
9 DATA VARIATIONS 

9.1 INTRODUCTION 

We have now covered a wide variety of topics ranging from straightforward DEA 
models and their uses and extending to modifications such as are incorporated 
in assurance regions or in the treatment of variables with values that have 
been exogenously fixed to varying degrees. This, however, does not end the 
possibilities. New uses of DEA with accompanying new developments and 
extensions continue to appear. 

An attempt to cover all of these topics would be beyond the scope of this 
text — and perhaps be impossible of achievement as still more uses and new 
developments continue to appear. Hence the course we follow is to provide rel­
atively brief introductions to some of these topics. This will include sensitivity 
analysis, stochastic-statistical characterizations and probabilistic formulations 
with their associated approaches. Dynamic extensions of DEA will also be 
indicated in the form of window analysis. 

9.2 SENSITIVITY ANALYSIS 

9.2,1 Degrees of Freedom 

The topic of sensitivity (= stability or robustness) analysis has taken a variety 
of forms in the DEA literature. One part of this literature studies the responses 
when DMUs are deleted or added to the set being considered or when outputs 
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272 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS AND ITS USES 

or inputs are added or withdrawn from consideration. See Wilson (1995).^ See 
also the discussion of "window analysis" later in this chapter. Another part of 
this literature deals with the increases or decreases in the number of inputs and 
outputs to be treated. Analytically oriented treatments of these topics are not 
lacking^ but most of this literature has taken the form of simulation studies, 
as in Banker et ah (1996).^ 

Comment: As in statistics or other empirically oriented methodologies, there is 
a problem involving degrees of freedom, which is compounded in DEA because 
of its orientation to relative efficiency. In the envelopment model, the number 
of degrees of freedom will increase with the number of DMUs and decrease with 
the number of inputs and outputs. A rough rule of thumb which can provide 
guidance is as follows. 

n > max{m x 5,3(m + s)} 

where n— number of DMUs, m= number of inputs and s = number of outputs. 

9.2.2 Algorithmic Approaches 

Attention to this topic of sensitivity analysis in DEA was initiated in Charnes et 
al, (1985)^ which built on the earlier work in Charnes and Cooper (1968)^ after 
noting that variations in the data for the DMUo under evaluation could alter 
the inverse matrix used to generate solutions in the usual simplex algorithm 
computer codes. (See expressions (3.52)-(3.53) in Chapter 3.) Proceeding along 
the path opened by the latter publication (by Charnes and Cooper) this work 
is directed to the use of algorithms that avoid the need for additional matrix 
inversions. Originally confined to treating a single input or output this line of 
work was extended and improved in a series of papers published by Charnes 
and Neralic.^ 

We do not pursue these algorithmic approaches here. We turn instead to 
other approaches where attention is confined to transitions from efficient to 
inefficient status. 

9.2.3 Metric Approaches 

Another avenue for sensitivity analysis opened by Charnes et al, (1992)'̂  by­
passes the need for these kinds of algorithmic forays by turning to metric con­
cepts. The basic idea is to use concepts such as "distance" or "length" (= 
norm of a vector) in order to determine "radii of stability" within which the 
occurrence of data variations will not alter a DMU's classification from efficient 
to inefficient status (or vice versa). 

The resulting classifications can range from "unstable" to "stable" with the 
latter identified by a radius of some finite value within which no reclassification 
will occur. Points like E or F in Figure 9.1 provide examples identified as stable. 
A point like A, however, is unstable because an infinitesimal perturbation to 
the left of its present position would alter its status from inefficient to efficient. 
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£ ' 

^ ^^ 
Figure 9 .1 . Stable and Unstable DMUs 

A variety of metrics and models are examined but here attention will be 
confined to the Chebychev {= loo) norm, as in the following model taken from 
Charnes, Haag, et al (1992, p.795),'^ 

max S 
n 

subject to yro = 2 J Vrj^j ~ ^t ~ ^^t 1 r == 1 , . . . , ^ 

n 

^io ^^ / ^ij'^j ~^ ^i ~^ ^^i 5 2 == 1 , . . . , 

(9.1) 

m 

with all variables (including S) constrained to be nonnegative while the d+ and 
d^ are fixed constants (to serve as weights) which we now set to unity. 

With all d^ = d^ = I the solution to (9.1) may be written 

^ 2 / r i A * - 5 + * =2/^o + ^*, r = l , . . . ,^ (9.2) 
j=i 

m 

This shows that we are improving all outputs and inputs to the maximum that 
this metric allows consistent with the solution on the left. 

The formulation in (9.2) is for an inefficient DMU which continues to be 
inefficient for all data alteration from yro to yro + S* and from Xio to Xio — S*. 
This is interpreted to mean that no reclassification to efficient status will occur 
within the open set defined by the value of 0 < J* — which is referred to as 
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a "radius of stability." See, for example, the point F in Figure 9.2 which is 
centered in the square (or box) defined by this C (=Chebyshev) norm which is 
referred to as a "unit ball."^ 

Figure 9.2. A Radius of Stability 

The above model dealt with improvements in both inputs and outputs that 
could occur for an inefficient point before its status would change to efficient — 
as in the upper left hand corner of the box surrounding F in Figure 9.2. The 
treatment of efficient points proceeds in the direction of "worsening" outputs 
and inputs as in the following model. 

subject to 

min S 

Vro 

(9.3) 

Xi( 

n 

,m 

1= E î 

where, again, all variables are constrained to be nonnegative. 
In this case j^o refers to the efficient DMUo that is being analyzed. Other­

wise, as in the following definition, the result will always be unstable.^ 

Definition 9.1 The coordinates of the point associated with an efficient DMU 
will always have both efficient and inefficient points within a radius of e > 0 
however small the value of e. 

Definition 9.2 Any point with the above property is unstable. 
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To see that this property is not confined to points associated with efficient 
DMUs, note that A in Figure 9.1 has this property since a shght variation to 
the left will change its status from inefficient to efficient. In any case, a solution, 
(5*, provides a radius in the Chebychev norm that is to be attained before an 
efficient DMU is changed to inefficient status. 

To see what is happening in the case of an efficient point refer to B in Figure 
9.2. The radius of stability for this point would be determined by the "wors­
enings" allowed in (9.3) until the line connecting A and C is reached. This 
follows from the fact that worsenings which only move ^ to a new point which 
is on the left of this line will not affect its efficiency status. 

Comment : The above formulations are recommended only as the start for a 
sensitivity analysis by Charnes et al}^ because, inter alia, this norm does not 
reflect any nonzero slacks which may be present.^"^ It might be supposed that 
omitting the DMU to be evaluated from the right-hand side of (9.3) could 
lead to non-solution possibilities. This is not the case. Solutions to (9.3) 
always exist, as is proved in W.W. Cooper, S. Li, L.M. Seiford, K. Tone, 
R.M. Thrall and J. Zhu (2001) "Sensitivity and Stability Analysis in DEA: 
Some Recent Developments," Journal of Productivity Analysis 15, pp.217-246. 
See also L.M. Seiford and J. Zhu (1998) "Sensitivity Analysis of DEA Mod­
els for Simultaneous Changes in All of the Data," Journal of the Operational 
Research Society 49, pp.1060-1071 as well as Seiford and Zhu (1999) "Infea-
sibility of Super-Efficiency Data Envelopment Analysis Models," INFOR 37, 
pp.174-187. 

9,2.4 Multiplier Model Approaches 

The above approaches treat one DMU at a time. However, this needs to be 
extended for treating cases where the DMUs are numerous and it is not clear 
which ones require attention. Ideally it should be possible to vary all data 
simultaneously until the status of at least one DMU is changed from ineflScient 
to efficient or vice versa. A third approach initiated by R.G. Thompson and 
R.M. Thrall^^ and their associates moves in this direction in a manner that we 
now describe. 

For this purpose we record the following dual pair from Thompson et al. (1996). 13 
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Envelopment Model Multiplier Model (9.4) 

minimize6i,A ^ in3xim.izeu,v ^ — '^Vo 
subject to subject to 

l9xo - XA > 0 V > 0 
A > 0 uY -vX <{S 
6 unrestricted vXo = 1, 

where Y,X and Vo^Xo are data matrices and vectors of outputs and inputs, 
respectively, and A, n, v are vectors of variables (A: a column vector, u and 
v: row vectors). ^, a scalar, which can be positive, negative or zero in the 
envelopment model is the source of the condition VXQ == 1 in the multiplier 
model. 

No allowance for nonzero slacks is made in the objective of the above en­
velopment model. Hence the variables in the multiplier model are constrained 
only to be nonnegative. That is, the positivity requirement associated with the 
non-Archimedean element, e, is absent from both members of this dual pair. 
Thompson et al. refer to Charnes, Cooper and Thrall (1991) ^^ to justify this 
omission of non-Archimedean elements. For present purposes, however, we note 
only that these sensitivity analyses are centered around the set, E, of efficient 
extreme points and these points always have a unique optimum with nonzero 
slacks. 

We also note that the analysis is carried forward via the multiplier models^^ 
by Thompson, et al. This makes it possible to exploit the fact that the values 
u*,t;* which are optimal for the DMU being evaluated will remain valid over 
some (generally positive) range of variation in the data.^^ 

Following Thompson, et al. we try to exploit this property by defining a new 
vector w — (u^v) and a function hj{w) as follows 

h^M = ̂  = P f i ^ ^ . (9.5) 

Next, let 

so that 

ho{w) = max hj{w) (9.6) 

ho{w) >hj(w) \/j. (9.7) 

It is now to be noted that (9.5) returns matters to the CCR ratio form which 
was introduced as early as Chapter 2, Section 2.2. Hence we need not be 
concerned with continued satisfaction of the norm condition, vXo = 1 in (9.4), 
as we study variations in the data. 

When an optimal w* does not satisfy (9.7), the DMUo being evaluated is 
said to be "radial inefficient." The term is appropriate because this means that 
9* < 1 will occur in the envelopment model. The full panoply of relations 
between the CCR ratio, multiplier and envelopment models is thus brought 
into play without any need for extensive computations or analyses. 
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Among the frontier points for which 0* = 1, attention is directed by Thomp­
son et al to "extreme efficient points" — i.e., points in the set E which, for 
some multipher K;*, 

hoiw') > h^{w') "ij^o. (9.8) 

This (strict) inequaUty will generally remain valid over some range of variation 
in the data. Hence, in more detail we will have 

/.„(«,*) = ^ ? = 4 ^ > p = i 4 ^ = h,{w*) Vi ^ c, (9.9) 

which means that DMUo is more efficient than any other DMUj and hence will 
be rated as fully efficient by DEA. 

Thompson, et al employ a ranking principle which they formulated as: "If 
DMUo is more efficient than any other DMUj relative to the vector w*, then 
DMUo is said to be top ranked." Holding w* fixed, the data are then varied 
and DMUo is said to be "top ranked" if (9.8) continues to hold. 

Thompson, et al allow the data to vary in several different ways which in­
clude allowing the data variations to occur at random. Among these possibili­
ties we examine only the following one. For DMUo, which is extreme efficient, 
the outputs are all decreased and the inputs are all increased by a stipulated 
amount (or percentage). This same treatment is accorded to the other DMUs 
which are efficient. For the other DMUj, the reverse adjustment is made: All 
outputs are increased and all inputs are decreased in these same amounts (or 
percentages). In this way the ratio in (9.8) for DMUo wiU be decreased along 
with the other extreme efficient DMUs while the ratios for the other DMUj will 
be increased. Continuing in this manner a reversal can be expected to occur at 
some point — in which case DMUo will no longer be "top ranked" and it will 
then lose the status of being fully (DEA) efficient. 

Table 9.1 taken from Thompson et al (1994) will be used to illustrate the 
procedure in a simple manner by varying only the data for the inputs Xi, X2 
in this table. To start this sensitivity analysis. Table 9.2 records the initial 

Table 9.1. Data for a Sensitivity Analysis 

E-Efficient* Not Efficient 

DMU 
Output: y 
Input: xi 
Input: X2 

1 
1 
4 
1 

2 
1 
2 
2 

3 
1 
1 
4 

4 
1 
2 
3 

5 
1 
3 
2 

6 
1 
4 
4 

E-EfRcient = Extreme Point Efficient 

solutions by applying the multiplier model for (9.8) to these data for each of 
DMUi, DMU2 and DMU3 which are all extreme point efficient.^^ As can be 
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Table 9.2. Initial Solutions 

DMUi DMU2 DMU3 
DMU hj(w') hj{w'') h~{^) 

1 
2 
3 
4 
5 
6 

1.000 
0.714 
0.400 
0.500 
0.667 
0.357 

0.800 
1.000 
0.800 
0.800 
0.800 
0.500 

0.400 
0.714 
1.000 
0.667 
0.550 
0.357 

seen these solutions show DMUi, DMU2 and DMU3 to be top ranked in their 
respective columns. 

The gaps between the top and other ranks from these results show that 
some range of data variation can be undertaken without changing this top-
ranked status. To start we therefore introduce 5% increases in each of xi 
and X2 for DMUi, DMU2 and DMU3 and thereby worsen their performances. 
Simultaneously we decrease these inputs by 5% for the other DMUs to obtain 
Table 9.3. 

Table 9.3. Results of 5% Data Variations 

DMU 

1 
2 
3 
4 
5 
6 

DMUi 
hj(w') 

0.952 
0.680 
0.381 
0.526 
0.702 
0.376 

DMU2 
hj{w') 

0.762 
0.952 
0.762 
0.842 
0.842 
0.526 

DMU3 
hj(w'') 

0.381 
0.680 
0.952 
0.702 
0.526 
0.376 

The values of the hj{w) resulting from these data variations are portrayed 
in Table 9.3. As can be seen, each of DMUi, DMU2 and DMU3 maintain their 
"top ranked status" and hence continue to be DEA fully efficient (relatively). 
Nor is this the end of the line. Continuing in this 5% increment-decrement fash­
ion, as Thompson, et al. (1994) report, a 15% increment-decrement is needed 
for a first displacement in which DMU2 is replaced by DMU4 and DMU5. Con­
tinuing further, a 20% increment-decrement is needed to replace DMUi with 
DMU5 and, finally, still further incrementing and decrementing is needed to 
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replace DMU3 with DMU4 ^s top ranked. 

Comment: Note that the hj{w) values for all of the efficient DMUs decrease in 
every column when going from Table 9.2 to Table 9.5 and, simultaneously, the 
hj{w) values increase for the inefficient DMUs. The same behavior occurs for 
the other data variations, including the random choices of data changes, used 
by Thompson, Thrall and their associates in other studies. As noted on page 
401 of Thompson et al. (1994) this robust behavior is obtained for extreme 
efficient DMUs which are identified by their satisfaction of the Strong Comple­
mentary Slackness Condition (described in Section A.8 of our Appendix A) for 
which a gap will appear like ones between the top and second rank shown in 
every column of Table 9.2. In fact, the choice of to* can affect the degree of 
robustness as reported in Thompson et al. (1996) where use of an interior point 
algorithm produces a tu* closer to the analytic center and this considerably 
increases the degree of robustness for the above example. For a more detailed 
treatment see Cooper, Li, Seiford and Zhu. ^̂  

9.3 STATISTICAL APPROACHES 

Treatment of data variations by statistical methods has taken a variety of forms 
in DEA and related literatures. More precisely, Banker (1993)^^ and Banker 
and Natarasan (2004)^^ show that DEA provides a consistent estimator of 
arbitrary monotone and concave production functions when the (one-sided) 
deviations from such a production function are regarded as stochastic variations 
in technical inefficiency.^^ Convergence is slow, however, since, as is shown by 
Korostolev et al (1995),^^ the DEA likelihood estimator in the single output 
- m input case converges at the rate n~^/^^+^^ and no other estimator can 
converge at a faster rate.^^ 

The above approaches treat only the single output - multiple input case. 
Simar and Wilson (1998)^^ turn to "bootstrap methods" which enable them 
to deal with the case of multiple outputs and inputs. In this manner, the sen­
sitivity of ^*, the efficiency score obtained from the BCC model, can be tested 
by repeatedly sampling from the original samples. A sampling distribution of 
6* values is then obtained from which confidence intervals may be derived and 
statistical tests of significance developed. 

All of this work represents significant new developments. More remains to be 
done, however, since neither Banker nor Simar and Wilson make any mention of 
how to treat nonzero slacks. Thus, it is not even clear that they are estimating 
efficiency frontiers. 

Another line of research proceeds through what are referred to as "stochastic 
frontier regressions." This line of work has a longer history which can (in a 
sense) by traced all the way back to Farrell (1957).^^ Subsequently extended by 
Aigner and Chu (1968)^^ this approach was given its first statistical formulation 
in Aigner, Lovell and Schmidt (1977) in a form that is now called the "composed 
error" approach.^^ 
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To see what is involved in this "composed error" approach we start with the 
usual formulation of a statistical regression model as in 

y = f{x)+e. (9.10) 

Here f{x) is a prescribed (known) function with parameters to be estimated 
and € represents random errors which occur in the dependent (regressand) 
variable, a scalar, and not in the independent (regressor) variables represented 
by the vector x. The components of x, we emphasize, are assumed to be known 
without error. 

The concept of a "composed error" is represented by replacing e with a 
2-component term which we can represent as 

e - z z - r . (9.11) 

Here u represents the random error component which may be positive, negative 
or zero while r is restricted to nonnegative ranges that represent values of y 
that fail to achieve the efficient frontier. The term r > 0 is usually assumed 
to have statistical distributions, such as the exponential or half normal, which 
are confined to nonnegative ranges that represent inefficiencies. 

Following Jondrow, Lovell, Materov and Schmidt (1982),^^ the estimates of 
technical efficiency are obtained from 

^' ^F*(-,x./<r)J 

where 
(TI , 2 ^?^^-

and a = 

(9.12) 

0-2 + cr2 al-\- (j2 

and where /*(•) and F*(-) represent the standard normal density and cumula­
tive normal distribution functions, respectively, with mean /i and variance (j^. 
The efficiency corresponding to specified values for the components of x are 
then estimated from _ 

0 < e"^ < 1 (9.13) 

which is equal to unity when f = 0 and becomes 0 as f -> oo. 
To see how this measure of efficiency is to be used we employ (9.10) and (9.11) 

in the following simple (two-input) version of a log-linear (=Cobb-Douglas) 
production function 

y - pox^^'x^'e' - Pox^^'x^'e''-^ (9.14) 

so that 
ye^ =PoX^^'x^'e\ (9.15) 

Hence ye^ = y with y > y is estimated stochastically with inefficiency embodied 
in an output shortfall and not in overuses of either input. 

It is possible to view these stochastic frontier regressions as competing with 
DEA and to study them from this standpoint as is done in Gong and Sickles 
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(1990),^^ for example, who bring a simulation approach to this task. Carried to 
an extreme the two approaches, DEA vs. Stochastic Frontier Regressions, can 
be regarded as mutually exclusive — as in Schmidt (1985).^^ An alternative 
view is also possible in which the two approaches can be used in complementary 
fashion. Ferrier and Lovell (1990),^^ for example, use the two approaches to 
cross-check each other. In this approach, the objective is to avoid what Charnes, 
Cooper and Sueyoshi (1988)^^ refer to as "methodological bias" when large 
issues of policy are being addressed. Indeed, it is possible to go a step further 
and join the two approaches in a common effort as in the example we now 
discuss.^^ 

Arnold et al. (1994)^^ describe an experience in which the use of Cobb-
Douglas regressions yielded unsatisfactory results in an attempt to use this 
kind of regression approach in a study conducted under legislative mandate to 
develop methods for evaluating the performances of public schools in Texas. 
Using this same functional form, however, and applying it to the same body 
of data, Arnold et al. reported satisfactory results from a two-stage DEA-
regression approach which proceeded in the following manner: In stage one all 
of the 640 schools in this study were submitted to treatment by DEA. The 
original Cobb-Douglas form was then extended to incorporate these results in 
the form of "dummy variables." In this approach a school which had been 
found to be DEA efficient was associated with a value of unity for the dummy 
variables. A school which had been found to be DEA inefficient was assigned 
a value of zero. The regression was then recalculated and found to yield very 
satisfactory results. 

The above study was followed by a simulation experiment which we now 
review for added insight.^^ For this purpose we replaced (9.10) with 

2/= 0.75a:?•^^4^^e^ (9.16) 

In short, the above expression is used to generate all observations with the 
Cobb-Douglas form having known parameter values 

/3o = 0.75 

A = 0.65 (9.17) 

152 = 0.55 

and ê  is used to generate random variables which are then used to adjust the 
thus generated y values to new values which contain these random terms. This 
procedure conforms to the assumptions of both SF (=:Stochastic Frontier) and 
OLS (=Ordinary Least Squares) regression uses. 

The input values for xi and X2 in (9.16) are generated randomly, as a bias 
avoiding mechanism, and these values are inserted in (9.16) to provide the 
truly efficient values of y after which the values of y defined in (9.15) are then 
generated in the previously described manner. 

The inputs are then adjusted to new values 

xi — xie^^ and X2 = X2e^'^ with ri,r2 > 0 (9.18) 
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where ri and T2 represent input-specific technical inefficiencies drawn at random 
to yield the corresponding input inefficiencies embedded in xi and ^2. 

This procedure, we note, violates the SF assumption that all inefficiencies are 
impounded only in the regressand, y. See the discussion immediately following 
(9.15). It also violates OLS since these £1, X2 are not the input amounts used 
to generate the y values. Nevertheless it reproduces a situation in which the 
observed y (or y) will tend to be too low for these inputs. Finally, to complete 
the experimental design, a subset of the observations, chosen at random, used 
the original xi , X2 values rather than the J i , £2 generated as in (9.18). This was 
intended to conform to the assumption that some DMUs are wholly efficient 
and it also made it possible (a) to determine whether the first-stage DEA 
identified the efficient DMUs in an approximately correct manner as well as 
(b) to examine the effects of such an efficient subset on the derived statistical 
estimates. 

Further details on the experimental design may be found in Bardhan et 
al (1998). 

We therefore now turn to the estimating relations which took a logarithmic 
form as follows, 

In 2/ - In ̂ 0 + A In xi + /?2 In X2 (9.19) 

and 

\ny ^ ln/?o + A l n xi +/32lnx2 -^ 5D + 5iD\iiXi -^ 52D\nx2 + £ (9.20) 

Table 9.4. OLS Regression Estimates without Dummy Variables 

Case 1: EXPONENTIAL distribution of input inefficiencies 

Parameter 
Estimates 

/3o 

pi 

P2 

Case A 
al = 0.04 

(1) 

1.30* 
(0.19) 

0.46* 
(0.024) 

0.48* 
(0.02) 

Case B 
al = 0.0225 

(2) 

1.58* 
(0.15) 

0.43* 
(0.02) 

0.47* 
(0.013) 

Case C 
al = 0.01 

(3) 

1.40* 
(0.13) 

0.45* 
(0.016) 

0.47* 
(0.01) 

Case D 
al = 0.005 

(4) 

1.43* 
(0.10) 

0.46* 
(0.013) 

0.46* 
(0.01) 

The asterisk "*" denotes statistical significance at 0.05 significance 
level or better. Standard errors are shown in parentheses. 
The values for al shown in the top row of the table represent 
the true variances for the statistical error distributions. 
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Table 9.5. Stochastic Frontier Regression Estimates without Dummy Variables 

Case 1: EXPONENTIAL distribution of input inefficiencies 

Parameter 
Estimates 

7o 

Pi 

P2 

Or 

Ou 

Case A 
al = 0.04 

(1) 

1.42* 
(0.19) 

0.46* 
(0.024) 

0.48* 
(0.017) 

0.15* 
(0.035) 

0.15* 
(0.01) 

Case B 
al = 0.0225 

(2) 

1.62* 
(0.14) 

0.43* 
(0.02) 

0.47* 
(0.013) 

0.11* 
(0.01) 

0.13* 
(0.02) 

Case C 
al = 0.01 

(3) 

1.25* 
(0.14) 

0.48* 
(0.017) 

0.48* 
(0.01) 

0.15* 
(0.01) 

0.08* 
(0.01) 

Case D 
al = 0.005 

(4) 

1.28* 
(0.11) 

0.46* 
(0.01) 

0.47* 
(0.01) 

0.15* 
(0.01) 

0.04 
(0.025) 

The asterisk "*" denotes statistical significance at 0.05 significance 
level or better. Standard errors are shown in parentheses. 
The values for al shown in the top row of the table represent 
the true variances for the statistical error distributions. 

where D represents a dummy variable which is assigned the following values 

^ _ J 1 : if a DMU is identified as 100% efficient in stage 1 ro on 
~ 1̂  0 : if a DMU is not identified as 100% efficient in stage 1. ^ ' ^ 

Tables 9.4 and 9.5 exhibit the results secured when (9.19) was used as the 
estimating relation to obtain parameter values for both OLS and SF regressions. 
As might be expected, all parameter estimates are wide of the true values 
represented in (9.17)and significantly so in all cases as recorded in Tables 9.4 
and 9.5. Somewhat surprising, however, is the fact that the OLS and SF 
estimates are very close and, in many cases they are identical. 

When (9.20) is used — which is the regression with dummy variable values 
described in (9.21) — the situation is reversed for the efficient, but not for 
the inefficient DMUs. When the estimates are formed in the manner noted at 
the bottoms of Tables 9.6 and 9.7, none of the estimate of /3i and (52 differ 
significantly from their true values as given in (9.17). These are the estimates 
to be employed for D — 1. For D — ^, the case of inefficient DMUs, the 
previous result is repeated. All of the estimates differ significantly from their 
true values in both the empirical and simulation studies we described as can 
be seen in both of Tables 9.6 and 9.7. 
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Table 9.6. OLS Regression Estimates without Dummy Variables on DEA-efficient DMUs 

Case 1: EXPONENTIAL distribution of input inefficiencies 

Parameter 
Estimates 

Case A 
al = 0.04 

(1) 

Case B 
al = 0.0225 

(2) 

Case C 
al = 0.01 

(3) 

Case D 
al = 0.005 

(4) 

/?o 1.07* 1.47* 1.28* 1.34* 
(0.21) (0.17) (0.14) (0.11) 

pi 0.49* 0.43* 0.46* 0.47* 
(0.03) (0.02) (0.02) (0.01) 

(32 0.48* 0.48* 0.48* 0.46* 
(0.02) (0.015) (0.01) (0.01) 

6 -1.57* -2.30* -1.50* -1.50* 
(0.64) (0.43) (0.35) (0.21) 

8i 0.155* 0.26* 0.16* 0.16* 
(0.075) (0.05) (0.04) (0.03) 

^2 0.12* 0.12* 0.10* 0.09* 
(0.05) (0.04) (0.03) (0.02) 

Combining Parameters 
wi th Dummy Variables 

Ho: (3i-hSi = 0.65 ti = 0.07 h = 0.87 h = -0.72 h = 0.82 
i^a : /3i + (5i / 0.65 

Ho: f32-\-S2 = 0.55 t2 = 1.09 t2 = 1.76 t2 = 1.02 t2 2^ 0 
Ha:p2+S2i^ 0.55 

The asterisk "*" denotes statistical significance at 0.05 significance 
level or better. Standard errors are shown in parentheses. 
The values for al shown in the top row of the table represent 
the true variances for the statistical error distributions. 

The above tables report results for an exponential distribution of the inef­
ficiencies associated with xi,X2 as defined in (9.18). However, uses of other 
statistical distributions and other forms of production functions did not alter 
these kinds of results for either the efficient or the inefficient DMUs. Thus this 
two-stage approach provided a new way of evaluating efficient and inefficient 
behaviors in both the empirical and simulation studies where it was used. It 
also provides an OLS regression as an alternative to the SF regression and this 
alternative is easier to use (or at least is more familiar) for many uses. See 
Brockett et al (2004) ^̂  for an application to advertising strategy and a com­
parison with other types of statistical regression. 
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Comment : There are shortcomings and research challenges that remain to be 
met. One such challenge is to expand these uses to include multiple outputs 
as well as multiple inputs. Another challenge is to develop ways for identifying 
and estimating input specific as well as output specific inefficiencies. In order 
to meet such challenges it will be necessary to develop an analytically based 
theory in order to extend what can be accomplished by empirical applications 
and simulation studies. 

Table 9.7. Stochastic Frontier Regression Estimates without Dummy Variables on DEA-

efficient DM Us 

Case 1: EXPONENTIAL distribution of input inefficiencies 

Parame te r 

Es t imates 

A 

Pi 

P2 

6 

Si 

62 

Ou 

Combining Pa ramete r s 

wi th Dummy Variables 
Ho : 01+Si = 0.65 
Ha:f3i-{-Si^ 0.65 

Ho:/32-^S2= 0.55 

Ha'. p2-\-S2 1^ 0.55 

Case A 

GI = 0.04 

(1) 

1.18* 

(0.23) 

0.50* 

(0.03) 

0.48* 

(0.02) 

-1.60* 

(0.57) 

0.16* 

(0.07) 

0.11* 

(0.05) 

0.13(0.01)* 

ti = 0.20 

t2 = 1.03 

Case B 

al = 0.0225 

(2) 

1.50* 

(0.16) 

0.44* 

(0.02) 

0.49* 

(0.02) 

-2.4* 

(0.56) 

0.26* 

(0.06) 

0.13* 

(0.04) 

0.09(0.01)* 

ti = 0.93 

t2 = 1.90 

Case C 

GI = 0.01 

(3) 

0.80* 

(0.16) 

0.53* 

(0.02) 

0.50* 

(0.01) 

-1.25* 

(0.38) 

0.13* 

(0.04) 

0.086* 

(0.04) 

0.05(0.01)* 

ti = 0.28 

t2 = 1.16 

Case D 

al = 0.005 

(4) 

1.40* 

(0.13) 

0.49* 

(0.01) 

0.47* 

(0.02) 

-1.55* 

(0.23) 

0.15* 

(0.03) 

0.09* 

(0.03) 

0.04(0.01)* 

^1 = - 0 . 4 

t2 = 0.45 

The asterisk "*" denotes statistical significance at 0.05 significance 
level or better. Standard errors are shown in parentheses. 
The values for a^ shown in the top row of the table represent 
the true variances for the statistical error distributions. 
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Fortunately, excellent texts dealing with stochastic frontier and other ap­
proaches to efficiency evaluation have become available in the following two 
books, 

1. T. Coelh, D.S.P. Rao and G.E. Battese (1998) An Introduction to Efficiency 
and Productivity Analysis (Boston: Kluwer Academic Publishers). 

2. S.C. Kumbhakar and C.A.K. Lovell (2000) Stochastic Frontier Analysis (Cam­
bridge: Cambridge University Press). 

9.4 CHANCE-CONSTRAINED PROGRAMMING AND SATISFICING 
IN DEA 

9.4.1 Introduction 

S. Thore's (1987)^^ paper initiated a series of joint efforts with R. Land, and 
C.A.K. Lovell^^ directed to joining chance-constrained programming (CCP) 
with DEA as a third method for treating data uncertainties in DEA. Here we 
turn to Cooper, Huang and Li (1996)^^ to show how this approach can also 
be used to make contact with the concept of "satisficing" as developed in the 
psychology literature by H.A. Simon'̂ ^ as an alternative to the assumption of 
"optimizing" behavior which is extensively used in economics. 

9.4.2 Satisncing in DEA 

We start with the following CCP formulation that extends the CCR (ratio) 
model of DEA which was introduced in Section 2.3 of Chapter 2, 

max P m ^ ^ ^ ^ > Po) (9.22) 

subject to p ( £ r f i i ^ < / 9 ^ . ' \ >l-a^., j = l,...,n 

Ur, Vi >0 Vr, i. 

Here "P" means "probability" and "^" identifies these outputs and inputs as 
random variables with a known probability distribution while 0 < a^ < 1 is 
a scalar, specified in advance, which represents an allowable chance (==risk) of 
failing to satisfy the constraints with which it is associated. 

For "satisficing," the values of /?o is interpreted as an "aspiration level" spec­
ified as an efficiency rating which is to be attained. The (3j are also prescribed 
constants imposed by the individual, or by outside conditions including superior 
levels of management. 

To exhibit another aspect of satisficing behavior we might consider the case 
of inconsistent constraints. The problem will then have no solution. In such 
cases, according to Simon, an individual must either quit or else he must revise 
his aspiration level — or the risk of not achieving this level (or both). Thus, 
probabilistic (chance-constrained programming) formulations allow for types 
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of behavior which are not present in the customary deterministic models of 
satisficing. 

Now, however, we want to make contact with the deterministic DEA models 
which we discussed earlier. For this purpose we select the CCR model which 
was introduced as early as Chapter 2. This model always has a solution and 
the same is true for (9.22). This can be exhibited by choosing Ur = 0 \fr and 
Vi > 0 for some i. Although not minimal for the objective, this choice satisfies 
all constraints with a probability of unity. 

9.4.3 Deterministic Equivalents 

To align the development more closely with our earlier versions of the CCR 
ratio model we note that 

P f S ^ f i ^ <l3o)+P ( ^ M ^ ^ > /Jo) = 1 (9.23) 

where, for simplicity, we restrict attention to the class of continous distribu­
tions. We therefore replace (9.22) with 

max P f 5 ^ i ^ ^ > Po) (9.24) 
E m 

subject to P { ^^^ "" ""^ < ^i ) > 1 - cifj, i = 1 , . . . , n 

Ur, Vi >0 Vr, i. 

Here we follow Land, Lovell and Thore (1993) and omit the symbol "^" from 
the Xij (and Xio) in order to represent the inputs as deterministic. This model 
corresponds to a situation in which DMU managers choose the inputs without 
being able to completely control the outputs. Moreover if we also remove the 
symbol "^" from the yrj (and yro), set Pj = 1, j = l , . . . , n and remove /So 
from the objective we will reproduce the CCR model that was first encountered 
in expression (2.3)-(2.6) in Chapter 2. 

This identification having been made, we restore the symbol "^" to the 
yrj (and yro) — thereby characterizing them as random variables — but we 
continue to treat the Xij (and Xio) as deterministic. Then using vector-matrix 
notation we restate the constraints in (9.24) via the following development, 

Now let iij be the vector of output means and let Ej represent the variance-
covariance matrix. We assume that this matrix is positive definite so we can 
represent the variance by u^T,jU, a scalar, which is also positive for all choices 
of u ^ 0. We then subtract u^Vj from both sides of the right-hand inequality 
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in (9.25) and divide through by ^/u'^T.jU to obtain 

P{ 7^S ' < ' 71^ ' \>l-cxi (9.26) 

for each j — 1 , . . . ,n. Now we note that the expression on the right in the 
parenthesis does not contain any random elements. 

To simpHfy our notation we introduce a new random variable defined by 

J'— nn -

(9.27) 

We then replace (9.26) with 

P{zj < kj{u^,v^)) > 1 - a j , i = l , . . . , n (9.28) 

where 

SO we can write 

J-oo \ \ U^ 2^iU } 
(9.29) 

in place of (9.26). 
We now assume that $ is the normal distribution which has been standard­

ized via _ 

z^ - yi ^'\ (9.30) 

Assuming aj < 0.5 we can utilize the property of invertibility associated with 
this distribution and apply it to (9.29) to obtain 

PjV^ Xj - u^ y 
> # - n i - a i ) (9.31) 

where $ ^ is the fractile function associated with the standard normal distri­
bution. Hence also 

PjV^Xj - u^y- > ^-\l - aj)^Ju'^EjU. (9.32) 

We now employ what Charnes and Cooper (1963)^^ refer to as "splitting 
variables" which we symbolize by rjj in 

Pjv'^Xj - u^yj > Tjj > ^-\l - aj)yJvTT^, (9.33) 



DATA VARIATIONS 289 

For every j = 1 , . . . ,n this variable is nonnegative by virtue of the expression 
on the right. Provided this nonnegativity is preserved we can therefore use this 
variable to split the expression in (9.33) into the following pair 

PjV^Xj - u^Vj >r]j>0 (9.34) 

where 

i^(i_^.)-$-ni-c.,-) 
j =: l , . . . , n . 

We have thus separated the conditions in (9.33) into a pair for which the first 
relation refers to a valuation effected by multipliers assigned to the inputs and 
outputs while the second relation treats the "risks" as in a portfolio analysis of 
the Markowitz-Sharpe type used in finance.^^ 

In place (9.24) we now have 

max P ( ^ ^ ^ > Po] (9.35) 
\V XQ J 

subject to /SjV-^Xj — u^Vj — Vj ^^ 

^ a - « , ) « ^ S , « -rj]<0 

V, u > 0, Tjj >0, J := 1 , . . . ,n. 

The constraints, but not the objective, are now deterministic. To bring our 
preceding development to bear we therefore replace (9.35) with 

max 7o (9.36) 

subject to P (%^ > M > To 

PjV^Xj - u^Vj -rij>0 

v^ u >0^ rjj >0^ j = 1 , . . . , n. 

Proceeding as before we then have 

max 7o (9.37) 

subject to u^Vo ~ PoV^Xo > ^~^{'yo)\/u^^jU 

r]j 4- u^Vj - PjV^Xj < 0 

u, V >0, rjj >0, j = 1 , . . . , n 

0 < 7o < 1. 

This is a "deterministic equivalent" for (9.24) in that the optimal values of 
u\ V* in (9.37) will also be optimal for (9.24). 
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9.4A Stochastic Efficiency 

Although entirely deterministic, this problem is difficult to solve because, by 
virtue of the first constraint, it is nonconvex as well as nonlinear. As shown 
in Cooper, Huang and Li (1996), it is possible to replace (9.37) with a convex 
programming problem but we do not undertake the further development needed 
to show this. Instead, we assume that we have a solution with 

7: = P (^Cz^ > Po) , (9.38) 

where 7* is obtained from (9.36). 
To develop the concepts of stochastic efficiency we assume that Po — Pjo 

so the level prescribed for DMUo in its constraints is the same as the ^o level 
prescribed in the objective. Then we note that 7* > aj^ is not possible because 
this would fail to satisfy this constraint. To see that this is so we note, as in 
(9.23), that 

P f ^ >tio)+P f ^ <Po]=l (9.39) 

y*Txl — /̂ o 1 = 0 for a continuous distribution. Hence 

p('^<l3o) = l-p(^>Po) (9.40) 

= 1 - 7 : < 1-aj^ 

which fails to satisfy the constraint 

Now if Pj^ = Po = I5 which will usually be the case of interest, the above 
development leads to the following, 

Theorem 9.1 (Cooper, Huang and Li (1996)) / / pj^ = p^ = 1 then 
DMUo '^ill have performed in a stochastically efficient manner if and only if 

This leaves the case of 7* < aj^ to be attended to. In this case the risk of failing 
to satisfy the constraints for DMU^^ falls below the level which was specified 
as satisfactory. To restate this in a more positive manner, we return to (9.40) 
and reorient it to 

= 1 - 7 : > l - a , „ . 

This leads to the following corollary to the above theorem, 
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Corollary 9.1 ///3j^ — jSo — I then DMUQ^S performance is stochastically 
inefficient with probability 1 — 7* if and only if Yo < ^jo-

We justify this by noting that (9.41) means that the probabihty of falUng below 
/?o exceeds the probabihty that was specified as being satisfactory. 

To return to the satisficing model and concepts discussed in Section 9.4.2, 
we assume that 0 < ^o == /?j^ < 1. The above theorem and corollary then 
translate into: "satisficing was attained or not according to whether 7* — aj^ 
or 7* < aj^.^'' To see what this means we note that (9.39) consists of opposed 

probability statements except for the case P ( y^rx ~ l^o ] = 0 . Hence failure 

to attain satisficing occurs when the goal specified in the objective can be 
attained only at a level below the risk that is specified for being wrong in 
making this inference. 

Returning to our earlier choice oi Ur = 0 Vr and some Vi > 0 for (9.22) we 
note that this assigns a positive value to some inputs and a zero value for all 
outputs. The objective and the associated constraints in (9.22) will then be 
achieved with probability one because of refusal to play and hence there will 
be a zero probability of achieving the objective in (9.24). See (9.39). This is 
an important special case of Simon's "refusal to play" behavior that was noted 
in the discussion following (9.22). 

Comment: This is as far as we carry our analyses of these chance constrained 
programming approaches to DEA. We need to note, however, that this analysis 
has been restricted to what is referred to as the "P-model" in the chance-
constrained programming literature. Most of the other DEA literature on this 
topic has utilized the "E-model," so named because its objective is stated in 
terms of optimizing "expected values." None has yet essayed a choice of "V-
models" for which the objective is to minimize "variance" or "mean-square 
error." See A. Charnes and W.W. Cooper (1963) "Deterministic Equivalents 
for Optimizing and Satisficing under Chance Constraints," Operations Research 
11, pp.18-39. 

The formulations here (and elsewhere in the DEA literature) are confined to 
a use of "conditional chance constraints." A new chapter was opened for this 
research, however, by Olesen and Petersen (1995)^^ who used "joint chance 
constraints" in their CCP models. In a subsequent paper. Cooper, Huang, 
Lelas, Li and Olesen (1998)^^ utilize such joint constraints to extend the concept 
of "stochastic efficiency" to a measure called "a-stochastic eflftciency" for use 
in problems where "efficiency dominance" is of interest. 

Like the rest of the DEA literature dealing with CCP, we have restricted at­
tention to the class of "zero order decision rules." This corresponds to a "here 
and now" approach to decision making in contrast to the "wait and see" ap­
proach that is more appropriate to dynamic settings in which it may be better 
to delay some parts of a decision until more information is available. To go fur­
ther in this direction leads to the difficult problem of choosing a best decision 
rule from an admissible class of decision rules. To date, this problem has only 
been addressed in any detail for the class of linear (first order) decision rules 
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even in the general literature on CCP and even this treatment was conducted 
under restrictive assumptions on the nature of the random variables and their 
statistical distributions.^^ See also Charnes, Cooper and Symods (1958), ^^ an 
article which originated the (as-yet-to-be named) "chance constraint program­
ming." This topic is important and invites further treatments as an example 
of the "information processing" that plays an important role in studying use 
of the term "satisficing behavior." See Gigerenzer (2004). ^̂  Finally we come 
to the treatments which, by and large, have assumed that these probability 
distributions are known. Hence there is a real need and interest in relaxing this 
assumption. Only bare beginnings on this topic have been made as in R. Jagan-
nathan (1985) "Use of Sample Information in Stochastic Recourse and Chance 
Constrained Programming Models," Management Science 31, pp.96-108. 

9.5 WINDOW ANALYSIS 

9.5.1 An Example 

Although now used in many other contexts we here revert to the applications 
in army recruiting efforts that gave rise to "window analysis." This example 
is built around 3 outputs consisting of recruits such as male and female high 
school graduates and degree candidates (such as high school seniors not yet 
graduated). The 10 inputs consist of number of recruiters (such as recruiting 
sergeants) and their aids, amount spent on local advertising, as well as qualities 
such as recruiter experience which are all discretionary variables as well as 
non-discretionary variables such as local unemployment, number of high school 
seniors in the local market and their propensity to enlist."^^ 

These variables are used (among others) by the U.S. Army Recruiting Com­
mand (USAREC) to evaluate performance in its various organization units 
which Klopp (1985, p.115)^^ describes as follows. USAREC recruits for the 
entire United States. To facihtate control of the recruiting process USAREC 
divides the U.S. into 5 regions managed by entities referred to as "Recruiting 
Brigades." Each Recruiting Brigade is responsible for some of the 56 "Recruit­
ing Battalions" that operate in the U.S. and the latter are responsible, in turn, 
for the "Recruiting Stations" where recruiters are assigned specific missions. 
For the example we employ, it was decided to use the Recruiting Battalions 
each of which was designated as a DMU. 

The DEA analyses took a variety of forms. One consisted of standard (static) 
DEA reports in the manner of Table 3.7 expanded to include detailed infor­
mation on the inefficiencies present in each DMU. Both discretionary and non-
discretionary variables were included along with the members of the peer group 
used to effect the evaluation. 

Something more was wanted in the form of trend analyses of the quarterly 
reports that USAREC received. A use of statistical regressions and time series 
analyses of the efficiency scores proved unsatisfactory. Experimentation was 
therefore undertaken which led to the window analysis we now describe. 
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9.5.2 Application 

Table 9.8, as adapted from Klopp (1985) will be used for guidance in this 
discussion. The basic idea is to regard each DMU as if it were a different DMU 
in each of the reporting dates represented by Ql, Q2, etc., at the top of the 
table. For instance, the results in row 1 for Battalion lA represent four values 
obtained by using its results in Ql, Q2, Q3 and Q4 by bringing this DMU into 
the objective for each of these quarters. Because these 56 DMUs are regarded 
as different DMUs in each quarter, these evaluations are conducted by reference 
to the entire set of 4x 56 = 224 DMUs that are used to form the data matrix. 
Thus the values of 9* = 0.83, 1.00, 0.95 and 1.00 in row 1 for Battalion lA 
represent its quarterly performance ratings as obtained from this matrix with 
13 X 224 = 2,912 entries. 

Similar first-row results for other DMUs are obtained for each of the 10 
DMUs in Table 9.8 which we have extracted from a larger tabulation of 56 
DMUs to obtain compactness. After first row values have been similarly ob­
tained, a new 4-period window is obtained by dropping the data for Ql and 
adding the data for Q5. Implementing the same procedure as before produces 
the efficiency ratings in row 2 for each Battalion. The process is then continued 
until no further quarters are added — as occurs (here) in "row" 5 with its 4 
entries. 

To help interpret the results we note that the "column views" enable us to 
examine the stability of results across the different data sets that occur with 
these removal and replacement procedures. "Row views" make it possible to 
determine trends and/or observed behavior with the same data set. Thus, the 
column view for Battalion lA shows stability and the row view shows steady 
behavior after the improvement over Ql. At the bottom of Table 9.8, however. 
Battalion IK exhibits deteriorating behavior and this same deterioration con­
tinues to be manifested with different data sets. Moreover, to reenforce this 
finding the values in each column for Battalion IK do not change very much 
and this stability reenforces this finding. 

Finally we augment this information by the statistical values noted on the 
right side of Table 9.8. Here the average is used as a representative measure 
obtained from the 6* values for each DMU and matched against its variance. 
Medians might also be used and matched with ranges and so on. Other sum­
mary statistics and further decompositions may also be used, of course, but a 
good deal of information is supplied in any case. 

Weaknesses are also apparent, of course, such as the absence of attention to 
nonzero slacks. However, the principle and formulas to be supplied in the next 
section of this chapter may be applied to slack portrayals, too, if desired and 
other similar measures may be used such as the SBM (Slacks Based Measure) 
given in Section 4.4 of Chapter 4. 

Another deficiency is apparent in that the beginning and ending period 
DMUs are not tested as frequently as the others. Thus the DMUs in Ql 
are examined in only one window and the same is true for Q8. In an effort 
to address this problem Sueyoshi (1992)^^ introduced a "round robin" proce-
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Table 9.8. Window Analysis: 56 DMUs in U.S. Army Recruitment Battalions 3 Outputs 

- 10 Inputs 

Battal ion Efficiency Scores Summary Measures 
Q l Q2 Q3 Q4 Q5 Q6 Q7 Q8 Mean Var Column Total 

Range Range 

l A 0.83 
0.99 0.03 .05 .17 

I B 0.71 

I C 0.72 

ID 0.73 

I E 0.69 

I F 1.00 

IG 0.65 

IH 0.82 

1.00 

IK 0.81 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
0.83 

1.00 
1.00 

0.73 
0.73 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

0.95 
0.95 
1.00 

0.91 
0.91 
1.00 

0.86 
0.87 
0.87 

1.00 
1.00 
1.00 

0.83 
0.83 
0.83 

1.00 
1.00 
1.00 

0.68 
0.68 
0.68 

1.00 
1.00 
1.00 

1.00 
1.00 
0.86 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

0.89 
0.89 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

0.77 
0.77 
0.77 
0.76 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

0.77 
0.76 
0.75 
0.80 

0.74 
0.74 
1.00 
0.80 

1.00 
1.00 
1.00 
1.00 

0.77 
0.79 
0.77 
0.82 

1.00 
1.00 
1.00 
0.80 

0.68 
0.68 
0.74 
1.00 

0.71 
0.71 
1.00 
0.79 

1.00 
1.00 
1.00 
1.00 

0.73 
0.73 
0.85 
0.67 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

0.93 
0.95 
0.88 

1.00 
1.00 
1.00 

0.72 
0.75 
1.00 

0.70 
0.72 
0.81 

1.00 
1.00 
1.00 

0.67 
0.67 
0.67 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

0.83 
0.88 

1.00 
1.00 

1.00 
1.00 

0.72 
1.00 

1.00 
1.00 

0.67 
0.67 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.67 

0.92 0.21 .11 .29 

0.93 0.21 .26 .28 

0.99 0.07 .00 .27 

0.88 0.17 .17 .31 

0.99 0.04 .20 .20 

0.79 0.32 .32 .35 

0.90 0.32 .29 .30 

0.99 0.02 .14 .14 

0.86 0.37 .11 .33 
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dure which proceeds as follows: First each period is examined independently. 
This is followed by a 2-period analysis after which a three-period analysis is 
used. And so on. However, this analysis becomes unwieldy since the number of 
combinations grows to 2^ — 1 so that some care is needed with this approach. 

9.5.3 Analysis 

The following formulas adapted from D.B. Sun (1988)^^ can be used to study 
the properties of these window analyses. For this purpose we introduce the 
following symbols 

n = number of DMUs (9.42) 

k = number of periods 

p = length of window {p < k) 

w = number of windows. 

We then reduce the number of DMUs to the 10 in Table 9.8 so we can use it 
for numerical illustrations. 

Application 
Formula (to Table 9.8) 

no. of windows: w = k - p+1 8 - 4 + 1 = 5 
no. of DMUs in each window: np/2 10 x 4/2 = 20 
no. of "different" DMUs: npw 10 x 4 x 5 = 200 
A no. of DMUs: n{p-l){k-p) 1 0 x 3 x 4 = 120 

Here "A" represents an increase compared to the 8 x 10 = 80 DMUs that would 
have been available if the evaluation had been separately effected for each of 
the 10 DMUs in each of the 8 quarters. 

An alternate formula for deriving the total number of DMUs is given in 
Charnes and Cooper (1990)^^ as follows. 

Total no. of "different" DMUs : n{k-p+l)p = lOx(8-4+1)x4 = 200 (9.43) 

Differentiating this last function and equating to zero gives 

A: + l 
(9.44) 

as the condition for a maximum number of DMUs. This result need not be an 
integer, however, so we utihze the symmetry of (9.43) and (9.44) and modify 
the latter to the following, 

i ^ i ^ when k is odd 

^ ^ ± I when k is even. 
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To see how to apply this formula when k is even we first note that 

n{k — p+ l)p = n[{k + l)p — p^] . 

Hence by direct substitution we obtain 

= n 

(k+i iVl 

-\-^-v\ 
fk + 1 iV] 

= 'j[ik+lf-l] 

Then, for A; = 8, as in our example, we find from (9.44) that 

. + 1 
P = 4.5 

which is not an integer. Hence using [p] to mean "the integer closest to p" we 
apply the bottom expression in (9.45) to obtain 

[p] 
4 = 4 .5 -0 .5 
5 = 4.5 + 0.5 

and note that substitution in (9.43) produces 200 "different" DMUs as the 
maximum number in either case. 

9.6 SUMMARY OF CHAPTER 9 

In this chapter we have treated the topic of data variability in the following 
manner. Starting with the topic of sensitivity and stability analysis we moved to 
statistical regression approaches which we aligned with DEA in various ways. 
We then went on to probabilistic formulations using the P-model of chance-
constrained programming which we could relate to our CCR and BCC models 
which we had previously treated in deterministic manners. Finally we turned 
to window analysis which allowed us to study trends as well as stability of 
results when DMUs are systematically dropped and added to the collection to 
be examined. 

The topics treated in this chapter are all under continuing development. 
Hence we do not provide problems and suggested answers like those we pre­
sented in preceding chapters. Instead we have provided comments and refer­
ences that could help to point up issues for further research. We hope that 
readers will respond positively and regard this as an opportunity to join in the 
very active research that is going on in these (and other) areas. 

We here note that research on the topics treated in this chapter were prompted 
by problems encountered in attempts to bring a successful conclusion to one 
or many attempts to use DEA in actual applications. Indeed a good deal of 
the very considerable progress in DEA has emanated from actual attempts to 
apply it to different problems. This, too, has been an important source of 
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progress in that new applications as well as new developments in DEA are 
being simultaneously reported. 

To help persons who want to pursue additional topics and uses we have 
supplied an extensive bibliography in the disk that accompanies this book as 
well as in this chapter. We hope this will be helpful and we hope readers of our 
text will experience some of the fun and exhilaration that we have experienced 
as we watch the rapid pace of developments in DEA. 

9.7 RELATED DEA-SOLVER MODELS FOR CHAPTER 9 

Window-I(0)-C(V) These codes execute Window Analysis in Input (Out­
put) orientation under constant (CRS) or variable (VRS) returns-to-scale 
assumptions. See the sample data format in Section B.5.10 and explanation 
on results in Section B.7 of Appendix B. 
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