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High-dimensional Joint Models

25.1 Introduction

In Chapter 24, it has been discussed how multiple sequences of repeated
measurements can be jointly analyzed. The examples given there all con-
sidered joint modeling of two (longitudinal) outcomes only. Here, we will
extend this to (much) higher dimensions. The motivation for joint model-
ing will remain the same. In some cases, joint modeling is required because
the association structure between the outcomes is of interest. For example,
one may be interested in studying how the association between outcomes
evolves over time or how outcome-specific evolutions are related to each
other (Fieuws and Verbeke 2004). In other cases, joint modeling is needed
in order to be able to draw joint inferences about the different outcomes.
As examples, consider testing whether a set of outcomes shows the same
average evolution, or testing for the effect of covariates on all outcomes
simultaneously.

An example where joint modeling of many longitudinal outcomes has
proven useful can be found in Fieuws and Verbeke (2005a), where longitu-
dinally measured hearing thresholds were jointly analyzed, for the left ear
and for the right ear, and for 11 different frequencies. This yielded a total
of 22 longitudinal sequences per subject.

The possibly high dimension raises at least two additional problems, in
addition to the issues discussed in Chapter 24. First, some of the models
often used for the joint analysis of two longitudinal sequences are less ap-
plicable for higher dimensions. For example, when using conditional models
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(Section 24.1), only two possibilities for the conditioning are possible in the
case of two outcomes only: The first outcome can be modeled conditionally
on the second, or vice versa. With (much) higher dimensions, (many) more
possible conditioning strategies are possible, all yielding different models,
of which parameters have different interpretations. Moreover, several of the
research questions that require joint modeling are phrased in terms of the
parameters in each of the univariate longitudinal models (i.e., longitudinal
models for each repeated outcome separately), as was the case in the ex-
amples given earlier. Also, the models that are available for two outcomes
often exploit the specific nature of those two outcomes, making extensions
to higher dimensions far from straightforward. For example, the multi-
variate vector of responses may consist of outcomes of (many) different
types, all requiring different models such as linear mixed models (Chap-
ter 4), generalized linear mixed models (Chapter 14), as well as non-linear
mixed models (Chapter 20). Second, even if a plausible joint model can
be formulated, fitting of these high-dimensional models can become very
cumbersome, unless under unrealistically strong assumptions.

In this chapter, we will focus on the random-effects approach, which can
be viewed as an extension of the models discussed in Section 24.3. The
model will be introduced in Section 25.2. Many applications of this type
of joint models can be found in the statistical literature. For example, the
approach has been used in a non-longitudinal setting to validate surrogate
endpoints in meta-analyses (Buyse et al 2000, Burzykowski et al 2001) or to
model multivariate clustered data (Thum 1997). Gueorguieva (2001) used
the approach for the joint modeling of a continuous and a binary outcome
measure in a developmental toxicity study on mice. Also in a longitudinal
setting, Chakraborty et al (2003) obtained estimates of the correlation be-
tween blood and semen HIV-1 RNA by using a joint random-effects model.
Other examples with longitudinal studies can be found in MacCallum et
al (1997), Thiébaut et al (2002ab) and Shah et al (1997). All these exam-
ples refer to situations where the number of different outcomes is (very)
low. Although the model formulation can be done irrespective of the num-
ber of outcomes to be modeled jointly, standard fitting procedures, such
as maximum likelihood estimation, will only be feasible when the dimen-
sion in sufficiently low (typically dimension 2 or 3, at most). Therefore,
Section 25.3 presents a model-fitting procedure which is applicable, irre-
spective of the dimensionality of the problem, and explains how inferences
can be obtained for all parameters in the joint model. Finally, Section 25.4
applies the methodology for the joint analysis of 7 sets of questionnaires,
each consisting of a number of binary outcomes. Other examples, simula-
tion results, and more details on the models as well as on estimation and
inference, can be found in Fieuws and Verbeke (2005ab).

In the remainder of this chapter, models for a single longitudinal out-
come are called ‘univariate’ models, although they are, strictly speaking,
multivariate models since they model a vector of repeated measurements,
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but all of the same outcome. Similarly, we will use the terminology ‘bivari-
ate’ and ‘multivariate’ models to indicate joint longitudinal models for two
or more outcomes, respectively.

25.2 Joint Mixed Model

A flexible joint model that meets the requirements discussed in Section 25.1
can be obtained by modeling each outcome separately using a mixed model
(linear, generalized linear, or non-linear), by assuming that, conditionally
on these random effects, the different outcomes are independent, and by im-
posing a joint multivariate distribution on the vector of all random effects.
This approach has many advantages and is applicable in a wide variety
of situations. First, the data can be highly unbalanced. For example, it
is not necessary that all outcomes are measured at the same time points.
Moreover, the approach is applicable for combining linear mixed models,
non-linear mixed models, or generalized linear mixed models. The proce-
dure also allows the combination of different types of mixed models, such
as a generalized linear mixed model for a discrete outcome and a non-linear
mixed model for a continuous outcome.

Let m be the dimension of the problem, i.e., the number of outcomes that
need to be modeled jointly. Further, let Yrij denote the jth measurement
taken on the ith subject, for the rth outcome, i = 1, . . . , N , r = 1, . . . , m,
and j = 1, . . . , nri. Note that we do not assume that the same number of
measurements is available for all subjects, nor for all outcomes. Let Yri

be the vector of nri measurements taken on subject i, for outcome r. Our
model assumes that each Yri satisfies a mixed model. Following our earlier
notation of the Sections 13.2 and 20.5, let fri(yri|bri, θr) be the density
of Yri, conditional on a qr-dimensional vector bri of random effects for
the rth outcome on subject i. The vector θr contains all fixed effects and
possibly also a scale parameter needed in the model for the rth outcome.
Note that we do not assume the same type of model for all outcomes: A
combination of linear, generalized linear, and non-linear mixed models is
possible. It is also not assumed that the same number qr of random effects
is used for all m outcomes.

In most applications, it will be assumed that, conditionally on the ran-
dom effects b1i, b2i, . . . , bmi, the m outcomes Y1i, Y2i, . . . ,Ymi are inde-
pendent. Extensions of this assumption can be found in Section 24.3 in the
context of surrogate markers, or in Fieuws and Verbeke (2005a) in the
analysis of the 22 longitudinal sequences of hearing thresholds. Finally, the
model is completed by assuming that the vector bi of all random effects for
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subject i is multivariate normal with mean zero and covariance D, i.e.,

bi =

⎛⎜⎜⎜⎝
b1i

b2i

...
bmi

⎞⎟⎟⎟⎠ ∼ N
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0
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0
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. . .
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Dm1 Dm2 · · · Dmm

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

The matrices Drs represent the covariances between bri and bsi, r, s =
1, . . . , m. Finally, D is the matrix with blocks Drs as entries.

A special case of the above model is the so-called shared-parameter
model, which assumes the same set of random effects for all outcomes. An
example of this is (24.19), where, in the context of surrogate marker evalu-
ation, a random intercept bi was used simultaneously in the model for the
surrogate outcome as well as in the model for the true outcome. This clearly
can be obtained as a special case of the above model by assuming perfect
correlation between some of the random effects. The advantage of such
shared-parameter models is the relatively low dimension of the random-
effects distribution, when compared to the above model. The dimension of
the random effects in shared parameter models does not increase with the
number of outcomes to be modeled. In the above model, each new outcome
added to the model introduces new random effects, thereby increasing the
dimension of bi. Although the shared-parameter models can reasonably
easy be fitted using standard software (Section 24.5), this is no longer the
case for the model considered here. Estimation and inference under the
above model will require specific procedures, which will be discussed in
Section 25.3. A disadvantage of the shared-parameter model is that it is
based on much stronger assumptions about the association between the
outcomes, which may not be valid, especially in high-dimensional settings
as considered in this chapter.

Note also that, joining valid univariate mixed models does not neces-
sarily lead to a correct joint model. Fieuws and Verbeke (2004) illustrate
this in the context of linear mixed models for two continuous outcomes.
It is shown how the joint model may imply association structures between
the two sets of longitudinal profiles that may strongly depend on the ac-
tual parameterization of the individual models and that are not necessarily
valid.

As before, estimation and inference will be based on the marginal model
for the vector Y i of all measurements for subject i. Assuming independence
of the outcomes conditionally on the vector bi of random effects, the log-
likelihood contribution for subject i equals

	i(y1i, y2i, . . . ,ymi|Ψ∗)

= ln
∫ m∏

r=1

fri(yri|bri, θr)f(bi|D)dbi, (25.1)
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in which all parameters present in the joint model (fixed effects parameters
as well as covariance parameters) have been combined into the vector Ψ∗.

Clearly, expression (25.1) shows that the joint model can be interpreted
as one mixed-effects model, with conditional density

fi(yi|bi) =
m∏

r=1

fri(yri|bri, θr)

and with random effect bi. Hence, fitting of the model can, strictly speaking,
be based on standard methods and standard software, available for fitting
mixed models in general. However, computational problems will arise as
the dimension of the random-effects vector bi in the joint model increases.
For example, re-consider the hearing thresholds mentioned earlier. If each
of the 22 outcomes is modeled by way of a linear mixed model with random
intercepts and random slopes for the time-evolution, then the resulting joint
model contains 22 × 2 = 44 random effects, resulting in a 44-dimensional
matrix D which contains 990 unknown parameters. Even in this case of
linear models for continuous data, where the marginal likelihood can be
calculated analytically, standard maximization algorithms are no longer
sufficient to maximize this marginal likelihood with respect to this many
parameters. Moreover, when approximation methods are needed in the cal-
culation of the likelihood, as is the case for generalized or non-linear mixed
models (Chapters 14 and 20), maximizing the joint likelihood becomes com-
pletely impossible using optimization techniques currently implemented for
single outcomes. In Section 25.3, we will describe how estimates and infer-
ences for all parameters can be obtained from pairwise fitting of the model,
i.e., from separately fitting the implied joint model for each pair of out-
comes.

25.3 Model Fitting and Inference

The general idea behind the pairwise fitting approach is straightforward.
Instead of maximizing the likelihood of the full joint model presented in the
previous section, all pairwise bivariate models will be fitted separately in a
first step. Note the similarity between the pairwise approach used here and
the pairwise pseudo-likelihood approach used in the Sections 9.4.1 and 21.3.
In a second step, the parameters obtained by fitting the pairwise models
will be combined to obtain one single estimate for each parameter in the
full joint model.

25.3.1 Pairwise Fitting
The parameters in each univariate model can be estimated by fitting a
model for that specific response only. Hence, the only parameters that



472 25. High-dimensional Joint Models

cannot be estimated by fitting the univariate models are the parameters
needed to model the association between the different outcomes. In the
model introduced in Section 25.2, these are the parameters in the matrices
Drs, r �= s. However, estimation of these parameters does not necessarily
require fitting of the complete joint model for all outcomes, it is sufficient
to fit all m(m − 1)/2 bivariate models, i.e., all joint models for all possible
pairs

(Y1, Y2), (Y1, Y3), . . . , (Y1, Ym), (Y2, Y3), . . . , (Y2, Ym), . . . , (Ym−1, Ym)

of the outcomes Y1, Y2, . . . ,Ym. Let the log-likelihood function correspond-
ing to the pair (r, s) be denoted by 	(yr, ys|Ψrs). The vector Ψrs contains
all parameters in the bivariate model for pair (r, s), i.e., the parameters in
each of the univariate models, as well as the parameters in Drs.

Let Ψ now be the stacked vector combining all m(m − 1)/2 pair-specific
parameter vectors Ψrs. Estimates for the elements in Ψ are obtained by
maximizing each of the m(m − 1)/2 log-likelihoods 	(yr, ys|Ψrs) sepa-
rately. It is important to realize that the parameter vectors Ψ and Ψ∗ are
not equivalent. Indeed, some parameters in Ψ∗ will have a single coun-
terpart in Ψ, e.g., the parameters in Drs, r �= s, representing covariances
between random effects from different outcomes. Other elements in Ψ∗ will
have multiple counterparts in Ψ, e.g., the parameters in Drr, representing
variances and covariances of random effects from the same outcome. In
the latter case, a single estimate for the corresponding parameter in Ψ∗ is
obtained by averaging all corresponding pair-specific estimates in Ψ̂. Stan-
dard errors of the so-obtained estimates clearly cannot be obtained from
averaging standard errors or variances. Indeed, the variability amongst the
pair-specific estimates needs to be taken into account. Furthermore, two
pair-specific estimates corresponding to two pairwise models with a com-
mon outcome are based on overlapping information and hence correlated.
This correlation should also be accounted for in the sampling variability of
the combined estimates in Ψ̂

∗
. In the remainder of this section, we will use

pseudo-likelihood ideas to obtain standard errors for the estimates, first in
Ψ̂, afterwards in Ψ̂

∗
.

25.3.2 Inference for Ψ

Fitting all bivariate models is equivalent to maximizing the function

p	(Ψ) ≡ p	(y1i, y2i, . . . ,ymi|Ψ)

=
∑
r<s

	(Yr, Ys|Ψrs), (25.2)

ignoring the fact that some of the vectors Ψrs have common elements, i.e.,
assuming that all vectors Ψrs are completely distinct. Obviously, (25.2), is



25.4 A Study in Psycho-Cognitive Functioning 473

of the form (9.3) and hence our pairwise fitting procedure fits within the
general framework of pseudo-likelihood (Chapters 9 and 21). Our applica-
tion of pseudo-likelihood methodology is different from most other appli-
cations in the sense that the same parameter vector is usually present in
the different parts of the pseudo-likelihood function. Here, the set of para-
meters in Ψrs is treated pair-specific, which allows separate maximization
of each term in the pseudo log-likelihood function (25.2). In Section 25.3.3,
we will account for the fact that Ψrs and Ψrs′ , s �= s′, are not completely
distinct, as they share the parameters referring to the rth outcome.

Because the pairwise approach fits within the pseudo-likelihood frame-
work, an asymptotic multivariate normal distribution for Ψ̂ can be derived,
using the general pseudo-likelihood theory presented in Section 9.2. More
specifically, we have that Ψ̂ asymptotically satisfies

√
N(Ψ̂ − Ψ) ≈ N(0, I−1

0 I1I
−1
0 )

in which I−1
0 I1I

−1
0 is a ‘sandwich-type’ robust variance estimator, and

where I0 and I1 can be constructed using first- and second-order deriv-
atives of the components in (25.2). Strictly speaking, I0 and I1 depend on
the unknown parameters in Ψ, but these are traditionally replaced by their
estimates in Ψ̂.

25.3.3 Combining Information: Inference for Ψ∗

In a final step, estimates for the parameters in Ψ∗ can be calculated, as
suggested before, by taking averages of all the available estimates for that
specific parameter. Obviously, this implies that Ψ̂∗ = A′Ψ̂ for an appropri-
ate weight matrix A. Hence, inference for the elements in Ψ̂∗ will be based
on

√
N(Ψ̂∗ − Ψ∗) =

√
N(A′Ψ̂ − A′Ψ)

≈ N(0, A′I−1
0 I1I

−1
0 A). (25.3)

As explained in Section 9.2, pseudo-likelihood methods often are less effi-
cient than full maximum likelihood. However, simulation results of Fieuws
and Verbeke (2005ab) suggest that, in the present context, this loss of
efficiency is negligible, if any.

25.4 A Study in Psycho-Cognitive Functioning

To illustrate the pairwise approach for fitting high-dimensional multivari-
ate repeated measurements, we analyze data from an experiment in which
105 Dutch-speaking elderly participants (54 females and 51 males) were
randomly assigned to one of two physical activity oriented exercise pro-
grams. The first is a classical fitness program consisting of 3 weekly visits
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TABLE 25.1. Psycho-Cognitive Functioning. Parameter estimates (standard er-
rors) for the fixed effects in model (25.4) obtained by fitting 7 separate univariate
models, as well as obtained by fitting the joint model with the pairwise fitting
approach.

7 Univariate models

β̂r0 (s.e.) β̂r1 (s.e.)
Physical well-being 1.63 (0.26) −0.13 (0.37)
Psychological well-being 1.56 (0.30) 1.22 (0.61)
Self-esteem 1.69 (0.30) 0.43 (0.42)
Physical self-perception −0.55(0.14) 0.58 (0.24)
Degree of opposition 1.48 (0.17) 0.06 (0.24)
Self-efficacy 1.71 (0.25) −0.24 (0.33)
Motivation 0.95 (0.11) −0.35 (0.16)

Joint model

β̂r0 (s.e.) β̂r1 (s.e.)
Physical well-being 1.62 (0.25) −0.12 (0.37)
Psychological well-being 1.71 (0.32) 1.00 (0.68)
Self-esteem 1.68 (0.32) 0.49 (0.39)
Physical self-perception −0.52 (0.14) 0.52 (0.25)
Degree of opposition 1.47 (0.17) 0.07 (0.24)
Self-efficacy 1.70 (0.23) −0.22 (0.33)
Motivation 0.94 (0.09) −0.34 (0.16)

to the gym. The second is a distance coaching program with an emphasis
on incorporating physical activities in daily life. One of the aims of the
study was to investigate whether the two programs have different impacts
on the psycho-cognitive functioning of the participants. Different aspects of
psycho-cognitive functioning referring to subjective well-being, self-esteem,
self-perception and motivation were considered. A set of questionnaires
has been used to measure these different aspects. More specifically, 7 sets
of questions (items) were used, originating from different questionnaires
and each set consisting of a different number of items: 10 items measur-
ing physical well-being, 14 items for psychological well-being, 10 items for
self-esteem, 30 items for physical self-perception, 21 items measuring the
degree of opposition to physical activities, 5 items for perceived self-efficacy
toward physical activity, and 16 items for motivation for the intervention
program. All item scores were dichotomized, with a score equal to one ex-
pressing positive psycho-cognitive functioning. All subjects filled in at least
one item for each of the seven sets. 64 subjects had no missing informa-
tion for the 106 items. 20 subjects had one item missing. The missing item
scores for the other subjects ranged from 2 to 22. The mean age equals
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66.6 years (range 60–76 years) and the mean body mass index (BMI) is
27.0 kg/m2 (range 20.7–38.0). Questionnaires considered in this analysis
were completed by the participants, 6 months after the start of the study.

The aim of our analyses is to assess differences in efficacy between both
exercise programs, as well as to study the strength of association between
the 7 sets of questionnaires. Although not of a longitudinal nature, this
data set clearly is an example of multivariate repeated measurements, of
dimension 7, where a number of binary repeated measurements of psycho-
cognitive functioning are available for each dimension. The random variable
Yrij now denotes the jth measurement (0 or 1), taken on the ith study
participant, for the rth questionnaire, i = 1, . . . , 105, r = 1, . . . , 7, and j =
1, . . . , nri. A score Yrij = 1 reflects positive psycho-cognitive functioning,
while Yrij = 0 is an indication of negative psycho-cognitive functioning.

We will assume that each of the 7 questionnaires satisfy a random-
intercepts logistic model, given by

logit[P (Yrij = 1)] = βr0 + βr1DCi + bri, (25.4)

in which DCi is an indicator variable equal to 1 for the participants in
the distance coaching program, and zero otherwise. Hence, exp(βr1) rep-
resents the multiplicative effect of this program on the odds for positive
psycho-cognitive functioning measured by the items in questionnaire r, with
r = 1, . . . , 7 (1=physical well-being, 2=psychological well-being, 3=self-
esteem, 4=physical self-perception, 5=degree of opposition, 6=self-efficacy,
and 7=motivation). Note that this model allows for questionnaire-specific
intercepts as well as intervention effects. More parsimonious models could
be obtained by assuming, for example, the same regression parameters for
all questionnaires, or by assuming some random effects to be common to
a subset of the questionnaires (i.e., some of the bri are equal). Correlation
between the items of the same set is modeled through the inclusion of the
random effects bri. Correlation between the items of the different ques-
tionnaires is implied by the joint distribution for the 7 random intercepts,
i.e., (

b1i, b2i, b3i, b4i, b5i, b6i, b7i

)′ ∼ N (0, D) ,

where D is now the 7 × 7 unstructured covariance matrix of the random
intercepts.

Table 25.1 shows the results from fitting the 7 univariate models sep-
arately, as well as from fitting the joint model using the pairwise fitting
approach. Very similar estimates as well as inferences are obtained. Using
approximate Wald-type tests (Z-tests), the separate analyses show signif-
icant differences between both groups on 3 of the 7 questionnaires. The
DC-group scores better on physical self-perception and on psychological
well-being, but worse on motivation.
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TABLE 25.2. Psycho-Cognitive Functioning. Estimated correlation matrix for the
random intercepts in Model (25.4).

Physical well-being 1.00
Psychological well-being 0.75 1.00
Self-esteem 0.55 0.76 1.00
Physical self-perception 0.66 0.46 0.53 1.00
Degree of opposition 0.19 0.12 0.23 0.38 1.00
Self-efficacy 0.29 0.24 0.25 0.36 0.23 1.00
Motivation 0.42 0.31 0.28 0.40 0.47 0.30 1.00

Using the results from the joint model, an overall test can be constructed
for the presence of any systematic difference between both exercise pro-
grams. Formally, this corresponds to testing the null-hypothesis

H0 : β11 = β21 = β31 = β41 = β51 = β61 = β71 = 0

versus the alternative that at least one of these parameters differs from
zero. Since this null hypothesis is of the general form H0 : L′Ψ∗ = 0 for the
appropriate matrix L, a Wald-type test (χ2-test) can easily be derived from
the asymptotic distribution (25.3) for Ψ̂∗. This yields a test statistic value
equal to 17.84, which is significant when compared to the χ2

7 distribution
(p = 0.013). Similarly, other hypotheses of interest can be tested as well.

An additional aim of our analyses was to study the strength of associ-
ation between the 7 sets of questionnaires. Table 25.2 presents the corre-
lations obtained from the fitted covariance matrix D̂. These correlations
express the association between the different constructs underlying each of
the seven scales. Performing a principal components analysis (PCA) on the
7×7 correlation matrix of the random effects reveals that the first principal
component explains only 49% of the variability. One approach sometimes
used to join multiple random-effects models in such a way that the joint
model can still easily be fitted using standard software, assumes common
random effects for all outcomes, leading to so-called shared-parameter mod-
els. An example in a slightly different context can be found in De Gruttola
and Tu (1994). More specifically, it is then assumed that all bri equal bi. In
our example, this would lead to univariate random intercepts common to
all questionnaires. The advantage would be that this model can very easily
be fitted because only one random effect is involved. However, the PCA
results suggest that this would be a very unrealistic model for the data
set at hand, which could result in biased inferences for the fixed effects of
interest (Adams et al 1997, Folk and Green 1989).

Figure 25.1 plots the component loadings of the random intercepts for
the seven questionnaires on the first two principal components, explaining
49% and 17.4% of the variation. In this reduced representation, we observe,
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FIGURE 25.1. Psycho-Cognitive Functioning. Component loadings for the seven
questionnaires on the first two principal components for the 7×7 correlation ma-
trix of the random intercepts in model (25.4).
1: physical well-being; 2: psychological well-being; 3: self-esteem; 4: physical
self-perception; 5: degree of opposition; 6: self-efficacy; 7: motivation.

not surprisingly, that the scales referring to well-being and self-esteem are
strongly correlated with each other, as opposed to their relation with mo-
tivational oriented scales.
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