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1. INTRODUCTION 

Due to the development of modem technologies and global 
manufacturing, it becomes harder and harder for companies to distinguish 
themselves from their competitors. To keep the competitive advantage, the 
companies intend to provide a variety of products by differentiating their 
product lines with the belief that product variety may stimulate sales and 
thus conduce to revenue (Ho and Tang, 1998). A large product variety does 
improve sales by providing the customers more choices. However, 
companies with expanding products face with the challenges of controlling 
costs. The costs exponentially increase with the variety growth. Further, high 
variety will result in the proliferation of products and processes and in tum 
inefficiencies in manufacturing (Child, et al., 1991). Mass customization 
aims at satisfying individual customer needs with the efficiency of mass 
production (Pine, 1993a). Customization emphasizes the uniqueness of, and 
the differences among, products (Jiao and Tseng, 2000). To optimize the 
product variety, a company must assess the level of variety at which 
customers will still find the company's offerings attractive and the level of 
complexity that will keep the costs low (Jiao, et al., 1998). Developing 
product families has been recognized as a natural technique to facilitate 
increasing complexity and cost-effective product development (Meyer, et al., 
1997). In this regard, the manufacturing companies put their effort in 
organizing, developing, and planning product families to balance the 
tradeoffs between product diversity and engineering costs. 
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Based on the reports of marketing analysis, it turns out that some of the 
product variants may be more preferred as expected, while others, although 
they may be equally sound in technical terms, may not be favored by the 
customers. The errors on expectation and achievement mainly result from 
the diverse customer requirements. Furthermore, it has been reported that not 
all the existing market segments create the same opportunity for the 
companies in the same industry due to the discrepancy of their targets, 
strategies, technologies, cultures, etc. Therefore, it is most important for the 
manufacturing companies to make the decisions deliberately that which 
market segment should be targeted and what products should be planned for 
the target market, namely, product family positioning. 

The involved complexity makes product family positioning very 
difficult. Proper positioning should help leverage the engineering costs and 
diverse customer preferences. The prediction of the customer preference is 
difficult because even the customers themselves do not know why they 
choose specified products. Moreover, the customers always need to make 
tradeoffs among diverse product features. For example, the customer must 
make a compromise between "high product quality" and "high price". It is 
inhibitive to estimate the value that the customers put on every product 
feature because the values that the customers perceive are based on their 
perception of the overall products (Green, et al., 1981 ). Further, cost 
estimation is deemed to be inhibited. Traditional cost accounting by 
allocating fixed costs and variable costs across multiple products may 
produce distorted cost-carrying figures due to possible sunk costs associated 
with investment into product and process platforms. 

Towards this end, this chapter introduces a systematic approach to 
product family positioning within the context of mass customization. A 
comprehensive methodology for product family positioning is developed, 
aiming at leveraging both customer preferences and engineering costs. The 
remainder proceeds as follows. In the next section, various existing 
approaches to product family positioning are reviewed. Section 3 presents 
the formulation of the product family positioning problem. An optimization 
framework and the according properties of the model are discussed in 
Section 4. The developed model is represented in Section 5. A case study of 
notebook computer family positioning is reported in Section 6. The research 
is concluded with a summary in Section 7. 



Product Family Positioning 93 

2. BACKGROUND REVIEW 

In general the literature related to product family positioning stems from 
two broad fields that are closely correlated: product line design and customer 
preference analysis for optimal product design, as discussed below. 

(I) Product Line Design. For product line design, the objectives widely 
used in selecting products among a large set of potential products include 
maximization of profit (Monroe, et al., 1976), net present value (Li and 
Azarm, 2002), a seller's welfare (McBride and Zufryden, 1988), market 
share (Kohli and Krishnamurti, 1987), and share of choices (Balakrishnan 
and Jacob, 1996) within a target market. Pullmana, et al. (2002) have 
combined QFD and conjoint analysis to compare the most preferred features 
with those profit maximizing features so as to develop designs that optimize 
product line sales or profits. Kota, et al. (2000) have proposed a product line 
commonality measure to capture the level of component commonality in a 
product family. The key issue is to minimize non-value added variations 
across models within a product family without limiting customer choices. 

Another dimension in product line design research is about the price. 
Robinson (1988) has suggested that the most likely competitive reaction to a 
new product in the short term is a change in price. Choi and DeSarbo (1994) 
have applied the game theory to model competing firms' reactions in price 
and employed a conjoint simulator to evaluate product concepts against 
competing brands. Dobson and Kalish (1988; 1993) have discussed the 
tradeoffs involved in price setting and choice of the number of products. 
Furthermore, product line design basically involves two issues (Li and 
Azarm, 2002): generation of a set of feasible product alternatives, and 
subsequent selection of promising products from this reference set to 
construct a product line. Along this line, existing approaches to product line 
design can be classified into two categories (Steiner and Hruschka, 2002). 
One-step approaches aim at constructing product lines directly from part­
worth preference and cost/return functions. On the other hand, two-step 
approaches first reduce the total set of feasible product profiles to a smaller 
set, and then select promising products from this smaller set to constitute a 
product line. Following the two-step approach, Green and Krieger (1985; 
1989) have introduced several heuristic procedures with the consideration of 
how to generate a reference set appropriately. On the other hand, Kohli and 
Sukumar (1990) and Nair, et al. (1995) have adopted the one-step approach, 
in which product lines are constructed directly from part-worth data rather 
than by enumerating potential product designs. In general, the one-step 
approach is more preferable, as the intermediate step of enumerating utilities 
and profits of a huge number of reference set items can be eliminated 
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(Steiner and Hruschka, 2002). Only when the reference set contains a small 
number of product profiles can the two-step approach work well. 

(2) Customer Preference Analysis for Optimal Product Design. 
Measuring customer preferences in terms of expected utilities is the primary 
concern of optimal product design (Krishnan and Ulrich, 2001) or decision­
qased design (Hazelrigg, 1998). In typical preference-based product design, 
conjoint analysis (Green and Krieger, 1985) has proven to be an effective 
means to estimate individual level part-worth utilities associated with 
individual product attributes. In order to simulate the potential market shares 
of proposed product concepts, scaled preference evaluations need to be 
collected from respondents with regard to a subset of multi-attribute product 
profiles (stimuli) constructed according to a fractional factorial design. With 
these preference data, idiosyncratic part-worth preference functions are then 
estimated for each respondent using regression analysis. Attribute level part­
worth utilities can also be computed by respondents' simulated choice data, 
which is called a choice-based conjoint analysis and hence establishes a 
direct connection between preference and choice (Kuhfeld, 2004). The 
conjoint-based searching for optimal product designs always results in 
combinatorial optimization problems because typically discrete attributes are 
used in conjoint analysis (Kaul and Rao, 1995; Kohli and Sukumar, 1990; 
Nair, et al., 1995). 

3. PROBLEM DESCRIPTION 

This research addresses the product family positioning problem with the 
goal of maximizing an expected surplus. A large set of product attributes, 
A= {a, lk = 1,-··,K}, have been identified, given that the firm has the 
capabilities (both design and production) to produce all these attributes. 
Each attribute, Va, e A , possesses a few levels, i.e., A;= {a;, II= 1,-··,L.}. Thus, 
the product family is embodied in the various combinations of the attribute 
levels, i.e., z = {z1 IJ = 1,-··,J}. Each product, Vz1 e z, is defined as a vector of 

specific attribute levels, i.e., zj = [a:, 1, where any a;,i = 0 indicates that 

product z, does not contain attribute a,; and any a;,i * 0 represents an 

element of the set of attribute levels that can be assumed by product z1 , i.e., 

~;,it e{A;xA;x···xA;}. 
The positioned product family, A, is a set consisting of a few selected 

product profiles, i.e., A= {z1 1 J = 1,-··,J' }~ z, 3J' e {1,-··,J}, denotes the 
number of products contained in the positioned product family. Every 
product is associated with certain engineering costs, denoted as {C1 L . The 
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manufacturer must make decisions that what products to offer as well as 
their respective prices, {P, L . There are multiple market segments, 
s"" (s, li = 1,-··,!}, each containing homogeneous customers, with a size, Q,. 
Various customer preferences on diverse products are represented by 
respective utilities, {u,, L . Product demands or market shares, {P,1 L , are 
described by the probabilities of customers' choosing products, denoted as 
customer or segment-product pairs, {(s,, i, )L, E s x z . 

4. FUNDAMENTAL ISSUES 

4.1 Objective function 

Among those customer preference or seller value-focused approaches, 
the objective functions widely used for solving the selection problem are 
formulated by measuring the consumer surplus - the amount that customers 
benefit by being able to purchase a product for a price that is less than they 
would be willing to pay. The idea behind is that the expected revenue (utility 
less price) comes from the gain between customer preferences (utilities 
indicating the dollar value that they would be willing to pay) and the actual 
price they would pay, whilst the price implies all related costs. With more 
focus on engineering concerns, the selection problem is approached by 
measuring the producer surplus - the amount that producers benefit by 
selling at a market price that is higher than they would be willing to sell for. 
The principle is to measure the expected profit (price less cost) based on the 
margin between the actual price they would receive and the cost (indicating 
the dollar value they would be willing to sell for), whilst the price implies 
customer preferences. 

Considering both the customer preferences and the engineering costs, the 
above economic surpluses should be leveraged from both the customer and 
engineering perspectives. This research proposes to use a shared surplus to 
leverage both the customer and engineering concerns. Then the objective 
function can be formulated as the following: 

[ ] 
I J U. 

Maximize E V = IL:-" P,1QY1 , 

'"'' i"'' c J 

(1) 

where E[.] denotes the expected value of the shared surplus, v, which is 
defined as the utility per cost, is modified by the probabilistic choice model, 
{PJ}, , and the market size, (Q, }, , C1 indicates the cost of offered product z1 , 
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and Y, is a binary variable such that y 1 = 1 if the manufacturer decides to 
offer product z1 and y1 = o otherwise. 

4.2 Customer preference measurement 

Volatile market condition, diverse customer preferences, and the 
competition among similar products make it difficult to measure the 
customer preference. Conjoint analysis (CA) is perhaps the most widely 
applied method for modeling consumer preference by marketing researchers. 
CA is a set of methods originally designed to measure consumer preferences 
by assessing the buyers' multi-attribute utility functions. The strength of CA 
is its ability to ask realistic questions that mimic the tradeoffs that 
respondents make in the real world. In contrast to direct questioning methods 
that simply ask how important each feature is or the desirability of each 
level, CA forces respondents to make difficult tradeoffs like the ones they 
encounter in the real world. 

Following the part-worth model that is widely used in CA, the utility of 
the i -th segment for the J -th product, u, , is assumed to be a linear function 

of the part-worth preferences (utilities) of the attribute levels of product zj: 

(2) 

where u," is the part-worth utility of segment s, for the l -th level of attribute 
a, (i.e., a;1 ) individually, w1, is the utility weights among attributes, {a, t , 
contained in product z1 , ;r1 is a constant associated with the derivation of a 
composite utility from part-worth utilities with respect to product z1 , c, is 
an error term for each segment-product pair, and x1" is a binary variable 
such that x,, = 1 if the l -th level of attribute a, is contained in product z1 

and xw = o otherwise. 

4.3 Choice model and choice probability 

Conjoint analysis yields a preference model, for example a main-effect 
part-worth model, which defines the functional relationship between 
attribute levels of a product and a customer's or a segment's overall utility 
attached to it. Based on this preference model, customers' choices can be 
modeled by relating preference (utility) to choice. The traditional 
deterministic first choice rule of preferences assumes that a customer 
chooses the product from the choice set according to the highest associated 
utility with certainty. Neglect of uncertain factors in the first choice rule may 
lead to suboptimal results at the aggregate market level, as market shares of 
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products with higher utilities across customers or segments tend to be 
overestimated (Kaul and Rao, 1995). 

On the other hand, probabilistic choice rules can provide more realistic 
representations of the customer decision making process (Sudharshan, et al., 
1987). Some probabilistic choice rules can offer flexibility in calibrating 
actual choice behavior such as the option of mimicking the first choice rule 
(Kaul and Rao, 1995). In general, there are two types of probabilistic choice 
rules (Ben-Akiva and Lerman, 1985): the generalized (or powered) Bradley­
Terry-Luce share-of-utility rule (BTL, also called the a -rule) and the 
conditional multinomiallogit choice rule (MNL). 

With the assumption of independently and identically distributed error 
terms, the logit choice rule suggests itself to be well suited to estimate 
customer preferences directly from choice data (Green and Krieger 1996). 

Under the MNL model, the choice probability, P,1 , which indicates how 
likely a customer or a segment, 3s, e s , chooses a product, 3z1 e z , among 
N competing products, is defined as the following: 

epU'J 

P=--,, N 

2:epu;n 
n=l 

(3) 

where f.J is a scaling parameter. As f.J ~ oo , the logit behaves like a 
deterministic model, whereas it becomes a uniform distribution as f.J ~ o . 
Therefore, like with the BTL model, calibration on actual market shares can 
be carried out subsequently to elaborate preference estimation by post hoc 
optimization with respect to f.J (Train, 2003). 

Based on a customer survey, the response rate- how often each product 
alternative is chosen - can be depicted as a probability density distribution. 
The demand for a particular product is the summation of the choice 
frequency of each respondent, Vs, e s, adjusted for the ratio of respondent 
sample size versus the size of the market population (Train, 2003). The 
accuracy of the demand estimates can be increased by identifying unique 
customer utility functions per market segment, or class of customers to 
capture systematic preference variations (Ben-Akiva and Lerman, 1985). 
Estimates of future demand can also be facilitated using pattern-based or 
correlation-based forecasting of existing products. Forecasts of economic 
growth and changes of the socioeconomic and demographic background of 
the market populations help to refine these estimates. 

4.4 Dealing with engineering costs 

Traditional cost accounting by allocating fixed costs and variable costs 
across multiple products may produce distorted cost-carrying figures due to 
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possible sunk costs associated with investment into product and process 
platforms. It is quite common in mass customization that design and 
manufacturing admit resources (and thus the related costs) to be shared 
among multiple products in a reconfigurable fashion, as well as per-product 
fixed costs (Moore, et al., 1999). In fact, Yano and Dobson (1998) have 
observed a number of industrial settings, where a wide range of products are 
produced with very little incremental costs per se, or very high development 
costs are shared across broad product families, or fixed costs and variable 
costs change dramatically with product variety. They have pointed out that 
"the accounting systems, whether traditional or activity-based, do not 
support the separation of various cost elements". 

Furthermore, the cost advantages in mass customization rest with the 
achievement of mass production efficiency. Rather than the absolute amount 
of dollar costs, what important to justify optimal product offerings is the 
magnitudes of deviations from existing product and process platforms due to 
design changes and process variations in relation to product variety. To 
circumvent the difficulties inherent in estimating the accurate cost figures, 
this research adopts a pragmatic costing approach based on standard time 
estimation developed by Jiao and Tseng (1999). The idea is to allocate costs 
to those established time standards based on well-practiced work and time 
studies, thus relieving the tedious tasks for identifying various cost drivers 
and cost-related activities. The key is to develop mapping relationships 
between different attribute levels and their expected consumptions of 
standard times within legacy process capabilities. These part-worth standard 
time accounting relationships are built into the product and process 
platforms (Jiao, et al., 2003). Any product configured from available 
attribute levels is justified based on its expected cycle time. This expected 
cycle time is accounted by the aggregation of part-worth standard times. The 
rationale is particularly applicable to family positioning, where "the optimal 
product profiles are not as sensitive to absolute dollar costs as they are to the 
relative magnitudes of cost levels" (Choi and DeSarbo, 1994). 

Introducing a penalty function, the cost function, C1 , corresponding to 
product z1 , can be formulated based on the respective process capability 
index, PC!;, that is, 

1 3crJ 

C _a PC/1 _a 11 i-LSLT 
·-pe -pe , 

.I 

(4) 

where f3 is a constant indicating the average dollar cost per variation of 
process capabilities, LSL' denotes the baseline of cycle times for all product 
variants to be produced within the process platform, Ji; and cr; are the mean 
and the standard deviation of the estimated cycle time for product z1 • 
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The meaning of fJ is consistent with that of the dollar loss per deviation 
constant widely used in Taguchi's loss functions. It can be determined ex 
ante based on the analysis of existing product and process platforms. Such a 
cost function produces a relative measure, instead of actual dollar figures, 
for evaluating the extent of process variations among multiple products. 
Modeling the economic latitude of product family positioning through the 
cycle time performance and the impact on process capabilities can alleviate 
the difficulties in traditional cost estimation. 

5. MODEL DEVELOPMENT 

Treating the price of each offered product as a decision variable will 
make the problem nonlinear (Yano and Dobson, 1998). To avoid explicitly, 
nor necessary, modeling of the price, the general practice is to treat price as a 
separate attribute that can be chosen from a limited number of values for 
each product (Nair, et al., 1995; Moore, et al., 1999). Adding price as one 
more attribute, the attribute set becomes A = {a. t+, , where aK+I represents the 
price possessing a few levels, i.e., A;+,= {a;K+t)l \l = 1,-··,Lx+J Further, let 
p = [a;K+t)t,.··,a;K+l)LxJ be the vector of feasible price levels. 

By combining Eqs. (1), (2), (3) and (4), the product family positioning 
problem can be formulated as a mixed integer program, as below: 

' .1 [ U j[ e'"'ij ] Maximize E[V]= II :~~ -N--. Q,Y1 ' 
I=) j=) _./_ ""ej.l{lf11 

T . T £.... f3e Jl j -LSL n=l 

(5a) 

s.t. U,; = II(w;,u,"xi" + JZ"J+ e,;, 'ViE {1,-··,l}, \/j E {l,···,J}, (5b) 
k=\ 1=1 

Ix1" = 1, \/j E {l,···,J}, \/k E {1,-··,K + 1}, (5c) 
1•1 

K+l~ I.dx1" -xi'" I> 0, \/j,f E {1,-··,J}, j "- f, 
k=l 1=1 

(5d) 

i>1 ~ J' , \/J' E {1,-··,J}, (5e) 
J•l 

X;,1 , Y1 E {0, 1}, \/j E {1, · · · ,J}, \/k E {1,- · · ,K + 1}, \;/[ E {1,- · ·, L,}. (5f) 
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Objective function (5a) is to maximize the expected shared surplus by 
offering a product family consisting of products, {zj}, , to customer 
segments, {sJ1 • Constraint (5b) refers to conjoint analysis- ensures that the 
composite utility of segment s; for product zj can be constructed from part­
worth utilities of individual attribute levels, {A; }K.,. Constraint (5c) suggests 
an exclusiveness condition - enforces that exactly one and only one level of 
each attribute can be chosen for each product. Constraint (5d) denotes a 
divergence condition - requires that several products to be offered must 
pairwise differ in at least one attribute level. Constraint (5e) indicates a 
capacity condition - limits the maximal number of products that can be 
chosen by each segment. J' is the upper bound of the number of products 
that the manufacturer wants to introduce to a product family. Constraint (5f) 
represents the binary restriction with regard to the decision variables of the 
optimization problem. 

There are two types of decision variables involved in the above 
mathematical program, i.e., xj,l and yj, representing the composite attribute 
levels and the products included in the positioned product family, 
respectively. Both types of decisions depend on a simultaneous satisfaction 
of the target segments. The manufacturer's decisions about what (i.e., layer I 
decision-making) and which (i.e., layer II decision-making) products to offer 
to the target segments are implied in various instances of {xj,l !'v'J,k,t} and 
k !'v'J}, respectively. As a result, the positioned product family, 
A' = {z; 1 J = J,. .. ,J'} is yielded as a combination of selected products 
corresponding to {yj !'v'J}, where each selected product, z;, comprises a few 
selected attributes and the associated levels corresponding to k" !'v'J,k,t}. 

6. CASE STUDY 

6.1 Application case 

The proposed framework has been applied to the notebook computer 
family positioning problem. For illustrative simplicity, a set of key attributes 
and available attribute levels for the notebook computer are listed in Table 6-
1. Among them, "price" is treated as one of the attributes to be assumed by a 
product. 

With regard to the class-member relationships, notebook computer 
family comprises a four-layer AND/OR tree structure, as shown in Figure 6-
1. The first layer is the product family, each of which consists of one or 
more products. Each product consists of a few attributes, thus constituting 
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the second layer. The third layer represents the levels for each attribute, 
indicating the instantiation of an attribute by one out of many levels. 

Table 6-1. List of attributes and their feasible levels for notebook computers. 
Attribute Attribute Levels 

a" Description a:/ Code Description 

a;l Al-l Pentium 2.4 GHz 

a;, Al-2 Pentium 2.0 GHz 
a, Processor a;, Al-3 Centrino 1.6 GHz 

a;. Al-4 Centrino 1.7 GHz 

a;t A2-1 256 MB DDR SDRAM 

az Memory a~, A2-2 512MB DDRSDRAM 

a~, A2-3 I GB DDR SDRAM 

a;l A3-l 60GB 

a3 Hard Disk a;~ A3-2 80GB 

a;l A3-3 120GB 

a~~ A4-1 Low (below 2.0 KG with battery) 

a4 Weight a:, A4-2 Moderate (2.0- 2.8 KG with battery) 

a:, A4-3 High (2.8 KG above with battery) 

a:] AS-I Regular (around 6 hours) 
as Battery Life a:, AS-2 Long (7 .5 hours above) 

a;l A6-l $800- $1.3K 

a;,2 A6-2 $1.3K- $!.8K 
a" Price a;, $!.8K- $2.5K A6-3 

a;>~ A6-4 $2.5K above 

A/4 

Figure 6-1. Generic structure for notebook computer family. 
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6.2 Customer preference 

It is required to construct testing profiles for conjoint analysis. Given all 
attributes and their possible levels as shown in Table 6-1, a total number of 
4 x 3 x 3 x 3 x 2 x 4 = 864 possible combinations may be constructed. To 
overcome such a combinatorial explosion, the Taguchi Orthogonal Array 
Selector provided in SPSS software (http://www.spss.com) is used to 
generate a total number of 27 orthogonal product profiles. With these 
profiles, a fractional factorial experiment is designed for exploring customer 
preferences, as shown in Table 6-2. In Table 6-2, columns 2-7 indicate the 
specification of offerings that are involved in the profiles and column 8 
collects the preferences given by the customers. 

Table 6-2. Res2onse surface ex2eriment desi~n. 

Conjoint Test 
Preference Scale 

least most 
Battery I 9 

Profile Processor Memory Hard Disk Weight 
Life 

Price I I I I I I I I I 

I P-2.0 256 60 Low Regular $800-1.3K 9 
2 C-1.7 256 80 Low Regular $1.8-2.5K 3 
3 P-2.4 512 60 Moderate Long $800-1.3K 4 
4 C-1.7 512 120 Low Regular $1.3-1.8K 7 

25 C-1.7 256 80 Moderate Regular $1.8-2.5K 2 
26 P-2.0 I 120 Low Regular $800-1.3K 8 
27 C-1.6 I 80 High Regular $1.3-$1.8K 6 

A total number of 20 customers are selected to act as the respondents. 
Each respondent is asked to evaluate all 27 profiles one by one by giving a 
mark based on a 9-point scale, where "9" means the customer prefers a 
product most and "1" least. With these data, clustering analysis is run to find 
customer segments based on the similarity among customer preferences. 
Three customer segments are formed: s,, s, , and s, , suggesting home users, 
regular users, and professional/business users, respectively. 

For each respondent in a segment, 27 regression equations are obtained 
by interpreting his original choice data as a binary instance of each part­
worth utility. With these 27 equations, the part-worth utilities for this 
respondent are derived. Averaging the part-worth utility results of all 
respondents belonging to the same segment, a segment-level utility is 
obtained for each attribute level. Columns 2-4 in Table 6-3 show the part­
worth utilities for three segments with respect to every attribute level. 

6.3 Engineering costs 

Table 6-3 also shows the part-worth standard times for all attribute 
levels. The company fulfills customer orders through assembly-to-order 
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production while importing all components and parts via global sourcing. 
The part-worth standard time of each attribute level is established based on 
work and time studies of the related assembly and testing operations. With 
assembly-to-order production, the company established standard routings as 
the basis for its process platform. Based on empirical studies, costing 
parameters are known as LSLT = 2518 (second) and j3 = 0.006. 

Table 6-3. Part-worth utilities and part-worth standard times. 

Attribute 
Part-worth Utility Part-worth Standard Time 

Level 
{Customer Segment) (Assembly & Testing Operations) 

St S2 s, J.L' (second) cr' (second) 
Al-l 0.62 0.71 0.53 485 8.9 
Al-2 0.82 0.78 0.81 538 10.3 
Al-3 0.80 0.83 1.23 557 11.3 
Al-4 0.71 0.73 0.71 521 11.4 
A2-l 1.23 1.32 1.25 753 34.2 
A2-2 1.26 1.23 1.29 825 36 
A2-3 1.32 !.54 1.42 821 35 
A3-l 1.17 0.48 0.38 667 23.6 
A3-2 1.12 0.88 0.75 703 22.6 
A3-3 1.16 1.26 0.89 730 31 
A4-l 1.25 0.89 0.72 637 25.5 
A4-2 1.44 1.32 0.83 672 27.6 
A4-3 1.67 1.21 1.17 715 28.7 
AS-I 0.98 0.96 0.85 287 4.32 
AS-2 0.82 1.32 0.92 315 5.34 
A6-l 0 0 0 
A6-2 -1.55 -0.46 -0.17 

N.A. N.A. 
A6-3 -1.38 -0.71 -0.52 
A6-4 -2.21 -2.19 -0.56 

6.4 GA solution 

To ensure accurate product family positioning, every possible scenario 
should be examined. It will result in a combinatorial explosion for the 
products involved in the product family. Enumeration is inhibitive if a 
problem is extremely big. Comparing with traditional calculus-based or 
approximation optimization techniques, genetic algorithms (GAs) have been 
proven to excel in solving combinatorial optimization problems. The GA 
procedure is applied to search for a maximum of expected shared surplus 
among all product alternatives. Assume that each positioned product family 
may consist of a maximal number of J' = 4 products. Then a chromosome 
string comprises 6 x 4 = 24 genes. Each substring is as long as 6 genes and 
represents a product that constitutes the product family. During the 
reproduction process, new product and family alternatives keep being 
generated through crossover and mutation operations. For every generation, 
a population size of M = 20 is maintained, meaning that only top 20 fit 
product families are kept for reproduction. 
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6.5 Results 

Adopting the crossover and mutation rate as 0.6 and 0.01, respectively, 
the results of GA solution are presented in Figure 6-2. As shown in Figure 6-
2, the fitness value keeps being improved generation by generation. Certain 
local optima (e.g., around 100 generations) are successfully overcome. The 
saturation period (350-492 generations) is quite short, indicating the GA 
search is efficient. Upon termination at the 49th generation, the GA solver 
returns the optimal result, which achieves an expected shared surplus of 
$792K, as shown in Table 6-4. 

As shown in Table 6-4, the positioned product family consists of two 
products, z,' and z; . From the specifications of attribute levels, we can see 
they basically represent the low-end and high-end notebook computers, 
respectively. With such a two-product family, all home, regular and 
professional/business users can be served with an optimistic expectation of 
maximizing the shared surplus. 
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Figure 6-2. Shared surpluses among generations. 

Table 6-4. Product family positioning results. 

At At = (1, I ,2,3, I, I ;4,2,3, I ,2,3; 0,0,0,0,0,0; 0,0,0,0,0,0] 

{.z; L z1
1 = [1, 1 ,2,3, 1,1] .z~ = [4,2,3, 1 ,2,3] 

at . at . 
k ak, k ak, 

{aJ }cK+IY Processor Pentium 2.4 GHz Processor Centrino 1.7 GHz 
Memory 256 MB DDR SDRAM Memorz: 512MB DDR SDRAM 

{a;, }(K +t)' 

Hard Disk 80GB Hard Disk 120GB 
Weight High (2.8 KG above) Weight Low (below 2.0 KG) 
Batterz: Life Regular (around 6 hours) Batterz: Life Long (7.5 hours above) 
Price $800- $1.3K Price $1.8K- $2.5K 

E[Vt j $792K 
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6.6 Performance evaluation 

Figure 6-3a compares the results of utility with choice probability, 
f ±(u;;F;J, among generations. It is interesting to observe that the distribution 
i=li=l . 

of utility with choice probability does not tally with that of the fitness shown 
in Figure 6-2. The optimal solution (i.e., the last generation) does not 
produce the best utility performance. On the other hand, a number of high 
utility achievements do not correspond to high fitness. Likewise, as shown in 
Figure 6-3b, the distribution of cost performance among generations 
disorders the pattern of fitness distribution shown in Figure 6-2. This may be 
explained by the fact that high utility achievement is usually accompanied 
with high costs to incur. Therefore, the shared surplus is a more reasonable 
fitness measure to leverage both customer and engineering concerns than 
either utility or cost alone. 

Gener•tlon Gener.tion 

(a) Utility with choice probability (b) Cost 

Figure 6-3. Distribution of performance ofGA by generation. 

Figure 6-4 compares the achievements, in terms of the normalized shared 
surplus, cost, and utility with choice probability, of 20 product families in 
the 4921h generation that returns the optimal solution. It is interesting to see 
that the peak of utility achievement (family #8) does not conclude the best 
fitness as its cost is estimated to be high. On the other hand, the minimum 
cost (family #4) does not mean the best achievement of shared surplus as its 
utility performance is moderate. Also interesting to observe is that the worst 
fitness (family #20) performs with neither the lowest utility achievement nor 
the highest cost figure. The best product family (#1) results from a leverage 
of both utility and cost performances. 
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Figure 6-4. Performance comparison of product family population in the 49zt" generation . 

7. CONCLUDING REMARKS 

Differing from the conventional product line design problem, product 
family positioning optimizes both a mix of products and the configurations 
of individual products in terms of specific attributes. By proposing a shared­
surplus model, this research allows products to be constructed directly from 
attribute levels. Diverse customer preferences across multiple market 
segments, customer choice probability, and engineering costs for the 
composition of a product family are all covered by the shared surplus model. 
Conjoint analysis is adopted to quantify the customer preference. To 
circumvent the difficulties due to cost estimation, this research adopts a 
pragmatic costing approach based on standard time estimation to estimate 
the engineering costs of the products. To deal with the combinatorial 
explosion during optimization, the GA is used to position the optimal 
product family to create the highest shared surplus. 

To model customers ' choices, we employ the logit choice model and 
implements it in a segment level. The logit choice model implies a property 
of independence. In addition, the values of scaling parameter J.L applied in 
the logit model are considered to be equal. The simplistic treatment suggests 
a possible way to improve the predictive quality of a logit model used in 
measuring the expected shared surplus. 




