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Pseudo-Likelihood

9.1 Introduction

Full marginal maximum likelihood, as discussed in Chapters 6 and 7, can
become prohibitive in terms of computation when measurement sequences
are of moderate to large length. This is one of the reasons why generalized
estimating equations (GEE, Chapter 8) have become so popular. One way
to view the genesis of GEE is by modifying the score equations to simpler
estimating equations, thereby preserving consistency and asymptotic nor-
mality, upon using an appropriately corrected variance-covariance matrix.
Alternatively, the (log-)likelihood itself can be simplified to a more man-
ageable form. This is, broadly speaking, the idea behind pseudo-likelihood
(PL). For example, when a joint density is of the Bahadur (Section 7.2),
probit (Section 7.6), or Dale (Section 7.7) form, calculating the higher-
order probabilities needed to evaluate the score vector and Hessian matrix
can be prohibitive while, at the same time, interest can be confined to a
small number of lower-order moments. The idea is then to replace the sin-
gle joint density by, for example, all univariate densities, or all pairwise
densities over the set of all possible pairs within a sequence of repeated
measures. As a simple illustration, a three-way density

Li = fi(yi1, yi2, yi3|θi) (9.1)

would be replaced by the product

L∗
i = fi(yi1, yi2θ

∗
i ) · fi(yi1, yi3θ

∗
i ) · fi(yi2, yi3|θ∗

i ). (9.2)
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Such a change is computationally advantageous, asymptotics can be res-
cued, and modeling (9.2) is equally simple, if not simpler, than modeling
(9.1), as the parameter vector θ∗

i in (9.2) typically is a subvector of θi in
(9.1).

Section 9.2 introduces pseudo-likelihood in a formal way, and such that
it can be of use, not only here in marginal applications, but also for condi-
tional (Chapter 12) and subject-specific (Chapters 21 and 25) applications.
Appropriate test statistics are given in Section 9.3. The specific situation
of PL for marginal models is the topic of Section 9.4, and a comparison be-
tween marginal PL and GEE is presented in Section 9.5. The methodology
is illustrated using the NTP data (Section 9.6).

9.2 Pseudo-Likelihood: Definition and Asymptotic
Properties

To formally introduce pseudo-likelihood, we will use the convenient general
definition given by Arnold and Strauss (1991). See also Geys, Molenberghs,
and Ryan (1999) and Aerts et al (2002). Without loss of generality we can
assume that the vector Y i of binary outcomes for subject i (i = 1, . . . , N)
has constant dimension n. The extension to variable lengths ni for Y i is
straightforward.

9.2.1 Definition
Define S as the set of all 2n − 1 vectors of length n, consisting solely of
zeros and ones, with each vector having at least one non-zero entry. Denote
by y

(s)
i the subvector of yi corresponding to the components of s that are

non-zero. The associated joint density is fs(y
(s)
i |θi). To define a pseudo-

likelihood function, one chooses a set δ = {δs|s ∈ S} of real numbers, with
at least one non-zero component. The log of the pseudo-likelihood is then
defined as

p	 =
N∑

i=1

∑
s∈S

δs ln fs(y
(s)
i |θi). (9.3)

Adequate regularity conditions have to be assumed to ensure that (9.3)
can be maximized by solving the pseudo-likelihood (score) equations, the
latter obtained by differentiation of the logarithm of PL and setting the
derivative equal to zero.

The classical log-likelihood function is found by setting δs = 1 if s is the
vector consisting solely of ones, and 0 otherwise.
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9.2.2 Consistency and Asymptotic Normality
Before stating the main asymptotic properties of the PL estimators, we first
list the required regularity conditions on the density functions fs(y(s)|θ).

A0 The densities fs(y(s)|θ) are distinct for different values of the parame-
ter θ.

A1 The densities fs(y(s)|θ) have common support, which does not depend
on θ.

A2 The parameter space Ω contains an open region ω of which the true
parameter value θ0 is an interior point.

A3 ω is such that for all s, and almost all y(s) in the support of Y (s), the
densities admit all third derivatives

∂3fs(y(s)|θ)
∂θk1∂θk2∂θk3

.

A4 The first and second logarithmic derivatives of fs satisfy

Eθ

(
∂ ln fs(y(s)|θ)

∂θk

)
= 0, k = 1, . . . , p,

and

0 < Eθ

(−∂2 ln fs(y(s)|θ)
∂θk1∂θk2

)
< ∞, k1, k2 = 1, . . . , p.

A5 The matrix I0, to be defined in (9.5), is positive definite.

A6 There exist functions Mk1k2k3 such that

∑
s∈S

δsEθ

∣∣∣∣∂3 ln fs(y(s)|θ)
∂θk1∂θk2∂θk3

∣∣∣∣ < Mk1k2k3(y)

for all y in the support of f and for all θ ∈ ω and mk1k2k3 =
Eθ0

[Mk1k2k3(Y )] < ∞.

Theorem 9.1, proven by Arnold and Strauss (1991), guarantees the exis-
tence of at least one solution to the pseudo-likelihood equations, which is
consistent and asymptotically normal. Without loss of generality, we can
assume θ is constant. Replacing it by θi and modeling it as a function of
covariates is straightforward.

Theorem 9.1 (Consistency and Asymptotic Normality) Assume
that (Y 1, . . . ,Y N ) are i.i.d. with common density that depends on θ0. Then
under regularity conditions (A1)–(A6):
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1. The pseudo-likelihood estimator θ̃N , defined as the maximizer of (9.3),
converges in probability to θ0.

2.
√

N(θ̃N − θ0) converges in distribution to

Np[0, I0(θ0)−1I1(θ0)I0(θ0)−1], (9.4)

with I0(θ) defined by

I0,k1k2(θ) = −
∑
s∈S

δsEθ

(
∂2 ln fs(y(s)|θ)

∂θk1∂θk2

)
(9.5)

and I1(θ) by

I2,k1k2(θ) =
∑

s,t∈S

δsδtEθ

(
∂ ln fs(y(s)|θ)

∂θk1

∂ ln ft(y(t)|θ)
∂θk2

)
. (9.6)

Similar in spirit to generalized estimating equations (Chapter 8), the as-
ymptotic normality result provides an easy way to consistently estimate the
asymptotic covariance matrix. Indeed, the matrix I0 is found from evalu-
ating the second derivative of the log PL function at the PL estimate. The
expectation in I1 can be replaced by the cross-products of the observed
scores. We will refer to I−1

0 as the model based variance estimator (which
should not be used as it overestimates the precision), to I1 as the empirical
correction, and to I−1

0 I1I
−1
0 as the empirically corrected variance estima-

tor. In the context of generalized estimating equations, this is also known
as the sandwich estimator.

As discussed by Arnold and Strauss (1991), and exactly the same as
with GEE, the Cramèr-Rao inequality implies that I−1

0 I1I
−1
0 is greater

than the inverse of I (the Fisher information matrix for the maximum
likelihood case), in the sense that I−1

0 I1I
−1
0 − I−1 is positive semi-definite.

Strict inequality holds if the PL estimator fails to be a function of a minimal
sufficient statistic. Therefore, a PL estimator is always less efficient than the
corresponding ML estimator. Note that, for maximum likelihood, the full
density f would be used, rather than the pseudo-likelihood contributions.

9.3 Pseudo-Likelihood Inference

The close connection of PL to likelihood is an attractive feature. It en-
abled Geys, Molenberghs, and Ryan (1999) to construct pseudo-likelihood
ratio test statistics that have easy-to-compute expressions and intuitively
appealing limiting distributions. In contrast, likelihood ratio test statistics
for GEE (Rotnitzky and Jewell 1990) are slightly more complicated.
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In practice, one will often want to perform a flexible model selection.
Therefore, one needs extensions of the Wald, score, or likelihood ratio test
statistics to the pseudo-likelihood framework. Rotnitzky and Jewell (1990)
examined the asymptotic distributions of generalized Wald and score tests,
as well as likelihood ratio tests, for regression coefficients obtained by gener-
alized estimating equations for a class of marginal generalized linear models
for correlated data. Using similar ideas, we derive different test statistics, as
well as their asymptotic distributions for the pseudo-likelihood framework.
Liang and Self (1996) have considered a test statistic, for one specific type
of pseudo-likelihood function, which is similar in form to one of the tests
we will present below.

Suppose we are interested in testing the null hypothesis H0 : γ = γ0,
where γ is an r-dimensional subvector of the vector of regression parameters
θ and write θ as (γ′, δ′)′. Then, several test statistics can be used.

9.3.1 Wald Statistic
Because of the asymptotic normality of the PL estimator θ̃N ,

W ∗ = N(γ̃N − γ0)′Σ−1
γγ (γ̃N − γ0)

has an asymptotic χ2
r distribution under the null hypothesis, where Σγγ

denotes the r × r submatrix of Σ = I−1
0 I1I

−1
0 . In practice, the matrix Σ

can be replaced by a consistent estimator, obtained by substituting the PL
estimator θ̃N . Although the Wald test is in general simple to apply, it is
well-known to be sensitive to changes in parameterization. The Wald test
statistic is therefore particularly unattractive for conditionally specified
models, as marginal effects are likely to depend in a complex way on the
model parameters (Diggle, Heagerty, Liang, and Zeger 2002).

9.3.2 Pseudo-Score Statistics
As an alternative to the Wald statistic, one can propose the pseudo-score
statistic. A score test has the advantage that it can be obtained by fitting
the null model only. Furthermore, it is invariant to reparameterization. Let
us define

S∗(e.c.) =
1
N

Uγ [γ0, δ̃(γ0)]′I
γγ
0 Σ−1

γγ Iγγ
0 Uγ [γ0, δ̃(γ0)],

where ‘e.c.’ denotes empirically corrected and δ̃(γ0) denotes the maximum
pseudo-likelihood estimator in the subspace where γ = γ0, Iγγ

0 is the r × r
submatrix of the inverse of I0, and Iγγ

0 Σ−1
γγ Iγγ

0 is evaluated under H0. Geys,
Molenberghs, and Ryan (1999) showed that this pseudo-score statistic is
asymptotically χ2

r distributed under H0. As discussed by Rotnitzky and
Jewell (1990) in the context of generalized estimating equations, such a
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score statistic may suffer from computational stability problems. A model
based test that may be computationally simpler is:

S∗(m.b.) =
1
N

Uγ [γ0, δ̃(γ0)]′I
γγ
0 Uγ [γ0, δ̃(γ0)].

However, its asymptotic distribution under H0 is complicated and given by∑r
j=1 λjχ

2
1(j) where the χ2

1(j) are independently distributed as χ2
1 variables

and λ1 ≥ . . . ≥ λr are the eigenvalues of (Iγγ
0 )−1Σγγ , evaluated under

H0. The score statistic S∗(m.b.) can be adjusted such that it has an ap-
proximate χ2

r distribution, which is much easier to evaluate. Several types
of adjustments have been proposed in the literature (Rao and Scott 1987,
Roberts, Rao, and Kumar 1987). Similar to Rotnitzky and Jewell (1990),
Geys, Molenberghs, and Ryan (1999) proposed an adjusted pseudo-score
statistic

S∗
a(m.b.) = S∗(m.b.)/λ,

where λ is the arithmetic mean of the eigenvalues λj . Note that no distinc-
tion can be made between S∗(e.c.) and S∗

a(m.b.) for r = 1. Moreover, in
the likelihood-based case, all eigenvalues reduce to one and thus all three
statistics coincide with the model based likelihood score statistic.

9.3.3 Pseudo-Likelihood Ratio Statistics
Another alternative is provided by the pseudo-likelihood ratio test statistic,
which requires comparison of full and reduced model:

G∗2 = 2
[
p	(θ̃N) − p	(γ0, δ̃(γ0))

]
.

Geys, Molenberghs, and Ryan (1999) showed that the asymptotic distrib-
ution of G∗2 can also be written as a weighted sum

∑r
j=1 λjχ

2
1(j), where

the χ2
1(j) are independently distributed as χ2

1 variables and λ1 ≥ . . . ≥
λr are the eigenvalues of (Iγγ

0 )−1Σγγ . Alternatively, the adjusted pseudo-
likelihood ratio test statistic, defined by

G∗2
a = G∗2/λ,

is approximately χ2
r distributed. Their proof shows that G∗2 can be rewrit-

ten as an approximation to a Wald statistic. The covariance structure of
the Wald statistic can be calculated under the null hypothesis, but also
under the alternative hypothesis. Both versions of the Wald tests are as-
ymptotically equivalent under H0 (Rao 1973, p. 418). Therefore, it can be
argued that the adjustments in G∗2

a can also be evaluated under the null
as well as under the alternative hypothesis. These adjusted statistics will
then be denoted by G∗2

a (H0) and G∗2
a (H1), respectively. In analogy with

the Wald test statistic, we expect G∗2
a (H1) to have high power. A similar
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reasoning suggests that the score test S∗
a(m.b.) might closely correspond

to G∗2
a (H0), as both depend strongly on the fitted null model. Analogous

results were obtained by Rotnitzky and Jewell (1990). Aerts et al (2002)
reported on extensive simulations to compare the behavior of the various
test statistics.

The asymptotic distribution of the pseudo-likelihood based test statis-
tics are weighted sums of independent χ2

1 variables where the weights are
unknown eigenvalues. In Aerts and Claeskens (1999) it is shown theoreti-
cally that the parametric bootstrap leads to a consistent estimator for the
null distribution of the pseudo-likelihood ratio test statistic. The bootstrap
approach does not need any additional estimation of unknown eigenvalues
and automatically corrects for the incomplete specification of the joint dis-
tribution in the pseudo-likelihood. Similar results hold for the robust Wald
and robust score test. The simulation study of Aerts and Claeskens (1999)
indicates that the χ2 tests often suffer from inflated type I error probabili-
ties, which are nicely corrected by the bootstrap. This is especially the case
for the Wald statistic, whereas the asymptotic χ2 distribution of the ro-
bust score statistic test is performing quite well. The parametric bootstrap
is expected to break down if the likelihood of the data is grossly misspeci-
fied. Aerts et al (2002, Chapter 11) present a more robust semiparametric
bootstrap, based on resampling the score and differentiated score values.

9.4 Marginal Pseudo-Likelihood

A marginally specified odds ratio model (Molenberghs and Lesaffre 1994,
1999, Glonek and McCullagh 1995, Lang and Agresti 1994, see also Sec-
tion 7.7) becomes prohibitive in computational terms when the number
of replications within a unit gets moderate to large. In such a situation,
both GEE and PL are viable alternatives. The connection between GEE
based on odds ratios (Section 8.6) and the corresponding PL is strong and
will be developed in Section 9.5. Marginal PL methodology has been pro-
posed, among others, by le Cessie and van Houwelingen (1994) and Geys,
Molenberghs, and Lipsitz (1998).

9.4.1 Definition of Marginal Pseudo-Likelihood
Again, assume there are i = 1, . . . , N units with j = 1, . . . , ni measurements
per unit. We will start with a general form and then focus on clustered
binary data, where the outcomes Yij are replaced by a summary statistic
Zi =

∑ni

j=1 Yij , the total number of successes within the ith cluster.
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9.4.1.1 First Form

le Cessie and van Houwelingen (1994) replace the true contribution of a vec-
tor of correlated binary data to the full likelihood, written as f(yi1, . . . , yini),
by the product of all pairwise contributions f(yij1 , yij2) (1 ≤ j1 < j2 ≤ ni),
to obtain a pseudo-likelihood function. Grouping the outcomes for subject
i into a vector Y i, the contribution of the ith cluster to the log pseudo-
likelihood is

p	i =
∑

1≤j1<j2≤ni

ln f(yij1 , yij2), (9.7)

if it contains more than one observation. Otherwise p	i = f(yi1). In what
follows, we restrict our attention to clusters of size larger than 1. Units of
size 1 contribute to the marginal parameters only. This specific version of
pseudo-likelihood is often referred to as pairwise likelihood.

Using a bivariate Plackett distribution (Plackett 1965, Section 7.7.1), the
joint probabilities f(yij1 , yij2), denoted by µij1j2 , can be specified using
(7.40), with the pairwise odds ratio as in (7.39). The contributions of the
form f(yij1 , yij2) can then be combined into a pseudo-likelihood function
p	 (9.7), which can be maximized as if it where a genuine bivariate log-
likelihood. The asymptotic variance-covariance matrix of the parameter
estimates then follows from (9.4).

9.4.1.2 Under Exchangeability

For binary data and taking the exchangeability assumption into account,
the log pseudo-likelihood contribution p	i can be formulated as:

p	i =
(

zi

2

)
lnµ∗

i11 +
(

ni − zi

2

)
lnµ∗

i00 + zi(ni − zi) lnµ∗
i10. (9.8)

In this formulation, µ∗
i11 and µ∗

i00 denote the bivariate probabilities of ob-
serving two successes or two failures, respectively, and µ∗

i10 is the prob-
ability for the first component being 1 and the second being 0. Under
exchangeability, this is identical to the probability µ∗

i01 for the first being
0 and the second being 1. If we consider the following reparameterization:

µi11 = µ∗
i11,

µi10 = µ∗
i11 + µ∗

i10 = µ01,

µi00 = µ∗
i11 + µ∗

i10 + µ∗
i01 + µ∗

i00 = 1,

then this one-to-one reparameterization maps the three, common within-
cluster, two-way marginal probabilities (µ∗

i11, µ
∗
i10, µ

∗
i00) to two one-way

marginal probabilities (which under exchangeability are both equal to µi10)
and one two-way probability µi11 = µ∗

i11. Hence, equation (9.8) can be re-
formulated as:

p	i =
(

zi

2

)
lnµi11 +

(
ni − zi

2

)
ln(1 − 2µi10 + µi11)



9.4 Marginal Pseudo-Likelihood 197

+zi(ni − zi) ln(µi10 − µi11), (9.9)

and the pairwise odds ratio ψijk reduces to:

ψi =
µi11(1 − 2µi10 + µi11)

(µi10 − µi11)2
.

To enable model specification, we assume a composite link function ηi =
(ηi1, ηi2)′ with a mean and an association component:

ηi1 = ln(µi10) − ln(1 − µi10),
ηi2 = ln(ψi) = ln(µi11) + ln(1 − 2µi10 + µi11) − 2 ln(µi10 − µi11).

From these links, the univariate and pairwise probabilities are easily derived
(Plackett 1965), leading to a specific version of (7.40):

µi10 =
exp(ηi1)

1 + exp(ηi1)

and

µi11 =

{
1+2µi10(ψi−1)−Si

2(ψi−1), if ψi �= 1
µ2

i10 if ψi = 1,

with

Si =
√

[1 + 2µi10(ψi − 1)]2 + 4ψi(1 − ψi)µ2
i10.

Finally, we can assume a linear model ηi = Xiθ, with Xi a known design
matrix and θ a vector of unknown regression parameters. The maximum
pseudo-likelihood estimator θ̂ of θ is then defined as the solution to the
pseudo-score equations U(θ) = 0. Using the chain rule, U(θ) can be writ-
ten as:

U(θ) =
N∑

i=1

X ′
i(T

−1
i )′ ∂p	i

∂µi

(9.10)

with µi = (µi10, µi11)′ and Ti = ∂ηi/∂µi. Newton-Raphson starts with a
vector of initial estimates θ(0) and updates the current value of the para-
meter vector θ(s) by

θ(s+1) = θ(s) + W (θ(s))−1U(θ(s)).

Here, W (θ) is the matrix of the second derivatives of the log pseudo-
likelihood with respect to the regression parameters θ:

W (θ) =
N∑

i=1

X ′
i

[
F i + (T−1

i )′ ∂2p	i

∂µi∂µ′
i

(T−1
i )
]

Xi,
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and F i is defined by (McCullagh 1987, p. 5; Molenberghs and Lesaffre 1999,
see also Section 7.12.2):

(Fi)pq =
∑

s

∑
a,b,c

∂2ηia

∂µib∂µic

∂µis

∂ηia

∂µib

∂ηip

∂µic

∂ηiq

∂p	i

∂µis
.

The Fisher scoring algorithm is obtained by replacing the matrix W (θ) by
its expected value:

E[W (θ)] =
N∑

i=1

X ′
i(T

−1
i )′Ai(T−1

i )Xi,

with Ai the expected value of the matrix of second derivatives of the log
pseudo-likelihood p	i with respect to µi.

The sandwich estimator (9.4) can now be written as:

W (θ̂)−1

[
N∑

i=1

U i(θ̂)U i(θ̂)′
]

W (θ̂)−1.

9.4.1.3 Second Form

A non-equivalent specification of the pseudo-likelihood contribution (9.7)
is:

p	∗
i = p	i/(ni − 1).

The factor 1/(ni − 1) corrects for the feature that each response Yij occurs
ni − 1 times in the ith contribution to the PL, and it ensures that the PL
reduces to full likelihood under independence, as then (9.9) simplifies to:

p	i = (ni − 1) [zi ln(µi10) + (ni − zi) ln(1 − µi10)] .

We can replace p	i by p	∗
i . However, if (ni − 1) is considered random it is

not obvious that the expected value of Ui(θ)/(ni−1) equals zero. To ensure
that the solution to the new pseudo-score equation is consistent, we have
to assume that ni is independent of the outcomes given the covariates for
the ith unit. When all ni are equal, the PL estimator θ and its variance-
covariance matrix remain the same, no matter whether we use p	i or p	∗

i

in the definition of the log pseudo-likelihood.

9.4.2 A Generalized Linear Model Representation
To obtain the pseudo-likelihood function described in Section 9.4.1, we
replaced the true contribution f(yi1, . . . , yini) of the ith unit to the full
likelihood by the product of all pairwise contributions f(yij1 , yij2) with
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1 ≤ j1 < j2 ≤ ni. This implies that a particular response yij occurs ni − 1
times in p	i. Therefore, it is useful to construct for each response yij , ni −1
replicated y

(j2)
ij1

with j2 �= j1. The dummy response y
(j2)
ij1

is to be interpreted

as the particular replicate of yij that is paired with the replicate y
(j1)
ij2

of
yij2 in the pseudo-likelihood function. Using this at first sight odd but
convenient device, we are able to rewrite the gradient of the log pseudo-
likelihood p	 in an appealing generalized linear model type representation.
With notation introduced in the previous section, the gradient can now be
written as

U(θ) =
N∑

i=1

X ′
i(T

−1
i )′V −1

i (Zi − µi),

or, using the second representation p	∗
i , as

U(θ) =
N∑

i=1

1
ni − 1

X ′
i(T

−1
i )′V −1

i (Zi − µi),

where we now define

Zi =
( ∑ni

j1=1
∑

j2 �=j1
Y

(j2)
ij1

1
2

∑ni

j1=1
∑

j2 �=j1
Y

(j2)
ij1

Y
(j1)
ij2

)
, µi =

(
ni(ni − 1)µi10(

ni

2

)
µi11

)
,

and Vi is the covariance matrix of Zi. Geys, Molenberghs, and Lipsitz
(1998) have shown that the elements of Vi take appealing expressions and
are easy to implement. One only needs to evaluate first- and second-order
probabilities. Under independence, the variances reduce to well-known quan-
tities. To obtain a suitable PL estimator for θ, we can use the Fisher-scoring
algorithm where the matrix Ai in the previous section is now replaced by
the inverse of Vi. The asymptotic covariance matrix of θ̂ is estimated in a
similar fashion as before.

9.5 Comparison with Generalized Estimating
Equations

In the previous sections, we described one alternative estimating procedure
for full maximum likelihood estimation in the framework of a marginally
specified odds ratio model, which is easier and much less time consuming.
Several questions arise such as to how the different methods compare in
terms of efficiency and in terms of computing time and what the mathe-
matical differences and similarities are. At first glance, there is a fundamen-
tal difference. A pseudo-likelihood function is constructed by modifying a
joint density. Parameters are estimated by setting the first derivatives of
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this function equal to zero. On the contrary, generalized estimating equa-
tions follow from specification of the first few moments and by adopting
assumptions about the higher order moments. We will explore similarities
and differences in some detail.

In Section 9.4.2, we have rewritten the PL score equations as contrasts of
observed and fitted frequencies, establishing some agreement between PL
and GEE2. Both procedures lead to similar estimating equations. The most
important difference is in the evaluation of the matrix Vi = Cov(Zi). This
only involves first- and second-order probabilities for the pseudo-likelihood
procedure. In this respect, PL resembles GEE1. In contrast, GEE2 also
requires evaluation of third- and fourth-order probabilities. This makes the
GEE2 score equations harder to evaluate and also more time consuming.

Both pseudo-likelihood and generalized estimating equations yield con-
sistent and asymptotically normally distributed estimators, provided an
empirically corrected variance estimator is used and provided the model is
correctly specified. This variance estimator is similar for both procedures,
the main difference being the evaluation of Vi.

If we define the log of the pseudo-likelihood contribution for clusters
with size larger than one as p	∗

i = p	i/(ni − 1), the first component of
the PL vector contribution Si = Zi − µi equals that of GEE2. On the
contrary, the association component differs by a factor of 1/(ni − 1). Yet,
if we would define the log pseudo-likelihood as p	 =

∑N
i=1 p	i, then the

second components would be equal, while the first components would differ
by a factor of ni − 1. Therefore, in studies where the main interest lies in
the marginal mean parameters, one would prefer p	∗ over p	. However, if
primary interest focuses on the estimation of the association parameters,
we advocate the use of p	 instead. GEE1 in that case should be avoided,
as its goal is limited to estimation of the mean model parameters, whereas
GEE2 is computationally more complex.

Aerts et al (2002) compared PL, GEE1, and GEE2 in terms of asymp-
totic and small sample relative efficiency. It was found that the behavior
of PL is generally highly acceptable. In particular, the behavior of PL was
very similar to GEE2, while in terms of computational complexity it is
closer to GEE1 than to GEE2. Liang, Zeger, and Qaqish (1992) suggested
GEE1, GEE2, and PL may be less efficient when the number of repeated
measures per unit are unequal.

9.6 Analysis of NTP Data

We apply the PL and first- and second-order GEE estimating procedures
to data from the DEHP and DYME studies, described in Section 2.7 and
analyzed, using the Bahadur model, in Section 7.2.3 and, using a num-
ber of GEE methods (GEE1, GEE2, and ALR), in Section 8.9. The model
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TABLE 9.1. NTP Data. Parameter estimates (empirically corrected standard er-
rors) for pseudo-likelihood (PL), GEE1, and GEE2 with exchangeable odds ratio,
fitted to the collapsed outcome in the DEHP and DYME studies. β0 and βd are
the marginal intercept and dose effect, respectively; α is the log odds ratio; ψ is
the odds ratio.

Study β0 βd α ψ

Newton-Raphson PL Estimates
DEHP -3.98(0.30) 5.57(0.61) 1.10(0.27) 3.00(0.81)
DYME -5.73(0.46) 8.71(0.94) 1.42(0.31) 4.14(1.28)

Fisher scoring PL Estimates
DEHP -3.98(0.30) 5.57(0.61) 1.11(0.27) 3.03(0.82)
DYME -5.73(0.47) 8.71(0.95) 1.42(0.35) 4.14(1.45)

GEE2 Estimates
DEHP -3.69(0.25) 5.06(0.51) 0.97(0.23) 2.64(0.61)
DYME -5.86(0.42) 8.96(0.87) 1.36(0.34) 3.90(1.32)

GEE1 Estimates
DEHP -4.02(0.31) 5.79(0.62) 0.41(0.34) 1.51(0.51)
DYME -5.89(0.42) 8.99(0.87) 1.46(0.75) 4.31(3.23)

used in the earlier analyses is retained, using intercept (β0) and dose (βd)
parameters. The log odds ratio ψi is modeled as ln ψi = α, in agreement
with, for example, Table 8.5. Table 9.1 shows that the parameter estimates,
obtained by either the pseudo-likelihood or the generalized estimating equa-
tions approach, are comparable. Note that the GEE1 and GEE2 parameter
estimates differ somewhat from the ones obtained in Tables 8.2–8.5, as here
the odds ratio is used to measure association, whereas we used the correla-
tion coefficient in Tables 8.2–8.4. Table 8.5 used the odds ratio as well, but
there ALR was used as estimation method. Because main interest is focused
on the dose effect, we used p	∗ rather than p	. Dose effects and association
parameters are, again, significant throughout, except for the GEE1 asso-
ciation estimates. For this procedure, βa is not significant for the DEHP
study and marginally significant for the DYME study. The GEE1 standard
errors for βa are much larger than for their PL and GEE2 counterparts.
The GEE2 standard errors are the smallest among the different estimating
approaches, which is in agreement with findings in previous sections. Fur-
thermore, it is observed that the standard errors of the Newton-Raphson
PL algorithm are generally slightly smaller than those obtained using Fisher
scoring, which is in line with other empirical findings. On the other hand,
the Newton-Raphson procedure is computationally slightly more complex
in this case. The time gain of Fisher scoring, however, is negligible. PL
based on the classical representation of Section 9.4.1 only needs 11% of the
computation time needed for GEE2. For the GLM, based representation
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of Section 9.4.2, this becomes 7%. The corresponding figure for GEE1 is
2.5%.




