
7
Likelihood-based Marginal Models

In Section 5.3.1, a general overview of marginal models is presented. Specific
versions, largely focused on contingency tables, were presented in Chap-
ter 6. In this chapter, we contemplate the fully general situation. We focus
on fully specified probabilistic models, in contrast to specifying a few low-
order moments only, such as in generalized estimating equations (GEE).
Although undoubtedly complicating both the theory and the computations,
there are at least two situations in which this route is the preferred one.
First, the scientific question may require careful modeling of the associ-
ation structure, in addition to the univariate response function. Second,
one may be interested in the joint probability of a number of events (e.g.,
what is the probability of side effects occurring at two subsequent measure-
ment occasions). In such a case, the association structure is not of direct
interest, but is still indirectly needed to calculate such joint, or union, prob-
abilities. An additional reason is that, such models as the Bahadur model
(Section 7.2) or the global odds ratio model (the Dale model, Section 7.7)
are the underlying basis for non-likelihood methods discussed later. For ex-
ample, standard GEE, such as introduced by Liang and Zeger (1986) and
studied in Chapter 8, is based on Bahadur’s probabilistic model, while the
version proposed by Lipsitz, Laird, and Harrington (1991) can be seen as
rooted in the Dale model.

We begin by presenting the Bahadur model (Section 7.2). It has a rela-
tively simple genesis, but at the same time suffer from severe drawbacks.
Section 7.3 presents a general framework, encompassing a wide class of mar-
ginal models, while details on maximum likelihood estimation are given in
Section 7.4. The ideas developed in Sections 7.3 and 7.4 are exemplified, us-
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ing an influenza study, in Section 7.5. Two specific families, the multivariate
probit model (Section 7.6) and the multivariate Dale model, or global odds
ratio model (Section 7.7) are presented next. Section 7.8 presents a hybrid
model, combining marginal and conditional model specifications. Three
case studies, a cross-over trial in primary dysmenorrhoea (Section 7.9), the
multivariate POPS study (Section 7.10, introduced in Section 2.6), and the
longitudinal fluvoxamine trial (Section 7.11) are presented.

7.1 Notation

In Chapter 4, we indicated, for each individual, subject, or experimen-
tal unit i = 1, . . . , N in a study, a series of measurements by Y i =
(Yi1, . . . , Yni

)′, along with covariate information, usually grouped into a
matrix Xi. We will refer to this convention as the regression notation.

When data are non-Gaussian in nature, this notation can sometimes be
used without too much modification, such as in the later chapters in this
part (e.g., on generalized estimating equations in Chapter 8), or in Part IV
on subject-specific models. On the other hand, note that in Chapter 6 we
merely needed indices to indicate cells in a contingency table. For example,
(i, j) in a two-way contingency table refers to row i and column j. In each
such cell, a number of subjects are grouped. When a two-way contingency
table is further split over levels of, say, a dichotomous covariate, such as in
Section 6.6.1, one often merely adds an additional index. This is similar to
the conventions in analysis of variance and in contrast to linear regression.

In the present chapter, we need a hybrid system. On the one hand, the
focus is on (longer) sequences of measurements, together with sets of co-
variates that can be continuous, categorical, or a mixture of these. In later
chapters, it will be sufficient to use the regression-type notation, sketched
at the start of this section. However, here we will need to describe not just
marginal, univariate regressions, also the association structure needs to be
modeled. This brings us close to a contingency table setting. When we have,
for example, one covariate with two levels and five repeated binary mea-
sures, we can view the data as consisting of two 25 contingency tables. But
the same view can be adopted when we have covariates with more levels,
and even when some or all of the covariates are continuous. For continuous
covariates, measured with high accuracy, there may be one or at most a
few study subjects corresponding to it. Rather than being a problem, it
is merely a way of conveniently framing both genuine contingency table
settings and categorical data regression settings into a single, contingency
table notational convention.

Thus, in this chapter, we will let r = 1, . . . , N indicate the covariate or
design levels, each containing Nr subjects. For example, when there is one
covariate with two levels, N = 2 and the total sample size is N1 + N2.
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When the covariate is continuous and such that there is only one subject
per covariate level, then each Nr = 1 and the total sample size is N . The
consequence of our choice is that, for the time being, we need an additional
index i for subjects within design lvels.

The outcome for subject i at the rth level (group) is a series of measure-
ments Yrij (j = 1, . . . , nr). In case there are subjects sharing covariates,
but with a different number of repeated measurements taken, then these
should be split over several design levels, implying that r defines unique
combinations of covariate levels and numbers of repeated measurements.
An additional notational element is that our outcome Yrij can be binary
(usually taking the values 0 and 1), but also categorical, ordered, or un-
ordered. We then need additional notation and assume that in such case
variable Yrij can take on cj distinct (possibly ordered) values. Without
loss of generality, denote them by 1, . . . , cj . In examples of a multivariate
nature, the measurement sequence usually is equally long for all subjects,
i.e., nr ≡ n but the number cj of categories per outcome can be variable. In
longitudinal settings, the number of measurements could also be different
from subject to subject, but when the same outcome is measured repeat-
edly over time, one typically sees that cj ≡ c. The more elaborate notation
will be referred to as the contingency table notation.

In the specific case of categorical data with more than two, possibly
ordered, categories, it is useful to make use of some additional notation. All
information about the responses on the units in the rth group is contained
in a cross-classification of the outcomes Yrij into a c1×. . .×cnr dimensional
contingency table with cell counts

Z∗
r (k) ≡ Z∗

r (k1, . . . , knr
), (7.1)

where cell k = (k1, . . . , knr
) corresponds to the subjects with Yrij = kj , for

j = 1, . . . , nr.
Along with the outcomes, a vector of explanatory variables xrj is recorded.

The covariate vector is allowed to change over time. It can include contin-
uous and discrete variables. Available covariate information, along with
other relevant design features, are incorporated in a design matrix Xr.

In harmony with the possibility to use cumulative measures for ordinal
data, we construct the table of cumulative counts:

Zr(k) =
∑
	≤k

Z∗
r (	). (7.2)

Thus, Zr(k), where k = (k1, . . . , knr
), is just the number of individuals in

group r whose observed response vector is k, and likewise for Zr(k)∗. The
corresponding probabilities are

µ∗
r(k) = P (Y ri = k|Xr, β) (7.3)
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and µr(k) = P (Y ri ≤ k|Xr, β). Let Zr be the vector of all cumulative
cell counts with µr the corresponding vector of probabilities. Note that
Zr(c1, . . . , cnr ) = nr and µr(c1, . . . , cnr ) = 1. Therefore, omitting these
two entries from Zr and µr, respectively, yields non-redundant sets. Z∗

r

and µ∗
r are defined similarly, and simple matrix equalities

µ∗
r = Brµr, Z∗

r = BrZr (7.4)

hold. As an example, consider a bivariate binary outcome vector, with
probabilities µ∗

r = (µ∗
11, µ

∗
12, µ

∗
21, µ

∗
22) and a similar ordering for µr. The

matrix Br is found by

B−1
r =

⎛⎜⎜⎜⎝
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠ .

The marginal counts are given by all counts for which all but one index
are equal to their maximal value: Zrjk ≡ Zr(c1, . . . , cj−1, k, cj+1, . . . , cnr

).
Bivariate cell counts, i.e., cell counts of a cross-classification of a pair of
outcomes, follow from setting all but two indices ks equal to cs. Therefore,
this description very naturally combines univariate, bivariate, and multi-
variate information. The ordering needed to stack the multi-indexed counts
and probabilities into a vector will be assumed fixed. Several orderings of
both Zr and µr are possible. A natural choice is the lexicographic ordering,
but this has the disadvantage of dispersing the univariate marginal counts
and means over the entire vector. Therefore, we will typically group the
elements by dimensionality first.

7.2 The Bahadur Model

7.2.1 A General Bahadur Model Formulation
Bahadur (1961) introduced this model, with its elegant closed form, but
with a number of computational problems surrounding it, stemming from
the complicated and highly restrictive form of its parameter space. The
model is conceived for binary data and can be introduced using the simpler
regression notation, outlined in Section 7.1. Thus, let the binary response
Yij indicate whether or not measurement j on subject i exhibits the event
under investigation.

Assume the marginal distribution of Yij to be Bernoulli with

E(Yij) = P (Yij = 1) ≡ πij .
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This expectation can be taken conditional upon covariates Xi. For simplic-
ity, they are suppressed from notation. To start describing the association,
the pairwise probability

P (Yij1 = 1, Yij2 = 1) = E(Yij1Yij2) ≡ πij1j2

needs to be characterized. This “success probability” of two measurements
taken in the same subject can be modeled in terms of the two marginal
probabilities πij1 and πij2 , as well as an association parameter, this being
the marginal correlation coefficient in Bahadur’s model.

The marginal correlation coefficient assumes the form

Corr(Yij1 , Yij2) ≡ ρij1j2 =
πij1j2 − πij1πij2

[πij1(1 − πij2)πij2(1 − πij2)]1/2 . (7.5)

In terms of this association parameter, the joint probability πij1j2 can then
be written as

πij1j2 = πij1πij2 + ρij1j2 [πij1(1 − πij1)πij2(1 − πij2)]
1/2. (7.6)

Hence, given the marginal correlation coefficient ρij1j2 and the univariate
probabilities πij1 and πij2 , the pairwise probability πij1j2 can be calculated
with ease.

The first and second moments of the distribution have now been specified.
However, a likelihood-based approach requires the complete representation
of the joint probabilities of the vector of binary responses in each unit. The
full joint distribution f(y) of Y i = (Yi1, . . . , Yini)

′ is multinomial with a
2ni probability vector. Bahadur used, apart from the conventional two-way
correlation coefficient, third- and higher- order correlation coefficients to
completely specify the joint distribution. To this end, let

εij =
Yij − πij√
πij(1 − πij)

and eij =
yij − πij√
πij(1 − πij)

, (7.7)

where yij is an actual value of the binary response variable Yij . Further,
let

ρij1j2 = E(εij1εij2),
ρij1j2j3 = E(εij1εij2εij3),

..., (7.8)
ρi12...ni = E(εi1εi2 . . . εini).

Then, the general Bahadur model can be represented by the expression
f(yi) = f1(yi)c(yi), where

f1(yi) =
ni∏

j=1

π
yij

ij (1 − πij)1−yij
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and

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3

+ . . . + ρi12...niei1ei2 . . . eini .

Thus, the probability mass function is the product of the independence
model f1(yi) and the correction factor c(yi). One view-point is to consider
the factor c(yi) as a model for overdispersion.

7.2.2 The Bahadur Model for Clustered Data
To enhance understanding, let us consider the Bahadur model for the case
of exchangeably clustered data. This version of the model was of use for
Aerts et al (2002) who studied models for clustered data arising in an
environmental context.

When the focus is on the special case of clustered data, this assumes
on the one hand that each measurement within a unit (individual, family,
litter, cluster,. . . ) has the same response probability, i.e., πij = πi. On the
other hand, it usually implies that within a litter, the associations of a
particular order are constant, i.e., ρij1j2 = ρi(2) for j1 < j2, ρij1j2j3 =
ρi(3) for j1 < j2 < j3,. . . , ρi12...ni

= ρi(ni), with i = 1, . . . , N . Given these
assumptions, we do not need to know the individual outcomes Yij , but it
suffices to know

Zi =
ni∑

j=1

Yij , (7.9)

the number of successes within a unit, with realized value zi. Under ex-
changeability (or equicorrelation), the Bahadur model reduces to

f1(yi) = πzi
i (1 − πi)ni−zi

and

c(yi) = 1 +
ni∑

r=2

ρi(r)

r∑
s=0

(
zi

s

)(
ni − zi

r − s

)
(−1)s+rλr−2s

i , (7.10)

with λi =
√

πi/(1 − πi). The probability mass function of Zi is given by

f(zi) =
(

ni

zi

)
f(yi).

In addition, setting all three- and higher-way correlations equal to zero,
the probability mass function of Zi simplifies further to:

f(zi) ≡ f(zi|πi, ρi(2), ni) =
(

ni

zi

)
πzi

i (1 − πi)ni−zi
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×
[
1 + ρi(2)

{(
ni − zi

2

)
πi

1 − πi
− zi(ni − zi)

+

(
zi

2

)
1 − πi

πi

}]
. (7.11)

This very tractable expression of the Bahadur probability mass function
is advantageous over other representations, such as the multivariate pro-
bit (Section 7.6) and Dale (Section 7.7) models, for which no closed form
solutions, free of integrals, exist. However, a drawback is the fact that the
correlation between two responses is highly constrained when the higher
order correlations are removed. Even when higher order parameters are
included, the parameter space of marginal parameters and correlations is
known to be peculiar. Bahadur (1961) discusses restrictions on the corre-
lation parameters. The second-order approximation in (7.11) is only useful
if it is a probability mass function. Bahadur indicates that the sum of the
probabilities of all possible outcomes is one. However, depending on the
values of πi and ρi(2), expression (7.11) may fail to be non-negative for
some outcomes. The latter results in restrictions on the parameter space,
which, in case of the second-order approximation, are described by Bahadur
(1961). From these, it can be deduced that the lower bound for ρi(2) ap-
proaches zero as the cluster size increases. However, it is important to note
that also the upper bound for this correlation parameter is constrained.
Indeed, even though it is one for clusters of size two, the upper bound
varies between 1/(ni − 1) and 2/(ni − 1) for larger clusters. Taking a clus-
ter size of, for example, 12, the upper bound is in the range (0.09; 0.18).
Kupper and Haseman (1978) present numerical values for the constraints
on ρi(2) for choices of πi and ni. Restrictions for a specific version where a
third-order association parameter is included as well are studied by Pren-
tice (1988), while a more general situation is studied by Declerck, Aerts,
and Molenberghs (1998). See also Aerts et al (2002).

The marginal parameters πi and ρi(2) can be modeled using a composite
link function. Because Yij is binary, the logistic link function for πi is a
natural choice. In principle, any link function, such as the probit link,
the log-log link or the complementary log-log link, could be chosen. A
convenient transformation of ρi(2) is Fisher’s z-transform. This leads to the
following generalized linear regression relations⎛⎝ ln

(
πi

1−πi

)
ln
(

1+ρi(2)

1−ρi(2)

) ⎞⎠ ≡ ηi = Xiβ, (7.12)

where Xi is a design matrix and β is a vector of unknown parameters. Note
that (7.12) is not encompassed by (6.2).
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Denote the log-likelihood contribution of the ith unit by

	i = ln f(zi|πi, ρi(2), ni).

The maximum likelihood estimator β̂ for β is defined as the solution to the
score equations U(β) = 0. The score function U(β) can be written as

U(β) =
N∑

i=1

X ′
i(T

′
i )

−1Li (7.13)

where

Ti =
∂ηi

∂Θi
=

(
∂ηi1
∂πi

∂ηi2
∂πi

∂ηi1
∂ρ(2)

∂ηi2
∂ρi(2)

)
=

(
1

πi(1−πi)
0

0 2
(1−ρi(2))(1+ρi(2))

)
,

Li =
∂	i

∂Θi
=

(
∂�i

∂πi
∂�i

∂ρi(2)

)
and Θi = (πi, ρi(2))′, the set of natural parameters. A Newton-Raphson
algorithm can be used to obtain the maximum likelihood estimates β̂ and
an estimate of the asymptotic covariance matrix of β̂ can be obtained from
the observed information matrix at maximum.

When including higher order correlations, implementing the score equa-
tions and the observed information matrices becomes increasingly cumber-
some. Although the functional form (7.13) does not change, the components
Ti and Li become fairly complicated. Fisher’s z transform can be applied
to all correlation parameters ρi(r). The design matrix Xi would then ex-
tend in a straightforward fashion as well. Unfortunately, fitting a higher
order Bahadur model, is not straightforward, due to increasingly complex
restrictions on the parameter space.

Observing that interest is often restricted to the marginal mean function
and the pairwise association parameter, one can replace a full likelihood
approach by estimating equations where only the first two moments are
modeled and working assumptions are adopted about third- and fourth-
order moments. This is treated as one of the extensions to standard gen-
eralized estimating equations in Section 8.5. See also Liang, Zeger, and
Qaqish (1992).

7.2.3 Analysis of the NTP Data
Table 7.1 presents parameter estimates and standard errors for the Bahadur
model, in the specific context of clustered outcomes as in Section 7.2.2,
fitted to several outcomes in three of the NTP datasets, described in Sec-
tion 2.7. Apart from the external, visceral, and skeletal malformation out-
comes, we also consider the so-called collapsed outcome, which is 1 if at
least one of the three malformations occur and 0 otherwise.
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TABLE 7.1. NTP Data. Parameter estimates (standard errors) for the Bahadur
model, fitted to various outcomes in three studies. β0 and βd are the marginal
intercept and dose effect, respectively; βa is the Fisher z transformed correlation;
ρ is the correlation.

Outcome Parameter DEHP EG DYME
External β0 -4.93(0.39) -5.25(0.66) -7.25(0.71)

βd 5.15(0.56) 2.63(0.76) 7.94(0.77)
βa 0.11(0.03) 0.12(0.03) 0.11(0.04)
ρ 0.05(0.01) 0.06(0.01) 0.05(0.02)

Visceral β0 -4.42(0.33) -7.38(1.30) -6.89(0.81)
βd 4.38(0.49) 4.25(1.39) 5.49(0.87)
βa 0.11(0.02) 0.05(0.08) 0.08(0.04)
ρ 0.05(0.01) 0.02(0.04) 0.04(0.02)

Skeletal β0 -4.67(0.39) -2.49(0.11) -4.27(0.61)
βd 4.68(0.56) 2.96(0.18) 5.79(0.80)
βa 0.13(0.03) 0.27(0.02) 0.22(0.05)
ρ 0.06(0.01) 0.13(0.01) 0.11(0.02)

Collapsed β0 -3.83(0.27) -2.51(0.09) -5.31(0.40)
βd 5.38(0.47) 3.05(0.17) 8.18(0.69)
βa 0.12(0.03) 0.28(0.02) 0.12(0.03)
ρ 0.06(0.01) 0.14(0.01) 0.06(0.01)

Specifically, a marginal logit model linear in dose and a constant associ-
ation ρi(2) = ρ(2) are chosen, implying that Xi in (7.12) takes the form:

Xi =

(
1 di 0
0 0 1

)
(7.14)

and

β =

⎛⎜⎝ β0

βd

βa

⎞⎟⎠ , (7.15)

where β0 is an intercept, βd the dose effect, and βa the Fisher z transformed
correlation.

We conclude that the background risk for malformation in all cases is
very small, but that it increases with dose. For the external malformation
outcome in the DEHP study, for example, the background risk is estimated
to be small:

e−4.93

1 + e−4.93 = 0.0071.
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When the dose level equals its highest value (d = 1.0), the risk becomes

e−4.93+5.15

1 + e−4.93+5.15 = 0.55,

implying that more than one out of two foetuses would be malformed.
The dose-response curve that follows from the marginal logistic regres-

sion:

P (Yij = 1|di) =
e−4.93+5.15di

1 + e−4.93+5.15di

is supplemented with information on the association. In addition, one ob-
tains a correlation of

ρ̂ =
eβ̂a − 1

eβ̂a + 1
= 0.05.

Although small, the within-cluster association is significant, as it is for most
but not all outcomes.

7.2.4 Analysis of the Fluvoxamine Trial
The fluvoxamine trial, introduced in Section 2.4, were analyzed in some
detail in Chapter 6. In Section 6.6, several two-way contingency tables,
either based on a single outcome at two measurement occasions, or side
effects and therapeutic effect at the same time, were analyzed. This initial
setting was extended to categorical covariates and three-way tables in Sec-
tions 6.6.1 and 6.6.2, respectively. Using the Bahadur model, we are able
to extend this further to sequences of arbitrary length, and a combination
of continuous and categorical covariates. This is true in principle, as the
Bahadur model is restrictive due to constraints on the parameter space,
as stated before. In Section 7.2.3, we were able to analyze the NTP data,
with dose treated as a continuous covariate, in spite of the fact that some
litters consist of around 15 littermates, but we could do so only by carefully
exploiting the exchangeable nature of the data, with only three regression
parameters as a result.

Here, we would like to study three side-effects measures simultaneously,
regressed on age and sex of the patient, prior duration of the mental illness,
and initial severity of the disease. We are confronted with two stumbling
blocks. First, because the Bahadur model is formulated for binary out-
comes, we need to collapse the original four-category side effects outcome
into a dichotomous variable. This is done by transforming the lower two
levels of the side effects variable into 0 and the upper two into 1. Second,
due to the parameter restrictions, it was not possible to consider all four
covariates simultaneously. Thus, we resrict attention to the sex and prior
duration variables. Parameter estimates are given in Table 7.2. The three-
way correlation coefficient is set to zero. The effect of the covariates is not
significant, but the correlation parameters are. For ease of interpretation,
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TABLE 7.2. Fluvoxamine Study. Longitudinal analysis using Bahadur’s model.
The side effects at three successive times are regressed on sex and duration. The
entries represent the parameter estimates (standard errors).

Side effects at time
Parameter 1 2 3
Intercept 0.81(0.47) 0.15(0.37) 0.57(0.44)
Sex -0.56(0.26) 0.02(0.20) 0.14(0.24)
Duration 0.008(0.009) 0.01(0.01) -0.01(0.01)

Association Parameters
12 13 23 123

Fisher z transformed correlations
1.42(0.16) 0.84(0.13) 1.37(0.15) —

Correlations
0.61(0.05) 0.39(0.05) 0.59(0.05) —

the Fisher z transformed correlation, as they figure in the model and fitting
program, are transformed again to their original scale, supplemented with
standard errors obtained by means of the delta method.

Thus, while the Bahadur model can be of some use in a restricted number
of situations, including exchangeably clustered outcomes, there are practi-
cal limitations when used in multivariate and longitudinal settings. There-
fore, in spite of the relatively simple model formulation, there is a need for
alternative models, when a full likelihood based analysis of a marginally
formulated model is envisaged. In the next section, we will sketch a general
framework to achieve this, then consider the probit (Section 7.6) and Dale
model (Section 7.7) cases, whereafter we analyze several sets of data. In
particular, we return to the fluvoxamine study in Section 7.11.

7.3 A General Framework for Fully Specified
Marginal Models

We will now use the contingency table notation laid out in Section 7.1. A
marginal model can be built in several ways. In a few cases it is possible to
write down the multivariate probability mass function immediately, such
as in the Bahadur model of Section 7.2. In most cases, one starts from the
univariate margins, on top of which an association structure is assumed,
of the second and higher orders, to complete model specification. We will
proceed here in this at first sight laborious way.
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By means of (7.3), the set of cell probabilities at design level r has been
defined. To proceed with modeling, we typically map these onto a set of
link functions ηr, which can then be expressed in terms of parameters of
scientific interest. In the Bahadur model for clustered data, this was done by
means of (7.12). In general, we map the Cr-vector µr (Cr = c1 ·c2 · . . . ·cnr )
to

ηr = ηr(µr), (7.16)

a C
′
r-vector. In many models, Cr = C

′
r, and ηr and µr have the same

ordering. A counterexample is provided by the probit model, where the
number of link functions is smaller than the number of mean components,
as soon as nr > 2, i.e., there are three of more repeated measures [see
(7.25)–(7.27)]. As already indicated in Section 6.2.1, an important class of
link functions is discussed by McCullagh and Nelder (1989):

ηr(µr) = C ln(Aµr), (7.17)

a definition in terms of contrasts of log probabilities, where the probabilities
involved are linear combinations Aµr. The same class was presented in (6.2)
for the specific case of marginal models for a contingency table.

7.3.1 Univariate Link Functions
We consider particular choices of link functions. To this end, let us abbre-
viate the univariate marginal probabilities by

µrjk = µr(c1, . . . , cj−1, k, cj+1, . . . , cnr
),

then the logit link becomes

ηrjk = ln(µrjk) − ln(1 − µrjk) = logit(µrjk). (7.18)

Some link functions that are occasionally of interest, such as the probit or
complementary log-log link are not supported by (7.17) but they can easily
be included in (7.16). The probit link is

ηrjk = Φ−1
1 (µrjk),

with Φ1 the univariate standard normal distribution.

7.3.2 Higher-order Link Functions
However, univariate links alone do not fully specify ηr and hence leave the
joint distribution partly undetermined. Full specification of the association
requires addressing the form of pairwise and higher-order probabilities.
First, we will consider the pairwise associations. Let us denote the bivariate
probabilities, pertaining to the j1th and j2th outcomes, by

µr,jh,k� = µr(c1, . . . , cj−1, k, cj+1, . . . , ch−1, 	, ch+1, . . . , cnr ).



7.3 A General Framework for Fully Specified Marginal Models 95

TABLE 7.3. Association structure of selected marginal models.

Name Association structure Equation
Success probability Logit of joint probability (7.19)
Bahadur model Marginal correlation coefficients (7.5)
Dale model Global marginal odds ratio (7.21)–(7.23)

Local marginal odds ratio (7.24)
Probit model Polychoric correlation (7.25)–(7.27)

Some association parameterizations are summarized in Table 7.3.
The success probability parameterization of Ekholm (1991) consists of

choosing a link function for the univariate marginal means (e.g., a logit link)
and then applying the same link function to the two- and higher order
success probabilities (i.e., the probabilities for observing a single success
when looking at one outcome at a time, a pair of successes when looking
at pairs of outcomes,. . . ). For categorical data, a logit link for two-way
probabilities is given by

ηr,jh,k� = ln(µr,jh,k�) − ln(1 − µr,jh,k�) = logit(µi,jh,k�), (7.19)

for k = 1, . . . , cj − 1 and 	 = 1, . . . , ch − 1. Ekholm, Smith, and McDon-
ald (1995) and Ekholm, McDonald, and Smith (2000) used these to define
dependence ratios, in the specific case of binary data. The marginal corre-
lation coefficient (Bahadur 1961) is defined as

ρr,jh,k� =
µr,jh,k� − µrjkµrh�√

µrjk(1 − µrjk)µrh�(1 − µrh�)
. (7.20)

This model has been developed, for binary data, including the higher order
correlations, in Section 7.2.

We will put strong emphasis on the marginal global odds ratio, defined
by

ψr,jh,k� =
(µr,jh,k�)(1 − µrjk − µrh� + µr,jh,k�)

(µrh� − µr,jh,k�)(µrjk − µr,jh,k�)
(7.21)

and usefully modeled on the log scale as

ηr,jh,k� = lnψr,jh,k�

= ln(µr,jh,k�) − ln(µrjk − µr,jh,k�)
− ln(µrh� − µr,jh,k�) + ln(1 − µrjk − µrh� + µr,jh,k�).

Higher order global odds ratios are easily introduced, for example, using
ratios of conditional odds (ratios). Let

µrj|h(zh) = P (Zrijkj = 1|Zrihkh
= zh, Xr, β) (7.22)
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be the conditional probability of observing a success at occasion j, given the
value zh is observed at occasion h, and write the corresponding conditional
odds as

ψrj|h(zh) =
µrj|h(zh)

1 − µrj|h(zh)
.

The pairwise marginal odds ratio, for occasions j and h, is defined as

ψrjh =

{
pr(Zrijkj

= 1, Zrihkh
= 1)

}{
pr(Zrijkj

= 0, Zrihkh
= 0)

}{
pr(Zrijkj = 0, Zrihkh

= 1)
}{

pr(Zrijkj = 1, Zrihkh
= 0)

}
=

ψrj|h(1)
ψrj|h(0)

,

in accordance with (7.21). This formulation can be exploited to define the
higher order marginal odds ratios in a recursive fashion:

ψrj1...jmjm+1 =
ψrj1...jm|jm+1(1)
ψrj1...jm|jm+1(0)

, (7.23)

where ψrj1...jm|jm+1(zm+1) is defined by conditioning all probabilities oc-
curring in the expression for ψrj1...jm

on Zrijm+1 = zjm+1 . The choice of
the variable to condition on is immaterial. Observe that multi-way marginal
global odds ratios are defined solely in terms of conditional probabilities.
We will return to these in Section 7.7.4, when more detail is given about
the multivariate Dale model.

Another type of marginal odds ratios is given by the marginal local odds
ratios. These were used in Section 6.2.2. This type of odds ratio changes
(7.21) to

ψ∗
r,jh,k� =

µ∗
r,jh,k�µ

∗
r,jh,k+1,�+1

µ∗
r,jh,k+1,�µ

∗
r,jh,k,�+1

, (7.24)

with the cell probabilities as in (7.3). Higher order marginal local odds
ratios are constructed in the same way as their global counterparts. The
global odds ratio model will be studied further in Section 7.7.

Observe that the multivariate probit model (Ashford and Sowden 1970,
Lesaffre and Molenberghs 1991) also fits within the class defined by (7.16).
To see this, let g = h−1. For three categorical outcome variables, the inverse
link is specified by

µrjk = Φ1(ηrjk), (7.25)
µr,jh,k� = Φ2(ηrjk, ηrh�, ηr,jh,k�), (7.26)

µr,123,k�m = Φ3(ηr1k, ηr2�, ηr3m, ηr,12,k�, ηr,13,km, ηr,23,�m), (7.27)

where the notation for the three-way probabilities is obvious. The associa-
tion links ηr,jh,k� represent any transform (e.g., Fisher’s z-transform such
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as in the Bahadur model of Section 7.2) of the correlation coefficient. It
is common practice to keep each correlation constant throughout a table,
rather than having it depend on the categories: ηr,jh,k� ≡ ηr,jh. Relaxing
this requirement may still give a valid set of probabilities, but the cor-
respondence between the categorical variables and a latent multivariate
normal variable is lost. Finally, observe that univariate links and bivari-
ate links (representing correlations) fully determine the joint distribution.
This implies that the mean vector and the link vector will have a different
length, except in the univariate and bivariate cases.

In summary, marginal models are characterized by jointly specifying mar-
ginal response functions and marginal association measures. Models can be
classified by the association measures, as exemplified in Table 7.3.

Finally, model formulation is completed by constructing appropriate de-
sign matrices. Let us give an example to indicate how model assumptions
are reflected by choosing particular types of design. We deliberately re-
strict ourselves to linear predictors, while, in principle, there is no obstacle
to include non-linear effects (Chapter 20). The design matrix Xr for the
rth design level includes all information which is needed to model both
the marginal mean functions and associations. Each row corresponds to an
element in the vector of link functions ηr. Its generality is best illustrated
using an example.

Consider the case of three outcomes, recorded on a three-point scale. Let
the measurement times be t1 ≡ 0, t2, and t3. Assume the recording of four
explanatory variables, x1, . . . , x4, with only x3 and x4 time-varying. We first
turn our attention to the marginal distributions. Let x1 have a constant
effect on each outcome, i.e., a single parameter describes the effect of x1
on the cumulative logits of the three outcome probabilities. On the other
hand, the effect of x2 is allowed to change over time. We also introduce a
single parameter to describe the effect of x3 and three separate parameters
to account for the influence of x4. These assumptions call for the following
parameter vector

β1 = (β01, β02, τ2, τ3, β1, β21, β22, β23, β3, β41, β42, β43)′,

with β0k intercepts, τj the effect of measurement time j, β1 and β3 the
parameters, needed to describe the effect of x1 and x3 respectively, and βtj

the parameter describing the effect of x
(j)
t at time t (t = 2, 4; j = 1, 2, 3).

Next, assume that the two-way associations depend on the pair of variables
they refer to, as well as on the cumulative category within that variable.
Finally, assume dependence on the covariate x1r. This introduces extra
parameters

α2 = (γ, γ11, γ12, γ21, γ22, γ31, γ32, φ1, φ2, φ3)′,

with γ the intercept, γjk the dependence on category k of outcome j (j =
1, 2; k = 1, 2), and φj the dependence on x1. Finally, assume a constant
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β01 β02 τ2 τ3 β1 β21 β22 β23 β3 β41 β42 β43

ηr(1, 3, 3) 1 0 0 0 x1r x2r 0 0 x
(1)
3r x

(1)
4r 0 0

ηr(2, 3, 3) 0 1 0 0 x1r x2r 0 0 x
(1)
3r x

(1)
4r 0 0

ηr(3, 1, 3) 1 0 1 0 x1r 0 x2r 0 x
(2)
3r 0 x

(2)
4r 0

ηr(3, 2, 3) 0 1 1 0 x1r 0 x2r 0 x
(2)
3r 0 x

(2)
4r 0

ηr(3, 3, 1) 1 0 0 1 x1r 0 0 x2r x
(3)
3r 0 0 x

(3)
4r

ηr(3, 3, 2) 0 1 0 1 x1r 0 0 x2r x
(3)
3r 0 0 x

(3)
4r

FIGURE 7.1. Design matrix for marginal means and pairwise associations. Mar-
ginal means.

value for the three-way associations, α3 say. The entire parameter vector
is denoted as

β = (β
′
, α

′
2, α3)′.

The design matrix for design level r, Xr, is block diagonal with blocks Xr1
(mean functions, shown in Figure 7.1), Xr2 (pairwise association, shown in
Figure 7.2), and Xr3 (three-way association).

Observe that, apart from the intercepts β0k, the design is identical for
each cumulative logit in Figures 7.1 and 7.2. This reflects the proportional
odds assumption when marginal logits are used. If this assumption is con-
sidered unrealistic, the design can be generalized without any difficulty.
Nominal covariates and interactions between covariates are also easily in-
cluded.

The second block of the design matrix, X2r, corresponds to the pairwise
associations and is given by Figure 7.2. Finally, the design for the three-way
associations in our example is a 8 × 1 column vector of ones, correspond-
ing to the 8 link functions ηr(k1, k2, k3) (kj = 1, 2; j = 1, 2, 3). Replacing
the elements of this vector by zeros has the effect of setting higher order
association components equal to one (zero on the log scale).

Generalizations include non-block diagonal designs, and structured as-
sociation such as exchangeable association, temporal association (as intro-
duced by Fitzmaurice and Lipsitz 1995), and banded association. In many
circumstances, the association structure of a given table, representing a
two- or multi-way classification of several variables is of direct interest,
rather than the dependence of the outcomes on covariates. Association
measures are extensively studied in Goodman (1981b). We will discuss
these further in Chapter 11. With the current approach, we are also able
to explore the association structure of contingency tables. A typical form
for the linear predictor, pertaining to a two-way association, is given by

ηr,jh,k� = γ + γjh + γjk + γh� + δjkδh�,
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γ γ11 γ12 γ21 γ22 γ31 γ32 φ1 φ2 φ3

ηr(1, 1, 3) 1 1 0 1 0 0 0 x1r 0 0
ηr(1, 2, 3) 1 1 0 0 1 0 0 x1r 0 0
ηr(2, 1, 3) 1 0 1 1 0 0 0 x1r 0 0
ηr(2, 2, 3) 1 0 1 0 1 0 0 x1r 0 0
ηr(1, 3, 1) 1 1 0 0 0 1 0 0 x1r 0
ηr(1, 3, 2) 1 1 0 0 0 0 1 0 x1r 0
ηr(2, 3, 1) 1 0 1 0 0 1 0 0 x1r 0
ηr(2, 3, 2) 1 0 1 0 0 0 1 0 x1r 0
ηr(3, 1, 1) 1 0 0 1 0 1 0 0 0 x1r

ηr(3, 1, 2) 1 0 0 1 0 0 1 0 0 x1r

ηr(3, 2, 1) 1 0 0 0 1 1 0 0 0 x1r

ηr(3, 2, 2) 1 0 0 0 1 0 1 0 0 x1r

.

FIGURE 7.2. Design matrix for marginal means and pairwise associations. Pair-
wise associations.

including an overall intercept, effects specific to times j and h: γts, ‘row’
and ‘column’ effects γjk and γh� and multiplicative interactions. Obviously,
this model is overparameterizing the association, calling for the usual re-
strictions.

7.4 Maximum Likelihood Estimation

In the previous section, a general framework for formulating marginal mod-
els has been sketched. We will zoom in on specific instances, the multivari-
ate probit and Dale models, in Sections 7.6 and 7.7, respectively. But before
doing so, we will discuss a general form for the likelihood equations and
discuss algorithms to obtain the maximum likelihood estimator, as well as
estimates of precision. When performing maximum likelihood estimation
for marginal models, a crucial element is the determination of the joint
probabilities. Details on these important but technical aspects are provided
in Appendix 7.12.

7.5 An Influenza Study

Consider the following clinical trial. A group of 498 medical students, be-
tween 17 and 29 years of age (median 21 years), are randomized to two
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treatment groups. Those in the HI group receive hepatitis B vaccination
(H), followed by influenza vaccination (I), whereas the reverse order is ap-
plied in the IH group. For each type of vaccination, vaccines from a company
A and a company B are used. In each treatment period, the vaccines are
evaluated with respect to the side effects they caused. We are interested in
the outcomes headache and respiratory problems. Because both outcomes
are measured in each of the two periods, we obtain a four-dimensional re-
sponse variable. It is of interest to assess the strength of the association
between both headache outcomes, between both respiratory outcomes, as
well as to determine whether both complaints are dependent. In addition,
a three-point ordinal variable, level of pain, is recorded for six days in row
during the first period, supplementing the cross-over study with a longitu-
dinal one. The first three days will be evaluated here. In order to analyze
these data, we need tools for longitudinal categorical data, as well as tools
for more complex designs, such as cross-over trials with several outcomes
in each period. Whereas the association between outcomes is often consid-
ered a nuisance characteristic in longitudinal studies, it is usually of direct
interest in multivariate settings, such as the bivariate cross-over study con-
sidered here.

We analyze the cross-over and longitudinal parts of the influenza study
in turn.

7.5.1 The Cross-over Study
Let us now analyze presence/absence of headache (H) and presence/absence
of respiratory problems (R), measured in both trial periods. Explicitly, the
probability of absence of symptoms will be modeled. We combine marginal
logits with marginal log odds ratios. The modeling is in stages. First, period
effect is included. Then, a contrast between the two companies, a contrast
between the two vaccinations, and an interaction term between companies
and treatments is added. Further, the baseline covariates ‘age’ (in years)
and ‘sex’ (0 =male, 1 =female) are included. There are three types of
two-way association: between the two headache outcomes, between the two
respiratory problems outcomes, and between a headache and a respiratory
outcome. The two-way associations are graphically depicted in Figure 7.3.
Three-way and four-way associations are assumed to be constant through-
out. The results are presented in Table 7.4.

Respiratory problems are on average very infrequent, as can be seen from
the high value of the intercept. For both outcomes, there is a significant
period effect: there are less headaches and respiratory problems in the sec-
ond period. Also, the influenza vaccination causes less headaches, but more
respiratory problems. Headaches are more frequently seen in younger peo-
ple, whereas the opposite holds for respiratory problems. Men suffer more
from headaches after vaccination than women. The odds ratio between two
respiratory problems is high (7.9), while a somewhat smaller association is
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TABLE 7.4. Influenza Study. Parameter estimates (standard errors) for the
cross-over trial.

Effect Estimate (s.e.)
Headache

intercept 0.055 (1.092)
period effect 0.434 (0.140)
company A effect -0.341 (0.221)
influenza effect 0.132 (0.212)
company A-influenza interaction -0.053 (0.281)
age 0.052 (0.054)
sex 0.875 (0.217)

Respiratory problems
intercept 5.217 (1.297)
period effect 0.167 (0.156)
company A effect -0.229 (0.267)
influenza effect -0.119 (0.226)
company-influenza interaction 0.257 (0.312)
age -0.159 (0.063)
sex 0.133 (0.243)

Associations (log odds ratios)
headache-headache (ψHH) 1.130 (0.251)
respiratory-respiratory (ψRR) 2.061 (0.309)
headache-respiratory (ψHR) 1.090 (0.191)
three-way interaction 0.219 (0.395)
four-way interaction 2.822 (1.462)

seen between the pair of headache measures (3.1) and between the mixed
pair (3.0). This is due to the fact that respiratory problems are more severe
and probably more strongly related with vaccination than headache, which
can have various causes. Extending the two-way association structure to
include a company effect was not significant. We found no higher-order
association, although the four-way association was close to significance.

7.5.2 The Longitudinal Study
Pain was measured on six consecutive days after vaccination. Changes in
response are mainly observed during the first three days. Significant pre-
dictors for the evolution of pain level are ‘sex,’ ‘age,’ the use of medication
(‘med’), and the actual vaccination. The effect of all covariates is allowed to
change over time. As there are four vaccinations, we decompose them into
two factors (company, influenza, and the interaction). At each measurement
time, there are two intercepts, corresponding to two cumulative logits [no
pain (0) versus pain (1 and 2); no or mild pain (0 and 1) versus moderate



102 7. Likelihood-based Marginal Models

Company A Company B

YiAH ψHH
� � YiBH Headache

Respiratory

ψHR

�

�

ψHR
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ψHR

�

�

YiAR ψRR
� � YiBR

FIGURE 7.3. Influenza Study. Association structure for the cross-over study.

pain (2)]. All covariates are allowed to have a different effect at each mea-
surement, presented as ‘sex’ (overall), ‘sex’ (linear), and ‘sex’ (quadratic).
The results are presented in Table 7.5. We observe strong quadratic time
effects for company A and for the interaction between company A and in-
fluenza. Considering the hepatitis vaccine for company B as the baseline,
the differences (for each measurement time) on the logit scale between each
vaccine and the baseline are: for the influenza vaccine of company A: −5.33,
0.85, and −1.10; for the influenza vaccine of company B: −1.36, 1.95, and
0.43; for the hepatitis vaccine of company A: −4.18, −1.15, and −1.71. The
combination of a strong interaction between company and type of vaccine
and of the change of the effects over time, yields a complex picture. As
the outcomes are modeled via marginal logits, they are interpreted using
standard logistic regression methodology. Making comparisons for the three
measurement times, we are able to study the evolution of differences over
time.

7.6 The Multivariate Probit Model

Section 7.3 presented a general framework to formulate marginal models
for categorical data. One of the models mentioned in particular was the
multivariate probit model. In this section, we will study this model in more
detail. We will refer to the bivariate version as the BPM (bivariate probit
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TABLE 7.5. Influenza Study. Parameter estimates (standard errors) for the lon-
gitudinal data.

Estimate (s.e.)
Marginal parameters

Effect Average Linear Quadratic
intercept 1 -2.34(1.00) 1.24(0.93) -0.60(0.36)
intercept 2 0.34(1.00) 0.89(0.93) -0.80(0.37)
age 0.15(0.05) -0.01(0.05) 0.05(0.02)
sex 0.43(0.19) -0.31(0.17) -0.01(0.07)
medication -0.47(0.22) -0.26(0.19) 0.07(0.08)
company A effect 1.23(0.27) 0.37(0.27) -0.39(0.11)
influenza effect -0.74(0.21) 0.08(0.19) -0.11(0.07)
company-influenza interaction -1.06(0.34) -0.26(0.32) 0.34(0.12)

Associations (log odds ratios)
time 1–time 2 1.81(0.21)
time 1–time 3 0.98(0.26)
time 2–time 3 3.40(0.41)
three-way interaction 0.88(0.63)

model), TPM (trivariate probit model) for the trivariate version, and MPM
(multivariate probit model) for the general case.

7.6.1 Probit Models
The bivariate probit methodology will be introduced with the data from
the BIRNH study, where smoking and drinking behavior in a general pop-
ulation is studied (Kesteloot, Geboers, and Joossens 1989). Risk factors
for these two endpoints are determined but the main interest lies in the
association between smoking and drinking. The main question is whether
this association changes over demographic variables such as age, sex, and
social status. The same data will be analyzed with the bivariate Dale model
(BDM).

The BIRNH (Belgian Interuniversity Research on Nutrition and Health)
study was conducted in the period 1980–1984 (Kesteloot, Geboers, and
Joossens 1989). A stratified random sample from 42 counties of Belgium
was taken to study the effect of nutrition on health. We are interested
in modeling the relationship between alcohol drinking and smoking habits
on the one hand and certain demographic variables on the other hand.
Complete data were obtained from 5485 men and 4856 women.

Alcohol is divided into 4 classes according to daily intake: (0, 0–10, 10–
30, >30). Smoking is divided into 3 classes: (never smoked, ex-smoker,
smoker). Predictors variables are: ‘sex’ (coded as 1 for males and 2 for
females), ‘age,’ ‘weight,’ ‘height,’ body mass index (‘BMI’), ‘site’ within
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Belgium (1: Flanders, 2: elsewhere), and social status. Age, weight, and
height are categorized using the midpoints of their 10 unit classes, for BMI
we chose classes of 5 units. Two variables describe social status: ‘social
1’ [employment (1) versus unemployment or housework (0)] and ‘social 2’
[working at home (1) versus working outside (0)]. Four questions were of
interest:

1. Is there a relationship between drinking and smoking behavior?

2. Is alcohol consumption related to the demographic variables?

3. Is smoking behavior related to the demographic variables?

4. Is the association between smoking and drinking dependent on certain
demographic variables, i.e., does the relationship change in certain
subgroups?

It will be shown below that the BPM is adequate to answer all those ques-
tions.

7.6.2 Tetrachoric and Polychoric Correlation
Assume first that we have divided the study population into drinkers/non-
drinkers and smokers/non-smokers. With a homogeneous group, a fourfold
table will show whether there is an association between drinking and smok-
ing. For measures of association we can take the cross-product (odds) ratio
or the tetrachoric correlation ρ, i.e., the correlation of the underlying, dou-
bly dichotomized bivariate normal, which was introduced almost a century
ago (Pearson 1900). For the latter case, we assume that the dichotomous
variables smoking (1 =no, 2 =yes) and alcohol drinking (1 =no, 2 =yes) are
each discrete categorizations of continuous unobservable random variables.
These latent variables follow from a bivariate standard normal (Φ2) distri-
bution with correlation ρ, and for each variable there is a single threshold
that partitions the distribution. The two cutpoints φ1 and φ2 give rise to
four quadrants (Figure 7.4). The percentages in the four cells then corre-
spond to the probabilities of the four quadrants under Φ2, and an estimate
of the thresholds is obtained by equating the observed proportions to the
theoretical probabilities. The correlation coefficient, called the tetrachoric
correlation, is estimated from the thresholds and a series expansion.

If the original classification of drinking and smoking is used, then a 4×3-
contingency table arises. Similar to the above, we can assume a bivariate
normal distribution with correlation ρ. However, there are now three cut-
points in the ‘drinking’ latent variable and two cutpoints in the ‘smok-
ing’ variable (see Figure 7.5). The underlying correlation is now called the
polychoric correlation. For computational reasons considering a 10% ran-
dom sample, we obtained a polychoric correlation of 0.25, which is highly
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FIGURE 7.4. Two-dimensional latent space, thresholds θ1 and θ2. The bivari-
ate normal density with mean (β′

1x, β′
2x)′ and correlation ρ is indicated by the

elliptical contours.

significant (p < 0.0001); the p-value is obtained from a Wald test for no
correlation.

7.6.3 The Univariate Probit Model
To investigate the relationship between alcohol drinking (yes/no) and the
explanatory variables, we would normally use the logistic model. Alter-
natively, the univariate probit model can be employed. Specifically this
model states that the probability of alcohol drinking equals Φ(β

′
1x), where

x = (1, x1, . . . , xp−1)
′

is the vector of covariates and β1 the vector of un-
known regression parameters. Although not necessary, this model can be
justified by the existence of an unobservable latent variable that has a nor-
mal distribution with a mean dependent on the covariates. A similar model
can be proposed to model smoking behavior. Furthermore, the univariate
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FIGURE 7.5. Integration areas for a 4 × 3 BPM. The areas for the response
combinations (1, 1) and (4, 3) are shaded.

probit model (and the logistic model) can be extended to handle discrete,
ordinal response variables.

However, the weakness of this approach lies in the fact that the two
response variables are modeled separately, thereby neglecting their asso-
ciation. This will result in less efficient estimates of the parameters even
though they are consistent. More importantly, we would obtain severely dis-
torted estimates of the probabilities of combined responses, the so-called
joint or union probabilities. This will be illustrated further in Section 7.10.

For the BIRNH study, parameter estimates (standard errors) are pre-
sented in Table 7.7. We selected the important risk factors using forward
selection based on the score statistic (but the selected models based on
the log-likelihood ratio criterion were identical). In Table 7.6, we show the
two estimated univariate probit models, next to the bivariate probit model,
based on the 10% random sample. The intercepts are the threshold values
that determine the classes of the ordinal response variables. The interpre-
tation of these models poses no difficulties, for example, both univariate
analyses indicate that women drink and smoke less than men; from the
first model we infer that, on average, Flemish people consume less alcohol
than elsewhere in the country, and so on.

7.6.4 The Bivariate Probit Model
If there is heterogeneity in the study population, then a single two-by-two
or I × J contingency table, of the type described in Chapter 6, will give
a distorted picture of the real association between the two behaviors. The

�����
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TABLE 7.6. BIRNH Study. Univariate and bivariate probit analysis on a 10%
random sample of the original set of data.

Estimate (s.e.)
Effect Univariate Bivariate

Alcohol
intercept 1 -1.07 (0.14) -1.04 (0.14)
intercept 2 -0.69 (0.14) -0.66 (0.14)
intercept 3 0.07 (0.14) 0.09 (0.14)
sex 0.70 (0.08) 0.69 (0.08)
social 1 -0.29 (0.07) -0.31 (0.07)
site 0.21 (0.07) 0.21 (0.07)

Smoking
intercept 1 -3.77 (0.35) -3.75 (0.35)
intercept 2 -3.18 (0.34) -3.16 (0.34)
sex -1.15 (0.09) -1.15 (0.09)
BMI 2 0.05 (0.01) 0.05 (0.01)
age(×10) 0.12(0.03) 0.11 (0.03)
social 1 0.23 (0.10) 0.21 (0.10)
social 2 0.25 (0.09) 0.24 (0.09)

Correlation coefficient
intercept 0.41 (0.13)
sex -0.30 (0.09)
social 2 0.17 (0.10)
log-likelihood -2287.06 -2281.01

reason is that part of the association can be “explained” by the confounding
effect of the (un)measured variables causing the heterogeneity. The BPM
takes account of this effect while calculating the tetrachoric correlation.

In Section 7.3, the multivariate probit model was presented as one mem-
ber of a general class. Here, we will provide more insight into the genesis of
this particular model by first focusing on the bivariate case and then con-
sider the specific approach of an underlying (bivariate) continuous density.

Suppose that there is an underlying but unobservable latent variable
Ws(≡ W1) that expresses the resistance of an individual to smoking, and
further suppose that the individual will smoke if Ws is less than a thresh-
old θ1. Similarly, we assume that there is a Wa(≡ W2) that reflects an
individual’s attitude toward alcohol consumption and that the individual
will be a drinker if W2 is less than θ2. We assume that W = (W1, W2)

′

has a bivariate normal density with mean vector µ = (µ1, µ2)
′

and with
correlation ρ. Further, assume that each subject has a p-dimensional vector
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of explanatory variables, x = (x0, x1, . . . , xp−1)
′

with x0 ≡ 1, which has
the following effect on the mean vector:

µj = β
′
jx, (j = 1, 2).

Thus, by contrast to Section 7.6.2, we now assume that the distribution
depends on x and that each individual with covariate vector x is supposed
to have a latent bivariate normal attitude distribution with mean vector
(β

′
1x, β

′
2x)

′
and correlation ρ. In other words, the covariates move the

mean vector of the two-dimensional Normal density over the plane. This
results in the BPM first suggested by Ashford and Sowden (1970).

The cell probabilities for the fourfold table are again given by the proba-
bility of a quadrant under a suitable normal distribution. In Figure 7.4, we
show the quadrants corresponding to the four cells of the two-by-two con-
tingency table. The probability that a particular combination occurs is then
obtained from the volume under the density surface taken in by the corre-
sponding quadrant. For example, the probability of cell (2, 2) in the fourfold
table for an individual with covariate vector x is equal to the volume under
the normal density N(β

′
1x, β

′
2x; ρ) for the quadrant ] − ∞, θ1[×] − ∞, θ2[.

The quadrant probabilities are also the class of posterior probabilities for
each individual once the vector of covariates x, is known. Let Y be the
two-dimensional vector with first component Y1 = 1 or 2 corresponding to
‘non-drinker’ or ‘drinker,’ respectively. The second component Y2 is defined
similarly with respect to smoking. Let y denote the observed values. The
class Hy will then contain all cases with the combination of thetwo response
classes corresponding to y. We will use

µk1k2(β; ρ|x) = P (Y1 = k1, Y2 = k2|β, ρ, x)

to denote the posterior probability of Hy, conditional on x. Formally, the
BPM assumes

µ11(β; ρ|x) = Φ2(β
′
1x, β

′
2x; ρ),

µ12(β; ρ|x) = Φ(β
′
1x) − p11(β; ρ|x),

µ21(β; ρ|x) = Φ(β
′
2x) − p11(β; ρ|x),

µ22(β; ρ|x) = 1 − µ12(β; ρ|x) − µ21(β; ρ|x) − µ11(β; ρ|x),

(7.28)

with βj0 = θj −αj0(j = 1, 2), and βjs = −αjs(s = 1, . . . , p; j = 1, 2), where
Φ(a) is the standard normal distribution in a and Φ2(a1, a2) the standard
bivariate normal distribution with mean 0 and correlation ρ. Morimune
(1979) extended this model by letting ρ depend on x, so that ρ = ρ(α

′
x).

An immediate generalization of model (7.28) is obtained by allowing more
than one cutpoint for each latent variable Wj (j = 1, 2). This corresponds
to the analysis of r1 × r2 contingency tables. In Figure 7.5, the integration
areas are shown for a 4 × 3 table.
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For the binary response model (7.28) we get the marginal probabilities

µ1+(β1|x) = Φ(β
′
1x),

µ+1(β2|x) = Φ(β
′
2x),

(7.29)

where the first corresponds to the probability of alcohol drinking for a
specific combination of the covariates and the second to the probability of
smoking. Observe that these probabilities are identical to those under a
univariate probit model. However, with two univariate probit models, the
joint probabilities are obtained by simple multiplication of the marginal
probabilities, for example the probability of alcohol drinking and smoking
is calculated as

Φ(β
′
1x) · Φ(β

′
2x),

which corresponds to µ22(β; ρ|x) under the BPM only if ρ = 0. Thus, by
employing two univariate probit models for the analysis of correlated binary
response variables, we explicitly assume that ρ = 0 in a BPM. Clearly, the
same reasoning applies to discrete ordinal responses.

To conclude the model specification, we suppose that there are N in-
dependent subsamples, where the rth subsample is characterized by the
covariate vector xr. Within the rth subsample, we have Nr independent
observations. The corresponding counts are Zry, the number of occurrences
of response y in the rth subsample. If Sj = {1, 2} denotes the set of levels
of the jth characteristic in the binary case, then S = S1 × S2 contains all
possible combinations of characteristics. Given xr, the counts

(Zry, y ∈ S)

are multinomially distributed with Nr replicates and probability vector

(µry = py(β; ρ|xr), y ∈ S) . (7.30)

To estimate the unknown parameters β and ρ, the likelihood of the sample
under the model is needed and is given by

	(β, ρ) =
N∑

r=1

∑
y∈S

zry lnµry. (7.31)

A maximum likelihood estimate of (β
′
, ρ), denoted by (β̂

′
, ρ̂), is obtained

by maximizing (7.31) with respect to the unknown parameters. The neg-
ative inverse of the second derivative of the log-likelihood provides the
estimated covariance matrix of the parameters.

For the BIRNH study, a bivariate selection procedure, based on the score
statistic, selected the variables: ‘sex’ (p < 0.0001); ‘BMI’ (p < 0.0001); ‘age’
(p = 0.0003); ‘social 1’ (p = 0.0033); ‘site’ (p = 0.0071) and ‘social 2’ (p =
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0.0197). Taking these covariates into account, the polychoric correlation
coefficient dropped from 0.25 to 0.059 (p = 0.16). Thus, it seems that all
correlation between drinking and smoking was induced by the confounding
effect of the demographic variables.

The score statistic to test the hypothesis of a constant correlation coeffi-
cient (that is whether or not Morimune’s extension is needed) equals 13.56,
which referred to a chi-squared distribution with 4 degrees of freedom, in-
dicating dependence of the correlation on the predictors (p = 0.035). Based
on the significance of the regression coefficients, both ‘sex’ (p = 0.001) and
‘social 2’ (p = 0.048) seem to have an impact on the polychoric correlation.
Thus in the next step, besides the constant, ‘sex’ and ‘social 2’ were also in-
cluded in the model for ρ; the regression coefficients are 0.45 (p = 0.0004)
for the constant, −0.33 (p = 0.0004) for ‘sex’ and 0.18 (p = 0.068) for
‘social 2.’

Up to now, the same covariate vector has been employed for both re-
sponses. This is not necessary and in a further step we retained only the
significant (p < 0.05) covariates in modelling the marginal dependencies.
As can be seen from Table 7.6, the bivariate probit regression coefficients
are very close to those obtained from the univariate probit regressions. This
model, applied to the full dataset, gave similar regression coefficients that
are not reported here.

For 14 of the 16 combinations of ‘sex,’ ‘social 1,’ ‘social 2,’ and ‘site’ it was
possible to calculate the polychoric correlation locally with only ‘age’ and
‘BMI’ as predictors. There is reasonable agreement between global and lo-
cal estimates, except for the two outlying correlations in the (‘sex=female,’
‘social 2=1’) combination, but these were based on relatively small num-
bers, 168 and 229 cases, respectively.

Thus, the BPM indicates the same dependence of the responses on the
demographic variables as the two univariate probit models, but it has pro-
vided extra information about the relationship between alcohol drinking
and smoking. We conclude this analysis by observing that the BPM has
nicely discerned the predictors affecting the marginal risk of alcohol drink-
ing and smoking from those which affect the relationship between these
two habits.

7.6.5 Ordered Categorical Outcomes
As stated before, the probit models can be generalized from binary outcome
variables to ordered categorical outcomes. In this case, Y = (Y1, Y2)

′
is a

bivariate stochastic vector of discrete ordered variables. Without loss of
generality, assume that Yj ∈ Sj ≡ {1, . . . , cj}, (j = 1, 2).

Again, we assume that Y is a discretized version of an unobservable
latent stochastic vector W = (W1, W2)

′
with bivariate normal cumulative

distribution function having mean vector µ = (µ1, µ2)
′
standard deviations
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FIGURE 7.6. Graphical representation of assumed underlying latent space of
BPM. The areas for the response combinations (1,1) and (3,4) are shaded. The
contours correspond to the surfaces of equal density of the bivariate normal den-
sity.

σ1 = σ2 = 1 and correlation coefficient ρ. Then, cj − 1 finite thresholds

−∞ ≡ θj0 < θj1 < . . . < θj,cj−1 < θjcj ≡ +∞, (j = 1, 2), (7.32)

result in the vector Y by defining

Yj = k ⇐⇒ θj,k−1 ≤ Wj < θjk,

with k ∈ Sj . The W -space, the bivariate normal density and its associated
subdivision are graphically depicted in Figure 7.6, for c1 = 4 and c2 = 3.
The association between Y1 and Y2 is expressed as the correlation between
the latent variables W1 and W2; ρ is called the polychoric correlation (Pear-
son 1900).

Again, the model description is complete if we specify the link function
between x and Y . The probability that Y = (k1, k2)

′
, given x, is equal to

the probability pk1k2(x) that W lies in the rectangle

Rk1k2(x) = [θ1,k1−1(x), θ1k1(x)] × [θ2,k2−1(x), θ2k2(x)],

where θjk(x) = θjk −β
′
jx. Specifically, for a BPM where ρ does not depend

on the covariates:

µk1k2(x) = P (Y1 = k1, Y2 = k2|x) =
∫ ∫

Rk1k2 (x)
φ2(w, ρ)dw, (7.33)

where φ2(w, ρ) denotes the standard bivariate normal density with corre-
lation ρ. If ρ depends on the covariates, it is given by

ρ = ρ(α′x). (7.34)
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Often, ρ is replaced by Fisher’s z transform, as in the second component
of (7.12), which takes values in IR:

ϕ = ln
(

1 + ρ

1 − ρ

)
.

Using such a transformation avoids estimates to jump out of the interval
[−1, +1] and is especially useful when covariates are allowed, as in (7.34).

7.6.6 The Multivariate Probit Model
When the latent vector W has an n-dimensional normal distribution, that
is when there are n characteristics or repeated measures, and the proba-
bility of each diagnostic class conditional on a risk vector x is again an
integral over an orthant, the n-dimensional generalization of the quadrant,
as in (7.28), we apply a MPM. As for the BPM the n-dimensional response
vector can also consist of ordinal discrete responses with integration areas
as in Figures 7.5 and 7.6. Anderson and Pemberton (1985) employed a
trivariate probit model for the analysis of data on blackbirds. They fitted
the model using by fitting the univariate margins independently, supple-
mented with the correlation parameters assembled from fitting bivariate
probit models to all pairs of outcomes. Here, a fully general approach will
be presented, but the approximate solution can be a viable option when
computations become too cumbersome, e.g., when dimensionality is high.

Thus, a MPM of dimension n actually consists of n marginal proba-
bility distributions each corresponding to a particular characteristic and
n(n − 1)/2 polychoric correlations expressing the association between the
occurences of the n characteristics. If the correlations equal zero then the
marginal probability distributions are sufficient to generate the probabil-
ities of all combinations of characteristics, if not, then the multivariate
probability distributions are needed.

In analogy with the bivariate case, we suppose that there is a sample of N
independent subsamples available, where the rth subsample is characterized
by the covariate vector xr. The observed response vector is denoted by

y = (y1, . . . , yn)
′ ∈

n∏
j=1

Sj .

Within the rth subsample, we have Nr independent replications. The num-
ber of occurrences of response y in the rth subsample is denoted as zjy .
Given xr, the counts ⎛⎝zry , y ∈

∏
j

Sj

⎞⎠
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are multinomially distributed with Nr replications and probability vector⎛⎝µry(θ) = µy(θ|xr), y ∈
∏
j

Sj

⎞⎠ ,

where θ is the total parameter vector containing both regression and as-
sociation parameters. Finally, the log-likelihood of the sample under the
specified model is given by

	(θ) =
N∑

j=1

∑
y∈∏

j Sj

zry ln pry(θ). (7.35)

The maximum likelihood estimate of θ, denoted by θ̂, is obtained by max-
imizing (7.35) with respect to the unknown parameters.

7.7 The Dale Model

7.7.1 Two Binary Responses
Suppose that for each of N subjects in a study a vector Y i = (Yi1, Yi2)

′

of two binary responses is observed, together with a vector of covariates x.
The vector x can be different for each response as in longitudinal studies
with time-dependent covariates. Thus, the study subjects are described by
(yi1, yi2, xij), (i = 1, . . . , N ; j = 1, 2). Just as with the bivariate probit
model, we want to establish the dependence of each of the two responses
on the covariate vector(s), taking the dependence between the responses
into account.

Dale (1986) proposed a family of bivariate response models arising from
the decomposition of the joint probabilities µk1k2(x) = P (Y1 = k1, Y2 =
k2|x), (k1, k2 = 1, 2), into ‘main effects’ and ‘interactions.’ The marginal
probabilities describe the main effect and the log cross-ratio is the interac-
tion term. Formally, this decomposition is given by

h1 (µ1+(x)) = β
′
1x, (7.36)

h2 (µ+1(x)) = β
′
2x, (7.37)

h3

(
µ11(x)µ22(x)
µ12(x)µ21(x)

)
= β

′
3x, (7.38)

where h1, h2 and h3 are link functions in the generalized linear model ter-
minology and µ1+(x), µ+1(x) are the marginal probabilities for observing
Y1 = 1, and Y2 = 1, respectively. The most popular choice for h1 ≡ h2 is
the logit function, whereas for h3 the natural logarithmic function is com-
monly used. In that case, one has two marginal logistic regression models
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and the logarithm of the cross-ratio

lnψ(x) = ln
(

µ11(x)µ22(x)
µ12(x)µ21(x)

)
(7.39)

is linear in the covariates. Note that (7.39) is in line with (7.21), for the
specific situation of two binary outcomes.

The joint probabilities follow from the marginal probabilities in the fol-
lowing way, where we have omitted the dependence of the different terms
on x for the ease of notation (Plackett 1965):

µ11 =

⎧⎨⎩
1 + (µ1+ + µ+1)(ψ − 1) − S(µ1+, µ+1, ψ)

2(ψ − 1)
if ψ �= 1,

µ1+µ+1 if ψ = 1,
(7.40)

and µ12 = µ1+ −µ11, µ21 = µ+1 −µ11, and µ22 = 1−µ12 −µ21 −µ11, with
the function S defined by

S(q1, q2, ψ) =
√

[1 + (q1 + q2)(ψ − 1)]2 + 4ψ(1 − ψ)q1q2,

for 0 ≤ q1, q2 ≤ 1 and 0 ≤ ψ < +∞.
Just as in the probit case, above description can also be seen as aris-

ing from the discrete realization of a continuous bivariate distribution, the
Plackett distribution (Plackett 1965) in this case. Suppose the bivariate
random vector W = (W1, W2)

′
has joint distribution function F (w1, w2),

with marginal distributions F (wj) (j = 1, 2). Define the (global) cross-ratio
function, or global odds ratio function, ψ(w1, w2), by

ψ(w1, w2) =
µ11µ22

µ12µ21
=

F (1 − F1 − F2 + F )
(F1 − F )(F2 − F )

, (7.41)

with Fj ≡ Fj(wj), (j = 1, 2) and F ≡ F (w1, w2). It is clear that ψ(w1, w2)
satisfies 0 ≤ ψ ≤ ∞. The components µk1k2 in (7.41) are the quadrant
probabilities in IR2 with vertex at (w1, w2). For a Plackett distribution, the
global cross-ratio ψ(w1, w2) ≡ ψ is constant. Expression (7.41) can be seen
as a defining equation for F , once F1, F2, and ψ are known. The Plackett
distribution then gives rise to the above bivariate response model if its
mean vector µ = (µ1, µ2)

′
depends linearly on the covariate vector and if

it is assumed that Z is a discretized version of the continuous vector W
in the sense that Yj = 1 ⇐⇒ θj ≤ Wj , for j = 1, 2. Here, θ1, θ2 are two a
priori defined thresholds. In other words, Dale’s bivariate response model
is obtained if the bivariate response vector Y is a discretized version of W
using the threshold vector θ, and if the covariate vector shifts the mean
vector of the distribution of W over the plane, thereby possibly changing
also the association parameter ψ as a function of x.
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7.7.2 The Bivariate Dale Model
Dale (1986) generalized above approach to model pairs of ordered categor-
ical variables with c1 and c2 levels, respectively, in the presence of explana-
tory variables x. We will refer to this as the (bivariate) global odds ratio
model , global cross-ratio model , or simply bivariate Dale model (BDM).

Let Y = (Y1, Y2)
′

be a random vector taking on values (k1, k2), where
1 ≤ kj ≤ cj (j = 1, 2). The outcomes, corresponding to a given covariate
vector x, can be arranged as an c1 × c2 contingency table (Zk1k2) (kj =
1, . . . , cj ; j = 1, 2):

z11 . . . z1k2 z1,k2+1 . . . z1c2

...
. . .

...
...

. . .
...

zk11 . . . zk1k2 zk1,k2+1 . . . zk1c2

zk1+1,1 . . . zk1+1,k2 zk1+1,k2+1 . . . zk1+1,c2

...
. . .

...
...

. . .
...

zc11 . . . zc1k2 zc1,k2+1 . . . zc1c2

. (7.42)

Similarly, the probabilities can be represented as a c1 × c2 table:

µ11 . . . µ1k2 µ1,k2+1 . . . µ1c2

...
. . .

...
...

. . .
...

µk11 . . . µk1k2 µk1,k2+1 . . . µk1c2

µk1+1,1 . . . µk1+1,k2 µk1+1,k2+1 . . . µk1+1,c2

...
. . .

...
...

. . .
...

µc11 . . . µc1k2 µc1,k2+1 . . . µc1c2

. (7.43)

This map establishes a lilnk between the regression and table notations
(Section 7.1). Note that sparseness of these tables is not an issue, as the
essence of the approach is truly of a regression type. When the number of
subjects per covariate level x is small, the number of ‘tables’ increases with
sample size, exactly as in a regression setting. However, when the number
of covariate levels is small or even bounded (e.g., two sex levels), then the
tables fill up, as in ANOVA and genuine contingency tables settings.

Dichotomizing contingency table (7.42) at (k1, k2) (double lines) leads to
a 2 × 2 contingency table:

{Y1 ≤ k1, Y2 ≤ k2} {Y1 ≤ k1, Y2 > k2}
{Y1 > k1, Y2 ≤ k2} {Y1 > k1, Y2 > k2} , (7.44)

of which the probabilities are given by

P11(k1, k2, x) = P (Y1 ≤ k1, Y2 ≤ k2|x),
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P12(k1, k2, x) = P (Y1 ≤ k1, Y2 > k2|x),

P21(k1, k2, x) = P (Y1 > k1, Y2 ≤ k2|x),

P22(k1, k2, x) = P (Y1 > k1, Y2 > k2|x).

Marginal probabilities are obtained by summing over subscripts: P1+(k1, x) =
P (Y1 ≤ k1|x) and P+1(k2, x) = P (Y2 ≤ k2|x).

In analogy with (7.36)–(7.38), the link functions are described by

h1[P1+(k1, x)] = β0,1k1 + β
′
1x, (k1 = 1, . . . , c1 − 1), (7.45)

h2[P+1(k2, x)] = β0,2k2 + β
′
2x, (k2 = 1, . . . , c2 − 1), (7.46)

h3[ψ(k1, k2, x)] = α
′
x, (kj = 1, . . . , cj − 1; j = 1, 2), (7.47)

where the global cross-ratio ψ(k1, k2, x) is given by

ψ(k1, k2, x) =
P11(k1, k2, x)P22(k1, k2, x)
P12(k1, k2, x)P21(k1, k2, x)

.

Note that for every contingency table (7.42) [or, equivalently, table of
probabilities (7.43)], a set of (c1−1)×(c2−1) global cross-ratios is obtained:

ψ11 . . . ψ1k2 ψ1,k2+1 . . . ψ1,c2−1
...

. . .
...

...
. . .

...
ψk11 . . . ψk1k2 ψk1,k2+1 . . . ψk1,c2−1

ψk1+1,1 . . . ψk1+1,k2 ψk1+1,k2+1 . . . ψk1+1,c2−1
...

. . .
...

...
. . .

...
ψc1−1,1 . . . ψc1−1,k2 ψc1−1,k2+1 . . . ψc1−1,c2−1

.

More complex choices for the linear predictors on the right hand side of
(7.45)–(7.47) are possible. For instance, h3 can incorporate terms depend-
ing on k1 and k2, representing row, column, and cell effects. In principle,
extensions to non-linear predictors are possible too, although this would
make the updating algorithms more cumbersome.

For every table (7.44), we assume that (7.41) holds with ψ replaced by
ψ(k1, k2, x), indicating that ψ is allowed to depend on the cutpoints and
on the covariates. Further, F (.|x) ≡ Fk1k2(.|x) = P11(k1, k2, x), and F (.|x)
can also be expressed in terms of the assumed underlying Plackett distrib-
ution: F (.|x) = P (W1 ≤ θ1k1 , W2 ≤ θ2k2 |x) . Observe that for each double
dichotomy of the c1 × c2 table, a different underlying Plackett distribu-
tion is assumed. When it can be assumed that ψ(k1, k2, x) ≡ ψ(x), for
kj = 1, . . . , ct − 1 (j = 1, 2), there is a single underlying Plackett distribu-
tion, exactly as for the binary response model.
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7.7.3 Some Properties of the Bivariate Dale Model
Dale’s model has appealing properties. First, there is the flexibility with
which the marginal structure is modeled, i.e., the cumulative marginal prob-
abilities can be fitted in the generalized linear models framework. Second,
the marginal parameters are orthogonal onto the association parameters in
the sense that the corresponding elements in the expected covariance ma-
trix are identically zero (Palmgren 1989). Further, the associations can be
modeled in a flexible way including covariate, row, column, and cell specific
terms (Dale 1986).

The BDM does not require marginal scores for the responses and is es-
sentially invariant under any monotonic transformation of the marginal
response variables. Further, if adjacent marginal categories are combined,
the model for the new table has fewer parameters, but they have the same
interpretation as they had in the model for the original, expanded table,
because the parameters pertain to cutpoints between categories. This is
in contrast with models based on local association (Goodman 1981a), as
discussed in Chapter 6.

7.7.4 The Multivariate Plackett Distribution
The computational basis of the BDM is the Plackett distribution. There-
fore, we first generalize the bivariate Plackett distribution to n dimensions.
In this section, we present a general description and some properties. The
multivariate Plackett distribution will be the basis for the multivariate
Dale model. The genesis of the distribution will automatically lead to an
algorithmic way to compute cell probabilities and their derivatives. This
is an alternative to the iterative proportional fitting algorithm presented
in Section 7.12.3. Other alternatives are given by Lang and Agresti (1994)
and Glonek and McCullagh (1995). This rather technical development is
deferred to Appendix 7.13.

7.7.5 The Multivariate Dale Model
Given the multivariate Plackett distribution, the multivariate Dale model
is a straightforward extension of the BDM. Let W ri = (Wri1, . . . , Wrin)

′

have a multivariate Plackett distribution with univariate marginals Fj ,
(r = 1, . . . , N ; i = 1, . . . , Nr; j = 1, . . . , n) and a particular set of gener-
alized global cross-ratios. Further, let Y ri = (Yri1, . . . , Yrin)

′
be a vector

of ordered categorical variables with Yrij assuming values kj = 1, . . . , cj ,
(j = 1, . . . , n). Thus, in analogy with the bivariate case, Y ri is a discrete
realization of W ri. The covariates at level r are indicated by xr. Both the
marginal distributions and the cross-ratios can depend on the covariates.



118 7. Likelihood-based Marginal Models

For each multi-index k = (k1, . . . , kn) with 1 ≤ kj < cj , (j = 1, . . . , n),
define a 2n-dichotomization table (multiple dichotomy):

Tk = {Os(k)|s ∈ {−1, 1}n},

where

Os(k) = {Y ri|Yrij ≤ kj if sj = −1 and Yrij > kj if sj = 1}.

This means that, at every n-dimensional cutpoint, the data table is col-
lapsed into a 2 × 2 × . . . × 2 table. Observe the analogy with the bivariate
case, as well as with the probit case (Section 7.6). For n = 2, Tk contains
the four corners of the c1 × c2 contingency table, split up at k = (k1, k2).

Every table is assumed to arise as a discretization of a multivariate Plack-
ett distribution. The n marginal distributions are modeled, together with
all pairs of two-way cross-ratios. In addition, three-way up to n-way interac-
tions (generalized cross-ratios) are included to fully specify the joint distrib-
ution. Formally, we assume that for each Tk, (7.69) holds with a cross-ratio
possibly depending on k and xr, i.e., ψ1...n is replaced by ψ(k; xr). Further,

F ≡ Fk(.|xr) = P (Yri1 ≤ k1, . . . , Yrin ≤ kn|x)
= P (Wri1 ≤ θ1k1 , . . . , Wrin ≤ θnkn |xr).

The model description is complete by specifying link functions and linear
predictors for both the univariate marginals and the association parame-
ters. If we assume a marginal proportional odds model, then the marginal
links can be written as:

ηrijk(xr) = hj [P (Yrij ≤ k|xr)] = β0,jk + β
′
jxr, (7.48)

(1 ≤ j ≤ n, 1 ≤ k < cj).

Expression (7.48) can be represented in terms of the latent variables as
well:

hj [P (Wrij ≤ θjk|xr)] = β0,jk + β
′
jxr, (1 ≤ j ≤ n, 1 ≤ k < cj).

As in the bivariate case, common choices for the link functions hj are the
logit and the probit link.

The cross-ratios are usually log-linearly modeled. Covariate terms may
be included, together with row, column, and cell-specific terms. A possible
choice consists of complex models for the bivariate associations and simple
ones for the higher order associations. For a fixed pair of variables (j1, j2),
where 1 ≤ j1 < j2 ≤ n, one can model the log cross-ratio as

γk1k2
j1j2

(xr) = lnψj1j2(k1, k2, xr) = ν + ρk1 + κk2 + τk1k2 + x
′
rβj1j2 . (7.49)

Here, ν is an intercept parameter, ρk1 (k1 = 1, . . . , c1 − 1) are row-specific
parameters, κk2 (k2 = 1, . . . , c2−1) are column parameters, and τk1k2 (k1 =
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1, . . . , c1 − 1; k2 = 1, . . . , c2 − 1) are cell-specific parameters. Uniqueness
constraints need to be imposed on the row, column, and cell parameters. For
instance, ρ1 = 0, κ1 = 0, τk11 = 0, (k1 = 1, . . . , c1 − 1), and τ1k2 = 0, (k2 =
1, . . . , c2 − 1). The higher order associations usually are assumed to be
constant. Parameter estimates are obtained using the maximum likelihood
method.

As this model description yields the BDM for n = 2, it follows that the
attractiveness and the flexibility of the original two-dimensional version is
carried over on its n-dimensional version. However, not all properties of the
BDM are inherited by the MDM. As mentioned above, Palmgren (1989)
shows that the estimated marginal and association parameters are orthog-
onal. This result does not carry over onto the MDM, although Molenberghs
and Lesaffre (1994) have shown it holds approximately for lower order as-
sociations, while it fully holds for the n-way association.

Having specified the model, the links and the linear predictors, the model
parameters can be estimated by the ML estimation method. The use of
the multivariate Plackett distribution makes it easy to compute both the
joint probabilities and their derivatives. A Fisher scoring algorithm is a
good choice, as it also provides us with the asymptotic expected covariance
matrix for the model parameters.

The model formulated above still fits within the general log-contrasts of
probabilities framework given by (7.17), as it should be, given the presen-
tation here is merely a more elaborate introduction of the MDM, with an
alternative way to compute the cell probabilities.

7.7.6 Maximum Likelihood Estimation
Section 7.4 sketched a general framework for maximum likelihood estima-
tion, using the iterative proportional fitting algorithm. Here, we will spe-
cialize to the MDM, using the Plackett probability formulation. Essentially,
for every individual or every covariate level, the kernel of a multinomial log-
likelihood can be used, considering a highly structured n-way contingency
table merely as a collection of multinomial cells.

Despite the fact that the Plackett distribution is only known implicitly,
its values can be computed in an efficient way using numerical algorithms.
Further, the derivatives of the Plackett cumulative distribution function
can be evaluated in an analytical way, using implicit derivation. Based
on these results, the score functions and the expected Fisher information
matrix can be used to implement a convenient Fisher scoring algorithm.
Details are presented in Appendix 7.14.

7.7.7 The BIRNH Study
In this section, we reconsider the BIRNH study, analyzed before in Sec-
tion 7.6.1. We compare performance of the BPM, the bivariate Dale model
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TABLE 7.7. BIRNH Study. Parameter estimates (standard errors) for the bivari-
ate models [BPM: bivariate probit model; BDM: bivariate Dale model with normal
(N) or logistic (L) margins] with constant association parameter (the correlation
coefficient for the BPM and the global cross-ratio for the BDM).

Effect BPM BDM-N BDM-L
Alcohol

Intercept 1 -1.07(0.14) -1.07(0.14) -1.69(0.23)
Intercept 2 -0.68(0.14) -0.69(0.14) -1.07(0.23)
Intercept 3 0.07(0.14) 0.07(0.14) 0.20(0.23)
Sex 0.70(0.08) 0.70(0.07) 1.11(0.12)
Social 1 -0.29(0.07) -0.29(0.07) -0.49(0.12)
Site 0.21(0.07) 0.21(0.07) 0.35(0.12)

Smoking
Intercept 1 -3.76(0.35) -3.76(0.35) -6.24(0.60)
Intercept 2 -3.17(0.34) -3.18(0.34) -5.25(0.59)
Sex 1.15(0.09) 1.16(0.09) 1.92(0.15)
BMI 0.04(0.01) 0.04(0.01) 0.07(0.02)
Age(×10) 0.12(0.03) 0.12(0.03) 0.20(0.06)
Social 1 0.22(0.10) 0.22(0.10) 0.36(0.16)
Social 2 0.25(0.08) 0.24(0.09) 0.41(0.15)
Association 0.06(0.04) 0.18(0.12) 0.18(0.11)
Log-likelihood -2286.12 -2285.87 -2286.58

(BDM) with probit (N) and logistic (L) margins, in modeling the relation-
ship between alcohol drinking and smoking habits on the one hand and
certain demographic variables on the other hand.

Tables 7.7–7.9 present the estimates for several models. The BPM col-
umn in Table 7.8 coincides with the bivariate column in Table 7.6. The
three models in Table 7.7 have a very comparable fit. When comparing the
BPM in Table 7.7 with the univariate probit models in Table 7.6 using the
likelihood ratio test statistics, we find G2 = 0.94 (p = 0.1703). Thus, it
would seem there is no need to account for the association. However, this
was different when comparing both columns in Table 7.6. It illustrates the
point that sometimes careful modeling of the association is necessary, in
agreement with several analyses in Chapter 6. Table 7.8 presents the same
three models, with the association now depending on the covariates ‘sex’
and ‘social 2,’ in line with Table 7.6. Also here, the three models have a
comparable fit. Note that in Tables 7.7 and 7.8, the marginal regression
parameters for the BPM and the BDM-N are virtually identical, which is
to be expected as both models have probit margins. The parameters for the
BDM-L are related with the others through the well-known factor π/

√
3
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TABLE 7.8. BIRNH Study. Parameter estimates (standard errors) for the bi-
variate models [BPM: bivariate probit model; BDM: bivariate Dale model with
normal (N) or logistic (L) margins] with association depending on the covariates
(the correlation coefficient for the BPM and the global cross-ratio for the BDM).

Effect BPM BDM-N BDM-L
Alcohol

Intercept 1 -1.04(0.14) -1.05(0.14) -1.65(0.23)
Intercept 2 -0.66(0.14) -0.67(0.14) -1.03(0.23)
Intercept 3 0.09(0.14) 0.09(0.14) 0.23(0.23)
Sex 0.69(0.08) 0.70(0.08) 1.09(0.13)
Social 1 -0.31(0.07) -0.31(0.07) -0.53(0.12)
Site 0.21(0.07) 0.21(0.07) 0.35(0.12)

Smoking
Intercept 1 -3.75(0.35) -3.75(0.35) -6.21(0.59)
Intercept 2 -3.16(0.34) -3.16(0.34) -5.22(0.58)
Sex 1.15(0.09) 1.14(0.09) 1.91(0.15)
BMI 0.05(0.01) 0.05(0.01) 0.08(0.02)
Age(×10) 0.11(0.03) 0.11(0.03) 0.19(0.06)
Social 1 0.21(0.10) 0.21(0.10) 0.34(0.16)
Social 2 0.24(0.09) 0.25(0.09) 0.41(0.15)

Association parameters
Constant 0.41(0.13) 1.15(0.36) 1.15(0.35)
Sex -0.30(0.09) -0.82(0.27) -0.82(0.27)
Social 2 0.17(0.10) 0.46(0.28) 0.46(0.28)
Log-likelihood -2281.01 -2280.90 -2281.64

(see also Section 3.4), the standard deviation of the logistic distribution.
A similar phenomenon will be observed in Section 7.10. In the three mod-
els the association between alcohol and smoking is small but perhaps a
bit higher for the Dale models. The association parameters of the BDM-N
and BDM-L are similar, as both are framed in terms of odds ratios, in
contrast to the correlation-based association in the BPM. The coefficients
of the association measures for the variable dependence models are more
difficult to compare because of the different reparameterizations used. For
the BPM, the Fisher z transform of the correlation ρ depends linearly on
the covariates, while for BDM log ψ depends linearly on x. Nevertheless,
from the log-likelihoods it is apparent that again the three models explain
the data in virtually the same manner. Table 7.9 further includes row and
column effects in the association structure of the BDM models. However,
this does not significantly improve the fit of the model.
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TABLE 7.9. BIRNH Study. Parameter estimates (standard errors) for the bi-
variate Dale model (BDM) with normal (N) and logistic (L) margins, where the
association depends both on the covariates and on the cutpoints.

Effect BDM-N BDM-L
Alcohol

Intercept 1 -1.05(0.14) -1.66(0.24)
Intercept 2 -0.67(0.14) -1.03(0.23)
Intercept 3 0.09(0.14) 0.23(0.23)
Sex 0.70(0.08) 1.10(0.13)
Social 1 -0.31(0.07) -0.52(0.12)
Site 0.21(0.07) 0.35(0.12)

Smoking
Intercept 1 -3.70(0.35) -6.13(0.60)
Intercept 2 -3.12(0.34) -5.14(0.59)
Sex 1.13(0.09) 1.88(0.15)
BMI 0.05(0.01) 0.08(0.02)
Age(×10) 0.11(0.03) 0.18(0.06)
Social 1 0.20(0.10) 0.33(0.16)
Social 2 0.24(0.09) 0.41(0.15)

Association parameters
Intercept 1.15(0.36) 1.13(0.36)
Sex -0.72(0.28) -0.72(0.28)
Social 2 0.45(0.28) 0.45(0.28)
Row 1 -0.19(0.18) -0.19(0.18)
Row 2 -0.03(0.16) -0.02(0.16)
Column 1 -0.03(0.11) -0.03(0.12)
Log-likelihood -2279.47 -2280.19

7.8 Hybrid Marginal-conditional Specification

The fully specified models in most of this chapter are of a marginal nature.
The previous chapter presented marginal models alongside conditionally
specified ones, to make a number of points about the advantages of mar-
ginal models. Chapter 11 zooms in on conditionally specified models. In this
section, we will present a hybrid model family, in the sense that it com-
bines aspects of marginal and conditional models. Because the lower order
moments, usually of principal scientific interest, are marginally specified,
we have chosen to present it here, rather than in Part III.

Fitzmaurice and Laird (1993) model the marginal mean parameters, to-
gether with the canonical interaction parameters in the multivariate ex-
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ponential family distribution of Cox (1972). Their model is related to the
quadratic exponential model of Zhao and Prentice (1990). The distribu-
tion of Fitzmaurice and Laird (1993) differs from the previously described
distributions because it is specified in terms of a mixture of marginal and
conditional parameters.

Molenberghs and Ritter (1996) and Molenberghs and Danielson (1999)
proposed a model that combines important advantages of a full marginal
model and a mixed marginal-conditional model. The model is parameter-
ized using marginal means, pairwise marginal odds ratios, and higher order
conditional odds ratios. These conditional odds ratios are the canonical pa-
rameters of the exponential family described by Cox (1972) of which it is
known that their interpretation is difficult, especially when the number of
measurements per unit is variable. More details on the fully conditional
model can be found in Section 11. The mixed parameterization has impor-
tant advantages. First, it produces lower order parameter estimators that
are robust against misspecification of the higher order structure. Second,
the likelihood equations are less complex and easier to fit than the ones
for the fully marginally specified models of Chapter 7. As such, a hybrid
specification is an attractive alternative specification for a full likelihood
method. However, one can set higher order association parameters equal
to zero, whence they provide an appealing alternative to generalized es-
timating equations, in particular GEE2, as well (Section 8.7). This last
observation was also employed by Heagerty and Zeger (1996), who con-
sider a mixed marginal-conditional parameterization for clustered ordinal
data, with the first and the second moments specified through marginal
parameters, and who 8propose estimating the model parameters through
GEE2, GEE1, or alternating logistic regressions.

7.8.1 A Mixed Marginal-conditional Model
We will use the regression notation. For each individual, subject, or experi-
mental unit i in a study, a series of n categorical measurements Yij , grouped
into a vector Y i is recorded, together with covariate information xi. The
parameters of primary interest are the first- and second-order marginal
parameters. The covariate vector can include both time-dependent and
time-stationary covariates. Covariate information can be used to model
the marginal means, the associations, or both. In this section, we will re-
strict ourselves to binary outcomes. Section 7.8.2 considers the extension to
categorical outcomes. The use of this modeling framework to derive GEE
is discussed in Section 8.7 and exemplified in Sections 8.10 and 8.11.

Model building is based on the quadratic version of the joint distribu-
tion proposed by Cox (1972) and used by Zhao and Prentice (1990) and
Fitzmaurice and Laird (1993). In particular, we write

f(yi|Ψi,Ωi) = exp
{
Ψ′

ivi + Ω′
iwi − A(Ψi,Ωi)

}
, (7.50)
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with outcomes and pairwise cross-products thereof grouped into

vi = (y′
i; yi1yi2, . . . , yi,n−1yin)′,

and third and higher order cross-products collected in

wi = (yi1yi2yi3, . . . , yi1yi2 . . . yin)′,

and Ψi and Ωi the corresponding canonical parameter vectors. Further, let
µi = E(V i) and νi = E(W i). The distribution is fully parameterized by
modeling Ψi and Ωi. However, we choose to model µi and Ωi, enabling us
to describe the marginal means and the pairwise marginal odds ratios.

A model for µi is specified via a vector of link functions

ηi = ηi(µi), (7.51)

An important class of link functions, due to McCullagh and Nelder (1989),
is given by (6.2). In particular, the marginal logit link and marginal log odds
ratios can be used. The marginal part of the model formulation is complete
by specifying the dependence on the covariates. From the covariate vector
xi a design matrix Xi is derived, such that ηi = Xiβ, with β a vector of
parameters of interest.

Similarly, a model for the conditional higher order parameters needs to be
constructed. In agreement with Fitzmaurice and Laird (1993), and because
the components of Ωi can be interpreted as conditonal higher order log odds
ratios, we assume an identity link and specify the covariate dependence as
Ωi = X ′

iα, with X ′
i another design matrix and α a parameter vector. A

simple model is found by holding the components of Ωi constant.
In principle, β and α could be allowed to overlap, making the model

slightly more general, but there would typically be little practical relevance
to this.

Following derivations in Fitzmaurice and Laird (1993), Fitzmaurice, Laird,
and Rotnitzky (1993), and Molenberghs and Ritter (1996), the likelihood
equations can be written as:

∂	

∂(β, α)
=

N∑
i=1

( ∂µi

∂β
0

0 ∂Ωi

∂α

)′(
M−1

i 0
−N iM

−1
i I

)

×
(

vi − µi

wi − νi

)
, (7.52)

with M i = cov(V i) and N i = cov(V i, W i).
The form of the derivatives in the first matrix of (7.52) depends on the

choice of link functions and linear predictors. Under the assumed linear
model for Ωi, the derivative reduces to X ′

i. The computation of ∂µi/∂β is
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particularly straightforward for link functions of the form (6.2), in agree-
ment with (7.61): (

∂µi

∂β

)′
= X ′

i(D
′
i)

−1

with

Di =
(

∂ηi

∂µi

)
= Ci {diag(Aiµi)}−1

Ai.

As the model is a mixed parameterization of an exponential family model
(Barndorff-Nielsen 1978), the parameter vectors β and α are orthogonal in
the sense of Cox and Reid (1987). This implies that β and α are asymptot-
ically independent. Indeed, the inverse of the expected information matrix
equals: (

Γ−1
1 0
0 Γ−1

2

)
with

Γ1 =
N∑

i=1

X ′
i(D

′
i)

−1M−1
i D−1

i Xi,

Γ2 =
N∑

i=1

(X ′
i)

′(P i − N iM
−1
i N ′

i)X
′
i,

and P i = cov(W i).
Calculating the joint probabilities can be done in various ways. Fitzmau-

rice and Laird (1993) proposed the use of the iterative proportional fitting
(IPF) algorithm to avoid the computation of Ψi. We will proceed similarly.
First, the components of µi are computed. Let us focus on logit and log odds
ratio links. Inverting the logit links, like in (7.18) yields µij (j = 1, . . . , n).
Given µij1 , µij2 , and ψij1j2 = exp(ηij1j2), µi1j2 can be calculated using
Plackett’s expression (7.40). To obtain higher order probabilities, an initial
contingency table is constructed satisfying the third- and higher order con-
ditional odds ratio structure. Then, the set of n(n−1)/2 bivariate marginal
probabilities is fitted iteratively. This is similar to but different from the
IPF algorithm outlined in Section 7.12.3. Although in Section 7.12.3 the al-
gorithm had to be adapted to a marginally specified model for ordinal data,
we are faced here with a more conventional application, the higher-order
model being specified conditionally and the outcomes of a binary type. The
standard algorithm is described in Agresti (2002).

Parameter estimation can be performed using a standard Fisher scoring
iteration procedure. The inverse of the Fisher information, with the para-
meter estimates substituted, provides a variance estimator for (β̂, α̂). As
pointed out in Fitzmaurice, Laird, and Rotnitzky (1993), the consistency
of the estimator for β only depends on the correct specification of the mar-
ginal part of the model, and not on α. If the α part is misspecified, the
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model based variance will be inconsistent, so the empirically corrected or
‘robust’ variance should be used. Apart from inferential advantages (Fitz-
maurice, Laird, and Rotnitzky 1993), there are also computational advan-
tages in terms of stability (Cox and Reid 1987). These points are taken up
in Section 8.7.

As an alternative to the use of the robust variance estimator, a model
checking procedure can be performed to assess whether the model specifi-
cation is acceptable. If not, the model for the higher order associations can
be made more complex in order to improve the fit. When there are only
a few categorical covariate levels and the sample size within each level is
sufficiently large, a classical model checking procedure such as the Pearson
X2 or the deviance G2 test can be used (Agresti 1990).

7.8.2 Categorical Outcomes
Like the multivariate probit (Section 7.6) and Dale (Section 7.7) models,
the hybrid model can accommodate categorical outcomes just as easily as
dichotomous ones.

Let Yij again be a categorical outcome with cj (possibly ordered) cat-
egories and use the dummy variables formally defined by (7.1) and (7.2).
In particular, because we are not making use of the design level indicator
r, Z∗

ijk indicates outcomes and Zijk cumulative outcomes. These indicator
variables are again grouped into vectors Z∗

i and Zi. The corresponding
sets of univariate and pairwise probabilities are

µ∗
ijk = ¶(Yij = k|Xi, β) = P (Z∗

ijk = 1|Xi, β),

µ∗
i,jh,k� = P (Yij = k, Yih = 	|Xi, β) = P (Z∗

ijk = 1, Z∗
ih� = 1|Xi, β).

The cumulative probabilities are

µijk = P (Yij ≤ k|Xi, β),

µi,jh,k� = P (Yij ≤ k, Yih ≤ 	|Xi, β)

which are grouped in µ∗
i and µi, respectively. The higher order probabilities

ν∗
i and νi are defined similarly. Exponential models, similar to (7.50), are

f(yi|Ψ∗
i ,Ω

∗
i ) = exp {(Ψ∗

i )
′v∗

i + (Ω∗
i )

′w∗
i − A∗(Ψ∗

i ,Ω
∗
i )} , (7.53)

and
f(yi|Ψi,Ωi) = exp {Ψivi + Ωiwi − A(Ψi,Ωi)} , (7.54)

where V ∗
i contains the components of Z∗

i and the pairwise cross-products
thereof, and W ∗

i contains all higher order cross-products. The vectors V i

and W i are defined similarly. Observe that (7.53) and (7.54) are overpa-
rameterized, as sum constraints apply to (7.53) and the variable Zijcj = 1
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in (7.54), which necessitates the use of identifying restrictions. In the case
of a single nominal variable, (7.53) is called the multigroup logistic model
(Albert and Lesaffre 1986).

With nominal outcomes, the marginal mean functions µ∗
i will be mod-

eled, together with the higher order conditional association parameters Ω∗
i .

A vector of link functions η∗
i = η∗

i (µ
∗
i ) has to be chosen and form (6.2)

provides a convenient subclass. Baseline category logits seem very natural,
together with local odds ratios. If the outcomes are measured on an or-
dinal scale it is more convenient to model µi, rather than µ∗

i , i.e., link
functions ηi = ηi(µi) are chosen and model (7.54) can be used. Note that
this description is equally compatible with (7.53), as µ∗

i = Biµi for an
appropriate transformation matrix Bi, as in (7.4).

The likelihood equations are of the form (7.52). Even more than with
binary outcomes, the number of parameters proliferates rapidly with an
increasing number of measurements, calling for parsimonious modeling. A
simple, but often satisfactory model for the pairwise association is the con-
stant global odds ratio model for ordinal outcomes: the global odds ratio
for a pair of variables (Zijk, Zih�) is independent of the ‘row’ and ‘column’
indices k and 	. Further, one should exploit any additional structure in the
outcomes. For exchangeable outcomes, the odds ratios are usually assumed
constant for all pairs of variables, whereas for time-ordered measurements,
association structures taking into account the time dependence can be in-
vestigated. A similar reasoning could be made to simplify the higher order
conditional associations. In many instances this effort will be considered
of no real benefit, whence one can set Ωi = 0. In order to compute the
variance matrix M i, we only need to compute the third- and fourth-order
probabilities, which is particularly easy using the iterative proportional
fitting algorithm.

7.9 A Cross-over Trial: An Example in Primary
Dysmenorrhoea

The data are taken from a cross-over trial that appeared in the paper of
Kenward and Jones (1991). Eighty-six subjects were enrolled in a cross-
over study that compared placebo (A) with an analgesic at low and high
doses (B and C) for the relief of pain in primary dysmenorrhoea. The
three treatments were administered in one of six possible orders: ABC,
ACB, BAC, BCA, CAB, and CBA. The primary outcome score was the
amount of relief coded as none (1), moderate (2), and complete (3). There
are 27 possible outcome combinations: (1, 1, 1), (1, 1, 2), . . . , (3, 3, 3), where
(a1, a2, a3) denotes outcome aj in period j. The data, analyzed before by
Kenward and Jones (1991), can be found in Table 7.10. For the analysis
of the cross-over data, these authors suggested a subject-specific approach
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TABLE 7.10. Primary Dysmenorrhoea Data.

Response ABC ACB BAC BCA CAB CBA
(1,1,1) 0 2 0 0 3 1
(1,1,2) 1 0 0 1 0 0
(1,1,3) 1 0 1 0 0 0
(1,2,1) 2 0 0 0 0 0
(1,2,2) 3 0 1 0 0 0
(1,2,3) 4 3 1 0 2 0
(1,3,1) 0 0 1 1 0 0
(1,3,2) 0 2 0 0 0 0
(1,3,3) 2 4 1 0 0 1
(2,1,1) 0 1 1 0 0 3
(2,1,2) 0 0 2 0 1 1
(2,1,3) 0 0 1 0 0 0
(2,2,1) 1 0 0 6 1 1
(2,2,2) 0 2 1 0 0 0
(2,2,3) 1 0 0 0 0 0
(2,3,1) 0 0 0 1 0 2
(2,3,2) 0 0 0 0 0 0
(2,3,3) 0 2 0 0 1 0
(3,1,1) 0 0 0 1 0 2
(3,1,2) 0 0 2 0 2 1
(3,1,3) 0 0 3 0 4 1
(3,2,1) 0 0 0 1 0 0
(3,2,2) 0 0 0 1 0 0
(3,2,3) 0 0 0 0 0 0
(3,3,1) 0 0 0 0 0 1
(3,3,2) 0 0 0 0 0 0
(3,3,3) 0 0 0 0 0 0

based on the Rasch model. Here too, it was of interest to estimate the
treatment, period- and carry-over effects.

7.9.1 Analyzing Cross-over Data
Consider a cross-over trial where each patient subsequently receives each
of three treatments (A, B, C) in a random order. There are 6 treatment se-
quences: ABC, ACB, BAC, BCA, CAB, and CBA. Suppose the outcome
at time j (corresponding to treatment t) is an ordered categorical variable
Yjt with c levels. Then, to each sequence a c × c × c table is assigned,



7.9 A Cross-over Trial: An Example in Primary Dysmenorrhoea 129

containing the joint outcomes for the patients, allocated to that particular
sequence. The multivariate Dale model can be used to fit such data. The
marginal parameters are used to describe the overall treatment effects, the
period- and the carry-over effects. The cross-ratios play a role, similar to
the subject specific parameters in the paper of Kenward and Jones (1991).

Given a particular sequence s, let Ls
jtk = logit [P(Yjt ≤ k)] be the cumu-

lative logit for cutpoint k (k = 1, . . . , c−1), and time j, which, for sequence
s, corresponds to treatment t. In full detail, we have

LABC
11k , LABC

22k , LABC
33k ;

LACB
11k , LACB

23k , LACB
32k ;

LBAC
12k , LBAC

21k , LBAC
33k ;

LBCA
12k , LBCA

23k , LBCA
31k ;

LCAB
13k , LCAB

21k , LCAB
32k ;

LCBA
13k , LCBA

22k , LCBA
31k .

The following model for the logits is adopted: Ls
jtk = µk + τt +ρj +λs(j−1),

where µk are intercept parameters, τt are treatment effects, ρj are period
effects. λs(j−1) stands for the carry-over effect, corresponding to the treat-
ment at time j − 1 in sequence s. Given, for instance, sequence CAB, we
get

L13k = µk + τ3 + ρ1,

L21k = µk + τ1 + ρ2 + λ3,

L32k = µk + τ2 + ρ3 + λ1.

To avoid overparameterization, the following uniqueness constraints are set:

τ1 = ρ1 = λ1 = 0.

Let γs
jt,j′t′ = lnψs

jt,j′t′ be the log cross-ratio, for the marginal c×c table,
formed by the responses at times j and j′ for sequence s (corresponding to
treatments t and t′ respectively). The simplest model for the cross-ratios
is given by

γs
jt,j′t′ = µ.

The most complex model assumes all 18 cross-ratios to be different, which
is one by Jones and Kenward (1989) and by Becker and Balagtas (1993).
In between these two models there is room for parsimonious modeling. One
can think of the following linear models in the log cross-ratios

γs
jt,j′t′ = µ + τtt′ , (7.55)

γs
jt,j′t′ = µ + ρjj′ , (7.56)

γs
jt,j′t′ = µ + τtt′ + ρjj′ , (7.57)
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where µ is an intercept parameter, τtt′ are parameters for the joint (t, t′)th
treatments effects, and ρjj′ describe effects for periods j and j′. In the first
model, the log cross-ratio only depends on the treatments, irrespective of
their order and the periods they were administered. In the second model,
only the periods are of importance. In the third model, the two effects are
linearly combined. For instance, for sequence CAB, we get

γ13,21 = µ + τ13 + ρ12,

γ13,32 = µ + τ23 + ρ13,

γ21,32 = µ + τ12 + ρ23.

Possible uniqueness constraints are τ12 = ρ12 = 0. The model with associa-
tion structure (7.56) corresponds to the model introduced in Section 7.7.5.
In a model with association structure (7.55) or (7.57), the two-way cross-
ratios change with the treatment combination, which is a time-dependent
covariate. Finally, the three-way association depends in all six cases on
the same periods and treatments, the only difference being the order in
which the treatments occur. So the most natural choice is γs

123 = µ + µs,
(µABC = 0), however in most cases it is reasonable to assume γs

123 = γ123
constant over sequences.

No carry-over effects are incorporated in the cross-ratios, as the marginal
carry-over parameters have no straightforward generalization. As usual, the
different nested models can be tested using the likelihood ratio test statistic,
denoted G2.

7.9.2 Analysis of the Primary Dysmenorrhoea Data
Table 7.11 gives the details concerning the selection of effects for the pri-
mary dysmenorrhoea data. As can be seen from this table, the marginal
logit modeling yields a highly significant treatment effect. The period and
carry-over effects are not significant. The model retained (model I in Ta-
ble 7.12), consists of two cutpoints µk and two treatment parameters τt;
the estimates are shown in Table 7.12. Up to now no two-way or three-way
association is assumed.

Let us turn to the association structure; the three-way association is as-
sumed constant in all cases. First the minimal model is fitted. This model
will serve as the basic model against which the other models will be com-
pared. The three different models mentioned in (7.55), (7.56), and (7.57)
were fitted to the data. There seems to be evidence that both the treatment
terms as well as the period terms are necessary. The maximal model, i.e.,
with 18 cross-ratios, has a G2 statistic of 16.27 (13 d.f., p = 0.2349) com-
pared to the last model. Model II in Table 7.12 shows the parameter esti-
mates when treatment parameters are included in the two-way cross-ratios.
Model III, contains as association parameters: the intercept µ, treatment
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TABLE 7.11. Primary Dysmenorrhoea Data. Selection of effects. The columns
describe the model number, the effects included, the log-likelihood of the model,
the number of the model to which this model is compared, the likelihood ratio G2

statistics with the number of degrees of freedom, and the corresponding p-value.

Effects log-lik Comp. G2 d.f. p-value
Marginal effects

1 µk -279.74
2 µk, τt -245.53 1 68.42 2 < 0.0001
3 µk, τt, ρj -243.78 2 3.50 2 0.1740
4 µk, τt, λs(j−1) -245.40 2 0.26 2 0.8790

Model 2 + association effects
5 µk, τt; µ, ψ123 -244.40
6 µk, τt; µ, τtt′ , ψ123 -239.54 5 9.66 2 0.0080
7 µk, τt; µ, ρjj′ , ψ123 -239.50 5 9.73 2 0.0077
8 µk, τt; µ, τtt′ , ρjj′ , ψ123 -236.44 5 15.87 4 0.0032

6 6.21 2 0.0448
7 6.14 2 0.0465

effects τtt′ , period parameters ρjj′ and the three-way interaction lnψ123.
This model will be chosen.

Parameter interpretation is as follows. The odds of observing Yjt ≤ k
(k = 1, 2) decreases with factor exp(−1.98) when the patient is treated
with the analgesic at low dose rather than with placebo. A further decrease
with factor exp(−2.37 + 1.98) is observed if the patient is treated with the
analgesic at high dose. Further, the association between responses is higher
if they are close to each other in time (ρ̂13 = −1.12). Also, responses from
the two analgesic treatments are more associated than responses from one
analgesic treatment and placebo (τ̂23 = 1.32).

Thus, our analysis confirms the results found by Kenward and Jones
(1991). However, the marginal approach here allows the estimation of treat-
ment effects that now are easily interpretable, in contrast with Kenward
and Jones (1991) and in contrast with the conditional approach in Jones
and Kenward (1989) as well. Confidence intervals for the effects can be
found from the estimated standard errors, shown in Table 7.12 for Model
III. Finally, the method allows flexible modeling of the association.

7.10 Multivariate Analysis of the POPS Data

The POPS data were introduced in Section 2.6. We will compare the
Bahadur model (BAH), introduced in Section 7.2 and applied earlier to
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TABLE 7.12. Primary Dysmenorrhoea Data. Fitted models. Each entry repre-
sents the parameter estimates (standard error). The absence of a standard errors
corresponds to a preset value.

Effect Par. Model I Model II Model III
Marginal effects

Intercept 1 µ1 1.07(0.25) 1.07(0.24) 1.08(0.24)
Intercept 2 µ2 2.71(0.29) 2.70(0.29) 2.72(0.29)
Treatment effect τ2 -2.03(0.33) -2.02(0.35) -1.98(0.34)
Treatment effect τ3 -2.41(0.33) -2.37(0.36) -2.37(0.35)

Two-way association effects
Intercept µ 0(-) -0.62(0.47) -0.46(0.56)
Treatment effect τ13 0(-) -0.16(0.65) -0.10(0.58)
Treatment effect τ23 0(-) 1.51(0.64) 1.32(0.61)
Period effect ρ13 0(-) 0(-) -1.12(0.55)
Period effect ρ23 0(-) 0(-) 0.51(0.66)

Three-way association
1(-) 1.59(0.75) 0.63(0.88)

Log-likelihood
-245.53 -239.54 -236.43

the clustered NTP data and the longitudinal fluvoxamine study, with the
trivariate probit model (TPM, Section 7.6) and the trivariate Dale model
(TDM, Section 7.7), both with probit (normally based, N) and logistic (L)
margins. Note that several comparisons are possible: (1) the Bahadur model
and the TPM capture the association by means of correlations, whereas the
TDM features odds ratios; (2) the Bahadur model and TDM-L have logistic
margins, while the TPM and the TDM-N have univariate marginal regres-
sions of a probit type. Finally, the log-likelihood at maximum, or the AIC
can be used to compare the models with each other.

From the 8 candidate predictor variables, neonatal seizures, congenital
malformations, and highest bilirubin value since birth were retained for
analysis. They were selected using a stepwise logistic analysis for each re-
sponse separately, at significance level 0.05. The first two regressors are
dichotomous, the third one is continuous.

Table 7.13 contains the estimated parameters under all four models. In
all models, transformed correlation parameters are used to reduce parame-
ter space violations. We present both the transformed parameter (Fisher
z transformed correlation and log odds ratio) as well as the parameter
expressed on the original scale.

It is seen that the presence of neonatal seizures and/or of congenital mal-
formation significantly decreases the probability of successfully performing
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TABLE 7.13. POPS Study. Parameter estimates (standard errors) for the trivari-
ate Bahadur (BAH), probit (TPM) and Dale models (with probit, TPM-N, or
logit, TPM-L, margins). For the associations, correlations [ρ and transformed
correlations, using (7.12)] (BAH, TPM) and cross-ratios (ψ) and log cross-ratios
for the TDM.

BAH TPM TDM-N TDM-L

First ability score
Intercept 3.67(0.49) 2.01(0.26) 2.03(0.27) 3.68(0.52)
Neonatal seiz. -1.94(0.42) -1.12(0.26) -1.16(0.26) -2.06(0.44)
Congenital malf. -1.21(0.31) -0.61(0.18) -0.62(0.18) -1.17(0.33)
100× Bilirubin -0.69(0.25) -0.32(0.14) -0.32(0.14) -0.64(0.27)

Second ability score
Intercept 4.03(0.51) 2.19(0.27) 2.21(0.27) 4.01(0.54)
Neonatal seiz. -2.26(0.43) -1.27(0.26) -1.29(0.26) -2.28(0.44)
Congenital malf. -1.08(0.32) -0.56(0.19) -0.59(0.19) -1.11(0.34)
100× Bilirubin -0.85(0.26) -0.42(0.14) -0.41(0.14) -0.80(0.27)

Third ability score
Intercept 3.32(0.50) 1.84(0.27) 1.91(0.27) 3.49(0.54)
Neonatal seiz. -1.55(0.44) -0.88(0.27) -0.93(0.27) -1.70(0.46)
Congenital malf. -0.96(0.32) -0.47(0.19) -0.49(0.19) -0.96(0.35)
100× Bilirubin -0.44(0.26) -0.21(0.14) -0.24(0.14) -0.49(0.28)

Association parameters
ρ ρ ψ ψ

(1,2): ρ or ψ 0.27(0.05) 0.73(0.05) 17.37(5.19) 17.35(5.19)
(1,2): z(ρ) or lnψ 0.55(0.11) 1.85(0.23) 2.85(0.30) 2.85(0.30)

(1,3): ρ or ψ 0.39(0.05) 0.81(0.04) 30.64(9.78) 30.61(9.78)
(1,3): z(ρ) or lnψ 0.83(0.12) 2.27(0.25) 3.42(0.32) 3.42(0.32)

(2,3): ρ or ψ 0.23(0.05) 0.72(0.05) 17.70(5.47) 17.65(5.47)
(2,3): z(ρ) or lnψ 0.47(0.10) 1.83(0.23) 2.87(0.31) 2.87(0.31)

(1,2,3): ρ or ψ — — 0.91(0.69) 0.92(0.69)
(1,2,3): z(ρ) or lnψ — — -0.09(0.76) -0.09(0.76)
Log-likelihood -598.44 -570.69 -567.11 -567.09

any of the three ability tests. A similar effect of bilirubin on the first and
second ability score is observed.

The marginal regression parameters agree in pairs: the logit-based Ba-
hadur and TDM-L models on the one hand and the TPM and TDM-N
models on the other hand. There is as light tendency for the Bahadur pa-
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rameter estimates and standard errors to be a bit smaller. This should not
be seen as resulting from a higher efficiency, but rather as downward bias
resulting from the model’s stringent parameter space restrictions (Declerck,
Aerts, and Molenberghs 1998). Upon multiplying the TPM and TDM-N
coefficients with the factor π/

√
3, the standard deviation of the logistic

distribution, all coefficient become very close to each other.
When comparing the association parameters, the (log) odds ratios are

clearly very similar between both TDM models. This is less the case when
the correlation estimates, obtained from the Bahadur, are compared with
their probit model counterparts. A strong downward bias is seen. This is
due, again, to the strong parameter space restrictions in the Bahadur case.
This effect is magnified by setting the three-way correlation in the Bahadur
model equal to zero. Recall that there is no such thing in the TPM, since
this model is based on discretizing a multivariate standard normal distri-
bution, which is completely described in terms of its two-way correlations,
without the need to separately specifying three-way correlations.

A slight preference for the TDM could be inferred if based either on
doubling the negative log-likelihood, or on the AIC. It is not possible to
express a preference for either of the TDM models, based on this exam-
ple. This confirms the well-known univariate result, that logistic and probit
regression are hard to distinguish from each other, except when datasets
become very large and response probabilities approach zero or one. While
the TPM’s performance is somewhat worse, the difference is around 5. Ba-
hadur’s model, on the other hand, lags behind by about 55 in deviance
or AIC. Considering the strength of the association, there is a strong as-
sociation between each pair of dichotomous responses, but no significant
three-way association, as seen from the TDM.

An important feature of the likelihood method is that calculation of
individual probabilities can be performed. For example, the method allows
to calculate the joint probability of failing at the three tests. This can be
quite different from the joint probability obtained by assuming independent
responses, as is shown in Figure 7.7, where the probability that the child
will fail on all three ability scores is calculated for different bilirubin values,
given that both CGM and NSZ are one.

7.11 Longitudinal Analysis of the Fluvoxamine
Study

The relationship between the severity of the side effects at the three visits
and some baseline characteristics of the patients was established. The re-
sponse is a trivariate ordered categorical vector with 4 classes, measured at
three visits. For the selection of predictors, age and sex were included by
default into the model. The other baseline characteristics were then consid-
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FIGURE 7.7. POPS Study. probability that a child fails on all three ability scores
for a range of bilirubin values, evaluated under five fitted models: the trivariate
Bahadur model, the Dale model (TDM) with logistic (L) and normal (N) margins,
the trivariate probit model (TPM), and a model assuming independent responses
(three logistic regressions).

ered for selection. Only the duration (months) of the disease and the initial
severity (measured on a 7-point scale) turned out to significantly influence
the severity of side effects.

At the second and third visit, a non-negligible portion of the patients
dropped out from the study (20%). An ordinary contingency table analysis,
as well as a logistic regression of the variable dropout on potential covariates
showed that the dropout mechanism is heavily depending on the severity
of the side-effect reported at the preceding visit. We refer to Part VI for
several analysis explicitly addressing the missingness issue.

From the parameter estimates shown in Table 7.14 (Model I), it is seen
that the effect of some covariates is almost constant over time. The G2

test statistic for the hypothesis that both the intercepts and parameters
for ‘age’ and ‘sex’ are time invariant is 5.37 (10 d.f., p = 0.8654). How-
ever, ‘duration’ and ‘initial severity’ depend on time. (G2 = 37.58, 4 d.f,
p< 0.0001). This leads to the more parsimonious Model II. The odds of ob-
serving high side-effects increases with ‘age’ and ‘duration’ and decreases
with ‘initial severity.’ The influence of ‘initial severity’ increases over time.
There is a strong association between side-effects measured at successive
visits. Although significant, the association is less strong between the first
and third visit.
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TABLE 7.14. Fluvoxamine Trial. Longitudinal analysis. The side effects at three
successive times are regressed on age, duration, initial severity, and sex, using the
multivariate Dale model. In Model I, the parameters are assumed to be different
over time. In Model II, only duration and initial severity have a time-dependent
effect. The entries represent the parameter estimates (standard errors).

Effect Side 1 Side 2 Side 3
Model I

Marginal parameters
Intercept 1 -0.41(0.90) -0.45(0.95) -0.79(1.06)
Intercept 2 1.78(0.90) 1.64(0.96) 1.64(1.07)
Intercept 3 2.94(0.92) 2.97(0.99) 2.85(1.13)
Age -0.19(0.09) -0.22(0.09) -0.25(0.10)
Duration -0.14(0.05) -0.20(0.05) -0.24(0.06)
In. Severity 0.29(0.14) 0.28(0.15) 0.42(0.17)
Sex -0.23(0.24) 0.09(0.24) 0.16(0.27)

Association parameters
12 13 23 123

3.20(0.27) 2.49(0.28) 3.71(0.33) -0.38(0.76)

Model II
Marginal parameters

Intercept 1 -0.52(0.82)
Intercept 2 1.67(0.82)
Intercept 3 2.89(0.84)
Age -0.21(0.07)
Duration -0.14(0.05) -0.21(0.05) -0.24(0.06)
In. Severity 0.27(0.13) 0.33(0.13) 0.42(0.13)
Sex -0.06(0.22)

Association parameters
12 13 23 123

3.13(0.26) 2.43(0.27) 3.74(0.33) -0.29(0.74)

7.12 Appendix: Maximum Likelihood Estimation

We present details on a general expression for the likelihood in marginal
models, the corresponding score equations, and how to solve them.

7.12.1 Score Equations and Maximization
Under a multinomial sampling scheme, the kernel of the log-likelihood, in
terms of the counts obtained at design level r, Z∗

r , and the corresponding
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cell probabilities µ∗
r is

	(β; Z∗) =
N∑

r=1

Z∗′
r ln[µ∗

r(β)].

When working with the cumulative counts Zr and the cumulative prob-
abilities µr, and knowing that relations (7.4) hold, we can rewrite the
log-likelihood as

	(β; Z) =
N∑

r=1

	r(β; Zr) =
N∑

r=1

(BrZr)
′
ln[Brµr(β)]. (7.58)

The derivative of the contribution of group r to (7.58) with respect to µr

is then given by

∂	

∂µr

=
∂	r

∂µr

=
{

B
′
r[diag(µ∗

r)]
−1Br

}
(Zr − Nrµr)

=
{

B
′
rcov(Z∗

r)
−1Br

}
(Zr − Nrµr)

= cov(Zr)−1(Zr − Nrµr). (7.59)

Given (7.59), the score function becomes

U(β) =
∂	

∂β
=

N∑
r=1

(
∂ηr

∂β

)′ [(
∂ηr

∂µr

)′]−1

V −1
r Sr, (7.60)

with Sr = Zr − Nrµr, and Vr = cov(Zr). A typical element of Vr is

cov (zr(k1 . . . knr
), zr(	1, . . . , 	nr

))
= µr(m1, . . . , mnr ) − µr(k1, . . . , kni) · µr(	1, . . . , 	nr ),

where mj = min(kj , 	j).
Computation of the matrix Qr = ∂ηr/∂µr is extremely simple if the link

is of the form (7.17), because then (Grizzle, Starmer, and Koch 1969)

Qr = C {diag(Aµr)}−1
A. (7.61)

This motivates the choice to compute Qr and invert it, rather than com-
puting Q−1

r directly, as was done by Molenberghs and Lesaffre (1994) and
detailed in Section 7.7.

When we use cumulative probabilities, the component µr(c1, . . . , cnr ) =
1, whence it can be omitted. This implies that the matrix Qr is square
and can easily be inverted. In case one chooses to use cell probabilities, all



138 7. Likelihood-based Marginal Models

components of µr contain information whence the length of µ∗
r is one more

than the length of ηr, but the probabilities sum to one. This additional
equation needs to be added to the list of ηr, making Qr square again
(McCullagh and Nelder, 1989).

Replacing the univariate marginal link functions in (7.17), η
(1)
r say, by

any other inverse cumulative distribution function F−1 with probability
density function f , and retaining the specification of the association in
terms of a form satisfying (7.17), yields the expression

η = η(µ) =

(
F−1(µ(1))
C2 ln(Aµ)

)
,

with corresponding derivative

Qr =

(
diag

{
f(η(1))

}−1
0

C2 {diag(Aµ)}−1
A

)
. (7.62)

The matrix C2 is similar to the matrix C in (7.17) but now only applies to
the association part of the model. Choosing F = Φ and f = φ, the standard
normal distribution and density functions, we obtain a global odds ratio
model with univariate probit links.

As discussed in the previous section, the multivariate probit model also
fits within the proposed framework. In this case, it might be preferable to
compute the matrix Q−1

r , rather than its inverse, unlike with the global
odds ratio model, or most other models of the form (7.17). Although in the
probit case the matrix Q−1

r is easier to compute than Qr, the computa-
tions are still more complex than calculating (7.62). The components are
the derivatives of multivariate standard normal distribution functions. The
evaluation of multivariate normal integrals is required. Lesaffre and Molen-
berghs (1991) chose to use the algorithm proposed by Shervish (1984). In
the common case of linear predictors, the derivative of the link vector with
respect to β is the design matrix Xr. See also Section 7.6.

The maximum likelihood estimator satisfies U(β̂) = 0. Two popular
fitting algorithms are Fisher scoring and the Newton-Raphson algorithm.
In the case of Fisher scoring, one starts with a vector of initial estimates
β(0) and updates the current value of the parameter vector β(t) by

β(t+1) = β(t) + W (β(t))−1U(β(t)), (7.63)

with

W (β) =
N∑

i=1

Nr

(
∂ηr

∂β

)′ [(
∂ηr

∂µr

)′]−1

V −1
r

[(
∂ηr

∂µr

)]−1(
∂ηr

∂β

)
.

The expected information matrix assumes the form W (β), estimated by
W (β̂). A Newton-Raphson iteration scheme is found by substituting the
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matrix W (β) in (7.63) by H(β), the matrix of second-order derivatives of
the log-likelihood. An outline of this procedure for cumulative counts is
given next.

7.12.2 Newton-Raphson Algorithm with Cumulative Counts
Replacing the matrix W (β) in (7.63) by the matrix of second-order deriv-
atives H(β) of the log-likelihood (7.58) implements a Newton-Raphson
algorithm. We present an expression for H = H(β). It is useful to bor-
row some notation from McCullagh’s (1987) book on tensor methods in
statistics. From McCullagh (1987), it follows that the (p, q) element of H
is

Hpq =
N∑

r=1

∑
a,b,c,d

∂ηra

∂βp

∂µrb

∂ηra

∂2	

∂µrbµrc

∂µrc

∂ηrd

∂ηrd

∂βq

+
N∑

r=1

∑
a,d,b

[
∂ηra

∂βp

∂ηrd

∂βq

∂2µrb

∂ηra∂ηrd
+

∂2ηra

∂βp∂βq

∂µrb

∂ηra

]
∂	

∂µrb
.

Observing

∂	

∂µrb
=

∑
k

(V −1
r )bkSrk,

∂2	

∂µrbµrc
= −Nr ∗ (V −1

r )bc −
∑
e,f,k

(V −1
r )beJr,c,ef (V −1

r )fkSrk,

Jr,c,ef = δc,ι(e,f) − δceµrf − δcfµre,

where δ is the Kronecker delta function and ι(a, d) = c if min(aj , dj) = cj

for all components of the index vectors, we can separate the terms involving
Sr in the expression for H(β):

Hpq = −Wpq +
N∑

r=1

α′
rpqSr,

for some vector αrpq. Obviously, the second term has expectation zero.
The first and second derivatives of µr with respect to νr follow from the

identities

δbc =
∂µrb

∂ηra

∂ηra

∂µrc
,

∂2µrb

∂ηra∂ηrd
= −

∑
c,a,v

∂2ηrc

∂µra∂µrv

∂µrb

∂ηrc

∂µra

∂ηra

∂µrv

∂ηrd
.

Note that the first identity merely rephrases that QrQ
−1
r = I.



140 7. Likelihood-based Marginal Models

Opting for linear predictors, we obtain:

∂ηi

∂β
= Xi

∂2ηit

∂βp∂βq
= 0.

We are now able to rewrite the Hessian in a concise matrix form

H(β) =
N∑

r=1

X
′
r

[
Fr + (Q

′
r)

−1Gr(Qr)−1
]
Xr

with

Fr =

(∑
b

∂2µrb

∂ηra∂ηrd

∂	

∂µrb

)
a,d

,

Gr =
∂2	

∂µr∂µ′
r

.

Finally, if we again choose a link function of the type (7.17) we can use
simple forms

Qr =
∂ηr

∂µr

= C {diag(Aµr)}−1
A = CBrA

and
∂2ηra

∂µrµ
′
r

= −A′B(2)
ra A,

where the matrix B
(2)
ra is obtained by multiplying all rows of B2

r with the
ath row of C.

7.12.3 Determining the Joint Probabilities
To compute the score equations and to implement the updating algorithm,
knowledge of the multivariate cumulative probabilities µr is required. The
choice of a fitting technique will strongly depend on the choice of link
functions. For multivariate odds ratio models (multivariate Dale models,
see also Section 7.7) several proposals have been made, such as the use of
multivariate Plackett probabilities (Plackett 1965, Molenberghs and Lesaf-
fre 1994), the use of Lagrange multipliers (Lang and Agresti 1994), and
a Newton iteration mechanism (Glonek and McCullagh 1995). With the
Plackett probability approach, we found that for four and higher dimen-
sional problems, the derivatives of high dimensional polynomials can be-
come numerically unstable. Here, the iterative proportional fitting (IPF)
algorithm is adapted to produce a quick and reliable tool to compute the
cumulative probabilities. A similar use of the IPF algorithm was proposed
by Kauermann (1993). Due to the use of score function (7.60), there is no
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need to compute the derivatives of the probabilities directly since Qr easily
follows from (7.61), leaving only the probabilities to be computed.

Given the marginal probabilities and the odds ratio parameters, our IPF
algorithm produces a multidimensional table of cell probabilities. The IPF
algorithm is known from its use in fitting log-linear models (Bishop, Fien-
berg, and Holland 1975), where the association is described using condi-
tional odds ratios. The algorithm was also applied by Fitzmaurice and
Laird (1993) for their mixed marginal-conditional models (Section 7.8). In
our fully marginal models, marginal odds ratios are used. We distinguish
between two types. Global odds ratios, given in (7.21)–(7.23), are relevant
for ordinal responses (Dale 1984), and local odds ratios as in (7.24) are
a natural choice for nominal outcomes. Of course, both sets coincide for
binary responses.

We will describe our algorithm for global odds ratios first, and then
discuss the local odds ratio version in the concluding paragraph of this
section. We need to determine the cumulative probabilities µr(k1, . . . , knr )
which correspond to cumulative cell count Zr(k1, . . . , knr

). Recall that this
notation encompasses not only nr-way classifications, but also one-way,
two-way,. . . classifications, by setting an appropriate set of indices kj = cj .
Omitting indices for which kj = cj , we assume without loss of generality
that we need to determine a K-way probability µr(k1, . . . , kK), with kj < cj

for all j.
We will proceed recursively. First, note that the cumulative probabilities

µr(	1, . . . , 	K), with 	j ∈ {kj , cj} for j = 1, . . . , K, completely describe a
2K contingency table. Second, as soon as at least one 	j = cj , we obtain a
lower order probability. Our recursion will be based on the assumption that
these lower order probabilities have been determined. The starting point
of the inductive construction is obtained by setting all but one 	j = cj ,
whence we obtain univariate probabilities µrjkj

which are of course easy to
determine from the marginal links ηrjkj . Drop the index r from notation.

From the cumulative probabilities, we easily determine the cell proba-
bilities µz1...zK

k1...kK
, with zj = 1, 2 and adopt the convention that the K-way

cumulative cell probabilities are incorporated as:

µ1...1
k1...kK

= µ(k1, . . . , kK). (7.64)

We will explicitly need the cell probabilities of dimension K − 1:

µ
z1...zj−1zj+1...zK

k1...kj−1kj+1...kK
=

2∑
zj=1

µz1...zK

k1...kK
.

The IPF algorithm is started by choosing a table of initial values, e.g.,

µz1...zK

k1...kK
(0) =

{
ψr(k1, . . . , kK) if (z1, . . . , zK) = (1, . . . , 1),

1 otherwise.
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with ψr(k1, . . . , kK) = exp[ηr(k1, . . . , kK)], the corresponding global odds
ratio. This table clearly has the correct association structure, but the mar-
ginals are incorrect and the sum of the cell counts is not equal to one.
Updating cycle (m + 1) requires K substeps, to match each of the K − 1
dimensional marginal tables:

µz1...zK

k1...kK

(
m +

j

K

)
= µz1...zK

k1...kK

(
m +

j − 1
K

)
.

µ
z1...zj−1zj+1...zK

k1...kj−1kj+1...kK

µ
z1...zj−1zj+1...zK

k1...kj−1kj+1...kK

(
m + j−1

K

) ,
(j = 1, . . . , K), the argument of µ indicating the iteration subcycle. Upon
convergence, (7.64) can be used to identify the required K-way probability.

Convergence of the IPF algorithm is established in Csiszar (1975). How-
ever, the parameter space of the marginal odds ratios is constrained, unless
in the special case of a constant odds ratio for a bivariate outcome (Liang,
Zeger, and Qaqish 1992). A violation of the constraints will be revealed by
a cumulative probability vector with negative entries. If this occurs in the
course of an updating algorithm, appropriate action (e.g., step halving) has
to be taken. We never encountered problems of this kind, suggesting that
the constraints are very mild. Practice suggests that these restrictions are
much milder than those for the Bahadur model with which a fully satisfac-
tory analysis of the fluvoxamine data (Section 7.2.4) was not possible.

For marginal local odds ratios a slightly adapted and simpler procedure
is proposed. Instead of considering subsets of binary variables, we now con-
sider the whole marginal multi-way table directly. With a similar recursive
argument, we assume that the full set of marginal tables up to dimension
K − 1 is determined. Then, we construct a K-dimensional initial table

µ∗
r(k1, . . . , kK)(0) =

∏
cj>�j≥kj

ψ∗
r (	1, . . . , 	K),

for all cells (k1, . . . , kK). This table clearly has got the required K-way
local association structure. The updating algorithm matches the entries to
the K sets of K − 1 dimensional marginal tables.

7.13 Appendix: The Multivariate Plackett
Distribution

Let us start from the bivariate case first. Given the marginal distributions
F1(w1), F2(w2) and the cross-ratio ψ, the Plackett distribution is the solu-
tion of the second degree polynomial equation

ψ(F − a1)(F − a2) − (F − b1)(F − b2) = 0, (7.65)

where a1 = F1, a2 = F2, b1 = 0, b2 = F1 + F2 − 1. The solution of this
equation is given by (7.40). To yield a genuine distribution function, the
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solution F of (7.65) should satisfy the Fréchet inequalities (Fréchet 1951):

max(b1, b2) ≤ F ≤ min(a1, a2).

Now, this approach can be generalized to n dimensions. To define the
multivariate Plackett distribution, consider the set of 2n − 1 generalized
cross-ratios with values in [0, +∞]:

ψj , (1 ≤ j ≤ n)
ψj1j2 , (1 ≤ j1 < j2 ≤ n)

...
ψj1...jk

, (1 ≤ j1 < . . . < jk ≤ n)
...

ψ1...n.

The one-dimensional ψj ’s are precisely the odds of the univariate prob-
abilities, i.e.,

ψj =
µj

1

µj
2

=
Fj

1 − Fj
, (7.66)

(1 ≤ j ≤ n). Note that we put the response level in the subscript to µ
and the occasions to which they pertain the superscript. Thus, µj

1 is the
probability to observe a ‘1’ at occasion j and µj

2 is the probability to observe
a ‘2’ at this occasion. Similar conventions will be used for the higher orders.
The bivariate associations ψj1j2 are defined as in (7.41):

ψj1j2 =
µj1j2

11 µj1j2
22

µj1j2
12 µj1j2

21

=
Fj1j2(1 − Fj1 − Fj2 + Fj1j2)
(Fj1 − Fj1j2)(Fj2 − Fj1j2)

, (7.67)

(1 ≤ j1 < j2 ≤ n). As soon as ψj1 , ψj2 , ψj1j2 are known, Fj1j2 can be
calculated. The cross-ratio ψj1j2 can also be viewed as the odds ratio of
ψj1(1), ψj2(2), computed as in (7.66), within the first and second level of
dimension j2, respectively.

The three-dimensional cross-ratios can be defined in a similar way as the
three factor interactions in loglinear models (Agresti 1990) and is analogous
to the above extension. They have been considered already in, for example,
(7.21), (7.22), and (7.23). Thus, the cross-ratio ψj1j2j3 is defined as the
ratio of two conditional cross-ratios ψj1j2(1) and ψj1j2(2). These are the
two-dimensional cross-ratios defined within the first and second level of
dimension j3 respectively. The numerator of ψj1j2j3 contains Fj1j2j3 with
a positive sign and the denominator contains Fj1j2j3 with a negative sign.
Again, the knowledge of the cross-ratios enables one to determine Fj1j2j3 .

However, care has to be taken when specifying the cross-ratios, since not
every combination leads to a valid solution. This is not surprising, and oc-
curred earlier with the Bahadur model (Section 7.2). Also the multivariate
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probit model of Section 7.6 is subject to such constraints, since the corre-
lation matrix has to be positive definite. In fact, such constraints will show
up for every marginal model, because specifying marginal models implies
specifying overlapping information, in contrast to conditional models, the
genesis of which can be viewed as specifying new model components, condi-
tional upon ones already in the model. Although this may seem a drawback,
it is largely compensated by ease of interpretation for the corresponding
model parameters, marginal regression functions, etc.

The n-dimensional probabilities can be computed if all lower dimensional
probabilities together with the global cross-ratio of dimension n are known.
Let µj1...jm

k1...km
be the (k1, . . . , km)-orthant probability of the m-dimensional

marginal table, formed by dimensions (j1, . . . , jm). We present the defining
equation for Fm1...mk

:

ψj1...jm
=

∏
(k1,...,km)∈A+

m

µj1...jm

k1...km∏
(k1,...,km)∈A−

m

µj1...jm

k1...km

, (7.68)

where

A+
m = {(k1, . . . , km) ∈ {1, 2}m|2 divides

m∑
�=1

k� − m}

and
A−

m = {1, 2}m\A+
m,

‘\’ indicating set difference. In particular, for F1...n:

ψ1...n =

∏
(j1,...,jn)∈A+

n

µj1...jn∏
(j1,...,jn)∈A−

n

µj1...jn

. (7.69)

For example, for n = 3:

A+
1 = {1},

A+
2 = {(1, 1), (2, 2)},

A+
3 = {(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}.

Based on these expressions, (7.68) yields (7.66), (7.67), and the three-
dimensional odds-ratio

ψ123 =
µ111µ122µ212µ221

µ112µ121µ211µ222
.

The orthant probabilities µk1...kn
are determined by the distribution F . A

general expression can be derived, which will be useful for the automated
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computation of the orthant probabilities. Some notation is needed. Let
λ(k) ≡ λ(k1, . . . , kn) be the set of places for which kj is equal to 1, (e.g.,
λ(1, 2, 1, 1) = {1, 3, 4}), then

µk1...kn =
∑

s⊃λ(k)

sgn(s)Fs, (7.70)

where

sgn(s) =

{
1 if #s − #β(k) is even,

−1 otherwise,

and Fs = Fs1...sm
, with s1 ≤ . . . ≤ sm. In the three-dimensional case, the

octant probabilities are

µ111 = F123,

µ112 = F12 − F123,

µ121 = F13 − F123,

µ211 = F23 − F123,

µ122 = F1 − F12 − F13 + F123,

µ212 = F2 − F12 − F23 + F123,

µ221 = F3 − F13 − F23 + F123,

µ222 = 1 − F1 − F2 − F3 + F12 + F13 + F23 − F123.

(7.71)

As an example, consider µ212. In this case, λ(2, 1, 2) = {2} and there are 4
possible vectors s: (2), (1,2), (2,3) and (1,2,3). Therefore, (7.70) yields the
expression for µ212 in (7.71).

The set of 2n −1 generalized cross-ratios fully specifies the n-dimensional
Plackett distribution. However, from the above reasoning it is not clear
whether such a distribution always exists. Further, if existence and unique-
ness is guaranteed it is not yet clear how to calculate the distribution since
it is only implicitly specified by (7.68). These matters are discussed next.

Let us turn to some computational details. Note that the probabilities
in the numerator (denominator) of (7.69) involve +F12...n (−F12...n) and
that both numerator and denominator contain an even number of factors.
Thus, (7.69) may be abbreviated as

ψ =
∏2n−1

i=1 (F − bi)∏2n−1

i=1 (F − ai)
, (7.72)

where ψ ≡ ψ1...n and F ≡ F1...n. The ai and bi are functions of the (n−1)-
and lower-dimensional probabilities (or, equivalently, cross-ratios). A valid
solution must satisfy

max
i

bi ≤ F ≤ min
i

ai. (7.73)
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However, this condition is not satisfied for all choices of ai and bi. To see
this, take the three-way Plackett distribution. Then, according to (7.73),
the one- and two-dimensional marginal distributions have to satisfy the
following inequalities:

Fj1j2 + Fj1j3 ≤ Fj1 + Fj2j3 , (j1 �= j2 �= j3 �= j1)
F1 + F2 + F3 ≤ 1 + F12 + F13 + F23.

Now, as a counterexample, if

F1 = F2 = F3 =
1
2
,

ψ12 = 0.05,

ψ13 = 1,

ψ23 = 20,

then F13 + F23 > F3 + F12 and (7.73) cannot be satisfied.
In spite of this, the constraints for this model never were burdensome,

neither in the analyses reported in this book, nor for others done by the
authors and reported elsewhere. The same holds for the multivariate probit
model. This is in contrast to the Bahadur model, where the analysis of the
fluvoxamine trial (Section 7.2.4) already posed insurmountable problems.

In case (7.73) is satisfied, existence and uniqueness of a solution is guar-
anteed by the next lemma. The verification of (7.73) is straightforward,
as the functions bi and ai are linear functions of the lower order marginal
probabilities.

Lemma 7.1 Let

P (C) = ψ
m∏

i=1

(C − ai) −
m∏

i=1

(C − bi),

where m is even, 0 < ψ < +∞, and

b1 = max
1≤i≤m

bi < min
1≤i≤m

ai = a1,

then the interval ]b1, a1[ contains exactly one real root of P (C).

Proof. The inequalities

P (a1) = −
m∏

i=1

(a1 − bi) < 0

and

P (b1) = ψ

m∏
i=1

(b1 − ai) > 0,
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together with the continuity of P (C), establish the existence.
Now,

∂P

∂C
= ψ

m∑
i=1

∏
j �=i

(C − aj) −
m∑

i=1

∏
j �=i

(C − bj) = ψ
∑

i

Ti −
∑

i

Si.

Ti is a product of (m − 1) negative factors, whence Ti is negative. Si is
positive, so P (C) is strictly decreasing in ]b1, a1[, establishing the result.

It follows from the proof that the regula falsi method with starting points
a1 and b1 always leads to the solution. Though in general a1 and b1 are
close to each other and convergence is quickly reached, it is desirable to
look for even faster methods. It is our experience that a Newton iteration
with starting point, for example, 1

2 (a1 +b1) converges to the root, generally
in 3 or 4 steps (with convergence criterion: |ck+1 − ck| < 10−8).

An algebraic solution to the two-dimensional problem is given by Mar-
dia (1970) and Dale (1986). The three-way Plackett distribution can also
be solved algebraically using Ferrari’s method for solving fourth-degree
polynomials. However, the solution cannot be written in a mathematically
elegant way. From the four-way Plackett distribution on, one has to rely on
numerical techniques. It is a fundamental result of algebra that a polyno-
mial of degree higher than 5 has no algebraic solution. This is not a major
disadvantage, since numerical methods for the multivariate Dale model are
usually much faster than for the multivariate probit model, which necessi-
tates the calculation of multivariate normal integrals.

7.14 Appendix: Maximum Likelihood Estimation
for the Dale Model

We present the basic tools for the computations. We distinguish between
the following parts: model description, likelihood function and cell proba-
bilities, and score functions and information matrix.

It is, again, convenient to adopt the contingency table notation, assuming
that subjects i = 1, . . . , Nr are grouped within covariate or design levels
r = 1, . . . , N (Section 7.1). Thus, observations, sharing covariate vector xr,
are combined into a single c1 × . . . × cn contingency table. The dimension
of this table will be abbreviated by c. In other words, we adopt the table
notation. Denote the entries of this table by z

rk. Here, k indicates a multi-
index: k = (k1, . . . , kn), (1 ≤ kj ≤ cj , l = 1, . . . , n). In vector notation:
1 ≤ k ≤ c. A particular table is indicated by (z

rk)k.
We assume that the tables are sampled from a multinomial distribution,

with cell probabilities (µ∗
rk)k, (r = 1, . . . , N), given by the MDM. They

are derived from the orthant probabilities, defined by (7.70). The model is
fully specified by link functions ηrjk = ηrj(xr) given by (7.48), γk1k2

j1j2
(xr)
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given by (7.49), together with the higher-order association parameters. If we
denote them by φ with an appropriate subscript, then we obtain in vector
notation lnψh = φh, with h a vector running through all higher order
associations. The parameters γ and φ determine the association structure.

Assume that all parameters form a column vector θ. The log-likelihood
takes the form:

	(θ) =
N∑

r=1

c∑
k=1

zrk lnµ∗
k(θ, xr), (7.74)

and is fully determined if we indicate in what way the cell probabilities
µ

rk(θ) = µk(θ, xr) arise from the link functions. Let µ
rk = µk(xr), de-

note the n-dimensional cumulative Plackett distribution function F , eval-
uated in the appropriate links:

µ
rk = F (ηr, γr, φ), (7.75)

where the arguments are appropriately vectorized forms of the links. Note
that µ

rk is the orthant probability of [−∞, ηr1k1 ] × . . . × [−∞, ηrnkn ]. To
compute the cell probabilities, write the cutpoints for dimension j as:

−∞ = ηrj0 < ηrj1 < . . . < ηrj,cj−1 < ηrjcj = +∞.

If one or more components kj of k are equal to zero, the corresponding
orthant probability µ

rk vanishes. If one or more components of k equal
cj , then µrk is an orthant probability of a lower dimensional marginal
distribution.

The cell probabilities µ∗
rk can be expressed in terms of µrk:

µ∗
rk =

∑
h

(−1)S(k,h)µrh.

Summation goes over all indices h satisfying 0 ≤ k − h ≤ 1, and the
function S is defined by S(k, h) =

∑n
j=1 kj −hj . The computation of µk in

(7.75) involves the evaluation of the cumulative Plackett distribution. The
derivatives are computed by implicit derivation of (7.72).

The derivative of the log-likelihood 	 with respect to a marginal parame-
ter θ can be written as:

∂	

∂θ
=

N∑
r=1

c∑
k=1

zrk
1

µ∗
rk

n∑
j=1

cj−1∑
m=1

∂µ∗
rm

∂ηjm(xr)
∂ηjm(xr)

∂θ
. (7.76)

A few conventions will simplify notation. First, assume there is only one
covariate vector x, thereby dropping the index r. Second, due to model
(7.48), a marginal parameter pertains to only one margin, j say. For such
a parameter, summation over all j = 1, . . . , n is replaced by a single j. In
principle, we need to distinguish between intercepts β0,jm, corresponding to
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only one cutpoint m, and covariate parameters β, common to all cutpoints
k = 1, . . . , cj − 1 of dimension j. However, we assume that every marginal
parameter pertains to only one cutpoint, mj say. The correct formula can
be obtained by summing over all cutpoints, if needed. In conclusion, j and
m = mj will be assumed to be fixed. Finally, note that in most formulas,
some indices kj of k will play a particular role and need being mentioned
explicitely. The remaining indices will be denoted by k′. Accordingly, the
upper bound is denoted by c′. In subscripts (e.g., µ∗

k), only the relevant
indices will be mentioned. Applying these conventions to (7.76) yields

∂	

∂θ
=

∂ηjm

∂θ

c′∑
k′=1

(
zm

µ∗
m

− zm+1

µ∗
m+1

) ∑
h,hj=m

(−1)S(k′
m,h) ∂µh

∂ηjm
.

For an intercept or covariate parameter in the two-way association model,
we deduce

∂	

∂θ
=

∂γj1j2

∂θ

∑
k

zk
1

µ∗
k

ψk1k2
j1j2

∑
h

(−1)S(k,h) ∂µh
∂ψj1j2

.

Note that a similar form is obtained for higher order associations. For a
parameter θ in (7.49) pertaining to a row category m, the score equation
is

∂	

∂θ
=

∂γj1j2

∂θ

c′∑
k′=1

(
zm

µ∗
m

− zm+1

µ∗
m+1

)
ψm k2

j1j2

∑
h,hj1=m

(−1)S(k′
m,h) ∂µh

∂ψj1j2

,

while for a cell-specific parameter we find

∂	

∂θ
=

∂γj1j2

∂θ

c′∑
k′=1

(
zm1m2

µ∗
m1m2

− zm1+1,m2

µ∗
m1+1,m2

− zm1,m2+1

µ∗
m1,m2+1

+
zm1+1,m2+1

µ∗
m1+1,m2+1

)

×ψm1m2
j1j2

∑
h,hj1=m1,hj2=m2

(−1)S(km1m2,h) ∂µh
∂ψj1j2

.

Straightforward but lengthy computations lead to expressions for the
elements of the expected information matrix. We do not present them here;
they are available as a technical report from the first author. They are used
to implement a Fisher scoring algorithm, to maximize (7.74).




