
10 SUPER-EFFICIENCY MODELS 

10.1 INTRODUCTION 

In this chapter we introduce a model proposed by Andersen and Petersen 
(1993)/ that leads to a concept called "super-efficiency." The efficiency scores 
from these models are obtained by eliminating the data on the DMUo to be 
evaluated from the solution set. For the input model this can result in values 
which are regarded as according DMUo the status of being "super-efficient." 
These values are then used to rank the DMUs and thereby eliminate some (but 
not all) of the ties that occur for efficient DMUs. 

Other uses of this approach have also been proposed. Wilson (1993)^, for 
example, suggests two uses of these measures in which each DMUo is ranked 
according to its "influence" in either (or both) of the following two senses: 
(1) the number of observations that experience a change in their measure of 
technical efficiency as a result of these eliminations from the solution set and 
(2) the magnitude of these changes. Still other interpretations and uses are 
possible, and we shall add further to such possibilities. See also Ray (2000).^ 

There are troubles with these "super-efficiency" measures, as we shall see. 
These troubles can range from a lack of units invariance for these measures and 
extend to non-solution possibilities when convexity constraints are to be dealt 
with — as in the BCC model. However, the underlying concept is important, so 
we shall first review this approach to ranking in the form suggested by Andersen 
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302 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS AND ITS USES 

and Petersen (1993) and then show how these deficiencies may be eliminated 
by using other non-radial models that we will suggest. 

10.2 RADIAL SUPER-EFFICIENCY MODELS 

We start with the model used by Andersen and Petersen which takes the form 
of a CCR model and thereby avoids the possibility of non-solution that is 
associated with the convexity constraint in the BCC model. In vector form 
this model is 

[Super Radial-I-C] <9* = min 6- ees^ (10.1) 

n 

subject to 9xo = ] ^ XjXj + s~ 

n 

where all components of the A, s~ and s~^ are constrained to be non-negative, 
£ > 0 is the usual non-Archimedean element and e is a row vector with unity 
for all elements. 

We refer to (10.1) as a "Radial Super-Efficiency" model and note that the 
vectors, XQ^ VQ are omitted from the expression on the right in the constraints. 
The data associated with the DMUo being evaluated on the left is therefore 
omitted from the production possibility set. However, solutions will always 
exist so long as all elements are positive in the matrices X, F > 0. (For weaker 
conditions see Charnes, Cooper and Thrall (1991)"^). 

The above model is a member of the class of Input Oriented-CCR (CCR-I) 
models. The output oriented version (Radial Super-0-C) has an optimal 0* — 
1/6* and A*, s~*, s+* adjusted by division with ^*, so we confine our discussion 
to the input oriented version, after which we will turn to other models, such as 
the BCC class of models, where this reciprocal relation for optimal solutions 
does not hold. 

We illustrate the use of (10.1) with the data in Table 10.1 that is represented 
geometrically in Figure 10.1. Taken from Andersen and Petersen, these data 
are modified by adding DMU F, (which lies halfway between B and C), to 
portray all possibilities. 



SUPER-EFFICIENCY MODELS 303 

Table 10.1. Test Data 

DMU 

Input 1 
Input 2 
Output 1 

A 

2.0 
12.0 

1.0 

B 

2.0 
8.0 
1.0 

c 
5.0 
5.0 
1.0 

D 

10.0 
4.0 
1.0 

E 

10.0 
6.0 
1.0 

F 

3.5 
6.5 
1.0 

Source: Andersen and Petersen (1993) 

o '̂ 
Figure 10.1. The Unit Isoquant Spanned by the Test Data in Table 10.1 

Consider, first, the evaluation of DMU A as determined from the following 
adaptation of (10.1) where, as can be seen, the data for A are represented on 
the left but not on the right. 

z* ~ minO — e{s^ -{- s^ ) — es'^ 

subject to 

26 = 2\B + 5Ac + IOAD + lOA^ + 3.5AF + 5^ 

12<9 = 8A5 + 5Ac + 4AD + ^\E + 6.5AF + s^ 

1 = AB + Ac + AD + A ;̂ + AF + s+ 

0 < A B , . . . , A F , S ^ , 5 ^ , S + . 

The solution to this problem is ^* = 1, A^ = 1 s^* = 4. All other variables 
are zero so 2;* == 1 — 4e. This is the same solution that would be obtained if the 
data for DMU A were included on the right. The evaluation of an inefficient 
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point, like A, is not affected by this omission from the production possibihty 
set because the efficient points that enter into the evaluation are unaffected by 
such a removal. 

The latter condition is also present in the case of F. That is, the efficient 
points used in the evaluation of F are not removed from the production possi
bility set. Thus, the solution 9* = 1 and A^ == AJ. = 1/2 confirms the efficiency 
of F both before and after such a removal. The important consideration is 
that the same efficient points that enter into (or can enter into) the evaluation 
of a DMUo are present in both cases. This will also be the case for any in
efficient point. For example the evaluation of E is unaffected with ^* = 3/4 
and^A^ = X*j^ = 1/2 both before and after removal of the point E from the 
production possibility set. A point like A, which is on a part of the frontier 
that is not efficient will have the value ^* = 1, as is also true for the efficient 
point F which is on a part of the efficient frontier but is not an extreme point. 
See Charnes, Cooper and Thrall (1991) for a discussion of all possible classes 
of points and their properties. Now consider the rankings. The slacks are rep
resented in the objective of (10.1) so we have the ranking: DMU F > DMU A 
since 1 > 1 — 46 while 6* = 3/4 lies below both values by the definition of e > 0 
so this ranking will be F > A > E. 

We next delete C from the production possibility set and obtain the solution 
6* = 1.2 and A^ = AĴ  = 1/2 so that DMU C ranks as a super-efficient 
convex combination of B and D. This solution gives the coordinates of C with 
Xi — X'z = 6 so the elimination of C results in a replacement that yields the 
same unit of output with a 1 unit (=20%) increase in each input. 

The Andersen-Petersen rankings are exhibited in Table 10.2 with B ranked 
first followed by D. A possible interpretation of what kind of managerial deci
sion might be involved is to assume that the rankings are directed to studying 
the consequences of eliminating some DMUs. For this purpose, D might be 
preferred over B because of the large (7.5 units) reduction in input 1 — a re
duction that is given the negligible weight of e > 0 in the rankings associated 
with the Andersen-Petersen measure. 

Rank Order 

z* 

Reference 
Set 

s 

Table 10.2. Anc 

B > 

1.32 

\A = 0.79 
Xc = 0.21 

0 

D > 

1.25-7.5£ 

Ac = l 

s- = 7.5 

dersen-Petersei 

C > 

1.2 

XA = 0.5 
AD = 0.5 

0 

1 Ranking* 

F > 

1 

XB = 0.5 
Ac = 0.5 

0 

A > 

l - 4 £ 

XB = 1 

s^ = 4 

E 

0.75 

Ac = 0.5 
AD = 0.5 

0 

Source: Andersen and Petersen (1993) 
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For purposes like the possible removal of DMUs the Andersen-Petersen mea
sure can be regarded as deficient in its treatment of the nonzero slacks. It is 
also deficient because its treatment of the slacks does not yield a measure that 
is "units invariant." We therefore turn to SBM (the slacks based measure) to 
eliminate these deficiencies. We will do this in a way that eliminates the non-
solution possibilities that are present when the convexity condition Y2^=i ̂ j — ^ 
is adjoined to the models we will suggest. 

10.3 NON-RADIAL SUPER-EFFICIENCY MODELS 

Here, we discuss the super-efficiency issues under the assumption that the DMU 
{Xo^Vo) ŝ SBM-efficient, i.e., it is strongly efficient. (See Definition 4.6 in 
Chapter 4.) 

Let us define a production possibility set P \ {xo^Vo) spanned by {X^Y) 
excluding {Xo^Vo), i-̂ -

^\(^o,2/o) = S ( .̂2/)l ^ > JZ ^^^ '̂ ^ - X^ ^oVj^ y > 0, A > 0 > . 

(10.2) 
Further, we define a subset P \ {xo^Vo) of P \ (Xo^i/o) ^s 

P\{xo,y^) = P\ {xo, y J n {* > ^o and y < 2/J , (10.3) 

where P\{xo,yo) means that point {xo^Vo) î  excluded. By assumption X > 0 
and y > 0, JP \ {Xo^Vo) î  ^ot empty. 

As a weighted li distance from (xo^Vo) and (x,y) G P \ (Xo,yo), we employ 
the index 6 as defined by 

1 sr-^m - I 

s Z-^r=l yr/Vro 

From (10.3), this distance is not less than 1 and attains 1 if and only if {Xo, Vo) G 
P \ {xo,yo)i i-e. exclusion of the DMU (Xo^Vo) ^̂ as no effect on the original 
production possibility set P. 

We can interpret this index as follows. The numerator is a weighted /i 
distance from Xo to x{> cCo), and hence it expresses an average expansion rate 
of Xo to X of the point {x,y) G P \ {Xo^yo)- The denominator is a weighted 
li distance from y^ to y{< y^), and hence it is an average reduction rate of 
y^ to y of {x^y) G P \ (cCo,2/o). The smaller the denominator is, the farther 
y^ is positioned relative to y. Its inverse can be interpreted as an index of 
the distance from y^ to y. Therefore, 6 is a, product of two indices: one, the 
distance in the input space, and the other in the output space. Both indices 
are dimensionless. 
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10.3.1 Definition of Non-radial Super-efficiency Measure 

Based on the above observations, we define the super-efficiency of {Xo^Vo) ^^ 
the optimal objective function value S* from the following program: 

(10.5) [SuperSBM-C] 

subject to 

n = nun ^-^^—\—t 
U — l l l i i i ^ g _ 

X > 2_^ XjXj 
3 = l,^o 

y< J2 ^^yj 

x>Xo and ^ < y^ 
y>0, A > 0. 

Let us introduce (j) G R^ and t/) e R^ such that 

Xi - Xio{l + (t)i) (i = 1 , . . . , m) and yr = 2/ro(l + ^r) (r = 1, • . . , s). (10.6) 

Then, this program can be equivalently stated in terms of 0, xp and A as 
follows: 

1 -I- — Y ^ ^ //) 
[SuperSBM-C] S* = min T^s^^ (10-7) 

(j),ip,\ 1 - 7 L r = i Vr 
n 

subject to y j ^ij^j ~ ^io(j>i < Xio {i = 1,... •,m) 

n 

^ yrjXj + VroA >yro{r = l,...,s) 

(t>i > 0 (Vi), A > 0 (Vr), A,- > 0 (Vi) 

We have the following two propositions (Tone (2002)^. 

Proposition 10.1 The super-efficiency score S* is units invariant, i.e. it is 
independent of the units in which the inputs and outputs are measured provided 
these units are the same for every DMU. 

Proof : This proposition holds, since both the objective function and con
straints are units invariant. D 

Proposition 10.2 Let (aXo^PVo) '^^^^ a < 1 and /S > 1 be a DMU with 
reduced inputs and enlarged outputs than {xo^Vo)' Then, the super-efficiency 
score of {aXo^tiVo) is not less than that of {Xo^Vo). 

Proof: The super-efficiency score (^*) of (aXo^PVo) î  evaluated by solving the 
following program: 

[SuperSBM-C-2] S* = min rSt'^.'^^i 
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= m i n - f — 5 — (10.8) 

n 

subject to X > 22 ^3^3 
3 = 1.1^0 

n 

y< Yl ^^yj 
3 = l,^o 

X > aXo and 0 < y < Py^ 

A > 0. 

It can be observed that, for any feasible solution {x^y) for [SuperSBM-C-2], 
{x/a.ylP) is feasible for [SuperSBM-C]. Hence it holds 

~ ^Y.l=iiyr/P)/yro oi ^T.l=iyr/yro' 
Comparing (10.8) with (10.9) we see that: 

Thus, the super-efficiency score of {aXo,Pyo) ( <̂  ^ 1 ^^d /? > 1) is not less 
than that of (xo^yo)- ^ 

10.3.2 Solving Super-efRciency 

The fractional program [SuperSBM-C] can be transformed into a linear pro
gramming problem using the Charnes-Cooper transformation as: 

^ m 

[LP] r* = min t + - y $i (10.10) 
m ^-^ 

i=l 

1 * 
subject to t y ^ ^ - 1 

r=l 
n 

y ^ XijAj - Xio^i - Xio^ < 0 (i = 1 , . . . , m) 
n 

] ^ 2/̂ jA -̂ + Vro^r - yrot > 0 {T = l,...,s) 
3 = l,^o 
^i>0 (Vi), ^^ > 0 (Vr), Â - > 0 (Vi) 

Let an optimal solution of [LP] be (r*, ^*, ^* , A*, T) . Then we have an optimal 
solution of [SuperSBM-C] expressed by 

c5* = r*. A* - A V r , </>* = * 7 r , i/;* - ^ V r . (10.11) 

Furthermore, the optimal solution of [Super-SBM-C] is given by: 

xl = Xio{l + 0*) (i = 1 , . . . ,m) and f,, = yro{l - i^l) (r = 1,... ,5). (10.12) 
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10.3.3 Input/Output-Oriented Super-efRciency 

In order to adapt the non-radial super-efficiency model to input (output) orien
tation, we can modify the preceding program as follows. For input orientation, 
we deal with the weighted /i-distance only in the input space. Thus, the pro
gram turns out to be: 

^ m 

[SuperSBM-I-C] 5} = min 1 -f — ^ 0̂  (10.13) 
</>,A rn i=l 

subject to y j ^ij^j ~ Xio<t>i ^ ^io (̂  = 1, •. • ,m) 

n 

Yl y^j^j ^y^o (r = i , . . . , 5 ) 

0 i>O(Vi) , A,->0(Vi) 

In a similar way we can develop the output-oriented super-efficiency model 
as follows: 

[SuperSBM-O-C] <55 = min p^^ , (10.14) 

n 

subject to y ^ ^ij^j ^ ^io (i = 1 , . . . ,m) 

n 

^ yrjXj + Vrolpr > Vro (r =: 1, . . . , s) 

i^r > 0 (Vr), A,- > 0 (Vj) 

Since the above two models have the same restricted feasible region as 
[SuperSBM-C], we have: 

Proposition 10.3 6} > S* and SQ > S*, where J* is defined in (10.4)-

10.3.4 An Example of Non-radial Super-efRciency 

Using [SuperSBM-I-C] model in (10.13), we solved the same data set described 
in Table 10.1 and obtained the results exhibited in Table 10.3. Since DMUs A 
and E are enveloped respectively by B and C, their SBM scores are less than 
unity and SBM-inefficient. Compared with the radial model, DMU A dropped 
its efficiency from 1 - 46: to 0.833. This is caused by the slack s^ = 4. We 
need to solve [SuperSBM-I-C] for DMUs B, C, D and F which have SBM score 
unity. DMU B has the optimal solution A^ = 1, 2̂ = 2̂A</>2 — 4, (02 = 
4/8 — 0.5) with all other variables zero, and hence its super-efficiency score 
is 1 -I- 0.5/2 — 1.25. Similarly, DMUs C, D and F have super-efficiency scores 
1.092, 1.125 and 1, respectively. In this example, the ranking is the same as 
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the Andersen-Petersen model, although they are not always same (see Tone 
(2002)). 

Table 10.3. Non-radial Super-efficiency 

DMU A B C D E F 

Super-efF. 0.833 1.25 1.092 1.125 0.667 1 
Rank 5 1 3 2 6 4 

Reference XB = I XA = I XD = 0.23 Ac = 1 Xc = 1 XB = 0.5 
set XF = 0.77 Ac = 0.5 

Slacks 
s- =xi(t)i 0 0 0 0 5 0 
s- = X262 4 4 0.923 1 1 0 

10.4 EXTENSIONS TO VARIABLE RETURNS-TO-SCALE 

In this section, we extend our super-efficiency models to the variable returns-
to-scale models and discuss the infeasible LP issues that then arise. 

We extend our analysis to the variable returns-to-scale case by adjoining the 
following convexity constraints to the models: 

n 

^ A ^ - = 1, Â- > 0 , Vj. (10.15) 
3 = 1 

We observe two approaches as follows: 

10.4.1 Radial Super-efficiency Case 

We have two models [SuperRadial-I-V] (Input-oriented Variable RTS) and 
[SuperRadial-0-V] (Output-oriented Variable RTS) with models represented 
respectively as follows. 

[SuperRadial-I-V] O"" = minO (10.16) 
n 

subject to 9xio > Y^ XjXij {i = 1,... ,m) (10.17) 

n 

yro< Yl ^jVrj {^ =^^-"^s) (10.18) 

n 

E ^^ = 1 (10.19) 

A,- > 0 (Vi). 
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[SuperRadial-0-V] 

subject to 

1/77* =: min l/?7 

vvro < Yl ^^y^^^ (̂  = 1̂ -
i=l,7^o 

E A, = l 
3=1,^0 

Xj > 0 (Vi). 

. ,m) 

. . ,«) 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

The above two programs may suffer from infeasibility under the following 
conditions. Suppose, for example, 2/10 is larger than the other yij {j / o), i.e., 

yio > max {yij}. 

Then, the constraint (10.18) in [SuperRadial-I-V] is infeasible for r = 1 by dint 
of the constraint (10.19). 

Likewise, suppose, for example, Xio is smaller than the other xij {j 7̂  o), 
i.e., 

n 
xio < min {xij}. 

Then, the constraint (10.21) in [SuperRadial-0-V] is infeasible for i == 1 by dint 
of the constraint (10.23). 

Thus, we have: 

Proposition 10.4 [SuperRadial-I-V] has no feasible solution if there exists r 
such that yro > ^^^^j^o{yrj}, CL'nd [SuperRadial-0-V] has no feasible solution 
if there exists i such that Xio < mmj:^o{xij}^ 

We notice that Proposition 10.4 above is not a necessary condition for infeasi
bility, i.e., infeasibility may occur in other cases. 

10.4.2 Non-radial Super-efRciency Case 

The non-radial super-efficiency under variable returns-to-scale is evaluated by 
solving the following program: 

[SuperSBM-V] S* = min,5 = fis^^^,^'° (10-24) 
7 E r = l yr/Vr 

subject to X > 2_] ^j^j 

n 
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x>Xo and y <yo 
n 

y>0, A > 0 . 

Under the assumptions X > O and F > O, we demonstrate that the [SuperSBM-
V] is always feasible and has a finite optimum in contrast to the radial super-
efiiciency. This can be shown as follows. 

We choose a DMU j{^ o) with {xj,yj) and set Xj = 1 and Xj^ = 0 {k ^ j). 
Using this DMU {xj^y-) we define: 

Xi = ma,x{xioyXij} (i == 1 , . . . ,m) (10.25) 

yr =min{^^o,^ri} (r := 1 , . . . , 5). (10.26) 

Thus, the set (x = x,y = y^X = X) is feasible for the [SuperSBM-V]. Hence, 
[SuperSBM-V] is always feasible with a finite optimum. Thus, we have: 

Theorem 10.1 (Tone (2002)) The non-radial super-efficiency model under 
the variable returns-to-scale enwronmen^,[SuperSBM-V], is always feasible and 
has a finite optimum. 

We can define [SuperSBM-I-V] (Input-oriented Variable RTS) and [SuperSBM-
0-V] (Output-oriented Variable RTS) models similar to [SuperSBM-I-C] and 
[SuperSBM-0-C]. We notice that [SuperSBM-I-V] and [SuperSBM-0-V] mod
els confront the same infeasible LP issues as the [SuperRadial-I-V] and [Super 
Radial-0-V]. See Problem 10.1 for comparisons of super-efficiency models. 

10.5 SUMMARY OF CHAPTER 10 

This chapter introduced the concept of super-efficiency and presented two 
types of approach for measuring super-efficiency: radial and non-radial. Super-
efficiency measures are widely utilized in DEA applications for many purposes, 
e.g., ranking efficient DMUs, evaluating the Malmquist productivity index and 
comparing performances of two groups (the bilateral comparisons model in 
Chapter 7). 

10.6 NOTES AND SELECTED BIBLIOGRAPHY 

Andersen and Petersen (1993) introduced the first super-efficiency model for 
radial models. Tone (2002) introduced non-radial super-efficiency models using 
the SBM. 

10.7 RELATED DEA-SOLVER MODELS FOR CHAPTER 10 

Super-eflSciency codes have the same data format with the CCR model. 

Super-Radial-I(0)-C(V) (Input(Output)-oriented Radial Super-efficiency 
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model). 

This code solves the oriented radial super-efficiency model under the constant 
(variable) returns-to-scale assumption. If the corresponding LP for a DMU 
is infeasible, we return a score 1 to the DMU. 

Super-SBM-I(0)-C(V or GRS) (Input(Output)-oriented Non-radial Super-
efficiency model) 

This code solves the oriented non-radial super-efficiency model under the 
constant (variable or general) returns-to-scale assumption. If the correspond
ing LP for a DMU is infeasible, we return a score 1 to the DMU. 

Super-SBM-C(V or GRS) (Non-radial and Non-oriented Super-efficiency 
model) 

This code solves the non-oriented non-radial super-efficiency model under 
the constant (variable or general) returns-to-scale assumption. 

10.8 PROBLEM SUPPLEMENT FOR CHAPTER 10 

Prob lem 10.1 

Table 10.4 displays data for 6 DMUs (A, B, C, D, E, F) with two inputs (xi, X2) 
and two outputs (yi, 2/2)- Obtain and compare the super-efficiency scores using 
the attached DEA-Solver. 

Table 10.4. Data for Super-efficiency 

DMU 

Input 1 (xi) 
Input 2 {X2) 
Output 1 (yi) 
Output 2 (1/2) 

A 

2 
12 
4 
1 

B 

2 
8 
3 
1 

C 

5 
5 
2 
1 

D 

10 
4 
2 
1 

E 

10 
6 
1 
1 

F 

3.5 
6.5 

1 
1 

Suggested Answer : Tables 10.5 and 10.6 exhibit super-efficiency scores respec
tively under variable and constant returns-to-scale conditions. In the tables I 
(0) indicates the Input (Output) orientation and V (C) denotes the Variable 
(Constant) RTS. "NA" (not available) represents an occurrence of infeasible 
LP solution. 

It is observed that, by dint of Proposition 10.4, Super-BCC-I and Super-
SBM-I-V scores of DMU A are not available since it has yiA = 4 which is 
strictly larger than other yij {j ^ A), and Super-BCC-0 and Super-SBM-0-V 
scores of DMU D are not available since it has X^D — 4 which is strictly smaller 
than other x^j {j 7̂  D). The infeasibility of DMUs B and C for Super-BCC-0 
and Super-SBM-0-V is caused simply by non-existence of feasible solution for 
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the corresponding linear programs. However, Super-SBM-V always has finite 
solutions as claimed by Theorem 10.1. 

Under the constant RTS assumption, all DMUs have a finite score which 
resulted from exclusion of the convexity constraint on Xj. The differences in 
scores between radial and non-radial models are due to non-zero slacks. 

Table 10.5. Super-efficiency Scores under Variable RTS 

D M U B D 

Super-BCC-I NA 1.26 1.17 1.25 0.75 1 
S u p e r - B C C - 0 1.33 NA NA NA 1 1 
Super-SBM-I-V NA 1.25 1.12 1.13 0.66 1 
Super-SBM-O-V 1.14 NA NA NA 0.57 0.57 
Super-SBM-V 1.14 1.25 1.12 1.13 0.42 0.57 

Table 10.6. Super-efficiency Scores under Constant RTS 

DMU 

Super-CCR-I 
Super-CCC-0 
Super-SBM-I-C 
Super-SBM-0-C 
Super-SBM-C 

A 

1.33 
1.33 
1.17 
1.14 
1.14 

B 

1.26 
1.26 
1.25 
1.2 
1.16 

C 

1.17 
1.17 
1.12 
1.09 
1.09 

D 

1.25 
1.25 
1.13 
1.25 
1.13 

E 

0.75 
0.75 
0.67 
0.5 
0.42 

F 

1 
1 
1 
0.57 
0.57 
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