The factor
8πν2/c3 in (1.20) is the mode density pn given by (1.3).

In solids the speed of light is c = c0/n, where n is the index of refraction and c0

is the speed of light in vacuum.
For a simple system with no degeneracy, that is, one in which g1 = g2, we see

that B21 = B12. Thus, the Einstein coefficients for stimulated emission and absorption
are equal. If the two levels have unequal degeneracy, the probability for stimulated
absorption is no longer the same as that for stimulated emission.

1.2.4 Phase Coherence of Stimulated Emission

The stimulated emission provides a phase-coherent amplification mechanism for an
applied signal. The signal extracts from the atoms a response that is directly pro-
portional to, and phase-coherent with, the electric field of the stimulating signal.
Thus the amplification process is phase-preserving. The stimulated emission is, in
fact, completely indistinguishable from the stimulating radiation field. This means
that the stimulated emission has the same directional properties, same polarization,
same phase, and same spectral characteristics as the stimulating emission. These facts
are responsible for the extremely high degree of coherence, which characterizes the
emission from lasers. The proof of this fact is beyond the scope of this elementary
introduction, and requires a quantum mechanical treatment of the interaction between
radiation and matter. However, the concept of induced transition, or the interaction
between a signal and an atomic system, can be demonstrated, qualitatively, with the
aid of the classical electron-oscillator model.

Electromagnetic radiation interacts with matter through the electric charges in
the substance. Consider an electron which is elastically bound to a nucleus. One can
think of electrons and ions held together by spring-type bonds which are capable of
vibrating around equilibrium positions. An applied electric field will cause a relative
displacement between electron and nucleus from their equilibrium position. They will
execute an oscillatory motion about their equilibrium position. Therefore, the model
exhibits an oscillatory or resonant behavior and a response to an applied field. Since
the nucleus is so much heavier than the electron, we assume that only the electron
moves. The most important model for understanding the interaction of light and matter
is that of the harmonic oscillator. We take as our model a single electron, assumed to
be bound to its equilibrium position by a linear restoring force. We may visualize the
electron as a point of mass suspended by springs. Classical electromagnetic theory
asserts that any oscillating electric charge will act as a miniature antenna or dipole
and will continuously radiate away electromagnetic energy to its surroundings.

A detailed description of the electric dipole transition and the classical electron-
oscillator model can be found in [1.3].
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1.3 Absorption and Optical Gain

In this section we will develop the quantitative relations that govern absorption and
amplification processes in substances. This requires that we increase the realism of
our mathematical model by introducing the concept of atomic lineshapes. Therefore,
the important features and the physical processes which lead to different atomic
lineshapes will be considered first.

1.3.1 Atomic Lineshapes

In deriving Einstein’s coefficients we have assumed a monochromatic wave with
frequency ν21 acting on a two-level system with an infinitely sharp energy gap hν21. We
will now consider the interaction between an atomic system having a finite transition
linewidth 	ν and a signal with a bandwidth dν.

Before we can obtain an expression for the transition rate for this case, it is
necessary to introduce the concept of the atomic lineshape function g(ν, ν0). The dis-
tribution g(ν, ν0), centered at ν0, is the equilibrium shape of the linewidth-broadened
transitions. Suppose that N2 is the total number of ions in the upper energy level
considered previously. The spectral distribution of ions per unit frequency is then

N (ν) = g(ν, ν0)N2. (1.21)

If we integrate both sides over all frequencies we have to obtain N2 as a result:∫ ∞

0

N (ν) dν = N2

∫ ∞

0

g(ν, ν0) dν = N2. (1.22)

Therefore the lineshape function must be normalized to unity:∫ ∞

0

g(ν, ν0) dν = 1. (1.23)

If we know the function g(ν, ν0), we can calculate the number of atoms N (ν) dν in
level 1 which are capable of absorbing in the frequency range ν to ν + dν, or the
number of atoms in level 2 which are capable of emitting in the same range. From
(1.21) we have

N (ν) dν = g(ν, ν0) dν N2. (1.24)

From the foregoing it follows that g(ν, ν0) can be defined as the probability of emission
or absorption per unit frequency. Therefore g(ν) dν is the probability that a given
transition will result in an emission (or absorption) of a photon with energy between
hν and h(ν + dν). The probability that a transition will occur between ν = 0 and
ν = ∞ has to be 1.

It is clear from the definition of g(ν, ν0) that we can, for example, rewrite (1.11)
in the form

−∂ N2

∂t
= A21 N2g(ν, ν0) dν, (1.25)
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where N2 is the total number of atoms in level 2 and ∂ N2/∂t is the number of photons
spontaneously emitted per second between ν and ν + dν.

The linewidth and lineshape of an atomic transition depends on the cause of
line broadening. Optical frequency transitions in gases can be broadened by lifetime,
collision, or Doppler broadening, whereas transitions in solids can be broadened by
lifetime, dipolar or thermal broadening, or by random inhomogeneities. All these
linewidth-broadening mechanisms lead to two distinctly different atomic lineshapes,
the homogeneously and the inhomogeneously broadened line [1.4].

The Homogeneously Broadened Line

The essential feature of a homogeneously broadened atomic transition is that every
atom has the same atomic lineshape and frequency response, so that a signal applied
to the transition has exactly the same effect on all atoms in the collection. This means
that within the linewidth of the energy level each atom has the same probability
function for a transition.

Differences between homogeneously and inhomogeneously broadened transitions
show up in the saturation behavior of these transitions. This has a major effect on
the laser operation. The important point about a homogeneous lineshape is that the
transition will saturate uniformly under the influence of a sufficiently strong signal
applied anywhere within the atomic linewidth.

Mechanisms which result in a homogeneously broadened line are lifetime broad-
ening, collision broadening, dipolar broadening, and thermal broadening.

Lifetime Broadening. This type of broadening is caused by the decay mechanisms
of the atomic system. Spontaneous emission or fluorescence has a radiative lifetime.
Broadening of the atomic transition due to this process is related to the fluorescence
lifetime τ by 	ωaτ = 1, where 	ωa is the bandwidth.

Actually, physical situations in which the lineshape and linewidth are determinded
by the spontaneous emission process itself are vanishingly rare. Since the natural or
intrinsic linewidth of an atomic line is extremely small, it is the linewidth that would
be observed from atoms at rest without interaction with one another.

Collision Broadening. Collision of radiating particles (atoms or molecules) with
one another and the consequent interruption of the radiative process in a random
manner leads to broadening. As an atomic collision interrupts either the emission or
the absorption of radiation, the long wave train which otherwise would be present
becomes truncated. The atom restarts its motion after the collision with a completely
random initial phase. After the collision the process is restarted without memory of
the phase of the radiation prior to the collision. The result of frequent collisions is the
presence of many truncated radiative or absorptive processes.

Since the spectrum of a wave train is inversely proportional to the length of the
train, the linewidth of the radiation in the presence of collision is greater than that of
an individual uninterrupted process.
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Collision broadening is observed in gas lasers operated at higher pressures, hence
the name pressure broadening. At higher pressures collisions between gas atoms limit
their radiative lifetime. Collision broadening, therefore, is quite similar to lifetime
broadening, in that the collisions interrupt the initial state of the atoms.

Dipolar Broadening. Dipolar broadening arises from interactions between the mag-
netic or electric dipolar fields of neighboring atoms. This interaction leads to results
very similar to collision broadening, including a linewidth that increases with increas-
ing density of atoms. Since dipolar broadening represents a kind of coupling between
atoms, so that excitation applied to one atom is distributed or shared with other atoms,
dipolar broadening is a homogeneous broadening mechanism.

Thermal Broadening. Thermal broadening is brought about by the effect of the
thermal lattice vibrations on the atomic transition. The thermal vibrations of the lat-
tice surrounding the active ions modulate the resonance frequency of each atom at a
very high frequency. This frequency modulation represents a coupling mechanism be-
tween the atoms, and therefore a homogeneous linewidth is obtained. Thermal broad-
ening is the mechanism responsible for the linewidth of the ruby laser and Nd:YAG
laser.

The lineshape of homogeneous broadening mechanisms lead to a Lorentzian
lineshape for atomic response. For the normalized Lorentz distribution, the equation

g(ν) =
(

	ν

2π

) [
(ν − ν0)2 +

(
	ν

2

)2
]−1

(1.26)

is valid. Here, ν0 is the center frequency and 	ν is the width between the half-power
points of the curve. The factor 	ν/2π assures normalization of the area under the
curve according to (1.23). The peak value for the Lorentz curve is

g(ν0) = 2

π	ν
. (1.27)

The Inhomogeneously Broadened Line

Mechanisms which cause inhomogeneous broadening tend to displace the center fre-
quencies of individual atoms, thereby broadening the overall response of a collection
without broadening the response of individual atoms. Different atoms have slightly
different resonance frequencies on the same transition, for example, owing to Doppler
shifts. As a result, the overall response of the collection is broadened. An applied sig-
nal at a given frequency within the overall linewidth interacts strongly only with those
atoms whose shifted resonance frequencies lie close to the signal frequency. The ap-
plied signal does not have the same effect on all the atoms in an inhomogeneously
broadened collection.

Since in an inhomogeneously broadened line interaction occurs only with those
atoms whose resonance frequencies lie close to the applied signal frequency, a strong
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signal will eventually deplete the upper laser level in a very narrow frequency interval.
The signal will eventually “burn a hole” in the atomic absorption curve. Examples
of inhomogeneous frequency-shifting mechanisms include Doppler broadening and
broadening due to crystal inhomogeneities.

Doppler Broadening. The apparent resonance frequencies of atoms undergoing
random motions in a gas are shifted randomly so that the overall frequency response
of the collection of atoms is broadened. A particular atom moving with a velocity
component v relative to an observer in the z direction will radiate at a frequency
measured by the observer as ν0(1 + v/c). When these velocities are averaged, the
resulting lineshape is Gaussian. Doppler broadening is one form of inhomogeneous
broadening, since each atom emits a different frequency rather than one atom having a
probability distribution for emitting any frequency within the linewidth. In the actual
physical situation, the Doppler line is best visualized as a packet of homogeneous
lines of width 	νn, which superimpose to give the observed Doppler shape. The
He–Ne laser has a Doppler-broadened linewidth. Most visible and near-infrared gas
laser transitions are inhomogeneously broadened by Doppler effects.

Line Broadening Due to Crystal Inhomogeneities. Solid-state lasers may be in-
homogeneously broadened by crystalline defects. This happens only at low tempera-
tures where the lattice vibrations are small. Random variations of dislocations, lattice
strains, etc., may cause small shifts in the exact energy level spacings and transition
frequencies from ion to ion. Like Doppler broadening, these variations do not broaden
the response on an individual atom, but they do cause the exact resonance frequencies
of different atoms to be slightly different. Thus random crystal imperfection can be a
source of inhomogeneous broadening in a solid-state laser crystal.

A good example of an inhomogeneously broadened line occurs in the fluores-
cence of neodymium-doped glass. As a result of the so-called glassy state, there are
variations, from rare earth site to rare earth site, in the relative atomic positions occu-
pied by the surrounding lattice ions. This gives rise to a random distribution of static
crystalline fields acting on the rare earth ions. Since the line shifts corresponding to
such crystal-field variations are larger, generally speaking, than the width contributed
by other factors associated with the transition, an inhomogeneous line results.

The inhomogeneous-broadened linewidth can be represented by a Gaussian fre-
quency distribution. For the normalized distribution, the equation

g(ν) = 2

	ν

(
ln 2

π

)1/2

exp

[
−

(
ν − ν0

	ν/2

)2

ln 2

]
(1.28)

is valid, where ν0 is the frequency at the center of the line and 	ν is the linewidth
at which the amplitude falls to one-half. The peak value of the normalized Gaussian
curve is

g(ν0) = 2

	ν

(
ln 2

π

)1/2

. (1.29)



22 1. Energy Transfer Between Radiation and Atomic Transitions

Fig. 1.2. Gaussian and Lorentz lines of common linewidth (Gp and Lp are the peak intensities)

In Fig. 1.2 the normalized Gaussian and Lorentz lines are plotted for a common
linewidth.

1.3.2 Absorption by Stimulated Transitions

We assume a quasicollimated beam of energy density per frequency �(ν) incident on
a thin absorbing sample of thickness dx ; as before, we consider the case of an optical
system that operates only between two energy levels as illustrated schematically in
Fig. 1.1. The populations of the two levels are N1 and N2, respectively. Level 1 is the
ground level and level 2 is the excited level. We consider absorption of radiation in
the material and emission from the stimulated processes but neglect the spontaneous
emission. From (1.15 and 1.20) we obtain

−∂ N1

∂t
= �(ν)B21

(
g2

g1

N1 − N2

)
. (1.30)

As we recall, this relation was obtained by considering infinitely sharp energy levels
separated by hν21 and a monochromatic wave of frequency ν21.
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Fig. 1.3. Linewidth-broadened atomic transition line centered at ν0 and narrow band signal centered at νs

We will now consider the interaction between two linewidth-broadened energy
levels with an energy separation centered at ν0, and a half-width of 	ν characterized
by g(ν, ν0) and a signal with center frequency νs and bandwidth dν. The situation
is shown schematically in Fig. 1.3. The spectral width of the signal is narrow, as
compared to the linewidth-broadened transition. If N1 and N2 are the total number of
atoms in level 1 and level 2, then the number of atoms capable of interacting with a
radiation of frequency νs and bandwidth dν are(

g2

g1

N1 − N2

)
g(νs, ν0) dν. (1.31)

The net change of atoms in energy level 1 can be expressed in terms of energy density
�(ν) dν by multiplying both sides of (1.30) with photon energy hν and dividing by the
volume V . We will further express the populations N1 and N2 as population densities
n1 and n2.

Equation (1.30) now becomes

− ∂

∂t
[�(νs) dν] = �(νs) dν B21hνg(νs, ν0)

(
g2

g1

n1 − n2

)
. (1.32)

This equation gives the net rate of absorbed energy in the frequency interval dν cen-
tered around νs. In an actual laser system the wavelength of the emitted radiation,
corresponding to the signal bandwidth dν in our model, is very narrow as com-
pared to the natural linewidth of the material. Ruby, for example, has a fluorescent
linewidth of 5Å, whereas the linewidth of the laser output is typically 0.1–0.01Å. The
operation of a laser, therefore, can be fairly accurately characterized as the interac-
tion of linewidth-broadened energy levels with a monochromatic wave. The photon
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density of a monochromatic radiation of frequency ν0 can then be represented by a
delta function δ(ν − ν0). After integrating (1.32) in the interval dν, we obtain, for a
monochromatic signal of frequency νs and a linewidth-broadened transition,

−∂�(νs)

∂t
= �(νs)B21hνsg(νs, ν0)

(
g2

g1

n1 − n2

)
. (1.33)

The signal will travel through the material of thickness dx in the time dt = dx/c =
(n/c0) dx . Then, as the wave advances from x to x + dx, the decrease of energy in
the beam is

−∂�(νs)

∂x
= hνs�(νs)g(νs, ν0)B21

(
g2

g1

n1 − n2

)
1

c
. (1.34)

Integration of (1.34) gives

�(νs)

�0(νs)
= exp

[
−hνsg(νs, ν0)B21

(
g2

g1

n1 − n2

)
x

c

]
. (1.35)

If we introduce an absorption coefficient α(νs),

α(νs) =
(

g2

g1

n1 − n2

)
σ21(νs), (1.36)

where

σ21(νs) = hνsg(νs, ν0)B21

c
. (1.37)

Then we can write (1.35) as

�(νs) = �0(νs) exp[−α(νs)x]. (1.38)

Equation (1.38) is the well-known exponential absorption equation for thermal equi-
librium condition n1g2/g1 > n2. The energy of the radiation decreases exponentially
with the depth of penetration into the substance. The maximum possible absorption
occurs when all atoms exist in the ground state n1. For equal population of the energy
states n1 = (g1/g2)n2, the absorption is eliminated and the material is transparent.
The parameter σ21 is the cross section for the radiative transition 2 → 1. The cross
section for stimulated emission σ21 is related to the absorption cross section σ12 by
the ratio of the level degeneracies:

σ21

σ12

= g1

g2

. (1.39)

The cross section is a very useful parameter to which we will refer in the following
chapters. If we replace B21 by the Einstein relation (1.20), we obtain σ21 in a form
which we will find most useful:

σ21(νs) = A21λ
2
0

8πn2
g(νs, ν0). (1.40)
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As we will see later, the gain for the radiation building up in a laser resonator will
be highest at the center of the atomic transitions. Therefore, in lasers we are mostly
dealing with stimulated transitions which occur at the center of the linewidth.

If we assume ν ≈ νs ≈ ν0, we obtain for the spectral stimulated emission cross
section at the center of the atomic transition for a Lorentzian lineshape

σ21 = A21λ
2
0

4π2n2	ν
, (1.41)

and for a Gaussian lineshape

σ21 = A21λ
2
0

4πn2	ν

(
ln 2

π

)1/2

. (1.42)

Here we have introduced into (1.40) the peak values of the lineshape function,
as given in (1.27 and 1.29) for the Lorentzian and Gaussian curves, respectively.
For example, in the case of the R1 line of ruby, where λ0 = 6.94 × 10−5 cm,
n = 1.76, τ21 = (1/A21) = 3 ms, and 	ν = 330 G H z one finds, according to (1.41),
σ21 = 4.0 × 10−20 cm2. In comparing this value with the data provided in Table 2.2,
we have to distinguish between the spectroscopic cross section and the effective stim-
ulated emission cross section. (This will be discussed in Sect. 2.3.1 for the case of
Nd:YAG). The effective stimulated emission cross section is the spectroscopic cross
section times the occupancy of the upper laser level relative to the entire manifold
population. In ruby, the upper laser level is split into two sublevels and therefore
the effective stimulated emission cross section is about half of the value calculated
from (1.41).

1.3.3 Population Inversion

According to the Boltzmann distribution (1.7), in a collection of atoms at thermal
equilibrium there are always fewer atoms in a higher-lying level E2 than in a lower
level E1. Therefore the population difference N1 − N2 is always positive, which
means that the absorption coefficient α(νs) in (1.36) is positive and the incident
radiation is absorbed (Fig. 1.4).

Suppose that it were possible to achieve a temporary situation such that there are
more atoms in an upper energy level than in a lower energy level. The normally pos-
itive population difference on that transition then becomes negative, and the normal
stimulated absorption is correspondingly changed to stimulated emission or amplifi-
cation of the applied signal. That is, the applied signal gains energy as it interacts with
the atoms and hence is amplified. The energy for this signal amplification is supplied
by the atoms involved in the interaction process. This situation is characterized by a
negative absorption coefficient α(νs) according to (1.36). From (1.34) it follows that
∂�(ν)/∂x > 0.

The essential condition for amplification is that there are more atoms in an upper
energy level than in a lower energy level, i.e., for amplification,

N2 > N1 if E2 > E1, (1.43)
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Fig. 1.4. Relative populations in two energy

levels as given by the Boltzmann relation for

thermal equilibrium

as illustrated in Fig. 1.5. The resulting negative sign of the population difference (N2 −
g2 N1/g1) on that transition is called a population inversion. Population inversion is
clearly an abnormal situation; it is never observed at thermal equilibrium. The point
at which the population of both states is equal is called the “inversion threshold.”

Stimulated absorption and emission processes always occur side by side inde-
pendent of the population distribution among the levels. So long as the population
of the higher energy level is smaller than that of the lower energy level, the number
of absorption transitions is larger than that of the emission transitions, so that there
is an overall attenuation of the radiation. When the numbers of atoms in both states
are equal, the number of emissions becomes equal to the number of absorptions;
the material is then transparent to the incident radiation. As soon as the population
of the higher level becomes larger than that of the lower level, emission processes
predominate and the radiation is enhanced collectively during passage through the

Fig. 1.5. Inverted population difference re-

quired for optical amplification
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material. To produce an inversion requires a source of energy to populate a specified
energy level; we call this energy the pump energy.

In Sect. 1.4 we will discuss the type of energy level structure an atomic system
must possess in order to make it possible to generate an inversion. Techniques by
which the atoms of a solid-state laser can be raised or pumped into upper energy
levels are discussed in Sect. 6.1. Depending on the atomic system involved, an inverted
population condition may be obtainable only on a transient basis, yielding pulsed laser
action; or it may be possible to maintain the population inversion on a steady-state
basis, yielding continuous-wave (cw) laser action.

The total amount of energy which is supplied by the atoms to the light wave is

E = 	Nhν, (1.44)

where 	N is the total number of atoms which are caused to drop from the upper
to the lower energy level during the time the signal is applied. If laser action is to
be maintained, the pumping process must continually replenish the supply of upper-
state atoms. The size of the inverted population difference is reduced not only by the
amplification process but also by spontaneous emission, which always tends to return
the energy level populations to their thermal equilibrium values.

1.4 Creation of a Population Inversion

In this section we discuss how the necessary population inversion for laser action is
obtained in solid-state lasers. We can gain considerable understanding on how laser
devices are pumped and how their population densities are inverted by studying some
simplified but fairly realistic models.

The discussion up to this point has been based on a hypothetical 2 ↔ 1 transition
and has not been concerned with how the levels 2 and 1 fit into the energy level
scheme of the atom. This detached point of view must be abandoned when one tries
to understand how laser action takes place in a solid-state medium. As already noted,
the operation of the laser depends on a material with narrow energy levels between
which electrons can make transitions. Usually these levels are due to impurity ions in
a host crystal. The pumping and laser processes in real laser systems typically involve
a very large number of energy levels, with complex excitation processes and cascaded
relaxation processes among all these levels. Operation of an actual laser material is
properly described only by a many-level energy diagram. The main features can be
understood, however, through the familiar three-level or four-level idealizations of
Figs. 1.6 and 1.7. More detailed energy level diagrams of some of the most important
solid-state laser materials are presented in Chap. 2.

1.4.1 The Three-Level System

Figure 1.6 shows a diagram which can be used to explain the operation of an opti-
cally pumped three-level laser, such as ruby. Initially, all ions of the laser material are
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Fig. 1.6. Simplified energy level diagram of a three-level laser

in the lowest level 1. Excitation is supplied to the solid by radiation of frequencies
which produce absorption into the broadband 3. Thus, the pump light raises ions
from the ground state to the pump band, level 3. In general, the “pumping” band,
level 3, is actually made up of a number of bands, so that the optical pumping can
be accomplished over a broad spectral range. Most of the excited ions are transferred
by fast radiationless transitions into the intermediate sharp level 2. In this process the
energy lost by an electron is transferred to the lattice. Finally, the electron returns
to the ground level by the emission of a photon. It is this last transition that is re-
sponsible for the laser action. If pumping intensity is below laser threshold, ions in
level 2 predominantly return to the ground state by spontaneous emission. Ordinary
fluorescence acts as a drain on the population of level 2. After the pump radiation is
extinguished, level 2 is emptied by fluorescence at a rate that varies from material
to material. In ruby, at room temperature, the lifetime of level 2 is 3 ms. When the
pump intensity is above laser threshold, the decay from the fluorescent level consists
of stimulated as well as spontaneous radiation; the stimulated radiation produces the
laser output beam. Since the terminal level of the laser transition is the highly popu-
lated ground state, a very high population must be reached in the E2 level before the
2 → 1 transition is inverted.

It is necessary, in general, that the rate of radiationless transfer from the uppermost
level to the level at which the laser action begins be fast compared with the other
spontaneous transition rates in a three-level laser. Therefore, the lifetime of the E2

state should be large in comparison with the relaxation time of the 3 → 2 transition, i.e.,

τ21 � τ32. (1.45)

The number of ions N3 in level E3 is then negligible compared with the number of
ions in the other two states, i.e., N3 � N1, N2. Therefore,

N1 + N2 ≈ Ntot. (1.46)
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A vital aspect of the three-level system is that the ions are in effect pumped directly
from level 1 into the metastable level 2 with only a momentary pause as they pass
through level 3. With these conditions, we can calculate as if only two levels were
present. In order that an equal population is achieved between the E2 and E1 levels,
one-half of all atoms must be excited to the E2 level:

N2 = N1 = Ntot

2
. (1.47)

In order to maintain a specified amplification, the population of the second level must
be larger than that of the first level. In most cases which are of practical importance,
however, the necessary inversion (N2 − N1) is small compared with the total number
of all ions. The pump power necessary for maintaining this inversion is also small
compared with the power necessary for achieving equal population of the levels.

The disadvantage of a three-level system is that more than half of the ions in
the ground state must be raised to the metastable level E2. There are thus many
ions present to contribute to the spontaneous emission. Moreover, each of the ions
which participate in the pump cycle transfer energy into the lattice from the E3 → E2

transition. This transition is normally radiationless, the energy being carried into the
lattice by phonons.

1.4.2 The Four-Level System

The four-level laser system, which is characteristic of the rare earth ions in glass or
crystalline host materials, is illustrated in Fig. 1.7. Note that a characteristic of the
three-level laser material is that the laser transition takes place between the excited
laser level 2 and the final ground state 1, the lowest energy level of the system. This
leads to low efficiency. The four-level system avoids this disadvantage. The pump

Fig. 1.7. Simplified energy level diagram of a four-level laser
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transition extends again from the ground state (now level E0) to a wide absorption
band E3. As in the case of the three-level system, the ions so excited will proceed
rapidly to the sharply defined level E2. The laser transition, however, proceeds now
to a fourth, terminal level E1, which is situated above the ground state E0. From
here the ion undergoes a rapid nonradiative transition to the ground level. In a true
four-level system, the terminal laser level E1 will be empty. To qualifiy as a four-level
system a material must possess a relaxation time between the terminal laser level and
the ground level, which is fast compared to the fluorescent lifetime, i.e., τ10 � τ21.
In addition the terminal laser level must be far above the ground state so that its
thermal population is small. The equilibrium population of the terminal laser level 1
is determined by the relation

N1

N0

= exp

(−	E

kT

)
, (1.48)

where 	E is the energy separation between level 1 and the ground state, and T is
the operating temperature of the laser material. If 	E � kT, then N1/N0 � 1, and
the intermediate level will always be relatively empty. In some laser materials the
energy gap between the lower laser level and the ground state is relatively small and
therefore they must be cooled to function as four-level lasers. In a four-level system
an inversion of the 2 → 1 transition can occur even with vanishingly small pump
power, and the high pump rate, necessary to maintain equilibrium population in the
aforementioned three-level system, is no longer needed. In the most favorable case,
the relaxation times of the 3 → 2 and 1 → 0 transitions in the four-level system are
short compared with the spontaneous emission lifetime of the laser transition τ21.
Hence we can also carry out the calculations as if only the E1 and E2 states were
populated.

1.4.3 The Metastable Level

After this brief introduction to the energy level structure of solid-state lasers we can
ask the question, “what energy level scheme must a solid possess to make it a useful
laser?” As we have seen in the previous discussion, the existence of a metastable
level is of paramount importance for laser action to occur. The relatively long lifetime
of the metastable level provides a mechanism by which inverted population can be
achieved. Most transitions of ions show rapid nonradiative decay because the coupling
of the internal atomic oscillations to the surrounding lattice is strong. Radiative decay
processes can occur readily, but most have short lifetimes and broad linewidths. Only
a few transitions of selected ions in solids turn out to be decoupled from the lattice
vibrations. These transitions have a radiative decay, which leads to relatively long
lifetimes.

In typical laser systems with energy levels, such as illustrated by Figs. 1.6 and 7,
the 3 → 2 transition frequencies as well as the 1 → 0 transition frequencies all fall
within the frequency range of the vibration spectrum of the host crystal lattice. There-
fore, all these transitions can relax extremely rapidly by direct nonradiative decay,
i.e., by emitting a phonon to the lattice vibrations, with τ32, τ10 ≈ 10−8–10−11 s.
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However, the larger 3 → 0, 3 → 1, 2 → 0, and 2 → 1 energy gaps in these atoms
often correspond to transition frequencies that are higher than the highest possible
vibration frequency of the crystal lattice. Such transitions cannot relax via simple
single-phonon spontaneous emission, since the lattice simply cannot accept phonons
at those high frequencies. These transitions must then relax either by radiative (photon)
emission or by multiple-phonon processes. Since both these processes are relatively
weak compared to direct single-phonon relaxation, the high-frequency transitions will
have much slower relaxation rates (τ21 ≈ 10−5–10−3 s in many cases). Therefore, the
various levels lumped into level 3 will all relax mostly into level 2 while level 2 itself
is metastable and long-lived because there are no other levels located close below it
into which it can decay directly.

The existence of metastable levels follows from quantum mechanical considera-
tions that will not be discussed here. However, for completeness we will explain the
term “forbidden transition.” As we have seen in Sect. 1.2.4, the mechanism by which
energy exchange takes place between an atom and the electromagnetic fields is the
dipole radiation. As a consequence of quantum mechanical considerations and the
ensuing selection rules, transfer between certain states cannot occur due to forbidden
transitions. The term “forbidden” means that a transition among the states concerned
does not take place as a result of the interaction of the electric dipole moment of the
ion with the radiation field. As a result of the selection rules, an ion may get into an
excited state from which it will have difficulty returning to the ground state. A state
from which all dipole transitions to lower energy states are forbidden is metastable;
an ion entering such a state will generally remain in that state much longer than it
would in an ordinary excited state from which escape is comparatively easy.

In the absence of a metastable level, the ions which become excited by pump
radiation and are transferred to a higher energy level will return either directly to the
ground state by spontaneous radiation or by cascading down on intermediate levels,
or they may release energy by phonon interaction with the lattice. In order for the
population to increase at the metastable laser level, several other conditions have to
be met. Let us consider the more general case of a four-level system illustrated in
Fig. 1.7. (Note that a three-level system can be thought of as a special case of a four-
level scheme where level 1 and level 0 coincide.) Pumping takes place between two
levels and laser action takes place between two other levels. Energy from the pump
band is transferred to the upper laser level by fast radiationless transitions. Energy is
removed from the lower laser level again by fast radiationless transitions.

For electrons in the pump band at level 3 to transfer to level 2 rather than return
directly to the ground state, it is required that τ30 � τ32. For population to build up,
relaxation out of the lower level 1 has to be fast, τ21 � τ10. Thus, as a first conclusion,
we may say that if the right relaxation time ratio exists between any two levels (such
as 3 and 2) in an energy level system, a population inversion should be possible. If
so, then obtaining a large enough inversion for successful laser operation becomes
primarily a matter of the right pumping method. The optical pumping method is
generally feasible only in laser materials which combine a narrow laser emission line
with a broad absorption transition, so that a broadband intense light source can be
used as the pump source. An exception is a solid-state laser which is pumped by
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another laser, such as a diode laser. In this case the requirement for a broad absorption
range for the pump band can be relaxed.

Having achieved population inversion in a material by correct combination of
relaxation times and the existence of broad pump bands, the linewidth of the laser
transition becomes very important. In the following chapter we will see that the optical
gain for a given population inversion is inversely proportional to linewidth. Therefore,
the metastable level should have a sufficiently narrow linewidth.

1.5 Laser Rate Equations

The dynamic behavior of a laser can be described with reasonable precision by a
set of coupled rate equations [1.5]. In their simplest forms, a pair of simultaneous
differential equations describe the population inversion and the radiation density
within a spatially uniform laser medium. We will describe the system in terms of the
energy-level diagrams shown in Figs. 1.6 and 1.7. As we have seen in the preceding
discussions, two energy levels are of prime importance in laser action: the excited
upper laser level E2 and the lower laser level E1. Thus for many analyses of laser action
an approximation of the three- and four-level systems by a two-level representation
is very useful.

The rate-equation approach used in this section involves a number of simplifying
assumptions; in using a single set of rate equations we are ignoring longitudinal and
radial variations of the radiation within the laser medium. In spite of these limita-
tions, the simple rate-equation approach remains a useful tool and, if properly used,
provides a great deal of insight into the behavior of real solid-state laser devices.
We will derive from the rate equations the threshold condition for laser actions, and
obtain a first-order approximation of the relaxation oscillations in a solid-state laser.
Furthermore, in Chap. 4 we will use the rate equations to calculate the gain in a laser
amplifier.

In general, the rate equations are useful in predicting the gross features of the laser
output, such as average and peak power, Q-switched pulse-envelope shape, threshold
condition, etc. On the other hand, many details of the nature of the laser emission are
inaccessible from the point of view of a simple rate equation. These include detailed
descriptions of the spectral, temporal, and spatial distributions of the laser emission.
Fortunately, these details can often be accounted for independently.

In applying the rate equations to the various aspects of laser operation, we will
find it more convenient to express the probability for stimulated emission �(ν)B21 by
the photon density φ and the stimulated emission cross section σ .

With (1.37) we can express the Einstein coefficient for stimulated emission B21

in terms of the stimulated emission cross section σ21(ν),

B21 = c

hνg(ν)
σ21(ν), (1.49)

where c = c0/n is the speed of light in the medium. The energy density per unit
frequency �(ν) is expressed in terms of the lineshape factor g(ν), the energy hν, and
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the photon density φ (photons/cm3) by

�(ν) = hνg(ν)φ. (1.50)

From (1.49 and 50) we obtain

B21�(ν) = cσ21(ν)φ. (1.51)

1.5.1 The Three-Level System

In order to approximate the three-level system with a two-level scheme, we assume that
the transition from the pump band to the upper laser level is so fast that N3 ≈ 0. There-
fore pumping does not affect the other processes at all except to allow a mechanism
of populating the upper level and thereby obtaining population inversion (N2 > N1).

Looking at Fig. 1.6, this assumption requires that the relaxation time ratio τ32/τ21

be very small. In solid-state lasers τ32/τ21 ≈ 0 is a good approximation. Spontaneous
losses from the pump band to the ground state can be expressed by the quantum
efficiency ηQ. This parameter, defined as

ηQ =
(

1 + τ32

τ31

)−1

≤ 1, (1.52)

specifies what fraction of the total ions excited to level 3 drop from there to level 2,
thus becoming potentially useful for laser action. A small ηQ obviously requires a
correspondingly larger pump power.

The changes in the electron population densities in a three-level system, based on
the assumption that essentially all of the laser ions are in either level 1 or level 2, are

∂n1

∂t
=

(
n2 − g2

g1

n1

)
cφσ + n2

τ21

− Wpn1 (1.53)

and

∂n2

∂t
= −∂n1

∂t
, (1.54)

since

ntot = n1 + n2, (1.55)

where Wp is the pumping rate (s−1).
The terms on the right-hand side of (1.53) express the net stimulated emission,

the spontaneous emission, and the optical pumping.
The time variation of the population in both levels due to absorption, spontaneous,

and stimulated emission is obtained from (1.15). Note that the populations N1 and N2

are now expressed in terms of population densities n1 and n2. To take into account
the effect of pumping, we have added the term Wpn1, which can be thought of as the
rate of supply of atoms to the metastable level 2. More precisely, Wpn1 is the number
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of ions transferred from the ground level to the upper laser level per unit time per unit
volume. The pump rate Wp is related to the pump parameter W13 in Fig. 1.6 by

Wp = ηQW13. (1.56)

The negative sign in front of Wpn1 in (1.53) indicates that the pump mechanism
removes atoms from the ground level 1 and increases the population of level 2.

If we now define the inversion population density by

n = n2 − g2n1

g1

(1.57)

we can combine (1.53, 54, and 57) to obtain

∂n

∂t
= −γ nφσc − n + ntot(γ − 1)

τ f
+ Wp(ntot − n), (1.58)

where

γ = 1 + g2

g1

and τ f = τ21. (1.59)

In obtaining (1.58) we have used the relations

n1 = ntot − n

1 + g2/g1

and n2 = n + (g2/g1)ntot

1 + g2/g1

. (1.60)

Another equation, usually regarded together with (1.58), describes the rate of change
of the photon density within the laser resonator,

∂φ

∂t
= cφσn − φ

τc

+ S, (1.61)

where τc is the decay time for photons in the optical resonator and S is the rate at
which spontaneous emission is added to the laser emission.

If we consider for the moment only the first term on the right, which is the
increase of the photon density by stimulated emission, then (1.61) is identical to
(1.33). However, for the time variation of the photon density in the laser resonator
we must also take into account the decrease of radiation due to losses in the system
and the increase of radiation due to a small amount of spontaneous emission which is
added to the laser emission. Although very small, this term must be included because
it provides the source of radiation which initiates laser emission.

An important consideration for initiation of laser oscillation is the total number p
of resonant modes possible in the laser resonator volume VR, since in general only a
few of these modes are initiated into oscillations. This number is given by the familiar
expression (1.3),

p = 8πν2 	νVR

c3
, (1.62)

where ν is the laser optical frequency and 	ν is the bandwidth of spontaneous
emission. Let pL be the number of modes of the laser output. Then S can be ex-
pressed as the rate at which spontaneous emission contributes to stimulated emission,
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namely,

S = pLn2

pτ21

. (1.63)

Refer to Chap. 3 for a more detailed description of the factor τc which appears in (1.61).
For now we only need to know that τc represents all the losses in an optical resonator
of a laser oscillator. Since τc has the dimension of time, the losses are expressed in
terms of a relaxation time. The decay of the photon population in the cavity results
from transmission and absorption at the end mirrors, “spillover” diffraction loss due
to the finite apertures of the mirrors, scattering and absorptive losses in the laser
material itself, etc. In the absence of the amplifying mechanism, (1.61) becomes

∂φ

∂t
= − φ

τc

, (1.64)

the solution of which is φ(τ ) = φ0 exp(−t/τc).
The importance of (1.61) should be emphasized by noting that the right-hand side

of this equation describes the net gain per transit of an electromagnetic wave passing
through a laser material.

1.5.2 The Four-Level System

We will assume again that the transition from the pump band into the upper laser level
occurs very rapidly. Therefore, the population of the pump band is negligible, i.e.,
n3 ≈ 0. With this assumption the rate of change of the two laser levels in a four-level
system is

dn2

dt
= Wpn0 −

(
n2 − g2

g1

n1

)
σφc −

(
n2

τ21

+ n2

τ20

)
, (1.65)

dn1

dt
=

(
n2 − g2

g1

n1

)
σφc + n2

τ21

− n1

τ10

, (1.66)

ntot = n0 + n1 + n2. (1.67)

From (1.65) it follows that the upper laser level population in a four-level system
increases due to pumping and decreases due to stimulated emission and spontaneous
emissions into level 1 and level 0. The lower level population increases due to stim-
ulated and spontaneous emission and decreases by a radiationless relaxation process
into the ground level. This process is characterized by the time constant τ10. In an ideal
four-level system the terminal level empties infinitely fast to the ground level. If we
let τ10 ≈ 0, then it follows from (1.66) that n1 = 0. In this case the entire population
is divided between the ground level 0 and the upper level of the laser transition. The
system appears to be pumping from a large source that is independent of the lower
laser level. With τ10 = 0 and n1 = 0, we obtain the following rate equation for the
ideal four-level system:

n = n2 (1.68)
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and

ntot = n0 + n2 ≈ n0 since n2 � n0. (1.69)

Therefore, instead of (1.58), we have

∂n2

∂t
= −n2σφc − n2

τf

+ Wpn0. (1.70)

The fluorescence decay time τf of the upper laser level is given by

1

τf

= 1

τ21

+ 1

τ20

, (1.71)

where τ21 = A−1
21 is the effective radiative lifetime associated with the laser line. In

the equation for the rate of change of the upper laser level we have again taken into
account the fact that not all ions pumped to level 3 will end up at the upper laser level.
It is

Wp = ηQW03, (1.72)

where the quantum efficiency ηQ depends on the branching ratios, which are
the relative relaxation rates for the ions along the various possible downward
paths,

ηQ =
(

1 + τ32

τ31

+ τ32

τ30

)−1

≤ 1. (1.73)

As already indicated in the case of a three-level system the quantum efficiency is
the probability of an absorbed pump photon producing an active atom in the upper
laser level. Some of the absorbed pump photons will not produce an active ion in
the upper laser level. Some, for example, may decay to manifolds other than the
manifold containing the upper laser level while others may decay to the ground level
by radiationless transitions. The equation which describes the rate of change of the
photon density within the laser resonator is the same as in the case of the three-level
system.

1.5.3 Comparison of Three- and Four-Level Lasers

The rate equation applicable to three- and four-level systems can be expressed by a
single pair of equations, namely, (1.58 and 61), where γ = 1 + g2/g1 for a three-
level system and γ = 1 for a four-level system. The factor γ can be thought of as an
“inversion reduction factor” since it corresponds to the net reduction in the population
inversion after the emission of a single photon. In a four-level system, see (1.70), we
have γ = 1 since the population inversion density is reduced only by one for each
photon emitted. For a three-level system, see (1.58), we have γ = 2 if we assume
no degeneracy, i.e., g2/g1 = 1. This reflects the fact that in this case the population
inversion is reduced by two for each stimulated emission of a photon because the
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emitting photon is not only lost to the upper laser level, but also increases the lower
laser level by one. The parameters τf and Wp are defined by (1.56, 59, 71, and 72) for
the three- and four-level systems. The factor S in (1.61), which represents the initial
noise level of φ due to spontaneous emission at the laser frequency, is small and needs
to be considered only for initial starting of the laser action. It will be dropped from
this point on.

A more detailed analysis of the laser rate equations can be found in [1.1, 3].




