
23
Non-Gaussian Random Effects

23.1 Introduction

The mixed models discussed so far all assume that the random effects are
normally distributed. This assumption has been carried over from the linear
mixed models, where it has proven to be mathematically very convenient
in the sense that the marginal likelihood can easily be calculated analyt-
ically (Chapter 4). In non-linear mixed models, as well as in generalized
linear mixed models, this normality assumption has been the cause of many
computational difficulties because the marginal likelihood can no longer be
computed analytically, which has resulted in many proposals in the statis-
tical literature about how to approximate the likelihood to be maximized
(see Chapter 14 for an overview).

For linear mixed models, it has been shown (Verbeke and Lesaffre 1996,
1997) that deviations from this normality assumption have very little im-
pact on the estimation of the parameters in the marginal model, but much
more on the empirical Bayes estimates for the random effects. For non-
linear and generalized linear mixed models, misspecification of the random-
effects distribution can lead to biased estimates for the parameters in the
marginal model, including the fixed effects that are usually of primary inter-
est. We refer to Neuhaus, Hauck, and Kalbfleisch (1992), Butler and Louis
(1992), Pfeiffer et al (2003), Heagerty and Zeger (2000), and Litiére et al
(2005) for more details on the effect of misspecifications of random-effects
distributions in generalized linear mixed models.
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FIGURE 23.1. Density functions of mixtures pN (µ1, σ
2
b )+(1−p)N (µ2, σ

2
b ) of two

normal distributions, for varying values for p and σ2
b . The dashed lines represents

the densities of the normal components; the solid line represents the density of
the mixture.

This calls for methods to check the normality of the random effects and
for models that relax the distributional assumptions. In the context of lin-
ear mixed models, it has been shown (Verbeke and Molenberghs 2000 Sec-
tion 7.8) that the empirical Bayes estimates for the random effects, obtained
under normality, cannot be used to check normality because the prior belief
of normality often forces the estimates to satisfy this assumption such that
non-normality of the random effects may not be reflected in their empirical
Bayes estimates. Therefore, Verbeke and Lesaffre (1996), Magder and Zeger
(1996), and Verbeke and Molenberghs (2000, Chapter 12) have extended
the linear mixed model with mixtures of normals as random-effects distri-
bution. This particular extension has several advantages. First, as shown
in Figure 23.1, the class of finite mixtures of normal distributions is a very
flexible class of distributions: unimodal as well as multimodal, symmetric
as well as very skewed. Second, mixtures can be used to model unobserved
heterogeneity in the random-effects distribution. Third, the fact that the
mixture components are still normally distributed allows the implemen-
tation to take advantage of algorithms and software already available for
fitting the models with normally distributed random effects. Finally, the
mixture models can be used for classification purposes, which makes them



23.2 The Heterogeneity Model 421

particularly useful in contexts of discriminant analysis or cluster analysis,
based on longitudinal profiles.

In this chapter, we will present and illustrate the mixture approach in the
context of generalized linear, or non-linear, mixed models. In Section 23.2,
the model will be introduced. In Section 23.3, estimation and inference
will be discussed. Section 23.4 briefly explains how random effects can
be estimated under the mixture assumption and shows how the mixture
models can be used for classification purposes. Finally, an example will be
worked out in Section 23.5. More details on the model, as well as on the
related estimation and inference can be found in Fieuws, Spiessens, and
Draney (2004) or in Muthén and Shedden (1999).

23.2 The Heterogeneity Model

As before, let Y i be the ni-dimensional vector of all measurements avail-
able for cluster i = 1, . . . , N , and let fi(yi|bi) be the corresponding density,
conditional on a q-dimensional vector bi of random effects. We hereby do
not explicitly denote possible dependence of fi(yi|bi) on unknown parame-
ters such as fixed effects. In the mixed models considered so far, the random
effects bi were always assumed to be sampled from a normal distribution
with mean vector zero and a covariance matrix D, i.e., bi ∼ N(0, D). This
assumption reflects the prior believe that the random effects are drawn
from one homogeneous population of random effects. From now on, the
so-obtained mixed model will be termed ‘homogeneity’ model.

The ‘heterogeneity’ model is obtained by replacing the normality as-
sumption for the random effects by a mixture of g q-dimensional normal
distributions with mean vectors µr and covariance matrices Dr, i.e.,

bi ∼
g∑

r=1

prN(µr, Dr), (23.1)

with
∑g

r=1 pr = 1. The population under study can then be interpreted as
a combination of g sub-populations, each representing a fraction pr of the
total population. In the rth sub-population, the random effects are nor-
mally distributed with mean µr, and covariance Dr. Clearly, model (23.1)
reflects prior belief of presence of unobserved heterogeneity. Therefore, the
resulting mixed model is called ‘heterogeneity’ model.

We now define zir = 1 if bi is sampled from the rth component in the
mixture, and 0 otherwise, r = 1, . . . , g. We then have that P (zir = 1) =
E(zir) = pr and that

E(bi) = E [E(bi | zi1, . . . , zig)] = E

(
g∑

r=1

µr zir

)
=

g∑
r=1

pr µr.
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Therefore, the additional constraint
∑g

r=1 prµr = 0 is needed to ensure
that the random effects still have mean zero. Further, we have that the
overall covariance matrix of the bi is given by

D∗ = var [E(bi | zi1, . . . , zig)] + E [var(bi | zi1, . . . , zig)]

= var

(
g∑

r=1

µr zir

)
+ E

(
g∑

r=1

Dr zir

)

=
g∑

r=1

prµrµ
′
r +

g∑
r=1

prDr. (23.2)

The first term represents variability between the mixture components, and
the second term is the average within-component variability. Hence, (23.2)
can be interpreted as a decomposition of variability in the random effects
in terms of variability between and variability within the sub-populations.
Finally, denoting the density within the rth mixture component by fr(bi),
we have that the density function corresponding to (23.1) is given by

f(bi) =
g∑

r=1

prfr(bi)

=
g∑

r=1

pr (2π)−q/2 |Dr|−1/2

× exp
{

−1
2

(bi − µr)
′
D−1

r (bi − µr)
}

. (23.3)

It should be emphasized that we consider the number of components
g in (23.1) to be known. In practice, several models can be fitted, with
increasing values for g, leading to a series of nested models, and testing
procedures such as the likelihood ratio test could be used for the com-
parison of these models. However, as discussed by Ghosh and Sen (1985),
testing for the number of components in a finite mixture is seriously com-
plicated by boundary problems similar to the ones discussed in Section 14.6
in the context of tests for variance components. In order to briefly high-
light the main problems, we consider testing H0 : g = 1 versus HA : g = 2.
The null hypothesis can then be expressed as H0 : µ1 = µ2. However, the
same hypothesis is obtained by setting H0 : p1 = 0 or H0 : p2 = 0, which
clearly illustrates that H0 is on the boundary of the parameter space, and
hence also that the usual regularity conditions for application of the clas-
sical maximum likelihood theory are violated. Therefore, simulations are
needed to derive the correct null distribution of the LR test statistic. We
refer to Verbeke (1995, Section 4.6) for an example in the context of lin-
ear mixed models, and to McLachlan and Basford (1988, Section 1.10) for
an extensive overview of the literature on the use of the LR test in finite



23.3 Estimation and Inference 423

mixture problems. In practice it is often sufficient to fit several heterogene-
ity models and to explore how increasing g affects the inference for the
parameters of interest.

In the context of linear mixed models, Magder and Zeger (1996) also
considered mixtures of normal distributions as random-effects distribution,
but they treated the number g of components as an unknown parameter, to
be estimated from the data. In order to avoid that non-smooth mixture dis-
tributions, with many components, would be obtained, they pre-specify a
lower boundary h for the within-component variability measured by the de-
terminants |Dr| of the within-component covariance matrices. In practice,
very little difference is expected from models that pre-specify the number
of mixture components. Indeed, when a very smooth mixing distribution is
required, a large value of h can be specified, which will yield a mixture of
a relatively small number of normal distributions.

23.3 Estimation and Inference

Estimation and inference for the heterogeneity model will be based on
maximum likelihood (ML) principles for the marginal likelihood of the data.
The marginal distribution of Y i, obtained from integrating out the random
effects, is given by

fi(yi) =
∫

fi(yi|bi) f(bi) dbi

=
g∑

r=1

pr

∫
fi(yi|bi) fr(bi) dbi

=
g∑

r=1

prfir(yi) (23.4)

in which fir(yi) is the marginal density corresponding to a mixed model
with random effects that are normally distributed with mean µr and covari-
ance Dr. Hence, the marginal density of Y i is again a g-component finite
mixture, with the same mixing proportions pr, and where the component-
specific densities are marginal mixed model densities within the specific
sub-population. This specific feature will simplify implementation consider-
ably because it will be possible to build on existing software for generalized
linear and/or non-linear mixed models.

Maximization of the marginal likelihood resulting from (23.4) will be
based on the so-called Expectation-Maximization (EM) algorithm, see Laird
(1978). See also Section 28.3 for a general introduction of the algorithm in
the context of missing data. The EM algorithm is particularly useful for
mixture problems because it often happens that a model is fitted with too
many components (g too large), leading to a likelihood that is maximal
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anywhere on a ridge. As shown by Dempster, Laird, and Rubin (1977), the
EM algorithm is capable of converging to some particular point on that
ridge. Titterington, Smith, and Makov (1985, pp. 88–89) compare the EM
algorithm with the Newton-Raphson (NR) algorithm. Their conclusions
can be summarized as follows:

• EM is usually simple to apply and satisfies the appealing monotonic
property in that it increases the objective function at each iteration
step. NR is more complicated, and there is no guarantee of monotonic-
ity.

• If NR converges, it is of second order (i.e., fast), whereas EM is often
painfully slow. However, if the separation between the components in
the mixture is poor, even the numerical performance of NR can be
disappointing. Simulations have shown that, in such cases, NR can
fail to converge in up to half the simulations, even when the algorithm
was started from the true parameter values.

• Convergence is not guaranteed with any of the techniques because
EM, even with the monotonicity property, can converge to a local
maximum of the likelihood surface.

Böhning and Lindsay (1988) have considered maximization of log-likeli-
hoods for which the quadratic approximation based on the Taylor series
is “flatter” than the objective function, thereby sending the solution too
far at the next step. They conclude that, in a mixture framework, flat log-
likelihoods often occur. It is known that this often leads to problems in
convergence and to instabilities for the Newton-Raphson algorithm.

Note also that because the random effects are assumed to follow a mix-
ture of distributions of the same parametric family, the vector of all para-
meters in the marginal model is, strictly speaking, not identifiable. Indeed,
the log-likelihood is invariant under the g! possible permutations of the
mean vectors µr, the covariances Dr, and the corresponding component
probabilities pr. Therefore, the likelihood will have at least g! local max-
ima with the same likelihood value. However, this lack of identifiability is
of no concern in practice, as it can easily be overcome by imposing some
constraint on the parameters. For example, Aitkin and Rubin (1985) use
the constraint that

p1 ≥ p2 ≥ . . . ≥ pg. (23.5)

The likelihood is then maximized without the restriction, and the compo-
nent labels are permuted afterwards to achieve (23.5).

The EM algorithm is frequently used for the calculation of maximum like-
lihood estimates for missing data problems (Section 28.3). Strictly speak-
ing, we do not necessarily have missingness in our context. However, it will
prove extremely convenient to treat the component membership indicators
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zir, i = 1, . . . , N , r = 1, . . . , g as missing. We now give a brief introduction
on the EM algorithm in the context of the heterogeneity model, and we
refer to McLachlan and Basford (1988, Section 1.6) for an application of
the EM algorithm in a simpler mixture context, where it is assumed that
the available data are all drawn from the same mixture distribution (no
different dimensions, no covariates).

Let π be the vector of component probabilities [i.e., π′ = (p1, . . . , pg)]
and let γ be the vector containing the remaining parameters, i.e., the para-
meters in the conditional densities fi(yi|bi) as well as in all µr and all Dr.
Further, θ′ = (π′, γ′) denotes the vector of all parameters in the marginal
heterogeneity model (23.4). Further, we now explicitly denote dependence
of the within-component marginal densities fir(yi) on γ by fir(yi|γ). The
marginal likelihood function is then given by

L(θ|y) =
N∏

i=1

[
g∑

r=1

pr fir(yi | γ)

]
, (23.6)

where y′ = (y1
′, . . . ,yN

′) is the vector containing all observed response
values.

Let zir be as defined before in Section 23.2. The prior probability for an
individual to belong to component r is then P (zir = 1) = pr, the mixture
proportion for that component. The log-likelihood function for the observed
measurements y and for the vector z of all unobserved zir is then

	(θ|y, z) =
N∑

i=1

g∑
r=1

zir [ln pr + ln fir(yi|γ)] ,

which is easier to maximize than the log-likelihood function correspond-
ing to the likelihood (23.6) of the observed data vector y only. On the
other hand, maximizing 	(θ|y, z) with respect to θ yields estimates which
depend on the unobserved (“missing”) indicators zir. A compromise is ob-
tained with the EM algorithm, where the expected value of 	(θ|y, z), rather
than 	(θ|y, z) itself, is maximized with respect to θ, where the expectation
is taken over all the unobserved zir. In the E step (expectation step), the
conditional expectation of 	(θ|y, z), given the observed data vector y, is
calculated. In the M step (maximization step), the so-obtained expected
log-likelihood function is maximized with respect to θ, providing an up-
dated estimate for θ. Finally, one keeps iterating between the E step and
the M step until convergence is attained.

More specifically, let θ(t) be the current estimate for θ, and θ(t+1) stands
for the updated estimate, obtained from one further iteration in the EM
algorithm. We then have the following E and M steps in the estimation
process for the heterogeneity model.

The E Step. The conditional expectation

Q(θ|θ(t)) = E
[
	(θ|y, z) | y, θ(t)

]
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is given by

Q(θ|θ(t)) =
N∑

i=1

g∑
r=1

pir(θ(t)) [ln pr + ln fir(yi|γ)] , (23.7)

where only the posterior probability for the ith individual to belong
to the rth component of the mixture, given by

pir(θ(t)) = E(zir | yi, θ
(t)) = P (zir = 1 | yi, θ

(t))

=
prfir(yi|γ)∑g

k=1 pkfik(yi|γ)

∣∣∣∣
π̂(t),γ̂(t)

has to be calculated for each i and r.

The M Step. To get the updated estimate θ(t+1), we have to maximize
expression (23.7) with respect to θ. We first maximize

N∑
i=1

g∑
r=1

pir(θ(t)) ln pr

=
N∑

i=1

g−1∑
r=1

pir(θ(t)) ln pr +
N∑

i=1

pig(θ(t)) ln

(
1 −

g−1∑
r=1

pr

)

with respect to p1, . . . , pg−1. Setting all first-order derivatives equal
to zero establishes that the updated estimates satisfy

p
(t+1)
r

p
(t+1)
g

=
∑N

i=1 pir(θ(t))∑N
i=1 pig(θ(t))

,

for all r = 1, . . . , g − 1. This also implies that

1 =
g∑

r=1

p(t+1)
r =

N p
(t+1)
g∑N

i=1 pig(θ(t))
,

from which it follows that all estimates p
(t+1)
r satisfy

p(t+1)
r =

1
N

N∑
i=1

pir(θ(t)).

Unfortunately, the second part of (23.7) cannot be maximized ana-
lytically, and a numerical maximization procedure such as Newton-
Raphson is needed to maximize

N∑
i=1

g∑
r=1

pir(θ(t)) ln fir(yi|γ) (23.8)
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with respect to γ. Luckily, (23.8) can be interpreted as a weighted log-
likelihood of a generalized linear or non-linear mixed model. There-
fore, maximization of (23.8), can often be based on software pro-
cedures available for fitting generalized linear and non-linear mixed
models, such as the SAS procedures GLIMMIX and NLMIXED (Chap-
ter 15). We refer to Fieuws, Spiessens, and Draney (2004) for an
implementation based on the NLMIXED procedure.

Often, numerical maximization algorithms are based on second-order
derivatives of the log-likelihood function. This allows easy calculation of the
observed Fisher information matrix and hence also of asymptotic standard
errors for all ML estimates. This is not the case for the EM algorithm, which
immediately highlights one of the main drawbacks of this algorithm. How-
ever, Louis (1982) has provided a procedure for approximating the observed
information matrix with few additional calculations. The so-obtained stan-
dard errors can then be used to construct classical asymptotic Wald-type
tests, based on the asymptotic normality of the ML estimators. Alternative
inferences can be based on likelihood ratio principles as well.

23.4 Empirical Bayes Estimation and Classification

When the random effects bi are of interest, empirical Bayes (EB) tech-
niques can be used for their estimation. As explained in Section 14.2.4,
it is customary to define the EB estimates as the posterior modes of the
random effects bi, i.e., as the value for bi that maximizes the posterior
density fi(bi|yi), in which all unknown parameters have been replaced by
their estimates obtained from maximizing the marginal likelihood function.
Under the heterogeneity model, the posterior density of bi is given by

fi(bi | yi, θ) =
g∑

r=1

pir(θ)fir(bi | yi, γ), (23.9)

where fir(bi|yi, γ) is the posterior density function of bi, conditional on
zir = 1, i.e., conditional on the knowledge that bi was sampled from the
rth component in the mixture. Hence, the posterior distribution of bi is a
mixture of the posterior distributions of bi within each component of the
mixture, with the posterior probabilities pir(θ) as subject-specific mixture
proportions. The possible multimodality of the posterior density of bi im-
plies that the posterior mode is not a good point estimate for bi, in many
applications. However, expression (23.9) suggests estimating the random
effect bi for cluster i by the weighted sum

b̂i =
g∑

r=1

pir(θ)b̂ir(γ)
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of the component-specific posterior modes b̂ir(γ), with weights equal to
the posterior probabilities for that subject to belong to the different mix-
ture components, and with the parameters θ and γ replaced by their ML
estimates obtained from the EM algorithm. The resulting estimates will
still be called empirical Bayes estimates.

Interest could also lie in the classification of the subjects into the different
mixture components. It is natural in mixture models for such a classification
to be based on the estimated posterior probabilities pir(θ̂) (McLachlan
and Basford 1988, Section 1.4). One then classifies the ith subject into the
component for which it has the highest estimated posterior probability to
belong to, that is, to the r(i)th component, where r(i) is the index for
which

pi,r(i)(θ̂) = max
1≤r≤g

pir(θ̂).

Note how this technique can be used for cluster analysis within the frame-
work of non-linear or generalized linear mixed models: If the individual
profiles are to be classified into g subgroups, fit a mixture model with g
components and use the above rule for classification in either one of the
g clusters. In the context of discriminant analysis, a mixed model can be
fitted to each group separately, and a mixture model can be used for the
classification of future clusters. Examples in the context of linear models
for continuous data can be found in Verbeke and Lesaffre (1996), Tomasko,
Helms, and Snapinn (1999), Verbeke and Molenberghs (2000, Chapter 12),
and Brant et al (2003). An example in the context of non-linear mixed
models can be found in Fieuws, Verbeke, and Brant (2005).

23.5 The Verbal Aggression Data

As an illustration of the mixture approach, we re-analyze the data of
Vansteelandt (2000), which were also used by De Boeck and Wilson (2004),
as key example throughout their whole book. The data are responses from
316 persons to questions (items) about verbal aggression. All items refer
to verbally aggressive reactions in a frustrating situation. For example, one
item is: ‘A bus fails to stop for me. I would curse.’ Possible responses are
‘Yes,’ or ‘No.’ Further, the experimental design has four factors, summa-
rized in Table 23.1. The first one is the type of behavior, with possible
values ‘Curse,’ ‘Scold,’ and ‘Shout.’ The second design factor is the be-
havior mode. A differentiation is made between actual doing (i.e., cursing,
scolding, or shouting) and wanting to do (i.e., wanting to curse, wanting to
scold, or wanting to shout). The third design factor is the situation type.
This factor has two levels: situations in which someone else is to blame,
and situations in which one is self to blame. Examples of other-to-blame
situations are ‘A bus fails to stop for me,’ and ‘I miss a train because a clerk
gave me faulty information.’ Examples of self-to-blame situations are ‘The
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TABLE 23.1. Verbal Aggression Data. Summary of the 24 items. Two versions
exist of each item. The version with ‘want to’ in the item formulation refers
to items with behavior mode ‘Want.’ The version without ‘want to’ in the item
formulation refers to items with behavior mode ‘Do.’

Items Situation type Behavior
1. A bus fails to stop for me. I would (want to)

curse.
Other to blame Curse

2. A bus fails to stop for me. I would (want to)
scold.

Scold

3. A bus fails to stop for me. I would (want to)
shout.

Shout

4. I miss a train because a clerk gave me faulty
information. I would (want to) curse.

Curse

5. I miss a train because a clerk gave me faulty
information. I would (want to) scold.

Scold

6. I miss a train because a clerk gave me faulty
information. I would (want to) shout.

Shout

7. The grocery store closes just as I am about to
enter. I would (want to) curse.

Self to blame Curse

8. The grocery store closes just as I am about to
enter. I would (want to) scold

Scold

9. The grocery store closes just as I am about to
enter. I would (want to) shout.

Shout

10. The operator disconnects me when I had used
up my last 10 cents for a call. I would (want
to) curse.

Curse

11. The operator disconnects me when I had used
up my last 10 cents for a call. I would (want
to) scold.

Scold

12. The operator disconnects me when I had used
up my last 10 cents for a call. I would (want
to) shout.

Shout

operator disconnects me when I had used up my last 10 cents for a call,’
and ‘The grocery store closes just as I am about to enter.’ The fourth fac-
tor, the specific situations that are asked about (2 of each-see Table 23.1),
is nested within the third. This factor will not be used in the analyses here.
In conclusion, the design is a 3 × 2 × 2 design with a fourth factor nested
within the third, with 24 items in total.

Let Yij be the outcome for the jth item, measured on respondent i,
i = 1, . . . , 316, j = 1, . . . , 24. Further, we define four dummy variables,
as defined in Table 23.2. The definition of X2 and X3 is such that they
characterize expression of frustration (X2) and expression of blame (X3).
In our analyses, we will focuss on the effect of the factor ‘Type of situation,’
and more specifically, to the heterogeneity in the population with respect
to the effect this factor has on the outcome. All our models will be of the
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TABLE 23.2. Verbal Aggression Data. Definition of the dummy variables for the
design factors.

Dummy Design factor Definition

X1: Type of situation:
{

X1 = 1 Other to blame
X1 = 0 Self to blame

X2, X3: Type of behavior:
{

X2 = 1 Cursing or shouting
X2 = 0 Scolding

{
X3 = 1 Cursing or scolding
X3 = 0 Shouting

X4: Mode of behavior:
{

X4 = 1 Do mode
X4 = 0 Want mode

form

Yij |bi ∼ Bernoulli(πir),
logit(πir) = (β0 + bi0) + (β1 + bi1)X1i

+β2X2i + β3X3i + β4X4i, (23.10)

in which bi = (bi0, bi1)′ represents the vector of random (subject-specific)
intercepts and random (subject-specific) effects of ‘Others to blame’ (X1).
It is assumed that the random effects bi satisfy

bi ∼
g∑

r=1

prN(µr, Dr),

where, as before
∑

r prµr = 0. Here, we will only consider models with the
same covariance matrix in all mixture components, i.e., with all Dr equal
to D,

bi ∼
g∑

r=1

prN

[(
µ0j

µ1j

)
,

(
d11 d12

d21 d22

)]
,

where µr = (µ0j , µ1j)′.
Depending on the actual form of the µr and of D, we get a variety

of models all known in the psychometric literature. We refer to Fieuws,
Spiessens, and Draney (2004) for a detailed discussion. A graphical rep-
resentation of several of those models is given in Figure 23.2, in case of
two mixture components, i.e., g = 2. For example, if the within-component
covariance D is the 2 × 2 zero matrix, then no within-component variabil-
ity is present, and Model (23.10) reduces to a so-called latent class model,
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(1.A) (1.B) (1.C)

(2.A) (2.B) (2.C)

(3.A) (3.B) (3.C)

FIGURE 23.2. Verbal Aggression Data. Graphical representation of different dis-
tributional assumptions for random effects.
Classification according to amount of variability within the mixture components:

Row 1: no variability
Row 2: only variability for intercepts
Row 3: variability for intercepts and effects of other to blame

Classification according to discrimination of the mixture components:
Column A: no discrimination at all
Column B: discrimination on intercepts only
Column C: discrimination on intercepts and effects of other to blame
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TABLE 23.3. Verbal Aggression Data. Maximum likelihood estimates (standard
errors) for a one-component and several two-component mixture models.

Heterogeneity models (g = 2)
Effect Homogeneity Model A Model B Model C
β0 -0.31 (0.096) -0.32 (0.06)

β0 + µ01 0.20 (0.10) -0.17 (0.12)
β0 + µ02 -0.83 (0.11) -0.41 (0.08)

β1 1.03 (0.06) 1.03 (0.05)
β1 + µ11 2.47 (0.15) 2.64 (0.16)
β1 + µ12 0.50 (0.10) 0.50 (0.09)

β2 0.70 (0.05) 0.70 (0.04) 0.72 (0.04) 0.72 (0.04)
β3 1.36 (0.05) 1.36 (0.03) 1.41 (0.03) 1.41 (0.03)
β4 -0.67 (0.06) -0.67 (0.04) -0.69 (0.04) -0.69 (0.04)
d11 1.86 (0.20) 1.53 (0.16) 1.30 (0.10) 1.35 (0.10)

p1 0.52 (0.07) 0.30 (0.05) 0.27 (0.04)
p2 0.48 (0.01) 0.70 (0.05) 0.73 (0.04)
Log-likelihood -4116.05 -4115.39 -4079.07 -4079.84

which assumes that at most two different values are possible for the in-
tercepts, as well as for the slopes (row 1 in Figure 23.2). Depending on
the actual location of the mean parameters µ1 and µ2, the model fur-
ther reduces to a one-component mixture (column A in Figure 23.2), or
to a two-component mixture with discrimination in only one dimension
or in both dimensions (columns B and C, respectively, in Figure 23.2).
A similar column-classification is also possible in case one dimension of
the random-effects distribution shows within-component variability (row 2
in Figure 23.2), or when within-component variability is present in both
dimensions (row 3 in Figure 23.2).

As an example, several of these models have been fitted to the verbal ag-
gression data, all assuming within-component variability for the intercepts
(i.e., d11 > 0), but a latent class structure for the effect of the behavior
mode (i.e., d12 = d22 = 0). Hence, all models are of the type as shown in
row 2 of Figure 23.2. The results have been summarized in Table 23.3. First,
the homogeneity model, i.e., a one-component model, was fitted (g = 1).
Clearly, people tend to be more verbally aggressive when others are to
blame and when the considered behavior is expressing blame or expressing
frustration. Moreover, they want to be more aggressive than they say they
would actually be.
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FIGURE 23.3. Verbal Aggression Data. Fitted random-effects distribution based
on the two-component mixture model, Model B.

Our first two-component mixture model (Model A) assumes a two-component
mixture for the intercepts, but still one common effect of the covariate X1.
More specifically, we assume that(

bi0

bi1

)
∼ p1 N

[(
µ01

0

)
,

(
d11 0
0 0

)]
+ p2 N

[(
µ02

0

)
,

(
d11 0
0 0

)]
,

which graphically corresponds to panel (2.B) in Figure 23.2. The two mix-
ture components get estimated weights (prior probabilities) equal to 0.52
and 0.48. Note that the results in Table 23.3 are the component means
µ01 and µ02, with the fixed effect β0 added, yielding the average intercept
within each mixture component separately. In case β0 would be of interest,
the estimate immediately follows from the fact that

β0 = p1(µ01 + β0) + p2(µ02 + β0),

because the random effects have been assumed to have prior mean equal
to zero. In our example, this yields

β̂0 = 0.52 × 0.20 − 0.48 × 0.83 = −0.29,
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relatively close to the overall intercept we obtained under the homogene-
ity model. Note also the reduction in within-component variability d11.
Finally, although classical likelihood ratio tests for the comparison of the
one-component model with Model A are not valid (see Section 23.2), com-
parison of the log-likelihood values does yield very little evidence in favor
of the two-component model.

Model A assumes the same effect of X1 in both mixture components. In
Model B, this is relaxed by assuming that

(
bi0

bi1

)
∼ p1 N

[(
µ01

µ11

)
,

(
d11 0
0 0

)]
+ p2 N

[(
µ02

µ12

)
,

(
d11 0
0 0

)]
,

graphically represented in panel (2.C) of Figure 23.2. Clearly, this model
yields an improved fit, when compared to Model A. Figure 23.3 shows
the fitted random-effects distribution. The smaller class represents approx-
imately 30% of the population, the larger class 70%. Figure 23.3 clearly
shows that a major distinction between the two mixture components is
given by the effect of the ‘other-to-blame’ factor. Our homogeneity model
showed that verbal aggression is higher when others are to blame, com-
pared to situations in which one should blame oneself. In the smaller class
this difference is much higher than in the larger class (2.474 versus 0.501).
This means that there are two types of people: Those who do not dif-
ferentiate very much between other-to-blame situations and self-to-blame
situations and those who are clearly more verbally aggressive when others
are to blame.

Figure 23.3 also suggests that there is very little differentiation between
the mixture components with respect to the random intercepts: The aver-
age intercepts in the two components are estimated as −0.167 in the first
component versus −0.414 in the second mixture component. Therefore, a
two-component model, with a common average random intercept for both
components has also been fitted (Model C). The random effects are then
assumed to satisfy

(
bi0

bi1

)
∼ p1 N

[(
0

µ11

)
,

(
d11 0
0 0

)]
+ p2 N

[(
0

µ12

)
,

(
d11 0
0 0

)]
.

The maximized log-likelihood value is now −4079.84, which is only slightly
smaller than what was obtained under Model B.
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23.6 Concluding Remarks

In linear mixed models, inferences for the fixed effects and variance compo-
nents are quite robust with respect to non-normality of the random effects.
This no longer holds for non-linear or generalized linear mixed models.
We have presented a flexible class of models with less strict distributional
assumptions for the random effects, which includes the traditional mixed
models based on Gaussian random effects, as special cases.

In the analysis of the verbal aggression data (Section 23.5), we have
illustrated the flexibility of the models, in the context of a mixed logistic
model for a binary outcome variable. However, the heterogeneity model can
equally well be applied to non-linear mixed models (Section 20.5).

Note also that many further extensions of the models presented in the
example in Section 23.5 would be possible. The number of mixture compo-
nents could be further increased, class-specific variances could be assumed,
within-component variability could be allowed for the effects of the type
of situation, or other random effects could be included as well. Our pur-
pose has been to illustrate the flexibility of the heterogeneity model, rather
than to give a complete overview of all possible models that fit within this
framework.




