
29
Selection Models

29.1 Introduction

Chapters 27 and 28 have shown that, if MAR can be guaranteed to hold, a
standard analysis would follow. This is certainly true for likelihood meth-
ods, while others, in particular GEE, can be adjusted for the MAR case
(Section 27.5).

However, only rarely is such an assumption known to hold (Murray and
Findlay 1988). Nevertheless, ignorable analyses may provide reasonably
stable results, even when the assumption of MAR is violated, in the sense
that such analyses constrain the behavior of the unseen data to be similar
to that of the observed data (Mallinckrodt et al 2001ab). A discussion of
this phenomenon in the survey context has been given in Rubin, Stern, and
Vehovar (1995). These authors argue that, in rigidly controlled experiments
(some surveys and many clinical trials), the assumption of MAR is often
reasonable. Second, and very importantly for such studies as confirmatory
trials, an MAR analysis can be specified a priori without additional work
relative to a situation with complete data. Third, though MNAR models
are more general and explicitly incorporate the dropout mechanism, the
inferences they produce are typically highly dependent on untestable and
often implicit assumptions regarding the distribution of the unobserved
measurements given the observed measurements. The quality of the fit
to the observed data need not reflect at all the appropriateness of the
implied structure governing the unobserved data. This point is irrespective
of the MNAR route taken, whether a parametric model of the type of
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Diggle and Kenward (1994) or Molenberghs, Kenward, and Lesaffre (1997)
is chosen, or a semiparametric approach such as in Robins, Rotnitzky, and
Scharfstein (1998). Hence, in incomplete-data settings, a definitive MNAR
analysis does not exist. To explore the impact of deviations from the MAR
assumption on the conclusions, one should ideally conduct a sensitivity
analysis (Chapter 31), within which MNAR models of the selection type
as described in this chapter and pattern-mixture models (Chapter 30) can
play a major role. See also Verbeke and Molenberghs (2000, Chapter 17–
20), for a discussion in the context of continuous longitudinal data.

Diggle and Kenward (1994) describe a modeling procedure for continuous
longitudinal data, also discussed in Diggle et al (2002, Chapter 11) and Ver-
beke and Molenberghs (2000, Chapter 17). Based on the multivariate Dale
model (Section 7.7), Molenberghs, Kenward, and Lesaffre (1997) proposed
a model for repeated ordinal outcomes with MNAR dropout. This model
will be described in Section 29.2. The work on incomplete categorical data
is vast. Baker and Laird (1988) develop the original work of Fay (1986) and
give a thorough account of the modelling of contingency tables in which
there is one response dimension and an additional dimension indicating
whether the response is absent. Baker and Laird use loglinear models and
the EM algorithm for the analysis. They pay particular attention to the
circumstances in which no solution exists for the non-random dropout mod-
els. Such non-estimability is also a feature of the models we use below, but
the more complicated setting makes a systematic account more difficult.
Stasny (1986) and Conaway (1992, 1993) consider non-random missingness
models for categorical longitudinal data. Baker (1995) allows for intermit-
tent missingness in repeated categorical outcomes. Baker, Rosenberger, and
DerSimonian (1992) present a method for incomplete bivariate binary out-
comes with general patterns of missingness. The model was adapted for the
use of covariates by Jansen et al (2003) and is presented in Section 29.3.
In both cases, the method is illustrated using the fluvoxamine study, in-
troduced in Section 2.4 and analyzed before in Sections 6.5, 7.2.4, and
7.11. These methods will be employed in Chapter 32 to develop sensitivity
analysis tools.

29.2 An MNAR Dale Model

Molenberghs, Kenward, and Lesaffre (1997) proposed a model for longitudi-
nal ordinal data with non-random dropout, i.e., the missingness mechanism
was assumed to be MNAR, which combines the multivariate Dale model for
longitudinal ordinal data with a logistic regression model for dropout. The
resulting likelihood can be maximized relatively simply, using the fact that
all stochastic outcomes are of a categorical type, using the EM algorithm. It
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means that the integration over the missing data, needed to maximize the
likelihood of Diggle and Kenward (1994), is replaced by finite summation.

29.2.1 Likelihood Function
We will derive a general form for the likelihood for longitudinal categor-
ical data with non-random dropout and introduce particular functional
forms for the response, using the multivariate Dale model developed by
Molenberghs and Lesaffre (1994), see also Section 7.7, and for the dropout
process, using a simple logistic regression formulation.

We adopt the contingency table notation, outlined in Section 7.1. Assume
we have r = 1, . . . , N design levels in the study, characterized by covariate
information Xr. Let there be Nr subject at design level r. Let the outcome
for subject i at level r be a c level ordinal categorical outcome is designed
to be measured at occasions j = 1, . . . , n, denoted by Yrij . In principle,
we could allow the number of measurement occasions to be different across
subjects, but in an incomplete data setting, it is often sensible to assume
that the number of measurements at the design stage is constant. Extension
to the more general case is straightforward.

As in (7.1), the outcomes at level r are grouped into a contingency table
Zc∗

r (k1 . . . kn). The cumulative version is Zc
r(k1 . . . kn) as in (7.2). We have

added the superscript c to refer to the (possibly hypothetical) complete
data. Shorthand notation is Zc∗

r (k) and Zc
r(k), and the corresponding cell

probabilities are µc∗
r (k) and µc

r(k). The corresponding vectors are Zc∗, Zc,
µc∗, and µc, respectively.

Any model of the general family described in Section 7.3 can be used,
with in particular the multivariate Dale model. The essence is a set of link
functions:

ηc
r(µ

c
r) = Xc

rβ. (29.1)

Specific choices are discussed in Section 7.3, with in particular the multi-
variate probit model (Section 7.6) and the multivariate Dale model (Sec-
tion 7.7). Also the Bahadur model (Section 7.2) can be employed.

We now also need to model the missingness or, in this particular case, the
dropout process. Assume the random variable D can take values 2, . . . , n+
1, the time at which a subject drops out, where D = n + 1 indicates
no dropout. The value D = 1 is not included since we assume at least
one follow-up measurement is available. The hypothetical full data consist
of complete data and the dropout indicator. The full data, Zc∗

r , contain
components Zc∗

rdk1...kn
with joint probabilities:

νc∗
rdk1...kn

= µc∗
rk1...kn

(β) φrd|k1...kn
(ψ), (29.2)

where the ψ parameterizes the dropout probabilities φrd|k1...kn
. We typi-

cally assume both parameters are distinct but this is, strictly speaking, not
necessary.
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Assume that the distribution of D may depend both on the past history
of the process, denoted by Hd = (k1, . . . , kd−1) for D = d, and the current
outcome category kd, but not on the process after that time. The advantage
in modeling terms is that the set of unobserved outcomes, relevant to the
modeling taks, is a singleton. Also, it is usually deemed plausible in time-
ordered longitudinal data, that there is no additional information on the
dropout process in the future measurements, given the history and the
current, possibly unobserved, measurement.

Factorization (29.2) was made in terms of cell probabilities, superscripted
with ∗. The factorization in terms of cumulative probabilities is identical
and obtained upon dropping the superscript ∗.

Consequently,

φc∗
rd|k1...kn

(ψ)

= φc∗
rd|k1...kd

(ψ)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d−1∏
t=2

[1 − prt(Ht, kt; ψ)] prd(Hd, kd; ψ) if D ≤ n,

T∏
t=2

[1 − prt(Ht, kt; ψ)] if D = n + 1.

(29.3)

where
prd(Hd, kd; ψ) = P (D = d|D ≥ d, Hd, kd; Wr; ψ).

Here, Wr is a set of covariates, used to model the dropout process. Expres-
sion (29.3) is similar to (27.14)–(27.15), used in the context of weighted
generalized estimating equations. The difference is that here dropout is
allowed to depend on the current, possibly unobserved, measurement.

Molenberghs, Kenward, and Lesaffre (1997) specified the model for the
dropout probabilities by logit links, and assuming a linear relationship be-
tween the log-odds and the original response. However, the latter is not
necessary. For example, non-linear relations and ones involving interactions
between the response variables and the covariates could be used. Here, we
expect that dropout does not depends on observations preceding kd−1, and
thus only depends on kd−1 and kd, but an extension would be straightfor-
ward:

logit[prd(Hd, kd; ψ)] = ψ0 + ψ1kd−1 + ψ2kd.

This model can also be extended by allowing dependence on covariates
Wr. The case ψ2 = 0 corresponds to a MAR dropout process and the case
ψ1 = ψ2 = 0 to a MCAR dropout process.

With dropout occurring, we will not observe Zc
r but only Zr, a partially

classified table, with corresponding probabilities νr. The components of νr

are simple linear functions of the components νc
r . This is true for both the

cell counts and the cumulative counts.
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The multinomial log-likelihood is

	(β, ψ; Z∗) = ln

(
1∏N

1 Z∗
r !

)
+

N∑
r=1

(Z∗
r)

′ ln(νr), (29.4)

with the components of νr summing to one. The kernel of the log-likelihood
is the sum of two contributions. For the complete sequences we have,

	1(β, ψ; Z∗) =
N∑

r=1

∑
(k1,...,kn)

Z∗
r,n+1,k1,...,kn

× log

{
µ∗

rk1...kn
(β)

n∏
t=2

[1 − prt(Ht, kd; ψ)]

}
,

and similarly for the incomplete sequences (say r = N1 + 1, . . . , N = N1 +
N2):

	2(β, ψ; Z∗)

=
N∑

r=1

n∑
d=2

∑
(k1,...,kd−1)

Z∗
rdk1,...,kd−1

× ln

{
d−1∏
t=2

[1 − prt(Ht, kt; ψ)]
c∑

kd=1

µ∗
rk1...kd

prd(Hd, kd; ψ)

}
.

We note that, when the probability of dropout does not depend on kd,
i.e., when the dropout process is MAR, the second part of the likelihood
partitions into two components, the first for the response process involving
β only and the second for the dropout process involving ψ only. When the
missingness mechanism is MNAR, the resulting likelihood is complex, but
the processes of maximization for β and for ψ can be separated through
the use of the EM algorithm (Dempster, Laird, and Rubin 1977), outlined
in Section 28.3. Details are provided in the next section.

29.2.2 Maximization Using the EM Algorithm
We will now show how the likelihood derived in Section 29.2.1 can be maxi-
mized using the EM algorithm (Dempster, Laird, and Rubin, 1977; see also
Section 28.3), where dropout and response components of the likelihood are
maximized separately within each iteration of the algorithm.

Let (β(0), ψ(0)) be initial parameters, which can be found from, e.g., a
complete case analysis, an available case analysis, or a simple method of
imputation. Given current values (β(t), ψ(t)) for the parameters, the E step
computes the objective function, which is in the case of the missing data
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problem equal to the expected value of the observed data log-likelihood,
given the observed data and the current parameters:

Q
[
(β, ψ)|(β(t), ψ(t))

]
= E

{
	
[
(β, ψ)|Zc∗

r,d,k1...kn

] |Z∗
rdk1...kd−1

, (β(t), ψ(t))
}

.

Due to the linearity of the complete data log-likelihood, it is natural
to consider the expectations in terms of counts of contingency table Zc∗

r .
Consider now the cell count for a particular joint outcome (k1, . . . , kn)
with dropout time d, i.e., Zc∗

rdk1...kn
. The corresponding observed count is

Z∗
rdk1...kd−1

. It can be shown that the conditional expectation for this cell
count given the history can be written as

E(Zc∗
rdk1...kd

|Z∗
rdk1...kd−1

, β, ψ)

= Z∗
rdk1...kd−1

µc∗
rk1...kd

(β)prd(Hd, kd, ψ)∑
kd

µc∗
rk1...kd−1kd

(β)prd(Hd, kd, ψ)
. (29.5)

Consequently, the maximization step of the EM cycle requires as input only
the expectations E(Zc∗

rdk1...kd
|Zrdk1...kd−1 , β, ψ) for kd = 1, . . . c. Given this

the likelihood can be partitioned into separate components for the response
variable and dropout measurements. Each can be maximized separately
using conventional likelihood methods.

To summarize, the two steps of the EM algorithm are as follows.

1. Expectation. Predict Zc∗
rdk1...kd

, kd = 1, . . . , c for d < n + 1, given

current estimates of β and ψ,
(
β(t), ψ(t)

)
:

E
(
Zc∗

rdk1...kd
|Z∗

rdk1...kd−1
, β(t), ψ(t)

)

= Z∗
rdk1...kd−1

.
µc∗

rk1...kd

(
β(t)
)

prd

(
Hd, kd, ψ

(t)
)

∑
kd

µc∗
rk1...kd−1kd

(
β(t)
)

prd

(
Hd, kd, ψ

(t)
) .

2. Maximization. Maximize separately the kernels of the two compo-
nents of the likelihood corresponding to the response variable and
dropout measurements with respect to β and ψ:

	c(β, Zc∗) =
N∑

i=1

n+1∑
d=2

∑
(k1,...,kd)

Zc∗
rdk1...kd

ln
(
µ∗

rk1...kd
(β)
)
,

	c(ψ, Zc∗) =
N∑

i=1

∑
(k1,...,kn)

Zc∗
r,n+1,k1...kn

ln

(
n∏

t=2

{1 − prt(Ht, kt; ψ)}
)

+
N∑

i=1

n∑
d=2

∑
(k1,...,kd)

Zc∗
rdk1...kd
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× ln

(
d−1∏
t=2

[1 − prt(Ht, kt; ψ)] prd(Hd, kd; ψ)

)
.

The log-likelihood for the measurement model can be maximized using a
Fisher scoring algorithm, as discussed in Sections 7.3 and 7.7.

For the dropout portion of the model, one proceeds as follows. By taking
each time of measurement and conditioning on the number of units still
present at that time, an overall likelihood can be assembled from inde-
pendent components and, given kd, this can be seen to be the likelihood
of a conventional logistic regression. The maximum likelihood estimate of
ψ can then be obtained simply using iteratively reweighted least squares
(McCullagh and Nelder 1989, Section 4.4), or any other tool to maximize
a logistic regression based likelihood.

Observe that not only the EM algorithm itself is iterative, but that each
M step consists of a pair of iterative maximizations. A way to speed up
the EM algorithm is to restrict the iterative schemes in the M step to only
a few iterations. This yields a so-called generalized EM algorithm (GEM,
Dempster, Laird, and Rubin 1977). Rather than fully maximizing the re-
sponse log-likelihood and the dropout log-likelihood, one can reduce the
number of iterations for either or both of the two maximizations, possibly
to one.

Two of the main drawbacks of the EM algorithm are its typically very
slow rate of convergence and its lack of direct provision of a measure of
precision for the maximum likelihood estimates. Several proposals for over-
coming these limitations have been made in the literature, and were dis-
cussed in some detail in Sections 28.3.3, 28.3.4, and 28.3.5. Molenberghs,
Kenward, and Lesaffre (1997) accelerated convergence using a diagonal ma-
trix analogous to the rate matrix introduced by Meng and Rubin (1991,
Eq. 2.2.1). Approximations to the observed Fisher information were found
through the technique termed EM-aided differentiation by Meilijson (1989).
This technique is easy to implement as it requires a negligible amount of
extra code. Standard errors and Wald statistics were computed directly
from the observed information and score tests are also relatively simple
to compute; calculation of the scores being straightforward. Alternatively,
inferences can be based on likelihood ratios; the observed data likelihood
is not difficult to evaluate in the current multinomial setting.

All computations were carried out in the statistical programming lan-
guage GAUSS. As a convergence criterion the L∞ norm of the relative
observed data score vector was required to be smaller than 10−3.

29.2.3 Analysis of the Fluvoxamine Data
The data were introduced in Section 2.4 and analyzed before in Sections 6.5,
7.2.4, and 7.11. Analyses of the data, assuming MAR, are described in
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TABLE 29.1. Fluvoxamine Trial. Summary of the ordinal therapeutic outcomes at
three follow-up times. (For example, category 241 corresponds to a classification
of 2 on the first visit, 4 on the second visit, and 1 on the third visit; a ∗ in one
of the positions indicates dropout.)

Cat # Cat # Cat # Cat #
Completers

111 10 211 32 311 12 411 1
112 212 1 312 1 412
113 213 313 413
114 214 1 314 414

121 1 221 13 321 35 421 5
122 222 16 322 14 422 5
123 1 223 1 323 1 423
124 224 3 324 1 424 1

131 231 1 331 6 431 13
132 232 2 332 5 432 13
133 233 2 333 3 433 5
134 234 334 1 434

141 241 1 341 1 441 4
142 242 342 2 442 2
143 243 1 343 443 4
144 244 344 444 3

Dropout after 2nd visit
11* 3 21* 3 31* 41*
12* 22* 7 32* 7 42* 2
13* 23* 3 33* 3 43* 5
14* 24* 2 34* 1 44* 8

Dropout after 1st visit
1** 4 2** 6 3** 9 4** 12

Molenberghs and Lesaffre (1994) and Kenward, Lesaffre, and Molenberghs
(1994).

From the initially recruited subjects, 14 were not observed at all after
the start, 31 and 44 patients, respectively, were observed on the first only
and first and second occasions and 224 had complete observations. We omit
from the current analyses two patients with non-monotone missing values,
leaving 299 in the current analyses. We summarize the therapeutic and side
effects results in two sets of contingency tables, Tables 29.1 and 29.2.
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TABLE 29.2. Fluvoxamine Trial. Summary of the ordinal side effects outcomes at
three follow-up times. (For example, category 241 corresponds to a classification
of 2 on the first visit, 4 on the second visit, and 1 on the third visit; a ∗ in one
of the positions indicates dropout.)

Cat # Cat # Cat # Cat #
Completers

111 86 211 25 311 1 411 2
112 5 212 6 312 412 1
113 1 213 313 413
114 214 314 414

121 3 221 28 321 1 421
122 222 39 322 5 422 1
123 7 223 4 323 423
124 224 324 424

131 231 331 431
132 232 4 332 3 432
133 233 333 2 433
134 234 334 434

141 241 341 441
142 242 342 442
143 243 343 443
144 244 344 444

Dropout after 2nd visit
11* 13 21* 3 31* 1 41*
12* 4 22* 9 32* 1 42*
13* 23* 3 33* 5 43*
14* 24* 1 34* 2 44* 2

Dropout after 1st visit
1** 9 2** 6 3** 7 4** 9

For the data on therapeutic effect as well as on side effects we present
four sets of parameter estimates. Each set is the result of fitting a marginal
proportional odds model to the response and, for non-ignorable models,
a logistic regression model to the dropout process. In the first set, the
response model alone is fitted to the data from those subjects with complete
records. Such an analysis will be consistent with an analysis of the full data
set if the dropout process is completely random. The remaining three sets
of estimates are obtained from fitting models with non-random, random,
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TABLE 29.3. Fluvoxamine Trial. Maximum likelihood estimates (standard errors)
for side effects.

Parameter Completers MCAR MAR MNAR
Measurement model

intercept 1 1.38(1.00) -0.60(0.82) -0.60(0.82) -0.78(0.79)
intercept 2 4.42(1.04) 1.59(0.83) 1.59(0.83) 1.31(0.80)
intercept 3 6.32(1.14) 2.90(0.85) 2.90(0.85) 2.51(0.82)

age -0.22(0.08) -0.20(0.07) -0.20(0.07) -0.19(0.07)

sex -0.35(0.25) -0.03(0.22) -0.03(0.22) 0.00(0.21)

duration (visit 1) -0.05(0.08) -0.13(0.05) -0.13(0.05) -0.12(0.05)
duration (visit 2) -0.10(0.08) -0.20(0.06) -0.20(0.06) -0.21(0.05)
duration(visit 3) -0.13(0.08) -0.19(0.07) -0.19(0.07) -0.23(0.06)

severity (visit 1) 0.00(0.16) 0.26(0.13) 0.26(0.13) 0.28(0.12)
severity (visit 2) 0.09(0.16) 0.33(0.13) 0.33(0.13) 0.34(0.13)
severity (visit 3) 0.17(0.16) 0.41(0.13) 0.41(0.13) 0.40(0.13)

Association
visits 1 and 2 2.89(0.33) 3.12(0.30) 3.12(0.30) 3.26(0.29)
visits 1 and 3 2.06(0.32) 2.33(0.35) 2.33(0.35) 2.30(0.32)
visits 2 and 3 2.86(0.34) 3.16(0.37) 3.16(0.37) 3.18(0.36)
visits 1, 2, and 3 0.45(0.76) 0.48(0.79) 0.48(0.79) 0.61(0.71)

Dropout model
ψ0 -1.90(0.13) -3.68(0.34) -4.26(0.48)
ψ1 1.08(0.54)
ψ2 0.94(0.15) 0.18(0.45)
−2 log-likelihood 1631.97 1591.98 1587.72

and completely random dropout, defined in terms of constraints on the ψ
parameters.

We consider first the analysis of the side-effects data, Table 29.3. Co-
variates have been included in the response component of the model. The
relationships with two covariates, sex and age, have been held constant
across visits, the relationships with the other two covariates, duration and
severity, have been allowed to differ among visits.

Conditional on acceptance of the validity of the overall model we can,
by examining the statistical significance of the parameters in the dropout
model, test for different types of dropout process. Three statistics, likelihood-
ratio, Wald, and score can be computed for each null hypothesis, and we
present each in Table 29.4 for comparisons of (1) MNAR versus MAR and
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TABLE 29.4. Fluvoxamine Trial. Side effects. Test statistics for dropout mecha-
nism.

MNAR vs MAR MAR vs MCAR
Wald 4.02 (p = 0.045) 38.91 (p < 0.001)
LR 4.26 (p = 0.039) 39.99 (p < 0.001)
score 4.24 (p = 0.040) 45.91 (p < 0.001)

of (2) MAR versus MCAR. In line with Diggle and Kenward (1994) and
Molenberghs, Kenward, and Lesaffre (1997), it is tempting to assume both
statistics follow a null asymptotic χ2

1 distribution. Jansen et al (2005) show
that great care has to be taken with the test for MNAR against MAR (see
Chapter 31).

All tests provide weak evidence for MNAR in the context of the assumed
model. They also strongly support MAR over MCAR. But again, one has to
be very cautious with such conclusions. Section 31.3 will study sensitivity
of the MNAR model to the model assumptions made. Further detail on the
precise nature of sensitivity can be found in Jansen et al (2005).

The estimated dropout model is, with simplified notation:

logit[P (dropout)] = −4.26 + 1.08Yc + 0.18Ypr

for Ypr and Yc the previous and current observations, respectively. It is
instructive to rewrite this in terms of the increment and sum of the succes-
sive measurements. Standard errors of the estimated parameters have been
added in square brackets.

logit[P (dropout)] = −4.26 + 0.63[0.08](Yc + Ypr) + 0.45[0.49](Yc − Ypr).

It can be seen that the estimated probability of dropout increases greatly
with large side effects. The corresponding standard error is comparatively
small. Although the coefficient of the increment does not appear negligible
in terms of its absolute size, in the light of its standard error it cannot
be said to be significantly different from zero. This reflects the lack of
information in these data on the coefficient of the increment in the dropout
model.

Although the evidence of dependence of the dropout process on previous
observation is overwhelming, that for MNAR is borderline.

It is worth noting that there are substantial differences between the
analyses of the completers only and full datasets with respect to the pa-
rameter estimates of the response model. In the presence of an MAR
and MNAR process, the former analysis produces inconsistent estimators.
Given the clear association of side-effect occurrence and the covariates age,
duration, and severity, we investigated the relationship between these and
dropout, but found only marginal evidence for a dependence on sex and
severity.
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TABLE 29.5. Fluvoxamine Trial. Maximum likelihood estimates (standard errors)
for therapeutic effect.

Parameter Completers MCAR MAR MNAR
Measurement model

intercept 1 -2.36(0.17) -2.32(0.15) -2.32(0.15) -2.33(0.14)
intercept 2 -0.53(0.13) -0.53(0.12) -0.53(0.11) -0.52(0.10)
intercept 3 1.03(0.14) 0.90(0.11) 0.90(0.12) 0.90(0.09)

visit 2 - visit 1 1.38(0.12) 1.22(0.10) 1.22(0.10) 1.32(0.11)
visit 3 - visit 1 2.70(0.19) 2.58(0.18) 2.58(0.18) 2.83(0.19)

association
visits 1 and 2 2.58(0.24) 2.57(0.22) 2.57(0.22) 2.46(0.20)
visits 1 and 3 0.85(0.23) 0.86(0.24) 0.86(0.24) 0.77(0.19)
visits 2 and 3 1.79(0.25) 1.79(0.25) 1.79(0.25) 1.59(0.20)
visits 1, 2 and 3 0.39(0.52) 0.27(0.52) 0.27(0.52) 0.22(0.23)

Dropout model
ψ0 -1.88 (0.13) -2.56(0.37) -2.00(0.48)
ψ1 -1.11(0.42)
ψ2 0.26(0.13) 0.77(0.19)
−2 log-likelihood 2156.91 2152.87 2145.93

In Table 29.5, the results from the analyses of the therapeutic effect
are presented. Here, apart from overall effects of time, no covariates are
included because all showed negligible association with the response. Inter-
estingly the comparison of the three dropout models (Table 29.6) produces
somewhat different conclusions about the dropout mechanism, when com-
pared to those of the side-effects analysis (Table 29.4).

Here, the three classes of tests again behave consistently. The evidence
for MNAR is strong, but the same warnings about the sensitivity of the
MNAR model to modeling assumptions apply here. The tests comparing
the MAR and MCAR processes show only moderate evidence of a dif-
ference. The latter tests are not strictly valid however in the presence of
MNAR missingness. It is interesting that a comparison of the MCAR and
MAR models, which is much easier to accomplish than the comparison of
MAR and MNAR, gives little suggestion that such a relationship might
exist between dropout and response. This is partly a consequence of the
nature of the dropout relationship in this example. With the side-effects
the association between dropout and response was dominated by the av-
erage response. With the therapeutic observations however dependence of
dropout probability is largely on the measurement increment, also a fea-
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TABLE 29.6. Fluvoxamine Trial. Therapeutic effect. Test statistics for dropout
mechanism.

MNAR vs MAR MAR vs MCAR
Wald 6.98 (P = 0.008) 3.98 (P = 0.046)
LR 6.94 (P = 0.008) 4.03 (P = 0.044)
score 9.31 (P = 0.002) 4.02 (P = 0.045)

ture of the analyses in Diggle and Kenward (1994). From the fitted MNAR
model we have:

logit{P (dropout)} = −2.00 − 1.11Yc + 0.77Ypr

= −2.00 − 0.17[0.17](Yc + Ypr) − 0.94[0.28](Yc − Ypr).

A plausible interpretation would be that dropout decreases when there is
a favorable change in therapeutic effect, and increases only comparatively
slightly when there is little therapeutic effect. Larger differences can also be
seen among the parameter estimates of the response component, between
the MCAR and MAR models on one hand and the non-random dropout
model on the other, than are apparent in the analysis of the side effects.
The estimated differences between visits are greater in the MNAR model;
in the MAR analysis no account is taken of the dependence of dropout on
increment, so the sizes of the changes between visits is biased downwards.
These differences are however of little practical importance given the sizes
of the associated standard errors. Similarly, the statistical dependence be-
tween repeated measurements as measured by the log odds-ratios is smaller
under the MNAR model, possibly because of the effect of selection under
the MAR model.

29.3 A Model for Non-monotone Missingness

In Section 29.2, we presented a model for ordinal data but confined miss-
ingness to the dropout type. Here, general missingness will be studied, in
the specific context of a bivariate binary outcome.

Baker, Rosenberger, and DerSimonian (1992) considered a log-linear type
of model for two binary outcomes subject to incompleteness. A main ad-
vantage of this method is that it can easily deal with non-monotone miss-
ingness.

As in Section 29.2, let r = 1, . . . , N index distinct covariate levels. In
this section, the index r will be suppressed from notation. Let j, k = 1, 2
correspond to the outcome categories of the first and second measurement,
respectively and let r1, r2 = 0, 1 correspond to the missingness indicators
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(1 for an observed and 0 for a missing measurement). Such a setup leads to
a four-way classification. The complete data and observed data cell proba-
bilities πr1r2,jk for this setting are presented in Figure 29.1.

To accommodate (possibly continuous) covariates, as proposed by Jansen
et al (2003), we will use a parameterization, different from and extending
the original one, which belongs to the selection model family (Little 1994):

πr1r2,jk = pjkqr1r2|jk, (29.6)

where pjk parameterizes the measurement process and qr1r2|jk describes the
missingness mechanism, conditional on the measurements. In particular, we
will assume

pjk =
exp(θjk)∑2

j,k=1 exp(θjk)
, (29.7)

qr1r2|jk =
exp[βjk(1 − r2) + αjk(1 − r1) + γ(1 − r1)(1 − r2)]

1 + exp(βjk) + exp(αjk) + exp(βjk + αjk + γ)
, (29.8)

for unknown parameters θjk, βjk, αjk, and γ. A priori, no ordering is im-
posed on the outcomes. The advantage is that genuine multivariate settings
(e.g., several questions in a survey) can be handled as well. When deemed
necessary, the implications of ordering can be imposed by considering spe-
cific models and leaving out others. For example, one may want to avoid
missingness on future observations. In the current bivariate case, the index
k would have to be removed from α in the above model. To identify the
model, we set θ22 = 0 and further θjk = Xjkη. This allows the inclusion
of covariate effects that, together with (29.7), is similar in spirit to the
multigroup logistic model (Albert and Lesaffre 1986). Even though the pa-
rameters η are conditional in nature and therefore somewhat difficult to
directly interpret in case planned sequences are of unequal length (but not
in the case considered here), (29.7) allows easy calculation of the joint prob-
abilities. Such computational advantages become increasingly important as
the length of the response vector grows. If necessary, specific functions of
interest, such as a marginal treatment effect, can be derived. They will
typically take the form of non-linear functions. Arguably, a model of the
type here can be most useful as a component of a sensitivity analysis, in
conjunction with the use of different (e.g., marginal) models.

In many examples, the design matrices Xjk will be equal to each other.
Stacking all parameters will lead to the following design:

θ = Xη. (29.9)

Likewise, a design can be constructed for the non-response model parame-
ters:

δ = Wψ, (29.10)
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FIGURE 29.1. Theoretical distribution over complete and observed cells of a bi-
variate binary outcome. Tables correspond to completely observed subjects and
subjects with the second, the first, and both measurements missing, respectively.

where the vector δ stacks the βjk, αjk and γ and W is an appropriate design
matrix. The vector ψ groups the parameters of interest. For example, if
MCAR would be considered, the α and β parameters do not depend on
neither j nor k and then ψ′ = (α, β, γ). Both designs (29.9) and (29.10)
can be combined into one, using ξ = (θ′, δ′)′,

T =
(

X 0
0 W

)
,

and
φ = (η′, ψ′)′. (29.11)

The corresponding log-likelihood function can be written as:

	 =
2∑

j,k=1

y11jklnπ11jk +
2∑

j=1

y10j+ln(π10j1 + π10j2)

+
2∑

k=1

y01+kln(π011k + π012k)

+y00++ln(π0011 + π0012 + π0021 + π0022)

=
2∑

j,k=1

y11jk∑
s=1

lnπ11jk +
2∑

j=1

y10j+∑
s=1

lnπ10j+

+
2∑

k=1

y01+k∑
s=1

lnπ01+k +
y00++∑
s=1

lnπ00++.

Computation of derivatives, needed for optimization and for the calculation
of influence measures, is straightforward. A technical report can be obtained
from the authors upon request.
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FIGURE 29.2. Graphical representation of the BRD model nesting structure.

To include covariates, the design level r = 1, . . . , N needs to be intro-
duced again. In particular, with subject-specific covariates, it may be sen-
sible to use i = 1, . . . , N to index individuals.

Baker, Rosenberger, and DerSimonian (1992, BRD) consider nine identi-
fiable models, based on setting αjk and βjk constant in one or more indices.
An overview, together with the nesting structure, is given in Figure 29.2.

Whereas these authors considered the nine models in terms of the original
parameterization, they do carry over to parameterization (29.8). Interpreta-
tion is straightforward. For example, BRD1 is MCAR, in BRD4 missingness
in the first variable is constant, while missingness in the second variable
depends on its value. Two of the main advantages of this family are ease
of computation in general, and the existence of a closed-form solution for
several of its members (BRD2 to BRD9).

29.3.1 Analysis of the Fluvoxamine Data
In the analysis, all patients with known duration level are considered, leav-
ing a total of 310 out of 315 subjects in the study. In the measurement
model, the effect of duration is held constant over both visits. Regarding
the missingness model, an effect of duration is assumed in both the α and
the β parameters. Each of the 9 models is represented by a specific choice
for the design. For example, for BRD1, and using the index i for individual,
we obtain:

φ = (η1, η2, η3, η4, α, αdur, β, βdur, γ)′,

Xi =

⎛⎝ 1 0 0 durationi

0 1 0 durationi

0 0 1 durationi

⎞⎠
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TABLE 29.7. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. No covariates. Part I.

Effect BRD1 BRD2 BRD3 BRD4 BRD5
Measurement model
Intercept11 0.22(0.15) 0.20(0.15) 0.28(0.15) 0.03(0.17) 0.32(0.15)
Intercept12 -1.72(0.30) -1.74(0.30) -1.72(0.30) -1.61(0.30) -1.62(0.30)
Intercept21 -0.12(0.18) -0.12(0.18) -0.05(0.18) -0.42(0.23) -0.13(0.18)
Dropout model
α -4.72(0.71) -4.72(0.71) -4.72(0.71)
α1. -3.87(0.71)
α2. -∞
α.1 -4.27(0.71)
α.2 -∞
β -1.09(0.13) -1.09(0.13) -1.09(0.13)
β1. -1.37(0.22)
β2. -0.91(0.17)
β.1 -1.57(0.38)
β.2 -0.55(0.29)
γ 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77)
- loglik 565.96 564.55 565.07 564.55 565.34

and

Wi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 durationi 0 0 0
1 durationi 0 0 0
1 durationi 0 0 0
1 durationi 0 0 0
0 0 1 durationi 0
0 0 1 durationi 0
0 0 1 durationi 0
0 0 1 durationi 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Xi includes a time dependent intercept and a time independent
effect of duration. The Wi matrix indicates which of the nine BRD models
is considered; changing the model also changes the vector ψ.

We will consider three sets of BRD models in some detail. Tables 29.7
and 29.8 presents models (parameter estimates, standard errors, negative
log-likelihoods) without duration. In Tables 29.9 and 29.10, duration is
added as a covariate to the measurement model but not yet to the miss-
ingness model, whereas in the final set (Tables 29.11 and 29.12) the effect
of duration is included in both measurement and missingness parts of the
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TABLE 29.8. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. No covariates. Part II.

Effect BRD6 BRD7 BRD8 BRD9
Measurement model
Intercept11 0.32(0.15) 0.14(0.16) 0.16(0.17) 0.27(0.15)
Intercept12 -1.62(0.30) -1.61(0.30) -1.44(0.32) -1.72(0.30)
Intercept21 -0.13(0.18) -0.31(0.21) -0.39(0.22) -0.04(0.17)
Dropout model
α

α1. -3.93(0.71) -3.93(0.71)
α2. -∞ -∞
α.1 -4.29(0.71) -4.29(0.71)
α.2 -∞ -∞
β

β1. -1.37(0.22) -1.37(0.22)
β2. -0.91(0.17) -0.91(0.17)
β.1 -1.57(0.38) -1.56(0.37)
β.2 -0.56(0.29) -0.56(0.29)
γ 3.31(0.79) 3.51(0.84) 3.31(0.79) 3.11(0.77)
- loglik 563.97 563.70 563.97 563.70

model. Sampling zeroes in some of the cells forces some parameters to lie
on the boundary of their corresponding parameter space which, due to the
parameterization, is equal to ∞. This should not be seen as a disadvantage
of our model, as boundary solutions are a well-known feature of MNAR
models (Rubin 1996). The advantage of our parameterization is that ei-
ther an interior or a boundary solution is obtained, and never an invalid
solution.

From Tables 29.7 and 29.8, we learn that likelihood ratio tests fail to re-
ject BRD1 in favor of a more complex model, implying the simplest mech-
anism, MCAR would be adequate. However, this conclusion changes when
duration is included in the measurement model (Tables 29.9 and 29.10). The
effect of duration is highly significant, whichever of the nine BRD models
is chosen to conduct a likelihood ratio test. In addition, within Tables 29.9
and 29.10, not BRD1 but rather BRD4 provides the most adequate de-
scription. The likelihood ratio test statistic for comparing BRD1–4 equals
7.10, while those for BRD4–7 and BRD4–8 are 2.10 and 1.52, respectively.
Thus, from this set of models, one observes that duration improves the
fit and, moreover, one would be inclined to believe duration, included in
the measurement model, has the effect of changing the nature of the miss-
ingness mechanism, by making it more complex, even though it is often
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TABLE 29.9. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. Duration as covariate in the
measurement model. Part I.

Effect BRD1 BRD2 BRD3 BRD4 BRD5
Measurement model
Intercept11 0.46(0.17) 0.45(0.17) 0.53(0.17) 0.23(0.20) 0.57(0.17)
Intercept12 -1.46(0.31) -1.48(0.31) -1.46(0.31) -1.26(0.32) -1.37(0.31)
Intercept21 0.10(0.20) 0.10(0.19) 0.17(0.20) -0.25(0.23) 0.09(0.21)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α -4.71(0.71) -4.71(0.71) -4.71(0.71)
α1. -3.85(0.71)
α2. -∞
α.1 -4.24(0.71)
α.2 -∞
β -1.11(0.13) -1.11(0.13) -1.11(0.13)
β1. -1.44(0.23)
β2. -0.90(0.17)
β.1 -1.86(0.45)
β.2 -0.43(0.25)
γ 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77)
- loglik 550.15 548.31 549.12 546.60 549.39

believed that including explanatory variables (either in the model for the
outcomes or in the missingness model) may help to explain structure in the
missingness mechanism. BRD4 states that missingness at the second occa-
sion depends on the (possibly unobserved) value at that same occasion, a
so-called type I model, in the typology of Baker (2000), in contrast to type
II models, where missingness in a variable depends at least also on other,
possibly incomplete, assessments. Obviously, such models are particularly
vulnerable to assumptions made.

A key conclusion is that, up to this point, no covariate effects have been
considered on the missingness parameters. An analysis including duration
in the missingness part of the model should be entertained and examined
carefully. When switching to Tables 29.11 and 29.12, the conclusions do
change drastically. First, all evidence for non-MCAR missingness disap-
pears as, based on likelihood ratio tests, BRD1 comes out as the most
adequate description of all nine models. Second, comparing corresponding
BRD models between Tables 29.9 and 29.10 on the one hand and Ta-
bles 29.11 and 29.12 (p-values in bottom line of Tables 29.11 and 29.12),
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TABLE 29.10. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. Duration as covariate in the
measurement model. Part II.

Effect BRD6 BRD7 BRD8 BRD9
Measurement model
Intercept11 0.57(0.17) 0.35(0.18) 0.36(0.19) 0.52(0.18)
Intercept12 -1.37(0.31) -1.26(0.32) -1.06(0.33) -1.46(0.31)
Intercept21 0.09(0.20) -0.13(0.21) -0.21(0.22) 0.18(0.20)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α

α1. -3.92(0.71) -3.94(0.71)
α2. -∞ -∞
α.1 -4.28(0.71) -4.26(0.71)
α.2 -∞ -∞
β

β1. -1.44(0.23) -1.44(0.23)
β2. -0.90(0.17) -0.90(0.17)
β.1 -1.87(0.46) -1.86(0.45)
β.2 -0.43(0.25) -0.43(0.25)
γ 3.31(0.79) 3.74(0.89) 3.39(0.79) 3.07(0.77)
- loglik 547.57 545.55 545.84 547.30

it is clear that the effect of duration on the missingness model cannot be
neglected.

Important modeling and data analytic conclusions can be drawn from
this. First, it clearly does not suffice to consider covariate effects on the
measurement model, but one has to carefully contemplate such effects on
the missingness model as well. Therefore, the models in Tables 29.11 and
29.12, should be regarded as the ones of primary interest. Second, it is
found that a longer duration implies a less favorable side-effects outcome,
as well as an increased change of missing visits. Obviously, duration acts as a
confounding variable which, unless included in both parts of the model, may
suggest a relationship between the measurement and missingness models
and thus one may erroneously be led to believe that the missing data are
MNAR. Third, it should be noted that the parameter estimates of duration
are remarkably stable. This implies that, in case one is primarily interested
in the effect of duration on the occurrence of side effects all 18 models
containing this effect provide very similar evidence. Although this need not
be the case in general, it is a comforting aspect of this particular data
analysis.
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TABLE 29.11. The Fluvoxamine Trial. Maximum likelihood estimates and stan-
dard errors of BRD models. All observations included. Duration as covariate in
both measurement and missingness model. Part I.

Effect BRD1 BRD2 BRD3 BRD4 BRD5
Measurement model
Intercept11 0.46(0.18) 0.45(0.17) 0.53(0.18) 0.30(0.20) 0.57(0.17)
Intercept12 -1.46(0.31) -1.48(0.31) -1.46(0.31) -1.37(0.31) -1.37(0.31)
Intercept21 0.10(0.20) 0.10(0.20) 0.17(0.20) -0.15(0.24) 0.09(0.20)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α.. -4.57(0.72) -4.57(0.72) -4.57(0.72)
α1. -3.82(0.73)
α2. -∞
α.1 -4.20(0.72)
α.2 -∞
αdur -0.02(0.02) -0.02(0.02) -0.01(0.02) -0.02(0.02) -0.01(0.02)
β.. -1.40(0.16) -1.40(0.16) -1.40(0.16)
β1. -1.63(0.24)
β2. -1.22(0.20)
β.1 -1.79(0.36)
β.2 -0.87(0.33)
βdur 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01)
γ 3.10(0.78) 3.10(0.78) 3.10(0.77) 3.10(0.78) 3.09(0.78)
- loglik 543.78 542.74 542.86 542.63 543.14
p† 0.0017 0.0038 0.0019 0.0189 0.0019
† p-value for the comparison with the corresponding BRD model in
Table 29.9, to test the null hypothesis of no effect of duration in the
missingness model.

However, though we have reached plausible conclusions, one should still
exercise caution, as non-random missingness models heavily rely on untestable
assumptions (Verbeke and Molenberghs 2000). Therefore, it is important
to search for observations that may drive these conclusions. This naturally
leads to the concept of sensitivity analysis. In Sections 31.4 and 31.5, sen-
sitivity analysis tools applicable to the BRD model, or its extension to
covariates used here, will be introduced.
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TABLE 29.12. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. Duration as covariate in both
measurement and missingness model. Part II.

Effect BRD6 BRD7 BRD8 BRD9
Measurement model
Intercept11 0.57(0.17) 0.41(0.18) 0.43(0.19) 0.52(0.18)
Intercept12 -1.37(0.31) -1.37(0.31) -1.22(0.33) -1.46(0.31)
Intercept21 0.09(0.21) -0.04(0.22) -0.13(0.23) 0.18(0.20)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α..

α1. -3.87(0.73) -3.88(0.73)
α2. -∞ -∞
α.1 -4.23(0.73) -4.22(0.72)
α.2 -∞ -∞
αdur -0.01(0.02) -0.01(0.02) -0.00(0.02) -0.01(0.02)
β..

β1. -1.63(0.24) -1.63(0.24)
β2. -1.22(0.20) -1.22(0.20)
β.1 -1.79(0.36) -1.77(0.35)
β.2 -0.88(0.33) -0.88(0.33)
βdur 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01)
γ 3.33(0.79) 3.50(0.84) 3.32(0.79) 3.16(0.78)
- loglik 542.14 541.77 542.05 541.86
p† 0.0044 0.0228 0.0226 0.0043
† p-value for the comparison with the corresponding BRD
model in Table 29.10, to test the null hypothesis of no
effect of duration in the missingness model.

29.4 Concluding Remarks

In Section 29.2, a modeling approach for incomplete ordinal outcomes with
dropout was presented. The approach is very general and any measurement
model can be used. In fact, it is easy enough to adapt the method to any
type of outcome. Not only marginal models, also random-effects models
can be used by way of measurement model. In Section 29.3, a model specif-
ically for binary data, but then with general missingness patterns, has been
presented. The one limitation of the model in Section 29.2 is its suitabil-
ity to dropout only. Several extensions to general missingness have been
studied in the literature. Troxel, Harrington, and Lipsitz (1998) presented
methods for non-ignorable non-monotone missingness. Baker (1995) pre-
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sented a modification of Diggle and Kenward (1994) to accommodate non-
monotone missingness. Jansen and Molenberghs (2005) modify the model
of Section 29.2 to account for non-monotone missingness by replacing the
logistic regressions for dropout with a second multivariate Dale model to
describe the vector of missingness indicators, given the outcomes.

Thus, a wide variety of selection models is available for incomplete lon-
gitudinal data, under MNAR and possibly also with non-monotone miss-
ingness. Nevertheless, care has to be taken with such models. As with all
model fitting the conclusions drawn are conditional on the appropriateness
of the assumed model. Especially here, there are aspects of the model that
are in a fundamental sense not testable, namely the relationship between
dropout and the missing observations. It is assumed in the modeling ap-
proach taken here that the relationships among the measurements from a
subject are the same whether or not some of these measurements are unob-
served due to dropout. It is this assumption, combined with the adoption of
an explicit model linking outcome and dropout probability, that allows us
to infer something about the MNAR nature of the dropout process. Given
the dependence of the inferences on untestable assumptions, care is needed
in the interpretation of the analysis.

The absence of evidence for non-random dropout may simply mean that a
non-random dropout process is operating in a quite different manner, and in
practice it is likely that many such processes are operating simultaneously.

Thus, the sensitivity of the posited model to modeling assumption needs
to be addressed with great caution. Verbeke and Molenberghs (2000, Chap-
ter 19 and 20) discussed ways to assess such sensitivities with continuous
longitudinal data. We refer to Chapter 31 for a discussion of sensitivity
analysis in the non-Gaussian setting.




