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Generalized Estimating Equations

8.1 Introduction

The main issue with full likelihood approaches for marginal models is the
computational complexity they entail. The net benefit can be efficiency
gain, but this comes at the cost of an increased risk for model misspec-
ification. Of course, full likelihood methods clearly allow the researcher
to calculate joint or union probabilities (such as in the POPS data, Sec-
tion 7.10) and to make, perhaps subtle, inferences about the association
structure. The latter was exemplified in Section 7.7.7. Chapter 7 also made
it clear that there is no unambiguous choice for a full distributional spec-
ification. For example, while the Bahadur model (Section 7.2) is easy to
generate, it suffers from severe restrictions on the parameter space. Other
models may become unwieldy in computational terms when the number of
repeated measures increases beyond a moderate number.

For all of these reasons, when we are mainly interested in first-order mar-
ginal mean parameters and pairwise interactions, a full likelihood procedure
can be replaced by quasi-likelihood based methods (McCullagh and Nelder
1989). In quasi-likelihood, the mean response is expressed as a parametric
function of covariates, and the variance is assumed to be a function of the
mean up to possibly unknown scale parameters. Wedderburn (1974) first
noted that likelihood and quasi-likelihood theories coincide for exponential
families and that the quasi-likelihood estimating equations provide con-
sistent estimates of the regression parameters β in any generalized linear
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model, even for choices of link and variance functions that do not corre-
spond to exponential families.

For clustered and repeated data, Liang and Zeger (1986) proposed so-
called generalized estimating equations (GEE or GEE1) which require only
the correct specification of the univariate marginal distributions provided
one is willing to adopt ‘working’ assumptions about the association struc-
ture. These models are a direct extension of basic quasi-likelihood the-
ory from cross-sectional to repeated or otherwise correlated measurements.
They estimate the parameters associated with the expected value of an
individual’s vector of binary responses and phrase the working assump-
tions about the association between pairs of outcomes in terms of marginal
correlations. The method combines estimating equations for the regression
parameters β with moment-based estimation for the correlation parameters
entering the working assumptions.

Although Liang and Zeger’s (1986) original proposal is undoubtedly the
best known one, not in the least due to its implementation in a number
of standard software packages, including the SAS procedure GENMOD, a
number of alternative proposals have been made as well. Prentice (1988)
extended their results to allow joint estimation of probabilities and pairwise
correlations. Lipsitz, Laird, and Harrington (1991) modified the estimating
equations of Prentice (1988) to allow modeling of the association through
marginal odds ratios rather than marginal correlations. When adopting
GEE1, one does not use information of the association structure to esti-
mate the main effect parameters. As a result, it can be shown that GEE1
yields consistent main effect estimators, even when the association structure
is misspecified. However, severe misspecification may affect the efficiency
of the GEE1 estimators. In addition, GEE1 is less adequate when some
scientific interest is placed on the association parameters.

Second-order extensions of these estimating equations (GEE2) that in-
clude the marginal pairwise association as well, have been studied by Zhao
and Prentice (1990), using correlations, and Liang, Zeger, and Qaqish
(1992), using odds ratios. They note that GEE2 is nearly fully efficient,
as compared to a full likelihood approach, though bias may occur in the
estimation of the main effect parameters when the association structure is
misspecified. A variation to this theme, using conditional probability ideas,
has been proposed by Carey, Zeger, and Diggle (1993). It is referred to
as alternating logistic regressions and is studied in Section 8.6, alongside
second-order GEE. In the same spirit, in Section 8.7, we will show how the
hybrid model, combining elements of a marginal and a conditional formu-
lation, introduced in Section 7.8, can be used as the basis for another GEE
approach, maintaining computational ease (Fitzmaurice and Laird 1993,
Fitzmaurice, Laird, and Rotnitzky 1993).

In Section 8.2, we present the basic GEE theory, while extensions and
variations to the theme are the topic of Section 8.3. Some of these are
then developed in sections to follow. Prentice’s method is reviewed in Sec-
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tion 8.4. Second-order generalized estimating equations are introduced in
Section 8.5. GEE based on odds ratios and alternating logistic regressions
are discussed in Section 8.6. GEE based on the hybrid marginal-conditional
formulation is given in Section 8.7, from which some of the other methods
follow as special cases. An alternative approach, based on linearization, is
given in Section 8.8. Next, three case studies are analyzed: the NTP data
(Section 8.9), the heatshock study, a developmental toxicity study (Sec-
tion 8.10), and the sports injuries trail (Section 8.11).

8.2 Standard GEE Theory

Let us adopt the regression notation, as outlined in Section 7.1.
In many longitudinal applications, inferences based on mean parameters

(e.g., dose effect) are of primary interest. Specifying the full joint distrib-
ution would then be unnecessarily cumbersome. When inferences for the
parameters in the mean model E(Y i) are based on classical maximum
likelihood theory, full specification of the joint distribution for the vector
Y i of repeated measurements within each unit i is necessary. For discrete
data, this implies specification of the first-order moments, as well as of all
higher-order moments. For Gaussian data, full-model specification reduces
to modeling the first- and second-order moments only, a situation much
simpler than in the non-Gaussian case. However, even then can the choice
of inappropriate covariance models seriously invalidate inferences for the
mean structure.

A technique enabling the researcher to restrict modeling to the first mo-
ment only is based on so-called generalized estimating equations (GEEs,
Liang and Zeger 1986, Zeger and Liang 1986, Diggle et al 2002). One way
to approach the methodology is by making two observations. First, the
score equations for a multivariate marginal normal model Y i ∼ N(Xiβ, Vi)
(Chapter 4; see also Verbeke and Molenberghs 2000, Chapter 5) are given
by

N∑
i=1

X ′
i(A

1/2
i RiA

1/2
i )−1(yi − Xiβ) = 0, (8.1)

in which the marginal covariance matrix Vi has been decomposed in the
form

Vi = A
1/2
i RiA

1/2
i , (8.2)

with Ai the matrix with the marginal variances on the main diagonal and
zeros elsewhere, and with Ri equal to the marginal correlation matrix. De-
composition (8.2) is a little unusual in this context, although it is easy to
see what it would look like for such structures as, for example, compound
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symmetry and AR(1). A common decomposition is in terms of a marginal-
ized hierarchical model: Vi = Σi + ZiDZ ′

i (see Chapter 4). The motivation
will become clear before too long.

As a second observation, the score equations to be solved when com-
puting maximum likelihood estimates under a marginal generalized linear
model, (Chapter 3) assuming independence of the responses within units
(either ignoring the correlation in the repeated measures structure or when
truly dealing with uncorrelated measures), takes the form

N∑
i=1

∂µi

∂β′ (A
1/2
i Ini

A
1/2
i )−1(yi − µi) = 0, (8.3)

where, again, Ai is again the diagonal matrix with the marginal variances
along the main diagonal. The mean µi follows from a vector of generalized
linear models, specified for each component of the outcome vector. For
example, a logistic regression can be specified for each of the components.

Note that expression (8.1) is of the form (8.3) but with the correlations
between repeated measures taken into account. A key distinction between
both is that Ai (and Vi as a whole) in (8.1) is usually parameterized by a
set of parameters, functionally independent of the marginal regression pa-
rameters β. On the other hand, Ai in (8.3) is fully specified by the marginal
regression parameters β, through the mean-variance link, common to most
commonly used generalized linear models, as outlined in Chapter 3. Thus,
when measurements are truly uncorrelated, one can restrict model speci-
fication to the marginal mean function, as the variance will automatically
follow, perhaps up to an overdispersion parameter. These observations are
crucial in what follows.

A seemingly straightforward extension of (8.3) that would account for
the correlation structure is

S(β) =
N∑

i=1

∂µi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − µi) = 0, (8.4)

obtained from replacing the identity matrix Ini by a correlation matrix Ri.
Now, even though (8.4) seems to follow from combining the most general
aspects of (8.1) with those of (8.3), matters are not this simple. Although
Ai = Ai(β) follows directly from the marginal mean model, β commonly
contains absolutely no information about Ri, whence Ri is to be parameter-
ized by an additional parameter vector: Ri = Ri(α). Thus, while the first
moment completely specified the second (and higher order) moments in the
univariate case, this is only partially so in the correlated data setting, the
variances are still specified by the marginal means, but the correlations are
not. This sets the repeated measures and other correlated data settings fun-
damentally apart from their univariate counterpart. Simply adding model
components (and hence score equations) for the correlation parameters
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does not solve the problem. To see this, recall that we wanted to restrict
model specification to the first moments only, but are faced with the sec-
ond moments. If we would model the second moments, we would have to
address the third and fourth moments as well. Eventually, a full specifica-
tion of the joint distribution would be obtained, precisely what we wanted
to avoid. These observations also underscore the difference between the
Gaussian and non-Gaussian settings, as (8.1) is sufficient for the Gaussian
case: given the first- and second-order moments, and assuming multivari-
ate normality , the joint distribution is fully specified. Thus, in summary,
it is too simple to state that the repeated non-Gaussian case is simply a
combination of elements from the Gaussian repeated measures case with
elements from univariate generalized linear models.

Liang and Zeger (1986) provide a nice way out of this apparent gridlock.
While still acknowledging the need for Ri(α) in Vi and (8.4), they allowed
the modeler to specify an incorrect structure or so-called working correla-
tion matrix. Using method of moments concepts, they showed that, when
the marginal mean µi has been correctly specified as h(µi) = Xiβ and
when mild regularity conditions hold, the estimator β̂ obtained from solv-
ing (8.4) is consistent and asymptotically normally distributed with mean
β and asymptotic variance-covariance matrix covariance matrix

Var(β̂) = I−1
0 I1I

−1
0 , (8.5)

where

I0 =
N∑

i=1

∂µi
′

∂β
V −1

i

∂µi

∂β′ , (8.6)

I1 =
N∑

i=1

∂µi
′

∂β
V −1

i Var(Y i)V −1
i

∂µi

∂β′ . (8.7)

Consistent estimates can be obtained by replacing all unknown quantities
in (8.5) by consistent estimates. Apart from a working correlation matrix,
it is possible to incorporate an overdispersion parameter as well, whence
A

1/2
i RiA

1/2
i in (8.4) would be replaced by

Vi = Vi(β, α, φ) = φAi(β)1/2Ri(α)Ai(β)1/2, (8.8)

φ being the additional overdispersion parameter.
Observe that, when Ri would be correctly specified, Var(Y i) = Vi in (8.7)

and then I1 = I0. As a result, (8.5) would reduce to I−1
0 , corresponding to

full likelihood, i.e., when the first and second moment assumptions would be
correct. Thus, (8.5) reduces to full likelihood when the working correlation
structure is correctly specified but generally differs from it. There is no price
to pay in terms of consistency of asymptotic normality, but there may be
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efficiency loss when the working correlation structure differs strongly from
the true underlying structure.

Thus, whether or not the working correlation structure is correct, point
estimates and standard errors based on (8.5) are asymptotically correct.
Such standard errors were called ‘robust’ by Liang and Zeger (1986), while
the variance estimator (8.5) is sometimes referred to as the ‘sandwich es-
timator,’ for obvious reasons. In the meantime, the terms ‘empirically cor-
rected’ variance and standard errors found their way to common use, to
avoid confusion with methods from robust statistics. In contrast, I−1

0 was
initially referred to as the ‘naive’ estimator, but currently the more neutral
‘(purely) model based’ estimator is more common. Note that estimates and
standard errors resulting from GEE are often reported in the format ‘esti-
mate (empirically corrected standard error; model-based standard error),’
in line with the convention used by Liang and Zeger (1986) in their original
article. Unless when used for didactical purposes, or when the model-based
standard error would be of some scientific interest, this is not necessary.
The empirically corrected standard error is the one to be used, the other
one generally incorrect. At best, it can be seen as an indication of the ‘dis-
tance’ between the working assumptions for the correlation and the true
structure. When both standard errors are far apart, this can be seen as an
indication for a poor choice of working assumptions. Once again, a poor
working assumption is not wrong, but may hamper efficiency and, when at
all possible, it may be of interest to then try alternative working assump-
tions. The term ‘empirical correction’ stems from the fact that the data Y i

are used in I1, not directly following from the likelihood function.
Two further specifications are needed before GEE is operational: Var(Y i)

on the one hand and Ri(α), with in particular estimation of α, on the other
hand. Full modeling will not be an option, since we would then be forced to
do what we want to avoid. First, modeling Var(Y i) would imply modeling
all components of (8.8) correctly, which we wanted to avoid. Second, fully
modeling Ri(α) would, once again, bring in the need to address third and
fourth order moments, which we wanted to avoid as well. Let us discuss
the pragmatic solutions found to both of these issues in turn.

Turning attention to the empirical covariance of the outcome vector,
Var(Y i) in (8.5) is typically replaced by

(yi − µi)(yi − µi)′. (8.9)

Although this may seem a natural choice at first sight, also because it
is an unbiased estimate at the sole condition that the mean is correctly
specified, it is perhaps less so when one realizes it has rank at most one!
However, while a poor estimator for Var(Y i), it is adequate to estimate
I1 and ultimately (8.5), given the summation over N units in I1. The
deficient rank poses no problems since no inversion takes place within I1
and, as an extra safety, I1 does not need to be inverted. It has been reported
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TABLE 8.1. Common choices for the working correlation assumptions in standard
generalized estimating equations and moment-based estimators thereof.

Structure Corr(Yij , Yik) Estimator
Independence 0 —

Exchangeable α α̂ = 1
N

∑N
i=1

1
ni(ni−1)

∑
j �=k eijeik

AR(1) α|j−k| α̂ = 1
N

∑N
i=1

1
ni−1

∑
j≤ni−1 eijei,j+1

Unstructured αjk α̂jk = 1
N

∑N
i=1 eijeik

that replacing (8.9) by (yi − µ̂i)(yi − µ̂i)′ may induce some bias into the
procedure (Crowder 1995).

Next, regarding the working correlation parameters α and the overdis-
persion parameter φ, Liang and Zeger (1986) proposed moment-based es-
timates. To this end, first define residuals

eij =
yij − µij√

v(µij)
(8.10)

in line with (7.7), introduced for the Bahadur model. Note that eij = eij(β)
through µij = µij(β) and therefore also through v(µij), the variance at time
j, and hence the jth diagonal element of Ai. We still assume the variance
is decomposed as (8.8). Common choices for the working assumptions are
presented in Table 8.1. Similarly, the dispersion parameter can be estimated
by

φ̂ =
1
N

N∑
i=1

1
ni

ni∑
j=1

e2
ij . (8.11)

Note that the independence structure brings about no additional parame-
ters α and hence, when there is no overdispersion, parameter estimates β̂
will not differ from those obtained from logistic regression. Even then, the
asymptotic variance covariance matrix, obtained from (8.5), and hence the
standard errors, will differ from the ones obtained with logistic regression,
the latter stemming from the model-based but incorrect I−1

1 . Independence
and exchangeable working assumptions can be used in virtually all applica-
tions, whether longitudinal, clustered, multivariate, or otherwise correlated.
Clearly, AR(1) and unstructured are less relevant for clustered data, lon-
gitudinal studies with unequally spaced measurements and/or sequences
with differing lengths, etc. However, even though it seems less advisable to
use such structures in cases where they are not supported by the study’s
design, it is strictly speaking not a mistake as, once again, working assump-
tions are allowed to be wrong! Note that the AR(1) parameter is estimated
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using adjacent pairs of measurements only, in contrast to the exchange-
able correlation, for which all pairs within a sequence are employed. This
is not wrong, but may be somewhat inefficient as, for example, pairs two
occasions apart contribute information to α2 and hence to α. Of course,
incorporating such information clutters the moment-based estimators and
most implementations still follow Table 8.1, as in Liang and Zeger (1986).

Now, (8.4), conceived to estimate β, are in need of α and φ, while the
moment-based estimates for α (Table 8.1) and expression (8.11) for φ de-
pend on β. This circularity is the final stumbling block in the way, but can
be circumvented by an iterative procedure. The standard iterative proce-
dure to fit GEE, based on Liang and Zeger (1986), is then as follows:

1. Compute initial estimates for β, β(0) say, using a univariate GLM,
i.e., assuming independence or, in other words, using conventional
logistic regression.

2. Compute the quantities needed in the estimating equation, i.e., Pear-
son residuals eij from (8.10), α from Table 8.1, and φ from (8.11).

3. Based on these, Ri(α) can be computed, as well as Vi from (8.8).

4. Then, given the current estimate of β after t iterations, β(t) say,
update the estimate for β:

β(t+1) = β(t) −
[

N∑
i=1

(
∂µi

∂β′

)
V −1

i

(
∂µi

∂β′

)′]−1

×
[

N∑
i=1

(
∂µi

∂β′

)
V −1

i (yi − µi)

]
. (8.12)

The second, third, and fourth steps need to be iterated until convergence.
In conclusion, we have a method at our disposition to obtain valid infer-

ences about a marginal regression model for repeated and otherwise clus-
tered data, without the need to fully specify the joint distribution of the
outcomes. This is most useful when the outcomes are of a non-Gaussian
nature, as the linear mixed-effects model provides a flexible framework in
the latter case (Chapter 4). However, it would still be possible to apply
robust inference in the Gaussian case as well (Verbeke and Molenberghs
2000, Section 6.2.4), in case interest is confined to the marginal regression
parameters β, and there is doubt about a correct specification of the co-
variance structure and/or the random-effects structure. Indeed, the usual
estimate for β is

β̂(α) =

(
N∑

i=1

X ′
iWiXi

)−1 N∑
i=1

X ′
iWiYi,
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with α replaced by its ML or REML estimate. Conditional on α, β̂ has
mean

E
[
β̂(α)

]
=

(
N∑

i=1

X ′
iWiXi

)−1 N∑
i=1

X ′
iWiE(Yi)

=

(
N∑

i=1

X ′
iWiXi

)−1 N∑
i=1

X ′
iWiXiβ

= β,

provided that E(Yi) = Xiβ. Hence, for β̂ to be unbiased, it is sufficient
that the mean of the response is correctly specified. Conditional on α, β̂
has covariance

Var(β̂) =

(
N∑

i=1

X ′
iWiXi

)−1

×
(

N∑
i=1

X ′
iWiVar(Y i)WiXi

)
(8.13)

×
(

N∑
i=1

X ′
iWiXi

)−1

=

(
N∑

i=1

X ′
iWiXi

)−1

. (8.14)

Note that (8.14) assumes that the covariance matrix Var(Y i) is correctly
modeled as Vi = ZiDZ ′

i +Σi, which then again plays the role of the purely
model-based estimate. The empirically corrected estimate for Var(β̂), which
does not assume the covariance matrix to be correctly specified is obtained
from replacing Var(Y i) in (8.13) by(

Y i − Xiβ̂
)(

Y i − Xiβ̂
)′

, (8.15)

rather than Vi. The sole condition for (8.15) to be unbiased for Var(Y i) is
that the mean is again correctly specified.

In spite of this potential use for Gaussian outcomes, GEE is most com-
monly used for non-Gaussian measurement sequences. The need is avoided
to specify third- and higher-order moments or, more precisely, third- and
higher-order correlations, and two-way correlations are allowed to be mis-
specified. Should they be correctly specified, and should a set of appropriate
third- and higher-order correlations be chosen, together with marginal logit
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links for binary outcomes, then the Bahadur model (Section 7.2) would
follow. Thus, standard GEE can be seen a moment-based version of the
Bahadur model. After choosing the marginal response functions, there is
always at least one, trivial, Bahadur model that corresponds to the estimat-
ing equations, found by setting all correlations to zero, i.e., independence.
In general, the working correlations, found upon convergence of GEE, may
not necessarily correspond to a valid joint probability mass function, given
the severe constraints on the Bahadur model (Section 7.2.2). This need
not be a drawback, as the working correlations are merely a device to pro-
vide consistent and asymptotically normal point estimates for the marginal
regression parameters and, if well chosen, also reasonably efficient. They
should not be made a part of formal inference.

The previous statement implies that, strictly speaking, the following two
questions should remain unanswered or at least approached cautiously:

• Are particular working correlation values large, moderate, or small?

• Among a set of working correlation matrices under correlation, which
one is best?

The first question is a natural one to ask. However, an answer does not
come easily, since ordinarily no standard errors are given alongside the
working correlations, and neither should they. Indeed, as stated above, they
are only devices to support estimation of the regression parameters, with
a status almost below the one of nuisance parameter. One can interpret
them, informally and with great caution, when the empirically corrected
and model-based standard errors are close, for then there usually is good
evidence that the working correlation structure has been chosen in line with
the true structure (Drum and McCullagh 1993, who present a critical view
on the methodology). This may be the case, in particular, when the working
correlation structure is fairly general, such as ‘unstructured’ in the cases
of balanced data (with corresponding measurements for different subjects
taken at the same time or approximately the same time). Of course, an
unstructured covariance matrix is no guarantee for a correct specification
since the covariance structure may further depend, for example, on certain
covariates.

Turning to the second question, it ought to be clear that there are no for-
mal model comparison tools for the correlation parameters. Because there
are no standard errors, Wald-type tests are not possible, and also likelihood-
ratio and score tests are not easy to use. Although some model compar-
ison and goodness-of-fit tools have been proposed (Rotnitzky and Jewell
1990), they are for the mean model and not for the association structure,
as they should be as, once again, the association is mere nuisance in the
GEE philosophy. The worst possible, in fact unscientific, approach that can
be taken is to base one’s choice for working assumptions on the outcome
(significance) for the regression parameters.
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Thus, in conclusion, the working correlation structure ought to be left
alone or at most used in a very informal way. It is best to specify a sin-
gle working correlation structure upfront when the need exists to specify
a primary analysis. Perhaps some others can be used by way of sensitivity
analysis for the regression parameters. It seems best to specify the work-
ing correlation structure in agreement with the design of the study (coun-
terexamples being exchangeability for multivariate outcomes or AR(1) for
unequally spaced longitudinal measurements), and as general as the data
support. The latter is usually a function of the number of subjects in a
study, as well as the number of measurements per subject.

When GEE is deemed unsatisfactory in the sense that there is some sci-
entific interest is the association structure, then one should turn to some
of the extensions of GEE, reviewed in Section 8.3, in particular to GEE2
(Section 8.5), GEE methods combining a marginal and conditional specifi-
cation (Section 8.7), or even to alternating logistic regressions (Section 8.6)
or pseudo-likelihood (Chapter 9).

Some theoretical considerations regarding problems that may occur with
GEE are presented in Crowder (1995), Sutradhar and Das (1999), and
Vonesh, Wang, and Majumdar (2001).

8.3 Alternative GEE Methods

In the previous section, standard GEE, as introduced by Liang and Zeger
(1986), was discussed. A number of alternatives have been proposed. Pren-
tice (1988) replaced the moment-based estimation for the working corre-
lation parameters by a second set of estimating equations. By making the
working assumption that both sets are independent, computational com-
plexity is avoided and, again, the correlation model need not be correctly
specified for the marginal regression parameters to be consistent and as-
ymptotically normal. Prentice’s method is discussed in Section 8.4. As soon
as the two sets of estimating equations are assumed to be correlated, one
obtains GEE2, in the sense that the first and second moments are then
fully modeled, with working assumptions made about the third and fourth
order moments. This method, which is one step up from Prentice’s method,
is discussed in Section 8.5.

Lipsitz, Laird, and Harrington (1991) adapted Prentice’s method to switch
from marginal correlation coefficients to marginal odds ratios. These are
but two of the association choices from Table 7.3. Thus, while standard
GEE and Prentice’s method can be seen as derived from the Bahadur
model (Section 7.2), the method by Lipsitz, Laird, and Harrington (1991)
derives from the multivariate Dale model (Sections 7.3 and 7.7, see also
Chapter 6). Of course, GEE2 can be formulated not only with correlations
but also based on odds ratios (Liang, Zeger, and Qaqish 1992). GEE with
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odds ratios (Lipsitz, Laird, and Harrington 1991, Liang, Zeger, and Qaqish
1992), and the link to alternating logistic regression (Carey, Zeger, and
Diggle 1993), is discussed in Section 8.6.

Another method, close in spirit to GEE as it also derives from quasi-
likelihood ideas, is based on linearizing the link function. It is presented in
Section 8.8. A nice feature is that it can be fitted using the SAS procedure
GLIMMIX. The method is in fact a special case of a more general approach,
that allows the inclusion of random effects into a generalized linear model
(Chapter 14).

8.4 Prentice’s GEE Method

Prentice (1988) amended the basic GEE or GEE1 of Liang and Zeger
(1986), described in Section 8.2. This method allows for estimation of both
parameters vectors, β and α, in the marginal response model and the pair-
wise correlations, respectively. The key difference with the original GEE is
that for both sets of parameters, estimating equations are proposed. Thus,
this GEE estimator for β and α may be defined as a solution to:

N∑
i=1

D′
iV

−1
i (Y i − µi) = 0, (8.16)

N∑
i=1

E′
iW

−1
i (Zi − δi) = 0, (8.17)

where Zi consists of components, doubly indexed by (j1, j2) and taking the
form:

Zij1j2 =
(Yij1 − µij1)(Yij2 − µij2)√
µij1(1 − µij1)µij2(1 − µij2)

.

The terms carry information about the correlation between measures Yij1

and Yij2 on the same subject. In summary,

Zi = (Zi12, Zi13, . . . , Zi,ni−1,ni
). (8.18)

Further, δij1j2 = E(Zij1j2),

Di =
∂µi

∂β
, Ei =

∂δi

∂α
,

Vi is the variance-covariance matrix of Y i, and Wi is the working variance-
covariance matrix of Zi. Strictly speaking, Vi is no working covariance
matrix, since the second moments are specified by (8.17). In contrast, Wi

does contain working assumptions, usually being that the third- and fourth-
order correlations, defined by (7.8), are equal to zero. We will return to
these in Section 8.7.
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The assumption is made that (8.16) and (8.17) are independent. This
would entail a price in terms of efficiency, but has the advantage that, just
as in Section 8.2, misspecifying the correlation structure does not hamper
consistency and asymptotic normality of the marginal regression parame-
ters. Each set of parameters comes with precision estimates, whence for-
mal inference is possible about the set of parameters for one is prepared to
believe the equations have been correctly specified. This could be (8.16),
(8.17), or both. The option to make formal inferences about the correlation
parameters is a net increase of capabilities over standard GEE1.

The joint asymptotic distribution of
√

N(β̂ − β) and
√

N(α̂ − α) is
Gaussian with mean zero and with variance-covariance matrix consistently
estimated by

N ·
(

A 0
B C

)(
Λ11 Λ12

Λ21 Λ22

)(
A B′

0 C

)
,

where

A =

(
N∑

i=1

D′
iV

−1
i Di

)−1

, (8.19)

B =

(
N∑

i=1

E′
iW

−1
i Ei

)−1( N∑
i=1

E′
iW

−1
i

∂Zi

∂β

)
(8.20)

×
(

N∑
i=1

D′
iV

−1
i Di

)−1

, (8.21)

C =

(
N∑

i=1

E′
iW

−1
i Ei

)−1

, (8.22)

Λ11 =
N∑

i=1

D′
iV

−1
i Cov(Y i)V −1

i Di, (8.23)

Λ12 =
N∑

i=1

D′
iV

−1
i Cov(Y i, Zi)W−1

i Ei, (8.24)

Λ21 = Λ12, (8.25)

Λ22 =
N∑

i=1

E′
iW

−1
i Cov(Zi)W−1

i Ei, (8.26)

and Var(Y i), Cov(Y i, Zi), and Var(Zi) are estimated by the quantities

(Y i − µi)(Y i − µi)
′, (Y i − µi)(Zi − δi)′, (Zi − δi)(Zi − δi)′,

respectively, in analogy with GEE1. One may wonder why there is no need
to go back and forth between solving the estimating equations and moment-
based estimation, as in Section 8.2. In this case, this would mean solving
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(8.16) and (8.17), and then switch to moment based estimation for higher
moments. However, as stated before, one typically assumes the third and
fourth moments are zero. One could call these ‘higher-order independence’
working assumption, obviating the need for additional parameters.

The above model has a close resemblance with the Bahadur model, as
it is based on its first to fourth moments. Williamson, Lipsitz, and Kim
(1997) wrote a SAS macro for Prentice’s method.

The updating method for Prentice’s GEE iterates between solving each
of the equations (8.16) and (8.17).

8.5 Second-order Generalized Estimating
Equations (GEE2)

Second-order GEE have been proposed by Zhao and Prentice (1990), us-
ing correlations, and by Liang, Zeger, and Qaqish (1992), using odds ra-
tios. They are a simple extension of Prentice’s (1988) method, described in
Section 8.4, by combining the outcome vector Y i and the pairwise cross-
products, Zi, as in (8.18), into a single outcome vector:

W i = (Y ′
i, Z

′
i)

′. (8.27)

The vector W i has ni +
(
ni

2

)
components. Further, let

Θi = (µ′
i, δ

′
i)

′,

the corresponding mean vector, obtained by assembling the means from
(8.16) and (8.17). Assuming δi depends on a vector of regression parameters
β, which now combines the β and α from Section 8.4, the vector β can be
estimated by solving the second-order generalized estimating equations:

U(β) =
N∑

i=1

U i(β) =
N∑

i=1

D′
iV

−1
i [W i − E(W i)] = 0, (8.28)

where

Di =
∂Θ′

i

∂β
.

As usual, Vi = Cov(W i). Calculation of all matrices involved is straightfor-
ward with the exception of the covariance matrix Vi, which contains third-
and fourth-order probabilities. Again, as in Section 8.4, the three-way and
higher order correlations are set equal to zero. As before, the parameter
estimates β̂ can then be calculated using, for example, a Fisher scoring
algorithm. Provided the first- and second-order models have been correctly
specified, β̂ is consistent for β and has an asymptotic multivariate normal
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distribution with mean vector β and variance-covariance matrix consis-
tently estimated by:

V̂ (β̂) =

(
N∑

i=1

D̂′
iV̂

−1
i D̂i

)−1( N∑
i=1

U i(β̂)U i(β̂)′
)

×
(

N∑
i=1

D̂′
iV̂

−1
i D̂i

)−1

,

the usual sandwich estimator.
In principle, there is no reason why one should stop at GEE2. Higher-

order GEE is perfectly conceivable. When, moments 1 up to K would
be modeled, working assumptions of order K + 1 up to 2K would be
needed. Obviously, this will become increasingly cumbersome, not only al-
gebraically, also regarding implementation and computation time. As the
order increases, the relative gain will also decrease, as less and less informa-
tion would be contained in higher moments. When K becomes equal to the
length of the response vector Y i, full likelihood is recovered and our spec-
ification, carried through to order ni, would produce the Bahadur model.
When higher orders are of interest, this is usually in situations where the
joint probabilities need to be calculated and then full likelihood effectively
is the only option. Thus, most commonly encountered are GEE1 and GEE2
on the one hand, and then full likelihood on the other hand.

8.6 GEE with Odds Ratios and Alternating
Logistic Regression

The GEE versions discussed in Sections 8.2, 8.4, and 8.5 all used correlation
as a measure to capture association, either as moment estimated working
assumptions, or as part of the estimating equations. Thus, as indicated
earlier, all can be seen as deriving from the Bahadur model. The advantage
of correlations is that the estimating equations, such as (8.4), include the
covariance matrix Vi as in (8.5), and (working) correlation parameters can
be used in a particularly straightforward fashion to compose the matrix
Ri(α). However, many authors have stated that the odds ratio is a par-
ticularly straightforward measure to capture association between binary or
categorical outcomes (Molenberghs and Lesaffre 1994, 1999, Fitzmaurice,
Laird, and Ware 2004, p. 298, see also Chapters 6 and 7). In the context
of GEE, the same observation has been made. Lipsitz, Laird, and Harring-
ton (1991) considered GEE1 for binary data with odds ratios, while Liang,
Zeger, and Qaqish (1992) did the same for GEE2. The Bahadur-based cor-
relation, expressed as (7.5) and leading to bivariate joint probabilities (7.6),
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needs to be replaced by the Dale-based odds ratio (7.39), leading to bivari-
ate joint probabilities (7.40). Still focusing on binary outcomes and based
on the bivariate probabilities, calculation of Vi in (8.5) is straightforward
and follows from observing that

Vi,jj = Var(Yij) = µij(1 − µij),
Vi,j1,j2 = Cov(Yij1 , Yij2) = µij1j2 − µij1µij2 .

Note that the expectation of a component of Zi, Zij1j2 say, equals µij1j2 ,
the probability of a success at occasions j1 and j2 at the same time. As-
suming a model for the pairwise odds ratios as in (7.39), and working
assumptions for the third- and fourth-order log odds ratios (usually by set-
ting them equal to zero), the model specification is complete. Lipsitz, Laird,
and Harrington (1991) assumed, for simplicity, Wi in (8.17) to be diagonal,
avoiding working assumptions about the third and fourth order; it even
avoids calculating the third- and fourth-order probabilities altogether. It is
then simple to solve (8.16) and (8.17) with the vector Y i still equal to the
response vector, and with Zi in (8.18) changed to

Zi = (Yi1Yi2, Yi1Yi3, . . . , Yi,ni−1Yini). (8.29)

The same principles as outlined above can be applied to second-order GEE
(8.28). This idea was followed by Liang, Zeger, and Qaqish (1992). While
they set the third- and fourth-order log odds ratios equal to zero, obvi-
ating the need to invoke additional (moment-based) estimation, they still
needed to compute third- and fourth-order probabilities for GEE2, follow-
ing one of the methods associated with the Dale model, e.g., using the IPF
algorithm or the Plackett polynomials (Sections 7.4 and 7.7). This can be
computationally less than straightforward, but luckily there is another al-
ternative, termed alternating logistic regressions (ALR) and proposed by
Carey, Zeger, and Diggle (1993). The method is different from all of the
GEE methods considered so far, but has communality with both GEE1
and GEE2 based on odds ratios. In particular, it is almost as efficient as
GEE2, and shares the computational ease of conventional GEE1.

Let us first introduce the method, and then provide some further per-
spective on its advantages. Let µij be as before, described by

logitP (Yij = 1) = x′
ijβ, (8.30)

and let αij1j2 = ln(ψij1j2) be the marginal log odds ratio. Then,

logitP (Yij1 = 1|Yij2 = yij2)

= ln
(

µij1 − µij1j2

1 − µij1 − µij2 + µij1j2

)
+ αij1j2yij2 . (8.31)

The marginal logistic regression (8.30) is in line with the Bahadur model,
the Dale model with logistic margins, and all of the GEEs discussed in
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this chapter. However, rather than further specifying the models by ad-
ditional marginal description of the pairwise association, a logistic model
for an outcome conditional upon another outcome is presented, which de-
rives trivially from the expression for the log odds ratio. Logistic regression
(8.31) is a little unconventional in the sense that instead of an intercept,
there is an offset, i.e., a constant term free of unknown parameters, given
the mean model. An example of an offset can be found in Section 3.7. The
principle of ALR is to iterate between solving (8.30) and (8.31). Iteration
is indeed required because solving (8.30) requires the covariance matrix Vi

of Y i − µi, which depends on both β and α, while also (8.31) depends on
both. The updating problem can be phrased in terms of simultaneously
solving two sets of estimating equations, the first one being exactly equal
in form to (8.16), the second one being

N∑
i=1

Ẽ
′
iW̃

−1
i Ri = 0, (8.32)

where

Ẽi =
∂ζi

∂α′
i

,

ζi is a vector with elements ζij1j2 = P (Yij1 = 1|Yij2 = yij2), W̃i is a diago-
nal matrix with elements ζij1j2(1 − ζij1j2), and Ri a vector with elements
Yij1j2 − ζij1j2 .

Note that ALR extends beyond classical GEE, in the sense that pre-
cision estimates follow for both the β and the α parameters. However,
unlike with GEE2, and even with Prentice’s (1988) and Prentice and Zhao
(1991) GEE, no working assumptions about the third- and fourth-order
odds ratios are required. Thanks to the clever combination of a marginal
and a conditional specification, addressing the third and fourth moments
is avoided all together, which is strictly different from setting them equal
to zero.

In (8.31), arbitrary structures for the log odds ratio parameters αij2j2

can be assumed. The odds ratio equivalent of exchangeability would set
them all equal to the same constant α. When measurements are taken at
fixed time points, an unstructured specification is possible. Further, when
measurements are equally spaced, banded structures or other equivalents
of autoregressive correlation structures can be entertained.

ALR has been implemented in the SAS procedure GENMOD. More de-
tail is given in Section 10.4.

As was seen here, a combination of marginal and conditional specifica-
tion can be advantageous. ALR is not the only instance to confirm this.
In the next section, a family of hybrid marginal and conditional model
specifications is considered.
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8.7 GEE2 Based on a Hybrid Marginal-conditional
Model

In the previous section, alternating logistic regression combined marginal
and conditional aspects of model specification. The hybrid model, combin-
ing marginal and conditional aspects, presented in Section 7.8 can be used
as a basis for GEE just as easily as the Bahadur and Dale models studied
before.

A set of GEE2, proposed also by Heagerty and Zeger (1996), can be
derived by specifying only the first and second moments that derive from
(7.50):

U(β) =
N∑

i=1

(
∂µi

∂β

)
M−1

i (vi − µi) = 0, (8.33)

with notation as in Section 7.8.1. Observe that these score equations assume
the same form for any fixed value of Ωi, with Ωi = 0 as a special but
important case. However, this leaves M i partly unspecified. A standard
procedure is to replace it by a working covariance matrix, depending on
a set of (nuisance) parameters α. Heagerty and Zeger (1996) advocated
setting the higher order conditional association parameters equal to zero
(or, more generally, to a fixed constant). This particular set of GEE2 does
not require estimation of extra parameters, a property shared with the
GEE2 methods described in Section 8.5 and 8.6. Expression (8.33) can also
be seen as the score equations for the likelihood specified by the following
member of the quadratic exponential family of Zhao and Prentice (1990):

f(yi|Ψi) = exp
{
Ψ′

ivi − A(Ψi)
}

. (8.34)

Another, slightly different set of GEE2, which also does not require esti-
mation of nuisance parameters, is found by setting all three and higher
order marginal log odds ratios equal to zero, in agreement with GEE2 in
Section 8.6 and Liang, Zeger, and Qaqish (1992).

Computing the covariance M i in (8.33) involves the third and fourth
order probabilities. With conditional constraints, they are easily computed
using the IPF algorithm, as outlined in Section 7.8.1. To proceed with mar-
ginal working assumptions, we first need to define the three- and four-way
marginal odds ratios. They can also be introduced using conditional lower
order odds ratios. If ψij1j2|j3(y) is the conditional odds ratio of outcomes
Yij1 and Yij2 , given Yij3 = y, then

ψij1j2j3 =
ψij1j2|j2(1)
ψij1j2|j3(0)

, ψij1j2j3j4 =
ψij1j2j3|j4(1)
ψij1j2j3|j4(0)

.

To compute the probabilities, again, the IPF algorithm as presented in
Section 7.12.3 or the polynomial method of Section 7.7.4 can be used.
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When the outcomes are categorical rather than binary, the likelihood
presented in Section 7.8.2 can be used and, given the above, GEE2 follows
in a straightforward fashion.

8.8 A Method Based on Linearization

All versions of GEE studied sofar can be seen as deriving from the score
equations of corresponding likelihood methods, such as the Bahadur model
(Section 7.2), the Dale model (Section 7.7), or the hybrid model (Sec-
tion 7.8). In a sense, GEE results from considering only a subvector of the
full vector of scores, corresponding to either the first moments only (the
outcomes themselves), or the first and second moments (outcomes and
cross-products thereof). On the other hand, they can be seen as an exten-
sion of the quasi-likelihood principles, where appropriate modifications are
made to the scores to be sufficiently flexible and “work” at the same time.
A classical modification is the inclusion of an overdispersion parameter,
while in GEE also (nuisance) correlation parameters are introduced.

An alternative approach consists of linearizing the outcome, in the sense
of Nelder and Wedderburn (1972), to construct a working variate, to which
then weighted least squares is applied. In other words, iteratively reweighted
least squares (IRLS) can be used (McCullagh and Nelder 1989). Within
each step, the approximation produces all elements typically encountered
in a multivariate normal model, and hence corresponding software tools
can be used. In case our models would contain random effects as well (Sec-
tion 14.4), the core of the IRLS could be approached using linear mixed
models tools. The SAS procedure GLIMMIX is such a tool and the gen-
eral case will be taken up in Chapter 14. Here, we restrict attention to the
marginal-model situation. Nevertheless, it is important to note that the
tools developed here can be approached using the SAS procedure GLIM-
MIX, as well as with the GLIMMIX macro.

Write the outcome vector in a classical (multivariate) generalized linear
models fashion:

Y i = µi + εi (8.35)

where, as usual, µi = E(Y i) is the systematic component and εi is the
random component, typically following from a multinomial distribution.
We assume that

Var(Y i) = Var(εi) = Σi. (8.36)

The model is further specified by assuming

ηi = g(µi),

ηi = Xiβ,
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where ηi is the usual set of linear predictors, g(.) is an inverse vector link
function, typically made up of logit components, Xi is a design matrix and
β are the regression parameters.

Estimation proceeds by iteratively solving

N∑
i=1

X ′
iWiXiβ =

N∑
i=1

WiY
∗
i , (8.37)

where a working variate y∗
i has been defined, following from a first-order

Taylor series expansion of ηi around µi:

Y ∗
i = η̂i + (Y i − µ̂i)F

−1
i ,

Fi =
∂µi

∂ηi

. (8.38)

The weights in (8.37) are specified as

Wi = F ′
iΣ

−1
i Fi. (8.39)

Note that in the specific case of an identity link, ηi = µi, Fi = Ini and
Y i = Y ∗

i , whence a standard multivariate regression follows.

8.9 Analysis of the NTP Data

The NTP data, introduced in Section 2.7, have been analyzed in Sec-
tion 7.2.3, by means of the Bahadur model specialized to clustered data
(Section 7.2.2). Table 7.1 presented estimates and standard errors for a sim-
ple model, with marginal logits linear in dose, and a common correlation
parameter, fitted the external, visceral, skeletal, and collapsed outcomes in
the DEHP, EG, and DYME studies.

Here, we will consider the same model, but then from the GEE angle.
We will apply standard GEE (Section 8.2), Prentice’s modification (Sec-
tion 8.4), and the linearization method (Section 8.8). The first approach
was fitted using the SAS procedure GENMOD, the second one with a
SAS macro developed by Stuart Lipsitz (Williamson, Lipsitz, and Kim
1997), and the third one using the SAS macro GLIMMIX or, equivalently,
with the SAS procedure GLIMMIX. More details on software are deferred
to Chapter 10. For all of these analyses, both independence (Table 8.2)
and exchangeable (Table 8.3) working assumptions were considered. Other
working assumptions, such as AR(1) and unstructured, are less sensible
here, given the clustered nature of the data. Several models include, in
addition to working assumptions, an overdispersion parameter φ.

In addition to these analysis, GEE2 estimates are provided in Table 8.4,
based on the same models as in the Bahadur analysis, described by (7.14)
and (7.15).
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TABLE 8.2. NTP Data. Parameter estimates (model-based standard errors; em-
pirically corrected standard errors) for GEE1 with independence working assump-
tions, fitted to various outcomes in the DEHP study. β0 and βd are the marginal
intercept and dose effect, respectively; φ is the overdispersion parameter.

Outcome Par. Standard Prentice Linearized
External β0 -5.06(0.30;0.38) -5.06(0.33;0.38) -5.06(0.28;0.38)

βd 5.31(0.44;0.57) 5.31(0.48;0.57) 5.31(0.42;0.57)
φ 0.90 0.74

Visceral β0 -4.47(0.28;0.36) -4.47(0.28;0.36) -4.47(0.28;0.36)
βd 4.40(0.43;0.58) 4.40(0.43;0.58) 4.40(0.43;0.58)
φ 1.00 1.00

Skeletal β0 -4.87(0.31;0.47) -4.87(0.31;0.47) -4.87(0.32;0.47)
βd 4.89(0.46;0.65) 4.90(0.47;0.65) 4.90(0.47;0.65)
φ 0.99 1.02

Collapsed β0 -3.98(0.22;0.30) -3.98(0.22;0.30) -3.98(0.22;0.30)
βd 5.56(0.40;0.61) 5.56(0.40;0.61) 5.56(0.41;0.61)
φ 0.99 1.04

For a given outcome in a given study, results from the Bahadur model,
the various GEE1 versions, and GEE2, are very similar. Even though for
some parameters the estimated values differ a bit between analyses, they
preserve the directionality and, roughly, the magnitude of the effect. This is
not surprising, given that all can be seen as deriving from Bahadur’s model.
However, just as in, for example, Section 7.10, we observe a mild shrinkage.
This is, again, due to the parameter constraints on the Bahadur model and,
to a lesser extent, on GEE2. For the parameters in the Bahadur model to be
allowable, all higher-order probabilities need to be valid, while for GEE2
this is necessary only up to the fourth order, the farthest the working
assumptions reach. For GEE1, it is sufficient for the pairwise probabilities
to be valid. Thus, it is possible for GEE to provide a valid parameter
combination that cannot be reconciled with a Bahadur model, having the
same lower order parameters. This does not mean there would be no fully
specified model corresponding to it. Given the orthogonality properties of
the hybrid marginal-conditional model, presented in Section 7.8, there is
always a model of this type encompassing the GEE-based parameters.

The constraints on the Bahadur model are very severe indeed. For in-
stance, the allowable range of βa for the external outcome in the DEHP
data is (−0.0164; 0.1610) when β0 and βd are fixed at their MLE. This
range translates to the very narrow (−0.0082; 0.0803) on the correlation
scale, excluding the GEE based values for the correlation ρ.
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TABLE 8.3. NTP Data. Parameter estimates (model-based standard errors; em-
pirically corrected standard errors) for GEE1 with exchangeable working assump-
tions, fitted various outcomes in the DEHP study. β0 and βd are the marginal
intercept and dose effect, respectively; ρ is the correlation; φ is the overdispersion
parameter.

Outcome Par. Standard Prentice Linearized
External β0 -4.98(0.40;0.37) -4.99(0.46;0.37) -5.00(0.36;0.37)

βd 5.33(0.57;0.55) 5.32(0.65;0.55) 5.32(0.51;0.55)
φ 0.88 0.65
ρ 0.11 0.11(0.04) 0.06

Visceral β0 -4.50(0.37;0.37) -4.51(0.40;0.37) -4.50(0.36;0.37)
βd 4.55(0.55;0.59) 4.59(0.58;0.59) 4.55(0.54;0.59)
φ 1.00 0.92
ρ 0.08 0.11(0.05) 0.08

Skeletal β0 -4.83(0.44;0.45) -4.82(0.47;0.44) -4.82(0.46;0.45)
βd 4.84(0.62;0.63) 4.84(0.67;0.63) 4.84(0.65;0.63)
φ 0.98 0.86
ρ 0.12 0.14(0.06) 0.13

Collapsed β0 -4.05(0.32;0.31) -4.06(0.35;0.31) -4.04(0.33;0.31)
βd 5.84(0.57;0.61) 5.89(0.62;0.61) 5.82(0.58;0.61)
φ 1.00 0.96
ρ 0.11 0.15(0.05) 0.11

Comparing model-based and empirically corrected standard errors, there
is a clear difference in the case of independence working assumptions, but
less so in the exchangeable case. Comparing both analyses is a case in
point that the choice of working assumptions, whether right or wrong,
is not important for the method’s consistency and asymptotic normality.
The impact on efficiency is minor. The statement about efficiency con-
tinues to hold when comparing all marginal analyses. In case where one
is merely interested in assessing the effect of dose, GEE1, being the sim-
plest of all methods, will do fine. When there is additional interest in the
association, care is needed with GEE1. Table 8.2 provides no association
parameter at all. The correlation in Table 8.3 should be approached cau-
tiously, as the exchangeable correlation is, at best, a nuisance parameter,
for which no formal inference is possible. Moreover, because we are allowed
to misspecify our association model, there is no a priori guarantee that the
parameter is trustworthy. However, in this particular case, exchangeabil-
ity seems reasonable, both on biological grounds and given the design of
the study. When more formal inferences about the correlation parameters
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TABLE 8.4. NTP Data. Parameter estimates (empirically corrected standard er-
rors) for GEE2 with exchangeable correlation, fitted to various outcomes in three
studies. β0 and βd are the marginal intercept and dose effect, respectively; βa is
the Fisher z transformed correlation; ρ is the correlation.

Outcome Parameter DEHP EG DYME
External β0 -4.98(0.37) -5.63(0.67) -7.45(0.73)

βd 5.29(0.55) 3.10(0.81) 8.15(0.83)
βa 0.15(0.05) 0.15(0.05) 0.13(0.05)
ρ 0.07(0.02) 0.07(0.02) 0.06(0.02)

Visceral β0 -4.49(0.36) -7.50(1.05) -6.89(0.75)
βd 4.52(0.59) 4.37(1.14) 5.51(0.89)
βa 0.15(0.06) 0.02(0.02) 0.11(0.07)
ρ 0.07(0.03) 0.01(0.01) 0.05(0.03)

Skeletal β0 -5.23(0.40) -4.05(0.33)
βd 5.35(0.60) 4.77(0.43)
βa 0.18(0.02) 0.30(0.03)
ρ 0.09(0.01) 0.15(0.01)

Collapsed β0 -5.23(0.40) -4.07(0.71) -5.75(0.48)
βd 5.35(0.60) 4.89(0.90) 8.82(0.91)
βa 0.18(0.02) 0.26(0.14) 0.18(0.12)
ρ 0.09(0.01) 0.13(0.07) 0.09(0.06)

are required, GEE2 is a viable alternative. This may be less so with the
Bahadur model, given the strong parameter space restrictions.

An alternative when the association is of interest is provided by alter-
nating logistic regressions (Section 8.6). Results of fitting ALR to the NTP
data are summarized in Table 8.5. The association is in terms of log odds
ratios α, as in (8.31). For convenience, we also present the odds ratios ψ. As
it is a sensible choice in our case, and for ease of comparison with Tables 8.3
and 8.4, an exchangeable odds ratio structure is chosen, in the sense that
all odds ratios are equal. Again, parameter estimates are similar to the ones
obtained in Tables 8.2–8.4, and this holds for the standard errors as well.
Of course, the association being in terms of (log) odds ratios, comparison
with the correlations of the earlier analyses is not straightforward, although
the relative magnitudes are roughly preserved. An advantage of the ALR
analyses, apart from its implementation in standard software (the SAS pro-
cedure GENMOD, see Chapter 10), is that standard errors are provided
for the association parameters. In fact, the asymptotic covariance matrix
for all estimates together can be obtained.
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TABLE 8.5. NTP Data. Parameter estimates (empirically corrected standard er-
rors) for alternating logistic regression with exchangeable odds ratio, fitted to var-
ious outcomes in three studies. β0 and βd are the marginal intercept and dose
effect, respectively; α is the log odds ratio; ψ is the log odds ratio.

Outcome Parameter DEHP EG DYME
External β0 -5.16(0.35) -5.72(0.64) -7.48(0.75)

βd 5.64(0.52) 3.28(0.72) 8.25(0.87)
α 0.96(0.30) 1.45(0.45) 0.79(0.31)
ψ 2.61(0.78) 4.26(1.92) 2.20(0.68)

Visceral β0 -4.54(0.36) -7.61(1.06) -7.24(0.88)
βd 4.72(0.57) 4.50(1.13) 6.05(1.04)
α 1.12(0.30) 0.49(0.42) 1.76(0.59)
ψ 3.06(0.92) 1.63(0.69) 5.81(3.43)

Skeletal β0 -4.87(0.49) -3.28(0.22) -4.92(0.34)
βd 4.90(0.70) 3.85(0.39) 6.73(0.65)
α 1.05(0.40) 1.43(0.22) 1.62(0.37)
ψ 2.86(1.14) 4.18(0.92) 5.05(1.87)

Collapsed β0 -4.04(0.31) -3.19(0.22) -5.08(0.37)
βd 5.93(0.63) 3.86(0.40) 7.98(0.75)
α 1.17(0.29) 1.40(0.22) 1.26(0.31)
ψ 3.22(0.93) 4.06(0.89) 3.53(1.09)

8.10 The Heatshock Study

A unique type of developmental toxicity study was originally developed by
Brown and Fabro (1981) to assess the impact of heat stress on embryonic
development, and adapted by Kimmel et al (1993) to investigate effects
of both temperature and duration of exposure. In these heatshock exper-
iments, the embryos are explanted from the uterus of the maternal dam
during the gestation period and cultured in vitro. Each individual embryo
is subjected to a short period of heat stress by placing the culture vial into
a water bath, involving an increase over body temperature of 3 to 5◦C for
a duration of 5 to 60 minutes. The embryos are examined 24 hours later
for signs of impaired or accelerated development.

This type of developmental toxicity test system has several advantages
over the standard Segment II design. First, the exposure is administered
directly to the embryo, so controversial issues regarding the unknown (and
often non-linear) relationship between the level of exposure to the maternal
dam and that received by the developing embryo need not be addressed.
While genetic factors are still expected to exert an influence on the vul-
nerability to injury of embryos from a common dam, direct exposure to
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TABLE 8.6. Heatshock Study. Hybrid marginal-conditional parameter estimates
(model-based standard errors; empirically corrected standard errors) for models
fitted to the outcomes MBN, FBN, OLF, and BRB. Covariate effects are allowed
to differ across outcomes, and a different association parameter is assumed for
each pair. Model 1 presents the estimates under conditional constraints for the
higher order association; Model 2 uses marginal constraints. Higher order asso-
ciations are included in Model 3. Models 1 and 2 are at the same time maximum
likelihood and GEE2. Model 3 is full likelihood. Part I: Marginal parameters.

Parameter Model 1 Model 2 Model 3
Marginal parameters

Midbrain (MBN)
Intercept -1.81(0.23;0.24) -1.81(0.23;0.24) -1.83(0.23;0.24)
‘posdur’ -0.12(0.04;0.04) -0.12(0.04;0.04) -0.10(0.04;0.04)
‘durtemp’ 0.04(0.01;0.01) 0.04(0.01;0.01) 0.04(0.01;0.01)

Forebrain (FBN)
Intercept -1.73(0.23;0.23) -1.73(0.23;0.23) -1.71(0.23;0.22)
‘posdur’ -0.09(0.04;0.04) -0.09(0.04;0.04) -0.09(0.04;0.04)
‘durtemp’ 0.04(0.01;0.01) 0.04(0.01;0.01) 0.04(0.01;0.01)

Olfactory system (OLF)
intercept -1.43(0.22;0.21) -1.44(0.22;0.21) -1.46(0.20;0.21)
‘posdur’ -0.21(0.04;0.05) -0.21(0.04;0.05) -0.21(0.04;0.05)
‘durtemp’ 0.07(0.01;0.01) 0.07(0.01;0.01) 0.07(0.01;0.01)

Branchial bars (BRB)
intercept -1.19(0.20;0.20) -1.18(0.20;0.20) -1.09(0.20;0.20)
‘posdur’ -0.13(0.04;0.04) -0.13(0.04;0.04) -0.13(0.04;0.04)
‘durtemp’ 0.04(0.01;0.01) 0.04(0.01;0.01) 0.04(0.01;0.01)

individual embryos reduces the need to account for such litter effects. Thus,
the clustering induced by litter effects are not considered in our analysis.
A detailed analysis of the clustering aspect can be found in Aerts et al
(2002). Second, the exposure pattern can be much more easily controlled
than in most developmental toxicity studies, as it is possible to achieve
target temperature levels in the water bath within one to two minutes.
Whereas the typical Segment II study requires waiting eight to twelve days
after exposure to assess its impact, information regarding the effects of ex-
posure are quickly obtained in heatshock studies. Finally, this animal test
system provides a convenient mechanism for examining the joint effects of
both duration of exposure and exposure levels, which until recently have
received little attention. The actual study design for the set of experiments
is shown in Kimmel et al (1994). Of the 327 embryos exposed, 50 did not



176 8. Generalized Estimating Equations

TABLE 8.7. Heatshock Study. Hybrid marginal-conditional parameter estimates
(model-based standard errors; empirically corrected standard errors) for models
fitted to the outcomes MBN, FBN, OLF, and BRB. Covariate effects are allowed
to differ across outcomes, and a different association parameter is assumed for
each pair. Model 1 presents the estimates under conditional constraints for the
higher order association; Model 2 uses marginal constraints. Higher order asso-
ciations are included in Model 3. Models 1 and 2 are at the same time maximum
likelihood and GEE2. Model 3 is full likelihood. Part II: Association parameters.

Parameter Model 1 Model 2 Model 3
Pairwise association

MBN FBN 3.22(0.38;0.39) 3.22(0.38;0.40) 3.13(0.37;0.38)
MBN OLF 2.69(0.36;0.38) 2.69(0.36;0.37) 2.77(0.36;0.38)
MBN BRB 2.10(0.32;0.33) 2.10(0.32;0.33) 2.17(0.33;0.33)
FBN OLF 3.58(0.41;0.42) 3.59(0.41;0.42) 3.62(0.42;0.44)
FBN BRB 2.54(0.34;0.34) 2.55(0.34;0.34) 2.60(0.34;0.34)
OLF BRB 2.52(0.33;0.34) 2.53(0.33;0.34) 2.61(0.33;0.34)

Higher order association

MBN FBN OLF 1.30(1.34;1.42)
MBN FBN BRB 0.96(1.19;1.17)
MBN OLF BRB 0.22(1.30;1.38)
FBN OLF BRB 2.12(1.48;1.51)
MBN FBN OLF BRB 3.18(1.77;1.80)
Deviance 946.05 945.15 937.80

survive the heat stress exposure and were excluded from further analysis.
The remaining 277 animals have complete data.

Historically, the strategy for comparing responses among exposures of
different durations to a variety of environmental agents has relied on a
conjecture called Haber’s law, which states that adverse response levels
should be the same for any equivalent level of dose times duration (Haber
1924). Clearly, the appropriateness of applying Haber’s law depends on
the pharmacokinetics of the particular agent, the route of administration,
the target organ, and the dose/duration patterns under consideration. Al-
though much attention has been focused on documenting exceptions to this
rule, it is often used as a simplifying assumption in view of limited test-
ing resources and the multitude of exposure scenarios. However, given the
current desire to develop regulatory standards for a range of exposure dura-
tions, models flexible enough to describe the response patterns over varying
levels of both exposure concentration and duration are greatly needed.

Although a wide variety of statistical methods have been developed for
cancer risk assessment, the issue of multiple endpoints does not present
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TABLE 8.8. Heatshock Study. Empirically corrected (e.c.) and model-based (m.b.)
Wald test statistics based on Models 1–3. Apart from tests for common covari-
ate effects and common pairwise association, tests for common covariate effects
among MBN, FBN, and BRB [indicated by (**)] are presented, as well as a test
whether the association splits into two groups: pairs including versus excluding
BRB.∗ indicates p < 0.05.

Model 1 Model 2 Model 3
Hypothesis df e.c. m.b. e.c. m.b. e.c. m.b.

Common ‘posdur’ 3 ∗7.95 ∗9.28 ∗8.47 ∗9.85 ∗9.87 ∗11.31
Common ‘posdur’ (**) 2 0.16 0.19 0.17 0.19 0.10 0.07
Common ‘durtemp’ 3 5.73 7.68 6.13 ∗8.21 7.39 ∗9.92
Common ‘durtemp’ (**) 2 1.36 1.08 1.49 1.14 1.92 1.18
Common pairwise assoc. 5 ∗12.58 ∗13.63 ∗12.55 ∗13.55 10.16 ∗11.92
Two groups of pairwise assoc. 4 6.49 6.18 6.52 6.19 4.99 5.65

quite the degree of complexity in this area as it does for developmental
toxicity studies. The endpoint of interest in an animal cancer bioassay is
typically the occurrence of a particular type of tumor, whereas in develop-
mental toxicity studies there is no clear choice for a single type of adverse
outcome. In fact, an entire array of outcomes are needed to define certain
birth defect syndromes (Khoury et al 1987, Holmes 1988).

The data have been analyzed before by Williams, Molenberghs, and Lip-
sitz (1996). In line with Molenberghs and Ritter (1996), we will consider a
multivariate analysis on four binary morphological parameters: Midbrain
(MBN), Forebrain (FBN), Olfactory System (OLF), and Branchial Bars
(BRB). They are coded as affected versus normal. If Haber’s law is sat-
isfied, the main covariate is ‘durtemp,’ the product of duration and dose
(temperature increase). We found that the main effect ‘duration’ is also
important. However, we expect duration to have no effect at the control
dose, therefore it was recoded as ‘posdur,’ which is equal to ‘duration’ in
the exposed groups and zero in the control group. Including the main effect
‘temperature’ does not significantly improve the fit.

All of our analyses in this section will be conducted by means of the hy-
brid between a marginal and conditional model, for which the full likelihood
version was given in Section 7.8, with a GEE2 version introduced in Sec-
tion 8.7. Tables 8.6 and 8.7 show three models fitted to these data. Given
the orthogonality between lower-order and higher-order parameters, the
estimates can be considered both as stemming from maximum likelihood,
as well as from GEE2, depending on whether one views the higher-order
association is set equal to zero because this is believed to be the correct
structure, or rather merely as a working assumption. In a few models,
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TABLE 8.9. Heatshock Study. Hybrid marginal-conditional parameter estimates
(empirically corrected standard errors) for models fitted to the outcomes MBN,
FBN, OLF, and BRB. Covariate effects are allowed to differ across outcomes.
Common covariate effects are assumed for MBN, FBN, and BRB. Pairwise as-
sociations are grouped in: (1) Group 1, containing all pairs formed from MBN,
FBN, and OLF, and (2) Group 2, all pairs containing BRB. Models 4, 5, and 7
are at the same time maximum likelihood and GEE2. Model 6 is full likelihood.

Parameter Model 4 Model 5 Model 6 Model 7
Marginal parameters

Intercepts
MBN -1.75(0.20) -1.75(0.20) -1.70(0.20) -1.74(0.20)
FBN -1.49(0.19) -1.49(0.19) -1.47(0.19) -1.49(0.19)
OLF -1.40(0.21) -1.41(0.21) -1.39(0.21) -1.45(0.21)
BRB -1.41(0.19) -1.41(0.19) -1.40(0.19) -1.42(0.19)
Covariates (MBN, FBN, BRB)
‘posdur’ -0.12(0.03) -0.12(0.03) -0.12(0.03) -0.13(0.03)
‘durtemp’ 0.04(0.01) 0.04(0.01) 0.04(0.01) 0.04(0.01)
Covariates (OLF)
‘posdur’ -0.22(0.05) -0.22(0.05) -0.22(0.05) -0.22(0.04)
‘durtemp’ 0.07(0.01) 0.07(0.01) 0.07(0.01) 0.07(0.01)

Pairwise association

Intercepts
Group 1 3.10(0.29) 3.11(0.29) 3.11(0.29) 3.50(0.40)
Group 2 2.32(0.26) 2.33(0.26) 2.32(0.26) 2.73(0.38)
Covariates
‘posdur’ 0.16(0.07)
‘durtemp’ -0.05(0.02)

Higher order association
MBN FBN OLF 0.47(1.35)
MBN FBN BRB 0.96(1.06)
MBN OLF BRB 0.19(1.44)
FBN OLF BRB 1.87(1.50)
MBN FBN OLF BRB 2.23(1.76)
Deviance 959.31 959.73 954.24 951.79

higher-order association parameters are included as well (Models 3 and 6),
implying they are full likelihood.

Models 1 and 2 do not include higher order associations. Model 1 applies
conditional constraints, whereas Model 2 considers its marginal counter-



8.10 The Heatshock Study 179

TABLE 8.10. Heatshock Study. Estimated odds ratios for Model 7 in Table 8.9.
Entries marked with a ∗ correspond to a duration-temperature combination not
present in the data.

Duration
Temp. 5 30 60

0.0 33.1 33.1 33.1
3.0 36.1 55.6 93.5
3.5 32.0 26.9 21.8
4.0 28.3 13.0 ∗ 5.1
4.5 25.1 6.3 ∗ 1.2
5.0 22.2 3.0 ∗ 0.3

parts. Model 3 includes the higher-order associations as well. Parameter
estimates and standard errors are shown. Clearly, the marginal parameters
are virtually the same across models, with the same holding true for the
standard errors. Further, it is clear that some of the covariate effects are
very similar, and some of the pairwise association parameters are very close
to each other.

Table 8.8 presents test statistics based on the model based and robust
variance estimators, obtained for Models 1–3. A common ‘posdur’ effect
is clearly not tenable. A common ‘durtemp’ effect gives p-values that are
borderline, as χ2 = 7.68 corresponds to p = 0.053 and χ2 = 7.39 to 0.061.
From the model parameters we observe that the effects of ‘posdur’ and
‘durtemp’ are virtually the same for MBN, FBN, and BRB, whereas OLF
differs slightly. The test statistics presented in Table 8.8 support these
hypotheses. A common pairwise association parameter is not supported,
but if the association is divided into two groups (pairs with and without
BRB) a simplification which is consistent with the data is achieved.

Reduced models are presented in Table 8.9, where only robust standard
errors are shown. Observe that the similarities across Models 4–6 are even
greater. Comparing models from Tables 8.6 and 8.7 with their correspond-
ing ones in Table 8.9 using a likelihood ratio statistics yields: 13.26 (Model
4 versus Model 1), 14.58 (Model 5 versus Model 2), and 16.42 (Model 6
versus Model 3), all on 8 degrees of freedom. Only the last one is above the
5 % critical level.

We gathered some evidence for a dependence of pairwise association on
the level of exposure. Model 7 in Table 8.9 shows an extension of Model 4,
where a common linear effect of ‘posdur’ and ‘durtemp’ is included for the
pairwise odds ratios. Allowing for a quadratic effect shows no significant
improvement. The pairwise association for pairs excluding BRB is described
by a log odds ratio of 3.5 + 0.16 ∗ ‘posdur’ − 0.049 ∗ ‘durtemp’. The effect
of ‘temperature’ is not significant. The association increases (slightly) with
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FIGURE 8.1. Heatshock Study. Malformation probabilities, based on models in-
cluding three and four outcomes. Ranges of ‘durtemp’ at three levels of ‘duration’
are presented. Solid line: MBN, FBN, OLF, BRB; dotted line: FBN, OLF, BRB;
dots and dashes: MBN, FBN, OLF.

‘posdur,’ but a dramatic decrease is seen with ‘durtemp.’ A selection of the
estimated odds ratios are shown in Table 8.10.

The pairwise associations are important as a tool used to reduce the
length of the outcome vector. Indeed, observe that the association between
MBN and FBN is very high, and that ‘posdur’ and ‘durtemp’ have a sim-
ilar effect on both. This might imply that considering, e.g., FBN, OLF,
and BRB only might yield a similar predicted probability of any malfor-
mation. In Figure 8.1, we show the malformation probability for a range of
‘durtemp’ values, at duration levels 5, 30, and 60 minutes. The malforma-
tion probabilities are estimated based on three models: Model 1, including
all four outcomes, the three-way version with FBN, OLF, and BRB, and the
three-way version with MBN, FBN, and OLF. In the latter case, BRB has
been omitted. As the association between pairs including BRB is observed
to be smaller, it is not surprising that the latter model underestimates the
malformation probability as it ignores important independent information.
This is best seen at smaller doses, which is important if the models are
used for low dose extrapolation.
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FIGURE 8.2. Sports Injuries Trial. Observed and fitted proportions of shivering
in both arms. Fitted proportions are based on Model 2 in Table 8.11.

8.11 The Sports Injuries Trial

The sports injuries trial has been introduced in Section 2.8.
We will apply the hybrid marginal and conditional model, introduced in

Sections 7.8 and 8.7, in the context of both the longitudinal outcome as
well as with repeated measures on the two outcomes, shivering and awake-
ness. Note that, just as in Section 8.10, two perspectives on the parameter
estimates obtained from the hybrid model are possible, maximum likeli-
hood and GEE2. The first one applies when the higher-order association
is modeled explicitly or considered to be zero, in line with the working as-
sumptions. The second one applies when the higher-order parameters are
set equal to zero by way of working assumption only.

8.11.1 Longitudinal Analysis
The first analysis considers four binary measurements of shivering (at 5, 10,
15, and 20 minutes). Data are presented in Table 2.12. We are interested
in a treatment difference and its evolution over time. First, the profiles
show a quadratic time trend, as can be seen in Figure 8.2. Next, we need a
cubic polynomial to describe the difference between treatment and placebo
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TABLE 8.11. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (model based standard errors; empirically corrected standard errors) for
models fitted to four binary shivering responses (at 5, 10, 15, and 20 minutes).
Model 1 presents unrestricted and Model 2 presents restricted association para-
meters.

Parameter Model 1 Model 2
Marginal parameters

Intercept 0.15(0.16;0.16) 0.15(0.16;0.16)

Time effect:
Linear 0.48(0.08;0.08) 0.48(0.08;0.08)
Quadratic -0.33(0.06;0.06) -0.33(0.06;0.06)

Treatment effect:
Main effect -0.36(0.23;0.23) -0.36(0.22;0.23)
Linear interaction -0.52(0.19;0.18) -0.52(0.19;0.18)
Quadratic interaction -0.20(0.10;0.10) -0.20(0.10;0.10)
Cubic interaction 0.28(0.09;0.08) 0.28(0.09;0.08)

Association
(1, 2) 3.67(0.73;0.71) 3.71(0.72;0.70)
(1, 3) 2.54(0.55;0.57)
(1, 4) 1.45(0.38;0.39)
(2, 3) 2.69(0.31;0.31)
(2, 4) 1.48(0.26;0.26)
(3, 4) 2.61(0.30;0.30)
(1, 3) = (2, 3) = (3, 4) 2.64(0.21;0.21)
(1, 4) = (2, 4) 1.47(0.25;0.25)
Deviance 1104.09 1104.20

profiles. Not surprisingly, the difference is more marked at later times.
Observed an fitted profiles are plotted in Figure 8.2.

Next, we study the association structure. There are six pairwise asso-
ciation parameters, one for each pair of measurement times. There is an
extraordinary strong association between the first and second time, the
odds ratio equals 39.2. This is explained by the relatively small number
of changes in shivering state at the beginning of the trial. Then, associa-
tion decreases with distance between time points. For the five remaining
associations, we consider measurements 1 and 2 to occur virtually together
and group the parameters by the difference in time between both measure-
ments: (1,3), (2,3), and (3,4) on the one hand and (1,4) and (2,4) on the
other. This reduces the number of association parameters to three, while
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TABLE 8.12. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (standard errors) for models fitted to four ordinal shivering responses
(at 5, 10, 15, and 20 minutes).

Parameter Estimate
Marginal parameters

First cutpoint:

Intercept 0.25(0.15)
Linear time 0.47(0.16)
Quadratic time -0.40(0.06)
Cubic time 0.02(0.07)

Second cutpoint:

Intercept -1.42(0.18)
Linear time 0.86(0.22)
Quadratic time -0.47(0.12)
Cubic time 0.01(0.11)

Treatment effect:
Main effect -0.49(0.21)
Linear interaction -0.46(0.22)
Quadratic interaction -0.05(0.08)
Cubic interaction 0.22(0.10)

Association
(1, 2) 3.81(0.45)
(1, 3) 3.29(0.39)
(1, 4) 1.59(0.30)
(2, 3) 2.69(0.29)
(2, 4) 1.49(0.26)
(3, 4) 2.52(0.29)

virtually not changing the quality of the fit. Table 8.11 presents parameter
estimates (standard errors) for both unrestricted (Model 1) and restricted
(Model 2) associations.

Taking a likelihood perspective, the overall deviance goodness-of-fit sta-
tistic is 7.66 on 20 degrees of freedom, providing evidence that there is no
need for higher order association. This means that, while a GEE2 perspec-
tive is still possible, assuming the higher-order association is left unspecified
and replaced by working assumptions, it is fine too to adopt a likelihood
point of view, where the first-order and second-order moments have been
modeled correctly, and the higher-order associations vanish.
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TABLE 8.13. Sports Injuries Trial. Cross-classification of two pairs of di-
chotomized shivering and awakeness measurements (at 10 and 20 minutes).

Shivering Awakeness
(0,0) (0,1) (1,0) (1,1)

Placebo arm
(0,0) 14 12 0 20
(0,1) 3 17 0 8
(1,0) 0 12 0 6
(1,1) 3 15 0 28

Treatment arm
(0,0) 12 23 0 28
(0,1) 5 9 0 5
(1,0) 2 13 0 9
(1,1) 3 24 0 6

TABLE 8.14. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (model-based standard errors; empirically corrected standard errors) for
models fitted to two pairs of shivering/awakeness measurements, at 10 and 20
minutes. When the two sets of standard errors coincide, only one is shown. Part
I: Marginal parameters.

Parameter Model 1 Model 2 Model 3 Model 4
Marginal parameters

Shivering at 10 minutes:
Intercept -0.15(0.17;0.17) -0.15(0.17) -0.15(0.17) -0.16(0.17)
Treatment -0.21(0.24;0.24) -0.22(0.24) -0.22(0.24) -0.21(0.24)

Shivering at 20 Minutes:
Intercept 0.15(0.17;0.17) 0.15(0.17) 0.15(0.17) 0.14(0.17)
Treatment -0.67(0.24;0.25) -0.66(0.24) -0.66(0.24) -0.67(0.24)

Awakeness at 10 Minutes:
Intercept -0.20(0.17;0.17) -0.20(0.17) -0.20(0.17) -0.20(0.17)
Treatment -0.45(0.25;0.25) -0.44(0.25) -0.44(0.25) -0.43(0.25)

Awakeness at 20 Minutes:
Intercept 1.86(0.25;0.26) 1.78(0.24) 1.78(0.24) 1.85(0.24)
Treatment -0.26(0.33;0.33) -0.10(0.34) -0.10(0.34) -0.23(0.33)

Finally, we reconsidered this analysis, but now on ordinal endpoints.
Because category 3 is either empty or very sparse for the four shivering
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TABLE 8.15. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (model-based standard errors; empirically corrected standard errors) for
models fitted to two pairs of shivering/awakeness measurements, at 10 and 20
minutes. When the two sets of standard errors coincide, only one is shown. Part
II: Association parameters.

Parameter Model 1 Model 2 Model 3 Model 4
Pairwise association

Shivering 1/Shivering 2:
Intercept 1.48(0.26;0.26) 1.43(0.37) 1.44(0.37) 1.32(0.25)
Treatment 0.08(0.52) 0.08(0.52)

Shivering 1/Awakeness 1:
Intercept 0.03(0.25;0.25) 0.62(0.35) 0.62(0.35)
Treatment -1.26(0.51) -1.25(0.51)

Shivering 1/Awakeness 2:
Intercept 1.36(0.41;0.42) 1.80(0.65) 1.81(0.64) 1.16(0.36)
Treatment -0.80(0.85) -0.81(0.84)

Shivering 2/Awakeness 1:
Intercept -0.28(0.25;0.25) 0.33(0.34) 0.33(0.34)
Treatment -1.34(0.53) -1.34(0.53) -0.83(0.36)

Shivering 2/Awakeness 2:
Intercept 0.58(0.36;0.37) 1.15(0.52) 1.15(0.52)
Treatment -1.10(0.71) -1.10(0.71)

Awakeness 1/Awakeness 2:
Intercept +∞ +∞ +∞ +∞

Higher-order Association
Shivering 1/Shivering 2/Awakeness 1:
Intercept 2.58(0.82)
Treatment -2.81(1.20)

Shivering 1/Shivering 2/Awakeness 2:
Intercept −∞
Treatment 0.27(1.18)
Deviance 1260.03 1249.67 1234.72 1260.82

measures being studied, it is combined with category 2. Consequently, we
have two sets of profiles. Potentially, both time and treatment effects can
differ depending on the cutpoint. There is evidence for such a difference
in the time trend in the form of a Wald test of 10.26 on 3 degrees of
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freedom (p = 0.017). On the other hand, it is plausible to consider a single
treatment profile, common to both cutpoints (Wald test of 6.85 on 4 degrees
of freedom; p = 0.14). Estimates for the corresponding model are presented
in Table 8.12.

8.11.2 A Bivariate Longitudinal Analysis
The second analysis considers two pairs of shivering and awakeness out-
comes, at 10 and 20 minutes. Data are given in Table 8.13. The main
interest lies in the effect of treatment for each outcome, as well as in the
association between the outcomes. There is a complication with the asso-
ciation between the two awakeness measures, due to the structural zeros
described earlier. Indeed, the corresponding log odds ratio is equal to in-
finity. If this parameter is estimated along with the others, we obtain a
solution on the boundary of the parameter space, invalidating inference.
One way out is to set this parameter equal to zero or another arbitrary
(finite) value. However, this is unsatisfactory form a theoretical point of
view, as we assume independence, knowing that there is an infinitely large
association. Alternatively, we can incorporate a log odds ratio of +∞ as
a structural feature of the model. Some straightforward technical modi-
fications are required to the fitting program, such as replacing (6.16) by
µij1j2 = min(µij1 , µij2). The parameter estimates are given in Tables 8.14
and 8.15 (Model 1).

The effect of treatment is clearly seen at the second shivering measure-
ment and only marginally at the first awakeness measurement. Only two of
the estimated pairwise associations are strong: between both shivering mea-
surements, and between the first shivering and the second awakeness mea-
surement. Because shivering often occurs as the patient abruptly changes
levels of consciousness, this could explain the association.

When computing the goodness-of-fit, one has to take into account that
in each 2 × 2 × 2 × 2 table (one for each treatment group), there are 4
zero cells by design, reducing the data degrees of freedom to 22. Model
1 yields a deviance G2 statistic of 25.32 on 9 degrees of freedom, which
is clearly unacceptable. First, the two-way association can be extended by
allowing for differences in association for the two treatment groups. The G2

statistic reduces to 14.95 on 4 degrees of freedom, which still leaves room
for improvement. To extend the model, the higher order associations need
to be modeled as well. Recall that, due to the orthogonality of marginal and
conditional parameters, this model (Model 2 in Tables 8.14 and 8.15) can
be considered satisfactory as it is saturated in the marginal parameters,
and the model-based and empirically corrected standard errors coincide
(hence only one entry is shown).

As we allowed the pairwise interactions to depend on treatment, a more
detailed picture than the one from Model 1 emerges. Apart from a struc-
tural +∞ for the association parameter between both awakeness measures,
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we find a relatively strong odds ratio for the two shiverings (consistent with
other analyses), without evidence for a treatment dependence. These two
odds ratios describe the longitudinal part of the association, pertaining to
two measurements of the same variable at different occasions.

Alternatively, one can seek to estimate the higher order association pa-
rameters as well. Here too, we have to take into account the zero cells.
It suffices to leave out all higher order interactions containing awakeness
measures simultaneously. This leaves two three-way conditional odds ratios
to estimate: (shivering 1, shivering 2, awakeness 1) and (shivering 1, shiv-
ering 2, awakeness 2). Assuming these are constant yields a G2 statistic
of 9.13 on 2 degrees of freedom. This implies that also the higher order
interactions are treatment dependent. Due to a sampling zero, the second
one of these log odds ratios is zero. Setting it equal to zero, and estimating
the value only in the treatment group, then corresponds to the saturated
model (Model 3 in Tables 8.14 and 8.15). It is interesting to note that the
first of the three-way interactions (shivering 1, shivering 2, awakeness 1) is
significant, at least in the placebo group.

Problems with sampling zeros occur less frequently when the higher order
association is described via marginal odds ratios (Molenberghs and Lesaffre
1994). Comparing Models 2 and 3, it might be argued that setting the
higher association parameters equal to zero is a sensible choice, especially
when scientific interest is limited to the first two moments.

To interpret the two-way association, we observe that some of the asso-
ciations in Models 2 and 3 do not attain statistical significance. Hence it is
useful to consider a more parsimonious model. We simplify Model 2 such
that only the following pairwise associations are included: a common log
odds ratio for the (shivering 1, shivering 2) and (shivering 1, awakeness 2)
pairs and association between shivering 2 and awakeness 1 in the treatment
group only. Comparing this model to Model 2 with a likelihood ratio test,
of course taking the likelihood perspective on the model, we obtain a G2

test statistic value of 11.15 on 7 degrees of freedom (p = 0.13). Note that
the main effect parameters all change less than 0.01 except for awakeness
at 20 minutes.




