
31
Sensitivity Analysis

31.1 Introduction

Even though the assumption of likelihood ignorability encompasses both
MAR and the more stringent and often implausible MCAR mechanisms, it
is difficult to exclude the option of a more general missingness mechanism.
One solution is to fit an MNAR model as proposed by Diggle and Kenward
(1994) or Molenberghs, Kenward, and Lesaffre (1997). However, as pointed
out by several authors (discussion to Diggle and Kenward 1994, Verbeke
and Molenberghs 2000, Chapter 18), one has to be extremely careful with
interpreting evidence for or against MNAR using only the data under study.
A detailed treatment of the issue is provided in Jansen et al (2005).

A sensible compromise between blindly shifting to MNAR models or
ignoring them altogether is to make them a component of a sensitivity
analysis. It is important to consider the effect on key parameters such as
treatment effect. In many instances, a sensitivity analysis can strengthen
one’s confidence in the MAR model (Molenberghs et al 2001, Verbeke et
al 2001).

Broadly speaking, we could define a sensitivity analysis as one in which
several statistical models are considered simultaneously and/or where a
statistical model is further scrutinized using specialized tools (such as di-
agnostic measures). This rather loose and very general definition encom-
passes a wide variety of useful approaches. The simplest procedure is to
fit a selected number of (MNAR) models that are all deemed plausible or
one in which a preferred (primary) analysis is supplemented with a num-
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ber of variations. The extent to which conclusions (inferences) are stable
across such ranges provides an indication about the belief one can put into
them. Variations to a basic model can be constructed in different ways. The
most obvious strategy is to consider various dependencies of the missing
data process on the outcomes and/or covariates. Alternatively, the distri-
butional assumptions of the model can be changed. Thus clearly, several
routes to sensitivity analysis are possible and in fact the area is fully in
expansion.

Sensitivity analysis can be conducted within the selection model family
itself. A perspective is given in Section 31.2. Another promising tool, pro-
posed by Verbeke et al (2001), and employed by Thijs, Molenberghs, and
Verbeke (2000) and Molenberghs et al (2001), is based on local influence
(Cook 1986). These authors considered the Diggle and Kenward (1994)
model, which is based on a selection model, integrating a linear mixed
model for continuous outcomes with logistic regression for dropout.

These ideas have been developed for categorical data as well. Van Steen
et al (2001) developed a local influence based sensitivity analysis for the
MNAR Dale model of Section 29.2. It is presented in Section 31.3. Sec-
tion 31.4 discusses related ideas for the general Baker, Rosenberger, and
DerSimonian (1992) model, introduced in Section 29.3. It is based upon
work by Jansen et al (2003). Hens et al (2005) developed kernel weighted
influence measures.

Although classical inferential procedures account for the imprecision re-
sulting from the stochastic component of the model and for finite sampling,
less attention is devoted to the uncertainty arising from (unplanned) incom-
pleteness in the data, even though the majority of studies in humans suffer
from incomplete follow-up. Molenberghs et al (2001) acknowledge both the
status of imprecision, due to (finite) random sampling, as well as ignorance,
due to incompleteness. Both can be combined into uncertainty (Kenward,
Goetghebeur, and Molenberghs 2001). An overview is given in Section 31.5.

Another option is to consider pattern-mixture models as a complement
to selection models (Thijs et al 2002, Michiels et al 2002). The analysis
conducted in Section 30.6, along the lines outlined in Sections 30.4 and
30.5, can be viewed as a sensitivity analysis of this type. A perspective is
given in Section 31.6.

31.2 Sensitivity Analysis for Selection Models

When data are incomplete, the analysis of the actually observed data is
subject to further untestable modeling assumptions. The methodologically
simplest case is discussed in Section 27.3, where it is assumed that the
missing data are MCAR. However, the MCAR assumption is a strong one
and made too often in practice.
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When more flexible assumptions, such as MAR or even MNAR, are con-
sidered, several choices have to be made. For example, one has to choose
between selection and pattern-mixture models, or an alternative framework
such as shared-parameter models (Section 26.2.1).

Particularly within the selection modeling framework, there has been an
increasing literature on MNAR. At the same time, concern has been grow-
ing precisely about the fact that models often rest on strong assumptions
and relatively little evidence from the data themselves.

In response to these concerns, there is growing awareness of the need
for methods that investigate the sensitivity of the results with respect to
the model assumptions. See, for example, Nordheim (1984), Little (1994b),
Rubin (1994), Laird (1994), Fitzmaurice, Molenberghs, and Lipsitz (1995),
Molenberghs et al (1999), Kenward (1998), and Kenward and Molenberghs
(1999). Many of these are to be considered useful but ad hoc approaches.
Whereas such informal sensitivity analyses are an indispensable step in the
analysis of incomplete longitudinal data, it is desirable to conduct more
formal sensitivity analyses.

At any rate, fitting an MNAR model should be subject to careful scrutiny.
The modeler needs to pay attention, not only to the assumed distributional
form of the model (Little 1994b, Kenward 1998), but also to the impact one
or a few influential subjects may have on the dropout and/or measurement
model parameters. Because fitting an MNAR model is feasible by virtue
of strong assumptions, such models are likely to pick up a wide variety of
influences in the parameters describing the nonrandom part of the dropout
mechanism. Hence, a good level of caution is in place. This issue has been
studied in detail by Jansen et al (2005). These authors not only study the
behavior of local influence methods in the presence of a variety of deviations
from the posited model, not only in terms of the dropout mechanism, they
also study the behavior of the likelihood ratio test statistic, used to test
MNAR versus MAR. Their conclusion is that such a test is surrounded
with both philosophical issues, as well as technical problems. There are
philosophical issues because two models, similar or even identical in terms
of their fit to the observed data, may produce widely varying predictions of
the unobserved data. When unrecognized, this is a problem, as such models
cannot be distinguished in terms of statistical arguments only. When the
scientific question is, at least in part, in terms of the fit to the unobserved
outcomes, it is very difficult to distinguish between such models solely in
statistical terms. The technical issues occur because the likelihood ratio test
statistic for MNAR versus MAR, of the type used in the Diggle and Ken-
ward (1994) and MNAR Dale (Section 29.2) models, exhibits non-standard
behavior. This should not come as a surprise, as most of the information
on the MNAR parameter(s) comes from distributional assumptions, and
not from genuine information in the data. Therefore, classical asymptot-
ics should not be taken for granted. This problem is studied by Jansen
et al (2005); see also Scharfstein, Rotnitzky, and Robins (1999). By using
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a semi-parametric framework, it becomes clear that, under MNAR, semi-
parametric assumptions, i.e., moment-based assumptions, are not sufficient
to identify model parameters.

31.3 A Local Influence Approach for Ordinal Data
with Dropout

Incomplete longitudinal ordinal data can be modeled using a simple logis-
tic regression formulation for the dropout process and using a multivariate
Dale model for the response (Molenberghs and Lesaffre 1994, 1999, Molen-
berghs, Kenward, and Lesaffre, 1997), as described in Section 29.2. To ex-
plore the sensitivity of this selection model for repeated ordinal outcomes,
Van Steen et al (2001), considered a local influence approach.

31.3.1 General Principles
Cook (1986) suggests that more confidence can be put in a model that is
relatively stable under small modifications. The best known perturbation
schemes are based on case-deletion (Cook and Weisberg 1982) in which the
effect is studied of completely removing cases from the analysis. A quite
different paradigm is the local influence approach where one investigates
how the results of an analysis are changed under small perturbations of the
model. In the framework of the linear mixed model Beckman, Nachtsheim,
and Cook (1987) used local influence to assess the effect of perturbing the
error variances, the random-effects variances and the response vector. In
the same context, Lesaffre and Verbeke (1998) have shown that the local
influence approach is also useful for the detection of influential subjects in
a longitudinal data analysis. Verbeke et al (2001) and Verbeke and Molen-
berghs (2000, Chapter 19) use the same idea to explore the sensitivity of a
selection model for repeated continuous outcomes. The principal idea is to
explore how small perturbations around MAR, in the direction of MNAR,
can have a large impact. These authors have shown that various types of
influential subjects can cause a model to apparently be of the MNAR type.
This implies that caution should be used before concluding that the model
really is MNAR, as many types of influential subjects, different from an
MNAR mechanism, can force such a conclusion. This view was confirmed
by Jansen et al (2005).

Consider the following perturbed dropout model:

logit[pid(Hd, kd; ψ)] = Hdψ + ωikd. (31.1)

which are the components of the φ’s in (29.3). We choose to use the
individual-level index i, rather than the design-level index r, as the pertur-
bations ωi are defined at the individual level.
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When ωi = 0 for all i, MAR is obtained. Due to ignorability, no influence
on the measurement model parameters is then possible. When small per-
turbations in a specific ωi lead to relatively large differences in the model
parameters, then this suggests that these subjects may have a large impact
on the final analysis. Note that the ωi are not to be seen as fixed or random
subject-specific parameters, but rather as (infinitesimal) perturbations, to
which differential geometry will be applied, rather than ordinary parameter
estimation.

We first give a general introduction of the local influence methodology
as introduced by Cook (1986). In Section 31.3.2, it will be applied to the
fluvoxamine study.

We denote the log-likelihood function corresponding to the model includ-
ing perturbed dropout model (31.1) by

	(γ|ω) =
N∑

i=1

	i(γ|ωi),

in which 	i(γ|ωi) is the contribution of the ith individual to the log-
likelihood, and where γ = (θ, ψ) is the s-dimensional vector, grouping
the parameters of the measurement model and the dropout model, not
including the N × 1 vector ω = (ω1, ω2, . . . , ωN)′ of weights defining the
perturbation of the MAR model. It is assumed that ω belongs to an open
subset Ω of IRN . For ω equal to ω0 = (0, 0, . . . , 0)′, 	(γ|ω0) is the log-
likelihood function that corresponds to a MAR dropout model.

Let γ̂ be the maximum likelihood estimator for γ, obtained by maxi-
mizing 	(γ|ω0), and let γ̂ω denote the maximum likelihood estimator for
γ under 	(γ|ω). The local influence approach now compares γ̂ω with γ̂.
Similar estimates indicate that the parameter estimates are robust with re-
spect to perturbations of the MAR model in the direction of MNAR. Very
different estimates suggest that the estimation procedure is highly sensitive
to such perturbations, which suggests that the choice between a random
and a non-random dropout model highly affects the results of the analysis.
Cook (1986) proposed to measure the distance between γ̂ω and γ̂ by the so-
called likelihood displacement, defined by LD(ω) = 2[	(γ̂|ω0)− 	(γ̂ω|ω0)].
This takes into account the variability of γ̂. Indeed, LD(ω) will be large
if 	(γ|ω0) is strongly curved at γ̂, which means that γ is estimated with
high precision, and small otherwise. Therefore, a graph of LD(ω) versus ω
contains essential information on the influence of perturbations. It is useful
to view this graph as the geometric surface formed by the values of the
N + 1 dimensional vector ξ(ω) = [ω′, LD(ω)]′ as ω varies throughout Ω.
Because this so-called influence graph can only be depicted when N = 2,
Cook (1986) proposed to consider local influence, i.e., at the normal cur-
vatures Ch of ξ(ω) in ω0, in the direction of some N dimensional vector
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h of unit length. Let ∆i be the s dimensional vector defined by

∆i =
∂2	i(γ|ωi)

∂ωi∂γ

∣∣∣∣
γ=γ̂,ωi=0

and define ∆ as the (s × N) matrix with ∆i as its ith column. Further,
let L̈ denote the (s × s) matrix of second-order derivatives of 	(γ|ω0) with
respect to γ, also evaluated at γ = γ̂. Cook (1986) has then shown that
Ch can be easily calculated by Ch = 2|h′∆′L̈−1∆h|.

Obviously, Ch can be calculated for any direction h. One evident choice
is the vector hi containing one in the ith position and zero elsewhere, cor-
responding to the perturbation of the ith weight only. This reflects the
influence of allowing the ith subject to drop out non-randomly, whereas
the others can only drop out at random. The corresponding local influence
measure, denoted by Ci, then becomes Ci = 2|∆′

iL̈
−1∆i|. Another impor-

tant direction is the direction hmax of maximal normal curvature Cmax. It
shows how to perturb the MAR model to obtain the largest local changes
in the likelihood displacement. It is readily seen that Cmax is the largest
eigenvalue of −2 ∆′ L̈−1 ∆, and that hmax is the corresponding eigenvector.

When a subset γ1 of γ = (γ′
1, γ

′
2)

′ is of special interest, a similar approach
can be used, replacing the log-likelihood by the profile log-likelihood for γ1,
and the methods discussed above for the full parameter vector directly carry
over. Details can be found in Lesaffre and Verbeke (1998), Verbeke et al
(2001), and Verbeke and Molenberghs (2000, Chapters 11 and 19).

It will be clear from the previous derivations that calculation of local
influence measures merely reduces to evaluation of ∆ and L̈. In the linear
mixed model case, Verbeke et al (2001) and Verbeke and Molenberghs
(2000) have proposed closed form expressions, with some emphasis on the
case of compound symmetry. For the multivariate Dale model, as will be the
case for many other non-normal models, this is algebraically very involved
and may not yield the same type of insightful expressions. However, when a
program is available to fit the full non-random model (3.11), a particularly
convenient computational scheme can be used. Indeed, in this case there
are usually tools available to obtain a Hessian matrix evaluated in a point
of interest (e.g., through EM-aided differentiation, see also page 537). Note
that in our situation, it suffices to compute the second derivatives of the
likelihood, for each observation separately, after which the subvector ∆i

pertaining to the (γ, ω)-block can be selected.
In practice, the parameter θ in the measurement model is often of pri-

mary interest. Because L̈ is block-diagonal with blocks L̈(θ) and L̈(ψ), we
have that for any unit vector h, Ch equals Ch(θ) + Ch(ψ), with

Ch(θ) = −2h′
[

∂2	iω

∂θ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(θ)

[
∂2	iω

∂θ∂ωi

∣∣∣∣
ωi=0

]
h
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Ch(ψ) = −2h′
[

∂2	iω

∂ψ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(ψ)

[
∂2	iω

∂ψ∂ωi

∣∣∣∣
ωi=0

]
h,

evaluated at γ = γ̂.

31.3.2 Analysis of the Fluvoxamine Data
Van Steen et al (2001) applied the local influence ideas of Section 31.3 to
the fluvoxamine study introduced in Section 2.4 and analyzed at various
instances.

To investigate the sensitivity of inferences reported in Section 29.2.3 with
respect to modeling assumptions for the dropout process, the overall Ci,
influences Ci(θ) and Ci(ψ) for the measurement parameters and dropout
parameters, as well as hmax of maximal curvature are displayed in Fig-
ure 31.1. Note that the largest Ci are observed for patients #34 and #252
(both having side effects surpassing the therapeutic effect at visit 1 and
visit 2), followed by patients #182, #64, #122, #28, #108, #287, #232,
#112, and #245, all of whom yield the worst score on side effects at visit 1
and drop out at visit 2. We pay special attention to patient #239, showing
side effects interfering significantly with functionality at visit 1, after which
dropout occurs.

In addition, Figure 31.1 shows some evidence of the fact that influence
on measurement model parameters can theoretically only arise from those
measurement occasions at which dropout occurs, a fact already observed
by Verbeke et al (2001). Nevertheless, it should be noted that influence on
the measurement model parameters can also arise from complete observa-
tions. Indeed, when small perturbations in a specific ωi lead to relatively
large differences in the model parameters, the subject’s impact on dropout
parameters indirectly influences all functions that include these dropout
parameters. An example of such a function is the conditional mean of an
unobserved measurement, given the observed measurements and given the
fact that the patient belongs to a certain dropout pattern. As a conse-
quence, the corresponding measurement model parameters will indirectly
be affected as well (Verbeke et al 2001).

Influential completers occur in the index plots of Ci, Ci(ψ), and of the
components of the direction hmax of maximal curvature, but are absent
in the index plot for Ci(θ). Focusing on Ci(θ), Figure 31.1 reveals the
highest peaks for patients #239 and #128. It appears that the influence
of allowing subject #239 to drop out non-randomly, is best visible on the
measurement model parameters. Patient #128 has an incomplete sequence,
with a relatively mild score for side effects (side effects not interfering with
functionality). Hence, the relatively large value for Ci(θ) is somewhat un-
usual, especially because other index plots do not show evidence of any
influential effect, not even globally. One could ask the question whether
other, unmeasured factors could have caused this phenomenon.
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FIGURE 31.1. Fluvoxamine Trial. Index plots of Ci, Ci(θ), Ci(ψ), and of the
components of the direction hmax of maximal curvature. The x-axis merely con-
tains sequential indicators. Relevant patient IDs have been added to the plot.
Completers (patients with observed responses at visit 1 and visit 2) are indicated
with a solid star. A solid circle, a solid square, a solid triangle, or a solid plus
is used for subjects whose score on side effects at visit 1 respectively ranges from
(1) to (4). Patients with a non-monotone dropout pattern are discarded.

Before addressing this question, we turn attention to Ci(ψ) and hmax.
To avoid confusion, observe that the scale is different from the one of Ci(θ).
The most influential patients appear to be the same as for the overall Ci

(#34, #252 and #182, #64, #122, #28, #108, #287, #232, #112, #245).
The same patients are also shown in the index plot for hmax.

Observe that in all plots, ‘layers’ of influential cases may be distinguished.
The higher the layers, the more they seem to be associated with particular
response levels. For instance, in Figure 31.1, patients #34 and #252 give
rise to components of hmax that are larger than 0.3. Patients #182, #64,
#122, #28, #108, #287, #232, #112 and #245 (corresponding to the
influential patients in the previous paragraph) refer to hmax components
that are all smaller than 0.3 but larger than 0.2. The layer formation is
not clear though, and recalling the particular behavior of patient #128,
one is led to believe that another distorting factor is involved, blurring the
picture. Therefore, we investigate the effect of covariates on the ability to
interpret influence plots.
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FIGURE 31.2. Fluvoxamine Trial. Index plots of Ci, Ci(θ), Ci(ψ), and of the
components of the direction hmax of maximal curvature, where ‘age’ is considered
as the sole covariate in the Dale model. The x-axis contains sequential indicators.
Completers are indicated with a solid star. A solid circle, a solid square, a solid
triangle, or a solid plus is used for subjects whose score at visit 1 on side effects
respectively ranges from (1) to (4).

To this end, we consider two additional models. The first one includes
‘sex’ as the only covariate in the measurement model, the second one uses
‘age’ as the only covariate. These models perform worse than the model
including both ‘age’ and ‘sex,’ augmented with ‘duration’ and ‘severity,’
but they are merely intended for illustrative purposes. The resulting influ-
ence plots are enlightening. Figure 31.2 shows the index plots when ‘age’
is included as only covariate, Figure 31.3 displays the corresponding pic-
tures in case ‘sex’ is the only source of covariate information. In both cases,
much smaller values are obtained for Ci(θ). The high peaks for patients
#239 and #128 have disappeared. Patients #122, #245, and #182 also
show up in Figure 31.2 with the highest peaks for Ci(θ), although hard to
distinguish from the peaks for patients #287, #232, #28, #108, #64, and
#112. The variability observed in Ci(θ) values also appears in Figure 31.3.
However, in this case, it seems to be caused by the fact that patients #108,
#182, #287, and #232 have Ci(θ) equal to about 0.0116 compared to ap-
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proximately 0.0097 for patients #28, #245, #64, #122, and #112. This
layer effect may be explained by the binary character of ‘sex’ as opposed to
‘age,’ the latter of which entered the model as a continuous variable. Also
note that patients #108, #182, #287, and #232 are all male, whereas pa-
tients #28, #245, #64, #122, and #112 are all female. All these patients
drop out at visit 2 and showed side effects surpassing therapeutic effect
at visit 1. In Figures 31.2 and 31.3, the same patient group (i.e., patients
#34, #252, #287, #108, #28, #112, #64, #232, #122, #182, and #245)
is distinguished as globally influential, with highest Ci values for #34 and
#252. The layering effect is again the most explicit when ‘sex’ is considered
as only covariate (Figure 31.3). Influential patients for Ci(ψ) and hmax ap-
pear to be the same as before, where ‘sex’ and ‘age’ were both considered
in the pool of covariates, with the exception of subject #239 whose cor-
responding component in hmax is now less than 0.1000. The distribution
over potential values becomes more discrete when ‘age’ is considered to be
the only covariate in the multivariate Dale model. Changing ‘age’ for ‘sex’
causes the distribution to be even more discrete and therefore the layer
effect more explicit.

In an attempt to improve insight into the driving forces present in the
set of data, which may explain possible deviations from a random dropout
process, we exclude patients #34 and #252 from the data set and apply the
same measurement model as in the beginning of Section 5 (thus including
the covariates ‘age,’ ‘sex,’ ‘duration,’ and ‘severity’). Provided MAR is the
correct alternative hypothesis and provided the parametric form for the
MAR process is correct (again, no covariates were included), there seems
to be even less evidence for MAR; the likelihood ratio test statistic com-
paring MCAR with MAR equals G2=0.94, based on 1 degree of freedom
(p = 0.333). Note that now borderline evidence for MNAR is observed,
since a comparison between the non-random and random dropout model
generates a likelihood ratio test statistic of G2= 3.74 with 1 degree of free-
dom (p = 0.053). Hence, the suggested local influence approach bridges the
gap between the random and the non-random model: some of the mecha-
nisms that cannot be explained by the random model and are captured by
the non-random model, the latter resting on untestable assumptions, can
be attributed to the observations for patients #34 and #252.

Repeating the previous analysis on a reduced data set, where patient
#239 is excluded instead of patients #34 and #252, we find no evidence
for MAR against MCAR (G2 = 0.01, p = 0.913). After investigating the
likelihood ratio test statistic for comparing the non-random with the ran-
dom dropout model (G2 = 2.13, p = 0.145), we may conclude that the
MCAR assumption is fairly plausible. It is not surprising that conclusions
remain similar. Indeed, although patient #239 appeared to be most influ-
ential patient with respect to the measurement model parameters, it should
be noted that (i) the value for Ci(θ) is “only” 0.079 (further investigation
is required to define some critical value above which Ci(θ) can be said to be
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FIGURE 31.3. Fluvoxamine Trial. Index plots of Ci, Ci(θ), Ci(ψ), and of the
components of the direction hmax of maximal curvature, where ‘sex’ is considered
as only covariate in the Dale model. The x-axis contains sequential indicators.
Completers are indicated with a solid star. A solid circle, a solid square, a solid
triangle, or a solid plus is used for non-completers whose score at visit 1 on side
effects respectively ranges from (1) to (4).

statistically significantly large) and that (ii) patient #239 did not appear
to be influential overall.

31.4 A Local Influence Approach for Incomplete
Binary Data

31.4.1 General Principles
For multivariate and longitudinal binary data, subject to non-monotone
missingness, one can focus on the model proposed by Baker, Rosenberger,
and DerSimonian (1992). They considered a log-linear type of model for two
possibly binary outcomes, subject to non-monotone missingness. Jansen et
al (2003) reformulated the model such that its membership of the selec-
tion model family is unambiguously clear. Next, they extended the original
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model to accommodate for, possibly continuous, covariates, turning the
model into a regression tool for several categorical outcomes. Further, a
parameterization was proposed that avoids the risk of invalid solutions. In
other words, all combinations of the natural parameters produce probabil-
ities between 0 and 1. The model is introduced in Section 29.3.

As a consequence of these extensions, the closed-form solutions of Baker,
Rosenberger, and DerSimonian (1992) no longer apply. Of course, given
the focus on continuous covariates, the derivation of closed-form solutions
should not be of primary concern. Finally, Jansen et al (2003) coupled a
local influence approach with the model strategy, to assess which observa-
tions have a strong impact on the comparison of two nested models within
the BRD family.

Jansen et al (2005) consider perturbations of a given BRD model in
the direction of a model with one more parameter in which the original
model is nested, implying that perturbations lie along the edges of Fig-
ure 29.2: for each of the nested pairs in Figure 29.2, the simpler of the two
models equates two parameters from the more complex one. For example,
BRD4 includes β.k, (k = 1, 2), whereas in BRD1 only β.. is included. For
the influence analysis, ωi is then included as a contrast between two such
parameters; for the perturbation of BRD1 in the direction of BRD4, one
considers β.. and β.. + ωi. Such an ωi is not a subject-specific parameter,
but rather an infinitesimal perturbation. The vector of all ωi’s defines the
direction in which such a perturbation is considered. Clearly, other pertur-
bation schemes are possible as well, or one could consider a different route
of sensitivity analysis altogether. Ideally, several could be considered within
an integrated sensitivity analysis. Note that our influence analysis focuses
on the missingness model, rather than on the measurement model para-
meters. This may be seen as slightly odd, because often, scientific interest
focuses on the measurement model parameters. However, it has been doc-
umented (discussion to Diggle and Kenward 1994, Kenward 1998, Verbeke
et al 2001) that the missingness model parameters are often the most sen-
sitive ones to take up all kinds of misspecification and influential features.
These may then, in turn, impact conclusions coming from the measurement
model parameters (e.g., time evolution) or combinations from both (e.g.,
covariate effects for certain groups of responders).

31.4.2 Analysis of the Fluvoxamine Data
We will now apply the local influence ideas, outlined in the previous section,
to the BRD models in order to contradict or strengthen the conclusions of
Section 29.3.1. Whereas all comparisons along the edges of Figure 29.2 are
possible, we propose to primarily focus on the comparison of BRD1 with
BRD4 (Figure 31.4), as the first one was the most adequate model when no
duration effect is included and when duration is included in both parts of
the model, whereas the second one was the model of choice when duration
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FIGURE 31.4. Fluvoxamine Trial. Index plots of Ci (left panels) and of the com-
ponents of the direction hmax of maximal curvature (right panels) for comparison
BRD1–4, without (top panels) or with (bottom panels) duration as a covariate in
the missingness models.

is included in the measurement model only. In addition, we will consider
the comparisons BRD4–7 (Figure 31.5) and BRD4–8 (plot not shown), the
supermodels of BRD4. The symbols used in these figures are the following:
+: both observations are available, (1,1) type; black triangle: only the first
observation is available, (1,0) type; black square: only the second observa-
tion is available, (0,1) type; •: both measurements are missing, (0,0) type.

The overall Ci are considered, as well as the components of the direc-
tion of maximal curvature hmax. The top right panel in Figure 31.4 shows
essentially no structure, whereas in the top left there are two important
observations. First, a clear layering effect is present, consistent with the
analysis in Section 31.3.2. Again, this is not surprising, as there are quite
a number of discrete features to the model: the responses and the miss-
ingness patterns. On the other hand, the continuous covariate duration is
included in the measurement model. In this case, mainly the missingness
patterns are noticeable, although the top layer shows a good deal of vari-
ability. These layers are reminiscent of a pattern-mixture structure (Little
1995) even though the model is of a selection nature.

Two views can be taken. Either, focus can be on two observations, #184
and #185, that stand out. These subjects have no measurements at all for
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TABLE 31.1. Fluvoxamine Trial. Negative log-likelihood values for three addi-
tional sets of analysis. I: #184 and #185 removed, no covariates; II: #184 and
#185 removed, duration as covariate in the measurement model; III: all obser-
vations in the (0,0) group removed, duration as covariate in the measurement
model.

Set BRD1 BRD2 BRD3 BRD4 BRD5
I 559.59 558.18 558.70 558.18 558.97
II 543.65 541.87 542.16 540.35 542.43
III 496.19 494.33 495.26 492.53 495.53

Set BRD6 BRD7 BRD8 BRD9
I 557.59 557.32 557.59 557.32
II 540.61 538.53 538.81 540.34
III 493.71 491.67 491.95 493.43

side effects. Alternatively, the entire pattern without follow up measure-
ments can be given further consideration. We will return to this issue later
in this section. This phenomenon is in contrast to the analyses made by
Verbeke et al (2001) and Molenberghs et al (2001) who found that the in-
fluential observations are invariably completers. In this case, the situation
is different since the “empty” observations are explicitly modeled in the
BRD models. Therefore, assumptions about the perturbations in the direc-
tion of such observations have an impact on the values such an individual
would have had had the measurements been made; hence a strong sensitiv-
ity. This is an illustration of the fact that studying influence by means of
perturbations in the missingness model may lead to important conclusions
regarding the measurement model parameters. Indeed, the measurement
model conclusions depend, not only on the observations actually made,
but also on the expectation of the missing measurements. In an MNAR
model, such expectations depend on the missingness model as well, since
they are made conditional on an observation being missing. A high level of
sensitivity means that the expectations of the missing outcomes and the re-
sulting measurement model parameters strongly depend on the missingness
model (Verbeke et al 2001). As stated earlier, the only continuous charac-
teristics of the observations are the levels for duration. These are 38 and
41, respectively, the largest values within the group without observations
and the 91st and 92nd percentile values within the entire sample. Thus,
the conclusions are driven by a very high value of duration.

Let us now turn to the bottom panels of Figure 31.4. The right hand
panel still shows little or no structure. On the left hand side, the layering
has been blurred due to the occurrence of duration as a continuous feature
into the missingness model. The fact that no sets of observations stand



31.4 A Local Influence Approach for Incomplete Binary Data 589

FIGURE 31.5. Fluvoxamine Trial. Index plots of Ci (left panels) and of the com-
ponents of the direction hmax of maximal curvature (right panels) for comparison
BRD4–7, without (top panels) or with (bottom panels) duration as a covariate in
the missingness models.

out as such, confirms the impression that a good fit has been obtained by
including duration in both parts of the model.

Let us now turn to Figure 31.5. A qualitative difference with Figure 31.4
(top left panels) is that now the entire group with no follow-up measure-
ments shows more influential than all other subjects. In this case, hmax
displays the same group of subjects with no follow-up. However, all of this
disappears when one turns to the bottom panels, again underscoring the
importance of duration in the missingness model.

The consequence of these findings is that, as soon as duration is included
in the missingness model, a reasonable amount of confidence can be put into
the conclusions so obtained. Nevertheless, based on the comparison BRD1–
4, it seems wise to further study the effect of subjects #184 and #185, as
well as from the group without follow up measurements. To this effect,
three additional analyses are considered (Table 31.1): two sets pertain to
removal of subjects #184 and #185: without (I) and with (II) duration
as a covariate in the measurement model. Note that we do not consider
removal in case duration is included in the missingness model because, in
this case, these two subjects did not show up as locally influential. Finally,
removing all subjects without follow-up measurements and using duration
as covariate in the measurement model is reported as family III.
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In analysis I, BRD1 is still the preferred model; in II, evidence still points
towards BRD4, although slightly less extreme than before: likelihood ratio
test statistics for BRD1–4, BRD4–7, and BRD4–8 are 6.60, 3.64, and 3.08,
respectively, compared to 7.10, 2.10, and 1.52 obtained initially. However,
while the two subjects deleted in I and II cannot explain the apparent non-
random missingness, the same conclusions are reached when all subject in
pattern (0,0) are deleted (analysis III), as then a few likelihood ratios are
above the significance threshold (7.17, attained for BRD3–7 and for BRD5–
8; and 7.32 for BRD1–4). Thus, removing these subjects does not change
the conclusions about the non-random nature of the data. This is useful
supplemental information. Indeed, it is confirmed that the largest impact
on the conclusion regarding the nature of the missingness mechanism, is
coming from the inclusion of the covariate duration, and neither from iso-
lated individuals, nor from a specific missingness pattern (those without
measurements). A nice side effect of this conclusion is that the selected
analysis encompasses all subjects and therefore avoids the need of subject
deletion, which, if at all possible, should be avoided in statistical analysis.

These analyses can be seen as a useful component of a sensitivity analysis.
Given the intrinsic problems with incomplete data models, one can never
be completely sure the nature of the missingness mechanism is as posited
in the model of choice and therefore several sensitivity assessments simul-
taneously and/or substantive knowledge have to be considered. When a
number of possible causes for the observed non-randomness are found, one
might ideally add substantive arguments as to their relative plausibility.

Subjects in an influence graph are displayed without a particular order.
Several alternatives are possible, each with pros and cons. For example,
one could order the subjects by covariate level, but this method cannot
be considered when there are several covariates. Alternatively, the subjects
could be ordered by Ci or hi level, but then different orderings would exist
on different plots.

31.5 Interval of Ignorance

Classical inferential procedures induce conclusions from a set of data to a
population of interest, accounting for the imprecision resulting from the
stochastic component of the model. This is usually done by means of pre-
cision or interval estimates. Less attention is devoted to the uncertainty
arising from (unplanned) incompleteness in the data. Through the choice
of an identifiable model for MNAR missingness, one narrows the possible
data generating mechanisms to the point where inference only suffers from
imprecision. Some proposals have been made for assessing the sensitivity of
these model assumptions; many are based on fitting several plausible but
competing models.
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Molenberghs, Kenward, and Goetghebeur (2001) and Kenward, Goet-
ghebeur, and Molenberghs (2001) showed an approach that identifies and
incorporates both sources of uncertainty in inference: imprecision due to
finite sampling, and ignorance due to incompleteness. A simple sensitivity
analysis considers a finite set of plausible models. This idea can be taken
one step further, by considering more degrees of freedom than the data
support. This produces sets of estimates, termed region of ignorance, and
sets of confidence region, combined into so-called regions of uncertainty.

We focus on the model proposed by Baker, Rosenberger, and DerSi-
monian (1992) and used before in Sections 29.3 and 31.4. Two of the main
advantages of this family are ease of computation in general, and the ex-
istence of a closed-form solution for several of its members, at least in the
initial formulation. Molenberghs, Kenward, and Goetghebeur (2001) used
this family of models in a reanalysis of the Slovenian plebiscite data of
Rubin, Stern, and Vehovar (1995).

31.5.1 General Principle
It is useful to distinguish between two types of statistical uncertainty. The
first, statistical imprecision, is due to finite sampling. The second source of
uncertainty, due to incompleteness, will be called statistical ignorance. Sta-
tistical imprecision is classically quantified by means of estimators (stan-
dard error and variance, confidence regions, etc.) and properties of esti-
mators (consistency, asymptotic distribution, efficiency, etc.). To quantify
statistical ignorance, it is useful to distinguish between complete and ob-
served data.

For the BRD model, the 16 complete-data degrees of freedom and the 9
observed-data degrees of freedom are represented in Table 29.1. A sample
from this table produces empirical proportions representing the π’s with
error. This imprecision disappears as the sample size tends to ∞. What re-
mains is ignorance regarding the redistribution of all except the first four πs
over the missing outcome value. This leaves ignorance regarding any prob-
ability in which at least one of the first or second indices is equal to 0 and
hence regarding any derived parameter of scientific interest. For such a pa-
rameter, θ say, a region of possible values that is consistent with Table 29.1
is called a region of ignorance. Analogously, an observed incomplete table
leaves ignorance regarding the would-be observed complete table, which
in turn leaves imprecision regarding the true complete probabilities. The
region of estimators for θ consistent with the observed data provides an
estimated region of ignorance. The 100(1 − α)% region of uncertainty is a
larger region in the spirit of a confidence region, designed to capture the
combined effects of imprecision and ignorance. Various ways of constructing
regions of ignorance and regions of uncertainty are conceivable.

In standard statistical practice, ignorance is hidden in the consideration
of a single identified model, such as models BRD1–BRD9. Among those,
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BRD6–BRD9 are said to saturate the degrees of freedom. To be precise,
they saturate the observed data degrees of freedom. A model that would
saturate the complete data degrees of freedom, would need 15 rather than
8 parameters. From a (classical) observed data perspective, such a model
would be overspecified, as would be any model with 9 or more parameters.
Note that it is possible to construct an overspecified model with degrees of
freedom less than those in an identifiable saturated model at the observed
level.

We construct three such overspecified models. Write the missingness part
of the model as (29.8). We will consider two models (Models 10 and 11) with
a single sensitivity parameter, while Model 12 will include two sensitivity
parameters. Model 10 is defined as (αk, βjk) with

βjk = β0 + βj + βk, (31.2)

an additive decomposition for missingness on the independence question.
Similarly, Model 11, (αjk, βj), uses

αjk = α0 + αj + αk, (31.3)

an additive decomposition of the missingness parameter on the attendance
question.

Finally, we define Model 12, (αjk, βjk), as a combination of both (31.2)
and (31.3).

We will now outline the general principle behind considering such over-
specified models and then focus on the sensitivity parameter approach.

We start from the classical approach of fitting a single identifiable model
M0 to incomplete data (e.g., a particular BRD model). Maximum likelihood
estimation produces a parameter estimate π̂ along with measures of im-
precision (estimated standard errors). From π̂ four predicted contingency
tables can be derived as in Table 29.1.

The fitted complete tables collapse back to fitted values for the incom-
plete Table 29.1. Contrasting the latter with the observed data shows the
goodness-of-fit of model M0. If there is substantial lack of fit, the original
model M0 needs to be reconsidered. Lack of fit has strong bearings on im-
precision and, as we want to focus on ignorance, we will assume the fit is
acceptable. In what follows, models with poor fit (or boundary solutions)
will be dropped.

One can now range through all possible complete tables, which collapse
back to the M0 predicted incomplete table. One could call such tables ‘M0
compatible’ and we denote the set by S(M0). The general principle is that
to each table in S(M0) an extended model M∗ will be fitted. This implies
that each table produces an estimated parameter vector and a confidence
region. The union of those are termed region of ignorance and region of
uncertainty , respectively. For scalar parameters the terms interval of igno-
rance (II) and interval of uncertainty (IU) will be used.
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Apart from explicitly constructing the (real-valued) set of complete ta-
bles, one can proceed in an alternative way. This is done by fitting the model
M∗ directly to the observed data. This implies that the general principle
translates to fitting an overspecified model to the observed data, which will
produce a range of parameters maximizing the observed data likelihood.
This range is then the region of ignorance. If this route is followed, there
are technically several ways to find the region. One method is described
next.

31.5.2 Sensitivity Parameter Approach
The overspecification can be removed by considering a minimal set of pa-
rameters η, conditional upon which the others, µ, are identified. We term
η the sensitivity parameter and µ the estimable parameter. Such a tech-
nique has been proposed for specific examples by Nordheim (1984) and
Vach and Blettner (1995). Foster and Smith (1998) expand on this idea
and by referring to Baker and Laird (1988) and to Rubin, Stern, and Ve-
hovar (1995), they suggest imposing a prior distribution on a range. Each
value of η will produce an estimate µ̂(η). The union of these yields the
region of ignorance. It is important to realize that in general there will not
be a unique choice for η and hence for µ. Changing the partitioning will
produce the same region for θ = (η′, µ′)′. Models 10 and 11 have a single
sensitivity parameter. We chose η = βk and η = αk from (31.2) and (31.3),
respectively. In Model 12, both these parameters η = (βk, αk)′ are treated
as sensitivity parameters. In practice, an easy computation scheme is to
consider a grid in the sensitivity parameter space, at each value of which
the estimable parameter is maximized.

A natural estimate of the region of uncertainty is the union of confidence
regions for each µ̂(η). Note that one has to ensure that η is within the
allowable range. Because the choice of sensitivity parameter is non-unique
and a proper choice can greatly simplify the treatment. Another issue is
whether the parameters of direct scientific interest can overlap with the
sensitivity set or not (White and Goetghebeur 1998). For example, if the
scientific question is a sensitivity analysis for treatment effect, then one
should consider the implications of including the treatment effect parame-
ters in the sensitivity set. There will be no direct estimate of imprecision
available for the sensitivity parameter. Clearly, the particular choice of sen-
sitivity parameter will not affect the estimate of the region of ignorance.
However, the region of uncertainty is built from confidence regions that are
conditional on a particular value of the sensitivity parameter and hence
will typically vary with the choice made.
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FIGURE 31.6. Monotone Patterns. Theoretical distribution over complete and
observed cells. (Monotone patterns).

31.5.3 Models for Monotone Patterns and a Bernoulli
Experiment

To further illustrate the II ideas, let us focus on the relatively simple set-
ting of two binary outcomes, of which the first one is always observed but
the second one is missing for some subjects. This setting is depicted in
Figure 31.6. Decompose the cell probabilities as

πr,ij = pijqr|ij , (31.4)

where pij parameterizes the measurement process and qr|ij describes the
non-response (or dropout) mechanism. In what follows, we will leave pij

unconstrained and consider various forms for qr|ij , as listed in Table 31.2.
In this setting, there are 7 complete-data degrees of freedom, d.f.(comp)= 7
and 5 observed-data degrees of freedom, d.f.(obs)= 5.

Model Msat (Model 5) has 3 measurement parameters and 4 dropout
parameters and saturates d.f.(comp). However, there are only 5 observed
degrees of freedom, rendering this model overspecified when fitted to the
observed data.

Three models are identified. Conventional restrictions result from as-
suming an MCAR or MAR model (Models 1 and 2, respectively). Another
identified model lets dropout depend on the potentially unobserved second
measurement, but not on the first one (Michiels and Molenberghs 1997).
Brown (1990) who proposed this estimator for normally distributed end-
points, used the term protective estimator because it can be fitted without
explicitly addressing the missingness model. We refer to it in Table 31.2
as MNAR 0. Models 2 and 3 both saturate d.f.(obs), and hence cannot
be distinguished from each other purely on statistical grounds, in terms of
the observed data. In Model 4, dropout is allowed to depend on both mea-
surements but not on their interaction. As a consequence, it overspecifies
d.f.(obs) and underspecifies d.f.(comp).

Before turning to setting (31.6), let us illustrate the ideas outlined in
Section 31.5.1 by means of the simple setting of a Bernoulli experiment
with N trials, where r denotes the number of observed successes, n − r



31.5 Interval of Ignorance 595

TABLE 31.2. Monotone Patterns. Dropout models corresponding to the setting of
Figure 31.6.

Dropout models
Model qr|ij Par. Obs. d.f. Comp. d.f.
1. MCAR qr 4 Non-sat. Non-sat.
2. MAR qr|i 5 Sat. Non-sat.
3. MNAR 0 qr|j 5 Sat. Non-sat.
4. MNAR I logit(qr|ij) = α + βi + γj 6 Oversp. Non-sat.
5. Msat logit(qr|ij) = α + βi + γj + δij 7 Oversp. Sat.

the number of observed failures, and N − n the number of unclassified
subjects. Independent of the parameterization chosen, the observed data
log-likelihood can be represented in the form

	 = r lnα + (n − r) lnβ + (N − n) ln(1 − α − β), (31.5)

with α the probability of an observed success and β the probability of
an observed failure. It is sometimes useful to denote γ = 1 − α − β. We
consider two models, of which the parameterization is given in Table 31.3.
The first one is identified, the second one is overparameterized. Here, p
is the probability of a success (whether observed or not), q1 (q2) is the
probability of being observed given a success (failure), and λ is the odds
for being observed for failures versus successes. For Model I, the latter is
assumed to be unity. Denote the corresponding log-likelihoods by 	I and
	II respectively. In both cases,

α̂ =
r

N
, β̂ =

n − r

N
.

Maximum likelihood estimates for p and q follow immediately under Model
I, either by observing that the moments (α, β) map 1–1 onto the pair (p, q)
or by directly solving 	I . The solutions are given in Table 31.3. The as-
ymptotic variance-covariance matrix for p and q is block-diagonal with
well-known elements p(1 − p)/n and q(1 − q)/N . Observe that we now ob-
tain only one solution, a strong argument in favor of the current model.

A similar standard derivation is not possible for Model II, as the triplet
(p, q1, q2) or, equivalently, the triplet (p, q, λ), is redundant. This follows
directly from Catchpole and Morgan (1997) and Catchpole, Morgan, and
Freeman (1998) whose theory shows that Model II is rank-deficient and
Model I is of full rank. Because Model I is a submodel of Model II and
saturates the observed data, so must every solution to 	II , implying the
relationships:

pq1 =
r

N
, (1 − p)q2 =

n − r

N
. (31.6)
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TABLE 31.3. Bernoulli Experiment. Two transformations of the observed-data
likelihood.

Model I (MAR) Model II (MNAR,Msat)
Parameterization:

α = pq α = pq1

β = (1 − p)q β = (1 − p)q2

γ = 1 − q γ = 1 − pq1 − (1 − p)q2

q1 = q

q2 = qλ

Solution:

p̂ = α̂

α̂+β̂
= r

n pq1 = r
N

q̂ = α̂ + β̂ = n
N (1 − p)q2 = n−r

N

r

q1
+

n − r

q2
= N

p ∈
[

r

N
,
N − n + r

N

]

Constraints (31.6) imply

p̂ =
r

Nq1
= 1 − n − r

Nq2

and hence
r

q1
+

n − r

q2
= N. (31.7)

The requirement that q1, q2 ≤ 1 in (31.6) implies a range for p:

p ∈
[

r

N
,
N − n + r

N

]
. (31.8)

Such overspecification of the likelihood can be managed in a more general
way using the method outlined in Section 31.5.2. It is not always the case
that the range for η will be an entire line or real space and hence specific
measures may be needed to ensure that η is within its allowable range.
As the choice of sensitivity parameter is non-unique, a proper choice can
greatly simplify the treatment. It will be seen in what follows that the
choice of λ as in Table 31.3 is an efficient one from a computational point
of view. In contrast, the choice θ = q2 − q1 would lead to cumbersome
computations and will not be pursued. Of course, what is understood by a
proper choice will depend on the context.
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TABLE 31.4. Bernoulli Experiment. Limiting cases for the sensitivity parameter
analysis.

Estimator λ λ = n−r
N−r λ = 1 λ = N−(n−r)

r

pλ
λr

n−r(1−λ)
r
N

r
n

N−n+r
N

qλ
n−r(1−λ)

Nλ 1 n
N

r
N−(n−r)

qλλ n−r(1−λ)
N

n−r
N−r

n
N 1

pλ
1−pλ

λ r
n−r

r
N−r

r
n−r

N−(n−r)
n−r

For example, the sensitivity parameter can be chosen from the nuisance
parameters, rather than from the parameters of direct scientific interest.
Whether the latter parameters can overlap with the sensitivity set or not is
itself an issue (White and Goetghebeur 1998). For example, if the scientific
question is a sensitivity analysis for treatment effect, then one should con-
sider the implications of including the treatment effect parameters in the
sensitivity set. There will be no direct estimate of imprecision available for
the sensitivity parameter. Alternatively, if, given a certain choice of sensitiv-
ity parameter, the resulting profile likelihood has a simple form (analogous
to the Box-Cox transformation, where conditioning on the transformation
parameter produces essentially a normal likelihood), then such a parameter
is an obvious candidate.

Given our choice of sensitivity parameter λ, simple algebra yields esti-
mates for p and q (subscripted by λ to indicate dependence on the sensi-
tivity parameter):

pλ =
α̂λ

β̂ + α̂λ
=

λr

n − r(1 − λ)
, (31.9)

qλ =
β̂ + α̂λ

λ
=

n − r(1 − λ)
Nλ

. (31.10)

Using the delta method, an asymptotic variance-covariance matrix of pλ

and qλ is seen to be built from:

V̂ar(pλ) =
pλ(1 − pλ)

Nλqλ

×
{

1 +
1 − λ

λ
(1 − pλ)[1 − pλqλ(1 − λ)]

}
, (31.11)

Ĉov(pλ, qλ) = − 1
N

pλ(1 − pλ)
1 − λ

λ
qλ, (31.12)
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TABLE 31.5. Fluvoxamine Trial. The first subtable represents the complete ob-
servations. Subjects with only the first outcome, only the last outcome, or no
outcome at all reported are presented in subtables 2, 3, and 4, respectively.

Side effects:
time 2

time 1 yes no
yes 89 13
no 57 65

26
49

2 0 14

Therapeutic effect:
time 2

time 1 no yes
no 11 1
yes 124 88

7
68

0 2 14

V̂ar(qλ) =
qλ(1 − qλ)

N

{
1 +

1 − pλ

1 − qλ

1 − λ

λ

}
.

Note that the parameter estimates are asymptotically correlated, except
when λ = 1, i.e., under the MAR assumption, or under boundary values
(pλ = 0, 1; qλ = 0). This is in line with the ignorable nature of the MAR
model (Rubin 1976). We need to determine the set of allowable values for
λ by requiring 0 ≤ pλ, qλ, λqλ ≤ 1. These six inequalities reduce to

λ ∈
[

n − r

N − r
,
N − (n − r)

r

]
.

Table 31.4 presents estimates for limiting cases. The interval of ignorance
for the success probability is thus seen to be as in (31.8). It is interesting
to observe that the success odds estimator is linear in the sensitivity para-
meter; the resulting interval of ignorance equals

odds(p) ∈
[

r

N − r
,
N − n + r

n − r

]
.

For the success probability, the variance of pλ is given by (31.11). For
the success odds, we obtain:

V̂ar(odds(pλ)) =
1

Nλqλ

pλ

1 − pλ

{
1 +

1 − λ

λ
(1 − pλ)[1 − pλqλ(1 − λ)]

}
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TABLE 31.6. Fluvoxamine Trial. Identifiable models, fitted to monotone patterns.

(1,1) (1,0) -2 logl
Side effects 83.7 12.2 28.0 4.1 495.8
Model 1 (MCAR) 59.9 68.3 20.0 22.9
Side effects 89.0 13.0 22.7 3.3 494.4
Model 2 (MAR) 57.0 65.0 22.9 26.1
Side effects 89.0 13.0 18.6 7.4 494.4
Model 3 (MNAR 0) 57.0 65.0 11.9 37.1
Therapeutic effect 13.0 1.2 4.4 0.4 386.5
Model 1 (MCAR) 122.7 87.1 41.1 29.2
Therapeutic effect 11.0 1.0 6.4 0.6 385.8
Model 2 (MAR) 124.0 88.0 39.8 28.2
Therapeutic effect 11.0 1.0 7.1 -0.1 385.8
Model 3 (MNAR 0, Unconstr.) 124.0 88.0 80.5 -12.5
Therapeutic effect 11.6 1.0 6.4 0.0 385.8
Model 3 (MNAR 0, Constr.) 123.4 88.0 68.5 0.0

and for the success logit:

V̂ar(logit(pλ)) =
1

Nλqλ

1
pλ(1 − pλ)

{
1 +

1 − λ

λ
(1 − pλ)[1 − pλqλ(1 − λ)]

}
.

For each λ, a confidence interval Cλ can be constructed for every point
within the allowable range of λ. The union of the Cλ is the interval of
uncertainty , for either p, its odds, or its logit.

31.5.4 Analysis of the Fluvoxamine Data
We focus on the setting of Table 29.1. A version for the fluvoxamine study,
based on the first and last follow-up measurements, is given in Table 31.5.
There are two patients with a non-monotone pattern of follow-up, whereas
14 subjects have no follow-up data at all. This enables us to treat these
data both from the monotone non-response or dropout perspective, as well
as from the more complicated but more general non-monotone point of
view. We will first the identifiable models and then switch to sensitivity
analysis.

31.5.4.1 Identified Models

We first consider the monotone patterns and the corresponding models of
Table 31.2. Table 31.6 shows the predicted complete tables for Models 1, 2,
and 3. The effect of ignorance is clearly seen by comparing the MAR and
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TABLE 31.7. Fluvoxamine Trial. Marginal probabilities and (log) odds ratio for
monotone patterns of side-effects data. Models 1–3: point estimate and 95% con-
fidence interval; Models 4–5: interval of ignorance (II) and interval of uncertainty
(IU); these models are defined in Section 31.5.3.

Parameter Model 1/2 Model 3 Model 4 Model 5
First Marg. II 0.43 0.43 0.43 0.43

IU [0.37;0.48] [0.37;0.48] [0.37;0.48] [0.37;0.48]

Second Marg. II 0.64 0.59 [0.49;0.74] [0.49;0.74]
IU [0.58;0.70] [0.53;0.65] [0.43;0.79] [0.43;0.79]

Log O.R. II 2.06 2.06 [1.52;2.08] [0.41;2.84]
IU [1.37;2.74] [1.39;2.72] [1.03;2.76] [0.0013;2.84]

O.R. II 7.81 7.81 [4.57;7.98] [1.50;17.04]
IU [3.95;15.44] [4.00;15.24] [2.79;15.74] [1.0013;32.89]

protective models: they provide a substantially different prediction for the
partially observed table, while producing the same deviance. In addition,
the protective model produces a boundary solution, or even an invalid
solution if predicted proportions are not constrained to lie within the unit
interval, for therapeutic effect.

We now interpret these results in terms of possible quantities of inter-
est, for instance the first and second marginal probability of side effects
and the odds ratio, capturing the association between both measurements
(Table 31.7). Models 4 and 5 will be discussed in the sensitivity analy-
sis. Models 1 and 2 are both ignorable and hence all measurement model
quantities are independent of the choice between MAR and MCAR.

The quantities in Tables 31.6 and 31.7 differ in one important way. The
former quantities are calculated conditional on the dropout pattern; the lat-
ter follow directly from the marginal measurement probabilities pij , which
are common to all three models while the dropout probabilities qr|ij depend
on the model. As a consequence, while MAR and MCAR are equivalent for
the quantities in Table 31.7, this does not carry over to the predicted cell
counts in Table 31.6. Further, the stability of the estimates in Table 31.7
(at least for Models 1–3) is in marked contrast to the variation among the
predicted cell counts in Table 31.6. These considerations suggest that sta-
bility may be restricted to certain functions of parameters in certain sets
of data.

We now introduce the non-monotone patterns into the analysis and fit
the nine identifiable BRD models of Table 29.2. The fitted counts of the
models with an interior solution are given in Table 31.8 and the marginal
quantities of interest are displayed in Table 31.9. Note that a subgroup of
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TABLE 31.8. Fluvoxamine Trial. Complete data counts for models fitted to side
effects data.

(1,1) (1,0) (0,1) (0,0) (+,+)

BRD1 84.00 12.12 28.13 4.06 0.74 0.11 5.26 0.76 118.13 17.05
60.21 67.67 20.16 22.66 0.53 0.60 3.77 4.23 84.67 95.16

BRD2 89.42 12.89 22.73 3.27 0.80 0.12 4.24 0.61 117.19 16.89
57.27 64.42 23.06 25.94 0.51 0.58 4.30 4.82 85.14 95.76

BRD3 83.67 12.22 28.02 4.09 1.17 0.00 8.16 0.00 121.01 16.31
59.85 68.25 20.04 22.85 0.83 0.00 5.84 0.00 86.57 91.11

BRD4 89.42 12.89 18.58 7.42 0.80 0.12 3.47 1.39 112.27 21.82
57.27 64.42 11.90 37.10 0.51 0.58 2.22 6.93 71.90 109.03

BRD7 89.00 13.00 18.58 7.42 1.22 0.00 8.53 0.00 117.33 20.42
57.00 65.00 11.90 37.10 0.78 0.00 5.47 0.00 75.15 102.10

BRD9 89.00 13.00 22.69 3.31 1.22 0.00 6.97 0.00 119.87 16.31
57.00 65.00 22.89 26.11 0.78 0.00 7.03 0.00 87.71 91.11

models produces invalid solutions without appropriate constraints, such as
automatically imposed by form (29.8) for the dropout model.

In spite of the fact that we are now looking at a larger class of models,
the results are comparable with those obtained for the monotone patterns.
Table 31.9 reveals that Models BRD1–9 show little variation in the marginal
probabilities and in the measure of association. Considered as an informal
sensitivity analysis, this could be seen as evidence for the robustness of
these measures. We will revisit this conclusion following a more formal
sensitivity analysis and deduce that it is strongly misleading.

31.5.4.2 Intervals of Ignorance

Turning to the overspecified models, let us consider the monotone patterns
first. In addition to the three identifiable models from Table 31.2, we now fit
overspecified Models 4 and 5 to the same data. Results for these additional
models are also given in Table 31.7.

For Model 4, there is one sensitivity parameter, which we choose to be γ
(measuring the extent of non-randomness). When γ = 0 the MAR Model 2
is recovered. The value of γ which corresponds to qr|ij = qr|j in Table 31.2
yields the protective Model 3. Because there is only one sensitivity para-
meter, a graphical representation (Figure 31.7) is straightforward. Because
among the monotone cases the first measurement is always obtained, there
is no ignorance about the first marginal probability and hence the interval
of ignorance for this quantity is still a point. This is not true for the other
two quantities.
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FIGURE 31.7. Fluvoxamine Trial. Graphical representation of intervals of ig-
norance and intervals of uncertainty for monotone patterns of psychiatric study
(side effects). The bold curve graphs the point estimates conditional on the sen-
sitivity parameter. The bold horizontal lines project the interval of ignorance on
the vertical axes. The extremes of the thin lines correspond to the interval of un-
certainty. The MAR and protective point estimates have been added to the figure.

Commonly, fitting a pair of identifiable models (e.g., Models 2 and 3) is
regarded as a sensitivity analysis. This example shows how misleading this
can be. Both models differ by about 0.05 in the second marginal probability,
but the II of Model 4 shows the range is about 0.25! Similarly, Models 2
and 3 yield virtually the same result for the odds ratio, but the II of Model
4 shows that this proximity is fortuitous.

The impact of fitting an overspecified but, at the complete-data level,
non-saturated model is seen by contrasting Model 4 with the fully saturated
Model 5. The sensitivity parameter for Model 4 is γ1 in Table 31.2. For
Model 5, the two sensitivity parameters are γ1 and δ11 (all other γ and
δ parameters need to be set to zero for classical identifiability purposes).
As expected, both models coincide for the first marginal probability. It
turns out that their respective intervals of ignorance and uncertainty for
the second marginal probability exhibit considerable overlap. In contrast,
the length of the II for the log odds ratio is now about 5 times longer. The
Model 5 lower limit of the IU is very close to zero, whereas its Model 4
counterpart shows clear evidence for a strong positive association between
both outcomes.
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TABLE 31.9. Fluvoxamine Trial. Model fit for side effects (par: number of model
parameters; G2: likelihood ratio test statistic for model fit, corresponding p-value,
estimates and 95% confidence limits for marginal probabilities and marginal (log)
odds ratio.) For Model 10 (31.2), intervals of ignorance and uncertainty are pre-
sented instead.

Marg. prob.
Model par G2 p-value First Second
BRD1 6 4.5 0.104 0.43[0.37;0.49] 0.64[0.58;0.71]
BRD2 7 1.7 0.192 0.43[0.37;0.48] 0.64[0.58;0.70]
BRD3 7 2.8 0.097 0.44[0.38;0.49] 0.66[0.60;0.72]
BRD4 7 1.7 0.192 0.43[0.37;0.48] 0.58[0.49;0.68]
BRD7 8 0.0 - 0.44[0.38;0.49] 0.61[0.53;0.69]
BRD9 8 0.0 - 0.43[0.38;0.49] 0.66[0.60;0.72]
Model 10:II 9 0.0 - [0.425;0.429] [0.47;0.75]
Model 10:IU 9 0.0 - [0.37;0.49] [0.41;0.80]

Odds ratio
Orig. scale Log scale

BRD1 7.80[3.94;15.42] 2.06[1.37;2.74]
BRD2 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD3 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD4 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD7 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD9 7.63[3.86;15.10] 2.03[1.35;2.71]
Model 10:II [4.40;7.96] [1.48;2.07]
Model 10:IU [2.69;15.69] [0.99;2.75]

By construction, the data do not provide evidence for choosing between
Models 4 and 5. Both are overspecified at the observed data level and both
encompass Models 2 and 3. Model 5 is saturated at the observed data level
as well and therefore the limits derived from it are not model-based. The
reduced width of the intervals produced under Model 4 are entirely due to
the unverifiable model assumption that the dropout probability depends
on both outcomes through their main effects only and not on the inter-
action between both outcomes. If this assumption is deemed implausible,
it can easily be avoided by including an extra degree of freedom. How-
ever, in more complicated settings, such as when covariates are included
or with continuous responses, assumptions are unavoidable in the interest
of model parsimony. Now including the non-monotone patterns, any model
within the BRD family with more than 8 parameters is non-identifiable.
To simplify the sensitivity analysis, let us consider a slightly different but
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equivalent parameterization

πr1r1,ij = pij

exp[β∗
ij(1 − r2) + α∗

ij(1 − r1) + γ∗(1 − r1)(1 − r2)]
1 + exp(β∗

ij) + exp(α∗
ij) + exp(β∗

ij + α∗
ij + γ∗)

, (31.13)

which contains the marginal success probabilities pij and forces the miss-
ingness probabilities to obey their range restrictions.

Although Models BRD1–9 have shown stability in the estimates of the
marginal parameters of interest, it has been revealed in the monotone con-
text, that such a conclusion could be deceptive. To study this further, we
consider an overspecified model, analogous to Model 4 in Table 31.2. The
choice can be motivated by observing that both BRD7 and BRD9 yield
an interior solution and differ only in the β-model. Therefore, Model 10,
defined by (31.2), will be fitted. Because one parameter is redundant, we
propose using βj as the sensitivity parameter. Although the II, obtained in
this way, is acceptable, the IU shows aberrant behavior (plot not shown),
toward larger values of the sensitivity parameter, leading to very wide IUs.
This problem is entirely due to the zero count in pattern (0,1) (see Ta-
ble 31.5), as can be seen by adding 0.5 to this zero count. The results
are presented in Figure 31.8. The resulting II and IU are presented in Ta-
ble 31.9, and they are very similar to the results for Model 4, as displayed
in Table 31.7. Due to the non-monotone patterns, there is a (very small) ig-
norance in the first marginal probability as well. Once again, it is seen that
fitting identifiable models only may be misleading because, for example,
the log odds ratio shows much more variability than seen among Models
BRD1–9.

31.6 Sensitivity Analysis and Pattern-mixture
Models

Pattern-mixture models (Chapter 30) can be of use in the context of sensi-
tivity analysis. Given there are several, quite distinct, strategies to formu-
late such models (Section 30.2), one can consider one strategy as a sensitiv-
ity analysis for another one. For example, the sensitivity of simple, identified
models can be checked using identifying restrictions (Section 30.3). Also, a
set of identifying restrictions can be considered, rather than a single one,
by way of sensitivity analysis. Thijs et al (2002) and Molenberghs et al
(2004) discuss strategies for fitting pattern-mixture models.

Obviously, one can formulate selection models for one’s primary analysis,
and then fit pattern-mixture models to assess sensitivity. This was done in
Sections 30.4 and 30.5. Michiels et al (2002) followed this route.

Molenberghs, Michiels, and Kenward (1998) formulated models that com-
bine aspects of both selection models and pattern-mixture models, and used
pseudo-likelihood ideas to fit such models.
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FIGURE 31.8. Fluvoxamine Trial. Graphical representation of intervals of igno-
rance and intervals of uncertainty for monotone patterns (side effects). A value of
0.5 is added to the zero count in pattern (1,0). The bold curve graphs the point es-
timates conditional on the sensitivity parameter. The bold horizontal lines project
the interval of ignorance on the vertical axes. The extremes of the thin lines cor-
respond to the interval of uncertainty.

31.7 Concluding Remarks

When fitting models to incomplete (longitudinal) data, especially of the
MNAR type but also of the MAR and MCAR types, it is important to
assess the sensitivity of the conclusions to unverifiable model assumptions.
Generally, a sensitivity analysis can be conducted within different frame-
works, and there are times where the setting will determine which frame-
work is the more appropriate one (for example Bayesian or frequentist),
in conjunction with technical and computational considerations. Draper
(1995) has considered ways of dealing with model uncertainty in the very
natural Bayesian framework. We have focused on local influence methods,
the interval of ignorance, and the use of pattern-mixture models. Although
these methods are useful, it ought to be clear they are by no means the
only routes to sensitivity analysis. This field, in the context of incomplete
data, is still in full development and more work will undoubtedly emerge
in times to come.




