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Generalized Linear Models

3.1 Introduction

Most models that have been proposed in the statistical literature for the
analysis of discrete repeated measurements can be considered extensions of
generalized linear models (McCullagh and Nelder 1989) to the context of
correlated observations. In this chapter, these models will be introduced,
inference will be briefly discussed, and several frequently used specific cases
will be given special attention.

3.2 The Exponential Family

A random variable Y follows a distribution that belongs to the exponential
family if the density is of the form

fly) = flo,¢) = exp {7 [y — ()] +c(y,9)} (3.1)

for a specific set of unknown parameters 6 and ¢, and for known functions
() and c(, -). Often, 6 and ¢ are termed ‘natural parameter’ (or ‘canonical
parameter’) and ‘scale parameter,” respectively.

The first two moments can easily be derived as follows. Starting from the
property [ f(y|f,¢)dy = 1 and taking the first- and second-order deriva-
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tives from both sides of the equation, we get that

/y VO f10.6) dy = 0
[167 =@ ~©)) 1616.0) dy = o

from which it directly follows that the average p = E(Y') equals ¢'(6)
and the variance 0? = Var(Y) is given by ¢¢”(0). An important im-
plication is that, in general, the mean and variance are related through

2 = (Z)w”[d/_l(u)] = ¢v(p) for an appropriate function v(u), called the
variance function.

In some of the models that will be discussed in this book, a quasi-
likelihood perspective is taken. Although the above relation between the
mean and the variance immediately follows from the density (3.1), one
sometimes starts from specifying a mean and a variance function,

EY) = pn,
Var(Y) = ¢v(p).

The variance function v(u) can be chosen in accordance with a particu-
lar member of the exponential family. If not, then parameters cannot be
estimated using maximum likelihood principles. Instead, a set of estimat-
ing equations needs to be specified, the solution of which is referred to as
the quasi-likelihood estimates. Examples of this approach will be given in
Chapter 8.

3.3 The Generalized Linear Model (GLM)

In a regression context, where one wishes to explain variability between
outcome values based on measured covariate values, the model needs to
incorporate covariates. This leads to so-called generalized linear models. Let
Yi,..., Yy be a set of independent outcomes, and let x4, ..., x N represent
the corresponding p-dimensional vectors of covariate values. It is assumed
that all Y; have densities f(y;|0;, ¢) which belong to the exponential family,
but a different natural parameter 6; is allowed per observation. Specification
of the generalized linear model is completed by modeling the means u; as
functions of the covariate values. More specifically, it is assumed that

pi = h(m) = h(zi'B),

for a known function h(:), and with 8 a vector of p fixed unknown re-
gression coefficients. Usually, h=1(-) is called the link function. In most
applications, the so-called natural link function is used, i.e., h(-) = ¥'(-),
which is equivalent to assuming 6; = x;’(3. Hence, it is assumed that the
natural parameter satisfies a linear regression model.
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3.4 Examples

3.4.1 The Linear Regression Model for Continuous Data

Let Y be normally distributed with mean g and variance o2. The density
can be written as

fly) = eXp{Ulz (yﬂ_;ﬁ)+(m(2;m2)_§2>}

which implies that the normal distribution belongs to the exponential fam-
ily, with natural parameter 6 equal to u, scale parameter ¢ equal to o2,
and variance function v(u) = 1. Hence, the normal distribution is very
particular in the sense that there is no mean-variance relation, as will be
shown to be present for other exponential family distributions. The nat-
ural link function equals the identity function, leading to the classical linear
regression model Y; ~ N (u;,0?) with p; = ;8.

3.4.2 Logistic and Probit Regression for Binary Data

Let Y be Bernoulli distributed with success probability P(Y = 1) = . The
density can be written as

fly) = exp{yln(liﬂ_)—i—ln(l—w)},

which implies that the Bernoulli distribution belongs to the exonential
family, with natural parameter 6 equal to the logit, i.e., In[r/(1 — 7)],
of 7, scale parameter ¢ = 1, with mean p = 7 and with variance function
v(m) = w(1 — 7). The natural link function is the logit link, leading to the
classical logistic regression model Y; ~ Bernoulli(7;) with In[m; /(1 — ;)] =
x;' B or equivalently
__ow(@8)
= T+ explai )]

Sometimes, the logit link function is replaced by the probit link, which is
the inverse of the standard normal distribution function, ®~!. It has been
repeatedly shown (Agresti 1990) that the logit and probit link functions
behave very similarly, in the sense that for probabilities other than extreme
ones (say, outside of the interval [0.2;0.8]) logistic and probit regression
provide approximately the same parameter estimates, up to a scaling factor
equal to 7/+/3, the ratio of the standard deviations of a logistic and a
standard normal variable.

3.4.8 Poisson Regression for Counts

Let Y be Poisson distributed with mean A. The density can be written as

fly) = exp{lylnA—A—Iny'},
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from which it follows that the Poisson distribution belongs to the exponen-
tial family, with natural parameter 6 equal to In A, scale parameter ¢ = 1,
and variance function v(\) = A. The logarithm is the natural link function,
leading to the classical Poisson regression model Y; ~ Poisson()\;), with
In\; = x;'8.

3.5 Maximum Likelihood Estimation and Inference

Estimation of the regression parameters in 3 is usually done using maxi-
mum likelihood (ML) estimation. Assuming independence of the observa-
tions, the log-likelihood is given by

> lyits — ¢(6:)] + Zc(yi7¢

i=1

(B,

1=

The score equations obtained from equating the first-order derivatives of
the log-likelihood to zero take the form

"(6:;)] = 0.

Because p; = 9¢'(0;) and v; = v(u;) = ¢"(6;), we have that

O 90; ", 090;
op o3 o

which implies the following score equations:

Zalu’z — Hz) - 0.

In general, these score equations need to be solved iteratively, using nu-
merical algorithms such as iteratively (re-)weighted least squares, Newton-
Raphson, or Fisher scoring.

Once the ML estimates have been obtained, classical inference based on
asymptotic likelihood theory becomes available, including Wald-type tests,
likelihood ratio tests, and score tests, all asymptotically equivalent.

In some cases, such as in the logistic regression model, ¢ is a known
constant. In other examples, such as the linear normal model, estimation
of ¢ may be required to estimate the standard errors of the elements in 3.
Because Var(Y;) = ¢v;, an obvious estimate for ¢ is given by

= ¢"(6;)

b= s A ()

i
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TABLE 3.1. Toenail Data. Logistic regression, ignoring the association structure.
Parameter estimates, associated standard errors, and inferences for the parame-
ters in model (3.2).

Parameter Estimate s.e.  p-value
6o -0.5571 0.1090 <0.0001
061 0.0240 0.1565 0.8780
B -0.1769 0.0246 <0.0001
03 -0.0783  0.0394 0.0470

For example, under the normal model, this would yield

~

1
~ L -
g - N—p ;(yl w’tﬁ)7
which is the mean squared error used in linear regression models to estimate
the residual variance.

We refer to McCullagh and Nelder (1989) and to Agresti (1990) for more

details on estimation and inference in the GLM’s.

3.6 Logistic Regression for the Toenail Data

As an example of logistic regression, we analyze the toenail data introduced
in Section 2.3, ignoring the correlation structure due to the repeated mea-
surements within subjects. This would be correct if measurements at differ-
ent time points would also be taken on different subjects. In Section 10.3,
the results obtained here will be used as starting values in the fitting of
more complicated models that do account for the association structure. Let
Y; be the binary outcome indicating severity of the toenail infection, for the
ith observation. A logistic model will be assumed, with linear time trends,
for both treatment groups separately. More specifically, the model is given
by

Y; ~ Bernoulli(m;),

logit(m;) = Bo+ 51Ty + Bot; + BsTits, (3.2)

in which T} is the treatment indicator for this observation, and t; is the
time-point at which the observation was taken. The results are shown in
Table 3.1. The maximized log-likelihood value equals —905.91 and could
be used in likelihood ratio tests for the validity of simpler models. Note the
significant interaction (p = 0.0470) suggesting different trends in the two
treatment groups.
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Epilepsy data
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FIGURE 3.1. Epilepsy Study. Frequency plot of the post-randomization total num-
ber of epileptic seizures, over both treatment groups.

3.7 Poisson Regression for the Epilepsy Data

As an example of Poisson regression, we analyze the epilepsy data intro-
duced in Section 2.5. Our response of interest will be the total number of
seizures a patient has experienced during the study, after randomization
took place. We want to test for a treatment effect on number of seizures,
correcting for the average number of seizures during the 12-week baseline
phase, prior to the treatment. Let Y; be the total number of seizures for
subject 7. A histogram of the observed values is given in Figure 3.1. Note
that this histogram does not correct for the fact that the subjects have not
been followed for an equal number of weeks. Let n; be the number of weeks
subject 7 has been followed; we will correct for the differences in follow-up
time by assuming that

Y, ~ Poisson()\;),
ln()\l/nl) = (o + (1Baseline; + B2T;, (33)

in which T} is the treatment indicator and where Baseline; is the baseline
seizure rate. Note that model (3.3) is equivalent to

ln()\z) = IH(’I'LZ) + ﬂ() + BlBaselinei + ﬂQTrL (34)

which is a traditional Poisson model with constant term In(n;) added to
the linear predictor. This term is often called an ‘offset’.

The results are shown in Table 3.2. The maximized log-likelihood equals
14837.31. Note the highly significant positive effect of the baseline rate.
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TABLE 3.2. Epilepsy Study. Poisson regression for the total number of epileptic
seizures. Parameter estimates, associated standard errors, and inferences for the

parameters in model (3.4).

Parameter Estimate S.e.  p-value
6o 0.8710 0.0218 <0.0001
61 0.0172 0.0002 <0.0001
B -0.4987 0.0341 <0.0001

Further, correcting for baseline rate, the treatment significantly reduces
the average weekly number of epileptic seizures (p < 0.0001).





