
3 THE CCR MODEL AND 
PRODUCTION CORRESPONDENCE 

3.1 INTRODUCTION 

In this chapter, we relax the positive data set assumption. We shall instead 
assume the data are semipositive. That is, we assume that some (but not all) 
inputs and outputs are positive. This will allow us to deal with applications 
which involve zero data in inputs and/or outputs. The production possibility 
set composed of these input and output data (X, Y) will also be introduced. 
The dual problem of the CCR model will then be constructed and it will be 
shown that the dual problem evaluates efficiency based on a linear programming 
problem applied to the data set (X, y ) . The CCR-efficiency will be redefined, 
taking into account all input excesses and output shortfalls. 

The observations that form the production possibility set are very funda­
mental in that they make it possible to assess the CCR model from a broader 
point of view and to extend this model to other models that will be introduced 
in succeeding chapters. 

One version of a CCR model aims to minimize inputs while satisfying at 
least the given output levels. This is called the input-oriented model. There 
is another type of model called the output-oriented model that attempts to 
maximize outputs without requiring more of any of the observed input values. 
In the last section, the latter will be introduced along with a combination of 
the two models. 

41 
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Computational aspects of the CCR model are also covered in this chap­
ter. The computer code DEA-Solver accompanying this book (as mentioned in 
Problem 1.1 of Chapter 1) will be utilized on some of the problems we provide. 

3.2 PRODUCTION POSSIBILITY SET 

We have been dealing with the pairs of positive input and output vectors 
(xj^yj) {j — l , . . . , n ) of n DMUs. In this chapter, the positive data as­
sumption is relaxed. All data are assumed to be nonnegative but at least one 
component of every input and output vector is positive. We refer to this as 
semipositive with a mathematical characterization given by Xj > 0^ Xj ^ 0 and 
Vj ^ O5 Vj ¥" 0 foi" some j == 1 , . . . , n. Therefore, each DMU is supposed to have 
at least one positive value in both input and output. We will call a pair of such 
semipositive input x £ K^ and output y e R^ an activity and express them by 
the notation (x^y). The components of each such vector pair can be regarded 
as a semipositive orthant point in (m + s) dimensional linear vector space in 
which the superscript m and s specify the number of dimensions required to 
express inputs and outputs, respectively. The set of feasible activities is called 
the production possibility set and is denoted by P. We postulate the following 

Properties of P (the Production Possibility Set) 

(Al ) The observed activities {xj^yj) (j = 1 , . . . ,n) belong to P. 

(A2) If an activity (x, y) belongs to P , then the activity (tec, ty) belongs to P 
for any positive scalar t. We call this property the constant returns-to-scale 
assumption. 

(A3) For an activity {x^y) in P , any semipositive activity {x^y) with x > cc 
and y <y IS included in P . That is, any activity with input no less than x 
in any component and with output no greater than y in any component is 
feasible. 

(A4) Any semipositive linear combination of activities in P belongs to P} 

Arranging the data sets in matrices X — (xj) and Y = iVj)^ we can define 
the production possibility set P satisfying (Al) through (A4) by 

P = {{x,y) I X > XX, y <YX, A > 0}, (3.1) 

where A is a semipositive vector in R^. 
Figure 3.1 shows a typical production possibility set in two dimensions for 

the CCR model in the single input and single output case, so that m = 1 and 
5 = 1, respectively. In this example the possibility set is determined by B and 
the ray from the origin through B is the efficient frontier. 
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Figure 3.1. Production Possibility Set 

3.3 THE CCR MODEL AND DUAL PROBLEM 

Based on the matrix (X, F) , the CCR model was formulated in the preceding 
chapter as an LP problem with row vector v for input multipliers and row 
vector u as output multipliers. These multipliers are treated as variables in the 
following LP problem ([Multiplier form]): 

Po) max 

subject to 

^2/o 

VXo = 1 

-vX + uY <0 

v>0, u>0. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

This is the same as (2.7)-(2.11), (LPo) in the preceding chapter, which is now 
expressed in vector-matrix notation. 

The dual problem^ of {LPo) is expressed with a real variable 9 and the 
transpose, T, of a nonnegative vector A = (Ai , . . . , An)^ of variables as follows 
([Envelopment form]): 

/Po) min 
9,X 

subject to 

e 
9xo - XX>0 

YX>yo 

A > 0. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Correspondences between the primal {LPo) and the dual (DLPo) constraints 
and variables are displayed in Table 3.L 

(DLPo) has a feasible solution 0 = 1^ Ao = 1, Xj = 0 {j j^ o). Hence the 
optimal 6, denoted by 0*, is not greater than 1. On the other hand, due to 



44 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS AND ITS USES 

Table 3.1. Primal and Dual Correspondences 

Multiplier form Envelopment form 
Constraint Variable 

(LPo) {DLPo) 

Envelopment form Multiplier form 
Constraint Variable 

{DLPo) {LPo) 

VXo = 1 
-vX -huY <0 A > 0 

Oxo -X\>0 

y^>yo 
v>0 
u>0 

the nonzero (i.e., semipositive) assumption for the data, the constraint (3.8) 
forces A to be nonzero because y^ > 0 and y^ 7̂  0. Hence, from (3.7), 0 must 
be greater than zero. Put t ing this all together, we have 0 < ^* < 1. Now 
we observe the relation between the production possibility set P and {DLPo). 
The constraints of {DLPQ) require the activity {Oxo, 2/0) to belong to P , while 
the objective seeks the minimum 6 tha t reduces the input vector Xo radially 
to 6X0 while remaining in P. In {DLPo)y we are looking for an activity in P 
tha t guarantees at least the output level y^ of DMUo in all components while 
reducing the input vector Xo proportionally (radially) to a value as small as 
possible. Under the assumptions of the preceding section, it can be said tha t 
{XX, YX) outperforms {9Xo, yo) when ^* < 1. With regard to this property, 
we define the input excesses s~" G R^ and the output shortfalls 5+ G R^ and 
identify them as "slack" vectors by: 

= Oxo - XX, s^ =YX-y (3.10) 

with s~ > 0, s+ > 0 for any feasible solution {6, X) of {DLPo). 
To discover the possible input excesses and output shortfalls, we solve the 

following two-phase LP problem. 

P h a s e I 
We solve {DLPo). Let the optimal objective value be 6*. By the duality 
theorem of linear programming,^ 0* is equal to the optimal objective value 
of {LPo) and is the OCR-efficiency value, also called "Farrell Efficiency," after 
M.J. Farrell (1957). See below. This value of 9* is incorporated in the following 
Phase II extension of {DLPo). 

P h a s e II 
Using our knowledge of 0*, we solve the following LP using (A, s~, s+) as 
variables: 

max 
A,s-,s+ 

subject to 

to — es 4- es^ 

s- ^ O'^Xo - XX 

s^ = YX- y. 

(3.11) 

(3.12) 

(3.13) 



CCR MODEL AND PRODUCTION CORRESPONDENCE 45 

A > 0, s~ > 0, s+ > 0, 

where e = ( 1 , . . . , 1) (a vector of ones) so that es~ = ZlHi ^7 ^^^ ^^^ — 

The objective of Phase II is to find a solution that maximizes the sum of 
input excesses and output shortfalls while keeping 6 = 6*. 

We should note that we could replace the objective term in (3.11) with any 
weighted sum of input excesses and output shortfalls such as: 

00 = WxS~ + WyS~^, (3.14) 

where the weights Wx and Wy are positive row vectors. The modified objective 
function may result in a diflPerent optimal solution for Phase II. However, we can 
have the optimal uj* > 0 in (3.11) if and only if a nonzero value is also obtained 
when the objective in (3.11) is replaced with (3.14). Thus the objective in 
(3.11) will identify some nonzero slacks with inefficiency if and only if some 
nonzero (possibly different) slacks are identified with inefficiency in (3.14). 

Definition 3.1 (Max-slack Solution, Zero-slack Activity) 
An optimal solution (A*, s~*, s"̂ *) o/Phase II is called the max-slack solution. 
/ / the max-slack solution satisfies s~* = 0 and s+* = 0, then it is called 
zero-slack. 

Definition 3.2 (CCR-Efficiency, Radial Efficiency, Technical Efficiency) 
If an optimal solution (^*, A*, s~*, s"*"*) of the two LPs above satisfies 6* = 1 
and is zero-slack (̂ 5~* = 0, s"̂ * = 0), then the DMUo is called CCR- effi­
cient. Otherwise, the DMUo is called CCR-inefficient^ because 

(i) <9* = 1 
(n) All slacks are zero 

must both be satisfied if full efficiency is to be attained. 

The first of these two conditions is referred to as "radial efficiency." It is also 
referred to as "technical efficiency" because a value of ^* < 1 means that all 
inputs can be simultaneously reduced without altering the mix (^proportions) 
in which they are utilized. Because (1 — ̂ *) is the maximal proportionate reduc­
tion allowed by the production possibility set, any further reductions associated 
with nonzero slacks will necessarily change the input proportions. Hence the in­
efficiencies associated with any nonzero slack identified in the above two-phase 
procedure are referred to as "mix ineflaciencies." Other names are also used 
to characterize these two sources of inefficiency. For instance, the term "weak 
efficiency" is sometime used when attention is restricted to (i) in Definition 
3.2. The conditions (i) and (ii) taken together describe what is also called 
"Pareto-Koopmans" or "strong" efficiency, which can be verbalized as follows, 

Definition 3.3 (Pareto-Koopmans Efficiency) 
A DMU is fully efficient if and only if it is not possible to improve any input 
or output without worsening some other input or output. 
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This last definition recognizes the contributions of the economists Vilfredo 
Pareto and Tjalhng Koopmans. Implement able form was subsequently given to 
it by M.J. Farrell, another economist, who showed how to apply these concepts 
to observed data. However, Farrell was only able to carry his developments to 
a point which satisfied condition {i) but not condition (ii) in Definition 3.2. 
Hence he did not fully satisfy the conditions for Pareto-Koopmans efficiency 
but stopped short, instead, with what we just referred to as "weak efficiency" 
(also called "Farrell efficiency") because nonzero slack, when present in any 
input or output, can be used to effect additional improvements without wors­
ening any other input or output. Farrell, we might note, was aware of this 
shortcoming in his approach which he tried to treat by introducing new (unob­
served) "points at infinity" but was unable to give his concept implementable 
form.^ In any case, this was all accomplished by Charnes, Cooper and Rhodes 
in a mathematical formulation that led to the two-phase procedure described 
above. Hence we also refer to this as "CCR-efficiency" when this procedure is 
utiUzed on empirical data to fulfill both (i) and {ii) in Definition 3.2. 

We have already given a definition of CCR-efficiency in Chapter 2. For 
the data set (X, Y) under the assumption of semipositivity, we can also define 
CCR- efficiency by Definition 2.1 in that chapter. We now prove that the CCR-
efficiency above, gives the same efficiency characterization as is obtained from 
Definition 2.1 in Chapter 2. This is formalized by: 

Theorem 3.1 The CCR-efficiency given in Definition 3.2 is equivalent to that 
given by Definition 2.1. 

Proof First, notice that the vectors v and u of {LPo) are dual multipliers 
corresponding to the constraints (3.7) and (3.8) of {DLPQ), respectively. See 
Table 3.1. Now the following "complementary conditions"^ hold between any 
optimal solutions (?;*, ix*) of (LPo) and (A*, s~*, ŝ "*) of {DLPQ). 

^ * s - * = 0 and ix*5+* = 0. (3.15) 

Known as the "complementary slackness" condition, this means that if any 
component of t;* or n* is positive then the corresponding component of s~* 
or s"̂ * must be zero, and conversely, with the possibility also allowed in which 
both components may be zero simultaneously. 

Now we demonstrate that Definition 3.2 implies Definition 2.1 
(i) If e"" < 1, then DMU^ is CCR-inefficient by Definition 2.1, since {LPo) 

and {DLPo) have the same optimal objective value 0*. 
{a) If ^* = 1 and is not zero-slack (s~* ̂  0 and/or s+* / 0), then, by the 

complementary conditions above, the elements oi v* or ix* corresponding to 
the positive slacks must be zero. Thus, DMUo is CCR- inefficient by Definition 
2.1. 

{Hi) Lastly if 0* = 1 and zero-slack, then, by the "strong theorem of 
complementarity,"^ {LPQ) is assured of a positive optimal solution {v*,u*) 
and hence DMUo is CCR-efficient by Definition 2.1. 

The reverse is also true by the complementary relation and the strong com­
plementarity theorem between (v*,u*) and (5~*,s+*). D 
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3.4 THE REFERENCE SET AND IMPROVEMENT IN EFFICIENCY 

Definition 3.4 (Reference Set) 
For an inefficient DMUo, we define its reference set Eo, based on the max-slack 
solution as obtained in phases one and two —see (3.11)— by 

J5o = { j | A* > 0 } ( i € { ! , . . . , n } ) . (3.16) 

An optimal solution can be expressed as 

X Q (3.17) 
jeEo 

.+* 
jeEo 

where j G Eo means the index j is included in the set EQ. This can be inter­
preted as follows, 

Xo > 0*Xo — S~* = 22 ^j^'j 
jeEo 

which means 

Xo > technical — mix inefficiency 

= a positive combination of observed input values. (3.18) 

yo<yo + s^^= Y^ y^\) 
jeEo 

Vo ^ observed outputs -f- shortfalls 

— a positive combination of observed output values. (3.19) 

These relations suggest that the efficiency of (cCo, Vo) foi" DMUo can be 
improved if the input values are reduced radially by the ratio 0* and the input 
excesses recorded in s~* are eliminated. Similarly efficiency can be attained 
if the output values are augmented by the output shortfalls in s"*"*. Thus, we 
have a method for improving an inefficient DMU that accords with Definition 
3.2. The gross input improvement AcCo and output improvement Ay^ can be 
calculated from: 

Also 

means 

Ax , = a J o - ( r a ? o - s - * ) = ( l - r ) x o + s-* (3.20) 

^Vo - s-^\ (3.21) 

Hence, we have a formula for improvement, which is called the CCR projection:^ 

AaJo = e^'Xo - 5"* < Xo (3.22) 

(3.23) 

XQ XQ 

Vo = yo + ^Vo = yo-^ 5 > Vo' 



48 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS AND ITS USES 

However, note that there are other formulae for improvement as will be de­
scribed later. 

In Theorems 3.2, 3.3 and 3.4 in the next section, we will show that the 
improved activity {xo^Vo) projects DMUo into the reference set EQ and any 
nonnegative combination of DMUs in Eo is efficient. 

3.5 THEOREMS ON CCR-EFFICIENCY 

Theorem 3.2 The improved activity {xo, Vo) defined by (3.22) and (3.23) is 
CCR-efficient. 

Proof. The efficiency of (xo, Vo) is evaluated by solving the LP problem below: 

(DLPe) min 6 (3.24) 

subject to Oxo - XX- s~ = 0 (3.25) 

YX-s^ = y, (3.26) 

A > 0, s " > 0, s+ > 0. (3.27) 

Let an optimal (max-slack) solution for (DLPe) be (^, A,s~ ,s ). By inserting 
the formulae (3.22) and (3.23) into the constraints, we have 

y, = YX-s-^-s^\ 

Now we can also write this solution as 

6xo = XA + s~ 

y, = YX-s^ 

where 9 = 99'' and s~ = s" -\- 9s-* > 0, s'^ = s^ + s+* > 0. However, 
9* is part of an optimal solution so we must have 9 = 99* = 9* so 9 = 1. 
Furthermore, with ^ = 1 we have 

es~ + es~^ - {es~ + es~*) + (es"^ + es+*) < es~* + es+* 

since es~* +es"^* is maximal. It follows that we must have es~ + es"^ = 0 
which implies that all components of s~ and s"*" are zero. Hence conditions (i) 
and (ii) of Definition 3.2 are both satisfied and CCR-efficiency is achieved as 
claimed. D 

Corollary 3.1 (Corollary to Theorem 3.2) 
The point with coordinates So, y^ defined by (3.22) and (3.23), viz., 

Xo = 9*Xo - s~* == ] ^ XjX* (3.28) 
jeEo 

jeEo 
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is the point on the efficient frontier used to evaluate the performance of DMUQ-

In short the CCR projections identify the point either as a positive combination 
of other DMUs with Xo > Xo and y^ > y^ unless 6* = 1 and all slacks are zero 
in which CSlSG XQ — XQ and y^ = y^ so the operation in (3.28) performed on the 
observation for DMUo identifies a new DMU positioned on the efficient frontier. 
Conversely, the point associated with the thus generated DMU evaluates the 
performance of DMUo as exhibiting input excesses XQ — XO and output shortfalls 

Vo-yo' 
We notice that the improvement by the formulae (3.22) and (3.23) should 

be achieved by using the max-slack solution. If we do it based on another (not 
max-slack) solution, the improved activity (Xo, y^) is not necessarily CCR-
efficient. This is shown by the following example with 4 DMUs A^B^C and D^ 
each with 3 inputs a;i,a;2 and x-^ and all producing 1 output in amount y = 1. 

Xi 

X2 

2̂ 3 

y 

A 

2 
1 
1 

1 

B 

2 
1.5 
1 

1 

C 

2 
2 
1 

1 

D 

1 
1 
2 

1 

Here the situation for DMU C is obvious. We can observe, for instance, that 
DMU C has two possible slacks in ^2, 1 against A and 0.5 against B. If we 
choose B as the reference set of C, then the improved activity coincides with 5 , 
which still has a slack of 0.5 in 0:2 against A. Therefore, the improved activity is 
not CCR-efficient. However, if we improve C by using the max-slack solution, 
then we move to the CCR-efficient DMU A directly. 

Lemma 3.1 For the improved activity (xo, y^), there exists an optimal solu­
tion iVo^Uo) for the problem {LPe), which is dual to {DLPe), such that 

So > 0 and So > 0 

VoXj = Uoyj (i e Eo) (3.30) 

VoX > UoY (3.31) 

Proof, Since {Xo,yo) is zero-slack, the strong theorem of complementarity 
means that there exists a positive optimal solution {VQ^UO) for {LPe). The 
equality (3.30) is the complementarity condition between primal-dual optimal 
solutions. The inequality (3.31) is a part of the constraints of (LPe). • 

Theorem 3.3 The DMUs in Eo as defined in (3.16) are CCR-efficient. 

Proof. As described in Lemma 3.1, there exists a positive multiplier {VQ^UO). 

These vectors also satisfy 

VoXj = Uoyj {j e Eo) (3.32) 

VoX > UoY (3.33) 
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For each j e Eo^ we can adjust (So, Uo) by using a scalar multiplier so that the 
relation VQXJ = UoVj = 1 holds, while keeping (3.33) satisfied. Thus, activity 
(xj^yj) is CCR-eflftcient by Definition 2.1. (A proof via the envelopment model 
may be found in Problem 7.5 of Chapter 7, and this proof comprehends the 
BCC as well as the CCR model). • 

Theorem 3.4 Any semipositive combination of DMUs in Eo is CCR-efficient. 

Proof, Let the combined activity be 

Xc = y j CjXj and y^ = Y^ Cjyj with Cj > 0 (j G Eo), (3.34) 
jeEo jeEo 

The multiplier (VQ^UO) in Lemma 3.1 satisfies 

VoXc = Uoy^ (3.35) 

VoX > UoY (3.36) 

Vo>0, Uo>0 (3.37) 

Thus, {xc^yc) is CCR-efl[icient by Definition 2.1. D 

3.6 COMPUTATIONAL ASPECTS OF THE CCR MODEL 

In this section, we discuss computational procedures for solving linear programs 
for the CCR model in detail. Readers who are not familiar with the terminology 
of linear programs and are not interested in the computational aspects of DEA 
can skip this section. 

3,6.1 Computational Procedure for the CCR Model 

As described in Section 3.3, the computational scheme of the CCR model for 
DMUo results in the following two stage LP problem. 

{DLPo) 

Phase I objective min 9 

Phase II objective min —es~ — es~^ 

subject to Oxo = XX + s~ 

y, = YX-s-^ 

|9 > 0, A > 0, s " > 0, s+ > 0, 

where Phase II replaces the variable 9 with a fixed value of min 9 = 
Using the usual LP notation, we now rewrite (DLPQ) as follows. 

(DLp;,) 

Phase I objective min zi = ex 

Phase II objective min Z2 = dx 

subject to Ax = b 

X > 0, 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

--e*. 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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where c and d are row vectors. 

The correspondences between [DLPQ) and {DLPD are: 

where e 
fohowini 

X = 

c = 

d = 

A = 

b = 

{e, x", s-^, 
(1, 0, 0, 0) 

(0, 0, - e , -

( Xo -X 

\ 0 Y 

{:)• 

s+^f 

e) 
-I 0 \ 
0 ~I ) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

is the vector with all elements unity. See the discussion immediately 
r (3.13). 

x^ = b = B-^b 

TV = c^'B-' 

p« = TTii-C^ 

q^ = TTfi-d^, 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

Phase I 
First, we solve the LP problem with the Phase I objective. Letting an optimal 
basis be B we use this matrix B as follows. First we compute several values, as 
noted below, where R is the nonbasic part of the matrix A and the superscript 
B (or R) shows the columns of A corresponding to B (or R), 

basic solution 

simplex multiplier 

Phase I simplex criterion 

Phase II simplex criterion 

where ^~^ is the inverse of B, TT is a vector of "multipliers" derived (from the 
data) as in (3.53), and p^ and q^ are referred to as "reduced costs." 

From optimality of the basis J5, we have: 

5 > 0, (3.56) 

because the conditions for non-negativity are satisfied by x^ in (3.52) and 

V^ < 0, (3.57) 

as required for optimality in (3.54) and, for the columns of the basis B^ we 
have: p^ = nB - c^ =: 0. 

Phase II 
We exclude the columns with pj < 0 in the optimal simplex tableau at the 
end of Phase I from the tableaux for further consideration. The remainder is 
called the restricted problem or restricted tableau and dealt with in the next 
computational step. At Phase II, we solve the LP problem with the second 
objective. If the simplex criterion of Phase II objective satisfies q^ < 0, we then 
halt the iterations. The basic solution thus obtained is a max-slack solution. 
This is the procedure for finding 0* and a max-slack solution (s~*, s+*) for 
DMUo- As has been already pointed out, (LPo) in (3.2)-(3.5) is dual to {DLPo) 
in (3.6)-(3.9), and we will discuss its solution procedure in the next section. 
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3.6.2 Data Envelopment Analysis and the Data 

The characterizations given by (3.52)-(3.55) represent borrowings from the ter­
minology of hnear programming in which the components of TT are referred to 
as "simplex multipliers" because they are associated with a use of the simplex 
method which generates such multipliers in the course of solving LP problems 
such as {DLPl). "Simplex" and "dual simplex" methods are also used in DEA. 
We therefore refer to the problem {LPQ) as being in "multiplier form." See (3.2)-
(3.5). Problem {DLPQ) is then said to be in "envelopment form." This is the 
source of the name "Data Envelopment Analysis." 

Reference to Figure 3.2 in the next section will help to justify this usage by 
noting, first, that all data are inside the frontier stretching from F through R. 
Also, at least one observation is touching the frontier. Hence, in the manner of 
an envelope all data are said to be "enveloped" by the frontier which achieves 
its importance because it is used to analyze and evaluate the performances of 
DMUs associated with observations like those portrayed in Figure 3.2. More 
compactly, we say that DEA is used to evaluate the performances of each 
observation relative to the frontier that envelops all of the observations. 

3.6.3 Determination of Weights (^Multipliers) 

The simplex multipliers in TT at the end of Phase I are associated with an 
optimal solution of its dual problem {LPQY ^S given in (3.2)-(3.5). In fact, TT 

is an (m -f- s) vector in which the first m components assign optimal weights 
t;* to the inputs and the remaining s components assign optimal weights IA* 
to the outputs. By observing the dual problem of {DLPD in (3.38)-(3.42), it 
can be shown that i;* and IA* satisfy (3.3) through (3.5). The symbol / , for 
the identity matrix in A of (3.50), relates to the (input and output) slack. Let 
the simplex criteria to be applied to these columns be represented by "pricing 
vectors" p^ and p^ . These vectors relate to t;* and ix* in the following way: 

^* = - P ' ~ ( > 0 ) (3.58) 

n* = -p'^ ( > 0 ) . (3.59) 

3.6.4 Reasons for Solving the CCR Model Using the Envelopment Form 

It is not advisable to solve (LPo) directly. The reasons are: 
(1) The computational effort of LP is apt to grow in proportion to powers of 
the number of constraints. Usually in DEA, n, the number of DMUs is con­
siderably larger than (m -h 5), the number of inputs and outputs and hence it 
takes more time to solve {LPQ) which has n constraints than to solve {DLPo) 
which has (m + s) constraints. In addition, since the memory size needed for 
keeping the basis (or its inverse) is the square of the number of constraints, 
{DLPo) is better fitted for memory saving purposes. 
(2) We cannot find the pertinent max-slack solution by solving (LPo). 
(3) The interpretations of (DLPo) are more straightforward because the solu­
tions are characterized as inputs and outputs that correspond to the original 
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data whereas the multipHers provided by solutions to {LPo) represent evalua­
tions of these observed values. These values are also important, of course, but 
they are generally best reserved for supplementary analyses after a solution to 
(DLPo) is achieved. 

3.7 EXAMPLE 

We will apply (DLPo) to a sample problem and comment on the results. For 
this purpose we use Example 3.1 as shown in Table 3.2, which is Example 2.2 
with an added activity G. All computations were done using the DEA-Solver 
which comes with this book and the results are stored in the Excel 97 Workbook 
"Sample-CCR-I.xls" in the sample file. So, readers interested in using DEA-
Solver should try to trace the results by opening this file or running DEA-Solver 
for this problem. 

Table 3.2. Example 3.1 

Input 

Output 

DMU 

Xi 

X2 

y 

A 

4 
3 

1 

B 

7 
3 

1 

C 

8 
1 

1 

D 

4 
2 

1 

E 

2 
4 

1 

F 

10 
1 

1 

G 

3 
7 

1 

(1) {DLPA) for A is: 

Phase I min 0 

Phase II min —s^ — s^ — s"*" 

subject to 

46 - 4XA - 7XB - SXc - 4AD - 2XE - IOAF - 3XG - S^ =0 

3(9 - 3XA - 3AB - AC - 2AD - 4:XE - XF - 7XG - 5^ = 0 

XA -\- XB -h Xc -^ XD -^ XE -h XF + XG - s'^ = 1 

where the variables are restricted to nonnegative values in the vectors A, s~ 
and s+. 
The optimal solution for (DLPA) is: 

0* = 0.8571 (in Worksheet "Sample-CCR-LScore") 

XD = 0.7143, A^ = 0.2857, other A* = 0 (in Worksheet "Sample-CCR-I.Score") 

S-* = S2* = 5+* = 0 (in Worksheet "Sample-CCR-I.Slack"). 

Since X}) > 0 and A^ > 0, the reference set for A is 

EA = {D, E}, 
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And A^ = 0.7143, A^ = 0.2857 show the proportions contributed by D and 
E to the point used to evaluate A. Hence A is technically inefficient. No 
mix inefficiencies are present because all slacks are zero. Thus removal of all 
inefficiencies is achieved by reducing all inputs by 0.1429 or, approximately, 
15% of their observed values. In fact, based on this reference set and A*, 
we can express the input and output values needed to bring A into efficient 
status as 

0.8571 X (Input of A) = 0.7143 x (Input of D) + 0.2857 x (Input of E) 

(Output of A) = 0.7143 X (Output of D) + 0.2857 x (Output of E). 

From the magnitude of coefficients on the right hand side, A has more sim­
ilarity to D than E. A can be made efficient either by using these coeffi­
cients, X}) = 0.7143, X*^ — 0.2857 or by reducing both of its inputs—viz., 
by reducing the input value radially in the ratio 0.8571. It is the latter 
(radial contraction) that is used in DEA-Solver. Thus, as seen in Work­
sheet "Sample-CCR-I.Projection," the CCR-projection of (3.32) and (3.33) 
is achieved by, 

xi <- (9*a;i = 0.8571 x 4 ::= 3.4286 (14.29% reduction) 

X2 <- e*X2 = 0.8571 X 3 = 2.5714 (14.29% reduction) 

y i— y = 1 (no change). 

The optimal solution for the multiplier problem {LPA) can be found in Work­
sheet "Sample-CCR-I.Weight" as follows, 

vl = 0.1429, v^ = 0.1429, u* -= 0.8571. 

This solution satisfies constraints (3.3)-(3.5) and maximizes the objective in 
(3.2), i.e., u*y = 0.8571 x 1 = 0.8571 = 6* in the optimal objective value of 
(DLPA)' (See Problem 3.4 for managerial roles of these optimal multipliers 
(weights) for improving A.) 

The Worksheet "Sample-CCR-I.WeightedData" includes optimal weighted 
inputs and output, i.e., 

vlxi =: 0.1429 X 4 -: 0.5714 

v*X2 = 0.1429 X 3 = 0.4286 

w*2/ = 0.8571 X 1 = 0.8571. 

The sum of the first two terms is 1 which corresponds to the constraint (3.3). 
The last term is the optimal objective value in this single output case. 

(2) Moving from DMU A to DMU B, the optimal solution for B is: 

r = 0.6316 

A;^ = A;^ = 0, A^ = 0.1053, A ^ = 0.8947, X% = X}^ = X*a = 0 

S - * = S - * = 5+* = 0 

vl = 0.0526, v^ = 0.2105, u* = 0.6316. 
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Since A^ > 0, A^ > 0 , the reference set for B is: 

EB = {C, D}, 

B can be expressed as: 

0.6316 X (Input of B) = 0.1053 x (Input of C) + 0.8947 x (Input of D) 

(Output of B) = 0.1053 X (Output of C) + 0.8947 x (Output of D), 

That is, it can be expressed in ratio form, as shown on the left or as a 
nonnegative combination of AJ > 0 values as shown on the right. Using the 
expression on the left, the CCR-projection for B is 

xi f- e*xi = 0.6316 X 7 = 4.4211 (36.84% reduction) 

X2 ^ 6>*a;2 = 0.6316 x 3 := 1.8974 (36.84% reduction) 

y ^ y = 1 (no change). 

(3) C, D and E 

These 3 DMUs are found to be efficient. (See Worksheet "Sample-CCR-
I.Score.") 

(4) The optimal solution of the LP problem for F is: 

|9* = 1 

^ — A ^ — U, AQ — i, Aj^ — A^ — Ap — AQ — K) 

5 " * = 2, S - * = 5+* - 0 

vl = 0, ^2 = 1, w* - 1 

where, again, the last set of values refer to the multiplier problem. For the 
envelopment model we have A^ > 0 as the only positive value of A. Hence 
the reference set for F is: 

EF = {C}. 

Considering the excess in Input 1 ( 5^* = 2), F can be expressed as: 

(Input 1 of F) = (Input 1 of C) + 2 

(Input 2 of F) = (Input 2 of C) 

(Output of F) = (Output of C). 

Although F is "radial-efficient," it is nevertheless "CCR-inefficient" due to 
this excess (mix inefficiency) associated with 5^* = 2. Thus the performance 
of F can be improved by subtracting 2 units from Input 1. This can be 
accomplished by subtracting 2 units from input 1 on the left and setting 
s~* z= 0 on the right without worsening any other input and output. Hence 
condition (ii) in Definition 3.2 is not satisfied until this is done, so F did not 
achieve Pareto-Koopmans efficiency in its performance. See Definition 3.3. 
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(5) The optimal solution of the LP problem for G is: 

6>* = 0.6667 

5"* = 0, s^* = 0.6667, 5+* = 0 

'̂ 1* = 0.3333, v; =0, u"" = 0.6667 

Since A^ > 0, the reference set for G is: 

EG = {E}. 

Considering the excess in Input 2 (s^* = 0.6667), G can be expressed by: 

0.6667 X (Input 1 of G) = (Input 1 of E) 
0.6667 X (Input 2 of G) = (Input 2 of E) + 0.6667 

(Output of G) = (Output of E). 

One plan for the improvement of G is to reduce all input values by multi­
plying them by 0.6667 and further subtracting 0.6667 from Input 2. When 
this is done the thus altered values coincide with the coordinates of E. Ge­
ometrically then, the CCR-projection for G is 

xi ^ e^'xi - 5f * =: 0.6667 X 3 - 0 == 2 (33.33% reduction) 

X2 <- e*X2 - 5^* = 0.6667 X 7 - 0.6667 = 4 (42.86% reduction) 

y 4r- y = 1 (no change), 

where xi = 2, X2 — ̂ , y — I which values are the same as for E in Table 
3.2. 

The above observations are illustrated by Figure 3.2, which depicts Input 1 and 
Input 2 values of all DMUs. Since the output value is 1 for all the DMUs, we 
can compare their efficiencies via the input values. 

The efficient frontier consists of the bold line CDE and the production 
possibility set is the region enclosed by this efficient frontier line plus the vertical 
line going up from E and the horizontal line extending to the right from C. 
Let the intersection point of OA and DE be Q. The activity Q has input 
proportional to that of A (4, 3) and is the least input value point on OA in 
the production possibility set and 

if—' 
corresponds to radial (or ratio) efficiency of A. ^ Also, we have: 

Input 1 of Q == 0.8571 x 4 (Input 1 of A) = 3.428 = xi 
Input 2 of Q = 0.8571 x 3 (Input 2 of A) = 2.571 = X2. 

However, Q is the point that divides D and E in the ratio 0.7143 to 0.2857. 
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Production Possibility Set 

Figure 3.2. Example 3.1 

Hence its values are calculated again as: 

Input 1 of Q = 0.7143 x 4 (Input 1 of D) + 0.2857 x 2 (Input 1 of E) = 3.428 
Input 2 of Q = 0.7143 x 2 (Input 2 of D) + 0.2857 x 4 (Input 2 oi E) = 2.571, 

where A^ = 0.7143 and A^ = 0.2857. Comparing these results we see that 
the coordinates of Q, the DMU used to evaluate A, can be derived in either of 
these two ways. There are also still more ways of effecting such improvements, 
as we will later see when changes in mix proportions are permitted. 

This brings us to the role of nonzero slacks which we can illustrate with 
F and G. From Figure 3.2, it is evident that if we reduce Input 1 of F by 
the nonzero slack value of 2, then F coincides with C and is efficient. The 
presence of this nonzero slack means that F is not Pareto-Koopmans efficient 
even though its radial value is 6* = 1. 

As a further illustration of the two conditions for efficiency in Definition 
3.2 we turn to the evaluation of G. The CCR-efficiency of G is calculated by 
OR/OG = 0.6667. Thus G is not radially (or weakly) efficient as evaluated at 
R. However R is also not efficient. We can make it efficient by further reducing 
Input 2 by 0.6667 and shifting to E as we have seen in the CCR-projection of 
G. Hence G fails both of the conditions specified in Definition 3.2. 

Table 3.3 summarizes the results obtained by applying DEA-Solver to all 
of the data in Table 3.2. Only C, D and E are fully efficient. A and B fail 
because 6* < 1. Their intersection with the frontier gives their radial (weak) 
inefficiency score with zero slacks because they intersect an efficient portion of 
the frontier radially. F has a value of ^* = 1 because it is on the frontier. This 
portion of frontier is not efficient, however, as evidenced by the nonzero slack 
for F under s^ in Table 3.3. Finally, G fails to be efficient both because 0* < 1 
and nonzero slacks are involved in its evaluation by E, a point on the efficient 
portion of the frontier. 
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DMU 

A 
B 
C 
D 
E 
F 
G 

Table 3.3. 

CCR-Eff 
0* 

0.8571 
0.6316 
1.0000 
1.0000 
1.0000 
1.0000 
0.6667 

Results of Exa 

Ref Set 

D E 
C D 
C 
D 
E 
C 
E 

mple 3.1 

Excess 

r̂ 
0 
0 
0 
0 
0 
2 
0 

^2 

0 
0 
0 
0 
0 
0 

.6667 

Shortfall 
s+ 

0 
0 
0 
0 
0 
0 
0 

3.8 THE OUTPUT-ORIENTED MODEL 

Up to this point, we have been dealing mainly with a model whose objective is 
to minimize inputs while producing at least the given output levels. This type 
of model is called input-oriented. There is another type of model that attempts 
to maximize outputs while using no more than the observed amount of any 
input. This is referred to as the output-oriented model, formulated as: 

{DLPOo) max r] 

subject to Xo - Xfi > 0 

Wo - ^M < 0 

/x > 0. 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

An optimal solution of {DLPOo) can be derived directly from an optimal so­
lution of the input-oriented CCR model given in (3.6)-(3.9) as follows. Let us 
define 

A = ^/ri, e = I/T]. (3.64) 

Then (DLPOo) becomes 

{DLPo) min 9 

subject to 6xo — XX > 0 

Vo - yx<o 
A > 0 , 

which is the input-oriented CCR model. Thus, an optimal solution of the 
output-oriented model relates to that of the input-oriented model via: 

77* = 1/r, /x* = y/o\ (3.65) 
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The slack (t~, f^) of the output-oriented model is defined by: 

Xfl -\-t~=Xo 

These values are also related to the input-oriented model via 

t-* = s-ye\ t+* = s^ye\ (3.66) 

Now, ^* < 1, so returning to (3.64), 77* satisfies 

77* > 1. (3.67) 

The higher the value of r̂ *, the less efficient the DMU. 6* expresses the input 
reduction rate, while ry* describes the output enlargement rate. From the above 
relations, we can conclude that an input-oriented CCR model will be efficient 
for any DMU if and only if it is also efficient when the output-oriented CCR 
model is used to evaluate its performance. 

The dual problem of (DLPOo) is expressed in the following model, with 
components of the vectors p and q serving as variables. 

(LPOo) min 

subject to 

pXo 

QVo = 1 

-pX + qY <0 

p > 0, q>0. 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

On the multiplier side we have: 

Theorem 3.5 Let an optimal solution of (LPQ) be (^*, u*), then an optimal 
solution of the output-oriented model (LPOQ) is obtained from 

p* = v*/e\ g* =uyo\ (3.72) 

Proof, It is clear that (p*, q*) is feasible for (LPOo)- Its optimality comes 
from the equation below. 

p*ajo = ^*â o/6>* =ry*. (3.73) 

D 

Thus, the solution of the output-oriented CCR model may be obtained from 
that of the input oriented CCR model. The improvement using this model is 
expressed by: 

Xo <= Xo-t-* (3.74) 

Vo ^ ^*2/o + t+*. (3.75) 
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Carrying this a stage further we note that {LPOo) is equivalent to the fol­
lowing fractional programming problem: 

min (3.76) 
^P PVo 

subject to — ^ > 1 (j = 1 , . . . , n) (3.77) 
PVj 
TT > 0 , p > 0. (3.78) 

That is, we exchanged the numerator and the denominator of (2.3) and (2.4) 
as given in Chapter 2 and minimized the objective function. It is therefore 
quite natural that the solutions are found to be linked by a simple rule. This 
mathematical transformation does not imply that there is no managerial sig­
nificance to be assigned to the choice of models since, inter alia, different cor­
rections may be associated with output maximization and input minimization. 
The difference can be substantial so this choice always deserves consideration. 
Furthermore, later in this book, we shall also introduce other models, where 
outputs are maximized and inputs are simultaneously minimized so that still 
further choices may need to be considered. 

3.9 DISCRETIONARY AND NON-DISCRETIONARY INPUTS 

Up to this point we have assumed that all inputs and outputs can be varied 
at the discretion of management or other users. These may be called "discre­
tionary variables." "Non-discretionary variables," not subject to management 
control, may also need to be considered. In evaluating performances of different 
bases for the Fighter Command of U.S. Air Forces, for instance, it was neces­
sary to consider weather as an input since the number of "sorties" (successfully 
completed missions) and "aborts" (non-completed mission) ̂ ^ treated as out­
puts, could be affected by the weather (measured in degree days and numbers 
of "flyable" days) at different bases. 

Even though Non-Discretionary, it is important to take account of such in­
puts in a manner that is reflected in the measures of efficiency used. We follow 
the route provided by Banker and Morey (1986)^^ who refer to such variables as 
"exogenously fixed," in forms like "age of store," in their use of DEA to evaluate 
the performances of 60 DMUs in a network of fast-food restaurants. Revert­
ing to algebraic notation, we can represent their formulation by the following 
modification of the CCR model. 

min e-eij2'T+T.'r) (3-79) 
\ieD r=l ) 

n 

subject to 6xio = ^^r^jAj + s^, i e D (3.80) 

n 

Xio = "^XijXj + s r , ieND (3.81) 
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yro = ^yrj>^j - st, r = : ! , . . . , S. (3.82) 

where all variables (except 6) are constrained to be nonnegative. 
Here the symbols i e D and i G ND refer to the sets of "Discretionary" 

and "Non-Discretionary" inputs, respectively. To be noted in the constraints 
is the fact that the variable 6 is not applied to the latter inputs because these 
values are exogenously fixed and it is therefore not possible to vary them at 
the discretion of management. This is recognized by entering all Xio^ i G ND 
at their fixed (observed) value. Turning to the objective (3.79) we utilize the 
symbol^^ e > 0 to mean that the slack variables (shown in the parenthses) 
are to be handled at a second stage where, as previously described, they are 
to be maximized in a manner that does not disturb the previously determined 
first-stage minimization of 6 to achieve 0 = 6*. Finally, we note that the slacks 
s^^i ^ ND are omitted from the objective. Hence these Non-Discretionary 
inputs do not enter directly into the efficiency measures being optimized in 
(3.79). They can, nevertheless, affect the efficiency evaluations by virtue of 
their presence in the constraints. 

We can further clarify the way these Non-Discretionary variables affect the 
efficiency scores by writing the dual of (3.79)-(3.82) in the form of the following 
(modified) multiplier model, 

max ^UrVro- ^ ViXio (3.83) 
r=l ieND 

s 

subject to 2^ '^rVrj — / J ViXij — 2^ ViXij < 0, j = 1 , . . . , n (3.84) 
rr=l ieND ieD 

J2 ^i^io = 1 (3.85) 
ieD 

Vi>e, ieD (3.86) 

Vi>0, ieND (3.87) 

Ur>€, r =: l , . . . , s . (3.88) 

As can be seen, the Non-Discretionary but not the Discretionary inputs, enter 
into the objective (3.83). The multiplier values associated with these Non-
Discretionary inputs may be zero, as in (3.87), but the other variables must 
always be positive, as in (3.86) and (3.88). The interpretations we now provide 
fiow from the "complementary slackness principle" of linear programming. If 
(3.81) is satisfied strictly at an optimum then v* := 0 is associated with this 
constraint and this Xio does not affect the evaluation recorded in (3.79). On 
the other hand, if v* > 0 for any i e ND then the efficiency score recorded in 
(3.79) is reduced by the multiplier of Xio for this DMUQ. 
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This follows from the dual theorem of linear programming—viz., 

^*-̂  (E^r* + E'r*] = E<yro- E <^-- (̂ .SQ) 
\ieD r=l J r=l ieND 

Via this same relation we see that a decrease in this same Xio will increase the 
efficiency score recorded in the expression or the left of the equality (3.89). 

For managerial use, the sense of this mathematical characterization may be 
interpreted in the following manner. The output achieved, as recorded in the 
2/ro5 deserve a higher efficiency rating when they have been achieved under a 
relatively tighter constraint and a lower efficiency score when this constraint is 
loosened by increasing this Xio^ 

This treatment of Non-Discretionary variables must be qualified, at least to 
some extent, since, inter alia, allowance must be made for ranges over which 
the values of v* and u* remain unaltered. Modifications to allow for v* > 
€ > 0 must also be introduced, as described in Problem 3.2 at the end of this 
chapter and effects like those treated in Problem 3.3 need to recognized when 
achievement of the efficient frontier is a consideration. 

After additional backgrounds have been supplied. Chapter 7, later in this 
book, introduces a variety of extensions and alternate ways of treating Non-
Discretionary outputs as well as inputs. Here we only need to note that mod­
ifications of a relatively straightforward variety may also be made as in the 
following example. 

A study of 638 public secondary schools in Texas was undertaken by a consor­
tium of 3 universities in collaboration with the Texas Education Agency (TEA). 
The study was intended to try to develop improved methods for accountabil­
ity and evaluation of school performances. In addition to discretionary inputs 
like teacher salaries, special instruction, etc., the following Non-Discretionary 
inputs had to be taken into account, 

1. Minority : Number of minority students, expressed as a percentage of 
total student enrollment. 

2. Disadvantage : Number of economically disadvantaged students, expressed 
as a percentage of total student enrollment. 

3. LEP : Number of Limited Enghsh Proficiency students, expressed as a 
percentage of total student enrollment. 

These inputs differ from the ones that Banker and Morey had in mind. For 
instance, a regression calculation made at an earlier stage of the consortium 
study yielded negative coefficients that tested statistically significant for every 
one of these 3 inputs in terms of their effects on academic test scores. In the 
subsequent DEA study it was therefore deemed desirable to reverse the sign 
associated with the Xio in the expression on the right of (3.89) 

This was accomplished by reversing (3.81) 
n n 

from y j^ i jAj < Xio to Tj^i jAj > Xio (3.90) 
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for each of these i G ND. In this manner an abihty to process more of these 
inputs, when critical, was recognized in the form of higher (rather than lower) 
efficiency scores. Full details are supplied in I.R. Bardhan (1995)^^ and summa­
rized in Arnold et al. (1997)."'̂ '̂  Here we note that the results were sufficiently 
satisfactory to lead to a recommendation to accord recognition to "efficiency" 
as well as "effectiveness" in state budgetary allocations to different school dis­
tricts. Although not accepted, the recommendation merits consideration at 
least to the extent of identifying shortcomings in the usual statements (and 
reward structures) for academic performance. The following scheme can help 
to clarify what is being said,^^ 

Effectiveness implies 

• Ability to state desired goals 

• Ability to achieve desired goals 

Efficiency relates to 

• Benefits realized 
• Resources used 

Consider, for instance, the State-mandated Excellence Standards for Texas 
recorded in Table 3.4. These represent statements of desired goals and schools 
are rewarded (or not rewarded) on the basis of their achievements. Nothing is 

Table 3.4. State-mandated Excellence Standards on Student Outcomes 

Outcome Indicator State-mandated Excellence Standard 

1. Texas Assessment of Academic 90% of students passing on all standardized 
Skills (TAAS) Test tests 

2. Attendance 97% of total enrollment in the school 
3. Dropout Rate Less than or equal to 1% of total enrollment 
4. Graduation Rate 99% of graduating class 
5. College Admission Tests • 35% of graduates scoring above the 

criterion score which is equal to 25 on the 
ACT^ and 1000 on the SAT^ 
• 70% of graduates taking either the ACT or 
the SAT 

"̂ ACT = American Collegiate Tests 
ŜAT = Scholastic Aptitude Tests 

said about the amounts (or varieties) of resources used. Hence it should be no 
surprise that only 1 of the excellent-rated schools included in this study was 
found to be efficient. The other schools rated as excellent by the State of Texas 
had all expended excessive resources in achieving these goals. On the other hand 
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many schools that failed to achieve excellence were nevertheless found to be 
efficient in producing desired outputs under very difficult conditions. Therefore 
some way of recognizing this kind of achievements is needed if "efficiency" as 
well as "effectiveness" is to be rewarded.^^ 

Table 3.5 as taken from Bardhan (1994), contains portions of the printout 
from a DEA study involving one of these "excellent" schools. The row labelled 
Disadv {= Economically Disadvantaged) shows a slack value of 15 students. 
Judging from the performances of its peer group of efficient schools, this school 

Table 3.5. Non-Discretionary Inputs 

Current Level Slack Value if Efficient 

Minority 47.0 — 47.0 
Disadv 14.0 15.0 29.0 
LEP 3.5 — 3.5 

should therefore have been able to more than double the number of such stu­
dents that it processed without affecting its efficiency score because (a) the slack 
for i G ND is not in the objective of (3.79) and (b) the presence of nonzero 
slack for any i G ND means the associated v* = 0. In addition, the other ND 
inputs are associated with positive multiplier values so this school would have 
been able to increase its efficiency score by increasing the Minority and LEP 
(Low English Proficiency = Mainly Hispanic) students it processed. As shown 
in Arnold et al (1997) this can be done by introducing constraints to insure 
that no worsening of any already achieved excellence is avoided. 

This is not the end of the line for what can be done. See Section 7.3 in 
Chapter 7, below, for further developments. Additional extensions could pro­
ceed to a two-stage operation in which school "outputs" are transformed into 
"outcomes" where the latter includes things like success in securing employ­
ment after school has been completed.^'^ For instance, see C.A.K. Lovell et 
al (1994)^^ who employ cohort data in such a two-stage analysis where "out­
puts" are converted to "outcomes" to find that the record for American Public 
Schools is substantially better for the latter than the former. 

3.10 SUMMARY OF CHAPTER 3 

In this chapter we described the CCR model in some detail in both its input-
oriented and output-oriented versions. 

1. We also relaxed assumptions of a positive data set to semipositivity. 

2. We defined the production possibility set based on the constant returns-to-
scale assumption and developed the CCR model under this assumption. 
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3. The dual problem of the original CCR model was introduced as {DLPQ) in 
(3.6)-(3.9) and the existence of input excesses and output shortfalls clarified 
by solving this model. (To avoid confusion and to align our terminology with 
the DEA literature, we referred to the dual as the "envelopment model" and 
the primal {LPQ) introduced in Chapter 2 as the "multiplier model.") 

4. In Definition 3.2 we identified a DMU as CCR-efficient if and only if it is {%) 
radial-efficient and (ii) has zero-slack in the sense of Definition 3.1. Hence a 
DMU is CCR-efficient if and only if it has no input excesses and no output 
shortfalls. 

5. Improvement of inefficient DMUs was discussed and formulae were given for 
effecting the improvements needed to achieve full CCR efficiency in the form 
of the CCR-projections given in (3.22) and (3.23). 

6. Detailed computational procedures for the CCR model were presented in 
Section 3.6 and an optimal multiplier values {v, u) were obtained as the 
simplex multipliers for an optimal tableau obtained from the simplex method 
of linear programming. 

3.11 NOTES AND SELECTED BIBLIOGRAPHY 

As noted in Section 3.3 the term "Pareto-Koopmans" efficiency refers to Vil-
fredo Pareto and Tjalling Koopmans. The former, i.e., Pareto, was concerned 
with welfare economics which he visualized in terms of a vector-valued function 
with its components representing the utilities of all consumers. He then for­
mulated the so-called Pareto condition of welfare maximization by noting that 
such a function could not be at a maximum if it was possible to increase one 
of its components without worsening other components of such a vector valued 
function. He therefore suggested this as a criterion for judging any proposed so­
cial policy: "the policy should be adopted if it made some individuals better off 
without decreasing the welfare (measured by their utilities) of other individu­
als." This, of course, is a necessary but not a sufficient condition for maximizing 
such a function. Proceeding further, however, would involve comparing util­
ities to determine whether a decrease in the utilities of some persons would 
be more than compensated by increases in the utilities of other individuals. 
Pareto, however, wanted to proceed as far as possible without requiring such 
interpersonal comparisons of utilities. See Vilfredo Pareto, Manuel d^economie 
politique, deuxieme edition. Appendix, pp. 617 ff., Alfred Bonnet, ed.(Paris: 
Marcel Giard, 1927). 

Tjalling Koopmans adapted these concepts to production. In an approach 
that he referred to as "activity analysis," Koopmans altered the test of a vector 
optimum by reference to whether it was possible to increase any output without 
worsening some other output under conditions allowed by available resources 
such as labor, capital, raw materials, etc. See pp. 33-97 in T.C. Koopmans, 
ed.. Activity Analysis of Production and Allocation, (New York: John Wiley & 
Sons, Inc., 1951). 
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The approaches by Pareto and Koopmans were entirely conceptual. No 
empirical applications were reported before the appearance of the 1957 arti­
cle by M.J. Farrell in the Journal of the Royal Statistical Society under the 
title "The Measurement of Productive Efficiency." This article showed how 
these methods could be applied to data in order to arrive at relative efficiency 
evaluations. This, too, was in contrast with Koopmans and Pareto who con­
ceptualized matters in terms of theoretically known efficient responses without 
much (if any) attention to how inefficiency, or more precisely, technical ineffi­
ciency, could be identified. Koopmans, for instance, assumed that producers 
would respond optimally to prices which he referred to as "efficiency prices." 
Pareto assumed that all consumers would (and could) maximize their utilities 
under the social policies being considered. The latter topic, i.e., the identifica­
tion of inefficiencies, seems to have been, first, brought into view in an article 
published as "The Coefficient of Resource Utilization," by G. Debreu in Econo-
metrica (1951) pp.273-292. Even though their models took the form of linear 
programming problems both Debreu and Farrell formulated their models in the 
tradition of "activity analysis." Little, if any, attention had been paid to com­
putational implementation in the activity analysis literature. Farrell, therefore, 
undertook a massive and onerous series of matrix inversions in his first efforts. 
The alternative of linear programming algorithms was called to Farrell's at­
tention by A.J. Hoffman, who served as a commentator in this same issue of 
the Journal of the Royal Statistical Society. Indeed, the activity analysis ap­
proach had already been identified with linear programming and reformulated 
and extended in the 1957 article A. Charnes and W.W. Cooper published in 
"On the Theory and Computation of Delegation-Type Models: K-Efficiency, 
Functional Efficiency and Goals," Proceedings of the Sixth International Meet­
ing of The Institute of Management Science (London: Pergamon Press). See 
also Chapter IX in A. Charnes and W.W. Cooper, Management Models and In­
dustrial Applications of Linear Programming (New York: John Wiley & Sons, 
Inc., 1961). 

The modern version of DEA originated in two articles by A. Charnes, W.W. 
Cooper and E. Rhodes: (1) "Measuring the Efficiency of Decision Making 
Units," European Journal of Operational Research 2, 1978, pp.429-444 and (2) 
"Evaluating Program and Managerial Efficiency: An Application of Data En­
velopment Analysis to Program Follow Through," Management Science 27, 
1981, pp.668-697. The latter article not only introduced the name Data En­
velopment Analysis for the concepts introduced in the former article, it also 
exploited the duality relations as well as the computational power that the for­
mer had made available. In addition, extensions were made that included the 
CCR projection operations associated with (3.32)-(3.33) and used these pro­
jections to evaluate programs (such as the U.S. Office of Education's "Program 
Follow Through") that made it possible to identify a "program's efficiency" 
separately from the way the programs had been managed. (Hence the distinc­
tion between the "program" and "managerial" efficiencies had been confounded 
in the observations generated from this education study.) Equally important. 
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the latter article started a tradition in which applications were used to guide 
subsequent research in developing new concepts and methods of analyses. This, 
in turn, led to new applications, and so on, with many hundreds now reported 
in the literature. 

The first of the above two articles also introduced the ratio form of DEA 
that is represented as (FPo) in Section 2.3 of Chapter 2. This ratio form 
with its enhanced interpretive power and its contacts with other definitions of 
efficiency in engineering and science was made possible by prior research in 
which Charnes and Cooper opened the field of fractional programming. See 
Problem 3.1, below. It also led to other new models and measures of efficiency 
which differ from {DLPQ) in Section 3.3, above, which had been the only model 
form that was previously used. 

3.12 RELATED DEA-SOLVER MODELS FOR CHAPTER 3 

CCR-I (Input-oriented Charnes-Cooper-Rhodes model). 

This code solves the CCR model expressed by (3.6)-(3.9) or by (3.38)-(3.42). 
The data set should be prepared in an Excel Workbook by using an appropri­
ate Workbook name prior to execution of this code. See the sample format 
displayed in Figure B.l in Section B.5 of Appendix B and refer to explana­
tions above the figure. This style is the most basic one and is adopted in 
other models as the standard main body of data. The main results will be ob­
tained in the following Worksheets as displayed in Table 3.6. The worksheet 
"Summary" includes statistics on data — average, standard deviation of 
each input and output, and correlation coefficients between observed items. 
It also reports DMUs with inappropriate data for evaluation and summarizes 
the results. 

CCR-O (Output-oriented CCR model). 

This code solves the output-oriented CCR model expressed by (3.60)-(3.63). 
In this model the optimal efficiency score 77* describes the output enlarge­
ment rate and satisfies ry* > 1. However, we display this value by its in­
verse as (9* = l/r?*(< 1) and call it the "CCR-O efficiency score." This will 
facilitate comparisons of scores between the input-oriented and the output-
oriented models. In the CCR model, both models have related efficiency 
values as shown by (3.64). The other results are exhibited in the Work­
sheets in Table 3.6. In Worksheet "Weight," v and u correspond to p and q 
in (3.68)-(3.71), respectively. "Projection" is based on the formulas in (3.74) 
and (3.75). 
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Table 3.6. Worksheets Containing Main Results 

Worksheet name Contents 

S u m m a r y Summary on data and results. 
Score The efficiency score 6* ^ the reference set(A*), ranking, etc. 
Rank The descending order ranking of efficiency scores. 
Weight The optimal (dual) multipliers v*, u* in (3.2)-(3.5). 
WeightedData The weighted data {x^jf*} and {yrjU^}. 
Slack The input excesses s~ and the output shortfalls s'^ in (3.10). 
Projection Projection onto the efficient frontiers by (3.22)-(3.23). 
Graphl The bar chart of the CCR scores. 
Graph2 The bar chart of scores in ascending order. 

3.13 PROBLEM SUPPLEMENT FOR CHAPTER 3 

Problem 3.1 (Ratio Forms and Strong and Weak Disposal) 

The suggested response to Problem 2.3 in Chapter 2 showed how the "ratio 
of ratios" definition of efficiency in engineering could be subsumed under the 
CCR ratio form of DEA given for (FPo) in Section 2.3 of tha t chapter. Can 
you now extend this to show how the linear programming formulation given in 
(LPo) relates to the ratio form given in {FPQ)^ 

Suggested Response : A proof of equivalence is provided with Theorem 2.1 in 
Section 2.4 of Chapter 2. The following proof is adopted from A. Charnes 
and W.W. Cooper, "Programming with Linear Fractional Functionals" Naval 
Research Logistics Quarterly 9, 1962, pp.181-185, which initiated (and named) 
the field of fractional programming. We use this as an alternative because it 
provides contact with the (now) extensive literature on fractional programming. 
See S. Schaible (1994) "Fractional Programming" in S. Gass and C M . Harris, 
eds.. Encyclopedia of Operations Research and Management Science (Norwell, 
Mass. Kluwer Academic Publishers) who notes 900 articles tha t have appeared 
since Charnes-Cooper (1962). To start we reproduce {FFQ) from section 2.3 of 
Chapter 2, as follows 

max 9 = ^ ^ ^ " ' ^ ^ ' • ° (3.91) 

subject to ''=^ ^ "̂-̂  < 1, j = l,...,n 

Ur^Vi > 0. Vr, z 

Now we can choose a new variable t in such a way tha t 

tY^ViXio = l, (3.92) 
i=i 
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which imphes t > 0. Multiplying all numerators and denominators by this t 
does not change the value of any ratio. Hence setting 

p^ — tvi^ i = l , . . . , m (3.93) 

we have replaced the above problem by the following equivalent, 

s 

max 6 = y^firVro (3.94) 
r = l 

m 

subject to y j i^iXio — 1 
i=l 

s m 

"^fJ^rVrj -^J^iXij <0 j = l , . . . , n 

r = l i=l 

Hr, z/i > 0. Vr, i 

This is the same as (LPo) in Section 2.4 which we have transformed using what 
is referred to as the "Charnes-Cooper transformation" in fractional program­
ming. This reduction of (3.91)to the linear programming equivalent in (3.94) 
also makes available {DLPQ) the dual problem which we reproduce here as 

min e (3.95) 
n 

subject to Oxio — 2_\ ^ij^j + ^ r ' ^ = 1 , . . . , m 

n 

j=l 

This is the form used by Farrell (1978) which we employed for Phase I, as de­
scribed in Section 3.3, followed by a Phase II in which the slacks are maximized 
in the following problem 

m s 

max X] *̂~ + X^ ̂ t (3.96) 

n 

subject to *̂a:̂ o = y^^ijAj + 5~, i = l , . . . , m 

n 

Vro — / ^ Vrj^j ^ r ) V =^ i^ . . . ^ S 

0 < A j - , 5 r , 5 + , V j , i , r 

where 0* is the value obtained by solving (3.95) in Phase I. As noted in the text 
the solution to (3.95) is referred to as "Farrell efficiency." It is also referred to as 
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"weak efficiency," as measured by 6*, since this measure does not comprehend 
the non-zero slacks that may be present. In the economics Hterature (3.95) is 
said to assume "strong disposal." If we omit the s^ in the first m constraints 
in (3.95) we then have what is called "weak disposal" which we can write in 
the following form 

min 0 (3.97) 
n 

subject to Oxio = 2_j ^ij^j^ i = 1 , . . . . ,m 

Vro — / ^ Vrj^j ^r "> ̂  — i , . . . , 5 

3 = 1 

which means that the input inequalities are replaced with equalities so there is 
no possibility of positive input slacks that may have to be disposed of. Some­
times this is referred to as the assumption of "weak" and "strong" input disposal 
in order to distinguish it from corresponding formulations in output oriented 
models. In either case, these weak and strong disposal assumptions represent 
refinements of the "free disposal" assumption introduced by T.C. Koopmans 
(1951) for use in activity analysis. This assumption means that there is no cost 
associated with disposing of excess slacks in inputs.or outputs. That is, slacks 
in the objective are all to be assigned a zero coefficient. Hence, all nonzero 
slacks are to be ignored, whether they occur in inputs or outputs. For a fuller 
treatment of "weak" and "strong" disposal, see R. Fare, S. Grosskopf and 
C.A.K. Lovell, The Measurement of Efficiency of Production (Boston: Kluwer 
Academic Publishers Group, 1985). 

Problem 3.2 

Can you provide a mathematical formulation that will serve to unify the Phase 
I and Phase II procedures in a single model? 

Suggested Response : One way to do this is to join (3.6) and (3.11) together 
in a single objective as follows: 

( m s \ 

z = l r=l J 
n 

subject to Oxio— 2_\^ij^3-\-s'^ ^ 2 = l , . . . , i 
3 = 1 

,m 

Vro — 7 ^ Vrj^j — S^ . r — 1 , . . . , 5 

3 = 1 

0 < A^-,s~,5+. Vi,z,r 

It is tempting to represent e > 0 by a small (real) number such as e = 10~^. 
However, this is not advisable. It can lead to erroneous results and the sit-
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uation may be worsened by replacing e = 10~^ by even smaller values. See 
I. All and L. Seiford, "The Mathematical Programming Approach to Efficiency 
Analysis" in H.O. Fried, C.A.K. Lovell and S.S. Schmidt, ed., The Measure­
ment of Productive Efficiency (New York: Oxford University Press, 1993) or 
Ali and Seiford (1993) "Computational Accuracy and Infinitesimals in Data 
Envelopment Analysis," INFOR 31, pp.290-297. 

As formulated in the Charnes, Cooper and Rhodes article in the European 
Journal of Operational Research, cited in the Notes and Selected Bibliography, 
above, £ > 0 is formulated as a "non-Archimedean infinitesimal." That is, e > 0 
is smaller than any positive real number and, in fact, the product of e by any 
real number, so that, however large the multiplier, A; > 0, the value of A:̂  > 0 
remains smaller than any positive real number. This means that e > 0 is not 
a real number because the latter all have the Archimedean property — viz., 
given any real number n > 0 there exists another real number n/2 such that 
n > n/2 > 0. Thus, to deal with non-Archimedean elements it is necessary to 
embed the field of real numbers in a still larger field. However, it is not necessary 
to go into the further treatments of this kind of (non-standard) mathematics. 
It is not even necessary to specify a value of e > 0 explicitly. The two-phase 
procedure described in this chapter accomplishes all that is required. Phase 
I accords priority to min^ = 6* with 6* > 0 when the data are semipositive. 
Fixing ^ = ^* as is done in (3.12) for Phase II in Section 3.3 of this chapter, 
we must then have, by definition, 

E^r 
\^=1 r=l / 

A more detailed treatment of these non-Archimedean elements and their rela­
tions to mathematical programming may be found in V. Arnold, I. Bardhan, 
W.W. Cooper and A. Gallegos, "Primal and Dual Optimality in Computer 
Codes Using Two-Stage Solution Procedures in DEA" in J.E. Aronson and 
S. Zionts, ed.. Operations Research: Methods, Models and Applications (West-
port, Conn.: Quorum Books, 1998). Here we only note that the further im­
plications of this non-Archimedean element, which appears in the objective of 
(3.98) can be brought forth by writing its dual as 

s 

max ^ = Y1 
(3.99) 

r=l 
s m 

s u b j e c t t o 2_, t^rVrj — 2_] ^i^ij ^ ^ j =: 1, . . . , n 
r = l i=l 
m 

/ ^ ^i^io — J-
i=l 

fir, i^i > s > 0. Vr, i 

This means that all variables are constrained to positive values. Hence, they 
are to be accorded "some" worth, even though it is not specified explicitly. 
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Finally, as shown in Arnold et al, the principle of complementary slackness 
used in Section 3.3 of this chapter is modified to the following 

0 < ^ rV* < sr*£ (3.100) 

0 < s+*/i; < s+*£. (3.101) 

Hence, unlike what is done with free disposal, one cannot justify ignoring 
nonzero slacks by assuming that corresponding multiplier values will be zero. 
Indeed, the stage two optimization maximizes the slacks, as is done in the Phase 
II procedure associated with (3.96), in order to try to wring out the maximum 
possible inefficiency values associated with nonzero slacks. 

Problem 3.3 
We might note that (3.99), above, differs from (3.94) by its inclusion of the non-
Archimedean conditions /ir,i^i > ^ > 0. Can you show how these conditions 
should be reffected in a similarly altered version of the ratio model in (3.91)? 

Suggested Answer : Multiply and divide the objective in (3.99) by ^ > 0. Then 
multiply all constraints by the same t to obtain 

max ^^r=i{^^'^)yro 3̂̂ ^Q2) 

s m 

subject to /^(^/^r)2/ri — /J(^^i)^ii ^ 0 i = I5 • • • )^ 
r=l i=l 

m 

^{tiyiXio) = t 

{tfir), (tUi) >€>0. Mr, i 

Set Ur — tjir-, Vi — tvi for each r and i. Then substitute in these last expressions 
to obtain 

max -^^ (3.103) 

subject to ^=^ "" ""^ < 1, j == 1 , . . . , n 

Ur 1 ^ ViXio >e Mr 

/

m 

^ViXio > e. Mi 

i = l 

Note that we have reflected the condition Yl^i '^i^io — t'm the above objective 
but not in the constraints because it can always be satisfied. We can also now 
write 

v-^s ^ s / m s \ 

Wit' = E<yro = ̂ *-4E^r* + E«r • (3.104) 
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The equality on the right follows from the dual theorem of linear programming. 
We have added the equaUty on the left by virtue of our derivation and, of course, 
the values of these expressions are bounded by zero and one. 

Prob lem 3.4 

The optimal solution for (LPo) , the multipher problem, for DMU A in Example 
3.1 is 

vl = 0.1429,̂ 2* = 0.1429, t/* = 0.8571. 

Show how these multiplier values could be used as a management guide to 
improve efficiency in A's performance. 

Suggested Response : Applying the above solution to the data in Table 3.2 we 
utilize the multiplier model to write the constraints for DMU A as follows: 

DMU Output Value Output Variable Input Variable Input Value 
A 
B 
C 
D 
E 
F 
G 

0.8571 
0.8571 
0.8571 
0.8571 
0.8571 
0.8571 
0.8571 

= lu* 
= lu* 
= lu* 
= lu* 
= lu* 
= lu* 
= lu* 

Add constraint : 1 = 4vl 

< 4vl + 3^2 
< 7vl + 3v; 
< 8vl + V2 
< 4v*i + 2vi 
< 2VI + 4:V2 
< lOvl + v^ 
< 3vl + 7t;2 

+ 3̂ 2*-

= 1.000 
=1.429 
= 1.284 
=0.8571 
=0.8571 
=1.5719 
=1.429 

Note, first, that lu* = 9* = 0.8571 so the value of the optimal solution of the 
multiplier model is equal to the optimal value of the envelopment model in 
accordance with the duality theory of linear programming and, similarly, the 
reference set is {D,E}, as indicated by the arrows. Here we have t̂ J' = t>2 = 
0.1429 so a unit reduction in the 4 + 3 = 7 units of input used by A would bring 
it into 4 + 2 = 6 units used by D and E. Thus, v* = v^ = v^ = 0.1429 = 1/7 
is the reduction required to bring A to full efficiency. We can provide added 
perspective by reducing xi = 4 to J i = 3 which positions A half way between 
D and E on the efficient frontier in Figure 3.2. It also produces equality of the 
relations for A as in the following expression 

^̂ * = 3̂ 1* + Sv^ = 0.8575. 

Division then produces 
7 / * 

= 1, 
Svl + 3v^ 

which is the condition for efficiency prescribed for {FPo) as given in (2.3)-(2.6) 
in Chapter 2. Here we have vl = V2 = 0.1429 so a use of either xi or X2 
produces equal results per unit change en route to achieving full efficiency. 
More generally we will have v^ 7̂  ̂ 2, etc., so these values may be used to guide 
managerial priorities for the adjustments to the model. 

There are two exceptions that require attention. One exception is provided 
by Definition 2.1 in Chapter 2, which notes that all components of the vectors t;* 
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and u* must be positive in at least one optimal solution. We use the following 
solution for G as an illustration, 

vl = 0.3333, v^ = 0 , u* = 0.6666. 

From the data of Example 3.1, we then have 

0.6666 = 111* < 3̂ 1* + 7v^ = 1.00. 

Replacing â i = 3 by Xi = 2 produces equality, but efficiency cannot be claimed 
because i'2 = 0 is present. 

Reference to Figure 3.2 shows that the inefficiency associated with the nonzero 
slack in going from i^ to E is not attended to and, indeed, the amount of slack 
associated with X2 is worsened by the horizontal movement associated with the 
reduction in going from xi = 3 to Si =2. Such a worsening would not occur 
for F in Figure 3.2, but in either case full efficiency associated with achieving a 
ratio of unity does not suffice unless all multipliers are positive in the associated 
adjustments. 

The second exception noted above involves evaluations of the DMUs that are 
fully efficient and hence are used to evaluate other DMUs. This complication is 
reflected in the fact that the data in the basis matrix B is changed by any such 
adjustment and so the inverse B~^ used to evaluate other DMUs, as given in 
(3.53), is also changed. This topic involves complexities which cannot be treated 
here, but is attended to later in this book after the requisite background has 
been supplied. It is an important topic that enters into further uses of DEA and 
hence has been the subject of much research which we summarize as follows. 

The problem of sensitivity to data variations was first addressed in the 
DEA literature by A. Charnes, W.W. Cooper, A.Y. Lewin, R.C. Morey and 
J. Rousseau "Sensitivity and Stability Analysis in DEA," Annals of Operations 
Research 2, 1985, pp. 139-156. This paper was restricted to sensitivity analy­
ses involving changes in a single input or output for an efficient DMU. Using 
the CCR ratio model, as in (3.91), above, this was subsequently generalized to 
simultaneous changes in all inputs and outputs for any DMU in A. Charnes 
and L. Neralic, "Sensitivity Analysis of the Proportionate Change of Inputs 
(or Outputs) in Data Envelopment Analysis," Glasnik Matematicki 27, 1992, 
pp.393-405. Also using the ratio form of the multiplier model, R.G. Thompson 
and R.M. Thrall provided sensitivity analyses in which all data for all DMUs are 
varied simultaneously. The basic idea is as follows. All inputs and all outputs 
are worsened for the efficient DMUs until at least one DMU changes its status. 
The multipliers and ratio values are then recalculated and the process is reiter­
ated until all DMUs become inefficient. See R.G. Thompson, P.S. Dharmapala, 
J. Diaz, M. Gonzalez-Lima and R.M. Thrall, "DEA Multiplier Analytic Center 
Sensitivity Analysis with an Illustrative Application to Independent Oil Com­
panies," Annals of Operations Research 66^ 1996, pp. 163-167. An alternate and 
more exact approach is given in L. Seiford and J. Zhu, "Sensitivity Analysis 
of DEA Models for Simultaneous Changes in All the Data," Journal of the 
Operational Research Society 49, 1998, pp. 1060-1071. Finally, L. Seiford and 
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J. Zhu in "Stability Regions for Maintaining Efficiency in Data Envelopment 
Analysis," European Journal of Operational Research 108, 1998, pp. 127-139 
develop a procedure for determining exact stability regions within which the 
efficiency of a DMU remains unchanged. More detail on the topic of sensitivity 
is covered in Chapter 9. See also W.W. Cooper, L.M. Seiford and J. Zhu (2004) 
Chapter 3, "Sensitivity Analysis in DEA," in W.W. Cooper, L.M. Seiford and 
J. Zhu, eds., Handbook on Data Envelopment Analysis (Norwell, Mass., Kluwer 
Academic Publishers). 

Problem 3.5 (Complementary Slackness and Sensitivity Analysis) 

Table 3.7 displays a data set of 5 stores {A,B,C^D and E) with two inputs 
(the number of employees and the floor area) and two outputs (the volume of 
sales and profits). 

Assignment: (i) Using the code CCR-I in the DEA-Solver, obtain the efficiency 
score (0*), reference set (A*), the optimal weights (t;*,n*) and slacks (s~*, s"̂ *) 
for each store, (ii) Interpret the complementary slackness conditions (3.15) 
between the optimal weights and the optimal slacks, (iii) Discuss the meaning 
of ul of C, and use sensitivity analysis to verify your discussion, (iv) Check 
the output shortfall s j * of B and identify the influence of its increase on the 
value of the corresponding multiplier (weight) U2 using the CCR-I code, (v) 
Regarding the store B, discuss the meaning of v^. 

Suggested Response : (i) The efficiency score (^*) and reference set (A*) are 
listed in Table 3.7 under the heading "Score." Store E is the only efficient 

Store 
A 
B 
C 
D 
E 

Employee 
10 
15 
20 
25 
12 

Table 3.7. Data and Scores of 5 Stores 

Data 
Area 

20 
15 
30 
15 
9 

Sales 
70 

100 
80 

100 
90 

Profits 
6 
3 
5 
2 
8 

0* 
0.933333 
0.888889 
0.533333 
0.666667 
1 

Score 
Rank 

2 
3 
5 
4 
1 

Reference 
E (id.im^) 
E (1.11111) 
E (0.88889) 
E (1.11111) 

^ ( 1 ) 

DMU and is referent to all other stores. The optimal weights and slacks are 
displayed in Table 3.8. 

(ii) The complementary slackness conditions in (3.15) assert that, for an optimal 
solution we have 

v*sr* = 0 (for i = 1,2) and <5+* = 0 (for r = 1,2) . 
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Table 3.8. Optimal Weights and Slacks 

Store 

A 
B 
C 
D 
E 

Emply. 

^1 

0.1 
0.0667 
0.05 
0 
0.0702 

Weights 
Area Sales 

0 
0 
0 
0.0667 
0.0175 

0.0133 
0.00889 
0.00667 
0.00667 
0.00526 

Profits 
* 

U2 0 
0 
0 
0 
0.0658 

Emply. 

0 
0 
0 
3.3333 
0 

Slacks 
Area 

11.6667 
3.3333 
8 
0 
0 

Sales 

0 
0 
0 
0 
0 

Profits 

•^5 

0.2222 
5.8889 
2.1111 
6.8889 
0 

This means that if v^ > 0 then s^* = 0 and if 5^* > 0 then v* = 0, and 
the same relations hold between u* and s"^*. This can be interpreted thus: if 
a DMU has an excess {s~*) in an input against the referent DMU, then the 
input item has no value in use to the DMUo being evaluated, so the optimal 
(multiplier) solution assigns a value of zero to the corresponding weight (v*). 
Similarly we can see that for a positive weight to be assigned to a multiplier, 
the corresponding optimal slack must be zero. 
(iii) C has ul = 0.00667 and this value can be interpreted in two ways. First, 
with recourse to the fractional program described by (2.3)-(2.6) in Chapter 2, 
we can interpret ul (the optimal weight to "sales") as the degree of influence 
which one unit of sales has on the optimal efficiency score. Thus, if C increases 
its sales by one unit, then it is expected that 0* will increase by 0.00667 {=ul) 
to 0.533333+0.00667=0.54, since the denominator of (2.3) does not change and 
retains the value 1. On the other hand, U2 — 0 implies that a one unit increase 
in "profits" has no effect on the efficiency score of C. The second interpretation 
is that in (3.59) we introduced u* as "pricing vectors" and in the envelopment 
form of LP, li* is the reduced cost induced by one unit change in output r. 
Notice that y^ appears as the constant in (3.41). Hence u* = 0.00667 shows 
the degree of contribution that one unit change of sales can make to use the 
efficiency score. The above observations contribute to identifying which output 
has the largest influence on the efficiency score. However, such analysis of in­
fluence is valid only in a limited range of observations. To check this range you 
can change the efficiency score of C by adding to the data set a virtual store 
C , with sales of 101 and other data equal to C, and then applying the CCR-I 
code again. 
(iv) B has the slack 5J* = 5.889 (shortfall in "profits") and, by the comple­
mentary slackness theorem, 1/2"* = 0, showing that this level of profits has no 
effect on the efficiency evaluation. Adding this value to current profits will raise 
profits to 8.889. We augmented the data set by adding B', which has profits of 
8.889, and other observations equal to B and tried CCR-I for this data set. As 
a result, we have, for B', S2"* = 0 and wj* = 0.1. This means that, at this level 
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of profits, this output has a positive influence on the efficiency score, which in 
this case is a 0.1 per unit increase. 
(v) B has the optimal weight v^ — 0.0667. It can therefore be said that changes 
in the number of employees affects the efliiciency score. In this case, reduced 
costs analysis using LP is not as straightforward as in u*. Hence, dealing with 
the fractional program in (2.3)-(2.6) is appropriate for the sensitivity analysis 
of data on employees. If B reduces its employees by one to 14, then the denom­
inator of (2.3) decreases by v^ = 0.0667. Since the other terms are unchanged, 
the objective function (2.3) takes the value 

(0.00889 X 100 + 0 X 3)/(0.0667 x 14 + 0 x 15) == 0.952. 

Since the value is still less than one and all constraints in (2.4) are satisfied by 
this set of (i;*, n*), the above objective value gives a lower bound of 0* for this 
adjusted problem. Application of CCR-I code for this new problem showed 
that 0.952 is the optimal objective value. Thus, it may be expected that an 
input item with a large v* value greatly affects the efl̂ iciency value. 

Problem 3.6 
Solve Example 3.1 in Table 3.2 (Section 3.7) using the output-oriented model 
(CCR-0 model in DEA-Solver) and compare the corresponding CCR-projection 
with the input-oriented case. 

Suggested Response : For ease of comparison with the input-oriented case, the 
optimal objective value ry* is demonstrated by its inverse 6* (= l/rj*). 

The optimal solution to A reads 

r = 0.8571 (r;* = 1.1667) 

A;^ = 0.8333, A;^ = 0.3333, other A* = 0 

The output-oriented CCR-projection was performed following (3.74)-(3.75), 
which resulted in 

Xi i- xi =4 (no change) 

£2 ^ ^2 = 3 (no change) 

y^r]''y = 1.167 x 1 = 1.167 (16.7% increase). 

These results differ from the input-oriented case, reflecting the difference in 
model orientation. Table 3.9 exhibits the CCR-projection in both input and 
output orientations. 

Problem 3.7 

Suppose the activity (cCo, y^) is inefficient. Let the improved activity obtained 
by the input-oriented model (3.22) and (3.23) be (2o, yo)y 

Xo = 0*Xo - s~* - XX* (3.105) 
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DMU 

A 
B 
C 
D 
E 
F 
G 

Table 3.9. 

Data 
Xi X2 

4 3 
7 3 
8 1 
4 2 
2 4 

10 1 
3 7 

y 
1 
1 
1 
1 
1 
1 
1 

CCR-project 

Score 
*̂ 

0.8571 
0.6316 
1.0000 
1.0000 
1.0000 
1.0000 
0.6667 

on in Ir 

Input 
Xi 

3.43 
4.42 
8 
4 
2 
8 
2 

iput and Output Orientations 

orientation 
X2 

2.57 
1.89 
1 
2 
4 
1 
4 

2/ 

Output orientation 
xi X2 y 

4 3 1.17 
7 3 1.58 
8 2 1 
4 2 1 
2 4 1 
8 1 1 
3 6 1.5 

yo^Vo^ s +* _ FA* (3.106) 

while that of the output-oriented model (3.74) and (3.75) be (dCo, y^)-

t-* =:: X/X* (3.107) 

(3.108) 

Xo — Xn 

yo = v*yo + t^*=Y^* 

An activity on the line segment connecting these two points can be expressed 
by 

{x'o^ y'o) = 0^1 (So, Vo) + «2 (aco, Vo) (3.109) 

a i + 0̂2 = 1, Q;I > 0, 0:2 > 0. 

Prove the following 

Proposition 3.1 The activity {x'^, y'^) is CCR-efficient. 

Suggested Answer : 
Proof Since by (3.65) /i* = A76>* , we have 

« , y ' j = a i (X, y)A* + a2 (X, y ) A 7 r 

= ( a i + a 2 / ^ * ) (XA*, yA*) 

By applying Theorem 3.4, we can see that {x'^, y'^) is CCR-efficient. D 
This proposition is valid for any nonnegative combination of two points ( a i > 0 
and a2 > 0). That is, it holds even when relaxing the convex-combination 
condition ai + a2 = 1. Also, the case a i = 1, a2 = 0 corresponds to the 
input-oriented improvement and the case a i = 0, 0̂ 2 = 1 to the output-
oriented one. The case ai — 1/2, a2 = 1/2 is a compromise between the two 
points. 

Problem 3.8 

Solve the hospital example in Chapter 1 (see Table 1.5) by input-oriented and 
output-oriented CCR models. Compare the CCR-projections of hospital C in 
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both cases. Based on the previous Proposition 3.1, determine the combination 
of both projections using (3.109) with ai = a2 = 1/2. 

Suggested Answer : The data sheet for this problem is recorded in Figure B.l 
in Appendix B. Prepare two Excel Workbooks, e.g., "Hospital-CCR-I.xls" and 
"Hospital-CCR-0.xls," each containing Figure B.l as the data sheet. Then run 
CCR-I (the input-oriented CCR model) and CCR-0 (the output-oriented CCR 
model). After the computations, the CCR-projections are stored in "Projec­
tion" sheets as follows: 
For input orientation: 

Doctor 
Nurse 
Outpatient 
Inpatient 

DfKi T/Tr TO /^ /M • 
^IlLUjltOfi. 

Doctor 
Nurse 
Outpatient 
Inpatient 

25 
160 
160 
55 

25 
160 
160 
55 

-^ 
-> 
-> 
-^ 

-> 
-> 
-> 
-> 

20.9 
141 
160 
55 

23.6 
160 
181 

62.3 

(16% reduction) 
(12% reduction) 
(no change) 
(no change) 

(5% reduction) 
(no change) 
(13% increase) 
(13% increase) 

We have a compromise of the two models as the averages of the projected values 
as follows (this is equivalent to the case ai = a2 = 1/2 in Proposition 3.1): 

Doctor 25 -> 22 (12% reduction) 
Nurse 160 -> 150 (6% reduction) 
Outpatient 160 -> 171 (7% increase) 
Inpatient 55 -> 59 (7% increase) 

These improvements will put C on the efficient frontier. 

Problem 3.9 
Assume that the data set (X, Y) is semipositive (see the definition in Section 
3.2) and let an optimal solution of {DLPo) in Section 3.3 be (^*, A*,s~*,5+*). 
Prove that the reference set defined by Eo = {j\X* > 0} {j e { 1 , . . . ,n}) is not 
empty. 
Suggested Answer: 
We have the equation: 

Let an optimal solution of (LPo) in Section 3.3 be (t;*,u*). By multiplying v* 
from left to the above equation, we have 

Since v*Xo = lis a. constraint in (LPo) and 'y*s~*=Oby the complementarity 
condition, it holds 
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Here, 6* is positive as claimed in Section 3.3. Thus, A* must be semipositive 
and Eo is not empty. • 

Problem 3,10 

Part 1. Using model (3.95) show that the output inequality will always be 
satisfied as an equation in the single output case. That is, the output slack will 
be zero at an optimum. 
Proof: 
It is easy to see what is happening if we start with the case of no outputs. 
In this case the solution will be ^* = 0 and all Aj = 0 since only the output 
constraints keep this from happening. It follows that for the case of one output 
a solution with yo < Yl]=i Vj^j cannot be optimal since this choice of As would 
prevent 0 from achieving its minimum value. To see that this is so note that a 
choice of the minimizing value of 9 is determined by 

= m a x < — \i = 1 , . . . ,7Ti > = — - — 
^ I ^ i o J ^ 

Xkj/^j 

and this maximum value can be lowered until yo — Y^^^iVj^j- (Here for 
simplicity we are assuming that all data are positive.) Hence optimality requires 
Vo — S j = i Vj^] so the output slack is zero in an optimum solution. • 
Part 2. Extend the above to show that at least one output inequality must be 
satisfied as an equation in the case of multiple outputs r = 1 , . . . ,5, like the 
ones represented in (3.95). 
Proof: 
Replace (3.95) by the following model 

minmax<^6>,^^r'iAj >yro\r = l , . . . , s l = f <9*,X^2/fciA* ^ yuo] 

subject to (3.110) 
n 

S^io > ^XijXj, i = l , . . . , m 

0 <6' < 1, Aj- > 0 , J = l , . . . , n . 

This is a multiple criteria programming problem which seeks to minimize the 
maximum of the r = l , . . . , s inequalities representing the output values set 
by the yro as lower limits for each of the s outputs. Note that the maximum 
output values are limited by the input constraints. The condition 0 < ^ < 1 
which eliminates the possibility of infinite solutions is not needed in (3.95) since 
its minimizing objective guarantees its fulfillment. 

Now the maximal values may be decreased in (3.110) until equality is achieved 
in at least one of the output inequalities and the minimization of 0 eliminates 
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the possibility of being misled by the choice of a set of A values that does not 
minimize this maximum because of the presence of alternate optima. The op­
timizing values 6*, A* represented on the right of (3.110) therefore minimize 9 
with 

— 
= max^ — -̂̂ —"̂ ^— ,̂ i = 1 , . . . ,m 

and all constraints are satisfied in (3.95) as well as in (3.110). • 

Corollary 3.2 At least one input as well as one output constraint will he satis­
fied as an equality at an optimum so these constraints have zero slack in (3.95) 
and (3,110), 

We also have following 

Theorem 3.6 Model (3,110) is equivalent to model (3,95), 

Similar results hold for the "output-oriented" version of the CCR model with a 
"Farrell" measure of efficiency that is represented by the value of 9* in (3.95). 
Such equivalences may also be established for other DEA models, like the BCC 
model that will be presented in the next chapter. Finally, we also note that we 
earlier established the relation of (3.95) to a fractional programming model so 
our linear programming DEA formulation provides a link between this multiple 
objective nonlinear programming problem and a nonlinear nonconvex fractional 
programming problem. See also Cooper (2005)^^ for a discussion of relations 
between multiple criteria programming and goal programming formulations 
which are also equivalent to a nonlinear problem directed to minimizing a sum 
of absolute values. 

Notes 

1. It might be noted that Postulate (A2) is included in (A4) but is separated out for 
special attention. 

2. See Appendix A.4. 

3. See Appendix A.4. 

4. Farrell also restricted his treatments to the single output case. See M.J. Farrell (1957) 
"The Measurement of Production Efficiency, " Journal of the Royal Statistical Society A, 
120, pp.253-281. 

5. In the linear programming hterature this is called the "complementary slackness" con­
dition. This terminology is due to A.W. Tucker who is responsible for formulating and proving 
this. See E.D. Nering and A.W. Tucker Linear Programs and Related Problems, (Harcourt 
Brace, 1993). See our Appendix A.6 for a detailed development. 

6. See Appendix A.8. 

7. Although empirical studies show the uniqueness of the reference set for most DMUs, 
there may be multiple reference sets and improvement plans (projections) in the presence of 
multiple optimal solutions. 

8. See Appendix A.4. 
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9. We notice that OQ and OA are measured by some "distance measure." If we employ 
the "Euclidian measure" - also called the "̂ 2 metric" - we have 

d(OQ) _ x/3.4282 + 2.5712 _ ^18.36 ^ ^ ^^ 

d{OA) ~~ A/42 + 32 ~ x/25 ~ ' * 

However, the measure is not restricted to Euchdian measure. Any l^ measure gives the same 
result. See Appendix A in Charnes and Cooper, Management Models and Industrial Appli­
cations of Linear Programming (New York, John Wiley, Inc., 1961). See also W.W. Cooper, 
L.M. Seiford, K. Tone and J. Zhu "DEA: Past AccompHshments and Future Prospects," 
Journal of Productivity Analysis (submitted, 2005). 

10. "Aborts" were treated as reciprocals so that an increase in their output would reduce 
the value of the numerator in the (FPo) objective represented in (2.3). They could also 
have been subtracted from a dominatingly large positive constant. See A. Charnes, T. Clark, 
W.W. Cooper and B. Golany "A Development Study of Data Envelopment Analysis in Mea­
suring the Efficiency of Maintenance Units in the U.S. Air Forces," Annals of Operational 
Research 2, 1985, pp.59-94. 

11. R.D. Banker and R.C. Morey (1986), "Efficiency Analysis for Exogenously Fixed Inputs 
and Outputs," Operations Research 34, 1986, pp.513-521. See also Chapter 10 in R. Fare, 
S. Grosskopf and C.A. Knox Lovell Production Frontiers (Cambridge University Press, 1994) 
where this is referred to as "sub-vector optimizations." 

12. A fuller treatment of these e > 0 values is provided in Problem 3.2 at the end of this 
chapter. 

13.1.R. Bardhan (1995), "DEA and Stochastic Frontier Regression Approaches Applied 
to Evaluating Performances of Public Secondary Schools in Texas," Ph.D. Thesis. Austin 
Texas: Graduate School of Business, the University of Texas at Austin. Also available from 
University Microffims, Inc. in Ann Arbor, Michigan. 

14.V.L. Arnold, I.R. Bardhan and W.W. Cooper "A Two-Stage DEA Approach for Iden­
tifying and Rewarding Efficiency in Texas Secondary Schools" in W.W. Cooper, S. Thore, 
D. Gibson and F. Philhps, eds., IMPACT: How ICf^ Research Affects Public Policy and 
Business Practices (Westport, Conn.: Quorum Books, 1997) 

15. An additional category may also be identified as Property which applies to (a) Choice 
of goals or objectives, and (b) Choice of means to achieve goals or objectives. 

16. See Arnold et al. (1997) for further suggestions and discussions. 

17. See Governmental Accounting Standards Board (GASB) Research Report: "Service 
Efforts and Accomplishments Reporting: Its Time Has Come," H.P. Hatry, J.M. Sullivan, 
J.M. Fountain and L. Kremer, eds. (Norwell, Conn., 1990). 

18.C.A.K. Lovell, L.C. Walters and Lisa Wood, "Stratified Models of Education Pro­
duction Using Modified DEA and Regression Analysis," in A. Charnes, W.W. Cooper, 
A.Y. Lewin and L.M. Seiford, eds.. Data Envelopment Analysis: Theory, Methodology and 
Applications (Norwell, Mass.: Kluwer Academic Publishers, 1994). 

19. W.W. Cooper (2005), "Origin, Uses of and Relations Between Goal Programming 
and DEA (Data Envelopment Analysis)" Journal of Multiple Criteria Decision Analysis (to 
appear). 




