
27
Simple Methods, Direct Likelihood,
and Weighted Generalized Estimating
Equations

27.1 Introduction

Commonly used methods to analyze incomplete longitudinal data include
complete case analysis (CC) and last observation carried forward (LOCF).
However, such methods rest on strong assumptions, including missing com-
pletely at random (MCAR). Such assumptions are too strong to generally
hold. Over the past decades, a number of full longitudinal data analysis
methods have become available, such as the linear, generalized linear, and
non-linear mixed modeling frameworks, and the likelihood-based models of
Chapters 6 and 7, that are valid under the much weaker missing at random
(MAR) assumption. Such methods are useful, even if the scientific ques-
tion is in terms of a single time point, e.g., the last planned measurement
occasion in a clinical trial. The validity of such a method rests on the use
of maximum likelihood, under which the missing data mechanism is ignor-
able as soon as MAR applies. Specific attention needs to be devoted to
generalized estimating equations, given their non-likelihood status.

In many clinical trial and other settings, the standard methodology used
to analyze incomplete longitudinal data is based on such methods as last
observation carried forward (LOCF), complete case analysis (CC), or sim-
ple forms of imputation. This is often done without questioning the possible
influence of these assumptions on the final results, even though several au-
thors have written about this topic. A relatively early account is given
in Heyting, Tolboom, and Essers (1992). Mallinckrodt et al (2003ab) and
Lavori, Dawson, and Shera (1995) propose direct-likelihood and multiple-
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imputation methods, respectively, to deal with incomplete longitudinal
data. Siddiqui and Ali (1998) compare direct-likelihood and LOCF meth-
ods.

It is unfortunate that such a strong emphasis is placed on methods like
LOCF and CC in clinical trial settings, as they are based on strong and
unrealistic assumptions. Even the strong MCAR assumption does not suf-
fice to guarantee that an LOCF analysis is valid. In contrast, under the less
restrictive assumption of MAR, valid inference can be obtained through a
likelihood-based analysis without modeling the dropout process. One can
then use linear or generalized linear mixed models (Verbeke and Molen-
berghs 2000, see also Chapter 4 in this volume), without additional com-
plication or effort. We will argue that such an analysis is more likely to be
valid, and even easier to implement than LOCF and CC analyses.

In Section 27.2, the status of longitudinal and non-longitudinal data
analysis is briefly discussed in the context of incomplete longitudinal se-
quences. Section 27.3 reviews simple methods, with emphasis on CC and
LOCF, and then goes on to advocate direct likelihood as an important
and viable alternative. The bias that occurs in CC and LOCF is studied
analytically, in the context of a specific and simple model, is studied in
Section 27.4. The specific situation of generalized estimating equations is
the topic of Section 27.5. The concepts developed in this chapter are then
exemplified using a depression clinical trial (Section 27.6), the Age Re-
lated Macular Degeneration study (Section 27.7), which was introduced in
Section 2.9 and analyzed before in Section 24.4, and finally the analgesic
trial (Section 27.8), which has been analyzed before in Chapter 17 and
Section 18.4.

27.2 Longitudinal Analysis or Not?

In principle, one should start by considering the density of the full data
(26.2), but by the very nature of the missing data problem, parts of the
outcome vector Y i may be left unobserved, and hence one has to focus
on the observed data only, i.e., Y o

i and Ri. Of course, when ignorability
applies (Section 26.2.3), one can further ignore the missing data itself. As
stated in the introduction, one often sees much simpler analyses, which
often overlook the important issues altogether.

Whatever the perspective taken, it usually belongs to one of two possi-
ble views for the measurement model on the one hand and a philosophy
adopted for the missingness model on the other hand. We will describe
these in turn.

Model for measurements. A choice has to be made regarding the mod-
eling approach to the measurements. Several views are possible.
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View 1. One can choose to analyze the entire longitudinal profile, irre-
spective of whether interest focuses on the entire profile (e.g.,
difference in slope between groups) or on a specific time point
(e.g., the last planned occasion). In the latter case, one would
make inferences about such an occasion using the posited model.

View 2. One states the scientific question in terms of the outcome at a
well-defined point in time. Several choices are possible:

View 2a. The scientific question is defined in terms of the last planned
occasion. In this case, one can either accept the dropout
as it is or use one or other strategy (e.g., imputation) to
incorporate the missing outcomes.

View 2b. One can choose to define the question and the corresponding
analysis in terms of the last observed measurement.

Although Views 1 and 2a necessitate reflection on the missing data
mechanism, View 2b avoids the missing data problem because the
question is couched completely in terms of observed measurements.
Thus, under View 2b, an LOCF analysis might be acceptable, pro-
vided it matched the scientific goals, but is then better described as
a last observation analysis because nothing is carried forward. Such
an analysis should properly be combined with an analysis of time to
dropout, perhaps in a survival analysis framework. Of course, an in-
vestigator should reflect very carefully on whether View 2b represents
a relevant and meaningful scientific question (Shih and Quan 1997).

Method for handling missingness. A choice has to be made regarding
the modeling approach for the missingness process. Under certain as-
sumptions this process can be ignored (e.g., a likelihood-based ignor-
able analysis). Some simple methods, such as a complete case analysis
and LOCF, do not explicitly address the missingness process either.

The measurement model will depend on whether or not a full longitudi-
nal analysis is done. When the focus is on the last observed measurement
or on the last measurement occasion only, one typically opts for classical
two- or multi-group comparisons (t-test, Wilcoxon, etc.). When a longitu-
dinal analysis is deemed necessary, the choice depends on the nature of the
outcome. Options include the linear and generalized linear mixed models,
generalized estimating equations, etc.

27.3 Simple Methods

We will briefly review a number of relatively simple methods that still are
commonly used. For the validity of many of these methods, MCAR is re-
quired. For others, such as LOCF, MCAR is necessary but not sufficient.
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The focus will be on the complete case method, for which data are re-
moved, and on imputation strategies, where data are filled in. Regarding
imputation, one distinguishes between single and multiple imputation. In
the first case, a single value is substituted for every ‘hole’ in the dataset
and the resulting dataset is analyzed as if it represented the true complete
data. Multiple imputation acknowledges the uncertainty stemming from
filling in missing values rather than observing them (Rubin 1987, Schafer
1997). LOCF will be discussed within the context of imputation strategies,
although LOCF can be placed in other frameworks as well.

A complete case analysis includes only those cases for which all mea-
surements were recorded. This method has obvious advantages. It is simple
to describe and almost any software can be used because there are no
missing data. Unfortunately, the method suffers from severe drawbacks.
First, there is nearly always a substantial loss of information. For example,
suppose there are 20 measurements, with 10% of missing data on each mea-
surement. Suppose, further, that missingness on the different measurements
is independent; then, the estimated percentage of incomplete observations
is as high as 87%. The impact on precision and power may be dramatic.
Even though the reduction of the number of complete cases will be less se-
vere in settings where the missingness indicators are correlated, this loss of
information will usually militate against a complete case analysis. Second,
severe bias can result when the missingness mechanism is MAR but not
MCAR. Indeed, should an estimator be consistent in the complete data
problem, then the derived complete case analysis is consistent only if the
missingness process is MCAR. A CC analysis can be conducted when Views
1 and 2 of Section 27.2 are adopted. It is obviously not a reasonable choice
with View 2b.

An alternative way to obtain a data set on which complete data methods
can be used is to fill in rather than delete (Little and Rubin 1987). Con-
cern has been raised regarding imputation strategies. Dempster and Rubin
(1983) write: “The idea of imputation is both seductive and dangerous. It is
seductive because it can lull the user into the pleasurable state of believing
that the data are complete after all, and it is dangerous because it lumps
together situations where the problem is sufficiently minor that it can be
legitimately handled in this way and situations where standard estimators
applied to the real and imputed data have substantial biases.” For exam-
ple, Little and Rubin (1987) show that the application of imputation could
be considered acceptable in a linear model with one fixed effect and one
error term, but that it is generally not acceptable for hierarchical models,
split-plot designs, repeated measures with a complicated error structure,
random-effects, and mixed-effects models.

Thus, the user of imputation strategies faces several dangers. First, the
imputation model could be wrong and, hence, the point estimates biased.
Second, even for a correct imputation model, the uncertainty resulting from
missingness is ignored. Indeed, even when one is reasonably sure about the
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mean value the unknown observation would have had , the actual stochas-
tic realization, depending on both the mean and error structures, is still
unknown. In addition, most methods require the MCAR assumption to
hold while some even require additional and often unrealistically strong
assumptions.

A method that has received considerable attention (Siddiqui and Ali
1998, Mallinckrodt et al 2003ab) is last observation carried forward
(LOCF). In the LOCF method, whenever a value is missing, the last ob-
served value is substituted. The technique can be applied to both monotone
and non-monotone missing data. It is typically applied in settings where
incompleteness is due to attrition.

LOCF can, but not necessarily has to, be regarded as an imputation
strategy, depending on which of the views of Section 27.2 is taken. The
choice of viewpoint has a number of consequences. First, when the prob-
lem is approached from a missing data standpoint, one has to think it
plausible that subjects’ measurements do not change from the moment of
dropout onwards (or during the period they are unobserved in the case of
intermittent missingness). In a clinical trial setting, one might believe that
the response profile changes as soon as a patient goes off treatment and
even that it would flatten. However, the constant profile assumption is even
stronger. Second, LOCF shares with other single imputation methods that
it artificially increases the amount of information in the data, by treating
imputed and actually observed values on an equal footing. This is espe-
cially true if a longitudinal view is taken. Verbeke and Molenberghs (1997,
Chapter 5) have shown that all features of a linear mixed model (group
difference, evolution over time, variance structure, correlation structure,
random effects structure, . . . ) can be affected.

Thus, scientific questions with which LOCF is compatible will be those
that are phrased in terms of the last obtained measurement (View 2b).
Whether or not such questions are sensible should be the subject of scien-
tific debate, which is quite different from a post hoc rationale behind the
use of LOCF. Likewise, it can be of interest to model the complete cases
separately and to make inferences about them. In such cases, a CC analysis
is of course the only reasonable way forward. This is fundamentally differ-
ent from treating a CC analysis as one that can answer questions about
the randomized population as a whole.

We will briefly describe two other imputation methods. The idea behind
unconditional mean imputation (Little and Rubin 1987) is to replace
a missing value with the average of the observed values on the same vari-
able over the other subjects. Thus, the term unconditional refers to the
fact that one does not use (i.e., condition on) information on the subject
for which an imputation is generated. It is clear that this method is devel-
oped primarily for continuous data and its application to binary outcomes
would be problematic. Because values are imputed that are unrelated to
a subject’s other measurements, all aspects of a model, such as a linear
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mixed model, are typically distorted (Verbeke and Molenberghs 1997). In
this sense, unconditional mean imputation can be as damaging as LOCF.

Buck’s method or conditional mean imputation (Buck 1960, Little
and Rubin 1987) is similar in complexity to mean imputation. Consider, for
example, a single multivariate normal sample. The first step is to estimate
the mean vector µ and the covariance matrix Σ from the complete cases,
assuming that Y ∼ N(µ,Σ). For a subject with missing components, the
regression of the missing components (Y m

i ) on the observed ones (yo
i ) is

Y m
i |yo

i ∼ N(µm + Σmo(Σoo)−1(yo
i − µo

i ),Σ
mm − Σmo(Σoo)−1Σom).

The second step calculates the conditional mean from the regression of the
missing components on the observed components, and substitutes the con-
ditional mean for the corresponding missing values. In this way, “vertical”
information (estimates for µ and Σ) is combined with “horizontal” infor-
mation (yo

i ). Buck (1960) showed that under mild conditions, the method
is valid under MCAR mechanisms. Little and Rubin (1987) added that
the method is also valid under certain MAR mechanisms. Even though the
distribution of the observed components is allowed to differ between com-
plete and incomplete observations, it is very important that the regression
of the missing components on the observed ones is constant across miss-
ingness patterns. Again, this method shares with other single imputation
strategies that, although point estimation may be consistent, the precision
will be overestimated. There is a connection between the concept of con-
ditional mean imputation and a likelihood-based ignorable analysis, in the
sense that the latter analysis produces expectations for the missing obser-
vations that are formally equal to those obtained under conditional mean
imputation. However, in likelihood-based ignorable analyses, no explicit
imputation takes place, hence the amount of information in the data is not
overestimated and important model elements, such as mean structure and
variance components, are not distorted.

Historically, an important motivation behind the simpler methods was
their simplicity. Currently, with the availability of commercial software
tools such as, for example, the SAS procedures MIXED, GLIMMIX, and
NLMIXED and the SPlus and R nlme libraries, this motivation no longer
applies. Arguably, an MAR analysis is the preferred choice. Of course, the
correctness of an MAR analysis is in its own right never completely verifi-
able. Purely resorting to MNAR analyses (Chapters 29 and 30) is not sat-
isfactory either since important sensitivity issues (Chapter 31) then arise.
See also Verbeke and Molenberghs (2000).
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27.4 Bias in LOCF, CC, and Ignorable Likelihood
Methods

It is often quoted that LOCF or CC, though problematic for parame-
ter estimation, produce randomization-valid hypothesis testing, but this
is questionable. First, in a CC analysis partially observed data are selected
out, with probabilities that may depend on post-randomization outcomes,
thereby undermining any randomization justification. Second, if the focus
is on one particular time point, e.g., the last one scheduled, then LOCF
plugs in data. Such imputations, apart from artificially inflating the in-
formation content, may deviate in complicated ways from the underlying
data. In contrast, a likelihood-based MAR analysis uses all available data,
with the need for neither deletion nor imputation, which suggests that
a likelihood-based MAR analysis would usually be the preferred one for
testing as well. Third, although the size of a randomization-based LOCF
test may reach its nominal size under the null hypothesis of no difference
in treatment profiles, there will be other regions of the alternative space
where the power of the LOCF test procedure is equal to its size, which is
completely unacceptable.

Using the simple but insightful setting of two repeated follow-up mea-
sures, the first of which is always observed while the second can be missing,
we establish some properties of the LOCF and CC estimation procedures
under different missing data mechanisms, against the background of an
MAR process operating. In this way, we bring LOCF and CC within a
general framework that makes clear their relationships with more formal
modeling approaches, enabling us to make a coherent comparison among
the different approaches. The use of a moderate amount of algebra leads
to some interesting conclusions.

It is most convenient to consider continuous outcomes, although similar
arguments hold for non-Gaussian outcomes as well. Let us assume each
subject i is to be measured on two occasions ti = 0, 1. Subjects are ran-
domized to one of two treatment arms: Ti = 0 for the standard arm and
Ti = 1 for the experimental arm. The probability of an observation being
observed on the second occasion (Di = 2) is p0 and p1 for treatment groups
0 and 1, respectively. We can write the means of the observations in the
two dropout groups as follows:

dropouts Di = 1 : β0 + β1Ti + β2ti + β3Titi, (27.1)
completers Di = 2 : γ0 + γ1Ti + γ2ti + γ3Titi. (27.2)

The true underlying population treatment difference at time ti = 1, as
determined from (27.1)–(27.2), is equal to:

∆true = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1 + β2 + β3)
−[p0(γ0 + γ2) + (1 − p0)(β0 + β2)]. (27.3)
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If we use LOCF, the expectation of the corresponding estimator equals:

∆LOCF = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1)
−[p0(γ0 + γ2) + (1 − p0)β0]. (27.4)

Alternatively, if we use CC, the above expression changes to:

∆CC = γ1 + γ3. (27.5)

Hence, in general, both procedures yield biased estimators.
We will now consider the special but important cases where the true miss-

ing data mechanisms are MCAR and MAR, respectively. Each of these will
impose particular constraints on the β and γ parameters in Model (27.1)–
(27.2). Under MCAR, the β parameters are equal to their γ counterparts
and (27.3) simplifies to

∆MCAR,true = β1 + β3 ≡ γ1 + γ3. (27.6)

Suppose we apply the LOCF procedure in this setting, the expectation
of the resulting estimator then simplifies to:

∆MCAR,LOCF = β1 + (p1 − p0)β2 + p1β3. (27.7)

The bias is given by the difference between (27.6) and (27.7):

BMCAR,LOCF = (p1 − p0)β2 − (1 − p1)β3. (27.8)

While of a simple form, we can learn several things from this expression
by focusing on each of the terms in turn. First, suppose β3 = 0 and β2 �=
0, implying that there is no differential treatment effect between the two
measurement occasions, but there is an overall time trend. Then, the bias
can go in either direction depending on the sign of p1 − p0 and the sign of
β2. Note that p1 = p0 only in the special case that the dropout rate is the
same in both treatment arms. Whether or not this is the case has no impact
on the status of the dropout mechanism (it is MCAR in either case, even
though in the second case dropout is treatment-arm dependent), but is
potentially very important for the bias implied by LOCF. Second, suppose
β3 �= 0 and β2 = 0. Again, the bias can go in either direction depending
on the sign of β3, i.e., depending on whether the treatment effect at the
second occasion is larger or smaller than the treatment effect at the first
occasion. In conclusion, even under the strong assumption of MCAR, we
see that the bias in the LOCF estimator typically does not vanish and,
even more importantly, the bias can be positive or negative and can even
induce an apparent treatment effect when one does not exist.

In contrast, as can be seen from (27.5) and (27.6), the CC analysis is
unbiased.
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Let us now turn to the MAR case. In this setting, the constraint implied
by the MAR structure of the dropout mechanism is that the conditional
distribution of the second observation given the first is the same in both
dropout groups (Molenberghs et al 1998). Based on this result, the expec-
tation of the second observation in the standard arm of the dropout group
is

E(Yi2|Di = 1, Ti = 0) = γ0 + γ2 + σ(β0 − γ0), (27.9)
where σ = σ21σ

−1
11 , σ11 is the variance of the first observation in the fully

observed group and σ12 is the corresponding covariance between the pair
of observations. Similarly, in the experimental group we obtain

E(Yi2|Di = 1, Ti = 1) = γ0 + γ1 + γ2 + γ3 + σ(β0 + β1 − γ0 − γ1). (27.10)

The true underlying population treatment difference (27.3) then becomes

∆MAR,true = γ1 + γ3 + σ[(1 − p1)(β0 + β1 − γ0 − γ1)

−(1 − p0)(β0 − γ0)]. (27.11)

In this case, the bias in the LOCF estimator can be written as:

BMAR,LOCF = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1)

−p0(γ0 + γ2) − (1 − p0)β0 − γ1 − γ3

−σ[(1 − p1)(β0 + β1 − γ0 − γ1)

−(1 − p0)(β0 − γ0)]. (27.12)

Again, although involving more complicated relationships, it is clear that
the bias can go in either direction, thus contradicting the claim often put
forward that the bias in LOCF leads to conservative conclusions. Further,
it is far from clear what conditions need to be imposed in this setting for
the corresponding estimator to be either unbiased or conservative.

The bias in the CC estimator case takes the form:

BMAR,CC = −σ[(1 − p1)(β0 + β1 − γ0 − γ1) − (1 − p0)(β0 − γ0)]. (27.13)

Even though this expression is simpler than in the LOCF case, it is still
true that the bias can operate in either direction.

Thus, in all cases, LOCF typically produces bias of which the direction
and magnitude depend on the true but unknown treatment effects. Hence,
caution is needed when using this method. In contrast, an ignorable like-
lihood based analysis, as outlined in Section 27.3, provides a consistent
estimator of the true treatment difference at the second occasion under
both MCAR and MAR. Although this is an assumption, it is rather a mild
one in contrast to the stringent conditions required to justify the LOCF
method, even when the qualitative features of the bias are considered more
important than the quantitative ones. Note that the LOCF method is not
valid even under the strong MCAR condition, whereas the CC approach is
valid under MCAR.
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27.5 Weighted Generalized Estimating Equations

In the previous sections, in particular in the last one, it was shown that
direct likelihood is a method of choice, due to the ease with which it can
be implemented and the validity under MAR.

For categorical outcomes, as we have seen before, the GEE approach
could be adopted. However, as Liang and Zeger (1986) pointed out, infer-
ences with the GEE are valid only under the strong assumption that the
data are missing completely at random (MCAR). To allow the data to be
missing at random (MAR), Robins, Rotnitzky, and Zhao (1995) proposed a
class of weighted estimating equations. These can be viewed as an extension
of generalized estimating equations.

The idea of weighted generalized estimating equations (WGEE) is to
weight each subject’s measurements in the GEEs by the inverse probability
that a subject drops out at that particular measurement occasion. Such a
weight can be calculated as

νij ≡ P (Di = j) =
j−1∏
k=2

[1 − P (Rik = 0|Ri2 = . . . = Ri,k−1 = 1)] ×

P (Rij = 0|Ri2 = . . . = Ri,j−1 = 1)I{j≤ni} (27.14)

if dropout occurs by time j or we reach the end of the measurement se-
quence, and

νij ≡ P (Di = j) =
j∏

k=2

[1 − P (Rik = 0|Ri2 = . . . = Ri,k−1 = 1)] (27.15)

otherwise.
Recall that we partitioned Y i into the unobserved components Y m

i and
the observed components Y o

i . Similarly, we can make the exact same par-
tition of µi into µi

m and µi
o. In the weighted GEE approach, which is

proposed to reduce possible bias of β̂, the score equations to be solved are:

S(β) =
N∑

i=1

Wi
∂µi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − µi) = 0,

where Wi is a diagonal matrix with the elements of νi along the diagonal,
or

S(β) =
N∑

i=1

ni+1∑
d=2

I(Di = d)
νid

∂µi(d)
∂β′ (A1/2

i RiA
1/2
i )−1(d)(yi(d)−µi(d)) = 0,

where yi(d) and µi(d) are the first d−1 elements of yi and µi, respectively.
We define

∂µi

∂β′ (d)
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FIGURE 27.1. Depression Trial. Individual profiles.

and (A1/2
i RiA

1/2
i )−1(d) analogously, in line with the definition of Robins,

Rotnitzky and Zhao (1995).
Thus, not only likelihood methods but also appropriately adapted gener-

alized estimating equations can be used with ease, under MAR. Both can
be adapted to the MNAR setting as well (Chapters 29 and 30). Although
it is beneficial to have both of these tools in one’s toolkit, it is also impor-
tant to realize that both ‘schools’ have strong supporters. An important
discussion of these issues is given in Davidian, Tsiatis, and Leon (2005).
Lipsitz et al (2001) studied bias in weighted estimating equations.

27.6 The Depression Trial

We will illustrate various methods discussed in this chapter by means of
a clinical trial in depression, analyzed before by Molenberghs et al (2004),
Jansen et al (2005), Dmitrienko et al (2005, Chapter 5), and Molenberghs
et al (2005).

27.6.1 The Data
The depression trial data come from a clinical trial including 342 patients
with post-baseline data. The Hamilton Depression Rating Scale (HAMD17)
is used to measure the depression status of the patients. For each patient,
a baseline assessment is available.
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FIGURE 27.2. Depression Trial. Mean profiles per treatment arm.

For blinding purposes, therapies are coded as A1 for primary dose of
experimental drug, A2 for secondary dose of experimental drug, and B and
C for non-experimental drugs. Individual profiles and mean profiles of the
changes from baseline in HAMD17 scores per treatment arm are shown in
Figures 27.1 and 27.2 respectively.

The contrast of primary interest is between A1 and C. Emphasis is on the
difference between arms at the end of the study. A graphical representation
of the dropout, per arm, is given in Figure 27.3. Part of the depression data
set is given below. Therapies A1, A2, B, and C are denoted as treatment
1, 2, 3, and 4 respectively. Dots represent unobserved measurements.

We will focus on the analysis of the binary outcome, defined as 1 if the
HAMD17 score is larger than 7, and 0 otherwise. These analyses are in
line with Jansen et al (2004), Dmitrienko et al (2005, Chapter 5), and
Molenberghs et al (2005).

The primary null hypothesis will be tested using both GEE and WGEE,
as well as GLMM. We include the fixed categorical effects of treatment,
visit, and treatment-by-visit interaction, as well as the continuous, fixed
covariates of baseline score and baseline score-by-visit interaction. A ran-
dom intercept will be included when considering the random-effect models.

Analyses will be implemented using the SAS procedures GENMOD,
GLIMMIX, and NLMIXED.
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FIGURE 27.3. Depression Trial. Evolution of dropout per treatment arm.

27.6.2 Marginal Models
First, let us consider the GEE approach. Although we can consider both
empirically corrected and model-based standard errors (Chapter 8), it is
sensible to confine inferences to the empirically corrected ones. Several
contrasts are of interest as well. The first one to test for treatment effect at
the endpoint, the second one for the average treatment effect over the course
of the study. Depending on the primary and secondary scientific questions,
more of these can be considered. Both standard GEE (Section 8.2) as well
as linearization-based GEE (Section 8.8) are considered. It will allow us to
assess similarities and differences in this context, knowing how closely they
agree from, for example, Chapter 8.

Of course, given the incomplete nature of the data, it is careful to con-
sider weighted generalized estimating equations, unless one has strong belief
that the MCAR assumption holds. This implies that weights have to be
constructed, based on the probability to drop out at a given time, given the
patient is still in the study, given his or her past measurements, and given
covariates. We restrict attention to the previous outcome and treatment
indicator. The resulting model is of a standard logistic regression or probit
regression type, and can be easily fitted using standard logistic regression
software, such as the SAS procedures GENMOD and LOGISTIC. The code
is exemplified in Section 32.5. The result of fitting this logistic regression
did not reveal strong evidence for a dependence on the previous outcome
(estimate −0.097, s.e. 0.351), nor on the treatment allocation (estimate
0.065, s.e. 0.314).
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TABLE 27.1. Depression Trial. Results of marginal models: Parameter estimates
(model-based standard errors; empirically corrected standard errors) for standard
unweighted and weighted GEE (denoted GEE and WGEE, respectively) and the
linearization based method (interaction terms are not shown).

Effect GEE WGEE Linearization
Intercept -1.22 (0.77;0.79) -0.56 (0.63;0.91) -1.23 (0.75;0.79)
Treatment -0.71 (0.38;0.38) -0.91 (0.32;0.41) -0.67 (0.37;0.38)
Visit 4 0.43 (1.05;1.22) -0.15 (0.85;1.90) 0.45 (1.05;1.22)
Visit 5 -0.45 (0.91;1.23) -0.23 (0.68;1.54) -0.47 (0.92;1.23)
Visit 6 0.06 (0.86;1.03) 0.15 (0.69;1.13) 0.05 (0.86;1.03)
Visit 7 -0.25 (0.89;0.91) -0.27 (0.78;0.89) -0.25 (0.89;0.91)
Baseline 0.08 (0.04;0.04) 0.06 (0.03;0.05) 0.08 (0.04;0.04)

Results of fitting the standard GEE as well as weighted GEE, combined
with the results of the linearization-based method, are presented in Ta-
ble 27.1. Apart from treatment allocation, the effect of baseline value and
indicators for time at visits 4, 5, 6, and 7 were included into the model.
Further, the interactions between treatment and visit and between baseline
and visit were included in the model.

Although GEE and its linearization based version produce very simi-
lar results, in line with earlier observations, there are differences with the
weighted version, in parameter estimates as well as standard errors. The
difference in standard errors (often, but not always, larger under WGEE)
are explained by the fact that additional sources of uncertainty, due to
missingness, are taken into account. The resulting inferences can be dif-
ferent. For example, the treatment effect parameter is non-significant with
GEE (p = 0.0633 with standard GEE and p = 0.1184 with the linearized
version) while a significant difference is found under the correct WGEE
analysis (p = 0.0268). Also, the difference is marked for treatment effect
at endpoint: p = 0.0658 with standard GEE and p = 0.0631 with the lin-
earized version, while a significant difference is found under the correct
WGEE analysis (p = 0.0289).

Thus, one may fail to detect such important effects as treatment dif-
ferences when GEE is used rather than the, admittedly, somewhat more
laborious WGEE.

27.6.3 Random-effects Models
Because the generalized linear mixed model is typically fitted using max-
imum likelihood, based on numerical integration or data approximations
(Chapter 14), standard fitting algorithms can be used, without modifica-
tion, provided the MAR assumption and the mild regularity conditions
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TABLE 27.2. Depression Trial. Results of random-effects model fitting. Parame-
ter estimates (standard errors) for GLMM with adaptive Gaussian quadrature
(Num. int.) and penalized-quasi likelihood methods (PQL) (interaction terms are
not shown).

Effect PQL Num. int.
Intercept -1.70 (1.06) -2.31 (1.34)
Treatment -0.84 (0.55) -1.20 (0.72)
Visit 4 0.66 (1.48) 0.64 (1.75)
Visit 5 -0.44 (1.29) -0.78 (1.51)
Visit 6 0.17 (1.22) 0.19 (1.41)
Visit 7 -0.23 (1.25) -0.27 (1.43)
Baseline 0.10 (0.06) 0.15 (0.07)
R.I. var. 2.53 (0.53) 5.71 (1.53)

for ignorability are fulfilled, as presented in Section 26.2.3. Dmitrienko et
al (2005, Chapter 5) and Molenberghs et al (2005) have indicated that
also here the choice between adaptive and non-adaptive quadrature, the
number of quadrature points, and the choice between quasi-Newton and
Newton-Raphson, has a noticeable impact on the results, where adaptive
quadrature and Newton-Raphson iteration produce the most reliable re-
sults, with no difference in the parameter estimates and standard errors
observed, whether 10, 20, or 50 quadrature points are used. These results
are contrasted with PQL based estimates in Table 27.2.

Once again, there are considerable differences between both approaches,
and the PQL estimates are rather close to the GEE estimates. This indi-
cates that, though the method is in principle likelihood based, the poverty
of the approximation jeopardizes its validity under MAR even more than
when data are complete and, if at all possible, the numerical integration
method ought to be the preferred one. Turning to the treatment effect, the
treatment effect at endpoint is not significant in either of the analyses, but
the difference in p-value is noticeable: p = 0.0954 for numerical integration
and p = 0.1286 with PQL.

27.7 Age Related Macular Degeneration Trial

In Section 24.4 we considered a longitudinal analysis, jointly for the binary
and continuous outcomes at 4, 12, 24, and 52 weeks, for the ARMD study
introduced in Section 2.9. Results were reported in Table 24.7. All analyses
done in Section 24.4 were based on 190 subjects with complete information
at weeks 24 and 52. However, the total number of subjects equals 240,
meaning that a substantial portion of the data is subject to missingness.
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TABLE 27.3. Age Related Macular Degeneration Trial. Overview of missingness
patterns and the frequencies with which they occur. ‘O’ indicates observed and
‘M’ indicates missing.

Measurement occasion
4 wks 12 wks 24 wks 52 wks Number %

Completers
O O O O 188 78.33

Dropouts
O O O M 24 10.00
O O M M 8 3.33
O M M M 6 2.50
M M M M 6 2.50

Non-monotone missingness
O O M O 4 1.67
O M M O 1 0.42
M O O O 2 0.83
M O M M 1 0.42

Both intermittent missingness as well as dropout occurs. An overview is
given in Table 27.3.

Thus, 78.33% of the profiles are complete, while 18.33% exhibit monotone
missingness. Out of the latter group, 2.5% or 6 subjects have no follow-up
measurements. The remaining 3.33%, representing 8 subjects, have inter-
mittent missing values. Although the group of dropouts is of considerable
magnitude, the ones with intermittent missingness is much smaller. Nev-
ertheless, it is cautious to include all into the analyses. This is certainly
possible for direct likelihood analyses and for standard GEE, but WGEE is
more complicated in this respect. One solution is to monotonize the miss-
ingness patterns by means of multiple imputation (Section 28.2) and then
conduct WGEE.

In the analysis of Section 24.4, 190 ‘completers’ were used, even though
Table 27.3 shows there are 188 completers only. However, the analyses in
Section 24.4 were done on subjects with measurements at weeks 24 and
52. The table shows that these can come from either profile ‘OOOO,’ the
completers, but also from ‘MOOO,’ thus amounting to 188 + 2 = 190
subjects.

Analogous to the analysis presented in Section 27.6, and inspired by the
model for the binary data reported in Table 24.4, we compare analyses
performed on the completers only (CC), on the LOCF imputed data, as
well as on the observed data. In all cases, standard GEE, and linearization-
based GEE will be considered. For the observed, partially incomplete data,
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GEE is supplemented with WGEE. Further, a random-intercepts GLMM
is considered, based on both PQL and numerical integration. The GEE
analyses are reported in Table 27.4 and the random-effects models in Ta-
ble 27.6. In all cases, we use the logit link. For GEE, a working exchangeable
correlation matrix is considered. The model has four intercepts and four
treatment effects. The advantage of having separate treatment effects at
each time is that particular attention can be given at the treatment effect
assessment at the last planned measurement occasion, i.e., after one year.
From Table 27.4 it is clear that there is very little difference between the
standard GEE and linearization-based GEE results. This is undoubtedly
the case for CC, LOCF, and unweighted GEE on the observed data. For
these three cases, also the model-based and empirically corrected standard
errors agree extremely well. This is due to the unstructured nature of the
full time by treatment mean structure. However, we do observe differences
in the WGEE analyses. Not only are the parameter estimates mildly differ-
ent between the two GEE versions, there is a dramatic difference between
the model-based and empirically corrected standard errors. This is entirely
due to the weighting scheme. The weights were not calibrated to add up
to the total sample size, which is reflected in the model-based standard
errors. In the linearization case, part of the effect is captured as overdis-
persion. This can be seen from adding the parameters σ2 and τ2. In all
other analyses, the sum is close to one, as it should be when there is no
residual overdispersion, but in the last column these add up to 3.14. Nev-
ertheless, the two sets of empirically corrected standard errors agree very
closely, which is reassuring.

When comparing parameter estimates across CC, LOCF, and observed
data analyses, it is clear that LOCF has the effect of artificially increas-
ing the correlation between measurements. The effect is mild in this case.
The parameter estimates of the observed-data GEE are close to the LOCF
results for earlier time points and close to CC for later time points. This
is to be expected, as at the start of the study the LOCF and observed
populations are virtually the same, with the same holding between CC
and observed populations near the end of the study. Note also that the
treatment effect under LOCF, especially at 12 weeks and after 1 year, is
biased downward in comparison to the GEE analyses. To properly use the
information in the missingness process, WGEE can be used. To this end,
a logistic regression for dropout, given covariates and previous outcomes,
needs to be fitted. Parameter estimates and standard errors are given in
Table 27.5. Intermittent missingness will be ignored. Covariates of impor-
tance are treatment assignment, the level of lesions at baseline (a four-
point categorical variable, for which three dummies are needed), and time
at which dropout occurs. For the latter covariates, there are three levels,
since dropout can occur at times 2, 3, or 4. Hence, two dummy variables
are included. Finally, the previous outcome does not have a significant im-
pact, but will be kept in the model nevertheless. In spite of there being
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TABLE 27.4. Age Related Macular Degeneration Trial. Parameter estimates
(model-based standard errors; empirically corrected standard errors) for the mar-
ginal models: standard and linearization-based GEE on the CC and LOCF popu-
lation, and on the observed data. In the latter case, also WGEE is used.

Effect Par. CC LOCF Observed data
Unweighted WGEE

Standard GEE
Int.4 β11 -1.01(0.24;0.24) -0.87(0.20;0.21) -0.87(0.21;0.21) -0.98(0.10;0.44)
Int.12 β21 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.21;0.21) -1.78(0.15;0.38)
Int.24 β31 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.22;0.22) -1.11(0.15;0.33)
Int.52 β41 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.72(0.25;0.39)
Tr.4 β12 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.28;0.28) 0.80(0.15;0.67)
Tr.12 β22 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.29;0.29) 1.87(0.19;0.61)
Tr.24 β32 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.73(0.20;0.52)
Tr.52 β42 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.74(0.31;0.52)
Corr. ρ 0.39 0.44 0.39 0.33

Linearization-based GEE
Int.4 β11 -1.01(0.24;0.24) -0.87(0.21;0.21) -0.87(0.21;0.21) -0.98(0.18;0.44)
Int.12 β21 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.22;0.21) -1.78(0.26;0.42)
Int.24 β31 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.23;0.22) -1.19(0.25;0.38)
Int.52 β41 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.81(0.39;0.48)
Tr.4 β12 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.29;0.29) 0.80(0.26;0.67)
Tr.12 β22 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.28;0.29) 1.85(0.32;0.64)
Tr.24 β32 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.98(0.33;0.60)
Tr.52 β42 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.97(0.49;0.65)

σ2 0.62 0.57 0.62 1.29
τ 2 0.39 0.44 0.39 1.85

Corr. ρ 0.39 0.44 0.39 0.59

no strong evidence for MAR, the results between GEE and WGEE differ
quite a bit. It is noteworthy that at 12 weeks, a treatment effect is observed
with WGEE which goes unnoticed with the other marginal analyses. This
finding is mildly confirmed by the random-intercept model, when the data
as observed are used.

The results for the random-intercept models are given in Table 27.6. We
observe the usual downward bias in the PQL versus numerical integration
analysis, as well as the usual relationship between the marginal parameters
of Table 27.4 and their random-effects counterparts. Note also that the
random-intercepts variance is largest under LOCF, underscoring again that
this method artificially increases the association between measurements on
the same subject. In this case, unlike for the marginal models, LOCF and
in fact also CC, slightly to considerably overestimates the treatment effect
at certain times, in particular at 4 and 24 weeks.
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TABLE 27.5. Age Related Macular Degeneration Trial. Parameter estimates
(standard errors) for a logistic regression model to describe dropout.

Effect Parameter Estimate (s.e.)
Intercept ψ0 0.14 (0.49)
Previous outcome ψ1 0.04 (0.38)
Treatment ψ2 -0.86 (0.37)
Lesion level 1 ψ31 -1.85 (0.49)
Lesion level 2 ψ32 -1.91 (0.52)
Lesion level 3 ψ33 -2.80 (0.72)
Time 2 ψ41 -1.75 (0.49)
Time 3 ψ42 -1.38 (0.44)

27.8 The Analgesic Trial

The binary satisfaction outcome in the analgesic trial (Section 2.2) was
given extensive treatment in Chapter 17 and its ordinal counterpart was
studied in Section 18.4. An important feature of the data is that a subgroup
of patients does not complete the study but rather leaves prior to the
scheduled end of the trial. Out of the 491 patients available for analysis,
223 are complete, and there are 55, 54, and 63 dropouts after the third,
second, and first visit, respectively. Further, 96 patients have no follow up
measurements. Among these, 63 have intermediate missing values as well.
To further illustrate the impact of missingness on generalized estimating
equations, we will conduct an analysis on the monotone sequences, with
both ordinary and weighted generalized estimating equations, using the
same marginal model (17.2) as fitted in Chapter 17.

A logistic regression is built for the dropout indicator, in terms of the
previous outcome (for which the ordinal version is used by means of 4 dum-
mies), pain control assessment at baseline, physical functioning at baseline,
and genetic disorder measured at baseline. All of these are significant and
parameter estimates are given in Table 27.7. This implies that there is
evidence against MCAR in favor of MAR. This is a stronger result than
observed in Section 27.6.2 for the depression trial.

In agreement with the procedure outlined in Section 27.5 and as illus-
trated on the depression trial, the predicted probabilities from this logistic
regression are then used to calculate the weights, to be used in weighted
GEE. Parameter estimates and standard errors for these are presented in
Table 27.8. Clearly, though the evidence against MCAR is strong, the ef-
fect of the method chosen is noticeable but not terribly strong. We also
note the impact on the standard errors. Weighted analyses are typically
less precise, but more correct, than unweighted ones. Correction for the
missingness mechanism has the effect of reducing the magnitude of the pa-
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TABLE 27.6. Age Related Macular Degeneration Trial. Parameter esti-
mates (standard errors) for the random-intercept models: PQL and numeri-
cal-integration based fits on the CC and LOCF population, and on the observed
data (direct-likelihood).

Effect Parameter CC LOCF Direct lik.
PQL

Int.4 β11 -1.19(0.31) -1.05(0.28) -1.00(0.26)
Int.12 β21 -1.05(0.31) -1.18(0.28) -1.19(0.28)
Int.24 β31 -1.35(0.32) -1.30(0.28) -1.26(0.29)
Int.52 β41 -1.97(0.36) -1.89(0.31) -2.02(0.35)
Trt.4 β12 0.45(0.42) 0.24(0.39) 0.22(0.37)
Trt.12 β22 0.58(0.41) 0.68(0.38) 0.71(0.37)
Trt.24 β32 0.55(0.42) 0.50(0.39) 0.49(0.39)
Trt.52 β42 0.44(0.47) 0.39(0.42) 0.46(0.46)
R.I. s.d. τ 1.42(0.14) 1.53(0.13) 1.40(0.13)
R.I. var. τ2 2.03(0.39) 2.34(0.39) 1.95(0.35)

Numerical integration
Int.4 β11 -1.73(0.42) -1.63(0.39) -1.50(0.36)
Int.12 β21 -1.53(0.41) -1.80(0.39) -1.73(0.37)
Int.24 β31 -1.93(0.43) -1.96(0.40) -1.83(0.39)
Int.52 β41 -2.74(0.48) -2.76(0.44) -2.85(0.47)
Trt.4 β12 0.64(0.54) 0.38(0.52) 0.34(0.48)
Trt.12 β22 0.81(0.53) 0.98(0.52) 1.00(0.49)
Trt.24 β32 0.77(0.55) 0.74(0.52) 0.69(0.50)
Trt.52 β42 0.60(0.59) 0.57(0.56) 0.64(0.58)
R.I. s.d. τ 2.19(0.27) 2.47(0.27) 2.20(0.25)
R.I. var. τ2 4.80(1.17) 6.08(1.32) 4.83(1.11)

rameter estimates. In both cases, unstructured working assumptions were
used. There is a noticeable effect on the working correlation matrix as well.
With GEE, we obtain

RUN, GEE =

⎛⎜⎜⎝
1 0.173 0.246 0.201

1 0.177 0.113
1 0.456

1

⎞⎟⎟⎠ ,
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TABLE 27.7. Analgesic Trial. Parameter estimates (standard errors) for a logistic
regression model to describe dropout.

Effect Parameter Estimate (s.e.)
Intercept ψ0 -1.80 (0.49)
Previous GSA= 1 ψ11 -1.02 (0.41)
Previous GSA= 2 ψ12 -1.04 (0.38)
Previous GSA= 3 ψ13 -1.34 (0.37)
Previous GSA= 4 ψ14 -0.26 (0.38)
Basel. PCA ψ2 0.25 (0.10)
Phys. func. ψ3 0.009 (0.004)
Genetic disfunc. ψ4 0.59 (0.24)

TABLE 27.8. Analgesic Trial. Parameter estimates (empirically corrected stan-
dard errors) for standard GEE and weighted GEE (WGEE) fitted to the monotone
sequences.

Effect Parameter GEE WGEE
Intercept β1 2.95 (0.47) 2.17 (0.69)
Time β2 -0.84 (0.33) -0.44 (0.44)
Time2 β3 0.18 (0.07) 0.12 (0.09)
Basel. PCA β4 -0.24 (0.10) -0.16 (0.13)

whereas the WGEE version is

RUN, WGEE =

⎛⎜⎜⎝
1 0.215 0.253 0.167

1 0.196 0.113
1 0.409

1

⎞⎟⎟⎠ .

Of course, in line with general warnings issued in Section 8.2, care should
be taken with interpreting the working correlation structure. In principle,
it is a set of nuisance parameters, merely included to obtain reasonably
efficient GEE estimates.




