
24
Joint Continuous and Discrete
Responses

24.1 Introduction

Statistical problems where various outcomes of a mixed nature are ob-
served have been around for about a half century and are rather common
at present. Perhaps the most common situation, whether in psychometry,
biometry, or other fields, is that of the joint occurrence of a continuous,
often normally distributed, and a binary or ordinal outcome. Emphasis
can be placed on the determination of the entire joint distribution of both
outcomes, or on specific aspects, such as the association in general or cor-
relation in particular between both outcomes.

For the problem sketched above, there broadly are three approaches.
The first one postulates a marginal model for the binary outcome and
then formulates a conditional model for the continuous outcome, given the
categorical one. For the former, one can use logistic regression, whereas
for the latter conditional normal models are a straightforward choice, i.e.,
a normal model with the categorical outcome used as a covariate (Tate
1954). The second family starts from the reverse factorization, combining
a marginal model for the continuous outcome with a conditional one for
the categorical outcome. Conditional models have been discussed by Cox
and Wermuth (1992, 1994b), Krzanowski (1988), and Little and Schluchter
(1985). Schafer (1997) presents a so-called general location model where a
number of continuous and binary outcomes can be modeled together.

The third model family directly formulates a joint model for the two
outcomes. In this context, one often starts from an bivariate continuous
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variable, one component of which is explicitly observed and the other
one observed in dichotomized, or generally discretized, version only (Tate
1955). Molenberghs, Geys, and Buyse (2001) presented a model based on
a Plackett-Dale approach, where a bivariate Plackett distribution is as-
sumed, of which one margin is directly observed and the other one only
after dichotomization. General multivariate exponential family based mod-
els have been proposed by Prentice and Zhao (1991), Zhao, Prentice, and
Self (1992), and Sammel, Ryan, and Legler (1997).

Of course, these developments have not been limited to bivariate joint
outcomes. One can obviously extend these ideas and families to a multi-
variate continuous outcome and/or a multivariate categorical outcome. For
the first and second families, one then starts from conditional and mar-
ginal multivariate normal and appropriately chosen multinomial models.
Such a model within the first family has been formulated by Olkin and
Tate (1961). Within the third family, models were formulated by Hannan
and Tate (1965) and Cox (1974) for a multivariate normal with a univariate
bivariate or discrete variable.

Apart from an extension from the bivariate to the multivariate case, one
can introduce other hierarchies as well. For example, each of the outcomes
may be measured repeatedly over time, and there could even be several
repeated outcomes in both the continuous and the categorical subgroup,
and then some of the approaches described in Chapter 25 can be used. A
very specific hierarchy stems from clustered data, where a continuous and a
categorical, or several of each, are observed for each member of a family, a
household, a cluster, etc. For the specific context of developmental toxicity
studies, often conducted in rats and mice, a number of developments have
been made. An overview of such methods, together with developments for
probit-normal and Plackett-Dale based models, was presented in Regan and
Catalano (2002). Catalano and Ryan (1992) and Fitzmaurice and Laird
(1995) propose models for a combined continuous and discrete outcome,
but differ in the choice of which outcome to condition on the other one.
Both use generalized estimating equations to allow for clustering. Catalano
(1997) extended the model by Catalano and Ryan (1992) to accommodate
ordinal variables.

Regan and Catalano (1999a) proposed a probit-type model to accom-
modate joint continuous and binary outcomes in a clustered data context,
thus extending the correlated probit model for binary outcomes (Ochi and
Prentice 1984) to incorporate continuous outcomes. Geys et al (2001) used
a Plackett latent variable to the same effect, extending the bivariate ver-
sion proposed by Molenberghs, Geys, and Buyse (2001). Estimation in such
hierarchical joint models can be challenging. Regan and Catalano (1999a)
proposed maximum likelihood, but considered GEE as an option too (Re-
gan and Catalano 1999b). Geys et al (2001) made use of pseudo-likelihood.
Ordinal extensions have been proposed in Regan and Catalano (2000).
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It is clear that the literature on joint modeling of outcomes of various
natures is diverse and growing. A broad ranging review of hierarchical
models for joint continuous and discrete models can be found in Regan
and Catalano (2002). In this chapter, we will focus on a few methods. We
will emphasize the case of a continuous and a binary outcome as a basic
paradigm (Section 24.2). In particular, a probit-normal formulation will be
developed (Section 24.2.1), a Plackett-Dale approach (Section 24.2.2), and
a bivariate generalized linear mixed model of a joint nature (Section 24.2.3).
Hierarchical versions will be discussed in Section 24.3. Using data from an
opthalmology study, used in the context of surrogate marker validation
and introduced in Section 2.9, a concept also discussed in Section 21.3, the
methods presented will be illustrated.

24.2 A Continuous and a Binary Endpoint

In this section, we start of with the bivariate, non-hierarchical, setting.
Extensions to the fully hierarchical case are the topic of Section 24.

Two modeling strategies can be considered to accommodate mixed binary–
continuous endpoints. Indeed, the joint distribution of a mixed continuous–
discrete outcome vector can always be expressed as the product of the mar-
ginal distribution of one of the responses and the conditional distribution
of the remaining response given the former response. One can choose either
the continuous or the discrete outcome for the marginal model. The main
problem with such approaches is that no easy expressions for the associ-
ation between both endpoints are obtained. Therefore, we opt for a more
symmetric treatment of the two outcome variables. We treat the case where
the surrogate is binary and the true endpoint is continuous. The reverse
case is entirely similar.

Let S̃i be a latent variable of which Si is the dichotomized version. In
Section 24.2.1 we will describe a bivariate normal model for S̃i and Ti,
resulting in a probit-linear model for Si and Ti. Section 24.2.2 presents an
alternative formulation based on the bivariate Plackett (1965) density and
resulting in a Plackett-Dale model.

24.2.1 A Probit-normal Formulation
In this formulation, we assume the following model:

Ti = µT + βXi + εTi, (24.1)

S̃i = µS + αXi + εSi, (24.2)

where µS and µT are fixed intercepts and α and β are the fixed effects of
the treatment X on the surrogate and true endpoints respectively. Further,
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εSi and εTi are correlated error terms, assumed to satisfy:(
εTi

εSi

)
∼ N

[(
0
0

)
,

(
σ2 ρσ√

1−ρ2

1
1−ρ2

)]
. (24.3)

Model (24.1)–(24.2) specifies a bivariate normal density. The variance of
S̃i is chosen for reasons that will be made clear in what follows. From
this model, it is easily seen that the density of Ti is univariate normal with
regression given in (24.1) and variance σ2, implying that the parameters µT ,
β, and σ2 can be estimated using linear regression software with response
Ti and single covariate Zi. Similarly, the conditional density of S̃i, given
Xi and Ti is

S̃i ∼ N

[(
µS − ρ

σ
√

1 − ρ2
µT

)
+

(
α − ρ

σ
√

1 − ρ2
β

)
Xi

+
ρ

σ
√

1 − ρ2
Ti; 1

]
, (24.4)

having unit variance and thus motivating our earlier choice for the covari-
ance matrix of Ti and S̃i. Note that in Chapters 21 and 22 the marginal
variances were set equal to one. In principle, these choices are equivalent,
as long as no additional variance parameter for the latent variables is in-
troduced. The corresponding probability

P (Si = 1|Ti, Xi) = Φ1(λ0 + λXXi + λT Ti), (24.5)

where

λ0 = µS − ρ

σ
√

1 − ρ2
µT , (24.6)

λX = α − ρ

σ
√

1 − ρ2
β, (24.7)

λT =
ρ

σ
√

1 − ρ2
, (24.8)

and Φ1 is the standard normal cumulative density function. Note that (24.5)
implicitly defines the cutoff value for the dichotomized version. The λ pa-
rameters can be found by fitting model (24.5) to Si with covariates Xi and
Ti. This can be done with standard logistic regression software if it allows
to specify the probit rather than the logit link, such as the LOGISTIC and
GENMOD procedures in SAS. Given the parameters from the linear re-
gression on Ti (µT , β, and σ2) and the probit regression on Si (λ0, λX , and
λT ), the parameters from the linear regression on S̃i can now be obtained
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from (24.6)–(24.8):

µS = λ0 + λT µT , (24.9)
α = λZ + λXβ, (24.10)

ρ2 =
λ2

T σ2

1 + λ2
T σ2 . (24.11)

The asymptotic covariance matrix of the parameters (µT , β) can be found
from standard linear regression output. The variance of σ̂2 equals 2σ4/N .
The asymptotic covariance of (λ̂0, λ̂X , λ̂T ) follows from logistic (probit)
regression output. These three statements yield the covariance matrix of
the six parameters upon noting that it is block-diagonal. To derive the
asymptotic covariance of (µS , α, ρ) it suffices to calculate the derivatives
of (24.9)–(24.11) with respect to the six original parameters and apply the
delta method. They are:

∂(µS , α, ρ)
∂(µT , β, σ2, λ0, λX , λT )

=

⎛⎝ λT 0 0 1 0 µT

0 λT 0 0 1 β

0 0 h1 0 0 h2

⎞⎠ ,

where

h1 =
1
2ρ

λ2
T

(1 + λ2
T σ2)2

,

h2 =
1
2ρ

2λT σ2

(1 + λ2
T σ2)2

.

Molenberghs, Geys, and Buyse (2001) developed a program in GAUSS
that performs the joint estimation directly by maximizing the likelihood
based on contributions (24.1) and (24.5).

24.2.2 A Plackett-Dale Formulation
Assume that the cumulative distributions of Si and Ti are given by FSi

and FTi . The joint cumulative distribution of both these quantities has
been studied by Plackett (1965) and is discussed for the bivariate binary
and ordinal cases in Section 7.7:

FTi,Si
=

⎧⎪⎨⎪⎩
1 + (FTi

+ FSi
)(ψi − 1) − C(FTi

, FSi
, ψi)

2(ψi − 1)
if ψi �= 1,

FTi
FSi

if ψi = 1,

where ψi, C(·), FTi
, and FSi

take the roles of ψ, S(·), µ1+, and µ+1 in
(7.40), respectively.
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We can now derive a bivariate Plackett “density” function Gi(t, s) for
mixed continuous- binary outcomes. Suppose the success probability for
Si is denoted by πi, then we can define Gi(t, s) by specifying Gi(t, 0) and
Gi(t, 1) such that they sum to fTi

(t). If we define

Gi(t, 0) =
∂FTi,Si

(t, 0)

∂t
,

then this leads to specifying Gi by:

Gi(t, 0) =

⎧⎪⎨⎪⎩
fTi

(t)
2

(
1 − 1+FTi

(t)(ψi−1)−FSi
(s)(ψi+1)

C(FTi
,1−πi,ψi)

)
if ψi �= 1,

fTi
(t)(1 − πi) if ψi = 1,

(24.12)

and
Gi(t, 1) = fTi

(t) − Gi(t, 0). (24.13)

In this formulation we assume Ti ∼ N(µi, σ
2), with µi = µT + βXi and

logit(πi) = µS + αXi with similar notation as in the probit case. The
global odds ratio is assumed to be constant, but this is obviously open to
extension. If we write

θi =

⎛⎜⎜⎝
µi

σ2

πi

ψ

⎞⎟⎟⎠ and ηi =

⎛⎜⎜⎝
µi

ln(σ2)
logit(πi)
ln(ψ)

⎞⎟⎟⎠ ,

estimates of the regression parameters ν = (µ, β, α, lnσ2, lnψ) are easily
obtained by solving the estimating equations U(ν) = 0, using a Newton-
Raphson iteration scheme, where U(ν) is given by:

n∑
i=1

(
∂ηi

∂ν

)′{(
∂ηi

∂θi

)′}−1(
∂

∂θi
lnGi(ti, si)

)
.

24.2.3 A Generalized Linear Mixed Model Formulation
The developments in Section 8.8, where a linearization based marginal
model has been presented, and in Chapter 14, where generalized linear
mixed models have been introduced, can now be adapted to the present
setting as well. In fact, it is useful to start from the formulation in Sec-
tion 22.4, where both random effects and serial correlation have been al-
lowed for. Expression (22.9) provides a general formulation, and (22.10)
is specific for a random-effects logistic regression for repeated measures
with serial, or residual, correlation. It is straightforward to consider this
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framework in situations where various outcomes of a different nature are
observed. In general, we merely have to write, as before,

Y i = µi + εi, (24.14)

where
µi = µi(ηi) = h(Xiβ + Zibi). (24.15)

As usual, we assume bi ∼ N(0, D). The key relaxing assumption is that
the components of the inverse link functions h are allowed to change with
the nature of the various outcomes in Y i. The variance of εi depends
on the mean-variance links of the various outcomes, and can contain, in
addition, a correlation matrix Ri(α) and overdispersion parameters φi.
When there are no random effects in (24.15) a marginal model is obtained,
as in Section 8.8. We will refer to this as a marginal generalized linear models
(MGLM) approach. Reversely, assuming there are no residual correlations
in Ri(α), a conditional independence model or purely random effects model
results, which is still denoted by GLMM.

Using straightforward derivations, a general first-order approximate ex-
pression for the variance-covariance matrix of Y i is:

Vi = Var(Y i) � ∆iZiDZ ′
i∆

′
i + Σi. (24.16)

Here,

∆i =
(

∂µi

∂ηi

)∣∣∣∣
bi=0

,

and
Σi � Ξ1/2

i A
1/2
i Ri(α)A1/2

i Ξ1/2
i ,

with Ai a diagonal matrix containing the variances following from the gen-
eralized linear model specification of Yij given the random effects bi = 0,
i.e., with diagonal elements v(µij |bi = 0). Likewise Ξi is a diagonal matrix
with the overdispersion parameters along the diagonal. When an outcome
component is normally distributed, the overdispersion parameter is σ2

i and
the variance function is 1. For a binary outcome with logit link, we obtain

µij(bi = 0)[1 − µij(bi = 0)].

The evaluation under bi = 0 derives from a Taylor series expansion of the
mean components around bi = 0.

When an exponential family specification is used for all components, with
canonical link, ∆i = Ai and we can write:

Vi = Var(Y i) � ∆iZiDZ ′
i∆

′
i + Ξ1/2

i ∆1/2
i Ri(α)∆1/2

i Ξ1/2
i . (24.17)

Under conditional independence Ri vanishes and

Vi = Var(Y i) = ∆iZiDZ ′
i∆

′
i + Ξ1/2

i ∆iΞ
1/2
i . (24.18)
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For the setting already considered in Sections 24.2.1 and 24.2.2, a suitable
version of (24.14) is:

(
Si

Ti

)
=

⎛⎜⎝ µS + λbi + αXi

exp[µT + bi + βXi]
1 + exp[µT + bi + βXi]

⎞⎟⎠+

(
εSi

εTi

)
. (24.19)

Note that we have included a scale parameter λ in the continuous com-
ponent of an otherwise random-intercept model, given the continuous and
binary outcome are measured on different scales. In this case,

Zi =
(

λ

1

)
, ∆i =

(
1 0
0 vi2

)
, Φ =

(
σ2 0
0 1

)
,

with vi2 = µi2(bi = 0)[1 − µi2(bi = 0)]. Further, let ρ be the correlation
between εSi and εTi. Note that Zi is not a design matrix in the strict
sense, since it contains an unknown parameter. Nevertheless, it is useful to
consider this decomposition.

This implies that (24.16) becomes

Vi =
(

λ2 vi2λ

vi2λ v2
i2

)
τ2 +

(
σ2 ρσ

√
vi2

ρσ
√

vi2 vi2

)

=
(

λ2τ2 + σ2 vi2λτ2 + ρσ
√

vi2

vi2λτ2 + ρσ
√

vi2 v2
i2τ

2 + vi2

)
. (24.20)

The approximate marginal correlation function derived thereof equals:

ρ(β) =
vi2λτ2 + ρσ

√
vi2√

λ2τ2 + σ2
√

v2
i2τ

2 + vi2
. (24.21)

Obviously, (24.21) depends on the fixed effects through vi2. In the special
case of no random effects, the model can be written as:

(
Si

Ti

)
=

⎛⎜⎝ µS + αXi

exp(µT + βXi)
1 + exp(µT + βXi)

⎞⎟⎠+
(

εSi

εTi

)
, (24.22)

and (24.21) simply reduces to ρ, by virtue of its fully marginal specification.
Under conditional independence, ρ in (24.20) satisfies ρ ≡ 0 and (24.21)
reduces to

ρ(β) =
vi2λτ2

√
λ2τ2 + σ2

√
v2

i2τ
2 + vi2

, (24.23)

somewhat simpler but still a function of the fixed effects.
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In case both endpoints are binary, the counterpart to (24.21) is

ρ(β) =
vi1vi2τ

2 + ρσ
√

vi1vi2√
v2

i1τ
2 + vi1

√
v2

i2τ
2 + vi2

, (24.24)

with again a constant correlation ρ when there are no random effects and,
when there is no residual correlation:

ρ(β) =
vi1vi2τ

2√
v2

i1τ
2 + vi1

√
v2

i2τ
2 + vi2

, (24.25)

Of course, the above calculations can be performed with ease for general
random effects design matrices Zi and for more than two components, of
arbitrary nature and not just continuous and binary. This is useful, for
example, for a fully hierarchical specification such as in Section 24.3.

In the general model, no full joint distribution needs to be specified, even
when we assume the first one to be normally distributed, and the second
one to be Bernoulli distributed. We still can leave the specification of the
joint moments to the second one, by way of the marginal correlation. A full
joint specification would need full bivariate model specification, conditional
upon the random effects.

Under conditional independence, the specification of the outcome distri-
butions conditional upon the random effects, together with the normality
assumptions made about the random effects, fully specifies the joint distri-
bution.

24.3 Hierarchical Joint Models

In the previous section, bivariate models have been discussed for the joint
analysis of a continuous and a binary outcome. The focus was placed on
a probit-normal and a Plackett-Dale formulation, next to the generalized
linear mixed model framework, which can be used to flexibly derive mar-
ginal as well as random-effects models. Of course, joint outcomes can be
measured repeatedly over time, or might be observed within a hierarchi-
cal context. In Section 24.3.1, a two-stage approach is presented, whereas
Section 24.3.2 discusses fully hierarchical models.

24.3.1 Two-stage Analysis
In this section, we retain the setting of a binary and a continuous endpoint,
measured within a hierarchical setting. Molenberghs, Geys, and Buyse
(2001) used this approach in the context of surrogate marker evaluation.
Let S̃ij be a latent variable of which Sij is a dichotomized version. One
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option is to consider a two-step analysis. Assume that subject j is mea-
sured within trial i. For repeated measures, j would refer to time and i to
subject.

At the first step, we can assume the following model:

S̃ij = µSi + αiXij + εSij ,

Tij = µTi + βiXij + εTij ,

where αi and βi are study-specific effects of treatment X on the endpoints
in trial i, µSi and µTi are trial-specific intercepts, and εSi and εTi are
correlated error terms, assumed to be mean-zero normally distributed with
covariance matrix

Σ =

⎛⎝ 1
(1−ρ2)

ρσ√
1−ρ2

ρσ√
1−ρ2

σ2

⎞⎠ .

In short, we use the probit formulation, described in Section 24.2.1. Due
to the replication at the study level, we can impose a distribution on the
study-specific parameters. At the second stage we assume⎛⎜⎜⎝

µSi

µTi

αi

βi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
µS

µT

α

β

⎞⎟⎟⎠+

⎛⎜⎜⎝
mSi

mTi

ai

bi

⎞⎟⎟⎠ (24.26)

where the second term on the right hand side of (24.26) is assumed to follow
a zero-mean normal distribution with dispersion matrix D.

24.3.2 Fully Hierarchical Modeling
We first indicate how the probit-normal and Plackett-Dale models can be
generalized to the hierarchical setting. Ample detail can be found in Geys
et al (2001) and Regan and Catalano (2002). Next, the generalized linear
mixed model case will be considered.

24.3.2.1 A Probit-normal Formulation

The model of Section 24.2.1 can be seen as the basis for this model. Whereas
Model (24.1)–(24.2) applies to one continuous and one binary outcome, we
could equally well consider multiple copies of each and then assume that
the resulting stochastic vector, composed of directly observed and latent
outcomes, is normally distributed.

Although this approach is natural and appealing, the problem is the
handling of potentially high dimensional probits, and several authors have
considered this problem in detail. Regan and Catalano (1999a) introduced
a mixed-outcome probit model that extends a correlated probit model for
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binary outcomes (Ochi and Prentice 1984) to incorporate continuous out-
comes. These authors consider exchangeability among the continuous out-
comes, among the binary outcomes, and between the continuous and binary
outcomes.

Regan and Catalano (1999b) avoided fully specifying the joint distrib-
ution of the ni bivariate outcomes on related subjects within unit i by
specifying only the marginal distribution of the bivariate outcomes and ap-
plying generalized estimating equations to take correlation into account.
Precisely, they fully model the bivariate outcomes for a subject and then
apply GEE to accommodate for the correlations between subjects within
unit i.

24.3.2.2 A Plackett-Dale Approach

Likewise, the Plackett-Dale model of Section 24.2.2 can be embedded in a
hierarchical setting. Geys et al (2001) applied marginal pseudo-likelihood
ideas (Chapter 9)

In Section 24.2.2, a bivariate density-distribution was defined for a joint
continuous and binary outcome, by means of (24.12)–(24.13). In principle,
a 2ni-dimensional Plackett-Dale model needs to be specified. Alternatively,
progress can be made by solely specifying the bivariate outcomes, just as
before, and assembling them into a (log) pseudo-likelihood function:

p	 =
N∑

i=1

ni∑
j=1

lnGij(tij , sij), (24.27)

where Tij is the continuous outcomes for subject j within unit (study, trial,
center,. . . ) i and Sij is the binary one. Thus, with this particular choice of
pseudo-likelihood function, the longitudinal part of the correlation struc-
ture is left unspecified. Of course, alternative pseudo-likelihood functions
can be used as well, depending on which parameters are needed to formu-
late answers to scientific questions. Sometimes, the correlation structure
between outcomes on different subjects within the same unit can be of in-
terest, calling for other types of pseudo-likelihood function. Parameter and
precision estimation based on (24.27) is straightforward, given the devel-
opments in Chapter 9, in particular Section 9.4.

24.3.2.3 A Generalized Linear Mixed Model Formulation

The developments in Section 24.2.3 extend straightforwardly to the hier-
archical case, including repeated measures, meta-analyses, clustered data,
correlated data, etc. In fact, Model (24.14) is sufficiently general to gener-
ate marginal and random-effects models for such settings. The fixed and
random effects structures can be formulated sufficiently generally so as to
cover all of these settings. Of course, when parameters are shared between
models for outcomes of different types, care has to be taken to ensure the
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models are meaningful. For example, inflation factors might have to be used
to share random effects across binary and continuous outcomes, exactly as
the parameter λ in (24.19).

Correlations follow in a straightforward fashion when purely marginal
versions are used. When random effects are involved, correlation structures
can be derived from (24.16) or specific forms derived thereof.

24.4 Age Related Macular Degeneration Trial

In the Age Related Macular Degeneration Study, introduced in Section 2.9,
the mixed discrete-continuous case is encountered in data from a simple yet
real situation. Indeed, visual acuity is assessed in terms of number of letters
read, which can be treated as continuous. The dichotomization in terms of
at least 2 or 3 lines of vision lost at 6 and 12 months, respectively, is a
binary outcome.

In Section 24.4.1, a number of bivariate marginal analyses are presented,
with bivariate random-effects analyses discussed in Section 24.4.2. Hierar-
chical analyses, based on including center as a hierarchy defining variable on
the one hand, and repeated measures on each of the binary and continuous
outcomes on the other hand, are presented in Section 24.4.3.

24.4.1 Bivariate Marginal Analyses
First, we consider dichotomized visual acuity at 6 months as the surro-
gate and (continuous) visual acuity at 12 months as the true endpoint.
Dichotomization is achieved by setting a binary variable to 1 if visual acu-
ity at 6 months is larger than the value at baseline and to 0 otherwise. We
consider a probit-normal model as in Section 24.2.1, a Plackett-Dale model
as in Section 24.2.2, and a GLM-based marginal model as in Section 24.2.3.
Of course, the roles of Si and Ti are reversed in the corresponding equations,
as here the surrogate is assumed binary while the true outcome was binary
in the earlier sections. For the latter model, both a logit as well as a probit
link is considered for the MGLM. PQL is used as approximation method.
For the Plackett-Dale model, a logit link is employed for the true endpoint.
Parameter estimates (standard errors) are displayed in Table 24.1.

The correlation between both endpoints is estimated as ρ̂ = 0.74 under
the probit model. This parameter is of direct interest in surrogate marker
evaluation since it captures the so-called adjusted association (Buyse and
Molenberghs 1998) or individual-level association (Buyse et al 2000, Molen-
berghs, Geys, and Buyse 2001). It also justifies the use of a joint model for
both endpoints, rather than considering them separately. This parameter
is estimated very precisely and there is apparently a strong correlation be-
tween both endpoints. Now, the corresponding correlation under the GLM
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TABLE 24.1. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with a binary surrogate and a continuous true endpoint.

probit- Plackett MGLM
Effect Par. normal -Dale logit probit

Binary surrogate endpoint
Intercept µS 0.64(0.20) 0.74(0.19) 1.25(0.24) 0.76(0.14)
Treatm. eff. α 0.39(0.28) 0.45(0.30) 0.40(0.38) 0.23(0.21)
Overdis. par. φ 1.01(0.10) 1.01(0.10)

Continuous true endpoint
Intercept µT 11.04(1.57) 10.89(1.56) 11.04(1.58) 11.04(1.58)
Treatm. eff. β 4.12(2.32) 4.02(2.32) 4.12(2.33) 4.12(2.33)
Standard dev. σT 15.95(0.82) 16.04(0.81)
Variance σ2

T 254.4(26.2) 257.3(26.0) 257.0(26.5) 257.0(26.5)
Association

Correlation ρ 0.74(0.05) 0.62(0.05) 0.62(0.05)
Log odds r. lnψ 2.85(0.37)
Odds r. ψ 17.29(6.40)

is quite a bit lower. Although, due to the use of PQL, there typically is
downward bias in the parameter estimates, a more important reason for the
difference is that the probit model features the correlation between a pair
of latent variables, whereas the GLM captures the correlation between the
observable outcomes. The Plackett-Dale model, of course, is based on the
use of the odds ratio rather than the correlation as association parameter.
For the binary endpoint, the treatment effect parameters differ somewhat,
with the differences in the intercepts a bit larger. The parameter estimates
for the continuous endpoint agree much closer.

Let us now switch to the situation of continuous visual acuity at 6 months
as a surrogate for the binary indicator for loss of at least 3 lines of vision
lost at one year. The same models as in Table 24.1 are considered here too,
with of course the roles of the continuous and binary endpoints reversed.
Parameter estimates (standard errors) are given in Table 24.2. Qualita-
tive conclusions agree very closely with their counterparts for the earlier
analyses, although there are some quantitative differences. With the probit
model, the correlation is ρ̂ = 0.81, but again, for the GLM-based models
they are quite a bit smaller, underscoring once more that the two correla-
tion parameters are not really directly comparable, as the probit (and also
Dale) versions are describing the correlation of the underlying bivariate la-
tent variable. With the Plackett-Dale model, the odds ratio is estimated to
be ψ̂ = 16.93. As in Table 24.1, parameter estimates across models agree
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TABLE 24.2. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with a continuous surrogate and a binary true endpoint.

Probit- Plackett MGLM
Effect Par. normal -Dale logit probit

Continuous surrogate endpoint
Intercept µS 5.53(1.26) 5.89(1.24) 5.53(1.27) 5.53(1.27)
Treatm. eff. α 2.83(1.87) 2.72(1.84) 2.83(1.87) 2.83(1.87)
Standard dev. σS 12.80(0.66) 12.90(0.65)
Variance σ2

S 163.8(16.9) 166.4(16.8) 165.7(17.1) 165.7(17.1)
Binary true endpoint

Intercept µT -0.36(0.21) -0.36(0.19) -0.50(0.20) -0.31(0.13)
Treatm. eff. β 0.60(0.30) 0.58(0.28) 0.66(0.30) 0.41(0.19)
Overdis. par. φ 1.01(0.10) 1.01(0.10)

Association
Correlation ρ 0.81(0.04) 0.62(0.04) 0.62(0.04)
Log odds r. lnψ 2.83(0.29)
Odds r. ψ 16.93(4.91)

fairly closely, but the agreement is better for the continuous endpoint than
for the binary one.

Of course, one could also analyze both endpoints as binary, or both end-
points as continuous. Although not the theme of the chapter, it is useful
to do so for the sake of comparison. In the first case, a standard probit
or Dale model (Chapter 7) could be used. In the second case, a bivari-
ate normal is the obvious choice. Let us first focus on the situation of
two binary outcomes. Buyse and Molenberghs (1998) analyzed both binary
endpoints using the Dale model with logit links and obtained an odds ra-
tio of ψ̂ = 18.53. Table 24.3 presents five different analyses of the pair of
binary outcomes. First, the Dale model is fitted with both logit and probit
links. Second, a marginal linearization based model with correlated error
terms (Section 8.8 is considered, again with logit and probit links. Third,
a bivariate probit model is fitted. Table 24.3 organizes the models by link
functions, so that similarities and differences between parameter estimates
become more apparent.

Even more so than in the heterogenous outcome cases, there is close
agreement between the intercept and treatment effect parameter estimates
for the logit and probit models, respectively. At the same time, there is
agreement between the association measures as far as they are comparable,
but once again the probit based correlation is quite a bit higher than the
GLM-based correlation, for reasons explained above.
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TABLE 24.3. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with binary endpoints, based on the Dale model (probit and logit links), the
bivariate probit model, and a marginal joint GLM (logit and probit links).

Logit links
Effect Parameter Dale MGLM

Surrogate endpoint
Intercept µS -0.54(0.20) -0.54(0.21)
Treatm. eff. α 0.70(0.30) 0.70(0.30)
Overdis. par. φ 1.01(0.10)

True endpoint
Intercept µT -0.50(0.20) -0.50(0.20)
Treatm. eff. β 0.66(0.30) 0.66(0.30)
Overdis. par. φ 1.01(0.10)

Association
Correlation ρ 0.62(0.05)
Log odds r. lnψ 2.92(0.38)
Odds r. ψ 18.54(7.05)

Probit links
Effect Parameter biv. probit Dale MGLM

Surrogate endpoint
Intercept µS -0.34(0.13) -0.33(0.13) -0.33(0.13)
Treatm. eff. α 0.44(0.18) 0.44(0.18) 0.44(0.19)
Overdis. par. φ 1.01(0.10)

True endpoint
Intercept µT -0.31(0.13) -0.31(0.13) -0.31(0.13)
Treatm. eff. β 0.41(0.18) 0.41(0.18) 0.41(0.19)
Overdis. par. φ 1.01(0.10)

Association
Correlation ρ 0.83(0.05) 0.62(0.05)
Log odds r. lnψ 2.92(0.38)
Odds r. ψ 18.54(7.05)

Finally, both outcomes can be considered continuous. Then, the counter-
parts of all models in Tables 24.1–24.3 collapse to a bivariate normal model,
and so does the output obtained from virtually all relevant software tools,
such as the SAS procedures MIXED, NLMIXED, and GLIMMIX. Results
are presented in Table 24.4. The correlation obtained here is 0.75. Note
that this is closer to the bivariate probit and probit-normal models than to
the GLM one. Indeed, we now have a bivariate continuous outcome, which
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TABLE 24.4. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with continuous endpoints, using a bivariate normal model.

Effect Par. Estimate (s.e.)
Surrogate endpoint

Intercept µS 5.53(1.27)
Treatm. eff. α 2.83(1.87)
Standard dev. σS 12.87(0.66)
Variance σ2

S 165.7(17.1)
True endpoint

Intercept µT 11.04(1.58)
Treatm. eff. β 4.12(2.33)
Standard dev. σT 16.03(0.83)
Variance σ2

T 257.0(26.5)
Association

Correlation ρ 0.75(0.03)

is more informative than a pair of binary outcomes or the joint occurrence
of a binary and a continuous outcome. Nevertheless, in all situations do
the probit and probit-normal models attempt to describe the association
of the underlying pair of normal outcomes, whether or not they are directly
observed.

Generally note that, when continuous or binary outcome results are com-
pared across Tables 24.1–24.4, whether from a heterogeneous or homoge-
nous model, there is reasonably close agreement, especially within a model
family (probit-normal, Plackett-Dale, GLM based), and especially for treat-
ment effects and association parameters.

24.4.2 Bivariate Random-effects Analyses
Although all models above are of a marginal type, we can also consider
random-effects models. So far, we have considered marginal versions of
(24.14), denoted by MGLM, but we will now switch to conditional inde-
pendence model (24.19) with a scaled random intercept, for the case of
a binary and a continuous outcome, a classical random-intercepts logistic
regression model when both outcomes are binary, and a random-intercept
linear mixed-effects model for continuous outcomes. Results are presented
in Table 24.5.

Comparing the continuous-binary case with the results in Table 24.2, it
is clear that fixed effects in the Gaussian model roughly remain the same,
but the fixed effects for the binary outcome are larger, in agreement with
the results in Chapter 16. A similar inflation is seen in the binary-binary
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case, at least when numerical integration is used. For PQL, the bias is
severe and the parameter estimates are hardly larger than their marginal
counterparts in Table 24.3. Given the estimate of the random-intercept
variance (τ̂2 = 14.51) and (16.3), the correspondence between the random-
effects parameters and their marginal counterparts in Table 24.3 would
be 2.45. Comparing the corresponding estimates yields factors of roughly
2.62. In line with general results about the linear mixed model (Chapter 4),
the estimates in the last column are very close to those in Table 24.4, even
though the assumption of a constant variance, made here, may be somewhat
too simplistic, given the variances in Table 24.4 are quite a bit different.

As before, the correlation between both endpoints is of interest. With the
exception of the continuous-continuous case, it is somewhat less straightfor-
ward to derive. For the continuous-binary case, we can make use of (24.23)
and for the binary-binary case, (24.24) is the proper choice. Clearly, the
correlation is different between both treatment arms now, given the depen-
dence of the correlation function on the fixed effects. However, in this case,
the difference is negligible. However, the poverty of the PQL approximation
is shown, not only in the fixed effect and variance component estimates,
but in the correlation parameters as well. For the others, irrespective on
the nature of the outcomes, the results are very close to their marginal
counterparts in Tables 24.1–24.4, which is reassuring.

It is worthwhile to note that the parameters in the continuous-binary
case are identifiable, but due to the non-linearity of the model, induced by
the factor λ, care has to be taken in monitoring the convergence process.
Having said this, the effect is most clearly seen on the binary outcome fixed
effects, and not quite as much on the continuous outcome parameters.

24.4.3 Hierarchical Analyses
Let us now switch attention to the hierarchical case. First, let us observe
that the trial is of the multicenter type. It is natural to consider the center in
which the patients were treated as the unit of analysis. A total of 36 centers
were thus available for analysis, with a number of individual patients per
center ranging from 2 to 18. We analyze the situation where dichotomized
visual acuity at 6 months acts as surrogate for the continuous visual acuity
at 12 months. A two-stage approach is followed. Table 24.6 shows the pa-
rameter estimates for the hierarchical probit model (Section 24.3.1). Two
versions are considered, with trial-specific treatment effects on the one hand
(reduced model) and with trial-specific intercepts and treatment effects on
the other hand (full model). The correlation, obtained from the full model,
is similar to the ones obtained from the bivariate analyses. When the re-
duced model is employed, the correlation is quite a bit smaller.

Of course, also fully hierarchical models can be fitted. For example, the
hierarchical probit or Plackett-Dale models can be used. Applications of
these models can be found in Regan and Catalano (2002). Also the joint
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TABLE 24.5. Age Related Macular Degeneration Trial. Bivariate joint generalized
linear mixed model analyses. Some models lead to a treatment-arm dependent
correlation estimate, denoted by ‘stand’ for the standard arm and ‘exp’ for the
experimental arm.

Surrogate endpoint: cont. binary binary cont.
True endpoint: binary binary binary cont.
Estimation method: PQL Num. int. PQL ML
Effect Par.

Surrogate endpoint parameters
Intercept µS 5.53(1.26) 1.42(0.57) -0.62(0.26) 5.53(1.42)
Treatm. eff. α 2.83(1.86) -1.84(0.82) 0.81(0.39) 2.83(2.11)
Standard dev. σS 7.18(1.15)
Variance σ2

S 51.59(16.55)
Inflation λ -1.41(1.68)

True endpoint parameters
Intercept µT 1.63(1.94) 1.31(0.56) -0.57(0.26) 11.04(1.42)
Treatm. eff. β -2.72(3.15) -1.73(0.81) 0.76(0.39) 4.12(2.11)

Common parameters, including association
R.I. std.d. τ 7.50(8.50) 3.81(0.69) 1.95(0.47) 12.41(0.76)
R.I. var. τ2 56.2(127.4) 14.51(5.28) 3.76(1.82) 154.0(18.8)
Res. st.d. σ 7.43(0.38)
Res. var. σ2 55.1(15.7)
Correlation ρ 0.74
Corr. (stand.) ρ[1] 0.79 0.78 0.48
Corr. (exp.) ρ[2] 0.78 0.70 0.46

generalized linear mixed effects model of Section 24.2.3 can be used for
hierarchical analyses. Although we have focused so far on outcomes at 6
months and 1 year, we will now also consider the intermediate endpoints
at 4 and 12 weeks as well. Thus, we have two repeated sequences of four
components each, one binary, and one continuous. The binary outcomes
are dichotomizations of the number of letters lost as negative versus non-
negative. We consider on the one hand a marginal model, with fully un-
structured 8×8 variance-covariance matrix and a conditional independence
random-intercepts model on the other hand. Parameter estimates are pre-
sented in Table 24.7.

Once more, the relationship between the fixed effects is in line with expec-
tation. For the continuous outcome sequence, they are virtually equal. For
the binary outcome, the ratios vary between 1.55 and 1.98, with an average
of 1.80, whereas (16.3) predicts a ratio of 1.80. Model parameters here are
better identifiable than their counterparts from the bivariate models, even



24.5 Joint Models in SAS 455

TABLE 24.6. Age Related Macular Degeneration Trial. Parameter estimates
(standard errors) for the full and reduced two-stage fixed effects probit model.

Effect Parameter Full Reduced
Surrogate endpoint

Intercept µS 1.46(0.68) 0.67(0.15)
Treatm. eff. α 1.10(0.98) 1.75(0.69)

True endpoint
Intercept µT 11.13(1.69) 11.82(1.00)
Treatm. eff. β 4.40(2.94) 3.72(2.38)
Standard dev. σT 11.43(0.60) 13.60(0.71)
Variance σ2

T 130.6(13.7) 185.0(19.3)
Association

Correlation ρ 0.75(0.05) 0.66(0.07)

though care is still needed when selecting starting values. Every possible
pair of outcomes in the marginal model has its own correlation coefficient
(not shown), whereas in the random-effects model, they follow from the
fixed effects and variance components, as was illustrated in Section 24.4.2,
based on such expressions as (24.21), (24.23), (24.24), and (24.25).

24.5 Joint Models in SAS

We will present a program and selected output for the joint analysis of a
continuous and a binary outcome, by means of the generalized linear mixed
model and using the SAS procedure GLIMMIX. To create the bivariate
outcome vectors, out of the continuous outcomes measured at 6 months
(24 weeks) and 12 months (52 weeks), ‘diff24’ and ‘diff52,’ and their binary
counterparts ‘bindif24’ and ‘bindif52,’ the following code can be used:

data armd77;
set armd7;
array x (2) diff24 diff52;
array y (2) bindif24 bindif52;
array z (2) bindh24 diff52;
array w (2) diff24 bindif52;
do j=1 to 2;

visual=x(j);
bindif=y(j);
bincont=z(j);
contbin=w(j);
time=j;
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TABLE 24.7. Age Related Macular Degeneration Trial. Hierarchical models for
joint longitudinal continuous and binary visual acuity sequences. For the marginal
model-based and empirically corrected standard errors are presented.

Effect Parameter Marginal Random Int.
Continuous sequence

Intercept 4 β11 -3.26(0.77;0.81) -3.27(1.30)
Intercept 12 β21 -4.62(1.14:1.07) -4.62(1.29)
Intercept 24 β31 -8.37(1.38;1.26) -8.37(1.29)
Intercept 52 β41 -15.16(1.72;1.64) -15.16(1.29)
Treatment eff. 4 β12 2.31(1.05;1.05) 2.38(1.76)
Treatment eff. 12 β22 2.34(1.54;1.52) 2.34(1.76)
Treatment eff. 24 β32 2.83(1.87;1.84) 2.83(1.76)
Treatment eff. 52 β42 4.12(2.33;2.31) 4.12(1.76)
Res. st. deviation σ 8.21(0.23)
Res. variance σ2 67.45(3.81)
Inflation λ -3.32(0.34)

Binary sequence
Intercept 4 β11 -1.02(0.24;0.24) -2.02(0.46)
Intercept 12 β21 -0.91(0.24;0.24) -1.81(0.45)
Intercept 24 β31 -1.15(0.25;0.25) -2.24(0.47)
Intercept 52 β41 -1.65(0.29;0.29) -3.11(0.52)
Treatment eff. 4 β12 0.40(0.32;0.32) 0.66(0.59)
Treatment eff. 12 β22 0.54(0.31:0.31) 0.93(0.58)
Treatment eff. 24 β32 0.52(0.33;0.32) 0.88(0.60)
Treatment eff. 52 β42 0.40(0.38;0.38) 0.62(0.64)

Common parameters
R.I. st. deviation τ 2.66(0.29)
R.I. variance τ2 7.07(1.64)

subject=_n_;
output;

end;
run;

There are four new outcomes created, consisting of the two continuous
outcomes (‘visual’), the two binary outcomes (‘bindif’), a binary surrogate
followed by a continuous true outcome (‘bincont’), and finally a continuous
surrogate followed by a binary true outcome (‘contbin’).

Because we cannot uniformly specify the outcome distribution nor the
link function, a special device has been created to this effect, i.e., the
‘byobs=(·)’ specification that can be used in both the ‘link=’ and the ‘dist=’
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options. Practically, a variable needs to be created to specify the outcome
distribution and link function for each observation in the set of data. For
example, analyzing the ARMD data with a continuous, normally distrib-
uted, surrogate and a binary true endpoint, can be done by means of the
‘dist=byobs(distcb)’ option where ‘distcb’ is a variable denoting a Gaussian
distribution for the first measurement of every subject and a Bernoulli one
for the second. The procedure recognizes both a numerical indicator, with
a proper map between distributions and numerical labels being provided
in the manual (SAS Institute Inc. 2004), as well as a four-character la-
bel, by means of the first four characters of each distributions. All but
the multinomial distribution can be used. The following code creates to
distributional indicators, one for a continuous surrogate and a binary true
endpoint (‘distcb’) and one for the reverse case (‘distbc’). In addition, four
link function indicators are created, referring to the identity link for the
continuous outcome and then either a logit or a probit link for the binary
outcome.

Code to create these indicators is

data armd77;
set armd77;
distcb=’BINA’;
if time=1 then distcb=’GAUS’;
distbc=’BINA’;
if time=2 then distbc=’GAUS’;
linkcb1=’LOGI’;
if time=1 then linkcb1=’IDEN’;
linkcb2=’PROB’;
if time=1 then linkcb2=’IDEN’;
linkbc1=’LOGI’;
if time=2 then linkbc1=’IDEN’;
linkbc2=’PROB’;
if time=2 then linkbc2=’IDEN’;
run;

The relevant variables for analysis, for the first 5 subjects, are

s b c l l l l
u v b i o d d i i i i
b t i i n n i i n n n n
j t r s n c t s s k k k k

O e i e u d o b t t c c b b
b c m a a i n i c b b b c c
s t e t l f t n b c 1 2 1 2

1 1 1 1 0 0 1 0 GAUS BINA IDEN IDEN LOGI PROB
2 1 2 1 -10 0 -10 0 BINA GAUS LOGI PROB IDEN IDEN
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3 2 1 2 -3 0 0 -3 GAUS BINA IDEN IDEN LOGI PROB
4 2 2 2 1 0 1 0 BINA GAUS LOGI PROB IDEN IDEN

5 3 1 1 -6 1 1 -6 GAUS BINA IDEN IDEN LOGI PROB
6 3 2 1 -17 1 -17 1 BINA GAUS LOGI PROB IDEN IDEN

7 4 1 2 8 0 0 8 GAUS BINA IDEN IDEN LOGI PROB
8 4 2 2 1 0 1 0 BINA GAUS LOGI PROB IDEN IDEN

9 5 1 2 -2 0 1 -2 GAUS BINA IDEN IDEN LOGI PROB
10 5 2 2 -2 0 -2 0 BINA GAUS LOGI PROB IDEN IDEN

...

The variable ‘contbin’ is clearly made up of the first component of ‘visual’
and the second one of ‘bindif.’ For ‘bincont,’ a somewhat different definition
is used for the surrogate, which is an indicator for whether letters are lost
or gained, rather than an indicator for at least two lines lost. This definition
was chosen in agreement with the choice made by Molenberghs, Geys, and
Buyse (2001).

We can now use the program:

proc glimmix data=armd77 method=rspl;
class treat distcb subject;
nloptions maxiter=50 technique=newrap;
model contbin = distcb treat*distcb

/ noint dist=byobs(distcb) solution;
random _residual_ / subject=subject type=un r;
run;

Note that there is no link function specification in this program, implying
that the default link is used. Equivalently, one could specify the option
‘link=byobs(linkcb1),’ which would produce exactly the same model. How-
ever, the advantage then is that the link functions chosen become very
explicit. Changing the link variable to ‘link=byobs(linkcb2),’ the probit
link would be chosen for the binary variable, while maintaining the iden-
tity link for the continuous variable. The variable ‘distcb’ is also used in the
fixed-effects structure, through the MODEL statements. This means that
a separate intercept (µS and µT , respectively) and a separate treatment ef-
fect (α and β, respectively) are included for each of the two outcomes. This
could be done equally well by using the variable ‘time’ as a class variable,
since both ‘time’ and ‘distcb,’ and in fact also the link function variables,
contain the same information when used as class variable. The choice for
‘distcb’ is motivated by clarity of the output, where it will be made clear
which parameters belong to the Gaussian outcome and which to the binary
one.

Given that the outcomes are of a different nature, this is a very natural
choice. By including ‘noint’ into the MODEL statement options, both in-
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tercepts are directly shown, rather than as a main effect and a difference
between both, which would be less meaningful. The NLOPTIONS state-
ment is included to control convergence. In examples like this, in agreement
with the comments made in Section 22.6, convergence can be an issue and
the user may need to change such aspects as the iterative technique, the
maximum number of iterations, and the convergence tolerance.

Because the response and link functions depend on the outcome, the
‘Model Information’ panel does not specify them individually but rather
gives a generic indication:

Model Information

Response Distribution Multivariate
Link Function Multiple
Variance Function Default

Let us now turn to the estimates of the covariance parameters.

Covariance Parameter Estimates

Cov Standard
Parm Subject Estimate Error

UN(1,1) subject 165.69 17.0897
UN(2,1) subject 8.0235 1.1105
UN(2,2) subject 1.0106 0.1042

The parameter ‘UN(1,1)’ is the variance of the Gaussian outcome, the
parameter ‘UN(2,2)’ is the variance of the binary outcome and as such
merely is an overdispersion parameter. Finally, ‘UN(2,1)’ is the covariance
between both. In our example, the correlation is of interest more than the
covariance. Because it can be calculated without problem from the three
parameters, and the standard error could be calculated from the asymptotic
covariance matrix of the variance parameters, it is actually easy to obtain it
directly, but changing the structure option for the covariance matrix in the
RANDOM statement to ‘type=unr’ rather than the ‘type=un’ structure
used above. Obviously, both parameterizations are equivalent. The above
panel then changes to:

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Corr(2,1) subject 165.69 17.0897
Corr(3,1) subject 1.0106 0.1042
Corr(3,2) subject 0.6200 0.04489
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Of course, the two variance parameters are the same as above, but the
correlation estimate ρ̂ = 0.62 is now presented directly. Two observations
are worth making. First, the order of the parameters in both panels is
different and, somewhat misleading, the double indices have changed from
the intuitive (1,1), (2,1), and (2,2) coding to (2,1), (3,1), and (3,2). These
would correspond to correlations in a 3×3 correlation matrix, but not to the
situation we encounter. So we advise to be careful with these labels and
cautiously map the ‘type=unr’ parameters to their counterparts coming
from the ‘type=un’ structure, to avoid confusion.

Finally, the fixed effects parameters, presenting the two intercepts µT

and µS , and treatment effects and β and α are presented.

Solutions for Fixed Effects

Standard
Effect distcb treat Estimate Error DF

distcb BINA 0.4953 0.2042 186
distcb GAUS -5.5340 1.2683 186
treat*distcb BINA 1 -0.6566 0.2974 186
treat*distcb GAUS 1 -2.8338 1.8743 186
treat*distcb BINA 2 0 . .
treat*distcb GAUS 2 0 . .

While in the bivariate vector of outcomes per subject the Gaussian out-
come measured at six months, preceded the binary outcomes measured at
one year, here the binary parameters preceed their Gaussian counterparts.
This is merely because the levels in the ‘distcb’ variable are ordered alpha-
betically. So again, some care is needed.

Let us now switch to the random-effects models. Focusing on fitting
model (24.19) to the ARMD data, the non-linear parameter λ prohibits
the use of the GLIMMIX procedure, whence the procedure NLMIXED
can be used. It is instructive to first focus on the case of two continuous
outcome. In this case, the following three programs produce exactly the
same model fit:

/*First program*/

proc mixed data=armd77 method=ml;
class treat time subject;
model visual = time treat*time

/ noint solution ddfm=satterthwaite;
random intercept

/ subject=subject type=un g v vcorr;
run;
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/* Second program */

proc nlmixed data=armd77 qpoints=20 maxiter=50;
if time=1 then eta = beta11 + b + beta12*(2-treat);
else if time=2 then eta = beta21 + b + beta22*(2-treat);
model visual ˜ normal(eta,sigma*sigma);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

/* Third program */

proc nlmixed data=armd77 qpoints=20 maxiter=50;
if time=1 then do;

mean = beta11 + b + beta12*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(visual-mean)**2/(sigma**2);
ll = dens;

end;
else if time=2 then do;

mean = beta21 + b + beta22*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(visual-mean)**2/(sigma**2);
ll = dens;

end;
model visual ˜ general(ll);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

Although the programs increase in terms of complexity and, for normally
distributed outcomes, the first one perfectly does the job, they also increase
the flexibility, but only the last one generalizes to joint outcomes. Indeed,
the second one still is based on the assumption of a common outcome
distribution, albeit with a differently defined mean structure. In the third
one, the general likelihood feature is used and hence a different one can be
used for each outcome separately.

Thus, a program of a continuous first outcome, combined with a binary
second one, is as follows:

proc nlmixed data=armd77 qpoints=20 maxiter=100
maxfunc=2000 technique=newrap;

parms beta11=-5.53 beta12=-2.83 beta21=-0.50
beta22=0.66 sigma=7 lambda=3 tau=3;
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if time=1 then do;
mean = beta11 + lambda*b + beta12*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(contbin-mean)**2/(sigma**2);
ll = dens;

end;
else if time=2 then do;

eta = beta21 + b + beta22*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = contbin*log(p) + (1-contbin)*log(1-p);

end;
model contbin ˜ general(ll);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

Reaching convergence is not straightforward, given the non-linear nature
of the program, with the incorporation of λ, and a careful selection of
starting values, and fine tuning using the convergence and updating method
switches may be required.

Let us now turn attention to the MGLM and GLMM hierarchical models,
presented in Section 24.4.3. The data need to be organized in a ‘vertical’
way, implying that the 4 continuous and 4 binary outcomes are stacked
into a vector of length eight. An outprint for the first two patients:

Obs subject treat repeat time dist link outcome

1 1 2 1 1 GAUS IDEN 5
2 1 2 2 2 GAUS IDEN 0
3 1 2 3 3 GAUS IDEN 0
4 1 2 4 4 GAUS IDEN -10
5 1 2 5 1 BINA LOGI 0
6 1 2 6 2 BINA LOGI 1
7 1 2 7 3 BINA LOGI 1
8 1 2 8 4 BINA LOGI 1

9 2 1 1 1 GAUS IDEN -3
10 2 1 2 2 GAUS IDEN -3
11 2 1 3 3 GAUS IDEN -3
12 2 1 4 4 GAUS IDEN 1
13 2 1 5 1 BINA LOGI 1
14 2 1 6 2 BINA LOGI 1
15 2 1 7 3 BINA LOGI 1
16 2 1 8 4 BINA LOGI 0

A program for the marginal model, using the GLIMMIX procedure, is

proc glimmix data=armd99 method=rspl empirical;
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class time treat dist subject;
nloptions maxiter=50 technique=newrap;
model outcome = time*dist treat*time*dist

/ noint dist=byobs(dist) link=byobs(link) solution;
random _residual_ / subject=subject type=un r;
run;

which is a straightforward extension of the bivariate program.
Now, more work is needed to adapt the NLMIXED code for the condi-

tional independence model:

proc nlmixed data=armd99 qpoints=20 maxiter=100
maxfunc=2000 technique=newrap;

parms beta11=-1.55 beta12=1.00
beta21=-2.93 beta22=1.02

beta31=-6.68 beta32=1.52
beta41=-13.47 beta42=2.81
beta51=1.17 beta52=-0.22
beta61=0.99 beta62=-0.47
beta71=1.36 beta72=-0.41
beta81=2.17 beta82=-0.11
tau=1.77
sigma=8.58
lambda=-4.18
;

if repeat=1 then do;
mean = beta11 + lambda*b + beta12*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=2 then do;

mean = beta21 + lambda*b + beta22*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=3 then do;

mean = beta31 + lambda*b + beta32*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=4 then do;

mean = beta41 + lambda*b + beta42*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)
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- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=5 then do;

eta = beta51 + b + beta52*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
else if repeat=6 then do;

eta = beta61 + b + beta62*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
else if repeat=7 then do;

eta = beta71 + b + beta72*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
else if repeat=8 then do;

eta = beta81 + b + beta82*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
model outcome ˜ general(ll);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

Clearly, the code can be made a little more efficient in terms of program-
ming code, but the advantage of the current program is clarity.

24.6 Concluding Remarks

We have discussed a number of methods to model correlated data when not
all outcomes are of the same type. It is not uncommon to observe binary or
otherwise categorical outcomes jointly with continuous outcomes, but also
other combinations are perfectly possible. One might view such outcomes as
multivariate. In addition, such a multivariate outcome of a heterogeneous
nature can then be observed repeatedly over time, for various subjects
within a trial, a cluster, or within other hierarchically organized units. Just
as in the general case, we have distinguished between marginal, conditional,
and random-effects models. A relatively large number of proposals have
been made in the literature, many developed for specific applications.
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We have focused on three modeling approaches in particular. The probit-
normal and Plackett-Dale models are of a marginal nature and within the
generalized linear mixed-effects modeling framework both marginal models,
random-effects models, and random-effects models with residual or serial
correlation can be considered. Each of these apply to a simple multivariate
setting as well as to a fully hierarchical setting. In the literature, the mar-
ginal models have been combined with GEE and pseudo-likelihood ideas
to enable parameter estimation when the outcome vectors are relatively
long. In the GLMM framework, PQL and MQL can be used, as well as
fully numerical integration. The examples have shown that these are fea-
sible routes, but PQL and MQL are not recommended for random-effects
models, due to the well-known bias issue. Therefore, numerical integration,
such as in the SAS procedure NLMIXED, is a viable route. The SAS pro-
cedure GLIMMIX is useful for the purely marginal versions that can be
seen as a version of GEE as well (Section 8.8).

In conclusion, thanks to recent software developments, the joint modeling
of repeated measures of various outcome types can be done with standard
statistical software and is not confined any more to user defined program-
ming tools.




