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Linear Mixed Models for Gaussian
Longitudinal Data

4.1 Introduction

Although this book focuses on models for repeated categorical data, it
is helpful to first consider some key topics in the analysis of continuous
longitudinal data, where most parametric models are based on underly-
ing normality assumptions. Two general extensions of the univariate linear
regression models to repeated measures can be distinguished. First, a mul-
tivariate model can be formulated, in which each component is modeled
using a univariate linear regression model, and with the association struc-
ture directly modeled through a marginal covariance matrix. Second, a
random-effects approach can be followed. In the next sections, these two
model families will be discussed in turn. We will compare both approaches,
and we will summarize how estimation and inference proceeds.

Ideas will be illustrated in the simple context of a response Y measured
repeatedly on a homogeneous set of subjects i, i = 1, . . . , N , and where it is
believed that Y evolves linearly over time. This can immediately be gener-
alized to more complex settings with non-linear trends and/or to models in
which covariates are included to model the believe that trends may depend
on subject-specific covariates.
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4.2 Marginal Multivariate Model

Let Yij be the jth measurement available for the ith subject or cluster, i =
1, . . . , N , j = 1, . . . , ni. Further, Y i = (Yi1, . . . , Yini

)′ is the ni-dimensional
vector with all observations available for subject i. Assuming an average
linear trend for Y as a function of time, a multivariate regression model
can be obtained by assuming that the elements Yij in Y i satisfy Yij = β0 +
β1tij +εij , with the assumption that the error components εij are normally
distributed with mean zero. In vector notation, we get Y i = Xiβ + εi

for an appropriate design matrix Xi, with β′ = (β0, β1) and with ε′
i =

(εi1, εi2, . . . , εini). The model is completed by specifying an appropriate
covariance matrix Vi for εi, leading to the multivariate model

Y i ∼ N(Xiβ, Vi). (4.1)

Let Ini denote the identity matrix of dimension ni, then we have that
Vi = σ2Ini corresponds to the univariate linear regression model, assuming
all repeated measurements Yij to be independent, i.e., ignoring the fact
that repeated measures within subjects may be (highly) correlated. In the
case of balanced data, i.e., when a fixed number n of measurements is
taken for all subjects, and when measurements are taken at fixed time-
points t1, . . . , tn, a useful covariance model is Vi = V , where V is a general
(unstructured) n × n positive definite covariance matrix. This yields the
classical mulivariate regression model (Seber 1984, Chapter 8).

Depending on the context and the actual data at hand, other choices may
be appropriate. For example, a first-order autoregressive model assumes
that the covariance between two measurements Yij and Yik from the same
subject i is of the form σ2ρ|tij−tik| for unknown parameters σ2 and ρ.
Another example is compound symmetry, which assumes the covariance to
be of the form σ2 + γδjk for unknown parameters σ2 and γ > −σ2, and
where δjk equals one for j = k and zero otherwise. These are examples of
homogeneous covariance structures since they assume the variance of all
Yij to be equal. Heterogeneous versions can be formulated as well (Verbeke
and Molenberghs 2000).

4.3 The Linear Mixed Model

The random-effects approach toward extending the univariate linear re-
gression model to longitudinal settings is based on the assumption that, for
every subject, the response can be modeled by a linear regression model,
but with subject-specific regression coefficients. Continuing our simple ex-
ample, suppose that the individual trajectories of the response Y are of
the type as shown in Figure 4.1. Obviously, a linear regression model with
intercept and linear time effect seems plausible to describe the data of
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FIGURE 4.1. Hypothetical example of continuous longitudinal data that can be
well described by a linear mixed model with random intercepts and random slopes.
The thin lines represent the observed subject-specific evolutions. The bold line
represents the population-averaged evolution.

each person separately. However, different persons tend to have different
intercepts and different slopes. One can therefore assume that the out-
come Yij , measured at time tij satisfies Yij = β̃i0 + β̃i1tij + εij . As before,
εi = (εi1, εi2, . . . , εini

)′ is assumed to be normally distributed with mean
vector zero, and some covariance matrix which we now denote by Σi.

Because subjects are randomly sampled from a population of subjects,
it is natural to assume that the subject-specific regression coefficients β̃i =
(β̃i0, β̃i1)′ are randomly sampled from a population of regression coeffi-
cients. It is customary to assume the β̃i to be (multivariate) normal, but ex-
tensions can be formulated (Verbeke and Lesaffre 1996, Magder and Zeger
1996). Assuming β̃i to be bivariate normal with mean (β0, β1)′ and 2 × 2
covariance matrix D we can reformulate the model as

Yij = (β0 + bi0) + (β1 + bi1)tpi + εij , (4.2)

with β̃i0 = β0 + bi0 and β̃i1 = β1 + bi1, and the new random effects
bi = (bi0, bi1)′ are now normal with mean zero and covariance D. The
population-averaged profile is linear, with intercept β0 and slope β1, and is
represented by the bold line in Figure 4.1.

The above model is a special case of the general linear mixed model
which assumes that the vector Y i of repeated measurements for the ith
subject satisfies

Y i|bi ∼ N(Xiβ + Zibi, Σi) (4.3)
bi ∼ N(0, D), (4.4)

for ni ×p and ni × q known design matrices Xi and Zi, for a p-dimensional
vector β of unknown regression coefficients, for a q-dimensional vector bi
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of subject-specific regression coefficients assumed to be sampled from the
q-dimensional normal distribution with mean zero and covariance D, and
with Σi a covariance matrix parameterized through a set of unknown pa-
rameters. The components in β are called ‘fixed effects,’ the components
in bi are called ‘random effects.’ The fact that the model contains fixed as
well as random effects motivates the term ‘mixed models.’

Unless the model is fitted in a Bayesian framework (Gelman et al 1995),
estimation and inference are based on the marginal distribution for the
response vector Y i. Let fi(yi|bi) and f(bi) be the density functions corre-
sponding to (4.3) and (4.4), respectively, the marginal density function of
Y i is

fi(yi) =
∫

fi(yi|bi) f(bi) dbi,

which can easily be shown to be the density function of an ni-dimensional
normal distribution with mean vector Xiβ and with covariance matrix
Vi = ZiDZ ′

i + Σi. Note that the linear mixed model implies a marginal
model of the form (4.1), but with a very specific parametric form for the
marginal covariance matrix Vi, easily allowing highly unbalanced data. In
this respect, the linear mixed model can be interpreted as a procedure to
obtain flexible multivariate marginal models. As was already shown in our
earlier example, the fixed effects describe the population-averaged evolu-
tion.

Because the mixed model is defined through the distributions fi(yi|bi)
and f(bi), this will be called the hierarchical formulation of the linear
mixed model. The corresponding marginal normal distribution with mean
Xiβ and covariance Vi = ZiDZ ′

i + Σi is called the marginal formulation of
the model. Note that, although the marginal model naturally follows from
the hierarchical one, both these models are not equivalent. Indeed, different
random-effects models can produce the same marginal model. To see this,
consider the case where every subject is measured twice (ni = 2). First,
assume that the random-effects structure is confined to a random intercept
(bi is scalar), and the residual error structure Σi = Σ = diag(σ2

1 , σ2
2) (Model

I). The resulting marginal covariance matrix is

V =

(
1
1

)
(d) (1 1) +

(
σ2

1 0
0 σ2

2

)
=

(
d + σ2

1 d

d d + σ2
2

)
. (4.5)

Second, consider the random effects to consist of a random intercept and a
random slope (bi = (b0i, b1i)′), mutually uncorrelated, with residual error
structure Σi = Σ = σ2I2 (Model II). The resulting covariance matrix now
equals

V =

(
1 0
1 1

)(
d1 0
0 d2

)(
1 1
0 1

)
+

(
σ2 0
0 σ2

)
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=

(
d1 + σ2 d1

d1 d1 + d2 + σ2

)
. (4.6)

Obviously, the parametric models (4.5) and (4.6) for the marginal covari-
ance are equivalent: d1 = d, d2 = σ2

2 − σ2
1 , and σ2 = σ2

1 . Thus, (at least)
two different hierarchical models can produce the same marginal model,
illustrating that a good fit of the marginal model should not be seen as
equally strong evidence for any of the mixed models. Arguably, a satis-
factory treatment of the random-effects model is only possible within a
Bayesian context.

In addition, it is important to see that there are even marginal models
that are not implied by a mixed model. The simplest example is found
by considering the marginal model with compound symmetric covariance
structure (Section 4.2). If the within-subject correlation is positive (γ ≥
0), this model could have been implied by a mixed model with random
intercepts bi that are normally distributed with mean 0 and variance γ, and
with uncorrelated error components with common variance σ2. However,
if the within-cluster correlation is negative (γ < 0), the resulting marginal
model cannot be implied by an appropriate random-effects model. This
would be the case, for example, in a context of competition such as when
littermates compete for the same food resources.

4.4 Estimation and Inference for the Marginal
Model

As indicated earlier, the fitting of a linear mixed model is usually based on
the marginal model that, for subject i, is multivariate normal with mean
Xiβ and covariance Vi(α) = ZiDZ ′

i+Σi, hereby explicitly denoting that Vi

depends on an unknown vector α of parameters in the covariance matrices
D and Σi. The parameters in α are usually called ‘variance components.’
The classical approach to estimation and inference is based on maximum
likelihood (ML). Assuming independence across subjects, the likelihood
takes the form

LML(θ) =
N∏

i=1

{
(2π)−ni/2 |Vi(α)|− 1

2

× exp
[
−1

2
(Yi − Xiβ)′

V −1
i (α) (Yi − Xiβ)

]}
. (4.7)

Estimation of θ′ = (β′, α′) requires joint maximization of (4.7) with respect
to all elements in θ. In general, no analytic solutions are available, calling
for numerical optimization routines.
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Conditionally on α, the maximum likelihood estimator (MLE) of β is
given by (Laird and Ware 1982):

β̂(α) =

(
N∑

i=1

X ′
iWiXi

)−1
N∑

i=1

X ′
iWiYi, (4.8)

where Wi equals V −1
i . In practice, α is not known and can be replaced by

its MLE α̂. However, one often also uses the so-called restricted maximum
likelihood (REML) estimator for α (Harville 1974), which allows to esti-
mate α without having to estimate the fixed effects in β first. It is known
from simpler models, such as linear regression models, that, while classical
ML estimators are biased downwards, this is not the case for the REML
estimators (Verbeke and Molenberghs 2000, Section 5.3).

When it comes to inference, in practice, the fixed effects in β are often of
primary interest, as they describe the average evolution in the population.
Conditionally on α, the maximum likelihood (ML) estimate for β is given
by (4.8), which is normally distributed with mean

E
[
β̂(α)

]
=

(
N∑

i=1

X ′
iWiXi

)−1
N∑

i=1

X ′
iWiE [Yi] = β, (4.9)

and covariance

Var
[
β̂(α)

]
=

(
N∑

i=1

X ′
iWiXi

)−1

×
(

N∑
i=1

X ′
iWiVar [Yi] WiXi

)

×
(

N∑
i=1

X ′
iWiXi

)−1

(4.10)

=

(
N∑

i=1

X ′
iWiXi

)−1

, (4.11)

provided that the mean and covariance were correctly specified in our
model, i.e., provided that E(Y i) = Xiβ and Var(Y i) = Vi = ZiDZ ′

i + Σi.
Approximate Wald-type tests for components in β can now easily be ob-
tained.

Note however, that these Wald tests are based on standard errors ob-
tained from replacing α in (4.11) by its ML or REML estimate and there-
fore underestimate the true variability in β̂ because they do not take into
account the variability introduced by estimating α. Therefore, the classical
normal or chi-squared reference distributions are often replaced by t or F -
distributions, with the same numerator degrees of freedom as the original
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chi-squared distribution. The denominator degrees of freedom need to be
estimated from the data. This is often based on so-called Satterthwaite-
type approximations (Satterthwaite 1941), and is only fully developed for
the case of linear mixed models. We refer to Verbeke and Molenberghs
(2000, Section 6.2) for more information on this aspect. In most longitu-
dinal applications, different persons contribute independent information,
which results in numbers of denominator degrees of freedom which are typ-
ically large enough, whatever estimation method is used, to lead to very
similar p-values. Only for very small samples in terms of independent repli-
cates, or when mixed models would be used with crossed random effects
(random effects for persons as well as for items) different estimation meth-
ods for degrees of freedom may lead to severe differences in the resulting
p-values.

Note also that the standard errors based on (4.11) are valid, only if
the mean and covariance were correctly specified, while the only condition
for β̂ to be unbiased is that the mean is correctly specified. Because in
practice, it is often difficult to assess correct specification of the covariance
structure, one often prefers standard errors to be based on (4.10), rather
than (4.11), but with Var (Yi) estimated by (yi − Xiβ̂)(yi − Xiβ̂)′ rather
than V̂i. The so-called robust or empirical standard errors are consistent,
as long as the mean is correctly specified. This procedure is a special case
of the theory on generalized estimating equations (GEE), introduced by
Liang and Zeger (1986) which will be applied in Chapter 8 in the context
of discrete outcomes.

When interest is also in inference for some of the variance components
in α, classical asymptotic Wald, likelihood ratio, and score tests can be
used. However, due to restrictions on the parameter spaces, some hypothe-
ses of interest may be on the boundary of the parameter space, implying
that classical testing procedures are no longer valid. In some special but
important cases, analytic results are available on how to correctly test such
hypotheses. We herefore refer to Stram and Lee (1994, 1995) for results on
the likelihood ratio test, and to Verbeke and Molenberghs (2003) for results
on the score test. A detailed discussion on inference for the marginal linear
mixed model can be found in Verbeke and Molenberghs (2000, Chapter 6).

4.5 Inference for the Random Effects

Although in practice, one is usually primarily interested in estimating the
parameters in the marginal model, it is often useful to calculate estimates
for the random effects bi as well, as they reflect how much the subject-
specific profiles deviate from the overall average profile. Such estimates can
then be interpreted as residuals which may be helpful for detecting special
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profiles (i.e., outlying individuals) or groups of individuals evolving differ-
ently over time. Also, estimates for the random effects are needed whenever
interest is in prediction of subject-specific evolutions. Obviously, it is then
no longer sufficient to assume that the data can be described well by the
marginal model N(Xiβ, Vi). Instead, one has to explicitly assume that
the hierarchical model specification (4.3) and (4.4) is appropriate. Because
random effects represent a natural heterogeneity between the subjects, this
assumption will often be justified for data where the between-subjects vari-
ability is large in comparison to the within-subject variability.

Because the subject-specific parameters bi are assumed random, it is
most natural to estimate them using Bayesian techniques (Box and Tiao
1992, Gelman et al 1995). Conditional on bi, Y i follows a multivariate
normal distribution with mean vector Xiβ +Zibi and with covariance ma-
trix Σi. In combination with the distributional assumptions for bi, one can
easily derive (Smith 1973, Lindley and Smith 1972) that, conditionally on
Y i = yi, bi follows a multivariate normal posterior distribution with mean
b̂i(θ) = DZ ′

iV
−1
i (α)(yi − Xiβ), which is used in practice as an estimator

for bi. Its covariance estimator is equal to

var(b̂i(θ))

= DZ ′
i

⎧⎨⎩V −1
i − V −1

i Xi

(
N∑

i=1

X ′
iV

−1
i Xi

)−1

X ′
iV

−1
i

⎫⎬⎭ZiD. (4.12)

Note that (4.12) underestimates the variability in b̂i(θ)−bi since it ignores
the variation of bi. Therefore, inference for bi is usually based on

var[b̂i(θ) − bi] = D − var[b̂i(θ)] (4.13)

as an estimator for the variation in b̂i(θ) − bi (Laird and Ware 1982).
So far, all calculations were performed conditionally upon the vector θ

of parameters in the marginal model. In practice, the unknown parameters
β and α in b̂i(θ), (4.12), and (4.13) are replaced by their maximum or
restricted maximum likelihood estimates. The resulting estimates for the
random effects are called “Empirical Bayes” (EB) estimates, which we will
denote by b̂i. Note that (4.12) and (4.13) then underestimate the true
variability in the obtained estimate b̂i because they do not take into account
the variability introduced by replacing the unknown parameter θ by its
estimate. Similarly as for the fixed effects, inference is therefore often based
on approximate t-tests or F -tests, rather than on traditional Wald tests.

It immediately follows from (4.13) that for any linear combination λbi of
the random effects, var(λ′b̂i) ≤ var(λ′bi), indicating that the EB estimates
show less variability than actually present in the random-effects population.
This phenomenon is usually referred to as shrinkage (Carlin and Louis
1996, Strenio, Weisberg, and Bryk 1983). The shrinkage is also seen in the
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prediction ŷi ≡ Xiβ̂+Zib̂i of the ith profile, which can be rewritten as ŷi =
ΣiV

−1
i Xiβ̂+[Ini −ΣiV

−1
i ]yi. Note that ŷi can be interpreted as a weighted

average of the population-averaged profile Xiβ̂ and the observed data yi,
with weights ΣiV

−1
i and Ini − ΣiV

−1
i , respectively. The “numerator” of

ΣiV
−1
i is the residual covariance matrix Σi and the “denominator” is the

overall covariance matrix Vi. Hence, severe shrinkage is to be expected
when the residual variability is large in comparison to the between-subject
variability (modeled by the random effects), whereas little shrinkage will
occur if the opposite is true.

In practice, one often uses histograms and scatter plots of components
of b̂i for diagnostic purposes, such as the detection of outliers, which are
subjects who seem to evolve differently from the other subjects in the data
set. Examples and more details on the use of EB estimates can be found
in Verbeke and Molenberghs (2000, Chapter 7) or in DeGruttola, Lange,
and Dafni (1991) and Waternaux, Laird, and Ware (1989). It should be
emphasized that the EB estimates cannot be used to check the underly-
ing normality assumption about the random effects. Verbeke and Lesaffre
(1996) have shown that, in some cases with severe deviations from nor-
mality, the normality assumption forces the EB estimates to look like a
normal distribution. They propose to use more general random-effects dis-
tributions, such as mixtures of normals. In Chapter 23, we will use related
ideas in the context of models for non-continuous responses.




