
4 ALTERNATIVE DEA MODELS 

4.1 INTRODUCTION 

In the preceding chapters, we discussed the CCR model, which is built on the 
assumption of constant returns to scale of activities as depicted for the produc­
tion frontier in the single input-single output case shown in Figure 4.1. More 
generally, it is assumed that the production possibility set has the following 
property: If {x^y) is a feasible point, then {tx^ty) for any positive t is also 
feasible. This assumption can be modified to allow production possibility sets 
with different postulates. In fact, since the very beginning of DEA studies, 
various extensions of the CCR model have been proposed, among which the 
BCC (Banker-Charnes-Cooper) model^ is representative. The BCC model has 
its production frontiers spanned by the convex hull of the existing DMUs. The 
frontiers have piecewise linear and concave characteristics which, as shown in 
Figure 4.2, leads to variable returns-to-scale characterizations with (a) in­
creasing returns-to-scale occurring in the first solid line segment followed by 
(b) decreasing returns-to-scale in the second segment and (c) constant returns-
to-scale occurring at the point where the transition from the first to the second 
segment is made. 

In this chapter, we first introduce the BCC model in Section 2. Then, in 
Section 3, the "Additive Model" will be described. This model has the same 
production possibility set as the BCC and CCR models and their variants 
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but treats the slacks (the input excesses and output shortfalls) directly in the 
objective function. 
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Figure 4 .1 . Production Frontier of the CCR Model 
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Figure 4.2. Production Frontiers of the BCC Model 

CCR-type models, under weak efficiency, evaluate the radial (proportional) 
efficiency ^* but do not take account of the input excesses and output short­
falls that are represented by non-zero slacks. This is a drawback because ^* 
does not include the nonzero slacks. Although the Additive model deals with 
the input excesses and output shortfalls directly and can discriminate efficient 
and inefficient DMUs, it has no means to gauge the depth of inefficiency by a 
scalar measure similar to the ^* in the CCR-type models. To eliminate this 
deficiency, we will introduce a slacks-based measure of efficiency (SBM), which 
was proposed by Tone (1997) ^ and is also related to the "Enhanced Russell 
Measure," in Section 4 in the form of a scalar with a value not greater than 
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the corresponding CCR-type measure 6*. This measure reflects nonzero slacks 
in inputs and outputs when they are present. 

The BCC and CCR models differ only in that the former, but not the latter, 
includes the convexity condition ^^=i Xj = 1, Xj > 0,Vj in its constraints. 
Thus, as might be expected, they share properties in common and exhibit 
differences. They also share properties with the corresponding Additive models. 
Thus, the Additive model without the convexity constraint will characterize a 
DMU as efficient if and only if the CCR model characterizes it as efficient. 
Similarly, the BCC model will characterize a DMU as efficient if and only if 
the corresponding Additive model also characterizes it as efficient. 

The concept of "translation invariance" that will be introduced in this chap­
ter deals with lateral shifts of the constraints so that negative data, for instance, 
may be converted to positive values that admit of treatment by our solution 
methods, which assume that all data are non-negative. As we will see, the Ad­
ditive models which include the convexity constraint, are translation invariant 
but this is not true when the convexity constraint is omitted. CCR models are 
also not translation invariant while BCC models are translation invariant to 
changes in the data for only some of their constraints. 

These (and other) topics treated in this chapter will provide an overview of 
model selection possibilities and this will be followed up in further detail in 
chapters that follow. 

The CCR, BCC, Additive and SBM models do not exhaust the available 
DEA models. Hence in the Appendix to this chapter we introduce a variant, 
called the Free Disposal Hull (FDH) model which assumes a nonconvex (stair­
case) production possibility set. Finally, in the problems we ask readers to use 
their knowledge of the Additive model to develop yet another, known as the 
"multiplicative model." 

4.2 THE BCC MODELS 

Let us begin this section with a simple example. Figure 4.3 exhibits 4 DMUs, 
A, J5, C and D, each with one input and one output. 

The efficient frontier of the CCR model is the dotted line that passes through 
B from the origin. The frontiers of the BCC model consists of the bold lines 
connecting A, B and C. The production possibility set is the area consisting 
of the frontier together with observed or possible activities with an excess of 
input and/or a shortfall in output compared with the frontiers. A^ B and C are 
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on the frontiers and BCC-efficient. The same is true for all points on the soUd 
lines connecting A and B^ and B and C. However, only B is CCR-efRcient. 
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Figure 4.3. The BCC Model 

Reading values from the this graph, the BCC-efficiency of D is evaluated by 

PR 
PD 

2.6667 
0.6667, 

while its CCR-efRciency is smaller with value 

PQ 
PD 

2.25 
= 0.5625. 

Generally, the CCR-efficiency does not exceed BCC-efficiency. 
In the output-oriented BCC model, we read from the vertical axis of Figure 

4.3 to find D evaluated by 

f = I = 1.6667. 

This means that achievement of efficiency would require augmenting D's output 
from its observed value to 1.6667 x 3 = 5 units. The comparable augmentation 
for the CCR model is obtained from the reciprocal of its input inefficiency — 
viz., 1/0.5625 = 1.7778 so, as the diagram makes clear, a still greater augmen­
tation is needed to achieve efficiency. (Note: this simple "reciprocal relation" 
between input and output efficiencies is not available for the BCC model.) 

Banker, Charnes and Cooper (1984) published the BCC model whose pro­
duction possibility set PB is defined by: 

PB = {{x,y)\x > XX,y < YX.eX - 1, A > o } . (4.1) 

where X = (xj) e K^'''' and Y = {y^) G R''''' are a given data set, X e R"" 
and e is a row vector with all elements equal to 1. The BCC model differs from 



min 6B 

OBXO - X A > 0 

yx>y^ 
eX = 1 

A > 0, 
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the CCR model only in the adjunction of the condition Y^^=i Aj = 1 which 
we also write eA = 1 where e is a row vector with all elements unity and A is 
a column vector with all elements non-negative. Together with the condition 
Xj > 0, for all j , this imposes a convexity condition on allowable ways in which 
the observations for the n DMUs may be combined. 

4.2.1 The BCC Model 

The input-oriented BCC model evaluates the efficiency of DMUo (o = 1 , . . . , n) 
by solving the following (envelopment form) linear program: 

(BCCo) min 63 (4.2) 
0B,A 

subject to 63X0 - XX>0 (4.3) 

(4.4) 

(4.5) 

(4.6) 

where 9B is a scalar. 
The dual multiplier form of this linear program (BCCo) is expressed as: 

max z = uy^-uo (4.7) 
t/,U-,Uo 

subject to vxo — 1 (4.8) 

-vX + uY -uoe<0 (4.9) 

V >0, u >0, uo free in sign, (4-10) 

where v and u are vectors and z and UQ are scalars and the latter, being "free 
in sign," may be positive or negative (or zero). The equivalent BCC fractional 
program is obtained from the dual program as: 

n,ax ^ ^ ^ ^ ^ i ^ (4.11) 
VXo 

subject to ^^^ ~ ^^ < 1 (j = l,...,n) (4.12) 
VXj 

v>0, u > 0, Uo free. (4.13) 

Correspondences between the primal-dual constraints and variables can be rep­
resented as in Table 4.1. 

It is clear that a difference between the CCR and BCC models is present in 
the free variable UQ, which is the dual variable associated with the constraint 
eA = 1 in the envelopment model that also does not appear in the CCR model. 

The primal problem (BCCo) is solved using a two-phase procedure similar to 
the CCR case. In the first phase, we minimize OB and, in the second phase, we 
maximize the sum of the input excesses and output shortfalls, keeping OB = 0*^ 
(the optimal objective value obtained in Phase one). The evaluations secured 
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Table 4.1. Primal and Dual Correspondences In BCC Model 

Linear Programming Form 

Envelopment form Multiplier form 
constraints variables 

Multiplier form 
constraints 

Envelopment form 
variables 

3X0 - X \ > 0 

eA = 1 

v>0 
u>0 

Uo 

VXo = 1 
-vX -{-uY -uoe <0 \>0 

from the CCR and BCC models are also related to each other as follows. An 
optimal solution for (BCCo) is represented by (^^, A*, s~*, s"*"*), where s~* and 
s"*"* represent the maximal input excesses and output shortfalls, respectively. 
Notice tha t O'^ is not less than the optimal objective value 6* of the CCR 
model, since (BCCo) imposes one additional constraint, eA = 1, so its feasible 
region is a subset of feasible region for the CCR model. 

Def in i t ion 4.1 (BCC-Eff ic iency) 
/ / an optimal solution (^^, A*, s~*, s"^*) obtained in this two-phase process for 
(BCCo) satisfies 0"^ = 1 and has no slack {s~* — 0, s+* — 0) , then the DMUQ 
is called BCC-efficient, otherwise it is BCC-inefficient. 

Def in i t ion 4.2 (Reference Set ) 
For a BCC-inefficient DMUo, ^ e define its reference set, Eo, based on an 
optimal solution A* by 

E„ = { i | A * > 0 } 0 - € { l , . . . , n } ) . (4.14) 

If there are multiple optimal solutions, we can choose any one to find tha t 

(4.15) 
jeEo 

jeEo 

Thus, we have a formula for improvement via the BCC-projection, 

+ * 
y Vo + s-" 

(4.16) 

(4.17) 

(4.18) 

The following two theorems and the lemma can be proved in a way similar to 
proofs used for the CCR model in Chapter 3. Thus, analogous to Theorem 3.2 
for the CCR model, we have 
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Theorem 4.1 The improved activity (xo^Vo) '^^ BCC-efficient, 

Similarly, the following adapts Lemma 3.1 to the BCC model, 

Lemma 4.1 For the improved activity (xo^Vo), there exists an optimal solu­
tion (VO^UOJUQ) for its dual problem such that 

Vo> 0 and Uo > 0 (4.19) 

VoXj = UoVj - Uo {j e Eo) (4.20) 

VoX > UoY - uoe. (4.21) 

Theorem 4.2 Every DMU in Eo associated with a X'j > 0 as defined in (4.14), 
is BCC-efficient. 

This is an extension of Theorem 3.3. Finally, however, the next theorem exposes 
a property of BCC-efficiency for the input-oriented version of the model. This 
property is not secured by the CCR model, so the two may be used to check 
whether this property is present. 

Theorem 4.3 A DMU that has a minimum input value for any input item, 
or a maximum output value for any output item, is BCC-efficient. 

Proof. Suppose that DMUo has a minimum input value for input 1, i.e., xio < 
^ij (Vj 7̂  o). Then, from (4.3) and (4.5), DMUo has the unique solution 
(61̂  - 1 ,A: -= 1,A; = 0 (Vj 7̂  o)). Hence, DMUo has 6% = 1 with no slacks 
and is BCC-efRcient. The maximum output case can be proved analogously. • 

4.2.2 The Output-oriented BCC Model 

Turning to the output-oriented BCC model we write 

{BCC - Go) 

subject to 

max r]B 

XX<Xo 

VBVo -YX<0 

eX = 1 

A > 0. 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

This is the envelopment form of the output-oriented BCC model. The dual 
(multiplier) form associated with the above linear program {BCC — Go) is 
expressed as: 

min z — vXo — VQ (4.27) 

subject to uy^ — 1 (4.28) 

vX-uY - voe > 0 (4.29) 

V >0, u>0, VQ free in sign, (4.30) 
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where VQ is the scalar associated with eA = 1 in the envelopment model. Finally, 
we have the equivalent (BCC) fractional programming formulation for the latter 
(multiplier) model: 

mm (4.31) 

VX ' — Vn 

subject to —^ > 1 (j =: 1 , . . . , n) (4.32) 

V > 0, u > 0, VQ free in sign. (4.33) 

4.3 THE ADDITIVE MODEL 

The preceding models required us to distinguish between input-oriented and 
output-oriented models. Now, however, we combine both orientations in a 
single model, called the Additive model 

4.3.1 The Basic Additive Model 

There are several types of Additive models, from which we select following: 

{ADDo) max z = es~ -t- es+ (4.34) 

A,s-,s+ 

subject to XA -{- s~ = Xo (4.35) 

YX-s^= y, (4.36) 

eA = 1 (4.37) 

A > 0, s - > 0, s+ > 0. (4.38) 

A variant, which we do not explore here, is an Additive model^ which omits 
the condition eA = 1. 

The dual problem to the above can be expressed as follows: 

subject to 

min w = vXo — uy^ + UQ 

vX -uY + uoe > 0 

V > e 

u > e 

UQ free. 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

To explain this model we use Figure 4.4, where four DMUs A, B, C and D, 
each with one input and one output, are depicted. Since, by (4.35)— (4.38), 
the model (ADDo) has the same production possibility set as the BCC model, 
the efficient frontier, which is continuous, consists of the line segments AB and 
BC. Now consider how DMU D might be evaluated. A feasible replacement 
of D with s~ and s~^ is denoted by the arrows s~ and s'^ in the figure. As 
shown by the dotted line in the figure, the maximal value of s" -f s+ is attained 
ai B. It is clear that this model considers the input excess and the output 
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shortfall simultaneously in arriving at a point on the efficient frontier which is 
most distant from D.^ 

Figure 4.4. The Additive Model 

Taking these considerations into account we can obtain a definition of effi­
ciency as follows for the Additive model. 

Let the optimal solutions be (A*, s~*, s"^*). The definition of efficiency for 
an efficient DMU in the Additive model is then given by: 

Definition 4.3 (ADD-efficient DMU) 
DMUo is ADD-efficient if and only if s~* = 0 and s+* = 0. 

Theorem 4.4 DMUo is ADD-efficient if and only if it is BCC-efficient. 

A proof of this theorem may be found in Ahn et al,^ Here, however, it suffices 
to note that the efficiency score ^* is not measured exphcitly but is imphcitly 
present in the slacks s~* and s^"*. Moreover, whereas ^* reflects only Farrell 
(=weak) efficiency, the objective in {ADDo) reflects all inefficiencies that the 
model can identify in both inputs and outputs. 

Theorem 4.5 Let us define XQ — Xo — s~* andy^ = y^-J-s"*"*. Then, {XQ, VQ) 
is ADD-efficient. 

By this theorem, improvement to an efficient activity is attained by the 
following formulae (Projection for the Additive model): 

XQ 

Vo 

XQ 

2/o + s +* 
(4.44) 

(4.45) 

with (Xo, Vo) serving as the coordinates for the point on the efficient frontier 
used to evaluate DMUo. 
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Example 4.1 
We clarify the above with Table 4.2 which shows 8 DMUs with one input and 
one output. The solution of the Additive model and that of the BCC model 
are both exhibited. The reference set is determined as the set of DMUs which 
are in the optimal basic set of the LP problem. It is thus of interest to note 
that J5, C and E are all fully efficient under both the BCC and [ADDo) model, 
as asserted in Theorem 4.4. Furthermore, the nonzero slack under 5"̂ * for A 
shows that it is not fully efficient for the BCC model (as well as [ADDo)) even 
though it is weakly efficient with a value of ^* = 1. This means that A is on a 
part of the frontier that is not efficient, of course, while all of the other values 
with ^* < 1 mean that they fail even to achieve the frontier and, as can be 
observed, they also have nonzero slacks in their optimum (2^^-stage) solutions. 
For the latter observations, therefore, a projection to Xo — 0*Xo need not 
achieve efficiency. It could merely bring the thus adjusted performance onto a 
portion of the frontier which is not efficient — as was the case for A. 

Table 4.2. Data and Results of Example 4.1 

DMU 
A 
B 
C 
D 
E 
F 
G 
H 

Input 
X 

2 
3 
2 
4 
6 
5 
6 
8 

Output 

y 
1 
3 
2 
3 
5 
2 
3 
5 

BCC 

1 
1 
1 
0.75 
1 
0.40 
0.50 
0.75 

Additive Model 
~s^* ^* ReE 

0 1 C 
0 0 J5 
0 0 C 
1 0 B 
0 0 E 
3 0 C 
3 0 5 
2 0 E 

The following definition brings up another important distinction between 
the Additive model and BCC (or CCR) models; 

Definition 4.4 (Mix) We define "Mix^^ as proportions in which inputs are 
used or in which outputs are produced. 

Returning to the BCC (or CCR) models, it can be observed that (1 — 6*) 
represents reductions which can be achieved without altering the input mix 
utilized and [rj* — 1) would play a similar role for output expansions which do 
not alter the output mix. 

In the literature of DEA, as well as economics, this proportion is referred to 
as "technical inefficiency" as contrasted with "scale inefficiencies," "allocative 
(or price) inefficiencies" and other type of inefficiencies that will be discussed 
in subsequent chapters. 
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With all such technical inefficiencies accounted for in the BCC and CCR 
models, the second stage optimization is directed to maximize the slacks in 
order to see whether further inefficiencies are present. Altering any nonzero 
slack obtained in the second stage optimization must then necessarily alter the 
mix. 

As is now apparent, the CCR and BCC models distinguish between technical 
and mix inefficiencies and this is a source of trouble in trying to arrange for a 
single measure of efficiency. The allocative model makes no such distinction, 
however, and so in Section 4.4 we will use the opportunity provided by these 
models to develop a measure that comprehends all of the inefficiencies that the 
model can identify. 

As noted above, there is a distinction to be made between the technical and 
mix inefficiencies identified by the BCC and CCR models. The DEA literature 
(much of it focused on weak efficiency) does not make this distinction and we 
will follow the literature in its rather loose usage of "technical efficiency" to 
cover both types of inefficiency. When it is important to do so, we should 
refine this terminology by using "purely technical inefficiency" for 9* and r/* 
and distinguish this from the mix inefficiencies given in Definition 4.4. 

4.3.2 Translation Invariance of the Additive Model 

In many applications it may be necessary (or convenient) to be able to handle 
negative data in some of the inputs or outputs. For instance, in order to 
determine whether mutual insurance companies are more (or less) efficient than 
their stock-ownership counterparts, it was necessary to be able to go beyond 
the assumption of semipositive data (as defined at the start of Chapter 3) in 
order to handle losses as well as profits treated as output.^ This was dealt with 
by employing a property of {ADDo) known as "translation invariance" which 
we now develop from the following definition. 

Definition 4.5 (Translation Invariance) 
Given any problem, a DEA model is said to be translation invariant if translat­
ing the original input and/or output data values results in a new problem that 
has the same optimal solution for the envelopment form as the old one. 

First we examine the input-oriented BCC model. In Figure 4.5, DMU D has 
the BCC-efficiency PR/PD. This ratio is invariant even if we shift the output 
value by changing the origin from O to O'. Thus, the BCC model is translation 
invariant with respect to outputs (but not inputs). Similar reasoning shows that 
the output oriented BCC model is invariant under the translation of inputs (but 
not outputs). (See Problem 4.3.) 

Turning to the Additive model. Figure 4.6 shows that this model is transla­
tion invariant in both inputs and outputs^ since the efficiency evaluation does 
not depend on the origin of the coordinate system when this model is used. 
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Figure 4.5. Translation in the BCC Model 

O' 

Figure 4.6. Translation in the Additive Model 

We now develop this property of the Additive model in detail. 
Let us translate the data set (X, Y) by introducing arbitrary constants 

{ai \ i = 1 , . . . , m) and (/3^ : r = 1 , . . . , 5) to obtain new data 

x[j=Xij-{-ai (i = 1 , . . . , m : j = 1 , . . . , n) (4.46) 

yrj=yrj+Pr^ {r = l,...,s: j = l , . . . , n ) (4.47) 

To show that this model is invariant under this arbitrary translation we observe 
that the x values (4.35) become 

J2{x[j - ai)Xj + s. =Y, x'ijXj + s- -ai= x[^ ~ ai 
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SO that 
n 

J2x'.jXj + sr = x'.^ (i -= 1 , . . . ,m) 

3 = 1 

which are the same Xj, s~ that satisfy 

n 

y , '^ij^j ^~ ^2 ~ "^io' (^ ~ •'-5 • • • ) ^ j 

j=l 

Similarly, the same A ,̂ s'^ that satisfy 

n 

^T/rjAj - s + =yro- (r = 1,...,5) 

will also satify 
n 

^ 2/̂ A -̂ - s+ = 2/ro- (r = 1 , . . . , s) 
Notice that the convexity condition eA = 1 is a key factor in deriving the above 
relations. The above equalities show that if (A*, 5~*, s+*) is an optimal solution 
of the original problem, then it is also optimal for the translated problem and 
vice versa. Finally, we also have 

n n 

j=l j=l 
n n 

j=l j=l 

SO the value of the objective is also not affected and we therefore have the 
following theorem for the Additive model (4.34)-(4.38) from Ali and Seiford 
(1990).^ 

Theorem 4.6 (Ali and Seiford (1990)) The Additive model given by (4,34)-
(4'S8) is translation invariant. 

4.4 A SLACKS-BASED MEASURE OF EFFICIENCY (SBM) 

We now augment the Additive models by introducing a measure that makes 
its efficiency evaluation, as effected in the objective, invariant to the units of 
measure used for the different inputs and outputs. That is, we would like 
this summary measure to assume the form of a scalar that yields the same 
efficiency value when distances are measured in either kilometers or miles. More 
generally, we want this measure to be the same when xio and xij are replaced by 
f^iXio —• XiQj K{Xij ̂ ^^ Xij anci y^o ano. y-pj are repiaceo. Dy c-py-^Q ^̂^ yro^ ^ryrj ~~ yrj 
where the ki and ĉ  are arbitrary positive constants, i = = l , . . . , m ; r = l , . . . , s . 
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This property is known by names such as "dimension free"^ and "units 
invariant." In this section we introduce such a measure for Additive models in 
the form of a single scalar called "SBM," (Slacks-Based Measure) which was 
introduced by Tone (1997, 2001) and has the following important properties: 

1. (PI) The measure is invariant with respect to the unit of measurement of 
each input and output item. (Units invariant) 

2. (P2) The measure is monotone decreasing in each input and output slack. 
(Monotone) 

4A.1 Definition of SBM 

In order to estimate the efficiency of a DMU (cco, 2/0)5 we formulate the fol­
lowing fractional program in A, s~ and s'^. 

{SBM) min P - '/^^t^Vr^ (4-48) 

subject to Xo = XX + s~ 

A > 0, s" > 0, s+ > 0. 

In this model, we assume that X > O. If x̂ o = 0, then we delete the term 
s~/xio in the objective function. If yro < 0, then we replace it by a very small 
positive number so that the term s^/^ro plays a role of penalty. 

It is readily verified that the objective function value p satisfies (PI) because 
the numerator and denominator are measured in the same units for every item 
in the objective of (4.48). It is also readily verified that an increase in either 
s^ or 5^, all else held constant, will decrease this objective value and, indeed, 
do so in a strictly monotone manner. 

Furthermore, we have 
0 < p < 1. (4.49) 

To see that this relation holds we first observe that s^ < Xio for every i so that 
0 < s'^/xio < 1 (i = 1 , . . . ,m) with s^ jxio =• 1 only if the evidence shows that 
only a zero amount of this input was required. It follows that 

Em — / 

~ m ~ ' 

This same relation does not hold for outputs since an output shortfall rep­
resented by a nonzero slack can exceed the corresponding amount of output 
produced. In any case, however, we have 

0 < ^ r = l ^r /Vro 

~ s 

Thus these represent ratios of average input and output mix inefficiencies with 
the upper limit, p = 1, reached in (4.48) only if slacks are zero in all inputs and 
outputs. 
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4.4.2 Interpretation of SBM as a Product of Input and Output InefRciencies 

The formula for p in (4.48) can be transformed into 

^~\m^^ Xio ) [ s ^ , Vro J 

The ratio {xio — s~)/xio evaluates the relative reduction rate of input i and, 
therefore, the first term corresponds to the mean proportional reduction rate 
of inputs or input mix inefficiencies. Similarly, in the second term, the ratio 
{Vro + ^t)lyro evaluates the relative proportional expansion rate of output r 
and (1/5) YUVro + st)lyro is the mean proportional rate of output expansion. 
Its inverse, the second term, measures output mix inefficiency. Thus, SBM p 
can be interpreted as the ratio of mean input and output mix inefficiencies. 
Further, we have the theorem: 

Theorem 4.7 If DMU A dominates DMU B so that XA < XB CLTid y^ ^ VB^ 
then p\ > p*B' 

4.4.3 Solving SBM 

(SBM) as formulated in (4.48) can be transformed into the program below 
by introducing a positive scalar variable t. See Problem 3.1 at the end of the 
preceding chapter. 

^ m 

(SBMt) min T =: t V ts^/xio (4.50) 

1 ^ 
subject to 1 = t + - 7 ts't ly. 

'r=X 

Xo = XX + s 

A > 0, s~ > 0, s+ > 0, t > 0. 

Now let us define 
S~ =ts~,S~^ =^s+,and A = tX. 

Then (SBMt) becomes the following linear program in t, 5 ~ , 5"^, and A: 

^ m 

(LP) min T = t Y,^^/^io (4.51) 

subject to 1 zz ^ -f - ^ S'^ lyro 
'r^l 

tXo = XA + S~ 

ty, - FA - 5+ 

A > 0, 5 " > 0, 5+ > 0, ^ > 0. 
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Note that ^ > 0 by virtue of the first constraint. This means that the transfor­
mation is reversible. Thus let an optimal solution of {LP) be 

( r * , r , A * , 5 - * , 5 + * ) . 

We then have an optimal solution of {SBM) defined by, 

p* = r\ A* - A V r , S-* - 5 - 7 ^ , 5+* - 5 + 7 ^ . (4.52) 

From this optimal solution, we can decide whether a DMU is SBM-efficient 
as follows: 

Definition 4.6 (SBM-efficient) A DMU {Xo.Vo) '^^ SBM-efficient if and 
only if p"" — 1. 

This condition is equivalent to s~* = 0 and s"̂ * — 0, i.e., no input excess and 
no output shortfall in an optimal solution. 

For an SBM-inefficient DMU {Xo^Vo)^ we have the expression: 

X, = XA* + S-* 

y , = r A * - 5 + * . 

The DMU (xo^yo) can be improved and becomes efficient by deleting the input 
excesses and augmenting the output shortfalls. This is accomplished by the 
following formulae (SBM-projection): 

x^ ^Xo- s~* (4.53) 

^ 0 ^ 2 / 0 + 5+*, (4.54) 

which are the same as for the Additive model. See (4.44) and (4.45). 
Based on A*, we define the reference set for {xo^Vo) ^s-

Definition 4.7 (Reference set) The set of indices corresponding to positive 
X'jS is called the reference set for {Xo^y^). 

For multiple optimal solutions, the reference set is not unique. We can, however, 
choose any one for our purposes. 

Let Ro be the reference set designated by 

i ^ o - { j | A*>0} ( i G { l , . . . , n } ) . (4.55) 

Then using Ro^ we can also express (So,^^) by, 

e. = ^ x^\] (4.56) X Q 

jeRo 

So = E yj^h (4.57) 
jeRo 

This means that (2o,^o)) ^ point on the efficient frontier, is expressed as a 
positive combination of the members of the reference set, Ro, each member of 
which is also efficient. See Definition 4.2. 



ALTERNATIVE DEA MODELS 99 

4.4A SBM and the CCR Measure 

In its weak efficiency form, the CCR model can be formulated as follows: 

(CCR) min 9 

subject to 9xo = Xfi + 1 ~ (4.58) 

y^^Yfi-1+ (4.59) 

/x > 0, t " > 0, t+ > 0. 

Now let an optimal solution of {CCR) be (l9*,/x*,t~*,t+*). From (4.58), we 
can derive 

Let us define 

Xo = Xfi* +t-* + {i-e*)xo 
y„ = Y^l*-t+\ 

A = /n* 

s- = t-* + {1 - e*)xo 
s+=t+*. 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Then, (A, s ,5"^) is feasible for (SBM) and, by inserting the definitions in 
(4.63) and (4.64), its objective value can be expressed as: 

1 + i E : = 1 f^72/r.o 1 + J E : = 1 <^72/ ro 

Evidently, the last term is not greater than 6*. Thus, we have: 

Theorem 4.8 The optimal SBM p* is not greater than the optimal CCR ^*. 

This theorem reflects the fact that SBM accounts for all inefficiencies whereas 
6* accounts only for "purely technical" inefficiencies. Notice that the coefficient 
l / (m Xio) of the input excesses s^ in p plays a crucial role in validating Theorem 
4.8. 

Conversely, for an optimal solution (p*. A*, s~*, s+*) to SBM, let us trans­
form the constraints from (4.48) into 

exo - XX* + ((9 - l)Xo + S-* (4.66) 

2 / , - y A * - s + * . (4.67) 

Further, we add the constraint 

(6> - l)xo + S-* > 0. (4.68) 

Then, (<9, A*,t- -: (<9 - l)xo + s-*,t+ ==: s+*) is feasible for (CCR), 
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The relationship between CCR-efficiency and SBM-efficiency is given in the 
following theorem: 

Theorem 4.9 (Tone (1997)) A DMU {Xo^Vo) ^^ CCR-efficient if and only 
if it is SBM-efficient. 

Proof. Suppose that (Xo^Vo) ^̂  CCR-inefRcient. Then, we have either 0* < 1 
or {0'' = 1 and (t-*,t+*) ^ (0,0)). From (4.65), in both cases, we have p < 1 
for a feasible solution of {SBM). Therefore, {xo^Vo) is SBM-inefficient. 

On the other hand, suppose that (xo^Vo) is SBM-inefficient. Then, from 
Definition 4.6, (s-*,s+*) y^ (0,0). By (4.66) and (4.67), (<9,A*,t- = {9-
l)xo -f s-*,t+ = s+*) is feasible for (CCR), provided {0 - l)xo + s~* > 0. 
There are two cases: 
(Case 1) 9 = 1 and {t~ = s~*,t"^ = 5+*) 7̂  (0,0). In this case, an optimal 
solution for (CCR) is CCR-inefficient. 
(Case 2) ^ < 1. In this case, (cCo,t/o) is CCR-inefficient. 

Therefore, CCR-inefficiency is equivalent to SBM-inefficiency. Since the def­
initions of efficient and inefficient are mutually exclusive and collectively ex­
haustive, we have proved the theorem. • 

4A,5 The Dual Program of the SBM Model 

The dual program of the problem (LP) in (4.50) can be expressed as follows, 
with the dual variables ^ E R^ v E R^ and u ^ R^: 

(DP) 

subject to 

max £ 

^-hvxo -uy^ = 1 

-vX + uY <{) 

V > -[1/Xo] 
m 

n > J[l/yo], 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

where the notation [1/cCo] designates the row vector {1/xio,..., l/xmo)-
Using (4.70) we can eliminate ^ and we have an equivalent program: 

{DP') max uy^ - vxo (4.74) 

subject to -vX + uY <0 (4.75) 

V > -[1/xo] (4.76) 
m 

u > ^ — ; + - ^ ° [ i / , J . (4.77) 

The dual variables v G R^ and u ^ R^ can be interpreted as the "virtual" 
costs and prices of inputs and outputs, respectively. The dual program aims 
to find the optimal virtual costs and prices for the DMU (Xo^yo) so that the 
virtual profit uyj—vxj does not exceed zero for any DMU (including {Xo,yo))y 
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and maximizes the "virtual" profit uy^ — VXQ for the DMU (Xo^Vo) concerned. 
Apparently, the optimal profit is at best zero and hence ^ = 1 for the SBM 
efficient DMUs. Constraints (4.76) and (4.77) restrict the feasible v and u to 
the positive orthant. 

4.4.6 Oriented SBM Models 

The input (output)-oriented SBM model can be defined by neglecting the de­
nominator (numerator) of the objective function (4.48) of (SBM). Thus, the 
efficiency values p} and pQ can be obtained as follows: 

[Input-oriented SBM Model] 
^ m 

{SBM -I) p}= mm 1--J2 ^T l^io (4.78) 
' ^ ' ^ - ^ z = l 

subject to Xo = XX + s~ 

yo<y^ 
A > 0, s - > 0. 

[Output-oriented SBM Model] 

{SBM -O) ph= min ^ ^ , ^} + , (4.79) 

subject to Xo > X\ 

A > 0, s+ > 0. 

This leads to: 

Theorem 4.10 
p} > p * and ph>p\ (4.80) 

where p* is the optimal value for (4-4^)' 

The input-oriented SBM is substantially equivalent to what is called the 
"Russell input measure of technical efficiency. "^ See Section 4.5, below. 

4.4.7 A Weighted SBM Model 

We can assign weights to inputs and outputs corresponding to the relative 
importance of items as follows: 

with 
m s 

^ w r = i a n d ^ w + = 1. (4.82) 
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The weights should reflect the intentions of the decision-maker. If all outputs 
are in the same unit, e.g., dollars, a conventional scheme is that: 

w. (4.83) 

This weight selection reflects the importance of the output r being proportional 
to its contribution to the total magnitude. The input weights can be determined 
analogously. 

4.4,8 Numerical Example (SBM) 

We illustrate SBM using an example. Table 4.3 exhibits data for eight DMUs 
using two inputs (xi,X2) to produce a single output (y = 1), along with CCR, 
SBM scores, slacks and reference set. Although DMUs F and G have full 
CCR-score (̂ * = 1), they have slacks compared to C and this is reflected by 
drops in the SBM scores to p}^ = 0.9 and pQ = 0.83333. Also, the SBM scores 
of inefficient DMUs A, B and H dropped slightly from the CCR scores due 
to their slacks. Thus, the SBM measure reflects not only the weak efficiency 
values in 9* but also the other (slack) inefficiencies as well. 

Table 4.3. Data and Results of CCR and SBM 

DMU 
A 
B 
C 
D 
E 
F 
G 
H 

] 
Xi 

4 
7 
8 
4 
2 

10 
12 
10 

Data CCR 
X2 y 0* 

3 ] 
3 ] 
1 ] 
2 ] 
4 ] 
1 ] 
1 ] 

1.5 ] 

L 0.857 
L 0.632 
L 1 
L 1 
L 1 
L 1 
L 1 
L 0.75 

0.833 

0.619 
1 
1 
1 
0.9 
0.833 
0.733 

SBM 
Ref. 
D 
D 
C 
D 
E 
C 
C 
C 

^1 
0 
3 
0 
0 
0 
2 
4 
2 

— * 
1 
1 
0 
0 
0 
0 
0 
0.5 

5+* 
0 
0 
0 
0 
0 
0 
0 
0 

Mix 
Eff." 
0.972 
0.98 
1 
1 
1 
0.9 
0.833 
0.978 

": Mix Eff. = p*/e*. See Section 5.8.2 for detail. 

4.5 RUSSELL MEASURE MODELS 

We now introduce a model described as the "Russell Measure Model." Actually 
it was introduced and named by Fare and Lovell(1978).^^ Their formulation is 
difficult to compute, however, so we turn to a more recent development due to 
Pastor, Ruiz and Sirvent.-^^ This model is 

R{xo,yo) m m ' ^ / • (4.84) 
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subject to 
n 

n 

(PrVro ^ ^ ^ Vrj Aj , T = 1, . . . , 5 

0 < A,- Vj 

0 < 6>i < 1; 1 < 0^ Vi, r. 

Pastor ê  a/, refer to this as the "Enhanced Russell Graph Measure of Ef­
ficiency" but we shall refer to it as ERM (Enhanced Russell Measure). See 
Fare, Grosskopf and Lovell (1985)^^ for the meaning of "graph measure." Such 
measures are said to be "closed" so R^Xo^Vo) includes all inefficiencies that 
the model can identify. In this way we avoid limitations of the radial measures 
which cover only some of the input or output inefficiencies and hence measure 
only "weak efficiency." 

The "inclusive" (=closure) property is shared by SBM. In fact SBM and 
ERM are related as in the following theorem, 

Theorem 4.11 ERM as formulated in (4-^4) ^^^ SBM as formulated in (4-4^) 
are equivalent in that AJ values that are optimal for one are also optimal for 
the other. 

Proof : As inspection makes clear, a necessary condition for optimality of ERM 
is that the constraints in (4.84) must be satisfied as equalities. Hence we can 
replace those constraints with 

n 

Oi - ^XijXj /xio.i = l , . . . , m (4.85) 

n 

0 r — / ^ Vrj Aj / IJro 5 ^ — 1, • • . , 5. 

j = l 

Following Pastor et ah or Bardhan et a/., ^̂  we next set 

*^io *^i 
i = l,...,m (4.86) 

Vro + st ^ i + £^^ r = l,...,s. 
Vro Vr 

Substituting these values in (4.85) produces 

1 = 5 ^ ^ ; ^ ^ + ̂ , i = l , . . . ,m (4.87) 

1 = -^ + ̂ ^ , r = l , . . . , s 
Vro Vro 
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or 

^i( - X^ ^ij^j + ẑ 5 i == 1 , . . . , m (4.88) 
j=i 

Vro — / ^ Vrj^j ^r 5 ^ — i , . . . , S 

3 = 1 

which are the same as the constraints for SBM in (4.48). 
Turning to the additional conditions,0 <Oi<l and 1 < (/)̂  we again substi­

tute from (4.86) to obtain 0 < ŝ ^ < xio and 0 < 5̂ !". The condition 5^ < Xio 
is redundant since it is satisfied by the first set of inequahties in (4.84). Hence, 
we only have non-negativity for all slacks, the same as in (4.48). 

Now turning to the objective in (4.84) we once more substitute from (4.86) 
to obtain 

(4.89) 

which is the same as the objective for SBM. Using the relations in (4.86) we 
may therefore use SBM to solve ERM or vice versa. • 

4.6 SUMMARY OF THE BASIC DEA MODELS 

In Table 4.4, we summarize some important topics for consideration in choos­
ing between basic DEA models. In this table, 'Semi-p' (=semipositive) means 
nonnegative with at least one positive element in the data for each DMU, and 
'Free' permits negative, zero or positive data. Although we have developed 
some DEA models under the assumption of positive data set, this assumption 
can be relaxed as exhibited in the table. For example, in the BCC-I (-0) model, 
outputs (inputs) are free due to the translation invariance theorem. In the case 
of SBM, nonpositive outputs can be replaced by a very small positive number 
and nonpositive input terms can be neglected for consideration in the objective 
function. The 9* of the output oriented model (CCR-0) is the reciprocal of 
77*(> 1). 'Tech. or Mix' indicates whether the model measures 'technical effi­
ciency' or 'mix efficiency'. 'CRS' and 'VRS' mean constant and variable returns 
to scale, respectively. The returns to scale of ADD and SBM depends on the 
added convexity constraint eA = 1. 

Model selection is one of the problems to be considered in DEA up to, and 
including, choices of multiple models to test whether or not a result is dependent 
on the models (or methods) used.-̂ '* Although other models will be developed 
in succeeding chapters, we will mention here some of the considerations to be 
taken into account regarding model selection. 

1. The Shape of the Production Possibility Set. 
The CCR model is based on the assumption that constant returns to scale 
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Model 
Data 

Trans. 
In variance 
Units invarij 

0* 
Tech. or N 

Returns to ^ 

X 
Y 
X 
Y 

ance 

lix 
kale 

Table 4.4. 

CCR-I 
Semi-p 
Free 
No 
No 
Yes 
[0,1] 
Tech. 
CRS 

Summary of Model Characteristics 

CCR-0 
Semi-p 
Free 
No 
No 
Yes 
[0,1] 
Tech. 
CRS 

BCC-I 
Semi-p 
Free 
No 
Yes 
Yes 
(0,1] 
Tech. 
VRS 

BCC-0 
Free 
Semi-p 
Yes 
No 
Yes 
(0,1] 
Tech. 
VRS 

ADD 
Free 
Free 
Yes" 
Yes" 
No 
No 
Mix 
C(V)RS'' 

SBM 
Semi-p 
Free 
No 
No 
Yes 
[0,1] 
Mix 
C(V)RS 

^: The Additive model is translation invariant only when the convexity constraint is added. 
^: C(V)RS means Constant or Variable returns to scale according to whether or not the 
convexity constraint is included. 

prevails at the efficient frontiers, whereas the BCC and Additive models 
assume variable returns to scale frontiers, i.e., increasing, constant and de­
creasing returns to scale.^^ If preliminary surveys on the production func­
tions identify a preferable choice by, say, such methods as linear regression 
analysis, (e.g., a Cobb-Douglas type) or expert opinions, then we can choose 
a DEA model that fits the situation. However, we should bear in mind that 
conventional regression-based methods deal with single output and multiple 
input cases, while DEA models analyze multiple outputs and multiple inputs 
correspondences. 

2. Input or Output Oriented? 
One of the main purposes of a DEA study is to project the inefficient 
DMUs onto the production frontiers, e.g., the CCR-projection and the BCC-
projection, among others. There are three directions, one called input-
oriented that aims at reducing the input amounts by as much as possible 
while keeping at least the present output levels, and the other, called output-
oriented, maximizes output levels under at most the present input consump­
tions. There is a third choice, represented by the Additive and SBM models 
that deal with the input excesses and output shortfalls simultaneously in a 
way that jointly maximizes both. If achievement of efficiency, or failure to do 
so, is the only topic of interest, then these different models will all yield the 
same result insofar as technical and mix inefficiency is concerned. However, 
we need to note that the Additive and BCC models may give different esti­
mates when inefficiencies are present. Moreover, as we shall see in the next 
chapter, the CCR and BCC models differ in that the former evaluates scale 
as well as technical inefficiencies simultaneously whereas the latter evaluates 
the two in a fashion that identifies them separately. 
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3. Translation Invariance. 
As is seen from Table 4.4, we can classify the models according to whether 
or not they use the efficiency measure 6*. It is to be noted that 6* is 
measured in a manner that depends on the coordinate system of the data 
set. On the other hand, the ^*-free models, such as the Additive model, 
are essentially coordinate-free and translation invariant. They evaluate the 
efRciency of a DMU by the /i-metric distance from the efficient frontiers 
and are invariant with respect to the translation of the coordinate system. 
Although they supply information on the projection of the inefficient DMUs 
onto the production frontiers, they lack a one-dimensional efficiency measure 
like 9*. The SBM model developed in Section 4.4 is designed to overcome 
such deficiencies in both the CCR-type and Additive models. However, SBM 
as represented in (4.48) is not translation invariant. 

4. Number of Input and Output Items. 
Generally speaking, if the number of DMUs (n) is less than the combined 
number of inputs and outputs (m -f- s), a large portion of the DMUs will be 
identified as efficient and efficiency discrimination among DMUs is question­
able due to an inadequate number of degrees of freedom. See the opening 
discussion in Chapter 9. Hence, it is desirable that n exceed m-1-5 by several 
times. A rough rule of thumb in the envelopment model is to choose n {= 
the number of DMUs) equal to or greater than max{m x s,3 x (m + 5)}. 
The selection of input and output items is crucial for successful application 
of DEA. We therefore generally recommend a process of selecting a small 
set of input and output items at the beginning and gradually enlarging the 
set to observe the effects of the added items. In addition, other methods, 
e.g., the assurance region method, the cone ratio model and others (that 
will be presented in the succeeding chapters) lend themselves to a sharper 
discrimination among DMUs. 

5. Try Different Models. 
If we cannot identify the characteristics of the production frontiers by pre­
liminary surveys, it may be risky to rely on only one particular model. If 
the application has important consequences it is wise to try different models 
and methods, compare results and utilize expert knowledge of the problem, 
and possibly try other devices, too, before arriving at a definitive conclusion. 
See the discussion in Chapter 9 dealing with the use of statistical regressions 
and DEA to cross check each other. 

4.7 SUMMARY OF CHAPTER 4 

In this chapter, we introduced several DEA models. 

1. The CCR and BCC models which are radial measures of efficiency that are 
either input oriented or output oriented. 

2. The Additive models which identify input excesses and output shortfalls 
simultaneously. 
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3. The slacks-based measure of efficiency (SBM) which uses the Additive model 
and provides a scalar measure ranging from 0 to 1 that encompasses all of 
the inefficiencies that the model can identify. 

4. We investigated the problem of model choice. Chapters 6, 7 and 9 will serve 
as a complement in treating this subject. 

5. The translation invariance of the Additive model was introduced. This prop­
erty of the Additive model (with convexity constraint) was identified by 
Ah and Seiford (1990) and was extended by Pastor (1996).^^ See, however, 
Thrall (1996)^^ for limitations involved in relying on this invariance property. 

4.8 NOTES AND SELECTED BIBLIOGRAPHY 

Translation invariance was first shown by Ali and Seiford (1990) and extended 
by Pastor et al (1999). The SBM model was introduced by Tone (1997, 2001). 

4.9 APPENDIX: FREE DISPOSAL HULL (FDH) MODELS 

Another model which has received a considerable amount of research attention 
is the FDH (Free Disposal Hull) model as first formulated by Deprins, Simar and 
Tulkens (1984)^^ and developed and extended by Tulkens and his associates at 
the University of Lou vain in Belgium. ̂ ^ The basic motivation is to ensure that 
efficiency evaluations are effected from only actually observed performances. 
Points like Q in Figure 3.2, for example, are not allowed because they are 
derived and not actually observed performances. Hence they are hypothetical. 

Figure 4.7 provides an example of what is referred to as the Free Disposal 
Hull for five DMUs using two inputs in amounts Xi and X2 to produce a single 
output in amount y = I. 

i ^^ 1 

• 
A 

R A 

m_ . P 

.' Q' 

^ 

y^ 
^ « X , 

• -

Figure 4.7. FDH Representation 

The boundary of the set and its connection represents the "hull" defined as 
the "smallest set" that encloses all of the production possibilities that can be 
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generated from the observations. Formally, 

PFDH = {{x,y)\x > Xj,y < y^, x, t/ > 0, j = l , . . . , n } 

where Xj{>_ 0),y^(> 0) are actually observed performances for j — l , . . . , n 
DMUs. In words, a point is a member of the production possibility set if all 
of its input coordinates are at least as large as their corresponds in the vector 
of observed values Xj for any j — 1 , . . . ,n and if their output coordinates are 
no greater than their corresponds in the vectors y^ of observed values for this 
same j . 

This gives rise to the staircase (or step) function which we have portrayed 
by the solid line in the simple two-input one-output example of Figure 4.7. No 
point below this solid line has the property prescribed for PFDH- Moreover 
this boundary generates the smallest set with these properties. For instance, 
connecting points B and C in the manner of Figure 3.2 in Chapter 3 would 
generate the boundary of a bigger production possibility set. Tulkens and his 
associates use an algorithm that eliminates all dominated points as candidates 
for use in generating the FDH. This algorithm proceeds in pairwise comparison 
fashion as follows: Let DMU^ with coordinate x^, y^ be a candidate. If for 
any DMUj we have Xj < Xk or y^ > y^ with either Xj ^ Xk or yj 7̂  2/̂ ^ 
then DMUA; is dominated (strictly) and removed from candidacy. Actually 
this can be accomplished more simply by using the following mixed integer 
programming formulation, 

min e (4.90) 

subject to 9xo - XX > 0 

2/0 - ^ A < 0 

eX = 1, A,- G {0, 1} 

where X and Y contain the given input and output matrices and Aj G {0, 1} 
means that the components of A are constrained to be bivalent. That is, they 
must all have values of zero or unity so that together with the condition eA = 1 
one and only one of the performances actually observed can be chosen. This 
approach was first suggested in Bowlin et a/. (1984)^^ where it was coupled with 
an additive model to ensure that the "most dominant" of the non-dominated 
DMUs was chosen for making the indicated efficiency evaluation. In the case of 
Figure 4.7, the designation would thus have been A rather than B or C in order 
to maximize the sum of the slacks s^ and 5^ when evaluating P. However, 
this raises an issue because the results may depend on the units of measure em­
ployed. One way to avoid this diflftculty is to use the radial measure represented 
by min^ = 6*. This course, as elected by Tulkens and associates, would yield 
the point Q' shown in Figure 4.7. This, however, leaves the slack in going from 
Q' to B unattended, which brings into play the assumption of "Free Disposal" 
that is incorporated in the name "Free Disposal Hull." As noted earlier this 
means that nonzero slacks are ignored or, equivalently, weak efficiency suffices 
because the slacks do not appear in the objective — or, equivalently, they are 
present in the objective with zero coefficients assigned to them. 
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One way to resolve all of these issues is to return to our slacks-based mea­
sure (SBM) as given in (4.48) or its linear programming (LP) equivalent in 
(4.51) with the conditions Xj G {0, 1} and eA = 1 adjoined. This retains the 
advantage of the additive model which (a) selects an "actually observed perfor­
mance" and (b) provides a measure that incorporates all of the thus designated 
inefficiencies. Finally, it provides a measure which is units invariant as well. 
See R.M. Thrall (1999)^^ for further discussions of FDH and its limitations. 

4.10 RELATED DEA-SOLVER MODELS FOR CHAPTER 4 

BCC-I (The input-oriented Banker-Charnes-Cooper model). 

This code solves the BCC model expressed by (4.2)-(4.6). The data format 
is the same as for the CCR model. The "Weight" sheet includes the optimal 
value of the multiplier UQ corresponding to the constraint J2^=zi ^j — 1? ^^ 
well as V* and u*. In addition to the results which are similar to the CCR 
case, this model finds the returns-to-scale characteristics of DMUs in the 
"RTS" sheet. For inefficient DMUs, we identify returns to scale with the 
projected point on the efficient frontier. BCC-I uses the projection formula 
(4.17)-(4.18). 

BCC-O (The output-oriented BCC model). 

This code solves the output-oriented BCC model expressed in (4.22)-(4.26). 
The optimal expansion rate rj'^ is displayed in "Score" by its inverse in order 
to facilitate comparisons with the input-oriented case. Usually, the efficiency 
score differs in both cases for inefficient DMUs. This model also finds the 
returns-to-scale characteristics of DMUs in the "RTS" sheet. For inefficient 
DMUs, we identify returns to scale with the projected point on the efficient 
frontier. BCC-O uses the BCC version of the formula (3.74)-(3.15). The 
returns-to-scale characteristics of inefficient DMUs may also change from 
the input-oriented case. 

SBM-C(V or GRS) (The slacks-based measure of efficiency under the con­
stant (variable or general) returns-to-scale assumption.) 

This code solves the SBM model. The format of the input data and the 
output results is the same as for the CCR case. In the GRS (general returns-
to-scale) case, L (the lower bound) and U (the upper bound) of the sum of 
the intensity vector A must be supplied through keyboard. The defaults are 
L =^ 0.8 and U = 1.2. 

SBM-I-C(V or GRS) (The input-oriented slacks-based measure of efficiency 
under the constant (variable or general) returns-to-scale assumption). 

This code solves the SBM model in input-orientation. Therefore, output 
slacks (shortfalls) are not accounted for in this efficiency measure. 

S B M - 0 - C ( V or GRS) (The output-oriented SBM model under constant 
(variable or general) returns-to-scale assumption). 
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This is the output-oriented version of the SBM model, which puts emphasis 
on the output shortfalls. Therefore, input slacks (excesses) are not accounted 
for in this efficiency measure. 

FDH (The free disposal hull model). 

This code solves the FDH model introduced in Section 4.8 and produces 
the worksheets "Score," "Projection," "Graphl" and "Graph2." The data 
format is the same as for the CCR model. 

4.11 PROBLEM SUPPLEMENT FOR CHAPTER 4 

P r o b l e m 4.1 

It is suggested on occasion that the weak (or Farrell) efficiency value, ^*, be 
used to rank DMU performances as determined from CCR or BCC models. 
Assignment: Discuss possible shortcomings in this approach. 

Suggested Response : There are two main shortcomings that 0* possesses for the 
proposed use. First, the value of 6* is not a complete measure and, instead, the 
nonzero slacks may far outweigh the value of (1 — ^*). Second, the 6* values will 
generally be determined relative to different reference groups. Note, therefore, 
that a value of 6* =0 .9 for DMU A means that its purely technical efficiency 
is 90% of the efficiency generated by members of its (efficient) reference group. 
Similarly a value of 9* = 0 . 8 for DMU B refers to its performance relative to 
a different reference group. This does not imply that DMU B is less efficient 
than DMU A, 

Ranking can be useful, of course, so when this is wanted recourse should 
be had to an explicitly stated principle of ranking. This was done by the 
Texas Public Utility Commission, for example, which is required by law to 
conduct "efficiency audits" of the 75 electric cooperatives which are subject 
to its jurisdiction in Texas. See Dennis Lee Thomas "Auditing the Efficiency 
of Regulated Companies through the Use of Data Envelopment Analysis: An 
Application to Electric Cooperatives," Ph.D. Thesis, Austin, TX: University of 
Texas at Austin, Graduate School of Business, 1985.^^ As discussed in Thomas 
(subsequently Chairman of the Texas PUC), the ranking principle was based 
on dollarizing the inefficiencies. This included assigning dollar values to the 
slacks as well as to the purely technical inefficiencies. For instance, line losses 
in KWH were multiplied by the revenue charges at prices that could other­
wise be earned from sales of delivered power. Fuel excesses, however, were 
costed at the purchase price per unit. Thomas then also remarks that the ref­
erence groups designated by DEA were used by PUC auditors to help in their 
evaluation by supplying comparison DMUs for the cooperative being audited. 
See also A. Charnes, W.W. Cooper, D. Divine, T.W. Ruefli and D. Thomas 
"Comparisons of DEA and Existing Ratio and Regression Systems for Effecting 
Efficiency Evaluations of Regulated Electric Cooperatives in Texas," Research 
in Government and Nonprofit Accounting 5, 1989, pp. 187-210. 
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Problem 4.2 
Show that the CCR model is not translation invariant. 
Suggested Answer : Let us examine the CCR model via a simple one input 
and one output case, as depicted in Figure 4.8. The efficient frontier is the 
line connecting the origin O and the point B. The CCR-efficiency of A is 
evaluated by PQ/PA, If we translate the output value by a given amount, 
say 2, in the manner shown in Figure 4.8, the origin will move to O' and 
the efficient frontier will shift to the dotted line extending beyond B from O'. 
Thus, the CCR-efficiency of A is evaluated, under the new coordinate system, 
by PR/PA, which differs from the old value PQ/PA. A similar observation of 
the translation of the input item shows that the CCR model is not invariant for 
translation of both input and output. From this we conclude that the condition 
Y^^=i ^j — 1 pl^ys ci crucial role which is exhibited in limited fashion in the 
BCC model and more generally in Additive models. 

Figure 4.8. Translation in the CCR Model 

Problem 4.3 
As noted in the text, the critical condition for translation invariance is eA == 
1. This suggests that parts of the BCC model may be translation invariant. 
Therefore, 

Assignment : Prove that the input-oriented (output-oriented) BCC model is 
translation invariant with respect to the coordinates of outputs (inputs). 

Answer : The input-oriented BCC model is: 

min 

subject to 
OB 

OBXO — XX 

YX-s-^ = 

eX = 1 

A > 0, s~ 

s- = 0 

(4.91) 

> 0 , > 0. 
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If we translate the output data Y by some constants {Pr • ̂  = l)---?^) to 
obtain 

yrj=yrj+Pr, (r = 1 , . . . , s I j - 1 , . . . , n) (4.92) 

then (4.91) becomes, in terms of the components of Y', 

n n 

Y^iVrj - Pr)Xj - s t = Y l y'rj^j - Pr ' S^ = vL ' Pr. ( r - 1, . . . , s) (4.93) 
j=l j=l 

SO subtracting /?^ from both sides gives 

n 

Y,yrj>^j-st=yro. (r- l , . . . ,5) (4.94) 
3 = 1 

which is the same as the original expression for this output constraint. Notice 
that the convexity condition eA = 1 is used to derive the above relation. Notice 
also that this result extends to inputs only in the special case of ^^ = 1. 

It should now be readily apparent that if (^^, A*,s~*,s"^*) is an optimal 
solution of the original BCC model, then it is also optimal for the translated 
problem. 

By the same reasoning used for the input-oriented case, we conclude that the 
output-oriented BCC model is translation invariant with respect to the input 
data X but not to the output data. 

Comment and References : The property of translation invariance for Additive 
models was first demonstrated in Ali and Seiford (1990), as noted in the text. It 
has been carried further in J.T Pastor (1996).^^ See also R.M. Thrall (1996)^^ 
who shows that this property does not carry over to the dual of Additive models. 

Problem 4.4 

Statement: Consider the following version of an Additive model 

max T.s- + J2st (4.95) 
n 

subject to 2_] XijXj -{- s'l —Xio^ i = 1 , . . . , m 
3 = 1 

n 

/ J Vrj'^j ~~ 5^ = 2/ro) ^ — 1, . . . , 5 

3 = 1 

where the variables are also constrained to be nonnegative and the symbol " ^ " 
means that the data are stated in natural logarithmic units. (Unlike {ADDo), 
as given in (4.34)-(4.38), we have omitted the condition eA = 1 because this 
restricts results to the case of constant returns to scale in the models we are 
now considering. 



ALTERNATIVE DEA MODELS 113 

Assignment : Part I: Use anti-logs (base e) to derive yet another DEA model 
called the "multiplicative model," and relate the resulting formulation to the 
Cobb-Douglas forms of production frontiers that have played prominent roles 
in many econometric and statistical studies. 
Part II: Relate the conditions for full (100%) efficiency to Definition 5.1 for the 
Additive model. 

Suggested Response:: Part I: Let an optimal solution be represented by A ,̂ s^*, 5+*. 
Then, taking anti-logs of (4.95) we obtain 

n n 

^io = n ^^j^'^* " ^i n ^̂ î ' ^ = 1. • • • . ^ (4-96) 

= t[yrje-^* =Klly'J,r = l,..,,^ 
j = l 3 = 1 

where a* = e^i , b* = e~^^ . This shows that each Xio and yro is to be 
considered as having been generated by Cobb-Douglas (=log-linear) processes 
with estimated parameters indicated by the starred values of the variables. 

Part II: To relate these results to ratio forms we proceed in a manner anal­
ogous to what was done for (4.7)-(4.10) and turn to the dual (multipher) form 
of (4.95), 

min ^ ViXio - ^ UrVro (4.97) 
i=l r=l 
m s 

subject to 2_\ ^i^ij ~ y j '^f^y^j — ^' J — 1? • • • 5 ^ 
i= l r=l 

Vi >1^ i = 1 , . . . , m 

Ur > 1^ r =: 1, . . . , 5. 

This transformation to logarithm values gives a result that is the same as in 
the ordinary Additive model. Hence, no new software is required to solve this 
multiplicative model. To put this into an easily recognized efficiency evaluation 
form we apply anti-logs to (4.97). We change the objective in (4.97) and reverse 
the constraints to obtain: 

m a x ^ UrVro - ^ ViXio 
r=l i=l 

s m 

s u b j e c t t o y^'^rVrj — 2_\'^i^ij ^ 0 ? J — Ij • 
r = l i= l 

^i ^ 1) i = 1, . . . , m 

Ur>l^ r = 1, . . . , 5 . 
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We then obtain: 
s I m 

max n ^ ^ - V n ^ ^ o (4-98) 

n s u b j e c t t o n ^ " i / n ^ ^ i ^ ^ ' i - 1 , . . . : 

Vi^Ur > l ,Vi, r. 

To obtain conditions for efficiency we apply antilogs to (4.95) and use the 
constraints in (4.97) to obtain 

TTS s+ l l r = l l l j = l yrj / Vro 

max -Lb:̂ ^̂  ^ L. > i. (4.99) 

=̂1̂  ' nr=in;=i47^io 
The lower bound represented by the unity value on the right is obtainable 
if and only if all slacks are zero. Thus, the conditions for efficiency of the 
multiplicative model are the same as for the Additive model where the latter 
has been stated in logarithmic units. See Definition 5.1. We might also note 
that the expression on the left in (4.99) is simpler and easier to interpret and 
the computation via (4.95) is straightforward with the Xij and yrj stated in 
logarithmic units. 

In conclusion we might note that (4.99) is not units invariant unless YJ]=I ^^ — 
1. This "constant-returns-to-scale condition" can, however, be imposed on 
(4.95) if desired. See also A. Charnes, W.W. Cooper, L.M. Seiford and J. Stutz 
"Invariant Multiplicative Efficiency and Piecewise Cobb-Douglas Envelopments" 
Operations Research Letters 2, 1983, pp. 101-103. 
Comments : The class of multiplicative models has not seen much used in DEA 
applications. It does have potential for uses in extending returns-to-scale treat­
ments to situations that are not restricted to concave cap functions like those 
which are assumed to hold in the next chapter. See R.D. Banker and A. Maindi-
ratta "Piecewise Loglinear Estimation of Efficient Production Surfaces" Man­
agement Science 32, 1986, pp.126-135. Its properties suggest possible uses not 
only in its own right but also in combination with other models and, as will be 
seen in the next chapter, it can be used to obtain scale elasticities that are not 
obtainable with other DEA models. 

Problem 4.5 

Work out the dual version of the weighted SBM model in Section 4.4.8 and 
interpret the results. 

Suggested Response: 

max uy^ - vXo (4.100) 

subject to -vX -\-uY <0 (4.101) 
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^i^io > —'^T (i = 1 , . . . , m) (4.102) 

UrVro > ' ^ r • (^ = 1) • • • ̂  ^) (4.103) 

Thus, each ViXio is bounded below by a value proportional to 1/m times the 
selected weight w^' for input and the value of unity increment for the y^ and 
decrement for the Xo combined in the numerator on 5, the number of outputs 
in the denominator. 

Problem 4.6 

Assignment: Suppose the objective for ERM in (4.84) is changed from its frac­
tional form to the following 

max SLiA _ S i i i . (4.104) 

Using the relations in (4.86) transform this objective to the objective for the 
corresponding Additive model and discuss the properties of the two measures. 

Suggested Response: Transforming (4.104) in the suggested manner produces 
the following objective for the corresponding Additive model. 

E : = I ( I + 6 ^Ui-S:) ^st^^.^ ^^^^^, 
maxz = ^ ^ ^ = > - ^ + > - ^ . (4.105) 

2 = 1 

The ERM constraints are similarly transformed to the constraints of an Ad­
ditive model as described in the proof of Theorem 4.15. 

Discussion: The objective in (4.104) jointly maximizes the "inefficiencies" mea­
sured by the (f)r and minimizes the "efficiencies" measured by the 9i. This is 
analogous to the joint minimization represented by the objective in (4.84) for 
ERM but its z* values, while non-negative, may exceed unity. The objective 
stated on the right in (4.105) jointly maximizes the "inefficiencies" in both the 
^tIVro and s^ /xio. This is analogous to the joint maximization of both of 
these measures of inefficiency in SBM except that, again, its value may exceed 
unity. 
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