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1. THE ROLE OF OPTIMIZATION IN PRODUCT 
FAMILY DESIGN 

Optimization has been used for many years during product design to help 
determine the values of design variables, x, that minimize (or maximize) one 
or more objectives, f(x), while satisfying a set of constraints, {g(x), h(x)}, 
and the design variable lower and upper bounds, x1 and xu, respectively. The 
typical notation for formulating the optimization problem is as follows: 

Find: X (1) 

Min: f(x) 

Subject to: g(x) :S 0 
h(x) = 0 
X1 :S X :S Xu 

When optimizing a product family, this formulation must expand to 
include the values of the design variables for each product in the family such 
that now a set of constraints must be satisfied while trying to achieve a set of 
objectives for the family. Thus, the challenge when optimizing a family of 
products lies in resolving the tradeoff between commonality and individual 
product performance in the family: companies desire as much commonality 
as possible within a family without sacrificing the distinctiveness of the 
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individual products in the family as discussed in Chapter 1. In this regard, 
optimization can be used to help identify the Pareto frontier for this inherent 
tradeoff. For instance, Simpson, et al. (2001b) examine the tradeoffbetween 
different levels of platform commonality within a family of three aircraft, 
while Nelson, et al. (200 1) study the Pareto sets of two derivative products 
to find a suitable product platform for a family of nail guns. Rai and Allada 
(2003) present an agent-based optimization framework to capture the Pareto 
frontier for module-based product families, demonstrating their approach 
using a family of power screwdrivers and electric knives. 

By identifying promising designs along the Pareto frontier, optimization 
provides useful information to determine the best values for the design 
variables that define the product platform and the individual products in the 
family. In some instances, the design variables that define the product 
platform within the family are known a priori, i.e., before performing the 
optimization, whereas in other instances, determining which variables should 
be part of the platform and which variables should be unique to each product 
is a desired output from the optimization. We can thus classify approaches 
to product family as requiring either a priori or a posteriori specification of 
the platform within the family. 

Accordingly, we can envision two alternative approaches for optimizing 
the product platform and corresponding family of products, namely, 
optimize the platform first and then optimize the individual products or 
optimize both simultaneously. These two ways of approaching the problem 
allow us to classify optimization approaches based on the number of stages 
used. In a two-stage approach, for instance, the product platform is 
designed during the first stage of the optimization, followed by instantiation 
of the individual products from the product platform during the second stage. 
In a single-stage approach, the product platform and corresponding family 
of products are optimized simultaneously. 

In the next section, an example involving the design of a family of 
electric motors is introduced to shed light on the merits and pitfalls of both 
types of approaches and clarify the challenges associated with product 
platform and product family optimization. Section 3 provides formulations 
for optimizing the family of motors using two-stage and single-stage 
approaches and a priori and a posteriori specification of the platform 
variables. In Section 4, forty approaches for optimizing product platforms 
and families of products are classified and reviewed, and closing remarks are 
offered in Section 5. 
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2. EXAMPLE: DESIGN OF A FAMILY OF 
UNIVERSAL ELECTRIC MOTORS 
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Universal electric motors are so named for their capability to function on 
both direct current and alternating current. Universal motors deliver more 
torque for a given current than any single-phase motor (Chapman, 1991). 
The high performance characteristics and flexibility of universal motors 
have led to a wide range of applications, especially in household use where 
they are found in products such as electric drills and saws, blenders, vacuum 
cleaners, and sewing machines (Veinott and Martin, 1986). 

A schematic of a universal motor is shown in Figure 8-1. As shown in 
the figure, a universal motor is composed of an armature and a field, which 
are also referred to as the rotor and stator, respectively. The armature 
consists of a metal shaft and slats (armature poles) around which wire is 
wrapped longitudinally as many as a thousand times. The field consists of a 
hollow metal cylinder within which the armature rotates. The field also has 
wire wrapped longitudinally around interior metal slats (field poles) as many 
as hundreds of times. For a universal motor, the wire wrapped around the 
armature and the field is wired in series, which means that the same current 
is applied to both sets of wire. 

LAMINATIONS 

TERMINALS 
(OPTIONAL) 

Figure 8-1. Schematic of a universal electric motor (G. S. Electric, 1997). 

According to Lehnerd (1987), in the 1970s Black & Decker developed a 
family of universal motors for its power tools in response to a new safety 
regulation, namely, double insulation. Prior to that, they used different 
motors in each of their 122 basic tools with hundreds of variations, from 
jigsaws and grinders to edgers and hedge trimmers. By redesigning and 
standardizing the product line, they were able to produce all their power 
tools using a line of motors that varied only in the stack length and the 
amount of copper wrapped within the motor. As a result, all of the motors 
could be produced on a single machine with stack lengths varying from 0.8" 
to 1.75", and power output ranging from 60 to 650 watts. In addition to 
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significant material and labor savings, new designs were developed using 
standardized components such as the redesigned motor, allowing products to 
be introduced, exploited, and retired with minimal extra development cost. 

Motivated by Lehnerd's case study, an example problem involving the 
design of a family of universal electric motors has been created (Simpson, et 
al., 2001a). The goal in the example is to design a scale-based family of 10 
universal electric motors that satisfy a variety of torque requirements based 
on a single platform. The motor platform consists of the set of common 
physical dimensions (design variables) that describe the motor while one or 
more variables are used to 'scale' the motor to satisfy the range of torque 
requirements. The motor analyses are described next, and specifications for 
the problem are given in Section 2.2. 

2.1 Analyses for the universal electric motor example 

The following equations relating the motor design variables to the system 
responses (i.e., mass, power, torque, and efficiency) are presented in their 
entirety in (Simpson, et al., 2001a) and are based on analyses from Chapman 
(1991) and Cogdell (1990). There are eight design variables for each motor: 

1. Number of wire turns on the armature, Nc (100 ~ Nc ~ 1500) 
2. Number of wire turns on each field pole, Ns (1 ~ Ns ~ 500) 
3. Cross-sectional area of armature wire, Awa (0.01 ~ Awa ~ 1.0 mm2) 

4. Cross-sectional area of field wire, Awr (0.0 1 ~ Awr ~ 1.0 mm2) 

5. Radius of the motor, r0 (0.01 ~ r0 ~ 0.10 m) 
6. Thickness of the stator, t (0.0005 ~ t ~ 0.10 m) 
7. Current drawn by the motor, I (0.1 ~I~ 6.0 Amp) 
8. Stack length of the motor, L (0.001 ~ L ~ 0.10 m) 

The mass of the motor is the combined weight of the stator (field), the 
armature, and the windings on both the field and the armature. 

where: 

Mass = Mstator + MamJature + Mwindings 

Mstator = nL[r/- (ro- t)2]Psteel 

Mam1ature = 1tL(ro - t - lgap)2Psteel 

Mwindings = Pcopper{[2L + 4(ro - t- lgap)]NcAwa + 2[2L + 4(ro - t)]NsAwr} 

(2) 

The power, P, output for the motor is the power input minus losses in the 
copper wiring and brushes; mechanical and core losses are assumed to be 
small and are thus neglected. 
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where: 

with: 

where: 

P = Pin- Ptosses 

Ptosses = P copper+ Pbrush 

P copper= f(Ra + Rs) 

Pbrush = 2! 

Ra = {p[2L + 4(r0 - t -lgap)]Nc}/Awa 

Rs = {p(#poles)[2L + 4(r0 - t)]Ns}IAwr 

The efficiency, 11, is the ratio of the power output to the power input. 

l1 = P/Pin 
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(3) 

(4) 

Finally, the torque generated by the motor is the product of the motor 
constant, K, the magnetic flux, ~, and the current, I. 

T=K~I (5) 

where: 

3=Nsl 

9{ = 9is + 9ir + 29ia 

with 9is = lc/(2f..lsteelf..loAs), 9ir = l!(f..lsteelf..loAr), and 9ia =lgl(f..lsteelf..loAa). The ~-t's 
are obtained from magnetizing intensity curves in (Chapman, 1991), which 
reqmres: 

H = (Ncl)/(lc + lr + 2lgap), (6) 

where: lc = n(2r0 + t)/2. 

2.2 Problem specifications for the motor example 

There are two distinct objectives that must be considered when designing 
the family of universal motors: minimizing the mass (kg) and maximizing 
the efficiency (%), which is equivalent to minimizing the negative of the 
efficiency of each motor. There are six constraints for each motor in the 
family, which are described as follows. 
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1. Constraint on torque, Ti, for each of the ten motors (i = 1, ... , 10): 

Ti = {0.05, 0.10, 0.125, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50} Nm (7) 

2. Constraint on power, P, for each motor in the family: 

P=300W (8) 

3. Constraint to ensure a feasible geometry for each motor in the family: 

rJt 2: 1 (9) 

4. Constraint on the magnetizing intensity, H, in each motor in the family: 

H :S 5000 Amp*tums/m (10) 

5. Constraint on the maximum mass of the each motor in the family: 

Mass:; 2 kg (11) 

6. Constraint on the minimum efficiency of each motor in the family: 

l1 > 15% (12) 

Optimizing each motor individually involves 8 design variables, 2 
objectives, and 6 constraints, but to optimize the family of 10 motors, the 
optimization problem, Eq. (1), becomes rather large. It is formally stated as: 

Find: 

Min: f(x) = {Massi, -lli} 

Subject to: Hi(x) :S 5000 Amp*tums/m 
ro,/ti 2: 1 
Massi{x) :S 2 kg 
lli{X) 2: 15% 
Pi(x) = 300 W 

(13) 

Ti(x) = {0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} Nm 
x.l <x·< X·u l_ /_ l 

where i = 1, ... , 10 indicates each motor in the family (motor #1 has the 
lowest torque setting (0.05 Nm) and motor #10 the highest (0.50 Nm)). 

All told, there are 80 design variables, 20 objectives, and 60 constraints, 
which is a challenging problem to solve for many optimization algorithms. 
Notice, however, that the idea of a platform is nowhere to be found in Eq. 
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(13 ); this formulation is simply for the set of 10 motors. Having a platform 
helps in reducing the size of the optimization problem by splitting the set of 
design variables, x, into two subsets: one that is common for each product in 
the family and one that is unique for each product in the family. The set of 
common variables is usually represented as Xc where c stands for common 
variables while the set of unique variables is usually represented by XvJ, 

where v stands for each variant (i = 1, ... , # products) based on the platform. 
Sometimes the notation xP is used instead of Xn where p stands for platform 
variables (Gonzalez-Zugasti, et al., 2000), but we avoid that notation to 
avoid confusion as to whether p stands for product or platform. 

The designer must now decide how to partition the set x into these two 
subsets, {xn XvJL which can either be specified before (i.e., a priori) or be 
found during (i.e., a posteriori) optimization. This gives rise to the two 
extreme cases of the tradeoff between commonality and distinctiveness: one 
in which all variable values are common and one in which all variable values 
are unique. In the first case, every product is the same, which means that 
none of them are distinct, whereas in the second case every product is 
unique, and there is no commonality between them. This latter case is 
referred to as the null platform, an important alternative if individual product 
distinctiveness is critical to market success (Nelson, et al., 2001; Simpson 
and D'Souza, 2004). While neither case is very practical, they provide the 
anchor points for the Pareto frontier that is defined by the competing 
objectives of commonality and individual product performance, and the 
optimization is used to find the best solution along this frontier for a given 
product family. The four different formulations follow. 

3. PROBLEM FORMULATIONS AND RESULTS 

The following four formulations demonstrate how the number of stages 
used and the specification of the platform variables in the subset, Xc, affect 
the resulting solution for the family of motors. In Sections 3.1 and 3.2, the 
platform variables are specified a priori to the optimization while the 
optimization is solved first using a two-stage approach and then a single
stage approach, respectively. In Sections 3.3 and 3.4, more flexible 
formulations using a two-stage approach and a single-stage approach, 
respectively, are presented that do not require the specification of the 
platform variables a priori; instead, the optimization determines which 
variables should be made common and which should be made unique along 
with the best value for each variable (i.e., a posteriori specification of the 
platform variables). Section 3.5 provides a comparison of all the solutions. 
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3.1 Two-stage approach with platform variables 
specified a priori 

The first formulation for the motor family followed the description given 
in the Black & Decker case study (Lehnerd, 1987), which stated that the 
axial profile of the motor was common and that the stack length was scaled 
to realize the family of motors. In (Simpson, et al., 2001a), we used this 
description to partition x from Eq. (13) into the platform variables, Xc = {Nc, 
N5, Awa, Awr, r0 , t}, and the variables for each motor, Xv,i ~ {I;, L;}. Note that 
I;, the current in each motor, is best thought of as a state variable that varies 
for each motor to achieve the desired power. The resulting formulation is: 

Find: 

Min: 

Subject to: 

Xc = {Nc, Ns, Awa, Awr, r0 , t}- Stage 1 
x ·={I· L·} -Stage 2 V,l l) l 

f(x) = {Mass;, -11;} 
H;(x) S 5000 Amp*tums/m 
r 0 ,;/t; 2: 1 
Mass;(x) S 2 kg 
ll;(x) 2: 15% 
P;(x) = 300 W 

(14) 

T;(x) = {0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} Nm 
x.l <x·< X·u ,_ ,_ l 

where i = 1, ... , 10. 

This formulation was solved using a goal programming approach for the 
two objectives that utilized targets of 0.5 kg and 70% for the mass and 
efficiency, respectively, and equally weighted deviations from these targets. 
In essence, once a motor weighed less than 0.5 kg and had an efficiency of 
70% or more, it was "good enough" for the family. This approach provides 
more flexibility when finding solutions since we are not trying to optimize 
the performance of each individual motor, just reach a suitable target for 
each. The optimization was completed in two stages using the Generalized 
Reduced Gradient (GRG) algorithm in OptdesX (Parkinson and Balling, 
2002). The first stage involved determining the best settings for the platform 
variables, Xc, while the unique variables could take on any feasible value. In 
the second stage, the best values for the platform variables from the first 
stage, Xc *, where held constant, and 10 optimization problems were solved to 
find the best values of the remaining unique variables, xv./, for each motor. 
The results are summarized in Table 8-1. When compared to a set of 
individually optimized motors (with no commonality), we found that the 
motor family based on this platform weigh 9% more, on average, and are 7% 
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less efficient, on average. Essentially, this compromise in product 
performance represents the loss of having increased commonality among the 
family of motors. We refer the reader to (Simpson, et al., 2001a) for more 
details and the complete formulation for each stage. 

Table 8-1. Universal electric motor famil~ based on initial platform formulation. 
Values of Platform Variables, Xc Values of Xv,i Res2onses 

Motor N, N, Awr Awa ro t I L T p 11 M 
No. [mm2] [mm2] [em] [mm] [Amp] [em] [Nm] [W] [%] [kg] 

1 1062 54 0.376 0.241 2.59 6.66 3.395 0.865 0.05 300 76.8 0.380 
2 t .j, t .j, .j, t 3.616 1.53 0.10 300 72.2 0.520 
3 t .j, t t t t 3.729 1.79 0.125 300 70.0 0.576 
4 t t t t t t 3.845 2.02 0.15 300 67.9 0.625 
5 t t t t t t 4.083 2.39 0.20 300 63.9 0.703 
6 t t t t ! ! 4.332 2.66 0.25 300 60.2 0.759 
7 ! ! t ! ! ! 4.594 2.83 0.30 300 56.8 0.797 
8 ! .j, t .j, .j, .j, 4.870 2.94 0.35 300 53.6 0.820 
9 .j, .j, .j, ! ! t 5.163 2.99 0.40 300 50.5 0.830 
10 .j, .j, .j, .j, .j, .j, 5.817 2.95 0.50 300 44.8 0.820 

To examme this tradeoff in more detail, we examined motors in 
commercially available drills, and we determined that motor manufacturers 
vary more than just stack length when they scale their motors to meet a 
variety of torque and power ratings. In addition to increasing the stack 
length of the motor, they also allow the number of turns in the field and 
armature and the cross-sectional area of the wires in the field and armature 
to vary from one motor to the next. What this means is that the initial set of 
platform variables, Xc = {Nc, N., Awa, Awr, r0 , t}, may have been too 
restrictive, hence the loss in mass and efficiency due to the platform. If we 
reformulate Eq. (14) to reflect this, we get: 

Find: Xc = {r0 , t}- Stage I 
XvJ = {Nc,;, Ns,;, Awa,;, Awr,;, 1;, L;} -Stage 2 

Min: f(x) = {Mass;, -11;} 

Subject to: H;(x).::; 5000 Amp*turns/m 
ro,/ti 2: 1 
Mass;( X).::; 2 kg 
'll;(x) 2: 15% 
P;(x) = 300 W 

(15) 

T;(x) = {0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} Nm 
x.l<x·<x·u ,_ ,_ l 

where i = 1, ... , 10. 

Using the same two-stage approach and GRG algorithm, we obtain the 
results shown in Table 8-2. It turns out that these results are essentially 
equivalent in terms of their mass and efficiency to the set of individually 
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optimized motors, yet the ten motors have the same axial profile (i.e., r0 and 
t are the same for all 10 motors) and vary in the amount of wire wrapped 
around each motor and its stack length just like the Black & Decker example 
(Lehnerd, 1987). Consequently, we have been able to resolve the tradeoff 
between commonality and individual product performance in a satisfactory 
manner for this family of motors using optimization. 

Table 8-2. Universal electric motor famil~ based on revised rlatform formulation. 
Values of 
Platform Values ofxv.i Responses 

Variables, Xc 

Motor ro t Nc N, Awr Awa I L T p 11 
No. [em] [mm] [mm2) [mm2) [Amp) [em) [Nm) [W) [%] 

1 2.59 6.66 970 41 0.306 0.221 3.49 1.18 0.05 300 74.7 
2 t l 981 66 0.306 0.224 3.62 1.37 0.10 300 72.1 
3 l l 986 74 0.306 0.225 3.67 1.44 0.125 300 71.1 
4 t l 990 82 0.306 0.227 3.72 1.51 0.15 300 70.1 
5 t l 999 84 0.307 0.230 3.86 1.81 0.20 300 67.5 
6 t l 1064 80 0.359 0.239 4.03 2.03 0.25 300 64.6 
7 t l 1135 76 0.309 0.257 4.19 2.20 0.30 300 62.2 
8 t l 1166 75 0.282 0.268 4.35 2.42 0.35 300 59.9 
9 l l 1195 72 0.280 0.277 4.51 2.60 0.40 300 57.7 
10 l l 1242 67 0.286 0.293 4.85 2.91 0.50 300 53.8 

3.2 Single-stage approach with platform variables 
specified a priori 

M 
[kg] 

0.397 
0.456 
0.477 
0.499 
0.568 
0.646 
0.712 
0.774 
0.833 
0.941 

Although the two-stage approach was successful in optimizing the 
platform and corresponding family of products, we were not certain as to 
what extent the tradeoff between commonality and individual product 
performance associated with Eq. (14) was caused by the selection of the 
platform variables versus the use of the two-stage approach. Consequently, 
we modified the formulation in Eq. (14) and solved it using a single-stage 
approach as shown in Eq. (16). This required a different optimization 
algorithm due to the increased problem size. In particular, Physical 
Programming (Messac, 1996) was used to formulate and solve the 
optimization problem in a single stage. The results are summarized in Table 
8-3, and details can be found in (Messac, et al., 2002b) along with the 
complete formulation. When compared to the set of individually optimized 
motors mentioned earlier, this family of motors weigh 7% more, on average, 
and are 4.5% less efficient on average. Compared to the two-stage solutions 
given in Table 8-1, this represents a 2% improvement in mass, on average, 
and a 2.5% gain in efficiency, on average. While this may not seem like 
much, it translates into weight reductions in 7 of the 10 motors and increased 
efficiency in 8 of the 10 motors-results any manufacturer would enjoy. 

Find: Xc = {r0 , t}, Xv,i = {Nc,i, Ns,i, Awa,i' Awf,i, h Li}- Stage 1 (16) 
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Min: f(x) = {Mass;, -r1;} 

Subject to: H;(x) S 5000 Amp*tums/m 
r 0 ,/t; .::_ 1 
Mass;(x) S 2 kg 
Y};(x) .::_ 15% 
P;(x) = 300 W 
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T;(x) = {0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} Nm 
x.l < x· < x.U ,_ ,_ l 

where i = 1, ... , 10. 

Table 8-3. Motor family using single-stage approach and initial Elatform formulation. 
Values of Platform Variables, Xc Values ofx,.; Responses 

Motor Nc N, Awr Awa fo t I L T p 
No. [mm2] [mm2] [em] [mm] [Amp] [em] [Nm] [W] 

I 1273 61 0.271 0.271 2.673 7.745 3.432 0.617 0.05 300 
2 t t t t t t 3.618 1.110 0.10 300 
3 t t t t t t 3.713 1.317 0.125 300 
4 t t t t t t 3.810 1.501 0.15 300 
5 t t t t t t 4.010 1.806 0.20 300 
6 t t t t t t 4.219 2.040 0.25 300 
7 t t t t t t 4.438 2.213 0.30 300 
8 t t t t t t 4.668 2.333 0.35 300 
9 t t t t t t 4.912 2.408 0.40 300 
10 t t t t t t 5.451 2.444 0.50 300 

3.3 Two-stage approach with platform variables 
determined during optimization 

11 
(%] 
76.0 
72.1 
70.3 
68.5 
65.1 
61.8 
58.8 
55.9 
53.1 
47.9 

M 
[kg] 

0.395 
0.513 
0.562 
0.606 
0.678 
0.734 
0.775 
0.803 
0.821 
0.830 

The primary goal when specifying the platform variables a priori is to 
reduce the problem size and resulting computational burden of solving the 
product family optimization; however, this is when the designer knows the 
least about which variables have the largest impact on product performance. 
Selecting the appropriate set of common variables, Xc, for the platform and 
unique variables, xv,i• for the individual variants within a product family is 
not an intuitive or trivial task, and we saw the adverse impact that this can 
have on the overall performance of the product family in Section 3 .1. If n is 
the number of variables that are possible candidates for being made common 
to a platform (with the remainder being unique among each product variant), 
then the number of platform alternatives is: 

#platform = (n)+( n )+ ... +(n) +(n)+(n) = 2n 
alternatives n n -1 2 I 0 

(17) 
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where (:) is "n choose c", namely, the number of possible combinations of 

n items (i.e., design variables) taken c at a time (i.e., made common). Note 
that the alternative c = 0 is the null platform discussed in Section 2.2. 

Ideally, an algorithm for product family design optimization would 
explore varying levels of commonality to determine the best platform for the 
family rather than require specifying the common and unique variables a 
priori. Toward that end, we developed a two-stage optimization approach 
that incorporates a Product Family Penalty Function (PFPF) into the 
Physical Programming formulation to help determine which variables have 
the largest impact on performance to drive commonality (Messac, et al., 
2002a). The PFPF is used to minimize the variations of the design variables 
within the family by minimizing the percent variation, pvar/ 

where: i=l varj = 

var. 
pvari=~ 

X· 
.I 

p 

~>if 
and X: . = l.=.!..._ 

p-1 J p 

(18) 

(19) 

x1i is the value of the /h design variable for the i1h product of the p products in 
the family. The PFPF is an additional objective function that is computed by 
summing the percent variation of all n design variables within the family: 

n 

PFPF = L pvarj 
j=l 

(20) 

Lower values of PFPF mean more commonality while higher values indicate 
less. The PFPF is added to the "Min:" statement ofEq. (13) to yield: 

Find: X= {Nc,;, N8,;, Awa,i• Awr,;, r 0 ,;, t;, I;, L;} 

Min: f(x) = {Mass;, -YJ;, PFPF} 

Subject to: H;(x) :S 5000 Amp*tums/m 
r 0 ,/t; 2: 1 
Mass;(x) :S 2 kg 
YJ;{X) 2: 15% 
P;(x) = 300 W 

(21) 

T;(x) = {0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} Nm 
x.l <X·< X·u ,_ ,_ l 

where i = 1, ... , 10. 
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The two-stage optimization approach, which is described in detail in 
(Messac, et al., 2002a) along with the complete formulation of the 
optimization problem, uses the PFPF to identify which variables have the 
largest impact on product performance during the first stage of the 
optimization, and these variables are selected as the unique variables, Xv, 

while the remaining variables are taken as platform variables, Xc. The 
second stage involves finding the best settings for the variables in Xc and Xv 

using Physical Programming as described in the previous section. In this 
example, the unique variables were limited to any one variable plus the 
current, and the results are listed in Table 8-4. Compared to the set of 
individually optimized motors mentioned earlier, this family of motors 
weigh only 3% more, on average, and are only 3% less efficient on average, 
a marked improvement over the results given in Table 8-1, which also scale 
the platform around a single variable. 

Table 8-4. Motor famil~ using two-stage a22roach and scaling the Elatform b~ radius. 
Values of Platform Variables, Xc Values ofxv.i Res2onses 

Motor N, N, Awr Awa t L I fo T p 11 M 
No. [mm2] [mm2] [mm] [em] [Amp] [em] [Nm] [WJ [%] [kg] 

I 1319 68 0.256 0.256 9.22 2.12 3.18 1.46 0.05 300 82.0 0.312 
2 ~ ~ ~ ~ ~ ~ 3.40 1.83 0.10 300 76.6 0.422 
3 ~ ~ ~ ~ ~ ~ 3.52 1.98 0.125 300 74.1 0.472 
4 ~ ~ ~ ~ ~ ~ 3.64 2.11 0.15 300 71.6 0.518 
5 ~ ~ ~ ~ ~ ~ 3.90 2.33 0.20 300 67.0 0.595 
6 ~ ~ ~ ~ ~ ~ 4.16 2.48 0.25 300 62.7 0.653 
7 ~ ~ ~ ~ ~ ~ 4.43 2.59 0.30 300 58.9 0.693 
8 ~ ~ ~ ~ ~ ~ 4.71 2.65 0.35 300 55.4 0.719 
9 ~ ~ ~ ~ ~ ~ 4.99 2.68 0.40 300 52.2 0.732 
10 ± ~ ~ ~ ! ± 5.58 2.69 0.50 300 46.8 0.734 

While we expected stack length to have the largest impact on the 
individual product performance, we were somewhat surprised by these 
results when we learned that stack length was part of the platform and that 
the radius was the unique variable used to 'scale' the motors. In talking with 
practicing motor designers, we confirmed that our finding was true: by 
varying the torque requirement as we do, it is more effective to scale the 
radius than the stack length; however, it is much more cost effective to 
manufacture motors that are scaled along the stack length, which influenced 
Black & Decker's decision. Furthermore, as we saw in Section 3.1, as long 
as we also vary the amount of wire wrapped around each motor, we obtain 
an equivalent set of motors if the axial profile is fixed. Our findings were 
confirmed in parallel work by Nayak, et al. (2002), who used a commonality 
goal within their two-stage goal programming formulation. They also found 
that the platform should be scaled around the motor radius (as well as N8 , 

Awa, Awr as the selection of the scaling variable is not limited to one variable) 
not the stack length, to get the best performance within the motor family. 
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3.4 Single-stage approach with platform variables 
determined during optimization 

We are currently investigating a single-stage approach that uses genetic 
algorithms (Goldberg, 1989) to examine varying levels of platform 
commonality during product family optimization (D'Souza and Simpson, 
2003; Simpson and D'Souza, 2004). As outlined in (Simpson and D'Souza, 
2004), our approach utilizes a set of commonality controlling genes a genetic 
algorithm (GA) to evaluate varying levels of platform commonality. As 
shown in Figure 8-2, the chromosome string in the GA concatenates the 
individual chromosomes strings for each product into one long string and 
then augments this string with n genes that control the commonality within 
the individual chromosome strings. The resulting length of the chromosome 
string is n + np, where n is the number of design variables and p is the 
number of products. Note that if any of these first n genes take the value of 
1, then that particular design variable is made common among all of the 
products in the family; a value of 0 makes that design variable unique within 
the family. It follows then that if these first n genes are all 1 's, there is one 
hundred percent commonality among the products in the family while a 
string of all O's indicates no commonality among the products within the 
family. As such, varying levels of platform commonality are considered in a 
single stage process, where the results from the optimization indicate: 

1. which variables should be made common (i.e., platform variables), 
2. the values that they should take, and 
3. the values that the remaining unique variables should take. 

Commonality Design variables 
controlling genes for Product 1 

(0 = unique, 1 = common) 

Design variables 
for Product p 

Figure 8-2. GA representation for searching varying levels of platform commonality. 

For the universal electric motor family, the resulting chromosome string 
is 88 genes long, and an example is shown in Figure 8-3. Note that this 
particular chromosome string represents the motor family listed in Table 8-1. 
The platform variables, as indicated by the commonality controlling genes, 
are the first six variables, which equates to Xc = {Nc, N5, Awa, Awr, r0 , t}, 
while the last two variables are unique to each product, which equates to Xv,i 

= {I;, L;}. The values for the corresponding variable for each motor are the 
same values listed in Table 8-1. This example is only one potential solution 
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that the GA would consider during optimization, as each population in each 
generation will have different values for the commonality controlling genes 
as well as the individual variables for each product in the family. 

Commonality 
controlling genes 

{O=unique, 1=common) 
Design variables 

for 1st motor 

l1 l1 l1 l1 l1 l1 1 o 1 o l1o6~ 541o.38lo2412.5916661339loa6r-1 
r·--------------------------------------------------------------------------.! 
L+a63 541o381o2412591666136211.531 · · ·1106~ 541o381o2412.5916.66158212.93 

Design variables 
for 2nd motor 

Design variables 
for 1Oth motor 

Figure 8-3. Example ofGA representation for the universal electric motor family. 

Formulation of the product family optimization problem is similar to that 
of Eq. (21) when using the genetic algorithm. One difference is that the 
values of the commonality controlling genes are added to the optimization as 
they dictate how xis partitioned into Xc and Xv,i· We denote these genes as 
xw where Xccj indicates the value of the / 11 commonality controlling gene, 
which is either 0 or 1, where}= 1, ... , n (= 8). To solve the problem, we use 
the NSGA-II, which is available online from the Kanpur Genetic Algorithm 
Lab in India: http://www.iitk.ac.in/k:angal/soft.htm. The NSGA-II is a multi
objective genetic algorithm that can handle multiple fitness functions and 
constraints (Srinivas and Deb, 1995), and we use three fitness functions (i.e., 
minimize mass, minimize negative efficiency, and minimize PFPF) to 
optimize the motor family. The resulting formulation is as follows. 

Find: X= {Nc,i, Ns,i, Awa,i, Awr,;, ro,i' t;, I;, L;} & Xcc = {Xccj} 
10 10 

Min: Fitness function 1, 2, & 3 = L Mass; , - L YJ; , & PFPF 

Subject to: H;(x) ~ 5000 Amp*turns/m 
r 0 ,/t; 2: 1 
Mass;(x) ~ 2 kg 
11lx) .::=: 15% 
P;(x) = 300 W 

i=l i=l 

(22) 

T;(x) = {0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} Nm 
Xccj={0,1} 
x.l<x·<x.U ,_ ,_ l 

where i = 1, ... , 10, and}= 1, ... , 8. 
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Two representative sets of results are listed in Table 8-5 and Table 8-6. 
The motor family listed in Table 8-5 results from the commonality 
controlling genes, Xcc• taking the values {1,1,1,1,1,1,0,0}, which is 
equivalent to the platform defined in Eq. (14). Consequently, the resultant 
motors listed in Table 8-5 are very similar to those listed in Table 8-1 in 
terms of their mass and efficiency. For the family listed in Table 8-6, Xcc = 
{0,0,0,0,1,1,0,0}, which equates to the platform defined in Eq. (15) and 
motor family listed in Table 8-2. Comparing these solutions to those from 
Table 8-2, we have much less variability in the values of the xv.i variables as 
well as slight improvements in both mass and efficiency. This demonstrates 
the power and flexibility of the GA-based method in that both of these motor 
families come from the same generation; two separate optimization 
problems do not have to be solved to find them. Moreover, they are 
obtained using a single-stage approach that does not require a priori 
specification of the platform. 

Table 8-5. Universal motor famil~ from GA eguivalent to initial Elatform. 
Values of Platform Variables, Xc Values of Xv.i ResEonses 

Motor N, N, Awr Awa fo t I L T p 11 M 
No. [mm2) [mm2] [em) [mm) [Amp) [em] [Nm] [W) [%] [kg] 

I 1057 55 0.348 0.238 2.54 7.08 3.39 0.878 0.05 300 77.4 0.364 
2 t l t t t t 3.61 1.542 0.10 300 72.6 0.500 
3 l t t t t t 3.73 1.806 0.125 300 70.4 0.554 
4 t t l t t l 3.84 2.043 0.15 300 68.3 0.602 
5 t t l l l ! 4.08 2.412 0.20 300 64.3 0.678 
6 l l ! ! ! t 4.34 2.689 0.25 300 60.5 0.735 
7 t ! ! t l l 4.59 2.860 0.30 300 57.2 0.770 
8 l t ! ! ! ! 4.86 2.975 0.35 300 54.0 0.793 
9 ! l ! ! t l 5.15 3.028 0.40 300 51.0 0.804 
10 ! t ! t l l 5.79 3.005 0.50 300 45.3 0.800 

Table 8-6. Universal motor famil~ from GA with radius and thickness as Elatform. 
Values of 
Platform Values ofxv,; Responses 

Variables, Xc 
Motor fo t N, N, Awr Awa I L T p 11 M 

No. [em) [mm] [mm2) [mm2) [Amp) [em] [Nm] [W) (%] [kg] 
I 2.54 7.03 1057 55 0.366 0.236 3.38 0.88 0.05 300 77.3 0.365 
2 ! t 1051 55 0.356 0.236 3.61 1.547 0.10 300 72.5 0.499 
3 t t 1057 55 0.357 0.238 3.73 1.828 0.125 300 70.3 0.560 
4 ! t 1057 55 0.367 0.239 3.84 2.044 0.15 300 68.5 0.606 
5 ! t 1057 55 0.367 0.237 4.08 2.408 0.20 300 64.3 0.679 
6 ! t 1057 57 0.359 0.238 4.30 2.632 0.25 300 61.1 0.727 
7 ! ! 1057 55 0.368 0.236 4.59 2.855 0.30 300 57.0 0.769 
8 t t 1057 56 0.359 0.236 4.84 2.973 0.35 300 53.9 0.793 
9 ! l 1057 55 0.351 0.238 5.15 3.028 0.40 300 51.0 0.805 
10 t t 1057 55 0.353 0.238 5.79 2.995 0.50 300 45.4 0.799 

The GA-based method reports motor families for 64 different platforms, 
which are based on different feasible combinations of {0, 1} for Xcc· Among 
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these are solutions based on the 'null platform', Xcc = {O,O,O,O,O,O,O,O}, and 
an example is shown in Table 8-7. The performance of the family based on 
this null platform is very similar to the two families listed in Table 8-5 and 
Table 8-6 due to the use of the PFPF as a third fitness function in the GA, 
i.e., all of the solutions are driven to nearly the same region within the 
design space, and there is not much variation in the values of xv,i as seen in 
the table. In fact, some might argue that this is not really a 'null' platform 
since many values are common across several, but not all, of the motors in 
the family. This gives rise to the question: is platforming an "all or nothing" 
proposition? The answer is no, which is exactly how variant components 
come about that are shared between some, but not all, of the products in the 
family. This is exactly the problem that Hernandez, et al. (2002) tackle, 
using the electric motor family as an example. Meanwhile, work continues 
with the GA-based method to improve solution diversity to spread out points 
in the design space and determine the best settings for the GA parameters to 
generate more diverse solution sets (Akundi, et al., 2005). 

Table 8-7. Universal motor famil~ from GA based on the null Elatform. 
Values ofxv.i Res2onses 

Motor N, N, Awr Awa fo t I L T p 11 M 
No. [mm2] [mm2] [em] [mm] [Amp] [em] [Nm] [W] (%] [kg] 

I 1056 55 0.348 0.234 2.54 6.61 3.38 0.880 0.05 300 76.6 0.365 
2 1056 55 0.356 0.236 2.54 6.96 3.61 1.547 0.10 300 72.4 0.501 
3 1056 55 0.356 0.236 2.54 6.99 3.73 1.808 0.125 300 70.2 0.554 
4 1056 55 0.356 0.235 2.54 6.99 3.84 2.039 0.15 300 68.0 0.600 
5 1056 56 0.357 0.236 2.52 6.99 4.08 2.408 0.20 300 64.3 0.670 
6 1056 57 0.359 0.237 2.54 6.99 4.29 2.632 0.25 300 61.0 0.726 
7 1056 55 0.355 0.236 2.54 6.99 4.59 2.855 0.30 300 56.9 0.768 
8 1055 57 0.354 0.236 2.54 6.99 4.83 2.926 0.35 300 54.2 0.784 
9 1056 55 0.351 0.236 2.54 6.99 5.15 3.027 0.40 300 50.6 0.803 
10 1056 55 0.356 0.235 2.54 6.99 5.79 2.995 0.50 300 44.8 0.795 

3.5 Comparison of motor families 

Figure 8-4 provides a graphical comparison of the motor families based 
on how well they achieve their mass and efficiency targets of S 0.5 kg and 2:: 
70%, respectively, which is labeled the 'Utopia Region'. The results are 
plotted in the order in which they were presented, progressing from the a 
prior formulations that use two stages (e =Table 8-1 and® =Table 8-2) 
and a single stage (0 = Table 8-3) to the a posteriori formulations that use 
two stages <• =Table 8-4) and a single stage (D =Tables 8-5 to Table 8-7). 
The results from the single-stage a posteriori GA-based method are nearly 
identical even though the two platforms differ; therefore, only one solution 
set is plotted in the figure with the D symbol. The set of individually 
optimized motors from (Simpson, et al., 2001a) is also included for 
comparison as indicated by the + symbol. 
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• 2-stage a priori, xv={L,I}, Table 8-1 

• 2-stage a priori, X0={r0 ,t}, Table 8-2 

• 1-stage a priori, xv={L,I}, Table 8-3 

1.0 -,--------------.-------1 • 2-stage a posteriori, x 0={r0 ,1}, Table 8-4 

0.9 

0.8 

Ci 0.7 
..:.:: -Ill 
~ 0.6 
:!: 

0.4 

40 

m_@ 
l1QJ 

Target: 
Mass~ 0.5 kg 

45 50 55 

D 1-stage a posteriori GA, Tables 8-5- 8-7 

+Ind. opt. motors (Simpson, et al., 2001a) 

60 65 
Efficiency (%) 

r-----t~ Target: 
11 ~ 70% 

70 75 80 85 

Figure 8-4. Graphical comparison of universal electric motor families. 

To facilitate comparison, each symbol is numbered to correspond to a 
particular motor in the family where a 1 denotes the motor with the lowest 
required torque setting (0.05 Nm) and a 10 indicates the motor with the 
highest required torque setting (0.5 Nm). Based on Figure 8-4, it is much 
easier to visualize the tradeoff between mass and efficiency within the motor 
family and how the amount of commonality exacerbates this tradeoff. For 
instance, we can clearly see how the • family of motors is nearly equivalent 
to the set of individually optimized motors: both have four motors in the 
'Utopia Region' and the higher torque motors fall very close to one another 
except for motor #10, which is slightly less efficient but weighs less. 
Conversely, we can see the extent of the performance loss for the initial 
platform family (e) when compared to the set of individually optimized 
motors (+ ). If a company wanted to use that platform, we would suggest 
the family obtained from the GA-based method (D). We can also see the 
improvement in the results of the single-stage a priori formulation ( •) to the 
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two-stage formulation (e): most of these motors offer improved efficiency 
at equivalent mass or offer more efficiency at less mass. The two-stage a 
posteriori motor family C•) yields the best motor family, as these motors 
tend to have the least mass while having equivalent or higher efficiency. 

Several researchers have used the universal electric motor example to 
benchmark their optimization approaches against published results. For 
instance, recent work has investigated the use of ant colony optimization 
(Kumar, et al., 2004) and preference aggregation (Dai and Scott, 2004a) to 
improve the performance of the motor family. Meanwhile, others have 
designed the family of motors by solving it as a problem of access in a 
geometric space (Hernandez, et al., 2002) and by using sensitivity and 
cluster analysis (Dai and Scott, 2004b) to help identify the platform. A 
classification and review of many different approaches to product platform 
and product family optimization is given next. 

4. CLASSIFICATION AND SUMMARY OF 
OPTIMIZATION APPROACHES 

Several optimization approaches have been developed within the 
engineering design community during the past decade to facilitate product 
family design and optimization. Table 8-8 classifies 40 approaches from the 
literature based on the following categories: 

1. Module- or scale-based product family? - does the problem 
formulation focus on module- or scale-based families or both? In 
the universal electric motor example, the emphasis was on scaling 
the motor around one or more design variables, but the motor could 
just as easily be taken as a module within a larger problem in 
designing a family of power tools, for instance. In Table 8-8, 'M' 
indicates module-based, 'S' scale-based, and 'MS' both. 

2. Single or multiple objectives - how many objectives are used when 
formulating the problem? In some cases, only a single objective is 
used whereas multiple objectives are often considered as evidenced 
in the universal electric motor example. A'S' in the table indicates 
that only a single objective is used while a 'M denotes multiple 
objectives are considered in the problem formulation. 

3. Model market demand?- is market demand explicitly modeled and 
used in the problem formulation? A 'Y' under this heading 
indicates yes, and a blank indicates that market demand is not being 
considered. Although not part of the universal electric motor 
example, this is an important aspect of the problem that should be 
considered whenever possible. 
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Table 8-8. Summar;t of engineering OEtimization a22roaches for 2roduct famil;t design. 
Details of Formulation 
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Reference ::E <:n::E ::E u~ z 0 (# of products in the family) 

(AIIada and Jiang, 2002) M S y y y 2+ DP Generic modular products (3) 
(Akundi, eta!., 2005) S M I GA Universal electric motors (I 0) 
(8lackenfelt, 2000) M S y y y I OA Lift tables (4) 

(Cetin and Saitou, 2004) M S 
GA, 

Welded auto. structures (2) 
SA 

(Chang and Ward, 1995) M S y y OA Automotive NC units (6) 
(D'Souza and Simpson, 2003) S M y GA General Aviation Aircraft (3) 
(Dai and Scott, 2004a) s s y 1,2 SQP Universal electric motors (I 0) 
(Dai and Scott, 2004b) s s 2 SQP Universal electric motors (1 0) 
(de Week, eta!., 2003) M S y y 2 SQP Automotive vehicles (7) 
(Farrell and Simpson, 2003) s s y y 2 GRG Flow control valves (16) 
(Fellini, eta!., 2000) MM y 2 NLP Automotive power train (3) 
(Fellini, eta!., 2002a) S M 2 SQP Automotive vehicle frames (2) 
(Fellini, eta!., 2002b) S M 2 SQP Automotive vehicle frames (2) 
(Fujita, eta!., 1998) M S y y y 1 SQP Commercial aircraft (2) 
(Fujita, eta!., 1999) M S y 1 SA TV receiver circuits (6) 

SQP, 
(Fujita and Yoshida, 200 I) 8 s y y GA, Commercial aircraft (4) 

8&8 
(Fujita and Yoshioka, 2003) S M y 1 GA Auto. lift gate dampers (6) 
(Gonzalez-Zugasti, eta!., 2000) MM y 1 NLP Interplanetary spacecraft (3) 
(Gonzalez-Zugasti and Otto, 2000) M S y 1 GA Interplanetary spacecraft (3) 
(Gonzalez-Zugasti, eta!., 2001) M S y y y y 2 NLP Interplanetary spacecraft (3) 
(Hernandez, eta!., 2001) S M y y 2 SA Absorption chillers (8) 
(Hernandez, et a!., 2002) s s 2+ PaS Universal electric motors (1 0) 
(Hemandez, eta!., 2003) M S y 2+ ExS Pressure vessels (16) 
(Jiang and Allada, 2001) M S y y y 2 SLP Vacuum cleaners (3) 
(Kokkolaras, et a!., 2002) MM y 2 NLP Auto. vehicle frames (2) 
(Kumar, eta!., 2004) S M y I Ant Universal electric motors (10) 
(Li and Azarm, 2002) M S y y y y 2 GA Cordless screwdrivers (3) 
(Messac, eta!., 2002a) S M 2 NLP Universal electric motors (10) 
(Messac, eta!., 2002b) S M y I NLP Universal electric motors (I 0) 
(Nayak, eta!., 2002) S M 2 SLP Universal electric motors (10) 
(Nelson, et a!., 200 I) MM y 2 NLP Nail guns (2) 
(Ortega, eta!., 1999) S M y y I SLP Oil filters (5) 
(Rai and Allada, 2003) MMY y 2 NLP Screwdrivers (3), knives (4) 
(Hassan, eta!., 2004) MM I GA Commercial satellites (3) 
(Seepersad, eta!., 2000) S M Y y y y I SA Absorption chillers (8) 
(Seepersad, eta!., 2002) s s y y yy 2 SA Absorption chillers (12) 
(Simpson, et al., 1999) S M y I SLP General Aviation Aircraft (3) 
(Simpson, et al., 200la) S M y 2 GRG Universal electric motors (1 0) 
(Simpson and D'Souza, 2004) S M I GA General Aviation Aircraft (3) 
(Willcox and Wakayama, 2003) s s y I SQP 8lended-win~-bodl aircraft ~2) 
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4. Model manufacturing cost? - is manufacturing or production cost 
explicitly modeled and used in the problem formulation? A 'Y' 
under this heading in the table indicates yes, and a blank indicates 
that manufacturing cost is not being considered. As with market 
demand, it is important to model and include this aspect of the 
problem whenever possible as it is often an important decision 
criterion as noted in Section 3.3 for the electric motor example. 

5. Consider uncertainty? - does the problem formulation take 
uncertainty into account in either the design, manufacturing, and/or 
market demand aspects of the problem? A 'Y' in the table under 
this heading indicates that one or more sources of uncertainty is 
being considered; a blank indicates that no uncertainty is being 
incorporated into the problem formulation. While this was not 
considered in the electric motor example, many researchers have 
explored the implications of uncertainty as noted in the table. 

6. Specify platform a priori? - does the designer have to specify the 
platform variables a priori or is the problem formulated so as to 
identify both the platform and the family during optimization (i.e., a 
posteriori)? A 'Y' under this heading in the table indicates that the 
platform variables must be specific a priori whereas a blank 
indicates that they do not. Examples of both cases were given for 
the universal electric motor example in the previous section. 

7. Number of stages - how many stages are used to solve the 
optimization problem? A '1' under this heading in the table 
indicates that a single stage is used, a '2' indicates that two stages 
are used, and '2+' indicates that more than two stages are used. 
Examples of two-stage and single-stage approaches were given for 
the universal electric motor example in Section 3. 

8. Optimization algorithm - what optimization algorithm is used to 
solve the problem once it is formulated? One or more of the 
following acronyms is listed under this heading to indicate the type 
of algorithm used: B&B = Branch and Bound, DP = Dynamic 
Programming, ExS = Exhaustive Search, GA = Genetic Algorithm, 
GRG = Generalized Reduced Gradient, NLP = Non-Linear 
Programming, OA = Orthogonal Array, PaS = Pattern Search, SA = 
Simulated Annealing, SLP = Sequential Linear Programming, and 
SQP = Sequential Quadratic Programming. Many of these 
algorithms have been applied to the universal electric motor 
example as noted in the table. 

9. Product family example - the last column in the table lists the 
type(s) of product family that is used as an example or test case in 
the cited work. The number of products in the family is also listed 
to provide an indication as to the size of the problem being solved. 
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In looking at the table, the approaches are split evenly between module
based and scale-based product families, while the work by Fujita and 
Yoshida (2001) specifically addresses both (see also Chapter 10). More than 
half of the approaches use multi-objective optimization, and three 
assumptions are often made when using multi-objective optimization: 

1. maximizing each product's performance maximizes its demand, 
2. maximizing commonality among products minimizes costs, and 
3. resolving the tradeoff between (1) and (2) yields the most profitable 

product family. 

Without explicitly modeling market demand and associated manufacturing 
costs, however, these assumptions may lead to sub-optimal product families. 

The universal electric motor example in the previous sections provides an 
example of when this can occur. The initial formulation scaled the motors 
around the stack length of the motor (see Section 3.1 ), but maximizing 
commonality in the family using two different approaches revealed that the 
motor platform should be scaled by the radius to maximize performance. As 
discussed in Section 3.3, the best choice is stack length, and through 
discussions with experienced motor designers, we found that production 
costs, not performance, primarily drove the use of stack length as the scaling 
variable (Simpson, et al., 200la). In the table, note that only about half the 
approaches integrate manufacturing costs directly within the formulation 
while fewer than one-third incorporate market demand. Also, note that the 
majority of approaches that include production costs or market demand in 
their formulation use single objective optimization, rather than multi
objective, where the objective is to either maximize profit or minimize cost. 

Although not specifically noted in the table, most of the approaches that 
incorporate uncertainty in the formulation model it in the market demand 
and future sales of the products in the family. Uncertainty in customer 
requirements has also been used to develop robust product platforms. Chang 
and Ward (1995) were among the first to use robust design techniques to 
develop a family of products that were insensitive to design changes. 
Simpson and his co-authors use robust design techniques to develop scale
based platforms for General Aviation Aircraft (Simpson, et al., 1999), 
electric motors (Simpson, et al., 2001a), and absorption chillers (Hernandez, 
et al., 2001 ). Blackenfelt (2000) uses robust design techniques to maximize 
profit and balance commonality and variety within a family of lift tables. 

More than half of the approaches require specifying the platform a priori 
in order to reduce the design space and make the optimization problem more 
tractable. This is not ideal, however, since most designers use optimization 
to explore varying levels of platform commonality within the product family 
as noted in Section 3.3. 
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Note that single-stage and two-stage approaches are employed almost 
equally in the literature. While both approaches are effective at determining 
the best design variable settings for the product platform and product family, 
single-stage approaches will yield better families of products as discussed in 
Section 3.2 since the optimization is not partitioned into two or more stages. 
The dimensionality of single-stage optimization problems, however, is 
considerably higher than in two-stage approaches, which can lead to 
computational challenges (Messac, et al., 2002a). A modification to the 
two-stage approach is introduced by Nelson, et al. (200 1) and used by 
Fellini, et al. (2002a; 2002b; 2000): the first stage involves individually 
optimizing each product while the second stage involves optimizing the 
product family with constraints on performance losses due to commonality 
(see also Chapter 9). Only two multi-stage approaches have been developed. 
First, Hernandez, et al. (2002; 2003) develop a multi-stage optimization 
approach by viewing the product platform design problem as a problem of 
access in a geometric space. Second, Allada and Jiang (2002) introduce a 
dynamic programming (DP) model for configuring module instances within 
an evolving family of products. An alternative classification of optimization 
approaches based on the extent of the optimization (i.e., module attributes, 
module combinations, or both) is discussed in (Fujita, 2002). 

Based on the variety of optimization algorithms listed in the table, there 
does not appear to be a preferred algorithm for product family design. Both 
linear and non-linear programming algorithms (e.g., SLP, SQP, NLP, GRG) 
are employed in many formulations, as are derivative-free methods such as 
genetic algorithms (GA), simulated annealing (SA), pattern search (PaS), 
and Branch and Bound (B&B) techniques. When the design space is small, 
exhaustive search (ExS) techniques (Hernandez, et al., 2003) or orthogonal 
arrays (Blackenfelt, 2000; Chang and Ward, 1995) can be used to enumerate 
different combinations of parameter settings and modules. However, very 
few problems involve so few options that such an approach can be taken, 
and many researchers advocate the use of GAs for product platform design 
due to the combinatorial nature of the product family design problems as 
noted earlier. Finally, algorithm choice is often mandated by the selected 
framework, e.g., Decision-Based Design (Li and Azarm, 2002), Target 
Cascading (Kokkolaras, et al., 2002), 0-1 integer programming (Fujita, et al., 
1999), Physical Programming (Messac, et al., 2002b ), and the Compromise 
Decision Support Problem (Simpson, et al., 1999). 

Finally, these optimization approaches have been tested on a variety of 
product families as noted in the last column of the table. These product 
families range from 2-16 products and include consumer products such as 
drills, vacuum cleaners, and automobiles; industrial products such as chillers 
and flow control valves; and complex systems such as aircraft and spacecraft. 
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Detailed analyses for the universal electric motor problem can be found in 
(Simpson, et al., 2001a); it has been used to benchmark a variety of 
optimization approaches as noted in the table. The commercial aircraft 
problem found in (Fujita, et al., 1998; Fujita and Yoshida, 2001) uses aircraft 
analyses available in the literature in combination with their own models for 
design and development, facility, and production costs and a profit model for 
the manufacturer. The nail gun (Nelson, et al., 2001), vacuum cleaner (Jiang 
and Allada, 2001 ), and power screwdriver and electric knife (Rai and Allada, 
2003) examples are pretty comprehensive as well. The automotive example 
used in (Fellini, et al., 2002a; Kokkolaras, et al., 2002) is based on a detailed 
vehicle body structural model that is currently unavailable to the public; 
simpler models of the automotive vehicle frame can be in (Cetin and Saitou, 
2004; Fellini, et al., 2002b). Other analyses are not publicly available. 

5. CLOSING REMARKS 

As evidenced by the multitude of approaches listed in Table 8-8, 
formulations for solving product family optimization problems vary widely. 
They have been applied successfully to a wide variety of problems as well, 
but we must bear in mind that optimization primarily supports one aspect of 
product platform and product family design, namely, parameter (detail) 
design. New and innovative ways are needed to propagate the use of these 
techniques into the early stages of design when decision support is critical. 
Moreover, few, if any, of these approaches have found their way into 
industrial applications or day-to-day use within industry, and we should 
strive to educate practicing engineers with the power and potential of these 
approaches. Finally, we believe that research in this promising area of 
product platform and product family design will stagnate if test problems 
and benchmarks are not established and propagated within the community at 
large. We challenge interested researchers to consider this when devising 
new and improved approaches for product family optimization. 
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