
8 ALLOCATION MODELS 

8.1 INTRODUCTION 

The preceding chapters focused on the technical-physical aspects of produc
tion for use in situations where unit price and unit cost information are not 
available, or where their uses are limited because of variability in the prices 
and costs that might need to be considered. This chapter turns to the topic of 
"allocative efficiency" in order to show how DEA can be used to identify types 
of inefficiency which can emerge for treatment when information on prices and 
costs are known exactly. Technology and cost are the wheels that drive modern 
enterprises; some enterprises have advantages in terms of technology and oth
ers in cost. Hence, the management is eager to know how and to what extent 
their resources are being effectively and efficiently utilized, compared to other 
similar enterprises in the same or a similar field. 

Regarding this subject, there are two different situations: one with common 
unit prices and costs for all DMUs and the other with different prices and 
costs from DMU to DMU. Section 2 of this chapter deals with the former 
case. However, the common price and cost assumption is not always valid in 
actual business and it is demonstrated that efficiency measures based on this 
assumption can be misleading. So we introduce a new cost-efficiency related 
model along with new revenue and profit efficiency models in Section 3. Section 
4 develops a new formula for decomposition of the observed actual cost based 
on the new cost efficiency model. Using this formula, we can decompose actual 
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cost as the sum of the minimum cost and the losses due to technical, price and 
allocative inefficiencies. 

8.2 OVERALL EFFICIENCY W I T H COMMON PRICES AND COSTS 

8,2.1 Cost Efficiency 

Figure 8.1 introduces concepts dealing with "allocative efficiency" that can be 
traced back to M.J. Farrell (1957) and G. Debreu (1951)^ who originated many 
of the ideas underlying DEA. Fare, Grosskopf and Lovell (1985)^ developed 
linear programming formulations of these concepts. 

The solid lines in this figure are segments of an isoquant that represents 
all possible combinations of the input amounts (xi, X2) that are needed to 
produce the same amount of a single output. P is a point in the interior of the 
production possibility set representing the activity of a DMU which produces 
this same amount of output but with greater amounts of both inputs.^ 

X2 

A 

C2X2 

O 

Figure 8.1. 

^ 1 

Technical, Allocative and Overall Efficiency 

To evaluate the performance of P we can use the customary Farrell measure 
of radial efficiency. Reverting to the notation of Section 1.4, Chapter 1, we can 
represent this measure in ratio form as 

- c i ( 0 , P ) - ' ' 

and interpret this as the distance from O to Q relative to the distance from O 
to P. The result is the measure of technical efficiency that we have customarily 
represented as ^*. 

The components of this ratio lie on the dotted fine from the origin through Q 
to P . To bring price-cost and, hence, "allocative efficiency" considerations into 
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the picture we turn to the broken hne passing through P for which the budget 
(or cost) Hne is associated with cixi -{- C2X2 — ki. However, this cost can be 
reduced by moving this Une in parallel fashion until it intersects the isoquant 
at C. The coordinates of C then give cix* + C2X2 "= ko where ko < ki shows 
the amount by which total cost can be reduced. Further parallel movement 
in a downward direction is associated with reduced output so the position of 
the broken line passing through C is minimal at the prescribed output level. 
This optimal point C is obtained as the optimal solution aj* of the following 
LP (Farrell (1957)): 

[Cost] ccc* = m i n ccc (8.1) 
cc,A 

subject to x> XX 

yo<y^ 
A > 0, 

where c = ( c i , . . . , c^) is the common unit input-price or unit-cost vector. 
Now we note that we can similarly determine the relative distances of R and 

Q to obtain the following ratio, 

- d{0,Q)-

Farrell refers to this as a measure of "price efficiency" but the more commonly 
used term is "allocative efficiency." In either case it provides a measure of 
the extent to which the technically efficient point, Q, falls short of achieving 
minimal cost because of failure to make the substitutions (or reallocations) 
involved in moving from Q to C along the efficiency frontier. 

There is one further measure that is commonly referred to as "overall effi
ciency," or "cost efficiency." We can represent this by means of the following 
ratio, 

This is a measure of the extent to which the originally observed values at P , 
represented in the denominator, have fallen short of achieving the minimum 
cost represented in the numerator. 

To put this in a way that relates all three of these efficiency concepts to each 
other, note that 

d{0,R) d{0,Q) ^d{0,R) 
d{0,Q) ' d{0,P) d{0,Py ^ ^ 

In sum, "overall (cost) efliiciency" (on the right) is equal to the product of 
"allocative" times "technical efficiency," (on the left). 

Furthermore, the technical efficiency can be decomposed into the pure tech
nical efficiency and the scale efficiency as defined in Section 4.5 of Chapter 4. 
Thus, we have the following decomposition: 

Overall Eff. == Allocative Eff. x Pure Technical Eff. x Scale Eff.. (8.4) 
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Or, 
OE = AE X TE = AE X PTE x SE. (8.5) 

8.2.2 Revenue Efficiency 

Given the common unit price vector p = (pi , . . . ,Ps) for the output y, we 
evaluate the revenue efficiency of DMUo as follows: 

[Revenue] py* = maxpy (8.6) 

subject to Xo > XX 

y<YX 

L<e\<U 

A > 0. 

We inserted an additional constraint on scale {L < eX < U) in order to cope 
with various returns-to-scale assumptions. 

This model allows substitutions in outputs. Let the optimal solution be 
(i/*, A*). Then, the revenue efficiency is defined in ratio form as: 

ER (Revenue Efficiency) := ^ ^ . (8.7) 
py* 

We have 0 < ER < 1 and DMU(cCo, y^) is revenue efficient if and only if 
ER = 1. 

8.2.3 Profit Efficiency 

To express the profit of DMUo we use the common unit price vector p and unit 
cost vector c, to obtain the following LP problem: 

(8.8) [Profit] 

subject to 

py* — ex* = max py -
x,y,X 

X = XX < Xo 

y = YX>y, 

L<eX<U 

A > 0. 

- ex 

This formulation extends (8.1) with an additional constraint on scale {L < eX < 
U). So, substitutions in inputs or outputs are not allowed in this case. Here, 
the purpose is to find a profit-maximization mix in the production possibility 
set P = {{x,y)\x > XX,y < FA,L < eA < C/, A > 0}. Based on an optimal 
solution (x*,2/*), the profit efficiency can be defined in ratio form by 

Ep(Profit Efficiency) = ^^^ ~ ^^^ . (8.9) 
py* — ex* 
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where 2/*, x^ are optimal for (8.8) and Vo.Xo are the vectors of observed values 
for DMUo. 

Under the assumption py^ > cXo, we have 0 < Ep < 1 and DMU {xo, Vo) 
is profit efficient if and only if Ep = 1. The differences between x* and Xo and 
between y* and y^ may suggest directions for managerial improvement and 
this can be analyzed, constraint by constraint, in (8.8). 

8.2.4 An Example 

The data in the following table will provide examples to illustrate the use 
of these models. Here each of three DMUs produces a single output in the 
amount y, shown in the column for y under "Output," by using two inputs in 
the amounts xi and X2 shown in the two columns headed by xi and X2' The 
common unit costs and price are exhibited in the columns for ci, C2 and p, 
respectively. 

Table 8.1. Sample Data for Allocative Efficiency 

DMU 

A 
B 
C 

Xi 

3 
1 
4 

Input 
Ci X2 

4 2 
4 3 
4 6 

C2 

2 
2 
2 

Output 

y p 

3 6 
5 6 
6 6 

We solved this data set under the constant returns-to-scale assumption so 
the constraint L < eX < U was omitted. We then obtained the results shown 
in Table 8.2. DMU B is the only one that is efficient and is the best performer 
in all efficiency measures. 

Table 8.2. Efficiencies 

DMU 

A 
B 
C 

Technical 

0.9 
1 

0.6 

Cost 

0.375 
1 

0.429 

Efficiency 
Allocative 

0.417 
1 

0.715 

Revenue 

0.9 
1 

0.6 

Profit 

0.15 
1 

0.2 
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8.3 NEW COST EFFICIENCY UNDER DIFFERENT UNIT PRICES 

Firstly we observe an unacceptable property of the traditional Farrell-Debreu 
cost efficiency models described in the preceding section which can occur when 
the unit prices of input are not identical among DMUs. 

Suppose that DMUs A and B have the same amount of inputs and outputs, 
i.e., XA — XB and y^ — VB- Assume further that the unit cost of DMU A is 
twice that of DMU B for each input, i.e., CA = 2CB' Under these assumptions, 
we have the following theorem: 

Theorem 8.1 (Tone(2002)^) Using the Farrell-Debreu cost efficiency model 
both DMUs A and B have the same cost (overall) and allocative efficiencies 
even when the latter is more costly than the former. 

Proof: Since DMUs A and B have the same inputs and outputs, they have the 
same technical efficiency, i.e., ^^ = ^^- ^^^ Farrell measure of cost efficiency 
for DMU A (or DMU B) can be obtained by solving the following LP (see 
(8.1)): 

subject to 

min CAX{= 2CBX) 

n 

yrA(= VVB) < X^^rjAj (r == 1, . . 
7 — 1 
J—^ 

Ai > 0. (Vi) 

.,s) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

Apparently, DMUs A and B have the same optimal solution (inputs) x^ — x%^ 
and hence the same cost efficiency, since we have: 

^A = CAXA/CAXA = 2CBXB/2CBXB = CBX%/CBXB = 7B-

By definition, they also have the same allocative efficiency. D 
This is not acceptable, since DMUs A and B have the same cost and alloca

tive efficiencies but the cost of DMU B is half that of DMU A. 

8.3.1 A New Scheme for Evaluating Cost Efficiency 

The previous example reveals a serious shortcoming in the traditional Farrell-
Debreu cost and allocative efficiency measures. These shortcomings are caused 
by the structure of the supposed production possibility set P as defined by: 

P = {{x,y)\x >XX,y< YX,X> 0} . (8.14) 

P is defined only by using technical factors X = {xi,... ,Xn) G R^^'^ and 
Y = ( t / i , . . . ,2/^) G R^^'^, but excludes consideration of the unit input costs 
C = ( c i , . . . , C n ) . 
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Let us define another cost-based production possibility set Pc as: 

Pc = {{x,y)\x > XX,y < FA, A > 0} , (8.15) 

where X = {xi,.,. ,Xn) with Xj = {cijXij,.. ..CmjXmj)^-
Here we assume that the matrices X and C are non-negative. We also assume 

that the elements oi Xij == (cijXij) (V(i,j)) are denominated in homogeneous 
units, viz., dollars, so that adding up the elements of Xij has a well defined 
meaning. 

Based on this new production possibility set Pc, a new "technical efficiency" 
measure, 6 , is obtained as the optimal solution of the following LP problem: 

[NTec] T = min 6 (8.16) 
,̂A 

subject to Oxo > XA (8.17) 

Vo < y^ (8.18) 

A > 0. (8.19) 

The new cost efficiency 7* is defined as 

7* = exl/exo, (8.20) 

where e G R^ is a row vector with all elements being equal to 1, and x* is the 
optimal solution of the LP given below: 

[NCost] exl = min ex (8.21) 
x,X 

subject to ^ > XA (8.22) 

Vo < y>^ (8.23) 

A > 0. (8.24) 

Theorem 8.2 The new '^cost efficiency^\ 7* in (8.20), is not greater than the 
new technical efficiency^' 6 in (8.16). 

Proof: Let an optimal solution for (8.16)-(8.19) be (5*, A*). Then, (O^Xo.X') 
is feasible for (8.21)-(8.24). Hence, it follows that eO Xo > eae*. This leads to 
^* > exl/exo = 7*. • 

The new allocative efficiency a* is then defined as the ratio of 7* to ^ , i.e., 

a* = 7 * / ^ . (8.25) 

We note that the new efficiency measures 6 , 7* and a* are all units invariant 
so long as X has a common unit of cost, e.g., dollars, cents or pounds. 

On monotonicity of the new measures with respect to unit cost, we have the 
following theorem. 
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Theorem 8.3 (Tone(2002)) If XA = XB, VA — VB ^^^ ^A > C,B, then we 
have the following inequalities: ^A < ^B O'^d J\ < 7^ . Furthermore, strict 
inequalities hold if CA > CB-

Proof. Since XA > XB and JJA = VB^ ^^^ ^^w technical measure 6A is less than 
or equal to 9B and a strict inequality holds if CA > CB- Regarding the new cost 
efficiency, we note that the optimal solution of [NCost] depends only on y^. 
Hence, DMUs (XA^VA) ^^^ {^B^VB) ^^^^ VA — VB have a common optimal 
solution X*. Therefore, we have 7^ = ex*/exA < ex*/exB = 7^ and strict 
inequality holds if c^ > c^. • 

Thus, the new measure eliminates the possible occurrence of the phenomenon 
observed at the beginning of this section. 

8.3.2 Differences Between tfie Two Models 

We now comment on the differences existing between the traditional "Farrell-
Debreu" and the new models. In the traditional model, keeping the unit cost 
of DMUo fixed at Co, the optimal input mix x* that produces the output y^ is 
found. In the new model, we search for the optimal input mix x* for producing 
y^ (or more). More concretely, the optimal mix is described as: 

? = E CijXijX*. (i = 1 , . . . ,m) (8.26) 
J 

Hence, it is assumed that, for a given output y^, the optimal input mix can be 
found (and realized) independently of the current unit cost Co of DMUo-

These are fundamental differences between the two models. Using the tra
ditional "Farrell-Debreu" model we can fail to recognize the existence of other 
cheaper input mixes, as we have demonstrated earlier. We demonstrate this 
with a simple example involving three DMUs A, B and C with each using two 
inputs (0:1,0:2) to produce one output (y) along with input costs (ci,C2). The 
data and the resulting measures are exhibited in Table 8.3. 

For DMUs A and B, the traditional model gives the same technical (^*), 
cost (7*) and allocative {a*) efficiency scores — as expected from Theorem 1. 
DMU C is found to be the only efficient performer in this framework. 

The new scheme devised as in Tone (2002) — see footnote 4 — distinguishes 
DMU A from DMU B by according them different technical and cost efficiency 
scores. (See New Scheme in Table 8.3). This is due to the difference in their unit 
costs. Moreover, DMU B is judged as technically, cost and allocatively efficient 
with improvement in cost efficiency score from 0.35(7^) to 1(7^) as exhibited 
in these two tables. As shown in Table 8.3, this cost difference produces a drop 
in DMU A's cost efficiency score from 0.35(7^^) to 0.1(7^). This drop in DMU 
A's performance is explained by its higher cost structure. Lastly, DMU C is no 
longer efficient in any of its technical, cost or allocative efficiency performances. 
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Table 8.3. Comparison of Traditional and New Scheme 

A 
B 
C 

A 
B 
C 

Xi 

10 
10 
5 

Xi 

100 
10 
15 

Cl 

10 
1 
3 

e i 

1 
1 
1 

X2 

10 
10 
2 

X2 

100 
10 
12 

C2 

10 
1 
6 

62 

1 
1 
1 

y 

1 
1 
1 

y 

1 
1 
1 

Traditional Efficiency 
Tech. Cost Alloc. 

e* 
0.5 
0.5 
1 

7* 

0.35 
0.35 
1 

a* 

0.7 
0.7 
1 

New Scheme Efficiency 
Tech. Cost Alloc. 
T 7* a* 

0.1 
1 
0.8333 

0.1 
1 
0.7407 

1 
1 
0.8889 

8.3.3 An Empirical Example 

In this section, we apply our new method to a set of hospital data. Table 8.4 
records the performances of 12 hospitals in terms of two inputs, number of 
doctors and nurses, and two outputs identified as number of outpatients and 
inpatients (each in units of 100 persons/month). Relative unit costs of doctors 
and nurses for each hospital are also recorded in columns 4 and 6. 

Multiplying the number of doctors and nurses by their respective unit costs 
we obtain the new data set {X,Y) exhibited in Table 8.5. The results of effi
ciency scores: CCR(^*), New technical {6 ), New cost (7*) and New allocative 
(a*), are also recorded. 

From the results, it is seen that the best performer is Hospital B with all 
its efficiency scores being equal to one. Regarding the cost-based measures. 
Hospitals E and L received full efficiency marks even though they fell short in 
their CCR efficiency score. Conversely, although E has the worst CCR score 
(0.763), its lower unit costs are sufficient to move its cost-based performance 
to the top rank. This information obtained from ^* = 0.763 shows that this 
hospital still has room for input reductions compared with other technically 
efficient hospitals. Hospital L, on the other hand, may be regarded as positioned 
in the best performer group. These two DMUs show that the usual assumption 
does not hold and thus technical efficiency (CCR 6* — 1) being achieved is 
not a necessary condition for the new cost and allocative efficiencies. This 
is caused by the difference between the two production possibility sets, i.e., 
the technology-based {X,Y) and the cost-based {X,Y). On the other hand, 
Hospital D is rated worst with respect to cost-based measures, although it 
receives full efficiency marks in terms of its CCR score. This gap is due to its 
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Table 8.4. Data for 12 Hospitals 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

D M U 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

Average 

Doctor 

Number 

20 

19 

25 

27 

22 

55 

33 

31 

30 

50 

53 

38 

33.6 

Inputs 

Nurse 

Cost Number 

500 

350 

450 

600 

300 

450 

500 

450 

380 

410 

440 

400 

435.8 

151 

131 

160 

168 

158 

255 

235 

206 

244 

268 

306 

284 

213.8 

Cost 

100 

80 

90 

120 

70 

80 

100 

85 

76 

75 

80 

70 

85.5 

Outputs 

Outpat. 

Number 

100 

150 

160 

180 

94 

230 

220 

152 

190 

250 

260 

250 

186.3 

Inpat. 

Number 

90 

50 

55 

72 

66 

90 

88 
80 

100 

100 

147 

120 

88.2 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

D M 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

Table 8.5. 

X 

Doctor 

10000 

6650 

11250 

16200 

6600 

24750 

16500 

13950 

11400 

20500 

23320 

15200 

Data 

Nurse 

15100 

10480 

14400 

20160 

11060 

20400 

23500 

17510 

18544 

20100 

24480 

19880 

New Data Set 

Y 

Inp. 

100 

150 

160 

180 

94 

230 

220 

152 

190 

250 

260 

250 

Outp. 

90 

50 

55 

72 

66 

90 

88 

80 

100 

100 

147 

120 

and Efficiencies 

CCR 

0* 

1 

1 

.883 

1 

.763 

.835 

.902 

.796 

.960 

.871 

.955 

.958 

Efficiency 

Tech. 

r 
.994 

1 

.784 

.663 

1 

.831 

.695 

.757 

.968 

.924 

.995 

1 

Cost 

7* 

.959 

1 

.724 

.624 

1 

.634 

.693 

.726 

.953 

.776 

.863 

1 

Alloc. 

a* 

.965 

1 

.923 

.941 

1 

.764 

.997 

.959 

.984 

.841 

.867 

1 

high cost structure. Hospital D needs reductions in its unit costs to attain good 

cost-based scores. 
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Hospital F has the worst allocative efficiency score, and hence needs a 
change in input-(cost)mix. This hospital has the current input-(cost)mix, 
XF = (24750,20400), while the optimal mix Xp is (11697,16947). So, un
der its current costs, F needs to reduce the number of doctors from 55 to 26 
(=11697/450), and nurses from 255 to 212 (==16947/80). Otherwise, if F retains 
its current input numbers, it needs to reduce the unit cost of doctors from 450 
to 213 (:=11697/55), and that of nurses from 80 to 66 (=16947/255). Of course, 
there are many other adjustment plans as well. In any case our proposed new 
measures provide much more information than the traditional ones. 

8,3,4 Extensions 

We can also extend this new cost efficiency model to three other situations as 
follows. 

1. Revenue Efficiency 
Given the unit price Pj for each output yj {j = 1 , . . . ,n), the conventional 
revenue efficiency p* of DMUo is evaluated by p* = PoVo/Poyl- Here, PoVl 
is obtained from the optimal objective value of LP problem (8.6). 

However, in the situation of different unit prices, this revenue efficiency 
PI suffers from shortcomings similar to the traditional cost efficiency mea
sure shortcomings described in the previous section. We can eliminate such 
shortcomings by introducing the price-based output Y = (y^, . . . ,y^) with 
Vj = {PijUij:''' ^PsjUsj) into the following LP: 

(8.27) [NRevenue] 

subject to 

eyl = max ey 

Xo >XX 

y<YX 

L<eX<U 

A > 0. 

The new revenue efficiency measure p^ is defined by 

New Revenue Efficiency (p^) = ey^/eyl. (8.28) 

2. Profit Efficiency 
Using the new cost and revenue efficiency models, we can also define a new 
profit efficiency model as follows: 

[NProfit] eyl - ex* = jn_ax ey - ex (8.29) 

x,y,X 

subject to X = XX < Xo 

y = YX>y, 

L<eX<U 
A > 0 , 
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where X and Y are defined in the new cost and revenue models, respectively. 

The new profit efficiency is defined as: 

New Profit Efficiency (TTO) =^ {ey^ - ex)/{eyl - exl), (8.30) 

3. Profit Ra t io Model 
We also propose a model for maximizing the revenue vs. cost ratio, 

revenue 

expenses 

instead of maximizing profit (revenue — expenses), since in some situations 
the latter gives a negative value that is awkward to deal with. This new 
profit ratio model can be formulated as a problem of maximizing the rev
enue/expenses ratio to obtain the following fractional programming problem,^ 

(8.31) [Profit Ratio] 

subject to 

x,y,\ CoX 

X = XX < Xo 

y = y^>yo 
L<eX<U 

A > 0 . 

We can transform this program to the linear programming problem below, 
by introducing a variable t E R and use the Charnes-Cooper transformation 
of fractional programming which sets x — tx^ y = ty, X = t\. Then 
multiplying all terms by t > 0, we change (8.31) to 

max p^y (8.32) 
x,y,X,t 

subject to CoX = 1 

tXo > XX = X 

tyo <YX = y 

Lt<eX< Ut 

A > 0. 

Let an optimal solution of this LP problem be ( r , £*, ^*, A ). Since 
r > 0 we can reverse this transformation and obtain an optimal solution to 
the fractional program in (8.31) from 

x' = x'lt\ y* = y'/t\ A* - A*/̂ *. (8.33) 

The revenue/cost efficiency ERC of DMUo can then be related to actual 
revenue and costs by the following "ratio of ratios," 

ERC = ^ ^ ^ 2 / £ £ ^ . (8.34) 
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As noted in the following remark, this efficiency index is related to profit effi
ciency but is applicable even when there are many deficit-DMUs, i.e. DMUoS 
for which p^y^ - CoXo < 0. 

[Remark] We can follow Cooper et al. (2005)^ and obtain a profit-to-cost 
return ratio by noting that an optimal solution to (8.31) is not altered by 
replacing the objective with 

max ^ ^ - 1. 
cc,y,A CoiK 

This gives 

which is the commonly used profit-to-cost ratio measure of performance, after 
it has been adjusted to eliminate inefficiencies. Finally, if the observed profit-
to-cost ratio is positive we can use the following 

Q ^ Poyg - CQXQ /p^y* - CQX* ^ ^ 

as a measure of efficiency with unity achieved if and only if c cc ° " ~ 
p^y*-CoX* 

8.4 DECOMPOSITION OF COST EFFICIENCY 

Technology and cost are the wheels that drive modern enterprises. Some en
terprises have advantages in terms of technology and others in cost. Hence, a 
management may want to know how and to what extent their resources are 
being effectively and efficiently utiUzed, compared to similar enterprises in the 
same or a similar field. 

In an effort to address this subject, Tone and Tsutsui (2004)'^ developed a 
scheme for decomposing actual observed cost into the sum of the minimum 
cost and the loss due to input inefficiency. Furthermore, the loss due to input 
inefficiency can be expressed as the sum of the loss due to input technical, price 
and allocative inefficiencies. 

8A.1 Loss due to Technical InefRciency 

We consider n DMUs, each having m inputs for producing s outputs. We utilize 
the notations for denoting observed inputs (xo), outputs (y^) and input unit 
prices {co)> We also assume that unit input prices are not identical among 
DMUs. The actual (observed) input cost for DMU (Xo.yo) can be calculated 
as follows: 

m 
Co - ^ CioXio. (o = 1 , . . . , n) (8.35) 
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We postulate the production possibility set P defined by 

P = {{x,y)\x >XX,y< FA, A > 0}. (8.36) 

Let the (technically) efficient input for DMUo be a?*, which can be obtained 
by solving the CCR, SBM or Hybrid models depending on the situation. The 
technically efficient input cost for DMUo is calculated as 

m 

C: = Y,Cioxl.{o=l,...,n) (8.37) 

Then, the loss in input cost due to technical inefficiency is expressed as 
follows: 

L: = CO~C:{>0). (8.38) 

8.4.2 Loss due to Input Price InefRciency 

We now construct a cost-based production possibility set analogous to that in 
the preceding section as follows: 

Pe - {{x,y)\x >X\y< YX, A > 0}, (8.39) 

where X = {xi,...,Xn) G R^^"^, Xj = {xij,... ,Xmj), and Xij = CijX*-. It 
should be noted that x'j represents the technically efficient input for producing 
2/j. Hence, we utilize Cijxl^ instead of CijXij in the preceding section in order 
to eliminate technical inefficiency to the maximum possible extent. Then we 
solve the CCR model on Pc in a manner similar to that of [NTec] in (8.16): 

[NTec-2] p* =: min p (8.40) 

subject to pXo = Xfji +1~ (8-41) 

y^^Yfji-t^ (8.42) 

M > 0, t " > 0, t+ > 0. (8.43) 

Let (p*, /i*, t""*, t+*) be an optimal solution for [NTec-2]. Then, p*^o — 
{p^cioxl^,... ^p^^Cmo^mo) indicatcs the radially reduced input vector on the 
(weakly) efficient frontier of the cost-based production set Pc in (8.39). Now 
we define 

c* = p'^Co = (p*cio,... ,p*c„^o). (8.44) 

c* is the radially reduced input factor price vector for the technically efficient 
input X* that can produce y^. The [NTec-2] projection is given by 

[NTec-2 Projection] x* = p*Xo - t"*, yl=y^ + t+*. (8.45) 
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We define the strongly efficient cost C**, which is the technical and price effi
cient cost, and the loss L** due to the difference of the input price as follows: 

m m m 

cT = E^*o = Y.^P*xio - c ) < / E^'o = p*^o < c: (8.46) 
L:* = C:-C:*{>O). (8.4?) 

8.4.3 Loss due to AUocative Inefficiency 

Furthermore, we solve the [NCost] model in (8.21) for Pc as follows: 

(8.48) [NCost-2] 

subject to 

GQ = nim ex 
cc,/x 

X > X/x 

yo<yf^ 
/i > 0. 

Let (x**, //*) be an optimal solution. Then, the cost-based pair (x**, y^) is 
the minimum production cost in the assumed production possibility set P^ 
This set can differ substantially from P if the unit prices of the inputs vary 
from DMU to DMU. The (global) allocative efficiency a* of DMUo is defined 
as follows: 

a* = ^ ( < 1). (8.49) 

We also define the loss L*** due to the suboptimal cost mix as 

L^** = C r - C r * ( > 0 ) . (8.50) 

8.4.4 Decomposition of tlie Actual Cost 

From (8.38), (8.47) and (8.50), we can derive at the following theorem. 

Theorem 8.4 (Tone and Tsutsui (2004)) 

Co>c: >c:* >c:**. (8.51) 

Furthermore, we can obtain the relationship among the optimal cost and losses, 
and the actual cost (Co) can be decomposed into three losses and the minimum 
cost (C***): 

Ll = Co- C*(> 0) Loss due to Technical Inefficiency (8.52) 

L** = CI - C r ( > 0) Loss due to Price Inefficiency (8.53) 

L*** = C;* - C;**(> 0) Loss due to Allocative Inefficiency (8.54) 

Co - L : + L : * -F L : * * + c : * * . (8.55) 

For further developments of this scheme, see Problems 8.1-8.4 at the end of this 
chapter. 
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8A.5 An Example of Decomposition of Actual Cost 

We applied the above procedure to the data set exhibited in Table 8.4 and 
obtained the results Usted in Table S.6. We then utilized the input-oriented 
CCR model and the projection formulas in Chapter 3 for finding the technical 
efficient inputs (a?*). 

Table 8.6. Decomposition of Actual Cost 

DMU 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

Total 

Actual 
C 

25100 
17130 
25650 
36360 
17660 
45150 
40000 
31460 
29944 
40600 
47800 
35080 
391934 

Cost 
Minimum 

18386 
17130 
18404 
21507 
13483 
27323 
26287 
19684 
24605 
29871 
34476 
31457 
282615 

c**7c 
0.73 

1 
0.72 
0.59 
0.76 
0.61 
0.66 
0.63 
0.82 
0.74 
0.72 
0.90 
0.72 

Tech. 
L* 
0 
0 

3557 
0 

4177 
12911 
4256 
6407 
3254 
7725 
5367 
2348 
50002 

Loss 
Price 
L** 
5959 

0 
2658 
13470 

0 
1767 
8931 
4230 
1617 

0 
5030 

0 
43661 

Alloc. 
L*** 
754 
0 

1032 
1383 

0 
3149 
526 
1139 
468 
3004 
2927 
1275 
15656 

As can be $een from the results, Hospital B is again the most efficient DMU 
in the sense that it has no loss due to technical, price or allocative inefficiencies, 
while Hospital D has the worst ratio C***/(7(= 0.59) caused by losses due to 
price and allocative inefficiencies. Hospital A has inefficiency in cost-based as
pects, i.e., price and allocation but not in technical-physical aspects, whereas E 
has inefficiency due to technical-physical aspects but not in cost-based aspects. 
Figure 8.2 exhibits the decomposition graphically. 

8.5 SUMMARY OF CHAPTER 8 

This chapter has covered approaches which have been studied in DEA for eval
uations of efficiencies such as "allocative" and "overall" efficiencies. Problems 
in the standard approaches were identified with cases in which different prices 
or different unit costs may be associated with the performance of different firms 
producing the same outputs and utilizing the same inputs. Types of price-cost 
efficiencies were therefore identified and related to extensions of the customary 
production possibility sets that reflected the unit price and cost differences. 

Standard approaches were also extended in models that permit substitutions 
so that worsening of some inputs or outputs may be made in order to improve 
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Figure 8.2. Decomposition of Actual Cost 

other inputs or outputs. We also extended the traditional Farrell-Debreu cost 
efficiency measures and introduced new ones that can deal with non-identical 
cost and price situations. Furthermore, we provided a decomposition of the 
actual cost into the minimum cost and into losses due to other inefficiencies. 

Problems in the use of these concepts may be encountered because many 
companies are unwilling to disclose their unit costs. As noted by Farrell, unit 
prices may also be subject to large fluctuations. One may, of course, use aver
ages or other summaries of such prices and also deduce or infer which unit costs 
are applicable. However, this may not be satisfactory because in many cases 
accurate costs and prices may not really reflect criteria that are being used. 
Cases in point include attempts to evaluate public programs such as education, 
health, welfare, or military and police activities. 

Earlier in this book a variety of approaches were suggested that can be 
applied to these types of problems. This includes the case of assurance regions 
and like concepts, as treated in Chapter 6, which can replace exact knowledge 
of prices and costs with corresponding bounds on their values. When this is 
done, however, the precise relations between allocative, overall and technical 
efficiencies may become blurred. 

8.6 NOTES AND SELECTED BIBLIOGRAPHY 

The concepts of cost efficiency related subjects were introduced by M.J. Farrell 
(1957) and G. Debreu (1951) and developed into implementable form by Fare, 
Grosskopf and Lovell (1985) using linear programming technologies. Cooper, 
Park and Pastor (1999)^ extended these treatments to the Additive models 
with a new "translation invariant" measure named "RAM." 
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Inadequacies in attempts to move from "technical" to price based or cost 
based efficiencies were identified by Tone (2002). In response a new approach 
to cost efficiency was developed by Tone (2002) and further extended to decom
positions of cost efficiency by Tone and Tsutsui (2004) in a form they applied 
to Japan-US electric utilities comparisons. Tone and Sahoo (2005)^ applied 
the new cost efficiency model to examine the performance of Life Insurance 
Corporation (LIC) of India and found a significant heterogeneity in the cost 
efficiency scores over the course of 19 years. See also Tone and Sahoo (2005)^^ 
in which the issues of cost elasticity are extensively discussed based on the 
new cost efficiency model. Fukuyama and Weber (2004)^^ developed a variant 
of the new cost efficiency model using "directional distance functions " intro
duced in Chambers, Chung and Fare (1996)^^ to measure inefficiency. See Fare, 
Grosskopf and Whittaker (2004)^^ for an updated survey. See, however, Ray 
(2004), ^̂  p.95, who identified a deficiency in the failure of "directional distance 
functions " to account for nonzero slacks in the measures of efficiency. 

8.7 RELATED DEA-SOLVER MODELS FOR CHAPTER 8 

(New-)Cost-C(V) Cost-C(V) code evaluates the cost efficiency of each DMU 
as follows. First we solve the LP problem below: 

min 2_. ^i^i 
i=l 

n 

subject to Xi > ^ XijXj (i =: 1 , . . . , m) (8.56) 

n 

Vro < ^VrjXj ( r := 1 , . . . , 5 ) 

2 = 1 

n 

L<Y.\j<U 

Ai > 0 Vj, 

where Ci is the unit cost of the input i. This model allows substitutions 
in inputs. Based on an optimal solution (cc*. A*) of the above LP, the cost 
efficiency of DMUo is defined as 

Ec = — . (8.57) 

The code "Cost-C" solves the case L — {). U = oo (the case of constant 
returns to scale) and "Cost-V" for the case L = U = 1 (the variable returns 
to scale case). 

The data set (X, F, C) should be prepared in an Excel Workbook under an 
appropriate Worksheet name, e.g., ".Data", prior to execution of this code. 
See the sample format displayed in Figure B.6 in Section B.5 of Appendix 
B and refer to explanations above the figure. 
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The results will be obtained in the Worksheets of the selected Workbook: 
"Score", "Projection" (projection onto the efficient frontier), "Graphl", 
"Graph2" and "Summary." 

New-Cost-C(V) solves the model described in [NCost] (8.21). Data format 
is the same with the Cost-C(V) model. 

(New-)Revenue-C(V) Revenue-C(V) code solves the following revenue max
imization program for each DMU: 

max py 

subject to Xo > XX 

y<Y\ 

L<eX<U 

A > 0, 

where the vector p = (p i , . . . ,Ps) expresses the unit prices of the output. 
This model allows substitutions in outputs. 

The code "Revenue-C" solves the case L = 0. U = oo (the case of constant 
returns to scale) and "Revenue-V", the case L = U = 1 (the variable returns 
to scale case). 

Based on an optimal solution y* of this program, the revenue efficiency is 
defined as 

ER = ^ . (8.58) 

En satisfies 0 < ER < 1, provided py^ > 0. See the sample data for
mat displayed in Figure B.7 in Section B.5 of Appendix B and refer to the 
explanations above the figure. 

The results will be obtained in the Worksheets of the selected Workbook: 
"Score", "Projection" (projection onto the efficient frontier), "Graphl," 
"Graph2," and "Summary." 

Nevv^-Revenue-C(V) solves the model described in [NRevenue] (8.27). Data 
format is the same with Revenue-C(V). 

(New-)Profit-C(V) Profit-C(V) code solves the LP problem defined in (8.8) 
for each DMU. Based on an optimal solution (cc*, y*), the profit efficiency 
is defined as 

Ep = ^yo-cxo 
py"" - ex"" 

Under the assumption py^ > CXQ, we have 0 < Ep < 1 and DMUo is profit 
efficient if Ep = 1. 

The data format is a combination of Cost and Revenue models. The cost 
columns are headed by (C) for input names and the price column are headed 
by (P) for output names. 
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The results will be obtained in the Worksheets of the selected Workbook: 
"Score", "Projection" (projection onto the efficient frontier), "Graphl," 
"Graph2," and "Summary." 

New-Profi t-C(V) solves the model described in [NProfit] (8.29). Data 
format is the same with Profit-C(V). 

Rat io-C(V) This code solves the LP problem defined in (8.31). Based on the 
optimal solution (x*,y*), the ratio (revenue/cost) efficiency is defined as 

^ PoVo/f^oXo 

which satisfies 0 < ERC ^ 1 ^nd DMUo is ratio efficient if ERC — 1-

The data format is a combination of Cost and Revenue models. The cost 
columns are headed by (C) for input names and the price column are headed 
by (P) for output names. 

The results will be obtained in the Worksheets of the selected Workbook: 
"Score", "Projection" (projection onto the efficient frontier), "Graphl," 
"Graph2," and "Summary." 

8.8 PROBLEM SUPPLEMENT FOR CHAPTER 8 

P r o b l e m 8.1 

In Section 8.4, the actual cost is decomposed into the sum of the minimum cost 
and losses due to technical, price and allocative inefficiencies. 

Can you decompose it in the productive form (not in the sum form)? 

Suggested Response : Define the following efficiency measures: 

• C***/C = cost efficiency (CE) 

• eye = technical efficiency (TE) 

• C**/C* = price efficiency (PE) 

• C***/C** = allocative efficiency (AE) 

Then, we have: 
CE = TE X PE X AE. 

Problem 8.2 
Write out the decomposition of the actual profit in the same vein as described 
in Section 8.4. 

Suggested Response : The actual profit of DMU {Xo^Vo) is calculated as: 

Eo ^PoVo -CoXo. (8.60) 
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Using radial or non-radial technical efficiency models, e.g., the CCR and SBM, 
we project the DMU onto the efficient frontier and obtain the technically effi
cient (cc*,2/*) with profit given by 

K = PoVl - ^oxl (> p^y^ - CoXo = Eo). (8.61) 

Thus, the loss due to technical inefficiency is evaluated as 

LI = E: - Eo, (8.62) 

We formulate the new cost-price based production possibility set as 

Pep = {{x,y)\ X > XA,y < F A , A > 0} , (8.63) 

where X == {xi,... ,Xn) with Xj = (cijxlj,..., CmjX^'^j) and F == (^ i , . . . ,y^) 
with yj = {pijylj^... .PsjVlj). On this PPS we form a technical efficiency 
model similar to [NTec-2] (8.40) as follows: 

[NTec-3] p* ̂  _min p (8.64) 
x,y,p,fji 

subject to pXo > Xfi = X 

yo<yf^ = y 
/x > 0. 

Let the optimal solution of [NTec-3] be {xl,yl,iji*,p*). (Note that, instead 
of [NTec-3], we can apply the non-radial and non-oriented SBM for obtaining 

We then have the technical and cost-price efficient profit given by 

E:*=ey:-ex:i>E:). (8.65) 

The loss due to cost-price inefficiency is estimated by 

L * * = E r - K (>0)- (8-66) 

Lastly, we solve the following max profit model on Pep. 

[NProfit-2] eyl* - ex** = _max ey - ex (8.67) 
x,y,X 

subject to Xo > XX = x 

yo<y^ = y 
A > 0 . 

Let the optimal solution be (^**,y**). The allocative efficient profit is given 
by 

E*** = ey*o* - exl*. (8.68) 

The loss due to allocative inefficiency is evaluated by 

LI** = E*** - E** (> 0). (8.69) 
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Summing up, we have the decomposition of the actual profit into the maximum 
profit and the losses due to technical, cost-price and allocative inefficiencies as 
follows: 

Eo = ̂ r * -K- LT - L***. (8.70) 

Problem 8.3 

Most of the models in this Chapter are developed under the constant returns-
to-scale (CRS) assumption. Can you develop them under the variable returns-
to-scale assumption? 

Suggested Response : This can be done by adding the convex constraint on the 
intensity variable A as follows: 

Problem 8.4 
In connection with the preceding problem, can you incorporate the scale inef
ficiency effect, i.e., loss due to scale inefficiency, in the model? 

Suggested Response : In the cost efficiency case, we first solve the input-oriented 
technical efficiency model under the VRS assumption. Let the optimal solution 
be {x^^^,y^^^). The cost and loss due to this projection are, respectively: 

C r « ^ = cox^^^ L^""' = Co- C r ^ ^ (8.71) 

where Co is the actual observed cost of DMU (Xo^Vo)- Then we construct the 
data set {X^^^, y^^^) consisting of {xj^^, yj^^) j = 1 , . . . , n. We next eval
uate the technical efficiency of (x^^^.y^^^) with respect to (^x^^^.Y^^^) 
under the constant returns-to-scale (CRS) assumption. Let the optimal solu
tion be (x*,i/*), with its cost C* = CQXI (< C^^^). Thus, we obtain the loss 
due to scale inefficiency as follows: 

L^^cale ^(jVRS _Q.^ (8.72) 

Referring to (8.52)-(8.55), we can decompose the actual cost into four losses 
with minimum cost as follows: 

i^VRS ^Co- C^^^{> 0) Loss due to Pure Tech. Inefficiency (8.73) 
j^scaie ^ ^VRS _ ^*(> Q) ^^^^ ^^^ ^^ g^^j^ Inefficiency (8.74) 

L** = CI - C r ( > 0) Loss due to Price Inefficiency (8.75) 

L*** -: C;* - C;**(> 0) Loss due to Allocative Inefficiency (8.76) 

Co = L^^^ -f L f "̂ " + L** -f- L*** -f- C r * . (8.77) 
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Problem 8.5 

The concluding part of Section 5.5, Chapter 5, quoted Dr. Harold Wein, a steel 
industry consultant, who believed that the concept of returns to scale, as for
mulated in economics, is useless because increases in plant size are generally 
accompanied by mix changes in outputs or inputs — or both. 

Assignment : Formulate the responses an economist might make to this criti
cism. 

Suggested Response : Under the assumption of profit maximization, as em
ployed in economics, both scale and mix are determined simultaneously. This 
is consistent with Dr. Wein's observation from his steel industry experience. 

One response to Dr. Wein's criticism of the scale concept as employed in 
economics (which holds mix constant) is to note that economists are interested 
in being able to distinguish between scale and mix changes when treating em
pirical data after the decisions have been made. Economists like Farrell^^ and 
Debreu^^ contributed concepts and methods for doing this, as cited in this 
chapter (and elsewhere in this text), and these have been further extended by 
economists like Fare, Grosskopf and Lovell whose works have also been cited 
at numerous points in this text.-̂ *̂  

The above response is directed to ex post analyses. Another response is 
directed to whether economics can contribute to these decisions in an ex ante 
fashion. The answer is that there is a long-standing literature which provides 
guidance to scale decisions by relating marginal (incremental) costs to marginal 
(incremental) receipts. Generally speaking, returns to scale will be increasing 
as long as marginal costs are below average (unit) costs. The reverse situation 
applies when returns to scale is decreasing. Equating marginal costs to marginal 
receipts will determine the best (most profitable) scale size. 

This will generally move matters into the region of decreasing returns to 
scale. Reasons for this involve issues of stability of solutions which we cannot 
treat here. Marginal cost lying below average unit cost in regions of increasing 
returns to scale means that average unit cost can be decreased by incrementing 
outputs. Hence if marginal receipts equal or exceed average unit cost it is 
possible to increase total profit by incrementing production. 

The above case refers to single output situations. Modifications are needed to 
allow for complementary and substitution interactions when multiple outputs 
are involved. This has been accomplished in ways that have long been available 
which show that the above rule continues to supply general guidance. Indeed, 
recent years have seen this extended to ways for determining "economics of 
scope" in order to decide whether to add or delete product lines while simulta
neously treating mix and scale decisions. See W.S. Baumol, J.C. Panzar and 
R.D. Willig (1982) Contestable Markets and the Theory of Industry Structure 
(New York: Harcourt Brace Jovanovich). 

Much remains to be done in giving the above concepts implementable form 
— especially when technical inefficiencies are involved and errors and uncertain
ties are also involved. A start has been made in the form of what are referred 
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to as "stochastic frontier" approaches to statistical estimation. However, these 
approaches are, by and large, confined to the use of single output regressions. 

Comment : As already noted, profit maximization requires a simultaneous de
termination of the best (i.e., most profitable) combination of scale, scope, tech
nical and mix eflSciencies. The models and methods described in earlier chap
ters can then be used to determine what was done and whether and where any 
inefficiencies occurred. 

Problem 8.6 

Prove that the profit ratio model in (8.31) does not suff'er from the inadequacies 
pointed out in Section 8.3. 

Suggested Response : Since the profit ratio efficiency is defined as ratio of ratios 
(between revenue and cost), it is invariant when we double both the unit cost 
and price. 

Notice that the traditional profit efficiency model [Profit] (8.8) gives the 
same efficiency value when we double both the unit cost and price. This is 
unacceptable. 
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