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The Strength of Marginal Models

6.1 Introduction

In the past century, a vast part of the literature devoted to multivariate
categorical data focused on describing the association structure between
two or more variables. Eminent early references are Yule and Kendall (1950)
and Goodman (1969, 1979, 1981a, 1981b, 1985).

Recently, the focus in multivariate categorical data has somewhat shifted
to regression models, intended mainly for the analysis of longitudinal data.
It is fair to say that the gap between classical contingency table and cat-
egorical data analysis on the one hand and categorical longitudinal data
on the other hand is less wide than the corresponding gap for Gaussian
data, where multivariate and longitudinal methods have their own focus
and flavor. As a consequence, not only classically used models such as log-
linear models (Cox 1972, Agresti 2002) ought to be considered, but also
marginal models can be of great use. Perhaps it is not sufficiently recog-
nized that these models provide a versatile basis, not only for regressing
multiple outcomes on predictor variables, as will be done in Chapter 7, but
also to study the association between two (or more) categorical variables.
In other words, they can be used for the analysis of association. To this
end, it is necessary to construct more complex association structures than
are often needed for longitudinal applications. For this purpose, one can
borrow flexible association structures as used in more conventional models,
such as the ones described in Goodman (1981a).
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In Section 6.2, we first sketch the so-called multivariate logistic models
(McCullagh and Nelder 1989, Glonek and McCullagh 1995). Then we re-
view the classical row-column (RC) association models (Goodman 1981a)
and the marginal association model (Dale 1986, Molenberghs and Lesaffre
1994). It is indicated that both families can be seen as specific multivariate
logistic models. This naturally leads to the observation that, within the
multivariate logistic models family, very general association models can be
constructed. Sections 6.3 and 6.4 present two simple but illustrative exam-
ples: the British occupational study and the Caithness data.

The fluvoxamine trial, introduced in Section 2.4, is analyzed in Sec-
tion 6.5. These data are rich in the sense that two important outcomes,
therapeutic effect and side effects, measured on 4-point ordinal scales, are
measured repeatedly over time, and both continuous and discrete covari-
ates are measured. Here, we first restrict attention to two-way contingency
tables, and then, in Section 6.6, two extensions are presented, the first one
to contingency tables in the presence of a categorical covariate, the second
one to three-way tables. Both of these extensions will be put within a gen-
eral framework in Chapter 7. In Section 6.7, we sketch how the association
models can be embedded in families of models, arising as discretizations of
continuous distributions.

6.2 Marginal Models in Contingency Tables

We first introduce the notation, needed for this chapter. A general nota-
tional framework is given in Section 7.1. The notation here is somewhat
different from the notation used in the purely longitudinal chapters but
allows us to efficiently deal with the contingency table nature of the data
in this chapter. Suppose a contingency table arises from cross-classifying N
subjects with respect to two categorical variables Y1 and Y2, having I and J
levels respectively. It is convenient to introduce both ordinary multinomial
cell counts

Z∗
ijr =

{
1 if Y1r = i and Y2r = j,

0 otherwise.

as well as their cumulative counterparts

Zijr =

{
1 if Y1r ≤ i and Y2r ≤ j,

0 otherwise,
(6.1)

with a subscript r denoting the rth subject. The corresponding probabilities
are defined by µ∗

ij = pr(Z∗
ijr = 1) and µij = pr(Zijr = 1). This notation

will be used to describe the association models. Should the probabilities
depend on the subject (for example, through the introduction of covariate
information), then a subscript r will be added (µ∗

ijr and µijr). We will
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first introduce a general framework, largely due to McCullagh and Nelder
(1989) and Glonek and McCullagh (1995). Then, the RC family of models
(Goodman 1981a) and the Dale (1986) model are shown to fit within this
framework, conditional on a slight generalization in the RC case. Finally,
it is indicated how the modeling framework can be used to combine useful
aspects of both subclasses to yield a very wide and versatile class, which,
in addition, allows extension to covariates as well as to higher order tables.

6.2.1 Multivariate Logistic Models
McCullagh and Nelder (1989) defined a useful class of generalized linear
models, by writing the vector link function in terms of the joint probabilities
in the following way:

η = C ′ ln(Lµ∗), (6.2)

where µ∗ is the vector of joint probabilities, formed by stacking the µ∗
ij .

The matrix L consists solely of zeros and ones, such that Lµ∗ contains the
probabilities necessary to construct the required link functions. Then, con-
trasts of log-probabilities are equated to a vector of linear predictors η using
the contrast matrix C. Contrasts of log-probabilities encompass many com-
monly used links for both marginal probabilities and associations. Within
this model formulation, the marginal means can be modeled via, e.g., base-
line category logits, adjacent category logits, continuation-ratio logits, or
cumulative logits. The association can be described in terms of, e.g., local or
global cross-ratios. This means that this formulation applies to binary, or-
dinal, and nominal data. When cumulative logits and/or global cross-ratios
are used, the model can be expressed directly in terms of the cumulative
probabilities µij , such that (6.2) becomes η = C ′ ln(Lµ). In this case, L
may contain other elements than merely zeros and ones. Alternatively, the
connection between µij and µ∗

ij (µ = Bµ∗, for some constant matrix B)
can be absorbed into the matrix L as well. As counterexamples, modeling
the marginal distribution via, e.g., the probit or the complementary log-log
link is excluded from (6.2). One usually requires that µ∗ and η are in 1-
to-1 relationship. Model (6.2) is called the multivariate logistic transform
by Glonek and McCullagh (1995). They illustrate its use for both marginal
and conditional regression models, as well as for mixed marginal-conditional
parameterizations. A general and flexible class of marginal logistic models
of the form (6.2) was studied by Lang and Agresti (1994), who allow a
many-to-one relationship between µ∗ and η because they do not require
that the (higher order) associations are modeled explicitly. Examples will
be given in the next two sections.

In the spirit of generalized linear modeling (Chapter 3), McCullagh and
Nelder (1989) completed (6.2) by

η = Xξ, (6.3)
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i.e., by adopting a vector of linear predictors. Here, X is a known design
and/or covariate matrix and ξ is a vector of parameters of direct interest.
Glonek and McCullagh (1995) call the resulting family multivariate logistic
regression models.

When not only regression aspects are of scientific interest, but focus is
placed on the association structure as well, it is useful to generalize the
vector of linear predictors (6.3) to the potentially non-linear class

η = C ′ ln(Lµ∗) = g(ξ), (6.4)

where g(ξ) is a known vector-valued function.

6.2.2 Goodman’s Local Association Models
Goodman (1981a) defines association models in terms of log local cross-
ratios for I × J tables. These log cross-ratios are given by

ln θ∗
ij = ln

(
pr(Y1 = i, Y2 = j)pr(Y1 = i + 1, Y2 = j + 1)
pr(Y1 = i, Y2 = j + 1)pr(Y1 = i + 1, Y2 = j)

)

= ln
µ∗

ijµ
∗
i+1,j+1

µ∗
i,j+1µ

∗
i+1,j

,

with i = 1, . . . , I − 1 and j = 1, . . . , J − 1. They naturally follow from the
following closed form model for the joint cell probabilities:

µ∗
ij = αiβje

φλiνj , (6.5)

(i = 1, . . . , I; j = 1, . . . , J). Here, αi and βj are main effect parameters
while λi, νj and φ describe the association structure. Indeed, the local
cross-ratios are ln θ∗

ij = φ(λi − λi+1)(νj − νj+1). Identifiability constraints
have to be imposed on the parameters in (6.5). This model is also called
the row-column model (RC model).

Note that this model is not fully marginal in nature since the marginal
probabilities or transformations thereof do not easily follow from the model
parameters. In fact, the model has a close connection to log-linear models,
which are conditional in nature. In this sense, it bridges the gap between
the models treated here and those in Part III.

Model (6.5) can be seen as a member of (6.4) by setting L and C equal
to the identity matrix: η = lnµ∗ = g(ξ), with g(ξ) defined by

gij(ξ) = lnαi + lnβj + φλiνj . (6.6)

Due to its third term, the predictor function (6.6) is non-linear. Note that
(6.6) is a mixture of main effect and association parameters. By setting C
equal to the identity matrix, the concept of contrasts of log-probabilities is
not maintained and thus (6.4) is slightly extended.
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An alternative association parameterization is additive in the log cross-
ratios: ln θ∗

ij = δ1i + δ2j . This model is induced by the following expression
for the cell probabilities:

µ∗
ij = αiβjγ

j
1iγ

i
2j . (6.7)

For this parameterization (6.6) changes to

gij(ξ) = lnαi + lnβj + j ln γ1i + i ln γ2j . (6.8)

Note that this predictor is of the linear type inlnαi, etc. Fitting algorithms
for (6.5) and (6.7) can be found in Goodman (1981a).

Goodman (1981a) generalizes model (6.5) to:

µ∗
ij = αiβj exp

(
4∑

k=1

φkλkiνkj

)
, (6.9)

where λ1i and λ3i are linear functions of the index i and ν1j and ν2j are
linear in j. The others are allowed to be non-linear. He shows that the log
cross-ratios can be written as

ln θ∗
ij = η + ηI

i + ηJ
j + ζI

i ζJ
j . (6.10)

This model allows the inclusion of additive effects on the association. Good-
man calls it the R+C+RC model.

Although the above models provide an elegant description of the as-
sociation in contingency tables, a disadvantage of the RC family is the
cumbersome form they induce for the marginal distributions. The model
presented next is built marginally.

6.2.3 Dale’s Marginal Models
Dale (1986) and Molenberghs and Lesaffre (1994, 1999) define a marginal
model for ordinal data in terms of marginal cumulative logits and global
cross-ratios. We will describe it here for the purpose of our contingency
table type data setting, and defer a fully general, longitudinal introduction
to Chapter 7. The cumulative logits

η1i = logit[pr(Y1 ≤ i)] = ln(µiJ) − ln(1 − µiJ), (6.11)
η2j = logit[pr(Y2 ≤ j)] = ln(µIj) − ln(1 − µIj), (6.12)

(i = 1, . . . , I − 1; j = 1, . . . , J − 1), and the global cross-ratios

lnψij = ln
(

pr(Y1 ≤ i, Y2 ≤ j)pr(Y1 > i, Y2 > j)
pr(Y1 ≤ i, Y2 > j)pr(Y1 > i, Y2 ≤ j)

)

= ln
µij(1 − µIj − µiJ + µij)
(µiJ − µij)(µIj − µij)

(6.13)
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define the joint probabilities.
It is clear from (6.11), (6.12), and (6.13) that this model is a member of

(6.2). For the special case of binary data (I = J = 2), (6.2) becomes⎛⎜⎝ η1

η2

η3

⎞⎟⎠ =

⎛⎜⎝ 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 −1 −1 1 0 0 0 0

⎞⎟⎠×

× ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
µ∗

11

µ∗
12

µ∗
21

µ∗
22

⎞⎟⎟⎟⎠ ,

where the model is written in terms of the cell probabilities µ∗
jk. Because⎛⎜⎜⎜⎝

µ∗
11

µ∗
12

µ∗
21

µ∗
22

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 0 0

−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

µ11

µ12

µ21

µ22

⎞⎟⎟⎟⎠ ,

an expression in terms of the cumulative probabilities µjk is immediate.
Should it be thought reasonable, then local cross-ratios:

lnψ∗
ij = ln

µ∗
ij(1 − µ∗

i+1,j − µ∗
i,j+1 + µ∗

ij)
(µ∗

i,j+1 − µ∗
ij)(µ

∗
i+1,j − µ∗

ij)
(6.14)

can be used instead. For the particular case of binary variables, both types
of cross-ratios coincide.

For the association (6.13), we will pay particular attention to

lnψij = φ + ρ1i + ρ2j + σ1iσ2j , (6.15)

including a constant association parameter, row and column effects, and
interactions between rows and columns, respectively. This model is identi-
fied, e.g., by imposing ρ1I = ρ2J = σ1I = σ2J = 0 and σ11 = 1. Due to
the fourth term of (6.15) this parameterization is a member of the non-
linear family (6.4). It is very similar in structure to the local cross-ratios of
the R+C+RC model (6.10). Of course, model (6.15) is only one of many
possibilities, since there is a whole spectrum of possible models between
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independence and constant association on the one hand and a saturated
association model on the other hand. When the number of categories in-
creases, it becomes more crucial to look for parsimonious association models
in order to reduce the number of parameters in the model. To this end, the
more flexible class (6.4) might be preferable over (6.3).

Model fitting proceeds, e.g., via Newton-Raphson or Fisher scoring tech-
niques. Details, for the general case, can be found in Section 7.7.6. To do
so, the cumulative cell probabilities need to be computed. First, note that
µIJ = 1. Then, µiJ and µIj follow from η1i and η2j , i.e., (6.11) and (6.12)
are solved for µiJ and µIj . The other counts follow from

µij =

⎧⎨⎩
1+[µiJ+µIj ](ψij−1)−Sij

2(ψij−1) if ψij �= 1,

µiJµIj otherwise,
(6.16)

where

Sij =
√

[1 + (ψij − 1)(µiJ + µIj)]
2 + 4ψij(1 − ψij)µiJµIj .

Molenberghs and Lesaffre (1994, 1999) show how to extend this class of
models to more than two variables. They also indicate how to adopt other
association measures, such as marginal correlations, which corresponds to
the Bahadur (1961) model. Molenberghs (1994) and Lesaffre, Verbeke, and
Molenberghs (1994) provide details on maximum likelihood estimation for
the two-way and higher order versions of the model. See also Section 7.7.

6.2.4 A General Class of Models
The models described in Sections 6.2.2 and 6.2.3 differ in two respects:

1. The association in the RC model is in terms of local cross-ratios, while
the Dale model is based on global cross-ratios. This difference is not
essential, as we argued that local cross-ratios can be incorporated
into the marginal model without problem.

2. The marginal probabilities of the RC model are complex functions of
the model parameters, whereas the Dale model is expressed directly
in terms of the marginal logits.

However, upon generalizing (6.4) slightly, both models are seen as sub-
classes of this flexible family. For both models, linear and non-linear pre-
dictors are possible. Indeed, for the RC family, (6.8) is linear whereas (6.6)
is non-linear. For the Dale model, (6.15) is non-linear, but if the fourth
term is dropped, it becomes a linear predictor.

The advantage of this result is that completely general models can be
constructed, combining and extending interesting aspects of both the RC
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TABLE 6.1. British Occupational Study. Cross-classification of male sample ac-
cording to each subject’s occupational status category and his father’s occupational
category, using seven status categories

Father’s Subject’s status
status 1 2 3 4 5 6 7

1 50 19 26 8 18 6 2
2 16 40 34 18 31 8 3
3 12 35 65 66 123 23 21
4 11 20 58 110 223 64 32
5 14 36 114 185 714 258 189
6 0 6 19 40 179 143 71
7 0 3 14 32 141 91 106

and the Dale model. For example, a genuine marginal model can be con-
structed, with an association function of the RC type. Depending on the
data problem, one can opt for local or for global cross-ratios. Arguably, local
cross-ratios are suitable for nominal variables, whereas global cross-ratios
are a natural choice for cross-classified ordinal variables.

6.3 British Occupational Status Study

We re-analyze the data presented in Goodman (1979). Subjects are cross-
classified, according to their occupational status and their father’s occu-
pational status, using seven ordered categories. The data are presented in
Table 6.1

Standard RC and Dale models, fitted to Table 6.1, are presented in Ta-
ble 6.2. The Dale model with row effects, column effects, and interactions,
provides a good fit, based on a deviance χ2 approach. This means that no
model of the form (6.3) fits the data and that the full non-linear version
(6.15) is necessary to achieve an acceptable fit. No RC model, not even the
R+C+RC model, fits the data well.

6.4 The Caithness Data

Goodman (1981a) studied association models for two-way contingency ta-
bles with ordered categories. The cross-classification of eye color and hair
color of 5387 children is reproduced in Table 6.3.

Goodman treated these responses as ordinal that, although sensible,
might be open to discussion. We combine marginal probabilities, one set
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TABLE 6.2. British Occupational Study. Deviance χ2 goodness-of-fit statistics
for Dale and RC models, fitted to the data in Table 6.1. The models with an
acceptable fit (p > 0.05) are indicated by an asterisk.

Dale RC
Description df χ2 df χ2

Independence 36 897.52 36 897.52
Constant association 35 207.23 35 98.19
Row effects only 30 105.23 30 87.14
Column effects only 30 100.69 30 80.74
Row and column effects 25 42.94 25 75.59
Row, column, interactions 16 ∗20.11 16 38.09
Saturated model 0 0.00 0 0.00

TABLE 6.3. Caithness Data. Eye color and hair color of 5387 children in Caith-
ness (Goodman 1981a).

Eye Hair color
color Fair Red Medium Dark Black
Blue 326 38 241 110 3
Light 688 116 584 188 4

Medium 343 84 909 412 26
Dark 98 48 403 681 85

for each variable, with local odds ratios to describe the association. We
consider two models. The first one (8 parameters) assumes a constant local
odds ratio. The simpler model which assumes independence between both
responses has been shown by Goodman to provide a poor fit and will not
be considered here. The second, saturated, model allows an unstructured
3 × 4 table of local odds ratios. The marginal probabilities for both models
are (0.13, 0.29, 0.33, 0.25) for eye color and (0.27, 0.05, 0.40, 0.26, 0.02) for
hair color. The common local odds ratio for the first model equals 1.50.
The deviance is 131.10 on 11 degrees of freedom, rejecting the constant
(or uniform) association model. Note that Goodman’s conditional model
for uniform association exhibited a much poorer deviance of 265.03 on 11
degrees of freedom. The 12 local odds ratios, organized as an association
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TABLE 6.4. Fluvoxamine Trial. Cross-classification of initial severity and side
effect at the second occasion. In parentheses, the fitted values for the independence
model are shown.

Side 2
Severity 1 2 3 4

1 1 0 1 0
(0.86) (0.86) (0.18) (0.10)

2 21 28 5 5
(25.29) (25.29) (5.42) (3.01)

3 62 62 15 7
(62.57) (62.57) (13.41) (7.45)

4 41 31 6 2
(34.29) (34.29) (7.35) (4.08)

5 1 5 0 1
(3.00) (3.00) (0.64) (0.36)

table, are:
1/2 2/3 3/4 4/5

1/2 1.45 0.79 0.71 0.78
2/3 1.45 2.15 1.41 2.97
3/4 2.00 0.78 3.73 1.98

.

Although there is some fluctuation in the association structure, it is very
hard to pinpoint a clear trend. This is typically much harder for multi-
variate data than for genuinely longitudinal data where, for example, ex-
changeable (constant) or exponentially decaying structures are commonly
encountered.

6.5 Analysis of the Fluvoxamine Trial

Let us consider the fluvoxamine trial, presented in Section 2.4. Further
analyses will be given in various sections of Chapter 7, as well as in the
missing data Chapters 29, 30, and 31.

Because the focus here is on marginal models for contingency tables com-
ing from repeated categorical data, we select four two-way classifications
from the fluvoxamine study. We will first consider a cross-classification
of side effects and initial severity (Table 6.4). Then, we cross-classify the
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TABLE 6.5. Fluvoxamine Trial. Cross-Classification of therapeutic effect at the
second and third Occasion. In parentheses, the fitted values: the first entry corre-
sponds to the constant association Dale model, while the second entry stands for
the row and column local association model.

Ther. 3
Ther. 2 1 2 3 4

1 13 2 0 0
(11.64) (2.87) (0.49) (0.15)
(13.06) (1.87) (0.06) (0.01)

2 37 40 8 4
(40.46) (39.77) (5.50) (1.39)
(34.98) (44.28) (7.55) (2.20)

3 13 58 18 4
(10.09) (53.94) (23.38) (4.77)
(15.65) (52.42) (18.49) (6.45)

4 1 13 36 21
(2.68) (16.71) (32.52) (21.64)
(0.32) (14.44) (35.91) (20.34)

measurements on therapeutic effect at visits 2 and 3 in Table 6.5. A sim-
ilar table is constructed for side effects (Table 6.6). Finally, we consider a
cross-classification of side effects and therapeutic effect, recorded at visit
2 (Table 6.7). Note that the total of Table 6.7 (299) is higher than the
total of Table 6.4 (294), as there are 5 subjects with information on ther-
apeutic and side effects, but without initial severity measurement. These
tables cover different settings: a cross-classification of an outcome and a
baseline variable, the same outcome at subsequent measurement times and
a “cross-sectional” picture, composed of two variables measured simulta-
neously. Table 6.8 shows the data from Table 6.7, split by sex category.

Let us now analyze these data. Table 6.9 summarizes the deviance χ2

goodness-of-fit statistics for the models fitted to Tables 6.4–6.8.
Table 6.4 shows a complete lack of association. As a consequence, the

independence model is accepted for both the Dale and the RC model. Of
course, the deviance for the independence model in both families is exactly
the same. Initial severity measures symptoms present at baseline, whereas
side effects measures symptoms induced by the therapy. Thus the inde-
pendence model implies that incidence and intensity of side effects do not
depend on the initial conditions. Note that for Tables 6.4–6.8 the R+C+RC
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TABLE 6.6. Fluvoxamine Trial. Cross-classification of side effects at the second
and third occasion. In parentheses, the fitted values: the first entry corresponds
to the row and column effects Dale model, while the second entry corresponds to
model (6.7).

Side 3
Side 2 1 2 3 4

1 105 14 0 0
(104.98) (13.84) (0.16) (0.00)
(105.01) (13.98) (0.01) (0.00)

2 34 80 7 1
(33.88) (80.46) (7.27) (0.27)
(33.63) (79.96) (8.20) (0.22)

3 2 7 10 2
(2.09) (7.02) (8.76) (2.91)
(2.71) (7.14) (7.58) (3.57)

4 3 1 0 2
(3.14) (1.01) (0.00) (2.21)
(2.65) (0.92) (1.21) (1.22)

model is overparameterized and thus coincides with the saturated model,
whence it is not included in Table 6.9.

For Table 6.5, we find a strong association main effect with the Dale
model. The constant global cross-ratio is very high: ψ̂ = ψ̂ij = exp(2.52) =
12.43. Note that this model corresponds to an underlying Plackett (1965)
distribution, as such a distribution is characterized by a constant global
cross-ratio. The fit improves by 7.68 on 2 degrees of freedom if we add a
row effect. This model deserves our preference. For the RC family, there is
certainly a strong constant association effect, but the fit is not acceptable
at that point. A fully satisfactory fit is provided by the row and column
association model.

There is also a clear global association main effect in Table 6.6. Including
this parameter improves the fit of the model dramatically, although adding
both row and column effects provides a better fit. Associations are shown in
Table 6.10. Some of the observed cross-ratios are infinite, due to zero cells in
the contingency table. All but one associations are high to extremely high.
High associations in the upper right corner are explained by the fact that
side effects over time are of course highly correlated, but also tend to go
down, and only rarely go up, showing that the drug has a beneficial effect.
It is remarkable that no RC model fits the data well, as can be learned
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TABLE 6.7. Fluvoxamine Trial. Cross-classification of side effects and therapeutic
effect at the second occasion. In parentheses, the fitted values are shown. The first
model is the global association column effects model. The second global cross-ratio
model includes row and column effects, as well as interactions. The third set of
fitted values corresponds to the RC model (row and column effects).

Therapeutic 2
Side 2 1 2 3 4

1 8 40 40 40
(7.46) (38.32) (44.19) (38.11)
(8.10) (39.58) (40.41) (39.50)
(8.91) (38.18) (41.85) (39.05)

2 7 45 51 25
(9.73) (45.60) (43.33) (29.09)
(6.61) (46.37) (49.46) (25.49)
(6.33) (46.92) (48.99) (25.75)

3 2 9 8 9
(1.37) (7.82) (10.39) (8.52)
(2.22) (7.49) (9.66) (8.64)
(2.02) (8.12) (8.95) (8.91)

4 2 1 3 9
(0.32) (2.15) (4.45) (8.15)
(2.24) (1.30) (2.52) (8.95)
(1.74) (1.77) (2.20) (9.29)

from Table 6.9. In conclusion, a marginal model such as the Dale model
fits the data better than a model from the RC family. Should one choose
to remain within the RC family, then a model of a more elaborate nature,
such as the ones discussed in Section 6.7, might be needed. Note, again, that
the R+C+RC model is no alternative, as it is overparameterized. Fitting
related model (6.7) to Table 6.7 yields an acceptable fit: χ2 = 6.33 on 4
degrees of freedom (p = 0.1760).

Both Tables 6.5 and 6.6 are cross-classifications of an ordinal variable,
recorded at two subsequent measurement times. In both cases, a parsimo-
nious global association model explains the data well. It seems to be much
harder to fit these data with local association models.

For Table 6.7, the row effects model is the most parsimonious one that
provides an acceptable fit. One might argue that it is careful to retain
the model adding column effects and interactions as well. Therefore, fit-
ted frequencies for both models are shown in Table 6.7. Table 6.11 shows
the global cross-ratios for the data of Table 6.7, together with the pre-



68 6. The Strength of Marginal Models

TABLE 6.8. Fluvoxamine Trial. Cross-classification of side effects and therapeutic
effect at the second occasion, split by sex.

Therapeutic 2
Side 2 1 2 3 4

Male subjects
1 4 18 12 16
2 0 9 19 9
3 0 4 3 4
4 0 1 1 5

Female subjects
1 4 22 28 24
2 7 36 32 16
3 2 5 5 5
4 2 0 2 4

dicted values under both models. We observe two patterns in Table 6.11.
First, the association increases along the main diagonal. This means that
the association between the variables I(SIDE2 ≤ 1) and I(THER2 ≤ 1)
is smaller than the association between the variables I(SIDE2 ≤ 3) and
I(THER2 ≤ 3). Here, I(·) is an indicator function. Also, the association
becomes “negative” (i.e., smaller than 1 on the cross-ratio scale) for pairs
such as I(SIDE2 ≤ 3) and I(THER2 ≤ 1). The RC models, fitted to this
table, suggest the selection of the row and column effects model. The fitted
model is also presented in Table 6.7. All RC models are based on model
(6.5).

In conclusion, the Dale model yields a non-linear association model for
Tables 6.1 and 6.7, through the interaction terms in (6.15), which is a
very natural association model as it is a Dale model analogue of Good-
man’s R+C+RC model, of which the cross-ratios are given by (6.10). For
Tables 6.4–6.6, simpler association models, including at most row and/or
column effects, but no interactions, are found to be acceptable. The models
of RC type fitted to these data tend to be of a more complex nature, ar-
guably because they model the association through local cross-ratios even
though the data are ordered categorical.

6.6 Extensions

As mentioned earlier, the fluvoxamine study recorded more than two out-
comes and further there is covariate information available. We consider
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TABLE 6.9. Fluvoxamine Trial. Deviance χ2 goodness-of-fit statistics for Dale
and RC models, fitted to Tables 6.4–6.8 (models with an acceptable fit are indi-
cated by an asterisk).

Table 6.4 Table 6.5 Table 6.6 Table 6.7
Description df χ2 df χ2 df χ2 df χ2

Dale models
Independence 12 ∗14.20 9 141.95 9 158.15 9 17.12
Constant association 11 ∗11.71 8 ∗11.48 8 18.27 8 17.12
Row effects only 8 ∗8.34 6 ∗3.80 6 14.49 6 ∗9.78
Column effects only 9 ∗11.37 6 ∗10.26 6 ∗12.29 6 16.74
Row and column effects 6 ∗8.03 4 ∗1.29 4 ∗2.05 4 ∗9.31
Row, column, interactions 2 ∗0.22 1 ∗0.31 1 ∗0.35 1 ∗0.94
Saturated model 0 0.00 0 0.00 0 0.00 0 0.00

RC models
Independence 12 ∗14.20 9 141.95 9 158.15 9 17.12
Constant association 11 ∗12.04 8 19.46 8 48.66 8 16.71
Row effects only 8 ∗8.21 6 12.90 6 18.84 6 ∗11.69
Column effects only 9 ∗11.88 6 14.35 6 45.12 6 15.14
Row and column effects 6 ∗2.22 4 ∗5.16 4 10.48 4 ∗1.44
Saturated model 0 0.00 0 0.00 0 0.00 0 0.00

in turn two ways of extending the models described so far, while still re-
maining within the contingency table framework. First, in Section 6.6.1, we
discuss the inclusion of a dichotomous covariates in marginal association
models, followed by a generalization to three-way tables (Section 6.6.2).
These extensions are members of the class (6.4). Completely general co-
variates, as well as multi-way tables and fully longitudinal models are the
subject of Chapter 7.

6.6.1 Covariates
The marginal Dale model presented here is flexible in incorporating covari-
ate effects. Their influence on the marginal means and on the association
can be described in separate ways. For example, age could be found to influ-
ence the marginal response functions, while the association could be seen to
change with sex. We will exemplify the possibilities that are brought about
by this feature using two covariates. First, the data presented in Table 6.7
are split into two sex groups (Table 6.8). Second, we will add the effect
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TABLE 6.10. Fluvoxamine Trial. Global cross ratios for the classification of side
effects at time 2 versus time 3 (Data in Table 6.6).

Side 3
Side 2 1 2 3

Observed

1 21.15 +∞ +∞
2 6.00 31.37 41.74
3 1.17 6.05 43.17

Row and column effects

1 21.07 116.88 760.06
2 5.70 31.65 205.37
3 1.20 6.67 43.26

of the continuous covariate age on the responses and on the association
between responses.

Let us consider sex first. Selected models, fitted to these data, are pre-
sented in Table 6.12. Obviously the marginal regressions are independent
of sex, but we do find a sex effect in the association. If we add row effects
(but no column effects), the fit is satisfactory (p = 0.12). The association
structure of this model is:

lnψijr = 1.64 − 0.88sexr − 1.24I(i = 1) − 0.56I(i = 2),

where ψijr is the global cross-ratio, depending on subject r through their
sex, and I(.) is the indicator function. The association is stronger for males
than for females (p = 0.0402).

Even though Table 6.8 contains four sampling zeros, no convergence
problems are encountered and all parameters lie in the interior of their
space. The Dale likelihood attains its maximum in the interior of the pa-
rameter space under very mild conditions, a feature shared with univariate
ordinal logistic regression, which it generalizes. First, there must not be
a complete separation in the covariate space between response groups. A
similar condition was derived for the multigroup logistic model by Albert
and Lesaffre (1986). Second, even with zero cell counts, models can be con-
structed for which the MLE lies in the interior of the space. For example,
in a 3 × 3 table with cells (1, 1), (1, 3), (2, 2), (3, 1), and (3, 3) equal to
zero (with the other cells non-zero), a model with global cross-ratio de-
pendent on row and column classification, yields finite estimates. We can
easily include such continuous covariates as age. For 296 subjects out of
299 recorded in Table 6.7, age (in years) is recorded. Age ranges from 16
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TABLE 6.11. Fluvoxamine Trial. Global cross ratios for the classification of side
effects versus therapeutic effect (both at the second occasion).

Therapeutic 2
Side 2 1 2 3

Observed

1 0.97 0.95 0.74
2 0.61 1.33 2.12
3 0.41 2.57 4.26

Column effects only

1 0.86 0.86 0.86
2 1.77 1.77 1.77
3 3.24 3.24 3.24

Row, column, interaction

1 0.92 0.86 0.80
2 0.55 1.55 1.92
3 0.37 2.17 4.00

to 75 years, with a mean of 42.2 years (median is 40.5 years). There are
97 distinct age by sex combinations, which yields an average of about 3
subjects per distinct 4×4 table! Thus, we have a generalization of a purely
contingency table analysis to multivariate ordinal regression. Obviously, a
saturated model is not meaningful here, as the number of covariate levels
(and hence the number of cells) increases with the sample size. Deriva-
tion of formal goodness-of-fit tools, such as appropriate residuals, requires
further research. The most complex model we will consider, contains sex
and age effects in both the marginal mean and in the association and lets
the association further depend on row and column classification. Clearly,
this model could be extended (for example, by means of higher order ef-
fects of age and interactions between sex and age). Table 6.13 reports on
a backward selection performed to simplify the model. In the final model,
the marginal logits are simplified such that only SIDE2 depends on age.
The association is independent of the column classification. Although sex
and age could be omitted from the association when comparing Models 4
and 5 with 3 (numbers referring to Table 6.13), or 6 with 4 and 5, a direct
comparison of Model 6 (no covariate influence on association) with Model
3 (both age and sex influence the association) is significant at the 5% level.
Therefore, we prefer Model 3. The cumulative logits (6.11) and (6.12) for
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TABLE 6.12. Fluvoxamine Trial. Deviance χ2 goodness-of-fit statistics for Dale
models, fitted to Table 6.8 (distinguishing between sex groups). Models with an
acceptable fit (p > 0.05) are indicated by an asterisk.

Marginal model Association model df χ2

No sex effect Constant 23 39.32
No sex effect Sex, row 20 ∗27.76
No sex effect Sex, row, column 18 ∗27.30
Sex effect Constant 21 36.80
Sex effect Sex effect 20 31.74
Sex effect Sex, row, column 16 ∗25.53
Saturated Saturated 0 0.00

subject r are

η1ir = 0.54I(i = 1) + 2.63I(i = 2) + 3.75I(i = 3) − 0.019ager,

η2jr = −2.69I(j = 1) − 0.47I(j = 2) + 0.95I(j = 3),

and the association structure is

lnψijr = 2.94 − 0.80sexr − 0.028ager − 1.44I(i = 1) − 0.63I(i = 2).

The logit for side effects decreases with age, implying, e.g., that the prob-
ability of category 1 (no side effects) decreases and the probability of cat-
egory 4 (highest level of side effects) increases with age. The association
is stronger for males than for females (consistent with Table 6.12) and
decreases with age.

6.6.2 Three-way Contingency Tables
Molenberghs and Lesaffre (1994) extended the Dale model, originally con-
structed for two response variables, to arbitrary dimensions. This implies
that the model is suitable to analyze multi-way contingency tables. Compu-
tational details can be found in Molenberghs and Lesaffre (1994). We apply
the general method technique on the fluvoxamine data set, more specifically
to a cross-classification of therapeutic effect at visits 2, 3, and 4. The data
are presented as a 4 × 4 × 4 contingency table (Tables 6.14–6.17). There
are 242 patients with measurements on all three outcomes.

Let the variables Y1, Y2, and Y3 have I, J , and K levels, respectively, and
define cumulative three-way probabilities µijk (i = 1, . . . , I; j = 1, . . . , J ; k =
1, . . . , K), similar to the definition in Section 6.2.

The model extends as follows. Apart from three sets of marginal para-
meters, one for each measurement time:

η1i = logit[pr(Y1 ≤ i)] = ln(µiJK) − ln(1 − µiJK), (6.17)
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TABLE 6.13. Fluvoxamine Trial. Backward selection for Dale models, fitted to
Table 6.8 (including sex and age). The number of model parameters (Par), the
deviance (Dev) of the model are reported. For each model comparison, the ref-
erence model (Vs), and the corresponding χ2 statistic and p-value are reported.
(‘R’ stands for row effects and ‘C’ stands for column effects.)

Nr Side 2 Ther. 2 Association Par Dev Vs df χ2 p

1 Sex, age Sex, age Sex, age, R, C 17 1372.5
2 Age — Sex, age, R, C 14 1375.0 1 3 2.52 0.472
3 Age — Sex, age, R 12 1375.5 2 2 0.50 0.779
4 Age — Age, R 11 1379.0 3 1 3.47 0.063
5 Age — Sex, R 11 1379.0 3 1 3.49 0.062
6 Age — R 10 1382.7 4 1 3.66 0.056
6 Age — R 10 1382.7 3 2 7.13 0.028

η2j = logit[pr(Y2 ≤ j)] = ln(µIjK) − ln(1 − µIjK), (6.18)
η3k = logit[pr(Y3 ≤ k)] = ln(µIJk) − ln(1 − µIJk), (6.19)

(i = 1, . . . , I − 1; j = 1, . . . , J − 1; k = 1, . . . , K − 1), there are also three
sets of pairwise association parameters:

lnψ12,ij = ln
µijK(1 − µIjK − µiJK + µijK)
(µiJK − µijK)(µIjK − µijK)

, (6.20)

lnψ13,ik = ln
µiJk(1 − µIJk − µiJK + µiJk)
(µiJK − µiJk)(µIJk − µiJk)

, (6.21)

lnψ23,jk = ln
µIjk(1 − µIJk − µIjK + µIjk)
(µIJk − µIjk)(µIjK − µIjk)

, (6.22)

together with a set of three-way associations (generalized cross-ratios):

lnψ123,ijk =

ln
[
µijk(µiJK − µijK − µiJk + µijk)

(µijK − µijk)(µiJk − µijk)

× (µIjK − µijK − µIjk + µijk)
(µIjk − µijk)

× (µIJk − µiJk − µIjk + µijk)
(1 − µiJK − µIjK − µIJk + µijK + µiJk + µIjk − µijk)

]
.(6.23)

Clearly, the link functions (6.17)–(6.23) are all expressed in terms of con-
trasts of log-probabilities and hence fit in (6.2). Molenberghs and Lesaffre
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TABLE 6.14. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part I.

Side 4
Side 2 Side 3 1 2 3 4

1 1 11 1 0 0
(10.18) (1.19) (0.10) (0.02)
(13.75) (2.07) (0.18) (0.05)
(10.99) ( 0.48) ( 0.00) (0.00)

2 0 1 1 0
(0.60) (1.46) (0.30) (0.06)
(0.89) (1.88) (0.40) (0.10)

( 1.16) ( 0.97) ( 0.02) (0.00)

3 0 0 0 0
(0.05) (0.18) (0.15) (0.06)
(0.08) (0.21) (0.13) (0.05)

( 0.05) ( 0.15) ( 0.07) (0.01)

4 0 0 0 0
(0.01) (0.03) (0.04) (0.02)
(0.02) (0.05) (0.04) (0.02)

( 0.01) ( 0.02) ( 0.03) (0.03)

(1994, 1999) describe ways to determine the joint probabilities µijk from the
links and to compute maximum likelihood estimates. Indeed, the key issue
in a marginal model of this type is the construction of the joint probabili-
ties. The univariate marginal probabilities µiJK , µIjK , and µIJk are easily
determined from inverting (6.17)–(6.19), just as with (6.11) and (6.12).
The pairwise marginal probabilities µijK , µiJk, and µIjk, can be written
in analogy with (6.16), as links (6.20)–(6.22) have the same form as (6.13).
Determining the third order cumulative probabilities µijk is more difficult
and details are given in Chapter 7, in particular in Sections 7.3 and 7.7.

To illustrate the model, let us analyze the three therapeutic effect mea-
surements. Model 1 assumes the marginal logits (6.17)–(6.19) are inde-
pendent of covariate effects, yielding 9 marginal parameters. Each of the
association parameters ψ in (6.20)–(6.23) is assumed independent of co-
variate effects as well as of the category indicators i, j, and k, yielding
three pairwise and one three-way association parameters. This brings the
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TABLE 6.15. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part II.

Side 4
Side 2 Side 3 1 2 3 4

2 1 33 2 0 0
(36.27) (2.92) (0.33) (0.08)
(30.39) (3.18) (0.35) (0.09)
(32.34) ( 2.76) ( 0.00) (0.00)

2 13 23 2 0
(13.80) (18.28) (2.14) (0.39)
(13.03) (16.81) (2.19) (0.46)
(16.88) (17.72) ( 0.73) (0.00)

3 1 2 3 0
(0.47) (1.84) (1.87) (0.62)
(0.44) (1.31) (1.05) (0.40)

( 1.48) ( 4.48) ( 2.39) (0.24)

4 0 1 1 1
(0.10) (0.30) (0.34) (0.21)
(0.10) (0.29) (0.22) (0.11)

( 0.20) ( 0.83) ( 0.99) (0.95)

total number of parameters to 13. Marginal parameter estimates (standard
errors in parentheses) are

η̂11 = −2.76(0.27) η̂21 = −1.04(0.14) η̂31 = −0.21(0.13)
η̂12 = −0.45(0.13) η̂22 = 0.75(0.13) η̂32 = 1.58(0.17)
η̂13 = 1.00(0.15) η̂23 = 2.40(0.22) η̂33 = 3.12(0.32).

The constant global cross-ratios are ψ̂12 = ψ̂12,ij = exp(2.58) = 13.18(3.08)
for the first and the second outcome, ψ̂13 = ψ̂13,ik = exp(1.38) = 3.99(0.89)
for the first and the third outcome, and ψ̂23 = ψ̂23,jk = exp(3.08) =
21.76(5.74) for the second and the third outcome. The three-way interac-
tion, ψ̂123 = ψ̂123,ijk = exp(0.18) = 1.19(0.66), is not significantly different
from 1. Fitted frequencies are given in Tables 6.14–6.17.

The overall deviance goodness-of-fit statistic is 37.13 on 50 degrees of
freedom (p = 0.9115). Inspecting standardized residuals, 62 out of 64 are
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TABLE 6.16. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part III.

Side 4
Side 2 Side 3 1 2 3 4

3 1 12 1 0 0
(8.39) (1.04) (0.16) (0.04)
(7.41) (1.12) (0.17) (0.05)

(12.59) ( 1.70) ( 0.00) (0.00)

2 25 25 1 1
(22.86) (24.33) (1.45) (0.27)
(24.97) (28.79) (2.09) (0.38)
(19.74) (24.31) ( 1.48) (0.00)

3 1 8 5 1
(1.15) (10.76) (7.30) (1.56)
(1.33) (9.96) (6.61) (1.64)

( 2.75) ( 8.61) ( 4.98) (0.63)

4 0 3 0 0
(0.22) (0.83) (1.16) (0.97)
(0.30) (1.05) (1.02) (0.71)

( 0.43) ( 1.78) ( 2.07) (1.91)

less than 2 in absolute value, the remaining ones being 2.24 and 2.39. Thus,
model fit is acceptable, but one might want to simplify the model further.
We will in turn simplify the marginal and association structures. First, the
three sets of logits reveal an increase over time, suggesting an improving re-
sponse to therapy. A simpler model would assume: η1i = αi, η2j = αj +π2,
and η3k = αk + π3 (i, j, k = 1, 2, 3). We interpret α1, α2, and α3 as cut-off
points at the first occasion and π2 and π3 as “proportional” shift para-
meters at occasions 2 and 3 respectively. Second, one might argue that
the association between outcomes is mainly a function of the time lag be-
tween the outcomes, but not so much of the measurement times themselves.
This is supported by the fact that lnψ12 and lnψ23 are roughly the same
(given their standard errors of about 0.24), with lnψ13 approximately half
of the other association. Should one grant belief to this assumption, then
an association model of the form γ = lnψ12 = 2 lnψ13 = lnψ23 might be
considered. The multiplier 0.5 for lnψ13 is suggested by the data and has
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TABLE 6.17. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part IV.

Side 4
Side 2 Side 3 1 2 3 4

4 1 1 0 0 0
(1.96) (0.42) (0.07) (0.02)
(1.42) (0.36) (0.06) (0.02)

( 0.08) ( 0.05) ( 0.00) (0.00)

2 5 6 0 0
(8.87) (5.58) (0.46) (0.11)
(8.16) (5.55) (0.44) (0.11)

( 5.50) (11.75) ( 2.70) (0.03)

3 7 18 9 1
(3.07) (19.88) (7.74) (0.99)
(3.26) (19.69) (6.67) (0.97)

( 3.82) (13.39) (10.15) (2.78)

4 0 2 8 6
(0.51) (3.13) (7.48) (4.78)
(0.68) (4.42) (7.84) (4.45)

( 0.98) ( 3.98) ( 4.37) (3.41)

limited empirical or theoretical support. Alternatively, one could estimate
this parameter from the data. Third, the three-way interaction can be set
to zero. There are six parameters in total.

Parameter estimates (standard errors) for this model are estimated to
be α̂1 = −2.41(0.17), α̂2 = −0.52 (0.12), α̂3 = 1.02(0.14) for the cut-
off points, with time shifts π̂2 = 1.32(0.11) for the second period and π̂3 =
2.17(0.16) for the third period. The single association parameter is equal to
γ̂ = 2.81(0.17), resulting in ψ̂12 = ψ̂23 = 16.56(2.77) and ψ̂13 =

√
16.56 =

4.07(0.34). Fitted frequencies are given in Table 6.14–6.17. This model has
a deviance of 43.67 on 57 degrees of freedom (p = 0.9029), and again
only two standardized residuals are larger than 2 (being 2.07 and 2.70),
showing that there is some support in the data for the assumed model.
Finally, comparing Models 1 and 2, yields a deviance of 6.54 on 7 degrees
of freedom (p = 0.4782), indicating that the first and more complex model
is not necessary.
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A similar model is obtained from the analysis of side effects at times 2,
3, and 4. Analyzing initial severity, side effects at time 2, and therapeutic
effect at time 2, yields a satisfactory model with only constant association.
No details on these models are included. These results are promising be-
cause they support the thesis that for a range of ordinal data applications,
parsimonious marginal global cross-ratio models are sufficient to describe
the data.

In case nominal data are to be analyzed, then the model can be adapted
to cell probabilities µ∗

ijk. This would mean that (6.17)–(6.23) have to be
changed in the spirit of (6.14). In particular, the global cross-ratios might
have to be replaced by their local counterparts.

In addition to the extensions studied sofar, it is possible to extend the
RC model to more than two dimensions. One option is to generalize Model
(6.5) by defining

µ∗
ijk = αiβjγkeφλiνjωk (6.24)

with obvious notation. Of course, the marginal pairwise local odds ratio
for a pair (i, j) has a very complicated form and (6.5) is not a submodel
of (6.24) in the sense that the interpretation of the parameters will change
in passing from a bivariate to a trivariate model. The conditional pairwise
odds ratio on the other hand is ln θ∗

ij|k = φωk(λi − λi+1)(νj − νj+1), where
ωk can be considered an adjustment for the category conditioned upon.
The three-way odds ratio is similar in structure to the two-way odds ratio
of the bivariate model (6.5).

Fitting Model (6.24) to the trivariate therapeutic data of Tables 6.14–
6.17 yields a deviance of 67.96 on 47 degrees of freedom (p = 0.0243),
indicating that the fit is not satisfactory. Fitted frequencies are displayed
in Table 6.14–6.17. One could consider more elaborate alternatives, such
as trivariate versions of the R+C+RC model (6.9). However, as indicated
earlier, for this kind of data, the marginal model defined in terms of cumula-
tive probabilities seems to be more promising, as it yields very parsimonious
descriptions of the association structure.

An alternative fashion to extend (6.5) would start from three pairwise
marginal RC models:

µ∗
ij+ = α

(12)
i β

(12)
j eφ(12)λ

(12)
i ν

(12)
j , (6.25)

µ∗
i+k = α

(13)
i γ

(13)
k eφ(13)λ

(13)
i τ

(13)
k , (6.26)

µ∗
+jk = β

(23)
j γ

(23)
k eφ(23)ν

(23)
j τ

(23)
k , (6.27)

(i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K). For (6.25)–(6.27) to define a valid
probability mass function µ∗

ijk, complicated restrictions must be satisfied:
summing (6.25) over j and (6.26) over k yields I restrictions:

α
(12)
i

J∑
j=1

β
(12)
j eφ(12)λ

(12)
i ν

(12)
j = α

(13)
i

K∑
k=1

γ
(13)
k eφ(13)λ

(13)
i τ

(13)
k ,
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(i = 1, . . . , I), with similarly J and K restrictions for the other two mar-
ginals.

6.7 Relation to Latent Continuous Densities

Several publications are devoted to the comparison of local and global
association models. Important references are Goodman (1981b), Mardia
(1970), Dale (1984), and Becker (1989). An argument, often used to claim
superiority of local over global association models, is the close relationship
between Goodman’s UM model and discretizations of the bivariate normal
distribution (Goodman 1981b, Becker 1989). Also, their close connection
with log-linear modeling is brought forward.

Holland and Wang (1987) introduced the local dependence function (LDF)
of a bivariate continuous density function f as an analog to the local cross-
ratios for contingency tables (Yule and Kendall 1950). The probability of
a rectangular cell around (x, y) with edges dx and dy is approximated by
f(x, y)dxdy. For cells around (x, y), (x, v), (u, y) and (u, v), the log local
cross-ratio is given by

θ(x, y; u, v) = ln
[
f(x, y)f(u, v)
f(x, v)f(u, y)

]
.

The local dependence function (LDF) at (x, y) is defined as

γf (x, y) = lim
dx→0,dy→0

θ(x, y; x + dx, y + dy)
dx dy

=
∂2

∂x∂y
ln f(x, y). (6.28)

Holland and Wang (1987) show that a bivariate density is characterized
by its LDF and its two marginal densities. Further, a bivariate normal
is characterized by a constant LDF and two normal marginal densities.
Precise statements and proofs are found in Holland and Wang (1987).

The LDF of a normal density with correlation ρ is equal to φ = ρ/(1−ρ2).
Exactly this quantity, together with appropriately chosen scores αi, βj , λi

and νj , are used by Becker (1989) to approximate the discretized normal
by (6.5). Note that a special version of the RC model, i.e., the UM model,
implies a constant local cross-ratio. It can be observed from Wang (1987),
who provides an alternative way of computing normal probabilities, that
the local association model introduced by (6.5) and the bivariate normal
naturally go together. This explains why the local association models fit far
better the discretized normal than do global cross-ratio models. In general,
local association models correspond to bivariate densities via the LDF.

An analogous relationship holds between the Dale model and the Plack-
ett distribution (Plackett 1965, Mardia 1970). If the global cross-ratio is
constant (or in particular zero) throughout a contingency table, then it
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corresponds to a bivariate Plackett distribution (constant “Yulean associa-
tion”). This was the case for the global association models, selected in the
case of Tables 6.4 and 6.5.

However, we observed that model construction is restricted to neither a
constant local association, nor a constant global association. Within family
(6.4), one can even consider non-linear association models. In particular,
we considered various types of row and column effects, together with in-
teractions. This suggests that the normal distribution and the Plackett
distribution are not the only ones of interest as continuous distributions,
underlying a contingency table. Different forms for the local and global
cross-ratios correspond to different distributions.

The correspondence between contingency tables and distribution func-
tions in the Dale model case is very easy. The definition of the distribution
is found by the continuous version of (6.16), of which the explicit form is
straightforward. A continuous version of (6.15) would include linear (and
quadratic) terms in x and y, together with an interaction term.

Let us again turn attention to Goodman’s R+C+RC model (6.9). To
construct a continuous density having a similar association structure, we
first select a local dependence function of the form

γ(φ; x, y) = φ1 + φ2f2(x) + φ3g3(y) + φ4f4(x)g4(y), (6.29)

where fk and gk are integrable functions. Molenberghs and Lesaffre (1999)
show how the corresponding density can be approximated. The RC model
is found by setting all terms, except those with subscript 4, equal to zero.

The models, fitted to Table 6.1, can be seen as extensions of both an
underlying normal and an underlying Plackett distribution. The choice be-
tween different models should not be made on the ground of potential
classes of underlying densities, but on the shape (structure) of associations.
Figure 6.1 presents local and global cross-ratios found from the fitted values
of both the RC+R+C model and the global cross-ratio model with row and
column effects, as well as interactions. Obviously, there is little pattern in
the local cross-ratios, whereas the global cross-ratios show a clear tendency:
all associations are high, with an increase if the dichotomy is constructed
closer to the categories with low labels, being highest between the variables
I(Father’s status ≤ 1) and I(Child’s status ≤ 1). This implies that social
mobility increases with increasing category. There is also slight evidence
that the association surface is symmetric, which would then correspond to
a global cross-ratio distribution with symmetric global cross-ratio function,
such as a symmetric second-degree polynomial.

6.8 Conclusions and Perspective

In this chapter, we presented association models for cross-classified data
that belong to the unified multivariate logistic framework, described by
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FIGURE 6.1. Fluvoxamine Trial. Local and global cross-ratios, found from fitting
the RC+R+C model and the global cross-ratio model.

McCullagh and Nelder (1989) and Glonek and McCullagh (1995). This
family provides a versatile way of exploring the association structure of
cross-classified data. It encompasses both local and global measures of as-
sociation, with emphasis on cross-ratios (odds ratios), as log cross-ratios
can be written as contrasts of log-probabilities. Both fully marginal mod-
els, such as the Dale model and its multivariate extensions, as models with
a conditional flavor, such as Goodman’s (1981a) RC model, are members
of this family. Further, linear as well as non-linear link functions (e.g., in-
volving interactions between row and column effects) fit within this family.

We argue that, in spite of the close connection between an RC model
and an underlying normal density and the absence of this connection with
a fully marginal model, this last category of models provides a flexible
toolkit to explore the association structure of cross-classified data, whether
of nominal or of ordinal type. We infer from the examples that they often
yield parsimonious descriptions of the association structure. Further, mar-
ginal association models are easily extended to marginal regression models
to include covariate effects. Extensions to multi-way tables are possible,
both with the RC as well as with the marginal family.

Both Dale (1984) and Anscombe (1981) suggest the use of global cross-
ratios as soon as the outcomes are recorded as ordinal variables. We have
shown that this choice is supported by a very good fit for this kind of model
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to a range of applications. Further, we claim that the global cross-ratio can
lead to interesting interpretations of the association structure itself, which
we think is an often neglected aspect of data analysis.

An argument, in favor of RC models, is their computational simplicity.
However, with the current state of high quality statistical software, fitting
marginal global association models poses no problems.

The Dale model, being a marginal model, is a member of a wider class of
marginal models encompassing, for example, the probit model, and allow-
ing for the analysis of multivariate and longitudinal data, with or without
covariates, and with measurements sequences of length longer than two.
This is the topic of the next chapter.




